1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/MemorySSA.h" 31 #include "llvm/Analysis/MemorySSAUpdater.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/NoFolder.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/PatternMatch.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <climits> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <set> 80 #include <tuple> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 using namespace PatternMatch; 86 87 #define DEBUG_TYPE "simplifycfg" 88 89 // Chosen as 2 so as to be cheap, but still to have enough power to fold 90 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 91 // To catch this, we need to fold a compare and a select, hence '2' being the 92 // minimum reasonable default. 93 static cl::opt<unsigned> PHINodeFoldingThreshold( 94 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 95 cl::desc( 96 "Control the amount of phi node folding to perform (default = 2)")); 97 98 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 99 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 100 cl::desc("Control the maximal total instruction cost that we are willing " 101 "to speculatively execute to fold a 2-entry PHI node into a " 102 "select (default = 4)")); 103 104 static cl::opt<bool> DupRet( 105 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 106 cl::desc("Duplicate return instructions into unconditional branches")); 107 108 static cl::opt<bool> 109 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 110 cl::desc("Hoist common instructions up to the parent block")); 111 112 static cl::opt<bool> 113 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 114 cl::desc("Sink common instructions down to the end block")); 115 116 static cl::opt<bool> HoistCondStores( 117 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 118 cl::desc("Hoist conditional stores if an unconditional store precedes")); 119 120 static cl::opt<bool> MergeCondStores( 121 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 122 cl::desc("Hoist conditional stores even if an unconditional store does not " 123 "precede - hoist multiple conditional stores into a single " 124 "predicated store")); 125 126 static cl::opt<bool> MergeCondStoresAggressively( 127 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 128 cl::desc("When merging conditional stores, do so even if the resultant " 129 "basic blocks are unlikely to be if-converted as a result")); 130 131 static cl::opt<bool> SpeculateOneExpensiveInst( 132 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 133 cl::desc("Allow exactly one expensive instruction to be speculatively " 134 "executed")); 135 136 static cl::opt<unsigned> MaxSpeculationDepth( 137 "max-speculation-depth", cl::Hidden, cl::init(10), 138 cl::desc("Limit maximum recursion depth when calculating costs of " 139 "speculatively executed instructions")); 140 141 static cl::opt<int> 142 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 143 cl::desc("Max size of a block which is still considered " 144 "small enough to thread through")); 145 146 // Two is chosen to allow one negation and a logical combine. 147 static cl::opt<unsigned> 148 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 149 cl::init(2), 150 cl::desc("Maximum cost of combining conditions when " 151 "folding branches")); 152 153 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 154 STATISTIC(NumLinearMaps, 155 "Number of switch instructions turned into linear mapping"); 156 STATISTIC(NumLookupTables, 157 "Number of switch instructions turned into lookup tables"); 158 STATISTIC( 159 NumLookupTablesHoles, 160 "Number of switch instructions turned into lookup tables (holes checked)"); 161 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 162 STATISTIC(NumFoldValueComparisonIntoPredecessors, 163 "Number of value comparisons folded into predecessor basic blocks"); 164 STATISTIC(NumFoldBranchToCommonDest, 165 "Number of branches folded into predecessor basic block"); 166 STATISTIC( 167 NumHoistCommonCode, 168 "Number of common instruction 'blocks' hoisted up to the begin block"); 169 STATISTIC(NumHoistCommonInstrs, 170 "Number of common instructions hoisted up to the begin block"); 171 STATISTIC(NumSinkCommonCode, 172 "Number of common instruction 'blocks' sunk down to the end block"); 173 STATISTIC(NumSinkCommonInstrs, 174 "Number of common instructions sunk down to the end block"); 175 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 176 STATISTIC(NumInvokes, 177 "Number of invokes with empty resume blocks simplified into calls"); 178 179 namespace { 180 181 // The first field contains the value that the switch produces when a certain 182 // case group is selected, and the second field is a vector containing the 183 // cases composing the case group. 184 using SwitchCaseResultVectorTy = 185 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 186 187 // The first field contains the phi node that generates a result of the switch 188 // and the second field contains the value generated for a certain case in the 189 // switch for that PHI. 190 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 191 192 /// ValueEqualityComparisonCase - Represents a case of a switch. 193 struct ValueEqualityComparisonCase { 194 ConstantInt *Value; 195 BasicBlock *Dest; 196 197 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 198 : Value(Value), Dest(Dest) {} 199 200 bool operator<(ValueEqualityComparisonCase RHS) const { 201 // Comparing pointers is ok as we only rely on the order for uniquing. 202 return Value < RHS.Value; 203 } 204 205 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 206 }; 207 208 class SimplifyCFGOpt { 209 const TargetTransformInfo &TTI; 210 const DataLayout &DL; 211 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 212 const SimplifyCFGOptions &Options; 213 bool Resimplify; 214 215 Value *isValueEqualityComparison(Instruction *TI); 216 BasicBlock *GetValueEqualityComparisonCases( 217 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 218 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 219 BasicBlock *Pred, 220 IRBuilder<> &Builder); 221 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 222 IRBuilder<> &Builder); 223 224 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 225 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 226 bool simplifySingleResume(ResumeInst *RI); 227 bool simplifyCommonResume(ResumeInst *RI); 228 bool simplifyCleanupReturn(CleanupReturnInst *RI); 229 bool simplifyUnreachable(UnreachableInst *UI); 230 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 231 bool simplifyIndirectBr(IndirectBrInst *IBI); 232 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 233 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 234 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 235 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 236 237 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 238 IRBuilder<> &Builder); 239 240 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 241 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 242 const TargetTransformInfo &TTI); 243 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 244 BasicBlock *TrueBB, BasicBlock *FalseBB, 245 uint32_t TrueWeight, uint32_t FalseWeight); 246 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 247 const DataLayout &DL); 248 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 249 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 250 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 251 252 public: 253 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 254 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 255 const SimplifyCFGOptions &Opts) 256 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 257 258 bool run(BasicBlock *BB); 259 bool simplifyOnce(BasicBlock *BB); 260 261 // Helper to set Resimplify and return change indication. 262 bool requestResimplify() { 263 Resimplify = true; 264 return true; 265 } 266 }; 267 268 } // end anonymous namespace 269 270 /// Return true if it is safe to merge these two 271 /// terminator instructions together. 272 static bool 273 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 274 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 275 if (SI1 == SI2) 276 return false; // Can't merge with self! 277 278 // It is not safe to merge these two switch instructions if they have a common 279 // successor, and if that successor has a PHI node, and if *that* PHI node has 280 // conflicting incoming values from the two switch blocks. 281 BasicBlock *SI1BB = SI1->getParent(); 282 BasicBlock *SI2BB = SI2->getParent(); 283 284 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 285 bool Fail = false; 286 for (BasicBlock *Succ : successors(SI2BB)) 287 if (SI1Succs.count(Succ)) 288 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 289 PHINode *PN = cast<PHINode>(BBI); 290 if (PN->getIncomingValueForBlock(SI1BB) != 291 PN->getIncomingValueForBlock(SI2BB)) { 292 if (FailBlocks) 293 FailBlocks->insert(Succ); 294 Fail = true; 295 } 296 } 297 298 return !Fail; 299 } 300 301 /// Return true if it is safe and profitable to merge these two terminator 302 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 303 /// store all PHI nodes in common successors. 304 static bool 305 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 306 Instruction *Cond, 307 SmallVectorImpl<PHINode *> &PhiNodes) { 308 if (SI1 == SI2) 309 return false; // Can't merge with self! 310 assert(SI1->isUnconditional() && SI2->isConditional()); 311 312 // We fold the unconditional branch if we can easily update all PHI nodes in 313 // common successors: 314 // 1> We have a constant incoming value for the conditional branch; 315 // 2> We have "Cond" as the incoming value for the unconditional branch; 316 // 3> SI2->getCondition() and Cond have same operands. 317 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 318 if (!Ci2) 319 return false; 320 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 321 Cond->getOperand(1) == Ci2->getOperand(1)) && 322 !(Cond->getOperand(0) == Ci2->getOperand(1) && 323 Cond->getOperand(1) == Ci2->getOperand(0))) 324 return false; 325 326 BasicBlock *SI1BB = SI1->getParent(); 327 BasicBlock *SI2BB = SI2->getParent(); 328 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 329 for (BasicBlock *Succ : successors(SI2BB)) 330 if (SI1Succs.count(Succ)) 331 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 332 PHINode *PN = cast<PHINode>(BBI); 333 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 334 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 335 return false; 336 PhiNodes.push_back(PN); 337 } 338 return true; 339 } 340 341 /// Update PHI nodes in Succ to indicate that there will now be entries in it 342 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 343 /// will be the same as those coming in from ExistPred, an existing predecessor 344 /// of Succ. 345 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 346 BasicBlock *ExistPred, 347 MemorySSAUpdater *MSSAU = nullptr) { 348 for (PHINode &PN : Succ->phis()) 349 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 350 if (MSSAU) 351 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 352 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 353 } 354 355 /// Compute an abstract "cost" of speculating the given instruction, 356 /// which is assumed to be safe to speculate. TCC_Free means cheap, 357 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 358 /// expensive. 359 static unsigned ComputeSpeculationCost(const User *I, 360 const TargetTransformInfo &TTI) { 361 assert(isSafeToSpeculativelyExecute(I) && 362 "Instruction is not safe to speculatively execute!"); 363 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 364 } 365 366 /// If we have a merge point of an "if condition" as accepted above, 367 /// return true if the specified value dominates the block. We 368 /// don't handle the true generality of domination here, just a special case 369 /// which works well enough for us. 370 /// 371 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 372 /// see if V (which must be an instruction) and its recursive operands 373 /// that do not dominate BB have a combined cost lower than CostRemaining and 374 /// are non-trapping. If both are true, the instruction is inserted into the 375 /// set and true is returned. 376 /// 377 /// The cost for most non-trapping instructions is defined as 1 except for 378 /// Select whose cost is 2. 379 /// 380 /// After this function returns, CostRemaining is decreased by the cost of 381 /// V plus its non-dominating operands. If that cost is greater than 382 /// CostRemaining, false is returned and CostRemaining is undefined. 383 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 384 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 385 int &BudgetRemaining, 386 const TargetTransformInfo &TTI, 387 unsigned Depth = 0) { 388 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 389 // so limit the recursion depth. 390 // TODO: While this recursion limit does prevent pathological behavior, it 391 // would be better to track visited instructions to avoid cycles. 392 if (Depth == MaxSpeculationDepth) 393 return false; 394 395 Instruction *I = dyn_cast<Instruction>(V); 396 if (!I) { 397 // Non-instructions all dominate instructions, but not all constantexprs 398 // can be executed unconditionally. 399 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 400 if (C->canTrap()) 401 return false; 402 return true; 403 } 404 BasicBlock *PBB = I->getParent(); 405 406 // We don't want to allow weird loops that might have the "if condition" in 407 // the bottom of this block. 408 if (PBB == BB) 409 return false; 410 411 // If this instruction is defined in a block that contains an unconditional 412 // branch to BB, then it must be in the 'conditional' part of the "if 413 // statement". If not, it definitely dominates the region. 414 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 415 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 416 return true; 417 418 // If we have seen this instruction before, don't count it again. 419 if (AggressiveInsts.count(I)) 420 return true; 421 422 // Okay, it looks like the instruction IS in the "condition". Check to 423 // see if it's a cheap instruction to unconditionally compute, and if it 424 // only uses stuff defined outside of the condition. If so, hoist it out. 425 if (!isSafeToSpeculativelyExecute(I)) 426 return false; 427 428 BudgetRemaining -= ComputeSpeculationCost(I, TTI); 429 430 // Allow exactly one instruction to be speculated regardless of its cost 431 // (as long as it is safe to do so). 432 // This is intended to flatten the CFG even if the instruction is a division 433 // or other expensive operation. The speculation of an expensive instruction 434 // is expected to be undone in CodeGenPrepare if the speculation has not 435 // enabled further IR optimizations. 436 if (BudgetRemaining < 0 && 437 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 438 return false; 439 440 // Okay, we can only really hoist these out if their operands do 441 // not take us over the cost threshold. 442 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 443 if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI, 444 Depth + 1)) 445 return false; 446 // Okay, it's safe to do this! Remember this instruction. 447 AggressiveInsts.insert(I); 448 return true; 449 } 450 451 /// Extract ConstantInt from value, looking through IntToPtr 452 /// and PointerNullValue. Return NULL if value is not a constant int. 453 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 454 // Normal constant int. 455 ConstantInt *CI = dyn_cast<ConstantInt>(V); 456 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 457 return CI; 458 459 // This is some kind of pointer constant. Turn it into a pointer-sized 460 // ConstantInt if possible. 461 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 462 463 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 464 if (isa<ConstantPointerNull>(V)) 465 return ConstantInt::get(PtrTy, 0); 466 467 // IntToPtr const int. 468 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 469 if (CE->getOpcode() == Instruction::IntToPtr) 470 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 471 // The constant is very likely to have the right type already. 472 if (CI->getType() == PtrTy) 473 return CI; 474 else 475 return cast<ConstantInt>( 476 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 477 } 478 return nullptr; 479 } 480 481 namespace { 482 483 /// Given a chain of or (||) or and (&&) comparison of a value against a 484 /// constant, this will try to recover the information required for a switch 485 /// structure. 486 /// It will depth-first traverse the chain of comparison, seeking for patterns 487 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 488 /// representing the different cases for the switch. 489 /// Note that if the chain is composed of '||' it will build the set of elements 490 /// that matches the comparisons (i.e. any of this value validate the chain) 491 /// while for a chain of '&&' it will build the set elements that make the test 492 /// fail. 493 struct ConstantComparesGatherer { 494 const DataLayout &DL; 495 496 /// Value found for the switch comparison 497 Value *CompValue = nullptr; 498 499 /// Extra clause to be checked before the switch 500 Value *Extra = nullptr; 501 502 /// Set of integers to match in switch 503 SmallVector<ConstantInt *, 8> Vals; 504 505 /// Number of comparisons matched in the and/or chain 506 unsigned UsedICmps = 0; 507 508 /// Construct and compute the result for the comparison instruction Cond 509 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 510 gather(Cond); 511 } 512 513 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 514 ConstantComparesGatherer & 515 operator=(const ConstantComparesGatherer &) = delete; 516 517 private: 518 /// Try to set the current value used for the comparison, it succeeds only if 519 /// it wasn't set before or if the new value is the same as the old one 520 bool setValueOnce(Value *NewVal) { 521 if (CompValue && CompValue != NewVal) 522 return false; 523 CompValue = NewVal; 524 return (CompValue != nullptr); 525 } 526 527 /// Try to match Instruction "I" as a comparison against a constant and 528 /// populates the array Vals with the set of values that match (or do not 529 /// match depending on isEQ). 530 /// Return false on failure. On success, the Value the comparison matched 531 /// against is placed in CompValue. 532 /// If CompValue is already set, the function is expected to fail if a match 533 /// is found but the value compared to is different. 534 bool matchInstruction(Instruction *I, bool isEQ) { 535 // If this is an icmp against a constant, handle this as one of the cases. 536 ICmpInst *ICI; 537 ConstantInt *C; 538 if (!((ICI = dyn_cast<ICmpInst>(I)) && 539 (C = GetConstantInt(I->getOperand(1), DL)))) { 540 return false; 541 } 542 543 Value *RHSVal; 544 const APInt *RHSC; 545 546 // Pattern match a special case 547 // (x & ~2^z) == y --> x == y || x == y|2^z 548 // This undoes a transformation done by instcombine to fuse 2 compares. 549 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 550 // It's a little bit hard to see why the following transformations are 551 // correct. Here is a CVC3 program to verify them for 64-bit values: 552 553 /* 554 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 555 x : BITVECTOR(64); 556 y : BITVECTOR(64); 557 z : BITVECTOR(64); 558 mask : BITVECTOR(64) = BVSHL(ONE, z); 559 QUERY( (y & ~mask = y) => 560 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 561 ); 562 QUERY( (y | mask = y) => 563 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 564 ); 565 */ 566 567 // Please note that each pattern must be a dual implication (<--> or 568 // iff). One directional implication can create spurious matches. If the 569 // implication is only one-way, an unsatisfiable condition on the left 570 // side can imply a satisfiable condition on the right side. Dual 571 // implication ensures that satisfiable conditions are transformed to 572 // other satisfiable conditions and unsatisfiable conditions are 573 // transformed to other unsatisfiable conditions. 574 575 // Here is a concrete example of a unsatisfiable condition on the left 576 // implying a satisfiable condition on the right: 577 // 578 // mask = (1 << z) 579 // (x & ~mask) == y --> (x == y || x == (y | mask)) 580 // 581 // Substituting y = 3, z = 0 yields: 582 // (x & -2) == 3 --> (x == 3 || x == 2) 583 584 // Pattern match a special case: 585 /* 586 QUERY( (y & ~mask = y) => 587 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 588 ); 589 */ 590 if (match(ICI->getOperand(0), 591 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 592 APInt Mask = ~*RHSC; 593 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 594 // If we already have a value for the switch, it has to match! 595 if (!setValueOnce(RHSVal)) 596 return false; 597 598 Vals.push_back(C); 599 Vals.push_back( 600 ConstantInt::get(C->getContext(), 601 C->getValue() | Mask)); 602 UsedICmps++; 603 return true; 604 } 605 } 606 607 // Pattern match a special case: 608 /* 609 QUERY( (y | mask = y) => 610 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 611 ); 612 */ 613 if (match(ICI->getOperand(0), 614 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 615 APInt Mask = *RHSC; 616 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 617 // If we already have a value for the switch, it has to match! 618 if (!setValueOnce(RHSVal)) 619 return false; 620 621 Vals.push_back(C); 622 Vals.push_back(ConstantInt::get(C->getContext(), 623 C->getValue() & ~Mask)); 624 UsedICmps++; 625 return true; 626 } 627 } 628 629 // If we already have a value for the switch, it has to match! 630 if (!setValueOnce(ICI->getOperand(0))) 631 return false; 632 633 UsedICmps++; 634 Vals.push_back(C); 635 return ICI->getOperand(0); 636 } 637 638 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 639 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 640 ICI->getPredicate(), C->getValue()); 641 642 // Shift the range if the compare is fed by an add. This is the range 643 // compare idiom as emitted by instcombine. 644 Value *CandidateVal = I->getOperand(0); 645 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 646 Span = Span.subtract(*RHSC); 647 CandidateVal = RHSVal; 648 } 649 650 // If this is an and/!= check, then we are looking to build the set of 651 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 652 // x != 0 && x != 1. 653 if (!isEQ) 654 Span = Span.inverse(); 655 656 // If there are a ton of values, we don't want to make a ginormous switch. 657 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 658 return false; 659 } 660 661 // If we already have a value for the switch, it has to match! 662 if (!setValueOnce(CandidateVal)) 663 return false; 664 665 // Add all values from the range to the set 666 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 667 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 668 669 UsedICmps++; 670 return true; 671 } 672 673 /// Given a potentially 'or'd or 'and'd together collection of icmp 674 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 675 /// the value being compared, and stick the list constants into the Vals 676 /// vector. 677 /// One "Extra" case is allowed to differ from the other. 678 void gather(Value *V) { 679 bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or); 680 681 // Keep a stack (SmallVector for efficiency) for depth-first traversal 682 SmallVector<Value *, 8> DFT; 683 SmallPtrSet<Value *, 8> Visited; 684 685 // Initialize 686 Visited.insert(V); 687 DFT.push_back(V); 688 689 while (!DFT.empty()) { 690 V = DFT.pop_back_val(); 691 692 if (Instruction *I = dyn_cast<Instruction>(V)) { 693 // If it is a || (or && depending on isEQ), process the operands. 694 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 695 if (Visited.insert(I->getOperand(1)).second) 696 DFT.push_back(I->getOperand(1)); 697 if (Visited.insert(I->getOperand(0)).second) 698 DFT.push_back(I->getOperand(0)); 699 continue; 700 } 701 702 // Try to match the current instruction 703 if (matchInstruction(I, isEQ)) 704 // Match succeed, continue the loop 705 continue; 706 } 707 708 // One element of the sequence of || (or &&) could not be match as a 709 // comparison against the same value as the others. 710 // We allow only one "Extra" case to be checked before the switch 711 if (!Extra) { 712 Extra = V; 713 continue; 714 } 715 // Failed to parse a proper sequence, abort now 716 CompValue = nullptr; 717 break; 718 } 719 } 720 }; 721 722 } // end anonymous namespace 723 724 static void EraseTerminatorAndDCECond(Instruction *TI, 725 MemorySSAUpdater *MSSAU = nullptr) { 726 Instruction *Cond = nullptr; 727 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 728 Cond = dyn_cast<Instruction>(SI->getCondition()); 729 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 730 if (BI->isConditional()) 731 Cond = dyn_cast<Instruction>(BI->getCondition()); 732 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 733 Cond = dyn_cast<Instruction>(IBI->getAddress()); 734 } 735 736 TI->eraseFromParent(); 737 if (Cond) 738 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 739 } 740 741 /// Return true if the specified terminator checks 742 /// to see if a value is equal to constant integer value. 743 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 744 Value *CV = nullptr; 745 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 746 // Do not permit merging of large switch instructions into their 747 // predecessors unless there is only one predecessor. 748 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 749 CV = SI->getCondition(); 750 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 751 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 752 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 753 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 754 CV = ICI->getOperand(0); 755 } 756 757 // Unwrap any lossless ptrtoint cast. 758 if (CV) { 759 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 760 Value *Ptr = PTII->getPointerOperand(); 761 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 762 CV = Ptr; 763 } 764 } 765 return CV; 766 } 767 768 /// Given a value comparison instruction, 769 /// decode all of the 'cases' that it represents and return the 'default' block. 770 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 771 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 772 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 773 Cases.reserve(SI->getNumCases()); 774 for (auto Case : SI->cases()) 775 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 776 Case.getCaseSuccessor())); 777 return SI->getDefaultDest(); 778 } 779 780 BranchInst *BI = cast<BranchInst>(TI); 781 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 782 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 783 Cases.push_back(ValueEqualityComparisonCase( 784 GetConstantInt(ICI->getOperand(1), DL), Succ)); 785 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 786 } 787 788 /// Given a vector of bb/value pairs, remove any entries 789 /// in the list that match the specified block. 790 static void 791 EliminateBlockCases(BasicBlock *BB, 792 std::vector<ValueEqualityComparisonCase> &Cases) { 793 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 794 } 795 796 /// Return true if there are any keys in C1 that exist in C2 as well. 797 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 798 std::vector<ValueEqualityComparisonCase> &C2) { 799 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 800 801 // Make V1 be smaller than V2. 802 if (V1->size() > V2->size()) 803 std::swap(V1, V2); 804 805 if (V1->empty()) 806 return false; 807 if (V1->size() == 1) { 808 // Just scan V2. 809 ConstantInt *TheVal = (*V1)[0].Value; 810 for (unsigned i = 0, e = V2->size(); i != e; ++i) 811 if (TheVal == (*V2)[i].Value) 812 return true; 813 } 814 815 // Otherwise, just sort both lists and compare element by element. 816 array_pod_sort(V1->begin(), V1->end()); 817 array_pod_sort(V2->begin(), V2->end()); 818 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 819 while (i1 != e1 && i2 != e2) { 820 if ((*V1)[i1].Value == (*V2)[i2].Value) 821 return true; 822 if ((*V1)[i1].Value < (*V2)[i2].Value) 823 ++i1; 824 else 825 ++i2; 826 } 827 return false; 828 } 829 830 // Set branch weights on SwitchInst. This sets the metadata if there is at 831 // least one non-zero weight. 832 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 833 // Check that there is at least one non-zero weight. Otherwise, pass 834 // nullptr to setMetadata which will erase the existing metadata. 835 MDNode *N = nullptr; 836 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 837 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 838 SI->setMetadata(LLVMContext::MD_prof, N); 839 } 840 841 // Similar to the above, but for branch and select instructions that take 842 // exactly 2 weights. 843 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 844 uint32_t FalseWeight) { 845 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 846 // Check that there is at least one non-zero weight. Otherwise, pass 847 // nullptr to setMetadata which will erase the existing metadata. 848 MDNode *N = nullptr; 849 if (TrueWeight || FalseWeight) 850 N = MDBuilder(I->getParent()->getContext()) 851 .createBranchWeights(TrueWeight, FalseWeight); 852 I->setMetadata(LLVMContext::MD_prof, N); 853 } 854 855 /// If TI is known to be a terminator instruction and its block is known to 856 /// only have a single predecessor block, check to see if that predecessor is 857 /// also a value comparison with the same value, and if that comparison 858 /// determines the outcome of this comparison. If so, simplify TI. This does a 859 /// very limited form of jump threading. 860 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 861 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 862 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 863 if (!PredVal) 864 return false; // Not a value comparison in predecessor. 865 866 Value *ThisVal = isValueEqualityComparison(TI); 867 assert(ThisVal && "This isn't a value comparison!!"); 868 if (ThisVal != PredVal) 869 return false; // Different predicates. 870 871 // TODO: Preserve branch weight metadata, similarly to how 872 // FoldValueComparisonIntoPredecessors preserves it. 873 874 // Find out information about when control will move from Pred to TI's block. 875 std::vector<ValueEqualityComparisonCase> PredCases; 876 BasicBlock *PredDef = 877 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 878 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 879 880 // Find information about how control leaves this block. 881 std::vector<ValueEqualityComparisonCase> ThisCases; 882 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 883 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 884 885 // If TI's block is the default block from Pred's comparison, potentially 886 // simplify TI based on this knowledge. 887 if (PredDef == TI->getParent()) { 888 // If we are here, we know that the value is none of those cases listed in 889 // PredCases. If there are any cases in ThisCases that are in PredCases, we 890 // can simplify TI. 891 if (!ValuesOverlap(PredCases, ThisCases)) 892 return false; 893 894 if (isa<BranchInst>(TI)) { 895 // Okay, one of the successors of this condbr is dead. Convert it to a 896 // uncond br. 897 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 898 // Insert the new branch. 899 Instruction *NI = Builder.CreateBr(ThisDef); 900 (void)NI; 901 902 // Remove PHI node entries for the dead edge. 903 ThisCases[0].Dest->removePredecessor(TI->getParent()); 904 905 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 906 << "Through successor TI: " << *TI << "Leaving: " << *NI 907 << "\n"); 908 909 EraseTerminatorAndDCECond(TI); 910 return true; 911 } 912 913 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 914 // Okay, TI has cases that are statically dead, prune them away. 915 SmallPtrSet<Constant *, 16> DeadCases; 916 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 917 DeadCases.insert(PredCases[i].Value); 918 919 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 920 << "Through successor TI: " << *TI); 921 922 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 923 --i; 924 if (DeadCases.count(i->getCaseValue())) { 925 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 926 SI.removeCase(i); 927 } 928 } 929 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 930 return true; 931 } 932 933 // Otherwise, TI's block must correspond to some matched value. Find out 934 // which value (or set of values) this is. 935 ConstantInt *TIV = nullptr; 936 BasicBlock *TIBB = TI->getParent(); 937 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 938 if (PredCases[i].Dest == TIBB) { 939 if (TIV) 940 return false; // Cannot handle multiple values coming to this block. 941 TIV = PredCases[i].Value; 942 } 943 assert(TIV && "No edge from pred to succ?"); 944 945 // Okay, we found the one constant that our value can be if we get into TI's 946 // BB. Find out which successor will unconditionally be branched to. 947 BasicBlock *TheRealDest = nullptr; 948 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 949 if (ThisCases[i].Value == TIV) { 950 TheRealDest = ThisCases[i].Dest; 951 break; 952 } 953 954 // If not handled by any explicit cases, it is handled by the default case. 955 if (!TheRealDest) 956 TheRealDest = ThisDef; 957 958 // Remove PHI node entries for dead edges. 959 BasicBlock *CheckEdge = TheRealDest; 960 for (BasicBlock *Succ : successors(TIBB)) 961 if (Succ != CheckEdge) 962 Succ->removePredecessor(TIBB); 963 else 964 CheckEdge = nullptr; 965 966 // Insert the new branch. 967 Instruction *NI = Builder.CreateBr(TheRealDest); 968 (void)NI; 969 970 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 971 << "Through successor TI: " << *TI << "Leaving: " << *NI 972 << "\n"); 973 974 EraseTerminatorAndDCECond(TI); 975 return true; 976 } 977 978 namespace { 979 980 /// This class implements a stable ordering of constant 981 /// integers that does not depend on their address. This is important for 982 /// applications that sort ConstantInt's to ensure uniqueness. 983 struct ConstantIntOrdering { 984 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 985 return LHS->getValue().ult(RHS->getValue()); 986 } 987 }; 988 989 } // end anonymous namespace 990 991 static int ConstantIntSortPredicate(ConstantInt *const *P1, 992 ConstantInt *const *P2) { 993 const ConstantInt *LHS = *P1; 994 const ConstantInt *RHS = *P2; 995 if (LHS == RHS) 996 return 0; 997 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 998 } 999 1000 static inline bool HasBranchWeights(const Instruction *I) { 1001 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1002 if (ProfMD && ProfMD->getOperand(0)) 1003 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1004 return MDS->getString().equals("branch_weights"); 1005 1006 return false; 1007 } 1008 1009 /// Get Weights of a given terminator, the default weight is at the front 1010 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1011 /// metadata. 1012 static void GetBranchWeights(Instruction *TI, 1013 SmallVectorImpl<uint64_t> &Weights) { 1014 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1015 assert(MD); 1016 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1017 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1018 Weights.push_back(CI->getValue().getZExtValue()); 1019 } 1020 1021 // If TI is a conditional eq, the default case is the false case, 1022 // and the corresponding branch-weight data is at index 2. We swap the 1023 // default weight to be the first entry. 1024 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1025 assert(Weights.size() == 2); 1026 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1027 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1028 std::swap(Weights.front(), Weights.back()); 1029 } 1030 } 1031 1032 /// Keep halving the weights until all can fit in uint32_t. 1033 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1034 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1035 if (Max > UINT_MAX) { 1036 unsigned Offset = 32 - countLeadingZeros(Max); 1037 for (uint64_t &I : Weights) 1038 I >>= Offset; 1039 } 1040 } 1041 1042 /// The specified terminator is a value equality comparison instruction 1043 /// (either a switch or a branch on "X == c"). 1044 /// See if any of the predecessors of the terminator block are value comparisons 1045 /// on the same value. If so, and if safe to do so, fold them together. 1046 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1047 IRBuilder<> &Builder) { 1048 BasicBlock *BB = TI->getParent(); 1049 Value *CV = isValueEqualityComparison(TI); // CondVal 1050 assert(CV && "Not a comparison?"); 1051 1052 bool Changed = false; 1053 1054 auto _ = make_scope_exit([&]() { 1055 if (Changed) 1056 ++NumFoldValueComparisonIntoPredecessors; 1057 }); 1058 1059 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1060 while (!Preds.empty()) { 1061 BasicBlock *Pred = Preds.pop_back_val(); 1062 1063 // See if the predecessor is a comparison with the same value. 1064 Instruction *PTI = Pred->getTerminator(); 1065 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1066 1067 if (PCV == CV && TI != PTI) { 1068 SmallSetVector<BasicBlock*, 4> FailBlocks; 1069 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1070 for (auto *Succ : FailBlocks) { 1071 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1072 return false; 1073 } 1074 } 1075 1076 // Figure out which 'cases' to copy from SI to PSI. 1077 std::vector<ValueEqualityComparisonCase> BBCases; 1078 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1079 1080 std::vector<ValueEqualityComparisonCase> PredCases; 1081 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1082 1083 // Based on whether the default edge from PTI goes to BB or not, fill in 1084 // PredCases and PredDefault with the new switch cases we would like to 1085 // build. 1086 SmallVector<BasicBlock *, 8> NewSuccessors; 1087 1088 // Update the branch weight metadata along the way 1089 SmallVector<uint64_t, 8> Weights; 1090 bool PredHasWeights = HasBranchWeights(PTI); 1091 bool SuccHasWeights = HasBranchWeights(TI); 1092 1093 if (PredHasWeights) { 1094 GetBranchWeights(PTI, Weights); 1095 // branch-weight metadata is inconsistent here. 1096 if (Weights.size() != 1 + PredCases.size()) 1097 PredHasWeights = SuccHasWeights = false; 1098 } else if (SuccHasWeights) 1099 // If there are no predecessor weights but there are successor weights, 1100 // populate Weights with 1, which will later be scaled to the sum of 1101 // successor's weights 1102 Weights.assign(1 + PredCases.size(), 1); 1103 1104 SmallVector<uint64_t, 8> SuccWeights; 1105 if (SuccHasWeights) { 1106 GetBranchWeights(TI, SuccWeights); 1107 // branch-weight metadata is inconsistent here. 1108 if (SuccWeights.size() != 1 + BBCases.size()) 1109 PredHasWeights = SuccHasWeights = false; 1110 } else if (PredHasWeights) 1111 SuccWeights.assign(1 + BBCases.size(), 1); 1112 1113 if (PredDefault == BB) { 1114 // If this is the default destination from PTI, only the edges in TI 1115 // that don't occur in PTI, or that branch to BB will be activated. 1116 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1117 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1118 if (PredCases[i].Dest != BB) 1119 PTIHandled.insert(PredCases[i].Value); 1120 else { 1121 // The default destination is BB, we don't need explicit targets. 1122 std::swap(PredCases[i], PredCases.back()); 1123 1124 if (PredHasWeights || SuccHasWeights) { 1125 // Increase weight for the default case. 1126 Weights[0] += Weights[i + 1]; 1127 std::swap(Weights[i + 1], Weights.back()); 1128 Weights.pop_back(); 1129 } 1130 1131 PredCases.pop_back(); 1132 --i; 1133 --e; 1134 } 1135 1136 // Reconstruct the new switch statement we will be building. 1137 if (PredDefault != BBDefault) { 1138 PredDefault->removePredecessor(Pred); 1139 PredDefault = BBDefault; 1140 NewSuccessors.push_back(BBDefault); 1141 } 1142 1143 unsigned CasesFromPred = Weights.size(); 1144 uint64_t ValidTotalSuccWeight = 0; 1145 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1146 if (!PTIHandled.count(BBCases[i].Value) && 1147 BBCases[i].Dest != BBDefault) { 1148 PredCases.push_back(BBCases[i]); 1149 NewSuccessors.push_back(BBCases[i].Dest); 1150 if (SuccHasWeights || PredHasWeights) { 1151 // The default weight is at index 0, so weight for the ith case 1152 // should be at index i+1. Scale the cases from successor by 1153 // PredDefaultWeight (Weights[0]). 1154 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1155 ValidTotalSuccWeight += SuccWeights[i + 1]; 1156 } 1157 } 1158 1159 if (SuccHasWeights || PredHasWeights) { 1160 ValidTotalSuccWeight += SuccWeights[0]; 1161 // Scale the cases from predecessor by ValidTotalSuccWeight. 1162 for (unsigned i = 1; i < CasesFromPred; ++i) 1163 Weights[i] *= ValidTotalSuccWeight; 1164 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1165 Weights[0] *= SuccWeights[0]; 1166 } 1167 } else { 1168 // If this is not the default destination from PSI, only the edges 1169 // in SI that occur in PSI with a destination of BB will be 1170 // activated. 1171 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1172 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1173 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1174 if (PredCases[i].Dest == BB) { 1175 PTIHandled.insert(PredCases[i].Value); 1176 1177 if (PredHasWeights || SuccHasWeights) { 1178 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1179 std::swap(Weights[i + 1], Weights.back()); 1180 Weights.pop_back(); 1181 } 1182 1183 std::swap(PredCases[i], PredCases.back()); 1184 PredCases.pop_back(); 1185 --i; 1186 --e; 1187 } 1188 1189 // Okay, now we know which constants were sent to BB from the 1190 // predecessor. Figure out where they will all go now. 1191 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1192 if (PTIHandled.count(BBCases[i].Value)) { 1193 // If this is one we are capable of getting... 1194 if (PredHasWeights || SuccHasWeights) 1195 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1196 PredCases.push_back(BBCases[i]); 1197 NewSuccessors.push_back(BBCases[i].Dest); 1198 PTIHandled.erase( 1199 BBCases[i].Value); // This constant is taken care of 1200 } 1201 1202 // If there are any constants vectored to BB that TI doesn't handle, 1203 // they must go to the default destination of TI. 1204 for (ConstantInt *I : PTIHandled) { 1205 if (PredHasWeights || SuccHasWeights) 1206 Weights.push_back(WeightsForHandled[I]); 1207 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1208 NewSuccessors.push_back(BBDefault); 1209 } 1210 } 1211 1212 // Okay, at this point, we know which new successor Pred will get. Make 1213 // sure we update the number of entries in the PHI nodes for these 1214 // successors. 1215 for (BasicBlock *NewSuccessor : NewSuccessors) 1216 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1217 1218 Builder.SetInsertPoint(PTI); 1219 // Convert pointer to int before we switch. 1220 if (CV->getType()->isPointerTy()) { 1221 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1222 "magicptr"); 1223 } 1224 1225 // Now that the successors are updated, create the new Switch instruction. 1226 SwitchInst *NewSI = 1227 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1228 NewSI->setDebugLoc(PTI->getDebugLoc()); 1229 for (ValueEqualityComparisonCase &V : PredCases) 1230 NewSI->addCase(V.Value, V.Dest); 1231 1232 if (PredHasWeights || SuccHasWeights) { 1233 // Halve the weights if any of them cannot fit in an uint32_t 1234 FitWeights(Weights); 1235 1236 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1237 1238 setBranchWeights(NewSI, MDWeights); 1239 } 1240 1241 EraseTerminatorAndDCECond(PTI); 1242 1243 // Okay, last check. If BB is still a successor of PSI, then we must 1244 // have an infinite loop case. If so, add an infinitely looping block 1245 // to handle the case to preserve the behavior of the code. 1246 BasicBlock *InfLoopBlock = nullptr; 1247 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1248 if (NewSI->getSuccessor(i) == BB) { 1249 if (!InfLoopBlock) { 1250 // Insert it at the end of the function, because it's either code, 1251 // or it won't matter if it's hot. :) 1252 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1253 BB->getParent()); 1254 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1255 } 1256 NewSI->setSuccessor(i, InfLoopBlock); 1257 } 1258 1259 Changed = true; 1260 } 1261 } 1262 return Changed; 1263 } 1264 1265 // If we would need to insert a select that uses the value of this invoke 1266 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1267 // can't hoist the invoke, as there is nowhere to put the select in this case. 1268 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1269 Instruction *I1, Instruction *I2) { 1270 for (BasicBlock *Succ : successors(BB1)) { 1271 for (const PHINode &PN : Succ->phis()) { 1272 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1273 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1274 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1275 return false; 1276 } 1277 } 1278 } 1279 return true; 1280 } 1281 1282 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1283 1284 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1285 /// in the two blocks up into the branch block. The caller of this function 1286 /// guarantees that BI's block dominates BB1 and BB2. 1287 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1288 const TargetTransformInfo &TTI) { 1289 // This does very trivial matching, with limited scanning, to find identical 1290 // instructions in the two blocks. In particular, we don't want to get into 1291 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1292 // such, we currently just scan for obviously identical instructions in an 1293 // identical order. 1294 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1295 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1296 1297 BasicBlock::iterator BB1_Itr = BB1->begin(); 1298 BasicBlock::iterator BB2_Itr = BB2->begin(); 1299 1300 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1301 // Skip debug info if it is not identical. 1302 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1303 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1304 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1305 while (isa<DbgInfoIntrinsic>(I1)) 1306 I1 = &*BB1_Itr++; 1307 while (isa<DbgInfoIntrinsic>(I2)) 1308 I2 = &*BB2_Itr++; 1309 } 1310 // FIXME: Can we define a safety predicate for CallBr? 1311 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1312 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1313 isa<CallBrInst>(I1)) 1314 return false; 1315 1316 BasicBlock *BIParent = BI->getParent(); 1317 1318 bool Changed = false; 1319 1320 auto _ = make_scope_exit([&]() { 1321 if (Changed) 1322 ++NumHoistCommonCode; 1323 }); 1324 1325 do { 1326 // If we are hoisting the terminator instruction, don't move one (making a 1327 // broken BB), instead clone it, and remove BI. 1328 if (I1->isTerminator()) 1329 goto HoistTerminator; 1330 1331 // If we're going to hoist a call, make sure that the two instructions we're 1332 // commoning/hoisting are both marked with musttail, or neither of them is 1333 // marked as such. Otherwise, we might end up in a situation where we hoist 1334 // from a block where the terminator is a `ret` to a block where the terminator 1335 // is a `br`, and `musttail` calls expect to be followed by a return. 1336 auto *C1 = dyn_cast<CallInst>(I1); 1337 auto *C2 = dyn_cast<CallInst>(I2); 1338 if (C1 && C2) 1339 if (C1->isMustTailCall() != C2->isMustTailCall()) 1340 return Changed; 1341 1342 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1343 return Changed; 1344 1345 // If any of the two call sites has nomerge attribute, stop hoisting. 1346 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1347 if (CB1->cannotMerge()) 1348 return Changed; 1349 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1350 if (CB2->cannotMerge()) 1351 return Changed; 1352 1353 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1354 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1355 // The debug location is an integral part of a debug info intrinsic 1356 // and can't be separated from it or replaced. Instead of attempting 1357 // to merge locations, simply hoist both copies of the intrinsic. 1358 BIParent->getInstList().splice(BI->getIterator(), 1359 BB1->getInstList(), I1); 1360 BIParent->getInstList().splice(BI->getIterator(), 1361 BB2->getInstList(), I2); 1362 Changed = true; 1363 } else { 1364 // For a normal instruction, we just move one to right before the branch, 1365 // then replace all uses of the other with the first. Finally, we remove 1366 // the now redundant second instruction. 1367 BIParent->getInstList().splice(BI->getIterator(), 1368 BB1->getInstList(), I1); 1369 if (!I2->use_empty()) 1370 I2->replaceAllUsesWith(I1); 1371 I1->andIRFlags(I2); 1372 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1373 LLVMContext::MD_range, 1374 LLVMContext::MD_fpmath, 1375 LLVMContext::MD_invariant_load, 1376 LLVMContext::MD_nonnull, 1377 LLVMContext::MD_invariant_group, 1378 LLVMContext::MD_align, 1379 LLVMContext::MD_dereferenceable, 1380 LLVMContext::MD_dereferenceable_or_null, 1381 LLVMContext::MD_mem_parallel_loop_access, 1382 LLVMContext::MD_access_group, 1383 LLVMContext::MD_preserve_access_index}; 1384 combineMetadata(I1, I2, KnownIDs, true); 1385 1386 // I1 and I2 are being combined into a single instruction. Its debug 1387 // location is the merged locations of the original instructions. 1388 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1389 1390 I2->eraseFromParent(); 1391 Changed = true; 1392 } 1393 ++NumHoistCommonInstrs; 1394 1395 I1 = &*BB1_Itr++; 1396 I2 = &*BB2_Itr++; 1397 // Skip debug info if it is not identical. 1398 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1399 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1400 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1401 while (isa<DbgInfoIntrinsic>(I1)) 1402 I1 = &*BB1_Itr++; 1403 while (isa<DbgInfoIntrinsic>(I2)) 1404 I2 = &*BB2_Itr++; 1405 } 1406 } while (I1->isIdenticalToWhenDefined(I2)); 1407 1408 return true; 1409 1410 HoistTerminator: 1411 // It may not be possible to hoist an invoke. 1412 // FIXME: Can we define a safety predicate for CallBr? 1413 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1414 return Changed; 1415 1416 // TODO: callbr hoisting currently disabled pending further study. 1417 if (isa<CallBrInst>(I1)) 1418 return Changed; 1419 1420 for (BasicBlock *Succ : successors(BB1)) { 1421 for (PHINode &PN : Succ->phis()) { 1422 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1423 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1424 if (BB1V == BB2V) 1425 continue; 1426 1427 // Check for passingValueIsAlwaysUndefined here because we would rather 1428 // eliminate undefined control flow then converting it to a select. 1429 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1430 passingValueIsAlwaysUndefined(BB2V, &PN)) 1431 return Changed; 1432 1433 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1434 return Changed; 1435 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1436 return Changed; 1437 } 1438 } 1439 1440 // Okay, it is safe to hoist the terminator. 1441 Instruction *NT = I1->clone(); 1442 BIParent->getInstList().insert(BI->getIterator(), NT); 1443 if (!NT->getType()->isVoidTy()) { 1444 I1->replaceAllUsesWith(NT); 1445 I2->replaceAllUsesWith(NT); 1446 NT->takeName(I1); 1447 } 1448 Changed = true; 1449 ++NumHoistCommonInstrs; 1450 1451 // Ensure terminator gets a debug location, even an unknown one, in case 1452 // it involves inlinable calls. 1453 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1454 1455 // PHIs created below will adopt NT's merged DebugLoc. 1456 IRBuilder<NoFolder> Builder(NT); 1457 1458 // Hoisting one of the terminators from our successor is a great thing. 1459 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1460 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1461 // nodes, so we insert select instruction to compute the final result. 1462 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1463 for (BasicBlock *Succ : successors(BB1)) { 1464 for (PHINode &PN : Succ->phis()) { 1465 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1466 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1467 if (BB1V == BB2V) 1468 continue; 1469 1470 // These values do not agree. Insert a select instruction before NT 1471 // that determines the right value. 1472 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1473 if (!SI) { 1474 // Propagate fast-math-flags from phi node to its replacement select. 1475 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1476 if (isa<FPMathOperator>(PN)) 1477 Builder.setFastMathFlags(PN.getFastMathFlags()); 1478 1479 SI = cast<SelectInst>( 1480 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1481 BB1V->getName() + "." + BB2V->getName(), BI)); 1482 } 1483 1484 // Make the PHI node use the select for all incoming values for BB1/BB2 1485 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1486 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1487 PN.setIncomingValue(i, SI); 1488 } 1489 } 1490 1491 // Update any PHI nodes in our new successors. 1492 for (BasicBlock *Succ : successors(BB1)) 1493 AddPredecessorToBlock(Succ, BIParent, BB1); 1494 1495 EraseTerminatorAndDCECond(BI); 1496 return Changed; 1497 } 1498 1499 // Check lifetime markers. 1500 static bool isLifeTimeMarker(const Instruction *I) { 1501 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1502 switch (II->getIntrinsicID()) { 1503 default: 1504 break; 1505 case Intrinsic::lifetime_start: 1506 case Intrinsic::lifetime_end: 1507 return true; 1508 } 1509 } 1510 return false; 1511 } 1512 1513 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1514 // into variables. 1515 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1516 int OpIdx) { 1517 return !isa<IntrinsicInst>(I); 1518 } 1519 1520 // All instructions in Insts belong to different blocks that all unconditionally 1521 // branch to a common successor. Analyze each instruction and return true if it 1522 // would be possible to sink them into their successor, creating one common 1523 // instruction instead. For every value that would be required to be provided by 1524 // PHI node (because an operand varies in each input block), add to PHIOperands. 1525 static bool canSinkInstructions( 1526 ArrayRef<Instruction *> Insts, 1527 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1528 // Prune out obviously bad instructions to move. Each instruction must have 1529 // exactly zero or one use, and we check later that use is by a single, common 1530 // PHI instruction in the successor. 1531 bool HasUse = !Insts.front()->user_empty(); 1532 for (auto *I : Insts) { 1533 // These instructions may change or break semantics if moved. 1534 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1535 I->getType()->isTokenTy()) 1536 return false; 1537 1538 // Conservatively return false if I is an inline-asm instruction. Sinking 1539 // and merging inline-asm instructions can potentially create arguments 1540 // that cannot satisfy the inline-asm constraints. 1541 // If the instruction has nomerge attribute, return false. 1542 if (const auto *C = dyn_cast<CallBase>(I)) 1543 if (C->isInlineAsm() || C->cannotMerge()) 1544 return false; 1545 1546 // Each instruction must have zero or one use. 1547 if (HasUse && !I->hasOneUse()) 1548 return false; 1549 if (!HasUse && !I->user_empty()) 1550 return false; 1551 } 1552 1553 const Instruction *I0 = Insts.front(); 1554 for (auto *I : Insts) 1555 if (!I->isSameOperationAs(I0)) 1556 return false; 1557 1558 // All instructions in Insts are known to be the same opcode. If they have a 1559 // use, check that the only user is a PHI or in the same block as the 1560 // instruction, because if a user is in the same block as an instruction we're 1561 // contemplating sinking, it must already be determined to be sinkable. 1562 if (HasUse) { 1563 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1564 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1565 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1566 auto *U = cast<Instruction>(*I->user_begin()); 1567 return (PNUse && 1568 PNUse->getParent() == Succ && 1569 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1570 U->getParent() == I->getParent(); 1571 })) 1572 return false; 1573 } 1574 1575 // Because SROA can't handle speculating stores of selects, try not to sink 1576 // loads, stores or lifetime markers of allocas when we'd have to create a 1577 // PHI for the address operand. Also, because it is likely that loads or 1578 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1579 // them. 1580 // This can cause code churn which can have unintended consequences down 1581 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1582 // FIXME: This is a workaround for a deficiency in SROA - see 1583 // https://llvm.org/bugs/show_bug.cgi?id=30188 1584 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1585 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1586 })) 1587 return false; 1588 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1589 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1590 })) 1591 return false; 1592 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1593 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1594 })) 1595 return false; 1596 1597 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1598 Value *Op = I0->getOperand(OI); 1599 if (Op->getType()->isTokenTy()) 1600 // Don't touch any operand of token type. 1601 return false; 1602 1603 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1604 assert(I->getNumOperands() == I0->getNumOperands()); 1605 return I->getOperand(OI) == I0->getOperand(OI); 1606 }; 1607 if (!all_of(Insts, SameAsI0)) { 1608 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1609 !canReplaceOperandWithVariable(I0, OI)) 1610 // We can't create a PHI from this GEP. 1611 return false; 1612 // Don't create indirect calls! The called value is the final operand. 1613 if (isa<CallBase>(I0) && OI == OE - 1) { 1614 // FIXME: if the call was *already* indirect, we should do this. 1615 return false; 1616 } 1617 for (auto *I : Insts) 1618 PHIOperands[I].push_back(I->getOperand(OI)); 1619 } 1620 } 1621 return true; 1622 } 1623 1624 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1625 // instruction of every block in Blocks to their common successor, commoning 1626 // into one instruction. 1627 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1628 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1629 1630 // canSinkLastInstruction returning true guarantees that every block has at 1631 // least one non-terminator instruction. 1632 SmallVector<Instruction*,4> Insts; 1633 for (auto *BB : Blocks) { 1634 Instruction *I = BB->getTerminator(); 1635 do { 1636 I = I->getPrevNode(); 1637 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1638 if (!isa<DbgInfoIntrinsic>(I)) 1639 Insts.push_back(I); 1640 } 1641 1642 // The only checking we need to do now is that all users of all instructions 1643 // are the same PHI node. canSinkLastInstruction should have checked this but 1644 // it is slightly over-aggressive - it gets confused by commutative instructions 1645 // so double-check it here. 1646 Instruction *I0 = Insts.front(); 1647 if (!I0->user_empty()) { 1648 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1649 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1650 auto *U = cast<Instruction>(*I->user_begin()); 1651 return U == PNUse; 1652 })) 1653 return false; 1654 } 1655 1656 // We don't need to do any more checking here; canSinkLastInstruction should 1657 // have done it all for us. 1658 SmallVector<Value*, 4> NewOperands; 1659 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1660 // This check is different to that in canSinkLastInstruction. There, we 1661 // cared about the global view once simplifycfg (and instcombine) have 1662 // completed - it takes into account PHIs that become trivially 1663 // simplifiable. However here we need a more local view; if an operand 1664 // differs we create a PHI and rely on instcombine to clean up the very 1665 // small mess we may make. 1666 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1667 return I->getOperand(O) != I0->getOperand(O); 1668 }); 1669 if (!NeedPHI) { 1670 NewOperands.push_back(I0->getOperand(O)); 1671 continue; 1672 } 1673 1674 // Create a new PHI in the successor block and populate it. 1675 auto *Op = I0->getOperand(O); 1676 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1677 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1678 Op->getName() + ".sink", &BBEnd->front()); 1679 for (auto *I : Insts) 1680 PN->addIncoming(I->getOperand(O), I->getParent()); 1681 NewOperands.push_back(PN); 1682 } 1683 1684 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1685 // and move it to the start of the successor block. 1686 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1687 I0->getOperandUse(O).set(NewOperands[O]); 1688 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1689 1690 // Update metadata and IR flags, and merge debug locations. 1691 for (auto *I : Insts) 1692 if (I != I0) { 1693 // The debug location for the "common" instruction is the merged locations 1694 // of all the commoned instructions. We start with the original location 1695 // of the "common" instruction and iteratively merge each location in the 1696 // loop below. 1697 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1698 // However, as N-way merge for CallInst is rare, so we use simplified API 1699 // instead of using complex API for N-way merge. 1700 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1701 combineMetadataForCSE(I0, I, true); 1702 I0->andIRFlags(I); 1703 } 1704 1705 if (!I0->user_empty()) { 1706 // canSinkLastInstruction checked that all instructions were used by 1707 // one and only one PHI node. Find that now, RAUW it to our common 1708 // instruction and nuke it. 1709 auto *PN = cast<PHINode>(*I0->user_begin()); 1710 PN->replaceAllUsesWith(I0); 1711 PN->eraseFromParent(); 1712 } 1713 1714 // Finally nuke all instructions apart from the common instruction. 1715 for (auto *I : Insts) 1716 if (I != I0) 1717 I->eraseFromParent(); 1718 1719 return true; 1720 } 1721 1722 namespace { 1723 1724 // LockstepReverseIterator - Iterates through instructions 1725 // in a set of blocks in reverse order from the first non-terminator. 1726 // For example (assume all blocks have size n): 1727 // LockstepReverseIterator I([B1, B2, B3]); 1728 // *I-- = [B1[n], B2[n], B3[n]]; 1729 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1730 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1731 // ... 1732 class LockstepReverseIterator { 1733 ArrayRef<BasicBlock*> Blocks; 1734 SmallVector<Instruction*,4> Insts; 1735 bool Fail; 1736 1737 public: 1738 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1739 reset(); 1740 } 1741 1742 void reset() { 1743 Fail = false; 1744 Insts.clear(); 1745 for (auto *BB : Blocks) { 1746 Instruction *Inst = BB->getTerminator(); 1747 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1748 Inst = Inst->getPrevNode(); 1749 if (!Inst) { 1750 // Block wasn't big enough. 1751 Fail = true; 1752 return; 1753 } 1754 Insts.push_back(Inst); 1755 } 1756 } 1757 1758 bool isValid() const { 1759 return !Fail; 1760 } 1761 1762 void operator--() { 1763 if (Fail) 1764 return; 1765 for (auto *&Inst : Insts) { 1766 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1767 Inst = Inst->getPrevNode(); 1768 // Already at beginning of block. 1769 if (!Inst) { 1770 Fail = true; 1771 return; 1772 } 1773 } 1774 } 1775 1776 ArrayRef<Instruction*> operator * () const { 1777 return Insts; 1778 } 1779 }; 1780 1781 } // end anonymous namespace 1782 1783 /// Check whether BB's predecessors end with unconditional branches. If it is 1784 /// true, sink any common code from the predecessors to BB. 1785 /// We also allow one predecessor to end with conditional branch (but no more 1786 /// than one). 1787 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1788 // We support two situations: 1789 // (1) all incoming arcs are unconditional 1790 // (2) one incoming arc is conditional 1791 // 1792 // (2) is very common in switch defaults and 1793 // else-if patterns; 1794 // 1795 // if (a) f(1); 1796 // else if (b) f(2); 1797 // 1798 // produces: 1799 // 1800 // [if] 1801 // / \ 1802 // [f(1)] [if] 1803 // | | \ 1804 // | | | 1805 // | [f(2)]| 1806 // \ | / 1807 // [ end ] 1808 // 1809 // [end] has two unconditional predecessor arcs and one conditional. The 1810 // conditional refers to the implicit empty 'else' arc. This conditional 1811 // arc can also be caused by an empty default block in a switch. 1812 // 1813 // In this case, we attempt to sink code from all *unconditional* arcs. 1814 // If we can sink instructions from these arcs (determined during the scan 1815 // phase below) we insert a common successor for all unconditional arcs and 1816 // connect that to [end], to enable sinking: 1817 // 1818 // [if] 1819 // / \ 1820 // [x(1)] [if] 1821 // | | \ 1822 // | | \ 1823 // | [x(2)] | 1824 // \ / | 1825 // [sink.split] | 1826 // \ / 1827 // [ end ] 1828 // 1829 SmallVector<BasicBlock*,4> UnconditionalPreds; 1830 Instruction *Cond = nullptr; 1831 for (auto *B : predecessors(BB)) { 1832 auto *T = B->getTerminator(); 1833 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1834 UnconditionalPreds.push_back(B); 1835 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1836 Cond = T; 1837 else 1838 return false; 1839 } 1840 if (UnconditionalPreds.size() < 2) 1841 return false; 1842 1843 // We take a two-step approach to tail sinking. First we scan from the end of 1844 // each block upwards in lockstep. If the n'th instruction from the end of each 1845 // block can be sunk, those instructions are added to ValuesToSink and we 1846 // carry on. If we can sink an instruction but need to PHI-merge some operands 1847 // (because they're not identical in each instruction) we add these to 1848 // PHIOperands. 1849 unsigned ScanIdx = 0; 1850 SmallPtrSet<Value*,4> InstructionsToSink; 1851 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1852 LockstepReverseIterator LRI(UnconditionalPreds); 1853 while (LRI.isValid() && 1854 canSinkInstructions(*LRI, PHIOperands)) { 1855 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1856 << "\n"); 1857 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1858 ++ScanIdx; 1859 --LRI; 1860 } 1861 1862 // If no instructions can be sunk, early-return. 1863 if (ScanIdx == 0) 1864 return false; 1865 1866 bool Changed = false; 1867 1868 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1869 unsigned NumPHIdValues = 0; 1870 for (auto *I : *LRI) 1871 for (auto *V : PHIOperands[I]) 1872 if (InstructionsToSink.count(V) == 0) 1873 ++NumPHIdValues; 1874 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1875 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1876 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1877 NumPHIInsts++; 1878 1879 return NumPHIInsts <= 1; 1880 }; 1881 1882 if (Cond) { 1883 // Check if we would actually sink anything first! This mutates the CFG and 1884 // adds an extra block. The goal in doing this is to allow instructions that 1885 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1886 // (such as trunc, add) can be sunk and predicated already. So we check that 1887 // we're going to sink at least one non-speculatable instruction. 1888 LRI.reset(); 1889 unsigned Idx = 0; 1890 bool Profitable = false; 1891 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1892 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1893 Profitable = true; 1894 break; 1895 } 1896 --LRI; 1897 ++Idx; 1898 } 1899 if (!Profitable) 1900 return false; 1901 1902 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1903 // We have a conditional edge and we're going to sink some instructions. 1904 // Insert a new block postdominating all blocks we're going to sink from. 1905 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1906 // Edges couldn't be split. 1907 return false; 1908 Changed = true; 1909 } 1910 1911 // Now that we've analyzed all potential sinking candidates, perform the 1912 // actual sink. We iteratively sink the last non-terminator of the source 1913 // blocks into their common successor unless doing so would require too 1914 // many PHI instructions to be generated (currently only one PHI is allowed 1915 // per sunk instruction). 1916 // 1917 // We can use InstructionsToSink to discount values needing PHI-merging that will 1918 // actually be sunk in a later iteration. This allows us to be more 1919 // aggressive in what we sink. This does allow a false positive where we 1920 // sink presuming a later value will also be sunk, but stop half way through 1921 // and never actually sink it which means we produce more PHIs than intended. 1922 // This is unlikely in practice though. 1923 unsigned SinkIdx = 0; 1924 for (; SinkIdx != ScanIdx; ++SinkIdx) { 1925 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1926 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1927 << "\n"); 1928 1929 // Because we've sunk every instruction in turn, the current instruction to 1930 // sink is always at index 0. 1931 LRI.reset(); 1932 if (!ProfitableToSinkInstruction(LRI)) { 1933 // Too many PHIs would be created. 1934 LLVM_DEBUG( 1935 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1936 break; 1937 } 1938 1939 if (!sinkLastInstruction(UnconditionalPreds)) { 1940 LLVM_DEBUG( 1941 dbgs() 1942 << "SINK: stopping here, failed to actually sink instruction!\n"); 1943 break; 1944 } 1945 1946 NumSinkCommonInstrs++; 1947 Changed = true; 1948 } 1949 if (SinkIdx != 0) 1950 ++NumSinkCommonCode; 1951 return Changed; 1952 } 1953 1954 /// Determine if we can hoist sink a sole store instruction out of a 1955 /// conditional block. 1956 /// 1957 /// We are looking for code like the following: 1958 /// BrBB: 1959 /// store i32 %add, i32* %arrayidx2 1960 /// ... // No other stores or function calls (we could be calling a memory 1961 /// ... // function). 1962 /// %cmp = icmp ult %x, %y 1963 /// br i1 %cmp, label %EndBB, label %ThenBB 1964 /// ThenBB: 1965 /// store i32 %add5, i32* %arrayidx2 1966 /// br label EndBB 1967 /// EndBB: 1968 /// ... 1969 /// We are going to transform this into: 1970 /// BrBB: 1971 /// store i32 %add, i32* %arrayidx2 1972 /// ... // 1973 /// %cmp = icmp ult %x, %y 1974 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1975 /// store i32 %add.add5, i32* %arrayidx2 1976 /// ... 1977 /// 1978 /// \return The pointer to the value of the previous store if the store can be 1979 /// hoisted into the predecessor block. 0 otherwise. 1980 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1981 BasicBlock *StoreBB, BasicBlock *EndBB) { 1982 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1983 if (!StoreToHoist) 1984 return nullptr; 1985 1986 // Volatile or atomic. 1987 if (!StoreToHoist->isSimple()) 1988 return nullptr; 1989 1990 Value *StorePtr = StoreToHoist->getPointerOperand(); 1991 1992 // Look for a store to the same pointer in BrBB. 1993 unsigned MaxNumInstToLookAt = 9; 1994 // Skip pseudo probe intrinsic calls which are not really killing any memory 1995 // accesses. 1996 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 1997 if (!MaxNumInstToLookAt) 1998 break; 1999 --MaxNumInstToLookAt; 2000 2001 // Could be calling an instruction that affects memory like free(). 2002 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2003 return nullptr; 2004 2005 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2006 // Found the previous store make sure it stores to the same location. 2007 if (SI->getPointerOperand() == StorePtr) 2008 // Found the previous store, return its value operand. 2009 return SI->getValueOperand(); 2010 return nullptr; // Unknown store. 2011 } 2012 } 2013 2014 return nullptr; 2015 } 2016 2017 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2018 /// converted to selects. 2019 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2020 BasicBlock *EndBB, 2021 unsigned &SpeculatedInstructions, 2022 int &BudgetRemaining, 2023 const TargetTransformInfo &TTI) { 2024 TargetTransformInfo::TargetCostKind CostKind = 2025 BB->getParent()->hasMinSize() 2026 ? TargetTransformInfo::TCK_CodeSize 2027 : TargetTransformInfo::TCK_SizeAndLatency; 2028 2029 bool HaveRewritablePHIs = false; 2030 for (PHINode &PN : EndBB->phis()) { 2031 Value *OrigV = PN.getIncomingValueForBlock(BB); 2032 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2033 2034 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2035 // Skip PHIs which are trivial. 2036 if (ThenV == OrigV) 2037 continue; 2038 2039 BudgetRemaining -= 2040 TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2041 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2042 2043 // Don't convert to selects if we could remove undefined behavior instead. 2044 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2045 passingValueIsAlwaysUndefined(ThenV, &PN)) 2046 return false; 2047 2048 HaveRewritablePHIs = true; 2049 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2050 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2051 if (!OrigCE && !ThenCE) 2052 continue; // Known safe and cheap. 2053 2054 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2055 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2056 return false; 2057 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2058 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2059 unsigned MaxCost = 2060 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2061 if (OrigCost + ThenCost > MaxCost) 2062 return false; 2063 2064 // Account for the cost of an unfolded ConstantExpr which could end up 2065 // getting expanded into Instructions. 2066 // FIXME: This doesn't account for how many operations are combined in the 2067 // constant expression. 2068 ++SpeculatedInstructions; 2069 if (SpeculatedInstructions > 1) 2070 return false; 2071 } 2072 2073 return HaveRewritablePHIs; 2074 } 2075 2076 /// Speculate a conditional basic block flattening the CFG. 2077 /// 2078 /// Note that this is a very risky transform currently. Speculating 2079 /// instructions like this is most often not desirable. Instead, there is an MI 2080 /// pass which can do it with full awareness of the resource constraints. 2081 /// However, some cases are "obvious" and we should do directly. An example of 2082 /// this is speculating a single, reasonably cheap instruction. 2083 /// 2084 /// There is only one distinct advantage to flattening the CFG at the IR level: 2085 /// it makes very common but simplistic optimizations such as are common in 2086 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2087 /// modeling their effects with easier to reason about SSA value graphs. 2088 /// 2089 /// 2090 /// An illustration of this transform is turning this IR: 2091 /// \code 2092 /// BB: 2093 /// %cmp = icmp ult %x, %y 2094 /// br i1 %cmp, label %EndBB, label %ThenBB 2095 /// ThenBB: 2096 /// %sub = sub %x, %y 2097 /// br label BB2 2098 /// EndBB: 2099 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2100 /// ... 2101 /// \endcode 2102 /// 2103 /// Into this IR: 2104 /// \code 2105 /// BB: 2106 /// %cmp = icmp ult %x, %y 2107 /// %sub = sub %x, %y 2108 /// %cond = select i1 %cmp, 0, %sub 2109 /// ... 2110 /// \endcode 2111 /// 2112 /// \returns true if the conditional block is removed. 2113 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2114 const TargetTransformInfo &TTI) { 2115 // Be conservative for now. FP select instruction can often be expensive. 2116 Value *BrCond = BI->getCondition(); 2117 if (isa<FCmpInst>(BrCond)) 2118 return false; 2119 2120 BasicBlock *BB = BI->getParent(); 2121 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2122 int BudgetRemaining = 2123 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2124 2125 // If ThenBB is actually on the false edge of the conditional branch, remember 2126 // to swap the select operands later. 2127 bool Invert = false; 2128 if (ThenBB != BI->getSuccessor(0)) { 2129 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2130 Invert = true; 2131 } 2132 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2133 2134 // Keep a count of how many times instructions are used within ThenBB when 2135 // they are candidates for sinking into ThenBB. Specifically: 2136 // - They are defined in BB, and 2137 // - They have no side effects, and 2138 // - All of their uses are in ThenBB. 2139 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2140 2141 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2142 2143 unsigned SpeculatedInstructions = 0; 2144 Value *SpeculatedStoreValue = nullptr; 2145 StoreInst *SpeculatedStore = nullptr; 2146 for (BasicBlock::iterator BBI = ThenBB->begin(), 2147 BBE = std::prev(ThenBB->end()); 2148 BBI != BBE; ++BBI) { 2149 Instruction *I = &*BBI; 2150 // Skip debug info. 2151 if (isa<DbgInfoIntrinsic>(I)) { 2152 SpeculatedDbgIntrinsics.push_back(I); 2153 continue; 2154 } 2155 2156 // Skip pseudo probes. The consequence is we lose track of the branch 2157 // probability for ThenBB, which is fine since the optimization here takes 2158 // place regardless of the branch probability. 2159 if (isa<PseudoProbeInst>(I)) { 2160 SpeculatedDbgIntrinsics.push_back(I); 2161 continue; 2162 } 2163 2164 // Only speculatively execute a single instruction (not counting the 2165 // terminator) for now. 2166 ++SpeculatedInstructions; 2167 if (SpeculatedInstructions > 1) 2168 return false; 2169 2170 // Don't hoist the instruction if it's unsafe or expensive. 2171 if (!isSafeToSpeculativelyExecute(I) && 2172 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2173 I, BB, ThenBB, EndBB)))) 2174 return false; 2175 if (!SpeculatedStoreValue && 2176 ComputeSpeculationCost(I, TTI) > 2177 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2178 return false; 2179 2180 // Store the store speculation candidate. 2181 if (SpeculatedStoreValue) 2182 SpeculatedStore = cast<StoreInst>(I); 2183 2184 // Do not hoist the instruction if any of its operands are defined but not 2185 // used in BB. The transformation will prevent the operand from 2186 // being sunk into the use block. 2187 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2188 Instruction *OpI = dyn_cast<Instruction>(*i); 2189 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2190 continue; // Not a candidate for sinking. 2191 2192 ++SinkCandidateUseCounts[OpI]; 2193 } 2194 } 2195 2196 // Consider any sink candidates which are only used in ThenBB as costs for 2197 // speculation. Note, while we iterate over a DenseMap here, we are summing 2198 // and so iteration order isn't significant. 2199 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2200 I = SinkCandidateUseCounts.begin(), 2201 E = SinkCandidateUseCounts.end(); 2202 I != E; ++I) 2203 if (I->first->hasNUses(I->second)) { 2204 ++SpeculatedInstructions; 2205 if (SpeculatedInstructions > 1) 2206 return false; 2207 } 2208 2209 // Check that we can insert the selects and that it's not too expensive to do 2210 // so. 2211 bool Convert = SpeculatedStore != nullptr; 2212 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2213 SpeculatedInstructions, 2214 BudgetRemaining, TTI); 2215 if (!Convert || BudgetRemaining < 0) 2216 return false; 2217 2218 // If we get here, we can hoist the instruction and if-convert. 2219 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2220 2221 // Insert a select of the value of the speculated store. 2222 if (SpeculatedStoreValue) { 2223 IRBuilder<NoFolder> Builder(BI); 2224 Value *TrueV = SpeculatedStore->getValueOperand(); 2225 Value *FalseV = SpeculatedStoreValue; 2226 if (Invert) 2227 std::swap(TrueV, FalseV); 2228 Value *S = Builder.CreateSelect( 2229 BrCond, TrueV, FalseV, "spec.store.select", BI); 2230 SpeculatedStore->setOperand(0, S); 2231 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2232 SpeculatedStore->getDebugLoc()); 2233 } 2234 2235 // Metadata can be dependent on the condition we are hoisting above. 2236 // Conservatively strip all metadata on the instruction. Drop the debug loc 2237 // to avoid making it appear as if the condition is a constant, which would 2238 // be misleading while debugging. 2239 for (auto &I : *ThenBB) { 2240 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2241 I.setDebugLoc(DebugLoc()); 2242 I.dropUnknownNonDebugMetadata(); 2243 } 2244 2245 // Hoist the instructions. 2246 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2247 ThenBB->begin(), std::prev(ThenBB->end())); 2248 2249 // Insert selects and rewrite the PHI operands. 2250 IRBuilder<NoFolder> Builder(BI); 2251 for (PHINode &PN : EndBB->phis()) { 2252 unsigned OrigI = PN.getBasicBlockIndex(BB); 2253 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2254 Value *OrigV = PN.getIncomingValue(OrigI); 2255 Value *ThenV = PN.getIncomingValue(ThenI); 2256 2257 // Skip PHIs which are trivial. 2258 if (OrigV == ThenV) 2259 continue; 2260 2261 // Create a select whose true value is the speculatively executed value and 2262 // false value is the pre-existing value. Swap them if the branch 2263 // destinations were inverted. 2264 Value *TrueV = ThenV, *FalseV = OrigV; 2265 if (Invert) 2266 std::swap(TrueV, FalseV); 2267 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2268 PN.setIncomingValue(OrigI, V); 2269 PN.setIncomingValue(ThenI, V); 2270 } 2271 2272 // Remove speculated dbg intrinsics. 2273 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2274 // dbg value for the different flows and inserting it after the select. 2275 for (Instruction *I : SpeculatedDbgIntrinsics) 2276 I->eraseFromParent(); 2277 2278 ++NumSpeculations; 2279 return true; 2280 } 2281 2282 /// Return true if we can thread a branch across this block. 2283 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2284 int Size = 0; 2285 2286 for (Instruction &I : BB->instructionsWithoutDebug()) { 2287 if (Size > MaxSmallBlockSize) 2288 return false; // Don't clone large BB's. 2289 2290 // Can't fold blocks that contain noduplicate or convergent calls. 2291 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2292 if (CI->cannotDuplicate() || CI->isConvergent()) 2293 return false; 2294 2295 // We will delete Phis while threading, so Phis should not be accounted in 2296 // block's size 2297 if (!isa<PHINode>(I)) 2298 ++Size; 2299 2300 // We can only support instructions that do not define values that are 2301 // live outside of the current basic block. 2302 for (User *U : I.users()) { 2303 Instruction *UI = cast<Instruction>(U); 2304 if (UI->getParent() != BB || isa<PHINode>(UI)) 2305 return false; 2306 } 2307 2308 // Looks ok, continue checking. 2309 } 2310 2311 return true; 2312 } 2313 2314 /// If we have a conditional branch on a PHI node value that is defined in the 2315 /// same block as the branch and if any PHI entries are constants, thread edges 2316 /// corresponding to that entry to be branches to their ultimate destination. 2317 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2318 AssumptionCache *AC) { 2319 BasicBlock *BB = BI->getParent(); 2320 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2321 // NOTE: we currently cannot transform this case if the PHI node is used 2322 // outside of the block. 2323 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2324 return false; 2325 2326 // Degenerate case of a single entry PHI. 2327 if (PN->getNumIncomingValues() == 1) { 2328 FoldSingleEntryPHINodes(PN->getParent()); 2329 return true; 2330 } 2331 2332 // Now we know that this block has multiple preds and two succs. 2333 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2334 return false; 2335 2336 // Okay, this is a simple enough basic block. See if any phi values are 2337 // constants. 2338 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2339 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2340 if (!CB || !CB->getType()->isIntegerTy(1)) 2341 continue; 2342 2343 // Okay, we now know that all edges from PredBB should be revectored to 2344 // branch to RealDest. 2345 BasicBlock *PredBB = PN->getIncomingBlock(i); 2346 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2347 2348 if (RealDest == BB) 2349 continue; // Skip self loops. 2350 // Skip if the predecessor's terminator is an indirect branch. 2351 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2352 continue; 2353 2354 // The dest block might have PHI nodes, other predecessors and other 2355 // difficult cases. Instead of being smart about this, just insert a new 2356 // block that jumps to the destination block, effectively splitting 2357 // the edge we are about to create. 2358 BasicBlock *EdgeBB = 2359 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2360 RealDest->getParent(), RealDest); 2361 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2362 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2363 2364 // Update PHI nodes. 2365 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2366 2367 // BB may have instructions that are being threaded over. Clone these 2368 // instructions into EdgeBB. We know that there will be no uses of the 2369 // cloned instructions outside of EdgeBB. 2370 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2371 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2372 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2373 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2374 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2375 continue; 2376 } 2377 // Clone the instruction. 2378 Instruction *N = BBI->clone(); 2379 if (BBI->hasName()) 2380 N->setName(BBI->getName() + ".c"); 2381 2382 // Update operands due to translation. 2383 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2384 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2385 if (PI != TranslateMap.end()) 2386 *i = PI->second; 2387 } 2388 2389 // Check for trivial simplification. 2390 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2391 if (!BBI->use_empty()) 2392 TranslateMap[&*BBI] = V; 2393 if (!N->mayHaveSideEffects()) { 2394 N->deleteValue(); // Instruction folded away, don't need actual inst 2395 N = nullptr; 2396 } 2397 } else { 2398 if (!BBI->use_empty()) 2399 TranslateMap[&*BBI] = N; 2400 } 2401 if (N) { 2402 // Insert the new instruction into its new home. 2403 EdgeBB->getInstList().insert(InsertPt, N); 2404 2405 // Register the new instruction with the assumption cache if necessary. 2406 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2407 AC->registerAssumption(cast<IntrinsicInst>(N)); 2408 } 2409 } 2410 2411 // Loop over all of the edges from PredBB to BB, changing them to branch 2412 // to EdgeBB instead. 2413 Instruction *PredBBTI = PredBB->getTerminator(); 2414 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2415 if (PredBBTI->getSuccessor(i) == BB) { 2416 BB->removePredecessor(PredBB); 2417 PredBBTI->setSuccessor(i, EdgeBB); 2418 } 2419 2420 // Recurse, simplifying any other constants. 2421 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2422 } 2423 2424 return false; 2425 } 2426 2427 /// Given a BB that starts with the specified two-entry PHI node, 2428 /// see if we can eliminate it. 2429 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2430 const DataLayout &DL) { 2431 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2432 // statement", which has a very simple dominance structure. Basically, we 2433 // are trying to find the condition that is being branched on, which 2434 // subsequently causes this merge to happen. We really want control 2435 // dependence information for this check, but simplifycfg can't keep it up 2436 // to date, and this catches most of the cases we care about anyway. 2437 BasicBlock *BB = PN->getParent(); 2438 2439 BasicBlock *IfTrue, *IfFalse; 2440 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2441 if (!IfCond || 2442 // Don't bother if the branch will be constant folded trivially. 2443 isa<ConstantInt>(IfCond)) 2444 return false; 2445 2446 // Okay, we found that we can merge this two-entry phi node into a select. 2447 // Doing so would require us to fold *all* two entry phi nodes in this block. 2448 // At some point this becomes non-profitable (particularly if the target 2449 // doesn't support cmov's). Only do this transformation if there are two or 2450 // fewer PHI nodes in this block. 2451 unsigned NumPhis = 0; 2452 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2453 if (NumPhis > 2) 2454 return false; 2455 2456 // Loop over the PHI's seeing if we can promote them all to select 2457 // instructions. While we are at it, keep track of the instructions 2458 // that need to be moved to the dominating block. 2459 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2460 int BudgetRemaining = 2461 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2462 2463 bool Changed = false; 2464 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2465 PHINode *PN = cast<PHINode>(II++); 2466 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2467 PN->replaceAllUsesWith(V); 2468 PN->eraseFromParent(); 2469 Changed = true; 2470 continue; 2471 } 2472 2473 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2474 BudgetRemaining, TTI) || 2475 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2476 BudgetRemaining, TTI)) 2477 return Changed; 2478 } 2479 2480 // If we folded the first phi, PN dangles at this point. Refresh it. If 2481 // we ran out of PHIs then we simplified them all. 2482 PN = dyn_cast<PHINode>(BB->begin()); 2483 if (!PN) 2484 return true; 2485 2486 // Return true if at least one of these is a 'not', and another is either 2487 // a 'not' too, or a constant. 2488 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2489 if (!match(V0, m_Not(m_Value()))) 2490 std::swap(V0, V1); 2491 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2492 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2493 }; 2494 2495 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2496 // of the incoming values is an 'not' and another one is freely invertible. 2497 // These can often be turned into switches and other things. 2498 if (PN->getType()->isIntegerTy(1) && 2499 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2500 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2501 isa<BinaryOperator>(IfCond)) && 2502 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2503 PN->getIncomingValue(1))) 2504 return Changed; 2505 2506 // If all PHI nodes are promotable, check to make sure that all instructions 2507 // in the predecessor blocks can be promoted as well. If not, we won't be able 2508 // to get rid of the control flow, so it's not worth promoting to select 2509 // instructions. 2510 BasicBlock *DomBlock = nullptr; 2511 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2512 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2513 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2514 IfBlock1 = nullptr; 2515 } else { 2516 DomBlock = *pred_begin(IfBlock1); 2517 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2518 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2519 !isa<PseudoProbeInst>(I)) { 2520 // This is not an aggressive instruction that we can promote. 2521 // Because of this, we won't be able to get rid of the control flow, so 2522 // the xform is not worth it. 2523 return Changed; 2524 } 2525 } 2526 2527 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2528 IfBlock2 = nullptr; 2529 } else { 2530 DomBlock = *pred_begin(IfBlock2); 2531 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2532 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2533 !isa<PseudoProbeInst>(I)) { 2534 // This is not an aggressive instruction that we can promote. 2535 // Because of this, we won't be able to get rid of the control flow, so 2536 // the xform is not worth it. 2537 return Changed; 2538 } 2539 } 2540 assert(DomBlock && "Failed to find root DomBlock"); 2541 2542 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2543 << " T: " << IfTrue->getName() 2544 << " F: " << IfFalse->getName() << "\n"); 2545 2546 // If we can still promote the PHI nodes after this gauntlet of tests, 2547 // do all of the PHI's now. 2548 Instruction *InsertPt = DomBlock->getTerminator(); 2549 IRBuilder<NoFolder> Builder(InsertPt); 2550 2551 // Move all 'aggressive' instructions, which are defined in the 2552 // conditional parts of the if's up to the dominating block. 2553 if (IfBlock1) 2554 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2555 if (IfBlock2) 2556 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2557 2558 // Propagate fast-math-flags from phi nodes to replacement selects. 2559 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2560 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2561 if (isa<FPMathOperator>(PN)) 2562 Builder.setFastMathFlags(PN->getFastMathFlags()); 2563 2564 // Change the PHI node into a select instruction. 2565 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2566 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2567 2568 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2569 PN->replaceAllUsesWith(Sel); 2570 Sel->takeName(PN); 2571 PN->eraseFromParent(); 2572 } 2573 2574 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2575 // has been flattened. Change DomBlock to jump directly to our new block to 2576 // avoid other simplifycfg's kicking in on the diamond. 2577 Instruction *OldTI = DomBlock->getTerminator(); 2578 Builder.SetInsertPoint(OldTI); 2579 Builder.CreateBr(BB); 2580 OldTI->eraseFromParent(); 2581 return true; 2582 } 2583 2584 /// If we found a conditional branch that goes to two returning blocks, 2585 /// try to merge them together into one return, 2586 /// introducing a select if the return values disagree. 2587 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2588 IRBuilder<> &Builder) { 2589 assert(BI->isConditional() && "Must be a conditional branch"); 2590 BasicBlock *TrueSucc = BI->getSuccessor(0); 2591 BasicBlock *FalseSucc = BI->getSuccessor(1); 2592 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2593 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2594 2595 // Check to ensure both blocks are empty (just a return) or optionally empty 2596 // with PHI nodes. If there are other instructions, merging would cause extra 2597 // computation on one path or the other. 2598 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2599 return false; 2600 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2601 return false; 2602 2603 Builder.SetInsertPoint(BI); 2604 // Okay, we found a branch that is going to two return nodes. If 2605 // there is no return value for this function, just change the 2606 // branch into a return. 2607 if (FalseRet->getNumOperands() == 0) { 2608 TrueSucc->removePredecessor(BI->getParent()); 2609 FalseSucc->removePredecessor(BI->getParent()); 2610 Builder.CreateRetVoid(); 2611 EraseTerminatorAndDCECond(BI); 2612 return true; 2613 } 2614 2615 // Otherwise, figure out what the true and false return values are 2616 // so we can insert a new select instruction. 2617 Value *TrueValue = TrueRet->getReturnValue(); 2618 Value *FalseValue = FalseRet->getReturnValue(); 2619 2620 // Unwrap any PHI nodes in the return blocks. 2621 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2622 if (TVPN->getParent() == TrueSucc) 2623 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2624 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2625 if (FVPN->getParent() == FalseSucc) 2626 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2627 2628 // In order for this transformation to be safe, we must be able to 2629 // unconditionally execute both operands to the return. This is 2630 // normally the case, but we could have a potentially-trapping 2631 // constant expression that prevents this transformation from being 2632 // safe. 2633 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2634 if (TCV->canTrap()) 2635 return false; 2636 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2637 if (FCV->canTrap()) 2638 return false; 2639 2640 // Okay, we collected all the mapped values and checked them for sanity, and 2641 // defined to really do this transformation. First, update the CFG. 2642 TrueSucc->removePredecessor(BI->getParent()); 2643 FalseSucc->removePredecessor(BI->getParent()); 2644 2645 // Insert select instructions where needed. 2646 Value *BrCond = BI->getCondition(); 2647 if (TrueValue) { 2648 // Insert a select if the results differ. 2649 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2650 } else if (isa<UndefValue>(TrueValue)) { 2651 TrueValue = FalseValue; 2652 } else { 2653 TrueValue = 2654 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2655 } 2656 } 2657 2658 Value *RI = 2659 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2660 2661 (void)RI; 2662 2663 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2664 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2665 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2666 2667 EraseTerminatorAndDCECond(BI); 2668 2669 return true; 2670 } 2671 2672 /// Return true if the given instruction is available 2673 /// in its predecessor block. If yes, the instruction will be removed. 2674 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2675 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2676 return false; 2677 for (Instruction &I : *PB) { 2678 Instruction *PBI = &I; 2679 // Check whether Inst and PBI generate the same value. 2680 if (Inst->isIdenticalTo(PBI)) { 2681 Inst->replaceAllUsesWith(PBI); 2682 Inst->eraseFromParent(); 2683 return true; 2684 } 2685 } 2686 return false; 2687 } 2688 2689 /// Return true if either PBI or BI has branch weight available, and store 2690 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2691 /// not have branch weight, use 1:1 as its weight. 2692 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2693 uint64_t &PredTrueWeight, 2694 uint64_t &PredFalseWeight, 2695 uint64_t &SuccTrueWeight, 2696 uint64_t &SuccFalseWeight) { 2697 bool PredHasWeights = 2698 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2699 bool SuccHasWeights = 2700 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2701 if (PredHasWeights || SuccHasWeights) { 2702 if (!PredHasWeights) 2703 PredTrueWeight = PredFalseWeight = 1; 2704 if (!SuccHasWeights) 2705 SuccTrueWeight = SuccFalseWeight = 1; 2706 return true; 2707 } else { 2708 return false; 2709 } 2710 } 2711 2712 /// If this basic block is simple enough, and if a predecessor branches to us 2713 /// and one of our successors, fold the block into the predecessor and use 2714 /// logical operations to pick the right destination. 2715 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, 2716 const TargetTransformInfo *TTI, 2717 unsigned BonusInstThreshold) { 2718 BasicBlock *BB = BI->getParent(); 2719 2720 const unsigned PredCount = pred_size(BB); 2721 2722 bool Changed = false; 2723 2724 auto _ = make_scope_exit([&]() { 2725 if (Changed) 2726 ++NumFoldBranchToCommonDest; 2727 }); 2728 2729 TargetTransformInfo::TargetCostKind CostKind = 2730 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 2731 : TargetTransformInfo::TCK_SizeAndLatency; 2732 2733 Instruction *Cond = nullptr; 2734 if (BI->isConditional()) 2735 Cond = dyn_cast<Instruction>(BI->getCondition()); 2736 else { 2737 // For unconditional branch, check for a simple CFG pattern, where 2738 // BB has a single predecessor and BB's successor is also its predecessor's 2739 // successor. If such pattern exists, check for CSE between BB and its 2740 // predecessor. 2741 if (BasicBlock *PB = BB->getSinglePredecessor()) 2742 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2743 if (PBI->isConditional() && 2744 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2745 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2746 for (auto I = BB->instructionsWithoutDebug().begin(), 2747 E = BB->instructionsWithoutDebug().end(); 2748 I != E;) { 2749 Instruction *Curr = &*I++; 2750 if (isa<CmpInst>(Curr)) { 2751 Cond = Curr; 2752 break; 2753 } 2754 // Quit if we can't remove this instruction. 2755 if (!tryCSEWithPredecessor(Curr, PB)) 2756 return Changed; 2757 Changed = true; 2758 } 2759 } 2760 2761 if (!Cond) 2762 return Changed; 2763 } 2764 2765 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2766 Cond->getParent() != BB || !Cond->hasOneUse()) 2767 return Changed; 2768 2769 // Make sure the instruction after the condition is the cond branch. 2770 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2771 2772 // Ignore dbg intrinsics. 2773 while (isa<DbgInfoIntrinsic>(CondIt)) 2774 ++CondIt; 2775 2776 if (&*CondIt != BI) 2777 return Changed; 2778 2779 // Only allow this transformation if computing the condition doesn't involve 2780 // too many instructions and these involved instructions can be executed 2781 // unconditionally. We denote all involved instructions except the condition 2782 // as "bonus instructions", and only allow this transformation when the 2783 // number of the bonus instructions we'll need to create when cloning into 2784 // each predecessor does not exceed a certain threshold. 2785 unsigned NumBonusInsts = 0; 2786 for (auto I = BB->begin(); Cond != &*I; ++I) { 2787 // Ignore dbg intrinsics. 2788 if (isa<DbgInfoIntrinsic>(I)) 2789 continue; 2790 // I must be safe to execute unconditionally. 2791 if (!isSafeToSpeculativelyExecute(&*I)) 2792 return Changed; 2793 2794 // Account for the cost of duplicating this instruction into each 2795 // predecessor. 2796 NumBonusInsts += PredCount; 2797 // Early exits once we reach the limit. 2798 if (NumBonusInsts > BonusInstThreshold) 2799 return Changed; 2800 } 2801 2802 // Cond is known to be a compare or binary operator. Check to make sure that 2803 // neither operand is a potentially-trapping constant expression. 2804 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2805 if (CE->canTrap()) 2806 return Changed; 2807 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2808 if (CE->canTrap()) 2809 return Changed; 2810 2811 // Finally, don't infinitely unroll conditional loops. 2812 BasicBlock *TrueDest = BI->getSuccessor(0); 2813 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2814 if (TrueDest == BB || FalseDest == BB) 2815 return Changed; 2816 2817 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2818 BasicBlock *PredBlock = *PI; 2819 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2820 2821 // Check that we have two conditional branches. If there is a PHI node in 2822 // the common successor, verify that the same value flows in from both 2823 // blocks. 2824 SmallVector<PHINode *, 4> PHIs; 2825 if (!PBI || PBI->isUnconditional() || 2826 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2827 (!BI->isConditional() && 2828 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2829 continue; 2830 2831 // Determine if the two branches share a common destination. 2832 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2833 bool InvertPredCond = false; 2834 2835 if (BI->isConditional()) { 2836 if (PBI->getSuccessor(0) == TrueDest) { 2837 Opc = Instruction::Or; 2838 } else if (PBI->getSuccessor(1) == FalseDest) { 2839 Opc = Instruction::And; 2840 } else if (PBI->getSuccessor(0) == FalseDest) { 2841 Opc = Instruction::And; 2842 InvertPredCond = true; 2843 } else if (PBI->getSuccessor(1) == TrueDest) { 2844 Opc = Instruction::Or; 2845 InvertPredCond = true; 2846 } else { 2847 continue; 2848 } 2849 } else { 2850 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2851 continue; 2852 } 2853 2854 // Check the cost of inserting the necessary logic before performing the 2855 // transformation. 2856 if (TTI && Opc != Instruction::BinaryOpsEnd) { 2857 Type *Ty = BI->getCondition()->getType(); 2858 unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 2859 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 2860 !isa<CmpInst>(PBI->getCondition()))) 2861 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 2862 2863 if (Cost > BranchFoldThreshold) 2864 continue; 2865 } 2866 2867 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2868 Changed = true; 2869 2870 IRBuilder<> Builder(PBI); 2871 2872 // If we need to invert the condition in the pred block to match, do so now. 2873 if (InvertPredCond) { 2874 Value *NewCond = PBI->getCondition(); 2875 2876 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2877 CmpInst *CI = cast<CmpInst>(NewCond); 2878 CI->setPredicate(CI->getInversePredicate()); 2879 } else { 2880 NewCond = 2881 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2882 } 2883 2884 PBI->setCondition(NewCond); 2885 PBI->swapSuccessors(); 2886 } 2887 2888 // Before cloning instructions, notify the successor basic block that it 2889 // is about to have a new predecessor. This will update PHI nodes, 2890 // which will allow us to update live-out uses of bonus instructions. 2891 if (BI->isConditional()) 2892 AddPredecessorToBlock(PBI->getSuccessor(0) == BB ? TrueDest : FalseDest, 2893 PredBlock, BB, MSSAU); 2894 2895 // If we have bonus instructions, clone them into the predecessor block. 2896 // Note that there may be multiple predecessor blocks, so we cannot move 2897 // bonus instructions to a predecessor block. 2898 ValueToValueMapTy VMap; // maps original values to cloned values 2899 // We already make sure Cond is the last instruction before BI. Therefore, 2900 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2901 // instructions. 2902 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2903 if (isa<DbgInfoIntrinsic>(BonusInst)) 2904 continue; 2905 Instruction *NewBonusInst = BonusInst->clone(); 2906 2907 // When we fold the bonus instructions we want to make sure we 2908 // reset their debug locations in order to avoid stepping on dead 2909 // code caused by folding dead branches. 2910 NewBonusInst->setDebugLoc(DebugLoc()); 2911 2912 RemapInstruction(NewBonusInst, VMap, 2913 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2914 VMap[&*BonusInst] = NewBonusInst; 2915 2916 // If we moved a load, we cannot any longer claim any knowledge about 2917 // its potential value. The previous information might have been valid 2918 // only given the branch precondition. 2919 // For an analogous reason, we must also drop all the metadata whose 2920 // semantics we don't understand. 2921 NewBonusInst->dropUnknownNonDebugMetadata(); 2922 2923 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2924 NewBonusInst->takeName(&*BonusInst); 2925 BonusInst->setName(BonusInst->getName() + ".old"); 2926 BonusInst->replaceUsesWithIf(NewBonusInst, [BB](Use &U) { 2927 auto *User = cast<Instruction>(U.getUser()); 2928 // Ignore uses in the same block as the bonus instruction itself. 2929 if (User->getParent() == BB) 2930 return false; 2931 // We can safely update external non-PHI uses. 2932 if (!isa<PHINode>(User)) 2933 return true; 2934 // For PHI nodes, don't touch incoming values for same block 2935 // as the bonus instruction itself. 2936 return cast<PHINode>(User)->getIncomingBlock(U) != BB; 2937 }); 2938 } 2939 2940 // Clone Cond into the predecessor basic block, and or/and the 2941 // two conditions together. 2942 Instruction *CondInPred = Cond->clone(); 2943 2944 // Reset the condition debug location to avoid jumping on dead code 2945 // as the result of folding dead branches. 2946 CondInPred->setDebugLoc(DebugLoc()); 2947 2948 RemapInstruction(CondInPred, VMap, 2949 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2950 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2951 CondInPred->takeName(Cond); 2952 Cond->setName(CondInPred->getName() + ".old"); 2953 2954 if (BI->isConditional()) { 2955 Instruction *NewCond = cast<Instruction>( 2956 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2957 PBI->setCondition(NewCond); 2958 2959 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2960 bool HasWeights = 2961 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2962 SuccTrueWeight, SuccFalseWeight); 2963 SmallVector<uint64_t, 8> NewWeights; 2964 2965 if (PBI->getSuccessor(0) == BB) { 2966 if (HasWeights) { 2967 // PBI: br i1 %x, BB, FalseDest 2968 // BI: br i1 %y, TrueDest, FalseDest 2969 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2970 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2971 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2972 // TrueWeight for PBI * FalseWeight for BI. 2973 // We assume that total weights of a BranchInst can fit into 32 bits. 2974 // Therefore, we will not have overflow using 64-bit arithmetic. 2975 NewWeights.push_back(PredFalseWeight * 2976 (SuccFalseWeight + SuccTrueWeight) + 2977 PredTrueWeight * SuccFalseWeight); 2978 } 2979 PBI->setSuccessor(0, TrueDest); 2980 } 2981 if (PBI->getSuccessor(1) == BB) { 2982 if (HasWeights) { 2983 // PBI: br i1 %x, TrueDest, BB 2984 // BI: br i1 %y, TrueDest, FalseDest 2985 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2986 // FalseWeight for PBI * TrueWeight for BI. 2987 NewWeights.push_back(PredTrueWeight * 2988 (SuccFalseWeight + SuccTrueWeight) + 2989 PredFalseWeight * SuccTrueWeight); 2990 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2991 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2992 } 2993 PBI->setSuccessor(1, FalseDest); 2994 } 2995 if (NewWeights.size() == 2) { 2996 // Halve the weights if any of them cannot fit in an uint32_t 2997 FitWeights(NewWeights); 2998 2999 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 3000 NewWeights.end()); 3001 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3002 } else 3003 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3004 } else { 3005 // Update PHI nodes in the common successors. 3006 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 3007 ConstantInt *PBI_C = cast<ConstantInt>( 3008 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 3009 assert(PBI_C->getType()->isIntegerTy(1)); 3010 Instruction *MergedCond = nullptr; 3011 if (PBI->getSuccessor(0) == TrueDest) { 3012 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 3013 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 3014 // is false: !PBI_Cond and BI_Value 3015 Instruction *NotCond = cast<Instruction>( 3016 Builder.CreateNot(PBI->getCondition(), "not.cond")); 3017 MergedCond = cast<Instruction>( 3018 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 3019 "and.cond")); 3020 if (PBI_C->isOne()) 3021 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3022 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 3023 } else { 3024 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 3025 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 3026 // is false: PBI_Cond and BI_Value 3027 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3028 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 3029 if (PBI_C->isOne()) { 3030 Instruction *NotCond = cast<Instruction>( 3031 Builder.CreateNot(PBI->getCondition(), "not.cond")); 3032 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3033 Instruction::Or, NotCond, MergedCond, "or.cond")); 3034 } 3035 } 3036 // Update PHI Node. 3037 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond); 3038 } 3039 3040 // PBI is changed to branch to TrueDest below. Remove itself from 3041 // potential phis from all other successors. 3042 if (MSSAU) 3043 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest); 3044 3045 // Change PBI from Conditional to Unconditional. 3046 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 3047 EraseTerminatorAndDCECond(PBI, MSSAU); 3048 PBI = New_PBI; 3049 } 3050 3051 // If BI was a loop latch, it may have had associated loop metadata. 3052 // We need to copy it to the new latch, that is, PBI. 3053 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3054 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3055 3056 // TODO: If BB is reachable from all paths through PredBlock, then we 3057 // could replace PBI's branch probabilities with BI's. 3058 3059 // Copy any debug value intrinsics into the end of PredBlock. 3060 for (Instruction &I : *BB) { 3061 if (isa<DbgInfoIntrinsic>(I)) { 3062 Instruction *NewI = I.clone(); 3063 RemapInstruction(NewI, VMap, 3064 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3065 NewI->insertBefore(PBI); 3066 } 3067 } 3068 3069 return Changed; 3070 } 3071 return Changed; 3072 } 3073 3074 // If there is only one store in BB1 and BB2, return it, otherwise return 3075 // nullptr. 3076 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3077 StoreInst *S = nullptr; 3078 for (auto *BB : {BB1, BB2}) { 3079 if (!BB) 3080 continue; 3081 for (auto &I : *BB) 3082 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3083 if (S) 3084 // Multiple stores seen. 3085 return nullptr; 3086 else 3087 S = SI; 3088 } 3089 } 3090 return S; 3091 } 3092 3093 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3094 Value *AlternativeV = nullptr) { 3095 // PHI is going to be a PHI node that allows the value V that is defined in 3096 // BB to be referenced in BB's only successor. 3097 // 3098 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3099 // doesn't matter to us what the other operand is (it'll never get used). We 3100 // could just create a new PHI with an undef incoming value, but that could 3101 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3102 // other PHI. So here we directly look for some PHI in BB's successor with V 3103 // as an incoming operand. If we find one, we use it, else we create a new 3104 // one. 3105 // 3106 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3107 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3108 // where OtherBB is the single other predecessor of BB's only successor. 3109 PHINode *PHI = nullptr; 3110 BasicBlock *Succ = BB->getSingleSuccessor(); 3111 3112 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3113 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3114 PHI = cast<PHINode>(I); 3115 if (!AlternativeV) 3116 break; 3117 3118 assert(Succ->hasNPredecessors(2)); 3119 auto PredI = pred_begin(Succ); 3120 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3121 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3122 break; 3123 PHI = nullptr; 3124 } 3125 if (PHI) 3126 return PHI; 3127 3128 // If V is not an instruction defined in BB, just return it. 3129 if (!AlternativeV && 3130 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3131 return V; 3132 3133 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3134 PHI->addIncoming(V, BB); 3135 for (BasicBlock *PredBB : predecessors(Succ)) 3136 if (PredBB != BB) 3137 PHI->addIncoming( 3138 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3139 return PHI; 3140 } 3141 3142 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 3143 BasicBlock *QTB, BasicBlock *QFB, 3144 BasicBlock *PostBB, Value *Address, 3145 bool InvertPCond, bool InvertQCond, 3146 const DataLayout &DL, 3147 const TargetTransformInfo &TTI) { 3148 // For every pointer, there must be exactly two stores, one coming from 3149 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3150 // store (to any address) in PTB,PFB or QTB,QFB. 3151 // FIXME: We could relax this restriction with a bit more work and performance 3152 // testing. 3153 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3154 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3155 if (!PStore || !QStore) 3156 return false; 3157 3158 // Now check the stores are compatible. 3159 if (!QStore->isUnordered() || !PStore->isUnordered()) 3160 return false; 3161 3162 // Check that sinking the store won't cause program behavior changes. Sinking 3163 // the store out of the Q blocks won't change any behavior as we're sinking 3164 // from a block to its unconditional successor. But we're moving a store from 3165 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3166 // So we need to check that there are no aliasing loads or stores in 3167 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3168 // operations between PStore and the end of its parent block. 3169 // 3170 // The ideal way to do this is to query AliasAnalysis, but we don't 3171 // preserve AA currently so that is dangerous. Be super safe and just 3172 // check there are no other memory operations at all. 3173 for (auto &I : *QFB->getSinglePredecessor()) 3174 if (I.mayReadOrWriteMemory()) 3175 return false; 3176 for (auto &I : *QFB) 3177 if (&I != QStore && I.mayReadOrWriteMemory()) 3178 return false; 3179 if (QTB) 3180 for (auto &I : *QTB) 3181 if (&I != QStore && I.mayReadOrWriteMemory()) 3182 return false; 3183 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3184 I != E; ++I) 3185 if (&*I != PStore && I->mayReadOrWriteMemory()) 3186 return false; 3187 3188 // If we're not in aggressive mode, we only optimize if we have some 3189 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3190 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3191 if (!BB) 3192 return true; 3193 // Heuristic: if the block can be if-converted/phi-folded and the 3194 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3195 // thread this store. 3196 int BudgetRemaining = 3197 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3198 for (auto &I : BB->instructionsWithoutDebug()) { 3199 // Consider terminator instruction to be free. 3200 if (I.isTerminator()) 3201 continue; 3202 // If this is one the stores that we want to speculate out of this BB, 3203 // then don't count it's cost, consider it to be free. 3204 if (auto *S = dyn_cast<StoreInst>(&I)) 3205 if (llvm::find(FreeStores, S)) 3206 continue; 3207 // Else, we have a white-list of instructions that we are ak speculating. 3208 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3209 return false; // Not in white-list - not worthwhile folding. 3210 // And finally, if this is a non-free instruction that we are okay 3211 // speculating, ensure that we consider the speculation budget. 3212 BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3213 if (BudgetRemaining < 0) 3214 return false; // Eagerly refuse to fold as soon as we're out of budget. 3215 } 3216 assert(BudgetRemaining >= 0 && 3217 "When we run out of budget we will eagerly return from within the " 3218 "per-instruction loop."); 3219 return true; 3220 }; 3221 3222 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3223 if (!MergeCondStoresAggressively && 3224 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3225 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3226 return false; 3227 3228 // If PostBB has more than two predecessors, we need to split it so we can 3229 // sink the store. 3230 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3231 // We know that QFB's only successor is PostBB. And QFB has a single 3232 // predecessor. If QTB exists, then its only successor is also PostBB. 3233 // If QTB does not exist, then QFB's only predecessor has a conditional 3234 // branch to QFB and PostBB. 3235 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3236 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3237 "condstore.split"); 3238 if (!NewBB) 3239 return false; 3240 PostBB = NewBB; 3241 } 3242 3243 // OK, we're going to sink the stores to PostBB. The store has to be 3244 // conditional though, so first create the predicate. 3245 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3246 ->getCondition(); 3247 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3248 ->getCondition(); 3249 3250 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3251 PStore->getParent()); 3252 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3253 QStore->getParent(), PPHI); 3254 3255 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3256 3257 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3258 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3259 3260 if (InvertPCond) 3261 PPred = QB.CreateNot(PPred); 3262 if (InvertQCond) 3263 QPred = QB.CreateNot(QPred); 3264 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3265 3266 auto *T = 3267 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3268 QB.SetInsertPoint(T); 3269 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3270 AAMDNodes AAMD; 3271 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3272 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3273 SI->setAAMetadata(AAMD); 3274 // Choose the minimum alignment. If we could prove both stores execute, we 3275 // could use biggest one. In this case, though, we only know that one of the 3276 // stores executes. And we don't know it's safe to take the alignment from a 3277 // store that doesn't execute. 3278 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3279 3280 QStore->eraseFromParent(); 3281 PStore->eraseFromParent(); 3282 3283 return true; 3284 } 3285 3286 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3287 const DataLayout &DL, 3288 const TargetTransformInfo &TTI) { 3289 // The intention here is to find diamonds or triangles (see below) where each 3290 // conditional block contains a store to the same address. Both of these 3291 // stores are conditional, so they can't be unconditionally sunk. But it may 3292 // be profitable to speculatively sink the stores into one merged store at the 3293 // end, and predicate the merged store on the union of the two conditions of 3294 // PBI and QBI. 3295 // 3296 // This can reduce the number of stores executed if both of the conditions are 3297 // true, and can allow the blocks to become small enough to be if-converted. 3298 // This optimization will also chain, so that ladders of test-and-set 3299 // sequences can be if-converted away. 3300 // 3301 // We only deal with simple diamonds or triangles: 3302 // 3303 // PBI or PBI or a combination of the two 3304 // / \ | \ 3305 // PTB PFB | PFB 3306 // \ / | / 3307 // QBI QBI 3308 // / \ | \ 3309 // QTB QFB | QFB 3310 // \ / | / 3311 // PostBB PostBB 3312 // 3313 // We model triangles as a type of diamond with a nullptr "true" block. 3314 // Triangles are canonicalized so that the fallthrough edge is represented by 3315 // a true condition, as in the diagram above. 3316 BasicBlock *PTB = PBI->getSuccessor(0); 3317 BasicBlock *PFB = PBI->getSuccessor(1); 3318 BasicBlock *QTB = QBI->getSuccessor(0); 3319 BasicBlock *QFB = QBI->getSuccessor(1); 3320 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3321 3322 // Make sure we have a good guess for PostBB. If QTB's only successor is 3323 // QFB, then QFB is a better PostBB. 3324 if (QTB->getSingleSuccessor() == QFB) 3325 PostBB = QFB; 3326 3327 // If we couldn't find a good PostBB, stop. 3328 if (!PostBB) 3329 return false; 3330 3331 bool InvertPCond = false, InvertQCond = false; 3332 // Canonicalize fallthroughs to the true branches. 3333 if (PFB == QBI->getParent()) { 3334 std::swap(PFB, PTB); 3335 InvertPCond = true; 3336 } 3337 if (QFB == PostBB) { 3338 std::swap(QFB, QTB); 3339 InvertQCond = true; 3340 } 3341 3342 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3343 // and QFB may not. Model fallthroughs as a nullptr block. 3344 if (PTB == QBI->getParent()) 3345 PTB = nullptr; 3346 if (QTB == PostBB) 3347 QTB = nullptr; 3348 3349 // Legality bailouts. We must have at least the non-fallthrough blocks and 3350 // the post-dominating block, and the non-fallthroughs must only have one 3351 // predecessor. 3352 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3353 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3354 }; 3355 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3356 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3357 return false; 3358 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3359 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3360 return false; 3361 if (!QBI->getParent()->hasNUses(2)) 3362 return false; 3363 3364 // OK, this is a sequence of two diamonds or triangles. 3365 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3366 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3367 for (auto *BB : {PTB, PFB}) { 3368 if (!BB) 3369 continue; 3370 for (auto &I : *BB) 3371 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3372 PStoreAddresses.insert(SI->getPointerOperand()); 3373 } 3374 for (auto *BB : {QTB, QFB}) { 3375 if (!BB) 3376 continue; 3377 for (auto &I : *BB) 3378 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3379 QStoreAddresses.insert(SI->getPointerOperand()); 3380 } 3381 3382 set_intersect(PStoreAddresses, QStoreAddresses); 3383 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3384 // clear what it contains. 3385 auto &CommonAddresses = PStoreAddresses; 3386 3387 bool Changed = false; 3388 for (auto *Address : CommonAddresses) 3389 Changed |= mergeConditionalStoreToAddress( 3390 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI); 3391 return Changed; 3392 } 3393 3394 3395 /// If the previous block ended with a widenable branch, determine if reusing 3396 /// the target block is profitable and legal. This will have the effect of 3397 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3398 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 3399 // TODO: This can be generalized in two important ways: 3400 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3401 // values from the PBI edge. 3402 // 2) We can sink side effecting instructions into BI's fallthrough 3403 // successor provided they doesn't contribute to computation of 3404 // BI's condition. 3405 Value *CondWB, *WC; 3406 BasicBlock *IfTrueBB, *IfFalseBB; 3407 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3408 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3409 return false; 3410 if (!IfFalseBB->phis().empty()) 3411 return false; // TODO 3412 // Use lambda to lazily compute expensive condition after cheap ones. 3413 auto NoSideEffects = [](BasicBlock &BB) { 3414 return !llvm::any_of(BB, [](const Instruction &I) { 3415 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3416 }); 3417 }; 3418 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3419 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3420 NoSideEffects(*BI->getParent())) { 3421 BI->getSuccessor(1)->removePredecessor(BI->getParent()); 3422 BI->setSuccessor(1, IfFalseBB); 3423 return true; 3424 } 3425 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3426 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3427 NoSideEffects(*BI->getParent())) { 3428 BI->getSuccessor(0)->removePredecessor(BI->getParent()); 3429 BI->setSuccessor(0, IfFalseBB); 3430 return true; 3431 } 3432 return false; 3433 } 3434 3435 /// If we have a conditional branch as a predecessor of another block, 3436 /// this function tries to simplify it. We know 3437 /// that PBI and BI are both conditional branches, and BI is in one of the 3438 /// successor blocks of PBI - PBI branches to BI. 3439 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3440 const DataLayout &DL, 3441 const TargetTransformInfo &TTI) { 3442 assert(PBI->isConditional() && BI->isConditional()); 3443 BasicBlock *BB = BI->getParent(); 3444 3445 // If this block ends with a branch instruction, and if there is a 3446 // predecessor that ends on a branch of the same condition, make 3447 // this conditional branch redundant. 3448 if (PBI->getCondition() == BI->getCondition() && 3449 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3450 // Okay, the outcome of this conditional branch is statically 3451 // knowable. If this block had a single pred, handle specially. 3452 if (BB->getSinglePredecessor()) { 3453 // Turn this into a branch on constant. 3454 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3455 BI->setCondition( 3456 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3457 return true; // Nuke the branch on constant. 3458 } 3459 3460 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3461 // in the constant and simplify the block result. Subsequent passes of 3462 // simplifycfg will thread the block. 3463 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3464 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3465 PHINode *NewPN = PHINode::Create( 3466 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3467 BI->getCondition()->getName() + ".pr", &BB->front()); 3468 // Okay, we're going to insert the PHI node. Since PBI is not the only 3469 // predecessor, compute the PHI'd conditional value for all of the preds. 3470 // Any predecessor where the condition is not computable we keep symbolic. 3471 for (pred_iterator PI = PB; PI != PE; ++PI) { 3472 BasicBlock *P = *PI; 3473 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3474 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3475 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3476 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3477 NewPN->addIncoming( 3478 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3479 P); 3480 } else { 3481 NewPN->addIncoming(BI->getCondition(), P); 3482 } 3483 } 3484 3485 BI->setCondition(NewPN); 3486 return true; 3487 } 3488 } 3489 3490 // If the previous block ended with a widenable branch, determine if reusing 3491 // the target block is profitable and legal. This will have the effect of 3492 // "widening" PBI, but doesn't require us to reason about hosting safety. 3493 if (tryWidenCondBranchToCondBranch(PBI, BI)) 3494 return true; 3495 3496 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3497 if (CE->canTrap()) 3498 return false; 3499 3500 // If both branches are conditional and both contain stores to the same 3501 // address, remove the stores from the conditionals and create a conditional 3502 // merged store at the end. 3503 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI)) 3504 return true; 3505 3506 // If this is a conditional branch in an empty block, and if any 3507 // predecessors are a conditional branch to one of our destinations, 3508 // fold the conditions into logical ops and one cond br. 3509 3510 // Ignore dbg intrinsics. 3511 if (&*BB->instructionsWithoutDebug().begin() != BI) 3512 return false; 3513 3514 int PBIOp, BIOp; 3515 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3516 PBIOp = 0; 3517 BIOp = 0; 3518 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3519 PBIOp = 0; 3520 BIOp = 1; 3521 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3522 PBIOp = 1; 3523 BIOp = 0; 3524 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3525 PBIOp = 1; 3526 BIOp = 1; 3527 } else { 3528 return false; 3529 } 3530 3531 // Check to make sure that the other destination of this branch 3532 // isn't BB itself. If so, this is an infinite loop that will 3533 // keep getting unwound. 3534 if (PBI->getSuccessor(PBIOp) == BB) 3535 return false; 3536 3537 // Do not perform this transformation if it would require 3538 // insertion of a large number of select instructions. For targets 3539 // without predication/cmovs, this is a big pessimization. 3540 3541 // Also do not perform this transformation if any phi node in the common 3542 // destination block can trap when reached by BB or PBB (PR17073). In that 3543 // case, it would be unsafe to hoist the operation into a select instruction. 3544 3545 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3546 unsigned NumPhis = 0; 3547 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3548 ++II, ++NumPhis) { 3549 if (NumPhis > 2) // Disable this xform. 3550 return false; 3551 3552 PHINode *PN = cast<PHINode>(II); 3553 Value *BIV = PN->getIncomingValueForBlock(BB); 3554 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3555 if (CE->canTrap()) 3556 return false; 3557 3558 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3559 Value *PBIV = PN->getIncomingValue(PBBIdx); 3560 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3561 if (CE->canTrap()) 3562 return false; 3563 } 3564 3565 // Finally, if everything is ok, fold the branches to logical ops. 3566 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3567 3568 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3569 << "AND: " << *BI->getParent()); 3570 3571 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3572 // branch in it, where one edge (OtherDest) goes back to itself but the other 3573 // exits. We don't *know* that the program avoids the infinite loop 3574 // (even though that seems likely). If we do this xform naively, we'll end up 3575 // recursively unpeeling the loop. Since we know that (after the xform is 3576 // done) that the block *is* infinite if reached, we just make it an obviously 3577 // infinite loop with no cond branch. 3578 if (OtherDest == BB) { 3579 // Insert it at the end of the function, because it's either code, 3580 // or it won't matter if it's hot. :) 3581 BasicBlock *InfLoopBlock = 3582 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3583 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3584 OtherDest = InfLoopBlock; 3585 } 3586 3587 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3588 3589 // BI may have other predecessors. Because of this, we leave 3590 // it alone, but modify PBI. 3591 3592 // Make sure we get to CommonDest on True&True directions. 3593 Value *PBICond = PBI->getCondition(); 3594 IRBuilder<NoFolder> Builder(PBI); 3595 if (PBIOp) 3596 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3597 3598 Value *BICond = BI->getCondition(); 3599 if (BIOp) 3600 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3601 3602 // Merge the conditions. 3603 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3604 3605 // Modify PBI to branch on the new condition to the new dests. 3606 PBI->setCondition(Cond); 3607 PBI->setSuccessor(0, CommonDest); 3608 PBI->setSuccessor(1, OtherDest); 3609 3610 // Update branch weight for PBI. 3611 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3612 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3613 bool HasWeights = 3614 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3615 SuccTrueWeight, SuccFalseWeight); 3616 if (HasWeights) { 3617 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3618 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3619 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3620 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3621 // The weight to CommonDest should be PredCommon * SuccTotal + 3622 // PredOther * SuccCommon. 3623 // The weight to OtherDest should be PredOther * SuccOther. 3624 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3625 PredOther * SuccCommon, 3626 PredOther * SuccOther}; 3627 // Halve the weights if any of them cannot fit in an uint32_t 3628 FitWeights(NewWeights); 3629 3630 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3631 } 3632 3633 // OtherDest may have phi nodes. If so, add an entry from PBI's 3634 // block that are identical to the entries for BI's block. 3635 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3636 3637 // We know that the CommonDest already had an edge from PBI to 3638 // it. If it has PHIs though, the PHIs may have different 3639 // entries for BB and PBI's BB. If so, insert a select to make 3640 // them agree. 3641 for (PHINode &PN : CommonDest->phis()) { 3642 Value *BIV = PN.getIncomingValueForBlock(BB); 3643 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3644 Value *PBIV = PN.getIncomingValue(PBBIdx); 3645 if (BIV != PBIV) { 3646 // Insert a select in PBI to pick the right value. 3647 SelectInst *NV = cast<SelectInst>( 3648 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3649 PN.setIncomingValue(PBBIdx, NV); 3650 // Although the select has the same condition as PBI, the original branch 3651 // weights for PBI do not apply to the new select because the select's 3652 // 'logical' edges are incoming edges of the phi that is eliminated, not 3653 // the outgoing edges of PBI. 3654 if (HasWeights) { 3655 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3656 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3657 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3658 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3659 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3660 // The weight to PredOtherDest should be PredOther * SuccCommon. 3661 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3662 PredOther * SuccCommon}; 3663 3664 FitWeights(NewWeights); 3665 3666 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3667 } 3668 } 3669 } 3670 3671 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3672 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3673 3674 // This basic block is probably dead. We know it has at least 3675 // one fewer predecessor. 3676 return true; 3677 } 3678 3679 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3680 // true or to FalseBB if Cond is false. 3681 // Takes care of updating the successors and removing the old terminator. 3682 // Also makes sure not to introduce new successors by assuming that edges to 3683 // non-successor TrueBBs and FalseBBs aren't reachable. 3684 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3685 Value *Cond, BasicBlock *TrueBB, 3686 BasicBlock *FalseBB, 3687 uint32_t TrueWeight, 3688 uint32_t FalseWeight) { 3689 // Remove any superfluous successor edges from the CFG. 3690 // First, figure out which successors to preserve. 3691 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3692 // successor. 3693 BasicBlock *KeepEdge1 = TrueBB; 3694 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3695 3696 // Then remove the rest. 3697 for (BasicBlock *Succ : successors(OldTerm)) { 3698 // Make sure only to keep exactly one copy of each edge. 3699 if (Succ == KeepEdge1) 3700 KeepEdge1 = nullptr; 3701 else if (Succ == KeepEdge2) 3702 KeepEdge2 = nullptr; 3703 else 3704 Succ->removePredecessor(OldTerm->getParent(), 3705 /*KeepOneInputPHIs=*/true); 3706 } 3707 3708 IRBuilder<> Builder(OldTerm); 3709 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3710 3711 // Insert an appropriate new terminator. 3712 if (!KeepEdge1 && !KeepEdge2) { 3713 if (TrueBB == FalseBB) 3714 // We were only looking for one successor, and it was present. 3715 // Create an unconditional branch to it. 3716 Builder.CreateBr(TrueBB); 3717 else { 3718 // We found both of the successors we were looking for. 3719 // Create a conditional branch sharing the condition of the select. 3720 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3721 if (TrueWeight != FalseWeight) 3722 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3723 } 3724 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3725 // Neither of the selected blocks were successors, so this 3726 // terminator must be unreachable. 3727 new UnreachableInst(OldTerm->getContext(), OldTerm); 3728 } else { 3729 // One of the selected values was a successor, but the other wasn't. 3730 // Insert an unconditional branch to the one that was found; 3731 // the edge to the one that wasn't must be unreachable. 3732 if (!KeepEdge1) 3733 // Only TrueBB was found. 3734 Builder.CreateBr(TrueBB); 3735 else 3736 // Only FalseBB was found. 3737 Builder.CreateBr(FalseBB); 3738 } 3739 3740 EraseTerminatorAndDCECond(OldTerm); 3741 return true; 3742 } 3743 3744 // Replaces 3745 // (switch (select cond, X, Y)) on constant X, Y 3746 // with a branch - conditional if X and Y lead to distinct BBs, 3747 // unconditional otherwise. 3748 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3749 SelectInst *Select) { 3750 // Check for constant integer values in the select. 3751 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3752 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3753 if (!TrueVal || !FalseVal) 3754 return false; 3755 3756 // Find the relevant condition and destinations. 3757 Value *Condition = Select->getCondition(); 3758 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3759 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3760 3761 // Get weight for TrueBB and FalseBB. 3762 uint32_t TrueWeight = 0, FalseWeight = 0; 3763 SmallVector<uint64_t, 8> Weights; 3764 bool HasWeights = HasBranchWeights(SI); 3765 if (HasWeights) { 3766 GetBranchWeights(SI, Weights); 3767 if (Weights.size() == 1 + SI->getNumCases()) { 3768 TrueWeight = 3769 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3770 FalseWeight = 3771 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3772 } 3773 } 3774 3775 // Perform the actual simplification. 3776 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3777 FalseWeight); 3778 } 3779 3780 // Replaces 3781 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3782 // blockaddress(@fn, BlockB))) 3783 // with 3784 // (br cond, BlockA, BlockB). 3785 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3786 SelectInst *SI) { 3787 // Check that both operands of the select are block addresses. 3788 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3789 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3790 if (!TBA || !FBA) 3791 return false; 3792 3793 // Extract the actual blocks. 3794 BasicBlock *TrueBB = TBA->getBasicBlock(); 3795 BasicBlock *FalseBB = FBA->getBasicBlock(); 3796 3797 // Perform the actual simplification. 3798 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3799 0); 3800 } 3801 3802 /// This is called when we find an icmp instruction 3803 /// (a seteq/setne with a constant) as the only instruction in a 3804 /// block that ends with an uncond branch. We are looking for a very specific 3805 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3806 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3807 /// default value goes to an uncond block with a seteq in it, we get something 3808 /// like: 3809 /// 3810 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3811 /// DEFAULT: 3812 /// %tmp = icmp eq i8 %A, 92 3813 /// br label %end 3814 /// end: 3815 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3816 /// 3817 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3818 /// the PHI, merging the third icmp into the switch. 3819 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3820 ICmpInst *ICI, IRBuilder<> &Builder) { 3821 BasicBlock *BB = ICI->getParent(); 3822 3823 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3824 // complex. 3825 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3826 return false; 3827 3828 Value *V = ICI->getOperand(0); 3829 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3830 3831 // The pattern we're looking for is where our only predecessor is a switch on 3832 // 'V' and this block is the default case for the switch. In this case we can 3833 // fold the compared value into the switch to simplify things. 3834 BasicBlock *Pred = BB->getSinglePredecessor(); 3835 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3836 return false; 3837 3838 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3839 if (SI->getCondition() != V) 3840 return false; 3841 3842 // If BB is reachable on a non-default case, then we simply know the value of 3843 // V in this block. Substitute it and constant fold the icmp instruction 3844 // away. 3845 if (SI->getDefaultDest() != BB) { 3846 ConstantInt *VVal = SI->findCaseDest(BB); 3847 assert(VVal && "Should have a unique destination value"); 3848 ICI->setOperand(0, VVal); 3849 3850 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3851 ICI->replaceAllUsesWith(V); 3852 ICI->eraseFromParent(); 3853 } 3854 // BB is now empty, so it is likely to simplify away. 3855 return requestResimplify(); 3856 } 3857 3858 // Ok, the block is reachable from the default dest. If the constant we're 3859 // comparing exists in one of the other edges, then we can constant fold ICI 3860 // and zap it. 3861 if (SI->findCaseValue(Cst) != SI->case_default()) { 3862 Value *V; 3863 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3864 V = ConstantInt::getFalse(BB->getContext()); 3865 else 3866 V = ConstantInt::getTrue(BB->getContext()); 3867 3868 ICI->replaceAllUsesWith(V); 3869 ICI->eraseFromParent(); 3870 // BB is now empty, so it is likely to simplify away. 3871 return requestResimplify(); 3872 } 3873 3874 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3875 // the block. 3876 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3877 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3878 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3879 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3880 return false; 3881 3882 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3883 // true in the PHI. 3884 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3885 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3886 3887 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3888 std::swap(DefaultCst, NewCst); 3889 3890 // Replace ICI (which is used by the PHI for the default value) with true or 3891 // false depending on if it is EQ or NE. 3892 ICI->replaceAllUsesWith(DefaultCst); 3893 ICI->eraseFromParent(); 3894 3895 // Okay, the switch goes to this block on a default value. Add an edge from 3896 // the switch to the merge point on the compared value. 3897 BasicBlock *NewBB = 3898 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3899 { 3900 SwitchInstProfUpdateWrapper SIW(*SI); 3901 auto W0 = SIW.getSuccessorWeight(0); 3902 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3903 if (W0) { 3904 NewW = ((uint64_t(*W0) + 1) >> 1); 3905 SIW.setSuccessorWeight(0, *NewW); 3906 } 3907 SIW.addCase(Cst, NewBB, NewW); 3908 } 3909 3910 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3911 Builder.SetInsertPoint(NewBB); 3912 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3913 Builder.CreateBr(SuccBlock); 3914 PHIUse->addIncoming(NewCst, NewBB); 3915 return true; 3916 } 3917 3918 /// The specified branch is a conditional branch. 3919 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3920 /// fold it into a switch instruction if so. 3921 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3922 IRBuilder<> &Builder, 3923 const DataLayout &DL) { 3924 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3925 if (!Cond) 3926 return false; 3927 3928 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3929 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3930 // 'setne's and'ed together, collect them. 3931 3932 // Try to gather values from a chain of and/or to be turned into a switch 3933 ConstantComparesGatherer ConstantCompare(Cond, DL); 3934 // Unpack the result 3935 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3936 Value *CompVal = ConstantCompare.CompValue; 3937 unsigned UsedICmps = ConstantCompare.UsedICmps; 3938 Value *ExtraCase = ConstantCompare.Extra; 3939 3940 // If we didn't have a multiply compared value, fail. 3941 if (!CompVal) 3942 return false; 3943 3944 // Avoid turning single icmps into a switch. 3945 if (UsedICmps <= 1) 3946 return false; 3947 3948 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3949 3950 // There might be duplicate constants in the list, which the switch 3951 // instruction can't handle, remove them now. 3952 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3953 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3954 3955 // If Extra was used, we require at least two switch values to do the 3956 // transformation. A switch with one value is just a conditional branch. 3957 if (ExtraCase && Values.size() < 2) 3958 return false; 3959 3960 // TODO: Preserve branch weight metadata, similarly to how 3961 // FoldValueComparisonIntoPredecessors preserves it. 3962 3963 // Figure out which block is which destination. 3964 BasicBlock *DefaultBB = BI->getSuccessor(1); 3965 BasicBlock *EdgeBB = BI->getSuccessor(0); 3966 if (!TrueWhenEqual) 3967 std::swap(DefaultBB, EdgeBB); 3968 3969 BasicBlock *BB = BI->getParent(); 3970 3971 // MSAN does not like undefs as branch condition which can be introduced 3972 // with "explicit branch". 3973 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 3974 return false; 3975 3976 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3977 << " cases into SWITCH. BB is:\n" 3978 << *BB); 3979 3980 // If there are any extra values that couldn't be folded into the switch 3981 // then we evaluate them with an explicit branch first. Split the block 3982 // right before the condbr to handle it. 3983 if (ExtraCase) { 3984 BasicBlock *NewBB = 3985 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3986 // Remove the uncond branch added to the old block. 3987 Instruction *OldTI = BB->getTerminator(); 3988 Builder.SetInsertPoint(OldTI); 3989 3990 if (TrueWhenEqual) 3991 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3992 else 3993 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3994 3995 OldTI->eraseFromParent(); 3996 3997 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3998 // for the edge we just added. 3999 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4000 4001 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4002 << "\nEXTRABB = " << *BB); 4003 BB = NewBB; 4004 } 4005 4006 Builder.SetInsertPoint(BI); 4007 // Convert pointer to int before we switch. 4008 if (CompVal->getType()->isPointerTy()) { 4009 CompVal = Builder.CreatePtrToInt( 4010 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4011 } 4012 4013 // Create the new switch instruction now. 4014 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4015 4016 // Add all of the 'cases' to the switch instruction. 4017 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4018 New->addCase(Values[i], EdgeBB); 4019 4020 // We added edges from PI to the EdgeBB. As such, if there were any 4021 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4022 // the number of edges added. 4023 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4024 PHINode *PN = cast<PHINode>(BBI); 4025 Value *InVal = PN->getIncomingValueForBlock(BB); 4026 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4027 PN->addIncoming(InVal, BB); 4028 } 4029 4030 // Erase the old branch instruction. 4031 EraseTerminatorAndDCECond(BI); 4032 4033 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4034 return true; 4035 } 4036 4037 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4038 if (isa<PHINode>(RI->getValue())) 4039 return simplifyCommonResume(RI); 4040 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4041 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4042 // The resume must unwind the exception that caused control to branch here. 4043 return simplifySingleResume(RI); 4044 4045 return false; 4046 } 4047 4048 // Check if cleanup block is empty 4049 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4050 for (Instruction &I : R) { 4051 auto *II = dyn_cast<IntrinsicInst>(&I); 4052 if (!II) 4053 return false; 4054 4055 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4056 switch (IntrinsicID) { 4057 case Intrinsic::dbg_declare: 4058 case Intrinsic::dbg_value: 4059 case Intrinsic::dbg_label: 4060 case Intrinsic::lifetime_end: 4061 break; 4062 default: 4063 return false; 4064 } 4065 } 4066 return true; 4067 } 4068 4069 // Simplify resume that is shared by several landing pads (phi of landing pad). 4070 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4071 BasicBlock *BB = RI->getParent(); 4072 4073 // Check that there are no other instructions except for debug and lifetime 4074 // intrinsics between the phi's and resume instruction. 4075 if (!isCleanupBlockEmpty( 4076 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4077 return false; 4078 4079 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4080 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4081 4082 // Check incoming blocks to see if any of them are trivial. 4083 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4084 Idx++) { 4085 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4086 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4087 4088 // If the block has other successors, we can not delete it because 4089 // it has other dependents. 4090 if (IncomingBB->getUniqueSuccessor() != BB) 4091 continue; 4092 4093 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4094 // Not the landing pad that caused the control to branch here. 4095 if (IncomingValue != LandingPad) 4096 continue; 4097 4098 if (isCleanupBlockEmpty( 4099 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4100 TrivialUnwindBlocks.insert(IncomingBB); 4101 } 4102 4103 // If no trivial unwind blocks, don't do any simplifications. 4104 if (TrivialUnwindBlocks.empty()) 4105 return false; 4106 4107 // Turn all invokes that unwind here into calls. 4108 for (auto *TrivialBB : TrivialUnwindBlocks) { 4109 // Blocks that will be simplified should be removed from the phi node. 4110 // Note there could be multiple edges to the resume block, and we need 4111 // to remove them all. 4112 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4113 BB->removePredecessor(TrivialBB, true); 4114 4115 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 4116 PI != PE;) { 4117 BasicBlock *Pred = *PI++; 4118 removeUnwindEdge(Pred); 4119 ++NumInvokes; 4120 } 4121 4122 // In each SimplifyCFG run, only the current processed block can be erased. 4123 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4124 // of erasing TrivialBB, we only remove the branch to the common resume 4125 // block so that we can later erase the resume block since it has no 4126 // predecessors. 4127 TrivialBB->getTerminator()->eraseFromParent(); 4128 new UnreachableInst(RI->getContext(), TrivialBB); 4129 } 4130 4131 // Delete the resume block if all its predecessors have been removed. 4132 if (pred_empty(BB)) 4133 BB->eraseFromParent(); 4134 4135 return !TrivialUnwindBlocks.empty(); 4136 } 4137 4138 // Simplify resume that is only used by a single (non-phi) landing pad. 4139 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4140 BasicBlock *BB = RI->getParent(); 4141 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4142 assert(RI->getValue() == LPInst && 4143 "Resume must unwind the exception that caused control to here"); 4144 4145 // Check that there are no other instructions except for debug intrinsics. 4146 if (!isCleanupBlockEmpty( 4147 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4148 return false; 4149 4150 // Turn all invokes that unwind here into calls and delete the basic block. 4151 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4152 BasicBlock *Pred = *PI++; 4153 removeUnwindEdge(Pred); 4154 ++NumInvokes; 4155 } 4156 4157 // The landingpad is now unreachable. Zap it. 4158 if (LoopHeaders) 4159 LoopHeaders->erase(BB); 4160 BB->eraseFromParent(); 4161 return true; 4162 } 4163 4164 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 4165 // If this is a trivial cleanup pad that executes no instructions, it can be 4166 // eliminated. If the cleanup pad continues to the caller, any predecessor 4167 // that is an EH pad will be updated to continue to the caller and any 4168 // predecessor that terminates with an invoke instruction will have its invoke 4169 // instruction converted to a call instruction. If the cleanup pad being 4170 // simplified does not continue to the caller, each predecessor will be 4171 // updated to continue to the unwind destination of the cleanup pad being 4172 // simplified. 4173 BasicBlock *BB = RI->getParent(); 4174 CleanupPadInst *CPInst = RI->getCleanupPad(); 4175 if (CPInst->getParent() != BB) 4176 // This isn't an empty cleanup. 4177 return false; 4178 4179 // We cannot kill the pad if it has multiple uses. This typically arises 4180 // from unreachable basic blocks. 4181 if (!CPInst->hasOneUse()) 4182 return false; 4183 4184 // Check that there are no other instructions except for benign intrinsics. 4185 if (!isCleanupBlockEmpty( 4186 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4187 return false; 4188 4189 // If the cleanup return we are simplifying unwinds to the caller, this will 4190 // set UnwindDest to nullptr. 4191 BasicBlock *UnwindDest = RI->getUnwindDest(); 4192 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4193 4194 // We're about to remove BB from the control flow. Before we do, sink any 4195 // PHINodes into the unwind destination. Doing this before changing the 4196 // control flow avoids some potentially slow checks, since we can currently 4197 // be certain that UnwindDest and BB have no common predecessors (since they 4198 // are both EH pads). 4199 if (UnwindDest) { 4200 // First, go through the PHI nodes in UnwindDest and update any nodes that 4201 // reference the block we are removing 4202 for (BasicBlock::iterator I = UnwindDest->begin(), 4203 IE = DestEHPad->getIterator(); 4204 I != IE; ++I) { 4205 PHINode *DestPN = cast<PHINode>(I); 4206 4207 int Idx = DestPN->getBasicBlockIndex(BB); 4208 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4209 assert(Idx != -1); 4210 // This PHI node has an incoming value that corresponds to a control 4211 // path through the cleanup pad we are removing. If the incoming 4212 // value is in the cleanup pad, it must be a PHINode (because we 4213 // verified above that the block is otherwise empty). Otherwise, the 4214 // value is either a constant or a value that dominates the cleanup 4215 // pad being removed. 4216 // 4217 // Because BB and UnwindDest are both EH pads, all of their 4218 // predecessors must unwind to these blocks, and since no instruction 4219 // can have multiple unwind destinations, there will be no overlap in 4220 // incoming blocks between SrcPN and DestPN. 4221 Value *SrcVal = DestPN->getIncomingValue(Idx); 4222 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4223 4224 // Remove the entry for the block we are deleting. 4225 DestPN->removeIncomingValue(Idx, false); 4226 4227 if (SrcPN && SrcPN->getParent() == BB) { 4228 // If the incoming value was a PHI node in the cleanup pad we are 4229 // removing, we need to merge that PHI node's incoming values into 4230 // DestPN. 4231 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4232 SrcIdx != SrcE; ++SrcIdx) { 4233 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4234 SrcPN->getIncomingBlock(SrcIdx)); 4235 } 4236 } else { 4237 // Otherwise, the incoming value came from above BB and 4238 // so we can just reuse it. We must associate all of BB's 4239 // predecessors with this value. 4240 for (auto *pred : predecessors(BB)) { 4241 DestPN->addIncoming(SrcVal, pred); 4242 } 4243 } 4244 } 4245 4246 // Sink any remaining PHI nodes directly into UnwindDest. 4247 Instruction *InsertPt = DestEHPad; 4248 for (BasicBlock::iterator I = BB->begin(), 4249 IE = BB->getFirstNonPHI()->getIterator(); 4250 I != IE;) { 4251 // The iterator must be incremented here because the instructions are 4252 // being moved to another block. 4253 PHINode *PN = cast<PHINode>(I++); 4254 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4255 // If the PHI node has no uses or all of its uses are in this basic 4256 // block (meaning they are debug or lifetime intrinsics), just leave 4257 // it. It will be erased when we erase BB below. 4258 continue; 4259 4260 // Otherwise, sink this PHI node into UnwindDest. 4261 // Any predecessors to UnwindDest which are not already represented 4262 // must be back edges which inherit the value from the path through 4263 // BB. In this case, the PHI value must reference itself. 4264 for (auto *pred : predecessors(UnwindDest)) 4265 if (pred != BB) 4266 PN->addIncoming(PN, pred); 4267 PN->moveBefore(InsertPt); 4268 } 4269 } 4270 4271 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4272 // The iterator must be updated here because we are removing this pred. 4273 BasicBlock *PredBB = *PI++; 4274 if (UnwindDest == nullptr) { 4275 removeUnwindEdge(PredBB); 4276 ++NumInvokes; 4277 } else { 4278 Instruction *TI = PredBB->getTerminator(); 4279 TI->replaceUsesOfWith(BB, UnwindDest); 4280 } 4281 } 4282 4283 // The cleanup pad is now unreachable. Zap it. 4284 BB->eraseFromParent(); 4285 return true; 4286 } 4287 4288 // Try to merge two cleanuppads together. 4289 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4290 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4291 // with. 4292 BasicBlock *UnwindDest = RI->getUnwindDest(); 4293 if (!UnwindDest) 4294 return false; 4295 4296 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4297 // be safe to merge without code duplication. 4298 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4299 return false; 4300 4301 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4302 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4303 if (!SuccessorCleanupPad) 4304 return false; 4305 4306 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4307 // Replace any uses of the successor cleanupad with the predecessor pad 4308 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4309 // funclet bundle operands. 4310 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4311 // Remove the old cleanuppad. 4312 SuccessorCleanupPad->eraseFromParent(); 4313 // Now, we simply replace the cleanupret with a branch to the unwind 4314 // destination. 4315 BranchInst::Create(UnwindDest, RI->getParent()); 4316 RI->eraseFromParent(); 4317 4318 return true; 4319 } 4320 4321 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4322 // It is possible to transiantly have an undef cleanuppad operand because we 4323 // have deleted some, but not all, dead blocks. 4324 // Eventually, this block will be deleted. 4325 if (isa<UndefValue>(RI->getOperand(0))) 4326 return false; 4327 4328 if (mergeCleanupPad(RI)) 4329 return true; 4330 4331 if (removeEmptyCleanup(RI)) 4332 return true; 4333 4334 return false; 4335 } 4336 4337 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4338 BasicBlock *BB = RI->getParent(); 4339 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4340 return false; 4341 4342 // Find predecessors that end with branches. 4343 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4344 SmallVector<BranchInst *, 8> CondBranchPreds; 4345 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4346 BasicBlock *P = *PI; 4347 Instruction *PTI = P->getTerminator(); 4348 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4349 if (BI->isUnconditional()) 4350 UncondBranchPreds.push_back(P); 4351 else 4352 CondBranchPreds.push_back(BI); 4353 } 4354 } 4355 4356 // If we found some, do the transformation! 4357 if (!UncondBranchPreds.empty() && DupRet) { 4358 while (!UncondBranchPreds.empty()) { 4359 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4360 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4361 << "INTO UNCOND BRANCH PRED: " << *Pred); 4362 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4363 } 4364 4365 // If we eliminated all predecessors of the block, delete the block now. 4366 if (pred_empty(BB)) { 4367 // We know there are no successors, so just nuke the block. 4368 if (LoopHeaders) 4369 LoopHeaders->erase(BB); 4370 BB->eraseFromParent(); 4371 } 4372 4373 return true; 4374 } 4375 4376 // Check out all of the conditional branches going to this return 4377 // instruction. If any of them just select between returns, change the 4378 // branch itself into a select/return pair. 4379 while (!CondBranchPreds.empty()) { 4380 BranchInst *BI = CondBranchPreds.pop_back_val(); 4381 4382 // Check to see if the non-BB successor is also a return block. 4383 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4384 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4385 SimplifyCondBranchToTwoReturns(BI, Builder)) 4386 return true; 4387 } 4388 return false; 4389 } 4390 4391 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4392 BasicBlock *BB = UI->getParent(); 4393 4394 bool Changed = false; 4395 4396 // If there are any instructions immediately before the unreachable that can 4397 // be removed, do so. 4398 while (UI->getIterator() != BB->begin()) { 4399 BasicBlock::iterator BBI = UI->getIterator(); 4400 --BBI; 4401 // Do not delete instructions that can have side effects which might cause 4402 // the unreachable to not be reachable; specifically, calls and volatile 4403 // operations may have this effect. 4404 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4405 break; 4406 4407 if (BBI->mayHaveSideEffects()) { 4408 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4409 if (SI->isVolatile()) 4410 break; 4411 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4412 if (LI->isVolatile()) 4413 break; 4414 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4415 if (RMWI->isVolatile()) 4416 break; 4417 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4418 if (CXI->isVolatile()) 4419 break; 4420 } else if (isa<CatchPadInst>(BBI)) { 4421 // A catchpad may invoke exception object constructors and such, which 4422 // in some languages can be arbitrary code, so be conservative by 4423 // default. 4424 // For CoreCLR, it just involves a type test, so can be removed. 4425 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4426 EHPersonality::CoreCLR) 4427 break; 4428 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4429 !isa<LandingPadInst>(BBI)) { 4430 break; 4431 } 4432 // Note that deleting LandingPad's here is in fact okay, although it 4433 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4434 // all the predecessors of this block will be the unwind edges of Invokes, 4435 // and we can therefore guarantee this block will be erased. 4436 } 4437 4438 // Delete this instruction (any uses are guaranteed to be dead) 4439 if (!BBI->use_empty()) 4440 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4441 BBI->eraseFromParent(); 4442 Changed = true; 4443 } 4444 4445 // If the unreachable instruction is the first in the block, take a gander 4446 // at all of the predecessors of this instruction, and simplify them. 4447 if (&BB->front() != UI) 4448 return Changed; 4449 4450 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4451 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4452 Instruction *TI = Preds[i]->getTerminator(); 4453 IRBuilder<> Builder(TI); 4454 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4455 if (BI->isUnconditional()) { 4456 assert(BI->getSuccessor(0) == BB && "Incorrect CFG"); 4457 new UnreachableInst(TI->getContext(), TI); 4458 TI->eraseFromParent(); 4459 Changed = true; 4460 } else { 4461 Value* Cond = BI->getCondition(); 4462 if (BI->getSuccessor(0) == BB) { 4463 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4464 Builder.CreateBr(BI->getSuccessor(1)); 4465 } else { 4466 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4467 Builder.CreateAssumption(Cond); 4468 Builder.CreateBr(BI->getSuccessor(0)); 4469 } 4470 EraseTerminatorAndDCECond(BI); 4471 Changed = true; 4472 } 4473 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4474 SwitchInstProfUpdateWrapper SU(*SI); 4475 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4476 if (i->getCaseSuccessor() != BB) { 4477 ++i; 4478 continue; 4479 } 4480 BB->removePredecessor(SU->getParent()); 4481 i = SU.removeCase(i); 4482 e = SU->case_end(); 4483 Changed = true; 4484 } 4485 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4486 if (II->getUnwindDest() == BB) { 4487 removeUnwindEdge(TI->getParent()); 4488 Changed = true; 4489 } 4490 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4491 if (CSI->getUnwindDest() == BB) { 4492 removeUnwindEdge(TI->getParent()); 4493 Changed = true; 4494 continue; 4495 } 4496 4497 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4498 E = CSI->handler_end(); 4499 I != E; ++I) { 4500 if (*I == BB) { 4501 CSI->removeHandler(I); 4502 --I; 4503 --E; 4504 Changed = true; 4505 } 4506 } 4507 if (CSI->getNumHandlers() == 0) { 4508 BasicBlock *CatchSwitchBB = CSI->getParent(); 4509 if (CSI->hasUnwindDest()) { 4510 // Redirect preds to the unwind dest 4511 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4512 } else { 4513 // Rewrite all preds to unwind to caller (or from invoke to call). 4514 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4515 for (BasicBlock *EHPred : EHPreds) 4516 removeUnwindEdge(EHPred); 4517 } 4518 // The catchswitch is no longer reachable. 4519 new UnreachableInst(CSI->getContext(), CSI); 4520 CSI->eraseFromParent(); 4521 Changed = true; 4522 } 4523 } else if (isa<CleanupReturnInst>(TI)) { 4524 new UnreachableInst(TI->getContext(), TI); 4525 TI->eraseFromParent(); 4526 Changed = true; 4527 } 4528 } 4529 4530 // If this block is now dead, remove it. 4531 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4532 // We know there are no successors, so just nuke the block. 4533 if (LoopHeaders) 4534 LoopHeaders->erase(BB); 4535 BB->eraseFromParent(); 4536 return true; 4537 } 4538 4539 return Changed; 4540 } 4541 4542 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4543 assert(Cases.size() >= 1); 4544 4545 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4546 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4547 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4548 return false; 4549 } 4550 return true; 4551 } 4552 4553 static void createUnreachableSwitchDefault(SwitchInst *Switch) { 4554 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4555 BasicBlock *NewDefaultBlock = 4556 SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), ""); 4557 Switch->setDefaultDest(&*NewDefaultBlock); 4558 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front()); 4559 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4560 new UnreachableInst(Switch->getContext(), NewTerminator); 4561 EraseTerminatorAndDCECond(NewTerminator); 4562 } 4563 4564 /// Turn a switch with two reachable destinations into an integer range 4565 /// comparison and branch. 4566 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4567 IRBuilder<> &Builder) { 4568 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4569 4570 bool HasDefault = 4571 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4572 4573 // Partition the cases into two sets with different destinations. 4574 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4575 BasicBlock *DestB = nullptr; 4576 SmallVector<ConstantInt *, 16> CasesA; 4577 SmallVector<ConstantInt *, 16> CasesB; 4578 4579 for (auto Case : SI->cases()) { 4580 BasicBlock *Dest = Case.getCaseSuccessor(); 4581 if (!DestA) 4582 DestA = Dest; 4583 if (Dest == DestA) { 4584 CasesA.push_back(Case.getCaseValue()); 4585 continue; 4586 } 4587 if (!DestB) 4588 DestB = Dest; 4589 if (Dest == DestB) { 4590 CasesB.push_back(Case.getCaseValue()); 4591 continue; 4592 } 4593 return false; // More than two destinations. 4594 } 4595 4596 assert(DestA && DestB && 4597 "Single-destination switch should have been folded."); 4598 assert(DestA != DestB); 4599 assert(DestB != SI->getDefaultDest()); 4600 assert(!CasesB.empty() && "There must be non-default cases."); 4601 assert(!CasesA.empty() || HasDefault); 4602 4603 // Figure out if one of the sets of cases form a contiguous range. 4604 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4605 BasicBlock *ContiguousDest = nullptr; 4606 BasicBlock *OtherDest = nullptr; 4607 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4608 ContiguousCases = &CasesA; 4609 ContiguousDest = DestA; 4610 OtherDest = DestB; 4611 } else if (CasesAreContiguous(CasesB)) { 4612 ContiguousCases = &CasesB; 4613 ContiguousDest = DestB; 4614 OtherDest = DestA; 4615 } else 4616 return false; 4617 4618 // Start building the compare and branch. 4619 4620 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4621 Constant *NumCases = 4622 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4623 4624 Value *Sub = SI->getCondition(); 4625 if (!Offset->isNullValue()) 4626 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4627 4628 Value *Cmp; 4629 // If NumCases overflowed, then all possible values jump to the successor. 4630 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4631 Cmp = ConstantInt::getTrue(SI->getContext()); 4632 else 4633 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4634 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4635 4636 // Update weight for the newly-created conditional branch. 4637 if (HasBranchWeights(SI)) { 4638 SmallVector<uint64_t, 8> Weights; 4639 GetBranchWeights(SI, Weights); 4640 if (Weights.size() == 1 + SI->getNumCases()) { 4641 uint64_t TrueWeight = 0; 4642 uint64_t FalseWeight = 0; 4643 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4644 if (SI->getSuccessor(I) == ContiguousDest) 4645 TrueWeight += Weights[I]; 4646 else 4647 FalseWeight += Weights[I]; 4648 } 4649 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4650 TrueWeight /= 2; 4651 FalseWeight /= 2; 4652 } 4653 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4654 } 4655 } 4656 4657 // Prune obsolete incoming values off the successors' PHI nodes. 4658 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4659 unsigned PreviousEdges = ContiguousCases->size(); 4660 if (ContiguousDest == SI->getDefaultDest()) 4661 ++PreviousEdges; 4662 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4663 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4664 } 4665 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4666 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4667 if (OtherDest == SI->getDefaultDest()) 4668 ++PreviousEdges; 4669 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4670 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4671 } 4672 4673 // Clean up the default block - it may have phis or other instructions before 4674 // the unreachable terminator. 4675 if (!HasDefault) 4676 createUnreachableSwitchDefault(SI); 4677 4678 // Drop the switch. 4679 SI->eraseFromParent(); 4680 4681 return true; 4682 } 4683 4684 /// Compute masked bits for the condition of a switch 4685 /// and use it to remove dead cases. 4686 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4687 const DataLayout &DL) { 4688 Value *Cond = SI->getCondition(); 4689 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4690 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4691 4692 // We can also eliminate cases by determining that their values are outside of 4693 // the limited range of the condition based on how many significant (non-sign) 4694 // bits are in the condition value. 4695 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4696 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4697 4698 // Gather dead cases. 4699 SmallVector<ConstantInt *, 8> DeadCases; 4700 for (auto &Case : SI->cases()) { 4701 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4702 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4703 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4704 DeadCases.push_back(Case.getCaseValue()); 4705 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4706 << " is dead.\n"); 4707 } 4708 } 4709 4710 // If we can prove that the cases must cover all possible values, the 4711 // default destination becomes dead and we can remove it. If we know some 4712 // of the bits in the value, we can use that to more precisely compute the 4713 // number of possible unique case values. 4714 bool HasDefault = 4715 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4716 const unsigned NumUnknownBits = 4717 Bits - (Known.Zero | Known.One).countPopulation(); 4718 assert(NumUnknownBits <= Bits); 4719 if (HasDefault && DeadCases.empty() && 4720 NumUnknownBits < 64 /* avoid overflow */ && 4721 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4722 createUnreachableSwitchDefault(SI); 4723 return true; 4724 } 4725 4726 if (DeadCases.empty()) 4727 return false; 4728 4729 SwitchInstProfUpdateWrapper SIW(*SI); 4730 for (ConstantInt *DeadCase : DeadCases) { 4731 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4732 assert(CaseI != SI->case_default() && 4733 "Case was not found. Probably mistake in DeadCases forming."); 4734 // Prune unused values from PHI nodes. 4735 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4736 SIW.removeCase(CaseI); 4737 } 4738 4739 return true; 4740 } 4741 4742 /// If BB would be eligible for simplification by 4743 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4744 /// by an unconditional branch), look at the phi node for BB in the successor 4745 /// block and see if the incoming value is equal to CaseValue. If so, return 4746 /// the phi node, and set PhiIndex to BB's index in the phi node. 4747 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4748 BasicBlock *BB, int *PhiIndex) { 4749 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4750 return nullptr; // BB must be empty to be a candidate for simplification. 4751 if (!BB->getSinglePredecessor()) 4752 return nullptr; // BB must be dominated by the switch. 4753 4754 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4755 if (!Branch || !Branch->isUnconditional()) 4756 return nullptr; // Terminator must be unconditional branch. 4757 4758 BasicBlock *Succ = Branch->getSuccessor(0); 4759 4760 for (PHINode &PHI : Succ->phis()) { 4761 int Idx = PHI.getBasicBlockIndex(BB); 4762 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4763 4764 Value *InValue = PHI.getIncomingValue(Idx); 4765 if (InValue != CaseValue) 4766 continue; 4767 4768 *PhiIndex = Idx; 4769 return &PHI; 4770 } 4771 4772 return nullptr; 4773 } 4774 4775 /// Try to forward the condition of a switch instruction to a phi node 4776 /// dominated by the switch, if that would mean that some of the destination 4777 /// blocks of the switch can be folded away. Return true if a change is made. 4778 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4779 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4780 4781 ForwardingNodesMap ForwardingNodes; 4782 BasicBlock *SwitchBlock = SI->getParent(); 4783 bool Changed = false; 4784 for (auto &Case : SI->cases()) { 4785 ConstantInt *CaseValue = Case.getCaseValue(); 4786 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4787 4788 // Replace phi operands in successor blocks that are using the constant case 4789 // value rather than the switch condition variable: 4790 // switchbb: 4791 // switch i32 %x, label %default [ 4792 // i32 17, label %succ 4793 // ... 4794 // succ: 4795 // %r = phi i32 ... [ 17, %switchbb ] ... 4796 // --> 4797 // %r = phi i32 ... [ %x, %switchbb ] ... 4798 4799 for (PHINode &Phi : CaseDest->phis()) { 4800 // This only works if there is exactly 1 incoming edge from the switch to 4801 // a phi. If there is >1, that means multiple cases of the switch map to 1 4802 // value in the phi, and that phi value is not the switch condition. Thus, 4803 // this transform would not make sense (the phi would be invalid because 4804 // a phi can't have different incoming values from the same block). 4805 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4806 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4807 count(Phi.blocks(), SwitchBlock) == 1) { 4808 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4809 Changed = true; 4810 } 4811 } 4812 4813 // Collect phi nodes that are indirectly using this switch's case constants. 4814 int PhiIdx; 4815 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4816 ForwardingNodes[Phi].push_back(PhiIdx); 4817 } 4818 4819 for (auto &ForwardingNode : ForwardingNodes) { 4820 PHINode *Phi = ForwardingNode.first; 4821 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4822 if (Indexes.size() < 2) 4823 continue; 4824 4825 for (int Index : Indexes) 4826 Phi->setIncomingValue(Index, SI->getCondition()); 4827 Changed = true; 4828 } 4829 4830 return Changed; 4831 } 4832 4833 /// Return true if the backend will be able to handle 4834 /// initializing an array of constants like C. 4835 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4836 if (C->isThreadDependent()) 4837 return false; 4838 if (C->isDLLImportDependent()) 4839 return false; 4840 4841 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4842 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4843 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4844 return false; 4845 4846 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4847 if (!CE->isGEPWithNoNotionalOverIndexing()) 4848 return false; 4849 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4850 return false; 4851 } 4852 4853 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4854 return false; 4855 4856 return true; 4857 } 4858 4859 /// If V is a Constant, return it. Otherwise, try to look up 4860 /// its constant value in ConstantPool, returning 0 if it's not there. 4861 static Constant * 4862 LookupConstant(Value *V, 4863 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4864 if (Constant *C = dyn_cast<Constant>(V)) 4865 return C; 4866 return ConstantPool.lookup(V); 4867 } 4868 4869 /// Try to fold instruction I into a constant. This works for 4870 /// simple instructions such as binary operations where both operands are 4871 /// constant or can be replaced by constants from the ConstantPool. Returns the 4872 /// resulting constant on success, 0 otherwise. 4873 static Constant * 4874 ConstantFold(Instruction *I, const DataLayout &DL, 4875 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4876 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4877 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4878 if (!A) 4879 return nullptr; 4880 if (A->isAllOnesValue()) 4881 return LookupConstant(Select->getTrueValue(), ConstantPool); 4882 if (A->isNullValue()) 4883 return LookupConstant(Select->getFalseValue(), ConstantPool); 4884 return nullptr; 4885 } 4886 4887 SmallVector<Constant *, 4> COps; 4888 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4889 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4890 COps.push_back(A); 4891 else 4892 return nullptr; 4893 } 4894 4895 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4896 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4897 COps[1], DL); 4898 } 4899 4900 return ConstantFoldInstOperands(I, COps, DL); 4901 } 4902 4903 /// Try to determine the resulting constant values in phi nodes 4904 /// at the common destination basic block, *CommonDest, for one of the case 4905 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4906 /// case), of a switch instruction SI. 4907 static bool 4908 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4909 BasicBlock **CommonDest, 4910 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4911 const DataLayout &DL, const TargetTransformInfo &TTI) { 4912 // The block from which we enter the common destination. 4913 BasicBlock *Pred = SI->getParent(); 4914 4915 // If CaseDest is empty except for some side-effect free instructions through 4916 // which we can constant-propagate the CaseVal, continue to its successor. 4917 SmallDenseMap<Value *, Constant *> ConstantPool; 4918 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4919 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4920 if (I.isTerminator()) { 4921 // If the terminator is a simple branch, continue to the next block. 4922 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4923 return false; 4924 Pred = CaseDest; 4925 CaseDest = I.getSuccessor(0); 4926 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4927 // Instruction is side-effect free and constant. 4928 4929 // If the instruction has uses outside this block or a phi node slot for 4930 // the block, it is not safe to bypass the instruction since it would then 4931 // no longer dominate all its uses. 4932 for (auto &Use : I.uses()) { 4933 User *User = Use.getUser(); 4934 if (Instruction *I = dyn_cast<Instruction>(User)) 4935 if (I->getParent() == CaseDest) 4936 continue; 4937 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4938 if (Phi->getIncomingBlock(Use) == CaseDest) 4939 continue; 4940 return false; 4941 } 4942 4943 ConstantPool.insert(std::make_pair(&I, C)); 4944 } else { 4945 break; 4946 } 4947 } 4948 4949 // If we did not have a CommonDest before, use the current one. 4950 if (!*CommonDest) 4951 *CommonDest = CaseDest; 4952 // If the destination isn't the common one, abort. 4953 if (CaseDest != *CommonDest) 4954 return false; 4955 4956 // Get the values for this case from phi nodes in the destination block. 4957 for (PHINode &PHI : (*CommonDest)->phis()) { 4958 int Idx = PHI.getBasicBlockIndex(Pred); 4959 if (Idx == -1) 4960 continue; 4961 4962 Constant *ConstVal = 4963 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4964 if (!ConstVal) 4965 return false; 4966 4967 // Be conservative about which kinds of constants we support. 4968 if (!ValidLookupTableConstant(ConstVal, TTI)) 4969 return false; 4970 4971 Res.push_back(std::make_pair(&PHI, ConstVal)); 4972 } 4973 4974 return Res.size() > 0; 4975 } 4976 4977 // Helper function used to add CaseVal to the list of cases that generate 4978 // Result. Returns the updated number of cases that generate this result. 4979 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4980 SwitchCaseResultVectorTy &UniqueResults, 4981 Constant *Result) { 4982 for (auto &I : UniqueResults) { 4983 if (I.first == Result) { 4984 I.second.push_back(CaseVal); 4985 return I.second.size(); 4986 } 4987 } 4988 UniqueResults.push_back( 4989 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4990 return 1; 4991 } 4992 4993 // Helper function that initializes a map containing 4994 // results for the PHI node of the common destination block for a switch 4995 // instruction. Returns false if multiple PHI nodes have been found or if 4996 // there is not a common destination block for the switch. 4997 static bool 4998 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4999 SwitchCaseResultVectorTy &UniqueResults, 5000 Constant *&DefaultResult, const DataLayout &DL, 5001 const TargetTransformInfo &TTI, 5002 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5003 for (auto &I : SI->cases()) { 5004 ConstantInt *CaseVal = I.getCaseValue(); 5005 5006 // Resulting value at phi nodes for this case value. 5007 SwitchCaseResultsTy Results; 5008 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5009 DL, TTI)) 5010 return false; 5011 5012 // Only one value per case is permitted. 5013 if (Results.size() > 1) 5014 return false; 5015 5016 // Add the case->result mapping to UniqueResults. 5017 const uintptr_t NumCasesForResult = 5018 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5019 5020 // Early out if there are too many cases for this result. 5021 if (NumCasesForResult > MaxCasesPerResult) 5022 return false; 5023 5024 // Early out if there are too many unique results. 5025 if (UniqueResults.size() > MaxUniqueResults) 5026 return false; 5027 5028 // Check the PHI consistency. 5029 if (!PHI) 5030 PHI = Results[0].first; 5031 else if (PHI != Results[0].first) 5032 return false; 5033 } 5034 // Find the default result value. 5035 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5036 BasicBlock *DefaultDest = SI->getDefaultDest(); 5037 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5038 DL, TTI); 5039 // If the default value is not found abort unless the default destination 5040 // is unreachable. 5041 DefaultResult = 5042 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5043 if ((!DefaultResult && 5044 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5045 return false; 5046 5047 return true; 5048 } 5049 5050 // Helper function that checks if it is possible to transform a switch with only 5051 // two cases (or two cases + default) that produces a result into a select. 5052 // Example: 5053 // switch (a) { 5054 // case 10: %0 = icmp eq i32 %a, 10 5055 // return 10; %1 = select i1 %0, i32 10, i32 4 5056 // case 20: ----> %2 = icmp eq i32 %a, 20 5057 // return 2; %3 = select i1 %2, i32 2, i32 %1 5058 // default: 5059 // return 4; 5060 // } 5061 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5062 Constant *DefaultResult, Value *Condition, 5063 IRBuilder<> &Builder) { 5064 assert(ResultVector.size() == 2 && 5065 "We should have exactly two unique results at this point"); 5066 // If we are selecting between only two cases transform into a simple 5067 // select or a two-way select if default is possible. 5068 if (ResultVector[0].second.size() == 1 && 5069 ResultVector[1].second.size() == 1) { 5070 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5071 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5072 5073 bool DefaultCanTrigger = DefaultResult; 5074 Value *SelectValue = ResultVector[1].first; 5075 if (DefaultCanTrigger) { 5076 Value *const ValueCompare = 5077 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5078 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5079 DefaultResult, "switch.select"); 5080 } 5081 Value *const ValueCompare = 5082 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5083 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5084 SelectValue, "switch.select"); 5085 } 5086 5087 return nullptr; 5088 } 5089 5090 // Helper function to cleanup a switch instruction that has been converted into 5091 // a select, fixing up PHI nodes and basic blocks. 5092 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5093 Value *SelectValue, 5094 IRBuilder<> &Builder) { 5095 BasicBlock *SelectBB = SI->getParent(); 5096 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5097 PHI->removeIncomingValue(SelectBB); 5098 PHI->addIncoming(SelectValue, SelectBB); 5099 5100 Builder.CreateBr(PHI->getParent()); 5101 5102 // Remove the switch. 5103 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5104 BasicBlock *Succ = SI->getSuccessor(i); 5105 5106 if (Succ == PHI->getParent()) 5107 continue; 5108 Succ->removePredecessor(SelectBB); 5109 } 5110 SI->eraseFromParent(); 5111 } 5112 5113 /// If the switch is only used to initialize one or more 5114 /// phi nodes in a common successor block with only two different 5115 /// constant values, replace the switch with select. 5116 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5117 const DataLayout &DL, 5118 const TargetTransformInfo &TTI) { 5119 Value *const Cond = SI->getCondition(); 5120 PHINode *PHI = nullptr; 5121 BasicBlock *CommonDest = nullptr; 5122 Constant *DefaultResult; 5123 SwitchCaseResultVectorTy UniqueResults; 5124 // Collect all the cases that will deliver the same value from the switch. 5125 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5126 DL, TTI, 2, 1)) 5127 return false; 5128 // Selects choose between maximum two values. 5129 if (UniqueResults.size() != 2) 5130 return false; 5131 assert(PHI != nullptr && "PHI for value select not found"); 5132 5133 Builder.SetInsertPoint(SI); 5134 Value *SelectValue = 5135 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5136 if (SelectValue) { 5137 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 5138 return true; 5139 } 5140 // The switch couldn't be converted into a select. 5141 return false; 5142 } 5143 5144 namespace { 5145 5146 /// This class represents a lookup table that can be used to replace a switch. 5147 class SwitchLookupTable { 5148 public: 5149 /// Create a lookup table to use as a switch replacement with the contents 5150 /// of Values, using DefaultValue to fill any holes in the table. 5151 SwitchLookupTable( 5152 Module &M, uint64_t TableSize, ConstantInt *Offset, 5153 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5154 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5155 5156 /// Build instructions with Builder to retrieve the value at 5157 /// the position given by Index in the lookup table. 5158 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5159 5160 /// Return true if a table with TableSize elements of 5161 /// type ElementType would fit in a target-legal register. 5162 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5163 Type *ElementType); 5164 5165 private: 5166 // Depending on the contents of the table, it can be represented in 5167 // different ways. 5168 enum { 5169 // For tables where each element contains the same value, we just have to 5170 // store that single value and return it for each lookup. 5171 SingleValueKind, 5172 5173 // For tables where there is a linear relationship between table index 5174 // and values. We calculate the result with a simple multiplication 5175 // and addition instead of a table lookup. 5176 LinearMapKind, 5177 5178 // For small tables with integer elements, we can pack them into a bitmap 5179 // that fits into a target-legal register. Values are retrieved by 5180 // shift and mask operations. 5181 BitMapKind, 5182 5183 // The table is stored as an array of values. Values are retrieved by load 5184 // instructions from the table. 5185 ArrayKind 5186 } Kind; 5187 5188 // For SingleValueKind, this is the single value. 5189 Constant *SingleValue = nullptr; 5190 5191 // For BitMapKind, this is the bitmap. 5192 ConstantInt *BitMap = nullptr; 5193 IntegerType *BitMapElementTy = nullptr; 5194 5195 // For LinearMapKind, these are the constants used to derive the value. 5196 ConstantInt *LinearOffset = nullptr; 5197 ConstantInt *LinearMultiplier = nullptr; 5198 5199 // For ArrayKind, this is the array. 5200 GlobalVariable *Array = nullptr; 5201 }; 5202 5203 } // end anonymous namespace 5204 5205 SwitchLookupTable::SwitchLookupTable( 5206 Module &M, uint64_t TableSize, ConstantInt *Offset, 5207 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5208 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5209 assert(Values.size() && "Can't build lookup table without values!"); 5210 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5211 5212 // If all values in the table are equal, this is that value. 5213 SingleValue = Values.begin()->second; 5214 5215 Type *ValueType = Values.begin()->second->getType(); 5216 5217 // Build up the table contents. 5218 SmallVector<Constant *, 64> TableContents(TableSize); 5219 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5220 ConstantInt *CaseVal = Values[I].first; 5221 Constant *CaseRes = Values[I].second; 5222 assert(CaseRes->getType() == ValueType); 5223 5224 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5225 TableContents[Idx] = CaseRes; 5226 5227 if (CaseRes != SingleValue) 5228 SingleValue = nullptr; 5229 } 5230 5231 // Fill in any holes in the table with the default result. 5232 if (Values.size() < TableSize) { 5233 assert(DefaultValue && 5234 "Need a default value to fill the lookup table holes."); 5235 assert(DefaultValue->getType() == ValueType); 5236 for (uint64_t I = 0; I < TableSize; ++I) { 5237 if (!TableContents[I]) 5238 TableContents[I] = DefaultValue; 5239 } 5240 5241 if (DefaultValue != SingleValue) 5242 SingleValue = nullptr; 5243 } 5244 5245 // If each element in the table contains the same value, we only need to store 5246 // that single value. 5247 if (SingleValue) { 5248 Kind = SingleValueKind; 5249 return; 5250 } 5251 5252 // Check if we can derive the value with a linear transformation from the 5253 // table index. 5254 if (isa<IntegerType>(ValueType)) { 5255 bool LinearMappingPossible = true; 5256 APInt PrevVal; 5257 APInt DistToPrev; 5258 assert(TableSize >= 2 && "Should be a SingleValue table."); 5259 // Check if there is the same distance between two consecutive values. 5260 for (uint64_t I = 0; I < TableSize; ++I) { 5261 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5262 if (!ConstVal) { 5263 // This is an undef. We could deal with it, but undefs in lookup tables 5264 // are very seldom. It's probably not worth the additional complexity. 5265 LinearMappingPossible = false; 5266 break; 5267 } 5268 const APInt &Val = ConstVal->getValue(); 5269 if (I != 0) { 5270 APInt Dist = Val - PrevVal; 5271 if (I == 1) { 5272 DistToPrev = Dist; 5273 } else if (Dist != DistToPrev) { 5274 LinearMappingPossible = false; 5275 break; 5276 } 5277 } 5278 PrevVal = Val; 5279 } 5280 if (LinearMappingPossible) { 5281 LinearOffset = cast<ConstantInt>(TableContents[0]); 5282 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5283 Kind = LinearMapKind; 5284 ++NumLinearMaps; 5285 return; 5286 } 5287 } 5288 5289 // If the type is integer and the table fits in a register, build a bitmap. 5290 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5291 IntegerType *IT = cast<IntegerType>(ValueType); 5292 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5293 for (uint64_t I = TableSize; I > 0; --I) { 5294 TableInt <<= IT->getBitWidth(); 5295 // Insert values into the bitmap. Undef values are set to zero. 5296 if (!isa<UndefValue>(TableContents[I - 1])) { 5297 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5298 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5299 } 5300 } 5301 BitMap = ConstantInt::get(M.getContext(), TableInt); 5302 BitMapElementTy = IT; 5303 Kind = BitMapKind; 5304 ++NumBitMaps; 5305 return; 5306 } 5307 5308 // Store the table in an array. 5309 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5310 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5311 5312 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5313 GlobalVariable::PrivateLinkage, Initializer, 5314 "switch.table." + FuncName); 5315 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5316 // Set the alignment to that of an array items. We will be only loading one 5317 // value out of it. 5318 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5319 Kind = ArrayKind; 5320 } 5321 5322 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5323 switch (Kind) { 5324 case SingleValueKind: 5325 return SingleValue; 5326 case LinearMapKind: { 5327 // Derive the result value from the input value. 5328 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5329 false, "switch.idx.cast"); 5330 if (!LinearMultiplier->isOne()) 5331 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5332 if (!LinearOffset->isZero()) 5333 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5334 return Result; 5335 } 5336 case BitMapKind: { 5337 // Type of the bitmap (e.g. i59). 5338 IntegerType *MapTy = BitMap->getType(); 5339 5340 // Cast Index to the same type as the bitmap. 5341 // Note: The Index is <= the number of elements in the table, so 5342 // truncating it to the width of the bitmask is safe. 5343 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5344 5345 // Multiply the shift amount by the element width. 5346 ShiftAmt = Builder.CreateMul( 5347 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5348 "switch.shiftamt"); 5349 5350 // Shift down. 5351 Value *DownShifted = 5352 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5353 // Mask off. 5354 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5355 } 5356 case ArrayKind: { 5357 // Make sure the table index will not overflow when treated as signed. 5358 IntegerType *IT = cast<IntegerType>(Index->getType()); 5359 uint64_t TableSize = 5360 Array->getInitializer()->getType()->getArrayNumElements(); 5361 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5362 Index = Builder.CreateZExt( 5363 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5364 "switch.tableidx.zext"); 5365 5366 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5367 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5368 GEPIndices, "switch.gep"); 5369 return Builder.CreateLoad( 5370 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5371 "switch.load"); 5372 } 5373 } 5374 llvm_unreachable("Unknown lookup table kind!"); 5375 } 5376 5377 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5378 uint64_t TableSize, 5379 Type *ElementType) { 5380 auto *IT = dyn_cast<IntegerType>(ElementType); 5381 if (!IT) 5382 return false; 5383 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5384 // are <= 15, we could try to narrow the type. 5385 5386 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5387 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5388 return false; 5389 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5390 } 5391 5392 /// Determine whether a lookup table should be built for this switch, based on 5393 /// the number of cases, size of the table, and the types of the results. 5394 static bool 5395 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5396 const TargetTransformInfo &TTI, const DataLayout &DL, 5397 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5398 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5399 return false; // TableSize overflowed, or mul below might overflow. 5400 5401 bool AllTablesFitInRegister = true; 5402 bool HasIllegalType = false; 5403 for (const auto &I : ResultTypes) { 5404 Type *Ty = I.second; 5405 5406 // Saturate this flag to true. 5407 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5408 5409 // Saturate this flag to false. 5410 AllTablesFitInRegister = 5411 AllTablesFitInRegister && 5412 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5413 5414 // If both flags saturate, we're done. NOTE: This *only* works with 5415 // saturating flags, and all flags have to saturate first due to the 5416 // non-deterministic behavior of iterating over a dense map. 5417 if (HasIllegalType && !AllTablesFitInRegister) 5418 break; 5419 } 5420 5421 // If each table would fit in a register, we should build it anyway. 5422 if (AllTablesFitInRegister) 5423 return true; 5424 5425 // Don't build a table that doesn't fit in-register if it has illegal types. 5426 if (HasIllegalType) 5427 return false; 5428 5429 // The table density should be at least 40%. This is the same criterion as for 5430 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5431 // FIXME: Find the best cut-off. 5432 return SI->getNumCases() * 10 >= TableSize * 4; 5433 } 5434 5435 /// Try to reuse the switch table index compare. Following pattern: 5436 /// \code 5437 /// if (idx < tablesize) 5438 /// r = table[idx]; // table does not contain default_value 5439 /// else 5440 /// r = default_value; 5441 /// if (r != default_value) 5442 /// ... 5443 /// \endcode 5444 /// Is optimized to: 5445 /// \code 5446 /// cond = idx < tablesize; 5447 /// if (cond) 5448 /// r = table[idx]; 5449 /// else 5450 /// r = default_value; 5451 /// if (cond) 5452 /// ... 5453 /// \endcode 5454 /// Jump threading will then eliminate the second if(cond). 5455 static void reuseTableCompare( 5456 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5457 Constant *DefaultValue, 5458 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5459 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5460 if (!CmpInst) 5461 return; 5462 5463 // We require that the compare is in the same block as the phi so that jump 5464 // threading can do its work afterwards. 5465 if (CmpInst->getParent() != PhiBlock) 5466 return; 5467 5468 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5469 if (!CmpOp1) 5470 return; 5471 5472 Value *RangeCmp = RangeCheckBranch->getCondition(); 5473 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5474 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5475 5476 // Check if the compare with the default value is constant true or false. 5477 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5478 DefaultValue, CmpOp1, true); 5479 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5480 return; 5481 5482 // Check if the compare with the case values is distinct from the default 5483 // compare result. 5484 for (auto ValuePair : Values) { 5485 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5486 ValuePair.second, CmpOp1, true); 5487 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5488 return; 5489 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5490 "Expect true or false as compare result."); 5491 } 5492 5493 // Check if the branch instruction dominates the phi node. It's a simple 5494 // dominance check, but sufficient for our needs. 5495 // Although this check is invariant in the calling loops, it's better to do it 5496 // at this late stage. Practically we do it at most once for a switch. 5497 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5498 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5499 BasicBlock *Pred = *PI; 5500 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5501 return; 5502 } 5503 5504 if (DefaultConst == FalseConst) { 5505 // The compare yields the same result. We can replace it. 5506 CmpInst->replaceAllUsesWith(RangeCmp); 5507 ++NumTableCmpReuses; 5508 } else { 5509 // The compare yields the same result, just inverted. We can replace it. 5510 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5511 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5512 RangeCheckBranch); 5513 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5514 ++NumTableCmpReuses; 5515 } 5516 } 5517 5518 /// If the switch is only used to initialize one or more phi nodes in a common 5519 /// successor block with different constant values, replace the switch with 5520 /// lookup tables. 5521 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5522 const DataLayout &DL, 5523 const TargetTransformInfo &TTI) { 5524 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5525 5526 Function *Fn = SI->getParent()->getParent(); 5527 // Only build lookup table when we have a target that supports it or the 5528 // attribute is not set. 5529 if (!TTI.shouldBuildLookupTables() || 5530 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5531 return false; 5532 5533 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5534 // split off a dense part and build a lookup table for that. 5535 5536 // FIXME: This creates arrays of GEPs to constant strings, which means each 5537 // GEP needs a runtime relocation in PIC code. We should just build one big 5538 // string and lookup indices into that. 5539 5540 // Ignore switches with less than three cases. Lookup tables will not make 5541 // them faster, so we don't analyze them. 5542 if (SI->getNumCases() < 3) 5543 return false; 5544 5545 // Figure out the corresponding result for each case value and phi node in the 5546 // common destination, as well as the min and max case values. 5547 assert(!SI->cases().empty()); 5548 SwitchInst::CaseIt CI = SI->case_begin(); 5549 ConstantInt *MinCaseVal = CI->getCaseValue(); 5550 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5551 5552 BasicBlock *CommonDest = nullptr; 5553 5554 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5555 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5556 5557 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5558 SmallDenseMap<PHINode *, Type *> ResultTypes; 5559 SmallVector<PHINode *, 4> PHIs; 5560 5561 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5562 ConstantInt *CaseVal = CI->getCaseValue(); 5563 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5564 MinCaseVal = CaseVal; 5565 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5566 MaxCaseVal = CaseVal; 5567 5568 // Resulting value at phi nodes for this case value. 5569 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5570 ResultsTy Results; 5571 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5572 Results, DL, TTI)) 5573 return false; 5574 5575 // Append the result from this case to the list for each phi. 5576 for (const auto &I : Results) { 5577 PHINode *PHI = I.first; 5578 Constant *Value = I.second; 5579 if (!ResultLists.count(PHI)) 5580 PHIs.push_back(PHI); 5581 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5582 } 5583 } 5584 5585 // Keep track of the result types. 5586 for (PHINode *PHI : PHIs) { 5587 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5588 } 5589 5590 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5591 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5592 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5593 bool TableHasHoles = (NumResults < TableSize); 5594 5595 // If the table has holes, we need a constant result for the default case 5596 // or a bitmask that fits in a register. 5597 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5598 bool HasDefaultResults = 5599 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5600 DefaultResultsList, DL, TTI); 5601 5602 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5603 if (NeedMask) { 5604 // As an extra penalty for the validity test we require more cases. 5605 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5606 return false; 5607 if (!DL.fitsInLegalInteger(TableSize)) 5608 return false; 5609 } 5610 5611 for (const auto &I : DefaultResultsList) { 5612 PHINode *PHI = I.first; 5613 Constant *Result = I.second; 5614 DefaultResults[PHI] = Result; 5615 } 5616 5617 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5618 return false; 5619 5620 // Create the BB that does the lookups. 5621 Module &Mod = *CommonDest->getParent()->getParent(); 5622 BasicBlock *LookupBB = BasicBlock::Create( 5623 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5624 5625 // Compute the table index value. 5626 Builder.SetInsertPoint(SI); 5627 Value *TableIndex; 5628 if (MinCaseVal->isNullValue()) 5629 TableIndex = SI->getCondition(); 5630 else 5631 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5632 "switch.tableidx"); 5633 5634 // Compute the maximum table size representable by the integer type we are 5635 // switching upon. 5636 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5637 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5638 assert(MaxTableSize >= TableSize && 5639 "It is impossible for a switch to have more entries than the max " 5640 "representable value of its input integer type's size."); 5641 5642 // If the default destination is unreachable, or if the lookup table covers 5643 // all values of the conditional variable, branch directly to the lookup table 5644 // BB. Otherwise, check that the condition is within the case range. 5645 const bool DefaultIsReachable = 5646 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5647 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5648 BranchInst *RangeCheckBranch = nullptr; 5649 5650 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5651 Builder.CreateBr(LookupBB); 5652 // Note: We call removeProdecessor later since we need to be able to get the 5653 // PHI value for the default case in case we're using a bit mask. 5654 } else { 5655 Value *Cmp = Builder.CreateICmpULT( 5656 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5657 RangeCheckBranch = 5658 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5659 } 5660 5661 // Populate the BB that does the lookups. 5662 Builder.SetInsertPoint(LookupBB); 5663 5664 if (NeedMask) { 5665 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5666 // re-purposed to do the hole check, and we create a new LookupBB. 5667 BasicBlock *MaskBB = LookupBB; 5668 MaskBB->setName("switch.hole_check"); 5669 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5670 CommonDest->getParent(), CommonDest); 5671 5672 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5673 // unnecessary illegal types. 5674 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5675 APInt MaskInt(TableSizePowOf2, 0); 5676 APInt One(TableSizePowOf2, 1); 5677 // Build bitmask; fill in a 1 bit for every case. 5678 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5679 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5680 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5681 .getLimitedValue(); 5682 MaskInt |= One << Idx; 5683 } 5684 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5685 5686 // Get the TableIndex'th bit of the bitmask. 5687 // If this bit is 0 (meaning hole) jump to the default destination, 5688 // else continue with table lookup. 5689 IntegerType *MapTy = TableMask->getType(); 5690 Value *MaskIndex = 5691 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5692 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5693 Value *LoBit = Builder.CreateTrunc( 5694 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5695 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5696 5697 Builder.SetInsertPoint(LookupBB); 5698 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5699 } 5700 5701 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5702 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5703 // do not delete PHINodes here. 5704 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5705 /*KeepOneInputPHIs=*/true); 5706 } 5707 5708 bool ReturnedEarly = false; 5709 for (PHINode *PHI : PHIs) { 5710 const ResultListTy &ResultList = ResultLists[PHI]; 5711 5712 // If using a bitmask, use any value to fill the lookup table holes. 5713 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5714 StringRef FuncName = Fn->getName(); 5715 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5716 FuncName); 5717 5718 Value *Result = Table.BuildLookup(TableIndex, Builder); 5719 5720 // If the result is used to return immediately from the function, we want to 5721 // do that right here. 5722 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5723 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5724 Builder.CreateRet(Result); 5725 ReturnedEarly = true; 5726 break; 5727 } 5728 5729 // Do a small peephole optimization: re-use the switch table compare if 5730 // possible. 5731 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5732 BasicBlock *PhiBlock = PHI->getParent(); 5733 // Search for compare instructions which use the phi. 5734 for (auto *User : PHI->users()) { 5735 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5736 } 5737 } 5738 5739 PHI->addIncoming(Result, LookupBB); 5740 } 5741 5742 if (!ReturnedEarly) 5743 Builder.CreateBr(CommonDest); 5744 5745 // Remove the switch. 5746 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5747 BasicBlock *Succ = SI->getSuccessor(i); 5748 5749 if (Succ == SI->getDefaultDest()) 5750 continue; 5751 Succ->removePredecessor(SI->getParent()); 5752 } 5753 SI->eraseFromParent(); 5754 5755 ++NumLookupTables; 5756 if (NeedMask) 5757 ++NumLookupTablesHoles; 5758 return true; 5759 } 5760 5761 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5762 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5763 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5764 uint64_t Range = Diff + 1; 5765 uint64_t NumCases = Values.size(); 5766 // 40% is the default density for building a jump table in optsize/minsize mode. 5767 uint64_t MinDensity = 40; 5768 5769 return NumCases * 100 >= Range * MinDensity; 5770 } 5771 5772 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5773 /// of cases. 5774 /// 5775 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5776 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5777 /// 5778 /// This converts a sparse switch into a dense switch which allows better 5779 /// lowering and could also allow transforming into a lookup table. 5780 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5781 const DataLayout &DL, 5782 const TargetTransformInfo &TTI) { 5783 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5784 if (CondTy->getIntegerBitWidth() > 64 || 5785 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5786 return false; 5787 // Only bother with this optimization if there are more than 3 switch cases; 5788 // SDAG will only bother creating jump tables for 4 or more cases. 5789 if (SI->getNumCases() < 4) 5790 return false; 5791 5792 // This transform is agnostic to the signedness of the input or case values. We 5793 // can treat the case values as signed or unsigned. We can optimize more common 5794 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5795 // as signed. 5796 SmallVector<int64_t,4> Values; 5797 for (auto &C : SI->cases()) 5798 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5799 llvm::sort(Values); 5800 5801 // If the switch is already dense, there's nothing useful to do here. 5802 if (isSwitchDense(Values)) 5803 return false; 5804 5805 // First, transform the values such that they start at zero and ascend. 5806 int64_t Base = Values[0]; 5807 for (auto &V : Values) 5808 V -= (uint64_t)(Base); 5809 5810 // Now we have signed numbers that have been shifted so that, given enough 5811 // precision, there are no negative values. Since the rest of the transform 5812 // is bitwise only, we switch now to an unsigned representation. 5813 5814 // This transform can be done speculatively because it is so cheap - it 5815 // results in a single rotate operation being inserted. 5816 // FIXME: It's possible that optimizing a switch on powers of two might also 5817 // be beneficial - flag values are often powers of two and we could use a CLZ 5818 // as the key function. 5819 5820 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5821 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5822 // less than 64. 5823 unsigned Shift = 64; 5824 for (auto &V : Values) 5825 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5826 assert(Shift < 64); 5827 if (Shift > 0) 5828 for (auto &V : Values) 5829 V = (int64_t)((uint64_t)V >> Shift); 5830 5831 if (!isSwitchDense(Values)) 5832 // Transform didn't create a dense switch. 5833 return false; 5834 5835 // The obvious transform is to shift the switch condition right and emit a 5836 // check that the condition actually cleanly divided by GCD, i.e. 5837 // C & (1 << Shift - 1) == 0 5838 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5839 // 5840 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5841 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5842 // are nonzero then the switch condition will be very large and will hit the 5843 // default case. 5844 5845 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5846 Builder.SetInsertPoint(SI); 5847 auto *ShiftC = ConstantInt::get(Ty, Shift); 5848 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5849 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5850 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5851 auto *Rot = Builder.CreateOr(LShr, Shl); 5852 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5853 5854 for (auto Case : SI->cases()) { 5855 auto *Orig = Case.getCaseValue(); 5856 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5857 Case.setValue( 5858 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5859 } 5860 return true; 5861 } 5862 5863 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5864 BasicBlock *BB = SI->getParent(); 5865 5866 if (isValueEqualityComparison(SI)) { 5867 // If we only have one predecessor, and if it is a branch on this value, 5868 // see if that predecessor totally determines the outcome of this switch. 5869 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5870 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5871 return requestResimplify(); 5872 5873 Value *Cond = SI->getCondition(); 5874 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5875 if (SimplifySwitchOnSelect(SI, Select)) 5876 return requestResimplify(); 5877 5878 // If the block only contains the switch, see if we can fold the block 5879 // away into any preds. 5880 if (SI == &*BB->instructionsWithoutDebug().begin()) 5881 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5882 return requestResimplify(); 5883 } 5884 5885 // Try to transform the switch into an icmp and a branch. 5886 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5887 return requestResimplify(); 5888 5889 // Remove unreachable cases. 5890 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5891 return requestResimplify(); 5892 5893 if (switchToSelect(SI, Builder, DL, TTI)) 5894 return requestResimplify(); 5895 5896 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5897 return requestResimplify(); 5898 5899 // The conversion from switch to lookup tables results in difficult-to-analyze 5900 // code and makes pruning branches much harder. This is a problem if the 5901 // switch expression itself can still be restricted as a result of inlining or 5902 // CVP. Therefore, only apply this transformation during late stages of the 5903 // optimisation pipeline. 5904 if (Options.ConvertSwitchToLookupTable && 5905 SwitchToLookupTable(SI, Builder, DL, TTI)) 5906 return requestResimplify(); 5907 5908 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5909 return requestResimplify(); 5910 5911 return false; 5912 } 5913 5914 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 5915 BasicBlock *BB = IBI->getParent(); 5916 bool Changed = false; 5917 5918 // Eliminate redundant destinations. 5919 SmallPtrSet<Value *, 8> Succs; 5920 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5921 BasicBlock *Dest = IBI->getDestination(i); 5922 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5923 Dest->removePredecessor(BB); 5924 IBI->removeDestination(i); 5925 --i; 5926 --e; 5927 Changed = true; 5928 } 5929 } 5930 5931 if (IBI->getNumDestinations() == 0) { 5932 // If the indirectbr has no successors, change it to unreachable. 5933 new UnreachableInst(IBI->getContext(), IBI); 5934 EraseTerminatorAndDCECond(IBI); 5935 return true; 5936 } 5937 5938 if (IBI->getNumDestinations() == 1) { 5939 // If the indirectbr has one successor, change it to a direct branch. 5940 BranchInst::Create(IBI->getDestination(0), IBI); 5941 EraseTerminatorAndDCECond(IBI); 5942 return true; 5943 } 5944 5945 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5946 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5947 return requestResimplify(); 5948 } 5949 return Changed; 5950 } 5951 5952 /// Given an block with only a single landing pad and a unconditional branch 5953 /// try to find another basic block which this one can be merged with. This 5954 /// handles cases where we have multiple invokes with unique landing pads, but 5955 /// a shared handler. 5956 /// 5957 /// We specifically choose to not worry about merging non-empty blocks 5958 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5959 /// practice, the optimizer produces empty landing pad blocks quite frequently 5960 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5961 /// sinking in this file) 5962 /// 5963 /// This is primarily a code size optimization. We need to avoid performing 5964 /// any transform which might inhibit optimization (such as our ability to 5965 /// specialize a particular handler via tail commoning). We do this by not 5966 /// merging any blocks which require us to introduce a phi. Since the same 5967 /// values are flowing through both blocks, we don't lose any ability to 5968 /// specialize. If anything, we make such specialization more likely. 5969 /// 5970 /// TODO - This transformation could remove entries from a phi in the target 5971 /// block when the inputs in the phi are the same for the two blocks being 5972 /// merged. In some cases, this could result in removal of the PHI entirely. 5973 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5974 BasicBlock *BB) { 5975 auto Succ = BB->getUniqueSuccessor(); 5976 assert(Succ); 5977 // If there's a phi in the successor block, we'd likely have to introduce 5978 // a phi into the merged landing pad block. 5979 if (isa<PHINode>(*Succ->begin())) 5980 return false; 5981 5982 for (BasicBlock *OtherPred : predecessors(Succ)) { 5983 if (BB == OtherPred) 5984 continue; 5985 BasicBlock::iterator I = OtherPred->begin(); 5986 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5987 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5988 continue; 5989 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5990 ; 5991 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5992 if (!BI2 || !BI2->isIdenticalTo(BI)) 5993 continue; 5994 5995 // We've found an identical block. Update our predecessors to take that 5996 // path instead and make ourselves dead. 5997 SmallPtrSet<BasicBlock *, 16> Preds; 5998 Preds.insert(pred_begin(BB), pred_end(BB)); 5999 for (BasicBlock *Pred : Preds) { 6000 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6001 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6002 "unexpected successor"); 6003 II->setUnwindDest(OtherPred); 6004 } 6005 6006 // The debug info in OtherPred doesn't cover the merged control flow that 6007 // used to go through BB. We need to delete it or update it. 6008 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6009 Instruction &Inst = *I; 6010 I++; 6011 if (isa<DbgInfoIntrinsic>(Inst)) 6012 Inst.eraseFromParent(); 6013 } 6014 6015 SmallPtrSet<BasicBlock *, 16> Succs; 6016 Succs.insert(succ_begin(BB), succ_end(BB)); 6017 for (BasicBlock *Succ : Succs) { 6018 Succ->removePredecessor(BB); 6019 } 6020 6021 IRBuilder<> Builder(BI); 6022 Builder.CreateUnreachable(); 6023 BI->eraseFromParent(); 6024 return true; 6025 } 6026 return false; 6027 } 6028 6029 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6030 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6031 : simplifyCondBranch(Branch, Builder); 6032 } 6033 6034 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6035 IRBuilder<> &Builder) { 6036 BasicBlock *BB = BI->getParent(); 6037 BasicBlock *Succ = BI->getSuccessor(0); 6038 6039 // If the Terminator is the only non-phi instruction, simplify the block. 6040 // If LoopHeader is provided, check if the block or its successor is a loop 6041 // header. (This is for early invocations before loop simplify and 6042 // vectorization to keep canonical loop forms for nested loops. These blocks 6043 // can be eliminated when the pass is invoked later in the back-end.) 6044 // Note that if BB has only one predecessor then we do not introduce new 6045 // backedge, so we can eliminate BB. 6046 bool NeedCanonicalLoop = 6047 Options.NeedCanonicalLoop && 6048 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 6049 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 6050 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 6051 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6052 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 6053 return true; 6054 6055 // If the only instruction in the block is a seteq/setne comparison against a 6056 // constant, try to simplify the block. 6057 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6058 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6059 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6060 ; 6061 if (I->isTerminator() && 6062 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6063 return true; 6064 } 6065 6066 // See if we can merge an empty landing pad block with another which is 6067 // equivalent. 6068 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6069 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6070 ; 6071 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 6072 return true; 6073 } 6074 6075 // If this basic block is ONLY a compare and a branch, and if a predecessor 6076 // branches to us and our successor, fold the comparison into the 6077 // predecessor and use logical operations to update the incoming value 6078 // for PHI nodes in common successor. 6079 if (FoldBranchToCommonDest(BI, nullptr, &TTI, Options.BonusInstThreshold)) 6080 return requestResimplify(); 6081 return false; 6082 } 6083 6084 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6085 BasicBlock *PredPred = nullptr; 6086 for (auto *P : predecessors(BB)) { 6087 BasicBlock *PPred = P->getSinglePredecessor(); 6088 if (!PPred || (PredPred && PredPred != PPred)) 6089 return nullptr; 6090 PredPred = PPred; 6091 } 6092 return PredPred; 6093 } 6094 6095 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6096 BasicBlock *BB = BI->getParent(); 6097 if (!Options.SimplifyCondBranch) 6098 return false; 6099 6100 // Conditional branch 6101 if (isValueEqualityComparison(BI)) { 6102 // If we only have one predecessor, and if it is a branch on this value, 6103 // see if that predecessor totally determines the outcome of this 6104 // switch. 6105 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6106 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6107 return requestResimplify(); 6108 6109 // This block must be empty, except for the setcond inst, if it exists. 6110 // Ignore dbg intrinsics. 6111 auto I = BB->instructionsWithoutDebug().begin(); 6112 if (&*I == BI) { 6113 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6114 return requestResimplify(); 6115 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6116 ++I; 6117 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6118 return requestResimplify(); 6119 } 6120 } 6121 6122 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6123 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6124 return true; 6125 6126 // If this basic block has dominating predecessor blocks and the dominating 6127 // blocks' conditions imply BI's condition, we know the direction of BI. 6128 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6129 if (Imp) { 6130 // Turn this into a branch on constant. 6131 auto *OldCond = BI->getCondition(); 6132 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6133 : ConstantInt::getFalse(BB->getContext()); 6134 BI->setCondition(TorF); 6135 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6136 return requestResimplify(); 6137 } 6138 6139 // If this basic block is ONLY a compare and a branch, and if a predecessor 6140 // branches to us and one of our successors, fold the comparison into the 6141 // predecessor and use logical operations to pick the right destination. 6142 if (FoldBranchToCommonDest(BI, nullptr, &TTI, Options.BonusInstThreshold)) 6143 return requestResimplify(); 6144 6145 // We have a conditional branch to two blocks that are only reachable 6146 // from BI. We know that the condbr dominates the two blocks, so see if 6147 // there is any identical code in the "then" and "else" blocks. If so, we 6148 // can hoist it up to the branching block. 6149 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6150 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6151 if (HoistCommon && Options.HoistCommonInsts) 6152 if (HoistThenElseCodeToIf(BI, TTI)) 6153 return requestResimplify(); 6154 } else { 6155 // If Successor #1 has multiple preds, we may be able to conditionally 6156 // execute Successor #0 if it branches to Successor #1. 6157 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6158 if (Succ0TI->getNumSuccessors() == 1 && 6159 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6160 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6161 return requestResimplify(); 6162 } 6163 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6164 // If Successor #0 has multiple preds, we may be able to conditionally 6165 // execute Successor #1 if it branches to Successor #0. 6166 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6167 if (Succ1TI->getNumSuccessors() == 1 && 6168 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6169 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6170 return requestResimplify(); 6171 } 6172 6173 // If this is a branch on a phi node in the current block, thread control 6174 // through this block if any PHI node entries are constants. 6175 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6176 if (PN->getParent() == BI->getParent()) 6177 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 6178 return requestResimplify(); 6179 6180 // Scan predecessor blocks for conditional branches. 6181 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 6182 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 6183 if (PBI != BI && PBI->isConditional()) 6184 if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI)) 6185 return requestResimplify(); 6186 6187 // Look for diamond patterns. 6188 if (MergeCondStores) 6189 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6190 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6191 if (PBI != BI && PBI->isConditional()) 6192 if (mergeConditionalStores(PBI, BI, DL, TTI)) 6193 return requestResimplify(); 6194 6195 return false; 6196 } 6197 6198 /// Check if passing a value to an instruction will cause undefined behavior. 6199 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 6200 Constant *C = dyn_cast<Constant>(V); 6201 if (!C) 6202 return false; 6203 6204 if (I->use_empty()) 6205 return false; 6206 6207 if (C->isNullValue() || isa<UndefValue>(C)) { 6208 // Only look at the first use, avoid hurting compile time with long uselists 6209 User *Use = *I->user_begin(); 6210 6211 // Now make sure that there are no instructions in between that can alter 6212 // control flow (eg. calls) 6213 for (BasicBlock::iterator 6214 i = ++BasicBlock::iterator(I), 6215 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6216 i != UI; ++i) 6217 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6218 return false; 6219 6220 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6221 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6222 if (GEP->getPointerOperand() == I) 6223 return passingValueIsAlwaysUndefined(V, GEP); 6224 6225 // Look through bitcasts. 6226 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6227 return passingValueIsAlwaysUndefined(V, BC); 6228 6229 // Load from null is undefined. 6230 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6231 if (!LI->isVolatile()) 6232 return !NullPointerIsDefined(LI->getFunction(), 6233 LI->getPointerAddressSpace()); 6234 6235 // Store to null is undefined. 6236 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6237 if (!SI->isVolatile()) 6238 return (!NullPointerIsDefined(SI->getFunction(), 6239 SI->getPointerAddressSpace())) && 6240 SI->getPointerOperand() == I; 6241 6242 // A call to null is undefined. 6243 if (auto *CB = dyn_cast<CallBase>(Use)) 6244 return !NullPointerIsDefined(CB->getFunction()) && 6245 CB->getCalledOperand() == I; 6246 } 6247 return false; 6248 } 6249 6250 /// If BB has an incoming value that will always trigger undefined behavior 6251 /// (eg. null pointer dereference), remove the branch leading here. 6252 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 6253 for (PHINode &PHI : BB->phis()) 6254 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6255 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6256 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 6257 IRBuilder<> Builder(T); 6258 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6259 BB->removePredecessor(PHI.getIncomingBlock(i)); 6260 // Turn uncoditional branches into unreachables and remove the dead 6261 // destination from conditional branches. 6262 if (BI->isUnconditional()) 6263 Builder.CreateUnreachable(); 6264 else 6265 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6266 : BI->getSuccessor(0)); 6267 BI->eraseFromParent(); 6268 return true; 6269 } 6270 // TODO: SwitchInst. 6271 } 6272 6273 return false; 6274 } 6275 6276 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6277 bool Changed = false; 6278 6279 assert(BB && BB->getParent() && "Block not embedded in function!"); 6280 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6281 6282 // Remove basic blocks that have no predecessors (except the entry block)... 6283 // or that just have themself as a predecessor. These are unreachable. 6284 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6285 BB->getSinglePredecessor() == BB) { 6286 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6287 DeleteDeadBlock(BB); 6288 return true; 6289 } 6290 6291 // Check to see if we can constant propagate this terminator instruction 6292 // away... 6293 Changed |= ConstantFoldTerminator(BB, true); 6294 6295 // Check for and eliminate duplicate PHI nodes in this block. 6296 Changed |= EliminateDuplicatePHINodes(BB); 6297 6298 // Check for and remove branches that will always cause undefined behavior. 6299 Changed |= removeUndefIntroducingPredecessor(BB); 6300 6301 // Merge basic blocks into their predecessor if there is only one distinct 6302 // pred, and if there is only one distinct successor of the predecessor, and 6303 // if there are no PHI nodes. 6304 if (MergeBlockIntoPredecessor(BB)) 6305 return true; 6306 6307 if (SinkCommon && Options.SinkCommonInsts) 6308 Changed |= SinkCommonCodeFromPredecessors(BB); 6309 6310 IRBuilder<> Builder(BB); 6311 6312 if (Options.FoldTwoEntryPHINode) { 6313 // If there is a trivial two-entry PHI node in this basic block, and we can 6314 // eliminate it, do so now. 6315 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6316 if (PN->getNumIncomingValues() == 2) 6317 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6318 } 6319 6320 Instruction *Terminator = BB->getTerminator(); 6321 Builder.SetInsertPoint(Terminator); 6322 switch (Terminator->getOpcode()) { 6323 case Instruction::Br: 6324 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6325 break; 6326 case Instruction::Ret: 6327 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6328 break; 6329 case Instruction::Resume: 6330 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6331 break; 6332 case Instruction::CleanupRet: 6333 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6334 break; 6335 case Instruction::Switch: 6336 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6337 break; 6338 case Instruction::Unreachable: 6339 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6340 break; 6341 case Instruction::IndirectBr: 6342 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6343 break; 6344 } 6345 6346 return Changed; 6347 } 6348 6349 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6350 bool Changed = false; 6351 6352 // Repeated simplify BB as long as resimplification is requested. 6353 do { 6354 Resimplify = false; 6355 6356 // Perform one round of simplifcation. Resimplify flag will be set if 6357 // another iteration is requested. 6358 Changed |= simplifyOnce(BB); 6359 } while (Resimplify); 6360 6361 return Changed; 6362 } 6363 6364 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6365 const SimplifyCFGOptions &Options, 6366 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6367 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6368 Options) 6369 .run(BB); 6370 } 6371