1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/GuardUtils.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/MemorySSA.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/ConstantRange.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/ValueHandle.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/ValueMapper.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <climits> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <set> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 using namespace PatternMatch; 90 91 #define DEBUG_TYPE "simplifycfg" 92 93 cl::opt<bool> llvm::RequireAndPreserveDomTree( 94 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 95 cl::init(false), 96 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 97 "into preserving DomTree,")); 98 99 // Chosen as 2 so as to be cheap, but still to have enough power to fold 100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 101 // To catch this, we need to fold a compare and a select, hence '2' being the 102 // minimum reasonable default. 103 static cl::opt<unsigned> PHINodeFoldingThreshold( 104 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 105 cl::desc( 106 "Control the amount of phi node folding to perform (default = 2)")); 107 108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 109 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 110 cl::desc("Control the maximal total instruction cost that we are willing " 111 "to speculatively execute to fold a 2-entry PHI node into a " 112 "select (default = 4)")); 113 114 static cl::opt<bool> 115 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 116 cl::desc("Hoist common instructions up to the parent block")); 117 118 static cl::opt<bool> 119 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 120 cl::desc("Sink common instructions down to the end block")); 121 122 static cl::opt<bool> HoistCondStores( 123 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 124 cl::desc("Hoist conditional stores if an unconditional store precedes")); 125 126 static cl::opt<bool> MergeCondStores( 127 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 128 cl::desc("Hoist conditional stores even if an unconditional store does not " 129 "precede - hoist multiple conditional stores into a single " 130 "predicated store")); 131 132 static cl::opt<bool> MergeCondStoresAggressively( 133 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 134 cl::desc("When merging conditional stores, do so even if the resultant " 135 "basic blocks are unlikely to be if-converted as a result")); 136 137 static cl::opt<bool> SpeculateOneExpensiveInst( 138 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 139 cl::desc("Allow exactly one expensive instruction to be speculatively " 140 "executed")); 141 142 static cl::opt<unsigned> MaxSpeculationDepth( 143 "max-speculation-depth", cl::Hidden, cl::init(10), 144 cl::desc("Limit maximum recursion depth when calculating costs of " 145 "speculatively executed instructions")); 146 147 static cl::opt<int> 148 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 149 cl::init(10), 150 cl::desc("Max size of a block which is still considered " 151 "small enough to thread through")); 152 153 // Two is chosen to allow one negation and a logical combine. 154 static cl::opt<unsigned> 155 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 156 cl::init(2), 157 cl::desc("Maximum cost of combining conditions when " 158 "folding branches")); 159 160 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( 161 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, 162 cl::init(2), 163 cl::desc("Multiplier to apply to threshold when determining whether or not " 164 "to fold branch to common destination when vector operations are " 165 "present")); 166 167 static cl::opt<bool> EnableMergeCompatibleInvokes( 168 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true), 169 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate")); 170 171 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 172 STATISTIC(NumLinearMaps, 173 "Number of switch instructions turned into linear mapping"); 174 STATISTIC(NumLookupTables, 175 "Number of switch instructions turned into lookup tables"); 176 STATISTIC( 177 NumLookupTablesHoles, 178 "Number of switch instructions turned into lookup tables (holes checked)"); 179 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 180 STATISTIC(NumFoldValueComparisonIntoPredecessors, 181 "Number of value comparisons folded into predecessor basic blocks"); 182 STATISTIC(NumFoldBranchToCommonDest, 183 "Number of branches folded into predecessor basic block"); 184 STATISTIC( 185 NumHoistCommonCode, 186 "Number of common instruction 'blocks' hoisted up to the begin block"); 187 STATISTIC(NumHoistCommonInstrs, 188 "Number of common instructions hoisted up to the begin block"); 189 STATISTIC(NumSinkCommonCode, 190 "Number of common instruction 'blocks' sunk down to the end block"); 191 STATISTIC(NumSinkCommonInstrs, 192 "Number of common instructions sunk down to the end block"); 193 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 194 STATISTIC(NumInvokes, 195 "Number of invokes with empty resume blocks simplified into calls"); 196 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); 197 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); 198 199 namespace { 200 201 // The first field contains the value that the switch produces when a certain 202 // case group is selected, and the second field is a vector containing the 203 // cases composing the case group. 204 using SwitchCaseResultVectorTy = 205 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 206 207 // The first field contains the phi node that generates a result of the switch 208 // and the second field contains the value generated for a certain case in the 209 // switch for that PHI. 210 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 211 212 /// ValueEqualityComparisonCase - Represents a case of a switch. 213 struct ValueEqualityComparisonCase { 214 ConstantInt *Value; 215 BasicBlock *Dest; 216 217 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 218 : Value(Value), Dest(Dest) {} 219 220 bool operator<(ValueEqualityComparisonCase RHS) const { 221 // Comparing pointers is ok as we only rely on the order for uniquing. 222 return Value < RHS.Value; 223 } 224 225 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 226 }; 227 228 class SimplifyCFGOpt { 229 const TargetTransformInfo &TTI; 230 DomTreeUpdater *DTU; 231 const DataLayout &DL; 232 ArrayRef<WeakVH> LoopHeaders; 233 const SimplifyCFGOptions &Options; 234 bool Resimplify; 235 236 Value *isValueEqualityComparison(Instruction *TI); 237 BasicBlock *GetValueEqualityComparisonCases( 238 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 239 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 240 BasicBlock *Pred, 241 IRBuilder<> &Builder); 242 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 243 Instruction *PTI, 244 IRBuilder<> &Builder); 245 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 246 IRBuilder<> &Builder); 247 248 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 249 bool simplifySingleResume(ResumeInst *RI); 250 bool simplifyCommonResume(ResumeInst *RI); 251 bool simplifyCleanupReturn(CleanupReturnInst *RI); 252 bool simplifyUnreachable(UnreachableInst *UI); 253 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 254 bool simplifyIndirectBr(IndirectBrInst *IBI); 255 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 256 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 257 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 258 259 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 260 IRBuilder<> &Builder); 261 262 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 263 bool EqTermsOnly); 264 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 265 const TargetTransformInfo &TTI); 266 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 267 BasicBlock *TrueBB, BasicBlock *FalseBB, 268 uint32_t TrueWeight, uint32_t FalseWeight); 269 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 270 const DataLayout &DL); 271 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 272 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 273 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 274 275 public: 276 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 277 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 278 const SimplifyCFGOptions &Opts) 279 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 280 assert((!DTU || !DTU->hasPostDomTree()) && 281 "SimplifyCFG is not yet capable of maintaining validity of a " 282 "PostDomTree, so don't ask for it."); 283 } 284 285 bool simplifyOnce(BasicBlock *BB); 286 bool run(BasicBlock *BB); 287 288 // Helper to set Resimplify and return change indication. 289 bool requestResimplify() { 290 Resimplify = true; 291 return true; 292 } 293 }; 294 295 } // end anonymous namespace 296 297 /// Return true if all the PHI nodes in the basic block \p BB 298 /// receive compatible (identical) incoming values when coming from 299 /// all of the predecessor blocks that are specified in \p IncomingBlocks. 300 /// 301 /// Note that if the values aren't exactly identical, but \p EquivalenceSet 302 /// is provided, and *both* of the values are present in the set, 303 /// then they are considered equal. 304 static bool IncomingValuesAreCompatible( 305 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, 306 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { 307 assert(IncomingBlocks.size() == 2 && 308 "Only for a pair of incoming blocks at the time!"); 309 310 // FIXME: it is okay if one of the incoming values is an `undef` value, 311 // iff the other incoming value is guaranteed to be a non-poison value. 312 // FIXME: it is okay if one of the incoming values is a `poison` value. 313 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { 314 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); 315 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); 316 if (IV0 == IV1) 317 return true; 318 if (EquivalenceSet && EquivalenceSet->contains(IV0) && 319 EquivalenceSet->contains(IV1)) 320 return true; 321 return false; 322 }); 323 } 324 325 /// Return true if it is safe to merge these two 326 /// terminator instructions together. 327 static bool 328 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 329 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 330 if (SI1 == SI2) 331 return false; // Can't merge with self! 332 333 // It is not safe to merge these two switch instructions if they have a common 334 // successor, and if that successor has a PHI node, and if *that* PHI node has 335 // conflicting incoming values from the two switch blocks. 336 BasicBlock *SI1BB = SI1->getParent(); 337 BasicBlock *SI2BB = SI2->getParent(); 338 339 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 340 bool Fail = false; 341 for (BasicBlock *Succ : successors(SI2BB)) { 342 if (!SI1Succs.count(Succ)) 343 continue; 344 if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) 345 continue; 346 Fail = true; 347 if (FailBlocks) 348 FailBlocks->insert(Succ); 349 else 350 break; 351 } 352 353 return !Fail; 354 } 355 356 /// Update PHI nodes in Succ to indicate that there will now be entries in it 357 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 358 /// will be the same as those coming in from ExistPred, an existing predecessor 359 /// of Succ. 360 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 361 BasicBlock *ExistPred, 362 MemorySSAUpdater *MSSAU = nullptr) { 363 for (PHINode &PN : Succ->phis()) 364 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 365 if (MSSAU) 366 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 367 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 368 } 369 370 /// Compute an abstract "cost" of speculating the given instruction, 371 /// which is assumed to be safe to speculate. TCC_Free means cheap, 372 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 373 /// expensive. 374 static InstructionCost computeSpeculationCost(const User *I, 375 const TargetTransformInfo &TTI) { 376 assert(isSafeToSpeculativelyExecute(I) && 377 "Instruction is not safe to speculatively execute!"); 378 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 379 } 380 381 /// If we have a merge point of an "if condition" as accepted above, 382 /// return true if the specified value dominates the block. We 383 /// don't handle the true generality of domination here, just a special case 384 /// which works well enough for us. 385 /// 386 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 387 /// see if V (which must be an instruction) and its recursive operands 388 /// that do not dominate BB have a combined cost lower than Budget and 389 /// are non-trapping. If both are true, the instruction is inserted into the 390 /// set and true is returned. 391 /// 392 /// The cost for most non-trapping instructions is defined as 1 except for 393 /// Select whose cost is 2. 394 /// 395 /// After this function returns, Cost is increased by the cost of 396 /// V plus its non-dominating operands. If that cost is greater than 397 /// Budget, false is returned and Cost is undefined. 398 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 399 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 400 InstructionCost &Cost, 401 InstructionCost Budget, 402 const TargetTransformInfo &TTI, 403 unsigned Depth = 0) { 404 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 405 // so limit the recursion depth. 406 // TODO: While this recursion limit does prevent pathological behavior, it 407 // would be better to track visited instructions to avoid cycles. 408 if (Depth == MaxSpeculationDepth) 409 return false; 410 411 Instruction *I = dyn_cast<Instruction>(V); 412 if (!I) { 413 // Non-instructions all dominate instructions, but not all constantexprs 414 // can be executed unconditionally. 415 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 416 if (C->canTrap()) 417 return false; 418 return true; 419 } 420 BasicBlock *PBB = I->getParent(); 421 422 // We don't want to allow weird loops that might have the "if condition" in 423 // the bottom of this block. 424 if (PBB == BB) 425 return false; 426 427 // If this instruction is defined in a block that contains an unconditional 428 // branch to BB, then it must be in the 'conditional' part of the "if 429 // statement". If not, it definitely dominates the region. 430 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 431 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 432 return true; 433 434 // If we have seen this instruction before, don't count it again. 435 if (AggressiveInsts.count(I)) 436 return true; 437 438 // Okay, it looks like the instruction IS in the "condition". Check to 439 // see if it's a cheap instruction to unconditionally compute, and if it 440 // only uses stuff defined outside of the condition. If so, hoist it out. 441 if (!isSafeToSpeculativelyExecute(I)) 442 return false; 443 444 Cost += computeSpeculationCost(I, TTI); 445 446 // Allow exactly one instruction to be speculated regardless of its cost 447 // (as long as it is safe to do so). 448 // This is intended to flatten the CFG even if the instruction is a division 449 // or other expensive operation. The speculation of an expensive instruction 450 // is expected to be undone in CodeGenPrepare if the speculation has not 451 // enabled further IR optimizations. 452 if (Cost > Budget && 453 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 454 !Cost.isValid())) 455 return false; 456 457 // Okay, we can only really hoist these out if their operands do 458 // not take us over the cost threshold. 459 for (Use &Op : I->operands()) 460 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 461 Depth + 1)) 462 return false; 463 // Okay, it's safe to do this! Remember this instruction. 464 AggressiveInsts.insert(I); 465 return true; 466 } 467 468 /// Extract ConstantInt from value, looking through IntToPtr 469 /// and PointerNullValue. Return NULL if value is not a constant int. 470 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 471 // Normal constant int. 472 ConstantInt *CI = dyn_cast<ConstantInt>(V); 473 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 474 return CI; 475 476 // This is some kind of pointer constant. Turn it into a pointer-sized 477 // ConstantInt if possible. 478 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 479 480 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 481 if (isa<ConstantPointerNull>(V)) 482 return ConstantInt::get(PtrTy, 0); 483 484 // IntToPtr const int. 485 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 486 if (CE->getOpcode() == Instruction::IntToPtr) 487 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 488 // The constant is very likely to have the right type already. 489 if (CI->getType() == PtrTy) 490 return CI; 491 else 492 return cast<ConstantInt>( 493 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 494 } 495 return nullptr; 496 } 497 498 namespace { 499 500 /// Given a chain of or (||) or and (&&) comparison of a value against a 501 /// constant, this will try to recover the information required for a switch 502 /// structure. 503 /// It will depth-first traverse the chain of comparison, seeking for patterns 504 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 505 /// representing the different cases for the switch. 506 /// Note that if the chain is composed of '||' it will build the set of elements 507 /// that matches the comparisons (i.e. any of this value validate the chain) 508 /// while for a chain of '&&' it will build the set elements that make the test 509 /// fail. 510 struct ConstantComparesGatherer { 511 const DataLayout &DL; 512 513 /// Value found for the switch comparison 514 Value *CompValue = nullptr; 515 516 /// Extra clause to be checked before the switch 517 Value *Extra = nullptr; 518 519 /// Set of integers to match in switch 520 SmallVector<ConstantInt *, 8> Vals; 521 522 /// Number of comparisons matched in the and/or chain 523 unsigned UsedICmps = 0; 524 525 /// Construct and compute the result for the comparison instruction Cond 526 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 527 gather(Cond); 528 } 529 530 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 531 ConstantComparesGatherer & 532 operator=(const ConstantComparesGatherer &) = delete; 533 534 private: 535 /// Try to set the current value used for the comparison, it succeeds only if 536 /// it wasn't set before or if the new value is the same as the old one 537 bool setValueOnce(Value *NewVal) { 538 if (CompValue && CompValue != NewVal) 539 return false; 540 CompValue = NewVal; 541 return (CompValue != nullptr); 542 } 543 544 /// Try to match Instruction "I" as a comparison against a constant and 545 /// populates the array Vals with the set of values that match (or do not 546 /// match depending on isEQ). 547 /// Return false on failure. On success, the Value the comparison matched 548 /// against is placed in CompValue. 549 /// If CompValue is already set, the function is expected to fail if a match 550 /// is found but the value compared to is different. 551 bool matchInstruction(Instruction *I, bool isEQ) { 552 // If this is an icmp against a constant, handle this as one of the cases. 553 ICmpInst *ICI; 554 ConstantInt *C; 555 if (!((ICI = dyn_cast<ICmpInst>(I)) && 556 (C = GetConstantInt(I->getOperand(1), DL)))) { 557 return false; 558 } 559 560 Value *RHSVal; 561 const APInt *RHSC; 562 563 // Pattern match a special case 564 // (x & ~2^z) == y --> x == y || x == y|2^z 565 // This undoes a transformation done by instcombine to fuse 2 compares. 566 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 567 // It's a little bit hard to see why the following transformations are 568 // correct. Here is a CVC3 program to verify them for 64-bit values: 569 570 /* 571 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 572 x : BITVECTOR(64); 573 y : BITVECTOR(64); 574 z : BITVECTOR(64); 575 mask : BITVECTOR(64) = BVSHL(ONE, z); 576 QUERY( (y & ~mask = y) => 577 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 578 ); 579 QUERY( (y | mask = y) => 580 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 581 ); 582 */ 583 584 // Please note that each pattern must be a dual implication (<--> or 585 // iff). One directional implication can create spurious matches. If the 586 // implication is only one-way, an unsatisfiable condition on the left 587 // side can imply a satisfiable condition on the right side. Dual 588 // implication ensures that satisfiable conditions are transformed to 589 // other satisfiable conditions and unsatisfiable conditions are 590 // transformed to other unsatisfiable conditions. 591 592 // Here is a concrete example of a unsatisfiable condition on the left 593 // implying a satisfiable condition on the right: 594 // 595 // mask = (1 << z) 596 // (x & ~mask) == y --> (x == y || x == (y | mask)) 597 // 598 // Substituting y = 3, z = 0 yields: 599 // (x & -2) == 3 --> (x == 3 || x == 2) 600 601 // Pattern match a special case: 602 /* 603 QUERY( (y & ~mask = y) => 604 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 605 ); 606 */ 607 if (match(ICI->getOperand(0), 608 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 609 APInt Mask = ~*RHSC; 610 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 611 // If we already have a value for the switch, it has to match! 612 if (!setValueOnce(RHSVal)) 613 return false; 614 615 Vals.push_back(C); 616 Vals.push_back( 617 ConstantInt::get(C->getContext(), 618 C->getValue() | Mask)); 619 UsedICmps++; 620 return true; 621 } 622 } 623 624 // Pattern match a special case: 625 /* 626 QUERY( (y | mask = y) => 627 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 628 ); 629 */ 630 if (match(ICI->getOperand(0), 631 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 632 APInt Mask = *RHSC; 633 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 634 // If we already have a value for the switch, it has to match! 635 if (!setValueOnce(RHSVal)) 636 return false; 637 638 Vals.push_back(C); 639 Vals.push_back(ConstantInt::get(C->getContext(), 640 C->getValue() & ~Mask)); 641 UsedICmps++; 642 return true; 643 } 644 } 645 646 // If we already have a value for the switch, it has to match! 647 if (!setValueOnce(ICI->getOperand(0))) 648 return false; 649 650 UsedICmps++; 651 Vals.push_back(C); 652 return ICI->getOperand(0); 653 } 654 655 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 656 ConstantRange Span = 657 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 658 659 // Shift the range if the compare is fed by an add. This is the range 660 // compare idiom as emitted by instcombine. 661 Value *CandidateVal = I->getOperand(0); 662 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 663 Span = Span.subtract(*RHSC); 664 CandidateVal = RHSVal; 665 } 666 667 // If this is an and/!= check, then we are looking to build the set of 668 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 669 // x != 0 && x != 1. 670 if (!isEQ) 671 Span = Span.inverse(); 672 673 // If there are a ton of values, we don't want to make a ginormous switch. 674 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 675 return false; 676 } 677 678 // If we already have a value for the switch, it has to match! 679 if (!setValueOnce(CandidateVal)) 680 return false; 681 682 // Add all values from the range to the set 683 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 684 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 685 686 UsedICmps++; 687 return true; 688 } 689 690 /// Given a potentially 'or'd or 'and'd together collection of icmp 691 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 692 /// the value being compared, and stick the list constants into the Vals 693 /// vector. 694 /// One "Extra" case is allowed to differ from the other. 695 void gather(Value *V) { 696 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 697 698 // Keep a stack (SmallVector for efficiency) for depth-first traversal 699 SmallVector<Value *, 8> DFT; 700 SmallPtrSet<Value *, 8> Visited; 701 702 // Initialize 703 Visited.insert(V); 704 DFT.push_back(V); 705 706 while (!DFT.empty()) { 707 V = DFT.pop_back_val(); 708 709 if (Instruction *I = dyn_cast<Instruction>(V)) { 710 // If it is a || (or && depending on isEQ), process the operands. 711 Value *Op0, *Op1; 712 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 713 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 714 if (Visited.insert(Op1).second) 715 DFT.push_back(Op1); 716 if (Visited.insert(Op0).second) 717 DFT.push_back(Op0); 718 719 continue; 720 } 721 722 // Try to match the current instruction 723 if (matchInstruction(I, isEQ)) 724 // Match succeed, continue the loop 725 continue; 726 } 727 728 // One element of the sequence of || (or &&) could not be match as a 729 // comparison against the same value as the others. 730 // We allow only one "Extra" case to be checked before the switch 731 if (!Extra) { 732 Extra = V; 733 continue; 734 } 735 // Failed to parse a proper sequence, abort now 736 CompValue = nullptr; 737 break; 738 } 739 } 740 }; 741 742 } // end anonymous namespace 743 744 static void EraseTerminatorAndDCECond(Instruction *TI, 745 MemorySSAUpdater *MSSAU = nullptr) { 746 Instruction *Cond = nullptr; 747 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 748 Cond = dyn_cast<Instruction>(SI->getCondition()); 749 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 750 if (BI->isConditional()) 751 Cond = dyn_cast<Instruction>(BI->getCondition()); 752 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 753 Cond = dyn_cast<Instruction>(IBI->getAddress()); 754 } 755 756 TI->eraseFromParent(); 757 if (Cond) 758 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 759 } 760 761 /// Return true if the specified terminator checks 762 /// to see if a value is equal to constant integer value. 763 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 764 Value *CV = nullptr; 765 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 766 // Do not permit merging of large switch instructions into their 767 // predecessors unless there is only one predecessor. 768 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 769 CV = SI->getCondition(); 770 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 771 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 772 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 773 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 774 CV = ICI->getOperand(0); 775 } 776 777 // Unwrap any lossless ptrtoint cast. 778 if (CV) { 779 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 780 Value *Ptr = PTII->getPointerOperand(); 781 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 782 CV = Ptr; 783 } 784 } 785 return CV; 786 } 787 788 /// Given a value comparison instruction, 789 /// decode all of the 'cases' that it represents and return the 'default' block. 790 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 791 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 792 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 793 Cases.reserve(SI->getNumCases()); 794 for (auto Case : SI->cases()) 795 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 796 Case.getCaseSuccessor())); 797 return SI->getDefaultDest(); 798 } 799 800 BranchInst *BI = cast<BranchInst>(TI); 801 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 802 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 803 Cases.push_back(ValueEqualityComparisonCase( 804 GetConstantInt(ICI->getOperand(1), DL), Succ)); 805 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 806 } 807 808 /// Given a vector of bb/value pairs, remove any entries 809 /// in the list that match the specified block. 810 static void 811 EliminateBlockCases(BasicBlock *BB, 812 std::vector<ValueEqualityComparisonCase> &Cases) { 813 llvm::erase_value(Cases, BB); 814 } 815 816 /// Return true if there are any keys in C1 that exist in C2 as well. 817 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 818 std::vector<ValueEqualityComparisonCase> &C2) { 819 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 820 821 // Make V1 be smaller than V2. 822 if (V1->size() > V2->size()) 823 std::swap(V1, V2); 824 825 if (V1->empty()) 826 return false; 827 if (V1->size() == 1) { 828 // Just scan V2. 829 ConstantInt *TheVal = (*V1)[0].Value; 830 for (unsigned i = 0, e = V2->size(); i != e; ++i) 831 if (TheVal == (*V2)[i].Value) 832 return true; 833 } 834 835 // Otherwise, just sort both lists and compare element by element. 836 array_pod_sort(V1->begin(), V1->end()); 837 array_pod_sort(V2->begin(), V2->end()); 838 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 839 while (i1 != e1 && i2 != e2) { 840 if ((*V1)[i1].Value == (*V2)[i2].Value) 841 return true; 842 if ((*V1)[i1].Value < (*V2)[i2].Value) 843 ++i1; 844 else 845 ++i2; 846 } 847 return false; 848 } 849 850 // Set branch weights on SwitchInst. This sets the metadata if there is at 851 // least one non-zero weight. 852 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 853 // Check that there is at least one non-zero weight. Otherwise, pass 854 // nullptr to setMetadata which will erase the existing metadata. 855 MDNode *N = nullptr; 856 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 857 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 858 SI->setMetadata(LLVMContext::MD_prof, N); 859 } 860 861 // Similar to the above, but for branch and select instructions that take 862 // exactly 2 weights. 863 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 864 uint32_t FalseWeight) { 865 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 866 // Check that there is at least one non-zero weight. Otherwise, pass 867 // nullptr to setMetadata which will erase the existing metadata. 868 MDNode *N = nullptr; 869 if (TrueWeight || FalseWeight) 870 N = MDBuilder(I->getParent()->getContext()) 871 .createBranchWeights(TrueWeight, FalseWeight); 872 I->setMetadata(LLVMContext::MD_prof, N); 873 } 874 875 /// If TI is known to be a terminator instruction and its block is known to 876 /// only have a single predecessor block, check to see if that predecessor is 877 /// also a value comparison with the same value, and if that comparison 878 /// determines the outcome of this comparison. If so, simplify TI. This does a 879 /// very limited form of jump threading. 880 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 881 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 882 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 883 if (!PredVal) 884 return false; // Not a value comparison in predecessor. 885 886 Value *ThisVal = isValueEqualityComparison(TI); 887 assert(ThisVal && "This isn't a value comparison!!"); 888 if (ThisVal != PredVal) 889 return false; // Different predicates. 890 891 // TODO: Preserve branch weight metadata, similarly to how 892 // FoldValueComparisonIntoPredecessors preserves it. 893 894 // Find out information about when control will move from Pred to TI's block. 895 std::vector<ValueEqualityComparisonCase> PredCases; 896 BasicBlock *PredDef = 897 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 898 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 899 900 // Find information about how control leaves this block. 901 std::vector<ValueEqualityComparisonCase> ThisCases; 902 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 903 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 904 905 // If TI's block is the default block from Pred's comparison, potentially 906 // simplify TI based on this knowledge. 907 if (PredDef == TI->getParent()) { 908 // If we are here, we know that the value is none of those cases listed in 909 // PredCases. If there are any cases in ThisCases that are in PredCases, we 910 // can simplify TI. 911 if (!ValuesOverlap(PredCases, ThisCases)) 912 return false; 913 914 if (isa<BranchInst>(TI)) { 915 // Okay, one of the successors of this condbr is dead. Convert it to a 916 // uncond br. 917 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 918 // Insert the new branch. 919 Instruction *NI = Builder.CreateBr(ThisDef); 920 (void)NI; 921 922 // Remove PHI node entries for the dead edge. 923 ThisCases[0].Dest->removePredecessor(PredDef); 924 925 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 926 << "Through successor TI: " << *TI << "Leaving: " << *NI 927 << "\n"); 928 929 EraseTerminatorAndDCECond(TI); 930 931 if (DTU) 932 DTU->applyUpdates( 933 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 934 935 return true; 936 } 937 938 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 939 // Okay, TI has cases that are statically dead, prune them away. 940 SmallPtrSet<Constant *, 16> DeadCases; 941 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 942 DeadCases.insert(PredCases[i].Value); 943 944 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 945 << "Through successor TI: " << *TI); 946 947 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 948 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 949 --i; 950 auto *Successor = i->getCaseSuccessor(); 951 if (DTU) 952 ++NumPerSuccessorCases[Successor]; 953 if (DeadCases.count(i->getCaseValue())) { 954 Successor->removePredecessor(PredDef); 955 SI.removeCase(i); 956 if (DTU) 957 --NumPerSuccessorCases[Successor]; 958 } 959 } 960 961 if (DTU) { 962 std::vector<DominatorTree::UpdateType> Updates; 963 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 964 if (I.second == 0) 965 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 966 DTU->applyUpdates(Updates); 967 } 968 969 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 970 return true; 971 } 972 973 // Otherwise, TI's block must correspond to some matched value. Find out 974 // which value (or set of values) this is. 975 ConstantInt *TIV = nullptr; 976 BasicBlock *TIBB = TI->getParent(); 977 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 978 if (PredCases[i].Dest == TIBB) { 979 if (TIV) 980 return false; // Cannot handle multiple values coming to this block. 981 TIV = PredCases[i].Value; 982 } 983 assert(TIV && "No edge from pred to succ?"); 984 985 // Okay, we found the one constant that our value can be if we get into TI's 986 // BB. Find out which successor will unconditionally be branched to. 987 BasicBlock *TheRealDest = nullptr; 988 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 989 if (ThisCases[i].Value == TIV) { 990 TheRealDest = ThisCases[i].Dest; 991 break; 992 } 993 994 // If not handled by any explicit cases, it is handled by the default case. 995 if (!TheRealDest) 996 TheRealDest = ThisDef; 997 998 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 999 1000 // Remove PHI node entries for dead edges. 1001 BasicBlock *CheckEdge = TheRealDest; 1002 for (BasicBlock *Succ : successors(TIBB)) 1003 if (Succ != CheckEdge) { 1004 if (Succ != TheRealDest) 1005 RemovedSuccs.insert(Succ); 1006 Succ->removePredecessor(TIBB); 1007 } else 1008 CheckEdge = nullptr; 1009 1010 // Insert the new branch. 1011 Instruction *NI = Builder.CreateBr(TheRealDest); 1012 (void)NI; 1013 1014 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1015 << "Through successor TI: " << *TI << "Leaving: " << *NI 1016 << "\n"); 1017 1018 EraseTerminatorAndDCECond(TI); 1019 if (DTU) { 1020 SmallVector<DominatorTree::UpdateType, 2> Updates; 1021 Updates.reserve(RemovedSuccs.size()); 1022 for (auto *RemovedSucc : RemovedSuccs) 1023 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1024 DTU->applyUpdates(Updates); 1025 } 1026 return true; 1027 } 1028 1029 namespace { 1030 1031 /// This class implements a stable ordering of constant 1032 /// integers that does not depend on their address. This is important for 1033 /// applications that sort ConstantInt's to ensure uniqueness. 1034 struct ConstantIntOrdering { 1035 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1036 return LHS->getValue().ult(RHS->getValue()); 1037 } 1038 }; 1039 1040 } // end anonymous namespace 1041 1042 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1043 ConstantInt *const *P2) { 1044 const ConstantInt *LHS = *P1; 1045 const ConstantInt *RHS = *P2; 1046 if (LHS == RHS) 1047 return 0; 1048 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1049 } 1050 1051 static inline bool HasBranchWeights(const Instruction *I) { 1052 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1053 if (ProfMD && ProfMD->getOperand(0)) 1054 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1055 return MDS->getString().equals("branch_weights"); 1056 1057 return false; 1058 } 1059 1060 /// Get Weights of a given terminator, the default weight is at the front 1061 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1062 /// metadata. 1063 static void GetBranchWeights(Instruction *TI, 1064 SmallVectorImpl<uint64_t> &Weights) { 1065 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1066 assert(MD); 1067 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1068 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1069 Weights.push_back(CI->getValue().getZExtValue()); 1070 } 1071 1072 // If TI is a conditional eq, the default case is the false case, 1073 // and the corresponding branch-weight data is at index 2. We swap the 1074 // default weight to be the first entry. 1075 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1076 assert(Weights.size() == 2); 1077 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1078 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1079 std::swap(Weights.front(), Weights.back()); 1080 } 1081 } 1082 1083 /// Keep halving the weights until all can fit in uint32_t. 1084 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1085 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1086 if (Max > UINT_MAX) { 1087 unsigned Offset = 32 - countLeadingZeros(Max); 1088 for (uint64_t &I : Weights) 1089 I >>= Offset; 1090 } 1091 } 1092 1093 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1094 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1095 Instruction *PTI = PredBlock->getTerminator(); 1096 1097 // If we have bonus instructions, clone them into the predecessor block. 1098 // Note that there may be multiple predecessor blocks, so we cannot move 1099 // bonus instructions to a predecessor block. 1100 for (Instruction &BonusInst : *BB) { 1101 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1102 continue; 1103 1104 Instruction *NewBonusInst = BonusInst.clone(); 1105 1106 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1107 // Unless the instruction has the same !dbg location as the original 1108 // branch, drop it. When we fold the bonus instructions we want to make 1109 // sure we reset their debug locations in order to avoid stepping on 1110 // dead code caused by folding dead branches. 1111 NewBonusInst->setDebugLoc(DebugLoc()); 1112 } 1113 1114 RemapInstruction(NewBonusInst, VMap, 1115 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1116 VMap[&BonusInst] = NewBonusInst; 1117 1118 // If we moved a load, we cannot any longer claim any knowledge about 1119 // its potential value. The previous information might have been valid 1120 // only given the branch precondition. 1121 // For an analogous reason, we must also drop all the metadata whose 1122 // semantics we don't understand. We *can* preserve !annotation, because 1123 // it is tied to the instruction itself, not the value or position. 1124 // Similarly strip attributes on call parameters that may cause UB in 1125 // location the call is moved to. 1126 NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata( 1127 LLVMContext::MD_annotation); 1128 1129 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1130 NewBonusInst->takeName(&BonusInst); 1131 BonusInst.setName(NewBonusInst->getName() + ".old"); 1132 1133 // Update (liveout) uses of bonus instructions, 1134 // now that the bonus instruction has been cloned into predecessor. 1135 // Note that we expect to be in a block-closed SSA form for this to work! 1136 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1137 auto *UI = cast<Instruction>(U.getUser()); 1138 auto *PN = dyn_cast<PHINode>(UI); 1139 if (!PN) { 1140 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && 1141 "If the user is not a PHI node, then it should be in the same " 1142 "block as, and come after, the original bonus instruction."); 1143 continue; // Keep using the original bonus instruction. 1144 } 1145 // Is this the block-closed SSA form PHI node? 1146 if (PN->getIncomingBlock(U) == BB) 1147 continue; // Great, keep using the original bonus instruction. 1148 // The only other alternative is an "use" when coming from 1149 // the predecessor block - here we should refer to the cloned bonus instr. 1150 assert(PN->getIncomingBlock(U) == PredBlock && 1151 "Not in block-closed SSA form?"); 1152 U.set(NewBonusInst); 1153 } 1154 } 1155 } 1156 1157 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1158 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1159 BasicBlock *BB = TI->getParent(); 1160 BasicBlock *Pred = PTI->getParent(); 1161 1162 SmallVector<DominatorTree::UpdateType, 32> Updates; 1163 1164 // Figure out which 'cases' to copy from SI to PSI. 1165 std::vector<ValueEqualityComparisonCase> BBCases; 1166 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1167 1168 std::vector<ValueEqualityComparisonCase> PredCases; 1169 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1170 1171 // Based on whether the default edge from PTI goes to BB or not, fill in 1172 // PredCases and PredDefault with the new switch cases we would like to 1173 // build. 1174 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1175 1176 // Update the branch weight metadata along the way 1177 SmallVector<uint64_t, 8> Weights; 1178 bool PredHasWeights = HasBranchWeights(PTI); 1179 bool SuccHasWeights = HasBranchWeights(TI); 1180 1181 if (PredHasWeights) { 1182 GetBranchWeights(PTI, Weights); 1183 // branch-weight metadata is inconsistent here. 1184 if (Weights.size() != 1 + PredCases.size()) 1185 PredHasWeights = SuccHasWeights = false; 1186 } else if (SuccHasWeights) 1187 // If there are no predecessor weights but there are successor weights, 1188 // populate Weights with 1, which will later be scaled to the sum of 1189 // successor's weights 1190 Weights.assign(1 + PredCases.size(), 1); 1191 1192 SmallVector<uint64_t, 8> SuccWeights; 1193 if (SuccHasWeights) { 1194 GetBranchWeights(TI, SuccWeights); 1195 // branch-weight metadata is inconsistent here. 1196 if (SuccWeights.size() != 1 + BBCases.size()) 1197 PredHasWeights = SuccHasWeights = false; 1198 } else if (PredHasWeights) 1199 SuccWeights.assign(1 + BBCases.size(), 1); 1200 1201 if (PredDefault == BB) { 1202 // If this is the default destination from PTI, only the edges in TI 1203 // that don't occur in PTI, or that branch to BB will be activated. 1204 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1205 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1206 if (PredCases[i].Dest != BB) 1207 PTIHandled.insert(PredCases[i].Value); 1208 else { 1209 // The default destination is BB, we don't need explicit targets. 1210 std::swap(PredCases[i], PredCases.back()); 1211 1212 if (PredHasWeights || SuccHasWeights) { 1213 // Increase weight for the default case. 1214 Weights[0] += Weights[i + 1]; 1215 std::swap(Weights[i + 1], Weights.back()); 1216 Weights.pop_back(); 1217 } 1218 1219 PredCases.pop_back(); 1220 --i; 1221 --e; 1222 } 1223 1224 // Reconstruct the new switch statement we will be building. 1225 if (PredDefault != BBDefault) { 1226 PredDefault->removePredecessor(Pred); 1227 if (DTU && PredDefault != BB) 1228 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1229 PredDefault = BBDefault; 1230 ++NewSuccessors[BBDefault]; 1231 } 1232 1233 unsigned CasesFromPred = Weights.size(); 1234 uint64_t ValidTotalSuccWeight = 0; 1235 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1236 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1237 PredCases.push_back(BBCases[i]); 1238 ++NewSuccessors[BBCases[i].Dest]; 1239 if (SuccHasWeights || PredHasWeights) { 1240 // The default weight is at index 0, so weight for the ith case 1241 // should be at index i+1. Scale the cases from successor by 1242 // PredDefaultWeight (Weights[0]). 1243 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1244 ValidTotalSuccWeight += SuccWeights[i + 1]; 1245 } 1246 } 1247 1248 if (SuccHasWeights || PredHasWeights) { 1249 ValidTotalSuccWeight += SuccWeights[0]; 1250 // Scale the cases from predecessor by ValidTotalSuccWeight. 1251 for (unsigned i = 1; i < CasesFromPred; ++i) 1252 Weights[i] *= ValidTotalSuccWeight; 1253 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1254 Weights[0] *= SuccWeights[0]; 1255 } 1256 } else { 1257 // If this is not the default destination from PSI, only the edges 1258 // in SI that occur in PSI with a destination of BB will be 1259 // activated. 1260 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1261 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1262 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1263 if (PredCases[i].Dest == BB) { 1264 PTIHandled.insert(PredCases[i].Value); 1265 1266 if (PredHasWeights || SuccHasWeights) { 1267 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1268 std::swap(Weights[i + 1], Weights.back()); 1269 Weights.pop_back(); 1270 } 1271 1272 std::swap(PredCases[i], PredCases.back()); 1273 PredCases.pop_back(); 1274 --i; 1275 --e; 1276 } 1277 1278 // Okay, now we know which constants were sent to BB from the 1279 // predecessor. Figure out where they will all go now. 1280 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1281 if (PTIHandled.count(BBCases[i].Value)) { 1282 // If this is one we are capable of getting... 1283 if (PredHasWeights || SuccHasWeights) 1284 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1285 PredCases.push_back(BBCases[i]); 1286 ++NewSuccessors[BBCases[i].Dest]; 1287 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1288 } 1289 1290 // If there are any constants vectored to BB that TI doesn't handle, 1291 // they must go to the default destination of TI. 1292 for (ConstantInt *I : PTIHandled) { 1293 if (PredHasWeights || SuccHasWeights) 1294 Weights.push_back(WeightsForHandled[I]); 1295 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1296 ++NewSuccessors[BBDefault]; 1297 } 1298 } 1299 1300 // Okay, at this point, we know which new successor Pred will get. Make 1301 // sure we update the number of entries in the PHI nodes for these 1302 // successors. 1303 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1304 if (DTU) { 1305 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1306 Updates.reserve(Updates.size() + NewSuccessors.size()); 1307 } 1308 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1309 NewSuccessors) { 1310 for (auto I : seq(0, NewSuccessor.second)) { 1311 (void)I; 1312 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1313 } 1314 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1315 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1316 } 1317 1318 Builder.SetInsertPoint(PTI); 1319 // Convert pointer to int before we switch. 1320 if (CV->getType()->isPointerTy()) { 1321 CV = 1322 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1323 } 1324 1325 // Now that the successors are updated, create the new Switch instruction. 1326 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1327 NewSI->setDebugLoc(PTI->getDebugLoc()); 1328 for (ValueEqualityComparisonCase &V : PredCases) 1329 NewSI->addCase(V.Value, V.Dest); 1330 1331 if (PredHasWeights || SuccHasWeights) { 1332 // Halve the weights if any of them cannot fit in an uint32_t 1333 FitWeights(Weights); 1334 1335 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1336 1337 setBranchWeights(NewSI, MDWeights); 1338 } 1339 1340 EraseTerminatorAndDCECond(PTI); 1341 1342 // Okay, last check. If BB is still a successor of PSI, then we must 1343 // have an infinite loop case. If so, add an infinitely looping block 1344 // to handle the case to preserve the behavior of the code. 1345 BasicBlock *InfLoopBlock = nullptr; 1346 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1347 if (NewSI->getSuccessor(i) == BB) { 1348 if (!InfLoopBlock) { 1349 // Insert it at the end of the function, because it's either code, 1350 // or it won't matter if it's hot. :) 1351 InfLoopBlock = 1352 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1353 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1354 if (DTU) 1355 Updates.push_back( 1356 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1357 } 1358 NewSI->setSuccessor(i, InfLoopBlock); 1359 } 1360 1361 if (DTU) { 1362 if (InfLoopBlock) 1363 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1364 1365 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1366 1367 DTU->applyUpdates(Updates); 1368 } 1369 1370 ++NumFoldValueComparisonIntoPredecessors; 1371 return true; 1372 } 1373 1374 /// The specified terminator is a value equality comparison instruction 1375 /// (either a switch or a branch on "X == c"). 1376 /// See if any of the predecessors of the terminator block are value comparisons 1377 /// on the same value. If so, and if safe to do so, fold them together. 1378 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1379 IRBuilder<> &Builder) { 1380 BasicBlock *BB = TI->getParent(); 1381 Value *CV = isValueEqualityComparison(TI); // CondVal 1382 assert(CV && "Not a comparison?"); 1383 1384 bool Changed = false; 1385 1386 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1387 while (!Preds.empty()) { 1388 BasicBlock *Pred = Preds.pop_back_val(); 1389 Instruction *PTI = Pred->getTerminator(); 1390 1391 // Don't try to fold into itself. 1392 if (Pred == BB) 1393 continue; 1394 1395 // See if the predecessor is a comparison with the same value. 1396 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1397 if (PCV != CV) 1398 continue; 1399 1400 SmallSetVector<BasicBlock *, 4> FailBlocks; 1401 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1402 for (auto *Succ : FailBlocks) { 1403 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1404 return false; 1405 } 1406 } 1407 1408 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1409 Changed = true; 1410 } 1411 return Changed; 1412 } 1413 1414 // If we would need to insert a select that uses the value of this invoke 1415 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1416 // can't hoist the invoke, as there is nowhere to put the select in this case. 1417 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1418 Instruction *I1, Instruction *I2) { 1419 for (BasicBlock *Succ : successors(BB1)) { 1420 for (const PHINode &PN : Succ->phis()) { 1421 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1422 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1423 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1424 return false; 1425 } 1426 } 1427 } 1428 return true; 1429 } 1430 1431 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1432 1433 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1434 /// in the two blocks up into the branch block. The caller of this function 1435 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1436 /// only perform hoisting in case both blocks only contain a terminator. In that 1437 /// case, only the original BI will be replaced and selects for PHIs are added. 1438 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1439 const TargetTransformInfo &TTI, 1440 bool EqTermsOnly) { 1441 // This does very trivial matching, with limited scanning, to find identical 1442 // instructions in the two blocks. In particular, we don't want to get into 1443 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1444 // such, we currently just scan for obviously identical instructions in an 1445 // identical order. 1446 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1447 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1448 1449 // If either of the blocks has it's address taken, then we can't do this fold, 1450 // because the code we'd hoist would no longer run when we jump into the block 1451 // by it's address. 1452 if (BB1->hasAddressTaken() || BB2->hasAddressTaken()) 1453 return false; 1454 1455 BasicBlock::iterator BB1_Itr = BB1->begin(); 1456 BasicBlock::iterator BB2_Itr = BB2->begin(); 1457 1458 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1459 // Skip debug info if it is not identical. 1460 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1461 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1462 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1463 while (isa<DbgInfoIntrinsic>(I1)) 1464 I1 = &*BB1_Itr++; 1465 while (isa<DbgInfoIntrinsic>(I2)) 1466 I2 = &*BB2_Itr++; 1467 } 1468 // FIXME: Can we define a safety predicate for CallBr? 1469 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1470 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1471 isa<CallBrInst>(I1)) 1472 return false; 1473 1474 BasicBlock *BIParent = BI->getParent(); 1475 1476 bool Changed = false; 1477 1478 auto _ = make_scope_exit([&]() { 1479 if (Changed) 1480 ++NumHoistCommonCode; 1481 }); 1482 1483 // Check if only hoisting terminators is allowed. This does not add new 1484 // instructions to the hoist location. 1485 if (EqTermsOnly) { 1486 // Skip any debug intrinsics, as they are free to hoist. 1487 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1488 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1489 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1490 return false; 1491 if (!I1NonDbg->isTerminator()) 1492 return false; 1493 // Now we know that we only need to hoist debug instrinsics and the 1494 // terminator. Let the loop below handle those 2 cases. 1495 } 1496 1497 do { 1498 // If we are hoisting the terminator instruction, don't move one (making a 1499 // broken BB), instead clone it, and remove BI. 1500 if (I1->isTerminator()) 1501 goto HoistTerminator; 1502 1503 // If we're going to hoist a call, make sure that the two instructions we're 1504 // commoning/hoisting are both marked with musttail, or neither of them is 1505 // marked as such. Otherwise, we might end up in a situation where we hoist 1506 // from a block where the terminator is a `ret` to a block where the terminator 1507 // is a `br`, and `musttail` calls expect to be followed by a return. 1508 auto *C1 = dyn_cast<CallInst>(I1); 1509 auto *C2 = dyn_cast<CallInst>(I2); 1510 if (C1 && C2) 1511 if (C1->isMustTailCall() != C2->isMustTailCall()) 1512 return Changed; 1513 1514 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1515 return Changed; 1516 1517 // If any of the two call sites has nomerge attribute, stop hoisting. 1518 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1519 if (CB1->cannotMerge()) 1520 return Changed; 1521 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1522 if (CB2->cannotMerge()) 1523 return Changed; 1524 1525 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1526 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1527 // The debug location is an integral part of a debug info intrinsic 1528 // and can't be separated from it or replaced. Instead of attempting 1529 // to merge locations, simply hoist both copies of the intrinsic. 1530 BIParent->getInstList().splice(BI->getIterator(), 1531 BB1->getInstList(), I1); 1532 BIParent->getInstList().splice(BI->getIterator(), 1533 BB2->getInstList(), I2); 1534 Changed = true; 1535 } else { 1536 // For a normal instruction, we just move one to right before the branch, 1537 // then replace all uses of the other with the first. Finally, we remove 1538 // the now redundant second instruction. 1539 BIParent->getInstList().splice(BI->getIterator(), 1540 BB1->getInstList(), I1); 1541 if (!I2->use_empty()) 1542 I2->replaceAllUsesWith(I1); 1543 I1->andIRFlags(I2); 1544 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1545 LLVMContext::MD_range, 1546 LLVMContext::MD_fpmath, 1547 LLVMContext::MD_invariant_load, 1548 LLVMContext::MD_nonnull, 1549 LLVMContext::MD_invariant_group, 1550 LLVMContext::MD_align, 1551 LLVMContext::MD_dereferenceable, 1552 LLVMContext::MD_dereferenceable_or_null, 1553 LLVMContext::MD_mem_parallel_loop_access, 1554 LLVMContext::MD_access_group, 1555 LLVMContext::MD_preserve_access_index}; 1556 combineMetadata(I1, I2, KnownIDs, true); 1557 1558 // I1 and I2 are being combined into a single instruction. Its debug 1559 // location is the merged locations of the original instructions. 1560 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1561 1562 I2->eraseFromParent(); 1563 Changed = true; 1564 } 1565 ++NumHoistCommonInstrs; 1566 1567 I1 = &*BB1_Itr++; 1568 I2 = &*BB2_Itr++; 1569 // Skip debug info if it is not identical. 1570 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1571 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1572 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1573 while (isa<DbgInfoIntrinsic>(I1)) 1574 I1 = &*BB1_Itr++; 1575 while (isa<DbgInfoIntrinsic>(I2)) 1576 I2 = &*BB2_Itr++; 1577 } 1578 } while (I1->isIdenticalToWhenDefined(I2)); 1579 1580 return true; 1581 1582 HoistTerminator: 1583 // It may not be possible to hoist an invoke. 1584 // FIXME: Can we define a safety predicate for CallBr? 1585 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1586 return Changed; 1587 1588 // TODO: callbr hoisting currently disabled pending further study. 1589 if (isa<CallBrInst>(I1)) 1590 return Changed; 1591 1592 for (BasicBlock *Succ : successors(BB1)) { 1593 for (PHINode &PN : Succ->phis()) { 1594 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1595 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1596 if (BB1V == BB2V) 1597 continue; 1598 1599 // Check for passingValueIsAlwaysUndefined here because we would rather 1600 // eliminate undefined control flow then converting it to a select. 1601 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1602 passingValueIsAlwaysUndefined(BB2V, &PN)) 1603 return Changed; 1604 1605 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1606 return Changed; 1607 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1608 return Changed; 1609 } 1610 } 1611 1612 // Okay, it is safe to hoist the terminator. 1613 Instruction *NT = I1->clone(); 1614 BIParent->getInstList().insert(BI->getIterator(), NT); 1615 if (!NT->getType()->isVoidTy()) { 1616 I1->replaceAllUsesWith(NT); 1617 I2->replaceAllUsesWith(NT); 1618 NT->takeName(I1); 1619 } 1620 Changed = true; 1621 ++NumHoistCommonInstrs; 1622 1623 // Ensure terminator gets a debug location, even an unknown one, in case 1624 // it involves inlinable calls. 1625 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1626 1627 // PHIs created below will adopt NT's merged DebugLoc. 1628 IRBuilder<NoFolder> Builder(NT); 1629 1630 // Hoisting one of the terminators from our successor is a great thing. 1631 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1632 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1633 // nodes, so we insert select instruction to compute the final result. 1634 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1635 for (BasicBlock *Succ : successors(BB1)) { 1636 for (PHINode &PN : Succ->phis()) { 1637 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1638 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1639 if (BB1V == BB2V) 1640 continue; 1641 1642 // These values do not agree. Insert a select instruction before NT 1643 // that determines the right value. 1644 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1645 if (!SI) { 1646 // Propagate fast-math-flags from phi node to its replacement select. 1647 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1648 if (isa<FPMathOperator>(PN)) 1649 Builder.setFastMathFlags(PN.getFastMathFlags()); 1650 1651 SI = cast<SelectInst>( 1652 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1653 BB1V->getName() + "." + BB2V->getName(), BI)); 1654 } 1655 1656 // Make the PHI node use the select for all incoming values for BB1/BB2 1657 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1658 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1659 PN.setIncomingValue(i, SI); 1660 } 1661 } 1662 1663 SmallVector<DominatorTree::UpdateType, 4> Updates; 1664 1665 // Update any PHI nodes in our new successors. 1666 for (BasicBlock *Succ : successors(BB1)) { 1667 AddPredecessorToBlock(Succ, BIParent, BB1); 1668 if (DTU) 1669 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1670 } 1671 1672 if (DTU) 1673 for (BasicBlock *Succ : successors(BI)) 1674 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1675 1676 EraseTerminatorAndDCECond(BI); 1677 if (DTU) 1678 DTU->applyUpdates(Updates); 1679 return Changed; 1680 } 1681 1682 // Check lifetime markers. 1683 static bool isLifeTimeMarker(const Instruction *I) { 1684 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1685 switch (II->getIntrinsicID()) { 1686 default: 1687 break; 1688 case Intrinsic::lifetime_start: 1689 case Intrinsic::lifetime_end: 1690 return true; 1691 } 1692 } 1693 return false; 1694 } 1695 1696 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1697 // into variables. 1698 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1699 int OpIdx) { 1700 return !isa<IntrinsicInst>(I); 1701 } 1702 1703 // All instructions in Insts belong to different blocks that all unconditionally 1704 // branch to a common successor. Analyze each instruction and return true if it 1705 // would be possible to sink them into their successor, creating one common 1706 // instruction instead. For every value that would be required to be provided by 1707 // PHI node (because an operand varies in each input block), add to PHIOperands. 1708 static bool canSinkInstructions( 1709 ArrayRef<Instruction *> Insts, 1710 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1711 // Prune out obviously bad instructions to move. Each instruction must have 1712 // exactly zero or one use, and we check later that use is by a single, common 1713 // PHI instruction in the successor. 1714 bool HasUse = !Insts.front()->user_empty(); 1715 for (auto *I : Insts) { 1716 // These instructions may change or break semantics if moved. 1717 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1718 I->getType()->isTokenTy()) 1719 return false; 1720 1721 // Do not try to sink an instruction in an infinite loop - it can cause 1722 // this algorithm to infinite loop. 1723 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1724 return false; 1725 1726 // Conservatively return false if I is an inline-asm instruction. Sinking 1727 // and merging inline-asm instructions can potentially create arguments 1728 // that cannot satisfy the inline-asm constraints. 1729 // If the instruction has nomerge attribute, return false. 1730 if (const auto *C = dyn_cast<CallBase>(I)) 1731 if (C->isInlineAsm() || C->cannotMerge()) 1732 return false; 1733 1734 // Each instruction must have zero or one use. 1735 if (HasUse && !I->hasOneUse()) 1736 return false; 1737 if (!HasUse && !I->user_empty()) 1738 return false; 1739 } 1740 1741 const Instruction *I0 = Insts.front(); 1742 for (auto *I : Insts) 1743 if (!I->isSameOperationAs(I0)) 1744 return false; 1745 1746 // All instructions in Insts are known to be the same opcode. If they have a 1747 // use, check that the only user is a PHI or in the same block as the 1748 // instruction, because if a user is in the same block as an instruction we're 1749 // contemplating sinking, it must already be determined to be sinkable. 1750 if (HasUse) { 1751 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1752 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1753 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1754 auto *U = cast<Instruction>(*I->user_begin()); 1755 return (PNUse && 1756 PNUse->getParent() == Succ && 1757 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1758 U->getParent() == I->getParent(); 1759 })) 1760 return false; 1761 } 1762 1763 // Because SROA can't handle speculating stores of selects, try not to sink 1764 // loads, stores or lifetime markers of allocas when we'd have to create a 1765 // PHI for the address operand. Also, because it is likely that loads or 1766 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1767 // them. 1768 // This can cause code churn which can have unintended consequences down 1769 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1770 // FIXME: This is a workaround for a deficiency in SROA - see 1771 // https://llvm.org/bugs/show_bug.cgi?id=30188 1772 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1773 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1774 })) 1775 return false; 1776 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1777 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1778 })) 1779 return false; 1780 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1781 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1782 })) 1783 return false; 1784 1785 // For calls to be sinkable, they must all be indirect, or have same callee. 1786 // I.e. if we have two direct calls to different callees, we don't want to 1787 // turn that into an indirect call. Likewise, if we have an indirect call, 1788 // and a direct call, we don't actually want to have a single indirect call. 1789 if (isa<CallBase>(I0)) { 1790 auto IsIndirectCall = [](const Instruction *I) { 1791 return cast<CallBase>(I)->isIndirectCall(); 1792 }; 1793 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1794 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1795 if (HaveIndirectCalls) { 1796 if (!AllCallsAreIndirect) 1797 return false; 1798 } else { 1799 // All callees must be identical. 1800 Value *Callee = nullptr; 1801 for (const Instruction *I : Insts) { 1802 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1803 if (!Callee) 1804 Callee = CurrCallee; 1805 else if (Callee != CurrCallee) 1806 return false; 1807 } 1808 } 1809 } 1810 1811 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1812 Value *Op = I0->getOperand(OI); 1813 if (Op->getType()->isTokenTy()) 1814 // Don't touch any operand of token type. 1815 return false; 1816 1817 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1818 assert(I->getNumOperands() == I0->getNumOperands()); 1819 return I->getOperand(OI) == I0->getOperand(OI); 1820 }; 1821 if (!all_of(Insts, SameAsI0)) { 1822 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1823 !canReplaceOperandWithVariable(I0, OI)) 1824 // We can't create a PHI from this GEP. 1825 return false; 1826 for (auto *I : Insts) 1827 PHIOperands[I].push_back(I->getOperand(OI)); 1828 } 1829 } 1830 return true; 1831 } 1832 1833 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1834 // instruction of every block in Blocks to their common successor, commoning 1835 // into one instruction. 1836 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1837 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1838 1839 // canSinkInstructions returning true guarantees that every block has at 1840 // least one non-terminator instruction. 1841 SmallVector<Instruction*,4> Insts; 1842 for (auto *BB : Blocks) { 1843 Instruction *I = BB->getTerminator(); 1844 do { 1845 I = I->getPrevNode(); 1846 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1847 if (!isa<DbgInfoIntrinsic>(I)) 1848 Insts.push_back(I); 1849 } 1850 1851 // The only checking we need to do now is that all users of all instructions 1852 // are the same PHI node. canSinkInstructions should have checked this but 1853 // it is slightly over-aggressive - it gets confused by commutative 1854 // instructions so double-check it here. 1855 Instruction *I0 = Insts.front(); 1856 if (!I0->user_empty()) { 1857 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1858 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1859 auto *U = cast<Instruction>(*I->user_begin()); 1860 return U == PNUse; 1861 })) 1862 return false; 1863 } 1864 1865 // We don't need to do any more checking here; canSinkInstructions should 1866 // have done it all for us. 1867 SmallVector<Value*, 4> NewOperands; 1868 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1869 // This check is different to that in canSinkInstructions. There, we 1870 // cared about the global view once simplifycfg (and instcombine) have 1871 // completed - it takes into account PHIs that become trivially 1872 // simplifiable. However here we need a more local view; if an operand 1873 // differs we create a PHI and rely on instcombine to clean up the very 1874 // small mess we may make. 1875 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1876 return I->getOperand(O) != I0->getOperand(O); 1877 }); 1878 if (!NeedPHI) { 1879 NewOperands.push_back(I0->getOperand(O)); 1880 continue; 1881 } 1882 1883 // Create a new PHI in the successor block and populate it. 1884 auto *Op = I0->getOperand(O); 1885 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1886 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1887 Op->getName() + ".sink", &BBEnd->front()); 1888 for (auto *I : Insts) 1889 PN->addIncoming(I->getOperand(O), I->getParent()); 1890 NewOperands.push_back(PN); 1891 } 1892 1893 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1894 // and move it to the start of the successor block. 1895 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1896 I0->getOperandUse(O).set(NewOperands[O]); 1897 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1898 1899 // Update metadata and IR flags, and merge debug locations. 1900 for (auto *I : Insts) 1901 if (I != I0) { 1902 // The debug location for the "common" instruction is the merged locations 1903 // of all the commoned instructions. We start with the original location 1904 // of the "common" instruction and iteratively merge each location in the 1905 // loop below. 1906 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1907 // However, as N-way merge for CallInst is rare, so we use simplified API 1908 // instead of using complex API for N-way merge. 1909 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1910 combineMetadataForCSE(I0, I, true); 1911 I0->andIRFlags(I); 1912 } 1913 1914 if (!I0->user_empty()) { 1915 // canSinkLastInstruction checked that all instructions were used by 1916 // one and only one PHI node. Find that now, RAUW it to our common 1917 // instruction and nuke it. 1918 auto *PN = cast<PHINode>(*I0->user_begin()); 1919 PN->replaceAllUsesWith(I0); 1920 PN->eraseFromParent(); 1921 } 1922 1923 // Finally nuke all instructions apart from the common instruction. 1924 for (auto *I : Insts) 1925 if (I != I0) 1926 I->eraseFromParent(); 1927 1928 return true; 1929 } 1930 1931 namespace { 1932 1933 // LockstepReverseIterator - Iterates through instructions 1934 // in a set of blocks in reverse order from the first non-terminator. 1935 // For example (assume all blocks have size n): 1936 // LockstepReverseIterator I([B1, B2, B3]); 1937 // *I-- = [B1[n], B2[n], B3[n]]; 1938 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1939 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1940 // ... 1941 class LockstepReverseIterator { 1942 ArrayRef<BasicBlock*> Blocks; 1943 SmallVector<Instruction*,4> Insts; 1944 bool Fail; 1945 1946 public: 1947 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1948 reset(); 1949 } 1950 1951 void reset() { 1952 Fail = false; 1953 Insts.clear(); 1954 for (auto *BB : Blocks) { 1955 Instruction *Inst = BB->getTerminator(); 1956 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1957 Inst = Inst->getPrevNode(); 1958 if (!Inst) { 1959 // Block wasn't big enough. 1960 Fail = true; 1961 return; 1962 } 1963 Insts.push_back(Inst); 1964 } 1965 } 1966 1967 bool isValid() const { 1968 return !Fail; 1969 } 1970 1971 void operator--() { 1972 if (Fail) 1973 return; 1974 for (auto *&Inst : Insts) { 1975 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1976 Inst = Inst->getPrevNode(); 1977 // Already at beginning of block. 1978 if (!Inst) { 1979 Fail = true; 1980 return; 1981 } 1982 } 1983 } 1984 1985 void operator++() { 1986 if (Fail) 1987 return; 1988 for (auto *&Inst : Insts) { 1989 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1990 Inst = Inst->getNextNode(); 1991 // Already at end of block. 1992 if (!Inst) { 1993 Fail = true; 1994 return; 1995 } 1996 } 1997 } 1998 1999 ArrayRef<Instruction*> operator * () const { 2000 return Insts; 2001 } 2002 }; 2003 2004 } // end anonymous namespace 2005 2006 /// Check whether BB's predecessors end with unconditional branches. If it is 2007 /// true, sink any common code from the predecessors to BB. 2008 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 2009 DomTreeUpdater *DTU) { 2010 // We support two situations: 2011 // (1) all incoming arcs are unconditional 2012 // (2) there are non-unconditional incoming arcs 2013 // 2014 // (2) is very common in switch defaults and 2015 // else-if patterns; 2016 // 2017 // if (a) f(1); 2018 // else if (b) f(2); 2019 // 2020 // produces: 2021 // 2022 // [if] 2023 // / \ 2024 // [f(1)] [if] 2025 // | | \ 2026 // | | | 2027 // | [f(2)]| 2028 // \ | / 2029 // [ end ] 2030 // 2031 // [end] has two unconditional predecessor arcs and one conditional. The 2032 // conditional refers to the implicit empty 'else' arc. This conditional 2033 // arc can also be caused by an empty default block in a switch. 2034 // 2035 // In this case, we attempt to sink code from all *unconditional* arcs. 2036 // If we can sink instructions from these arcs (determined during the scan 2037 // phase below) we insert a common successor for all unconditional arcs and 2038 // connect that to [end], to enable sinking: 2039 // 2040 // [if] 2041 // / \ 2042 // [x(1)] [if] 2043 // | | \ 2044 // | | \ 2045 // | [x(2)] | 2046 // \ / | 2047 // [sink.split] | 2048 // \ / 2049 // [ end ] 2050 // 2051 SmallVector<BasicBlock*,4> UnconditionalPreds; 2052 bool HaveNonUnconditionalPredecessors = false; 2053 for (auto *PredBB : predecessors(BB)) { 2054 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2055 if (PredBr && PredBr->isUnconditional()) 2056 UnconditionalPreds.push_back(PredBB); 2057 else 2058 HaveNonUnconditionalPredecessors = true; 2059 } 2060 if (UnconditionalPreds.size() < 2) 2061 return false; 2062 2063 // We take a two-step approach to tail sinking. First we scan from the end of 2064 // each block upwards in lockstep. If the n'th instruction from the end of each 2065 // block can be sunk, those instructions are added to ValuesToSink and we 2066 // carry on. If we can sink an instruction but need to PHI-merge some operands 2067 // (because they're not identical in each instruction) we add these to 2068 // PHIOperands. 2069 int ScanIdx = 0; 2070 SmallPtrSet<Value*,4> InstructionsToSink; 2071 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2072 LockstepReverseIterator LRI(UnconditionalPreds); 2073 while (LRI.isValid() && 2074 canSinkInstructions(*LRI, PHIOperands)) { 2075 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2076 << "\n"); 2077 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2078 ++ScanIdx; 2079 --LRI; 2080 } 2081 2082 // If no instructions can be sunk, early-return. 2083 if (ScanIdx == 0) 2084 return false; 2085 2086 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); 2087 2088 if (!followedByDeoptOrUnreachable) { 2089 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2090 // actually sink before encountering instruction that is unprofitable to 2091 // sink? 2092 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2093 unsigned NumPHIdValues = 0; 2094 for (auto *I : *LRI) 2095 for (auto *V : PHIOperands[I]) { 2096 if (!InstructionsToSink.contains(V)) 2097 ++NumPHIdValues; 2098 // FIXME: this check is overly optimistic. We may end up not sinking 2099 // said instruction, due to the very same profitability check. 2100 // See @creating_too_many_phis in sink-common-code.ll. 2101 } 2102 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2103 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2104 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2105 NumPHIInsts++; 2106 2107 return NumPHIInsts <= 1; 2108 }; 2109 2110 // We've determined that we are going to sink last ScanIdx instructions, 2111 // and recorded them in InstructionsToSink. Now, some instructions may be 2112 // unprofitable to sink. But that determination depends on the instructions 2113 // that we are going to sink. 2114 2115 // First, forward scan: find the first instruction unprofitable to sink, 2116 // recording all the ones that are profitable to sink. 2117 // FIXME: would it be better, after we detect that not all are profitable. 2118 // to either record the profitable ones, or erase the unprofitable ones? 2119 // Maybe we need to choose (at runtime) the one that will touch least 2120 // instrs? 2121 LRI.reset(); 2122 int Idx = 0; 2123 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2124 while (Idx < ScanIdx) { 2125 if (!ProfitableToSinkInstruction(LRI)) { 2126 // Too many PHIs would be created. 2127 LLVM_DEBUG( 2128 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2129 break; 2130 } 2131 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2132 --LRI; 2133 ++Idx; 2134 } 2135 2136 // If no instructions can be sunk, early-return. 2137 if (Idx == 0) 2138 return false; 2139 2140 // Did we determine that (only) some instructions are unprofitable to sink? 2141 if (Idx < ScanIdx) { 2142 // Okay, some instructions are unprofitable. 2143 ScanIdx = Idx; 2144 InstructionsToSink = InstructionsProfitableToSink; 2145 2146 // But, that may make other instructions unprofitable, too. 2147 // So, do a backward scan, do any earlier instructions become 2148 // unprofitable? 2149 assert( 2150 !ProfitableToSinkInstruction(LRI) && 2151 "We already know that the last instruction is unprofitable to sink"); 2152 ++LRI; 2153 --Idx; 2154 while (Idx >= 0) { 2155 // If we detect that an instruction becomes unprofitable to sink, 2156 // all earlier instructions won't be sunk either, 2157 // so preemptively keep InstructionsProfitableToSink in sync. 2158 // FIXME: is this the most performant approach? 2159 for (auto *I : *LRI) 2160 InstructionsProfitableToSink.erase(I); 2161 if (!ProfitableToSinkInstruction(LRI)) { 2162 // Everything starting with this instruction won't be sunk. 2163 ScanIdx = Idx; 2164 InstructionsToSink = InstructionsProfitableToSink; 2165 } 2166 ++LRI; 2167 --Idx; 2168 } 2169 } 2170 2171 // If no instructions can be sunk, early-return. 2172 if (ScanIdx == 0) 2173 return false; 2174 } 2175 2176 bool Changed = false; 2177 2178 if (HaveNonUnconditionalPredecessors) { 2179 if (!followedByDeoptOrUnreachable) { 2180 // It is always legal to sink common instructions from unconditional 2181 // predecessors. However, if not all predecessors are unconditional, 2182 // this transformation might be pessimizing. So as a rule of thumb, 2183 // don't do it unless we'd sink at least one non-speculatable instruction. 2184 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2185 LRI.reset(); 2186 int Idx = 0; 2187 bool Profitable = false; 2188 while (Idx < ScanIdx) { 2189 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2190 Profitable = true; 2191 break; 2192 } 2193 --LRI; 2194 ++Idx; 2195 } 2196 if (!Profitable) 2197 return false; 2198 } 2199 2200 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2201 // We have a conditional edge and we're going to sink some instructions. 2202 // Insert a new block postdominating all blocks we're going to sink from. 2203 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2204 // Edges couldn't be split. 2205 return false; 2206 Changed = true; 2207 } 2208 2209 // Now that we've analyzed all potential sinking candidates, perform the 2210 // actual sink. We iteratively sink the last non-terminator of the source 2211 // blocks into their common successor unless doing so would require too 2212 // many PHI instructions to be generated (currently only one PHI is allowed 2213 // per sunk instruction). 2214 // 2215 // We can use InstructionsToSink to discount values needing PHI-merging that will 2216 // actually be sunk in a later iteration. This allows us to be more 2217 // aggressive in what we sink. This does allow a false positive where we 2218 // sink presuming a later value will also be sunk, but stop half way through 2219 // and never actually sink it which means we produce more PHIs than intended. 2220 // This is unlikely in practice though. 2221 int SinkIdx = 0; 2222 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2223 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2224 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2225 << "\n"); 2226 2227 // Because we've sunk every instruction in turn, the current instruction to 2228 // sink is always at index 0. 2229 LRI.reset(); 2230 2231 if (!sinkLastInstruction(UnconditionalPreds)) { 2232 LLVM_DEBUG( 2233 dbgs() 2234 << "SINK: stopping here, failed to actually sink instruction!\n"); 2235 break; 2236 } 2237 2238 NumSinkCommonInstrs++; 2239 Changed = true; 2240 } 2241 if (SinkIdx != 0) 2242 ++NumSinkCommonCode; 2243 return Changed; 2244 } 2245 2246 namespace { 2247 2248 struct CompatibleSets { 2249 using SetTy = SmallVector<InvokeInst *, 2>; 2250 2251 SmallVector<SetTy, 1> Sets; 2252 2253 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); 2254 2255 SetTy &getCompatibleSet(InvokeInst *II); 2256 2257 void insert(InvokeInst *II); 2258 }; 2259 2260 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { 2261 // Perform a linear scan over all the existing sets, see if the new `invoke` 2262 // is compatible with any particular set. Since we know that all the `invokes` 2263 // within a set are compatible, only check the first `invoke` in each set. 2264 // WARNING: at worst, this has quadratic complexity. 2265 for (CompatibleSets::SetTy &Set : Sets) { 2266 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) 2267 return Set; 2268 } 2269 2270 // Otherwise, we either had no sets yet, or this invoke forms a new set. 2271 return Sets.emplace_back(); 2272 } 2273 2274 void CompatibleSets::insert(InvokeInst *II) { 2275 getCompatibleSet(II).emplace_back(II); 2276 } 2277 2278 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { 2279 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2280 2281 // Can we theoretically merge these `invoke`s? 2282 auto IsIllegalToMerge = [](InvokeInst *II) { 2283 return II->cannotMerge() || II->isInlineAsm(); 2284 }; 2285 if (any_of(Invokes, IsIllegalToMerge)) 2286 return false; 2287 2288 // Either both `invoke`s must be direct, 2289 // or both `invoke`s must be indirect. 2290 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; 2291 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); 2292 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); 2293 if (HaveIndirectCalls) { 2294 if (!AllCallsAreIndirect) 2295 return false; 2296 } else { 2297 // All callees must be identical. 2298 Value *Callee = nullptr; 2299 for (InvokeInst *II : Invokes) { 2300 Value *CurrCallee = II->getCalledOperand(); 2301 assert(CurrCallee && "There is always a called operand."); 2302 if (!Callee) 2303 Callee = CurrCallee; 2304 else if (Callee != CurrCallee) 2305 return false; 2306 } 2307 } 2308 2309 // Either both `invoke`s must not have a normal destination, 2310 // or both `invoke`s must have a normal destination, 2311 auto HasNormalDest = [](InvokeInst *II) { 2312 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); 2313 }; 2314 if (any_of(Invokes, HasNormalDest)) { 2315 // Do not merge `invoke` that does not have a normal destination with one 2316 // that does have a normal destination, even though doing so would be legal. 2317 if (!all_of(Invokes, HasNormalDest)) 2318 return false; 2319 2320 // All normal destinations must be identical. 2321 BasicBlock *NormalBB = nullptr; 2322 for (InvokeInst *II : Invokes) { 2323 BasicBlock *CurrNormalBB = II->getNormalDest(); 2324 assert(CurrNormalBB && "There is always a 'continue to' basic block."); 2325 if (!NormalBB) 2326 NormalBB = CurrNormalBB; 2327 else if (NormalBB != CurrNormalBB) 2328 return false; 2329 } 2330 2331 // In the normal destination, the incoming values for these two `invoke`s 2332 // must be compatible. 2333 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); 2334 if (!IncomingValuesAreCompatible( 2335 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, 2336 &EquivalenceSet)) 2337 return false; 2338 } 2339 2340 #ifndef NDEBUG 2341 // All unwind destinations must be identical. 2342 // We know that because we have started from said unwind destination. 2343 BasicBlock *UnwindBB = nullptr; 2344 for (InvokeInst *II : Invokes) { 2345 BasicBlock *CurrUnwindBB = II->getUnwindDest(); 2346 assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); 2347 if (!UnwindBB) 2348 UnwindBB = CurrUnwindBB; 2349 else 2350 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); 2351 } 2352 #endif 2353 2354 // In the unwind destination, the incoming values for these two `invoke`s 2355 // must be compatible. 2356 if (!IncomingValuesAreCompatible( 2357 Invokes.front()->getUnwindDest(), 2358 {Invokes[0]->getParent(), Invokes[1]->getParent()})) 2359 return false; 2360 2361 // Ignoring arguments, these `invoke`s must be identical, 2362 // including operand bundles. 2363 const InvokeInst *II0 = Invokes.front(); 2364 for (auto *II : Invokes.drop_front()) 2365 if (!II->isSameOperationAs(II0)) 2366 return false; 2367 2368 // Can we theoretically form the data operands for the merged `invoke`? 2369 auto IsIllegalToMergeArguments = [](auto Ops) { 2370 Type *Ty = std::get<0>(Ops)->getType(); 2371 assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?"); 2372 return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops); 2373 }; 2374 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2375 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), 2376 IsIllegalToMergeArguments)) 2377 return false; 2378 2379 return true; 2380 } 2381 2382 } // namespace 2383 2384 // Merge all invokes in the provided set, all of which are compatible 2385 // as per the `CompatibleSets::shouldBelongToSameSet()`. 2386 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, 2387 DomTreeUpdater *DTU) { 2388 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); 2389 2390 SmallVector<DominatorTree::UpdateType, 8> Updates; 2391 if (DTU) 2392 Updates.reserve(2 + 3 * Invokes.size()); 2393 2394 bool HasNormalDest = 2395 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); 2396 2397 // Clone one of the invokes into a new basic block. 2398 // Since they are all compatible, it doesn't matter which invoke is cloned. 2399 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { 2400 InvokeInst *II0 = Invokes.front(); 2401 BasicBlock *II0BB = II0->getParent(); 2402 BasicBlock *InsertBeforeBlock = 2403 II0->getParent()->getIterator()->getNextNode(); 2404 Function *Func = II0BB->getParent(); 2405 LLVMContext &Ctx = II0->getContext(); 2406 2407 BasicBlock *MergedInvokeBB = BasicBlock::Create( 2408 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); 2409 2410 auto *MergedInvoke = cast<InvokeInst>(II0->clone()); 2411 // NOTE: all invokes have the same attributes, so no handling needed. 2412 MergedInvokeBB->getInstList().push_back(MergedInvoke); 2413 2414 if (!HasNormalDest) { 2415 // This set does not have a normal destination, 2416 // so just form a new block with unreachable terminator. 2417 BasicBlock *MergedNormalDest = BasicBlock::Create( 2418 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); 2419 new UnreachableInst(Ctx, MergedNormalDest); 2420 MergedInvoke->setNormalDest(MergedNormalDest); 2421 } 2422 2423 // The unwind destination, however, remainds identical for all invokes here. 2424 2425 return MergedInvoke; 2426 }(); 2427 2428 if (DTU) { 2429 // Predecessor blocks that contained these invokes will now branch to 2430 // the new block that contains the merged invoke, ... 2431 for (InvokeInst *II : Invokes) 2432 Updates.push_back( 2433 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); 2434 2435 // ... which has the new `unreachable` block as normal destination, 2436 // or unwinds to the (same for all `invoke`s in this set) `landingpad`, 2437 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) 2438 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), 2439 SuccBBOfMergedInvoke}); 2440 2441 // Since predecessor blocks now unconditionally branch to a new block, 2442 // they no longer branch to their original successors. 2443 for (InvokeInst *II : Invokes) 2444 for (BasicBlock *SuccOfPredBB : successors(II->getParent())) 2445 Updates.push_back( 2446 {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); 2447 } 2448 2449 bool IsIndirectCall = Invokes[0]->isIndirectCall(); 2450 2451 // Form the merged operands for the merged invoke. 2452 for (Use &U : MergedInvoke->operands()) { 2453 // Only PHI together the indirect callees and data operands. 2454 if (MergedInvoke->isCallee(&U)) { 2455 if (!IsIndirectCall) 2456 continue; 2457 } else if (!MergedInvoke->isDataOperand(&U)) 2458 continue; 2459 2460 // Don't create trivial PHI's with all-identical incoming values. 2461 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { 2462 return II->getOperand(U.getOperandNo()) != U.get(); 2463 }); 2464 if (!NeedPHI) 2465 continue; 2466 2467 // Form a PHI out of all the data ops under this index. 2468 PHINode *PN = PHINode::Create( 2469 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke); 2470 for (InvokeInst *II : Invokes) 2471 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); 2472 2473 U.set(PN); 2474 } 2475 2476 // We've ensured that each PHI node has compatible (identical) incoming values 2477 // when coming from each of the `invoke`s in the current merge set, 2478 // so update the PHI nodes accordingly. 2479 for (BasicBlock *Succ : successors(MergedInvoke)) 2480 AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), 2481 /*ExistPred=*/Invokes.front()->getParent()); 2482 2483 // And finally, replace the original `invoke`s with an unconditional branch 2484 // to the block with the merged `invoke`. Also, give that merged `invoke` 2485 // the merged debugloc of all the original `invoke`s. 2486 const DILocation *MergedDebugLoc = nullptr; 2487 for (InvokeInst *II : Invokes) { 2488 // Compute the debug location common to all the original `invoke`s. 2489 if (!MergedDebugLoc) 2490 MergedDebugLoc = II->getDebugLoc(); 2491 else 2492 MergedDebugLoc = 2493 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); 2494 2495 // And replace the old `invoke` with an unconditionally branch 2496 // to the block with the merged `invoke`. 2497 for (BasicBlock *OrigSuccBB : successors(II->getParent())) 2498 OrigSuccBB->removePredecessor(II->getParent()); 2499 BranchInst::Create(MergedInvoke->getParent(), II->getParent()); 2500 II->replaceAllUsesWith(MergedInvoke); 2501 II->eraseFromParent(); 2502 ++NumInvokesMerged; 2503 } 2504 MergedInvoke->setDebugLoc(MergedDebugLoc); 2505 ++NumInvokeSetsFormed; 2506 2507 if (DTU) 2508 DTU->applyUpdates(Updates); 2509 } 2510 2511 /// If this block is a `landingpad` exception handling block, categorize all 2512 /// the predecessor `invoke`s into sets, with all `invoke`s in each set 2513 /// being "mergeable" together, and then merge invokes in each set together. 2514 /// 2515 /// This is a weird mix of hoisting and sinking. Visually, it goes from: 2516 /// [...] [...] 2517 /// | | 2518 /// [invoke0] [invoke1] 2519 /// / \ / \ 2520 /// [cont0] [landingpad] [cont1] 2521 /// to: 2522 /// [...] [...] 2523 /// \ / 2524 /// [invoke] 2525 /// / \ 2526 /// [cont] [landingpad] 2527 /// 2528 /// But of course we can only do that if the invokes share the `landingpad`, 2529 /// edges invoke0->cont0 and invoke1->cont1 are "compatible", 2530 /// and the invoked functions are "compatible". 2531 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { 2532 if (!EnableMergeCompatibleInvokes) 2533 return false; 2534 2535 bool Changed = false; 2536 2537 // FIXME: generalize to all exception handling blocks? 2538 if (!BB->isLandingPad()) 2539 return Changed; 2540 2541 CompatibleSets Grouper; 2542 2543 // Record all the predecessors of this `landingpad`. As per verifier, 2544 // the only allowed predecessor is the unwind edge of an `invoke`. 2545 // We want to group "compatible" `invokes` into the same set to be merged. 2546 for (BasicBlock *PredBB : predecessors(BB)) 2547 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); 2548 2549 // And now, merge `invoke`s that were grouped togeter. 2550 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { 2551 if (Invokes.size() < 2) 2552 continue; 2553 Changed = true; 2554 MergeCompatibleInvokesImpl(Invokes, DTU); 2555 } 2556 2557 return Changed; 2558 } 2559 2560 /// Determine if we can hoist sink a sole store instruction out of a 2561 /// conditional block. 2562 /// 2563 /// We are looking for code like the following: 2564 /// BrBB: 2565 /// store i32 %add, i32* %arrayidx2 2566 /// ... // No other stores or function calls (we could be calling a memory 2567 /// ... // function). 2568 /// %cmp = icmp ult %x, %y 2569 /// br i1 %cmp, label %EndBB, label %ThenBB 2570 /// ThenBB: 2571 /// store i32 %add5, i32* %arrayidx2 2572 /// br label EndBB 2573 /// EndBB: 2574 /// ... 2575 /// We are going to transform this into: 2576 /// BrBB: 2577 /// store i32 %add, i32* %arrayidx2 2578 /// ... // 2579 /// %cmp = icmp ult %x, %y 2580 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2581 /// store i32 %add.add5, i32* %arrayidx2 2582 /// ... 2583 /// 2584 /// \return The pointer to the value of the previous store if the store can be 2585 /// hoisted into the predecessor block. 0 otherwise. 2586 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2587 BasicBlock *StoreBB, BasicBlock *EndBB) { 2588 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2589 if (!StoreToHoist) 2590 return nullptr; 2591 2592 // Volatile or atomic. 2593 if (!StoreToHoist->isSimple()) 2594 return nullptr; 2595 2596 Value *StorePtr = StoreToHoist->getPointerOperand(); 2597 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 2598 2599 // Look for a store to the same pointer in BrBB. 2600 unsigned MaxNumInstToLookAt = 9; 2601 // Skip pseudo probe intrinsic calls which are not really killing any memory 2602 // accesses. 2603 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2604 if (!MaxNumInstToLookAt) 2605 break; 2606 --MaxNumInstToLookAt; 2607 2608 // Could be calling an instruction that affects memory like free(). 2609 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 2610 return nullptr; 2611 2612 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2613 // Found the previous store to same location and type. Make sure it is 2614 // simple, to avoid introducing a spurious non-atomic write after an 2615 // atomic write. 2616 if (SI->getPointerOperand() == StorePtr && 2617 SI->getValueOperand()->getType() == StoreTy && SI->isSimple()) 2618 // Found the previous store, return its value operand. 2619 return SI->getValueOperand(); 2620 return nullptr; // Unknown store. 2621 } 2622 2623 if (auto *LI = dyn_cast<LoadInst>(&CurI)) { 2624 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && 2625 LI->isSimple()) { 2626 // Local objects (created by an `alloca` instruction) are always 2627 // writable, so once we are past a read from a location it is valid to 2628 // also write to that same location. 2629 // If the address of the local object never escapes the function, that 2630 // means it's never concurrently read or written, hence moving the store 2631 // from under the condition will not introduce a data race. 2632 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr)); 2633 if (AI && !PointerMayBeCaptured(AI, false, true)) 2634 // Found a previous load, return it. 2635 return LI; 2636 } 2637 // The load didn't work out, but we may still find a store. 2638 } 2639 } 2640 2641 return nullptr; 2642 } 2643 2644 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2645 /// converted to selects. 2646 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2647 BasicBlock *EndBB, 2648 unsigned &SpeculatedInstructions, 2649 InstructionCost &Cost, 2650 const TargetTransformInfo &TTI) { 2651 TargetTransformInfo::TargetCostKind CostKind = 2652 BB->getParent()->hasMinSize() 2653 ? TargetTransformInfo::TCK_CodeSize 2654 : TargetTransformInfo::TCK_SizeAndLatency; 2655 2656 bool HaveRewritablePHIs = false; 2657 for (PHINode &PN : EndBB->phis()) { 2658 Value *OrigV = PN.getIncomingValueForBlock(BB); 2659 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2660 2661 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2662 // Skip PHIs which are trivial. 2663 if (ThenV == OrigV) 2664 continue; 2665 2666 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2667 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2668 2669 // Don't convert to selects if we could remove undefined behavior instead. 2670 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2671 passingValueIsAlwaysUndefined(ThenV, &PN)) 2672 return false; 2673 2674 HaveRewritablePHIs = true; 2675 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2676 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2677 if (!OrigCE && !ThenCE) 2678 continue; // Known safe and cheap. 2679 2680 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2681 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2682 return false; 2683 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2684 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2685 InstructionCost MaxCost = 2686 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2687 if (OrigCost + ThenCost > MaxCost) 2688 return false; 2689 2690 // Account for the cost of an unfolded ConstantExpr which could end up 2691 // getting expanded into Instructions. 2692 // FIXME: This doesn't account for how many operations are combined in the 2693 // constant expression. 2694 ++SpeculatedInstructions; 2695 if (SpeculatedInstructions > 1) 2696 return false; 2697 } 2698 2699 return HaveRewritablePHIs; 2700 } 2701 2702 /// Speculate a conditional basic block flattening the CFG. 2703 /// 2704 /// Note that this is a very risky transform currently. Speculating 2705 /// instructions like this is most often not desirable. Instead, there is an MI 2706 /// pass which can do it with full awareness of the resource constraints. 2707 /// However, some cases are "obvious" and we should do directly. An example of 2708 /// this is speculating a single, reasonably cheap instruction. 2709 /// 2710 /// There is only one distinct advantage to flattening the CFG at the IR level: 2711 /// it makes very common but simplistic optimizations such as are common in 2712 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2713 /// modeling their effects with easier to reason about SSA value graphs. 2714 /// 2715 /// 2716 /// An illustration of this transform is turning this IR: 2717 /// \code 2718 /// BB: 2719 /// %cmp = icmp ult %x, %y 2720 /// br i1 %cmp, label %EndBB, label %ThenBB 2721 /// ThenBB: 2722 /// %sub = sub %x, %y 2723 /// br label BB2 2724 /// EndBB: 2725 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2726 /// ... 2727 /// \endcode 2728 /// 2729 /// Into this IR: 2730 /// \code 2731 /// BB: 2732 /// %cmp = icmp ult %x, %y 2733 /// %sub = sub %x, %y 2734 /// %cond = select i1 %cmp, 0, %sub 2735 /// ... 2736 /// \endcode 2737 /// 2738 /// \returns true if the conditional block is removed. 2739 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2740 const TargetTransformInfo &TTI) { 2741 // Be conservative for now. FP select instruction can often be expensive. 2742 Value *BrCond = BI->getCondition(); 2743 if (isa<FCmpInst>(BrCond)) 2744 return false; 2745 2746 BasicBlock *BB = BI->getParent(); 2747 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2748 InstructionCost Budget = 2749 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2750 2751 // If ThenBB is actually on the false edge of the conditional branch, remember 2752 // to swap the select operands later. 2753 bool Invert = false; 2754 if (ThenBB != BI->getSuccessor(0)) { 2755 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2756 Invert = true; 2757 } 2758 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2759 2760 // If the branch is non-unpredictable, and is predicted to *not* branch to 2761 // the `then` block, then avoid speculating it. 2762 if (!BI->getMetadata(LLVMContext::MD_unpredictable)) { 2763 uint64_t TWeight, FWeight; 2764 if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) { 2765 uint64_t EndWeight = Invert ? TWeight : FWeight; 2766 BranchProbability BIEndProb = 2767 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 2768 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 2769 if (BIEndProb >= Likely) 2770 return false; 2771 } 2772 } 2773 2774 // Keep a count of how many times instructions are used within ThenBB when 2775 // they are candidates for sinking into ThenBB. Specifically: 2776 // - They are defined in BB, and 2777 // - They have no side effects, and 2778 // - All of their uses are in ThenBB. 2779 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2780 2781 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2782 2783 unsigned SpeculatedInstructions = 0; 2784 Value *SpeculatedStoreValue = nullptr; 2785 StoreInst *SpeculatedStore = nullptr; 2786 for (BasicBlock::iterator BBI = ThenBB->begin(), 2787 BBE = std::prev(ThenBB->end()); 2788 BBI != BBE; ++BBI) { 2789 Instruction *I = &*BBI; 2790 // Skip debug info. 2791 if (isa<DbgInfoIntrinsic>(I)) { 2792 SpeculatedDbgIntrinsics.push_back(I); 2793 continue; 2794 } 2795 2796 // Skip pseudo probes. The consequence is we lose track of the branch 2797 // probability for ThenBB, which is fine since the optimization here takes 2798 // place regardless of the branch probability. 2799 if (isa<PseudoProbeInst>(I)) { 2800 // The probe should be deleted so that it will not be over-counted when 2801 // the samples collected on the non-conditional path are counted towards 2802 // the conditional path. We leave it for the counts inference algorithm to 2803 // figure out a proper count for an unknown probe. 2804 SpeculatedDbgIntrinsics.push_back(I); 2805 continue; 2806 } 2807 2808 // Only speculatively execute a single instruction (not counting the 2809 // terminator) for now. 2810 ++SpeculatedInstructions; 2811 if (SpeculatedInstructions > 1) 2812 return false; 2813 2814 // Don't hoist the instruction if it's unsafe or expensive. 2815 if (!isSafeToSpeculativelyExecute(I) && 2816 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2817 I, BB, ThenBB, EndBB)))) 2818 return false; 2819 if (!SpeculatedStoreValue && 2820 computeSpeculationCost(I, TTI) > 2821 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2822 return false; 2823 2824 // Store the store speculation candidate. 2825 if (SpeculatedStoreValue) 2826 SpeculatedStore = cast<StoreInst>(I); 2827 2828 // Do not hoist the instruction if any of its operands are defined but not 2829 // used in BB. The transformation will prevent the operand from 2830 // being sunk into the use block. 2831 for (Use &Op : I->operands()) { 2832 Instruction *OpI = dyn_cast<Instruction>(Op); 2833 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2834 continue; // Not a candidate for sinking. 2835 2836 ++SinkCandidateUseCounts[OpI]; 2837 } 2838 } 2839 2840 // Consider any sink candidates which are only used in ThenBB as costs for 2841 // speculation. Note, while we iterate over a DenseMap here, we are summing 2842 // and so iteration order isn't significant. 2843 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2844 I = SinkCandidateUseCounts.begin(), 2845 E = SinkCandidateUseCounts.end(); 2846 I != E; ++I) 2847 if (I->first->hasNUses(I->second)) { 2848 ++SpeculatedInstructions; 2849 if (SpeculatedInstructions > 1) 2850 return false; 2851 } 2852 2853 // Check that we can insert the selects and that it's not too expensive to do 2854 // so. 2855 bool Convert = SpeculatedStore != nullptr; 2856 InstructionCost Cost = 0; 2857 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2858 SpeculatedInstructions, 2859 Cost, TTI); 2860 if (!Convert || Cost > Budget) 2861 return false; 2862 2863 // If we get here, we can hoist the instruction and if-convert. 2864 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2865 2866 // Insert a select of the value of the speculated store. 2867 if (SpeculatedStoreValue) { 2868 IRBuilder<NoFolder> Builder(BI); 2869 Value *TrueV = SpeculatedStore->getValueOperand(); 2870 Value *FalseV = SpeculatedStoreValue; 2871 if (Invert) 2872 std::swap(TrueV, FalseV); 2873 Value *S = Builder.CreateSelect( 2874 BrCond, TrueV, FalseV, "spec.store.select", BI); 2875 SpeculatedStore->setOperand(0, S); 2876 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2877 SpeculatedStore->getDebugLoc()); 2878 } 2879 2880 // Metadata can be dependent on the condition we are hoisting above. 2881 // Conservatively strip all metadata on the instruction. Drop the debug loc 2882 // to avoid making it appear as if the condition is a constant, which would 2883 // be misleading while debugging. 2884 // Similarly strip attributes that maybe dependent on condition we are 2885 // hoisting above. 2886 for (auto &I : *ThenBB) { 2887 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2888 I.setDebugLoc(DebugLoc()); 2889 I.dropUndefImplyingAttrsAndUnknownMetadata(); 2890 } 2891 2892 // Hoist the instructions. 2893 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2894 ThenBB->begin(), std::prev(ThenBB->end())); 2895 2896 // Insert selects and rewrite the PHI operands. 2897 IRBuilder<NoFolder> Builder(BI); 2898 for (PHINode &PN : EndBB->phis()) { 2899 unsigned OrigI = PN.getBasicBlockIndex(BB); 2900 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2901 Value *OrigV = PN.getIncomingValue(OrigI); 2902 Value *ThenV = PN.getIncomingValue(ThenI); 2903 2904 // Skip PHIs which are trivial. 2905 if (OrigV == ThenV) 2906 continue; 2907 2908 // Create a select whose true value is the speculatively executed value and 2909 // false value is the pre-existing value. Swap them if the branch 2910 // destinations were inverted. 2911 Value *TrueV = ThenV, *FalseV = OrigV; 2912 if (Invert) 2913 std::swap(TrueV, FalseV); 2914 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2915 PN.setIncomingValue(OrigI, V); 2916 PN.setIncomingValue(ThenI, V); 2917 } 2918 2919 // Remove speculated dbg intrinsics. 2920 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2921 // dbg value for the different flows and inserting it after the select. 2922 for (Instruction *I : SpeculatedDbgIntrinsics) 2923 I->eraseFromParent(); 2924 2925 ++NumSpeculations; 2926 return true; 2927 } 2928 2929 /// Return true if we can thread a branch across this block. 2930 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2931 int Size = 0; 2932 2933 SmallPtrSet<const Value *, 32> EphValues; 2934 auto IsEphemeral = [&](const Instruction *I) { 2935 if (isa<AssumeInst>(I)) 2936 return true; 2937 return !I->mayHaveSideEffects() && !I->isTerminator() && 2938 all_of(I->users(), 2939 [&](const User *U) { return EphValues.count(U); }); 2940 }; 2941 2942 // Walk the loop in reverse so that we can identify ephemeral values properly 2943 // (values only feeding assumes). 2944 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { 2945 // Can't fold blocks that contain noduplicate or convergent calls. 2946 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2947 if (CI->cannotDuplicate() || CI->isConvergent()) 2948 return false; 2949 2950 // Ignore ephemeral values which are deleted during codegen. 2951 if (IsEphemeral(&I)) 2952 EphValues.insert(&I); 2953 // We will delete Phis while threading, so Phis should not be accounted in 2954 // block's size. 2955 else if (!isa<PHINode>(I)) { 2956 if (Size++ > MaxSmallBlockSize) 2957 return false; // Don't clone large BB's. 2958 } 2959 2960 // We can only support instructions that do not define values that are 2961 // live outside of the current basic block. 2962 for (User *U : I.users()) { 2963 Instruction *UI = cast<Instruction>(U); 2964 if (UI->getParent() != BB || isa<PHINode>(UI)) 2965 return false; 2966 } 2967 2968 // Looks ok, continue checking. 2969 } 2970 2971 return true; 2972 } 2973 2974 /// If we have a conditional branch on a PHI node value that is defined in the 2975 /// same block as the branch and if any PHI entries are constants, thread edges 2976 /// corresponding to that entry to be branches to their ultimate destination. 2977 static Optional<bool> FoldCondBranchOnPHIImpl(BranchInst *BI, 2978 DomTreeUpdater *DTU, 2979 const DataLayout &DL, 2980 AssumptionCache *AC) { 2981 BasicBlock *BB = BI->getParent(); 2982 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2983 // NOTE: we currently cannot transform this case if the PHI node is used 2984 // outside of the block. 2985 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2986 return false; 2987 2988 // Degenerate case of a single entry PHI. 2989 if (PN->getNumIncomingValues() == 1) { 2990 FoldSingleEntryPHINodes(PN->getParent()); 2991 return true; 2992 } 2993 2994 // Now we know that this block has multiple preds and two succs. 2995 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2996 return false; 2997 2998 // Okay, this is a simple enough basic block. See if any phi values are 2999 // constants. 3000 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3001 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 3002 if (!CB || !CB->getType()->isIntegerTy(1)) 3003 continue; 3004 3005 // Okay, we now know that all edges from PredBB should be revectored to 3006 // branch to RealDest. 3007 BasicBlock *PredBB = PN->getIncomingBlock(i); 3008 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 3009 3010 if (RealDest == BB) 3011 continue; // Skip self loops. 3012 // Skip if the predecessor's terminator is an indirect branch. 3013 if (isa<IndirectBrInst>(PredBB->getTerminator())) 3014 continue; 3015 3016 SmallVector<DominatorTree::UpdateType, 3> Updates; 3017 3018 // The dest block might have PHI nodes, other predecessors and other 3019 // difficult cases. Instead of being smart about this, just insert a new 3020 // block that jumps to the destination block, effectively splitting 3021 // the edge we are about to create. 3022 BasicBlock *EdgeBB = 3023 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 3024 RealDest->getParent(), RealDest); 3025 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 3026 if (DTU) 3027 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 3028 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 3029 3030 // Update PHI nodes. 3031 AddPredecessorToBlock(RealDest, EdgeBB, BB); 3032 3033 // BB may have instructions that are being threaded over. Clone these 3034 // instructions into EdgeBB. We know that there will be no uses of the 3035 // cloned instructions outside of EdgeBB. 3036 BasicBlock::iterator InsertPt = EdgeBB->begin(); 3037 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 3038 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 3039 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 3040 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 3041 continue; 3042 } 3043 // Clone the instruction. 3044 Instruction *N = BBI->clone(); 3045 if (BBI->hasName()) 3046 N->setName(BBI->getName() + ".c"); 3047 3048 // Update operands due to translation. 3049 for (Use &Op : N->operands()) { 3050 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 3051 if (PI != TranslateMap.end()) 3052 Op = PI->second; 3053 } 3054 3055 // Check for trivial simplification. 3056 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 3057 if (!BBI->use_empty()) 3058 TranslateMap[&*BBI] = V; 3059 if (!N->mayHaveSideEffects()) { 3060 N->deleteValue(); // Instruction folded away, don't need actual inst 3061 N = nullptr; 3062 } 3063 } else { 3064 if (!BBI->use_empty()) 3065 TranslateMap[&*BBI] = N; 3066 } 3067 if (N) { 3068 // Insert the new instruction into its new home. 3069 EdgeBB->getInstList().insert(InsertPt, N); 3070 3071 // Register the new instruction with the assumption cache if necessary. 3072 if (auto *Assume = dyn_cast<AssumeInst>(N)) 3073 if (AC) 3074 AC->registerAssumption(Assume); 3075 } 3076 } 3077 3078 // Loop over all of the edges from PredBB to BB, changing them to branch 3079 // to EdgeBB instead. 3080 Instruction *PredBBTI = PredBB->getTerminator(); 3081 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 3082 if (PredBBTI->getSuccessor(i) == BB) { 3083 BB->removePredecessor(PredBB); 3084 PredBBTI->setSuccessor(i, EdgeBB); 3085 } 3086 3087 if (DTU) { 3088 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 3089 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 3090 3091 DTU->applyUpdates(Updates); 3092 } 3093 3094 // Signal repeat, simplifying any other constants. 3095 return None; 3096 } 3097 3098 return false; 3099 } 3100 3101 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 3102 const DataLayout &DL, AssumptionCache *AC) { 3103 Optional<bool> Result; 3104 bool EverChanged = false; 3105 do { 3106 // Note that None means "we changed things, but recurse further." 3107 Result = FoldCondBranchOnPHIImpl(BI, DTU, DL, AC); 3108 EverChanged |= Result == None || *Result; 3109 } while (Result == None); 3110 return EverChanged; 3111 } 3112 3113 /// Given a BB that starts with the specified two-entry PHI node, 3114 /// see if we can eliminate it. 3115 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 3116 DomTreeUpdater *DTU, const DataLayout &DL) { 3117 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 3118 // statement", which has a very simple dominance structure. Basically, we 3119 // are trying to find the condition that is being branched on, which 3120 // subsequently causes this merge to happen. We really want control 3121 // dependence information for this check, but simplifycfg can't keep it up 3122 // to date, and this catches most of the cases we care about anyway. 3123 BasicBlock *BB = PN->getParent(); 3124 3125 BasicBlock *IfTrue, *IfFalse; 3126 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 3127 if (!DomBI) 3128 return false; 3129 Value *IfCond = DomBI->getCondition(); 3130 // Don't bother if the branch will be constant folded trivially. 3131 if (isa<ConstantInt>(IfCond)) 3132 return false; 3133 3134 BasicBlock *DomBlock = DomBI->getParent(); 3135 SmallVector<BasicBlock *, 2> IfBlocks; 3136 llvm::copy_if( 3137 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 3138 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 3139 }); 3140 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 3141 "Will have either one or two blocks to speculate."); 3142 3143 // If the branch is non-unpredictable, see if we either predictably jump to 3144 // the merge bb (if we have only a single 'then' block), or if we predictably 3145 // jump to one specific 'then' block (if we have two of them). 3146 // It isn't beneficial to speculatively execute the code 3147 // from the block that we know is predictably not entered. 3148 if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) { 3149 uint64_t TWeight, FWeight; 3150 if (DomBI->extractProfMetadata(TWeight, FWeight) && 3151 (TWeight + FWeight) != 0) { 3152 BranchProbability BITrueProb = 3153 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 3154 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3155 BranchProbability BIFalseProb = BITrueProb.getCompl(); 3156 if (IfBlocks.size() == 1) { 3157 BranchProbability BIBBProb = 3158 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 3159 if (BIBBProb >= Likely) 3160 return false; 3161 } else { 3162 if (BITrueProb >= Likely || BIFalseProb >= Likely) 3163 return false; 3164 } 3165 } 3166 } 3167 3168 // Don't try to fold an unreachable block. For example, the phi node itself 3169 // can't be the candidate if-condition for a select that we want to form. 3170 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 3171 if (IfCondPhiInst->getParent() == BB) 3172 return false; 3173 3174 // Okay, we found that we can merge this two-entry phi node into a select. 3175 // Doing so would require us to fold *all* two entry phi nodes in this block. 3176 // At some point this becomes non-profitable (particularly if the target 3177 // doesn't support cmov's). Only do this transformation if there are two or 3178 // fewer PHI nodes in this block. 3179 unsigned NumPhis = 0; 3180 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 3181 if (NumPhis > 2) 3182 return false; 3183 3184 // Loop over the PHI's seeing if we can promote them all to select 3185 // instructions. While we are at it, keep track of the instructions 3186 // that need to be moved to the dominating block. 3187 SmallPtrSet<Instruction *, 4> AggressiveInsts; 3188 InstructionCost Cost = 0; 3189 InstructionCost Budget = 3190 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3191 3192 bool Changed = false; 3193 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 3194 PHINode *PN = cast<PHINode>(II++); 3195 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 3196 PN->replaceAllUsesWith(V); 3197 PN->eraseFromParent(); 3198 Changed = true; 3199 continue; 3200 } 3201 3202 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 3203 Cost, Budget, TTI) || 3204 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 3205 Cost, Budget, TTI)) 3206 return Changed; 3207 } 3208 3209 // If we folded the first phi, PN dangles at this point. Refresh it. If 3210 // we ran out of PHIs then we simplified them all. 3211 PN = dyn_cast<PHINode>(BB->begin()); 3212 if (!PN) 3213 return true; 3214 3215 // Return true if at least one of these is a 'not', and another is either 3216 // a 'not' too, or a constant. 3217 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 3218 if (!match(V0, m_Not(m_Value()))) 3219 std::swap(V0, V1); 3220 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 3221 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 3222 }; 3223 3224 // Don't fold i1 branches on PHIs which contain binary operators or 3225 // (possibly inverted) select form of or/ands, unless one of 3226 // the incoming values is an 'not' and another one is freely invertible. 3227 // These can often be turned into switches and other things. 3228 auto IsBinOpOrAnd = [](Value *V) { 3229 return match( 3230 V, m_CombineOr( 3231 m_BinOp(), 3232 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()), 3233 m_Select(m_Value(), m_Value(), m_ImmConstant())))); 3234 }; 3235 if (PN->getType()->isIntegerTy(1) && 3236 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 3237 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 3238 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 3239 PN->getIncomingValue(1))) 3240 return Changed; 3241 3242 // If all PHI nodes are promotable, check to make sure that all instructions 3243 // in the predecessor blocks can be promoted as well. If not, we won't be able 3244 // to get rid of the control flow, so it's not worth promoting to select 3245 // instructions. 3246 for (BasicBlock *IfBlock : IfBlocks) 3247 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 3248 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { 3249 // This is not an aggressive instruction that we can promote. 3250 // Because of this, we won't be able to get rid of the control flow, so 3251 // the xform is not worth it. 3252 return Changed; 3253 } 3254 3255 // If either of the blocks has it's address taken, we can't do this fold. 3256 if (any_of(IfBlocks, 3257 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 3258 return Changed; 3259 3260 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 3261 << " T: " << IfTrue->getName() 3262 << " F: " << IfFalse->getName() << "\n"); 3263 3264 // If we can still promote the PHI nodes after this gauntlet of tests, 3265 // do all of the PHI's now. 3266 3267 // Move all 'aggressive' instructions, which are defined in the 3268 // conditional parts of the if's up to the dominating block. 3269 for (BasicBlock *IfBlock : IfBlocks) 3270 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 3271 3272 IRBuilder<NoFolder> Builder(DomBI); 3273 // Propagate fast-math-flags from phi nodes to replacement selects. 3274 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 3275 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 3276 if (isa<FPMathOperator>(PN)) 3277 Builder.setFastMathFlags(PN->getFastMathFlags()); 3278 3279 // Change the PHI node into a select instruction. 3280 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 3281 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 3282 3283 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI); 3284 PN->replaceAllUsesWith(Sel); 3285 Sel->takeName(PN); 3286 PN->eraseFromParent(); 3287 } 3288 3289 // At this point, all IfBlocks are empty, so our if statement 3290 // has been flattened. Change DomBlock to jump directly to our new block to 3291 // avoid other simplifycfg's kicking in on the diamond. 3292 Builder.CreateBr(BB); 3293 3294 SmallVector<DominatorTree::UpdateType, 3> Updates; 3295 if (DTU) { 3296 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 3297 for (auto *Successor : successors(DomBlock)) 3298 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 3299 } 3300 3301 DomBI->eraseFromParent(); 3302 if (DTU) 3303 DTU->applyUpdates(Updates); 3304 3305 return true; 3306 } 3307 3308 static Value *createLogicalOp(IRBuilderBase &Builder, 3309 Instruction::BinaryOps Opc, Value *LHS, 3310 Value *RHS, const Twine &Name = "") { 3311 // Try to relax logical op to binary op. 3312 if (impliesPoison(RHS, LHS)) 3313 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 3314 if (Opc == Instruction::And) 3315 return Builder.CreateLogicalAnd(LHS, RHS, Name); 3316 if (Opc == Instruction::Or) 3317 return Builder.CreateLogicalOr(LHS, RHS, Name); 3318 llvm_unreachable("Invalid logical opcode"); 3319 } 3320 3321 /// Return true if either PBI or BI has branch weight available, and store 3322 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3323 /// not have branch weight, use 1:1 as its weight. 3324 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3325 uint64_t &PredTrueWeight, 3326 uint64_t &PredFalseWeight, 3327 uint64_t &SuccTrueWeight, 3328 uint64_t &SuccFalseWeight) { 3329 bool PredHasWeights = 3330 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 3331 bool SuccHasWeights = 3332 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 3333 if (PredHasWeights || SuccHasWeights) { 3334 if (!PredHasWeights) 3335 PredTrueWeight = PredFalseWeight = 1; 3336 if (!SuccHasWeights) 3337 SuccTrueWeight = SuccFalseWeight = 1; 3338 return true; 3339 } else { 3340 return false; 3341 } 3342 } 3343 3344 /// Determine if the two branches share a common destination and deduce a glue 3345 /// that joins the branches' conditions to arrive at the common destination if 3346 /// that would be profitable. 3347 static Optional<std::pair<Instruction::BinaryOps, bool>> 3348 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3349 const TargetTransformInfo *TTI) { 3350 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3351 "Both blocks must end with a conditional branches."); 3352 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3353 "PredBB must be a predecessor of BB."); 3354 3355 // We have the potential to fold the conditions together, but if the 3356 // predecessor branch is predictable, we may not want to merge them. 3357 uint64_t PTWeight, PFWeight; 3358 BranchProbability PBITrueProb, Likely; 3359 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 3360 PBI->extractProfMetadata(PTWeight, PFWeight) && 3361 (PTWeight + PFWeight) != 0) { 3362 PBITrueProb = 3363 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3364 Likely = TTI->getPredictableBranchThreshold(); 3365 } 3366 3367 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3368 // Speculate the 2nd condition unless the 1st is probably true. 3369 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3370 return {{Instruction::Or, false}}; 3371 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3372 // Speculate the 2nd condition unless the 1st is probably false. 3373 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3374 return {{Instruction::And, false}}; 3375 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3376 // Speculate the 2nd condition unless the 1st is probably true. 3377 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3378 return {{Instruction::And, true}}; 3379 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3380 // Speculate the 2nd condition unless the 1st is probably false. 3381 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3382 return {{Instruction::Or, true}}; 3383 } 3384 return None; 3385 } 3386 3387 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3388 DomTreeUpdater *DTU, 3389 MemorySSAUpdater *MSSAU, 3390 const TargetTransformInfo *TTI) { 3391 BasicBlock *BB = BI->getParent(); 3392 BasicBlock *PredBlock = PBI->getParent(); 3393 3394 // Determine if the two branches share a common destination. 3395 Instruction::BinaryOps Opc; 3396 bool InvertPredCond; 3397 std::tie(Opc, InvertPredCond) = 3398 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3399 3400 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3401 3402 IRBuilder<> Builder(PBI); 3403 // The builder is used to create instructions to eliminate the branch in BB. 3404 // If BB's terminator has !annotation metadata, add it to the new 3405 // instructions. 3406 Builder.CollectMetadataToCopy(BB->getTerminator(), 3407 {LLVMContext::MD_annotation}); 3408 3409 // If we need to invert the condition in the pred block to match, do so now. 3410 if (InvertPredCond) { 3411 Value *NewCond = PBI->getCondition(); 3412 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3413 CmpInst *CI = cast<CmpInst>(NewCond); 3414 CI->setPredicate(CI->getInversePredicate()); 3415 } else { 3416 NewCond = 3417 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3418 } 3419 3420 PBI->setCondition(NewCond); 3421 PBI->swapSuccessors(); 3422 } 3423 3424 BasicBlock *UniqueSucc = 3425 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3426 3427 // Before cloning instructions, notify the successor basic block that it 3428 // is about to have a new predecessor. This will update PHI nodes, 3429 // which will allow us to update live-out uses of bonus instructions. 3430 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3431 3432 // Try to update branch weights. 3433 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3434 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3435 SuccTrueWeight, SuccFalseWeight)) { 3436 SmallVector<uint64_t, 8> NewWeights; 3437 3438 if (PBI->getSuccessor(0) == BB) { 3439 // PBI: br i1 %x, BB, FalseDest 3440 // BI: br i1 %y, UniqueSucc, FalseDest 3441 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3442 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3443 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3444 // TrueWeight for PBI * FalseWeight for BI. 3445 // We assume that total weights of a BranchInst can fit into 32 bits. 3446 // Therefore, we will not have overflow using 64-bit arithmetic. 3447 NewWeights.push_back(PredFalseWeight * 3448 (SuccFalseWeight + SuccTrueWeight) + 3449 PredTrueWeight * SuccFalseWeight); 3450 } else { 3451 // PBI: br i1 %x, TrueDest, BB 3452 // BI: br i1 %y, TrueDest, UniqueSucc 3453 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3454 // FalseWeight for PBI * TrueWeight for BI. 3455 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3456 PredFalseWeight * SuccTrueWeight); 3457 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3458 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3459 } 3460 3461 // Halve the weights if any of them cannot fit in an uint32_t 3462 FitWeights(NewWeights); 3463 3464 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3465 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3466 3467 // TODO: If BB is reachable from all paths through PredBlock, then we 3468 // could replace PBI's branch probabilities with BI's. 3469 } else 3470 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3471 3472 // Now, update the CFG. 3473 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3474 3475 if (DTU) 3476 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3477 {DominatorTree::Delete, PredBlock, BB}}); 3478 3479 // If BI was a loop latch, it may have had associated loop metadata. 3480 // We need to copy it to the new latch, that is, PBI. 3481 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3482 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3483 3484 ValueToValueMapTy VMap; // maps original values to cloned values 3485 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3486 3487 // Now that the Cond was cloned into the predecessor basic block, 3488 // or/and the two conditions together. 3489 Value *BICond = VMap[BI->getCondition()]; 3490 PBI->setCondition( 3491 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3492 3493 // Copy any debug value intrinsics into the end of PredBlock. 3494 for (Instruction &I : *BB) { 3495 if (isa<DbgInfoIntrinsic>(I)) { 3496 Instruction *NewI = I.clone(); 3497 RemapInstruction(NewI, VMap, 3498 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3499 NewI->insertBefore(PBI); 3500 } 3501 } 3502 3503 ++NumFoldBranchToCommonDest; 3504 return true; 3505 } 3506 3507 /// Return if an instruction's type or any of its operands' types are a vector 3508 /// type. 3509 static bool isVectorOp(Instruction &I) { 3510 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { 3511 return U->getType()->isVectorTy(); 3512 }); 3513 } 3514 3515 /// If this basic block is simple enough, and if a predecessor branches to us 3516 /// and one of our successors, fold the block into the predecessor and use 3517 /// logical operations to pick the right destination. 3518 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3519 MemorySSAUpdater *MSSAU, 3520 const TargetTransformInfo *TTI, 3521 unsigned BonusInstThreshold) { 3522 // If this block ends with an unconditional branch, 3523 // let SpeculativelyExecuteBB() deal with it. 3524 if (!BI->isConditional()) 3525 return false; 3526 3527 BasicBlock *BB = BI->getParent(); 3528 TargetTransformInfo::TargetCostKind CostKind = 3529 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3530 : TargetTransformInfo::TCK_SizeAndLatency; 3531 3532 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3533 3534 if (!Cond || 3535 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) && 3536 !isa<SelectInst>(Cond)) || 3537 Cond->getParent() != BB || !Cond->hasOneUse()) 3538 return false; 3539 3540 // Cond is known to be a compare or binary operator. Check to make sure that 3541 // neither operand is a potentially-trapping constant expression. 3542 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3543 if (CE->canTrap()) 3544 return false; 3545 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3546 if (CE->canTrap()) 3547 return false; 3548 3549 // Finally, don't infinitely unroll conditional loops. 3550 if (is_contained(successors(BB), BB)) 3551 return false; 3552 3553 // With which predecessors will we want to deal with? 3554 SmallVector<BasicBlock *, 8> Preds; 3555 for (BasicBlock *PredBlock : predecessors(BB)) { 3556 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3557 3558 // Check that we have two conditional branches. If there is a PHI node in 3559 // the common successor, verify that the same value flows in from both 3560 // blocks. 3561 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3562 continue; 3563 3564 // Determine if the two branches share a common destination. 3565 Instruction::BinaryOps Opc; 3566 bool InvertPredCond; 3567 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3568 std::tie(Opc, InvertPredCond) = *Recipe; 3569 else 3570 continue; 3571 3572 // Check the cost of inserting the necessary logic before performing the 3573 // transformation. 3574 if (TTI) { 3575 Type *Ty = BI->getCondition()->getType(); 3576 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3577 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3578 !isa<CmpInst>(PBI->getCondition()))) 3579 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3580 3581 if (Cost > BranchFoldThreshold) 3582 continue; 3583 } 3584 3585 // Ok, we do want to deal with this predecessor. Record it. 3586 Preds.emplace_back(PredBlock); 3587 } 3588 3589 // If there aren't any predecessors into which we can fold, 3590 // don't bother checking the cost. 3591 if (Preds.empty()) 3592 return false; 3593 3594 // Only allow this transformation if computing the condition doesn't involve 3595 // too many instructions and these involved instructions can be executed 3596 // unconditionally. We denote all involved instructions except the condition 3597 // as "bonus instructions", and only allow this transformation when the 3598 // number of the bonus instructions we'll need to create when cloning into 3599 // each predecessor does not exceed a certain threshold. 3600 unsigned NumBonusInsts = 0; 3601 bool SawVectorOp = false; 3602 const unsigned PredCount = Preds.size(); 3603 for (Instruction &I : *BB) { 3604 // Don't check the branch condition comparison itself. 3605 if (&I == Cond) 3606 continue; 3607 // Ignore dbg intrinsics, and the terminator. 3608 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3609 continue; 3610 // I must be safe to execute unconditionally. 3611 if (!isSafeToSpeculativelyExecute(&I)) 3612 return false; 3613 SawVectorOp |= isVectorOp(I); 3614 3615 // Account for the cost of duplicating this instruction into each 3616 // predecessor. Ignore free instructions. 3617 if (!TTI || 3618 TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) { 3619 NumBonusInsts += PredCount; 3620 3621 // Early exits once we reach the limit. 3622 if (NumBonusInsts > 3623 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) 3624 return false; 3625 } 3626 3627 auto IsBCSSAUse = [BB, &I](Use &U) { 3628 auto *UI = cast<Instruction>(U.getUser()); 3629 if (auto *PN = dyn_cast<PHINode>(UI)) 3630 return PN->getIncomingBlock(U) == BB; 3631 return UI->getParent() == BB && I.comesBefore(UI); 3632 }; 3633 3634 // Does this instruction require rewriting of uses? 3635 if (!all_of(I.uses(), IsBCSSAUse)) 3636 return false; 3637 } 3638 if (NumBonusInsts > 3639 BonusInstThreshold * 3640 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) 3641 return false; 3642 3643 // Ok, we have the budget. Perform the transformation. 3644 for (BasicBlock *PredBlock : Preds) { 3645 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3646 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3647 } 3648 return false; 3649 } 3650 3651 // If there is only one store in BB1 and BB2, return it, otherwise return 3652 // nullptr. 3653 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3654 StoreInst *S = nullptr; 3655 for (auto *BB : {BB1, BB2}) { 3656 if (!BB) 3657 continue; 3658 for (auto &I : *BB) 3659 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3660 if (S) 3661 // Multiple stores seen. 3662 return nullptr; 3663 else 3664 S = SI; 3665 } 3666 } 3667 return S; 3668 } 3669 3670 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3671 Value *AlternativeV = nullptr) { 3672 // PHI is going to be a PHI node that allows the value V that is defined in 3673 // BB to be referenced in BB's only successor. 3674 // 3675 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3676 // doesn't matter to us what the other operand is (it'll never get used). We 3677 // could just create a new PHI with an undef incoming value, but that could 3678 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3679 // other PHI. So here we directly look for some PHI in BB's successor with V 3680 // as an incoming operand. If we find one, we use it, else we create a new 3681 // one. 3682 // 3683 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3684 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3685 // where OtherBB is the single other predecessor of BB's only successor. 3686 PHINode *PHI = nullptr; 3687 BasicBlock *Succ = BB->getSingleSuccessor(); 3688 3689 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3690 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3691 PHI = cast<PHINode>(I); 3692 if (!AlternativeV) 3693 break; 3694 3695 assert(Succ->hasNPredecessors(2)); 3696 auto PredI = pred_begin(Succ); 3697 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3698 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3699 break; 3700 PHI = nullptr; 3701 } 3702 if (PHI) 3703 return PHI; 3704 3705 // If V is not an instruction defined in BB, just return it. 3706 if (!AlternativeV && 3707 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3708 return V; 3709 3710 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3711 PHI->addIncoming(V, BB); 3712 for (BasicBlock *PredBB : predecessors(Succ)) 3713 if (PredBB != BB) 3714 PHI->addIncoming( 3715 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3716 return PHI; 3717 } 3718 3719 static bool mergeConditionalStoreToAddress( 3720 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3721 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3722 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3723 // For every pointer, there must be exactly two stores, one coming from 3724 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3725 // store (to any address) in PTB,PFB or QTB,QFB. 3726 // FIXME: We could relax this restriction with a bit more work and performance 3727 // testing. 3728 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3729 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3730 if (!PStore || !QStore) 3731 return false; 3732 3733 // Now check the stores are compatible. 3734 if (!QStore->isUnordered() || !PStore->isUnordered() || 3735 PStore->getValueOperand()->getType() != 3736 QStore->getValueOperand()->getType()) 3737 return false; 3738 3739 // Check that sinking the store won't cause program behavior changes. Sinking 3740 // the store out of the Q blocks won't change any behavior as we're sinking 3741 // from a block to its unconditional successor. But we're moving a store from 3742 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3743 // So we need to check that there are no aliasing loads or stores in 3744 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3745 // operations between PStore and the end of its parent block. 3746 // 3747 // The ideal way to do this is to query AliasAnalysis, but we don't 3748 // preserve AA currently so that is dangerous. Be super safe and just 3749 // check there are no other memory operations at all. 3750 for (auto &I : *QFB->getSinglePredecessor()) 3751 if (I.mayReadOrWriteMemory()) 3752 return false; 3753 for (auto &I : *QFB) 3754 if (&I != QStore && I.mayReadOrWriteMemory()) 3755 return false; 3756 if (QTB) 3757 for (auto &I : *QTB) 3758 if (&I != QStore && I.mayReadOrWriteMemory()) 3759 return false; 3760 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3761 I != E; ++I) 3762 if (&*I != PStore && I->mayReadOrWriteMemory()) 3763 return false; 3764 3765 // If we're not in aggressive mode, we only optimize if we have some 3766 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3767 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3768 if (!BB) 3769 return true; 3770 // Heuristic: if the block can be if-converted/phi-folded and the 3771 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3772 // thread this store. 3773 InstructionCost Cost = 0; 3774 InstructionCost Budget = 3775 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3776 for (auto &I : BB->instructionsWithoutDebug(false)) { 3777 // Consider terminator instruction to be free. 3778 if (I.isTerminator()) 3779 continue; 3780 // If this is one the stores that we want to speculate out of this BB, 3781 // then don't count it's cost, consider it to be free. 3782 if (auto *S = dyn_cast<StoreInst>(&I)) 3783 if (llvm::find(FreeStores, S)) 3784 continue; 3785 // Else, we have a white-list of instructions that we are ak speculating. 3786 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3787 return false; // Not in white-list - not worthwhile folding. 3788 // And finally, if this is a non-free instruction that we are okay 3789 // speculating, ensure that we consider the speculation budget. 3790 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3791 if (Cost > Budget) 3792 return false; // Eagerly refuse to fold as soon as we're out of budget. 3793 } 3794 assert(Cost <= Budget && 3795 "When we run out of budget we will eagerly return from within the " 3796 "per-instruction loop."); 3797 return true; 3798 }; 3799 3800 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3801 if (!MergeCondStoresAggressively && 3802 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3803 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3804 return false; 3805 3806 // If PostBB has more than two predecessors, we need to split it so we can 3807 // sink the store. 3808 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3809 // We know that QFB's only successor is PostBB. And QFB has a single 3810 // predecessor. If QTB exists, then its only successor is also PostBB. 3811 // If QTB does not exist, then QFB's only predecessor has a conditional 3812 // branch to QFB and PostBB. 3813 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3814 BasicBlock *NewBB = 3815 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3816 if (!NewBB) 3817 return false; 3818 PostBB = NewBB; 3819 } 3820 3821 // OK, we're going to sink the stores to PostBB. The store has to be 3822 // conditional though, so first create the predicate. 3823 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3824 ->getCondition(); 3825 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3826 ->getCondition(); 3827 3828 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3829 PStore->getParent()); 3830 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3831 QStore->getParent(), PPHI); 3832 3833 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3834 3835 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3836 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3837 3838 if (InvertPCond) 3839 PPred = QB.CreateNot(PPred); 3840 if (InvertQCond) 3841 QPred = QB.CreateNot(QPred); 3842 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3843 3844 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3845 /*Unreachable=*/false, 3846 /*BranchWeights=*/nullptr, DTU); 3847 QB.SetInsertPoint(T); 3848 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3849 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); 3850 // Choose the minimum alignment. If we could prove both stores execute, we 3851 // could use biggest one. In this case, though, we only know that one of the 3852 // stores executes. And we don't know it's safe to take the alignment from a 3853 // store that doesn't execute. 3854 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3855 3856 QStore->eraseFromParent(); 3857 PStore->eraseFromParent(); 3858 3859 return true; 3860 } 3861 3862 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3863 DomTreeUpdater *DTU, const DataLayout &DL, 3864 const TargetTransformInfo &TTI) { 3865 // The intention here is to find diamonds or triangles (see below) where each 3866 // conditional block contains a store to the same address. Both of these 3867 // stores are conditional, so they can't be unconditionally sunk. But it may 3868 // be profitable to speculatively sink the stores into one merged store at the 3869 // end, and predicate the merged store on the union of the two conditions of 3870 // PBI and QBI. 3871 // 3872 // This can reduce the number of stores executed if both of the conditions are 3873 // true, and can allow the blocks to become small enough to be if-converted. 3874 // This optimization will also chain, so that ladders of test-and-set 3875 // sequences can be if-converted away. 3876 // 3877 // We only deal with simple diamonds or triangles: 3878 // 3879 // PBI or PBI or a combination of the two 3880 // / \ | \ 3881 // PTB PFB | PFB 3882 // \ / | / 3883 // QBI QBI 3884 // / \ | \ 3885 // QTB QFB | QFB 3886 // \ / | / 3887 // PostBB PostBB 3888 // 3889 // We model triangles as a type of diamond with a nullptr "true" block. 3890 // Triangles are canonicalized so that the fallthrough edge is represented by 3891 // a true condition, as in the diagram above. 3892 BasicBlock *PTB = PBI->getSuccessor(0); 3893 BasicBlock *PFB = PBI->getSuccessor(1); 3894 BasicBlock *QTB = QBI->getSuccessor(0); 3895 BasicBlock *QFB = QBI->getSuccessor(1); 3896 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3897 3898 // Make sure we have a good guess for PostBB. If QTB's only successor is 3899 // QFB, then QFB is a better PostBB. 3900 if (QTB->getSingleSuccessor() == QFB) 3901 PostBB = QFB; 3902 3903 // If we couldn't find a good PostBB, stop. 3904 if (!PostBB) 3905 return false; 3906 3907 bool InvertPCond = false, InvertQCond = false; 3908 // Canonicalize fallthroughs to the true branches. 3909 if (PFB == QBI->getParent()) { 3910 std::swap(PFB, PTB); 3911 InvertPCond = true; 3912 } 3913 if (QFB == PostBB) { 3914 std::swap(QFB, QTB); 3915 InvertQCond = true; 3916 } 3917 3918 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3919 // and QFB may not. Model fallthroughs as a nullptr block. 3920 if (PTB == QBI->getParent()) 3921 PTB = nullptr; 3922 if (QTB == PostBB) 3923 QTB = nullptr; 3924 3925 // Legality bailouts. We must have at least the non-fallthrough blocks and 3926 // the post-dominating block, and the non-fallthroughs must only have one 3927 // predecessor. 3928 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3929 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3930 }; 3931 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3932 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3933 return false; 3934 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3935 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3936 return false; 3937 if (!QBI->getParent()->hasNUses(2)) 3938 return false; 3939 3940 // OK, this is a sequence of two diamonds or triangles. 3941 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3942 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3943 for (auto *BB : {PTB, PFB}) { 3944 if (!BB) 3945 continue; 3946 for (auto &I : *BB) 3947 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3948 PStoreAddresses.insert(SI->getPointerOperand()); 3949 } 3950 for (auto *BB : {QTB, QFB}) { 3951 if (!BB) 3952 continue; 3953 for (auto &I : *BB) 3954 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3955 QStoreAddresses.insert(SI->getPointerOperand()); 3956 } 3957 3958 set_intersect(PStoreAddresses, QStoreAddresses); 3959 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3960 // clear what it contains. 3961 auto &CommonAddresses = PStoreAddresses; 3962 3963 bool Changed = false; 3964 for (auto *Address : CommonAddresses) 3965 Changed |= 3966 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3967 InvertPCond, InvertQCond, DTU, DL, TTI); 3968 return Changed; 3969 } 3970 3971 /// If the previous block ended with a widenable branch, determine if reusing 3972 /// the target block is profitable and legal. This will have the effect of 3973 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3974 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3975 DomTreeUpdater *DTU) { 3976 // TODO: This can be generalized in two important ways: 3977 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3978 // values from the PBI edge. 3979 // 2) We can sink side effecting instructions into BI's fallthrough 3980 // successor provided they doesn't contribute to computation of 3981 // BI's condition. 3982 Value *CondWB, *WC; 3983 BasicBlock *IfTrueBB, *IfFalseBB; 3984 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3985 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3986 return false; 3987 if (!IfFalseBB->phis().empty()) 3988 return false; // TODO 3989 // Use lambda to lazily compute expensive condition after cheap ones. 3990 auto NoSideEffects = [](BasicBlock &BB) { 3991 return llvm::none_of(BB, [](const Instruction &I) { 3992 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3993 }); 3994 }; 3995 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3996 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3997 NoSideEffects(*BI->getParent())) { 3998 auto *OldSuccessor = BI->getSuccessor(1); 3999 OldSuccessor->removePredecessor(BI->getParent()); 4000 BI->setSuccessor(1, IfFalseBB); 4001 if (DTU) 4002 DTU->applyUpdates( 4003 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4004 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4005 return true; 4006 } 4007 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 4008 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 4009 NoSideEffects(*BI->getParent())) { 4010 auto *OldSuccessor = BI->getSuccessor(0); 4011 OldSuccessor->removePredecessor(BI->getParent()); 4012 BI->setSuccessor(0, IfFalseBB); 4013 if (DTU) 4014 DTU->applyUpdates( 4015 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4016 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4017 return true; 4018 } 4019 return false; 4020 } 4021 4022 /// If we have a conditional branch as a predecessor of another block, 4023 /// this function tries to simplify it. We know 4024 /// that PBI and BI are both conditional branches, and BI is in one of the 4025 /// successor blocks of PBI - PBI branches to BI. 4026 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4027 DomTreeUpdater *DTU, 4028 const DataLayout &DL, 4029 const TargetTransformInfo &TTI) { 4030 assert(PBI->isConditional() && BI->isConditional()); 4031 BasicBlock *BB = BI->getParent(); 4032 4033 // If this block ends with a branch instruction, and if there is a 4034 // predecessor that ends on a branch of the same condition, make 4035 // this conditional branch redundant. 4036 if (PBI->getCondition() == BI->getCondition() && 4037 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4038 // Okay, the outcome of this conditional branch is statically 4039 // knowable. If this block had a single pred, handle specially. 4040 if (BB->getSinglePredecessor()) { 4041 // Turn this into a branch on constant. 4042 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4043 BI->setCondition( 4044 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 4045 return true; // Nuke the branch on constant. 4046 } 4047 4048 // Otherwise, if there are multiple predecessors, insert a PHI that merges 4049 // in the constant and simplify the block result. Subsequent passes of 4050 // simplifycfg will thread the block. 4051 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 4052 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 4053 PHINode *NewPN = PHINode::Create( 4054 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 4055 BI->getCondition()->getName() + ".pr", &BB->front()); 4056 // Okay, we're going to insert the PHI node. Since PBI is not the only 4057 // predecessor, compute the PHI'd conditional value for all of the preds. 4058 // Any predecessor where the condition is not computable we keep symbolic. 4059 for (pred_iterator PI = PB; PI != PE; ++PI) { 4060 BasicBlock *P = *PI; 4061 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 4062 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 4063 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4064 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4065 NewPN->addIncoming( 4066 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 4067 P); 4068 } else { 4069 NewPN->addIncoming(BI->getCondition(), P); 4070 } 4071 } 4072 4073 BI->setCondition(NewPN); 4074 return true; 4075 } 4076 } 4077 4078 // If the previous block ended with a widenable branch, determine if reusing 4079 // the target block is profitable and legal. This will have the effect of 4080 // "widening" PBI, but doesn't require us to reason about hosting safety. 4081 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 4082 return true; 4083 4084 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 4085 if (CE->canTrap()) 4086 return false; 4087 4088 // If both branches are conditional and both contain stores to the same 4089 // address, remove the stores from the conditionals and create a conditional 4090 // merged store at the end. 4091 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 4092 return true; 4093 4094 // If this is a conditional branch in an empty block, and if any 4095 // predecessors are a conditional branch to one of our destinations, 4096 // fold the conditions into logical ops and one cond br. 4097 4098 // Ignore dbg intrinsics. 4099 if (&*BB->instructionsWithoutDebug(false).begin() != BI) 4100 return false; 4101 4102 int PBIOp, BIOp; 4103 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 4104 PBIOp = 0; 4105 BIOp = 0; 4106 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 4107 PBIOp = 0; 4108 BIOp = 1; 4109 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4110 PBIOp = 1; 4111 BIOp = 0; 4112 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 4113 PBIOp = 1; 4114 BIOp = 1; 4115 } else { 4116 return false; 4117 } 4118 4119 // Check to make sure that the other destination of this branch 4120 // isn't BB itself. If so, this is an infinite loop that will 4121 // keep getting unwound. 4122 if (PBI->getSuccessor(PBIOp) == BB) 4123 return false; 4124 4125 // Do not perform this transformation if it would require 4126 // insertion of a large number of select instructions. For targets 4127 // without predication/cmovs, this is a big pessimization. 4128 4129 // Also do not perform this transformation if any phi node in the common 4130 // destination block can trap when reached by BB or PBB (PR17073). In that 4131 // case, it would be unsafe to hoist the operation into a select instruction. 4132 4133 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 4134 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 4135 unsigned NumPhis = 0; 4136 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 4137 ++II, ++NumPhis) { 4138 if (NumPhis > 2) // Disable this xform. 4139 return false; 4140 4141 PHINode *PN = cast<PHINode>(II); 4142 Value *BIV = PN->getIncomingValueForBlock(BB); 4143 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 4144 if (CE->canTrap()) 4145 return false; 4146 4147 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 4148 Value *PBIV = PN->getIncomingValue(PBBIdx); 4149 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 4150 if (CE->canTrap()) 4151 return false; 4152 } 4153 4154 // Finally, if everything is ok, fold the branches to logical ops. 4155 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 4156 4157 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 4158 << "AND: " << *BI->getParent()); 4159 4160 SmallVector<DominatorTree::UpdateType, 5> Updates; 4161 4162 // If OtherDest *is* BB, then BB is a basic block with a single conditional 4163 // branch in it, where one edge (OtherDest) goes back to itself but the other 4164 // exits. We don't *know* that the program avoids the infinite loop 4165 // (even though that seems likely). If we do this xform naively, we'll end up 4166 // recursively unpeeling the loop. Since we know that (after the xform is 4167 // done) that the block *is* infinite if reached, we just make it an obviously 4168 // infinite loop with no cond branch. 4169 if (OtherDest == BB) { 4170 // Insert it at the end of the function, because it's either code, 4171 // or it won't matter if it's hot. :) 4172 BasicBlock *InfLoopBlock = 4173 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 4174 BranchInst::Create(InfLoopBlock, InfLoopBlock); 4175 if (DTU) 4176 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 4177 OtherDest = InfLoopBlock; 4178 } 4179 4180 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4181 4182 // BI may have other predecessors. Because of this, we leave 4183 // it alone, but modify PBI. 4184 4185 // Make sure we get to CommonDest on True&True directions. 4186 Value *PBICond = PBI->getCondition(); 4187 IRBuilder<NoFolder> Builder(PBI); 4188 if (PBIOp) 4189 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 4190 4191 Value *BICond = BI->getCondition(); 4192 if (BIOp) 4193 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 4194 4195 // Merge the conditions. 4196 Value *Cond = 4197 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 4198 4199 // Modify PBI to branch on the new condition to the new dests. 4200 PBI->setCondition(Cond); 4201 PBI->setSuccessor(0, CommonDest); 4202 PBI->setSuccessor(1, OtherDest); 4203 4204 if (DTU) { 4205 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 4206 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 4207 4208 DTU->applyUpdates(Updates); 4209 } 4210 4211 // Update branch weight for PBI. 4212 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4213 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 4214 bool HasWeights = 4215 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4216 SuccTrueWeight, SuccFalseWeight); 4217 if (HasWeights) { 4218 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4219 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4220 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4221 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4222 // The weight to CommonDest should be PredCommon * SuccTotal + 4223 // PredOther * SuccCommon. 4224 // The weight to OtherDest should be PredOther * SuccOther. 4225 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 4226 PredOther * SuccCommon, 4227 PredOther * SuccOther}; 4228 // Halve the weights if any of them cannot fit in an uint32_t 4229 FitWeights(NewWeights); 4230 4231 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 4232 } 4233 4234 // OtherDest may have phi nodes. If so, add an entry from PBI's 4235 // block that are identical to the entries for BI's block. 4236 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 4237 4238 // We know that the CommonDest already had an edge from PBI to 4239 // it. If it has PHIs though, the PHIs may have different 4240 // entries for BB and PBI's BB. If so, insert a select to make 4241 // them agree. 4242 for (PHINode &PN : CommonDest->phis()) { 4243 Value *BIV = PN.getIncomingValueForBlock(BB); 4244 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 4245 Value *PBIV = PN.getIncomingValue(PBBIdx); 4246 if (BIV != PBIV) { 4247 // Insert a select in PBI to pick the right value. 4248 SelectInst *NV = cast<SelectInst>( 4249 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 4250 PN.setIncomingValue(PBBIdx, NV); 4251 // Although the select has the same condition as PBI, the original branch 4252 // weights for PBI do not apply to the new select because the select's 4253 // 'logical' edges are incoming edges of the phi that is eliminated, not 4254 // the outgoing edges of PBI. 4255 if (HasWeights) { 4256 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4257 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4258 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4259 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4260 // The weight to PredCommonDest should be PredCommon * SuccTotal. 4261 // The weight to PredOtherDest should be PredOther * SuccCommon. 4262 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 4263 PredOther * SuccCommon}; 4264 4265 FitWeights(NewWeights); 4266 4267 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 4268 } 4269 } 4270 } 4271 4272 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 4273 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4274 4275 // This basic block is probably dead. We know it has at least 4276 // one fewer predecessor. 4277 return true; 4278 } 4279 4280 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 4281 // true or to FalseBB if Cond is false. 4282 // Takes care of updating the successors and removing the old terminator. 4283 // Also makes sure not to introduce new successors by assuming that edges to 4284 // non-successor TrueBBs and FalseBBs aren't reachable. 4285 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 4286 Value *Cond, BasicBlock *TrueBB, 4287 BasicBlock *FalseBB, 4288 uint32_t TrueWeight, 4289 uint32_t FalseWeight) { 4290 auto *BB = OldTerm->getParent(); 4291 // Remove any superfluous successor edges from the CFG. 4292 // First, figure out which successors to preserve. 4293 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 4294 // successor. 4295 BasicBlock *KeepEdge1 = TrueBB; 4296 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 4297 4298 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 4299 4300 // Then remove the rest. 4301 for (BasicBlock *Succ : successors(OldTerm)) { 4302 // Make sure only to keep exactly one copy of each edge. 4303 if (Succ == KeepEdge1) 4304 KeepEdge1 = nullptr; 4305 else if (Succ == KeepEdge2) 4306 KeepEdge2 = nullptr; 4307 else { 4308 Succ->removePredecessor(BB, 4309 /*KeepOneInputPHIs=*/true); 4310 4311 if (Succ != TrueBB && Succ != FalseBB) 4312 RemovedSuccessors.insert(Succ); 4313 } 4314 } 4315 4316 IRBuilder<> Builder(OldTerm); 4317 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 4318 4319 // Insert an appropriate new terminator. 4320 if (!KeepEdge1 && !KeepEdge2) { 4321 if (TrueBB == FalseBB) { 4322 // We were only looking for one successor, and it was present. 4323 // Create an unconditional branch to it. 4324 Builder.CreateBr(TrueBB); 4325 } else { 4326 // We found both of the successors we were looking for. 4327 // Create a conditional branch sharing the condition of the select. 4328 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 4329 if (TrueWeight != FalseWeight) 4330 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4331 } 4332 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 4333 // Neither of the selected blocks were successors, so this 4334 // terminator must be unreachable. 4335 new UnreachableInst(OldTerm->getContext(), OldTerm); 4336 } else { 4337 // One of the selected values was a successor, but the other wasn't. 4338 // Insert an unconditional branch to the one that was found; 4339 // the edge to the one that wasn't must be unreachable. 4340 if (!KeepEdge1) { 4341 // Only TrueBB was found. 4342 Builder.CreateBr(TrueBB); 4343 } else { 4344 // Only FalseBB was found. 4345 Builder.CreateBr(FalseBB); 4346 } 4347 } 4348 4349 EraseTerminatorAndDCECond(OldTerm); 4350 4351 if (DTU) { 4352 SmallVector<DominatorTree::UpdateType, 2> Updates; 4353 Updates.reserve(RemovedSuccessors.size()); 4354 for (auto *RemovedSuccessor : RemovedSuccessors) 4355 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4356 DTU->applyUpdates(Updates); 4357 } 4358 4359 return true; 4360 } 4361 4362 // Replaces 4363 // (switch (select cond, X, Y)) on constant X, Y 4364 // with a branch - conditional if X and Y lead to distinct BBs, 4365 // unconditional otherwise. 4366 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4367 SelectInst *Select) { 4368 // Check for constant integer values in the select. 4369 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4370 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4371 if (!TrueVal || !FalseVal) 4372 return false; 4373 4374 // Find the relevant condition and destinations. 4375 Value *Condition = Select->getCondition(); 4376 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4377 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4378 4379 // Get weight for TrueBB and FalseBB. 4380 uint32_t TrueWeight = 0, FalseWeight = 0; 4381 SmallVector<uint64_t, 8> Weights; 4382 bool HasWeights = HasBranchWeights(SI); 4383 if (HasWeights) { 4384 GetBranchWeights(SI, Weights); 4385 if (Weights.size() == 1 + SI->getNumCases()) { 4386 TrueWeight = 4387 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4388 FalseWeight = 4389 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4390 } 4391 } 4392 4393 // Perform the actual simplification. 4394 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4395 FalseWeight); 4396 } 4397 4398 // Replaces 4399 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4400 // blockaddress(@fn, BlockB))) 4401 // with 4402 // (br cond, BlockA, BlockB). 4403 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4404 SelectInst *SI) { 4405 // Check that both operands of the select are block addresses. 4406 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4407 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4408 if (!TBA || !FBA) 4409 return false; 4410 4411 // Extract the actual blocks. 4412 BasicBlock *TrueBB = TBA->getBasicBlock(); 4413 BasicBlock *FalseBB = FBA->getBasicBlock(); 4414 4415 // Perform the actual simplification. 4416 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4417 0); 4418 } 4419 4420 /// This is called when we find an icmp instruction 4421 /// (a seteq/setne with a constant) as the only instruction in a 4422 /// block that ends with an uncond branch. We are looking for a very specific 4423 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4424 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4425 /// default value goes to an uncond block with a seteq in it, we get something 4426 /// like: 4427 /// 4428 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4429 /// DEFAULT: 4430 /// %tmp = icmp eq i8 %A, 92 4431 /// br label %end 4432 /// end: 4433 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4434 /// 4435 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4436 /// the PHI, merging the third icmp into the switch. 4437 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4438 ICmpInst *ICI, IRBuilder<> &Builder) { 4439 BasicBlock *BB = ICI->getParent(); 4440 4441 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4442 // complex. 4443 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4444 return false; 4445 4446 Value *V = ICI->getOperand(0); 4447 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4448 4449 // The pattern we're looking for is where our only predecessor is a switch on 4450 // 'V' and this block is the default case for the switch. In this case we can 4451 // fold the compared value into the switch to simplify things. 4452 BasicBlock *Pred = BB->getSinglePredecessor(); 4453 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4454 return false; 4455 4456 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4457 if (SI->getCondition() != V) 4458 return false; 4459 4460 // If BB is reachable on a non-default case, then we simply know the value of 4461 // V in this block. Substitute it and constant fold the icmp instruction 4462 // away. 4463 if (SI->getDefaultDest() != BB) { 4464 ConstantInt *VVal = SI->findCaseDest(BB); 4465 assert(VVal && "Should have a unique destination value"); 4466 ICI->setOperand(0, VVal); 4467 4468 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 4469 ICI->replaceAllUsesWith(V); 4470 ICI->eraseFromParent(); 4471 } 4472 // BB is now empty, so it is likely to simplify away. 4473 return requestResimplify(); 4474 } 4475 4476 // Ok, the block is reachable from the default dest. If the constant we're 4477 // comparing exists in one of the other edges, then we can constant fold ICI 4478 // and zap it. 4479 if (SI->findCaseValue(Cst) != SI->case_default()) { 4480 Value *V; 4481 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4482 V = ConstantInt::getFalse(BB->getContext()); 4483 else 4484 V = ConstantInt::getTrue(BB->getContext()); 4485 4486 ICI->replaceAllUsesWith(V); 4487 ICI->eraseFromParent(); 4488 // BB is now empty, so it is likely to simplify away. 4489 return requestResimplify(); 4490 } 4491 4492 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4493 // the block. 4494 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4495 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4496 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4497 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4498 return false; 4499 4500 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4501 // true in the PHI. 4502 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4503 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4504 4505 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4506 std::swap(DefaultCst, NewCst); 4507 4508 // Replace ICI (which is used by the PHI for the default value) with true or 4509 // false depending on if it is EQ or NE. 4510 ICI->replaceAllUsesWith(DefaultCst); 4511 ICI->eraseFromParent(); 4512 4513 SmallVector<DominatorTree::UpdateType, 2> Updates; 4514 4515 // Okay, the switch goes to this block on a default value. Add an edge from 4516 // the switch to the merge point on the compared value. 4517 BasicBlock *NewBB = 4518 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4519 { 4520 SwitchInstProfUpdateWrapper SIW(*SI); 4521 auto W0 = SIW.getSuccessorWeight(0); 4522 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4523 if (W0) { 4524 NewW = ((uint64_t(*W0) + 1) >> 1); 4525 SIW.setSuccessorWeight(0, *NewW); 4526 } 4527 SIW.addCase(Cst, NewBB, NewW); 4528 if (DTU) 4529 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4530 } 4531 4532 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4533 Builder.SetInsertPoint(NewBB); 4534 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4535 Builder.CreateBr(SuccBlock); 4536 PHIUse->addIncoming(NewCst, NewBB); 4537 if (DTU) { 4538 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4539 DTU->applyUpdates(Updates); 4540 } 4541 return true; 4542 } 4543 4544 /// The specified branch is a conditional branch. 4545 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4546 /// fold it into a switch instruction if so. 4547 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4548 IRBuilder<> &Builder, 4549 const DataLayout &DL) { 4550 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4551 if (!Cond) 4552 return false; 4553 4554 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4555 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4556 // 'setne's and'ed together, collect them. 4557 4558 // Try to gather values from a chain of and/or to be turned into a switch 4559 ConstantComparesGatherer ConstantCompare(Cond, DL); 4560 // Unpack the result 4561 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4562 Value *CompVal = ConstantCompare.CompValue; 4563 unsigned UsedICmps = ConstantCompare.UsedICmps; 4564 Value *ExtraCase = ConstantCompare.Extra; 4565 4566 // If we didn't have a multiply compared value, fail. 4567 if (!CompVal) 4568 return false; 4569 4570 // Avoid turning single icmps into a switch. 4571 if (UsedICmps <= 1) 4572 return false; 4573 4574 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4575 4576 // There might be duplicate constants in the list, which the switch 4577 // instruction can't handle, remove them now. 4578 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4579 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4580 4581 // If Extra was used, we require at least two switch values to do the 4582 // transformation. A switch with one value is just a conditional branch. 4583 if (ExtraCase && Values.size() < 2) 4584 return false; 4585 4586 // TODO: Preserve branch weight metadata, similarly to how 4587 // FoldValueComparisonIntoPredecessors preserves it. 4588 4589 // Figure out which block is which destination. 4590 BasicBlock *DefaultBB = BI->getSuccessor(1); 4591 BasicBlock *EdgeBB = BI->getSuccessor(0); 4592 if (!TrueWhenEqual) 4593 std::swap(DefaultBB, EdgeBB); 4594 4595 BasicBlock *BB = BI->getParent(); 4596 4597 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4598 << " cases into SWITCH. BB is:\n" 4599 << *BB); 4600 4601 SmallVector<DominatorTree::UpdateType, 2> Updates; 4602 4603 // If there are any extra values that couldn't be folded into the switch 4604 // then we evaluate them with an explicit branch first. Split the block 4605 // right before the condbr to handle it. 4606 if (ExtraCase) { 4607 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4608 /*MSSAU=*/nullptr, "switch.early.test"); 4609 4610 // Remove the uncond branch added to the old block. 4611 Instruction *OldTI = BB->getTerminator(); 4612 Builder.SetInsertPoint(OldTI); 4613 4614 // There can be an unintended UB if extra values are Poison. Before the 4615 // transformation, extra values may not be evaluated according to the 4616 // condition, and it will not raise UB. But after transformation, we are 4617 // evaluating extra values before checking the condition, and it will raise 4618 // UB. It can be solved by adding freeze instruction to extra values. 4619 AssumptionCache *AC = Options.AC; 4620 4621 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 4622 ExtraCase = Builder.CreateFreeze(ExtraCase); 4623 4624 if (TrueWhenEqual) 4625 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4626 else 4627 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4628 4629 OldTI->eraseFromParent(); 4630 4631 if (DTU) 4632 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4633 4634 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4635 // for the edge we just added. 4636 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4637 4638 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4639 << "\nEXTRABB = " << *BB); 4640 BB = NewBB; 4641 } 4642 4643 Builder.SetInsertPoint(BI); 4644 // Convert pointer to int before we switch. 4645 if (CompVal->getType()->isPointerTy()) { 4646 CompVal = Builder.CreatePtrToInt( 4647 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4648 } 4649 4650 // Create the new switch instruction now. 4651 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4652 4653 // Add all of the 'cases' to the switch instruction. 4654 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4655 New->addCase(Values[i], EdgeBB); 4656 4657 // We added edges from PI to the EdgeBB. As such, if there were any 4658 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4659 // the number of edges added. 4660 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4661 PHINode *PN = cast<PHINode>(BBI); 4662 Value *InVal = PN->getIncomingValueForBlock(BB); 4663 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4664 PN->addIncoming(InVal, BB); 4665 } 4666 4667 // Erase the old branch instruction. 4668 EraseTerminatorAndDCECond(BI); 4669 if (DTU) 4670 DTU->applyUpdates(Updates); 4671 4672 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4673 return true; 4674 } 4675 4676 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4677 if (isa<PHINode>(RI->getValue())) 4678 return simplifyCommonResume(RI); 4679 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4680 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4681 // The resume must unwind the exception that caused control to branch here. 4682 return simplifySingleResume(RI); 4683 4684 return false; 4685 } 4686 4687 // Check if cleanup block is empty 4688 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4689 for (Instruction &I : R) { 4690 auto *II = dyn_cast<IntrinsicInst>(&I); 4691 if (!II) 4692 return false; 4693 4694 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4695 switch (IntrinsicID) { 4696 case Intrinsic::dbg_declare: 4697 case Intrinsic::dbg_value: 4698 case Intrinsic::dbg_label: 4699 case Intrinsic::lifetime_end: 4700 break; 4701 default: 4702 return false; 4703 } 4704 } 4705 return true; 4706 } 4707 4708 // Simplify resume that is shared by several landing pads (phi of landing pad). 4709 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4710 BasicBlock *BB = RI->getParent(); 4711 4712 // Check that there are no other instructions except for debug and lifetime 4713 // intrinsics between the phi's and resume instruction. 4714 if (!isCleanupBlockEmpty( 4715 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4716 return false; 4717 4718 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4719 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4720 4721 // Check incoming blocks to see if any of them are trivial. 4722 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4723 Idx++) { 4724 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4725 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4726 4727 // If the block has other successors, we can not delete it because 4728 // it has other dependents. 4729 if (IncomingBB->getUniqueSuccessor() != BB) 4730 continue; 4731 4732 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4733 // Not the landing pad that caused the control to branch here. 4734 if (IncomingValue != LandingPad) 4735 continue; 4736 4737 if (isCleanupBlockEmpty( 4738 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4739 TrivialUnwindBlocks.insert(IncomingBB); 4740 } 4741 4742 // If no trivial unwind blocks, don't do any simplifications. 4743 if (TrivialUnwindBlocks.empty()) 4744 return false; 4745 4746 // Turn all invokes that unwind here into calls. 4747 for (auto *TrivialBB : TrivialUnwindBlocks) { 4748 // Blocks that will be simplified should be removed from the phi node. 4749 // Note there could be multiple edges to the resume block, and we need 4750 // to remove them all. 4751 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4752 BB->removePredecessor(TrivialBB, true); 4753 4754 for (BasicBlock *Pred : 4755 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4756 removeUnwindEdge(Pred, DTU); 4757 ++NumInvokes; 4758 } 4759 4760 // In each SimplifyCFG run, only the current processed block can be erased. 4761 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4762 // of erasing TrivialBB, we only remove the branch to the common resume 4763 // block so that we can later erase the resume block since it has no 4764 // predecessors. 4765 TrivialBB->getTerminator()->eraseFromParent(); 4766 new UnreachableInst(RI->getContext(), TrivialBB); 4767 if (DTU) 4768 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4769 } 4770 4771 // Delete the resume block if all its predecessors have been removed. 4772 if (pred_empty(BB)) 4773 DeleteDeadBlock(BB, DTU); 4774 4775 return !TrivialUnwindBlocks.empty(); 4776 } 4777 4778 // Simplify resume that is only used by a single (non-phi) landing pad. 4779 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4780 BasicBlock *BB = RI->getParent(); 4781 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4782 assert(RI->getValue() == LPInst && 4783 "Resume must unwind the exception that caused control to here"); 4784 4785 // Check that there are no other instructions except for debug intrinsics. 4786 if (!isCleanupBlockEmpty( 4787 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4788 return false; 4789 4790 // Turn all invokes that unwind here into calls and delete the basic block. 4791 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4792 removeUnwindEdge(Pred, DTU); 4793 ++NumInvokes; 4794 } 4795 4796 // The landingpad is now unreachable. Zap it. 4797 DeleteDeadBlock(BB, DTU); 4798 return true; 4799 } 4800 4801 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4802 // If this is a trivial cleanup pad that executes no instructions, it can be 4803 // eliminated. If the cleanup pad continues to the caller, any predecessor 4804 // that is an EH pad will be updated to continue to the caller and any 4805 // predecessor that terminates with an invoke instruction will have its invoke 4806 // instruction converted to a call instruction. If the cleanup pad being 4807 // simplified does not continue to the caller, each predecessor will be 4808 // updated to continue to the unwind destination of the cleanup pad being 4809 // simplified. 4810 BasicBlock *BB = RI->getParent(); 4811 CleanupPadInst *CPInst = RI->getCleanupPad(); 4812 if (CPInst->getParent() != BB) 4813 // This isn't an empty cleanup. 4814 return false; 4815 4816 // We cannot kill the pad if it has multiple uses. This typically arises 4817 // from unreachable basic blocks. 4818 if (!CPInst->hasOneUse()) 4819 return false; 4820 4821 // Check that there are no other instructions except for benign intrinsics. 4822 if (!isCleanupBlockEmpty( 4823 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4824 return false; 4825 4826 // If the cleanup return we are simplifying unwinds to the caller, this will 4827 // set UnwindDest to nullptr. 4828 BasicBlock *UnwindDest = RI->getUnwindDest(); 4829 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4830 4831 // We're about to remove BB from the control flow. Before we do, sink any 4832 // PHINodes into the unwind destination. Doing this before changing the 4833 // control flow avoids some potentially slow checks, since we can currently 4834 // be certain that UnwindDest and BB have no common predecessors (since they 4835 // are both EH pads). 4836 if (UnwindDest) { 4837 // First, go through the PHI nodes in UnwindDest and update any nodes that 4838 // reference the block we are removing 4839 for (PHINode &DestPN : UnwindDest->phis()) { 4840 int Idx = DestPN.getBasicBlockIndex(BB); 4841 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4842 assert(Idx != -1); 4843 // This PHI node has an incoming value that corresponds to a control 4844 // path through the cleanup pad we are removing. If the incoming 4845 // value is in the cleanup pad, it must be a PHINode (because we 4846 // verified above that the block is otherwise empty). Otherwise, the 4847 // value is either a constant or a value that dominates the cleanup 4848 // pad being removed. 4849 // 4850 // Because BB and UnwindDest are both EH pads, all of their 4851 // predecessors must unwind to these blocks, and since no instruction 4852 // can have multiple unwind destinations, there will be no overlap in 4853 // incoming blocks between SrcPN and DestPN. 4854 Value *SrcVal = DestPN.getIncomingValue(Idx); 4855 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4856 4857 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 4858 for (auto *Pred : predecessors(BB)) { 4859 Value *Incoming = 4860 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 4861 DestPN.addIncoming(Incoming, Pred); 4862 } 4863 } 4864 4865 // Sink any remaining PHI nodes directly into UnwindDest. 4866 Instruction *InsertPt = DestEHPad; 4867 for (PHINode &PN : make_early_inc_range(BB->phis())) { 4868 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 4869 // If the PHI node has no uses or all of its uses are in this basic 4870 // block (meaning they are debug or lifetime intrinsics), just leave 4871 // it. It will be erased when we erase BB below. 4872 continue; 4873 4874 // Otherwise, sink this PHI node into UnwindDest. 4875 // Any predecessors to UnwindDest which are not already represented 4876 // must be back edges which inherit the value from the path through 4877 // BB. In this case, the PHI value must reference itself. 4878 for (auto *pred : predecessors(UnwindDest)) 4879 if (pred != BB) 4880 PN.addIncoming(&PN, pred); 4881 PN.moveBefore(InsertPt); 4882 // Also, add a dummy incoming value for the original BB itself, 4883 // so that the PHI is well-formed until we drop said predecessor. 4884 PN.addIncoming(UndefValue::get(PN.getType()), BB); 4885 } 4886 } 4887 4888 std::vector<DominatorTree::UpdateType> Updates; 4889 4890 // We use make_early_inc_range here because we will remove all predecessors. 4891 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4892 if (UnwindDest == nullptr) { 4893 if (DTU) { 4894 DTU->applyUpdates(Updates); 4895 Updates.clear(); 4896 } 4897 removeUnwindEdge(PredBB, DTU); 4898 ++NumInvokes; 4899 } else { 4900 BB->removePredecessor(PredBB); 4901 Instruction *TI = PredBB->getTerminator(); 4902 TI->replaceUsesOfWith(BB, UnwindDest); 4903 if (DTU) { 4904 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4905 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4906 } 4907 } 4908 } 4909 4910 if (DTU) 4911 DTU->applyUpdates(Updates); 4912 4913 DeleteDeadBlock(BB, DTU); 4914 4915 return true; 4916 } 4917 4918 // Try to merge two cleanuppads together. 4919 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4920 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4921 // with. 4922 BasicBlock *UnwindDest = RI->getUnwindDest(); 4923 if (!UnwindDest) 4924 return false; 4925 4926 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4927 // be safe to merge without code duplication. 4928 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4929 return false; 4930 4931 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4932 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4933 if (!SuccessorCleanupPad) 4934 return false; 4935 4936 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4937 // Replace any uses of the successor cleanupad with the predecessor pad 4938 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4939 // funclet bundle operands. 4940 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4941 // Remove the old cleanuppad. 4942 SuccessorCleanupPad->eraseFromParent(); 4943 // Now, we simply replace the cleanupret with a branch to the unwind 4944 // destination. 4945 BranchInst::Create(UnwindDest, RI->getParent()); 4946 RI->eraseFromParent(); 4947 4948 return true; 4949 } 4950 4951 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4952 // It is possible to transiantly have an undef cleanuppad operand because we 4953 // have deleted some, but not all, dead blocks. 4954 // Eventually, this block will be deleted. 4955 if (isa<UndefValue>(RI->getOperand(0))) 4956 return false; 4957 4958 if (mergeCleanupPad(RI)) 4959 return true; 4960 4961 if (removeEmptyCleanup(RI, DTU)) 4962 return true; 4963 4964 return false; 4965 } 4966 4967 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 4968 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4969 BasicBlock *BB = UI->getParent(); 4970 4971 bool Changed = false; 4972 4973 // If there are any instructions immediately before the unreachable that can 4974 // be removed, do so. 4975 while (UI->getIterator() != BB->begin()) { 4976 BasicBlock::iterator BBI = UI->getIterator(); 4977 --BBI; 4978 4979 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 4980 break; // Can not drop any more instructions. We're done here. 4981 // Otherwise, this instruction can be freely erased, 4982 // even if it is not side-effect free. 4983 4984 // Note that deleting EH's here is in fact okay, although it involves a bit 4985 // of subtle reasoning. If this inst is an EH, all the predecessors of this 4986 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 4987 // and we can therefore guarantee this block will be erased. 4988 4989 // Delete this instruction (any uses are guaranteed to be dead) 4990 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 4991 BBI->eraseFromParent(); 4992 Changed = true; 4993 } 4994 4995 // If the unreachable instruction is the first in the block, take a gander 4996 // at all of the predecessors of this instruction, and simplify them. 4997 if (&BB->front() != UI) 4998 return Changed; 4999 5000 std::vector<DominatorTree::UpdateType> Updates; 5001 5002 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 5003 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 5004 auto *Predecessor = Preds[i]; 5005 Instruction *TI = Predecessor->getTerminator(); 5006 IRBuilder<> Builder(TI); 5007 if (auto *BI = dyn_cast<BranchInst>(TI)) { 5008 // We could either have a proper unconditional branch, 5009 // or a degenerate conditional branch with matching destinations. 5010 if (all_of(BI->successors(), 5011 [BB](auto *Successor) { return Successor == BB; })) { 5012 new UnreachableInst(TI->getContext(), TI); 5013 TI->eraseFromParent(); 5014 Changed = true; 5015 } else { 5016 assert(BI->isConditional() && "Can't get here with an uncond branch."); 5017 Value* Cond = BI->getCondition(); 5018 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 5019 "The destinations are guaranteed to be different here."); 5020 if (BI->getSuccessor(0) == BB) { 5021 Builder.CreateAssumption(Builder.CreateNot(Cond)); 5022 Builder.CreateBr(BI->getSuccessor(1)); 5023 } else { 5024 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 5025 Builder.CreateAssumption(Cond); 5026 Builder.CreateBr(BI->getSuccessor(0)); 5027 } 5028 EraseTerminatorAndDCECond(BI); 5029 Changed = true; 5030 } 5031 if (DTU) 5032 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5033 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 5034 SwitchInstProfUpdateWrapper SU(*SI); 5035 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 5036 if (i->getCaseSuccessor() != BB) { 5037 ++i; 5038 continue; 5039 } 5040 BB->removePredecessor(SU->getParent()); 5041 i = SU.removeCase(i); 5042 e = SU->case_end(); 5043 Changed = true; 5044 } 5045 // Note that the default destination can't be removed! 5046 if (DTU && SI->getDefaultDest() != BB) 5047 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5048 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 5049 if (II->getUnwindDest() == BB) { 5050 if (DTU) { 5051 DTU->applyUpdates(Updates); 5052 Updates.clear(); 5053 } 5054 removeUnwindEdge(TI->getParent(), DTU); 5055 Changed = true; 5056 } 5057 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 5058 if (CSI->getUnwindDest() == BB) { 5059 if (DTU) { 5060 DTU->applyUpdates(Updates); 5061 Updates.clear(); 5062 } 5063 removeUnwindEdge(TI->getParent(), DTU); 5064 Changed = true; 5065 continue; 5066 } 5067 5068 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 5069 E = CSI->handler_end(); 5070 I != E; ++I) { 5071 if (*I == BB) { 5072 CSI->removeHandler(I); 5073 --I; 5074 --E; 5075 Changed = true; 5076 } 5077 } 5078 if (DTU) 5079 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5080 if (CSI->getNumHandlers() == 0) { 5081 if (CSI->hasUnwindDest()) { 5082 // Redirect all predecessors of the block containing CatchSwitchInst 5083 // to instead branch to the CatchSwitchInst's unwind destination. 5084 if (DTU) { 5085 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 5086 Updates.push_back({DominatorTree::Insert, 5087 PredecessorOfPredecessor, 5088 CSI->getUnwindDest()}); 5089 Updates.push_back({DominatorTree::Delete, 5090 PredecessorOfPredecessor, Predecessor}); 5091 } 5092 } 5093 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 5094 } else { 5095 // Rewrite all preds to unwind to caller (or from invoke to call). 5096 if (DTU) { 5097 DTU->applyUpdates(Updates); 5098 Updates.clear(); 5099 } 5100 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 5101 for (BasicBlock *EHPred : EHPreds) 5102 removeUnwindEdge(EHPred, DTU); 5103 } 5104 // The catchswitch is no longer reachable. 5105 new UnreachableInst(CSI->getContext(), CSI); 5106 CSI->eraseFromParent(); 5107 Changed = true; 5108 } 5109 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 5110 (void)CRI; 5111 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 5112 "Expected to always have an unwind to BB."); 5113 if (DTU) 5114 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5115 new UnreachableInst(TI->getContext(), TI); 5116 TI->eraseFromParent(); 5117 Changed = true; 5118 } 5119 } 5120 5121 if (DTU) 5122 DTU->applyUpdates(Updates); 5123 5124 // If this block is now dead, remove it. 5125 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 5126 DeleteDeadBlock(BB, DTU); 5127 return true; 5128 } 5129 5130 return Changed; 5131 } 5132 5133 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 5134 assert(Cases.size() >= 1); 5135 5136 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 5137 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 5138 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 5139 return false; 5140 } 5141 return true; 5142 } 5143 5144 static void createUnreachableSwitchDefault(SwitchInst *Switch, 5145 DomTreeUpdater *DTU) { 5146 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 5147 auto *BB = Switch->getParent(); 5148 auto *OrigDefaultBlock = Switch->getDefaultDest(); 5149 OrigDefaultBlock->removePredecessor(BB); 5150 BasicBlock *NewDefaultBlock = BasicBlock::Create( 5151 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), 5152 OrigDefaultBlock); 5153 new UnreachableInst(Switch->getContext(), NewDefaultBlock); 5154 Switch->setDefaultDest(&*NewDefaultBlock); 5155 if (DTU) { 5156 SmallVector<DominatorTree::UpdateType, 2> Updates; 5157 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); 5158 if (!is_contained(successors(BB), OrigDefaultBlock)) 5159 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); 5160 DTU->applyUpdates(Updates); 5161 } 5162 } 5163 5164 /// Turn a switch with two reachable destinations into an integer range 5165 /// comparison and branch. 5166 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 5167 IRBuilder<> &Builder) { 5168 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5169 5170 bool HasDefault = 5171 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5172 5173 auto *BB = SI->getParent(); 5174 5175 // Partition the cases into two sets with different destinations. 5176 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 5177 BasicBlock *DestB = nullptr; 5178 SmallVector<ConstantInt *, 16> CasesA; 5179 SmallVector<ConstantInt *, 16> CasesB; 5180 5181 for (auto Case : SI->cases()) { 5182 BasicBlock *Dest = Case.getCaseSuccessor(); 5183 if (!DestA) 5184 DestA = Dest; 5185 if (Dest == DestA) { 5186 CasesA.push_back(Case.getCaseValue()); 5187 continue; 5188 } 5189 if (!DestB) 5190 DestB = Dest; 5191 if (Dest == DestB) { 5192 CasesB.push_back(Case.getCaseValue()); 5193 continue; 5194 } 5195 return false; // More than two destinations. 5196 } 5197 5198 assert(DestA && DestB && 5199 "Single-destination switch should have been folded."); 5200 assert(DestA != DestB); 5201 assert(DestB != SI->getDefaultDest()); 5202 assert(!CasesB.empty() && "There must be non-default cases."); 5203 assert(!CasesA.empty() || HasDefault); 5204 5205 // Figure out if one of the sets of cases form a contiguous range. 5206 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 5207 BasicBlock *ContiguousDest = nullptr; 5208 BasicBlock *OtherDest = nullptr; 5209 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 5210 ContiguousCases = &CasesA; 5211 ContiguousDest = DestA; 5212 OtherDest = DestB; 5213 } else if (CasesAreContiguous(CasesB)) { 5214 ContiguousCases = &CasesB; 5215 ContiguousDest = DestB; 5216 OtherDest = DestA; 5217 } else 5218 return false; 5219 5220 // Start building the compare and branch. 5221 5222 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 5223 Constant *NumCases = 5224 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 5225 5226 Value *Sub = SI->getCondition(); 5227 if (!Offset->isNullValue()) 5228 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 5229 5230 Value *Cmp; 5231 // If NumCases overflowed, then all possible values jump to the successor. 5232 if (NumCases->isNullValue() && !ContiguousCases->empty()) 5233 Cmp = ConstantInt::getTrue(SI->getContext()); 5234 else 5235 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 5236 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 5237 5238 // Update weight for the newly-created conditional branch. 5239 if (HasBranchWeights(SI)) { 5240 SmallVector<uint64_t, 8> Weights; 5241 GetBranchWeights(SI, Weights); 5242 if (Weights.size() == 1 + SI->getNumCases()) { 5243 uint64_t TrueWeight = 0; 5244 uint64_t FalseWeight = 0; 5245 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 5246 if (SI->getSuccessor(I) == ContiguousDest) 5247 TrueWeight += Weights[I]; 5248 else 5249 FalseWeight += Weights[I]; 5250 } 5251 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 5252 TrueWeight /= 2; 5253 FalseWeight /= 2; 5254 } 5255 setBranchWeights(NewBI, TrueWeight, FalseWeight); 5256 } 5257 } 5258 5259 // Prune obsolete incoming values off the successors' PHI nodes. 5260 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 5261 unsigned PreviousEdges = ContiguousCases->size(); 5262 if (ContiguousDest == SI->getDefaultDest()) 5263 ++PreviousEdges; 5264 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5265 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5266 } 5267 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5268 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5269 if (OtherDest == SI->getDefaultDest()) 5270 ++PreviousEdges; 5271 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5272 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5273 } 5274 5275 // Clean up the default block - it may have phis or other instructions before 5276 // the unreachable terminator. 5277 if (!HasDefault) 5278 createUnreachableSwitchDefault(SI, DTU); 5279 5280 auto *UnreachableDefault = SI->getDefaultDest(); 5281 5282 // Drop the switch. 5283 SI->eraseFromParent(); 5284 5285 if (!HasDefault && DTU) 5286 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5287 5288 return true; 5289 } 5290 5291 /// Compute masked bits for the condition of a switch 5292 /// and use it to remove dead cases. 5293 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5294 AssumptionCache *AC, 5295 const DataLayout &DL) { 5296 Value *Cond = SI->getCondition(); 5297 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5298 5299 // We can also eliminate cases by determining that their values are outside of 5300 // the limited range of the condition based on how many significant (non-sign) 5301 // bits are in the condition value. 5302 unsigned MaxSignificantBitsInCond = 5303 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); 5304 5305 // Gather dead cases. 5306 SmallVector<ConstantInt *, 8> DeadCases; 5307 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5308 SmallVector<BasicBlock *, 8> UniqueSuccessors; 5309 for (auto &Case : SI->cases()) { 5310 auto *Successor = Case.getCaseSuccessor(); 5311 if (DTU) { 5312 if (!NumPerSuccessorCases.count(Successor)) 5313 UniqueSuccessors.push_back(Successor); 5314 ++NumPerSuccessorCases[Successor]; 5315 } 5316 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5317 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5318 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5319 DeadCases.push_back(Case.getCaseValue()); 5320 if (DTU) 5321 --NumPerSuccessorCases[Successor]; 5322 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5323 << " is dead.\n"); 5324 } 5325 } 5326 5327 // If we can prove that the cases must cover all possible values, the 5328 // default destination becomes dead and we can remove it. If we know some 5329 // of the bits in the value, we can use that to more precisely compute the 5330 // number of possible unique case values. 5331 bool HasDefault = 5332 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5333 const unsigned NumUnknownBits = 5334 Known.getBitWidth() - (Known.Zero | Known.One).countPopulation(); 5335 assert(NumUnknownBits <= Known.getBitWidth()); 5336 if (HasDefault && DeadCases.empty() && 5337 NumUnknownBits < 64 /* avoid overflow */ && 5338 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5339 createUnreachableSwitchDefault(SI, DTU); 5340 return true; 5341 } 5342 5343 if (DeadCases.empty()) 5344 return false; 5345 5346 SwitchInstProfUpdateWrapper SIW(*SI); 5347 for (ConstantInt *DeadCase : DeadCases) { 5348 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5349 assert(CaseI != SI->case_default() && 5350 "Case was not found. Probably mistake in DeadCases forming."); 5351 // Prune unused values from PHI nodes. 5352 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5353 SIW.removeCase(CaseI); 5354 } 5355 5356 if (DTU) { 5357 std::vector<DominatorTree::UpdateType> Updates; 5358 for (auto *Successor : UniqueSuccessors) 5359 if (NumPerSuccessorCases[Successor] == 0) 5360 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); 5361 DTU->applyUpdates(Updates); 5362 } 5363 5364 return true; 5365 } 5366 5367 /// If BB would be eligible for simplification by 5368 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5369 /// by an unconditional branch), look at the phi node for BB in the successor 5370 /// block and see if the incoming value is equal to CaseValue. If so, return 5371 /// the phi node, and set PhiIndex to BB's index in the phi node. 5372 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5373 BasicBlock *BB, int *PhiIndex) { 5374 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5375 return nullptr; // BB must be empty to be a candidate for simplification. 5376 if (!BB->getSinglePredecessor()) 5377 return nullptr; // BB must be dominated by the switch. 5378 5379 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5380 if (!Branch || !Branch->isUnconditional()) 5381 return nullptr; // Terminator must be unconditional branch. 5382 5383 BasicBlock *Succ = Branch->getSuccessor(0); 5384 5385 for (PHINode &PHI : Succ->phis()) { 5386 int Idx = PHI.getBasicBlockIndex(BB); 5387 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5388 5389 Value *InValue = PHI.getIncomingValue(Idx); 5390 if (InValue != CaseValue) 5391 continue; 5392 5393 *PhiIndex = Idx; 5394 return &PHI; 5395 } 5396 5397 return nullptr; 5398 } 5399 5400 /// Try to forward the condition of a switch instruction to a phi node 5401 /// dominated by the switch, if that would mean that some of the destination 5402 /// blocks of the switch can be folded away. Return true if a change is made. 5403 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5404 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5405 5406 ForwardingNodesMap ForwardingNodes; 5407 BasicBlock *SwitchBlock = SI->getParent(); 5408 bool Changed = false; 5409 for (auto &Case : SI->cases()) { 5410 ConstantInt *CaseValue = Case.getCaseValue(); 5411 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5412 5413 // Replace phi operands in successor blocks that are using the constant case 5414 // value rather than the switch condition variable: 5415 // switchbb: 5416 // switch i32 %x, label %default [ 5417 // i32 17, label %succ 5418 // ... 5419 // succ: 5420 // %r = phi i32 ... [ 17, %switchbb ] ... 5421 // --> 5422 // %r = phi i32 ... [ %x, %switchbb ] ... 5423 5424 for (PHINode &Phi : CaseDest->phis()) { 5425 // This only works if there is exactly 1 incoming edge from the switch to 5426 // a phi. If there is >1, that means multiple cases of the switch map to 1 5427 // value in the phi, and that phi value is not the switch condition. Thus, 5428 // this transform would not make sense (the phi would be invalid because 5429 // a phi can't have different incoming values from the same block). 5430 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5431 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5432 count(Phi.blocks(), SwitchBlock) == 1) { 5433 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5434 Changed = true; 5435 } 5436 } 5437 5438 // Collect phi nodes that are indirectly using this switch's case constants. 5439 int PhiIdx; 5440 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5441 ForwardingNodes[Phi].push_back(PhiIdx); 5442 } 5443 5444 for (auto &ForwardingNode : ForwardingNodes) { 5445 PHINode *Phi = ForwardingNode.first; 5446 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5447 if (Indexes.size() < 2) 5448 continue; 5449 5450 for (int Index : Indexes) 5451 Phi->setIncomingValue(Index, SI->getCondition()); 5452 Changed = true; 5453 } 5454 5455 return Changed; 5456 } 5457 5458 /// Return true if the backend will be able to handle 5459 /// initializing an array of constants like C. 5460 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5461 if (C->isThreadDependent()) 5462 return false; 5463 if (C->isDLLImportDependent()) 5464 return false; 5465 5466 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5467 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5468 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5469 return false; 5470 5471 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5472 // Pointer casts and in-bounds GEPs will not prohibit the backend from 5473 // materializing the array of constants. 5474 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); 5475 if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI)) 5476 return false; 5477 } 5478 5479 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5480 return false; 5481 5482 return true; 5483 } 5484 5485 /// If V is a Constant, return it. Otherwise, try to look up 5486 /// its constant value in ConstantPool, returning 0 if it's not there. 5487 static Constant * 5488 LookupConstant(Value *V, 5489 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5490 if (Constant *C = dyn_cast<Constant>(V)) 5491 return C; 5492 return ConstantPool.lookup(V); 5493 } 5494 5495 /// Try to fold instruction I into a constant. This works for 5496 /// simple instructions such as binary operations where both operands are 5497 /// constant or can be replaced by constants from the ConstantPool. Returns the 5498 /// resulting constant on success, 0 otherwise. 5499 static Constant * 5500 ConstantFold(Instruction *I, const DataLayout &DL, 5501 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5502 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5503 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5504 if (!A) 5505 return nullptr; 5506 if (A->isAllOnesValue()) 5507 return LookupConstant(Select->getTrueValue(), ConstantPool); 5508 if (A->isNullValue()) 5509 return LookupConstant(Select->getFalseValue(), ConstantPool); 5510 return nullptr; 5511 } 5512 5513 SmallVector<Constant *, 4> COps; 5514 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5515 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5516 COps.push_back(A); 5517 else 5518 return nullptr; 5519 } 5520 5521 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5522 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5523 COps[1], DL); 5524 } 5525 5526 return ConstantFoldInstOperands(I, COps, DL); 5527 } 5528 5529 /// Try to determine the resulting constant values in phi nodes 5530 /// at the common destination basic block, *CommonDest, for one of the case 5531 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5532 /// case), of a switch instruction SI. 5533 static bool 5534 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5535 BasicBlock **CommonDest, 5536 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5537 const DataLayout &DL, const TargetTransformInfo &TTI) { 5538 // The block from which we enter the common destination. 5539 BasicBlock *Pred = SI->getParent(); 5540 5541 // If CaseDest is empty except for some side-effect free instructions through 5542 // which we can constant-propagate the CaseVal, continue to its successor. 5543 SmallDenseMap<Value *, Constant *> ConstantPool; 5544 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5545 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { 5546 if (I.isTerminator()) { 5547 // If the terminator is a simple branch, continue to the next block. 5548 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5549 return false; 5550 Pred = CaseDest; 5551 CaseDest = I.getSuccessor(0); 5552 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5553 // Instruction is side-effect free and constant. 5554 5555 // If the instruction has uses outside this block or a phi node slot for 5556 // the block, it is not safe to bypass the instruction since it would then 5557 // no longer dominate all its uses. 5558 for (auto &Use : I.uses()) { 5559 User *User = Use.getUser(); 5560 if (Instruction *I = dyn_cast<Instruction>(User)) 5561 if (I->getParent() == CaseDest) 5562 continue; 5563 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5564 if (Phi->getIncomingBlock(Use) == CaseDest) 5565 continue; 5566 return false; 5567 } 5568 5569 ConstantPool.insert(std::make_pair(&I, C)); 5570 } else { 5571 break; 5572 } 5573 } 5574 5575 // If we did not have a CommonDest before, use the current one. 5576 if (!*CommonDest) 5577 *CommonDest = CaseDest; 5578 // If the destination isn't the common one, abort. 5579 if (CaseDest != *CommonDest) 5580 return false; 5581 5582 // Get the values for this case from phi nodes in the destination block. 5583 for (PHINode &PHI : (*CommonDest)->phis()) { 5584 int Idx = PHI.getBasicBlockIndex(Pred); 5585 if (Idx == -1) 5586 continue; 5587 5588 Constant *ConstVal = 5589 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5590 if (!ConstVal) 5591 return false; 5592 5593 // Be conservative about which kinds of constants we support. 5594 if (!ValidLookupTableConstant(ConstVal, TTI)) 5595 return false; 5596 5597 Res.push_back(std::make_pair(&PHI, ConstVal)); 5598 } 5599 5600 return Res.size() > 0; 5601 } 5602 5603 // Helper function used to add CaseVal to the list of cases that generate 5604 // Result. Returns the updated number of cases that generate this result. 5605 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5606 SwitchCaseResultVectorTy &UniqueResults, 5607 Constant *Result) { 5608 for (auto &I : UniqueResults) { 5609 if (I.first == Result) { 5610 I.second.push_back(CaseVal); 5611 return I.second.size(); 5612 } 5613 } 5614 UniqueResults.push_back( 5615 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5616 return 1; 5617 } 5618 5619 // Helper function that initializes a map containing 5620 // results for the PHI node of the common destination block for a switch 5621 // instruction. Returns false if multiple PHI nodes have been found or if 5622 // there is not a common destination block for the switch. 5623 static bool 5624 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5625 SwitchCaseResultVectorTy &UniqueResults, 5626 Constant *&DefaultResult, const DataLayout &DL, 5627 const TargetTransformInfo &TTI, 5628 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5629 for (auto &I : SI->cases()) { 5630 ConstantInt *CaseVal = I.getCaseValue(); 5631 5632 // Resulting value at phi nodes for this case value. 5633 SwitchCaseResultsTy Results; 5634 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5635 DL, TTI)) 5636 return false; 5637 5638 // Only one value per case is permitted. 5639 if (Results.size() > 1) 5640 return false; 5641 5642 // Add the case->result mapping to UniqueResults. 5643 const uintptr_t NumCasesForResult = 5644 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5645 5646 // Early out if there are too many cases for this result. 5647 if (NumCasesForResult > MaxCasesPerResult) 5648 return false; 5649 5650 // Early out if there are too many unique results. 5651 if (UniqueResults.size() > MaxUniqueResults) 5652 return false; 5653 5654 // Check the PHI consistency. 5655 if (!PHI) 5656 PHI = Results[0].first; 5657 else if (PHI != Results[0].first) 5658 return false; 5659 } 5660 // Find the default result value. 5661 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5662 BasicBlock *DefaultDest = SI->getDefaultDest(); 5663 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5664 DL, TTI); 5665 // If the default value is not found abort unless the default destination 5666 // is unreachable. 5667 DefaultResult = 5668 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5669 if ((!DefaultResult && 5670 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5671 return false; 5672 5673 return true; 5674 } 5675 5676 // Helper function that checks if it is possible to transform a switch with only 5677 // two cases (or two cases + default) that produces a result into a select. 5678 // Example: 5679 // switch (a) { 5680 // case 10: %0 = icmp eq i32 %a, 10 5681 // return 10; %1 = select i1 %0, i32 10, i32 4 5682 // case 20: ----> %2 = icmp eq i32 %a, 20 5683 // return 2; %3 = select i1 %2, i32 2, i32 %1 5684 // default: 5685 // return 4; 5686 // } 5687 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5688 Constant *DefaultResult, Value *Condition, 5689 IRBuilder<> &Builder) { 5690 // If we are selecting between only two cases transform into a simple 5691 // select or a two-way select if default is possible. 5692 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5693 ResultVector[1].second.size() == 1) { 5694 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5695 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5696 5697 bool DefaultCanTrigger = DefaultResult; 5698 Value *SelectValue = ResultVector[1].first; 5699 if (DefaultCanTrigger) { 5700 Value *const ValueCompare = 5701 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5702 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5703 DefaultResult, "switch.select"); 5704 } 5705 Value *const ValueCompare = 5706 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5707 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5708 SelectValue, "switch.select"); 5709 } 5710 5711 // Handle the degenerate case where two cases have the same value. 5712 if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 && 5713 DefaultResult) { 5714 Value *Cmp1 = Builder.CreateICmpEQ( 5715 Condition, ResultVector[0].second[0], "switch.selectcmp.case1"); 5716 Value *Cmp2 = Builder.CreateICmpEQ( 5717 Condition, ResultVector[0].second[1], "switch.selectcmp.case2"); 5718 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5719 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5720 } 5721 5722 return nullptr; 5723 } 5724 5725 // Helper function to cleanup a switch instruction that has been converted into 5726 // a select, fixing up PHI nodes and basic blocks. 5727 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5728 Value *SelectValue, 5729 IRBuilder<> &Builder, 5730 DomTreeUpdater *DTU) { 5731 std::vector<DominatorTree::UpdateType> Updates; 5732 5733 BasicBlock *SelectBB = SI->getParent(); 5734 BasicBlock *DestBB = PHI->getParent(); 5735 5736 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5737 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5738 Builder.CreateBr(DestBB); 5739 5740 // Remove the switch. 5741 5742 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5743 PHI->removeIncomingValue(SelectBB); 5744 PHI->addIncoming(SelectValue, SelectBB); 5745 5746 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5747 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5748 BasicBlock *Succ = SI->getSuccessor(i); 5749 5750 if (Succ == DestBB) 5751 continue; 5752 Succ->removePredecessor(SelectBB); 5753 if (DTU && RemovedSuccessors.insert(Succ).second) 5754 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5755 } 5756 SI->eraseFromParent(); 5757 if (DTU) 5758 DTU->applyUpdates(Updates); 5759 } 5760 5761 /// If the switch is only used to initialize one or more 5762 /// phi nodes in a common successor block with only two different 5763 /// constant values, replace the switch with select. 5764 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5765 DomTreeUpdater *DTU, const DataLayout &DL, 5766 const TargetTransformInfo &TTI) { 5767 Value *const Cond = SI->getCondition(); 5768 PHINode *PHI = nullptr; 5769 BasicBlock *CommonDest = nullptr; 5770 Constant *DefaultResult; 5771 SwitchCaseResultVectorTy UniqueResults; 5772 // Collect all the cases that will deliver the same value from the switch. 5773 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5774 DL, TTI, /*MaxUniqueResults*/2, 5775 /*MaxCasesPerResult*/2)) 5776 return false; 5777 assert(PHI != nullptr && "PHI for value select not found"); 5778 5779 Builder.SetInsertPoint(SI); 5780 Value *SelectValue = 5781 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5782 if (SelectValue) { 5783 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5784 return true; 5785 } 5786 // The switch couldn't be converted into a select. 5787 return false; 5788 } 5789 5790 namespace { 5791 5792 /// This class represents a lookup table that can be used to replace a switch. 5793 class SwitchLookupTable { 5794 public: 5795 /// Create a lookup table to use as a switch replacement with the contents 5796 /// of Values, using DefaultValue to fill any holes in the table. 5797 SwitchLookupTable( 5798 Module &M, uint64_t TableSize, ConstantInt *Offset, 5799 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5800 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5801 5802 /// Build instructions with Builder to retrieve the value at 5803 /// the position given by Index in the lookup table. 5804 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5805 5806 /// Return true if a table with TableSize elements of 5807 /// type ElementType would fit in a target-legal register. 5808 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5809 Type *ElementType); 5810 5811 private: 5812 // Depending on the contents of the table, it can be represented in 5813 // different ways. 5814 enum { 5815 // For tables where each element contains the same value, we just have to 5816 // store that single value and return it for each lookup. 5817 SingleValueKind, 5818 5819 // For tables where there is a linear relationship between table index 5820 // and values. We calculate the result with a simple multiplication 5821 // and addition instead of a table lookup. 5822 LinearMapKind, 5823 5824 // For small tables with integer elements, we can pack them into a bitmap 5825 // that fits into a target-legal register. Values are retrieved by 5826 // shift and mask operations. 5827 BitMapKind, 5828 5829 // The table is stored as an array of values. Values are retrieved by load 5830 // instructions from the table. 5831 ArrayKind 5832 } Kind; 5833 5834 // For SingleValueKind, this is the single value. 5835 Constant *SingleValue = nullptr; 5836 5837 // For BitMapKind, this is the bitmap. 5838 ConstantInt *BitMap = nullptr; 5839 IntegerType *BitMapElementTy = nullptr; 5840 5841 // For LinearMapKind, these are the constants used to derive the value. 5842 ConstantInt *LinearOffset = nullptr; 5843 ConstantInt *LinearMultiplier = nullptr; 5844 5845 // For ArrayKind, this is the array. 5846 GlobalVariable *Array = nullptr; 5847 }; 5848 5849 } // end anonymous namespace 5850 5851 SwitchLookupTable::SwitchLookupTable( 5852 Module &M, uint64_t TableSize, ConstantInt *Offset, 5853 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5854 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5855 assert(Values.size() && "Can't build lookup table without values!"); 5856 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5857 5858 // If all values in the table are equal, this is that value. 5859 SingleValue = Values.begin()->second; 5860 5861 Type *ValueType = Values.begin()->second->getType(); 5862 5863 // Build up the table contents. 5864 SmallVector<Constant *, 64> TableContents(TableSize); 5865 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5866 ConstantInt *CaseVal = Values[I].first; 5867 Constant *CaseRes = Values[I].second; 5868 assert(CaseRes->getType() == ValueType); 5869 5870 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5871 TableContents[Idx] = CaseRes; 5872 5873 if (CaseRes != SingleValue) 5874 SingleValue = nullptr; 5875 } 5876 5877 // Fill in any holes in the table with the default result. 5878 if (Values.size() < TableSize) { 5879 assert(DefaultValue && 5880 "Need a default value to fill the lookup table holes."); 5881 assert(DefaultValue->getType() == ValueType); 5882 for (uint64_t I = 0; I < TableSize; ++I) { 5883 if (!TableContents[I]) 5884 TableContents[I] = DefaultValue; 5885 } 5886 5887 if (DefaultValue != SingleValue) 5888 SingleValue = nullptr; 5889 } 5890 5891 // If each element in the table contains the same value, we only need to store 5892 // that single value. 5893 if (SingleValue) { 5894 Kind = SingleValueKind; 5895 return; 5896 } 5897 5898 // Check if we can derive the value with a linear transformation from the 5899 // table index. 5900 if (isa<IntegerType>(ValueType)) { 5901 bool LinearMappingPossible = true; 5902 APInt PrevVal; 5903 APInt DistToPrev; 5904 assert(TableSize >= 2 && "Should be a SingleValue table."); 5905 // Check if there is the same distance between two consecutive values. 5906 for (uint64_t I = 0; I < TableSize; ++I) { 5907 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5908 if (!ConstVal) { 5909 // This is an undef. We could deal with it, but undefs in lookup tables 5910 // are very seldom. It's probably not worth the additional complexity. 5911 LinearMappingPossible = false; 5912 break; 5913 } 5914 const APInt &Val = ConstVal->getValue(); 5915 if (I != 0) { 5916 APInt Dist = Val - PrevVal; 5917 if (I == 1) { 5918 DistToPrev = Dist; 5919 } else if (Dist != DistToPrev) { 5920 LinearMappingPossible = false; 5921 break; 5922 } 5923 } 5924 PrevVal = Val; 5925 } 5926 if (LinearMappingPossible) { 5927 LinearOffset = cast<ConstantInt>(TableContents[0]); 5928 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5929 Kind = LinearMapKind; 5930 ++NumLinearMaps; 5931 return; 5932 } 5933 } 5934 5935 // If the type is integer and the table fits in a register, build a bitmap. 5936 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5937 IntegerType *IT = cast<IntegerType>(ValueType); 5938 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5939 for (uint64_t I = TableSize; I > 0; --I) { 5940 TableInt <<= IT->getBitWidth(); 5941 // Insert values into the bitmap. Undef values are set to zero. 5942 if (!isa<UndefValue>(TableContents[I - 1])) { 5943 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5944 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5945 } 5946 } 5947 BitMap = ConstantInt::get(M.getContext(), TableInt); 5948 BitMapElementTy = IT; 5949 Kind = BitMapKind; 5950 ++NumBitMaps; 5951 return; 5952 } 5953 5954 // Store the table in an array. 5955 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5956 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5957 5958 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5959 GlobalVariable::PrivateLinkage, Initializer, 5960 "switch.table." + FuncName); 5961 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5962 // Set the alignment to that of an array items. We will be only loading one 5963 // value out of it. 5964 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5965 Kind = ArrayKind; 5966 } 5967 5968 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5969 switch (Kind) { 5970 case SingleValueKind: 5971 return SingleValue; 5972 case LinearMapKind: { 5973 // Derive the result value from the input value. 5974 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5975 false, "switch.idx.cast"); 5976 if (!LinearMultiplier->isOne()) 5977 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5978 if (!LinearOffset->isZero()) 5979 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5980 return Result; 5981 } 5982 case BitMapKind: { 5983 // Type of the bitmap (e.g. i59). 5984 IntegerType *MapTy = BitMap->getType(); 5985 5986 // Cast Index to the same type as the bitmap. 5987 // Note: The Index is <= the number of elements in the table, so 5988 // truncating it to the width of the bitmask is safe. 5989 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5990 5991 // Multiply the shift amount by the element width. 5992 ShiftAmt = Builder.CreateMul( 5993 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5994 "switch.shiftamt"); 5995 5996 // Shift down. 5997 Value *DownShifted = 5998 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5999 // Mask off. 6000 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 6001 } 6002 case ArrayKind: { 6003 // Make sure the table index will not overflow when treated as signed. 6004 IntegerType *IT = cast<IntegerType>(Index->getType()); 6005 uint64_t TableSize = 6006 Array->getInitializer()->getType()->getArrayNumElements(); 6007 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 6008 Index = Builder.CreateZExt( 6009 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 6010 "switch.tableidx.zext"); 6011 6012 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 6013 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 6014 GEPIndices, "switch.gep"); 6015 return Builder.CreateLoad( 6016 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 6017 "switch.load"); 6018 } 6019 } 6020 llvm_unreachable("Unknown lookup table kind!"); 6021 } 6022 6023 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 6024 uint64_t TableSize, 6025 Type *ElementType) { 6026 auto *IT = dyn_cast<IntegerType>(ElementType); 6027 if (!IT) 6028 return false; 6029 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 6030 // are <= 15, we could try to narrow the type. 6031 6032 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 6033 if (TableSize >= UINT_MAX / IT->getBitWidth()) 6034 return false; 6035 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 6036 } 6037 6038 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, 6039 const DataLayout &DL) { 6040 // Allow any legal type. 6041 if (TTI.isTypeLegal(Ty)) 6042 return true; 6043 6044 auto *IT = dyn_cast<IntegerType>(Ty); 6045 if (!IT) 6046 return false; 6047 6048 // Also allow power of 2 integer types that have at least 8 bits and fit in 6049 // a register. These types are common in frontend languages and targets 6050 // usually support loads of these types. 6051 // TODO: We could relax this to any integer that fits in a register and rely 6052 // on ABI alignment and padding in the table to allow the load to be widened. 6053 // Or we could widen the constants and truncate the load. 6054 unsigned BitWidth = IT->getBitWidth(); 6055 return BitWidth >= 8 && isPowerOf2_32(BitWidth) && 6056 DL.fitsInLegalInteger(IT->getBitWidth()); 6057 } 6058 6059 /// Determine whether a lookup table should be built for this switch, based on 6060 /// the number of cases, size of the table, and the types of the results. 6061 // TODO: We could support larger than legal types by limiting based on the 6062 // number of loads required and/or table size. If the constants are small we 6063 // could use smaller table entries and extend after the load. 6064 static bool 6065 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 6066 const TargetTransformInfo &TTI, const DataLayout &DL, 6067 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 6068 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 6069 return false; // TableSize overflowed, or mul below might overflow. 6070 6071 bool AllTablesFitInRegister = true; 6072 bool HasIllegalType = false; 6073 for (const auto &I : ResultTypes) { 6074 Type *Ty = I.second; 6075 6076 // Saturate this flag to true. 6077 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); 6078 6079 // Saturate this flag to false. 6080 AllTablesFitInRegister = 6081 AllTablesFitInRegister && 6082 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 6083 6084 // If both flags saturate, we're done. NOTE: This *only* works with 6085 // saturating flags, and all flags have to saturate first due to the 6086 // non-deterministic behavior of iterating over a dense map. 6087 if (HasIllegalType && !AllTablesFitInRegister) 6088 break; 6089 } 6090 6091 // If each table would fit in a register, we should build it anyway. 6092 if (AllTablesFitInRegister) 6093 return true; 6094 6095 // Don't build a table that doesn't fit in-register if it has illegal types. 6096 if (HasIllegalType) 6097 return false; 6098 6099 // The table density should be at least 40%. This is the same criterion as for 6100 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 6101 // FIXME: Find the best cut-off. 6102 return SI->getNumCases() * 10 >= TableSize * 4; 6103 } 6104 6105 /// Try to reuse the switch table index compare. Following pattern: 6106 /// \code 6107 /// if (idx < tablesize) 6108 /// r = table[idx]; // table does not contain default_value 6109 /// else 6110 /// r = default_value; 6111 /// if (r != default_value) 6112 /// ... 6113 /// \endcode 6114 /// Is optimized to: 6115 /// \code 6116 /// cond = idx < tablesize; 6117 /// if (cond) 6118 /// r = table[idx]; 6119 /// else 6120 /// r = default_value; 6121 /// if (cond) 6122 /// ... 6123 /// \endcode 6124 /// Jump threading will then eliminate the second if(cond). 6125 static void reuseTableCompare( 6126 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 6127 Constant *DefaultValue, 6128 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 6129 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 6130 if (!CmpInst) 6131 return; 6132 6133 // We require that the compare is in the same block as the phi so that jump 6134 // threading can do its work afterwards. 6135 if (CmpInst->getParent() != PhiBlock) 6136 return; 6137 6138 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 6139 if (!CmpOp1) 6140 return; 6141 6142 Value *RangeCmp = RangeCheckBranch->getCondition(); 6143 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 6144 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 6145 6146 // Check if the compare with the default value is constant true or false. 6147 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6148 DefaultValue, CmpOp1, true); 6149 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 6150 return; 6151 6152 // Check if the compare with the case values is distinct from the default 6153 // compare result. 6154 for (auto ValuePair : Values) { 6155 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6156 ValuePair.second, CmpOp1, true); 6157 if (!CaseConst || CaseConst == DefaultConst || 6158 (CaseConst != TrueConst && CaseConst != FalseConst)) 6159 return; 6160 } 6161 6162 // Check if the branch instruction dominates the phi node. It's a simple 6163 // dominance check, but sufficient for our needs. 6164 // Although this check is invariant in the calling loops, it's better to do it 6165 // at this late stage. Practically we do it at most once for a switch. 6166 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 6167 for (BasicBlock *Pred : predecessors(PhiBlock)) { 6168 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 6169 return; 6170 } 6171 6172 if (DefaultConst == FalseConst) { 6173 // The compare yields the same result. We can replace it. 6174 CmpInst->replaceAllUsesWith(RangeCmp); 6175 ++NumTableCmpReuses; 6176 } else { 6177 // The compare yields the same result, just inverted. We can replace it. 6178 Value *InvertedTableCmp = BinaryOperator::CreateXor( 6179 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 6180 RangeCheckBranch); 6181 CmpInst->replaceAllUsesWith(InvertedTableCmp); 6182 ++NumTableCmpReuses; 6183 } 6184 } 6185 6186 /// If the switch is only used to initialize one or more phi nodes in a common 6187 /// successor block with different constant values, replace the switch with 6188 /// lookup tables. 6189 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 6190 DomTreeUpdater *DTU, const DataLayout &DL, 6191 const TargetTransformInfo &TTI) { 6192 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 6193 6194 BasicBlock *BB = SI->getParent(); 6195 Function *Fn = BB->getParent(); 6196 // Only build lookup table when we have a target that supports it or the 6197 // attribute is not set. 6198 if (!TTI.shouldBuildLookupTables() || 6199 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 6200 return false; 6201 6202 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 6203 // split off a dense part and build a lookup table for that. 6204 6205 // FIXME: This creates arrays of GEPs to constant strings, which means each 6206 // GEP needs a runtime relocation in PIC code. We should just build one big 6207 // string and lookup indices into that. 6208 6209 // Ignore switches with less than three cases. Lookup tables will not make 6210 // them faster, so we don't analyze them. 6211 if (SI->getNumCases() < 3) 6212 return false; 6213 6214 // Figure out the corresponding result for each case value and phi node in the 6215 // common destination, as well as the min and max case values. 6216 assert(!SI->cases().empty()); 6217 SwitchInst::CaseIt CI = SI->case_begin(); 6218 ConstantInt *MinCaseVal = CI->getCaseValue(); 6219 ConstantInt *MaxCaseVal = CI->getCaseValue(); 6220 6221 BasicBlock *CommonDest = nullptr; 6222 6223 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 6224 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 6225 6226 SmallDenseMap<PHINode *, Constant *> DefaultResults; 6227 SmallDenseMap<PHINode *, Type *> ResultTypes; 6228 SmallVector<PHINode *, 4> PHIs; 6229 6230 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 6231 ConstantInt *CaseVal = CI->getCaseValue(); 6232 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 6233 MinCaseVal = CaseVal; 6234 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 6235 MaxCaseVal = CaseVal; 6236 6237 // Resulting value at phi nodes for this case value. 6238 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 6239 ResultsTy Results; 6240 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 6241 Results, DL, TTI)) 6242 return false; 6243 6244 // Append the result from this case to the list for each phi. 6245 for (const auto &I : Results) { 6246 PHINode *PHI = I.first; 6247 Constant *Value = I.second; 6248 if (!ResultLists.count(PHI)) 6249 PHIs.push_back(PHI); 6250 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 6251 } 6252 } 6253 6254 // Keep track of the result types. 6255 for (PHINode *PHI : PHIs) { 6256 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 6257 } 6258 6259 uint64_t NumResults = ResultLists[PHIs[0]].size(); 6260 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 6261 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 6262 bool TableHasHoles = (NumResults < TableSize); 6263 6264 // If the table has holes, we need a constant result for the default case 6265 // or a bitmask that fits in a register. 6266 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 6267 bool HasDefaultResults = 6268 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 6269 DefaultResultsList, DL, TTI); 6270 6271 bool NeedMask = (TableHasHoles && !HasDefaultResults); 6272 if (NeedMask) { 6273 // As an extra penalty for the validity test we require more cases. 6274 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 6275 return false; 6276 if (!DL.fitsInLegalInteger(TableSize)) 6277 return false; 6278 } 6279 6280 for (const auto &I : DefaultResultsList) { 6281 PHINode *PHI = I.first; 6282 Constant *Result = I.second; 6283 DefaultResults[PHI] = Result; 6284 } 6285 6286 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 6287 return false; 6288 6289 std::vector<DominatorTree::UpdateType> Updates; 6290 6291 // Create the BB that does the lookups. 6292 Module &Mod = *CommonDest->getParent()->getParent(); 6293 BasicBlock *LookupBB = BasicBlock::Create( 6294 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 6295 6296 // Compute the table index value. 6297 Builder.SetInsertPoint(SI); 6298 Value *TableIndex; 6299 if (MinCaseVal->isNullValue()) 6300 TableIndex = SI->getCondition(); 6301 else 6302 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 6303 "switch.tableidx"); 6304 6305 // Compute the maximum table size representable by the integer type we are 6306 // switching upon. 6307 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 6308 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 6309 assert(MaxTableSize >= TableSize && 6310 "It is impossible for a switch to have more entries than the max " 6311 "representable value of its input integer type's size."); 6312 6313 // If the default destination is unreachable, or if the lookup table covers 6314 // all values of the conditional variable, branch directly to the lookup table 6315 // BB. Otherwise, check that the condition is within the case range. 6316 const bool DefaultIsReachable = 6317 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6318 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6319 BranchInst *RangeCheckBranch = nullptr; 6320 6321 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6322 Builder.CreateBr(LookupBB); 6323 if (DTU) 6324 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6325 // Note: We call removeProdecessor later since we need to be able to get the 6326 // PHI value for the default case in case we're using a bit mask. 6327 } else { 6328 Value *Cmp = Builder.CreateICmpULT( 6329 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6330 RangeCheckBranch = 6331 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6332 if (DTU) 6333 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6334 } 6335 6336 // Populate the BB that does the lookups. 6337 Builder.SetInsertPoint(LookupBB); 6338 6339 if (NeedMask) { 6340 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6341 // re-purposed to do the hole check, and we create a new LookupBB. 6342 BasicBlock *MaskBB = LookupBB; 6343 MaskBB->setName("switch.hole_check"); 6344 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6345 CommonDest->getParent(), CommonDest); 6346 6347 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6348 // unnecessary illegal types. 6349 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6350 APInt MaskInt(TableSizePowOf2, 0); 6351 APInt One(TableSizePowOf2, 1); 6352 // Build bitmask; fill in a 1 bit for every case. 6353 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6354 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6355 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6356 .getLimitedValue(); 6357 MaskInt |= One << Idx; 6358 } 6359 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6360 6361 // Get the TableIndex'th bit of the bitmask. 6362 // If this bit is 0 (meaning hole) jump to the default destination, 6363 // else continue with table lookup. 6364 IntegerType *MapTy = TableMask->getType(); 6365 Value *MaskIndex = 6366 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6367 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6368 Value *LoBit = Builder.CreateTrunc( 6369 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6370 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6371 if (DTU) { 6372 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6373 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6374 } 6375 Builder.SetInsertPoint(LookupBB); 6376 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6377 } 6378 6379 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6380 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6381 // do not delete PHINodes here. 6382 SI->getDefaultDest()->removePredecessor(BB, 6383 /*KeepOneInputPHIs=*/true); 6384 if (DTU) 6385 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6386 } 6387 6388 for (PHINode *PHI : PHIs) { 6389 const ResultListTy &ResultList = ResultLists[PHI]; 6390 6391 // If using a bitmask, use any value to fill the lookup table holes. 6392 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6393 StringRef FuncName = Fn->getName(); 6394 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6395 FuncName); 6396 6397 Value *Result = Table.BuildLookup(TableIndex, Builder); 6398 6399 // Do a small peephole optimization: re-use the switch table compare if 6400 // possible. 6401 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6402 BasicBlock *PhiBlock = PHI->getParent(); 6403 // Search for compare instructions which use the phi. 6404 for (auto *User : PHI->users()) { 6405 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6406 } 6407 } 6408 6409 PHI->addIncoming(Result, LookupBB); 6410 } 6411 6412 Builder.CreateBr(CommonDest); 6413 if (DTU) 6414 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6415 6416 // Remove the switch. 6417 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6418 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6419 BasicBlock *Succ = SI->getSuccessor(i); 6420 6421 if (Succ == SI->getDefaultDest()) 6422 continue; 6423 Succ->removePredecessor(BB); 6424 if (DTU && RemovedSuccessors.insert(Succ).second) 6425 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6426 } 6427 SI->eraseFromParent(); 6428 6429 if (DTU) 6430 DTU->applyUpdates(Updates); 6431 6432 ++NumLookupTables; 6433 if (NeedMask) 6434 ++NumLookupTablesHoles; 6435 return true; 6436 } 6437 6438 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6439 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6440 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6441 uint64_t Range = Diff + 1; 6442 uint64_t NumCases = Values.size(); 6443 // 40% is the default density for building a jump table in optsize/minsize mode. 6444 uint64_t MinDensity = 40; 6445 6446 return NumCases * 100 >= Range * MinDensity; 6447 } 6448 6449 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6450 /// of cases. 6451 /// 6452 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6453 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6454 /// 6455 /// This converts a sparse switch into a dense switch which allows better 6456 /// lowering and could also allow transforming into a lookup table. 6457 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6458 const DataLayout &DL, 6459 const TargetTransformInfo &TTI) { 6460 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6461 if (CondTy->getIntegerBitWidth() > 64 || 6462 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6463 return false; 6464 // Only bother with this optimization if there are more than 3 switch cases; 6465 // SDAG will only bother creating jump tables for 4 or more cases. 6466 if (SI->getNumCases() < 4) 6467 return false; 6468 6469 // This transform is agnostic to the signedness of the input or case values. We 6470 // can treat the case values as signed or unsigned. We can optimize more common 6471 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6472 // as signed. 6473 SmallVector<int64_t,4> Values; 6474 for (auto &C : SI->cases()) 6475 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6476 llvm::sort(Values); 6477 6478 // If the switch is already dense, there's nothing useful to do here. 6479 if (isSwitchDense(Values)) 6480 return false; 6481 6482 // First, transform the values such that they start at zero and ascend. 6483 int64_t Base = Values[0]; 6484 for (auto &V : Values) 6485 V -= (uint64_t)(Base); 6486 6487 // Now we have signed numbers that have been shifted so that, given enough 6488 // precision, there are no negative values. Since the rest of the transform 6489 // is bitwise only, we switch now to an unsigned representation. 6490 6491 // This transform can be done speculatively because it is so cheap - it 6492 // results in a single rotate operation being inserted. 6493 // FIXME: It's possible that optimizing a switch on powers of two might also 6494 // be beneficial - flag values are often powers of two and we could use a CLZ 6495 // as the key function. 6496 6497 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6498 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6499 // less than 64. 6500 unsigned Shift = 64; 6501 for (auto &V : Values) 6502 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6503 assert(Shift < 64); 6504 if (Shift > 0) 6505 for (auto &V : Values) 6506 V = (int64_t)((uint64_t)V >> Shift); 6507 6508 if (!isSwitchDense(Values)) 6509 // Transform didn't create a dense switch. 6510 return false; 6511 6512 // The obvious transform is to shift the switch condition right and emit a 6513 // check that the condition actually cleanly divided by GCD, i.e. 6514 // C & (1 << Shift - 1) == 0 6515 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6516 // 6517 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6518 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6519 // are nonzero then the switch condition will be very large and will hit the 6520 // default case. 6521 6522 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6523 Builder.SetInsertPoint(SI); 6524 auto *ShiftC = ConstantInt::get(Ty, Shift); 6525 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6526 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6527 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6528 auto *Rot = Builder.CreateOr(LShr, Shl); 6529 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6530 6531 for (auto Case : SI->cases()) { 6532 auto *Orig = Case.getCaseValue(); 6533 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6534 Case.setValue( 6535 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6536 } 6537 return true; 6538 } 6539 6540 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6541 BasicBlock *BB = SI->getParent(); 6542 6543 if (isValueEqualityComparison(SI)) { 6544 // If we only have one predecessor, and if it is a branch on this value, 6545 // see if that predecessor totally determines the outcome of this switch. 6546 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6547 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6548 return requestResimplify(); 6549 6550 Value *Cond = SI->getCondition(); 6551 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6552 if (SimplifySwitchOnSelect(SI, Select)) 6553 return requestResimplify(); 6554 6555 // If the block only contains the switch, see if we can fold the block 6556 // away into any preds. 6557 if (SI == &*BB->instructionsWithoutDebug(false).begin()) 6558 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6559 return requestResimplify(); 6560 } 6561 6562 // Try to transform the switch into an icmp and a branch. 6563 // The conversion from switch to comparison may lose information on 6564 // impossible switch values, so disable it early in the pipeline. 6565 if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder)) 6566 return requestResimplify(); 6567 6568 // Remove unreachable cases. 6569 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6570 return requestResimplify(); 6571 6572 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6573 return requestResimplify(); 6574 6575 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6576 return requestResimplify(); 6577 6578 // The conversion from switch to lookup tables results in difficult-to-analyze 6579 // code and makes pruning branches much harder. This is a problem if the 6580 // switch expression itself can still be restricted as a result of inlining or 6581 // CVP. Therefore, only apply this transformation during late stages of the 6582 // optimisation pipeline. 6583 if (Options.ConvertSwitchToLookupTable && 6584 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6585 return requestResimplify(); 6586 6587 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6588 return requestResimplify(); 6589 6590 return false; 6591 } 6592 6593 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6594 BasicBlock *BB = IBI->getParent(); 6595 bool Changed = false; 6596 6597 // Eliminate redundant destinations. 6598 SmallPtrSet<Value *, 8> Succs; 6599 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6600 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6601 BasicBlock *Dest = IBI->getDestination(i); 6602 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6603 if (!Dest->hasAddressTaken()) 6604 RemovedSuccs.insert(Dest); 6605 Dest->removePredecessor(BB); 6606 IBI->removeDestination(i); 6607 --i; 6608 --e; 6609 Changed = true; 6610 } 6611 } 6612 6613 if (DTU) { 6614 std::vector<DominatorTree::UpdateType> Updates; 6615 Updates.reserve(RemovedSuccs.size()); 6616 for (auto *RemovedSucc : RemovedSuccs) 6617 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6618 DTU->applyUpdates(Updates); 6619 } 6620 6621 if (IBI->getNumDestinations() == 0) { 6622 // If the indirectbr has no successors, change it to unreachable. 6623 new UnreachableInst(IBI->getContext(), IBI); 6624 EraseTerminatorAndDCECond(IBI); 6625 return true; 6626 } 6627 6628 if (IBI->getNumDestinations() == 1) { 6629 // If the indirectbr has one successor, change it to a direct branch. 6630 BranchInst::Create(IBI->getDestination(0), IBI); 6631 EraseTerminatorAndDCECond(IBI); 6632 return true; 6633 } 6634 6635 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6636 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6637 return requestResimplify(); 6638 } 6639 return Changed; 6640 } 6641 6642 /// Given an block with only a single landing pad and a unconditional branch 6643 /// try to find another basic block which this one can be merged with. This 6644 /// handles cases where we have multiple invokes with unique landing pads, but 6645 /// a shared handler. 6646 /// 6647 /// We specifically choose to not worry about merging non-empty blocks 6648 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6649 /// practice, the optimizer produces empty landing pad blocks quite frequently 6650 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6651 /// sinking in this file) 6652 /// 6653 /// This is primarily a code size optimization. We need to avoid performing 6654 /// any transform which might inhibit optimization (such as our ability to 6655 /// specialize a particular handler via tail commoning). We do this by not 6656 /// merging any blocks which require us to introduce a phi. Since the same 6657 /// values are flowing through both blocks, we don't lose any ability to 6658 /// specialize. If anything, we make such specialization more likely. 6659 /// 6660 /// TODO - This transformation could remove entries from a phi in the target 6661 /// block when the inputs in the phi are the same for the two blocks being 6662 /// merged. In some cases, this could result in removal of the PHI entirely. 6663 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6664 BasicBlock *BB, DomTreeUpdater *DTU) { 6665 auto Succ = BB->getUniqueSuccessor(); 6666 assert(Succ); 6667 // If there's a phi in the successor block, we'd likely have to introduce 6668 // a phi into the merged landing pad block. 6669 if (isa<PHINode>(*Succ->begin())) 6670 return false; 6671 6672 for (BasicBlock *OtherPred : predecessors(Succ)) { 6673 if (BB == OtherPred) 6674 continue; 6675 BasicBlock::iterator I = OtherPred->begin(); 6676 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6677 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6678 continue; 6679 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6680 ; 6681 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6682 if (!BI2 || !BI2->isIdenticalTo(BI)) 6683 continue; 6684 6685 std::vector<DominatorTree::UpdateType> Updates; 6686 6687 // We've found an identical block. Update our predecessors to take that 6688 // path instead and make ourselves dead. 6689 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); 6690 for (BasicBlock *Pred : UniquePreds) { 6691 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6692 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6693 "unexpected successor"); 6694 II->setUnwindDest(OtherPred); 6695 if (DTU) { 6696 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6697 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6698 } 6699 } 6700 6701 // The debug info in OtherPred doesn't cover the merged control flow that 6702 // used to go through BB. We need to delete it or update it. 6703 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) 6704 if (isa<DbgInfoIntrinsic>(Inst)) 6705 Inst.eraseFromParent(); 6706 6707 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); 6708 for (BasicBlock *Succ : UniqueSuccs) { 6709 Succ->removePredecessor(BB); 6710 if (DTU) 6711 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6712 } 6713 6714 IRBuilder<> Builder(BI); 6715 Builder.CreateUnreachable(); 6716 BI->eraseFromParent(); 6717 if (DTU) 6718 DTU->applyUpdates(Updates); 6719 return true; 6720 } 6721 return false; 6722 } 6723 6724 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6725 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6726 : simplifyCondBranch(Branch, Builder); 6727 } 6728 6729 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6730 IRBuilder<> &Builder) { 6731 BasicBlock *BB = BI->getParent(); 6732 BasicBlock *Succ = BI->getSuccessor(0); 6733 6734 // If the Terminator is the only non-phi instruction, simplify the block. 6735 // If LoopHeader is provided, check if the block or its successor is a loop 6736 // header. (This is for early invocations before loop simplify and 6737 // vectorization to keep canonical loop forms for nested loops. These blocks 6738 // can be eliminated when the pass is invoked later in the back-end.) 6739 // Note that if BB has only one predecessor then we do not introduce new 6740 // backedge, so we can eliminate BB. 6741 bool NeedCanonicalLoop = 6742 Options.NeedCanonicalLoop && 6743 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6744 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6745 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6746 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6747 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6748 return true; 6749 6750 // If the only instruction in the block is a seteq/setne comparison against a 6751 // constant, try to simplify the block. 6752 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6753 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6754 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6755 ; 6756 if (I->isTerminator() && 6757 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6758 return true; 6759 } 6760 6761 // See if we can merge an empty landing pad block with another which is 6762 // equivalent. 6763 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6764 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6765 ; 6766 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6767 return true; 6768 } 6769 6770 // If this basic block is ONLY a compare and a branch, and if a predecessor 6771 // branches to us and our successor, fold the comparison into the 6772 // predecessor and use logical operations to update the incoming value 6773 // for PHI nodes in common successor. 6774 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6775 Options.BonusInstThreshold)) 6776 return requestResimplify(); 6777 return false; 6778 } 6779 6780 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6781 BasicBlock *PredPred = nullptr; 6782 for (auto *P : predecessors(BB)) { 6783 BasicBlock *PPred = P->getSinglePredecessor(); 6784 if (!PPred || (PredPred && PredPred != PPred)) 6785 return nullptr; 6786 PredPred = PPred; 6787 } 6788 return PredPred; 6789 } 6790 6791 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6792 assert( 6793 !isa<ConstantInt>(BI->getCondition()) && 6794 BI->getSuccessor(0) != BI->getSuccessor(1) && 6795 "Tautological conditional branch should have been eliminated already."); 6796 6797 BasicBlock *BB = BI->getParent(); 6798 if (!Options.SimplifyCondBranch) 6799 return false; 6800 6801 // Conditional branch 6802 if (isValueEqualityComparison(BI)) { 6803 // If we only have one predecessor, and if it is a branch on this value, 6804 // see if that predecessor totally determines the outcome of this 6805 // switch. 6806 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6807 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6808 return requestResimplify(); 6809 6810 // This block must be empty, except for the setcond inst, if it exists. 6811 // Ignore dbg and pseudo intrinsics. 6812 auto I = BB->instructionsWithoutDebug(true).begin(); 6813 if (&*I == BI) { 6814 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6815 return requestResimplify(); 6816 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6817 ++I; 6818 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6819 return requestResimplify(); 6820 } 6821 } 6822 6823 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6824 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6825 return true; 6826 6827 // If this basic block has dominating predecessor blocks and the dominating 6828 // blocks' conditions imply BI's condition, we know the direction of BI. 6829 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6830 if (Imp) { 6831 // Turn this into a branch on constant. 6832 auto *OldCond = BI->getCondition(); 6833 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6834 : ConstantInt::getFalse(BB->getContext()); 6835 BI->setCondition(TorF); 6836 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6837 return requestResimplify(); 6838 } 6839 6840 // If this basic block is ONLY a compare and a branch, and if a predecessor 6841 // branches to us and one of our successors, fold the comparison into the 6842 // predecessor and use logical operations to pick the right destination. 6843 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6844 Options.BonusInstThreshold)) 6845 return requestResimplify(); 6846 6847 // We have a conditional branch to two blocks that are only reachable 6848 // from BI. We know that the condbr dominates the two blocks, so see if 6849 // there is any identical code in the "then" and "else" blocks. If so, we 6850 // can hoist it up to the branching block. 6851 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6852 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6853 if (HoistCommon && 6854 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6855 return requestResimplify(); 6856 } else { 6857 // If Successor #1 has multiple preds, we may be able to conditionally 6858 // execute Successor #0 if it branches to Successor #1. 6859 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6860 if (Succ0TI->getNumSuccessors() == 1 && 6861 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6862 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6863 return requestResimplify(); 6864 } 6865 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6866 // If Successor #0 has multiple preds, we may be able to conditionally 6867 // execute Successor #1 if it branches to Successor #0. 6868 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6869 if (Succ1TI->getNumSuccessors() == 1 && 6870 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6871 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6872 return requestResimplify(); 6873 } 6874 6875 // If this is a branch on a phi node in the current block, thread control 6876 // through this block if any PHI node entries are constants. 6877 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6878 if (PN->getParent() == BI->getParent()) 6879 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6880 return requestResimplify(); 6881 6882 // Scan predecessor blocks for conditional branches. 6883 for (BasicBlock *Pred : predecessors(BB)) 6884 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6885 if (PBI != BI && PBI->isConditional()) 6886 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6887 return requestResimplify(); 6888 6889 // Look for diamond patterns. 6890 if (MergeCondStores) 6891 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6892 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6893 if (PBI != BI && PBI->isConditional()) 6894 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6895 return requestResimplify(); 6896 6897 return false; 6898 } 6899 6900 /// Check if passing a value to an instruction will cause undefined behavior. 6901 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6902 Constant *C = dyn_cast<Constant>(V); 6903 if (!C) 6904 return false; 6905 6906 if (I->use_empty()) 6907 return false; 6908 6909 if (C->isNullValue() || isa<UndefValue>(C)) { 6910 // Only look at the first use, avoid hurting compile time with long uselists 6911 auto *Use = cast<Instruction>(*I->user_begin()); 6912 // Bail out if Use is not in the same BB as I or Use == I or Use comes 6913 // before I in the block. The latter two can be the case if Use is a PHI 6914 // node. 6915 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) 6916 return false; 6917 6918 // Now make sure that there are no instructions in between that can alter 6919 // control flow (eg. calls) 6920 auto InstrRange = 6921 make_range(std::next(I->getIterator()), Use->getIterator()); 6922 if (any_of(InstrRange, [](Instruction &I) { 6923 return !isGuaranteedToTransferExecutionToSuccessor(&I); 6924 })) 6925 return false; 6926 6927 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6928 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6929 if (GEP->getPointerOperand() == I) { 6930 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6931 PtrValueMayBeModified = true; 6932 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6933 } 6934 6935 // Look through bitcasts. 6936 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6937 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6938 6939 // Load from null is undefined. 6940 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6941 if (!LI->isVolatile()) 6942 return !NullPointerIsDefined(LI->getFunction(), 6943 LI->getPointerAddressSpace()); 6944 6945 // Store to null is undefined. 6946 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6947 if (!SI->isVolatile()) 6948 return (!NullPointerIsDefined(SI->getFunction(), 6949 SI->getPointerAddressSpace())) && 6950 SI->getPointerOperand() == I; 6951 6952 if (auto *CB = dyn_cast<CallBase>(Use)) { 6953 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6954 return false; 6955 // A call to null is undefined. 6956 if (CB->getCalledOperand() == I) 6957 return true; 6958 6959 if (C->isNullValue()) { 6960 for (const llvm::Use &Arg : CB->args()) 6961 if (Arg == I) { 6962 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6963 if (CB->isPassingUndefUB(ArgIdx) && 6964 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6965 // Passing null to a nonnnull+noundef argument is undefined. 6966 return !PtrValueMayBeModified; 6967 } 6968 } 6969 } else if (isa<UndefValue>(C)) { 6970 // Passing undef to a noundef argument is undefined. 6971 for (const llvm::Use &Arg : CB->args()) 6972 if (Arg == I) { 6973 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6974 if (CB->isPassingUndefUB(ArgIdx)) { 6975 // Passing undef to a noundef argument is undefined. 6976 return true; 6977 } 6978 } 6979 } 6980 } 6981 } 6982 return false; 6983 } 6984 6985 /// If BB has an incoming value that will always trigger undefined behavior 6986 /// (eg. null pointer dereference), remove the branch leading here. 6987 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6988 DomTreeUpdater *DTU) { 6989 for (PHINode &PHI : BB->phis()) 6990 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6991 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6992 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6993 Instruction *T = Predecessor->getTerminator(); 6994 IRBuilder<> Builder(T); 6995 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6996 BB->removePredecessor(Predecessor); 6997 // Turn uncoditional branches into unreachables and remove the dead 6998 // destination from conditional branches. 6999 if (BI->isUnconditional()) 7000 Builder.CreateUnreachable(); 7001 else { 7002 // Preserve guarding condition in assume, because it might not be 7003 // inferrable from any dominating condition. 7004 Value *Cond = BI->getCondition(); 7005 if (BI->getSuccessor(0) == BB) 7006 Builder.CreateAssumption(Builder.CreateNot(Cond)); 7007 else 7008 Builder.CreateAssumption(Cond); 7009 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 7010 : BI->getSuccessor(0)); 7011 } 7012 BI->eraseFromParent(); 7013 if (DTU) 7014 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 7015 return true; 7016 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 7017 // Redirect all branches leading to UB into 7018 // a newly created unreachable block. 7019 BasicBlock *Unreachable = BasicBlock::Create( 7020 Predecessor->getContext(), "unreachable", BB->getParent(), BB); 7021 Builder.SetInsertPoint(Unreachable); 7022 // The new block contains only one instruction: Unreachable 7023 Builder.CreateUnreachable(); 7024 for (auto &Case : SI->cases()) 7025 if (Case.getCaseSuccessor() == BB) { 7026 BB->removePredecessor(Predecessor); 7027 Case.setSuccessor(Unreachable); 7028 } 7029 if (SI->getDefaultDest() == BB) { 7030 BB->removePredecessor(Predecessor); 7031 SI->setDefaultDest(Unreachable); 7032 } 7033 7034 if (DTU) 7035 DTU->applyUpdates( 7036 { { DominatorTree::Insert, Predecessor, Unreachable }, 7037 { DominatorTree::Delete, Predecessor, BB } }); 7038 return true; 7039 } 7040 } 7041 7042 return false; 7043 } 7044 7045 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 7046 bool Changed = false; 7047 7048 assert(BB && BB->getParent() && "Block not embedded in function!"); 7049 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 7050 7051 // Remove basic blocks that have no predecessors (except the entry block)... 7052 // or that just have themself as a predecessor. These are unreachable. 7053 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 7054 BB->getSinglePredecessor() == BB) { 7055 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 7056 DeleteDeadBlock(BB, DTU); 7057 return true; 7058 } 7059 7060 // Check to see if we can constant propagate this terminator instruction 7061 // away... 7062 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 7063 /*TLI=*/nullptr, DTU); 7064 7065 // Check for and eliminate duplicate PHI nodes in this block. 7066 Changed |= EliminateDuplicatePHINodes(BB); 7067 7068 // Check for and remove branches that will always cause undefined behavior. 7069 if (removeUndefIntroducingPredecessor(BB, DTU)) 7070 return requestResimplify(); 7071 7072 // Merge basic blocks into their predecessor if there is only one distinct 7073 // pred, and if there is only one distinct successor of the predecessor, and 7074 // if there are no PHI nodes. 7075 if (MergeBlockIntoPredecessor(BB, DTU)) 7076 return true; 7077 7078 if (SinkCommon && Options.SinkCommonInsts) 7079 if (SinkCommonCodeFromPredecessors(BB, DTU) || 7080 MergeCompatibleInvokes(BB, DTU)) { 7081 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 7082 // so we may now how duplicate PHI's. 7083 // Let's rerun EliminateDuplicatePHINodes() first, 7084 // before FoldTwoEntryPHINode() potentially converts them into select's, 7085 // after which we'd need a whole EarlyCSE pass run to cleanup them. 7086 return true; 7087 } 7088 7089 IRBuilder<> Builder(BB); 7090 7091 if (Options.FoldTwoEntryPHINode) { 7092 // If there is a trivial two-entry PHI node in this basic block, and we can 7093 // eliminate it, do so now. 7094 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 7095 if (PN->getNumIncomingValues() == 2) 7096 if (FoldTwoEntryPHINode(PN, TTI, DTU, DL)) 7097 return true; 7098 } 7099 7100 Instruction *Terminator = BB->getTerminator(); 7101 Builder.SetInsertPoint(Terminator); 7102 switch (Terminator->getOpcode()) { 7103 case Instruction::Br: 7104 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 7105 break; 7106 case Instruction::Resume: 7107 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 7108 break; 7109 case Instruction::CleanupRet: 7110 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 7111 break; 7112 case Instruction::Switch: 7113 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 7114 break; 7115 case Instruction::Unreachable: 7116 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 7117 break; 7118 case Instruction::IndirectBr: 7119 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 7120 break; 7121 } 7122 7123 return Changed; 7124 } 7125 7126 bool SimplifyCFGOpt::run(BasicBlock *BB) { 7127 bool Changed = false; 7128 7129 // Repeated simplify BB as long as resimplification is requested. 7130 do { 7131 Resimplify = false; 7132 7133 // Perform one round of simplifcation. Resimplify flag will be set if 7134 // another iteration is requested. 7135 Changed |= simplifyOnce(BB); 7136 } while (Resimplify); 7137 7138 return Changed; 7139 } 7140 7141 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 7142 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 7143 ArrayRef<WeakVH> LoopHeaders) { 7144 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 7145 Options) 7146 .run(BB); 7147 } 7148