1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/ConstantRange.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/NoFolder.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> 62 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc("Control the amount of phi node folding to perform (default = 2)")); 64 65 static cl::opt<bool> 66 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 67 cl::desc("Duplicate return instructions into unconditional branches")); 68 69 static cl::opt<bool> 70 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 71 cl::desc("Sink common instructions down to the end block")); 72 73 static cl::opt<bool> HoistCondStores( 74 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 75 cl::desc("Hoist conditional stores if an unconditional store precedes")); 76 77 static cl::opt<bool> MergeCondStores( 78 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 79 cl::desc("Hoist conditional stores even if an unconditional store does not " 80 "precede - hoist multiple conditional stores into a single " 81 "predicated store")); 82 83 static cl::opt<bool> MergeCondStoresAggressively( 84 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 85 cl::desc("When merging conditional stores, do so even if the resultant " 86 "basic blocks are unlikely to be if-converted as a result")); 87 88 static cl::opt<bool> SpeculateOneExpensiveInst( 89 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 90 cl::desc("Allow exactly one expensive instruction to be speculatively " 91 "executed")); 92 93 static cl::opt<unsigned> MaxSpeculationDepth( 94 "max-speculation-depth", cl::Hidden, cl::init(10), 95 cl::desc("Limit maximum recursion depth when calculating costs of " 96 "speculatively executed instructions")); 97 98 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 99 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping"); 100 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 101 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 102 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 103 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 104 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 105 106 namespace { 107 // The first field contains the value that the switch produces when a certain 108 // case group is selected, and the second field is a vector containing the 109 // cases composing the case group. 110 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 111 SwitchCaseResultVectorTy; 112 // The first field contains the phi node that generates a result of the switch 113 // and the second field contains the value generated for a certain case in the 114 // switch for that PHI. 115 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 116 117 /// ValueEqualityComparisonCase - Represents a case of a switch. 118 struct ValueEqualityComparisonCase { 119 ConstantInt *Value; 120 BasicBlock *Dest; 121 122 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 123 : Value(Value), Dest(Dest) {} 124 125 bool operator<(ValueEqualityComparisonCase RHS) const { 126 // Comparing pointers is ok as we only rely on the order for uniquing. 127 return Value < RHS.Value; 128 } 129 130 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 131 }; 132 133 class SimplifyCFGOpt { 134 const TargetTransformInfo &TTI; 135 const DataLayout &DL; 136 unsigned BonusInstThreshold; 137 AssumptionCache *AC; 138 Value *isValueEqualityComparison(TerminatorInst *TI); 139 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 140 std::vector<ValueEqualityComparisonCase> &Cases); 141 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 142 BasicBlock *Pred, 143 IRBuilder<> &Builder); 144 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 145 IRBuilder<> &Builder); 146 147 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 148 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 149 bool SimplifySingleResume(ResumeInst *RI); 150 bool SimplifyCommonResume(ResumeInst *RI); 151 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 152 bool SimplifyUnreachable(UnreachableInst *UI); 153 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 154 bool SimplifyIndirectBr(IndirectBrInst *IBI); 155 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 156 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 157 158 public: 159 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 160 unsigned BonusInstThreshold, AssumptionCache *AC) 161 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {} 162 bool run(BasicBlock *BB); 163 }; 164 } 165 166 /// Return true if it is safe to merge these two 167 /// terminator instructions together. 168 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 169 if (SI1 == SI2) return false; // Can't merge with self! 170 171 // It is not safe to merge these two switch instructions if they have a common 172 // successor, and if that successor has a PHI node, and if *that* PHI node has 173 // conflicting incoming values from the two switch blocks. 174 BasicBlock *SI1BB = SI1->getParent(); 175 BasicBlock *SI2BB = SI2->getParent(); 176 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 177 178 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 179 if (SI1Succs.count(*I)) 180 for (BasicBlock::iterator BBI = (*I)->begin(); 181 isa<PHINode>(BBI); ++BBI) { 182 PHINode *PN = cast<PHINode>(BBI); 183 if (PN->getIncomingValueForBlock(SI1BB) != 184 PN->getIncomingValueForBlock(SI2BB)) 185 return false; 186 } 187 188 return true; 189 } 190 191 /// Return true if it is safe and profitable to merge these two terminator 192 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 193 /// store all PHI nodes in common successors. 194 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 195 BranchInst *SI2, 196 Instruction *Cond, 197 SmallVectorImpl<PHINode*> &PhiNodes) { 198 if (SI1 == SI2) return false; // Can't merge with self! 199 assert(SI1->isUnconditional() && SI2->isConditional()); 200 201 // We fold the unconditional branch if we can easily update all PHI nodes in 202 // common successors: 203 // 1> We have a constant incoming value for the conditional branch; 204 // 2> We have "Cond" as the incoming value for the unconditional branch; 205 // 3> SI2->getCondition() and Cond have same operands. 206 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 207 if (!Ci2) return false; 208 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 209 Cond->getOperand(1) == Ci2->getOperand(1)) && 210 !(Cond->getOperand(0) == Ci2->getOperand(1) && 211 Cond->getOperand(1) == Ci2->getOperand(0))) 212 return false; 213 214 BasicBlock *SI1BB = SI1->getParent(); 215 BasicBlock *SI2BB = SI2->getParent(); 216 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 217 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 218 if (SI1Succs.count(*I)) 219 for (BasicBlock::iterator BBI = (*I)->begin(); 220 isa<PHINode>(BBI); ++BBI) { 221 PHINode *PN = cast<PHINode>(BBI); 222 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 223 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 224 return false; 225 PhiNodes.push_back(PN); 226 } 227 return true; 228 } 229 230 /// Update PHI nodes in Succ to indicate that there will now be entries in it 231 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 232 /// will be the same as those coming in from ExistPred, an existing predecessor 233 /// of Succ. 234 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 235 BasicBlock *ExistPred) { 236 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 237 238 PHINode *PN; 239 for (BasicBlock::iterator I = Succ->begin(); 240 (PN = dyn_cast<PHINode>(I)); ++I) 241 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 242 } 243 244 /// Compute an abstract "cost" of speculating the given instruction, 245 /// which is assumed to be safe to speculate. TCC_Free means cheap, 246 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 247 /// expensive. 248 static unsigned ComputeSpeculationCost(const User *I, 249 const TargetTransformInfo &TTI) { 250 assert(isSafeToSpeculativelyExecute(I) && 251 "Instruction is not safe to speculatively execute!"); 252 return TTI.getUserCost(I); 253 } 254 255 /// If we have a merge point of an "if condition" as accepted above, 256 /// return true if the specified value dominates the block. We 257 /// don't handle the true generality of domination here, just a special case 258 /// which works well enough for us. 259 /// 260 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 261 /// see if V (which must be an instruction) and its recursive operands 262 /// that do not dominate BB have a combined cost lower than CostRemaining and 263 /// are non-trapping. If both are true, the instruction is inserted into the 264 /// set and true is returned. 265 /// 266 /// The cost for most non-trapping instructions is defined as 1 except for 267 /// Select whose cost is 2. 268 /// 269 /// After this function returns, CostRemaining is decreased by the cost of 270 /// V plus its non-dominating operands. If that cost is greater than 271 /// CostRemaining, false is returned and CostRemaining is undefined. 272 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 273 SmallPtrSetImpl<Instruction*> *AggressiveInsts, 274 unsigned &CostRemaining, 275 const TargetTransformInfo &TTI, 276 unsigned Depth = 0) { 277 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 278 // so limit the recursion depth. 279 // TODO: While this recursion limit does prevent pathological behavior, it 280 // would be better to track visited instructions to avoid cycles. 281 if (Depth == MaxSpeculationDepth) 282 return false; 283 284 Instruction *I = dyn_cast<Instruction>(V); 285 if (!I) { 286 // Non-instructions all dominate instructions, but not all constantexprs 287 // can be executed unconditionally. 288 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 289 if (C->canTrap()) 290 return false; 291 return true; 292 } 293 BasicBlock *PBB = I->getParent(); 294 295 // We don't want to allow weird loops that might have the "if condition" in 296 // the bottom of this block. 297 if (PBB == BB) return false; 298 299 // If this instruction is defined in a block that contains an unconditional 300 // branch to BB, then it must be in the 'conditional' part of the "if 301 // statement". If not, it definitely dominates the region. 302 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 303 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 304 return true; 305 306 // If we aren't allowing aggressive promotion anymore, then don't consider 307 // instructions in the 'if region'. 308 if (!AggressiveInsts) return false; 309 310 // If we have seen this instruction before, don't count it again. 311 if (AggressiveInsts->count(I)) return true; 312 313 // Okay, it looks like the instruction IS in the "condition". Check to 314 // see if it's a cheap instruction to unconditionally compute, and if it 315 // only uses stuff defined outside of the condition. If so, hoist it out. 316 if (!isSafeToSpeculativelyExecute(I)) 317 return false; 318 319 unsigned Cost = ComputeSpeculationCost(I, TTI); 320 321 // Allow exactly one instruction to be speculated regardless of its cost 322 // (as long as it is safe to do so). 323 // This is intended to flatten the CFG even if the instruction is a division 324 // or other expensive operation. The speculation of an expensive instruction 325 // is expected to be undone in CodeGenPrepare if the speculation has not 326 // enabled further IR optimizations. 327 if (Cost > CostRemaining && 328 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 329 return false; 330 331 // Avoid unsigned wrap. 332 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 333 334 // Okay, we can only really hoist these out if their operands do 335 // not take us over the cost threshold. 336 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 337 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 338 Depth + 1)) 339 return false; 340 // Okay, it's safe to do this! Remember this instruction. 341 AggressiveInsts->insert(I); 342 return true; 343 } 344 345 /// Extract ConstantInt from value, looking through IntToPtr 346 /// and PointerNullValue. Return NULL if value is not a constant int. 347 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 348 // Normal constant int. 349 ConstantInt *CI = dyn_cast<ConstantInt>(V); 350 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 351 return CI; 352 353 // This is some kind of pointer constant. Turn it into a pointer-sized 354 // ConstantInt if possible. 355 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 356 357 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 358 if (isa<ConstantPointerNull>(V)) 359 return ConstantInt::get(PtrTy, 0); 360 361 // IntToPtr const int. 362 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 363 if (CE->getOpcode() == Instruction::IntToPtr) 364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 365 // The constant is very likely to have the right type already. 366 if (CI->getType() == PtrTy) 367 return CI; 368 else 369 return cast<ConstantInt> 370 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 371 } 372 return nullptr; 373 } 374 375 namespace { 376 377 /// Given a chain of or (||) or and (&&) comparison of a value against a 378 /// constant, this will try to recover the information required for a switch 379 /// structure. 380 /// It will depth-first traverse the chain of comparison, seeking for patterns 381 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 382 /// representing the different cases for the switch. 383 /// Note that if the chain is composed of '||' it will build the set of elements 384 /// that matches the comparisons (i.e. any of this value validate the chain) 385 /// while for a chain of '&&' it will build the set elements that make the test 386 /// fail. 387 struct ConstantComparesGatherer { 388 const DataLayout &DL; 389 Value *CompValue; /// Value found for the switch comparison 390 Value *Extra; /// Extra clause to be checked before the switch 391 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 392 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 393 394 /// Construct and compute the result for the comparison instruction Cond 395 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 396 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 397 gather(Cond); 398 } 399 400 /// Prevent copy 401 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 402 ConstantComparesGatherer & 403 operator=(const ConstantComparesGatherer &) = delete; 404 405 private: 406 407 /// Try to set the current value used for the comparison, it succeeds only if 408 /// it wasn't set before or if the new value is the same as the old one 409 bool setValueOnce(Value *NewVal) { 410 if(CompValue && CompValue != NewVal) return false; 411 CompValue = NewVal; 412 return (CompValue != nullptr); 413 } 414 415 /// Try to match Instruction "I" as a comparison against a constant and 416 /// populates the array Vals with the set of values that match (or do not 417 /// match depending on isEQ). 418 /// Return false on failure. On success, the Value the comparison matched 419 /// against is placed in CompValue. 420 /// If CompValue is already set, the function is expected to fail if a match 421 /// is found but the value compared to is different. 422 bool matchInstruction(Instruction *I, bool isEQ) { 423 // If this is an icmp against a constant, handle this as one of the cases. 424 ICmpInst *ICI; 425 ConstantInt *C; 426 if (!((ICI = dyn_cast<ICmpInst>(I)) && 427 (C = GetConstantInt(I->getOperand(1), DL)))) { 428 return false; 429 } 430 431 Value *RHSVal; 432 ConstantInt *RHSC; 433 434 // Pattern match a special case 435 // (x & ~2^z) == y --> x == y || x == y|2^z 436 // This undoes a transformation done by instcombine to fuse 2 compares. 437 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 438 if (match(ICI->getOperand(0), 439 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 440 APInt Not = ~RHSC->getValue(); 441 if (Not.isPowerOf2() && C->getValue().isPowerOf2() && 442 Not != C->getValue()) { 443 // If we already have a value for the switch, it has to match! 444 if(!setValueOnce(RHSVal)) 445 return false; 446 447 Vals.push_back(C); 448 Vals.push_back(ConstantInt::get(C->getContext(), 449 C->getValue() | Not)); 450 UsedICmps++; 451 return true; 452 } 453 } 454 455 // If we already have a value for the switch, it has to match! 456 if(!setValueOnce(ICI->getOperand(0))) 457 return false; 458 459 UsedICmps++; 460 Vals.push_back(C); 461 return ICI->getOperand(0); 462 } 463 464 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 465 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 466 ICI->getPredicate(), C->getValue()); 467 468 // Shift the range if the compare is fed by an add. This is the range 469 // compare idiom as emitted by instcombine. 470 Value *CandidateVal = I->getOperand(0); 471 if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 472 Span = Span.subtract(RHSC->getValue()); 473 CandidateVal = RHSVal; 474 } 475 476 // If this is an and/!= check, then we are looking to build the set of 477 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 478 // x != 0 && x != 1. 479 if (!isEQ) 480 Span = Span.inverse(); 481 482 // If there are a ton of values, we don't want to make a ginormous switch. 483 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 484 return false; 485 } 486 487 // If we already have a value for the switch, it has to match! 488 if(!setValueOnce(CandidateVal)) 489 return false; 490 491 // Add all values from the range to the set 492 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 493 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 494 495 UsedICmps++; 496 return true; 497 498 } 499 500 /// Given a potentially 'or'd or 'and'd together collection of icmp 501 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 502 /// the value being compared, and stick the list constants into the Vals 503 /// vector. 504 /// One "Extra" case is allowed to differ from the other. 505 void gather(Value *V) { 506 Instruction *I = dyn_cast<Instruction>(V); 507 bool isEQ = (I->getOpcode() == Instruction::Or); 508 509 // Keep a stack (SmallVector for efficiency) for depth-first traversal 510 SmallVector<Value *, 8> DFT; 511 SmallPtrSet<Value *, 8> Visited; 512 513 // Initialize 514 Visited.insert(V); 515 DFT.push_back(V); 516 517 while(!DFT.empty()) { 518 V = DFT.pop_back_val(); 519 520 if (Instruction *I = dyn_cast<Instruction>(V)) { 521 // If it is a || (or && depending on isEQ), process the operands. 522 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 523 if (Visited.insert(I->getOperand(1)).second) 524 DFT.push_back(I->getOperand(1)); 525 if (Visited.insert(I->getOperand(0)).second) 526 DFT.push_back(I->getOperand(0)); 527 continue; 528 } 529 530 // Try to match the current instruction 531 if (matchInstruction(I, isEQ)) 532 // Match succeed, continue the loop 533 continue; 534 } 535 536 // One element of the sequence of || (or &&) could not be match as a 537 // comparison against the same value as the others. 538 // We allow only one "Extra" case to be checked before the switch 539 if (!Extra) { 540 Extra = V; 541 continue; 542 } 543 // Failed to parse a proper sequence, abort now 544 CompValue = nullptr; 545 break; 546 } 547 } 548 }; 549 550 } 551 552 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 553 Instruction *Cond = nullptr; 554 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 555 Cond = dyn_cast<Instruction>(SI->getCondition()); 556 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 557 if (BI->isConditional()) 558 Cond = dyn_cast<Instruction>(BI->getCondition()); 559 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 560 Cond = dyn_cast<Instruction>(IBI->getAddress()); 561 } 562 563 TI->eraseFromParent(); 564 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 565 } 566 567 /// Return true if the specified terminator checks 568 /// to see if a value is equal to constant integer value. 569 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 570 Value *CV = nullptr; 571 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 572 // Do not permit merging of large switch instructions into their 573 // predecessors unless there is only one predecessor. 574 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 575 pred_end(SI->getParent())) <= 128) 576 CV = SI->getCondition(); 577 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 578 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 579 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 580 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 581 CV = ICI->getOperand(0); 582 } 583 584 // Unwrap any lossless ptrtoint cast. 585 if (CV) { 586 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 587 Value *Ptr = PTII->getPointerOperand(); 588 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 589 CV = Ptr; 590 } 591 } 592 return CV; 593 } 594 595 /// Given a value comparison instruction, 596 /// decode all of the 'cases' that it represents and return the 'default' block. 597 BasicBlock *SimplifyCFGOpt:: 598 GetValueEqualityComparisonCases(TerminatorInst *TI, 599 std::vector<ValueEqualityComparisonCase> 600 &Cases) { 601 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 602 Cases.reserve(SI->getNumCases()); 603 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 604 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 605 i.getCaseSuccessor())); 606 return SI->getDefaultDest(); 607 } 608 609 BranchInst *BI = cast<BranchInst>(TI); 610 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 611 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 612 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 613 DL), 614 Succ)); 615 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 616 } 617 618 619 /// Given a vector of bb/value pairs, remove any entries 620 /// in the list that match the specified block. 621 static void EliminateBlockCases(BasicBlock *BB, 622 std::vector<ValueEqualityComparisonCase> &Cases) { 623 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 624 } 625 626 /// Return true if there are any keys in C1 that exist in C2 as well. 627 static bool 628 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 629 std::vector<ValueEqualityComparisonCase > &C2) { 630 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 631 632 // Make V1 be smaller than V2. 633 if (V1->size() > V2->size()) 634 std::swap(V1, V2); 635 636 if (V1->size() == 0) return false; 637 if (V1->size() == 1) { 638 // Just scan V2. 639 ConstantInt *TheVal = (*V1)[0].Value; 640 for (unsigned i = 0, e = V2->size(); i != e; ++i) 641 if (TheVal == (*V2)[i].Value) 642 return true; 643 } 644 645 // Otherwise, just sort both lists and compare element by element. 646 array_pod_sort(V1->begin(), V1->end()); 647 array_pod_sort(V2->begin(), V2->end()); 648 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 649 while (i1 != e1 && i2 != e2) { 650 if ((*V1)[i1].Value == (*V2)[i2].Value) 651 return true; 652 if ((*V1)[i1].Value < (*V2)[i2].Value) 653 ++i1; 654 else 655 ++i2; 656 } 657 return false; 658 } 659 660 /// If TI is known to be a terminator instruction and its block is known to 661 /// only have a single predecessor block, check to see if that predecessor is 662 /// also a value comparison with the same value, and if that comparison 663 /// determines the outcome of this comparison. If so, simplify TI. This does a 664 /// very limited form of jump threading. 665 bool SimplifyCFGOpt:: 666 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 667 BasicBlock *Pred, 668 IRBuilder<> &Builder) { 669 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 670 if (!PredVal) return false; // Not a value comparison in predecessor. 671 672 Value *ThisVal = isValueEqualityComparison(TI); 673 assert(ThisVal && "This isn't a value comparison!!"); 674 if (ThisVal != PredVal) return false; // Different predicates. 675 676 // TODO: Preserve branch weight metadata, similarly to how 677 // FoldValueComparisonIntoPredecessors preserves it. 678 679 // Find out information about when control will move from Pred to TI's block. 680 std::vector<ValueEqualityComparisonCase> PredCases; 681 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 682 PredCases); 683 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 684 685 // Find information about how control leaves this block. 686 std::vector<ValueEqualityComparisonCase> ThisCases; 687 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 688 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 689 690 // If TI's block is the default block from Pred's comparison, potentially 691 // simplify TI based on this knowledge. 692 if (PredDef == TI->getParent()) { 693 // If we are here, we know that the value is none of those cases listed in 694 // PredCases. If there are any cases in ThisCases that are in PredCases, we 695 // can simplify TI. 696 if (!ValuesOverlap(PredCases, ThisCases)) 697 return false; 698 699 if (isa<BranchInst>(TI)) { 700 // Okay, one of the successors of this condbr is dead. Convert it to a 701 // uncond br. 702 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 703 // Insert the new branch. 704 Instruction *NI = Builder.CreateBr(ThisDef); 705 (void) NI; 706 707 // Remove PHI node entries for the dead edge. 708 ThisCases[0].Dest->removePredecessor(TI->getParent()); 709 710 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 711 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 712 713 EraseTerminatorInstAndDCECond(TI); 714 return true; 715 } 716 717 SwitchInst *SI = cast<SwitchInst>(TI); 718 // Okay, TI has cases that are statically dead, prune them away. 719 SmallPtrSet<Constant*, 16> DeadCases; 720 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 721 DeadCases.insert(PredCases[i].Value); 722 723 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 724 << "Through successor TI: " << *TI); 725 726 // Collect branch weights into a vector. 727 SmallVector<uint32_t, 8> Weights; 728 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 729 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 730 if (HasWeight) 731 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 732 ++MD_i) { 733 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 734 Weights.push_back(CI->getValue().getZExtValue()); 735 } 736 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 737 --i; 738 if (DeadCases.count(i.getCaseValue())) { 739 if (HasWeight) { 740 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 741 Weights.pop_back(); 742 } 743 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 744 SI->removeCase(i); 745 } 746 } 747 if (HasWeight && Weights.size() >= 2) 748 SI->setMetadata(LLVMContext::MD_prof, 749 MDBuilder(SI->getParent()->getContext()). 750 createBranchWeights(Weights)); 751 752 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 753 return true; 754 } 755 756 // Otherwise, TI's block must correspond to some matched value. Find out 757 // which value (or set of values) this is. 758 ConstantInt *TIV = nullptr; 759 BasicBlock *TIBB = TI->getParent(); 760 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 761 if (PredCases[i].Dest == TIBB) { 762 if (TIV) 763 return false; // Cannot handle multiple values coming to this block. 764 TIV = PredCases[i].Value; 765 } 766 assert(TIV && "No edge from pred to succ?"); 767 768 // Okay, we found the one constant that our value can be if we get into TI's 769 // BB. Find out which successor will unconditionally be branched to. 770 BasicBlock *TheRealDest = nullptr; 771 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 772 if (ThisCases[i].Value == TIV) { 773 TheRealDest = ThisCases[i].Dest; 774 break; 775 } 776 777 // If not handled by any explicit cases, it is handled by the default case. 778 if (!TheRealDest) TheRealDest = ThisDef; 779 780 // Remove PHI node entries for dead edges. 781 BasicBlock *CheckEdge = TheRealDest; 782 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 783 if (*SI != CheckEdge) 784 (*SI)->removePredecessor(TIBB); 785 else 786 CheckEdge = nullptr; 787 788 // Insert the new branch. 789 Instruction *NI = Builder.CreateBr(TheRealDest); 790 (void) NI; 791 792 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 793 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 794 795 EraseTerminatorInstAndDCECond(TI); 796 return true; 797 } 798 799 namespace { 800 /// This class implements a stable ordering of constant 801 /// integers that does not depend on their address. This is important for 802 /// applications that sort ConstantInt's to ensure uniqueness. 803 struct ConstantIntOrdering { 804 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 805 return LHS->getValue().ult(RHS->getValue()); 806 } 807 }; 808 } 809 810 static int ConstantIntSortPredicate(ConstantInt *const *P1, 811 ConstantInt *const *P2) { 812 const ConstantInt *LHS = *P1; 813 const ConstantInt *RHS = *P2; 814 if (LHS == RHS) 815 return 0; 816 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 817 } 818 819 static inline bool HasBranchWeights(const Instruction* I) { 820 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 821 if (ProfMD && ProfMD->getOperand(0)) 822 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 823 return MDS->getString().equals("branch_weights"); 824 825 return false; 826 } 827 828 /// Get Weights of a given TerminatorInst, the default weight is at the front 829 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 830 /// metadata. 831 static void GetBranchWeights(TerminatorInst *TI, 832 SmallVectorImpl<uint64_t> &Weights) { 833 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 834 assert(MD); 835 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 836 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 837 Weights.push_back(CI->getValue().getZExtValue()); 838 } 839 840 // If TI is a conditional eq, the default case is the false case, 841 // and the corresponding branch-weight data is at index 2. We swap the 842 // default weight to be the first entry. 843 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 844 assert(Weights.size() == 2); 845 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 846 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 847 std::swap(Weights.front(), Weights.back()); 848 } 849 } 850 851 /// Keep halving the weights until all can fit in uint32_t. 852 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 853 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 854 if (Max > UINT_MAX) { 855 unsigned Offset = 32 - countLeadingZeros(Max); 856 for (uint64_t &I : Weights) 857 I >>= Offset; 858 } 859 } 860 861 /// The specified terminator is a value equality comparison instruction 862 /// (either a switch or a branch on "X == c"). 863 /// See if any of the predecessors of the terminator block are value comparisons 864 /// on the same value. If so, and if safe to do so, fold them together. 865 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 866 IRBuilder<> &Builder) { 867 BasicBlock *BB = TI->getParent(); 868 Value *CV = isValueEqualityComparison(TI); // CondVal 869 assert(CV && "Not a comparison?"); 870 bool Changed = false; 871 872 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 873 while (!Preds.empty()) { 874 BasicBlock *Pred = Preds.pop_back_val(); 875 876 // See if the predecessor is a comparison with the same value. 877 TerminatorInst *PTI = Pred->getTerminator(); 878 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 879 880 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 881 // Figure out which 'cases' to copy from SI to PSI. 882 std::vector<ValueEqualityComparisonCase> BBCases; 883 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 884 885 std::vector<ValueEqualityComparisonCase> PredCases; 886 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 887 888 // Based on whether the default edge from PTI goes to BB or not, fill in 889 // PredCases and PredDefault with the new switch cases we would like to 890 // build. 891 SmallVector<BasicBlock*, 8> NewSuccessors; 892 893 // Update the branch weight metadata along the way 894 SmallVector<uint64_t, 8> Weights; 895 bool PredHasWeights = HasBranchWeights(PTI); 896 bool SuccHasWeights = HasBranchWeights(TI); 897 898 if (PredHasWeights) { 899 GetBranchWeights(PTI, Weights); 900 // branch-weight metadata is inconsistent here. 901 if (Weights.size() != 1 + PredCases.size()) 902 PredHasWeights = SuccHasWeights = false; 903 } else if (SuccHasWeights) 904 // If there are no predecessor weights but there are successor weights, 905 // populate Weights with 1, which will later be scaled to the sum of 906 // successor's weights 907 Weights.assign(1 + PredCases.size(), 1); 908 909 SmallVector<uint64_t, 8> SuccWeights; 910 if (SuccHasWeights) { 911 GetBranchWeights(TI, SuccWeights); 912 // branch-weight metadata is inconsistent here. 913 if (SuccWeights.size() != 1 + BBCases.size()) 914 PredHasWeights = SuccHasWeights = false; 915 } else if (PredHasWeights) 916 SuccWeights.assign(1 + BBCases.size(), 1); 917 918 if (PredDefault == BB) { 919 // If this is the default destination from PTI, only the edges in TI 920 // that don't occur in PTI, or that branch to BB will be activated. 921 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 922 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 923 if (PredCases[i].Dest != BB) 924 PTIHandled.insert(PredCases[i].Value); 925 else { 926 // The default destination is BB, we don't need explicit targets. 927 std::swap(PredCases[i], PredCases.back()); 928 929 if (PredHasWeights || SuccHasWeights) { 930 // Increase weight for the default case. 931 Weights[0] += Weights[i+1]; 932 std::swap(Weights[i+1], Weights.back()); 933 Weights.pop_back(); 934 } 935 936 PredCases.pop_back(); 937 --i; --e; 938 } 939 940 // Reconstruct the new switch statement we will be building. 941 if (PredDefault != BBDefault) { 942 PredDefault->removePredecessor(Pred); 943 PredDefault = BBDefault; 944 NewSuccessors.push_back(BBDefault); 945 } 946 947 unsigned CasesFromPred = Weights.size(); 948 uint64_t ValidTotalSuccWeight = 0; 949 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 950 if (!PTIHandled.count(BBCases[i].Value) && 951 BBCases[i].Dest != BBDefault) { 952 PredCases.push_back(BBCases[i]); 953 NewSuccessors.push_back(BBCases[i].Dest); 954 if (SuccHasWeights || PredHasWeights) { 955 // The default weight is at index 0, so weight for the ith case 956 // should be at index i+1. Scale the cases from successor by 957 // PredDefaultWeight (Weights[0]). 958 Weights.push_back(Weights[0] * SuccWeights[i+1]); 959 ValidTotalSuccWeight += SuccWeights[i+1]; 960 } 961 } 962 963 if (SuccHasWeights || PredHasWeights) { 964 ValidTotalSuccWeight += SuccWeights[0]; 965 // Scale the cases from predecessor by ValidTotalSuccWeight. 966 for (unsigned i = 1; i < CasesFromPred; ++i) 967 Weights[i] *= ValidTotalSuccWeight; 968 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 969 Weights[0] *= SuccWeights[0]; 970 } 971 } else { 972 // If this is not the default destination from PSI, only the edges 973 // in SI that occur in PSI with a destination of BB will be 974 // activated. 975 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 976 std::map<ConstantInt*, uint64_t> WeightsForHandled; 977 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 978 if (PredCases[i].Dest == BB) { 979 PTIHandled.insert(PredCases[i].Value); 980 981 if (PredHasWeights || SuccHasWeights) { 982 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 983 std::swap(Weights[i+1], Weights.back()); 984 Weights.pop_back(); 985 } 986 987 std::swap(PredCases[i], PredCases.back()); 988 PredCases.pop_back(); 989 --i; --e; 990 } 991 992 // Okay, now we know which constants were sent to BB from the 993 // predecessor. Figure out where they will all go now. 994 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 995 if (PTIHandled.count(BBCases[i].Value)) { 996 // If this is one we are capable of getting... 997 if (PredHasWeights || SuccHasWeights) 998 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 999 PredCases.push_back(BBCases[i]); 1000 NewSuccessors.push_back(BBCases[i].Dest); 1001 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 1002 } 1003 1004 // If there are any constants vectored to BB that TI doesn't handle, 1005 // they must go to the default destination of TI. 1006 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 1007 PTIHandled.begin(), 1008 E = PTIHandled.end(); I != E; ++I) { 1009 if (PredHasWeights || SuccHasWeights) 1010 Weights.push_back(WeightsForHandled[*I]); 1011 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 1012 NewSuccessors.push_back(BBDefault); 1013 } 1014 } 1015 1016 // Okay, at this point, we know which new successor Pred will get. Make 1017 // sure we update the number of entries in the PHI nodes for these 1018 // successors. 1019 for (BasicBlock *NewSuccessor : NewSuccessors) 1020 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1021 1022 Builder.SetInsertPoint(PTI); 1023 // Convert pointer to int before we switch. 1024 if (CV->getType()->isPointerTy()) { 1025 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1026 "magicptr"); 1027 } 1028 1029 // Now that the successors are updated, create the new Switch instruction. 1030 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 1031 PredCases.size()); 1032 NewSI->setDebugLoc(PTI->getDebugLoc()); 1033 for (ValueEqualityComparisonCase &V : PredCases) 1034 NewSI->addCase(V.Value, V.Dest); 1035 1036 if (PredHasWeights || SuccHasWeights) { 1037 // Halve the weights if any of them cannot fit in an uint32_t 1038 FitWeights(Weights); 1039 1040 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1041 1042 NewSI->setMetadata(LLVMContext::MD_prof, 1043 MDBuilder(BB->getContext()). 1044 createBranchWeights(MDWeights)); 1045 } 1046 1047 EraseTerminatorInstAndDCECond(PTI); 1048 1049 // Okay, last check. If BB is still a successor of PSI, then we must 1050 // have an infinite loop case. If so, add an infinitely looping block 1051 // to handle the case to preserve the behavior of the code. 1052 BasicBlock *InfLoopBlock = nullptr; 1053 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1054 if (NewSI->getSuccessor(i) == BB) { 1055 if (!InfLoopBlock) { 1056 // Insert it at the end of the function, because it's either code, 1057 // or it won't matter if it's hot. :) 1058 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1059 "infloop", BB->getParent()); 1060 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1061 } 1062 NewSI->setSuccessor(i, InfLoopBlock); 1063 } 1064 1065 Changed = true; 1066 } 1067 } 1068 return Changed; 1069 } 1070 1071 // If we would need to insert a select that uses the value of this invoke 1072 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1073 // can't hoist the invoke, as there is nowhere to put the select in this case. 1074 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1075 Instruction *I1, Instruction *I2) { 1076 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1077 PHINode *PN; 1078 for (BasicBlock::iterator BBI = SI->begin(); 1079 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1080 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1081 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1082 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1083 return false; 1084 } 1085 } 1086 } 1087 return true; 1088 } 1089 1090 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1091 1092 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1093 /// in the two blocks up into the branch block. The caller of this function 1094 /// guarantees that BI's block dominates BB1 and BB2. 1095 static bool HoistThenElseCodeToIf(BranchInst *BI, 1096 const TargetTransformInfo &TTI) { 1097 // This does very trivial matching, with limited scanning, to find identical 1098 // instructions in the two blocks. In particular, we don't want to get into 1099 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1100 // such, we currently just scan for obviously identical instructions in an 1101 // identical order. 1102 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1103 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1104 1105 BasicBlock::iterator BB1_Itr = BB1->begin(); 1106 BasicBlock::iterator BB2_Itr = BB2->begin(); 1107 1108 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1109 // Skip debug info if it is not identical. 1110 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1111 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1112 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1113 while (isa<DbgInfoIntrinsic>(I1)) 1114 I1 = &*BB1_Itr++; 1115 while (isa<DbgInfoIntrinsic>(I2)) 1116 I2 = &*BB2_Itr++; 1117 } 1118 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1119 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1120 return false; 1121 1122 BasicBlock *BIParent = BI->getParent(); 1123 1124 bool Changed = false; 1125 do { 1126 // If we are hoisting the terminator instruction, don't move one (making a 1127 // broken BB), instead clone it, and remove BI. 1128 if (isa<TerminatorInst>(I1)) 1129 goto HoistTerminator; 1130 1131 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1132 return Changed; 1133 1134 // For a normal instruction, we just move one to right before the branch, 1135 // then replace all uses of the other with the first. Finally, we remove 1136 // the now redundant second instruction. 1137 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1138 if (!I2->use_empty()) 1139 I2->replaceAllUsesWith(I1); 1140 I1->intersectOptionalDataWith(I2); 1141 unsigned KnownIDs[] = { 1142 LLVMContext::MD_tbaa, LLVMContext::MD_range, 1143 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 1144 LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group, 1145 LLVMContext::MD_align, LLVMContext::MD_dereferenceable, 1146 LLVMContext::MD_dereferenceable_or_null}; 1147 combineMetadata(I1, I2, KnownIDs); 1148 I2->eraseFromParent(); 1149 Changed = true; 1150 1151 I1 = &*BB1_Itr++; 1152 I2 = &*BB2_Itr++; 1153 // Skip debug info if it is not identical. 1154 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1155 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1156 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1157 while (isa<DbgInfoIntrinsic>(I1)) 1158 I1 = &*BB1_Itr++; 1159 while (isa<DbgInfoIntrinsic>(I2)) 1160 I2 = &*BB2_Itr++; 1161 } 1162 } while (I1->isIdenticalToWhenDefined(I2)); 1163 1164 return true; 1165 1166 HoistTerminator: 1167 // It may not be possible to hoist an invoke. 1168 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1169 return Changed; 1170 1171 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1172 PHINode *PN; 1173 for (BasicBlock::iterator BBI = SI->begin(); 1174 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1175 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1176 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1177 if (BB1V == BB2V) 1178 continue; 1179 1180 // Check for passingValueIsAlwaysUndefined here because we would rather 1181 // eliminate undefined control flow then converting it to a select. 1182 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1183 passingValueIsAlwaysUndefined(BB2V, PN)) 1184 return Changed; 1185 1186 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1187 return Changed; 1188 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1189 return Changed; 1190 } 1191 } 1192 1193 // Okay, it is safe to hoist the terminator. 1194 Instruction *NT = I1->clone(); 1195 BIParent->getInstList().insert(BI->getIterator(), NT); 1196 if (!NT->getType()->isVoidTy()) { 1197 I1->replaceAllUsesWith(NT); 1198 I2->replaceAllUsesWith(NT); 1199 NT->takeName(I1); 1200 } 1201 1202 IRBuilder<true, NoFolder> Builder(NT); 1203 // Hoisting one of the terminators from our successor is a great thing. 1204 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1205 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1206 // nodes, so we insert select instruction to compute the final result. 1207 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1208 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1209 PHINode *PN; 1210 for (BasicBlock::iterator BBI = SI->begin(); 1211 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1212 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1213 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1214 if (BB1V == BB2V) continue; 1215 1216 // These values do not agree. Insert a select instruction before NT 1217 // that determines the right value. 1218 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1219 if (!SI) 1220 SI = cast<SelectInst> 1221 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1222 BB1V->getName()+"."+BB2V->getName())); 1223 1224 // Make the PHI node use the select for all incoming values for BB1/BB2 1225 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1226 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1227 PN->setIncomingValue(i, SI); 1228 } 1229 } 1230 1231 // Update any PHI nodes in our new successors. 1232 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1233 AddPredecessorToBlock(*SI, BIParent, BB1); 1234 1235 EraseTerminatorInstAndDCECond(BI); 1236 return true; 1237 } 1238 1239 /// Given an unconditional branch that goes to BBEnd, 1240 /// check whether BBEnd has only two predecessors and the other predecessor 1241 /// ends with an unconditional branch. If it is true, sink any common code 1242 /// in the two predecessors to BBEnd. 1243 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1244 assert(BI1->isUnconditional()); 1245 BasicBlock *BB1 = BI1->getParent(); 1246 BasicBlock *BBEnd = BI1->getSuccessor(0); 1247 1248 // Check that BBEnd has two predecessors and the other predecessor ends with 1249 // an unconditional branch. 1250 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1251 BasicBlock *Pred0 = *PI++; 1252 if (PI == PE) // Only one predecessor. 1253 return false; 1254 BasicBlock *Pred1 = *PI++; 1255 if (PI != PE) // More than two predecessors. 1256 return false; 1257 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1258 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1259 if (!BI2 || !BI2->isUnconditional()) 1260 return false; 1261 1262 // Gather the PHI nodes in BBEnd. 1263 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap; 1264 Instruction *FirstNonPhiInBBEnd = nullptr; 1265 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) { 1266 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1267 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1268 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1269 JointValueMap[std::make_pair(BB1V, BB2V)] = PN; 1270 } else { 1271 FirstNonPhiInBBEnd = &*I; 1272 break; 1273 } 1274 } 1275 if (!FirstNonPhiInBBEnd) 1276 return false; 1277 1278 // This does very trivial matching, with limited scanning, to find identical 1279 // instructions in the two blocks. We scan backward for obviously identical 1280 // instructions in an identical order. 1281 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1282 RE1 = BB1->getInstList().rend(), 1283 RI2 = BB2->getInstList().rbegin(), 1284 RE2 = BB2->getInstList().rend(); 1285 // Skip debug info. 1286 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1287 if (RI1 == RE1) 1288 return false; 1289 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1290 if (RI2 == RE2) 1291 return false; 1292 // Skip the unconditional branches. 1293 ++RI1; 1294 ++RI2; 1295 1296 bool Changed = false; 1297 while (RI1 != RE1 && RI2 != RE2) { 1298 // Skip debug info. 1299 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1300 if (RI1 == RE1) 1301 return Changed; 1302 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1303 if (RI2 == RE2) 1304 return Changed; 1305 1306 Instruction *I1 = &*RI1, *I2 = &*RI2; 1307 auto InstPair = std::make_pair(I1, I2); 1308 // I1 and I2 should have a single use in the same PHI node, and they 1309 // perform the same operation. 1310 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1311 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1312 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1313 I1->isEHPad() || I2->isEHPad() || 1314 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1315 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1316 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1317 !I1->hasOneUse() || !I2->hasOneUse() || 1318 !JointValueMap.count(InstPair)) 1319 return Changed; 1320 1321 // Check whether we should swap the operands of ICmpInst. 1322 // TODO: Add support of communativity. 1323 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1324 bool SwapOpnds = false; 1325 if (ICmp1 && ICmp2 && 1326 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1327 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1328 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1329 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1330 ICmp2->swapOperands(); 1331 SwapOpnds = true; 1332 } 1333 if (!I1->isSameOperationAs(I2)) { 1334 if (SwapOpnds) 1335 ICmp2->swapOperands(); 1336 return Changed; 1337 } 1338 1339 // The operands should be either the same or they need to be generated 1340 // with a PHI node after sinking. We only handle the case where there is 1341 // a single pair of different operands. 1342 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1343 unsigned Op1Idx = ~0U; 1344 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1345 if (I1->getOperand(I) == I2->getOperand(I)) 1346 continue; 1347 // Early exit if we have more-than one pair of different operands or if 1348 // we need a PHI node to replace a constant. 1349 if (Op1Idx != ~0U || 1350 isa<Constant>(I1->getOperand(I)) || 1351 isa<Constant>(I2->getOperand(I))) { 1352 // If we can't sink the instructions, undo the swapping. 1353 if (SwapOpnds) 1354 ICmp2->swapOperands(); 1355 return Changed; 1356 } 1357 DifferentOp1 = I1->getOperand(I); 1358 Op1Idx = I; 1359 DifferentOp2 = I2->getOperand(I); 1360 } 1361 1362 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n"); 1363 DEBUG(dbgs() << " " << *I2 << "\n"); 1364 1365 // We insert the pair of different operands to JointValueMap and 1366 // remove (I1, I2) from JointValueMap. 1367 if (Op1Idx != ~0U) { 1368 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)]; 1369 if (!NewPN) { 1370 NewPN = 1371 PHINode::Create(DifferentOp1->getType(), 2, 1372 DifferentOp1->getName() + ".sink", &BBEnd->front()); 1373 NewPN->addIncoming(DifferentOp1, BB1); 1374 NewPN->addIncoming(DifferentOp2, BB2); 1375 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1376 } 1377 // I1 should use NewPN instead of DifferentOp1. 1378 I1->setOperand(Op1Idx, NewPN); 1379 } 1380 PHINode *OldPN = JointValueMap[InstPair]; 1381 JointValueMap.erase(InstPair); 1382 1383 // We need to update RE1 and RE2 if we are going to sink the first 1384 // instruction in the basic block down. 1385 bool UpdateRE1 = (I1 == &BB1->front()), UpdateRE2 = (I2 == &BB2->front()); 1386 // Sink the instruction. 1387 BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(), 1388 BB1->getInstList(), I1); 1389 if (!OldPN->use_empty()) 1390 OldPN->replaceAllUsesWith(I1); 1391 OldPN->eraseFromParent(); 1392 1393 if (!I2->use_empty()) 1394 I2->replaceAllUsesWith(I1); 1395 I1->intersectOptionalDataWith(I2); 1396 // TODO: Use combineMetadata here to preserve what metadata we can 1397 // (analogous to the hoisting case above). 1398 I2->eraseFromParent(); 1399 1400 if (UpdateRE1) 1401 RE1 = BB1->getInstList().rend(); 1402 if (UpdateRE2) 1403 RE2 = BB2->getInstList().rend(); 1404 FirstNonPhiInBBEnd = &*I1; 1405 NumSinkCommons++; 1406 Changed = true; 1407 } 1408 return Changed; 1409 } 1410 1411 /// \brief Determine if we can hoist sink a sole store instruction out of a 1412 /// conditional block. 1413 /// 1414 /// We are looking for code like the following: 1415 /// BrBB: 1416 /// store i32 %add, i32* %arrayidx2 1417 /// ... // No other stores or function calls (we could be calling a memory 1418 /// ... // function). 1419 /// %cmp = icmp ult %x, %y 1420 /// br i1 %cmp, label %EndBB, label %ThenBB 1421 /// ThenBB: 1422 /// store i32 %add5, i32* %arrayidx2 1423 /// br label EndBB 1424 /// EndBB: 1425 /// ... 1426 /// We are going to transform this into: 1427 /// BrBB: 1428 /// store i32 %add, i32* %arrayidx2 1429 /// ... // 1430 /// %cmp = icmp ult %x, %y 1431 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1432 /// store i32 %add.add5, i32* %arrayidx2 1433 /// ... 1434 /// 1435 /// \return The pointer to the value of the previous store if the store can be 1436 /// hoisted into the predecessor block. 0 otherwise. 1437 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1438 BasicBlock *StoreBB, BasicBlock *EndBB) { 1439 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1440 if (!StoreToHoist) 1441 return nullptr; 1442 1443 // Volatile or atomic. 1444 if (!StoreToHoist->isSimple()) 1445 return nullptr; 1446 1447 Value *StorePtr = StoreToHoist->getPointerOperand(); 1448 1449 // Look for a store to the same pointer in BrBB. 1450 unsigned MaxNumInstToLookAt = 10; 1451 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1452 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1453 Instruction *CurI = &*RI; 1454 1455 // Could be calling an instruction that effects memory like free(). 1456 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1457 return nullptr; 1458 1459 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1460 // Found the previous store make sure it stores to the same location. 1461 if (SI && SI->getPointerOperand() == StorePtr) 1462 // Found the previous store, return its value operand. 1463 return SI->getValueOperand(); 1464 else if (SI) 1465 return nullptr; // Unknown store. 1466 } 1467 1468 return nullptr; 1469 } 1470 1471 /// \brief Speculate a conditional basic block flattening the CFG. 1472 /// 1473 /// Note that this is a very risky transform currently. Speculating 1474 /// instructions like this is most often not desirable. Instead, there is an MI 1475 /// pass which can do it with full awareness of the resource constraints. 1476 /// However, some cases are "obvious" and we should do directly. An example of 1477 /// this is speculating a single, reasonably cheap instruction. 1478 /// 1479 /// There is only one distinct advantage to flattening the CFG at the IR level: 1480 /// it makes very common but simplistic optimizations such as are common in 1481 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1482 /// modeling their effects with easier to reason about SSA value graphs. 1483 /// 1484 /// 1485 /// An illustration of this transform is turning this IR: 1486 /// \code 1487 /// BB: 1488 /// %cmp = icmp ult %x, %y 1489 /// br i1 %cmp, label %EndBB, label %ThenBB 1490 /// ThenBB: 1491 /// %sub = sub %x, %y 1492 /// br label BB2 1493 /// EndBB: 1494 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1495 /// ... 1496 /// \endcode 1497 /// 1498 /// Into this IR: 1499 /// \code 1500 /// BB: 1501 /// %cmp = icmp ult %x, %y 1502 /// %sub = sub %x, %y 1503 /// %cond = select i1 %cmp, 0, %sub 1504 /// ... 1505 /// \endcode 1506 /// 1507 /// \returns true if the conditional block is removed. 1508 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1509 const TargetTransformInfo &TTI) { 1510 // Be conservative for now. FP select instruction can often be expensive. 1511 Value *BrCond = BI->getCondition(); 1512 if (isa<FCmpInst>(BrCond)) 1513 return false; 1514 1515 BasicBlock *BB = BI->getParent(); 1516 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1517 1518 // If ThenBB is actually on the false edge of the conditional branch, remember 1519 // to swap the select operands later. 1520 bool Invert = false; 1521 if (ThenBB != BI->getSuccessor(0)) { 1522 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1523 Invert = true; 1524 } 1525 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1526 1527 // Keep a count of how many times instructions are used within CondBB when 1528 // they are candidates for sinking into CondBB. Specifically: 1529 // - They are defined in BB, and 1530 // - They have no side effects, and 1531 // - All of their uses are in CondBB. 1532 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1533 1534 unsigned SpeculationCost = 0; 1535 Value *SpeculatedStoreValue = nullptr; 1536 StoreInst *SpeculatedStore = nullptr; 1537 for (BasicBlock::iterator BBI = ThenBB->begin(), 1538 BBE = std::prev(ThenBB->end()); 1539 BBI != BBE; ++BBI) { 1540 Instruction *I = &*BBI; 1541 // Skip debug info. 1542 if (isa<DbgInfoIntrinsic>(I)) 1543 continue; 1544 1545 // Only speculatively execute a single instruction (not counting the 1546 // terminator) for now. 1547 ++SpeculationCost; 1548 if (SpeculationCost > 1) 1549 return false; 1550 1551 // Don't hoist the instruction if it's unsafe or expensive. 1552 if (!isSafeToSpeculativelyExecute(I) && 1553 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1554 I, BB, ThenBB, EndBB)))) 1555 return false; 1556 if (!SpeculatedStoreValue && 1557 ComputeSpeculationCost(I, TTI) > 1558 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1559 return false; 1560 1561 // Store the store speculation candidate. 1562 if (SpeculatedStoreValue) 1563 SpeculatedStore = cast<StoreInst>(I); 1564 1565 // Do not hoist the instruction if any of its operands are defined but not 1566 // used in BB. The transformation will prevent the operand from 1567 // being sunk into the use block. 1568 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1569 i != e; ++i) { 1570 Instruction *OpI = dyn_cast<Instruction>(*i); 1571 if (!OpI || OpI->getParent() != BB || 1572 OpI->mayHaveSideEffects()) 1573 continue; // Not a candidate for sinking. 1574 1575 ++SinkCandidateUseCounts[OpI]; 1576 } 1577 } 1578 1579 // Consider any sink candidates which are only used in CondBB as costs for 1580 // speculation. Note, while we iterate over a DenseMap here, we are summing 1581 // and so iteration order isn't significant. 1582 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1583 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1584 I != E; ++I) 1585 if (I->first->getNumUses() == I->second) { 1586 ++SpeculationCost; 1587 if (SpeculationCost > 1) 1588 return false; 1589 } 1590 1591 // Check that the PHI nodes can be converted to selects. 1592 bool HaveRewritablePHIs = false; 1593 for (BasicBlock::iterator I = EndBB->begin(); 1594 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1595 Value *OrigV = PN->getIncomingValueForBlock(BB); 1596 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1597 1598 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1599 // Skip PHIs which are trivial. 1600 if (ThenV == OrigV) 1601 continue; 1602 1603 // Don't convert to selects if we could remove undefined behavior instead. 1604 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1605 passingValueIsAlwaysUndefined(ThenV, PN)) 1606 return false; 1607 1608 HaveRewritablePHIs = true; 1609 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1610 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1611 if (!OrigCE && !ThenCE) 1612 continue; // Known safe and cheap. 1613 1614 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1615 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1616 return false; 1617 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1618 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1619 unsigned MaxCost = 2 * PHINodeFoldingThreshold * 1620 TargetTransformInfo::TCC_Basic; 1621 if (OrigCost + ThenCost > MaxCost) 1622 return false; 1623 1624 // Account for the cost of an unfolded ConstantExpr which could end up 1625 // getting expanded into Instructions. 1626 // FIXME: This doesn't account for how many operations are combined in the 1627 // constant expression. 1628 ++SpeculationCost; 1629 if (SpeculationCost > 1) 1630 return false; 1631 } 1632 1633 // If there are no PHIs to process, bail early. This helps ensure idempotence 1634 // as well. 1635 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1636 return false; 1637 1638 // If we get here, we can hoist the instruction and if-convert. 1639 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1640 1641 // Insert a select of the value of the speculated store. 1642 if (SpeculatedStoreValue) { 1643 IRBuilder<true, NoFolder> Builder(BI); 1644 Value *TrueV = SpeculatedStore->getValueOperand(); 1645 Value *FalseV = SpeculatedStoreValue; 1646 if (Invert) 1647 std::swap(TrueV, FalseV); 1648 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1649 "." + FalseV->getName()); 1650 SpeculatedStore->setOperand(0, S); 1651 } 1652 1653 // Metadata can be dependent on the condition we are hoisting above. 1654 // Conservatively strip all metadata on the instruction. 1655 for (auto &I: *ThenBB) 1656 I.dropUnknownNonDebugMetadata(); 1657 1658 // Hoist the instructions. 1659 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 1660 ThenBB->begin(), std::prev(ThenBB->end())); 1661 1662 // Insert selects and rewrite the PHI operands. 1663 IRBuilder<true, NoFolder> Builder(BI); 1664 for (BasicBlock::iterator I = EndBB->begin(); 1665 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1666 unsigned OrigI = PN->getBasicBlockIndex(BB); 1667 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1668 Value *OrigV = PN->getIncomingValue(OrigI); 1669 Value *ThenV = PN->getIncomingValue(ThenI); 1670 1671 // Skip PHIs which are trivial. 1672 if (OrigV == ThenV) 1673 continue; 1674 1675 // Create a select whose true value is the speculatively executed value and 1676 // false value is the preexisting value. Swap them if the branch 1677 // destinations were inverted. 1678 Value *TrueV = ThenV, *FalseV = OrigV; 1679 if (Invert) 1680 std::swap(TrueV, FalseV); 1681 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1682 TrueV->getName() + "." + FalseV->getName()); 1683 PN->setIncomingValue(OrigI, V); 1684 PN->setIncomingValue(ThenI, V); 1685 } 1686 1687 ++NumSpeculations; 1688 return true; 1689 } 1690 1691 /// Return true if we can thread a branch across this block. 1692 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1693 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1694 unsigned Size = 0; 1695 1696 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1697 if (isa<DbgInfoIntrinsic>(BBI)) 1698 continue; 1699 if (Size > 10) return false; // Don't clone large BB's. 1700 ++Size; 1701 1702 // We can only support instructions that do not define values that are 1703 // live outside of the current basic block. 1704 for (User *U : BBI->users()) { 1705 Instruction *UI = cast<Instruction>(U); 1706 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1707 } 1708 1709 // Looks ok, continue checking. 1710 } 1711 1712 return true; 1713 } 1714 1715 /// If we have a conditional branch on a PHI node value that is defined in the 1716 /// same block as the branch and if any PHI entries are constants, thread edges 1717 /// corresponding to that entry to be branches to their ultimate destination. 1718 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 1719 BasicBlock *BB = BI->getParent(); 1720 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1721 // NOTE: we currently cannot transform this case if the PHI node is used 1722 // outside of the block. 1723 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1724 return false; 1725 1726 // Degenerate case of a single entry PHI. 1727 if (PN->getNumIncomingValues() == 1) { 1728 FoldSingleEntryPHINodes(PN->getParent()); 1729 return true; 1730 } 1731 1732 // Now we know that this block has multiple preds and two succs. 1733 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1734 1735 // Can't fold blocks that contain noduplicate or convergent calls. 1736 if (llvm::any_of(*BB, [](const Instruction &I) { 1737 const CallInst *CI = dyn_cast<CallInst>(&I); 1738 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 1739 })) 1740 return false; 1741 1742 // Okay, this is a simple enough basic block. See if any phi values are 1743 // constants. 1744 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1745 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1746 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1747 1748 // Okay, we now know that all edges from PredBB should be revectored to 1749 // branch to RealDest. 1750 BasicBlock *PredBB = PN->getIncomingBlock(i); 1751 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1752 1753 if (RealDest == BB) continue; // Skip self loops. 1754 // Skip if the predecessor's terminator is an indirect branch. 1755 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1756 1757 // The dest block might have PHI nodes, other predecessors and other 1758 // difficult cases. Instead of being smart about this, just insert a new 1759 // block that jumps to the destination block, effectively splitting 1760 // the edge we are about to create. 1761 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1762 RealDest->getName()+".critedge", 1763 RealDest->getParent(), RealDest); 1764 BranchInst::Create(RealDest, EdgeBB); 1765 1766 // Update PHI nodes. 1767 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1768 1769 // BB may have instructions that are being threaded over. Clone these 1770 // instructions into EdgeBB. We know that there will be no uses of the 1771 // cloned instructions outside of EdgeBB. 1772 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1773 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1774 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1775 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1776 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1777 continue; 1778 } 1779 // Clone the instruction. 1780 Instruction *N = BBI->clone(); 1781 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1782 1783 // Update operands due to translation. 1784 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1785 i != e; ++i) { 1786 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1787 if (PI != TranslateMap.end()) 1788 *i = PI->second; 1789 } 1790 1791 // Check for trivial simplification. 1792 if (Value *V = SimplifyInstruction(N, DL)) { 1793 TranslateMap[&*BBI] = V; 1794 delete N; // Instruction folded away, don't need actual inst 1795 } else { 1796 // Insert the new instruction into its new home. 1797 EdgeBB->getInstList().insert(InsertPt, N); 1798 if (!BBI->use_empty()) 1799 TranslateMap[&*BBI] = N; 1800 } 1801 } 1802 1803 // Loop over all of the edges from PredBB to BB, changing them to branch 1804 // to EdgeBB instead. 1805 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1806 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1807 if (PredBBTI->getSuccessor(i) == BB) { 1808 BB->removePredecessor(PredBB); 1809 PredBBTI->setSuccessor(i, EdgeBB); 1810 } 1811 1812 // Recurse, simplifying any other constants. 1813 return FoldCondBranchOnPHI(BI, DL) | true; 1814 } 1815 1816 return false; 1817 } 1818 1819 /// Given a BB that starts with the specified two-entry PHI node, 1820 /// see if we can eliminate it. 1821 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 1822 const DataLayout &DL) { 1823 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1824 // statement", which has a very simple dominance structure. Basically, we 1825 // are trying to find the condition that is being branched on, which 1826 // subsequently causes this merge to happen. We really want control 1827 // dependence information for this check, but simplifycfg can't keep it up 1828 // to date, and this catches most of the cases we care about anyway. 1829 BasicBlock *BB = PN->getParent(); 1830 BasicBlock *IfTrue, *IfFalse; 1831 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1832 if (!IfCond || 1833 // Don't bother if the branch will be constant folded trivially. 1834 isa<ConstantInt>(IfCond)) 1835 return false; 1836 1837 // Okay, we found that we can merge this two-entry phi node into a select. 1838 // Doing so would require us to fold *all* two entry phi nodes in this block. 1839 // At some point this becomes non-profitable (particularly if the target 1840 // doesn't support cmov's). Only do this transformation if there are two or 1841 // fewer PHI nodes in this block. 1842 unsigned NumPhis = 0; 1843 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1844 if (NumPhis > 2) 1845 return false; 1846 1847 // Loop over the PHI's seeing if we can promote them all to select 1848 // instructions. While we are at it, keep track of the instructions 1849 // that need to be moved to the dominating block. 1850 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1851 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1852 MaxCostVal1 = PHINodeFoldingThreshold; 1853 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 1854 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 1855 1856 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1857 PHINode *PN = cast<PHINode>(II++); 1858 if (Value *V = SimplifyInstruction(PN, DL)) { 1859 PN->replaceAllUsesWith(V); 1860 PN->eraseFromParent(); 1861 continue; 1862 } 1863 1864 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1865 MaxCostVal0, TTI) || 1866 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1867 MaxCostVal1, TTI)) 1868 return false; 1869 } 1870 1871 // If we folded the first phi, PN dangles at this point. Refresh it. If 1872 // we ran out of PHIs then we simplified them all. 1873 PN = dyn_cast<PHINode>(BB->begin()); 1874 if (!PN) return true; 1875 1876 // Don't fold i1 branches on PHIs which contain binary operators. These can 1877 // often be turned into switches and other things. 1878 if (PN->getType()->isIntegerTy(1) && 1879 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1880 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1881 isa<BinaryOperator>(IfCond))) 1882 return false; 1883 1884 // If we all PHI nodes are promotable, check to make sure that all 1885 // instructions in the predecessor blocks can be promoted as well. If 1886 // not, we won't be able to get rid of the control flow, so it's not 1887 // worth promoting to select instructions. 1888 BasicBlock *DomBlock = nullptr; 1889 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1890 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1891 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1892 IfBlock1 = nullptr; 1893 } else { 1894 DomBlock = *pred_begin(IfBlock1); 1895 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1896 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1897 // This is not an aggressive instruction that we can promote. 1898 // Because of this, we won't be able to get rid of the control 1899 // flow, so the xform is not worth it. 1900 return false; 1901 } 1902 } 1903 1904 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1905 IfBlock2 = nullptr; 1906 } else { 1907 DomBlock = *pred_begin(IfBlock2); 1908 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1909 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1910 // This is not an aggressive instruction that we can promote. 1911 // Because of this, we won't be able to get rid of the control 1912 // flow, so the xform is not worth it. 1913 return false; 1914 } 1915 } 1916 1917 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1918 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1919 1920 // If we can still promote the PHI nodes after this gauntlet of tests, 1921 // do all of the PHI's now. 1922 Instruction *InsertPt = DomBlock->getTerminator(); 1923 IRBuilder<true, NoFolder> Builder(InsertPt); 1924 1925 // Move all 'aggressive' instructions, which are defined in the 1926 // conditional parts of the if's up to the dominating block. 1927 if (IfBlock1) 1928 DomBlock->getInstList().splice(InsertPt->getIterator(), 1929 IfBlock1->getInstList(), IfBlock1->begin(), 1930 IfBlock1->getTerminator()->getIterator()); 1931 if (IfBlock2) 1932 DomBlock->getInstList().splice(InsertPt->getIterator(), 1933 IfBlock2->getInstList(), IfBlock2->begin(), 1934 IfBlock2->getTerminator()->getIterator()); 1935 1936 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1937 // Change the PHI node into a select instruction. 1938 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1939 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1940 1941 SelectInst *NV = 1942 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1943 PN->replaceAllUsesWith(NV); 1944 NV->takeName(PN); 1945 PN->eraseFromParent(); 1946 } 1947 1948 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1949 // has been flattened. Change DomBlock to jump directly to our new block to 1950 // avoid other simplifycfg's kicking in on the diamond. 1951 TerminatorInst *OldTI = DomBlock->getTerminator(); 1952 Builder.SetInsertPoint(OldTI); 1953 Builder.CreateBr(BB); 1954 OldTI->eraseFromParent(); 1955 return true; 1956 } 1957 1958 /// If we found a conditional branch that goes to two returning blocks, 1959 /// try to merge them together into one return, 1960 /// introducing a select if the return values disagree. 1961 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1962 IRBuilder<> &Builder) { 1963 assert(BI->isConditional() && "Must be a conditional branch"); 1964 BasicBlock *TrueSucc = BI->getSuccessor(0); 1965 BasicBlock *FalseSucc = BI->getSuccessor(1); 1966 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1967 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1968 1969 // Check to ensure both blocks are empty (just a return) or optionally empty 1970 // with PHI nodes. If there are other instructions, merging would cause extra 1971 // computation on one path or the other. 1972 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1973 return false; 1974 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1975 return false; 1976 1977 Builder.SetInsertPoint(BI); 1978 // Okay, we found a branch that is going to two return nodes. If 1979 // there is no return value for this function, just change the 1980 // branch into a return. 1981 if (FalseRet->getNumOperands() == 0) { 1982 TrueSucc->removePredecessor(BI->getParent()); 1983 FalseSucc->removePredecessor(BI->getParent()); 1984 Builder.CreateRetVoid(); 1985 EraseTerminatorInstAndDCECond(BI); 1986 return true; 1987 } 1988 1989 // Otherwise, figure out what the true and false return values are 1990 // so we can insert a new select instruction. 1991 Value *TrueValue = TrueRet->getReturnValue(); 1992 Value *FalseValue = FalseRet->getReturnValue(); 1993 1994 // Unwrap any PHI nodes in the return blocks. 1995 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1996 if (TVPN->getParent() == TrueSucc) 1997 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1998 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1999 if (FVPN->getParent() == FalseSucc) 2000 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2001 2002 // In order for this transformation to be safe, we must be able to 2003 // unconditionally execute both operands to the return. This is 2004 // normally the case, but we could have a potentially-trapping 2005 // constant expression that prevents this transformation from being 2006 // safe. 2007 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2008 if (TCV->canTrap()) 2009 return false; 2010 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2011 if (FCV->canTrap()) 2012 return false; 2013 2014 // Okay, we collected all the mapped values and checked them for sanity, and 2015 // defined to really do this transformation. First, update the CFG. 2016 TrueSucc->removePredecessor(BI->getParent()); 2017 FalseSucc->removePredecessor(BI->getParent()); 2018 2019 // Insert select instructions where needed. 2020 Value *BrCond = BI->getCondition(); 2021 if (TrueValue) { 2022 // Insert a select if the results differ. 2023 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2024 } else if (isa<UndefValue>(TrueValue)) { 2025 TrueValue = FalseValue; 2026 } else { 2027 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 2028 FalseValue, "retval"); 2029 } 2030 } 2031 2032 Value *RI = !TrueValue ? 2033 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2034 2035 (void) RI; 2036 2037 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2038 << "\n " << *BI << "NewRet = " << *RI 2039 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 2040 2041 EraseTerminatorInstAndDCECond(BI); 2042 2043 return true; 2044 } 2045 2046 /// Given a conditional BranchInstruction, retrieve the probabilities of the 2047 /// branch taking each edge. Fills in the two APInt parameters and returns true, 2048 /// or returns false if no or invalid metadata was found. 2049 static bool ExtractBranchMetadata(BranchInst *BI, 2050 uint64_t &ProbTrue, uint64_t &ProbFalse) { 2051 assert(BI->isConditional() && 2052 "Looking for probabilities on unconditional branch?"); 2053 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 2054 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 2055 ConstantInt *CITrue = 2056 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 2057 ConstantInt *CIFalse = 2058 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 2059 if (!CITrue || !CIFalse) return false; 2060 ProbTrue = CITrue->getValue().getZExtValue(); 2061 ProbFalse = CIFalse->getValue().getZExtValue(); 2062 return true; 2063 } 2064 2065 /// Return true if the given instruction is available 2066 /// in its predecessor block. If yes, the instruction will be removed. 2067 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2068 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2069 return false; 2070 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 2071 Instruction *PBI = &*I; 2072 // Check whether Inst and PBI generate the same value. 2073 if (Inst->isIdenticalTo(PBI)) { 2074 Inst->replaceAllUsesWith(PBI); 2075 Inst->eraseFromParent(); 2076 return true; 2077 } 2078 } 2079 return false; 2080 } 2081 2082 /// If this basic block is simple enough, and if a predecessor branches to us 2083 /// and one of our successors, fold the block into the predecessor and use 2084 /// logical operations to pick the right destination. 2085 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2086 BasicBlock *BB = BI->getParent(); 2087 2088 Instruction *Cond = nullptr; 2089 if (BI->isConditional()) 2090 Cond = dyn_cast<Instruction>(BI->getCondition()); 2091 else { 2092 // For unconditional branch, check for a simple CFG pattern, where 2093 // BB has a single predecessor and BB's successor is also its predecessor's 2094 // successor. If such pattern exisits, check for CSE between BB and its 2095 // predecessor. 2096 if (BasicBlock *PB = BB->getSinglePredecessor()) 2097 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2098 if (PBI->isConditional() && 2099 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2100 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2101 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 2102 I != E; ) { 2103 Instruction *Curr = &*I++; 2104 if (isa<CmpInst>(Curr)) { 2105 Cond = Curr; 2106 break; 2107 } 2108 // Quit if we can't remove this instruction. 2109 if (!checkCSEInPredecessor(Curr, PB)) 2110 return false; 2111 } 2112 } 2113 2114 if (!Cond) 2115 return false; 2116 } 2117 2118 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2119 Cond->getParent() != BB || !Cond->hasOneUse()) 2120 return false; 2121 2122 // Make sure the instruction after the condition is the cond branch. 2123 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2124 2125 // Ignore dbg intrinsics. 2126 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2127 2128 if (&*CondIt != BI) 2129 return false; 2130 2131 // Only allow this transformation if computing the condition doesn't involve 2132 // too many instructions and these involved instructions can be executed 2133 // unconditionally. We denote all involved instructions except the condition 2134 // as "bonus instructions", and only allow this transformation when the 2135 // number of the bonus instructions does not exceed a certain threshold. 2136 unsigned NumBonusInsts = 0; 2137 for (auto I = BB->begin(); Cond != &*I; ++I) { 2138 // Ignore dbg intrinsics. 2139 if (isa<DbgInfoIntrinsic>(I)) 2140 continue; 2141 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2142 return false; 2143 // I has only one use and can be executed unconditionally. 2144 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2145 if (User == nullptr || User->getParent() != BB) 2146 return false; 2147 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2148 // to use any other instruction, User must be an instruction between next(I) 2149 // and Cond. 2150 ++NumBonusInsts; 2151 // Early exits once we reach the limit. 2152 if (NumBonusInsts > BonusInstThreshold) 2153 return false; 2154 } 2155 2156 // Cond is known to be a compare or binary operator. Check to make sure that 2157 // neither operand is a potentially-trapping constant expression. 2158 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2159 if (CE->canTrap()) 2160 return false; 2161 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2162 if (CE->canTrap()) 2163 return false; 2164 2165 // Finally, don't infinitely unroll conditional loops. 2166 BasicBlock *TrueDest = BI->getSuccessor(0); 2167 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2168 if (TrueDest == BB || FalseDest == BB) 2169 return false; 2170 2171 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2172 BasicBlock *PredBlock = *PI; 2173 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2174 2175 // Check that we have two conditional branches. If there is a PHI node in 2176 // the common successor, verify that the same value flows in from both 2177 // blocks. 2178 SmallVector<PHINode*, 4> PHIs; 2179 if (!PBI || PBI->isUnconditional() || 2180 (BI->isConditional() && 2181 !SafeToMergeTerminators(BI, PBI)) || 2182 (!BI->isConditional() && 2183 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2184 continue; 2185 2186 // Determine if the two branches share a common destination. 2187 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2188 bool InvertPredCond = false; 2189 2190 if (BI->isConditional()) { 2191 if (PBI->getSuccessor(0) == TrueDest) { 2192 Opc = Instruction::Or; 2193 } else if (PBI->getSuccessor(1) == FalseDest) { 2194 Opc = Instruction::And; 2195 } else if (PBI->getSuccessor(0) == FalseDest) { 2196 Opc = Instruction::And; 2197 InvertPredCond = true; 2198 } else if (PBI->getSuccessor(1) == TrueDest) { 2199 Opc = Instruction::Or; 2200 InvertPredCond = true; 2201 } else { 2202 continue; 2203 } 2204 } else { 2205 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2206 continue; 2207 } 2208 2209 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2210 IRBuilder<> Builder(PBI); 2211 2212 // If we need to invert the condition in the pred block to match, do so now. 2213 if (InvertPredCond) { 2214 Value *NewCond = PBI->getCondition(); 2215 2216 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2217 CmpInst *CI = cast<CmpInst>(NewCond); 2218 CI->setPredicate(CI->getInversePredicate()); 2219 } else { 2220 NewCond = Builder.CreateNot(NewCond, 2221 PBI->getCondition()->getName()+".not"); 2222 } 2223 2224 PBI->setCondition(NewCond); 2225 PBI->swapSuccessors(); 2226 } 2227 2228 // If we have bonus instructions, clone them into the predecessor block. 2229 // Note that there may be multiple predecessor blocks, so we cannot move 2230 // bonus instructions to a predecessor block. 2231 ValueToValueMapTy VMap; // maps original values to cloned values 2232 // We already make sure Cond is the last instruction before BI. Therefore, 2233 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2234 // instructions. 2235 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2236 if (isa<DbgInfoIntrinsic>(BonusInst)) 2237 continue; 2238 Instruction *NewBonusInst = BonusInst->clone(); 2239 RemapInstruction(NewBonusInst, VMap, 2240 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2241 VMap[&*BonusInst] = NewBonusInst; 2242 2243 // If we moved a load, we cannot any longer claim any knowledge about 2244 // its potential value. The previous information might have been valid 2245 // only given the branch precondition. 2246 // For an analogous reason, we must also drop all the metadata whose 2247 // semantics we don't understand. 2248 NewBonusInst->dropUnknownNonDebugMetadata(); 2249 2250 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2251 NewBonusInst->takeName(&*BonusInst); 2252 BonusInst->setName(BonusInst->getName() + ".old"); 2253 } 2254 2255 // Clone Cond into the predecessor basic block, and or/and the 2256 // two conditions together. 2257 Instruction *New = Cond->clone(); 2258 RemapInstruction(New, VMap, 2259 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2260 PredBlock->getInstList().insert(PBI->getIterator(), New); 2261 New->takeName(Cond); 2262 Cond->setName(New->getName() + ".old"); 2263 2264 if (BI->isConditional()) { 2265 Instruction *NewCond = 2266 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2267 New, "or.cond")); 2268 PBI->setCondition(NewCond); 2269 2270 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2271 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2272 PredFalseWeight); 2273 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2274 SuccFalseWeight); 2275 SmallVector<uint64_t, 8> NewWeights; 2276 2277 if (PBI->getSuccessor(0) == BB) { 2278 if (PredHasWeights && SuccHasWeights) { 2279 // PBI: br i1 %x, BB, FalseDest 2280 // BI: br i1 %y, TrueDest, FalseDest 2281 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2282 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2283 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2284 // TrueWeight for PBI * FalseWeight for BI. 2285 // We assume that total weights of a BranchInst can fit into 32 bits. 2286 // Therefore, we will not have overflow using 64-bit arithmetic. 2287 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2288 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2289 } 2290 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2291 PBI->setSuccessor(0, TrueDest); 2292 } 2293 if (PBI->getSuccessor(1) == BB) { 2294 if (PredHasWeights && SuccHasWeights) { 2295 // PBI: br i1 %x, TrueDest, BB 2296 // BI: br i1 %y, TrueDest, FalseDest 2297 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2298 // FalseWeight for PBI * TrueWeight for BI. 2299 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2300 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2301 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2302 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2303 } 2304 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2305 PBI->setSuccessor(1, FalseDest); 2306 } 2307 if (NewWeights.size() == 2) { 2308 // Halve the weights if any of them cannot fit in an uint32_t 2309 FitWeights(NewWeights); 2310 2311 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2312 PBI->setMetadata(LLVMContext::MD_prof, 2313 MDBuilder(BI->getContext()). 2314 createBranchWeights(MDWeights)); 2315 } else 2316 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2317 } else { 2318 // Update PHI nodes in the common successors. 2319 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2320 ConstantInt *PBI_C = cast<ConstantInt>( 2321 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2322 assert(PBI_C->getType()->isIntegerTy(1)); 2323 Instruction *MergedCond = nullptr; 2324 if (PBI->getSuccessor(0) == TrueDest) { 2325 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2326 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2327 // is false: !PBI_Cond and BI_Value 2328 Instruction *NotCond = 2329 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2330 "not.cond")); 2331 MergedCond = 2332 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2333 NotCond, New, 2334 "and.cond")); 2335 if (PBI_C->isOne()) 2336 MergedCond = 2337 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2338 PBI->getCondition(), MergedCond, 2339 "or.cond")); 2340 } else { 2341 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2342 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2343 // is false: PBI_Cond and BI_Value 2344 MergedCond = 2345 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2346 PBI->getCondition(), New, 2347 "and.cond")); 2348 if (PBI_C->isOne()) { 2349 Instruction *NotCond = 2350 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2351 "not.cond")); 2352 MergedCond = 2353 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2354 NotCond, MergedCond, 2355 "or.cond")); 2356 } 2357 } 2358 // Update PHI Node. 2359 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2360 MergedCond); 2361 } 2362 // Change PBI from Conditional to Unconditional. 2363 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2364 EraseTerminatorInstAndDCECond(PBI); 2365 PBI = New_PBI; 2366 } 2367 2368 // TODO: If BB is reachable from all paths through PredBlock, then we 2369 // could replace PBI's branch probabilities with BI's. 2370 2371 // Copy any debug value intrinsics into the end of PredBlock. 2372 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2373 if (isa<DbgInfoIntrinsic>(*I)) 2374 I->clone()->insertBefore(PBI); 2375 2376 return true; 2377 } 2378 return false; 2379 } 2380 2381 // If there is only one store in BB1 and BB2, return it, otherwise return 2382 // nullptr. 2383 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2384 StoreInst *S = nullptr; 2385 for (auto *BB : {BB1, BB2}) { 2386 if (!BB) 2387 continue; 2388 for (auto &I : *BB) 2389 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2390 if (S) 2391 // Multiple stores seen. 2392 return nullptr; 2393 else 2394 S = SI; 2395 } 2396 } 2397 return S; 2398 } 2399 2400 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2401 Value *AlternativeV = nullptr) { 2402 // PHI is going to be a PHI node that allows the value V that is defined in 2403 // BB to be referenced in BB's only successor. 2404 // 2405 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2406 // doesn't matter to us what the other operand is (it'll never get used). We 2407 // could just create a new PHI with an undef incoming value, but that could 2408 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2409 // other PHI. So here we directly look for some PHI in BB's successor with V 2410 // as an incoming operand. If we find one, we use it, else we create a new 2411 // one. 2412 // 2413 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2414 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2415 // where OtherBB is the single other predecessor of BB's only successor. 2416 PHINode *PHI = nullptr; 2417 BasicBlock *Succ = BB->getSingleSuccessor(); 2418 2419 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2420 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2421 PHI = cast<PHINode>(I); 2422 if (!AlternativeV) 2423 break; 2424 2425 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2426 auto PredI = pred_begin(Succ); 2427 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2428 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2429 break; 2430 PHI = nullptr; 2431 } 2432 if (PHI) 2433 return PHI; 2434 2435 // If V is not an instruction defined in BB, just return it. 2436 if (!AlternativeV && 2437 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2438 return V; 2439 2440 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2441 PHI->addIncoming(V, BB); 2442 for (BasicBlock *PredBB : predecessors(Succ)) 2443 if (PredBB != BB) 2444 PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()), 2445 PredBB); 2446 return PHI; 2447 } 2448 2449 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2450 BasicBlock *QTB, BasicBlock *QFB, 2451 BasicBlock *PostBB, Value *Address, 2452 bool InvertPCond, bool InvertQCond) { 2453 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2454 return Operator::getOpcode(&I) == Instruction::BitCast && 2455 I.getType()->isPointerTy(); 2456 }; 2457 2458 // If we're not in aggressive mode, we only optimize if we have some 2459 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2460 auto IsWorthwhile = [&](BasicBlock *BB) { 2461 if (!BB) 2462 return true; 2463 // Heuristic: if the block can be if-converted/phi-folded and the 2464 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2465 // thread this store. 2466 unsigned N = 0; 2467 for (auto &I : *BB) { 2468 // Cheap instructions viable for folding. 2469 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2470 isa<StoreInst>(I)) 2471 ++N; 2472 // Free instructions. 2473 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2474 IsaBitcastOfPointerType(I)) 2475 continue; 2476 else 2477 return false; 2478 } 2479 return N <= PHINodeFoldingThreshold; 2480 }; 2481 2482 if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) || 2483 !IsWorthwhile(PFB) || 2484 !IsWorthwhile(QTB) || 2485 !IsWorthwhile(QFB))) 2486 return false; 2487 2488 // For every pointer, there must be exactly two stores, one coming from 2489 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2490 // store (to any address) in PTB,PFB or QTB,QFB. 2491 // FIXME: We could relax this restriction with a bit more work and performance 2492 // testing. 2493 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2494 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2495 if (!PStore || !QStore) 2496 return false; 2497 2498 // Now check the stores are compatible. 2499 if (!QStore->isUnordered() || !PStore->isUnordered()) 2500 return false; 2501 2502 // Check that sinking the store won't cause program behavior changes. Sinking 2503 // the store out of the Q blocks won't change any behavior as we're sinking 2504 // from a block to its unconditional successor. But we're moving a store from 2505 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2506 // So we need to check that there are no aliasing loads or stores in 2507 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2508 // operations between PStore and the end of its parent block. 2509 // 2510 // The ideal way to do this is to query AliasAnalysis, but we don't 2511 // preserve AA currently so that is dangerous. Be super safe and just 2512 // check there are no other memory operations at all. 2513 for (auto &I : *QFB->getSinglePredecessor()) 2514 if (I.mayReadOrWriteMemory()) 2515 return false; 2516 for (auto &I : *QFB) 2517 if (&I != QStore && I.mayReadOrWriteMemory()) 2518 return false; 2519 if (QTB) 2520 for (auto &I : *QTB) 2521 if (&I != QStore && I.mayReadOrWriteMemory()) 2522 return false; 2523 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2524 I != E; ++I) 2525 if (&*I != PStore && I->mayReadOrWriteMemory()) 2526 return false; 2527 2528 // OK, we're going to sink the stores to PostBB. The store has to be 2529 // conditional though, so first create the predicate. 2530 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2531 ->getCondition(); 2532 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2533 ->getCondition(); 2534 2535 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2536 PStore->getParent()); 2537 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2538 QStore->getParent(), PPHI); 2539 2540 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2541 2542 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2543 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2544 2545 if (InvertPCond) 2546 PPred = QB.CreateNot(PPred); 2547 if (InvertQCond) 2548 QPred = QB.CreateNot(QPred); 2549 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2550 2551 auto *T = 2552 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2553 QB.SetInsertPoint(T); 2554 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2555 AAMDNodes AAMD; 2556 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2557 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2558 SI->setAAMetadata(AAMD); 2559 2560 QStore->eraseFromParent(); 2561 PStore->eraseFromParent(); 2562 2563 return true; 2564 } 2565 2566 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2567 // The intention here is to find diamonds or triangles (see below) where each 2568 // conditional block contains a store to the same address. Both of these 2569 // stores are conditional, so they can't be unconditionally sunk. But it may 2570 // be profitable to speculatively sink the stores into one merged store at the 2571 // end, and predicate the merged store on the union of the two conditions of 2572 // PBI and QBI. 2573 // 2574 // This can reduce the number of stores executed if both of the conditions are 2575 // true, and can allow the blocks to become small enough to be if-converted. 2576 // This optimization will also chain, so that ladders of test-and-set 2577 // sequences can be if-converted away. 2578 // 2579 // We only deal with simple diamonds or triangles: 2580 // 2581 // PBI or PBI or a combination of the two 2582 // / \ | \ 2583 // PTB PFB | PFB 2584 // \ / | / 2585 // QBI QBI 2586 // / \ | \ 2587 // QTB QFB | QFB 2588 // \ / | / 2589 // PostBB PostBB 2590 // 2591 // We model triangles as a type of diamond with a nullptr "true" block. 2592 // Triangles are canonicalized so that the fallthrough edge is represented by 2593 // a true condition, as in the diagram above. 2594 // 2595 BasicBlock *PTB = PBI->getSuccessor(0); 2596 BasicBlock *PFB = PBI->getSuccessor(1); 2597 BasicBlock *QTB = QBI->getSuccessor(0); 2598 BasicBlock *QFB = QBI->getSuccessor(1); 2599 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2600 2601 bool InvertPCond = false, InvertQCond = false; 2602 // Canonicalize fallthroughs to the true branches. 2603 if (PFB == QBI->getParent()) { 2604 std::swap(PFB, PTB); 2605 InvertPCond = true; 2606 } 2607 if (QFB == PostBB) { 2608 std::swap(QFB, QTB); 2609 InvertQCond = true; 2610 } 2611 2612 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2613 // and QFB may not. Model fallthroughs as a nullptr block. 2614 if (PTB == QBI->getParent()) 2615 PTB = nullptr; 2616 if (QTB == PostBB) 2617 QTB = nullptr; 2618 2619 // Legality bailouts. We must have at least the non-fallthrough blocks and 2620 // the post-dominating block, and the non-fallthroughs must only have one 2621 // predecessor. 2622 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 2623 return BB->getSinglePredecessor() == P && 2624 BB->getSingleSuccessor() == S; 2625 }; 2626 if (!PostBB || 2627 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 2628 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 2629 return false; 2630 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 2631 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 2632 return false; 2633 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 2634 return false; 2635 2636 // OK, this is a sequence of two diamonds or triangles. 2637 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 2638 SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses; 2639 for (auto *BB : {PTB, PFB}) { 2640 if (!BB) 2641 continue; 2642 for (auto &I : *BB) 2643 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2644 PStoreAddresses.insert(SI->getPointerOperand()); 2645 } 2646 for (auto *BB : {QTB, QFB}) { 2647 if (!BB) 2648 continue; 2649 for (auto &I : *BB) 2650 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2651 QStoreAddresses.insert(SI->getPointerOperand()); 2652 } 2653 2654 set_intersect(PStoreAddresses, QStoreAddresses); 2655 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 2656 // clear what it contains. 2657 auto &CommonAddresses = PStoreAddresses; 2658 2659 bool Changed = false; 2660 for (auto *Address : CommonAddresses) 2661 Changed |= mergeConditionalStoreToAddress( 2662 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 2663 return Changed; 2664 } 2665 2666 /// If we have a conditional branch as a predecessor of another block, 2667 /// this function tries to simplify it. We know 2668 /// that PBI and BI are both conditional branches, and BI is in one of the 2669 /// successor blocks of PBI - PBI branches to BI. 2670 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 2671 const DataLayout &DL) { 2672 assert(PBI->isConditional() && BI->isConditional()); 2673 BasicBlock *BB = BI->getParent(); 2674 2675 // If this block ends with a branch instruction, and if there is a 2676 // predecessor that ends on a branch of the same condition, make 2677 // this conditional branch redundant. 2678 if (PBI->getCondition() == BI->getCondition() && 2679 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2680 // Okay, the outcome of this conditional branch is statically 2681 // knowable. If this block had a single pred, handle specially. 2682 if (BB->getSinglePredecessor()) { 2683 // Turn this into a branch on constant. 2684 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2685 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2686 CondIsTrue)); 2687 return true; // Nuke the branch on constant. 2688 } 2689 2690 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2691 // in the constant and simplify the block result. Subsequent passes of 2692 // simplifycfg will thread the block. 2693 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2694 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2695 PHINode *NewPN = PHINode::Create( 2696 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 2697 BI->getCondition()->getName() + ".pr", &BB->front()); 2698 // Okay, we're going to insert the PHI node. Since PBI is not the only 2699 // predecessor, compute the PHI'd conditional value for all of the preds. 2700 // Any predecessor where the condition is not computable we keep symbolic. 2701 for (pred_iterator PI = PB; PI != PE; ++PI) { 2702 BasicBlock *P = *PI; 2703 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2704 PBI != BI && PBI->isConditional() && 2705 PBI->getCondition() == BI->getCondition() && 2706 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2707 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2708 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2709 CondIsTrue), P); 2710 } else { 2711 NewPN->addIncoming(BI->getCondition(), P); 2712 } 2713 } 2714 2715 BI->setCondition(NewPN); 2716 return true; 2717 } 2718 } 2719 2720 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2721 if (CE->canTrap()) 2722 return false; 2723 2724 // If BI is reached from the true path of PBI and PBI's condition implies 2725 // BI's condition, we know the direction of the BI branch. 2726 if (PBI->getSuccessor(0) == BI->getParent() && 2727 isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL) && 2728 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 2729 BB->getSinglePredecessor()) { 2730 // Turn this into a branch on constant. 2731 auto *OldCond = BI->getCondition(); 2732 BI->setCondition(ConstantInt::getTrue(BB->getContext())); 2733 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 2734 return true; // Nuke the branch on constant. 2735 } 2736 2737 // If both branches are conditional and both contain stores to the same 2738 // address, remove the stores from the conditionals and create a conditional 2739 // merged store at the end. 2740 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 2741 return true; 2742 2743 // If this is a conditional branch in an empty block, and if any 2744 // predecessors are a conditional branch to one of our destinations, 2745 // fold the conditions into logical ops and one cond br. 2746 BasicBlock::iterator BBI = BB->begin(); 2747 // Ignore dbg intrinsics. 2748 while (isa<DbgInfoIntrinsic>(BBI)) 2749 ++BBI; 2750 if (&*BBI != BI) 2751 return false; 2752 2753 int PBIOp, BIOp; 2754 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 2755 PBIOp = 0; 2756 BIOp = 0; 2757 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 2758 PBIOp = 0; 2759 BIOp = 1; 2760 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 2761 PBIOp = 1; 2762 BIOp = 0; 2763 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 2764 PBIOp = 1; 2765 BIOp = 1; 2766 } else { 2767 return false; 2768 } 2769 2770 // Check to make sure that the other destination of this branch 2771 // isn't BB itself. If so, this is an infinite loop that will 2772 // keep getting unwound. 2773 if (PBI->getSuccessor(PBIOp) == BB) 2774 return false; 2775 2776 // Do not perform this transformation if it would require 2777 // insertion of a large number of select instructions. For targets 2778 // without predication/cmovs, this is a big pessimization. 2779 2780 // Also do not perform this transformation if any phi node in the common 2781 // destination block can trap when reached by BB or PBB (PR17073). In that 2782 // case, it would be unsafe to hoist the operation into a select instruction. 2783 2784 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2785 unsigned NumPhis = 0; 2786 for (BasicBlock::iterator II = CommonDest->begin(); 2787 isa<PHINode>(II); ++II, ++NumPhis) { 2788 if (NumPhis > 2) // Disable this xform. 2789 return false; 2790 2791 PHINode *PN = cast<PHINode>(II); 2792 Value *BIV = PN->getIncomingValueForBlock(BB); 2793 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2794 if (CE->canTrap()) 2795 return false; 2796 2797 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2798 Value *PBIV = PN->getIncomingValue(PBBIdx); 2799 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2800 if (CE->canTrap()) 2801 return false; 2802 } 2803 2804 // Finally, if everything is ok, fold the branches to logical ops. 2805 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2806 2807 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2808 << "AND: " << *BI->getParent()); 2809 2810 2811 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2812 // branch in it, where one edge (OtherDest) goes back to itself but the other 2813 // exits. We don't *know* that the program avoids the infinite loop 2814 // (even though that seems likely). If we do this xform naively, we'll end up 2815 // recursively unpeeling the loop. Since we know that (after the xform is 2816 // done) that the block *is* infinite if reached, we just make it an obviously 2817 // infinite loop with no cond branch. 2818 if (OtherDest == BB) { 2819 // Insert it at the end of the function, because it's either code, 2820 // or it won't matter if it's hot. :) 2821 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2822 "infloop", BB->getParent()); 2823 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2824 OtherDest = InfLoopBlock; 2825 } 2826 2827 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2828 2829 // BI may have other predecessors. Because of this, we leave 2830 // it alone, but modify PBI. 2831 2832 // Make sure we get to CommonDest on True&True directions. 2833 Value *PBICond = PBI->getCondition(); 2834 IRBuilder<true, NoFolder> Builder(PBI); 2835 if (PBIOp) 2836 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2837 2838 Value *BICond = BI->getCondition(); 2839 if (BIOp) 2840 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2841 2842 // Merge the conditions. 2843 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2844 2845 // Modify PBI to branch on the new condition to the new dests. 2846 PBI->setCondition(Cond); 2847 PBI->setSuccessor(0, CommonDest); 2848 PBI->setSuccessor(1, OtherDest); 2849 2850 // Update branch weight for PBI. 2851 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2852 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2853 PredFalseWeight); 2854 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2855 SuccFalseWeight); 2856 if (PredHasWeights && SuccHasWeights) { 2857 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2858 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2859 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2860 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2861 // The weight to CommonDest should be PredCommon * SuccTotal + 2862 // PredOther * SuccCommon. 2863 // The weight to OtherDest should be PredOther * SuccOther. 2864 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 2865 PredOther * SuccCommon, 2866 PredOther * SuccOther}; 2867 // Halve the weights if any of them cannot fit in an uint32_t 2868 FitWeights(NewWeights); 2869 2870 PBI->setMetadata(LLVMContext::MD_prof, 2871 MDBuilder(BI->getContext()) 2872 .createBranchWeights(NewWeights[0], NewWeights[1])); 2873 } 2874 2875 // OtherDest may have phi nodes. If so, add an entry from PBI's 2876 // block that are identical to the entries for BI's block. 2877 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2878 2879 // We know that the CommonDest already had an edge from PBI to 2880 // it. If it has PHIs though, the PHIs may have different 2881 // entries for BB and PBI's BB. If so, insert a select to make 2882 // them agree. 2883 PHINode *PN; 2884 for (BasicBlock::iterator II = CommonDest->begin(); 2885 (PN = dyn_cast<PHINode>(II)); ++II) { 2886 Value *BIV = PN->getIncomingValueForBlock(BB); 2887 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2888 Value *PBIV = PN->getIncomingValue(PBBIdx); 2889 if (BIV != PBIV) { 2890 // Insert a select in PBI to pick the right value. 2891 Value *NV = cast<SelectInst> 2892 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2893 PN->setIncomingValue(PBBIdx, NV); 2894 } 2895 } 2896 2897 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2898 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2899 2900 // This basic block is probably dead. We know it has at least 2901 // one fewer predecessor. 2902 return true; 2903 } 2904 2905 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 2906 // true or to FalseBB if Cond is false. 2907 // Takes care of updating the successors and removing the old terminator. 2908 // Also makes sure not to introduce new successors by assuming that edges to 2909 // non-successor TrueBBs and FalseBBs aren't reachable. 2910 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2911 BasicBlock *TrueBB, BasicBlock *FalseBB, 2912 uint32_t TrueWeight, 2913 uint32_t FalseWeight){ 2914 // Remove any superfluous successor edges from the CFG. 2915 // First, figure out which successors to preserve. 2916 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2917 // successor. 2918 BasicBlock *KeepEdge1 = TrueBB; 2919 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2920 2921 // Then remove the rest. 2922 for (BasicBlock *Succ : OldTerm->successors()) { 2923 // Make sure only to keep exactly one copy of each edge. 2924 if (Succ == KeepEdge1) 2925 KeepEdge1 = nullptr; 2926 else if (Succ == KeepEdge2) 2927 KeepEdge2 = nullptr; 2928 else 2929 Succ->removePredecessor(OldTerm->getParent(), 2930 /*DontDeleteUselessPHIs=*/true); 2931 } 2932 2933 IRBuilder<> Builder(OldTerm); 2934 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2935 2936 // Insert an appropriate new terminator. 2937 if (!KeepEdge1 && !KeepEdge2) { 2938 if (TrueBB == FalseBB) 2939 // We were only looking for one successor, and it was present. 2940 // Create an unconditional branch to it. 2941 Builder.CreateBr(TrueBB); 2942 else { 2943 // We found both of the successors we were looking for. 2944 // Create a conditional branch sharing the condition of the select. 2945 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2946 if (TrueWeight != FalseWeight) 2947 NewBI->setMetadata(LLVMContext::MD_prof, 2948 MDBuilder(OldTerm->getContext()). 2949 createBranchWeights(TrueWeight, FalseWeight)); 2950 } 2951 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2952 // Neither of the selected blocks were successors, so this 2953 // terminator must be unreachable. 2954 new UnreachableInst(OldTerm->getContext(), OldTerm); 2955 } else { 2956 // One of the selected values was a successor, but the other wasn't. 2957 // Insert an unconditional branch to the one that was found; 2958 // the edge to the one that wasn't must be unreachable. 2959 if (!KeepEdge1) 2960 // Only TrueBB was found. 2961 Builder.CreateBr(TrueBB); 2962 else 2963 // Only FalseBB was found. 2964 Builder.CreateBr(FalseBB); 2965 } 2966 2967 EraseTerminatorInstAndDCECond(OldTerm); 2968 return true; 2969 } 2970 2971 // Replaces 2972 // (switch (select cond, X, Y)) on constant X, Y 2973 // with a branch - conditional if X and Y lead to distinct BBs, 2974 // unconditional otherwise. 2975 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2976 // Check for constant integer values in the select. 2977 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2978 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2979 if (!TrueVal || !FalseVal) 2980 return false; 2981 2982 // Find the relevant condition and destinations. 2983 Value *Condition = Select->getCondition(); 2984 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2985 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2986 2987 // Get weight for TrueBB and FalseBB. 2988 uint32_t TrueWeight = 0, FalseWeight = 0; 2989 SmallVector<uint64_t, 8> Weights; 2990 bool HasWeights = HasBranchWeights(SI); 2991 if (HasWeights) { 2992 GetBranchWeights(SI, Weights); 2993 if (Weights.size() == 1 + SI->getNumCases()) { 2994 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2995 getSuccessorIndex()]; 2996 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2997 getSuccessorIndex()]; 2998 } 2999 } 3000 3001 // Perform the actual simplification. 3002 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 3003 TrueWeight, FalseWeight); 3004 } 3005 3006 // Replaces 3007 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3008 // blockaddress(@fn, BlockB))) 3009 // with 3010 // (br cond, BlockA, BlockB). 3011 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3012 // Check that both operands of the select are block addresses. 3013 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3014 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3015 if (!TBA || !FBA) 3016 return false; 3017 3018 // Extract the actual blocks. 3019 BasicBlock *TrueBB = TBA->getBasicBlock(); 3020 BasicBlock *FalseBB = FBA->getBasicBlock(); 3021 3022 // Perform the actual simplification. 3023 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 3024 0, 0); 3025 } 3026 3027 /// This is called when we find an icmp instruction 3028 /// (a seteq/setne with a constant) as the only instruction in a 3029 /// block that ends with an uncond branch. We are looking for a very specific 3030 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3031 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3032 /// default value goes to an uncond block with a seteq in it, we get something 3033 /// like: 3034 /// 3035 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3036 /// DEFAULT: 3037 /// %tmp = icmp eq i8 %A, 92 3038 /// br label %end 3039 /// end: 3040 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3041 /// 3042 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3043 /// the PHI, merging the third icmp into the switch. 3044 static bool TryToSimplifyUncondBranchWithICmpInIt( 3045 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3046 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3047 AssumptionCache *AC) { 3048 BasicBlock *BB = ICI->getParent(); 3049 3050 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3051 // complex. 3052 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 3053 3054 Value *V = ICI->getOperand(0); 3055 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3056 3057 // The pattern we're looking for is where our only predecessor is a switch on 3058 // 'V' and this block is the default case for the switch. In this case we can 3059 // fold the compared value into the switch to simplify things. 3060 BasicBlock *Pred = BB->getSinglePredecessor(); 3061 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 3062 3063 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3064 if (SI->getCondition() != V) 3065 return false; 3066 3067 // If BB is reachable on a non-default case, then we simply know the value of 3068 // V in this block. Substitute it and constant fold the icmp instruction 3069 // away. 3070 if (SI->getDefaultDest() != BB) { 3071 ConstantInt *VVal = SI->findCaseDest(BB); 3072 assert(VVal && "Should have a unique destination value"); 3073 ICI->setOperand(0, VVal); 3074 3075 if (Value *V = SimplifyInstruction(ICI, DL)) { 3076 ICI->replaceAllUsesWith(V); 3077 ICI->eraseFromParent(); 3078 } 3079 // BB is now empty, so it is likely to simplify away. 3080 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3081 } 3082 3083 // Ok, the block is reachable from the default dest. If the constant we're 3084 // comparing exists in one of the other edges, then we can constant fold ICI 3085 // and zap it. 3086 if (SI->findCaseValue(Cst) != SI->case_default()) { 3087 Value *V; 3088 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3089 V = ConstantInt::getFalse(BB->getContext()); 3090 else 3091 V = ConstantInt::getTrue(BB->getContext()); 3092 3093 ICI->replaceAllUsesWith(V); 3094 ICI->eraseFromParent(); 3095 // BB is now empty, so it is likely to simplify away. 3096 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3097 } 3098 3099 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3100 // the block. 3101 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3102 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3103 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3104 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3105 return false; 3106 3107 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3108 // true in the PHI. 3109 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3110 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3111 3112 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3113 std::swap(DefaultCst, NewCst); 3114 3115 // Replace ICI (which is used by the PHI for the default value) with true or 3116 // false depending on if it is EQ or NE. 3117 ICI->replaceAllUsesWith(DefaultCst); 3118 ICI->eraseFromParent(); 3119 3120 // Okay, the switch goes to this block on a default value. Add an edge from 3121 // the switch to the merge point on the compared value. 3122 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 3123 BB->getParent(), BB); 3124 SmallVector<uint64_t, 8> Weights; 3125 bool HasWeights = HasBranchWeights(SI); 3126 if (HasWeights) { 3127 GetBranchWeights(SI, Weights); 3128 if (Weights.size() == 1 + SI->getNumCases()) { 3129 // Split weight for default case to case for "Cst". 3130 Weights[0] = (Weights[0]+1) >> 1; 3131 Weights.push_back(Weights[0]); 3132 3133 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3134 SI->setMetadata(LLVMContext::MD_prof, 3135 MDBuilder(SI->getContext()). 3136 createBranchWeights(MDWeights)); 3137 } 3138 } 3139 SI->addCase(Cst, NewBB); 3140 3141 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3142 Builder.SetInsertPoint(NewBB); 3143 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3144 Builder.CreateBr(SuccBlock); 3145 PHIUse->addIncoming(NewCst, NewBB); 3146 return true; 3147 } 3148 3149 /// The specified branch is a conditional branch. 3150 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3151 /// fold it into a switch instruction if so. 3152 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3153 const DataLayout &DL) { 3154 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3155 if (!Cond) return false; 3156 3157 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3158 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3159 // 'setne's and'ed together, collect them. 3160 3161 // Try to gather values from a chain of and/or to be turned into a switch 3162 ConstantComparesGatherer ConstantCompare(Cond, DL); 3163 // Unpack the result 3164 SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals; 3165 Value *CompVal = ConstantCompare.CompValue; 3166 unsigned UsedICmps = ConstantCompare.UsedICmps; 3167 Value *ExtraCase = ConstantCompare.Extra; 3168 3169 // If we didn't have a multiply compared value, fail. 3170 if (!CompVal) return false; 3171 3172 // Avoid turning single icmps into a switch. 3173 if (UsedICmps <= 1) 3174 return false; 3175 3176 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3177 3178 // There might be duplicate constants in the list, which the switch 3179 // instruction can't handle, remove them now. 3180 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3181 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3182 3183 // If Extra was used, we require at least two switch values to do the 3184 // transformation. A switch with one value is just a conditional branch. 3185 if (ExtraCase && Values.size() < 2) return false; 3186 3187 // TODO: Preserve branch weight metadata, similarly to how 3188 // FoldValueComparisonIntoPredecessors preserves it. 3189 3190 // Figure out which block is which destination. 3191 BasicBlock *DefaultBB = BI->getSuccessor(1); 3192 BasicBlock *EdgeBB = BI->getSuccessor(0); 3193 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 3194 3195 BasicBlock *BB = BI->getParent(); 3196 3197 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3198 << " cases into SWITCH. BB is:\n" << *BB); 3199 3200 // If there are any extra values that couldn't be folded into the switch 3201 // then we evaluate them with an explicit branch first. Split the block 3202 // right before the condbr to handle it. 3203 if (ExtraCase) { 3204 BasicBlock *NewBB = 3205 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3206 // Remove the uncond branch added to the old block. 3207 TerminatorInst *OldTI = BB->getTerminator(); 3208 Builder.SetInsertPoint(OldTI); 3209 3210 if (TrueWhenEqual) 3211 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3212 else 3213 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3214 3215 OldTI->eraseFromParent(); 3216 3217 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3218 // for the edge we just added. 3219 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3220 3221 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3222 << "\nEXTRABB = " << *BB); 3223 BB = NewBB; 3224 } 3225 3226 Builder.SetInsertPoint(BI); 3227 // Convert pointer to int before we switch. 3228 if (CompVal->getType()->isPointerTy()) { 3229 CompVal = Builder.CreatePtrToInt( 3230 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3231 } 3232 3233 // Create the new switch instruction now. 3234 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3235 3236 // Add all of the 'cases' to the switch instruction. 3237 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3238 New->addCase(Values[i], EdgeBB); 3239 3240 // We added edges from PI to the EdgeBB. As such, if there were any 3241 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3242 // the number of edges added. 3243 for (BasicBlock::iterator BBI = EdgeBB->begin(); 3244 isa<PHINode>(BBI); ++BBI) { 3245 PHINode *PN = cast<PHINode>(BBI); 3246 Value *InVal = PN->getIncomingValueForBlock(BB); 3247 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 3248 PN->addIncoming(InVal, BB); 3249 } 3250 3251 // Erase the old branch instruction. 3252 EraseTerminatorInstAndDCECond(BI); 3253 3254 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3255 return true; 3256 } 3257 3258 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3259 if (isa<PHINode>(RI->getValue())) 3260 return SimplifyCommonResume(RI); 3261 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3262 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3263 // The resume must unwind the exception that caused control to branch here. 3264 return SimplifySingleResume(RI); 3265 3266 return false; 3267 } 3268 3269 // Simplify resume that is shared by several landing pads (phi of landing pad). 3270 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3271 BasicBlock *BB = RI->getParent(); 3272 3273 // Check that there are no other instructions except for debug intrinsics 3274 // between the phi of landing pads (RI->getValue()) and resume instruction. 3275 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3276 E = RI->getIterator(); 3277 while (++I != E) 3278 if (!isa<DbgInfoIntrinsic>(I)) 3279 return false; 3280 3281 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3282 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3283 3284 // Check incoming blocks to see if any of them are trivial. 3285 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); 3286 Idx != End; Idx++) { 3287 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3288 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3289 3290 // If the block has other successors, we can not delete it because 3291 // it has other dependents. 3292 if (IncomingBB->getUniqueSuccessor() != BB) 3293 continue; 3294 3295 auto *LandingPad = 3296 dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3297 // Not the landing pad that caused the control to branch here. 3298 if (IncomingValue != LandingPad) 3299 continue; 3300 3301 bool isTrivial = true; 3302 3303 I = IncomingBB->getFirstNonPHI()->getIterator(); 3304 E = IncomingBB->getTerminator()->getIterator(); 3305 while (++I != E) 3306 if (!isa<DbgInfoIntrinsic>(I)) { 3307 isTrivial = false; 3308 break; 3309 } 3310 3311 if (isTrivial) 3312 TrivialUnwindBlocks.insert(IncomingBB); 3313 } 3314 3315 // If no trivial unwind blocks, don't do any simplifications. 3316 if (TrivialUnwindBlocks.empty()) return false; 3317 3318 // Turn all invokes that unwind here into calls. 3319 for (auto *TrivialBB : TrivialUnwindBlocks) { 3320 // Blocks that will be simplified should be removed from the phi node. 3321 // Note there could be multiple edges to the resume block, and we need 3322 // to remove them all. 3323 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3324 BB->removePredecessor(TrivialBB, true); 3325 3326 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3327 PI != PE;) { 3328 BasicBlock *Pred = *PI++; 3329 removeUnwindEdge(Pred); 3330 } 3331 3332 // In each SimplifyCFG run, only the current processed block can be erased. 3333 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3334 // of erasing TrivialBB, we only remove the branch to the common resume 3335 // block so that we can later erase the resume block since it has no 3336 // predecessors. 3337 TrivialBB->getTerminator()->eraseFromParent(); 3338 new UnreachableInst(RI->getContext(), TrivialBB); 3339 } 3340 3341 // Delete the resume block if all its predecessors have been removed. 3342 if (pred_empty(BB)) 3343 BB->eraseFromParent(); 3344 3345 return !TrivialUnwindBlocks.empty(); 3346 } 3347 3348 // Simplify resume that is only used by a single (non-phi) landing pad. 3349 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3350 BasicBlock *BB = RI->getParent(); 3351 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3352 assert (RI->getValue() == LPInst && 3353 "Resume must unwind the exception that caused control to here"); 3354 3355 // Check that there are no other instructions except for debug intrinsics. 3356 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3357 while (++I != E) 3358 if (!isa<DbgInfoIntrinsic>(I)) 3359 return false; 3360 3361 // Turn all invokes that unwind here into calls and delete the basic block. 3362 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3363 BasicBlock *Pred = *PI++; 3364 removeUnwindEdge(Pred); 3365 } 3366 3367 // The landingpad is now unreachable. Zap it. 3368 BB->eraseFromParent(); 3369 return true; 3370 } 3371 3372 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3373 // If this is a trivial cleanup pad that executes no instructions, it can be 3374 // eliminated. If the cleanup pad continues to the caller, any predecessor 3375 // that is an EH pad will be updated to continue to the caller and any 3376 // predecessor that terminates with an invoke instruction will have its invoke 3377 // instruction converted to a call instruction. If the cleanup pad being 3378 // simplified does not continue to the caller, each predecessor will be 3379 // updated to continue to the unwind destination of the cleanup pad being 3380 // simplified. 3381 BasicBlock *BB = RI->getParent(); 3382 CleanupPadInst *CPInst = RI->getCleanupPad(); 3383 if (CPInst->getParent() != BB) 3384 // This isn't an empty cleanup. 3385 return false; 3386 3387 // Check that there are no other instructions except for debug intrinsics. 3388 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3389 while (++I != E) 3390 if (!isa<DbgInfoIntrinsic>(I)) 3391 return false; 3392 3393 // If the cleanup return we are simplifying unwinds to the caller, this will 3394 // set UnwindDest to nullptr. 3395 BasicBlock *UnwindDest = RI->getUnwindDest(); 3396 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3397 3398 // We're about to remove BB from the control flow. Before we do, sink any 3399 // PHINodes into the unwind destination. Doing this before changing the 3400 // control flow avoids some potentially slow checks, since we can currently 3401 // be certain that UnwindDest and BB have no common predecessors (since they 3402 // are both EH pads). 3403 if (UnwindDest) { 3404 // First, go through the PHI nodes in UnwindDest and update any nodes that 3405 // reference the block we are removing 3406 for (BasicBlock::iterator I = UnwindDest->begin(), 3407 IE = DestEHPad->getIterator(); 3408 I != IE; ++I) { 3409 PHINode *DestPN = cast<PHINode>(I); 3410 3411 int Idx = DestPN->getBasicBlockIndex(BB); 3412 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3413 assert(Idx != -1); 3414 // This PHI node has an incoming value that corresponds to a control 3415 // path through the cleanup pad we are removing. If the incoming 3416 // value is in the cleanup pad, it must be a PHINode (because we 3417 // verified above that the block is otherwise empty). Otherwise, the 3418 // value is either a constant or a value that dominates the cleanup 3419 // pad being removed. 3420 // 3421 // Because BB and UnwindDest are both EH pads, all of their 3422 // predecessors must unwind to these blocks, and since no instruction 3423 // can have multiple unwind destinations, there will be no overlap in 3424 // incoming blocks between SrcPN and DestPN. 3425 Value *SrcVal = DestPN->getIncomingValue(Idx); 3426 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3427 3428 // Remove the entry for the block we are deleting. 3429 DestPN->removeIncomingValue(Idx, false); 3430 3431 if (SrcPN && SrcPN->getParent() == BB) { 3432 // If the incoming value was a PHI node in the cleanup pad we are 3433 // removing, we need to merge that PHI node's incoming values into 3434 // DestPN. 3435 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3436 SrcIdx != SrcE; ++SrcIdx) { 3437 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3438 SrcPN->getIncomingBlock(SrcIdx)); 3439 } 3440 } else { 3441 // Otherwise, the incoming value came from above BB and 3442 // so we can just reuse it. We must associate all of BB's 3443 // predecessors with this value. 3444 for (auto *pred : predecessors(BB)) { 3445 DestPN->addIncoming(SrcVal, pred); 3446 } 3447 } 3448 } 3449 3450 // Sink any remaining PHI nodes directly into UnwindDest. 3451 Instruction *InsertPt = DestEHPad; 3452 for (BasicBlock::iterator I = BB->begin(), 3453 IE = BB->getFirstNonPHI()->getIterator(); 3454 I != IE;) { 3455 // The iterator must be incremented here because the instructions are 3456 // being moved to another block. 3457 PHINode *PN = cast<PHINode>(I++); 3458 if (PN->use_empty()) 3459 // If the PHI node has no uses, just leave it. It will be erased 3460 // when we erase BB below. 3461 continue; 3462 3463 // Otherwise, sink this PHI node into UnwindDest. 3464 // Any predecessors to UnwindDest which are not already represented 3465 // must be back edges which inherit the value from the path through 3466 // BB. In this case, the PHI value must reference itself. 3467 for (auto *pred : predecessors(UnwindDest)) 3468 if (pred != BB) 3469 PN->addIncoming(PN, pred); 3470 PN->moveBefore(InsertPt); 3471 } 3472 } 3473 3474 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3475 // The iterator must be updated here because we are removing this pred. 3476 BasicBlock *PredBB = *PI++; 3477 if (UnwindDest == nullptr) { 3478 removeUnwindEdge(PredBB); 3479 } else { 3480 TerminatorInst *TI = PredBB->getTerminator(); 3481 TI->replaceUsesOfWith(BB, UnwindDest); 3482 } 3483 } 3484 3485 // The cleanup pad is now unreachable. Zap it. 3486 BB->eraseFromParent(); 3487 return true; 3488 } 3489 3490 // Try to merge two cleanuppads together. 3491 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3492 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3493 // with. 3494 BasicBlock *UnwindDest = RI->getUnwindDest(); 3495 if (!UnwindDest) 3496 return false; 3497 3498 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3499 // be safe to merge without code duplication. 3500 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3501 return false; 3502 3503 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3504 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3505 if (!SuccessorCleanupPad) 3506 return false; 3507 3508 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3509 // Replace any uses of the successor cleanupad with the predecessor pad 3510 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3511 // funclet bundle operands. 3512 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 3513 // Remove the old cleanuppad. 3514 SuccessorCleanupPad->eraseFromParent(); 3515 // Now, we simply replace the cleanupret with a branch to the unwind 3516 // destination. 3517 BranchInst::Create(UnwindDest, RI->getParent()); 3518 RI->eraseFromParent(); 3519 3520 return true; 3521 } 3522 3523 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3524 // It is possible to transiantly have an undef cleanuppad operand because we 3525 // have deleted some, but not all, dead blocks. 3526 // Eventually, this block will be deleted. 3527 if (isa<UndefValue>(RI->getOperand(0))) 3528 return false; 3529 3530 if (removeEmptyCleanup(RI)) 3531 return true; 3532 3533 if (mergeCleanupPad(RI)) 3534 return true; 3535 3536 return false; 3537 } 3538 3539 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3540 BasicBlock *BB = RI->getParent(); 3541 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 3542 3543 // Find predecessors that end with branches. 3544 SmallVector<BasicBlock*, 8> UncondBranchPreds; 3545 SmallVector<BranchInst*, 8> CondBranchPreds; 3546 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3547 BasicBlock *P = *PI; 3548 TerminatorInst *PTI = P->getTerminator(); 3549 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3550 if (BI->isUnconditional()) 3551 UncondBranchPreds.push_back(P); 3552 else 3553 CondBranchPreds.push_back(BI); 3554 } 3555 } 3556 3557 // If we found some, do the transformation! 3558 if (!UncondBranchPreds.empty() && DupRet) { 3559 while (!UncondBranchPreds.empty()) { 3560 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3561 DEBUG(dbgs() << "FOLDING: " << *BB 3562 << "INTO UNCOND BRANCH PRED: " << *Pred); 3563 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3564 } 3565 3566 // If we eliminated all predecessors of the block, delete the block now. 3567 if (pred_empty(BB)) 3568 // We know there are no successors, so just nuke the block. 3569 BB->eraseFromParent(); 3570 3571 return true; 3572 } 3573 3574 // Check out all of the conditional branches going to this return 3575 // instruction. If any of them just select between returns, change the 3576 // branch itself into a select/return pair. 3577 while (!CondBranchPreds.empty()) { 3578 BranchInst *BI = CondBranchPreds.pop_back_val(); 3579 3580 // Check to see if the non-BB successor is also a return block. 3581 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3582 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3583 SimplifyCondBranchToTwoReturns(BI, Builder)) 3584 return true; 3585 } 3586 return false; 3587 } 3588 3589 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3590 BasicBlock *BB = UI->getParent(); 3591 3592 bool Changed = false; 3593 3594 // If there are any instructions immediately before the unreachable that can 3595 // be removed, do so. 3596 while (UI->getIterator() != BB->begin()) { 3597 BasicBlock::iterator BBI = UI->getIterator(); 3598 --BBI; 3599 // Do not delete instructions that can have side effects which might cause 3600 // the unreachable to not be reachable; specifically, calls and volatile 3601 // operations may have this effect. 3602 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 3603 3604 if (BBI->mayHaveSideEffects()) { 3605 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 3606 if (SI->isVolatile()) 3607 break; 3608 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 3609 if (LI->isVolatile()) 3610 break; 3611 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3612 if (RMWI->isVolatile()) 3613 break; 3614 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3615 if (CXI->isVolatile()) 3616 break; 3617 } else if (isa<CatchPadInst>(BBI)) { 3618 // A catchpad may invoke exception object constructors and such, which 3619 // in some languages can be arbitrary code, so be conservative by 3620 // default. 3621 // For CoreCLR, it just involves a type test, so can be removed. 3622 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 3623 EHPersonality::CoreCLR) 3624 break; 3625 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3626 !isa<LandingPadInst>(BBI)) { 3627 break; 3628 } 3629 // Note that deleting LandingPad's here is in fact okay, although it 3630 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3631 // all the predecessors of this block will be the unwind edges of Invokes, 3632 // and we can therefore guarantee this block will be erased. 3633 } 3634 3635 // Delete this instruction (any uses are guaranteed to be dead) 3636 if (!BBI->use_empty()) 3637 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3638 BBI->eraseFromParent(); 3639 Changed = true; 3640 } 3641 3642 // If the unreachable instruction is the first in the block, take a gander 3643 // at all of the predecessors of this instruction, and simplify them. 3644 if (&BB->front() != UI) return Changed; 3645 3646 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3647 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3648 TerminatorInst *TI = Preds[i]->getTerminator(); 3649 IRBuilder<> Builder(TI); 3650 if (auto *BI = dyn_cast<BranchInst>(TI)) { 3651 if (BI->isUnconditional()) { 3652 if (BI->getSuccessor(0) == BB) { 3653 new UnreachableInst(TI->getContext(), TI); 3654 TI->eraseFromParent(); 3655 Changed = true; 3656 } 3657 } else { 3658 if (BI->getSuccessor(0) == BB) { 3659 Builder.CreateBr(BI->getSuccessor(1)); 3660 EraseTerminatorInstAndDCECond(BI); 3661 } else if (BI->getSuccessor(1) == BB) { 3662 Builder.CreateBr(BI->getSuccessor(0)); 3663 EraseTerminatorInstAndDCECond(BI); 3664 Changed = true; 3665 } 3666 } 3667 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 3668 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3669 i != e; ++i) 3670 if (i.getCaseSuccessor() == BB) { 3671 BB->removePredecessor(SI->getParent()); 3672 SI->removeCase(i); 3673 --i; --e; 3674 Changed = true; 3675 } 3676 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 3677 if (II->getUnwindDest() == BB) { 3678 removeUnwindEdge(TI->getParent()); 3679 Changed = true; 3680 } 3681 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3682 if (CSI->getUnwindDest() == BB) { 3683 removeUnwindEdge(TI->getParent()); 3684 Changed = true; 3685 continue; 3686 } 3687 3688 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 3689 E = CSI->handler_end(); 3690 I != E; ++I) { 3691 if (*I == BB) { 3692 CSI->removeHandler(I); 3693 --I; 3694 --E; 3695 Changed = true; 3696 } 3697 } 3698 if (CSI->getNumHandlers() == 0) { 3699 BasicBlock *CatchSwitchBB = CSI->getParent(); 3700 if (CSI->hasUnwindDest()) { 3701 // Redirect preds to the unwind dest 3702 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 3703 } else { 3704 // Rewrite all preds to unwind to caller (or from invoke to call). 3705 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 3706 for (BasicBlock *EHPred : EHPreds) 3707 removeUnwindEdge(EHPred); 3708 } 3709 // The catchswitch is no longer reachable. 3710 new UnreachableInst(CSI->getContext(), CSI); 3711 CSI->eraseFromParent(); 3712 Changed = true; 3713 } 3714 } else if (isa<CleanupReturnInst>(TI)) { 3715 new UnreachableInst(TI->getContext(), TI); 3716 TI->eraseFromParent(); 3717 Changed = true; 3718 } 3719 } 3720 3721 // If this block is now dead, remove it. 3722 if (pred_empty(BB) && 3723 BB != &BB->getParent()->getEntryBlock()) { 3724 // We know there are no successors, so just nuke the block. 3725 BB->eraseFromParent(); 3726 return true; 3727 } 3728 3729 return Changed; 3730 } 3731 3732 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3733 assert(Cases.size() >= 1); 3734 3735 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3736 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3737 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3738 return false; 3739 } 3740 return true; 3741 } 3742 3743 /// Turn a switch with two reachable destinations into an integer range 3744 /// comparison and branch. 3745 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3746 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3747 3748 bool HasDefault = 3749 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3750 3751 // Partition the cases into two sets with different destinations. 3752 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3753 BasicBlock *DestB = nullptr; 3754 SmallVector <ConstantInt *, 16> CasesA; 3755 SmallVector <ConstantInt *, 16> CasesB; 3756 3757 for (SwitchInst::CaseIt I : SI->cases()) { 3758 BasicBlock *Dest = I.getCaseSuccessor(); 3759 if (!DestA) DestA = Dest; 3760 if (Dest == DestA) { 3761 CasesA.push_back(I.getCaseValue()); 3762 continue; 3763 } 3764 if (!DestB) DestB = Dest; 3765 if (Dest == DestB) { 3766 CasesB.push_back(I.getCaseValue()); 3767 continue; 3768 } 3769 return false; // More than two destinations. 3770 } 3771 3772 assert(DestA && DestB && "Single-destination switch should have been folded."); 3773 assert(DestA != DestB); 3774 assert(DestB != SI->getDefaultDest()); 3775 assert(!CasesB.empty() && "There must be non-default cases."); 3776 assert(!CasesA.empty() || HasDefault); 3777 3778 // Figure out if one of the sets of cases form a contiguous range. 3779 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3780 BasicBlock *ContiguousDest = nullptr; 3781 BasicBlock *OtherDest = nullptr; 3782 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 3783 ContiguousCases = &CasesA; 3784 ContiguousDest = DestA; 3785 OtherDest = DestB; 3786 } else if (CasesAreContiguous(CasesB)) { 3787 ContiguousCases = &CasesB; 3788 ContiguousDest = DestB; 3789 OtherDest = DestA; 3790 } else 3791 return false; 3792 3793 // Start building the compare and branch. 3794 3795 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 3796 Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size()); 3797 3798 Value *Sub = SI->getCondition(); 3799 if (!Offset->isNullValue()) 3800 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 3801 3802 Value *Cmp; 3803 // If NumCases overflowed, then all possible values jump to the successor. 3804 if (NumCases->isNullValue() && !ContiguousCases->empty()) 3805 Cmp = ConstantInt::getTrue(SI->getContext()); 3806 else 3807 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3808 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 3809 3810 // Update weight for the newly-created conditional branch. 3811 if (HasBranchWeights(SI)) { 3812 SmallVector<uint64_t, 8> Weights; 3813 GetBranchWeights(SI, Weights); 3814 if (Weights.size() == 1 + SI->getNumCases()) { 3815 uint64_t TrueWeight = 0; 3816 uint64_t FalseWeight = 0; 3817 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 3818 if (SI->getSuccessor(I) == ContiguousDest) 3819 TrueWeight += Weights[I]; 3820 else 3821 FalseWeight += Weights[I]; 3822 } 3823 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 3824 TrueWeight /= 2; 3825 FalseWeight /= 2; 3826 } 3827 NewBI->setMetadata(LLVMContext::MD_prof, 3828 MDBuilder(SI->getContext()).createBranchWeights( 3829 (uint32_t)TrueWeight, (uint32_t)FalseWeight)); 3830 } 3831 } 3832 3833 // Prune obsolete incoming values off the successors' PHI nodes. 3834 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 3835 unsigned PreviousEdges = ContiguousCases->size(); 3836 if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges; 3837 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3838 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3839 } 3840 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 3841 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 3842 if (OtherDest == SI->getDefaultDest()) ++PreviousEdges; 3843 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3844 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3845 } 3846 3847 // Drop the switch. 3848 SI->eraseFromParent(); 3849 3850 return true; 3851 } 3852 3853 /// Compute masked bits for the condition of a switch 3854 /// and use it to remove dead cases. 3855 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 3856 const DataLayout &DL) { 3857 Value *Cond = SI->getCondition(); 3858 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3859 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3860 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 3861 3862 // Gather dead cases. 3863 SmallVector<ConstantInt*, 8> DeadCases; 3864 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3865 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3866 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3867 DeadCases.push_back(I.getCaseValue()); 3868 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3869 << I.getCaseValue() << "' is dead.\n"); 3870 } 3871 } 3872 3873 // If we can prove that the cases must cover all possible values, the 3874 // default destination becomes dead and we can remove it. If we know some 3875 // of the bits in the value, we can use that to more precisely compute the 3876 // number of possible unique case values. 3877 bool HasDefault = 3878 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3879 const unsigned NumUnknownBits = Bits - 3880 (KnownZero.Or(KnownOne)).countPopulation(); 3881 assert(NumUnknownBits <= Bits); 3882 if (HasDefault && DeadCases.empty() && 3883 NumUnknownBits < 64 /* avoid overflow */ && 3884 SI->getNumCases() == (1ULL << NumUnknownBits)) { 3885 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 3886 BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(), 3887 SI->getParent(), ""); 3888 SI->setDefaultDest(&*NewDefault); 3889 SplitBlock(&*NewDefault, &NewDefault->front()); 3890 auto *OldTI = NewDefault->getTerminator(); 3891 new UnreachableInst(SI->getContext(), OldTI); 3892 EraseTerminatorInstAndDCECond(OldTI); 3893 return true; 3894 } 3895 3896 SmallVector<uint64_t, 8> Weights; 3897 bool HasWeight = HasBranchWeights(SI); 3898 if (HasWeight) { 3899 GetBranchWeights(SI, Weights); 3900 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3901 } 3902 3903 // Remove dead cases from the switch. 3904 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3905 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3906 assert(Case != SI->case_default() && 3907 "Case was not found. Probably mistake in DeadCases forming."); 3908 if (HasWeight) { 3909 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3910 Weights.pop_back(); 3911 } 3912 3913 // Prune unused values from PHI nodes. 3914 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3915 SI->removeCase(Case); 3916 } 3917 if (HasWeight && Weights.size() >= 2) { 3918 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3919 SI->setMetadata(LLVMContext::MD_prof, 3920 MDBuilder(SI->getParent()->getContext()). 3921 createBranchWeights(MDWeights)); 3922 } 3923 3924 return !DeadCases.empty(); 3925 } 3926 3927 /// If BB would be eligible for simplification by 3928 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3929 /// by an unconditional branch), look at the phi node for BB in the successor 3930 /// block and see if the incoming value is equal to CaseValue. If so, return 3931 /// the phi node, and set PhiIndex to BB's index in the phi node. 3932 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3933 BasicBlock *BB, 3934 int *PhiIndex) { 3935 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3936 return nullptr; // BB must be empty to be a candidate for simplification. 3937 if (!BB->getSinglePredecessor()) 3938 return nullptr; // BB must be dominated by the switch. 3939 3940 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3941 if (!Branch || !Branch->isUnconditional()) 3942 return nullptr; // Terminator must be unconditional branch. 3943 3944 BasicBlock *Succ = Branch->getSuccessor(0); 3945 3946 BasicBlock::iterator I = Succ->begin(); 3947 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3948 int Idx = PHI->getBasicBlockIndex(BB); 3949 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3950 3951 Value *InValue = PHI->getIncomingValue(Idx); 3952 if (InValue != CaseValue) continue; 3953 3954 *PhiIndex = Idx; 3955 return PHI; 3956 } 3957 3958 return nullptr; 3959 } 3960 3961 /// Try to forward the condition of a switch instruction to a phi node 3962 /// dominated by the switch, if that would mean that some of the destination 3963 /// blocks of the switch can be folded away. 3964 /// Returns true if a change is made. 3965 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3966 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3967 ForwardingNodesMap ForwardingNodes; 3968 3969 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3970 ConstantInt *CaseValue = I.getCaseValue(); 3971 BasicBlock *CaseDest = I.getCaseSuccessor(); 3972 3973 int PhiIndex; 3974 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3975 &PhiIndex); 3976 if (!PHI) continue; 3977 3978 ForwardingNodes[PHI].push_back(PhiIndex); 3979 } 3980 3981 bool Changed = false; 3982 3983 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3984 E = ForwardingNodes.end(); I != E; ++I) { 3985 PHINode *Phi = I->first; 3986 SmallVectorImpl<int> &Indexes = I->second; 3987 3988 if (Indexes.size() < 2) continue; 3989 3990 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3991 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3992 Changed = true; 3993 } 3994 3995 return Changed; 3996 } 3997 3998 /// Return true if the backend will be able to handle 3999 /// initializing an array of constants like C. 4000 static bool ValidLookupTableConstant(Constant *C) { 4001 if (C->isThreadDependent()) 4002 return false; 4003 if (C->isDLLImportDependent()) 4004 return false; 4005 4006 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 4007 return CE->isGEPWithNoNotionalOverIndexing(); 4008 4009 return isa<ConstantFP>(C) || 4010 isa<ConstantInt>(C) || 4011 isa<ConstantPointerNull>(C) || 4012 isa<GlobalValue>(C) || 4013 isa<UndefValue>(C); 4014 } 4015 4016 /// If V is a Constant, return it. Otherwise, try to look up 4017 /// its constant value in ConstantPool, returning 0 if it's not there. 4018 static Constant *LookupConstant(Value *V, 4019 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 4020 if (Constant *C = dyn_cast<Constant>(V)) 4021 return C; 4022 return ConstantPool.lookup(V); 4023 } 4024 4025 /// Try to fold instruction I into a constant. This works for 4026 /// simple instructions such as binary operations where both operands are 4027 /// constant or can be replaced by constants from the ConstantPool. Returns the 4028 /// resulting constant on success, 0 otherwise. 4029 static Constant * 4030 ConstantFold(Instruction *I, const DataLayout &DL, 4031 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4032 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4033 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4034 if (!A) 4035 return nullptr; 4036 if (A->isAllOnesValue()) 4037 return LookupConstant(Select->getTrueValue(), ConstantPool); 4038 if (A->isNullValue()) 4039 return LookupConstant(Select->getFalseValue(), ConstantPool); 4040 return nullptr; 4041 } 4042 4043 SmallVector<Constant *, 4> COps; 4044 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4045 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4046 COps.push_back(A); 4047 else 4048 return nullptr; 4049 } 4050 4051 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4052 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4053 COps[1], DL); 4054 } 4055 4056 return ConstantFoldInstOperands(I, COps, DL); 4057 } 4058 4059 /// Try to determine the resulting constant values in phi nodes 4060 /// at the common destination basic block, *CommonDest, for one of the case 4061 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4062 /// case), of a switch instruction SI. 4063 static bool 4064 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4065 BasicBlock **CommonDest, 4066 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4067 const DataLayout &DL) { 4068 // The block from which we enter the common destination. 4069 BasicBlock *Pred = SI->getParent(); 4070 4071 // If CaseDest is empty except for some side-effect free instructions through 4072 // which we can constant-propagate the CaseVal, continue to its successor. 4073 SmallDenseMap<Value*, Constant*> ConstantPool; 4074 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4075 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4076 ++I) { 4077 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4078 // If the terminator is a simple branch, continue to the next block. 4079 if (T->getNumSuccessors() != 1) 4080 return false; 4081 Pred = CaseDest; 4082 CaseDest = T->getSuccessor(0); 4083 } else if (isa<DbgInfoIntrinsic>(I)) { 4084 // Skip debug intrinsic. 4085 continue; 4086 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4087 // Instruction is side-effect free and constant. 4088 4089 // If the instruction has uses outside this block or a phi node slot for 4090 // the block, it is not safe to bypass the instruction since it would then 4091 // no longer dominate all its uses. 4092 for (auto &Use : I->uses()) { 4093 User *User = Use.getUser(); 4094 if (Instruction *I = dyn_cast<Instruction>(User)) 4095 if (I->getParent() == CaseDest) 4096 continue; 4097 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4098 if (Phi->getIncomingBlock(Use) == CaseDest) 4099 continue; 4100 return false; 4101 } 4102 4103 ConstantPool.insert(std::make_pair(&*I, C)); 4104 } else { 4105 break; 4106 } 4107 } 4108 4109 // If we did not have a CommonDest before, use the current one. 4110 if (!*CommonDest) 4111 *CommonDest = CaseDest; 4112 // If the destination isn't the common one, abort. 4113 if (CaseDest != *CommonDest) 4114 return false; 4115 4116 // Get the values for this case from phi nodes in the destination block. 4117 BasicBlock::iterator I = (*CommonDest)->begin(); 4118 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4119 int Idx = PHI->getBasicBlockIndex(Pred); 4120 if (Idx == -1) 4121 continue; 4122 4123 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 4124 ConstantPool); 4125 if (!ConstVal) 4126 return false; 4127 4128 // Be conservative about which kinds of constants we support. 4129 if (!ValidLookupTableConstant(ConstVal)) 4130 return false; 4131 4132 Res.push_back(std::make_pair(PHI, ConstVal)); 4133 } 4134 4135 return Res.size() > 0; 4136 } 4137 4138 // Helper function used to add CaseVal to the list of cases that generate 4139 // Result. 4140 static void MapCaseToResult(ConstantInt *CaseVal, 4141 SwitchCaseResultVectorTy &UniqueResults, 4142 Constant *Result) { 4143 for (auto &I : UniqueResults) { 4144 if (I.first == Result) { 4145 I.second.push_back(CaseVal); 4146 return; 4147 } 4148 } 4149 UniqueResults.push_back(std::make_pair(Result, 4150 SmallVector<ConstantInt*, 4>(1, CaseVal))); 4151 } 4152 4153 // Helper function that initializes a map containing 4154 // results for the PHI node of the common destination block for a switch 4155 // instruction. Returns false if multiple PHI nodes have been found or if 4156 // there is not a common destination block for the switch. 4157 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4158 BasicBlock *&CommonDest, 4159 SwitchCaseResultVectorTy &UniqueResults, 4160 Constant *&DefaultResult, 4161 const DataLayout &DL) { 4162 for (auto &I : SI->cases()) { 4163 ConstantInt *CaseVal = I.getCaseValue(); 4164 4165 // Resulting value at phi nodes for this case value. 4166 SwitchCaseResultsTy Results; 4167 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4168 DL)) 4169 return false; 4170 4171 // Only one value per case is permitted 4172 if (Results.size() > 1) 4173 return false; 4174 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4175 4176 // Check the PHI consistency. 4177 if (!PHI) 4178 PHI = Results[0].first; 4179 else if (PHI != Results[0].first) 4180 return false; 4181 } 4182 // Find the default result value. 4183 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4184 BasicBlock *DefaultDest = SI->getDefaultDest(); 4185 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4186 DL); 4187 // If the default value is not found abort unless the default destination 4188 // is unreachable. 4189 DefaultResult = 4190 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4191 if ((!DefaultResult && 4192 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4193 return false; 4194 4195 return true; 4196 } 4197 4198 // Helper function that checks if it is possible to transform a switch with only 4199 // two cases (or two cases + default) that produces a result into a select. 4200 // Example: 4201 // switch (a) { 4202 // case 10: %0 = icmp eq i32 %a, 10 4203 // return 10; %1 = select i1 %0, i32 10, i32 4 4204 // case 20: ----> %2 = icmp eq i32 %a, 20 4205 // return 2; %3 = select i1 %2, i32 2, i32 %1 4206 // default: 4207 // return 4; 4208 // } 4209 static Value * 4210 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4211 Constant *DefaultResult, Value *Condition, 4212 IRBuilder<> &Builder) { 4213 assert(ResultVector.size() == 2 && 4214 "We should have exactly two unique results at this point"); 4215 // If we are selecting between only two cases transform into a simple 4216 // select or a two-way select if default is possible. 4217 if (ResultVector[0].second.size() == 1 && 4218 ResultVector[1].second.size() == 1) { 4219 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4220 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4221 4222 bool DefaultCanTrigger = DefaultResult; 4223 Value *SelectValue = ResultVector[1].first; 4224 if (DefaultCanTrigger) { 4225 Value *const ValueCompare = 4226 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4227 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4228 DefaultResult, "switch.select"); 4229 } 4230 Value *const ValueCompare = 4231 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4232 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue, 4233 "switch.select"); 4234 } 4235 4236 return nullptr; 4237 } 4238 4239 // Helper function to cleanup a switch instruction that has been converted into 4240 // a select, fixing up PHI nodes and basic blocks. 4241 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4242 Value *SelectValue, 4243 IRBuilder<> &Builder) { 4244 BasicBlock *SelectBB = SI->getParent(); 4245 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4246 PHI->removeIncomingValue(SelectBB); 4247 PHI->addIncoming(SelectValue, SelectBB); 4248 4249 Builder.CreateBr(PHI->getParent()); 4250 4251 // Remove the switch. 4252 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4253 BasicBlock *Succ = SI->getSuccessor(i); 4254 4255 if (Succ == PHI->getParent()) 4256 continue; 4257 Succ->removePredecessor(SelectBB); 4258 } 4259 SI->eraseFromParent(); 4260 } 4261 4262 /// If the switch is only used to initialize one or more 4263 /// phi nodes in a common successor block with only two different 4264 /// constant values, replace the switch with select. 4265 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4266 AssumptionCache *AC, const DataLayout &DL) { 4267 Value *const Cond = SI->getCondition(); 4268 PHINode *PHI = nullptr; 4269 BasicBlock *CommonDest = nullptr; 4270 Constant *DefaultResult; 4271 SwitchCaseResultVectorTy UniqueResults; 4272 // Collect all the cases that will deliver the same value from the switch. 4273 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4274 DL)) 4275 return false; 4276 // Selects choose between maximum two values. 4277 if (UniqueResults.size() != 2) 4278 return false; 4279 assert(PHI != nullptr && "PHI for value select not found"); 4280 4281 Builder.SetInsertPoint(SI); 4282 Value *SelectValue = ConvertTwoCaseSwitch( 4283 UniqueResults, 4284 DefaultResult, Cond, Builder); 4285 if (SelectValue) { 4286 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4287 return true; 4288 } 4289 // The switch couldn't be converted into a select. 4290 return false; 4291 } 4292 4293 namespace { 4294 /// This class represents a lookup table that can be used to replace a switch. 4295 class SwitchLookupTable { 4296 public: 4297 /// Create a lookup table to use as a switch replacement with the contents 4298 /// of Values, using DefaultValue to fill any holes in the table. 4299 SwitchLookupTable( 4300 Module &M, uint64_t TableSize, ConstantInt *Offset, 4301 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4302 Constant *DefaultValue, const DataLayout &DL); 4303 4304 /// Build instructions with Builder to retrieve the value at 4305 /// the position given by Index in the lookup table. 4306 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4307 4308 /// Return true if a table with TableSize elements of 4309 /// type ElementType would fit in a target-legal register. 4310 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4311 Type *ElementType); 4312 4313 private: 4314 // Depending on the contents of the table, it can be represented in 4315 // different ways. 4316 enum { 4317 // For tables where each element contains the same value, we just have to 4318 // store that single value and return it for each lookup. 4319 SingleValueKind, 4320 4321 // For tables where there is a linear relationship between table index 4322 // and values. We calculate the result with a simple multiplication 4323 // and addition instead of a table lookup. 4324 LinearMapKind, 4325 4326 // For small tables with integer elements, we can pack them into a bitmap 4327 // that fits into a target-legal register. Values are retrieved by 4328 // shift and mask operations. 4329 BitMapKind, 4330 4331 // The table is stored as an array of values. Values are retrieved by load 4332 // instructions from the table. 4333 ArrayKind 4334 } Kind; 4335 4336 // For SingleValueKind, this is the single value. 4337 Constant *SingleValue; 4338 4339 // For BitMapKind, this is the bitmap. 4340 ConstantInt *BitMap; 4341 IntegerType *BitMapElementTy; 4342 4343 // For LinearMapKind, these are the constants used to derive the value. 4344 ConstantInt *LinearOffset; 4345 ConstantInt *LinearMultiplier; 4346 4347 // For ArrayKind, this is the array. 4348 GlobalVariable *Array; 4349 }; 4350 } 4351 4352 SwitchLookupTable::SwitchLookupTable( 4353 Module &M, uint64_t TableSize, ConstantInt *Offset, 4354 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4355 Constant *DefaultValue, const DataLayout &DL) 4356 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4357 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4358 assert(Values.size() && "Can't build lookup table without values!"); 4359 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4360 4361 // If all values in the table are equal, this is that value. 4362 SingleValue = Values.begin()->second; 4363 4364 Type *ValueType = Values.begin()->second->getType(); 4365 4366 // Build up the table contents. 4367 SmallVector<Constant*, 64> TableContents(TableSize); 4368 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4369 ConstantInt *CaseVal = Values[I].first; 4370 Constant *CaseRes = Values[I].second; 4371 assert(CaseRes->getType() == ValueType); 4372 4373 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 4374 .getLimitedValue(); 4375 TableContents[Idx] = CaseRes; 4376 4377 if (CaseRes != SingleValue) 4378 SingleValue = nullptr; 4379 } 4380 4381 // Fill in any holes in the table with the default result. 4382 if (Values.size() < TableSize) { 4383 assert(DefaultValue && 4384 "Need a default value to fill the lookup table holes."); 4385 assert(DefaultValue->getType() == ValueType); 4386 for (uint64_t I = 0; I < TableSize; ++I) { 4387 if (!TableContents[I]) 4388 TableContents[I] = DefaultValue; 4389 } 4390 4391 if (DefaultValue != SingleValue) 4392 SingleValue = nullptr; 4393 } 4394 4395 // If each element in the table contains the same value, we only need to store 4396 // that single value. 4397 if (SingleValue) { 4398 Kind = SingleValueKind; 4399 return; 4400 } 4401 4402 // Check if we can derive the value with a linear transformation from the 4403 // table index. 4404 if (isa<IntegerType>(ValueType)) { 4405 bool LinearMappingPossible = true; 4406 APInt PrevVal; 4407 APInt DistToPrev; 4408 assert(TableSize >= 2 && "Should be a SingleValue table."); 4409 // Check if there is the same distance between two consecutive values. 4410 for (uint64_t I = 0; I < TableSize; ++I) { 4411 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4412 if (!ConstVal) { 4413 // This is an undef. We could deal with it, but undefs in lookup tables 4414 // are very seldom. It's probably not worth the additional complexity. 4415 LinearMappingPossible = false; 4416 break; 4417 } 4418 APInt Val = ConstVal->getValue(); 4419 if (I != 0) { 4420 APInt Dist = Val - PrevVal; 4421 if (I == 1) { 4422 DistToPrev = Dist; 4423 } else if (Dist != DistToPrev) { 4424 LinearMappingPossible = false; 4425 break; 4426 } 4427 } 4428 PrevVal = Val; 4429 } 4430 if (LinearMappingPossible) { 4431 LinearOffset = cast<ConstantInt>(TableContents[0]); 4432 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4433 Kind = LinearMapKind; 4434 ++NumLinearMaps; 4435 return; 4436 } 4437 } 4438 4439 // If the type is integer and the table fits in a register, build a bitmap. 4440 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4441 IntegerType *IT = cast<IntegerType>(ValueType); 4442 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4443 for (uint64_t I = TableSize; I > 0; --I) { 4444 TableInt <<= IT->getBitWidth(); 4445 // Insert values into the bitmap. Undef values are set to zero. 4446 if (!isa<UndefValue>(TableContents[I - 1])) { 4447 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4448 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4449 } 4450 } 4451 BitMap = ConstantInt::get(M.getContext(), TableInt); 4452 BitMapElementTy = IT; 4453 Kind = BitMapKind; 4454 ++NumBitMaps; 4455 return; 4456 } 4457 4458 // Store the table in an array. 4459 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4460 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4461 4462 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 4463 GlobalVariable::PrivateLinkage, 4464 Initializer, 4465 "switch.table"); 4466 Array->setUnnamedAddr(true); 4467 Kind = ArrayKind; 4468 } 4469 4470 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4471 switch (Kind) { 4472 case SingleValueKind: 4473 return SingleValue; 4474 case LinearMapKind: { 4475 // Derive the result value from the input value. 4476 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4477 false, "switch.idx.cast"); 4478 if (!LinearMultiplier->isOne()) 4479 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4480 if (!LinearOffset->isZero()) 4481 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4482 return Result; 4483 } 4484 case BitMapKind: { 4485 // Type of the bitmap (e.g. i59). 4486 IntegerType *MapTy = BitMap->getType(); 4487 4488 // Cast Index to the same type as the bitmap. 4489 // Note: The Index is <= the number of elements in the table, so 4490 // truncating it to the width of the bitmask is safe. 4491 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4492 4493 // Multiply the shift amount by the element width. 4494 ShiftAmt = Builder.CreateMul(ShiftAmt, 4495 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4496 "switch.shiftamt"); 4497 4498 // Shift down. 4499 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 4500 "switch.downshift"); 4501 // Mask off. 4502 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 4503 "switch.masked"); 4504 } 4505 case ArrayKind: { 4506 // Make sure the table index will not overflow when treated as signed. 4507 IntegerType *IT = cast<IntegerType>(Index->getType()); 4508 uint64_t TableSize = Array->getInitializer()->getType() 4509 ->getArrayNumElements(); 4510 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4511 Index = Builder.CreateZExt(Index, 4512 IntegerType::get(IT->getContext(), 4513 IT->getBitWidth() + 1), 4514 "switch.tableidx.zext"); 4515 4516 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 4517 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4518 GEPIndices, "switch.gep"); 4519 return Builder.CreateLoad(GEP, "switch.load"); 4520 } 4521 } 4522 llvm_unreachable("Unknown lookup table kind!"); 4523 } 4524 4525 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4526 uint64_t TableSize, 4527 Type *ElementType) { 4528 auto *IT = dyn_cast<IntegerType>(ElementType); 4529 if (!IT) 4530 return false; 4531 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4532 // are <= 15, we could try to narrow the type. 4533 4534 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4535 if (TableSize >= UINT_MAX/IT->getBitWidth()) 4536 return false; 4537 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4538 } 4539 4540 /// Determine whether a lookup table should be built for this switch, based on 4541 /// the number of cases, size of the table, and the types of the results. 4542 static bool 4543 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4544 const TargetTransformInfo &TTI, const DataLayout &DL, 4545 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4546 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4547 return false; // TableSize overflowed, or mul below might overflow. 4548 4549 bool AllTablesFitInRegister = true; 4550 bool HasIllegalType = false; 4551 for (const auto &I : ResultTypes) { 4552 Type *Ty = I.second; 4553 4554 // Saturate this flag to true. 4555 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4556 4557 // Saturate this flag to false. 4558 AllTablesFitInRegister = AllTablesFitInRegister && 4559 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4560 4561 // If both flags saturate, we're done. NOTE: This *only* works with 4562 // saturating flags, and all flags have to saturate first due to the 4563 // non-deterministic behavior of iterating over a dense map. 4564 if (HasIllegalType && !AllTablesFitInRegister) 4565 break; 4566 } 4567 4568 // If each table would fit in a register, we should build it anyway. 4569 if (AllTablesFitInRegister) 4570 return true; 4571 4572 // Don't build a table that doesn't fit in-register if it has illegal types. 4573 if (HasIllegalType) 4574 return false; 4575 4576 // The table density should be at least 40%. This is the same criterion as for 4577 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4578 // FIXME: Find the best cut-off. 4579 return SI->getNumCases() * 10 >= TableSize * 4; 4580 } 4581 4582 /// Try to reuse the switch table index compare. Following pattern: 4583 /// \code 4584 /// if (idx < tablesize) 4585 /// r = table[idx]; // table does not contain default_value 4586 /// else 4587 /// r = default_value; 4588 /// if (r != default_value) 4589 /// ... 4590 /// \endcode 4591 /// Is optimized to: 4592 /// \code 4593 /// cond = idx < tablesize; 4594 /// if (cond) 4595 /// r = table[idx]; 4596 /// else 4597 /// r = default_value; 4598 /// if (cond) 4599 /// ... 4600 /// \endcode 4601 /// Jump threading will then eliminate the second if(cond). 4602 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock, 4603 BranchInst *RangeCheckBranch, Constant *DefaultValue, 4604 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) { 4605 4606 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4607 if (!CmpInst) 4608 return; 4609 4610 // We require that the compare is in the same block as the phi so that jump 4611 // threading can do its work afterwards. 4612 if (CmpInst->getParent() != PhiBlock) 4613 return; 4614 4615 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4616 if (!CmpOp1) 4617 return; 4618 4619 Value *RangeCmp = RangeCheckBranch->getCondition(); 4620 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4621 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4622 4623 // Check if the compare with the default value is constant true or false. 4624 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4625 DefaultValue, CmpOp1, true); 4626 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4627 return; 4628 4629 // Check if the compare with the case values is distinct from the default 4630 // compare result. 4631 for (auto ValuePair : Values) { 4632 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4633 ValuePair.second, CmpOp1, true); 4634 if (!CaseConst || CaseConst == DefaultConst) 4635 return; 4636 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4637 "Expect true or false as compare result."); 4638 } 4639 4640 // Check if the branch instruction dominates the phi node. It's a simple 4641 // dominance check, but sufficient for our needs. 4642 // Although this check is invariant in the calling loops, it's better to do it 4643 // at this late stage. Practically we do it at most once for a switch. 4644 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4645 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4646 BasicBlock *Pred = *PI; 4647 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4648 return; 4649 } 4650 4651 if (DefaultConst == FalseConst) { 4652 // The compare yields the same result. We can replace it. 4653 CmpInst->replaceAllUsesWith(RangeCmp); 4654 ++NumTableCmpReuses; 4655 } else { 4656 // The compare yields the same result, just inverted. We can replace it. 4657 Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp, 4658 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4659 RangeCheckBranch); 4660 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4661 ++NumTableCmpReuses; 4662 } 4663 } 4664 4665 /// If the switch is only used to initialize one or more phi nodes in a common 4666 /// successor block with different constant values, replace the switch with 4667 /// lookup tables. 4668 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 4669 const DataLayout &DL, 4670 const TargetTransformInfo &TTI) { 4671 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4672 4673 // Only build lookup table when we have a target that supports it. 4674 if (!TTI.shouldBuildLookupTables()) 4675 return false; 4676 4677 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4678 // split off a dense part and build a lookup table for that. 4679 4680 // FIXME: This creates arrays of GEPs to constant strings, which means each 4681 // GEP needs a runtime relocation in PIC code. We should just build one big 4682 // string and lookup indices into that. 4683 4684 // Ignore switches with less than three cases. Lookup tables will not make them 4685 // faster, so we don't analyze them. 4686 if (SI->getNumCases() < 3) 4687 return false; 4688 4689 // Figure out the corresponding result for each case value and phi node in the 4690 // common destination, as well as the min and max case values. 4691 assert(SI->case_begin() != SI->case_end()); 4692 SwitchInst::CaseIt CI = SI->case_begin(); 4693 ConstantInt *MinCaseVal = CI.getCaseValue(); 4694 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4695 4696 BasicBlock *CommonDest = nullptr; 4697 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 4698 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 4699 SmallDenseMap<PHINode*, Constant*> DefaultResults; 4700 SmallDenseMap<PHINode*, Type*> ResultTypes; 4701 SmallVector<PHINode*, 4> PHIs; 4702 4703 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4704 ConstantInt *CaseVal = CI.getCaseValue(); 4705 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4706 MinCaseVal = CaseVal; 4707 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4708 MaxCaseVal = CaseVal; 4709 4710 // Resulting value at phi nodes for this case value. 4711 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 4712 ResultsTy Results; 4713 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4714 Results, DL)) 4715 return false; 4716 4717 // Append the result from this case to the list for each phi. 4718 for (const auto &I : Results) { 4719 PHINode *PHI = I.first; 4720 Constant *Value = I.second; 4721 if (!ResultLists.count(PHI)) 4722 PHIs.push_back(PHI); 4723 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4724 } 4725 } 4726 4727 // Keep track of the result types. 4728 for (PHINode *PHI : PHIs) { 4729 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4730 } 4731 4732 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4733 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4734 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4735 bool TableHasHoles = (NumResults < TableSize); 4736 4737 // If the table has holes, we need a constant result for the default case 4738 // or a bitmask that fits in a register. 4739 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 4740 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4741 &CommonDest, DefaultResultsList, DL); 4742 4743 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4744 if (NeedMask) { 4745 // As an extra penalty for the validity test we require more cases. 4746 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4747 return false; 4748 if (!DL.fitsInLegalInteger(TableSize)) 4749 return false; 4750 } 4751 4752 for (const auto &I : DefaultResultsList) { 4753 PHINode *PHI = I.first; 4754 Constant *Result = I.second; 4755 DefaultResults[PHI] = Result; 4756 } 4757 4758 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4759 return false; 4760 4761 // Create the BB that does the lookups. 4762 Module &Mod = *CommonDest->getParent()->getParent(); 4763 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 4764 "switch.lookup", 4765 CommonDest->getParent(), 4766 CommonDest); 4767 4768 // Compute the table index value. 4769 Builder.SetInsertPoint(SI); 4770 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 4771 "switch.tableidx"); 4772 4773 // Compute the maximum table size representable by the integer type we are 4774 // switching upon. 4775 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 4776 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 4777 assert(MaxTableSize >= TableSize && 4778 "It is impossible for a switch to have more entries than the max " 4779 "representable value of its input integer type's size."); 4780 4781 // If the default destination is unreachable, or if the lookup table covers 4782 // all values of the conditional variable, branch directly to the lookup table 4783 // BB. Otherwise, check that the condition is within the case range. 4784 const bool DefaultIsReachable = 4785 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4786 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 4787 BranchInst *RangeCheckBranch = nullptr; 4788 4789 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4790 Builder.CreateBr(LookupBB); 4791 // Note: We call removeProdecessor later since we need to be able to get the 4792 // PHI value for the default case in case we're using a bit mask. 4793 } else { 4794 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 4795 MinCaseVal->getType(), TableSize)); 4796 RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4797 } 4798 4799 // Populate the BB that does the lookups. 4800 Builder.SetInsertPoint(LookupBB); 4801 4802 if (NeedMask) { 4803 // Before doing the lookup we do the hole check. 4804 // The LookupBB is therefore re-purposed to do the hole check 4805 // and we create a new LookupBB. 4806 BasicBlock *MaskBB = LookupBB; 4807 MaskBB->setName("switch.hole_check"); 4808 LookupBB = BasicBlock::Create(Mod.getContext(), 4809 "switch.lookup", 4810 CommonDest->getParent(), 4811 CommonDest); 4812 4813 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 4814 // unnecessary illegal types. 4815 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 4816 APInt MaskInt(TableSizePowOf2, 0); 4817 APInt One(TableSizePowOf2, 1); 4818 // Build bitmask; fill in a 1 bit for every case. 4819 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4820 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4821 uint64_t Idx = (ResultList[I].first->getValue() - 4822 MinCaseVal->getValue()).getLimitedValue(); 4823 MaskInt |= One << Idx; 4824 } 4825 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4826 4827 // Get the TableIndex'th bit of the bitmask. 4828 // If this bit is 0 (meaning hole) jump to the default destination, 4829 // else continue with table lookup. 4830 IntegerType *MapTy = TableMask->getType(); 4831 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 4832 "switch.maskindex"); 4833 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 4834 "switch.shifted"); 4835 Value *LoBit = Builder.CreateTrunc(Shifted, 4836 Type::getInt1Ty(Mod.getContext()), 4837 "switch.lobit"); 4838 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4839 4840 Builder.SetInsertPoint(LookupBB); 4841 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4842 } 4843 4844 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4845 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 4846 // do not delete PHINodes here. 4847 SI->getDefaultDest()->removePredecessor(SI->getParent(), 4848 /*DontDeleteUselessPHIs=*/true); 4849 } 4850 4851 bool ReturnedEarly = false; 4852 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4853 PHINode *PHI = PHIs[I]; 4854 const ResultListTy &ResultList = ResultLists[PHI]; 4855 4856 // If using a bitmask, use any value to fill the lookup table holes. 4857 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 4858 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 4859 4860 Value *Result = Table.BuildLookup(TableIndex, Builder); 4861 4862 // If the result is used to return immediately from the function, we want to 4863 // do that right here. 4864 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 4865 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 4866 Builder.CreateRet(Result); 4867 ReturnedEarly = true; 4868 break; 4869 } 4870 4871 // Do a small peephole optimization: re-use the switch table compare if 4872 // possible. 4873 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 4874 BasicBlock *PhiBlock = PHI->getParent(); 4875 // Search for compare instructions which use the phi. 4876 for (auto *User : PHI->users()) { 4877 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 4878 } 4879 } 4880 4881 PHI->addIncoming(Result, LookupBB); 4882 } 4883 4884 if (!ReturnedEarly) 4885 Builder.CreateBr(CommonDest); 4886 4887 // Remove the switch. 4888 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4889 BasicBlock *Succ = SI->getSuccessor(i); 4890 4891 if (Succ == SI->getDefaultDest()) 4892 continue; 4893 Succ->removePredecessor(SI->getParent()); 4894 } 4895 SI->eraseFromParent(); 4896 4897 ++NumLookupTables; 4898 if (NeedMask) 4899 ++NumLookupTablesHoles; 4900 return true; 4901 } 4902 4903 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 4904 BasicBlock *BB = SI->getParent(); 4905 4906 if (isValueEqualityComparison(SI)) { 4907 // If we only have one predecessor, and if it is a branch on this value, 4908 // see if that predecessor totally determines the outcome of this switch. 4909 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4910 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 4911 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4912 4913 Value *Cond = SI->getCondition(); 4914 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 4915 if (SimplifySwitchOnSelect(SI, Select)) 4916 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4917 4918 // If the block only contains the switch, see if we can fold the block 4919 // away into any preds. 4920 BasicBlock::iterator BBI = BB->begin(); 4921 // Ignore dbg intrinsics. 4922 while (isa<DbgInfoIntrinsic>(BBI)) 4923 ++BBI; 4924 if (SI == &*BBI) 4925 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 4926 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4927 } 4928 4929 // Try to transform the switch into an icmp and a branch. 4930 if (TurnSwitchRangeIntoICmp(SI, Builder)) 4931 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4932 4933 // Remove unreachable cases. 4934 if (EliminateDeadSwitchCases(SI, AC, DL)) 4935 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4936 4937 if (SwitchToSelect(SI, Builder, AC, DL)) 4938 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4939 4940 if (ForwardSwitchConditionToPHI(SI)) 4941 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4942 4943 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 4944 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4945 4946 return false; 4947 } 4948 4949 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 4950 BasicBlock *BB = IBI->getParent(); 4951 bool Changed = false; 4952 4953 // Eliminate redundant destinations. 4954 SmallPtrSet<Value *, 8> Succs; 4955 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 4956 BasicBlock *Dest = IBI->getDestination(i); 4957 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 4958 Dest->removePredecessor(BB); 4959 IBI->removeDestination(i); 4960 --i; --e; 4961 Changed = true; 4962 } 4963 } 4964 4965 if (IBI->getNumDestinations() == 0) { 4966 // If the indirectbr has no successors, change it to unreachable. 4967 new UnreachableInst(IBI->getContext(), IBI); 4968 EraseTerminatorInstAndDCECond(IBI); 4969 return true; 4970 } 4971 4972 if (IBI->getNumDestinations() == 1) { 4973 // If the indirectbr has one successor, change it to a direct branch. 4974 BranchInst::Create(IBI->getDestination(0), IBI); 4975 EraseTerminatorInstAndDCECond(IBI); 4976 return true; 4977 } 4978 4979 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 4980 if (SimplifyIndirectBrOnSelect(IBI, SI)) 4981 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4982 } 4983 return Changed; 4984 } 4985 4986 /// Given an block with only a single landing pad and a unconditional branch 4987 /// try to find another basic block which this one can be merged with. This 4988 /// handles cases where we have multiple invokes with unique landing pads, but 4989 /// a shared handler. 4990 /// 4991 /// We specifically choose to not worry about merging non-empty blocks 4992 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 4993 /// practice, the optimizer produces empty landing pad blocks quite frequently 4994 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 4995 /// sinking in this file) 4996 /// 4997 /// This is primarily a code size optimization. We need to avoid performing 4998 /// any transform which might inhibit optimization (such as our ability to 4999 /// specialize a particular handler via tail commoning). We do this by not 5000 /// merging any blocks which require us to introduce a phi. Since the same 5001 /// values are flowing through both blocks, we don't loose any ability to 5002 /// specialize. If anything, we make such specialization more likely. 5003 /// 5004 /// TODO - This transformation could remove entries from a phi in the target 5005 /// block when the inputs in the phi are the same for the two blocks being 5006 /// merged. In some cases, this could result in removal of the PHI entirely. 5007 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5008 BasicBlock *BB) { 5009 auto Succ = BB->getUniqueSuccessor(); 5010 assert(Succ); 5011 // If there's a phi in the successor block, we'd likely have to introduce 5012 // a phi into the merged landing pad block. 5013 if (isa<PHINode>(*Succ->begin())) 5014 return false; 5015 5016 for (BasicBlock *OtherPred : predecessors(Succ)) { 5017 if (BB == OtherPred) 5018 continue; 5019 BasicBlock::iterator I = OtherPred->begin(); 5020 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5021 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5022 continue; 5023 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 5024 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5025 if (!BI2 || !BI2->isIdenticalTo(BI)) 5026 continue; 5027 5028 // We've found an identical block. Update our predecessors to take that 5029 // path instead and make ourselves dead. 5030 SmallSet<BasicBlock *, 16> Preds; 5031 Preds.insert(pred_begin(BB), pred_end(BB)); 5032 for (BasicBlock *Pred : Preds) { 5033 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5034 assert(II->getNormalDest() != BB && 5035 II->getUnwindDest() == BB && "unexpected successor"); 5036 II->setUnwindDest(OtherPred); 5037 } 5038 5039 // The debug info in OtherPred doesn't cover the merged control flow that 5040 // used to go through BB. We need to delete it or update it. 5041 for (auto I = OtherPred->begin(), E = OtherPred->end(); 5042 I != E;) { 5043 Instruction &Inst = *I; I++; 5044 if (isa<DbgInfoIntrinsic>(Inst)) 5045 Inst.eraseFromParent(); 5046 } 5047 5048 SmallSet<BasicBlock *, 16> Succs; 5049 Succs.insert(succ_begin(BB), succ_end(BB)); 5050 for (BasicBlock *Succ : Succs) { 5051 Succ->removePredecessor(BB); 5052 } 5053 5054 IRBuilder<> Builder(BI); 5055 Builder.CreateUnreachable(); 5056 BI->eraseFromParent(); 5057 return true; 5058 } 5059 return false; 5060 } 5061 5062 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 5063 BasicBlock *BB = BI->getParent(); 5064 5065 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5066 return true; 5067 5068 // If the Terminator is the only non-phi instruction, simplify the block. 5069 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5070 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5071 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5072 return true; 5073 5074 // If the only instruction in the block is a seteq/setne comparison 5075 // against a constant, try to simplify the block. 5076 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5077 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5078 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5079 ; 5080 if (I->isTerminator() && 5081 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5082 BonusInstThreshold, AC)) 5083 return true; 5084 } 5085 5086 // See if we can merge an empty landing pad block with another which is 5087 // equivalent. 5088 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5089 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 5090 if (I->isTerminator() && 5091 TryToMergeLandingPad(LPad, BI, BB)) 5092 return true; 5093 } 5094 5095 // If this basic block is ONLY a compare and a branch, and if a predecessor 5096 // branches to us and our successor, fold the comparison into the 5097 // predecessor and use logical operations to update the incoming value 5098 // for PHI nodes in common successor. 5099 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5100 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5101 return false; 5102 } 5103 5104 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5105 BasicBlock *PredPred = nullptr; 5106 for (auto *P : predecessors(BB)) { 5107 BasicBlock *PPred = P->getSinglePredecessor(); 5108 if (!PPred || (PredPred && PredPred != PPred)) 5109 return nullptr; 5110 PredPred = PPred; 5111 } 5112 return PredPred; 5113 } 5114 5115 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5116 BasicBlock *BB = BI->getParent(); 5117 5118 // Conditional branch 5119 if (isValueEqualityComparison(BI)) { 5120 // If we only have one predecessor, and if it is a branch on this value, 5121 // see if that predecessor totally determines the outcome of this 5122 // switch. 5123 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5124 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5125 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5126 5127 // This block must be empty, except for the setcond inst, if it exists. 5128 // Ignore dbg intrinsics. 5129 BasicBlock::iterator I = BB->begin(); 5130 // Ignore dbg intrinsics. 5131 while (isa<DbgInfoIntrinsic>(I)) 5132 ++I; 5133 if (&*I == BI) { 5134 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5135 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5136 } else if (&*I == cast<Instruction>(BI->getCondition())){ 5137 ++I; 5138 // Ignore dbg intrinsics. 5139 while (isa<DbgInfoIntrinsic>(I)) 5140 ++I; 5141 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5142 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5143 } 5144 } 5145 5146 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5147 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5148 return true; 5149 5150 // If this basic block is ONLY a compare and a branch, and if a predecessor 5151 // branches to us and one of our successors, fold the comparison into the 5152 // predecessor and use logical operations to pick the right destination. 5153 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5154 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5155 5156 // We have a conditional branch to two blocks that are only reachable 5157 // from BI. We know that the condbr dominates the two blocks, so see if 5158 // there is any identical code in the "then" and "else" blocks. If so, we 5159 // can hoist it up to the branching block. 5160 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5161 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5162 if (HoistThenElseCodeToIf(BI, TTI)) 5163 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5164 } else { 5165 // If Successor #1 has multiple preds, we may be able to conditionally 5166 // execute Successor #0 if it branches to Successor #1. 5167 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5168 if (Succ0TI->getNumSuccessors() == 1 && 5169 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5170 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5171 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5172 } 5173 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5174 // If Successor #0 has multiple preds, we may be able to conditionally 5175 // execute Successor #1 if it branches to Successor #0. 5176 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5177 if (Succ1TI->getNumSuccessors() == 1 && 5178 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5179 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5180 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5181 } 5182 5183 // If this is a branch on a phi node in the current block, thread control 5184 // through this block if any PHI node entries are constants. 5185 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5186 if (PN->getParent() == BI->getParent()) 5187 if (FoldCondBranchOnPHI(BI, DL)) 5188 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5189 5190 // Scan predecessor blocks for conditional branches. 5191 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5192 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5193 if (PBI != BI && PBI->isConditional()) 5194 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5195 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5196 5197 // Look for diamond patterns. 5198 if (MergeCondStores) 5199 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5200 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5201 if (PBI != BI && PBI->isConditional()) 5202 if (mergeConditionalStores(PBI, BI)) 5203 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5204 5205 return false; 5206 } 5207 5208 /// Check if passing a value to an instruction will cause undefined behavior. 5209 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5210 Constant *C = dyn_cast<Constant>(V); 5211 if (!C) 5212 return false; 5213 5214 if (I->use_empty()) 5215 return false; 5216 5217 if (C->isNullValue()) { 5218 // Only look at the first use, avoid hurting compile time with long uselists 5219 User *Use = *I->user_begin(); 5220 5221 // Now make sure that there are no instructions in between that can alter 5222 // control flow (eg. calls) 5223 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 5224 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5225 return false; 5226 5227 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5228 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5229 if (GEP->getPointerOperand() == I) 5230 return passingValueIsAlwaysUndefined(V, GEP); 5231 5232 // Look through bitcasts. 5233 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5234 return passingValueIsAlwaysUndefined(V, BC); 5235 5236 // Load from null is undefined. 5237 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5238 if (!LI->isVolatile()) 5239 return LI->getPointerAddressSpace() == 0; 5240 5241 // Store to null is undefined. 5242 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5243 if (!SI->isVolatile()) 5244 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 5245 } 5246 return false; 5247 } 5248 5249 /// If BB has an incoming value that will always trigger undefined behavior 5250 /// (eg. null pointer dereference), remove the branch leading here. 5251 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5252 for (BasicBlock::iterator i = BB->begin(); 5253 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5254 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5255 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5256 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5257 IRBuilder<> Builder(T); 5258 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5259 BB->removePredecessor(PHI->getIncomingBlock(i)); 5260 // Turn uncoditional branches into unreachables and remove the dead 5261 // destination from conditional branches. 5262 if (BI->isUnconditional()) 5263 Builder.CreateUnreachable(); 5264 else 5265 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 5266 BI->getSuccessor(0)); 5267 BI->eraseFromParent(); 5268 return true; 5269 } 5270 // TODO: SwitchInst. 5271 } 5272 5273 return false; 5274 } 5275 5276 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5277 bool Changed = false; 5278 5279 assert(BB && BB->getParent() && "Block not embedded in function!"); 5280 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5281 5282 // Remove basic blocks that have no predecessors (except the entry block)... 5283 // or that just have themself as a predecessor. These are unreachable. 5284 if ((pred_empty(BB) && 5285 BB != &BB->getParent()->getEntryBlock()) || 5286 BB->getSinglePredecessor() == BB) { 5287 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5288 DeleteDeadBlock(BB); 5289 return true; 5290 } 5291 5292 // Check to see if we can constant propagate this terminator instruction 5293 // away... 5294 Changed |= ConstantFoldTerminator(BB, true); 5295 5296 // Check for and eliminate duplicate PHI nodes in this block. 5297 Changed |= EliminateDuplicatePHINodes(BB); 5298 5299 // Check for and remove branches that will always cause undefined behavior. 5300 Changed |= removeUndefIntroducingPredecessor(BB); 5301 5302 // Merge basic blocks into their predecessor if there is only one distinct 5303 // pred, and if there is only one distinct successor of the predecessor, and 5304 // if there are no PHI nodes. 5305 // 5306 if (MergeBlockIntoPredecessor(BB)) 5307 return true; 5308 5309 IRBuilder<> Builder(BB); 5310 5311 // If there is a trivial two-entry PHI node in this basic block, and we can 5312 // eliminate it, do so now. 5313 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5314 if (PN->getNumIncomingValues() == 2) 5315 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5316 5317 Builder.SetInsertPoint(BB->getTerminator()); 5318 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5319 if (BI->isUnconditional()) { 5320 if (SimplifyUncondBranch(BI, Builder)) return true; 5321 } else { 5322 if (SimplifyCondBranch(BI, Builder)) return true; 5323 } 5324 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5325 if (SimplifyReturn(RI, Builder)) return true; 5326 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5327 if (SimplifyResume(RI, Builder)) return true; 5328 } else if (CleanupReturnInst *RI = 5329 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5330 if (SimplifyCleanupReturn(RI)) return true; 5331 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5332 if (SimplifySwitch(SI, Builder)) return true; 5333 } else if (UnreachableInst *UI = 5334 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5335 if (SimplifyUnreachable(UI)) return true; 5336 } else if (IndirectBrInst *IBI = 5337 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5338 if (SimplifyIndirectBr(IBI)) return true; 5339 } 5340 5341 return Changed; 5342 } 5343 5344 /// This function is used to do simplification of a CFG. 5345 /// For example, it adjusts branches to branches to eliminate the extra hop, 5346 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5347 /// of the CFG. It returns true if a modification was made. 5348 /// 5349 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5350 unsigned BonusInstThreshold, AssumptionCache *AC) { 5351 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5352 BonusInstThreshold, AC).run(BB); 5353 } 5354