1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SetOperations.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/ConstantRange.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/NoFolder.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/PatternMatch.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include "llvm/Transforms/Utils/ValueMapper.h"
49 #include <algorithm>
50 #include <map>
51 #include <set>
52 using namespace llvm;
53 using namespace PatternMatch;
54 
55 #define DEBUG_TYPE "simplifycfg"
56 
57 // Chosen as 2 so as to be cheap, but still to have enough power to fold
58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
59 // To catch this, we need to fold a compare and a select, hence '2' being the
60 // minimum reasonable default.
61 static cl::opt<unsigned>
62 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2),
63    cl::desc("Control the amount of phi node folding to perform (default = 2)"));
64 
65 static cl::opt<bool>
66 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
67        cl::desc("Duplicate return instructions into unconditional branches"));
68 
69 static cl::opt<bool>
70 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
71        cl::desc("Sink common instructions down to the end block"));
72 
73 static cl::opt<bool> HoistCondStores(
74     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
75     cl::desc("Hoist conditional stores if an unconditional store precedes"));
76 
77 static cl::opt<bool> MergeCondStores(
78     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
79     cl::desc("Hoist conditional stores even if an unconditional store does not "
80              "precede - hoist multiple conditional stores into a single "
81              "predicated store"));
82 
83 static cl::opt<bool> MergeCondStoresAggressively(
84     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
85     cl::desc("When merging conditional stores, do so even if the resultant "
86              "basic blocks are unlikely to be if-converted as a result"));
87 
88 static cl::opt<bool> SpeculateOneExpensiveInst(
89     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
90     cl::desc("Allow exactly one expensive instruction to be speculatively "
91              "executed"));
92 
93 static cl::opt<unsigned> MaxSpeculationDepth(
94     "max-speculation-depth", cl::Hidden, cl::init(10),
95     cl::desc("Limit maximum recursion depth when calculating costs of "
96              "speculatively executed instructions"));
97 
98 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
99 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
100 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
101 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
102 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
103 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
104 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
105 
106 namespace {
107   // The first field contains the value that the switch produces when a certain
108   // case group is selected, and the second field is a vector containing the
109   // cases composing the case group.
110   typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
111     SwitchCaseResultVectorTy;
112   // The first field contains the phi node that generates a result of the switch
113   // and the second field contains the value generated for a certain case in the
114   // switch for that PHI.
115   typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
116 
117   /// ValueEqualityComparisonCase - Represents a case of a switch.
118   struct ValueEqualityComparisonCase {
119     ConstantInt *Value;
120     BasicBlock *Dest;
121 
122     ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
123       : Value(Value), Dest(Dest) {}
124 
125     bool operator<(ValueEqualityComparisonCase RHS) const {
126       // Comparing pointers is ok as we only rely on the order for uniquing.
127       return Value < RHS.Value;
128     }
129 
130     bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
131   };
132 
133 class SimplifyCFGOpt {
134   const TargetTransformInfo &TTI;
135   const DataLayout &DL;
136   unsigned BonusInstThreshold;
137   AssumptionCache *AC;
138   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
139   Value *isValueEqualityComparison(TerminatorInst *TI);
140   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
141                                std::vector<ValueEqualityComparisonCase> &Cases);
142   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
143                                                      BasicBlock *Pred,
144                                                      IRBuilder<> &Builder);
145   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
146                                            IRBuilder<> &Builder);
147 
148   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
149   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
150   bool SimplifySingleResume(ResumeInst *RI);
151   bool SimplifyCommonResume(ResumeInst *RI);
152   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
153   bool SimplifyUnreachable(UnreachableInst *UI);
154   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
155   bool SimplifyIndirectBr(IndirectBrInst *IBI);
156   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
157   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
158 
159 public:
160   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
161                  unsigned BonusInstThreshold, AssumptionCache *AC,
162                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
163       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
164         LoopHeaders(LoopHeaders) {}
165   bool run(BasicBlock *BB);
166 };
167 }
168 
169 /// Return true if it is safe to merge these two
170 /// terminator instructions together.
171 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
172   if (SI1 == SI2) return false;  // Can't merge with self!
173 
174   // It is not safe to merge these two switch instructions if they have a common
175   // successor, and if that successor has a PHI node, and if *that* PHI node has
176   // conflicting incoming values from the two switch blocks.
177   BasicBlock *SI1BB = SI1->getParent();
178   BasicBlock *SI2BB = SI2->getParent();
179   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
180 
181   for (BasicBlock *Succ : successors(SI2BB))
182     if (SI1Succs.count(Succ))
183       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
184         PHINode *PN = cast<PHINode>(BBI);
185         if (PN->getIncomingValueForBlock(SI1BB) !=
186             PN->getIncomingValueForBlock(SI2BB))
187           return false;
188       }
189 
190   return true;
191 }
192 
193 /// Return true if it is safe and profitable to merge these two terminator
194 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
195 /// store all PHI nodes in common successors.
196 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
197                                           BranchInst *SI2,
198                                           Instruction *Cond,
199                                           SmallVectorImpl<PHINode*> &PhiNodes) {
200   if (SI1 == SI2) return false;  // Can't merge with self!
201   assert(SI1->isUnconditional() && SI2->isConditional());
202 
203   // We fold the unconditional branch if we can easily update all PHI nodes in
204   // common successors:
205   // 1> We have a constant incoming value for the conditional branch;
206   // 2> We have "Cond" as the incoming value for the unconditional branch;
207   // 3> SI2->getCondition() and Cond have same operands.
208   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
209   if (!Ci2) return false;
210   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
211         Cond->getOperand(1) == Ci2->getOperand(1)) &&
212       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
213         Cond->getOperand(1) == Ci2->getOperand(0)))
214     return false;
215 
216   BasicBlock *SI1BB = SI1->getParent();
217   BasicBlock *SI2BB = SI2->getParent();
218   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
219   for (BasicBlock *Succ : successors(SI2BB))
220     if (SI1Succs.count(Succ))
221       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
222         PHINode *PN = cast<PHINode>(BBI);
223         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
224             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
225           return false;
226         PhiNodes.push_back(PN);
227       }
228   return true;
229 }
230 
231 /// Update PHI nodes in Succ to indicate that there will now be entries in it
232 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
233 /// will be the same as those coming in from ExistPred, an existing predecessor
234 /// of Succ.
235 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
236                                   BasicBlock *ExistPred) {
237   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
238 
239   PHINode *PN;
240   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
241     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
242 }
243 
244 /// Compute an abstract "cost" of speculating the given instruction,
245 /// which is assumed to be safe to speculate. TCC_Free means cheap,
246 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
247 /// expensive.
248 static unsigned ComputeSpeculationCost(const User *I,
249                                        const TargetTransformInfo &TTI) {
250   assert(isSafeToSpeculativelyExecute(I) &&
251          "Instruction is not safe to speculatively execute!");
252   return TTI.getUserCost(I);
253 }
254 
255 /// If we have a merge point of an "if condition" as accepted above,
256 /// return true if the specified value dominates the block.  We
257 /// don't handle the true generality of domination here, just a special case
258 /// which works well enough for us.
259 ///
260 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
261 /// see if V (which must be an instruction) and its recursive operands
262 /// that do not dominate BB have a combined cost lower than CostRemaining and
263 /// are non-trapping.  If both are true, the instruction is inserted into the
264 /// set and true is returned.
265 ///
266 /// The cost for most non-trapping instructions is defined as 1 except for
267 /// Select whose cost is 2.
268 ///
269 /// After this function returns, CostRemaining is decreased by the cost of
270 /// V plus its non-dominating operands.  If that cost is greater than
271 /// CostRemaining, false is returned and CostRemaining is undefined.
272 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
273                                 SmallPtrSetImpl<Instruction*> *AggressiveInsts,
274                                 unsigned &CostRemaining,
275                                 const TargetTransformInfo &TTI,
276                                 unsigned Depth = 0) {
277   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
278   // so limit the recursion depth.
279   // TODO: While this recursion limit does prevent pathological behavior, it
280   // would be better to track visited instructions to avoid cycles.
281   if (Depth == MaxSpeculationDepth)
282     return false;
283 
284   Instruction *I = dyn_cast<Instruction>(V);
285   if (!I) {
286     // Non-instructions all dominate instructions, but not all constantexprs
287     // can be executed unconditionally.
288     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
289       if (C->canTrap())
290         return false;
291     return true;
292   }
293   BasicBlock *PBB = I->getParent();
294 
295   // We don't want to allow weird loops that might have the "if condition" in
296   // the bottom of this block.
297   if (PBB == BB) return false;
298 
299   // If this instruction is defined in a block that contains an unconditional
300   // branch to BB, then it must be in the 'conditional' part of the "if
301   // statement".  If not, it definitely dominates the region.
302   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
303   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
304     return true;
305 
306   // If we aren't allowing aggressive promotion anymore, then don't consider
307   // instructions in the 'if region'.
308   if (!AggressiveInsts) return false;
309 
310   // If we have seen this instruction before, don't count it again.
311   if (AggressiveInsts->count(I)) return true;
312 
313   // Okay, it looks like the instruction IS in the "condition".  Check to
314   // see if it's a cheap instruction to unconditionally compute, and if it
315   // only uses stuff defined outside of the condition.  If so, hoist it out.
316   if (!isSafeToSpeculativelyExecute(I))
317     return false;
318 
319   unsigned Cost = ComputeSpeculationCost(I, TTI);
320 
321   // Allow exactly one instruction to be speculated regardless of its cost
322   // (as long as it is safe to do so).
323   // This is intended to flatten the CFG even if the instruction is a division
324   // or other expensive operation. The speculation of an expensive instruction
325   // is expected to be undone in CodeGenPrepare if the speculation has not
326   // enabled further IR optimizations.
327   if (Cost > CostRemaining &&
328       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
329     return false;
330 
331   // Avoid unsigned wrap.
332   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
333 
334   // Okay, we can only really hoist these out if their operands do
335   // not take us over the cost threshold.
336   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
337     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
338                              Depth + 1))
339       return false;
340   // Okay, it's safe to do this!  Remember this instruction.
341   AggressiveInsts->insert(I);
342   return true;
343 }
344 
345 /// Extract ConstantInt from value, looking through IntToPtr
346 /// and PointerNullValue. Return NULL if value is not a constant int.
347 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
348   // Normal constant int.
349   ConstantInt *CI = dyn_cast<ConstantInt>(V);
350   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
351     return CI;
352 
353   // This is some kind of pointer constant. Turn it into a pointer-sized
354   // ConstantInt if possible.
355   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
356 
357   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
358   if (isa<ConstantPointerNull>(V))
359     return ConstantInt::get(PtrTy, 0);
360 
361   // IntToPtr const int.
362   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
363     if (CE->getOpcode() == Instruction::IntToPtr)
364       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
365         // The constant is very likely to have the right type already.
366         if (CI->getType() == PtrTy)
367           return CI;
368         else
369           return cast<ConstantInt>
370             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
371       }
372   return nullptr;
373 }
374 
375 namespace {
376 
377 /// Given a chain of or (||) or and (&&) comparison of a value against a
378 /// constant, this will try to recover the information required for a switch
379 /// structure.
380 /// It will depth-first traverse the chain of comparison, seeking for patterns
381 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
382 /// representing the different cases for the switch.
383 /// Note that if the chain is composed of '||' it will build the set of elements
384 /// that matches the comparisons (i.e. any of this value validate the chain)
385 /// while for a chain of '&&' it will build the set elements that make the test
386 /// fail.
387 struct ConstantComparesGatherer {
388   const DataLayout &DL;
389   Value *CompValue; /// Value found for the switch comparison
390   Value *Extra;     /// Extra clause to be checked before the switch
391   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
392   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
393 
394   /// Construct and compute the result for the comparison instruction Cond
395   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
396       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
397     gather(Cond);
398   }
399 
400   /// Prevent copy
401   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
402   ConstantComparesGatherer &
403   operator=(const ConstantComparesGatherer &) = delete;
404 
405 private:
406 
407   /// Try to set the current value used for the comparison, it succeeds only if
408   /// it wasn't set before or if the new value is the same as the old one
409   bool setValueOnce(Value *NewVal) {
410     if (CompValue && CompValue != NewVal) return false;
411     CompValue = NewVal;
412     return (CompValue != nullptr);
413   }
414 
415   /// Try to match Instruction "I" as a comparison against a constant and
416   /// populates the array Vals with the set of values that match (or do not
417   /// match depending on isEQ).
418   /// Return false on failure. On success, the Value the comparison matched
419   /// against is placed in CompValue.
420   /// If CompValue is already set, the function is expected to fail if a match
421   /// is found but the value compared to is different.
422   bool matchInstruction(Instruction *I, bool isEQ) {
423     // If this is an icmp against a constant, handle this as one of the cases.
424     ICmpInst *ICI;
425     ConstantInt *C;
426     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
427              (C = GetConstantInt(I->getOperand(1), DL)))) {
428       return false;
429     }
430 
431     Value *RHSVal;
432     ConstantInt *RHSC;
433 
434     // Pattern match a special case
435     // (x & ~2^z) == y --> x == y || x == y|2^z
436     // This undoes a transformation done by instcombine to fuse 2 compares.
437     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
438       if (match(ICI->getOperand(0),
439                 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
440         APInt Not = ~RHSC->getValue();
441         if (Not.isPowerOf2() && C->getValue().isPowerOf2() &&
442             Not != C->getValue()) {
443           // If we already have a value for the switch, it has to match!
444           if(!setValueOnce(RHSVal))
445             return false;
446 
447           Vals.push_back(C);
448           Vals.push_back(ConstantInt::get(C->getContext(),
449                                           C->getValue() | Not));
450           UsedICmps++;
451           return true;
452         }
453       }
454 
455       // If we already have a value for the switch, it has to match!
456       if(!setValueOnce(ICI->getOperand(0)))
457         return false;
458 
459       UsedICmps++;
460       Vals.push_back(C);
461       return ICI->getOperand(0);
462     }
463 
464     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
465     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
466         ICI->getPredicate(), C->getValue());
467 
468     // Shift the range if the compare is fed by an add. This is the range
469     // compare idiom as emitted by instcombine.
470     Value *CandidateVal = I->getOperand(0);
471     if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
472       Span = Span.subtract(RHSC->getValue());
473       CandidateVal = RHSVal;
474     }
475 
476     // If this is an and/!= check, then we are looking to build the set of
477     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
478     // x != 0 && x != 1.
479     if (!isEQ)
480       Span = Span.inverse();
481 
482     // If there are a ton of values, we don't want to make a ginormous switch.
483     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
484       return false;
485     }
486 
487     // If we already have a value for the switch, it has to match!
488     if(!setValueOnce(CandidateVal))
489       return false;
490 
491     // Add all values from the range to the set
492     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
493       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
494 
495     UsedICmps++;
496     return true;
497 
498   }
499 
500   /// Given a potentially 'or'd or 'and'd together collection of icmp
501   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
502   /// the value being compared, and stick the list constants into the Vals
503   /// vector.
504   /// One "Extra" case is allowed to differ from the other.
505   void gather(Value *V) {
506     Instruction *I = dyn_cast<Instruction>(V);
507     bool isEQ = (I->getOpcode() == Instruction::Or);
508 
509     // Keep a stack (SmallVector for efficiency) for depth-first traversal
510     SmallVector<Value *, 8> DFT;
511     SmallPtrSet<Value *, 8> Visited;
512 
513     // Initialize
514     Visited.insert(V);
515     DFT.push_back(V);
516 
517     while(!DFT.empty()) {
518       V = DFT.pop_back_val();
519 
520       if (Instruction *I = dyn_cast<Instruction>(V)) {
521         // If it is a || (or && depending on isEQ), process the operands.
522         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
523           if (Visited.insert(I->getOperand(1)).second)
524             DFT.push_back(I->getOperand(1));
525           if (Visited.insert(I->getOperand(0)).second)
526             DFT.push_back(I->getOperand(0));
527           continue;
528         }
529 
530         // Try to match the current instruction
531         if (matchInstruction(I, isEQ))
532           // Match succeed, continue the loop
533           continue;
534       }
535 
536       // One element of the sequence of || (or &&) could not be match as a
537       // comparison against the same value as the others.
538       // We allow only one "Extra" case to be checked before the switch
539       if (!Extra) {
540         Extra = V;
541         continue;
542       }
543       // Failed to parse a proper sequence, abort now
544       CompValue = nullptr;
545       break;
546     }
547   }
548 };
549 
550 }
551 
552 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
553   Instruction *Cond = nullptr;
554   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
555     Cond = dyn_cast<Instruction>(SI->getCondition());
556   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
557     if (BI->isConditional())
558       Cond = dyn_cast<Instruction>(BI->getCondition());
559   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
560     Cond = dyn_cast<Instruction>(IBI->getAddress());
561   }
562 
563   TI->eraseFromParent();
564   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
565 }
566 
567 /// Return true if the specified terminator checks
568 /// to see if a value is equal to constant integer value.
569 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
570   Value *CV = nullptr;
571   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
572     // Do not permit merging of large switch instructions into their
573     // predecessors unless there is only one predecessor.
574     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
575                                              pred_end(SI->getParent())) <= 128)
576       CV = SI->getCondition();
577   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
578     if (BI->isConditional() && BI->getCondition()->hasOneUse())
579       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
580         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
581           CV = ICI->getOperand(0);
582       }
583 
584   // Unwrap any lossless ptrtoint cast.
585   if (CV) {
586     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
587       Value *Ptr = PTII->getPointerOperand();
588       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
589         CV = Ptr;
590     }
591   }
592   return CV;
593 }
594 
595 /// Given a value comparison instruction,
596 /// decode all of the 'cases' that it represents and return the 'default' block.
597 BasicBlock *SimplifyCFGOpt::
598 GetValueEqualityComparisonCases(TerminatorInst *TI,
599                                 std::vector<ValueEqualityComparisonCase>
600                                                                        &Cases) {
601   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
602     Cases.reserve(SI->getNumCases());
603     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
604       Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
605                                                   i.getCaseSuccessor()));
606     return SI->getDefaultDest();
607   }
608 
609   BranchInst *BI = cast<BranchInst>(TI);
610   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
611   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
612   Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
613                                                              DL),
614                                               Succ));
615   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
616 }
617 
618 
619 /// Given a vector of bb/value pairs, remove any entries
620 /// in the list that match the specified block.
621 static void EliminateBlockCases(BasicBlock *BB,
622                               std::vector<ValueEqualityComparisonCase> &Cases) {
623   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
624 }
625 
626 /// Return true if there are any keys in C1 that exist in C2 as well.
627 static bool
628 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
629               std::vector<ValueEqualityComparisonCase > &C2) {
630   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
631 
632   // Make V1 be smaller than V2.
633   if (V1->size() > V2->size())
634     std::swap(V1, V2);
635 
636   if (V1->size() == 0) return false;
637   if (V1->size() == 1) {
638     // Just scan V2.
639     ConstantInt *TheVal = (*V1)[0].Value;
640     for (unsigned i = 0, e = V2->size(); i != e; ++i)
641       if (TheVal == (*V2)[i].Value)
642         return true;
643   }
644 
645   // Otherwise, just sort both lists and compare element by element.
646   array_pod_sort(V1->begin(), V1->end());
647   array_pod_sort(V2->begin(), V2->end());
648   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
649   while (i1 != e1 && i2 != e2) {
650     if ((*V1)[i1].Value == (*V2)[i2].Value)
651       return true;
652     if ((*V1)[i1].Value < (*V2)[i2].Value)
653       ++i1;
654     else
655       ++i2;
656   }
657   return false;
658 }
659 
660 /// If TI is known to be a terminator instruction and its block is known to
661 /// only have a single predecessor block, check to see if that predecessor is
662 /// also a value comparison with the same value, and if that comparison
663 /// determines the outcome of this comparison. If so, simplify TI. This does a
664 /// very limited form of jump threading.
665 bool SimplifyCFGOpt::
666 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
667                                               BasicBlock *Pred,
668                                               IRBuilder<> &Builder) {
669   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
670   if (!PredVal) return false;  // Not a value comparison in predecessor.
671 
672   Value *ThisVal = isValueEqualityComparison(TI);
673   assert(ThisVal && "This isn't a value comparison!!");
674   if (ThisVal != PredVal) return false;  // Different predicates.
675 
676   // TODO: Preserve branch weight metadata, similarly to how
677   // FoldValueComparisonIntoPredecessors preserves it.
678 
679   // Find out information about when control will move from Pred to TI's block.
680   std::vector<ValueEqualityComparisonCase> PredCases;
681   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
682                                                         PredCases);
683   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
684 
685   // Find information about how control leaves this block.
686   std::vector<ValueEqualityComparisonCase> ThisCases;
687   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
688   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
689 
690   // If TI's block is the default block from Pred's comparison, potentially
691   // simplify TI based on this knowledge.
692   if (PredDef == TI->getParent()) {
693     // If we are here, we know that the value is none of those cases listed in
694     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
695     // can simplify TI.
696     if (!ValuesOverlap(PredCases, ThisCases))
697       return false;
698 
699     if (isa<BranchInst>(TI)) {
700       // Okay, one of the successors of this condbr is dead.  Convert it to a
701       // uncond br.
702       assert(ThisCases.size() == 1 && "Branch can only have one case!");
703       // Insert the new branch.
704       Instruction *NI = Builder.CreateBr(ThisDef);
705       (void) NI;
706 
707       // Remove PHI node entries for the dead edge.
708       ThisCases[0].Dest->removePredecessor(TI->getParent());
709 
710       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
711            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
712 
713       EraseTerminatorInstAndDCECond(TI);
714       return true;
715     }
716 
717     SwitchInst *SI = cast<SwitchInst>(TI);
718     // Okay, TI has cases that are statically dead, prune them away.
719     SmallPtrSet<Constant*, 16> DeadCases;
720     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
721       DeadCases.insert(PredCases[i].Value);
722 
723     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
724                  << "Through successor TI: " << *TI);
725 
726     // Collect branch weights into a vector.
727     SmallVector<uint32_t, 8> Weights;
728     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
729     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
730     if (HasWeight)
731       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
732            ++MD_i) {
733         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
734         Weights.push_back(CI->getValue().getZExtValue());
735       }
736     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
737       --i;
738       if (DeadCases.count(i.getCaseValue())) {
739         if (HasWeight) {
740           std::swap(Weights[i.getCaseIndex()+1], Weights.back());
741           Weights.pop_back();
742         }
743         i.getCaseSuccessor()->removePredecessor(TI->getParent());
744         SI->removeCase(i);
745       }
746     }
747     if (HasWeight && Weights.size() >= 2)
748       SI->setMetadata(LLVMContext::MD_prof,
749                       MDBuilder(SI->getParent()->getContext()).
750                       createBranchWeights(Weights));
751 
752     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
753     return true;
754   }
755 
756   // Otherwise, TI's block must correspond to some matched value.  Find out
757   // which value (or set of values) this is.
758   ConstantInt *TIV = nullptr;
759   BasicBlock *TIBB = TI->getParent();
760   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
761     if (PredCases[i].Dest == TIBB) {
762       if (TIV)
763         return false;  // Cannot handle multiple values coming to this block.
764       TIV = PredCases[i].Value;
765     }
766   assert(TIV && "No edge from pred to succ?");
767 
768   // Okay, we found the one constant that our value can be if we get into TI's
769   // BB.  Find out which successor will unconditionally be branched to.
770   BasicBlock *TheRealDest = nullptr;
771   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
772     if (ThisCases[i].Value == TIV) {
773       TheRealDest = ThisCases[i].Dest;
774       break;
775     }
776 
777   // If not handled by any explicit cases, it is handled by the default case.
778   if (!TheRealDest) TheRealDest = ThisDef;
779 
780   // Remove PHI node entries for dead edges.
781   BasicBlock *CheckEdge = TheRealDest;
782   for (BasicBlock *Succ : successors(TIBB))
783     if (Succ != CheckEdge)
784       Succ->removePredecessor(TIBB);
785     else
786       CheckEdge = nullptr;
787 
788   // Insert the new branch.
789   Instruction *NI = Builder.CreateBr(TheRealDest);
790   (void) NI;
791 
792   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
793             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
794 
795   EraseTerminatorInstAndDCECond(TI);
796   return true;
797 }
798 
799 namespace {
800   /// This class implements a stable ordering of constant
801   /// integers that does not depend on their address.  This is important for
802   /// applications that sort ConstantInt's to ensure uniqueness.
803   struct ConstantIntOrdering {
804     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
805       return LHS->getValue().ult(RHS->getValue());
806     }
807   };
808 }
809 
810 static int ConstantIntSortPredicate(ConstantInt *const *P1,
811                                     ConstantInt *const *P2) {
812   const ConstantInt *LHS = *P1;
813   const ConstantInt *RHS = *P2;
814   if (LHS == RHS)
815     return 0;
816   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
817 }
818 
819 static inline bool HasBranchWeights(const Instruction* I) {
820   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
821   if (ProfMD && ProfMD->getOperand(0))
822     if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
823       return MDS->getString().equals("branch_weights");
824 
825   return false;
826 }
827 
828 /// Get Weights of a given TerminatorInst, the default weight is at the front
829 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
830 /// metadata.
831 static void GetBranchWeights(TerminatorInst *TI,
832                              SmallVectorImpl<uint64_t> &Weights) {
833   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
834   assert(MD);
835   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
836     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
837     Weights.push_back(CI->getValue().getZExtValue());
838   }
839 
840   // If TI is a conditional eq, the default case is the false case,
841   // and the corresponding branch-weight data is at index 2. We swap the
842   // default weight to be the first entry.
843   if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
844     assert(Weights.size() == 2);
845     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
846     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
847       std::swap(Weights.front(), Weights.back());
848   }
849 }
850 
851 /// Keep halving the weights until all can fit in uint32_t.
852 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
853   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
854   if (Max > UINT_MAX) {
855     unsigned Offset = 32 - countLeadingZeros(Max);
856     for (uint64_t &I : Weights)
857       I >>= Offset;
858   }
859 }
860 
861 /// The specified terminator is a value equality comparison instruction
862 /// (either a switch or a branch on "X == c").
863 /// See if any of the predecessors of the terminator block are value comparisons
864 /// on the same value.  If so, and if safe to do so, fold them together.
865 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
866                                                          IRBuilder<> &Builder) {
867   BasicBlock *BB = TI->getParent();
868   Value *CV = isValueEqualityComparison(TI);  // CondVal
869   assert(CV && "Not a comparison?");
870   bool Changed = false;
871 
872   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
873   while (!Preds.empty()) {
874     BasicBlock *Pred = Preds.pop_back_val();
875 
876     // See if the predecessor is a comparison with the same value.
877     TerminatorInst *PTI = Pred->getTerminator();
878     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
879 
880     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
881       // Figure out which 'cases' to copy from SI to PSI.
882       std::vector<ValueEqualityComparisonCase> BBCases;
883       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
884 
885       std::vector<ValueEqualityComparisonCase> PredCases;
886       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
887 
888       // Based on whether the default edge from PTI goes to BB or not, fill in
889       // PredCases and PredDefault with the new switch cases we would like to
890       // build.
891       SmallVector<BasicBlock*, 8> NewSuccessors;
892 
893       // Update the branch weight metadata along the way
894       SmallVector<uint64_t, 8> Weights;
895       bool PredHasWeights = HasBranchWeights(PTI);
896       bool SuccHasWeights = HasBranchWeights(TI);
897 
898       if (PredHasWeights) {
899         GetBranchWeights(PTI, Weights);
900         // branch-weight metadata is inconsistent here.
901         if (Weights.size() != 1 + PredCases.size())
902           PredHasWeights = SuccHasWeights = false;
903       } else if (SuccHasWeights)
904         // If there are no predecessor weights but there are successor weights,
905         // populate Weights with 1, which will later be scaled to the sum of
906         // successor's weights
907         Weights.assign(1 + PredCases.size(), 1);
908 
909       SmallVector<uint64_t, 8> SuccWeights;
910       if (SuccHasWeights) {
911         GetBranchWeights(TI, SuccWeights);
912         // branch-weight metadata is inconsistent here.
913         if (SuccWeights.size() != 1 + BBCases.size())
914           PredHasWeights = SuccHasWeights = false;
915       } else if (PredHasWeights)
916         SuccWeights.assign(1 + BBCases.size(), 1);
917 
918       if (PredDefault == BB) {
919         // If this is the default destination from PTI, only the edges in TI
920         // that don't occur in PTI, or that branch to BB will be activated.
921         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
922         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
923           if (PredCases[i].Dest != BB)
924             PTIHandled.insert(PredCases[i].Value);
925           else {
926             // The default destination is BB, we don't need explicit targets.
927             std::swap(PredCases[i], PredCases.back());
928 
929             if (PredHasWeights || SuccHasWeights) {
930               // Increase weight for the default case.
931               Weights[0] += Weights[i+1];
932               std::swap(Weights[i+1], Weights.back());
933               Weights.pop_back();
934             }
935 
936             PredCases.pop_back();
937             --i; --e;
938           }
939 
940         // Reconstruct the new switch statement we will be building.
941         if (PredDefault != BBDefault) {
942           PredDefault->removePredecessor(Pred);
943           PredDefault = BBDefault;
944           NewSuccessors.push_back(BBDefault);
945         }
946 
947         unsigned CasesFromPred = Weights.size();
948         uint64_t ValidTotalSuccWeight = 0;
949         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
950           if (!PTIHandled.count(BBCases[i].Value) &&
951               BBCases[i].Dest != BBDefault) {
952             PredCases.push_back(BBCases[i]);
953             NewSuccessors.push_back(BBCases[i].Dest);
954             if (SuccHasWeights || PredHasWeights) {
955               // The default weight is at index 0, so weight for the ith case
956               // should be at index i+1. Scale the cases from successor by
957               // PredDefaultWeight (Weights[0]).
958               Weights.push_back(Weights[0] * SuccWeights[i+1]);
959               ValidTotalSuccWeight += SuccWeights[i+1];
960             }
961           }
962 
963         if (SuccHasWeights || PredHasWeights) {
964           ValidTotalSuccWeight += SuccWeights[0];
965           // Scale the cases from predecessor by ValidTotalSuccWeight.
966           for (unsigned i = 1; i < CasesFromPred; ++i)
967             Weights[i] *= ValidTotalSuccWeight;
968           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
969           Weights[0] *= SuccWeights[0];
970         }
971       } else {
972         // If this is not the default destination from PSI, only the edges
973         // in SI that occur in PSI with a destination of BB will be
974         // activated.
975         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
976         std::map<ConstantInt*, uint64_t> WeightsForHandled;
977         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
978           if (PredCases[i].Dest == BB) {
979             PTIHandled.insert(PredCases[i].Value);
980 
981             if (PredHasWeights || SuccHasWeights) {
982               WeightsForHandled[PredCases[i].Value] = Weights[i+1];
983               std::swap(Weights[i+1], Weights.back());
984               Weights.pop_back();
985             }
986 
987             std::swap(PredCases[i], PredCases.back());
988             PredCases.pop_back();
989             --i; --e;
990           }
991 
992         // Okay, now we know which constants were sent to BB from the
993         // predecessor.  Figure out where they will all go now.
994         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
995           if (PTIHandled.count(BBCases[i].Value)) {
996             // If this is one we are capable of getting...
997             if (PredHasWeights || SuccHasWeights)
998               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
999             PredCases.push_back(BBCases[i]);
1000             NewSuccessors.push_back(BBCases[i].Dest);
1001             PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
1002           }
1003 
1004         // If there are any constants vectored to BB that TI doesn't handle,
1005         // they must go to the default destination of TI.
1006         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
1007                                     PTIHandled.begin(),
1008                E = PTIHandled.end(); I != E; ++I) {
1009           if (PredHasWeights || SuccHasWeights)
1010             Weights.push_back(WeightsForHandled[*I]);
1011           PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
1012           NewSuccessors.push_back(BBDefault);
1013         }
1014       }
1015 
1016       // Okay, at this point, we know which new successor Pred will get.  Make
1017       // sure we update the number of entries in the PHI nodes for these
1018       // successors.
1019       for (BasicBlock *NewSuccessor : NewSuccessors)
1020         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1021 
1022       Builder.SetInsertPoint(PTI);
1023       // Convert pointer to int before we switch.
1024       if (CV->getType()->isPointerTy()) {
1025         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1026                                     "magicptr");
1027       }
1028 
1029       // Now that the successors are updated, create the new Switch instruction.
1030       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
1031                                                PredCases.size());
1032       NewSI->setDebugLoc(PTI->getDebugLoc());
1033       for (ValueEqualityComparisonCase &V : PredCases)
1034         NewSI->addCase(V.Value, V.Dest);
1035 
1036       if (PredHasWeights || SuccHasWeights) {
1037         // Halve the weights if any of them cannot fit in an uint32_t
1038         FitWeights(Weights);
1039 
1040         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1041 
1042         NewSI->setMetadata(LLVMContext::MD_prof,
1043                            MDBuilder(BB->getContext()).
1044                            createBranchWeights(MDWeights));
1045       }
1046 
1047       EraseTerminatorInstAndDCECond(PTI);
1048 
1049       // Okay, last check.  If BB is still a successor of PSI, then we must
1050       // have an infinite loop case.  If so, add an infinitely looping block
1051       // to handle the case to preserve the behavior of the code.
1052       BasicBlock *InfLoopBlock = nullptr;
1053       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1054         if (NewSI->getSuccessor(i) == BB) {
1055           if (!InfLoopBlock) {
1056             // Insert it at the end of the function, because it's either code,
1057             // or it won't matter if it's hot. :)
1058             InfLoopBlock = BasicBlock::Create(BB->getContext(),
1059                                               "infloop", BB->getParent());
1060             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1061           }
1062           NewSI->setSuccessor(i, InfLoopBlock);
1063         }
1064 
1065       Changed = true;
1066     }
1067   }
1068   return Changed;
1069 }
1070 
1071 // If we would need to insert a select that uses the value of this invoke
1072 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1073 // can't hoist the invoke, as there is nowhere to put the select in this case.
1074 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1075                                 Instruction *I1, Instruction *I2) {
1076   for (BasicBlock *Succ : successors(BB1)) {
1077     PHINode *PN;
1078     for (BasicBlock::iterator BBI = Succ->begin();
1079          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1080       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1081       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1082       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1083         return false;
1084       }
1085     }
1086   }
1087   return true;
1088 }
1089 
1090 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1091 
1092 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1093 /// in the two blocks up into the branch block. The caller of this function
1094 /// guarantees that BI's block dominates BB1 and BB2.
1095 static bool HoistThenElseCodeToIf(BranchInst *BI,
1096                                   const TargetTransformInfo &TTI) {
1097   // This does very trivial matching, with limited scanning, to find identical
1098   // instructions in the two blocks.  In particular, we don't want to get into
1099   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1100   // such, we currently just scan for obviously identical instructions in an
1101   // identical order.
1102   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1103   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1104 
1105   BasicBlock::iterator BB1_Itr = BB1->begin();
1106   BasicBlock::iterator BB2_Itr = BB2->begin();
1107 
1108   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1109   // Skip debug info if it is not identical.
1110   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1111   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1112   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1113     while (isa<DbgInfoIntrinsic>(I1))
1114       I1 = &*BB1_Itr++;
1115     while (isa<DbgInfoIntrinsic>(I2))
1116       I2 = &*BB2_Itr++;
1117   }
1118   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1119       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1120     return false;
1121 
1122   BasicBlock *BIParent = BI->getParent();
1123 
1124   bool Changed = false;
1125   do {
1126     // If we are hoisting the terminator instruction, don't move one (making a
1127     // broken BB), instead clone it, and remove BI.
1128     if (isa<TerminatorInst>(I1))
1129       goto HoistTerminator;
1130 
1131     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1132       return Changed;
1133 
1134     // For a normal instruction, we just move one to right before the branch,
1135     // then replace all uses of the other with the first.  Finally, we remove
1136     // the now redundant second instruction.
1137     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1138     if (!I2->use_empty())
1139       I2->replaceAllUsesWith(I1);
1140     I1->intersectOptionalDataWith(I2);
1141     unsigned KnownIDs[] = {
1142         LLVMContext::MD_tbaa,    LLVMContext::MD_range,
1143         LLVMContext::MD_fpmath,  LLVMContext::MD_invariant_load,
1144         LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group,
1145         LLVMContext::MD_align,   LLVMContext::MD_dereferenceable,
1146         LLVMContext::MD_dereferenceable_or_null,
1147         LLVMContext::MD_mem_parallel_loop_access};
1148     combineMetadata(I1, I2, KnownIDs);
1149     I2->eraseFromParent();
1150     Changed = true;
1151 
1152     I1 = &*BB1_Itr++;
1153     I2 = &*BB2_Itr++;
1154     // Skip debug info if it is not identical.
1155     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1156     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1157     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1158       while (isa<DbgInfoIntrinsic>(I1))
1159         I1 = &*BB1_Itr++;
1160       while (isa<DbgInfoIntrinsic>(I2))
1161         I2 = &*BB2_Itr++;
1162     }
1163   } while (I1->isIdenticalToWhenDefined(I2));
1164 
1165   return true;
1166 
1167 HoistTerminator:
1168   // It may not be possible to hoist an invoke.
1169   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1170     return Changed;
1171 
1172   for (BasicBlock *Succ : successors(BB1)) {
1173     PHINode *PN;
1174     for (BasicBlock::iterator BBI = Succ->begin();
1175          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1176       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1177       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1178       if (BB1V == BB2V)
1179         continue;
1180 
1181       // Check for passingValueIsAlwaysUndefined here because we would rather
1182       // eliminate undefined control flow then converting it to a select.
1183       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1184           passingValueIsAlwaysUndefined(BB2V, PN))
1185        return Changed;
1186 
1187       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1188         return Changed;
1189       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1190         return Changed;
1191     }
1192   }
1193 
1194   // Okay, it is safe to hoist the terminator.
1195   Instruction *NT = I1->clone();
1196   BIParent->getInstList().insert(BI->getIterator(), NT);
1197   if (!NT->getType()->isVoidTy()) {
1198     I1->replaceAllUsesWith(NT);
1199     I2->replaceAllUsesWith(NT);
1200     NT->takeName(I1);
1201   }
1202 
1203   IRBuilder<NoFolder> Builder(NT);
1204   // Hoisting one of the terminators from our successor is a great thing.
1205   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1206   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1207   // nodes, so we insert select instruction to compute the final result.
1208   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1209   for (BasicBlock *Succ : successors(BB1)) {
1210     PHINode *PN;
1211     for (BasicBlock::iterator BBI = Succ->begin();
1212          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1213       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1214       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1215       if (BB1V == BB2V) continue;
1216 
1217       // These values do not agree.  Insert a select instruction before NT
1218       // that determines the right value.
1219       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1220       if (!SI)
1221         SI = cast<SelectInst>
1222           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1223                                 BB1V->getName() + "." + BB2V->getName(), BI));
1224 
1225       // Make the PHI node use the select for all incoming values for BB1/BB2
1226       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1227         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1228           PN->setIncomingValue(i, SI);
1229     }
1230   }
1231 
1232   // Update any PHI nodes in our new successors.
1233   for (BasicBlock *Succ : successors(BB1))
1234     AddPredecessorToBlock(Succ, BIParent, BB1);
1235 
1236   EraseTerminatorInstAndDCECond(BI);
1237   return true;
1238 }
1239 
1240 /// Given an unconditional branch that goes to BBEnd,
1241 /// check whether BBEnd has only two predecessors and the other predecessor
1242 /// ends with an unconditional branch. If it is true, sink any common code
1243 /// in the two predecessors to BBEnd.
1244 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1245   assert(BI1->isUnconditional());
1246   BasicBlock *BB1 = BI1->getParent();
1247   BasicBlock *BBEnd = BI1->getSuccessor(0);
1248 
1249   // Check that BBEnd has two predecessors and the other predecessor ends with
1250   // an unconditional branch.
1251   pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1252   BasicBlock *Pred0 = *PI++;
1253   if (PI == PE) // Only one predecessor.
1254     return false;
1255   BasicBlock *Pred1 = *PI++;
1256   if (PI != PE) // More than two predecessors.
1257     return false;
1258   BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1259   BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1260   if (!BI2 || !BI2->isUnconditional())
1261     return false;
1262 
1263   // Gather the PHI nodes in BBEnd.
1264   SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
1265   Instruction *FirstNonPhiInBBEnd = nullptr;
1266   for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
1267     if (PHINode *PN = dyn_cast<PHINode>(I)) {
1268       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1269       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1270       JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
1271     } else {
1272       FirstNonPhiInBBEnd = &*I;
1273       break;
1274     }
1275   }
1276   if (!FirstNonPhiInBBEnd)
1277     return false;
1278 
1279   // This does very trivial matching, with limited scanning, to find identical
1280   // instructions in the two blocks.  We scan backward for obviously identical
1281   // instructions in an identical order.
1282   BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1283                                              RE1 = BB1->getInstList().rend(),
1284                                              RI2 = BB2->getInstList().rbegin(),
1285                                              RE2 = BB2->getInstList().rend();
1286   // Skip debug info.
1287   while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1288   if (RI1 == RE1)
1289     return false;
1290   while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1291   if (RI2 == RE2)
1292     return false;
1293   // Skip the unconditional branches.
1294   ++RI1;
1295   ++RI2;
1296 
1297   bool Changed = false;
1298   while (RI1 != RE1 && RI2 != RE2) {
1299     // Skip debug info.
1300     while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1301     if (RI1 == RE1)
1302       return Changed;
1303     while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1304     if (RI2 == RE2)
1305       return Changed;
1306 
1307     Instruction *I1 = &*RI1, *I2 = &*RI2;
1308     auto InstPair = std::make_pair(I1, I2);
1309     // I1 and I2 should have a single use in the same PHI node, and they
1310     // perform the same operation.
1311     // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1312     if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1313         isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1314         I1->isEHPad() || I2->isEHPad() ||
1315         isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1316         I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1317         I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1318         !I1->hasOneUse() || !I2->hasOneUse() ||
1319         !JointValueMap.count(InstPair))
1320       return Changed;
1321 
1322     // Check whether we should swap the operands of ICmpInst.
1323     // TODO: Add support of communativity.
1324     ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1325     bool SwapOpnds = false;
1326     if (ICmp1 && ICmp2 &&
1327         ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1328         ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1329         (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1330          ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1331       ICmp2->swapOperands();
1332       SwapOpnds = true;
1333     }
1334     if (!I1->isSameOperationAs(I2)) {
1335       if (SwapOpnds)
1336         ICmp2->swapOperands();
1337       return Changed;
1338     }
1339 
1340     // The operands should be either the same or they need to be generated
1341     // with a PHI node after sinking. We only handle the case where there is
1342     // a single pair of different operands.
1343     Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1344     unsigned Op1Idx = ~0U;
1345     for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1346       if (I1->getOperand(I) == I2->getOperand(I))
1347         continue;
1348       // Early exit if we have more-than one pair of different operands or if
1349       // we need a PHI node to replace a constant.
1350       if (Op1Idx != ~0U ||
1351           isa<Constant>(I1->getOperand(I)) ||
1352           isa<Constant>(I2->getOperand(I))) {
1353         // If we can't sink the instructions, undo the swapping.
1354         if (SwapOpnds)
1355           ICmp2->swapOperands();
1356         return Changed;
1357       }
1358       DifferentOp1 = I1->getOperand(I);
1359       Op1Idx = I;
1360       DifferentOp2 = I2->getOperand(I);
1361     }
1362 
1363     DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
1364     DEBUG(dbgs() << "                         " << *I2 << "\n");
1365 
1366     // We insert the pair of different operands to JointValueMap and
1367     // remove (I1, I2) from JointValueMap.
1368     if (Op1Idx != ~0U) {
1369       auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
1370       if (!NewPN) {
1371         NewPN =
1372             PHINode::Create(DifferentOp1->getType(), 2,
1373                             DifferentOp1->getName() + ".sink", &BBEnd->front());
1374         NewPN->addIncoming(DifferentOp1, BB1);
1375         NewPN->addIncoming(DifferentOp2, BB2);
1376         DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1377       }
1378       // I1 should use NewPN instead of DifferentOp1.
1379       I1->setOperand(Op1Idx, NewPN);
1380     }
1381     PHINode *OldPN = JointValueMap[InstPair];
1382     JointValueMap.erase(InstPair);
1383 
1384     // We need to update RE1 and RE2 if we are going to sink the first
1385     // instruction in the basic block down.
1386     bool UpdateRE1 = (I1 == &BB1->front()), UpdateRE2 = (I2 == &BB2->front());
1387     // Sink the instruction.
1388     BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(),
1389                                 BB1->getInstList(), I1);
1390     if (!OldPN->use_empty())
1391       OldPN->replaceAllUsesWith(I1);
1392     OldPN->eraseFromParent();
1393 
1394     if (!I2->use_empty())
1395       I2->replaceAllUsesWith(I1);
1396     I1->intersectOptionalDataWith(I2);
1397     // TODO: Use combineMetadata here to preserve what metadata we can
1398     // (analogous to the hoisting case above).
1399     I2->eraseFromParent();
1400 
1401     if (UpdateRE1)
1402       RE1 = BB1->getInstList().rend();
1403     if (UpdateRE2)
1404       RE2 = BB2->getInstList().rend();
1405     FirstNonPhiInBBEnd = &*I1;
1406     NumSinkCommons++;
1407     Changed = true;
1408   }
1409   return Changed;
1410 }
1411 
1412 /// \brief Determine if we can hoist sink a sole store instruction out of a
1413 /// conditional block.
1414 ///
1415 /// We are looking for code like the following:
1416 ///   BrBB:
1417 ///     store i32 %add, i32* %arrayidx2
1418 ///     ... // No other stores or function calls (we could be calling a memory
1419 ///     ... // function).
1420 ///     %cmp = icmp ult %x, %y
1421 ///     br i1 %cmp, label %EndBB, label %ThenBB
1422 ///   ThenBB:
1423 ///     store i32 %add5, i32* %arrayidx2
1424 ///     br label EndBB
1425 ///   EndBB:
1426 ///     ...
1427 ///   We are going to transform this into:
1428 ///   BrBB:
1429 ///     store i32 %add, i32* %arrayidx2
1430 ///     ... //
1431 ///     %cmp = icmp ult %x, %y
1432 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1433 ///     store i32 %add.add5, i32* %arrayidx2
1434 ///     ...
1435 ///
1436 /// \return The pointer to the value of the previous store if the store can be
1437 ///         hoisted into the predecessor block. 0 otherwise.
1438 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1439                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1440   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1441   if (!StoreToHoist)
1442     return nullptr;
1443 
1444   // Volatile or atomic.
1445   if (!StoreToHoist->isSimple())
1446     return nullptr;
1447 
1448   Value *StorePtr = StoreToHoist->getPointerOperand();
1449 
1450   // Look for a store to the same pointer in BrBB.
1451   unsigned MaxNumInstToLookAt = 10;
1452   for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1453        RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1454     Instruction *CurI = &*RI;
1455 
1456     // Could be calling an instruction that effects memory like free().
1457     if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1458       return nullptr;
1459 
1460     StoreInst *SI = dyn_cast<StoreInst>(CurI);
1461     // Found the previous store make sure it stores to the same location.
1462     if (SI && SI->getPointerOperand() == StorePtr)
1463       // Found the previous store, return its value operand.
1464       return SI->getValueOperand();
1465     else if (SI)
1466       return nullptr; // Unknown store.
1467   }
1468 
1469   return nullptr;
1470 }
1471 
1472 /// \brief Speculate a conditional basic block flattening the CFG.
1473 ///
1474 /// Note that this is a very risky transform currently. Speculating
1475 /// instructions like this is most often not desirable. Instead, there is an MI
1476 /// pass which can do it with full awareness of the resource constraints.
1477 /// However, some cases are "obvious" and we should do directly. An example of
1478 /// this is speculating a single, reasonably cheap instruction.
1479 ///
1480 /// There is only one distinct advantage to flattening the CFG at the IR level:
1481 /// it makes very common but simplistic optimizations such as are common in
1482 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1483 /// modeling their effects with easier to reason about SSA value graphs.
1484 ///
1485 ///
1486 /// An illustration of this transform is turning this IR:
1487 /// \code
1488 ///   BB:
1489 ///     %cmp = icmp ult %x, %y
1490 ///     br i1 %cmp, label %EndBB, label %ThenBB
1491 ///   ThenBB:
1492 ///     %sub = sub %x, %y
1493 ///     br label BB2
1494 ///   EndBB:
1495 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1496 ///     ...
1497 /// \endcode
1498 ///
1499 /// Into this IR:
1500 /// \code
1501 ///   BB:
1502 ///     %cmp = icmp ult %x, %y
1503 ///     %sub = sub %x, %y
1504 ///     %cond = select i1 %cmp, 0, %sub
1505 ///     ...
1506 /// \endcode
1507 ///
1508 /// \returns true if the conditional block is removed.
1509 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1510                                    const TargetTransformInfo &TTI) {
1511   // Be conservative for now. FP select instruction can often be expensive.
1512   Value *BrCond = BI->getCondition();
1513   if (isa<FCmpInst>(BrCond))
1514     return false;
1515 
1516   BasicBlock *BB = BI->getParent();
1517   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1518 
1519   // If ThenBB is actually on the false edge of the conditional branch, remember
1520   // to swap the select operands later.
1521   bool Invert = false;
1522   if (ThenBB != BI->getSuccessor(0)) {
1523     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1524     Invert = true;
1525   }
1526   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1527 
1528   // Keep a count of how many times instructions are used within CondBB when
1529   // they are candidates for sinking into CondBB. Specifically:
1530   // - They are defined in BB, and
1531   // - They have no side effects, and
1532   // - All of their uses are in CondBB.
1533   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1534 
1535   unsigned SpeculationCost = 0;
1536   Value *SpeculatedStoreValue = nullptr;
1537   StoreInst *SpeculatedStore = nullptr;
1538   for (BasicBlock::iterator BBI = ThenBB->begin(),
1539                             BBE = std::prev(ThenBB->end());
1540        BBI != BBE; ++BBI) {
1541     Instruction *I = &*BBI;
1542     // Skip debug info.
1543     if (isa<DbgInfoIntrinsic>(I))
1544       continue;
1545 
1546     // Only speculatively execute a single instruction (not counting the
1547     // terminator) for now.
1548     ++SpeculationCost;
1549     if (SpeculationCost > 1)
1550       return false;
1551 
1552     // Don't hoist the instruction if it's unsafe or expensive.
1553     if (!isSafeToSpeculativelyExecute(I) &&
1554         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1555                                   I, BB, ThenBB, EndBB))))
1556       return false;
1557     if (!SpeculatedStoreValue &&
1558         ComputeSpeculationCost(I, TTI) >
1559             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1560       return false;
1561 
1562     // Store the store speculation candidate.
1563     if (SpeculatedStoreValue)
1564       SpeculatedStore = cast<StoreInst>(I);
1565 
1566     // Do not hoist the instruction if any of its operands are defined but not
1567     // used in BB. The transformation will prevent the operand from
1568     // being sunk into the use block.
1569     for (User::op_iterator i = I->op_begin(), e = I->op_end();
1570          i != e; ++i) {
1571       Instruction *OpI = dyn_cast<Instruction>(*i);
1572       if (!OpI || OpI->getParent() != BB ||
1573           OpI->mayHaveSideEffects())
1574         continue; // Not a candidate for sinking.
1575 
1576       ++SinkCandidateUseCounts[OpI];
1577     }
1578   }
1579 
1580   // Consider any sink candidates which are only used in CondBB as costs for
1581   // speculation. Note, while we iterate over a DenseMap here, we are summing
1582   // and so iteration order isn't significant.
1583   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1584            SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1585        I != E; ++I)
1586     if (I->first->getNumUses() == I->second) {
1587       ++SpeculationCost;
1588       if (SpeculationCost > 1)
1589         return false;
1590     }
1591 
1592   // Check that the PHI nodes can be converted to selects.
1593   bool HaveRewritablePHIs = false;
1594   for (BasicBlock::iterator I = EndBB->begin();
1595        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1596     Value *OrigV = PN->getIncomingValueForBlock(BB);
1597     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1598 
1599     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1600     // Skip PHIs which are trivial.
1601     if (ThenV == OrigV)
1602       continue;
1603 
1604     // Don't convert to selects if we could remove undefined behavior instead.
1605     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1606         passingValueIsAlwaysUndefined(ThenV, PN))
1607       return false;
1608 
1609     HaveRewritablePHIs = true;
1610     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1611     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1612     if (!OrigCE && !ThenCE)
1613       continue; // Known safe and cheap.
1614 
1615     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1616         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1617       return false;
1618     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1619     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1620     unsigned MaxCost = 2 * PHINodeFoldingThreshold *
1621       TargetTransformInfo::TCC_Basic;
1622     if (OrigCost + ThenCost > MaxCost)
1623       return false;
1624 
1625     // Account for the cost of an unfolded ConstantExpr which could end up
1626     // getting expanded into Instructions.
1627     // FIXME: This doesn't account for how many operations are combined in the
1628     // constant expression.
1629     ++SpeculationCost;
1630     if (SpeculationCost > 1)
1631       return false;
1632   }
1633 
1634   // If there are no PHIs to process, bail early. This helps ensure idempotence
1635   // as well.
1636   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1637     return false;
1638 
1639   // If we get here, we can hoist the instruction and if-convert.
1640   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1641 
1642   // Insert a select of the value of the speculated store.
1643   if (SpeculatedStoreValue) {
1644     IRBuilder<NoFolder> Builder(BI);
1645     Value *TrueV = SpeculatedStore->getValueOperand();
1646     Value *FalseV = SpeculatedStoreValue;
1647     if (Invert)
1648       std::swap(TrueV, FalseV);
1649     Value *S = Builder.CreateSelect(
1650         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
1651     SpeculatedStore->setOperand(0, S);
1652   }
1653 
1654   // Metadata can be dependent on the condition we are hoisting above.
1655   // Conservatively strip all metadata on the instruction.
1656   for (auto &I: *ThenBB)
1657     I.dropUnknownNonDebugMetadata();
1658 
1659   // Hoist the instructions.
1660   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
1661                            ThenBB->begin(), std::prev(ThenBB->end()));
1662 
1663   // Insert selects and rewrite the PHI operands.
1664   IRBuilder<NoFolder> Builder(BI);
1665   for (BasicBlock::iterator I = EndBB->begin();
1666        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1667     unsigned OrigI = PN->getBasicBlockIndex(BB);
1668     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1669     Value *OrigV = PN->getIncomingValue(OrigI);
1670     Value *ThenV = PN->getIncomingValue(ThenI);
1671 
1672     // Skip PHIs which are trivial.
1673     if (OrigV == ThenV)
1674       continue;
1675 
1676     // Create a select whose true value is the speculatively executed value and
1677     // false value is the preexisting value. Swap them if the branch
1678     // destinations were inverted.
1679     Value *TrueV = ThenV, *FalseV = OrigV;
1680     if (Invert)
1681       std::swap(TrueV, FalseV);
1682     Value *V = Builder.CreateSelect(
1683         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
1684     PN->setIncomingValue(OrigI, V);
1685     PN->setIncomingValue(ThenI, V);
1686   }
1687 
1688   ++NumSpeculations;
1689   return true;
1690 }
1691 
1692 /// Return true if we can thread a branch across this block.
1693 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1694   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1695   unsigned Size = 0;
1696 
1697   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1698     if (isa<DbgInfoIntrinsic>(BBI))
1699       continue;
1700     if (Size > 10) return false;  // Don't clone large BB's.
1701     ++Size;
1702 
1703     // We can only support instructions that do not define values that are
1704     // live outside of the current basic block.
1705     for (User *U : BBI->users()) {
1706       Instruction *UI = cast<Instruction>(U);
1707       if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
1708     }
1709 
1710     // Looks ok, continue checking.
1711   }
1712 
1713   return true;
1714 }
1715 
1716 /// If we have a conditional branch on a PHI node value that is defined in the
1717 /// same block as the branch and if any PHI entries are constants, thread edges
1718 /// corresponding to that entry to be branches to their ultimate destination.
1719 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
1720   BasicBlock *BB = BI->getParent();
1721   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1722   // NOTE: we currently cannot transform this case if the PHI node is used
1723   // outside of the block.
1724   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1725     return false;
1726 
1727   // Degenerate case of a single entry PHI.
1728   if (PN->getNumIncomingValues() == 1) {
1729     FoldSingleEntryPHINodes(PN->getParent());
1730     return true;
1731   }
1732 
1733   // Now we know that this block has multiple preds and two succs.
1734   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1735 
1736   // Can't fold blocks that contain noduplicate or convergent calls.
1737   if (llvm::any_of(*BB, [](const Instruction &I) {
1738         const CallInst *CI = dyn_cast<CallInst>(&I);
1739         return CI && (CI->cannotDuplicate() || CI->isConvergent());
1740       }))
1741     return false;
1742 
1743   // Okay, this is a simple enough basic block.  See if any phi values are
1744   // constants.
1745   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1746     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1747     if (!CB || !CB->getType()->isIntegerTy(1)) continue;
1748 
1749     // Okay, we now know that all edges from PredBB should be revectored to
1750     // branch to RealDest.
1751     BasicBlock *PredBB = PN->getIncomingBlock(i);
1752     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1753 
1754     if (RealDest == BB) continue;  // Skip self loops.
1755     // Skip if the predecessor's terminator is an indirect branch.
1756     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1757 
1758     // The dest block might have PHI nodes, other predecessors and other
1759     // difficult cases.  Instead of being smart about this, just insert a new
1760     // block that jumps to the destination block, effectively splitting
1761     // the edge we are about to create.
1762     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1763                                             RealDest->getName()+".critedge",
1764                                             RealDest->getParent(), RealDest);
1765     BranchInst::Create(RealDest, EdgeBB);
1766 
1767     // Update PHI nodes.
1768     AddPredecessorToBlock(RealDest, EdgeBB, BB);
1769 
1770     // BB may have instructions that are being threaded over.  Clone these
1771     // instructions into EdgeBB.  We know that there will be no uses of the
1772     // cloned instructions outside of EdgeBB.
1773     BasicBlock::iterator InsertPt = EdgeBB->begin();
1774     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1775     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1776       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1777         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1778         continue;
1779       }
1780       // Clone the instruction.
1781       Instruction *N = BBI->clone();
1782       if (BBI->hasName()) N->setName(BBI->getName()+".c");
1783 
1784       // Update operands due to translation.
1785       for (User::op_iterator i = N->op_begin(), e = N->op_end();
1786            i != e; ++i) {
1787         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1788         if (PI != TranslateMap.end())
1789           *i = PI->second;
1790       }
1791 
1792       // Check for trivial simplification.
1793       if (Value *V = SimplifyInstruction(N, DL)) {
1794         TranslateMap[&*BBI] = V;
1795         delete N;   // Instruction folded away, don't need actual inst
1796       } else {
1797         // Insert the new instruction into its new home.
1798         EdgeBB->getInstList().insert(InsertPt, N);
1799         if (!BBI->use_empty())
1800           TranslateMap[&*BBI] = N;
1801       }
1802     }
1803 
1804     // Loop over all of the edges from PredBB to BB, changing them to branch
1805     // to EdgeBB instead.
1806     TerminatorInst *PredBBTI = PredBB->getTerminator();
1807     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1808       if (PredBBTI->getSuccessor(i) == BB) {
1809         BB->removePredecessor(PredBB);
1810         PredBBTI->setSuccessor(i, EdgeBB);
1811       }
1812 
1813     // Recurse, simplifying any other constants.
1814     return FoldCondBranchOnPHI(BI, DL) | true;
1815   }
1816 
1817   return false;
1818 }
1819 
1820 /// Given a BB that starts with the specified two-entry PHI node,
1821 /// see if we can eliminate it.
1822 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
1823                                 const DataLayout &DL) {
1824   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1825   // statement", which has a very simple dominance structure.  Basically, we
1826   // are trying to find the condition that is being branched on, which
1827   // subsequently causes this merge to happen.  We really want control
1828   // dependence information for this check, but simplifycfg can't keep it up
1829   // to date, and this catches most of the cases we care about anyway.
1830   BasicBlock *BB = PN->getParent();
1831   BasicBlock *IfTrue, *IfFalse;
1832   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1833   if (!IfCond ||
1834       // Don't bother if the branch will be constant folded trivially.
1835       isa<ConstantInt>(IfCond))
1836     return false;
1837 
1838   // Okay, we found that we can merge this two-entry phi node into a select.
1839   // Doing so would require us to fold *all* two entry phi nodes in this block.
1840   // At some point this becomes non-profitable (particularly if the target
1841   // doesn't support cmov's).  Only do this transformation if there are two or
1842   // fewer PHI nodes in this block.
1843   unsigned NumPhis = 0;
1844   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1845     if (NumPhis > 2)
1846       return false;
1847 
1848   // Loop over the PHI's seeing if we can promote them all to select
1849   // instructions.  While we are at it, keep track of the instructions
1850   // that need to be moved to the dominating block.
1851   SmallPtrSet<Instruction*, 4> AggressiveInsts;
1852   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1853            MaxCostVal1 = PHINodeFoldingThreshold;
1854   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
1855   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
1856 
1857   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1858     PHINode *PN = cast<PHINode>(II++);
1859     if (Value *V = SimplifyInstruction(PN, DL)) {
1860       PN->replaceAllUsesWith(V);
1861       PN->eraseFromParent();
1862       continue;
1863     }
1864 
1865     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1866                              MaxCostVal0, TTI) ||
1867         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1868                              MaxCostVal1, TTI))
1869       return false;
1870   }
1871 
1872   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1873   // we ran out of PHIs then we simplified them all.
1874   PN = dyn_cast<PHINode>(BB->begin());
1875   if (!PN) return true;
1876 
1877   // Don't fold i1 branches on PHIs which contain binary operators.  These can
1878   // often be turned into switches and other things.
1879   if (PN->getType()->isIntegerTy(1) &&
1880       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1881        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1882        isa<BinaryOperator>(IfCond)))
1883     return false;
1884 
1885   // If all PHI nodes are promotable, check to make sure that all instructions
1886   // in the predecessor blocks can be promoted as well. If not, we won't be able
1887   // to get rid of the control flow, so it's not worth promoting to select
1888   // instructions.
1889   BasicBlock *DomBlock = nullptr;
1890   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1891   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1892   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1893     IfBlock1 = nullptr;
1894   } else {
1895     DomBlock = *pred_begin(IfBlock1);
1896     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1897       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
1898         // This is not an aggressive instruction that we can promote.
1899         // Because of this, we won't be able to get rid of the control flow, so
1900         // the xform is not worth it.
1901         return false;
1902       }
1903   }
1904 
1905   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1906     IfBlock2 = nullptr;
1907   } else {
1908     DomBlock = *pred_begin(IfBlock2);
1909     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1910       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
1911         // This is not an aggressive instruction that we can promote.
1912         // Because of this, we won't be able to get rid of the control flow, so
1913         // the xform is not worth it.
1914         return false;
1915       }
1916   }
1917 
1918   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1919                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1920 
1921   // If we can still promote the PHI nodes after this gauntlet of tests,
1922   // do all of the PHI's now.
1923   Instruction *InsertPt = DomBlock->getTerminator();
1924   IRBuilder<NoFolder> Builder(InsertPt);
1925 
1926   // Move all 'aggressive' instructions, which are defined in the
1927   // conditional parts of the if's up to the dominating block.
1928   if (IfBlock1)
1929     DomBlock->getInstList().splice(InsertPt->getIterator(),
1930                                    IfBlock1->getInstList(), IfBlock1->begin(),
1931                                    IfBlock1->getTerminator()->getIterator());
1932   if (IfBlock2)
1933     DomBlock->getInstList().splice(InsertPt->getIterator(),
1934                                    IfBlock2->getInstList(), IfBlock2->begin(),
1935                                    IfBlock2->getTerminator()->getIterator());
1936 
1937   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1938     // Change the PHI node into a select instruction.
1939     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1940     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1941 
1942     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
1943     PN->replaceAllUsesWith(Sel);
1944     Sel->takeName(PN);
1945     PN->eraseFromParent();
1946   }
1947 
1948   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1949   // has been flattened.  Change DomBlock to jump directly to our new block to
1950   // avoid other simplifycfg's kicking in on the diamond.
1951   TerminatorInst *OldTI = DomBlock->getTerminator();
1952   Builder.SetInsertPoint(OldTI);
1953   Builder.CreateBr(BB);
1954   OldTI->eraseFromParent();
1955   return true;
1956 }
1957 
1958 /// If we found a conditional branch that goes to two returning blocks,
1959 /// try to merge them together into one return,
1960 /// introducing a select if the return values disagree.
1961 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1962                                            IRBuilder<> &Builder) {
1963   assert(BI->isConditional() && "Must be a conditional branch");
1964   BasicBlock *TrueSucc = BI->getSuccessor(0);
1965   BasicBlock *FalseSucc = BI->getSuccessor(1);
1966   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1967   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1968 
1969   // Check to ensure both blocks are empty (just a return) or optionally empty
1970   // with PHI nodes.  If there are other instructions, merging would cause extra
1971   // computation on one path or the other.
1972   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1973     return false;
1974   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1975     return false;
1976 
1977   Builder.SetInsertPoint(BI);
1978   // Okay, we found a branch that is going to two return nodes.  If
1979   // there is no return value for this function, just change the
1980   // branch into a return.
1981   if (FalseRet->getNumOperands() == 0) {
1982     TrueSucc->removePredecessor(BI->getParent());
1983     FalseSucc->removePredecessor(BI->getParent());
1984     Builder.CreateRetVoid();
1985     EraseTerminatorInstAndDCECond(BI);
1986     return true;
1987   }
1988 
1989   // Otherwise, figure out what the true and false return values are
1990   // so we can insert a new select instruction.
1991   Value *TrueValue = TrueRet->getReturnValue();
1992   Value *FalseValue = FalseRet->getReturnValue();
1993 
1994   // Unwrap any PHI nodes in the return blocks.
1995   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1996     if (TVPN->getParent() == TrueSucc)
1997       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1998   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1999     if (FVPN->getParent() == FalseSucc)
2000       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2001 
2002   // In order for this transformation to be safe, we must be able to
2003   // unconditionally execute both operands to the return.  This is
2004   // normally the case, but we could have a potentially-trapping
2005   // constant expression that prevents this transformation from being
2006   // safe.
2007   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2008     if (TCV->canTrap())
2009       return false;
2010   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2011     if (FCV->canTrap())
2012       return false;
2013 
2014   // Okay, we collected all the mapped values and checked them for sanity, and
2015   // defined to really do this transformation.  First, update the CFG.
2016   TrueSucc->removePredecessor(BI->getParent());
2017   FalseSucc->removePredecessor(BI->getParent());
2018 
2019   // Insert select instructions where needed.
2020   Value *BrCond = BI->getCondition();
2021   if (TrueValue) {
2022     // Insert a select if the results differ.
2023     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2024     } else if (isa<UndefValue>(TrueValue)) {
2025       TrueValue = FalseValue;
2026     } else {
2027       TrueValue =
2028           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2029     }
2030   }
2031 
2032   Value *RI = !TrueValue ?
2033     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2034 
2035   (void) RI;
2036 
2037   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2038                << "\n  " << *BI << "NewRet = " << *RI
2039                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
2040 
2041   EraseTerminatorInstAndDCECond(BI);
2042 
2043   return true;
2044 }
2045 
2046 /// Return true if the given instruction is available
2047 /// in its predecessor block. If yes, the instruction will be removed.
2048 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2049   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2050     return false;
2051   for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
2052     Instruction *PBI = &*I;
2053     // Check whether Inst and PBI generate the same value.
2054     if (Inst->isIdenticalTo(PBI)) {
2055       Inst->replaceAllUsesWith(PBI);
2056       Inst->eraseFromParent();
2057       return true;
2058     }
2059   }
2060   return false;
2061 }
2062 
2063 /// If this basic block is simple enough, and if a predecessor branches to us
2064 /// and one of our successors, fold the block into the predecessor and use
2065 /// logical operations to pick the right destination.
2066 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2067   BasicBlock *BB = BI->getParent();
2068 
2069   Instruction *Cond = nullptr;
2070   if (BI->isConditional())
2071     Cond = dyn_cast<Instruction>(BI->getCondition());
2072   else {
2073     // For unconditional branch, check for a simple CFG pattern, where
2074     // BB has a single predecessor and BB's successor is also its predecessor's
2075     // successor. If such pattern exisits, check for CSE between BB and its
2076     // predecessor.
2077     if (BasicBlock *PB = BB->getSinglePredecessor())
2078       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2079         if (PBI->isConditional() &&
2080             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2081              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2082           for (BasicBlock::iterator I = BB->begin(), E = BB->end();
2083                I != E; ) {
2084             Instruction *Curr = &*I++;
2085             if (isa<CmpInst>(Curr)) {
2086               Cond = Curr;
2087               break;
2088             }
2089             // Quit if we can't remove this instruction.
2090             if (!checkCSEInPredecessor(Curr, PB))
2091               return false;
2092           }
2093         }
2094 
2095     if (!Cond)
2096       return false;
2097   }
2098 
2099   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2100       Cond->getParent() != BB || !Cond->hasOneUse())
2101     return false;
2102 
2103   // Make sure the instruction after the condition is the cond branch.
2104   BasicBlock::iterator CondIt = ++Cond->getIterator();
2105 
2106   // Ignore dbg intrinsics.
2107   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2108 
2109   if (&*CondIt != BI)
2110     return false;
2111 
2112   // Only allow this transformation if computing the condition doesn't involve
2113   // too many instructions and these involved instructions can be executed
2114   // unconditionally. We denote all involved instructions except the condition
2115   // as "bonus instructions", and only allow this transformation when the
2116   // number of the bonus instructions does not exceed a certain threshold.
2117   unsigned NumBonusInsts = 0;
2118   for (auto I = BB->begin(); Cond != &*I; ++I) {
2119     // Ignore dbg intrinsics.
2120     if (isa<DbgInfoIntrinsic>(I))
2121       continue;
2122     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2123       return false;
2124     // I has only one use and can be executed unconditionally.
2125     Instruction *User = dyn_cast<Instruction>(I->user_back());
2126     if (User == nullptr || User->getParent() != BB)
2127       return false;
2128     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2129     // to use any other instruction, User must be an instruction between next(I)
2130     // and Cond.
2131     ++NumBonusInsts;
2132     // Early exits once we reach the limit.
2133     if (NumBonusInsts > BonusInstThreshold)
2134       return false;
2135   }
2136 
2137   // Cond is known to be a compare or binary operator.  Check to make sure that
2138   // neither operand is a potentially-trapping constant expression.
2139   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2140     if (CE->canTrap())
2141       return false;
2142   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2143     if (CE->canTrap())
2144       return false;
2145 
2146   // Finally, don't infinitely unroll conditional loops.
2147   BasicBlock *TrueDest  = BI->getSuccessor(0);
2148   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2149   if (TrueDest == BB || FalseDest == BB)
2150     return false;
2151 
2152   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2153     BasicBlock *PredBlock = *PI;
2154     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2155 
2156     // Check that we have two conditional branches.  If there is a PHI node in
2157     // the common successor, verify that the same value flows in from both
2158     // blocks.
2159     SmallVector<PHINode*, 4> PHIs;
2160     if (!PBI || PBI->isUnconditional() ||
2161         (BI->isConditional() &&
2162          !SafeToMergeTerminators(BI, PBI)) ||
2163         (!BI->isConditional() &&
2164          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2165       continue;
2166 
2167     // Determine if the two branches share a common destination.
2168     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2169     bool InvertPredCond = false;
2170 
2171     if (BI->isConditional()) {
2172       if (PBI->getSuccessor(0) == TrueDest) {
2173         Opc = Instruction::Or;
2174       } else if (PBI->getSuccessor(1) == FalseDest) {
2175         Opc = Instruction::And;
2176       } else if (PBI->getSuccessor(0) == FalseDest) {
2177         Opc = Instruction::And;
2178         InvertPredCond = true;
2179       } else if (PBI->getSuccessor(1) == TrueDest) {
2180         Opc = Instruction::Or;
2181         InvertPredCond = true;
2182       } else {
2183         continue;
2184       }
2185     } else {
2186       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2187         continue;
2188     }
2189 
2190     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2191     IRBuilder<> Builder(PBI);
2192 
2193     // If we need to invert the condition in the pred block to match, do so now.
2194     if (InvertPredCond) {
2195       Value *NewCond = PBI->getCondition();
2196 
2197       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2198         CmpInst *CI = cast<CmpInst>(NewCond);
2199         CI->setPredicate(CI->getInversePredicate());
2200       } else {
2201         NewCond = Builder.CreateNot(NewCond,
2202                                     PBI->getCondition()->getName()+".not");
2203       }
2204 
2205       PBI->setCondition(NewCond);
2206       PBI->swapSuccessors();
2207     }
2208 
2209     // If we have bonus instructions, clone them into the predecessor block.
2210     // Note that there may be multiple predecessor blocks, so we cannot move
2211     // bonus instructions to a predecessor block.
2212     ValueToValueMapTy VMap; // maps original values to cloned values
2213     // We already make sure Cond is the last instruction before BI. Therefore,
2214     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2215     // instructions.
2216     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2217       if (isa<DbgInfoIntrinsic>(BonusInst))
2218         continue;
2219       Instruction *NewBonusInst = BonusInst->clone();
2220       RemapInstruction(NewBonusInst, VMap,
2221                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2222       VMap[&*BonusInst] = NewBonusInst;
2223 
2224       // If we moved a load, we cannot any longer claim any knowledge about
2225       // its potential value. The previous information might have been valid
2226       // only given the branch precondition.
2227       // For an analogous reason, we must also drop all the metadata whose
2228       // semantics we don't understand.
2229       NewBonusInst->dropUnknownNonDebugMetadata();
2230 
2231       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2232       NewBonusInst->takeName(&*BonusInst);
2233       BonusInst->setName(BonusInst->getName() + ".old");
2234     }
2235 
2236     // Clone Cond into the predecessor basic block, and or/and the
2237     // two conditions together.
2238     Instruction *New = Cond->clone();
2239     RemapInstruction(New, VMap,
2240                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2241     PredBlock->getInstList().insert(PBI->getIterator(), New);
2242     New->takeName(Cond);
2243     Cond->setName(New->getName() + ".old");
2244 
2245     if (BI->isConditional()) {
2246       Instruction *NewCond =
2247         cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2248                                             New, "or.cond"));
2249       PBI->setCondition(NewCond);
2250 
2251       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2252       bool PredHasWeights =
2253           PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2254       bool SuccHasWeights =
2255           BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2256       SmallVector<uint64_t, 8> NewWeights;
2257 
2258       if (PBI->getSuccessor(0) == BB) {
2259         if (PredHasWeights && SuccHasWeights) {
2260           // PBI: br i1 %x, BB, FalseDest
2261           // BI:  br i1 %y, TrueDest, FalseDest
2262           //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2263           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2264           //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2265           //               TrueWeight for PBI * FalseWeight for BI.
2266           // We assume that total weights of a BranchInst can fit into 32 bits.
2267           // Therefore, we will not have overflow using 64-bit arithmetic.
2268           NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2269                SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2270         }
2271         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2272         PBI->setSuccessor(0, TrueDest);
2273       }
2274       if (PBI->getSuccessor(1) == BB) {
2275         if (PredHasWeights && SuccHasWeights) {
2276           // PBI: br i1 %x, TrueDest, BB
2277           // BI:  br i1 %y, TrueDest, FalseDest
2278           //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2279           //              FalseWeight for PBI * TrueWeight for BI.
2280           NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2281               SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2282           //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2283           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2284         }
2285         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2286         PBI->setSuccessor(1, FalseDest);
2287       }
2288       if (NewWeights.size() == 2) {
2289         // Halve the weights if any of them cannot fit in an uint32_t
2290         FitWeights(NewWeights);
2291 
2292         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2293         PBI->setMetadata(LLVMContext::MD_prof,
2294                          MDBuilder(BI->getContext()).
2295                          createBranchWeights(MDWeights));
2296       } else
2297         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2298     } else {
2299       // Update PHI nodes in the common successors.
2300       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2301         ConstantInt *PBI_C = cast<ConstantInt>(
2302           PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2303         assert(PBI_C->getType()->isIntegerTy(1));
2304         Instruction *MergedCond = nullptr;
2305         if (PBI->getSuccessor(0) == TrueDest) {
2306           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2307           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2308           //       is false: !PBI_Cond and BI_Value
2309           Instruction *NotCond =
2310             cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2311                                 "not.cond"));
2312           MergedCond =
2313             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2314                                 NotCond, New,
2315                                 "and.cond"));
2316           if (PBI_C->isOne())
2317             MergedCond =
2318               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2319                                   PBI->getCondition(), MergedCond,
2320                                   "or.cond"));
2321         } else {
2322           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2323           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2324           //       is false: PBI_Cond and BI_Value
2325           MergedCond =
2326             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2327                                 PBI->getCondition(), New,
2328                                 "and.cond"));
2329           if (PBI_C->isOne()) {
2330             Instruction *NotCond =
2331               cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2332                                   "not.cond"));
2333             MergedCond =
2334               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2335                                   NotCond, MergedCond,
2336                                   "or.cond"));
2337           }
2338         }
2339         // Update PHI Node.
2340         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2341                                   MergedCond);
2342       }
2343       // Change PBI from Conditional to Unconditional.
2344       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2345       EraseTerminatorInstAndDCECond(PBI);
2346       PBI = New_PBI;
2347     }
2348 
2349     // TODO: If BB is reachable from all paths through PredBlock, then we
2350     // could replace PBI's branch probabilities with BI's.
2351 
2352     // Copy any debug value intrinsics into the end of PredBlock.
2353     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2354       if (isa<DbgInfoIntrinsic>(*I))
2355         I->clone()->insertBefore(PBI);
2356 
2357     return true;
2358   }
2359   return false;
2360 }
2361 
2362 // If there is only one store in BB1 and BB2, return it, otherwise return
2363 // nullptr.
2364 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2365   StoreInst *S = nullptr;
2366   for (auto *BB : {BB1, BB2}) {
2367     if (!BB)
2368       continue;
2369     for (auto &I : *BB)
2370       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2371         if (S)
2372           // Multiple stores seen.
2373           return nullptr;
2374         else
2375           S = SI;
2376       }
2377   }
2378   return S;
2379 }
2380 
2381 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2382                                               Value *AlternativeV = nullptr) {
2383   // PHI is going to be a PHI node that allows the value V that is defined in
2384   // BB to be referenced in BB's only successor.
2385   //
2386   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2387   // doesn't matter to us what the other operand is (it'll never get used). We
2388   // could just create a new PHI with an undef incoming value, but that could
2389   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2390   // other PHI. So here we directly look for some PHI in BB's successor with V
2391   // as an incoming operand. If we find one, we use it, else we create a new
2392   // one.
2393   //
2394   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2395   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2396   // where OtherBB is the single other predecessor of BB's only successor.
2397   PHINode *PHI = nullptr;
2398   BasicBlock *Succ = BB->getSingleSuccessor();
2399 
2400   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2401     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2402       PHI = cast<PHINode>(I);
2403       if (!AlternativeV)
2404         break;
2405 
2406       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2407       auto PredI = pred_begin(Succ);
2408       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2409       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2410         break;
2411       PHI = nullptr;
2412     }
2413   if (PHI)
2414     return PHI;
2415 
2416   // If V is not an instruction defined in BB, just return it.
2417   if (!AlternativeV &&
2418       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2419     return V;
2420 
2421   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2422   PHI->addIncoming(V, BB);
2423   for (BasicBlock *PredBB : predecessors(Succ))
2424     if (PredBB != BB)
2425       PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()),
2426                        PredBB);
2427   return PHI;
2428 }
2429 
2430 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2431                                            BasicBlock *QTB, BasicBlock *QFB,
2432                                            BasicBlock *PostBB, Value *Address,
2433                                            bool InvertPCond, bool InvertQCond) {
2434   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2435     return Operator::getOpcode(&I) == Instruction::BitCast &&
2436            I.getType()->isPointerTy();
2437   };
2438 
2439   // If we're not in aggressive mode, we only optimize if we have some
2440   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2441   auto IsWorthwhile = [&](BasicBlock *BB) {
2442     if (!BB)
2443       return true;
2444     // Heuristic: if the block can be if-converted/phi-folded and the
2445     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2446     // thread this store.
2447     unsigned N = 0;
2448     for (auto &I : *BB) {
2449       // Cheap instructions viable for folding.
2450       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2451           isa<StoreInst>(I))
2452         ++N;
2453       // Free instructions.
2454       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2455                IsaBitcastOfPointerType(I))
2456         continue;
2457       else
2458         return false;
2459     }
2460     return N <= PHINodeFoldingThreshold;
2461   };
2462 
2463   if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) ||
2464                                        !IsWorthwhile(PFB) ||
2465                                        !IsWorthwhile(QTB) ||
2466                                        !IsWorthwhile(QFB)))
2467     return false;
2468 
2469   // For every pointer, there must be exactly two stores, one coming from
2470   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2471   // store (to any address) in PTB,PFB or QTB,QFB.
2472   // FIXME: We could relax this restriction with a bit more work and performance
2473   // testing.
2474   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2475   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2476   if (!PStore || !QStore)
2477     return false;
2478 
2479   // Now check the stores are compatible.
2480   if (!QStore->isUnordered() || !PStore->isUnordered())
2481     return false;
2482 
2483   // Check that sinking the store won't cause program behavior changes. Sinking
2484   // the store out of the Q blocks won't change any behavior as we're sinking
2485   // from a block to its unconditional successor. But we're moving a store from
2486   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2487   // So we need to check that there are no aliasing loads or stores in
2488   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2489   // operations between PStore and the end of its parent block.
2490   //
2491   // The ideal way to do this is to query AliasAnalysis, but we don't
2492   // preserve AA currently so that is dangerous. Be super safe and just
2493   // check there are no other memory operations at all.
2494   for (auto &I : *QFB->getSinglePredecessor())
2495     if (I.mayReadOrWriteMemory())
2496       return false;
2497   for (auto &I : *QFB)
2498     if (&I != QStore && I.mayReadOrWriteMemory())
2499       return false;
2500   if (QTB)
2501     for (auto &I : *QTB)
2502       if (&I != QStore && I.mayReadOrWriteMemory())
2503         return false;
2504   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2505        I != E; ++I)
2506     if (&*I != PStore && I->mayReadOrWriteMemory())
2507       return false;
2508 
2509   // OK, we're going to sink the stores to PostBB. The store has to be
2510   // conditional though, so first create the predicate.
2511   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2512                      ->getCondition();
2513   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2514                      ->getCondition();
2515 
2516   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2517                                                 PStore->getParent());
2518   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2519                                                 QStore->getParent(), PPHI);
2520 
2521   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2522 
2523   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2524   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2525 
2526   if (InvertPCond)
2527     PPred = QB.CreateNot(PPred);
2528   if (InvertQCond)
2529     QPred = QB.CreateNot(QPred);
2530   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2531 
2532   auto *T =
2533       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2534   QB.SetInsertPoint(T);
2535   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2536   AAMDNodes AAMD;
2537   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2538   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2539   SI->setAAMetadata(AAMD);
2540 
2541   QStore->eraseFromParent();
2542   PStore->eraseFromParent();
2543 
2544   return true;
2545 }
2546 
2547 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2548   // The intention here is to find diamonds or triangles (see below) where each
2549   // conditional block contains a store to the same address. Both of these
2550   // stores are conditional, so they can't be unconditionally sunk. But it may
2551   // be profitable to speculatively sink the stores into one merged store at the
2552   // end, and predicate the merged store on the union of the two conditions of
2553   // PBI and QBI.
2554   //
2555   // This can reduce the number of stores executed if both of the conditions are
2556   // true, and can allow the blocks to become small enough to be if-converted.
2557   // This optimization will also chain, so that ladders of test-and-set
2558   // sequences can be if-converted away.
2559   //
2560   // We only deal with simple diamonds or triangles:
2561   //
2562   //     PBI       or      PBI        or a combination of the two
2563   //    /   \               | \
2564   //   PTB  PFB             |  PFB
2565   //    \   /               | /
2566   //     QBI                QBI
2567   //    /  \                | \
2568   //   QTB  QFB             |  QFB
2569   //    \  /                | /
2570   //    PostBB            PostBB
2571   //
2572   // We model triangles as a type of diamond with a nullptr "true" block.
2573   // Triangles are canonicalized so that the fallthrough edge is represented by
2574   // a true condition, as in the diagram above.
2575   //
2576   BasicBlock *PTB = PBI->getSuccessor(0);
2577   BasicBlock *PFB = PBI->getSuccessor(1);
2578   BasicBlock *QTB = QBI->getSuccessor(0);
2579   BasicBlock *QFB = QBI->getSuccessor(1);
2580   BasicBlock *PostBB = QFB->getSingleSuccessor();
2581 
2582   bool InvertPCond = false, InvertQCond = false;
2583   // Canonicalize fallthroughs to the true branches.
2584   if (PFB == QBI->getParent()) {
2585     std::swap(PFB, PTB);
2586     InvertPCond = true;
2587   }
2588   if (QFB == PostBB) {
2589     std::swap(QFB, QTB);
2590     InvertQCond = true;
2591   }
2592 
2593   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
2594   // and QFB may not. Model fallthroughs as a nullptr block.
2595   if (PTB == QBI->getParent())
2596     PTB = nullptr;
2597   if (QTB == PostBB)
2598     QTB = nullptr;
2599 
2600   // Legality bailouts. We must have at least the non-fallthrough blocks and
2601   // the post-dominating block, and the non-fallthroughs must only have one
2602   // predecessor.
2603   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
2604     return BB->getSinglePredecessor() == P &&
2605            BB->getSingleSuccessor() == S;
2606   };
2607   if (!PostBB ||
2608       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
2609       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
2610     return false;
2611   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
2612       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
2613     return false;
2614   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
2615     return false;
2616 
2617   // OK, this is a sequence of two diamonds or triangles.
2618   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
2619   SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses;
2620   for (auto *BB : {PTB, PFB}) {
2621     if (!BB)
2622       continue;
2623     for (auto &I : *BB)
2624       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2625         PStoreAddresses.insert(SI->getPointerOperand());
2626   }
2627   for (auto *BB : {QTB, QFB}) {
2628     if (!BB)
2629       continue;
2630     for (auto &I : *BB)
2631       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2632         QStoreAddresses.insert(SI->getPointerOperand());
2633   }
2634 
2635   set_intersect(PStoreAddresses, QStoreAddresses);
2636   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
2637   // clear what it contains.
2638   auto &CommonAddresses = PStoreAddresses;
2639 
2640   bool Changed = false;
2641   for (auto *Address : CommonAddresses)
2642     Changed |= mergeConditionalStoreToAddress(
2643         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
2644   return Changed;
2645 }
2646 
2647 /// If we have a conditional branch as a predecessor of another block,
2648 /// this function tries to simplify it.  We know
2649 /// that PBI and BI are both conditional branches, and BI is in one of the
2650 /// successor blocks of PBI - PBI branches to BI.
2651 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
2652                                            const DataLayout &DL) {
2653   assert(PBI->isConditional() && BI->isConditional());
2654   BasicBlock *BB = BI->getParent();
2655 
2656   // If this block ends with a branch instruction, and if there is a
2657   // predecessor that ends on a branch of the same condition, make
2658   // this conditional branch redundant.
2659   if (PBI->getCondition() == BI->getCondition() &&
2660       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2661     // Okay, the outcome of this conditional branch is statically
2662     // knowable.  If this block had a single pred, handle specially.
2663     if (BB->getSinglePredecessor()) {
2664       // Turn this into a branch on constant.
2665       bool CondIsTrue = PBI->getSuccessor(0) == BB;
2666       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2667                                         CondIsTrue));
2668       return true;  // Nuke the branch on constant.
2669     }
2670 
2671     // Otherwise, if there are multiple predecessors, insert a PHI that merges
2672     // in the constant and simplify the block result.  Subsequent passes of
2673     // simplifycfg will thread the block.
2674     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2675       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2676       PHINode *NewPN = PHINode::Create(
2677           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
2678           BI->getCondition()->getName() + ".pr", &BB->front());
2679       // Okay, we're going to insert the PHI node.  Since PBI is not the only
2680       // predecessor, compute the PHI'd conditional value for all of the preds.
2681       // Any predecessor where the condition is not computable we keep symbolic.
2682       for (pred_iterator PI = PB; PI != PE; ++PI) {
2683         BasicBlock *P = *PI;
2684         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2685             PBI != BI && PBI->isConditional() &&
2686             PBI->getCondition() == BI->getCondition() &&
2687             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2688           bool CondIsTrue = PBI->getSuccessor(0) == BB;
2689           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2690                                               CondIsTrue), P);
2691         } else {
2692           NewPN->addIncoming(BI->getCondition(), P);
2693         }
2694       }
2695 
2696       BI->setCondition(NewPN);
2697       return true;
2698     }
2699   }
2700 
2701   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2702     if (CE->canTrap())
2703       return false;
2704 
2705   // If BI is reached from the true path of PBI and PBI's condition implies
2706   // BI's condition, we know the direction of the BI branch.
2707   if ((PBI->getSuccessor(0) == BI->getParent() ||
2708        PBI->getSuccessor(1) == BI->getParent()) &&
2709       PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
2710       BB->getSinglePredecessor()) {
2711     bool FalseDest = PBI->getSuccessor(1) == BI->getParent();
2712     Optional<bool> Implication = isImpliedCondition(
2713         PBI->getCondition(), BI->getCondition(), DL, FalseDest);
2714     if (Implication) {
2715       // Turn this into a branch on constant.
2716       auto *OldCond = BI->getCondition();
2717       ConstantInt *CI = *Implication ? ConstantInt::getTrue(BB->getContext())
2718                                      : ConstantInt::getFalse(BB->getContext());
2719       BI->setCondition(CI);
2720       RecursivelyDeleteTriviallyDeadInstructions(OldCond);
2721       return true; // Nuke the branch on constant.
2722     }
2723   }
2724 
2725   // If both branches are conditional and both contain stores to the same
2726   // address, remove the stores from the conditionals and create a conditional
2727   // merged store at the end.
2728   if (MergeCondStores && mergeConditionalStores(PBI, BI))
2729     return true;
2730 
2731   // If this is a conditional branch in an empty block, and if any
2732   // predecessors are a conditional branch to one of our destinations,
2733   // fold the conditions into logical ops and one cond br.
2734   BasicBlock::iterator BBI = BB->begin();
2735   // Ignore dbg intrinsics.
2736   while (isa<DbgInfoIntrinsic>(BBI))
2737     ++BBI;
2738   if (&*BBI != BI)
2739     return false;
2740 
2741   int PBIOp, BIOp;
2742   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
2743     PBIOp = 0;
2744     BIOp = 0;
2745   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
2746     PBIOp = 0;
2747     BIOp = 1;
2748   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
2749     PBIOp = 1;
2750     BIOp = 0;
2751   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
2752     PBIOp = 1;
2753     BIOp = 1;
2754   } else {
2755     return false;
2756   }
2757 
2758   // Check to make sure that the other destination of this branch
2759   // isn't BB itself.  If so, this is an infinite loop that will
2760   // keep getting unwound.
2761   if (PBI->getSuccessor(PBIOp) == BB)
2762     return false;
2763 
2764   // Do not perform this transformation if it would require
2765   // insertion of a large number of select instructions. For targets
2766   // without predication/cmovs, this is a big pessimization.
2767 
2768   // Also do not perform this transformation if any phi node in the common
2769   // destination block can trap when reached by BB or PBB (PR17073). In that
2770   // case, it would be unsafe to hoist the operation into a select instruction.
2771 
2772   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2773   unsigned NumPhis = 0;
2774   for (BasicBlock::iterator II = CommonDest->begin();
2775        isa<PHINode>(II); ++II, ++NumPhis) {
2776     if (NumPhis > 2) // Disable this xform.
2777       return false;
2778 
2779     PHINode *PN = cast<PHINode>(II);
2780     Value *BIV = PN->getIncomingValueForBlock(BB);
2781     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2782       if (CE->canTrap())
2783         return false;
2784 
2785     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2786     Value *PBIV = PN->getIncomingValue(PBBIdx);
2787     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2788       if (CE->canTrap())
2789         return false;
2790   }
2791 
2792   // Finally, if everything is ok, fold the branches to logical ops.
2793   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2794 
2795   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2796                << "AND: " << *BI->getParent());
2797 
2798 
2799   // If OtherDest *is* BB, then BB is a basic block with a single conditional
2800   // branch in it, where one edge (OtherDest) goes back to itself but the other
2801   // exits.  We don't *know* that the program avoids the infinite loop
2802   // (even though that seems likely).  If we do this xform naively, we'll end up
2803   // recursively unpeeling the loop.  Since we know that (after the xform is
2804   // done) that the block *is* infinite if reached, we just make it an obviously
2805   // infinite loop with no cond branch.
2806   if (OtherDest == BB) {
2807     // Insert it at the end of the function, because it's either code,
2808     // or it won't matter if it's hot. :)
2809     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2810                                                   "infloop", BB->getParent());
2811     BranchInst::Create(InfLoopBlock, InfLoopBlock);
2812     OtherDest = InfLoopBlock;
2813   }
2814 
2815   DEBUG(dbgs() << *PBI->getParent()->getParent());
2816 
2817   // BI may have other predecessors.  Because of this, we leave
2818   // it alone, but modify PBI.
2819 
2820   // Make sure we get to CommonDest on True&True directions.
2821   Value *PBICond = PBI->getCondition();
2822   IRBuilder<NoFolder> Builder(PBI);
2823   if (PBIOp)
2824     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2825 
2826   Value *BICond = BI->getCondition();
2827   if (BIOp)
2828     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2829 
2830   // Merge the conditions.
2831   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2832 
2833   // Modify PBI to branch on the new condition to the new dests.
2834   PBI->setCondition(Cond);
2835   PBI->setSuccessor(0, CommonDest);
2836   PBI->setSuccessor(1, OtherDest);
2837 
2838   // Update branch weight for PBI.
2839   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2840   bool PredHasWeights =
2841       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2842   bool SuccHasWeights =
2843       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2844   if (PredHasWeights && SuccHasWeights) {
2845     uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2846     uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2847     uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2848     uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2849     // The weight to CommonDest should be PredCommon * SuccTotal +
2850     //                                    PredOther * SuccCommon.
2851     // The weight to OtherDest should be PredOther * SuccOther.
2852     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
2853                                   PredOther * SuccCommon,
2854                               PredOther * SuccOther};
2855     // Halve the weights if any of them cannot fit in an uint32_t
2856     FitWeights(NewWeights);
2857 
2858     PBI->setMetadata(LLVMContext::MD_prof,
2859                      MDBuilder(BI->getContext())
2860                          .createBranchWeights(NewWeights[0], NewWeights[1]));
2861   }
2862 
2863   // OtherDest may have phi nodes.  If so, add an entry from PBI's
2864   // block that are identical to the entries for BI's block.
2865   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2866 
2867   // We know that the CommonDest already had an edge from PBI to
2868   // it.  If it has PHIs though, the PHIs may have different
2869   // entries for BB and PBI's BB.  If so, insert a select to make
2870   // them agree.
2871   PHINode *PN;
2872   for (BasicBlock::iterator II = CommonDest->begin();
2873        (PN = dyn_cast<PHINode>(II)); ++II) {
2874     Value *BIV = PN->getIncomingValueForBlock(BB);
2875     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2876     Value *PBIV = PN->getIncomingValue(PBBIdx);
2877     if (BIV != PBIV) {
2878       // Insert a select in PBI to pick the right value.
2879       Value *NV = cast<SelectInst>
2880         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
2881       PN->setIncomingValue(PBBIdx, NV);
2882     }
2883   }
2884 
2885   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2886   DEBUG(dbgs() << *PBI->getParent()->getParent());
2887 
2888   // This basic block is probably dead.  We know it has at least
2889   // one fewer predecessor.
2890   return true;
2891 }
2892 
2893 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
2894 // true or to FalseBB if Cond is false.
2895 // Takes care of updating the successors and removing the old terminator.
2896 // Also makes sure not to introduce new successors by assuming that edges to
2897 // non-successor TrueBBs and FalseBBs aren't reachable.
2898 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2899                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
2900                                        uint32_t TrueWeight,
2901                                        uint32_t FalseWeight){
2902   // Remove any superfluous successor edges from the CFG.
2903   // First, figure out which successors to preserve.
2904   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2905   // successor.
2906   BasicBlock *KeepEdge1 = TrueBB;
2907   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
2908 
2909   // Then remove the rest.
2910   for (BasicBlock *Succ : OldTerm->successors()) {
2911     // Make sure only to keep exactly one copy of each edge.
2912     if (Succ == KeepEdge1)
2913       KeepEdge1 = nullptr;
2914     else if (Succ == KeepEdge2)
2915       KeepEdge2 = nullptr;
2916     else
2917       Succ->removePredecessor(OldTerm->getParent(),
2918                               /*DontDeleteUselessPHIs=*/true);
2919   }
2920 
2921   IRBuilder<> Builder(OldTerm);
2922   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2923 
2924   // Insert an appropriate new terminator.
2925   if (!KeepEdge1 && !KeepEdge2) {
2926     if (TrueBB == FalseBB)
2927       // We were only looking for one successor, and it was present.
2928       // Create an unconditional branch to it.
2929       Builder.CreateBr(TrueBB);
2930     else {
2931       // We found both of the successors we were looking for.
2932       // Create a conditional branch sharing the condition of the select.
2933       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2934       if (TrueWeight != FalseWeight)
2935         NewBI->setMetadata(LLVMContext::MD_prof,
2936                            MDBuilder(OldTerm->getContext()).
2937                            createBranchWeights(TrueWeight, FalseWeight));
2938     }
2939   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2940     // Neither of the selected blocks were successors, so this
2941     // terminator must be unreachable.
2942     new UnreachableInst(OldTerm->getContext(), OldTerm);
2943   } else {
2944     // One of the selected values was a successor, but the other wasn't.
2945     // Insert an unconditional branch to the one that was found;
2946     // the edge to the one that wasn't must be unreachable.
2947     if (!KeepEdge1)
2948       // Only TrueBB was found.
2949       Builder.CreateBr(TrueBB);
2950     else
2951       // Only FalseBB was found.
2952       Builder.CreateBr(FalseBB);
2953   }
2954 
2955   EraseTerminatorInstAndDCECond(OldTerm);
2956   return true;
2957 }
2958 
2959 // Replaces
2960 //   (switch (select cond, X, Y)) on constant X, Y
2961 // with a branch - conditional if X and Y lead to distinct BBs,
2962 // unconditional otherwise.
2963 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2964   // Check for constant integer values in the select.
2965   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2966   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2967   if (!TrueVal || !FalseVal)
2968     return false;
2969 
2970   // Find the relevant condition and destinations.
2971   Value *Condition = Select->getCondition();
2972   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2973   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2974 
2975   // Get weight for TrueBB and FalseBB.
2976   uint32_t TrueWeight = 0, FalseWeight = 0;
2977   SmallVector<uint64_t, 8> Weights;
2978   bool HasWeights = HasBranchWeights(SI);
2979   if (HasWeights) {
2980     GetBranchWeights(SI, Weights);
2981     if (Weights.size() == 1 + SI->getNumCases()) {
2982       TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2983                                      getSuccessorIndex()];
2984       FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2985                                       getSuccessorIndex()];
2986     }
2987   }
2988 
2989   // Perform the actual simplification.
2990   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2991                                     TrueWeight, FalseWeight);
2992 }
2993 
2994 // Replaces
2995 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
2996 //                             blockaddress(@fn, BlockB)))
2997 // with
2998 //   (br cond, BlockA, BlockB).
2999 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3000   // Check that both operands of the select are block addresses.
3001   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3002   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3003   if (!TBA || !FBA)
3004     return false;
3005 
3006   // Extract the actual blocks.
3007   BasicBlock *TrueBB = TBA->getBasicBlock();
3008   BasicBlock *FalseBB = FBA->getBasicBlock();
3009 
3010   // Perform the actual simplification.
3011   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
3012                                     0, 0);
3013 }
3014 
3015 /// This is called when we find an icmp instruction
3016 /// (a seteq/setne with a constant) as the only instruction in a
3017 /// block that ends with an uncond branch.  We are looking for a very specific
3018 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3019 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3020 /// default value goes to an uncond block with a seteq in it, we get something
3021 /// like:
3022 ///
3023 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3024 /// DEFAULT:
3025 ///   %tmp = icmp eq i8 %A, 92
3026 ///   br label %end
3027 /// end:
3028 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3029 ///
3030 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3031 /// the PHI, merging the third icmp into the switch.
3032 static bool TryToSimplifyUncondBranchWithICmpInIt(
3033     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3034     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3035     AssumptionCache *AC) {
3036   BasicBlock *BB = ICI->getParent();
3037 
3038   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3039   // complex.
3040   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
3041 
3042   Value *V = ICI->getOperand(0);
3043   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3044 
3045   // The pattern we're looking for is where our only predecessor is a switch on
3046   // 'V' and this block is the default case for the switch.  In this case we can
3047   // fold the compared value into the switch to simplify things.
3048   BasicBlock *Pred = BB->getSinglePredecessor();
3049   if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
3050 
3051   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3052   if (SI->getCondition() != V)
3053     return false;
3054 
3055   // If BB is reachable on a non-default case, then we simply know the value of
3056   // V in this block.  Substitute it and constant fold the icmp instruction
3057   // away.
3058   if (SI->getDefaultDest() != BB) {
3059     ConstantInt *VVal = SI->findCaseDest(BB);
3060     assert(VVal && "Should have a unique destination value");
3061     ICI->setOperand(0, VVal);
3062 
3063     if (Value *V = SimplifyInstruction(ICI, DL)) {
3064       ICI->replaceAllUsesWith(V);
3065       ICI->eraseFromParent();
3066     }
3067     // BB is now empty, so it is likely to simplify away.
3068     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3069   }
3070 
3071   // Ok, the block is reachable from the default dest.  If the constant we're
3072   // comparing exists in one of the other edges, then we can constant fold ICI
3073   // and zap it.
3074   if (SI->findCaseValue(Cst) != SI->case_default()) {
3075     Value *V;
3076     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3077       V = ConstantInt::getFalse(BB->getContext());
3078     else
3079       V = ConstantInt::getTrue(BB->getContext());
3080 
3081     ICI->replaceAllUsesWith(V);
3082     ICI->eraseFromParent();
3083     // BB is now empty, so it is likely to simplify away.
3084     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3085   }
3086 
3087   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3088   // the block.
3089   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3090   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3091   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3092       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3093     return false;
3094 
3095   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3096   // true in the PHI.
3097   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3098   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
3099 
3100   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3101     std::swap(DefaultCst, NewCst);
3102 
3103   // Replace ICI (which is used by the PHI for the default value) with true or
3104   // false depending on if it is EQ or NE.
3105   ICI->replaceAllUsesWith(DefaultCst);
3106   ICI->eraseFromParent();
3107 
3108   // Okay, the switch goes to this block on a default value.  Add an edge from
3109   // the switch to the merge point on the compared value.
3110   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
3111                                          BB->getParent(), BB);
3112   SmallVector<uint64_t, 8> Weights;
3113   bool HasWeights = HasBranchWeights(SI);
3114   if (HasWeights) {
3115     GetBranchWeights(SI, Weights);
3116     if (Weights.size() == 1 + SI->getNumCases()) {
3117       // Split weight for default case to case for "Cst".
3118       Weights[0] = (Weights[0]+1) >> 1;
3119       Weights.push_back(Weights[0]);
3120 
3121       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3122       SI->setMetadata(LLVMContext::MD_prof,
3123                       MDBuilder(SI->getContext()).
3124                       createBranchWeights(MDWeights));
3125     }
3126   }
3127   SI->addCase(Cst, NewBB);
3128 
3129   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3130   Builder.SetInsertPoint(NewBB);
3131   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3132   Builder.CreateBr(SuccBlock);
3133   PHIUse->addIncoming(NewCst, NewBB);
3134   return true;
3135 }
3136 
3137 /// The specified branch is a conditional branch.
3138 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3139 /// fold it into a switch instruction if so.
3140 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3141                                       const DataLayout &DL) {
3142   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3143   if (!Cond) return false;
3144 
3145   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3146   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3147   // 'setne's and'ed together, collect them.
3148 
3149   // Try to gather values from a chain of and/or to be turned into a switch
3150   ConstantComparesGatherer ConstantCompare(Cond, DL);
3151   // Unpack the result
3152   SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals;
3153   Value *CompVal = ConstantCompare.CompValue;
3154   unsigned UsedICmps = ConstantCompare.UsedICmps;
3155   Value *ExtraCase = ConstantCompare.Extra;
3156 
3157   // If we didn't have a multiply compared value, fail.
3158   if (!CompVal) return false;
3159 
3160   // Avoid turning single icmps into a switch.
3161   if (UsedICmps <= 1)
3162     return false;
3163 
3164   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3165 
3166   // There might be duplicate constants in the list, which the switch
3167   // instruction can't handle, remove them now.
3168   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3169   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3170 
3171   // If Extra was used, we require at least two switch values to do the
3172   // transformation.  A switch with one value is just a conditional branch.
3173   if (ExtraCase && Values.size() < 2) return false;
3174 
3175   // TODO: Preserve branch weight metadata, similarly to how
3176   // FoldValueComparisonIntoPredecessors preserves it.
3177 
3178   // Figure out which block is which destination.
3179   BasicBlock *DefaultBB = BI->getSuccessor(1);
3180   BasicBlock *EdgeBB    = BI->getSuccessor(0);
3181   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
3182 
3183   BasicBlock *BB = BI->getParent();
3184 
3185   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3186                << " cases into SWITCH.  BB is:\n" << *BB);
3187 
3188   // If there are any extra values that couldn't be folded into the switch
3189   // then we evaluate them with an explicit branch first.  Split the block
3190   // right before the condbr to handle it.
3191   if (ExtraCase) {
3192     BasicBlock *NewBB =
3193         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3194     // Remove the uncond branch added to the old block.
3195     TerminatorInst *OldTI = BB->getTerminator();
3196     Builder.SetInsertPoint(OldTI);
3197 
3198     if (TrueWhenEqual)
3199       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3200     else
3201       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3202 
3203     OldTI->eraseFromParent();
3204 
3205     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3206     // for the edge we just added.
3207     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3208 
3209     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3210           << "\nEXTRABB = " << *BB);
3211     BB = NewBB;
3212   }
3213 
3214   Builder.SetInsertPoint(BI);
3215   // Convert pointer to int before we switch.
3216   if (CompVal->getType()->isPointerTy()) {
3217     CompVal = Builder.CreatePtrToInt(
3218         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3219   }
3220 
3221   // Create the new switch instruction now.
3222   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3223 
3224   // Add all of the 'cases' to the switch instruction.
3225   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3226     New->addCase(Values[i], EdgeBB);
3227 
3228   // We added edges from PI to the EdgeBB.  As such, if there were any
3229   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3230   // the number of edges added.
3231   for (BasicBlock::iterator BBI = EdgeBB->begin();
3232        isa<PHINode>(BBI); ++BBI) {
3233     PHINode *PN = cast<PHINode>(BBI);
3234     Value *InVal = PN->getIncomingValueForBlock(BB);
3235     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
3236       PN->addIncoming(InVal, BB);
3237   }
3238 
3239   // Erase the old branch instruction.
3240   EraseTerminatorInstAndDCECond(BI);
3241 
3242   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3243   return true;
3244 }
3245 
3246 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3247   if (isa<PHINode>(RI->getValue()))
3248     return SimplifyCommonResume(RI);
3249   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3250            RI->getValue() == RI->getParent()->getFirstNonPHI())
3251     // The resume must unwind the exception that caused control to branch here.
3252     return SimplifySingleResume(RI);
3253 
3254   return false;
3255 }
3256 
3257 // Simplify resume that is shared by several landing pads (phi of landing pad).
3258 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3259   BasicBlock *BB = RI->getParent();
3260 
3261   // Check that there are no other instructions except for debug intrinsics
3262   // between the phi of landing pads (RI->getValue()) and resume instruction.
3263   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3264 		  	  	  	   E = RI->getIterator();
3265   while (++I != E)
3266     if (!isa<DbgInfoIntrinsic>(I))
3267       return false;
3268 
3269   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3270   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3271 
3272   // Check incoming blocks to see if any of them are trivial.
3273   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues();
3274        Idx != End; Idx++) {
3275     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3276     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3277 
3278     // If the block has other successors, we can not delete it because
3279     // it has other dependents.
3280     if (IncomingBB->getUniqueSuccessor() != BB)
3281       continue;
3282 
3283     auto *LandingPad =
3284         dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3285     // Not the landing pad that caused the control to branch here.
3286     if (IncomingValue != LandingPad)
3287       continue;
3288 
3289     bool isTrivial = true;
3290 
3291     I = IncomingBB->getFirstNonPHI()->getIterator();
3292     E = IncomingBB->getTerminator()->getIterator();
3293     while (++I != E)
3294       if (!isa<DbgInfoIntrinsic>(I)) {
3295         isTrivial = false;
3296         break;
3297       }
3298 
3299     if (isTrivial)
3300       TrivialUnwindBlocks.insert(IncomingBB);
3301   }
3302 
3303   // If no trivial unwind blocks, don't do any simplifications.
3304   if (TrivialUnwindBlocks.empty()) return false;
3305 
3306   // Turn all invokes that unwind here into calls.
3307   for (auto *TrivialBB : TrivialUnwindBlocks) {
3308     // Blocks that will be simplified should be removed from the phi node.
3309     // Note there could be multiple edges to the resume block, and we need
3310     // to remove them all.
3311     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3312       BB->removePredecessor(TrivialBB, true);
3313 
3314     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3315          PI != PE;) {
3316       BasicBlock *Pred = *PI++;
3317       removeUnwindEdge(Pred);
3318     }
3319 
3320     // In each SimplifyCFG run, only the current processed block can be erased.
3321     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3322     // of erasing TrivialBB, we only remove the branch to the common resume
3323     // block so that we can later erase the resume block since it has no
3324     // predecessors.
3325     TrivialBB->getTerminator()->eraseFromParent();
3326     new UnreachableInst(RI->getContext(), TrivialBB);
3327   }
3328 
3329   // Delete the resume block if all its predecessors have been removed.
3330   if (pred_empty(BB))
3331     BB->eraseFromParent();
3332 
3333   return !TrivialUnwindBlocks.empty();
3334 }
3335 
3336 // Simplify resume that is only used by a single (non-phi) landing pad.
3337 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3338   BasicBlock *BB = RI->getParent();
3339   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3340   assert (RI->getValue() == LPInst &&
3341           "Resume must unwind the exception that caused control to here");
3342 
3343   // Check that there are no other instructions except for debug intrinsics.
3344   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3345   while (++I != E)
3346     if (!isa<DbgInfoIntrinsic>(I))
3347       return false;
3348 
3349   // Turn all invokes that unwind here into calls and delete the basic block.
3350   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3351     BasicBlock *Pred = *PI++;
3352     removeUnwindEdge(Pred);
3353   }
3354 
3355   // The landingpad is now unreachable.  Zap it.
3356   BB->eraseFromParent();
3357   if (LoopHeaders) LoopHeaders->erase(BB);
3358   return true;
3359 }
3360 
3361 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3362   // If this is a trivial cleanup pad that executes no instructions, it can be
3363   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3364   // that is an EH pad will be updated to continue to the caller and any
3365   // predecessor that terminates with an invoke instruction will have its invoke
3366   // instruction converted to a call instruction.  If the cleanup pad being
3367   // simplified does not continue to the caller, each predecessor will be
3368   // updated to continue to the unwind destination of the cleanup pad being
3369   // simplified.
3370   BasicBlock *BB = RI->getParent();
3371   CleanupPadInst *CPInst = RI->getCleanupPad();
3372   if (CPInst->getParent() != BB)
3373     // This isn't an empty cleanup.
3374     return false;
3375 
3376   // Check that there are no other instructions except for debug intrinsics.
3377   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3378   while (++I != E)
3379     if (!isa<DbgInfoIntrinsic>(I))
3380       return false;
3381 
3382   // If the cleanup return we are simplifying unwinds to the caller, this will
3383   // set UnwindDest to nullptr.
3384   BasicBlock *UnwindDest = RI->getUnwindDest();
3385   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3386 
3387   // We're about to remove BB from the control flow.  Before we do, sink any
3388   // PHINodes into the unwind destination.  Doing this before changing the
3389   // control flow avoids some potentially slow checks, since we can currently
3390   // be certain that UnwindDest and BB have no common predecessors (since they
3391   // are both EH pads).
3392   if (UnwindDest) {
3393     // First, go through the PHI nodes in UnwindDest and update any nodes that
3394     // reference the block we are removing
3395     for (BasicBlock::iterator I = UnwindDest->begin(),
3396                               IE = DestEHPad->getIterator();
3397          I != IE; ++I) {
3398       PHINode *DestPN = cast<PHINode>(I);
3399 
3400       int Idx = DestPN->getBasicBlockIndex(BB);
3401       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3402       assert(Idx != -1);
3403       // This PHI node has an incoming value that corresponds to a control
3404       // path through the cleanup pad we are removing.  If the incoming
3405       // value is in the cleanup pad, it must be a PHINode (because we
3406       // verified above that the block is otherwise empty).  Otherwise, the
3407       // value is either a constant or a value that dominates the cleanup
3408       // pad being removed.
3409       //
3410       // Because BB and UnwindDest are both EH pads, all of their
3411       // predecessors must unwind to these blocks, and since no instruction
3412       // can have multiple unwind destinations, there will be no overlap in
3413       // incoming blocks between SrcPN and DestPN.
3414       Value *SrcVal = DestPN->getIncomingValue(Idx);
3415       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3416 
3417       // Remove the entry for the block we are deleting.
3418       DestPN->removeIncomingValue(Idx, false);
3419 
3420       if (SrcPN && SrcPN->getParent() == BB) {
3421         // If the incoming value was a PHI node in the cleanup pad we are
3422         // removing, we need to merge that PHI node's incoming values into
3423         // DestPN.
3424         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3425               SrcIdx != SrcE; ++SrcIdx) {
3426           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3427                               SrcPN->getIncomingBlock(SrcIdx));
3428         }
3429       } else {
3430         // Otherwise, the incoming value came from above BB and
3431         // so we can just reuse it.  We must associate all of BB's
3432         // predecessors with this value.
3433         for (auto *pred : predecessors(BB)) {
3434           DestPN->addIncoming(SrcVal, pred);
3435         }
3436       }
3437     }
3438 
3439     // Sink any remaining PHI nodes directly into UnwindDest.
3440     Instruction *InsertPt = DestEHPad;
3441     for (BasicBlock::iterator I = BB->begin(),
3442                               IE = BB->getFirstNonPHI()->getIterator();
3443          I != IE;) {
3444       // The iterator must be incremented here because the instructions are
3445       // being moved to another block.
3446       PHINode *PN = cast<PHINode>(I++);
3447       if (PN->use_empty())
3448         // If the PHI node has no uses, just leave it.  It will be erased
3449         // when we erase BB below.
3450         continue;
3451 
3452       // Otherwise, sink this PHI node into UnwindDest.
3453       // Any predecessors to UnwindDest which are not already represented
3454       // must be back edges which inherit the value from the path through
3455       // BB.  In this case, the PHI value must reference itself.
3456       for (auto *pred : predecessors(UnwindDest))
3457         if (pred != BB)
3458           PN->addIncoming(PN, pred);
3459       PN->moveBefore(InsertPt);
3460     }
3461   }
3462 
3463   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3464     // The iterator must be updated here because we are removing this pred.
3465     BasicBlock *PredBB = *PI++;
3466     if (UnwindDest == nullptr) {
3467       removeUnwindEdge(PredBB);
3468     } else {
3469       TerminatorInst *TI = PredBB->getTerminator();
3470       TI->replaceUsesOfWith(BB, UnwindDest);
3471     }
3472   }
3473 
3474   // The cleanup pad is now unreachable.  Zap it.
3475   BB->eraseFromParent();
3476   return true;
3477 }
3478 
3479 // Try to merge two cleanuppads together.
3480 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3481   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3482   // with.
3483   BasicBlock *UnwindDest = RI->getUnwindDest();
3484   if (!UnwindDest)
3485     return false;
3486 
3487   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3488   // be safe to merge without code duplication.
3489   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3490     return false;
3491 
3492   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3493   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3494   if (!SuccessorCleanupPad)
3495     return false;
3496 
3497   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3498   // Replace any uses of the successor cleanupad with the predecessor pad
3499   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3500   // funclet bundle operands.
3501   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3502   // Remove the old cleanuppad.
3503   SuccessorCleanupPad->eraseFromParent();
3504   // Now, we simply replace the cleanupret with a branch to the unwind
3505   // destination.
3506   BranchInst::Create(UnwindDest, RI->getParent());
3507   RI->eraseFromParent();
3508 
3509   return true;
3510 }
3511 
3512 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3513   // It is possible to transiantly have an undef cleanuppad operand because we
3514   // have deleted some, but not all, dead blocks.
3515   // Eventually, this block will be deleted.
3516   if (isa<UndefValue>(RI->getOperand(0)))
3517     return false;
3518 
3519   if (removeEmptyCleanup(RI))
3520     return true;
3521 
3522   if (mergeCleanupPad(RI))
3523     return true;
3524 
3525   return false;
3526 }
3527 
3528 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3529   BasicBlock *BB = RI->getParent();
3530   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
3531 
3532   // Find predecessors that end with branches.
3533   SmallVector<BasicBlock*, 8> UncondBranchPreds;
3534   SmallVector<BranchInst*, 8> CondBranchPreds;
3535   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3536     BasicBlock *P = *PI;
3537     TerminatorInst *PTI = P->getTerminator();
3538     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3539       if (BI->isUnconditional())
3540         UncondBranchPreds.push_back(P);
3541       else
3542         CondBranchPreds.push_back(BI);
3543     }
3544   }
3545 
3546   // If we found some, do the transformation!
3547   if (!UncondBranchPreds.empty() && DupRet) {
3548     while (!UncondBranchPreds.empty()) {
3549       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3550       DEBUG(dbgs() << "FOLDING: " << *BB
3551             << "INTO UNCOND BRANCH PRED: " << *Pred);
3552       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3553     }
3554 
3555     // If we eliminated all predecessors of the block, delete the block now.
3556     if (pred_empty(BB)) {
3557       // We know there are no successors, so just nuke the block.
3558       BB->eraseFromParent();
3559       if (LoopHeaders) LoopHeaders->erase(BB);
3560     }
3561 
3562     return true;
3563   }
3564 
3565   // Check out all of the conditional branches going to this return
3566   // instruction.  If any of them just select between returns, change the
3567   // branch itself into a select/return pair.
3568   while (!CondBranchPreds.empty()) {
3569     BranchInst *BI = CondBranchPreds.pop_back_val();
3570 
3571     // Check to see if the non-BB successor is also a return block.
3572     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3573         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3574         SimplifyCondBranchToTwoReturns(BI, Builder))
3575       return true;
3576   }
3577   return false;
3578 }
3579 
3580 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3581   BasicBlock *BB = UI->getParent();
3582 
3583   bool Changed = false;
3584 
3585   // If there are any instructions immediately before the unreachable that can
3586   // be removed, do so.
3587   while (UI->getIterator() != BB->begin()) {
3588     BasicBlock::iterator BBI = UI->getIterator();
3589     --BBI;
3590     // Do not delete instructions that can have side effects which might cause
3591     // the unreachable to not be reachable; specifically, calls and volatile
3592     // operations may have this effect.
3593     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
3594 
3595     if (BBI->mayHaveSideEffects()) {
3596       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
3597         if (SI->isVolatile())
3598           break;
3599       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
3600         if (LI->isVolatile())
3601           break;
3602       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3603         if (RMWI->isVolatile())
3604           break;
3605       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3606         if (CXI->isVolatile())
3607           break;
3608       } else if (isa<CatchPadInst>(BBI)) {
3609         // A catchpad may invoke exception object constructors and such, which
3610         // in some languages can be arbitrary code, so be conservative by
3611         // default.
3612         // For CoreCLR, it just involves a type test, so can be removed.
3613         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
3614             EHPersonality::CoreCLR)
3615           break;
3616       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3617                  !isa<LandingPadInst>(BBI)) {
3618         break;
3619       }
3620       // Note that deleting LandingPad's here is in fact okay, although it
3621       // involves a bit of subtle reasoning. If this inst is a LandingPad,
3622       // all the predecessors of this block will be the unwind edges of Invokes,
3623       // and we can therefore guarantee this block will be erased.
3624     }
3625 
3626     // Delete this instruction (any uses are guaranteed to be dead)
3627     if (!BBI->use_empty())
3628       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3629     BBI->eraseFromParent();
3630     Changed = true;
3631   }
3632 
3633   // If the unreachable instruction is the first in the block, take a gander
3634   // at all of the predecessors of this instruction, and simplify them.
3635   if (&BB->front() != UI) return Changed;
3636 
3637   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3638   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3639     TerminatorInst *TI = Preds[i]->getTerminator();
3640     IRBuilder<> Builder(TI);
3641     if (auto *BI = dyn_cast<BranchInst>(TI)) {
3642       if (BI->isUnconditional()) {
3643         if (BI->getSuccessor(0) == BB) {
3644           new UnreachableInst(TI->getContext(), TI);
3645           TI->eraseFromParent();
3646           Changed = true;
3647         }
3648       } else {
3649         if (BI->getSuccessor(0) == BB) {
3650           Builder.CreateBr(BI->getSuccessor(1));
3651           EraseTerminatorInstAndDCECond(BI);
3652         } else if (BI->getSuccessor(1) == BB) {
3653           Builder.CreateBr(BI->getSuccessor(0));
3654           EraseTerminatorInstAndDCECond(BI);
3655           Changed = true;
3656         }
3657       }
3658     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
3659       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3660            i != e; ++i)
3661         if (i.getCaseSuccessor() == BB) {
3662           BB->removePredecessor(SI->getParent());
3663           SI->removeCase(i);
3664           --i; --e;
3665           Changed = true;
3666         }
3667     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
3668       if (II->getUnwindDest() == BB) {
3669         removeUnwindEdge(TI->getParent());
3670         Changed = true;
3671       }
3672     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3673       if (CSI->getUnwindDest() == BB) {
3674         removeUnwindEdge(TI->getParent());
3675         Changed = true;
3676         continue;
3677       }
3678 
3679       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
3680                                              E = CSI->handler_end();
3681            I != E; ++I) {
3682         if (*I == BB) {
3683           CSI->removeHandler(I);
3684           --I;
3685           --E;
3686           Changed = true;
3687         }
3688       }
3689       if (CSI->getNumHandlers() == 0) {
3690         BasicBlock *CatchSwitchBB = CSI->getParent();
3691         if (CSI->hasUnwindDest()) {
3692           // Redirect preds to the unwind dest
3693           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
3694         } else {
3695           // Rewrite all preds to unwind to caller (or from invoke to call).
3696           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
3697           for (BasicBlock *EHPred : EHPreds)
3698             removeUnwindEdge(EHPred);
3699         }
3700         // The catchswitch is no longer reachable.
3701         new UnreachableInst(CSI->getContext(), CSI);
3702         CSI->eraseFromParent();
3703         Changed = true;
3704       }
3705     } else if (isa<CleanupReturnInst>(TI)) {
3706       new UnreachableInst(TI->getContext(), TI);
3707       TI->eraseFromParent();
3708       Changed = true;
3709     }
3710   }
3711 
3712   // If this block is now dead, remove it.
3713   if (pred_empty(BB) &&
3714       BB != &BB->getParent()->getEntryBlock()) {
3715     // We know there are no successors, so just nuke the block.
3716     BB->eraseFromParent();
3717     if (LoopHeaders) LoopHeaders->erase(BB);
3718     return true;
3719   }
3720 
3721   return Changed;
3722 }
3723 
3724 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
3725   assert(Cases.size() >= 1);
3726 
3727   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3728   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
3729     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
3730       return false;
3731   }
3732   return true;
3733 }
3734 
3735 /// Turn a switch with two reachable destinations into an integer range
3736 /// comparison and branch.
3737 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3738   assert(SI->getNumCases() > 1 && "Degenerate switch?");
3739 
3740   bool HasDefault =
3741       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3742 
3743   // Partition the cases into two sets with different destinations.
3744   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
3745   BasicBlock *DestB = nullptr;
3746   SmallVector <ConstantInt *, 16> CasesA;
3747   SmallVector <ConstantInt *, 16> CasesB;
3748 
3749   for (SwitchInst::CaseIt I : SI->cases()) {
3750     BasicBlock *Dest = I.getCaseSuccessor();
3751     if (!DestA) DestA = Dest;
3752     if (Dest == DestA) {
3753       CasesA.push_back(I.getCaseValue());
3754       continue;
3755     }
3756     if (!DestB) DestB = Dest;
3757     if (Dest == DestB) {
3758       CasesB.push_back(I.getCaseValue());
3759       continue;
3760     }
3761     return false;  // More than two destinations.
3762   }
3763 
3764   assert(DestA && DestB && "Single-destination switch should have been folded.");
3765   assert(DestA != DestB);
3766   assert(DestB != SI->getDefaultDest());
3767   assert(!CasesB.empty() && "There must be non-default cases.");
3768   assert(!CasesA.empty() || HasDefault);
3769 
3770   // Figure out if one of the sets of cases form a contiguous range.
3771   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
3772   BasicBlock *ContiguousDest = nullptr;
3773   BasicBlock *OtherDest = nullptr;
3774   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
3775     ContiguousCases = &CasesA;
3776     ContiguousDest = DestA;
3777     OtherDest = DestB;
3778   } else if (CasesAreContiguous(CasesB)) {
3779     ContiguousCases = &CasesB;
3780     ContiguousDest = DestB;
3781     OtherDest = DestA;
3782   } else
3783     return false;
3784 
3785   // Start building the compare and branch.
3786 
3787   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
3788   Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size());
3789 
3790   Value *Sub = SI->getCondition();
3791   if (!Offset->isNullValue())
3792     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
3793 
3794   Value *Cmp;
3795   // If NumCases overflowed, then all possible values jump to the successor.
3796   if (NumCases->isNullValue() && !ContiguousCases->empty())
3797     Cmp = ConstantInt::getTrue(SI->getContext());
3798   else
3799     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3800   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
3801 
3802   // Update weight for the newly-created conditional branch.
3803   if (HasBranchWeights(SI)) {
3804     SmallVector<uint64_t, 8> Weights;
3805     GetBranchWeights(SI, Weights);
3806     if (Weights.size() == 1 + SI->getNumCases()) {
3807       uint64_t TrueWeight = 0;
3808       uint64_t FalseWeight = 0;
3809       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
3810         if (SI->getSuccessor(I) == ContiguousDest)
3811           TrueWeight += Weights[I];
3812         else
3813           FalseWeight += Weights[I];
3814       }
3815       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
3816         TrueWeight /= 2;
3817         FalseWeight /= 2;
3818       }
3819       NewBI->setMetadata(LLVMContext::MD_prof,
3820                          MDBuilder(SI->getContext()).createBranchWeights(
3821                              (uint32_t)TrueWeight, (uint32_t)FalseWeight));
3822     }
3823   }
3824 
3825   // Prune obsolete incoming values off the successors' PHI nodes.
3826   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
3827     unsigned PreviousEdges = ContiguousCases->size();
3828     if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges;
3829     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3830       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3831   }
3832   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
3833     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
3834     if (OtherDest == SI->getDefaultDest()) ++PreviousEdges;
3835     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3836       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3837   }
3838 
3839   // Drop the switch.
3840   SI->eraseFromParent();
3841 
3842   return true;
3843 }
3844 
3845 /// Compute masked bits for the condition of a switch
3846 /// and use it to remove dead cases.
3847 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
3848                                      const DataLayout &DL) {
3849   Value *Cond = SI->getCondition();
3850   unsigned Bits = Cond->getType()->getIntegerBitWidth();
3851   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3852   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
3853 
3854   // Gather dead cases.
3855   SmallVector<ConstantInt*, 8> DeadCases;
3856   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3857     if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3858         (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3859       DeadCases.push_back(I.getCaseValue());
3860       DEBUG(dbgs() << "SimplifyCFG: switch case '"
3861                    << I.getCaseValue() << "' is dead.\n");
3862     }
3863   }
3864 
3865   // If we can prove that the cases must cover all possible values, the
3866   // default destination becomes dead and we can remove it.  If we know some
3867   // of the bits in the value, we can use that to more precisely compute the
3868   // number of possible unique case values.
3869   bool HasDefault =
3870     !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3871   const unsigned NumUnknownBits = Bits -
3872     (KnownZero.Or(KnownOne)).countPopulation();
3873   assert(NumUnknownBits <= Bits);
3874   if (HasDefault && DeadCases.empty() &&
3875       NumUnknownBits < 64 /* avoid overflow */ &&
3876       SI->getNumCases() == (1ULL << NumUnknownBits)) {
3877     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
3878     BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(),
3879                                                     SI->getParent(), "");
3880     SI->setDefaultDest(&*NewDefault);
3881     SplitBlock(&*NewDefault, &NewDefault->front());
3882     auto *OldTI = NewDefault->getTerminator();
3883     new UnreachableInst(SI->getContext(), OldTI);
3884     EraseTerminatorInstAndDCECond(OldTI);
3885     return true;
3886   }
3887 
3888   SmallVector<uint64_t, 8> Weights;
3889   bool HasWeight = HasBranchWeights(SI);
3890   if (HasWeight) {
3891     GetBranchWeights(SI, Weights);
3892     HasWeight = (Weights.size() == 1 + SI->getNumCases());
3893   }
3894 
3895   // Remove dead cases from the switch.
3896   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3897     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3898     assert(Case != SI->case_default() &&
3899            "Case was not found. Probably mistake in DeadCases forming.");
3900     if (HasWeight) {
3901       std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3902       Weights.pop_back();
3903     }
3904 
3905     // Prune unused values from PHI nodes.
3906     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3907     SI->removeCase(Case);
3908   }
3909   if (HasWeight && Weights.size() >= 2) {
3910     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3911     SI->setMetadata(LLVMContext::MD_prof,
3912                     MDBuilder(SI->getParent()->getContext()).
3913                     createBranchWeights(MDWeights));
3914   }
3915 
3916   return !DeadCases.empty();
3917 }
3918 
3919 /// If BB would be eligible for simplification by
3920 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3921 /// by an unconditional branch), look at the phi node for BB in the successor
3922 /// block and see if the incoming value is equal to CaseValue. If so, return
3923 /// the phi node, and set PhiIndex to BB's index in the phi node.
3924 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3925                                               BasicBlock *BB,
3926                                               int *PhiIndex) {
3927   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3928     return nullptr; // BB must be empty to be a candidate for simplification.
3929   if (!BB->getSinglePredecessor())
3930     return nullptr; // BB must be dominated by the switch.
3931 
3932   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3933   if (!Branch || !Branch->isUnconditional())
3934     return nullptr; // Terminator must be unconditional branch.
3935 
3936   BasicBlock *Succ = Branch->getSuccessor(0);
3937 
3938   BasicBlock::iterator I = Succ->begin();
3939   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3940     int Idx = PHI->getBasicBlockIndex(BB);
3941     assert(Idx >= 0 && "PHI has no entry for predecessor?");
3942 
3943     Value *InValue = PHI->getIncomingValue(Idx);
3944     if (InValue != CaseValue) continue;
3945 
3946     *PhiIndex = Idx;
3947     return PHI;
3948   }
3949 
3950   return nullptr;
3951 }
3952 
3953 /// Try to forward the condition of a switch instruction to a phi node
3954 /// dominated by the switch, if that would mean that some of the destination
3955 /// blocks of the switch can be folded away.
3956 /// Returns true if a change is made.
3957 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3958   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3959   ForwardingNodesMap ForwardingNodes;
3960 
3961   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3962     ConstantInt *CaseValue = I.getCaseValue();
3963     BasicBlock *CaseDest = I.getCaseSuccessor();
3964 
3965     int PhiIndex;
3966     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3967                                                  &PhiIndex);
3968     if (!PHI) continue;
3969 
3970     ForwardingNodes[PHI].push_back(PhiIndex);
3971   }
3972 
3973   bool Changed = false;
3974 
3975   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3976        E = ForwardingNodes.end(); I != E; ++I) {
3977     PHINode *Phi = I->first;
3978     SmallVectorImpl<int> &Indexes = I->second;
3979 
3980     if (Indexes.size() < 2) continue;
3981 
3982     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3983       Phi->setIncomingValue(Indexes[I], SI->getCondition());
3984     Changed = true;
3985   }
3986 
3987   return Changed;
3988 }
3989 
3990 /// Return true if the backend will be able to handle
3991 /// initializing an array of constants like C.
3992 static bool ValidLookupTableConstant(Constant *C) {
3993   if (C->isThreadDependent())
3994     return false;
3995   if (C->isDLLImportDependent())
3996     return false;
3997 
3998   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3999     return CE->isGEPWithNoNotionalOverIndexing();
4000 
4001   return isa<ConstantFP>(C) ||
4002       isa<ConstantInt>(C) ||
4003       isa<ConstantPointerNull>(C) ||
4004       isa<GlobalValue>(C) ||
4005       isa<UndefValue>(C);
4006 }
4007 
4008 /// If V is a Constant, return it. Otherwise, try to look up
4009 /// its constant value in ConstantPool, returning 0 if it's not there.
4010 static Constant *LookupConstant(Value *V,
4011                          const SmallDenseMap<Value*, Constant*>& ConstantPool) {
4012   if (Constant *C = dyn_cast<Constant>(V))
4013     return C;
4014   return ConstantPool.lookup(V);
4015 }
4016 
4017 /// Try to fold instruction I into a constant. This works for
4018 /// simple instructions such as binary operations where both operands are
4019 /// constant or can be replaced by constants from the ConstantPool. Returns the
4020 /// resulting constant on success, 0 otherwise.
4021 static Constant *
4022 ConstantFold(Instruction *I, const DataLayout &DL,
4023              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4024   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4025     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4026     if (!A)
4027       return nullptr;
4028     if (A->isAllOnesValue())
4029       return LookupConstant(Select->getTrueValue(), ConstantPool);
4030     if (A->isNullValue())
4031       return LookupConstant(Select->getFalseValue(), ConstantPool);
4032     return nullptr;
4033   }
4034 
4035   SmallVector<Constant *, 4> COps;
4036   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4037     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4038       COps.push_back(A);
4039     else
4040       return nullptr;
4041   }
4042 
4043   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4044     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4045                                            COps[1], DL);
4046   }
4047 
4048   return ConstantFoldInstOperands(I, COps, DL);
4049 }
4050 
4051 /// Try to determine the resulting constant values in phi nodes
4052 /// at the common destination basic block, *CommonDest, for one of the case
4053 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4054 /// case), of a switch instruction SI.
4055 static bool
4056 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4057                BasicBlock **CommonDest,
4058                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4059                const DataLayout &DL) {
4060   // The block from which we enter the common destination.
4061   BasicBlock *Pred = SI->getParent();
4062 
4063   // If CaseDest is empty except for some side-effect free instructions through
4064   // which we can constant-propagate the CaseVal, continue to its successor.
4065   SmallDenseMap<Value*, Constant*> ConstantPool;
4066   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4067   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4068        ++I) {
4069     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4070       // If the terminator is a simple branch, continue to the next block.
4071       if (T->getNumSuccessors() != 1)
4072         return false;
4073       Pred = CaseDest;
4074       CaseDest = T->getSuccessor(0);
4075     } else if (isa<DbgInfoIntrinsic>(I)) {
4076       // Skip debug intrinsic.
4077       continue;
4078     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4079       // Instruction is side-effect free and constant.
4080 
4081       // If the instruction has uses outside this block or a phi node slot for
4082       // the block, it is not safe to bypass the instruction since it would then
4083       // no longer dominate all its uses.
4084       for (auto &Use : I->uses()) {
4085         User *User = Use.getUser();
4086         if (Instruction *I = dyn_cast<Instruction>(User))
4087           if (I->getParent() == CaseDest)
4088             continue;
4089         if (PHINode *Phi = dyn_cast<PHINode>(User))
4090           if (Phi->getIncomingBlock(Use) == CaseDest)
4091             continue;
4092         return false;
4093       }
4094 
4095       ConstantPool.insert(std::make_pair(&*I, C));
4096     } else {
4097       break;
4098     }
4099   }
4100 
4101   // If we did not have a CommonDest before, use the current one.
4102   if (!*CommonDest)
4103     *CommonDest = CaseDest;
4104   // If the destination isn't the common one, abort.
4105   if (CaseDest != *CommonDest)
4106     return false;
4107 
4108   // Get the values for this case from phi nodes in the destination block.
4109   BasicBlock::iterator I = (*CommonDest)->begin();
4110   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4111     int Idx = PHI->getBasicBlockIndex(Pred);
4112     if (Idx == -1)
4113       continue;
4114 
4115     Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
4116                                         ConstantPool);
4117     if (!ConstVal)
4118       return false;
4119 
4120     // Be conservative about which kinds of constants we support.
4121     if (!ValidLookupTableConstant(ConstVal))
4122       return false;
4123 
4124     Res.push_back(std::make_pair(PHI, ConstVal));
4125   }
4126 
4127   return Res.size() > 0;
4128 }
4129 
4130 // Helper function used to add CaseVal to the list of cases that generate
4131 // Result.
4132 static void MapCaseToResult(ConstantInt *CaseVal,
4133     SwitchCaseResultVectorTy &UniqueResults,
4134     Constant *Result) {
4135   for (auto &I : UniqueResults) {
4136     if (I.first == Result) {
4137       I.second.push_back(CaseVal);
4138       return;
4139     }
4140   }
4141   UniqueResults.push_back(std::make_pair(Result,
4142         SmallVector<ConstantInt*, 4>(1, CaseVal)));
4143 }
4144 
4145 // Helper function that initializes a map containing
4146 // results for the PHI node of the common destination block for a switch
4147 // instruction. Returns false if multiple PHI nodes have been found or if
4148 // there is not a common destination block for the switch.
4149 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4150                                   BasicBlock *&CommonDest,
4151                                   SwitchCaseResultVectorTy &UniqueResults,
4152                                   Constant *&DefaultResult,
4153                                   const DataLayout &DL) {
4154   for (auto &I : SI->cases()) {
4155     ConstantInt *CaseVal = I.getCaseValue();
4156 
4157     // Resulting value at phi nodes for this case value.
4158     SwitchCaseResultsTy Results;
4159     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4160                         DL))
4161       return false;
4162 
4163     // Only one value per case is permitted
4164     if (Results.size() > 1)
4165       return false;
4166     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4167 
4168     // Check the PHI consistency.
4169     if (!PHI)
4170       PHI = Results[0].first;
4171     else if (PHI != Results[0].first)
4172       return false;
4173   }
4174   // Find the default result value.
4175   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4176   BasicBlock *DefaultDest = SI->getDefaultDest();
4177   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4178                  DL);
4179   // If the default value is not found abort unless the default destination
4180   // is unreachable.
4181   DefaultResult =
4182       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4183   if ((!DefaultResult &&
4184         !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4185     return false;
4186 
4187   return true;
4188 }
4189 
4190 // Helper function that checks if it is possible to transform a switch with only
4191 // two cases (or two cases + default) that produces a result into a select.
4192 // Example:
4193 // switch (a) {
4194 //   case 10:                %0 = icmp eq i32 %a, 10
4195 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4196 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4197 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4198 //   default:
4199 //     return 4;
4200 // }
4201 static Value *
4202 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4203                      Constant *DefaultResult, Value *Condition,
4204                      IRBuilder<> &Builder) {
4205   assert(ResultVector.size() == 2 &&
4206       "We should have exactly two unique results at this point");
4207   // If we are selecting between only two cases transform into a simple
4208   // select or a two-way select if default is possible.
4209   if (ResultVector[0].second.size() == 1 &&
4210       ResultVector[1].second.size() == 1) {
4211     ConstantInt *const FirstCase = ResultVector[0].second[0];
4212     ConstantInt *const SecondCase = ResultVector[1].second[0];
4213 
4214     bool DefaultCanTrigger = DefaultResult;
4215     Value *SelectValue = ResultVector[1].first;
4216     if (DefaultCanTrigger) {
4217       Value *const ValueCompare =
4218           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4219       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4220                                          DefaultResult, "switch.select");
4221     }
4222     Value *const ValueCompare =
4223         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4224     return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue,
4225                                 "switch.select");
4226   }
4227 
4228   return nullptr;
4229 }
4230 
4231 // Helper function to cleanup a switch instruction that has been converted into
4232 // a select, fixing up PHI nodes and basic blocks.
4233 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4234                                               Value *SelectValue,
4235                                               IRBuilder<> &Builder) {
4236   BasicBlock *SelectBB = SI->getParent();
4237   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4238     PHI->removeIncomingValue(SelectBB);
4239   PHI->addIncoming(SelectValue, SelectBB);
4240 
4241   Builder.CreateBr(PHI->getParent());
4242 
4243   // Remove the switch.
4244   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4245     BasicBlock *Succ = SI->getSuccessor(i);
4246 
4247     if (Succ == PHI->getParent())
4248       continue;
4249     Succ->removePredecessor(SelectBB);
4250   }
4251   SI->eraseFromParent();
4252 }
4253 
4254 /// If the switch is only used to initialize one or more
4255 /// phi nodes in a common successor block with only two different
4256 /// constant values, replace the switch with select.
4257 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4258                            AssumptionCache *AC, const DataLayout &DL) {
4259   Value *const Cond = SI->getCondition();
4260   PHINode *PHI = nullptr;
4261   BasicBlock *CommonDest = nullptr;
4262   Constant *DefaultResult;
4263   SwitchCaseResultVectorTy UniqueResults;
4264   // Collect all the cases that will deliver the same value from the switch.
4265   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4266                              DL))
4267     return false;
4268   // Selects choose between maximum two values.
4269   if (UniqueResults.size() != 2)
4270     return false;
4271   assert(PHI != nullptr && "PHI for value select not found");
4272 
4273   Builder.SetInsertPoint(SI);
4274   Value *SelectValue = ConvertTwoCaseSwitch(
4275       UniqueResults,
4276       DefaultResult, Cond, Builder);
4277   if (SelectValue) {
4278     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4279     return true;
4280   }
4281   // The switch couldn't be converted into a select.
4282   return false;
4283 }
4284 
4285 namespace {
4286   /// This class represents a lookup table that can be used to replace a switch.
4287   class SwitchLookupTable {
4288   public:
4289     /// Create a lookup table to use as a switch replacement with the contents
4290     /// of Values, using DefaultValue to fill any holes in the table.
4291     SwitchLookupTable(
4292         Module &M, uint64_t TableSize, ConstantInt *Offset,
4293         const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4294         Constant *DefaultValue, const DataLayout &DL);
4295 
4296     /// Build instructions with Builder to retrieve the value at
4297     /// the position given by Index in the lookup table.
4298     Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4299 
4300     /// Return true if a table with TableSize elements of
4301     /// type ElementType would fit in a target-legal register.
4302     static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4303                                    Type *ElementType);
4304 
4305   private:
4306     // Depending on the contents of the table, it can be represented in
4307     // different ways.
4308     enum {
4309       // For tables where each element contains the same value, we just have to
4310       // store that single value and return it for each lookup.
4311       SingleValueKind,
4312 
4313       // For tables where there is a linear relationship between table index
4314       // and values. We calculate the result with a simple multiplication
4315       // and addition instead of a table lookup.
4316       LinearMapKind,
4317 
4318       // For small tables with integer elements, we can pack them into a bitmap
4319       // that fits into a target-legal register. Values are retrieved by
4320       // shift and mask operations.
4321       BitMapKind,
4322 
4323       // The table is stored as an array of values. Values are retrieved by load
4324       // instructions from the table.
4325       ArrayKind
4326     } Kind;
4327 
4328     // For SingleValueKind, this is the single value.
4329     Constant *SingleValue;
4330 
4331     // For BitMapKind, this is the bitmap.
4332     ConstantInt *BitMap;
4333     IntegerType *BitMapElementTy;
4334 
4335     // For LinearMapKind, these are the constants used to derive the value.
4336     ConstantInt *LinearOffset;
4337     ConstantInt *LinearMultiplier;
4338 
4339     // For ArrayKind, this is the array.
4340     GlobalVariable *Array;
4341   };
4342 }
4343 
4344 SwitchLookupTable::SwitchLookupTable(
4345     Module &M, uint64_t TableSize, ConstantInt *Offset,
4346     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4347     Constant *DefaultValue, const DataLayout &DL)
4348     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4349       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4350   assert(Values.size() && "Can't build lookup table without values!");
4351   assert(TableSize >= Values.size() && "Can't fit values in table!");
4352 
4353   // If all values in the table are equal, this is that value.
4354   SingleValue = Values.begin()->second;
4355 
4356   Type *ValueType = Values.begin()->second->getType();
4357 
4358   // Build up the table contents.
4359   SmallVector<Constant*, 64> TableContents(TableSize);
4360   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4361     ConstantInt *CaseVal = Values[I].first;
4362     Constant *CaseRes = Values[I].second;
4363     assert(CaseRes->getType() == ValueType);
4364 
4365     uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
4366                    .getLimitedValue();
4367     TableContents[Idx] = CaseRes;
4368 
4369     if (CaseRes != SingleValue)
4370       SingleValue = nullptr;
4371   }
4372 
4373   // Fill in any holes in the table with the default result.
4374   if (Values.size() < TableSize) {
4375     assert(DefaultValue &&
4376            "Need a default value to fill the lookup table holes.");
4377     assert(DefaultValue->getType() == ValueType);
4378     for (uint64_t I = 0; I < TableSize; ++I) {
4379       if (!TableContents[I])
4380         TableContents[I] = DefaultValue;
4381     }
4382 
4383     if (DefaultValue != SingleValue)
4384       SingleValue = nullptr;
4385   }
4386 
4387   // If each element in the table contains the same value, we only need to store
4388   // that single value.
4389   if (SingleValue) {
4390     Kind = SingleValueKind;
4391     return;
4392   }
4393 
4394   // Check if we can derive the value with a linear transformation from the
4395   // table index.
4396   if (isa<IntegerType>(ValueType)) {
4397     bool LinearMappingPossible = true;
4398     APInt PrevVal;
4399     APInt DistToPrev;
4400     assert(TableSize >= 2 && "Should be a SingleValue table.");
4401     // Check if there is the same distance between two consecutive values.
4402     for (uint64_t I = 0; I < TableSize; ++I) {
4403       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4404       if (!ConstVal) {
4405         // This is an undef. We could deal with it, but undefs in lookup tables
4406         // are very seldom. It's probably not worth the additional complexity.
4407         LinearMappingPossible = false;
4408         break;
4409       }
4410       APInt Val = ConstVal->getValue();
4411       if (I != 0) {
4412         APInt Dist = Val - PrevVal;
4413         if (I == 1) {
4414           DistToPrev = Dist;
4415         } else if (Dist != DistToPrev) {
4416           LinearMappingPossible = false;
4417           break;
4418         }
4419       }
4420       PrevVal = Val;
4421     }
4422     if (LinearMappingPossible) {
4423       LinearOffset = cast<ConstantInt>(TableContents[0]);
4424       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4425       Kind = LinearMapKind;
4426       ++NumLinearMaps;
4427       return;
4428     }
4429   }
4430 
4431   // If the type is integer and the table fits in a register, build a bitmap.
4432   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4433     IntegerType *IT = cast<IntegerType>(ValueType);
4434     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4435     for (uint64_t I = TableSize; I > 0; --I) {
4436       TableInt <<= IT->getBitWidth();
4437       // Insert values into the bitmap. Undef values are set to zero.
4438       if (!isa<UndefValue>(TableContents[I - 1])) {
4439         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4440         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4441       }
4442     }
4443     BitMap = ConstantInt::get(M.getContext(), TableInt);
4444     BitMapElementTy = IT;
4445     Kind = BitMapKind;
4446     ++NumBitMaps;
4447     return;
4448   }
4449 
4450   // Store the table in an array.
4451   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4452   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4453 
4454   Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
4455                              GlobalVariable::PrivateLinkage,
4456                              Initializer,
4457                              "switch.table");
4458   Array->setUnnamedAddr(true);
4459   Kind = ArrayKind;
4460 }
4461 
4462 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4463   switch (Kind) {
4464     case SingleValueKind:
4465       return SingleValue;
4466     case LinearMapKind: {
4467       // Derive the result value from the input value.
4468       Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4469                                             false, "switch.idx.cast");
4470       if (!LinearMultiplier->isOne())
4471         Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4472       if (!LinearOffset->isZero())
4473         Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4474       return Result;
4475     }
4476     case BitMapKind: {
4477       // Type of the bitmap (e.g. i59).
4478       IntegerType *MapTy = BitMap->getType();
4479 
4480       // Cast Index to the same type as the bitmap.
4481       // Note: The Index is <= the number of elements in the table, so
4482       // truncating it to the width of the bitmask is safe.
4483       Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4484 
4485       // Multiply the shift amount by the element width.
4486       ShiftAmt = Builder.CreateMul(ShiftAmt,
4487                       ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4488                                    "switch.shiftamt");
4489 
4490       // Shift down.
4491       Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
4492                                               "switch.downshift");
4493       // Mask off.
4494       return Builder.CreateTrunc(DownShifted, BitMapElementTy,
4495                                  "switch.masked");
4496     }
4497     case ArrayKind: {
4498       // Make sure the table index will not overflow when treated as signed.
4499       IntegerType *IT = cast<IntegerType>(Index->getType());
4500       uint64_t TableSize = Array->getInitializer()->getType()
4501                                 ->getArrayNumElements();
4502       if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
4503         Index = Builder.CreateZExt(Index,
4504                                    IntegerType::get(IT->getContext(),
4505                                                     IT->getBitWidth() + 1),
4506                                    "switch.tableidx.zext");
4507 
4508       Value *GEPIndices[] = { Builder.getInt32(0), Index };
4509       Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
4510                                              GEPIndices, "switch.gep");
4511       return Builder.CreateLoad(GEP, "switch.load");
4512     }
4513   }
4514   llvm_unreachable("Unknown lookup table kind!");
4515 }
4516 
4517 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
4518                                            uint64_t TableSize,
4519                                            Type *ElementType) {
4520   auto *IT = dyn_cast<IntegerType>(ElementType);
4521   if (!IT)
4522     return false;
4523   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
4524   // are <= 15, we could try to narrow the type.
4525 
4526   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
4527   if (TableSize >= UINT_MAX/IT->getBitWidth())
4528     return false;
4529   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
4530 }
4531 
4532 /// Determine whether a lookup table should be built for this switch, based on
4533 /// the number of cases, size of the table, and the types of the results.
4534 static bool
4535 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
4536                        const TargetTransformInfo &TTI, const DataLayout &DL,
4537                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
4538   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
4539     return false; // TableSize overflowed, or mul below might overflow.
4540 
4541   bool AllTablesFitInRegister = true;
4542   bool HasIllegalType = false;
4543   for (const auto &I : ResultTypes) {
4544     Type *Ty = I.second;
4545 
4546     // Saturate this flag to true.
4547     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
4548 
4549     // Saturate this flag to false.
4550     AllTablesFitInRegister = AllTablesFitInRegister &&
4551       SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
4552 
4553     // If both flags saturate, we're done. NOTE: This *only* works with
4554     // saturating flags, and all flags have to saturate first due to the
4555     // non-deterministic behavior of iterating over a dense map.
4556     if (HasIllegalType && !AllTablesFitInRegister)
4557       break;
4558   }
4559 
4560   // If each table would fit in a register, we should build it anyway.
4561   if (AllTablesFitInRegister)
4562     return true;
4563 
4564   // Don't build a table that doesn't fit in-register if it has illegal types.
4565   if (HasIllegalType)
4566     return false;
4567 
4568   // The table density should be at least 40%. This is the same criterion as for
4569   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
4570   // FIXME: Find the best cut-off.
4571   return SI->getNumCases() * 10 >= TableSize * 4;
4572 }
4573 
4574 /// Try to reuse the switch table index compare. Following pattern:
4575 /// \code
4576 ///     if (idx < tablesize)
4577 ///        r = table[idx]; // table does not contain default_value
4578 ///     else
4579 ///        r = default_value;
4580 ///     if (r != default_value)
4581 ///        ...
4582 /// \endcode
4583 /// Is optimized to:
4584 /// \code
4585 ///     cond = idx < tablesize;
4586 ///     if (cond)
4587 ///        r = table[idx];
4588 ///     else
4589 ///        r = default_value;
4590 ///     if (cond)
4591 ///        ...
4592 /// \endcode
4593 /// Jump threading will then eliminate the second if(cond).
4594 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
4595           BranchInst *RangeCheckBranch, Constant *DefaultValue,
4596           const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) {
4597 
4598   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
4599   if (!CmpInst)
4600     return;
4601 
4602   // We require that the compare is in the same block as the phi so that jump
4603   // threading can do its work afterwards.
4604   if (CmpInst->getParent() != PhiBlock)
4605     return;
4606 
4607   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
4608   if (!CmpOp1)
4609     return;
4610 
4611   Value *RangeCmp = RangeCheckBranch->getCondition();
4612   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
4613   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
4614 
4615   // Check if the compare with the default value is constant true or false.
4616   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4617                                                  DefaultValue, CmpOp1, true);
4618   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
4619     return;
4620 
4621   // Check if the compare with the case values is distinct from the default
4622   // compare result.
4623   for (auto ValuePair : Values) {
4624     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4625                               ValuePair.second, CmpOp1, true);
4626     if (!CaseConst || CaseConst == DefaultConst)
4627       return;
4628     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
4629            "Expect true or false as compare result.");
4630   }
4631 
4632   // Check if the branch instruction dominates the phi node. It's a simple
4633   // dominance check, but sufficient for our needs.
4634   // Although this check is invariant in the calling loops, it's better to do it
4635   // at this late stage. Practically we do it at most once for a switch.
4636   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
4637   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
4638     BasicBlock *Pred = *PI;
4639     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
4640       return;
4641   }
4642 
4643   if (DefaultConst == FalseConst) {
4644     // The compare yields the same result. We can replace it.
4645     CmpInst->replaceAllUsesWith(RangeCmp);
4646     ++NumTableCmpReuses;
4647   } else {
4648     // The compare yields the same result, just inverted. We can replace it.
4649     Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp,
4650                 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
4651                 RangeCheckBranch);
4652     CmpInst->replaceAllUsesWith(InvertedTableCmp);
4653     ++NumTableCmpReuses;
4654   }
4655 }
4656 
4657 /// If the switch is only used to initialize one or more phi nodes in a common
4658 /// successor block with different constant values, replace the switch with
4659 /// lookup tables.
4660 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
4661                                 const DataLayout &DL,
4662                                 const TargetTransformInfo &TTI) {
4663   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4664 
4665   // Only build lookup table when we have a target that supports it.
4666   if (!TTI.shouldBuildLookupTables())
4667     return false;
4668 
4669   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
4670   // split off a dense part and build a lookup table for that.
4671 
4672   // FIXME: This creates arrays of GEPs to constant strings, which means each
4673   // GEP needs a runtime relocation in PIC code. We should just build one big
4674   // string and lookup indices into that.
4675 
4676   // Ignore switches with less than three cases. Lookup tables will not make them
4677   // faster, so we don't analyze them.
4678   if (SI->getNumCases() < 3)
4679     return false;
4680 
4681   // Figure out the corresponding result for each case value and phi node in the
4682   // common destination, as well as the min and max case values.
4683   assert(SI->case_begin() != SI->case_end());
4684   SwitchInst::CaseIt CI = SI->case_begin();
4685   ConstantInt *MinCaseVal = CI.getCaseValue();
4686   ConstantInt *MaxCaseVal = CI.getCaseValue();
4687 
4688   BasicBlock *CommonDest = nullptr;
4689   typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
4690   SmallDenseMap<PHINode*, ResultListTy> ResultLists;
4691   SmallDenseMap<PHINode*, Constant*> DefaultResults;
4692   SmallDenseMap<PHINode*, Type*> ResultTypes;
4693   SmallVector<PHINode*, 4> PHIs;
4694 
4695   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
4696     ConstantInt *CaseVal = CI.getCaseValue();
4697     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
4698       MinCaseVal = CaseVal;
4699     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
4700       MaxCaseVal = CaseVal;
4701 
4702     // Resulting value at phi nodes for this case value.
4703     typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
4704     ResultsTy Results;
4705     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
4706                         Results, DL))
4707       return false;
4708 
4709     // Append the result from this case to the list for each phi.
4710     for (const auto &I : Results) {
4711       PHINode *PHI = I.first;
4712       Constant *Value = I.second;
4713       if (!ResultLists.count(PHI))
4714         PHIs.push_back(PHI);
4715       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
4716     }
4717   }
4718 
4719   // Keep track of the result types.
4720   for (PHINode *PHI : PHIs) {
4721     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
4722   }
4723 
4724   uint64_t NumResults = ResultLists[PHIs[0]].size();
4725   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
4726   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
4727   bool TableHasHoles = (NumResults < TableSize);
4728 
4729   // If the table has holes, we need a constant result for the default case
4730   // or a bitmask that fits in a register.
4731   SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
4732   bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
4733                                           &CommonDest, DefaultResultsList, DL);
4734 
4735   bool NeedMask = (TableHasHoles && !HasDefaultResults);
4736   if (NeedMask) {
4737     // As an extra penalty for the validity test we require more cases.
4738     if (SI->getNumCases() < 4)  // FIXME: Find best threshold value (benchmark).
4739       return false;
4740     if (!DL.fitsInLegalInteger(TableSize))
4741       return false;
4742   }
4743 
4744   for (const auto &I : DefaultResultsList) {
4745     PHINode *PHI = I.first;
4746     Constant *Result = I.second;
4747     DefaultResults[PHI] = Result;
4748   }
4749 
4750   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
4751     return false;
4752 
4753   // Create the BB that does the lookups.
4754   Module &Mod = *CommonDest->getParent()->getParent();
4755   BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
4756                                             "switch.lookup",
4757                                             CommonDest->getParent(),
4758                                             CommonDest);
4759 
4760   // Compute the table index value.
4761   Builder.SetInsertPoint(SI);
4762   Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
4763                                         "switch.tableidx");
4764 
4765   // Compute the maximum table size representable by the integer type we are
4766   // switching upon.
4767   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
4768   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
4769   assert(MaxTableSize >= TableSize &&
4770          "It is impossible for a switch to have more entries than the max "
4771          "representable value of its input integer type's size.");
4772 
4773   // If the default destination is unreachable, or if the lookup table covers
4774   // all values of the conditional variable, branch directly to the lookup table
4775   // BB. Otherwise, check that the condition is within the case range.
4776   const bool DefaultIsReachable =
4777       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4778   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
4779   BranchInst *RangeCheckBranch = nullptr;
4780 
4781   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4782     Builder.CreateBr(LookupBB);
4783     // Note: We call removeProdecessor later since we need to be able to get the
4784     // PHI value for the default case in case we're using a bit mask.
4785   } else {
4786     Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
4787                                        MinCaseVal->getType(), TableSize));
4788     RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
4789   }
4790 
4791   // Populate the BB that does the lookups.
4792   Builder.SetInsertPoint(LookupBB);
4793 
4794   if (NeedMask) {
4795     // Before doing the lookup we do the hole check.
4796     // The LookupBB is therefore re-purposed to do the hole check
4797     // and we create a new LookupBB.
4798     BasicBlock *MaskBB = LookupBB;
4799     MaskBB->setName("switch.hole_check");
4800     LookupBB = BasicBlock::Create(Mod.getContext(),
4801                                   "switch.lookup",
4802                                   CommonDest->getParent(),
4803                                   CommonDest);
4804 
4805     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
4806     // unnecessary illegal types.
4807     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
4808     APInt MaskInt(TableSizePowOf2, 0);
4809     APInt One(TableSizePowOf2, 1);
4810     // Build bitmask; fill in a 1 bit for every case.
4811     const ResultListTy &ResultList = ResultLists[PHIs[0]];
4812     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
4813       uint64_t Idx = (ResultList[I].first->getValue() -
4814                       MinCaseVal->getValue()).getLimitedValue();
4815       MaskInt |= One << Idx;
4816     }
4817     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
4818 
4819     // Get the TableIndex'th bit of the bitmask.
4820     // If this bit is 0 (meaning hole) jump to the default destination,
4821     // else continue with table lookup.
4822     IntegerType *MapTy = TableMask->getType();
4823     Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
4824                                                  "switch.maskindex");
4825     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
4826                                         "switch.shifted");
4827     Value *LoBit = Builder.CreateTrunc(Shifted,
4828                                        Type::getInt1Ty(Mod.getContext()),
4829                                        "switch.lobit");
4830     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
4831 
4832     Builder.SetInsertPoint(LookupBB);
4833     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
4834   }
4835 
4836   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4837     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
4838     // do not delete PHINodes here.
4839     SI->getDefaultDest()->removePredecessor(SI->getParent(),
4840                                             /*DontDeleteUselessPHIs=*/true);
4841   }
4842 
4843   bool ReturnedEarly = false;
4844   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
4845     PHINode *PHI = PHIs[I];
4846     const ResultListTy &ResultList = ResultLists[PHI];
4847 
4848     // If using a bitmask, use any value to fill the lookup table holes.
4849     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
4850     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
4851 
4852     Value *Result = Table.BuildLookup(TableIndex, Builder);
4853 
4854     // If the result is used to return immediately from the function, we want to
4855     // do that right here.
4856     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
4857         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
4858       Builder.CreateRet(Result);
4859       ReturnedEarly = true;
4860       break;
4861     }
4862 
4863     // Do a small peephole optimization: re-use the switch table compare if
4864     // possible.
4865     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
4866       BasicBlock *PhiBlock = PHI->getParent();
4867       // Search for compare instructions which use the phi.
4868       for (auto *User : PHI->users()) {
4869         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
4870       }
4871     }
4872 
4873     PHI->addIncoming(Result, LookupBB);
4874   }
4875 
4876   if (!ReturnedEarly)
4877     Builder.CreateBr(CommonDest);
4878 
4879   // Remove the switch.
4880   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4881     BasicBlock *Succ = SI->getSuccessor(i);
4882 
4883     if (Succ == SI->getDefaultDest())
4884       continue;
4885     Succ->removePredecessor(SI->getParent());
4886   }
4887   SI->eraseFromParent();
4888 
4889   ++NumLookupTables;
4890   if (NeedMask)
4891     ++NumLookupTablesHoles;
4892   return true;
4893 }
4894 
4895 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
4896   BasicBlock *BB = SI->getParent();
4897 
4898   if (isValueEqualityComparison(SI)) {
4899     // If we only have one predecessor, and if it is a branch on this value,
4900     // see if that predecessor totally determines the outcome of this switch.
4901     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4902       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
4903         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4904 
4905     Value *Cond = SI->getCondition();
4906     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
4907       if (SimplifySwitchOnSelect(SI, Select))
4908         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4909 
4910     // If the block only contains the switch, see if we can fold the block
4911     // away into any preds.
4912     BasicBlock::iterator BBI = BB->begin();
4913     // Ignore dbg intrinsics.
4914     while (isa<DbgInfoIntrinsic>(BBI))
4915       ++BBI;
4916     if (SI == &*BBI)
4917       if (FoldValueComparisonIntoPredecessors(SI, Builder))
4918         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4919   }
4920 
4921   // Try to transform the switch into an icmp and a branch.
4922   if (TurnSwitchRangeIntoICmp(SI, Builder))
4923     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4924 
4925   // Remove unreachable cases.
4926   if (EliminateDeadSwitchCases(SI, AC, DL))
4927     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4928 
4929   if (SwitchToSelect(SI, Builder, AC, DL))
4930     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4931 
4932   if (ForwardSwitchConditionToPHI(SI))
4933     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4934 
4935   if (SwitchToLookupTable(SI, Builder, DL, TTI))
4936     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4937 
4938   return false;
4939 }
4940 
4941 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
4942   BasicBlock *BB = IBI->getParent();
4943   bool Changed = false;
4944 
4945   // Eliminate redundant destinations.
4946   SmallPtrSet<Value *, 8> Succs;
4947   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
4948     BasicBlock *Dest = IBI->getDestination(i);
4949     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
4950       Dest->removePredecessor(BB);
4951       IBI->removeDestination(i);
4952       --i; --e;
4953       Changed = true;
4954     }
4955   }
4956 
4957   if (IBI->getNumDestinations() == 0) {
4958     // If the indirectbr has no successors, change it to unreachable.
4959     new UnreachableInst(IBI->getContext(), IBI);
4960     EraseTerminatorInstAndDCECond(IBI);
4961     return true;
4962   }
4963 
4964   if (IBI->getNumDestinations() == 1) {
4965     // If the indirectbr has one successor, change it to a direct branch.
4966     BranchInst::Create(IBI->getDestination(0), IBI);
4967     EraseTerminatorInstAndDCECond(IBI);
4968     return true;
4969   }
4970 
4971   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
4972     if (SimplifyIndirectBrOnSelect(IBI, SI))
4973       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4974   }
4975   return Changed;
4976 }
4977 
4978 /// Given an block with only a single landing pad and a unconditional branch
4979 /// try to find another basic block which this one can be merged with.  This
4980 /// handles cases where we have multiple invokes with unique landing pads, but
4981 /// a shared handler.
4982 ///
4983 /// We specifically choose to not worry about merging non-empty blocks
4984 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
4985 /// practice, the optimizer produces empty landing pad blocks quite frequently
4986 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
4987 /// sinking in this file)
4988 ///
4989 /// This is primarily a code size optimization.  We need to avoid performing
4990 /// any transform which might inhibit optimization (such as our ability to
4991 /// specialize a particular handler via tail commoning).  We do this by not
4992 /// merging any blocks which require us to introduce a phi.  Since the same
4993 /// values are flowing through both blocks, we don't loose any ability to
4994 /// specialize.  If anything, we make such specialization more likely.
4995 ///
4996 /// TODO - This transformation could remove entries from a phi in the target
4997 /// block when the inputs in the phi are the same for the two blocks being
4998 /// merged.  In some cases, this could result in removal of the PHI entirely.
4999 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5000                                  BasicBlock *BB) {
5001   auto Succ = BB->getUniqueSuccessor();
5002   assert(Succ);
5003   // If there's a phi in the successor block, we'd likely have to introduce
5004   // a phi into the merged landing pad block.
5005   if (isa<PHINode>(*Succ->begin()))
5006     return false;
5007 
5008   for (BasicBlock *OtherPred : predecessors(Succ)) {
5009     if (BB == OtherPred)
5010       continue;
5011     BasicBlock::iterator I = OtherPred->begin();
5012     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5013     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5014       continue;
5015     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
5016     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5017     if (!BI2 || !BI2->isIdenticalTo(BI))
5018       continue;
5019 
5020     // We've found an identical block.  Update our predecessors to take that
5021     // path instead and make ourselves dead.
5022     SmallSet<BasicBlock *, 16> Preds;
5023     Preds.insert(pred_begin(BB), pred_end(BB));
5024     for (BasicBlock *Pred : Preds) {
5025       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5026       assert(II->getNormalDest() != BB &&
5027              II->getUnwindDest() == BB && "unexpected successor");
5028       II->setUnwindDest(OtherPred);
5029     }
5030 
5031     // The debug info in OtherPred doesn't cover the merged control flow that
5032     // used to go through BB.  We need to delete it or update it.
5033     for (auto I = OtherPred->begin(), E = OtherPred->end();
5034          I != E;) {
5035       Instruction &Inst = *I; I++;
5036       if (isa<DbgInfoIntrinsic>(Inst))
5037         Inst.eraseFromParent();
5038     }
5039 
5040     SmallSet<BasicBlock *, 16> Succs;
5041     Succs.insert(succ_begin(BB), succ_end(BB));
5042     for (BasicBlock *Succ : Succs) {
5043       Succ->removePredecessor(BB);
5044     }
5045 
5046     IRBuilder<> Builder(BI);
5047     Builder.CreateUnreachable();
5048     BI->eraseFromParent();
5049     return true;
5050   }
5051   return false;
5052 }
5053 
5054 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
5055   BasicBlock *BB = BI->getParent();
5056 
5057   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5058     return true;
5059 
5060   // If the Terminator is the only non-phi instruction, simplify the block.
5061   // if LoopHeader is provided, check if the block is a loop header
5062   // (This is for early invocations before loop simplify and vectorization
5063   // to keep canonical loop forms for nested loops.
5064   // These blocks can be eliminated when the pass is invoked later
5065   // in the back-end.)
5066   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5067   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5068       (!LoopHeaders || !LoopHeaders->count(BB)) &&
5069       TryToSimplifyUncondBranchFromEmptyBlock(BB))
5070     return true;
5071 
5072   // If the only instruction in the block is a seteq/setne comparison
5073   // against a constant, try to simplify the block.
5074   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5075     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5076       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5077         ;
5078       if (I->isTerminator() &&
5079           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5080                                                 BonusInstThreshold, AC))
5081         return true;
5082     }
5083 
5084   // See if we can merge an empty landing pad block with another which is
5085   // equivalent.
5086   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5087     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
5088     if (I->isTerminator() &&
5089         TryToMergeLandingPad(LPad, BI, BB))
5090       return true;
5091   }
5092 
5093   // If this basic block is ONLY a compare and a branch, and if a predecessor
5094   // branches to us and our successor, fold the comparison into the
5095   // predecessor and use logical operations to update the incoming value
5096   // for PHI nodes in common successor.
5097   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5098     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5099   return false;
5100 }
5101 
5102 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5103   BasicBlock *PredPred = nullptr;
5104   for (auto *P : predecessors(BB)) {
5105     BasicBlock *PPred = P->getSinglePredecessor();
5106     if (!PPred || (PredPred && PredPred != PPred))
5107       return nullptr;
5108     PredPred = PPred;
5109   }
5110   return PredPred;
5111 }
5112 
5113 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5114   BasicBlock *BB = BI->getParent();
5115 
5116   // Conditional branch
5117   if (isValueEqualityComparison(BI)) {
5118     // If we only have one predecessor, and if it is a branch on this value,
5119     // see if that predecessor totally determines the outcome of this
5120     // switch.
5121     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5122       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5123         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5124 
5125     // This block must be empty, except for the setcond inst, if it exists.
5126     // Ignore dbg intrinsics.
5127     BasicBlock::iterator I = BB->begin();
5128     // Ignore dbg intrinsics.
5129     while (isa<DbgInfoIntrinsic>(I))
5130       ++I;
5131     if (&*I == BI) {
5132       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5133         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5134     } else if (&*I == cast<Instruction>(BI->getCondition())){
5135       ++I;
5136       // Ignore dbg intrinsics.
5137       while (isa<DbgInfoIntrinsic>(I))
5138         ++I;
5139       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5140         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5141     }
5142   }
5143 
5144   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5145   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5146     return true;
5147 
5148   // If this basic block is ONLY a compare and a branch, and if a predecessor
5149   // branches to us and one of our successors, fold the comparison into the
5150   // predecessor and use logical operations to pick the right destination.
5151   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5152     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5153 
5154   // We have a conditional branch to two blocks that are only reachable
5155   // from BI.  We know that the condbr dominates the two blocks, so see if
5156   // there is any identical code in the "then" and "else" blocks.  If so, we
5157   // can hoist it up to the branching block.
5158   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5159     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5160       if (HoistThenElseCodeToIf(BI, TTI))
5161         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5162     } else {
5163       // If Successor #1 has multiple preds, we may be able to conditionally
5164       // execute Successor #0 if it branches to Successor #1.
5165       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5166       if (Succ0TI->getNumSuccessors() == 1 &&
5167           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5168         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5169           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5170     }
5171   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5172     // If Successor #0 has multiple preds, we may be able to conditionally
5173     // execute Successor #1 if it branches to Successor #0.
5174     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5175     if (Succ1TI->getNumSuccessors() == 1 &&
5176         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5177       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5178         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5179   }
5180 
5181   // If this is a branch on a phi node in the current block, thread control
5182   // through this block if any PHI node entries are constants.
5183   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5184     if (PN->getParent() == BI->getParent())
5185       if (FoldCondBranchOnPHI(BI, DL))
5186         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5187 
5188   // Scan predecessor blocks for conditional branches.
5189   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5190     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5191       if (PBI != BI && PBI->isConditional())
5192         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5193           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5194 
5195   // Look for diamond patterns.
5196   if (MergeCondStores)
5197     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5198       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5199         if (PBI != BI && PBI->isConditional())
5200           if (mergeConditionalStores(PBI, BI))
5201             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5202 
5203   return false;
5204 }
5205 
5206 /// Check if passing a value to an instruction will cause undefined behavior.
5207 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5208   Constant *C = dyn_cast<Constant>(V);
5209   if (!C)
5210     return false;
5211 
5212   if (I->use_empty())
5213     return false;
5214 
5215   if (C->isNullValue()) {
5216     // Only look at the first use, avoid hurting compile time with long uselists
5217     User *Use = *I->user_begin();
5218 
5219     // Now make sure that there are no instructions in between that can alter
5220     // control flow (eg. calls)
5221     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
5222       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5223         return false;
5224 
5225     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5226     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5227       if (GEP->getPointerOperand() == I)
5228         return passingValueIsAlwaysUndefined(V, GEP);
5229 
5230     // Look through bitcasts.
5231     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5232       return passingValueIsAlwaysUndefined(V, BC);
5233 
5234     // Load from null is undefined.
5235     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5236       if (!LI->isVolatile())
5237         return LI->getPointerAddressSpace() == 0;
5238 
5239     // Store to null is undefined.
5240     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5241       if (!SI->isVolatile())
5242         return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
5243   }
5244   return false;
5245 }
5246 
5247 /// If BB has an incoming value that will always trigger undefined behavior
5248 /// (eg. null pointer dereference), remove the branch leading here.
5249 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5250   for (BasicBlock::iterator i = BB->begin();
5251        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5252     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5253       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5254         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5255         IRBuilder<> Builder(T);
5256         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5257           BB->removePredecessor(PHI->getIncomingBlock(i));
5258           // Turn uncoditional branches into unreachables and remove the dead
5259           // destination from conditional branches.
5260           if (BI->isUnconditional())
5261             Builder.CreateUnreachable();
5262           else
5263             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
5264                                                          BI->getSuccessor(0));
5265           BI->eraseFromParent();
5266           return true;
5267         }
5268         // TODO: SwitchInst.
5269       }
5270 
5271   return false;
5272 }
5273 
5274 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5275   bool Changed = false;
5276 
5277   assert(BB && BB->getParent() && "Block not embedded in function!");
5278   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5279 
5280   // Remove basic blocks that have no predecessors (except the entry block)...
5281   // or that just have themself as a predecessor.  These are unreachable.
5282   if ((pred_empty(BB) &&
5283        BB != &BB->getParent()->getEntryBlock()) ||
5284       BB->getSinglePredecessor() == BB) {
5285     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5286     DeleteDeadBlock(BB);
5287     return true;
5288   }
5289 
5290   // Check to see if we can constant propagate this terminator instruction
5291   // away...
5292   Changed |= ConstantFoldTerminator(BB, true);
5293 
5294   // Check for and eliminate duplicate PHI nodes in this block.
5295   Changed |= EliminateDuplicatePHINodes(BB);
5296 
5297   // Check for and remove branches that will always cause undefined behavior.
5298   Changed |= removeUndefIntroducingPredecessor(BB);
5299 
5300   // Merge basic blocks into their predecessor if there is only one distinct
5301   // pred, and if there is only one distinct successor of the predecessor, and
5302   // if there are no PHI nodes.
5303   //
5304   if (MergeBlockIntoPredecessor(BB))
5305     return true;
5306 
5307   IRBuilder<> Builder(BB);
5308 
5309   // If there is a trivial two-entry PHI node in this basic block, and we can
5310   // eliminate it, do so now.
5311   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5312     if (PN->getNumIncomingValues() == 2)
5313       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5314 
5315   Builder.SetInsertPoint(BB->getTerminator());
5316   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5317     if (BI->isUnconditional()) {
5318       if (SimplifyUncondBranch(BI, Builder)) return true;
5319     } else {
5320       if (SimplifyCondBranch(BI, Builder)) return true;
5321     }
5322   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5323     if (SimplifyReturn(RI, Builder)) return true;
5324   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5325     if (SimplifyResume(RI, Builder)) return true;
5326   } else if (CleanupReturnInst *RI =
5327                dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5328     if (SimplifyCleanupReturn(RI)) return true;
5329   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5330     if (SimplifySwitch(SI, Builder)) return true;
5331   } else if (UnreachableInst *UI =
5332                dyn_cast<UnreachableInst>(BB->getTerminator())) {
5333     if (SimplifyUnreachable(UI)) return true;
5334   } else if (IndirectBrInst *IBI =
5335                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5336     if (SimplifyIndirectBr(IBI)) return true;
5337   }
5338 
5339   return Changed;
5340 }
5341 
5342 /// This function is used to do simplification of a CFG.
5343 /// For example, it adjusts branches to branches to eliminate the extra hop,
5344 /// eliminates unreachable basic blocks, and does other "peephole" optimization
5345 /// of the CFG.  It returns true if a modification was made.
5346 ///
5347 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5348                        unsigned BonusInstThreshold, AssumptionCache *AC,
5349                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
5350   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
5351                         BonusInstThreshold, AC, LoopHeaders).run(BB);
5352 }
5353