1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/GuardUtils.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/MemorySSA.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/ConstantRange.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/ValueHandle.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/ValueMapper.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <climits> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <set> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 using namespace PatternMatch; 90 91 #define DEBUG_TYPE "simplifycfg" 92 93 cl::opt<bool> llvm::RequireAndPreserveDomTree( 94 "simplifycfg-require-and-preserve-domtree", cl::Hidden, 95 96 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 97 "into preserving DomTree,")); 98 99 // Chosen as 2 so as to be cheap, but still to have enough power to fold 100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 101 // To catch this, we need to fold a compare and a select, hence '2' being the 102 // minimum reasonable default. 103 static cl::opt<unsigned> PHINodeFoldingThreshold( 104 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 105 cl::desc( 106 "Control the amount of phi node folding to perform (default = 2)")); 107 108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 109 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 110 cl::desc("Control the maximal total instruction cost that we are willing " 111 "to speculatively execute to fold a 2-entry PHI node into a " 112 "select (default = 4)")); 113 114 static cl::opt<bool> 115 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 116 cl::desc("Hoist common instructions up to the parent block")); 117 118 static cl::opt<bool> 119 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 120 cl::desc("Sink common instructions down to the end block")); 121 122 static cl::opt<bool> HoistCondStores( 123 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 124 cl::desc("Hoist conditional stores if an unconditional store precedes")); 125 126 static cl::opt<bool> MergeCondStores( 127 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 128 cl::desc("Hoist conditional stores even if an unconditional store does not " 129 "precede - hoist multiple conditional stores into a single " 130 "predicated store")); 131 132 static cl::opt<bool> MergeCondStoresAggressively( 133 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 134 cl::desc("When merging conditional stores, do so even if the resultant " 135 "basic blocks are unlikely to be if-converted as a result")); 136 137 static cl::opt<bool> SpeculateOneExpensiveInst( 138 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 139 cl::desc("Allow exactly one expensive instruction to be speculatively " 140 "executed")); 141 142 static cl::opt<unsigned> MaxSpeculationDepth( 143 "max-speculation-depth", cl::Hidden, cl::init(10), 144 cl::desc("Limit maximum recursion depth when calculating costs of " 145 "speculatively executed instructions")); 146 147 static cl::opt<int> 148 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 149 cl::init(10), 150 cl::desc("Max size of a block which is still considered " 151 "small enough to thread through")); 152 153 // Two is chosen to allow one negation and a logical combine. 154 static cl::opt<unsigned> 155 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 156 cl::init(2), 157 cl::desc("Maximum cost of combining conditions when " 158 "folding branches")); 159 160 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( 161 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, 162 cl::init(2), 163 cl::desc("Multiplier to apply to threshold when determining whether or not " 164 "to fold branch to common destination when vector operations are " 165 "present")); 166 167 static cl::opt<bool> EnableMergeCompatibleInvokes( 168 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true), 169 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate")); 170 171 static cl::opt<unsigned> MaxSwitchCasesPerResult( 172 "max-switch-cases-per-result", cl::Hidden, cl::init(16), 173 cl::desc("Limit cases to analyze when converting a switch to select")); 174 175 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 176 STATISTIC(NumLinearMaps, 177 "Number of switch instructions turned into linear mapping"); 178 STATISTIC(NumLookupTables, 179 "Number of switch instructions turned into lookup tables"); 180 STATISTIC( 181 NumLookupTablesHoles, 182 "Number of switch instructions turned into lookup tables (holes checked)"); 183 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 184 STATISTIC(NumFoldValueComparisonIntoPredecessors, 185 "Number of value comparisons folded into predecessor basic blocks"); 186 STATISTIC(NumFoldBranchToCommonDest, 187 "Number of branches folded into predecessor basic block"); 188 STATISTIC( 189 NumHoistCommonCode, 190 "Number of common instruction 'blocks' hoisted up to the begin block"); 191 STATISTIC(NumHoistCommonInstrs, 192 "Number of common instructions hoisted up to the begin block"); 193 STATISTIC(NumSinkCommonCode, 194 "Number of common instruction 'blocks' sunk down to the end block"); 195 STATISTIC(NumSinkCommonInstrs, 196 "Number of common instructions sunk down to the end block"); 197 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 198 STATISTIC(NumInvokes, 199 "Number of invokes with empty resume blocks simplified into calls"); 200 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); 201 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); 202 203 namespace { 204 205 // The first field contains the value that the switch produces when a certain 206 // case group is selected, and the second field is a vector containing the 207 // cases composing the case group. 208 using SwitchCaseResultVectorTy = 209 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 210 211 // The first field contains the phi node that generates a result of the switch 212 // and the second field contains the value generated for a certain case in the 213 // switch for that PHI. 214 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 215 216 /// ValueEqualityComparisonCase - Represents a case of a switch. 217 struct ValueEqualityComparisonCase { 218 ConstantInt *Value; 219 BasicBlock *Dest; 220 221 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 222 : Value(Value), Dest(Dest) {} 223 224 bool operator<(ValueEqualityComparisonCase RHS) const { 225 // Comparing pointers is ok as we only rely on the order for uniquing. 226 return Value < RHS.Value; 227 } 228 229 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 230 }; 231 232 class SimplifyCFGOpt { 233 const TargetTransformInfo &TTI; 234 DomTreeUpdater *DTU; 235 const DataLayout &DL; 236 ArrayRef<WeakVH> LoopHeaders; 237 const SimplifyCFGOptions &Options; 238 bool Resimplify; 239 240 Value *isValueEqualityComparison(Instruction *TI); 241 BasicBlock *GetValueEqualityComparisonCases( 242 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 243 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 244 BasicBlock *Pred, 245 IRBuilder<> &Builder); 246 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 247 Instruction *PTI, 248 IRBuilder<> &Builder); 249 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 250 IRBuilder<> &Builder); 251 252 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 253 bool simplifySingleResume(ResumeInst *RI); 254 bool simplifyCommonResume(ResumeInst *RI); 255 bool simplifyCleanupReturn(CleanupReturnInst *RI); 256 bool simplifyUnreachable(UnreachableInst *UI); 257 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 258 bool simplifyIndirectBr(IndirectBrInst *IBI); 259 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 260 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 261 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 262 263 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 264 IRBuilder<> &Builder); 265 266 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 267 bool EqTermsOnly); 268 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 269 const TargetTransformInfo &TTI); 270 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 271 BasicBlock *TrueBB, BasicBlock *FalseBB, 272 uint32_t TrueWeight, uint32_t FalseWeight); 273 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 274 const DataLayout &DL); 275 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 276 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 277 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 278 279 public: 280 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 281 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 282 const SimplifyCFGOptions &Opts) 283 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 284 assert((!DTU || !DTU->hasPostDomTree()) && 285 "SimplifyCFG is not yet capable of maintaining validity of a " 286 "PostDomTree, so don't ask for it."); 287 } 288 289 bool simplifyOnce(BasicBlock *BB); 290 bool run(BasicBlock *BB); 291 292 // Helper to set Resimplify and return change indication. 293 bool requestResimplify() { 294 Resimplify = true; 295 return true; 296 } 297 }; 298 299 } // end anonymous namespace 300 301 /// Return true if all the PHI nodes in the basic block \p BB 302 /// receive compatible (identical) incoming values when coming from 303 /// all of the predecessor blocks that are specified in \p IncomingBlocks. 304 /// 305 /// Note that if the values aren't exactly identical, but \p EquivalenceSet 306 /// is provided, and *both* of the values are present in the set, 307 /// then they are considered equal. 308 static bool IncomingValuesAreCompatible( 309 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, 310 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { 311 assert(IncomingBlocks.size() == 2 && 312 "Only for a pair of incoming blocks at the time!"); 313 314 // FIXME: it is okay if one of the incoming values is an `undef` value, 315 // iff the other incoming value is guaranteed to be a non-poison value. 316 // FIXME: it is okay if one of the incoming values is a `poison` value. 317 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { 318 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); 319 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); 320 if (IV0 == IV1) 321 return true; 322 if (EquivalenceSet && EquivalenceSet->contains(IV0) && 323 EquivalenceSet->contains(IV1)) 324 return true; 325 return false; 326 }); 327 } 328 329 /// Return true if it is safe to merge these two 330 /// terminator instructions together. 331 static bool 332 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 333 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 334 if (SI1 == SI2) 335 return false; // Can't merge with self! 336 337 // It is not safe to merge these two switch instructions if they have a common 338 // successor, and if that successor has a PHI node, and if *that* PHI node has 339 // conflicting incoming values from the two switch blocks. 340 BasicBlock *SI1BB = SI1->getParent(); 341 BasicBlock *SI2BB = SI2->getParent(); 342 343 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 344 bool Fail = false; 345 for (BasicBlock *Succ : successors(SI2BB)) { 346 if (!SI1Succs.count(Succ)) 347 continue; 348 if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) 349 continue; 350 Fail = true; 351 if (FailBlocks) 352 FailBlocks->insert(Succ); 353 else 354 break; 355 } 356 357 return !Fail; 358 } 359 360 /// Update PHI nodes in Succ to indicate that there will now be entries in it 361 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 362 /// will be the same as those coming in from ExistPred, an existing predecessor 363 /// of Succ. 364 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 365 BasicBlock *ExistPred, 366 MemorySSAUpdater *MSSAU = nullptr) { 367 for (PHINode &PN : Succ->phis()) 368 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 369 if (MSSAU) 370 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 371 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 372 } 373 374 /// Compute an abstract "cost" of speculating the given instruction, 375 /// which is assumed to be safe to speculate. TCC_Free means cheap, 376 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 377 /// expensive. 378 static InstructionCost computeSpeculationCost(const User *I, 379 const TargetTransformInfo &TTI) { 380 assert(isSafeToSpeculativelyExecute(I) && 381 "Instruction is not safe to speculatively execute!"); 382 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 383 } 384 385 /// Check whether this is a potentially trapping constant. 386 static bool canTrap(const Value *V) { 387 if (auto *C = dyn_cast<Constant>(V)) 388 return C->canTrap(); 389 return false; 390 } 391 392 /// If we have a merge point of an "if condition" as accepted above, 393 /// return true if the specified value dominates the block. We 394 /// don't handle the true generality of domination here, just a special case 395 /// which works well enough for us. 396 /// 397 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 398 /// see if V (which must be an instruction) and its recursive operands 399 /// that do not dominate BB have a combined cost lower than Budget and 400 /// are non-trapping. If both are true, the instruction is inserted into the 401 /// set and true is returned. 402 /// 403 /// The cost for most non-trapping instructions is defined as 1 except for 404 /// Select whose cost is 2. 405 /// 406 /// After this function returns, Cost is increased by the cost of 407 /// V plus its non-dominating operands. If that cost is greater than 408 /// Budget, false is returned and Cost is undefined. 409 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 410 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 411 InstructionCost &Cost, 412 InstructionCost Budget, 413 const TargetTransformInfo &TTI, 414 unsigned Depth = 0) { 415 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 416 // so limit the recursion depth. 417 // TODO: While this recursion limit does prevent pathological behavior, it 418 // would be better to track visited instructions to avoid cycles. 419 if (Depth == MaxSpeculationDepth) 420 return false; 421 422 Instruction *I = dyn_cast<Instruction>(V); 423 if (!I) { 424 // Non-instructions all dominate instructions, but not all constantexprs 425 // can be executed unconditionally. 426 return !canTrap(V); 427 } 428 BasicBlock *PBB = I->getParent(); 429 430 // We don't want to allow weird loops that might have the "if condition" in 431 // the bottom of this block. 432 if (PBB == BB) 433 return false; 434 435 // If this instruction is defined in a block that contains an unconditional 436 // branch to BB, then it must be in the 'conditional' part of the "if 437 // statement". If not, it definitely dominates the region. 438 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 439 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 440 return true; 441 442 // If we have seen this instruction before, don't count it again. 443 if (AggressiveInsts.count(I)) 444 return true; 445 446 // Okay, it looks like the instruction IS in the "condition". Check to 447 // see if it's a cheap instruction to unconditionally compute, and if it 448 // only uses stuff defined outside of the condition. If so, hoist it out. 449 if (!isSafeToSpeculativelyExecute(I)) 450 return false; 451 452 Cost += computeSpeculationCost(I, TTI); 453 454 // Allow exactly one instruction to be speculated regardless of its cost 455 // (as long as it is safe to do so). 456 // This is intended to flatten the CFG even if the instruction is a division 457 // or other expensive operation. The speculation of an expensive instruction 458 // is expected to be undone in CodeGenPrepare if the speculation has not 459 // enabled further IR optimizations. 460 if (Cost > Budget && 461 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 462 !Cost.isValid())) 463 return false; 464 465 // Okay, we can only really hoist these out if their operands do 466 // not take us over the cost threshold. 467 for (Use &Op : I->operands()) 468 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 469 Depth + 1)) 470 return false; 471 // Okay, it's safe to do this! Remember this instruction. 472 AggressiveInsts.insert(I); 473 return true; 474 } 475 476 /// Extract ConstantInt from value, looking through IntToPtr 477 /// and PointerNullValue. Return NULL if value is not a constant int. 478 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 479 // Normal constant int. 480 ConstantInt *CI = dyn_cast<ConstantInt>(V); 481 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 482 return CI; 483 484 // This is some kind of pointer constant. Turn it into a pointer-sized 485 // ConstantInt if possible. 486 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 487 488 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 489 if (isa<ConstantPointerNull>(V)) 490 return ConstantInt::get(PtrTy, 0); 491 492 // IntToPtr const int. 493 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 494 if (CE->getOpcode() == Instruction::IntToPtr) 495 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 496 // The constant is very likely to have the right type already. 497 if (CI->getType() == PtrTy) 498 return CI; 499 else 500 return cast<ConstantInt>( 501 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 502 } 503 return nullptr; 504 } 505 506 namespace { 507 508 /// Given a chain of or (||) or and (&&) comparison of a value against a 509 /// constant, this will try to recover the information required for a switch 510 /// structure. 511 /// It will depth-first traverse the chain of comparison, seeking for patterns 512 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 513 /// representing the different cases for the switch. 514 /// Note that if the chain is composed of '||' it will build the set of elements 515 /// that matches the comparisons (i.e. any of this value validate the chain) 516 /// while for a chain of '&&' it will build the set elements that make the test 517 /// fail. 518 struct ConstantComparesGatherer { 519 const DataLayout &DL; 520 521 /// Value found for the switch comparison 522 Value *CompValue = nullptr; 523 524 /// Extra clause to be checked before the switch 525 Value *Extra = nullptr; 526 527 /// Set of integers to match in switch 528 SmallVector<ConstantInt *, 8> Vals; 529 530 /// Number of comparisons matched in the and/or chain 531 unsigned UsedICmps = 0; 532 533 /// Construct and compute the result for the comparison instruction Cond 534 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 535 gather(Cond); 536 } 537 538 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 539 ConstantComparesGatherer & 540 operator=(const ConstantComparesGatherer &) = delete; 541 542 private: 543 /// Try to set the current value used for the comparison, it succeeds only if 544 /// it wasn't set before or if the new value is the same as the old one 545 bool setValueOnce(Value *NewVal) { 546 if (CompValue && CompValue != NewVal) 547 return false; 548 CompValue = NewVal; 549 return (CompValue != nullptr); 550 } 551 552 /// Try to match Instruction "I" as a comparison against a constant and 553 /// populates the array Vals with the set of values that match (or do not 554 /// match depending on isEQ). 555 /// Return false on failure. On success, the Value the comparison matched 556 /// against is placed in CompValue. 557 /// If CompValue is already set, the function is expected to fail if a match 558 /// is found but the value compared to is different. 559 bool matchInstruction(Instruction *I, bool isEQ) { 560 // If this is an icmp against a constant, handle this as one of the cases. 561 ICmpInst *ICI; 562 ConstantInt *C; 563 if (!((ICI = dyn_cast<ICmpInst>(I)) && 564 (C = GetConstantInt(I->getOperand(1), DL)))) { 565 return false; 566 } 567 568 Value *RHSVal; 569 const APInt *RHSC; 570 571 // Pattern match a special case 572 // (x & ~2^z) == y --> x == y || x == y|2^z 573 // This undoes a transformation done by instcombine to fuse 2 compares. 574 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 575 // It's a little bit hard to see why the following transformations are 576 // correct. Here is a CVC3 program to verify them for 64-bit values: 577 578 /* 579 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 580 x : BITVECTOR(64); 581 y : BITVECTOR(64); 582 z : BITVECTOR(64); 583 mask : BITVECTOR(64) = BVSHL(ONE, z); 584 QUERY( (y & ~mask = y) => 585 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 586 ); 587 QUERY( (y | mask = y) => 588 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 589 ); 590 */ 591 592 // Please note that each pattern must be a dual implication (<--> or 593 // iff). One directional implication can create spurious matches. If the 594 // implication is only one-way, an unsatisfiable condition on the left 595 // side can imply a satisfiable condition on the right side. Dual 596 // implication ensures that satisfiable conditions are transformed to 597 // other satisfiable conditions and unsatisfiable conditions are 598 // transformed to other unsatisfiable conditions. 599 600 // Here is a concrete example of a unsatisfiable condition on the left 601 // implying a satisfiable condition on the right: 602 // 603 // mask = (1 << z) 604 // (x & ~mask) == y --> (x == y || x == (y | mask)) 605 // 606 // Substituting y = 3, z = 0 yields: 607 // (x & -2) == 3 --> (x == 3 || x == 2) 608 609 // Pattern match a special case: 610 /* 611 QUERY( (y & ~mask = y) => 612 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 613 ); 614 */ 615 if (match(ICI->getOperand(0), 616 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 617 APInt Mask = ~*RHSC; 618 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 619 // If we already have a value for the switch, it has to match! 620 if (!setValueOnce(RHSVal)) 621 return false; 622 623 Vals.push_back(C); 624 Vals.push_back( 625 ConstantInt::get(C->getContext(), 626 C->getValue() | Mask)); 627 UsedICmps++; 628 return true; 629 } 630 } 631 632 // Pattern match a special case: 633 /* 634 QUERY( (y | mask = y) => 635 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 636 ); 637 */ 638 if (match(ICI->getOperand(0), 639 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 640 APInt Mask = *RHSC; 641 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 642 // If we already have a value for the switch, it has to match! 643 if (!setValueOnce(RHSVal)) 644 return false; 645 646 Vals.push_back(C); 647 Vals.push_back(ConstantInt::get(C->getContext(), 648 C->getValue() & ~Mask)); 649 UsedICmps++; 650 return true; 651 } 652 } 653 654 // If we already have a value for the switch, it has to match! 655 if (!setValueOnce(ICI->getOperand(0))) 656 return false; 657 658 UsedICmps++; 659 Vals.push_back(C); 660 return ICI->getOperand(0); 661 } 662 663 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 664 ConstantRange Span = 665 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 666 667 // Shift the range if the compare is fed by an add. This is the range 668 // compare idiom as emitted by instcombine. 669 Value *CandidateVal = I->getOperand(0); 670 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 671 Span = Span.subtract(*RHSC); 672 CandidateVal = RHSVal; 673 } 674 675 // If this is an and/!= check, then we are looking to build the set of 676 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 677 // x != 0 && x != 1. 678 if (!isEQ) 679 Span = Span.inverse(); 680 681 // If there are a ton of values, we don't want to make a ginormous switch. 682 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 683 return false; 684 } 685 686 // If we already have a value for the switch, it has to match! 687 if (!setValueOnce(CandidateVal)) 688 return false; 689 690 // Add all values from the range to the set 691 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 692 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 693 694 UsedICmps++; 695 return true; 696 } 697 698 /// Given a potentially 'or'd or 'and'd together collection of icmp 699 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 700 /// the value being compared, and stick the list constants into the Vals 701 /// vector. 702 /// One "Extra" case is allowed to differ from the other. 703 void gather(Value *V) { 704 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 705 706 // Keep a stack (SmallVector for efficiency) for depth-first traversal 707 SmallVector<Value *, 8> DFT; 708 SmallPtrSet<Value *, 8> Visited; 709 710 // Initialize 711 Visited.insert(V); 712 DFT.push_back(V); 713 714 while (!DFT.empty()) { 715 V = DFT.pop_back_val(); 716 717 if (Instruction *I = dyn_cast<Instruction>(V)) { 718 // If it is a || (or && depending on isEQ), process the operands. 719 Value *Op0, *Op1; 720 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 721 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 722 if (Visited.insert(Op1).second) 723 DFT.push_back(Op1); 724 if (Visited.insert(Op0).second) 725 DFT.push_back(Op0); 726 727 continue; 728 } 729 730 // Try to match the current instruction 731 if (matchInstruction(I, isEQ)) 732 // Match succeed, continue the loop 733 continue; 734 } 735 736 // One element of the sequence of || (or &&) could not be match as a 737 // comparison against the same value as the others. 738 // We allow only one "Extra" case to be checked before the switch 739 if (!Extra) { 740 Extra = V; 741 continue; 742 } 743 // Failed to parse a proper sequence, abort now 744 CompValue = nullptr; 745 break; 746 } 747 } 748 }; 749 750 } // end anonymous namespace 751 752 static void EraseTerminatorAndDCECond(Instruction *TI, 753 MemorySSAUpdater *MSSAU = nullptr) { 754 Instruction *Cond = nullptr; 755 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 756 Cond = dyn_cast<Instruction>(SI->getCondition()); 757 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 758 if (BI->isConditional()) 759 Cond = dyn_cast<Instruction>(BI->getCondition()); 760 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 761 Cond = dyn_cast<Instruction>(IBI->getAddress()); 762 } 763 764 TI->eraseFromParent(); 765 if (Cond) 766 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 767 } 768 769 /// Return true if the specified terminator checks 770 /// to see if a value is equal to constant integer value. 771 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 772 Value *CV = nullptr; 773 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 774 // Do not permit merging of large switch instructions into their 775 // predecessors unless there is only one predecessor. 776 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 777 CV = SI->getCondition(); 778 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 779 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 780 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 781 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 782 CV = ICI->getOperand(0); 783 } 784 785 // Unwrap any lossless ptrtoint cast. 786 if (CV) { 787 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 788 Value *Ptr = PTII->getPointerOperand(); 789 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 790 CV = Ptr; 791 } 792 } 793 return CV; 794 } 795 796 /// Given a value comparison instruction, 797 /// decode all of the 'cases' that it represents and return the 'default' block. 798 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 799 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 800 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 801 Cases.reserve(SI->getNumCases()); 802 for (auto Case : SI->cases()) 803 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 804 Case.getCaseSuccessor())); 805 return SI->getDefaultDest(); 806 } 807 808 BranchInst *BI = cast<BranchInst>(TI); 809 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 810 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 811 Cases.push_back(ValueEqualityComparisonCase( 812 GetConstantInt(ICI->getOperand(1), DL), Succ)); 813 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 814 } 815 816 /// Given a vector of bb/value pairs, remove any entries 817 /// in the list that match the specified block. 818 static void 819 EliminateBlockCases(BasicBlock *BB, 820 std::vector<ValueEqualityComparisonCase> &Cases) { 821 llvm::erase_value(Cases, BB); 822 } 823 824 /// Return true if there are any keys in C1 that exist in C2 as well. 825 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 826 std::vector<ValueEqualityComparisonCase> &C2) { 827 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 828 829 // Make V1 be smaller than V2. 830 if (V1->size() > V2->size()) 831 std::swap(V1, V2); 832 833 if (V1->empty()) 834 return false; 835 if (V1->size() == 1) { 836 // Just scan V2. 837 ConstantInt *TheVal = (*V1)[0].Value; 838 for (unsigned i = 0, e = V2->size(); i != e; ++i) 839 if (TheVal == (*V2)[i].Value) 840 return true; 841 } 842 843 // Otherwise, just sort both lists and compare element by element. 844 array_pod_sort(V1->begin(), V1->end()); 845 array_pod_sort(V2->begin(), V2->end()); 846 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 847 while (i1 != e1 && i2 != e2) { 848 if ((*V1)[i1].Value == (*V2)[i2].Value) 849 return true; 850 if ((*V1)[i1].Value < (*V2)[i2].Value) 851 ++i1; 852 else 853 ++i2; 854 } 855 return false; 856 } 857 858 // Set branch weights on SwitchInst. This sets the metadata if there is at 859 // least one non-zero weight. 860 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 861 // Check that there is at least one non-zero weight. Otherwise, pass 862 // nullptr to setMetadata which will erase the existing metadata. 863 MDNode *N = nullptr; 864 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 865 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 866 SI->setMetadata(LLVMContext::MD_prof, N); 867 } 868 869 // Similar to the above, but for branch and select instructions that take 870 // exactly 2 weights. 871 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 872 uint32_t FalseWeight) { 873 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 874 // Check that there is at least one non-zero weight. Otherwise, pass 875 // nullptr to setMetadata which will erase the existing metadata. 876 MDNode *N = nullptr; 877 if (TrueWeight || FalseWeight) 878 N = MDBuilder(I->getParent()->getContext()) 879 .createBranchWeights(TrueWeight, FalseWeight); 880 I->setMetadata(LLVMContext::MD_prof, N); 881 } 882 883 /// If TI is known to be a terminator instruction and its block is known to 884 /// only have a single predecessor block, check to see if that predecessor is 885 /// also a value comparison with the same value, and if that comparison 886 /// determines the outcome of this comparison. If so, simplify TI. This does a 887 /// very limited form of jump threading. 888 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 889 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 890 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 891 if (!PredVal) 892 return false; // Not a value comparison in predecessor. 893 894 Value *ThisVal = isValueEqualityComparison(TI); 895 assert(ThisVal && "This isn't a value comparison!!"); 896 if (ThisVal != PredVal) 897 return false; // Different predicates. 898 899 // TODO: Preserve branch weight metadata, similarly to how 900 // FoldValueComparisonIntoPredecessors preserves it. 901 902 // Find out information about when control will move from Pred to TI's block. 903 std::vector<ValueEqualityComparisonCase> PredCases; 904 BasicBlock *PredDef = 905 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 906 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 907 908 // Find information about how control leaves this block. 909 std::vector<ValueEqualityComparisonCase> ThisCases; 910 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 911 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 912 913 // If TI's block is the default block from Pred's comparison, potentially 914 // simplify TI based on this knowledge. 915 if (PredDef == TI->getParent()) { 916 // If we are here, we know that the value is none of those cases listed in 917 // PredCases. If there are any cases in ThisCases that are in PredCases, we 918 // can simplify TI. 919 if (!ValuesOverlap(PredCases, ThisCases)) 920 return false; 921 922 if (isa<BranchInst>(TI)) { 923 // Okay, one of the successors of this condbr is dead. Convert it to a 924 // uncond br. 925 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 926 // Insert the new branch. 927 Instruction *NI = Builder.CreateBr(ThisDef); 928 (void)NI; 929 930 // Remove PHI node entries for the dead edge. 931 ThisCases[0].Dest->removePredecessor(PredDef); 932 933 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 934 << "Through successor TI: " << *TI << "Leaving: " << *NI 935 << "\n"); 936 937 EraseTerminatorAndDCECond(TI); 938 939 if (DTU) 940 DTU->applyUpdates( 941 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 942 943 return true; 944 } 945 946 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 947 // Okay, TI has cases that are statically dead, prune them away. 948 SmallPtrSet<Constant *, 16> DeadCases; 949 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 950 DeadCases.insert(PredCases[i].Value); 951 952 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 953 << "Through successor TI: " << *TI); 954 955 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 956 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 957 --i; 958 auto *Successor = i->getCaseSuccessor(); 959 if (DTU) 960 ++NumPerSuccessorCases[Successor]; 961 if (DeadCases.count(i->getCaseValue())) { 962 Successor->removePredecessor(PredDef); 963 SI.removeCase(i); 964 if (DTU) 965 --NumPerSuccessorCases[Successor]; 966 } 967 } 968 969 if (DTU) { 970 std::vector<DominatorTree::UpdateType> Updates; 971 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 972 if (I.second == 0) 973 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 974 DTU->applyUpdates(Updates); 975 } 976 977 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 978 return true; 979 } 980 981 // Otherwise, TI's block must correspond to some matched value. Find out 982 // which value (or set of values) this is. 983 ConstantInt *TIV = nullptr; 984 BasicBlock *TIBB = TI->getParent(); 985 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 986 if (PredCases[i].Dest == TIBB) { 987 if (TIV) 988 return false; // Cannot handle multiple values coming to this block. 989 TIV = PredCases[i].Value; 990 } 991 assert(TIV && "No edge from pred to succ?"); 992 993 // Okay, we found the one constant that our value can be if we get into TI's 994 // BB. Find out which successor will unconditionally be branched to. 995 BasicBlock *TheRealDest = nullptr; 996 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 997 if (ThisCases[i].Value == TIV) { 998 TheRealDest = ThisCases[i].Dest; 999 break; 1000 } 1001 1002 // If not handled by any explicit cases, it is handled by the default case. 1003 if (!TheRealDest) 1004 TheRealDest = ThisDef; 1005 1006 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 1007 1008 // Remove PHI node entries for dead edges. 1009 BasicBlock *CheckEdge = TheRealDest; 1010 for (BasicBlock *Succ : successors(TIBB)) 1011 if (Succ != CheckEdge) { 1012 if (Succ != TheRealDest) 1013 RemovedSuccs.insert(Succ); 1014 Succ->removePredecessor(TIBB); 1015 } else 1016 CheckEdge = nullptr; 1017 1018 // Insert the new branch. 1019 Instruction *NI = Builder.CreateBr(TheRealDest); 1020 (void)NI; 1021 1022 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1023 << "Through successor TI: " << *TI << "Leaving: " << *NI 1024 << "\n"); 1025 1026 EraseTerminatorAndDCECond(TI); 1027 if (DTU) { 1028 SmallVector<DominatorTree::UpdateType, 2> Updates; 1029 Updates.reserve(RemovedSuccs.size()); 1030 for (auto *RemovedSucc : RemovedSuccs) 1031 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1032 DTU->applyUpdates(Updates); 1033 } 1034 return true; 1035 } 1036 1037 namespace { 1038 1039 /// This class implements a stable ordering of constant 1040 /// integers that does not depend on their address. This is important for 1041 /// applications that sort ConstantInt's to ensure uniqueness. 1042 struct ConstantIntOrdering { 1043 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1044 return LHS->getValue().ult(RHS->getValue()); 1045 } 1046 }; 1047 1048 } // end anonymous namespace 1049 1050 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1051 ConstantInt *const *P2) { 1052 const ConstantInt *LHS = *P1; 1053 const ConstantInt *RHS = *P2; 1054 if (LHS == RHS) 1055 return 0; 1056 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1057 } 1058 1059 static inline bool HasBranchWeights(const Instruction *I) { 1060 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1061 if (ProfMD && ProfMD->getOperand(0)) 1062 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1063 return MDS->getString().equals("branch_weights"); 1064 1065 return false; 1066 } 1067 1068 /// Get Weights of a given terminator, the default weight is at the front 1069 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1070 /// metadata. 1071 static void GetBranchWeights(Instruction *TI, 1072 SmallVectorImpl<uint64_t> &Weights) { 1073 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1074 assert(MD); 1075 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1076 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1077 Weights.push_back(CI->getValue().getZExtValue()); 1078 } 1079 1080 // If TI is a conditional eq, the default case is the false case, 1081 // and the corresponding branch-weight data is at index 2. We swap the 1082 // default weight to be the first entry. 1083 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1084 assert(Weights.size() == 2); 1085 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1086 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1087 std::swap(Weights.front(), Weights.back()); 1088 } 1089 } 1090 1091 /// Keep halving the weights until all can fit in uint32_t. 1092 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1093 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1094 if (Max > UINT_MAX) { 1095 unsigned Offset = 32 - countLeadingZeros(Max); 1096 for (uint64_t &I : Weights) 1097 I >>= Offset; 1098 } 1099 } 1100 1101 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1102 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1103 Instruction *PTI = PredBlock->getTerminator(); 1104 1105 // If we have bonus instructions, clone them into the predecessor block. 1106 // Note that there may be multiple predecessor blocks, so we cannot move 1107 // bonus instructions to a predecessor block. 1108 for (Instruction &BonusInst : *BB) { 1109 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1110 continue; 1111 1112 Instruction *NewBonusInst = BonusInst.clone(); 1113 1114 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1115 // Unless the instruction has the same !dbg location as the original 1116 // branch, drop it. When we fold the bonus instructions we want to make 1117 // sure we reset their debug locations in order to avoid stepping on 1118 // dead code caused by folding dead branches. 1119 NewBonusInst->setDebugLoc(DebugLoc()); 1120 } 1121 1122 RemapInstruction(NewBonusInst, VMap, 1123 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1124 VMap[&BonusInst] = NewBonusInst; 1125 1126 // If we moved a load, we cannot any longer claim any knowledge about 1127 // its potential value. The previous information might have been valid 1128 // only given the branch precondition. 1129 // For an analogous reason, we must also drop all the metadata whose 1130 // semantics we don't understand. We *can* preserve !annotation, because 1131 // it is tied to the instruction itself, not the value or position. 1132 // Similarly strip attributes on call parameters that may cause UB in 1133 // location the call is moved to. 1134 NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata( 1135 LLVMContext::MD_annotation); 1136 1137 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1138 NewBonusInst->takeName(&BonusInst); 1139 BonusInst.setName(NewBonusInst->getName() + ".old"); 1140 1141 // Update (liveout) uses of bonus instructions, 1142 // now that the bonus instruction has been cloned into predecessor. 1143 // Note that we expect to be in a block-closed SSA form for this to work! 1144 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1145 auto *UI = cast<Instruction>(U.getUser()); 1146 auto *PN = dyn_cast<PHINode>(UI); 1147 if (!PN) { 1148 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && 1149 "If the user is not a PHI node, then it should be in the same " 1150 "block as, and come after, the original bonus instruction."); 1151 continue; // Keep using the original bonus instruction. 1152 } 1153 // Is this the block-closed SSA form PHI node? 1154 if (PN->getIncomingBlock(U) == BB) 1155 continue; // Great, keep using the original bonus instruction. 1156 // The only other alternative is an "use" when coming from 1157 // the predecessor block - here we should refer to the cloned bonus instr. 1158 assert(PN->getIncomingBlock(U) == PredBlock && 1159 "Not in block-closed SSA form?"); 1160 U.set(NewBonusInst); 1161 } 1162 } 1163 } 1164 1165 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1166 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1167 BasicBlock *BB = TI->getParent(); 1168 BasicBlock *Pred = PTI->getParent(); 1169 1170 SmallVector<DominatorTree::UpdateType, 32> Updates; 1171 1172 // Figure out which 'cases' to copy from SI to PSI. 1173 std::vector<ValueEqualityComparisonCase> BBCases; 1174 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1175 1176 std::vector<ValueEqualityComparisonCase> PredCases; 1177 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1178 1179 // Based on whether the default edge from PTI goes to BB or not, fill in 1180 // PredCases and PredDefault with the new switch cases we would like to 1181 // build. 1182 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1183 1184 // Update the branch weight metadata along the way 1185 SmallVector<uint64_t, 8> Weights; 1186 bool PredHasWeights = HasBranchWeights(PTI); 1187 bool SuccHasWeights = HasBranchWeights(TI); 1188 1189 if (PredHasWeights) { 1190 GetBranchWeights(PTI, Weights); 1191 // branch-weight metadata is inconsistent here. 1192 if (Weights.size() != 1 + PredCases.size()) 1193 PredHasWeights = SuccHasWeights = false; 1194 } else if (SuccHasWeights) 1195 // If there are no predecessor weights but there are successor weights, 1196 // populate Weights with 1, which will later be scaled to the sum of 1197 // successor's weights 1198 Weights.assign(1 + PredCases.size(), 1); 1199 1200 SmallVector<uint64_t, 8> SuccWeights; 1201 if (SuccHasWeights) { 1202 GetBranchWeights(TI, SuccWeights); 1203 // branch-weight metadata is inconsistent here. 1204 if (SuccWeights.size() != 1 + BBCases.size()) 1205 PredHasWeights = SuccHasWeights = false; 1206 } else if (PredHasWeights) 1207 SuccWeights.assign(1 + BBCases.size(), 1); 1208 1209 if (PredDefault == BB) { 1210 // If this is the default destination from PTI, only the edges in TI 1211 // that don't occur in PTI, or that branch to BB will be activated. 1212 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1213 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1214 if (PredCases[i].Dest != BB) 1215 PTIHandled.insert(PredCases[i].Value); 1216 else { 1217 // The default destination is BB, we don't need explicit targets. 1218 std::swap(PredCases[i], PredCases.back()); 1219 1220 if (PredHasWeights || SuccHasWeights) { 1221 // Increase weight for the default case. 1222 Weights[0] += Weights[i + 1]; 1223 std::swap(Weights[i + 1], Weights.back()); 1224 Weights.pop_back(); 1225 } 1226 1227 PredCases.pop_back(); 1228 --i; 1229 --e; 1230 } 1231 1232 // Reconstruct the new switch statement we will be building. 1233 if (PredDefault != BBDefault) { 1234 PredDefault->removePredecessor(Pred); 1235 if (DTU && PredDefault != BB) 1236 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1237 PredDefault = BBDefault; 1238 ++NewSuccessors[BBDefault]; 1239 } 1240 1241 unsigned CasesFromPred = Weights.size(); 1242 uint64_t ValidTotalSuccWeight = 0; 1243 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1244 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1245 PredCases.push_back(BBCases[i]); 1246 ++NewSuccessors[BBCases[i].Dest]; 1247 if (SuccHasWeights || PredHasWeights) { 1248 // The default weight is at index 0, so weight for the ith case 1249 // should be at index i+1. Scale the cases from successor by 1250 // PredDefaultWeight (Weights[0]). 1251 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1252 ValidTotalSuccWeight += SuccWeights[i + 1]; 1253 } 1254 } 1255 1256 if (SuccHasWeights || PredHasWeights) { 1257 ValidTotalSuccWeight += SuccWeights[0]; 1258 // Scale the cases from predecessor by ValidTotalSuccWeight. 1259 for (unsigned i = 1; i < CasesFromPred; ++i) 1260 Weights[i] *= ValidTotalSuccWeight; 1261 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1262 Weights[0] *= SuccWeights[0]; 1263 } 1264 } else { 1265 // If this is not the default destination from PSI, only the edges 1266 // in SI that occur in PSI with a destination of BB will be 1267 // activated. 1268 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1269 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1270 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1271 if (PredCases[i].Dest == BB) { 1272 PTIHandled.insert(PredCases[i].Value); 1273 1274 if (PredHasWeights || SuccHasWeights) { 1275 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1276 std::swap(Weights[i + 1], Weights.back()); 1277 Weights.pop_back(); 1278 } 1279 1280 std::swap(PredCases[i], PredCases.back()); 1281 PredCases.pop_back(); 1282 --i; 1283 --e; 1284 } 1285 1286 // Okay, now we know which constants were sent to BB from the 1287 // predecessor. Figure out where they will all go now. 1288 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1289 if (PTIHandled.count(BBCases[i].Value)) { 1290 // If this is one we are capable of getting... 1291 if (PredHasWeights || SuccHasWeights) 1292 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1293 PredCases.push_back(BBCases[i]); 1294 ++NewSuccessors[BBCases[i].Dest]; 1295 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1296 } 1297 1298 // If there are any constants vectored to BB that TI doesn't handle, 1299 // they must go to the default destination of TI. 1300 for (ConstantInt *I : PTIHandled) { 1301 if (PredHasWeights || SuccHasWeights) 1302 Weights.push_back(WeightsForHandled[I]); 1303 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1304 ++NewSuccessors[BBDefault]; 1305 } 1306 } 1307 1308 // Okay, at this point, we know which new successor Pred will get. Make 1309 // sure we update the number of entries in the PHI nodes for these 1310 // successors. 1311 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1312 if (DTU) { 1313 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1314 Updates.reserve(Updates.size() + NewSuccessors.size()); 1315 } 1316 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1317 NewSuccessors) { 1318 for (auto I : seq(0, NewSuccessor.second)) { 1319 (void)I; 1320 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1321 } 1322 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1323 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1324 } 1325 1326 Builder.SetInsertPoint(PTI); 1327 // Convert pointer to int before we switch. 1328 if (CV->getType()->isPointerTy()) { 1329 CV = 1330 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1331 } 1332 1333 // Now that the successors are updated, create the new Switch instruction. 1334 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1335 NewSI->setDebugLoc(PTI->getDebugLoc()); 1336 for (ValueEqualityComparisonCase &V : PredCases) 1337 NewSI->addCase(V.Value, V.Dest); 1338 1339 if (PredHasWeights || SuccHasWeights) { 1340 // Halve the weights if any of them cannot fit in an uint32_t 1341 FitWeights(Weights); 1342 1343 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1344 1345 setBranchWeights(NewSI, MDWeights); 1346 } 1347 1348 EraseTerminatorAndDCECond(PTI); 1349 1350 // Okay, last check. If BB is still a successor of PSI, then we must 1351 // have an infinite loop case. If so, add an infinitely looping block 1352 // to handle the case to preserve the behavior of the code. 1353 BasicBlock *InfLoopBlock = nullptr; 1354 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1355 if (NewSI->getSuccessor(i) == BB) { 1356 if (!InfLoopBlock) { 1357 // Insert it at the end of the function, because it's either code, 1358 // or it won't matter if it's hot. :) 1359 InfLoopBlock = 1360 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1361 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1362 if (DTU) 1363 Updates.push_back( 1364 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1365 } 1366 NewSI->setSuccessor(i, InfLoopBlock); 1367 } 1368 1369 if (DTU) { 1370 if (InfLoopBlock) 1371 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1372 1373 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1374 1375 DTU->applyUpdates(Updates); 1376 } 1377 1378 ++NumFoldValueComparisonIntoPredecessors; 1379 return true; 1380 } 1381 1382 /// The specified terminator is a value equality comparison instruction 1383 /// (either a switch or a branch on "X == c"). 1384 /// See if any of the predecessors of the terminator block are value comparisons 1385 /// on the same value. If so, and if safe to do so, fold them together. 1386 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1387 IRBuilder<> &Builder) { 1388 BasicBlock *BB = TI->getParent(); 1389 Value *CV = isValueEqualityComparison(TI); // CondVal 1390 assert(CV && "Not a comparison?"); 1391 1392 bool Changed = false; 1393 1394 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1395 while (!Preds.empty()) { 1396 BasicBlock *Pred = Preds.pop_back_val(); 1397 Instruction *PTI = Pred->getTerminator(); 1398 1399 // Don't try to fold into itself. 1400 if (Pred == BB) 1401 continue; 1402 1403 // See if the predecessor is a comparison with the same value. 1404 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1405 if (PCV != CV) 1406 continue; 1407 1408 SmallSetVector<BasicBlock *, 4> FailBlocks; 1409 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1410 for (auto *Succ : FailBlocks) { 1411 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1412 return false; 1413 } 1414 } 1415 1416 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1417 Changed = true; 1418 } 1419 return Changed; 1420 } 1421 1422 // If we would need to insert a select that uses the value of this invoke 1423 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1424 // can't hoist the invoke, as there is nowhere to put the select in this case. 1425 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1426 Instruction *I1, Instruction *I2) { 1427 for (BasicBlock *Succ : successors(BB1)) { 1428 for (const PHINode &PN : Succ->phis()) { 1429 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1430 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1431 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1432 return false; 1433 } 1434 } 1435 } 1436 return true; 1437 } 1438 1439 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1440 1441 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1442 /// in the two blocks up into the branch block. The caller of this function 1443 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1444 /// only perform hoisting in case both blocks only contain a terminator. In that 1445 /// case, only the original BI will be replaced and selects for PHIs are added. 1446 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1447 const TargetTransformInfo &TTI, 1448 bool EqTermsOnly) { 1449 // This does very trivial matching, with limited scanning, to find identical 1450 // instructions in the two blocks. In particular, we don't want to get into 1451 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1452 // such, we currently just scan for obviously identical instructions in an 1453 // identical order. 1454 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1455 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1456 1457 // If either of the blocks has it's address taken, then we can't do this fold, 1458 // because the code we'd hoist would no longer run when we jump into the block 1459 // by it's address. 1460 if (BB1->hasAddressTaken() || BB2->hasAddressTaken()) 1461 return false; 1462 1463 BasicBlock::iterator BB1_Itr = BB1->begin(); 1464 BasicBlock::iterator BB2_Itr = BB2->begin(); 1465 1466 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1467 // Skip debug info if it is not identical. 1468 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1469 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1470 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1471 while (isa<DbgInfoIntrinsic>(I1)) 1472 I1 = &*BB1_Itr++; 1473 while (isa<DbgInfoIntrinsic>(I2)) 1474 I2 = &*BB2_Itr++; 1475 } 1476 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2)) 1477 return false; 1478 1479 BasicBlock *BIParent = BI->getParent(); 1480 1481 bool Changed = false; 1482 1483 auto _ = make_scope_exit([&]() { 1484 if (Changed) 1485 ++NumHoistCommonCode; 1486 }); 1487 1488 // Check if only hoisting terminators is allowed. This does not add new 1489 // instructions to the hoist location. 1490 if (EqTermsOnly) { 1491 // Skip any debug intrinsics, as they are free to hoist. 1492 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1493 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1494 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1495 return false; 1496 if (!I1NonDbg->isTerminator()) 1497 return false; 1498 // Now we know that we only need to hoist debug intrinsics and the 1499 // terminator. Let the loop below handle those 2 cases. 1500 } 1501 1502 do { 1503 // If we are hoisting the terminator instruction, don't move one (making a 1504 // broken BB), instead clone it, and remove BI. 1505 if (I1->isTerminator()) 1506 goto HoistTerminator; 1507 1508 // If we're going to hoist a call, make sure that the two instructions we're 1509 // commoning/hoisting are both marked with musttail, or neither of them is 1510 // marked as such. Otherwise, we might end up in a situation where we hoist 1511 // from a block where the terminator is a `ret` to a block where the terminator 1512 // is a `br`, and `musttail` calls expect to be followed by a return. 1513 auto *C1 = dyn_cast<CallInst>(I1); 1514 auto *C2 = dyn_cast<CallInst>(I2); 1515 if (C1 && C2) 1516 if (C1->isMustTailCall() != C2->isMustTailCall()) 1517 return Changed; 1518 1519 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1520 return Changed; 1521 1522 // If any of the two call sites has nomerge attribute, stop hoisting. 1523 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1524 if (CB1->cannotMerge()) 1525 return Changed; 1526 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1527 if (CB2->cannotMerge()) 1528 return Changed; 1529 1530 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1531 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1532 // The debug location is an integral part of a debug info intrinsic 1533 // and can't be separated from it or replaced. Instead of attempting 1534 // to merge locations, simply hoist both copies of the intrinsic. 1535 BIParent->getInstList().splice(BI->getIterator(), 1536 BB1->getInstList(), I1); 1537 BIParent->getInstList().splice(BI->getIterator(), 1538 BB2->getInstList(), I2); 1539 Changed = true; 1540 } else { 1541 // For a normal instruction, we just move one to right before the branch, 1542 // then replace all uses of the other with the first. Finally, we remove 1543 // the now redundant second instruction. 1544 BIParent->getInstList().splice(BI->getIterator(), 1545 BB1->getInstList(), I1); 1546 if (!I2->use_empty()) 1547 I2->replaceAllUsesWith(I1); 1548 I1->andIRFlags(I2); 1549 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1550 LLVMContext::MD_range, 1551 LLVMContext::MD_fpmath, 1552 LLVMContext::MD_invariant_load, 1553 LLVMContext::MD_nonnull, 1554 LLVMContext::MD_invariant_group, 1555 LLVMContext::MD_align, 1556 LLVMContext::MD_dereferenceable, 1557 LLVMContext::MD_dereferenceable_or_null, 1558 LLVMContext::MD_mem_parallel_loop_access, 1559 LLVMContext::MD_access_group, 1560 LLVMContext::MD_preserve_access_index}; 1561 combineMetadata(I1, I2, KnownIDs, true); 1562 1563 // I1 and I2 are being combined into a single instruction. Its debug 1564 // location is the merged locations of the original instructions. 1565 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1566 1567 I2->eraseFromParent(); 1568 Changed = true; 1569 } 1570 ++NumHoistCommonInstrs; 1571 1572 I1 = &*BB1_Itr++; 1573 I2 = &*BB2_Itr++; 1574 // Skip debug info if it is not identical. 1575 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1576 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1577 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1578 while (isa<DbgInfoIntrinsic>(I1)) 1579 I1 = &*BB1_Itr++; 1580 while (isa<DbgInfoIntrinsic>(I2)) 1581 I2 = &*BB2_Itr++; 1582 } 1583 } while (I1->isIdenticalToWhenDefined(I2)); 1584 1585 return true; 1586 1587 HoistTerminator: 1588 // It may not be possible to hoist an invoke. 1589 // FIXME: Can we define a safety predicate for CallBr? 1590 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1591 return Changed; 1592 1593 // TODO: callbr hoisting currently disabled pending further study. 1594 if (isa<CallBrInst>(I1)) 1595 return Changed; 1596 1597 for (BasicBlock *Succ : successors(BB1)) { 1598 for (PHINode &PN : Succ->phis()) { 1599 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1600 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1601 if (BB1V == BB2V) 1602 continue; 1603 1604 // Check for passingValueIsAlwaysUndefined here because we would rather 1605 // eliminate undefined control flow then converting it to a select. 1606 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1607 passingValueIsAlwaysUndefined(BB2V, &PN)) 1608 return Changed; 1609 1610 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1611 return Changed; 1612 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1613 return Changed; 1614 } 1615 } 1616 1617 // Okay, it is safe to hoist the terminator. 1618 Instruction *NT = I1->clone(); 1619 BIParent->getInstList().insert(BI->getIterator(), NT); 1620 if (!NT->getType()->isVoidTy()) { 1621 I1->replaceAllUsesWith(NT); 1622 I2->replaceAllUsesWith(NT); 1623 NT->takeName(I1); 1624 } 1625 Changed = true; 1626 ++NumHoistCommonInstrs; 1627 1628 // Ensure terminator gets a debug location, even an unknown one, in case 1629 // it involves inlinable calls. 1630 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1631 1632 // PHIs created below will adopt NT's merged DebugLoc. 1633 IRBuilder<NoFolder> Builder(NT); 1634 1635 // Hoisting one of the terminators from our successor is a great thing. 1636 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1637 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1638 // nodes, so we insert select instruction to compute the final result. 1639 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1640 for (BasicBlock *Succ : successors(BB1)) { 1641 for (PHINode &PN : Succ->phis()) { 1642 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1643 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1644 if (BB1V == BB2V) 1645 continue; 1646 1647 // These values do not agree. Insert a select instruction before NT 1648 // that determines the right value. 1649 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1650 if (!SI) { 1651 // Propagate fast-math-flags from phi node to its replacement select. 1652 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1653 if (isa<FPMathOperator>(PN)) 1654 Builder.setFastMathFlags(PN.getFastMathFlags()); 1655 1656 SI = cast<SelectInst>( 1657 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1658 BB1V->getName() + "." + BB2V->getName(), BI)); 1659 } 1660 1661 // Make the PHI node use the select for all incoming values for BB1/BB2 1662 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1663 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1664 PN.setIncomingValue(i, SI); 1665 } 1666 } 1667 1668 SmallVector<DominatorTree::UpdateType, 4> Updates; 1669 1670 // Update any PHI nodes in our new successors. 1671 for (BasicBlock *Succ : successors(BB1)) { 1672 AddPredecessorToBlock(Succ, BIParent, BB1); 1673 if (DTU) 1674 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1675 } 1676 1677 if (DTU) 1678 for (BasicBlock *Succ : successors(BI)) 1679 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1680 1681 EraseTerminatorAndDCECond(BI); 1682 if (DTU) 1683 DTU->applyUpdates(Updates); 1684 return Changed; 1685 } 1686 1687 // Check lifetime markers. 1688 static bool isLifeTimeMarker(const Instruction *I) { 1689 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1690 switch (II->getIntrinsicID()) { 1691 default: 1692 break; 1693 case Intrinsic::lifetime_start: 1694 case Intrinsic::lifetime_end: 1695 return true; 1696 } 1697 } 1698 return false; 1699 } 1700 1701 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1702 // into variables. 1703 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1704 int OpIdx) { 1705 return !isa<IntrinsicInst>(I); 1706 } 1707 1708 // All instructions in Insts belong to different blocks that all unconditionally 1709 // branch to a common successor. Analyze each instruction and return true if it 1710 // would be possible to sink them into their successor, creating one common 1711 // instruction instead. For every value that would be required to be provided by 1712 // PHI node (because an operand varies in each input block), add to PHIOperands. 1713 static bool canSinkInstructions( 1714 ArrayRef<Instruction *> Insts, 1715 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1716 // Prune out obviously bad instructions to move. Each instruction must have 1717 // exactly zero or one use, and we check later that use is by a single, common 1718 // PHI instruction in the successor. 1719 bool HasUse = !Insts.front()->user_empty(); 1720 for (auto *I : Insts) { 1721 // These instructions may change or break semantics if moved. 1722 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1723 I->getType()->isTokenTy()) 1724 return false; 1725 1726 // Do not try to sink an instruction in an infinite loop - it can cause 1727 // this algorithm to infinite loop. 1728 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1729 return false; 1730 1731 // Conservatively return false if I is an inline-asm instruction. Sinking 1732 // and merging inline-asm instructions can potentially create arguments 1733 // that cannot satisfy the inline-asm constraints. 1734 // If the instruction has nomerge attribute, return false. 1735 if (const auto *C = dyn_cast<CallBase>(I)) 1736 if (C->isInlineAsm() || C->cannotMerge()) 1737 return false; 1738 1739 // Each instruction must have zero or one use. 1740 if (HasUse && !I->hasOneUse()) 1741 return false; 1742 if (!HasUse && !I->user_empty()) 1743 return false; 1744 } 1745 1746 const Instruction *I0 = Insts.front(); 1747 for (auto *I : Insts) 1748 if (!I->isSameOperationAs(I0)) 1749 return false; 1750 1751 // All instructions in Insts are known to be the same opcode. If they have a 1752 // use, check that the only user is a PHI or in the same block as the 1753 // instruction, because if a user is in the same block as an instruction we're 1754 // contemplating sinking, it must already be determined to be sinkable. 1755 if (HasUse) { 1756 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1757 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1758 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1759 auto *U = cast<Instruction>(*I->user_begin()); 1760 return (PNUse && 1761 PNUse->getParent() == Succ && 1762 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1763 U->getParent() == I->getParent(); 1764 })) 1765 return false; 1766 } 1767 1768 // Because SROA can't handle speculating stores of selects, try not to sink 1769 // loads, stores or lifetime markers of allocas when we'd have to create a 1770 // PHI for the address operand. Also, because it is likely that loads or 1771 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1772 // them. 1773 // This can cause code churn which can have unintended consequences down 1774 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1775 // FIXME: This is a workaround for a deficiency in SROA - see 1776 // https://llvm.org/bugs/show_bug.cgi?id=30188 1777 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1778 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1779 })) 1780 return false; 1781 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1782 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1783 })) 1784 return false; 1785 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1786 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1787 })) 1788 return false; 1789 1790 // For calls to be sinkable, they must all be indirect, or have same callee. 1791 // I.e. if we have two direct calls to different callees, we don't want to 1792 // turn that into an indirect call. Likewise, if we have an indirect call, 1793 // and a direct call, we don't actually want to have a single indirect call. 1794 if (isa<CallBase>(I0)) { 1795 auto IsIndirectCall = [](const Instruction *I) { 1796 return cast<CallBase>(I)->isIndirectCall(); 1797 }; 1798 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1799 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1800 if (HaveIndirectCalls) { 1801 if (!AllCallsAreIndirect) 1802 return false; 1803 } else { 1804 // All callees must be identical. 1805 Value *Callee = nullptr; 1806 for (const Instruction *I : Insts) { 1807 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1808 if (!Callee) 1809 Callee = CurrCallee; 1810 else if (Callee != CurrCallee) 1811 return false; 1812 } 1813 } 1814 } 1815 1816 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1817 Value *Op = I0->getOperand(OI); 1818 if (Op->getType()->isTokenTy()) 1819 // Don't touch any operand of token type. 1820 return false; 1821 1822 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1823 assert(I->getNumOperands() == I0->getNumOperands()); 1824 return I->getOperand(OI) == I0->getOperand(OI); 1825 }; 1826 if (!all_of(Insts, SameAsI0)) { 1827 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1828 !canReplaceOperandWithVariable(I0, OI)) 1829 // We can't create a PHI from this GEP. 1830 return false; 1831 for (auto *I : Insts) 1832 PHIOperands[I].push_back(I->getOperand(OI)); 1833 } 1834 } 1835 return true; 1836 } 1837 1838 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1839 // instruction of every block in Blocks to their common successor, commoning 1840 // into one instruction. 1841 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1842 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1843 1844 // canSinkInstructions returning true guarantees that every block has at 1845 // least one non-terminator instruction. 1846 SmallVector<Instruction*,4> Insts; 1847 for (auto *BB : Blocks) { 1848 Instruction *I = BB->getTerminator(); 1849 do { 1850 I = I->getPrevNode(); 1851 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1852 if (!isa<DbgInfoIntrinsic>(I)) 1853 Insts.push_back(I); 1854 } 1855 1856 // The only checking we need to do now is that all users of all instructions 1857 // are the same PHI node. canSinkInstructions should have checked this but 1858 // it is slightly over-aggressive - it gets confused by commutative 1859 // instructions so double-check it here. 1860 Instruction *I0 = Insts.front(); 1861 if (!I0->user_empty()) { 1862 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1863 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1864 auto *U = cast<Instruction>(*I->user_begin()); 1865 return U == PNUse; 1866 })) 1867 return false; 1868 } 1869 1870 // We don't need to do any more checking here; canSinkInstructions should 1871 // have done it all for us. 1872 SmallVector<Value*, 4> NewOperands; 1873 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1874 // This check is different to that in canSinkInstructions. There, we 1875 // cared about the global view once simplifycfg (and instcombine) have 1876 // completed - it takes into account PHIs that become trivially 1877 // simplifiable. However here we need a more local view; if an operand 1878 // differs we create a PHI and rely on instcombine to clean up the very 1879 // small mess we may make. 1880 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1881 return I->getOperand(O) != I0->getOperand(O); 1882 }); 1883 if (!NeedPHI) { 1884 NewOperands.push_back(I0->getOperand(O)); 1885 continue; 1886 } 1887 1888 // Create a new PHI in the successor block and populate it. 1889 auto *Op = I0->getOperand(O); 1890 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1891 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1892 Op->getName() + ".sink", &BBEnd->front()); 1893 for (auto *I : Insts) 1894 PN->addIncoming(I->getOperand(O), I->getParent()); 1895 NewOperands.push_back(PN); 1896 } 1897 1898 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1899 // and move it to the start of the successor block. 1900 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1901 I0->getOperandUse(O).set(NewOperands[O]); 1902 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1903 1904 // Update metadata and IR flags, and merge debug locations. 1905 for (auto *I : Insts) 1906 if (I != I0) { 1907 // The debug location for the "common" instruction is the merged locations 1908 // of all the commoned instructions. We start with the original location 1909 // of the "common" instruction and iteratively merge each location in the 1910 // loop below. 1911 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1912 // However, as N-way merge for CallInst is rare, so we use simplified API 1913 // instead of using complex API for N-way merge. 1914 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1915 combineMetadataForCSE(I0, I, true); 1916 I0->andIRFlags(I); 1917 } 1918 1919 if (!I0->user_empty()) { 1920 // canSinkLastInstruction checked that all instructions were used by 1921 // one and only one PHI node. Find that now, RAUW it to our common 1922 // instruction and nuke it. 1923 auto *PN = cast<PHINode>(*I0->user_begin()); 1924 PN->replaceAllUsesWith(I0); 1925 PN->eraseFromParent(); 1926 } 1927 1928 // Finally nuke all instructions apart from the common instruction. 1929 for (auto *I : Insts) 1930 if (I != I0) 1931 I->eraseFromParent(); 1932 1933 return true; 1934 } 1935 1936 namespace { 1937 1938 // LockstepReverseIterator - Iterates through instructions 1939 // in a set of blocks in reverse order from the first non-terminator. 1940 // For example (assume all blocks have size n): 1941 // LockstepReverseIterator I([B1, B2, B3]); 1942 // *I-- = [B1[n], B2[n], B3[n]]; 1943 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1944 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1945 // ... 1946 class LockstepReverseIterator { 1947 ArrayRef<BasicBlock*> Blocks; 1948 SmallVector<Instruction*,4> Insts; 1949 bool Fail; 1950 1951 public: 1952 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1953 reset(); 1954 } 1955 1956 void reset() { 1957 Fail = false; 1958 Insts.clear(); 1959 for (auto *BB : Blocks) { 1960 Instruction *Inst = BB->getTerminator(); 1961 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1962 Inst = Inst->getPrevNode(); 1963 if (!Inst) { 1964 // Block wasn't big enough. 1965 Fail = true; 1966 return; 1967 } 1968 Insts.push_back(Inst); 1969 } 1970 } 1971 1972 bool isValid() const { 1973 return !Fail; 1974 } 1975 1976 void operator--() { 1977 if (Fail) 1978 return; 1979 for (auto *&Inst : Insts) { 1980 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1981 Inst = Inst->getPrevNode(); 1982 // Already at beginning of block. 1983 if (!Inst) { 1984 Fail = true; 1985 return; 1986 } 1987 } 1988 } 1989 1990 void operator++() { 1991 if (Fail) 1992 return; 1993 for (auto *&Inst : Insts) { 1994 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1995 Inst = Inst->getNextNode(); 1996 // Already at end of block. 1997 if (!Inst) { 1998 Fail = true; 1999 return; 2000 } 2001 } 2002 } 2003 2004 ArrayRef<Instruction*> operator * () const { 2005 return Insts; 2006 } 2007 }; 2008 2009 } // end anonymous namespace 2010 2011 /// Check whether BB's predecessors end with unconditional branches. If it is 2012 /// true, sink any common code from the predecessors to BB. 2013 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 2014 DomTreeUpdater *DTU) { 2015 // We support two situations: 2016 // (1) all incoming arcs are unconditional 2017 // (2) there are non-unconditional incoming arcs 2018 // 2019 // (2) is very common in switch defaults and 2020 // else-if patterns; 2021 // 2022 // if (a) f(1); 2023 // else if (b) f(2); 2024 // 2025 // produces: 2026 // 2027 // [if] 2028 // / \ 2029 // [f(1)] [if] 2030 // | | \ 2031 // | | | 2032 // | [f(2)]| 2033 // \ | / 2034 // [ end ] 2035 // 2036 // [end] has two unconditional predecessor arcs and one conditional. The 2037 // conditional refers to the implicit empty 'else' arc. This conditional 2038 // arc can also be caused by an empty default block in a switch. 2039 // 2040 // In this case, we attempt to sink code from all *unconditional* arcs. 2041 // If we can sink instructions from these arcs (determined during the scan 2042 // phase below) we insert a common successor for all unconditional arcs and 2043 // connect that to [end], to enable sinking: 2044 // 2045 // [if] 2046 // / \ 2047 // [x(1)] [if] 2048 // | | \ 2049 // | | \ 2050 // | [x(2)] | 2051 // \ / | 2052 // [sink.split] | 2053 // \ / 2054 // [ end ] 2055 // 2056 SmallVector<BasicBlock*,4> UnconditionalPreds; 2057 bool HaveNonUnconditionalPredecessors = false; 2058 for (auto *PredBB : predecessors(BB)) { 2059 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2060 if (PredBr && PredBr->isUnconditional()) 2061 UnconditionalPreds.push_back(PredBB); 2062 else 2063 HaveNonUnconditionalPredecessors = true; 2064 } 2065 if (UnconditionalPreds.size() < 2) 2066 return false; 2067 2068 // We take a two-step approach to tail sinking. First we scan from the end of 2069 // each block upwards in lockstep. If the n'th instruction from the end of each 2070 // block can be sunk, those instructions are added to ValuesToSink and we 2071 // carry on. If we can sink an instruction but need to PHI-merge some operands 2072 // (because they're not identical in each instruction) we add these to 2073 // PHIOperands. 2074 int ScanIdx = 0; 2075 SmallPtrSet<Value*,4> InstructionsToSink; 2076 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2077 LockstepReverseIterator LRI(UnconditionalPreds); 2078 while (LRI.isValid() && 2079 canSinkInstructions(*LRI, PHIOperands)) { 2080 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2081 << "\n"); 2082 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2083 ++ScanIdx; 2084 --LRI; 2085 } 2086 2087 // If no instructions can be sunk, early-return. 2088 if (ScanIdx == 0) 2089 return false; 2090 2091 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); 2092 2093 if (!followedByDeoptOrUnreachable) { 2094 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2095 // actually sink before encountering instruction that is unprofitable to 2096 // sink? 2097 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2098 unsigned NumPHIdValues = 0; 2099 for (auto *I : *LRI) 2100 for (auto *V : PHIOperands[I]) { 2101 if (!InstructionsToSink.contains(V)) 2102 ++NumPHIdValues; 2103 // FIXME: this check is overly optimistic. We may end up not sinking 2104 // said instruction, due to the very same profitability check. 2105 // See @creating_too_many_phis in sink-common-code.ll. 2106 } 2107 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2108 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2109 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2110 NumPHIInsts++; 2111 2112 return NumPHIInsts <= 1; 2113 }; 2114 2115 // We've determined that we are going to sink last ScanIdx instructions, 2116 // and recorded them in InstructionsToSink. Now, some instructions may be 2117 // unprofitable to sink. But that determination depends on the instructions 2118 // that we are going to sink. 2119 2120 // First, forward scan: find the first instruction unprofitable to sink, 2121 // recording all the ones that are profitable to sink. 2122 // FIXME: would it be better, after we detect that not all are profitable. 2123 // to either record the profitable ones, or erase the unprofitable ones? 2124 // Maybe we need to choose (at runtime) the one that will touch least 2125 // instrs? 2126 LRI.reset(); 2127 int Idx = 0; 2128 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2129 while (Idx < ScanIdx) { 2130 if (!ProfitableToSinkInstruction(LRI)) { 2131 // Too many PHIs would be created. 2132 LLVM_DEBUG( 2133 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2134 break; 2135 } 2136 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2137 --LRI; 2138 ++Idx; 2139 } 2140 2141 // If no instructions can be sunk, early-return. 2142 if (Idx == 0) 2143 return false; 2144 2145 // Did we determine that (only) some instructions are unprofitable to sink? 2146 if (Idx < ScanIdx) { 2147 // Okay, some instructions are unprofitable. 2148 ScanIdx = Idx; 2149 InstructionsToSink = InstructionsProfitableToSink; 2150 2151 // But, that may make other instructions unprofitable, too. 2152 // So, do a backward scan, do any earlier instructions become 2153 // unprofitable? 2154 assert( 2155 !ProfitableToSinkInstruction(LRI) && 2156 "We already know that the last instruction is unprofitable to sink"); 2157 ++LRI; 2158 --Idx; 2159 while (Idx >= 0) { 2160 // If we detect that an instruction becomes unprofitable to sink, 2161 // all earlier instructions won't be sunk either, 2162 // so preemptively keep InstructionsProfitableToSink in sync. 2163 // FIXME: is this the most performant approach? 2164 for (auto *I : *LRI) 2165 InstructionsProfitableToSink.erase(I); 2166 if (!ProfitableToSinkInstruction(LRI)) { 2167 // Everything starting with this instruction won't be sunk. 2168 ScanIdx = Idx; 2169 InstructionsToSink = InstructionsProfitableToSink; 2170 } 2171 ++LRI; 2172 --Idx; 2173 } 2174 } 2175 2176 // If no instructions can be sunk, early-return. 2177 if (ScanIdx == 0) 2178 return false; 2179 } 2180 2181 bool Changed = false; 2182 2183 if (HaveNonUnconditionalPredecessors) { 2184 if (!followedByDeoptOrUnreachable) { 2185 // It is always legal to sink common instructions from unconditional 2186 // predecessors. However, if not all predecessors are unconditional, 2187 // this transformation might be pessimizing. So as a rule of thumb, 2188 // don't do it unless we'd sink at least one non-speculatable instruction. 2189 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2190 LRI.reset(); 2191 int Idx = 0; 2192 bool Profitable = false; 2193 while (Idx < ScanIdx) { 2194 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2195 Profitable = true; 2196 break; 2197 } 2198 --LRI; 2199 ++Idx; 2200 } 2201 if (!Profitable) 2202 return false; 2203 } 2204 2205 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2206 // We have a conditional edge and we're going to sink some instructions. 2207 // Insert a new block postdominating all blocks we're going to sink from. 2208 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2209 // Edges couldn't be split. 2210 return false; 2211 Changed = true; 2212 } 2213 2214 // Now that we've analyzed all potential sinking candidates, perform the 2215 // actual sink. We iteratively sink the last non-terminator of the source 2216 // blocks into their common successor unless doing so would require too 2217 // many PHI instructions to be generated (currently only one PHI is allowed 2218 // per sunk instruction). 2219 // 2220 // We can use InstructionsToSink to discount values needing PHI-merging that will 2221 // actually be sunk in a later iteration. This allows us to be more 2222 // aggressive in what we sink. This does allow a false positive where we 2223 // sink presuming a later value will also be sunk, but stop half way through 2224 // and never actually sink it which means we produce more PHIs than intended. 2225 // This is unlikely in practice though. 2226 int SinkIdx = 0; 2227 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2228 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2229 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2230 << "\n"); 2231 2232 // Because we've sunk every instruction in turn, the current instruction to 2233 // sink is always at index 0. 2234 LRI.reset(); 2235 2236 if (!sinkLastInstruction(UnconditionalPreds)) { 2237 LLVM_DEBUG( 2238 dbgs() 2239 << "SINK: stopping here, failed to actually sink instruction!\n"); 2240 break; 2241 } 2242 2243 NumSinkCommonInstrs++; 2244 Changed = true; 2245 } 2246 if (SinkIdx != 0) 2247 ++NumSinkCommonCode; 2248 return Changed; 2249 } 2250 2251 namespace { 2252 2253 struct CompatibleSets { 2254 using SetTy = SmallVector<InvokeInst *, 2>; 2255 2256 SmallVector<SetTy, 1> Sets; 2257 2258 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); 2259 2260 SetTy &getCompatibleSet(InvokeInst *II); 2261 2262 void insert(InvokeInst *II); 2263 }; 2264 2265 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { 2266 // Perform a linear scan over all the existing sets, see if the new `invoke` 2267 // is compatible with any particular set. Since we know that all the `invokes` 2268 // within a set are compatible, only check the first `invoke` in each set. 2269 // WARNING: at worst, this has quadratic complexity. 2270 for (CompatibleSets::SetTy &Set : Sets) { 2271 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) 2272 return Set; 2273 } 2274 2275 // Otherwise, we either had no sets yet, or this invoke forms a new set. 2276 return Sets.emplace_back(); 2277 } 2278 2279 void CompatibleSets::insert(InvokeInst *II) { 2280 getCompatibleSet(II).emplace_back(II); 2281 } 2282 2283 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { 2284 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2285 2286 // Can we theoretically merge these `invoke`s? 2287 auto IsIllegalToMerge = [](InvokeInst *II) { 2288 return II->cannotMerge() || II->isInlineAsm(); 2289 }; 2290 if (any_of(Invokes, IsIllegalToMerge)) 2291 return false; 2292 2293 // Either both `invoke`s must be direct, 2294 // or both `invoke`s must be indirect. 2295 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; 2296 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); 2297 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); 2298 if (HaveIndirectCalls) { 2299 if (!AllCallsAreIndirect) 2300 return false; 2301 } else { 2302 // All callees must be identical. 2303 Value *Callee = nullptr; 2304 for (InvokeInst *II : Invokes) { 2305 Value *CurrCallee = II->getCalledOperand(); 2306 assert(CurrCallee && "There is always a called operand."); 2307 if (!Callee) 2308 Callee = CurrCallee; 2309 else if (Callee != CurrCallee) 2310 return false; 2311 } 2312 } 2313 2314 // Either both `invoke`s must not have a normal destination, 2315 // or both `invoke`s must have a normal destination, 2316 auto HasNormalDest = [](InvokeInst *II) { 2317 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); 2318 }; 2319 if (any_of(Invokes, HasNormalDest)) { 2320 // Do not merge `invoke` that does not have a normal destination with one 2321 // that does have a normal destination, even though doing so would be legal. 2322 if (!all_of(Invokes, HasNormalDest)) 2323 return false; 2324 2325 // All normal destinations must be identical. 2326 BasicBlock *NormalBB = nullptr; 2327 for (InvokeInst *II : Invokes) { 2328 BasicBlock *CurrNormalBB = II->getNormalDest(); 2329 assert(CurrNormalBB && "There is always a 'continue to' basic block."); 2330 if (!NormalBB) 2331 NormalBB = CurrNormalBB; 2332 else if (NormalBB != CurrNormalBB) 2333 return false; 2334 } 2335 2336 // In the normal destination, the incoming values for these two `invoke`s 2337 // must be compatible. 2338 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); 2339 if (!IncomingValuesAreCompatible( 2340 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, 2341 &EquivalenceSet)) 2342 return false; 2343 } 2344 2345 #ifndef NDEBUG 2346 // All unwind destinations must be identical. 2347 // We know that because we have started from said unwind destination. 2348 BasicBlock *UnwindBB = nullptr; 2349 for (InvokeInst *II : Invokes) { 2350 BasicBlock *CurrUnwindBB = II->getUnwindDest(); 2351 assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); 2352 if (!UnwindBB) 2353 UnwindBB = CurrUnwindBB; 2354 else 2355 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); 2356 } 2357 #endif 2358 2359 // In the unwind destination, the incoming values for these two `invoke`s 2360 // must be compatible. 2361 if (!IncomingValuesAreCompatible( 2362 Invokes.front()->getUnwindDest(), 2363 {Invokes[0]->getParent(), Invokes[1]->getParent()})) 2364 return false; 2365 2366 // Ignoring arguments, these `invoke`s must be identical, 2367 // including operand bundles. 2368 const InvokeInst *II0 = Invokes.front(); 2369 for (auto *II : Invokes.drop_front()) 2370 if (!II->isSameOperationAs(II0)) 2371 return false; 2372 2373 // Can we theoretically form the data operands for the merged `invoke`? 2374 auto IsIllegalToMergeArguments = [](auto Ops) { 2375 Type *Ty = std::get<0>(Ops)->getType(); 2376 assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?"); 2377 return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops); 2378 }; 2379 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2380 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), 2381 IsIllegalToMergeArguments)) 2382 return false; 2383 2384 return true; 2385 } 2386 2387 } // namespace 2388 2389 // Merge all invokes in the provided set, all of which are compatible 2390 // as per the `CompatibleSets::shouldBelongToSameSet()`. 2391 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, 2392 DomTreeUpdater *DTU) { 2393 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); 2394 2395 SmallVector<DominatorTree::UpdateType, 8> Updates; 2396 if (DTU) 2397 Updates.reserve(2 + 3 * Invokes.size()); 2398 2399 bool HasNormalDest = 2400 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); 2401 2402 // Clone one of the invokes into a new basic block. 2403 // Since they are all compatible, it doesn't matter which invoke is cloned. 2404 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { 2405 InvokeInst *II0 = Invokes.front(); 2406 BasicBlock *II0BB = II0->getParent(); 2407 BasicBlock *InsertBeforeBlock = 2408 II0->getParent()->getIterator()->getNextNode(); 2409 Function *Func = II0BB->getParent(); 2410 LLVMContext &Ctx = II0->getContext(); 2411 2412 BasicBlock *MergedInvokeBB = BasicBlock::Create( 2413 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); 2414 2415 auto *MergedInvoke = cast<InvokeInst>(II0->clone()); 2416 // NOTE: all invokes have the same attributes, so no handling needed. 2417 MergedInvokeBB->getInstList().push_back(MergedInvoke); 2418 2419 if (!HasNormalDest) { 2420 // This set does not have a normal destination, 2421 // so just form a new block with unreachable terminator. 2422 BasicBlock *MergedNormalDest = BasicBlock::Create( 2423 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); 2424 new UnreachableInst(Ctx, MergedNormalDest); 2425 MergedInvoke->setNormalDest(MergedNormalDest); 2426 } 2427 2428 // The unwind destination, however, remainds identical for all invokes here. 2429 2430 return MergedInvoke; 2431 }(); 2432 2433 if (DTU) { 2434 // Predecessor blocks that contained these invokes will now branch to 2435 // the new block that contains the merged invoke, ... 2436 for (InvokeInst *II : Invokes) 2437 Updates.push_back( 2438 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); 2439 2440 // ... which has the new `unreachable` block as normal destination, 2441 // or unwinds to the (same for all `invoke`s in this set) `landingpad`, 2442 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) 2443 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), 2444 SuccBBOfMergedInvoke}); 2445 2446 // Since predecessor blocks now unconditionally branch to a new block, 2447 // they no longer branch to their original successors. 2448 for (InvokeInst *II : Invokes) 2449 for (BasicBlock *SuccOfPredBB : successors(II->getParent())) 2450 Updates.push_back( 2451 {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); 2452 } 2453 2454 bool IsIndirectCall = Invokes[0]->isIndirectCall(); 2455 2456 // Form the merged operands for the merged invoke. 2457 for (Use &U : MergedInvoke->operands()) { 2458 // Only PHI together the indirect callees and data operands. 2459 if (MergedInvoke->isCallee(&U)) { 2460 if (!IsIndirectCall) 2461 continue; 2462 } else if (!MergedInvoke->isDataOperand(&U)) 2463 continue; 2464 2465 // Don't create trivial PHI's with all-identical incoming values. 2466 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { 2467 return II->getOperand(U.getOperandNo()) != U.get(); 2468 }); 2469 if (!NeedPHI) 2470 continue; 2471 2472 // Form a PHI out of all the data ops under this index. 2473 PHINode *PN = PHINode::Create( 2474 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke); 2475 for (InvokeInst *II : Invokes) 2476 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); 2477 2478 U.set(PN); 2479 } 2480 2481 // We've ensured that each PHI node has compatible (identical) incoming values 2482 // when coming from each of the `invoke`s in the current merge set, 2483 // so update the PHI nodes accordingly. 2484 for (BasicBlock *Succ : successors(MergedInvoke)) 2485 AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), 2486 /*ExistPred=*/Invokes.front()->getParent()); 2487 2488 // And finally, replace the original `invoke`s with an unconditional branch 2489 // to the block with the merged `invoke`. Also, give that merged `invoke` 2490 // the merged debugloc of all the original `invoke`s. 2491 const DILocation *MergedDebugLoc = nullptr; 2492 for (InvokeInst *II : Invokes) { 2493 // Compute the debug location common to all the original `invoke`s. 2494 if (!MergedDebugLoc) 2495 MergedDebugLoc = II->getDebugLoc(); 2496 else 2497 MergedDebugLoc = 2498 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); 2499 2500 // And replace the old `invoke` with an unconditionally branch 2501 // to the block with the merged `invoke`. 2502 for (BasicBlock *OrigSuccBB : successors(II->getParent())) 2503 OrigSuccBB->removePredecessor(II->getParent()); 2504 BranchInst::Create(MergedInvoke->getParent(), II->getParent()); 2505 II->replaceAllUsesWith(MergedInvoke); 2506 II->eraseFromParent(); 2507 ++NumInvokesMerged; 2508 } 2509 MergedInvoke->setDebugLoc(MergedDebugLoc); 2510 ++NumInvokeSetsFormed; 2511 2512 if (DTU) 2513 DTU->applyUpdates(Updates); 2514 } 2515 2516 /// If this block is a `landingpad` exception handling block, categorize all 2517 /// the predecessor `invoke`s into sets, with all `invoke`s in each set 2518 /// being "mergeable" together, and then merge invokes in each set together. 2519 /// 2520 /// This is a weird mix of hoisting and sinking. Visually, it goes from: 2521 /// [...] [...] 2522 /// | | 2523 /// [invoke0] [invoke1] 2524 /// / \ / \ 2525 /// [cont0] [landingpad] [cont1] 2526 /// to: 2527 /// [...] [...] 2528 /// \ / 2529 /// [invoke] 2530 /// / \ 2531 /// [cont] [landingpad] 2532 /// 2533 /// But of course we can only do that if the invokes share the `landingpad`, 2534 /// edges invoke0->cont0 and invoke1->cont1 are "compatible", 2535 /// and the invoked functions are "compatible". 2536 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { 2537 if (!EnableMergeCompatibleInvokes) 2538 return false; 2539 2540 bool Changed = false; 2541 2542 // FIXME: generalize to all exception handling blocks? 2543 if (!BB->isLandingPad()) 2544 return Changed; 2545 2546 CompatibleSets Grouper; 2547 2548 // Record all the predecessors of this `landingpad`. As per verifier, 2549 // the only allowed predecessor is the unwind edge of an `invoke`. 2550 // We want to group "compatible" `invokes` into the same set to be merged. 2551 for (BasicBlock *PredBB : predecessors(BB)) 2552 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); 2553 2554 // And now, merge `invoke`s that were grouped togeter. 2555 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { 2556 if (Invokes.size() < 2) 2557 continue; 2558 Changed = true; 2559 MergeCompatibleInvokesImpl(Invokes, DTU); 2560 } 2561 2562 return Changed; 2563 } 2564 2565 /// Determine if we can hoist sink a sole store instruction out of a 2566 /// conditional block. 2567 /// 2568 /// We are looking for code like the following: 2569 /// BrBB: 2570 /// store i32 %add, i32* %arrayidx2 2571 /// ... // No other stores or function calls (we could be calling a memory 2572 /// ... // function). 2573 /// %cmp = icmp ult %x, %y 2574 /// br i1 %cmp, label %EndBB, label %ThenBB 2575 /// ThenBB: 2576 /// store i32 %add5, i32* %arrayidx2 2577 /// br label EndBB 2578 /// EndBB: 2579 /// ... 2580 /// We are going to transform this into: 2581 /// BrBB: 2582 /// store i32 %add, i32* %arrayidx2 2583 /// ... // 2584 /// %cmp = icmp ult %x, %y 2585 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2586 /// store i32 %add.add5, i32* %arrayidx2 2587 /// ... 2588 /// 2589 /// \return The pointer to the value of the previous store if the store can be 2590 /// hoisted into the predecessor block. 0 otherwise. 2591 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2592 BasicBlock *StoreBB, BasicBlock *EndBB) { 2593 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2594 if (!StoreToHoist) 2595 return nullptr; 2596 2597 // Volatile or atomic. 2598 if (!StoreToHoist->isSimple()) 2599 return nullptr; 2600 2601 Value *StorePtr = StoreToHoist->getPointerOperand(); 2602 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 2603 2604 // Look for a store to the same pointer in BrBB. 2605 unsigned MaxNumInstToLookAt = 9; 2606 // Skip pseudo probe intrinsic calls which are not really killing any memory 2607 // accesses. 2608 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2609 if (!MaxNumInstToLookAt) 2610 break; 2611 --MaxNumInstToLookAt; 2612 2613 // Could be calling an instruction that affects memory like free(). 2614 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 2615 return nullptr; 2616 2617 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2618 // Found the previous store to same location and type. Make sure it is 2619 // simple, to avoid introducing a spurious non-atomic write after an 2620 // atomic write. 2621 if (SI->getPointerOperand() == StorePtr && 2622 SI->getValueOperand()->getType() == StoreTy && SI->isSimple()) 2623 // Found the previous store, return its value operand. 2624 return SI->getValueOperand(); 2625 return nullptr; // Unknown store. 2626 } 2627 2628 if (auto *LI = dyn_cast<LoadInst>(&CurI)) { 2629 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && 2630 LI->isSimple()) { 2631 // Local objects (created by an `alloca` instruction) are always 2632 // writable, so once we are past a read from a location it is valid to 2633 // also write to that same location. 2634 // If the address of the local object never escapes the function, that 2635 // means it's never concurrently read or written, hence moving the store 2636 // from under the condition will not introduce a data race. 2637 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr)); 2638 if (AI && !PointerMayBeCaptured(AI, false, true)) 2639 // Found a previous load, return it. 2640 return LI; 2641 } 2642 // The load didn't work out, but we may still find a store. 2643 } 2644 } 2645 2646 return nullptr; 2647 } 2648 2649 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2650 /// converted to selects. 2651 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2652 BasicBlock *EndBB, 2653 unsigned &SpeculatedInstructions, 2654 InstructionCost &Cost, 2655 const TargetTransformInfo &TTI) { 2656 TargetTransformInfo::TargetCostKind CostKind = 2657 BB->getParent()->hasMinSize() 2658 ? TargetTransformInfo::TCK_CodeSize 2659 : TargetTransformInfo::TCK_SizeAndLatency; 2660 2661 bool HaveRewritablePHIs = false; 2662 for (PHINode &PN : EndBB->phis()) { 2663 Value *OrigV = PN.getIncomingValueForBlock(BB); 2664 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2665 2666 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2667 // Skip PHIs which are trivial. 2668 if (ThenV == OrigV) 2669 continue; 2670 2671 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2672 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2673 2674 // Don't convert to selects if we could remove undefined behavior instead. 2675 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2676 passingValueIsAlwaysUndefined(ThenV, &PN)) 2677 return false; 2678 2679 if (canTrap(OrigV) || canTrap(ThenV)) 2680 return false; 2681 2682 HaveRewritablePHIs = true; 2683 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2684 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2685 if (!OrigCE && !ThenCE) 2686 continue; // Known cheap (FIXME: Maybe not true for aggregates). 2687 2688 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2689 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2690 InstructionCost MaxCost = 2691 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2692 if (OrigCost + ThenCost > MaxCost) 2693 return false; 2694 2695 // Account for the cost of an unfolded ConstantExpr which could end up 2696 // getting expanded into Instructions. 2697 // FIXME: This doesn't account for how many operations are combined in the 2698 // constant expression. 2699 ++SpeculatedInstructions; 2700 if (SpeculatedInstructions > 1) 2701 return false; 2702 } 2703 2704 return HaveRewritablePHIs; 2705 } 2706 2707 /// Speculate a conditional basic block flattening the CFG. 2708 /// 2709 /// Note that this is a very risky transform currently. Speculating 2710 /// instructions like this is most often not desirable. Instead, there is an MI 2711 /// pass which can do it with full awareness of the resource constraints. 2712 /// However, some cases are "obvious" and we should do directly. An example of 2713 /// this is speculating a single, reasonably cheap instruction. 2714 /// 2715 /// There is only one distinct advantage to flattening the CFG at the IR level: 2716 /// it makes very common but simplistic optimizations such as are common in 2717 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2718 /// modeling their effects with easier to reason about SSA value graphs. 2719 /// 2720 /// 2721 /// An illustration of this transform is turning this IR: 2722 /// \code 2723 /// BB: 2724 /// %cmp = icmp ult %x, %y 2725 /// br i1 %cmp, label %EndBB, label %ThenBB 2726 /// ThenBB: 2727 /// %sub = sub %x, %y 2728 /// br label BB2 2729 /// EndBB: 2730 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2731 /// ... 2732 /// \endcode 2733 /// 2734 /// Into this IR: 2735 /// \code 2736 /// BB: 2737 /// %cmp = icmp ult %x, %y 2738 /// %sub = sub %x, %y 2739 /// %cond = select i1 %cmp, 0, %sub 2740 /// ... 2741 /// \endcode 2742 /// 2743 /// \returns true if the conditional block is removed. 2744 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2745 const TargetTransformInfo &TTI) { 2746 // Be conservative for now. FP select instruction can often be expensive. 2747 Value *BrCond = BI->getCondition(); 2748 if (isa<FCmpInst>(BrCond)) 2749 return false; 2750 2751 BasicBlock *BB = BI->getParent(); 2752 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2753 InstructionCost Budget = 2754 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2755 2756 // If ThenBB is actually on the false edge of the conditional branch, remember 2757 // to swap the select operands later. 2758 bool Invert = false; 2759 if (ThenBB != BI->getSuccessor(0)) { 2760 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2761 Invert = true; 2762 } 2763 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2764 2765 // If the branch is non-unpredictable, and is predicted to *not* branch to 2766 // the `then` block, then avoid speculating it. 2767 if (!BI->getMetadata(LLVMContext::MD_unpredictable)) { 2768 uint64_t TWeight, FWeight; 2769 if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) { 2770 uint64_t EndWeight = Invert ? TWeight : FWeight; 2771 BranchProbability BIEndProb = 2772 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 2773 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 2774 if (BIEndProb >= Likely) 2775 return false; 2776 } 2777 } 2778 2779 // Keep a count of how many times instructions are used within ThenBB when 2780 // they are candidates for sinking into ThenBB. Specifically: 2781 // - They are defined in BB, and 2782 // - They have no side effects, and 2783 // - All of their uses are in ThenBB. 2784 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2785 2786 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2787 2788 unsigned SpeculatedInstructions = 0; 2789 Value *SpeculatedStoreValue = nullptr; 2790 StoreInst *SpeculatedStore = nullptr; 2791 for (BasicBlock::iterator BBI = ThenBB->begin(), 2792 BBE = std::prev(ThenBB->end()); 2793 BBI != BBE; ++BBI) { 2794 Instruction *I = &*BBI; 2795 // Skip debug info. 2796 if (isa<DbgInfoIntrinsic>(I)) { 2797 SpeculatedDbgIntrinsics.push_back(I); 2798 continue; 2799 } 2800 2801 // Skip pseudo probes. The consequence is we lose track of the branch 2802 // probability for ThenBB, which is fine since the optimization here takes 2803 // place regardless of the branch probability. 2804 if (isa<PseudoProbeInst>(I)) { 2805 // The probe should be deleted so that it will not be over-counted when 2806 // the samples collected on the non-conditional path are counted towards 2807 // the conditional path. We leave it for the counts inference algorithm to 2808 // figure out a proper count for an unknown probe. 2809 SpeculatedDbgIntrinsics.push_back(I); 2810 continue; 2811 } 2812 2813 // Only speculatively execute a single instruction (not counting the 2814 // terminator) for now. 2815 ++SpeculatedInstructions; 2816 if (SpeculatedInstructions > 1) 2817 return false; 2818 2819 // Don't hoist the instruction if it's unsafe or expensive. 2820 if (!isSafeToSpeculativelyExecute(I) && 2821 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2822 I, BB, ThenBB, EndBB)))) 2823 return false; 2824 if (!SpeculatedStoreValue && 2825 computeSpeculationCost(I, TTI) > 2826 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2827 return false; 2828 2829 // Store the store speculation candidate. 2830 if (SpeculatedStoreValue) 2831 SpeculatedStore = cast<StoreInst>(I); 2832 2833 // Do not hoist the instruction if any of its operands are defined but not 2834 // used in BB. The transformation will prevent the operand from 2835 // being sunk into the use block. 2836 for (Use &Op : I->operands()) { 2837 Instruction *OpI = dyn_cast<Instruction>(Op); 2838 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2839 continue; // Not a candidate for sinking. 2840 2841 ++SinkCandidateUseCounts[OpI]; 2842 } 2843 } 2844 2845 // Consider any sink candidates which are only used in ThenBB as costs for 2846 // speculation. Note, while we iterate over a DenseMap here, we are summing 2847 // and so iteration order isn't significant. 2848 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2849 I = SinkCandidateUseCounts.begin(), 2850 E = SinkCandidateUseCounts.end(); 2851 I != E; ++I) 2852 if (I->first->hasNUses(I->second)) { 2853 ++SpeculatedInstructions; 2854 if (SpeculatedInstructions > 1) 2855 return false; 2856 } 2857 2858 // Check that we can insert the selects and that it's not too expensive to do 2859 // so. 2860 bool Convert = SpeculatedStore != nullptr; 2861 InstructionCost Cost = 0; 2862 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2863 SpeculatedInstructions, 2864 Cost, TTI); 2865 if (!Convert || Cost > Budget) 2866 return false; 2867 2868 // If we get here, we can hoist the instruction and if-convert. 2869 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2870 2871 // Insert a select of the value of the speculated store. 2872 if (SpeculatedStoreValue) { 2873 IRBuilder<NoFolder> Builder(BI); 2874 Value *TrueV = SpeculatedStore->getValueOperand(); 2875 Value *FalseV = SpeculatedStoreValue; 2876 if (Invert) 2877 std::swap(TrueV, FalseV); 2878 Value *S = Builder.CreateSelect( 2879 BrCond, TrueV, FalseV, "spec.store.select", BI); 2880 SpeculatedStore->setOperand(0, S); 2881 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2882 SpeculatedStore->getDebugLoc()); 2883 } 2884 2885 // Metadata can be dependent on the condition we are hoisting above. 2886 // Conservatively strip all metadata on the instruction. Drop the debug loc 2887 // to avoid making it appear as if the condition is a constant, which would 2888 // be misleading while debugging. 2889 // Similarly strip attributes that maybe dependent on condition we are 2890 // hoisting above. 2891 for (auto &I : *ThenBB) { 2892 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2893 I.setDebugLoc(DebugLoc()); 2894 I.dropUndefImplyingAttrsAndUnknownMetadata(); 2895 } 2896 2897 // Hoist the instructions. 2898 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2899 ThenBB->begin(), std::prev(ThenBB->end())); 2900 2901 // Insert selects and rewrite the PHI operands. 2902 IRBuilder<NoFolder> Builder(BI); 2903 for (PHINode &PN : EndBB->phis()) { 2904 unsigned OrigI = PN.getBasicBlockIndex(BB); 2905 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2906 Value *OrigV = PN.getIncomingValue(OrigI); 2907 Value *ThenV = PN.getIncomingValue(ThenI); 2908 2909 // Skip PHIs which are trivial. 2910 if (OrigV == ThenV) 2911 continue; 2912 2913 // Create a select whose true value is the speculatively executed value and 2914 // false value is the pre-existing value. Swap them if the branch 2915 // destinations were inverted. 2916 Value *TrueV = ThenV, *FalseV = OrigV; 2917 if (Invert) 2918 std::swap(TrueV, FalseV); 2919 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2920 PN.setIncomingValue(OrigI, V); 2921 PN.setIncomingValue(ThenI, V); 2922 } 2923 2924 // Remove speculated dbg intrinsics. 2925 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2926 // dbg value for the different flows and inserting it after the select. 2927 for (Instruction *I : SpeculatedDbgIntrinsics) 2928 I->eraseFromParent(); 2929 2930 ++NumSpeculations; 2931 return true; 2932 } 2933 2934 /// Return true if we can thread a branch across this block. 2935 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2936 int Size = 0; 2937 2938 SmallPtrSet<const Value *, 32> EphValues; 2939 auto IsEphemeral = [&](const Instruction *I) { 2940 if (isa<AssumeInst>(I)) 2941 return true; 2942 return !I->mayHaveSideEffects() && !I->isTerminator() && 2943 all_of(I->users(), 2944 [&](const User *U) { return EphValues.count(U); }); 2945 }; 2946 2947 // Walk the loop in reverse so that we can identify ephemeral values properly 2948 // (values only feeding assumes). 2949 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { 2950 // Can't fold blocks that contain noduplicate or convergent calls. 2951 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2952 if (CI->cannotDuplicate() || CI->isConvergent()) 2953 return false; 2954 2955 // Ignore ephemeral values which are deleted during codegen. 2956 if (IsEphemeral(&I)) 2957 EphValues.insert(&I); 2958 // We will delete Phis while threading, so Phis should not be accounted in 2959 // block's size. 2960 else if (!isa<PHINode>(I)) { 2961 if (Size++ > MaxSmallBlockSize) 2962 return false; // Don't clone large BB's. 2963 } 2964 2965 // We can only support instructions that do not define values that are 2966 // live outside of the current basic block. 2967 for (User *U : I.users()) { 2968 Instruction *UI = cast<Instruction>(U); 2969 if (UI->getParent() != BB || isa<PHINode>(UI)) 2970 return false; 2971 } 2972 2973 // Looks ok, continue checking. 2974 } 2975 2976 return true; 2977 } 2978 2979 static ConstantInt * 2980 getKnownValueOnEdge(Value *V, BasicBlock *From, BasicBlock *To, 2981 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, 2982 ConstantInt *> &Visited) { 2983 // Don't look past the block defining the value, we might get the value from 2984 // a previous loop iteration. 2985 auto *I = dyn_cast<Instruction>(V); 2986 if (I && I->getParent() == To) 2987 return nullptr; 2988 2989 // We know the value if the From block branches on it. 2990 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 2991 if (BI && BI->isConditional() && BI->getCondition() == V && 2992 BI->getSuccessor(0) != BI->getSuccessor(1)) 2993 return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext()) 2994 : ConstantInt::getFalse(BI->getContext()); 2995 2996 // Limit the amount of blocks we inspect. 2997 if (Visited.size() >= 8) 2998 return nullptr; 2999 3000 auto Pair = Visited.try_emplace({From, To}, nullptr); 3001 if (!Pair.second) 3002 return Pair.first->second; 3003 3004 // Check whether the known value is the same for all predecessors. 3005 ConstantInt *Common = nullptr; 3006 for (BasicBlock *Pred : predecessors(From)) { 3007 ConstantInt *C = getKnownValueOnEdge(V, Pred, From, Visited); 3008 if (!C || (Common && Common != C)) 3009 return nullptr; 3010 Common = C; 3011 } 3012 return Visited[{From, To}] = Common; 3013 } 3014 3015 /// If we have a conditional branch on something for which we know the constant 3016 /// value in predecessors (e.g. a phi node in the current block), thread edges 3017 /// from the predecessor to their ultimate destination. 3018 static Optional<bool> 3019 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU, 3020 const DataLayout &DL, 3021 AssumptionCache *AC) { 3022 SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues; 3023 BasicBlock *BB = BI->getParent(); 3024 Value *Cond = BI->getCondition(); 3025 PHINode *PN = dyn_cast<PHINode>(Cond); 3026 if (PN && PN->getParent() == BB) { 3027 // Degenerate case of a single entry PHI. 3028 if (PN->getNumIncomingValues() == 1) { 3029 FoldSingleEntryPHINodes(PN->getParent()); 3030 return true; 3031 } 3032 3033 for (Use &U : PN->incoming_values()) 3034 if (auto *CB = dyn_cast<ConstantInt>(U)) 3035 KnownValues[CB].insert(PN->getIncomingBlock(U)); 3036 } else { 3037 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, ConstantInt *> Visited; 3038 for (BasicBlock *Pred : predecessors(BB)) { 3039 if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB, Visited)) 3040 KnownValues[CB].insert(Pred); 3041 } 3042 } 3043 3044 if (KnownValues.empty()) 3045 return false; 3046 3047 // Now we know that this block has multiple preds and two succs. 3048 // Check that the block is small enough and values defined in the block are 3049 // not used outside of it. 3050 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 3051 return false; 3052 3053 for (const auto &Pair : KnownValues) { 3054 // Okay, we now know that all edges from PredBB should be revectored to 3055 // branch to RealDest. 3056 ConstantInt *CB = Pair.first; 3057 ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef(); 3058 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 3059 3060 if (RealDest == BB) 3061 continue; // Skip self loops. 3062 3063 // Skip if the predecessor's terminator is an indirect branch. 3064 if (any_of(PredBBs, [](BasicBlock *PredBB) { 3065 return isa<IndirectBrInst>(PredBB->getTerminator()); 3066 })) 3067 continue; 3068 3069 LLVM_DEBUG({ 3070 dbgs() << "Condition " << *Cond << " in " << BB->getName() 3071 << " has value " << *Pair.first << " in predecessors:\n"; 3072 for (const BasicBlock *PredBB : Pair.second) 3073 dbgs() << " " << PredBB->getName() << "\n"; 3074 dbgs() << "Threading to destination " << RealDest->getName() << ".\n"; 3075 }); 3076 3077 // Split the predecessors we are threading into a new edge block. We'll 3078 // clone the instructions into this block, and then redirect it to RealDest. 3079 BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU); 3080 3081 // TODO: These just exist to reduce test diff, we can drop them if we like. 3082 EdgeBB->setName(RealDest->getName() + ".critedge"); 3083 EdgeBB->moveBefore(RealDest); 3084 3085 // Update PHI nodes. 3086 AddPredecessorToBlock(RealDest, EdgeBB, BB); 3087 3088 // BB may have instructions that are being threaded over. Clone these 3089 // instructions into EdgeBB. We know that there will be no uses of the 3090 // cloned instructions outside of EdgeBB. 3091 BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt(); 3092 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 3093 TranslateMap[Cond] = CB; 3094 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 3095 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 3096 TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB); 3097 continue; 3098 } 3099 // Clone the instruction. 3100 Instruction *N = BBI->clone(); 3101 if (BBI->hasName()) 3102 N->setName(BBI->getName() + ".c"); 3103 3104 // Update operands due to translation. 3105 for (Use &Op : N->operands()) { 3106 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 3107 if (PI != TranslateMap.end()) 3108 Op = PI->second; 3109 } 3110 3111 // Check for trivial simplification. 3112 if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 3113 if (!BBI->use_empty()) 3114 TranslateMap[&*BBI] = V; 3115 if (!N->mayHaveSideEffects()) { 3116 N->deleteValue(); // Instruction folded away, don't need actual inst 3117 N = nullptr; 3118 } 3119 } else { 3120 if (!BBI->use_empty()) 3121 TranslateMap[&*BBI] = N; 3122 } 3123 if (N) { 3124 // Insert the new instruction into its new home. 3125 EdgeBB->getInstList().insert(InsertPt, N); 3126 3127 // Register the new instruction with the assumption cache if necessary. 3128 if (auto *Assume = dyn_cast<AssumeInst>(N)) 3129 if (AC) 3130 AC->registerAssumption(Assume); 3131 } 3132 } 3133 3134 BB->removePredecessor(EdgeBB); 3135 BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator()); 3136 EdgeBI->setSuccessor(0, RealDest); 3137 EdgeBI->setDebugLoc(BI->getDebugLoc()); 3138 3139 if (DTU) { 3140 SmallVector<DominatorTree::UpdateType, 2> Updates; 3141 Updates.push_back({DominatorTree::Delete, EdgeBB, BB}); 3142 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 3143 DTU->applyUpdates(Updates); 3144 } 3145 3146 // For simplicity, we created a separate basic block for the edge. Merge 3147 // it back into the predecessor if possible. This not only avoids 3148 // unnecessary SimplifyCFG iterations, but also makes sure that we don't 3149 // bypass the check for trivial cycles above. 3150 MergeBlockIntoPredecessor(EdgeBB, DTU); 3151 3152 // Signal repeat, simplifying any other constants. 3153 return None; 3154 } 3155 3156 return false; 3157 } 3158 3159 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI, 3160 DomTreeUpdater *DTU, 3161 const DataLayout &DL, 3162 AssumptionCache *AC) { 3163 Optional<bool> Result; 3164 bool EverChanged = false; 3165 do { 3166 // Note that None means "we changed things, but recurse further." 3167 Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC); 3168 EverChanged |= Result == None || *Result; 3169 } while (Result == None); 3170 return EverChanged; 3171 } 3172 3173 /// Given a BB that starts with the specified two-entry PHI node, 3174 /// see if we can eliminate it. 3175 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 3176 DomTreeUpdater *DTU, const DataLayout &DL) { 3177 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 3178 // statement", which has a very simple dominance structure. Basically, we 3179 // are trying to find the condition that is being branched on, which 3180 // subsequently causes this merge to happen. We really want control 3181 // dependence information for this check, but simplifycfg can't keep it up 3182 // to date, and this catches most of the cases we care about anyway. 3183 BasicBlock *BB = PN->getParent(); 3184 3185 BasicBlock *IfTrue, *IfFalse; 3186 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 3187 if (!DomBI) 3188 return false; 3189 Value *IfCond = DomBI->getCondition(); 3190 // Don't bother if the branch will be constant folded trivially. 3191 if (isa<ConstantInt>(IfCond)) 3192 return false; 3193 3194 BasicBlock *DomBlock = DomBI->getParent(); 3195 SmallVector<BasicBlock *, 2> IfBlocks; 3196 llvm::copy_if( 3197 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 3198 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 3199 }); 3200 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 3201 "Will have either one or two blocks to speculate."); 3202 3203 // If the branch is non-unpredictable, see if we either predictably jump to 3204 // the merge bb (if we have only a single 'then' block), or if we predictably 3205 // jump to one specific 'then' block (if we have two of them). 3206 // It isn't beneficial to speculatively execute the code 3207 // from the block that we know is predictably not entered. 3208 if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) { 3209 uint64_t TWeight, FWeight; 3210 if (DomBI->extractProfMetadata(TWeight, FWeight) && 3211 (TWeight + FWeight) != 0) { 3212 BranchProbability BITrueProb = 3213 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 3214 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3215 BranchProbability BIFalseProb = BITrueProb.getCompl(); 3216 if (IfBlocks.size() == 1) { 3217 BranchProbability BIBBProb = 3218 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 3219 if (BIBBProb >= Likely) 3220 return false; 3221 } else { 3222 if (BITrueProb >= Likely || BIFalseProb >= Likely) 3223 return false; 3224 } 3225 } 3226 } 3227 3228 // Don't try to fold an unreachable block. For example, the phi node itself 3229 // can't be the candidate if-condition for a select that we want to form. 3230 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 3231 if (IfCondPhiInst->getParent() == BB) 3232 return false; 3233 3234 // Okay, we found that we can merge this two-entry phi node into a select. 3235 // Doing so would require us to fold *all* two entry phi nodes in this block. 3236 // At some point this becomes non-profitable (particularly if the target 3237 // doesn't support cmov's). Only do this transformation if there are two or 3238 // fewer PHI nodes in this block. 3239 unsigned NumPhis = 0; 3240 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 3241 if (NumPhis > 2) 3242 return false; 3243 3244 // Loop over the PHI's seeing if we can promote them all to select 3245 // instructions. While we are at it, keep track of the instructions 3246 // that need to be moved to the dominating block. 3247 SmallPtrSet<Instruction *, 4> AggressiveInsts; 3248 InstructionCost Cost = 0; 3249 InstructionCost Budget = 3250 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3251 3252 bool Changed = false; 3253 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 3254 PHINode *PN = cast<PHINode>(II++); 3255 if (Value *V = simplifyInstruction(PN, {DL, PN})) { 3256 PN->replaceAllUsesWith(V); 3257 PN->eraseFromParent(); 3258 Changed = true; 3259 continue; 3260 } 3261 3262 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 3263 Cost, Budget, TTI) || 3264 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 3265 Cost, Budget, TTI)) 3266 return Changed; 3267 } 3268 3269 // If we folded the first phi, PN dangles at this point. Refresh it. If 3270 // we ran out of PHIs then we simplified them all. 3271 PN = dyn_cast<PHINode>(BB->begin()); 3272 if (!PN) 3273 return true; 3274 3275 // Return true if at least one of these is a 'not', and another is either 3276 // a 'not' too, or a constant. 3277 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 3278 if (!match(V0, m_Not(m_Value()))) 3279 std::swap(V0, V1); 3280 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 3281 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 3282 }; 3283 3284 // Don't fold i1 branches on PHIs which contain binary operators or 3285 // (possibly inverted) select form of or/ands, unless one of 3286 // the incoming values is an 'not' and another one is freely invertible. 3287 // These can often be turned into switches and other things. 3288 auto IsBinOpOrAnd = [](Value *V) { 3289 return match( 3290 V, m_CombineOr( 3291 m_BinOp(), 3292 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()), 3293 m_Select(m_Value(), m_Value(), m_ImmConstant())))); 3294 }; 3295 if (PN->getType()->isIntegerTy(1) && 3296 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 3297 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 3298 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 3299 PN->getIncomingValue(1))) 3300 return Changed; 3301 3302 // If all PHI nodes are promotable, check to make sure that all instructions 3303 // in the predecessor blocks can be promoted as well. If not, we won't be able 3304 // to get rid of the control flow, so it's not worth promoting to select 3305 // instructions. 3306 for (BasicBlock *IfBlock : IfBlocks) 3307 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 3308 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { 3309 // This is not an aggressive instruction that we can promote. 3310 // Because of this, we won't be able to get rid of the control flow, so 3311 // the xform is not worth it. 3312 return Changed; 3313 } 3314 3315 // If either of the blocks has it's address taken, we can't do this fold. 3316 if (any_of(IfBlocks, 3317 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 3318 return Changed; 3319 3320 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 3321 << " T: " << IfTrue->getName() 3322 << " F: " << IfFalse->getName() << "\n"); 3323 3324 // If we can still promote the PHI nodes after this gauntlet of tests, 3325 // do all of the PHI's now. 3326 3327 // Move all 'aggressive' instructions, which are defined in the 3328 // conditional parts of the if's up to the dominating block. 3329 for (BasicBlock *IfBlock : IfBlocks) 3330 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 3331 3332 IRBuilder<NoFolder> Builder(DomBI); 3333 // Propagate fast-math-flags from phi nodes to replacement selects. 3334 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 3335 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 3336 if (isa<FPMathOperator>(PN)) 3337 Builder.setFastMathFlags(PN->getFastMathFlags()); 3338 3339 // Change the PHI node into a select instruction. 3340 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 3341 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 3342 3343 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI); 3344 PN->replaceAllUsesWith(Sel); 3345 Sel->takeName(PN); 3346 PN->eraseFromParent(); 3347 } 3348 3349 // At this point, all IfBlocks are empty, so our if statement 3350 // has been flattened. Change DomBlock to jump directly to our new block to 3351 // avoid other simplifycfg's kicking in on the diamond. 3352 Builder.CreateBr(BB); 3353 3354 SmallVector<DominatorTree::UpdateType, 3> Updates; 3355 if (DTU) { 3356 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 3357 for (auto *Successor : successors(DomBlock)) 3358 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 3359 } 3360 3361 DomBI->eraseFromParent(); 3362 if (DTU) 3363 DTU->applyUpdates(Updates); 3364 3365 return true; 3366 } 3367 3368 static Value *createLogicalOp(IRBuilderBase &Builder, 3369 Instruction::BinaryOps Opc, Value *LHS, 3370 Value *RHS, const Twine &Name = "") { 3371 // Try to relax logical op to binary op. 3372 if (impliesPoison(RHS, LHS)) 3373 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 3374 if (Opc == Instruction::And) 3375 return Builder.CreateLogicalAnd(LHS, RHS, Name); 3376 if (Opc == Instruction::Or) 3377 return Builder.CreateLogicalOr(LHS, RHS, Name); 3378 llvm_unreachable("Invalid logical opcode"); 3379 } 3380 3381 /// Return true if either PBI or BI has branch weight available, and store 3382 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3383 /// not have branch weight, use 1:1 as its weight. 3384 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3385 uint64_t &PredTrueWeight, 3386 uint64_t &PredFalseWeight, 3387 uint64_t &SuccTrueWeight, 3388 uint64_t &SuccFalseWeight) { 3389 bool PredHasWeights = 3390 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 3391 bool SuccHasWeights = 3392 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 3393 if (PredHasWeights || SuccHasWeights) { 3394 if (!PredHasWeights) 3395 PredTrueWeight = PredFalseWeight = 1; 3396 if (!SuccHasWeights) 3397 SuccTrueWeight = SuccFalseWeight = 1; 3398 return true; 3399 } else { 3400 return false; 3401 } 3402 } 3403 3404 /// Determine if the two branches share a common destination and deduce a glue 3405 /// that joins the branches' conditions to arrive at the common destination if 3406 /// that would be profitable. 3407 static Optional<std::pair<Instruction::BinaryOps, bool>> 3408 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3409 const TargetTransformInfo *TTI) { 3410 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3411 "Both blocks must end with a conditional branches."); 3412 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3413 "PredBB must be a predecessor of BB."); 3414 3415 // We have the potential to fold the conditions together, but if the 3416 // predecessor branch is predictable, we may not want to merge them. 3417 uint64_t PTWeight, PFWeight; 3418 BranchProbability PBITrueProb, Likely; 3419 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 3420 PBI->extractProfMetadata(PTWeight, PFWeight) && 3421 (PTWeight + PFWeight) != 0) { 3422 PBITrueProb = 3423 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3424 Likely = TTI->getPredictableBranchThreshold(); 3425 } 3426 3427 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3428 // Speculate the 2nd condition unless the 1st is probably true. 3429 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3430 return {{Instruction::Or, false}}; 3431 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3432 // Speculate the 2nd condition unless the 1st is probably false. 3433 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3434 return {{Instruction::And, false}}; 3435 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3436 // Speculate the 2nd condition unless the 1st is probably true. 3437 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3438 return {{Instruction::And, true}}; 3439 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3440 // Speculate the 2nd condition unless the 1st is probably false. 3441 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3442 return {{Instruction::Or, true}}; 3443 } 3444 return None; 3445 } 3446 3447 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3448 DomTreeUpdater *DTU, 3449 MemorySSAUpdater *MSSAU, 3450 const TargetTransformInfo *TTI) { 3451 BasicBlock *BB = BI->getParent(); 3452 BasicBlock *PredBlock = PBI->getParent(); 3453 3454 // Determine if the two branches share a common destination. 3455 Instruction::BinaryOps Opc; 3456 bool InvertPredCond; 3457 std::tie(Opc, InvertPredCond) = 3458 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3459 3460 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3461 3462 IRBuilder<> Builder(PBI); 3463 // The builder is used to create instructions to eliminate the branch in BB. 3464 // If BB's terminator has !annotation metadata, add it to the new 3465 // instructions. 3466 Builder.CollectMetadataToCopy(BB->getTerminator(), 3467 {LLVMContext::MD_annotation}); 3468 3469 // If we need to invert the condition in the pred block to match, do so now. 3470 if (InvertPredCond) { 3471 Value *NewCond = PBI->getCondition(); 3472 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3473 CmpInst *CI = cast<CmpInst>(NewCond); 3474 CI->setPredicate(CI->getInversePredicate()); 3475 } else { 3476 NewCond = 3477 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3478 } 3479 3480 PBI->setCondition(NewCond); 3481 PBI->swapSuccessors(); 3482 } 3483 3484 BasicBlock *UniqueSucc = 3485 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3486 3487 // Before cloning instructions, notify the successor basic block that it 3488 // is about to have a new predecessor. This will update PHI nodes, 3489 // which will allow us to update live-out uses of bonus instructions. 3490 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3491 3492 // Try to update branch weights. 3493 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3494 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3495 SuccTrueWeight, SuccFalseWeight)) { 3496 SmallVector<uint64_t, 8> NewWeights; 3497 3498 if (PBI->getSuccessor(0) == BB) { 3499 // PBI: br i1 %x, BB, FalseDest 3500 // BI: br i1 %y, UniqueSucc, FalseDest 3501 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3502 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3503 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3504 // TrueWeight for PBI * FalseWeight for BI. 3505 // We assume that total weights of a BranchInst can fit into 32 bits. 3506 // Therefore, we will not have overflow using 64-bit arithmetic. 3507 NewWeights.push_back(PredFalseWeight * 3508 (SuccFalseWeight + SuccTrueWeight) + 3509 PredTrueWeight * SuccFalseWeight); 3510 } else { 3511 // PBI: br i1 %x, TrueDest, BB 3512 // BI: br i1 %y, TrueDest, UniqueSucc 3513 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3514 // FalseWeight for PBI * TrueWeight for BI. 3515 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3516 PredFalseWeight * SuccTrueWeight); 3517 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3518 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3519 } 3520 3521 // Halve the weights if any of them cannot fit in an uint32_t 3522 FitWeights(NewWeights); 3523 3524 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3525 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3526 3527 // TODO: If BB is reachable from all paths through PredBlock, then we 3528 // could replace PBI's branch probabilities with BI's. 3529 } else 3530 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3531 3532 // Now, update the CFG. 3533 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3534 3535 if (DTU) 3536 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3537 {DominatorTree::Delete, PredBlock, BB}}); 3538 3539 // If BI was a loop latch, it may have had associated loop metadata. 3540 // We need to copy it to the new latch, that is, PBI. 3541 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3542 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3543 3544 ValueToValueMapTy VMap; // maps original values to cloned values 3545 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3546 3547 // Now that the Cond was cloned into the predecessor basic block, 3548 // or/and the two conditions together. 3549 Value *BICond = VMap[BI->getCondition()]; 3550 PBI->setCondition( 3551 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3552 3553 // Copy any debug value intrinsics into the end of PredBlock. 3554 for (Instruction &I : *BB) { 3555 if (isa<DbgInfoIntrinsic>(I)) { 3556 Instruction *NewI = I.clone(); 3557 RemapInstruction(NewI, VMap, 3558 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3559 NewI->insertBefore(PBI); 3560 } 3561 } 3562 3563 ++NumFoldBranchToCommonDest; 3564 return true; 3565 } 3566 3567 /// Return if an instruction's type or any of its operands' types are a vector 3568 /// type. 3569 static bool isVectorOp(Instruction &I) { 3570 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { 3571 return U->getType()->isVectorTy(); 3572 }); 3573 } 3574 3575 /// If this basic block is simple enough, and if a predecessor branches to us 3576 /// and one of our successors, fold the block into the predecessor and use 3577 /// logical operations to pick the right destination. 3578 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3579 MemorySSAUpdater *MSSAU, 3580 const TargetTransformInfo *TTI, 3581 unsigned BonusInstThreshold) { 3582 // If this block ends with an unconditional branch, 3583 // let SpeculativelyExecuteBB() deal with it. 3584 if (!BI->isConditional()) 3585 return false; 3586 3587 BasicBlock *BB = BI->getParent(); 3588 TargetTransformInfo::TargetCostKind CostKind = 3589 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3590 : TargetTransformInfo::TCK_SizeAndLatency; 3591 3592 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3593 3594 if (!Cond || 3595 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) && 3596 !isa<SelectInst>(Cond)) || 3597 Cond->getParent() != BB || !Cond->hasOneUse()) 3598 return false; 3599 3600 // Cond is known to be a compare or binary operator. Check to make sure that 3601 // neither operand is a potentially-trapping constant expression. 3602 if (canTrap(Cond->getOperand(0))) 3603 return false; 3604 if (canTrap(Cond->getOperand(1))) 3605 return false; 3606 3607 // Finally, don't infinitely unroll conditional loops. 3608 if (is_contained(successors(BB), BB)) 3609 return false; 3610 3611 // With which predecessors will we want to deal with? 3612 SmallVector<BasicBlock *, 8> Preds; 3613 for (BasicBlock *PredBlock : predecessors(BB)) { 3614 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3615 3616 // Check that we have two conditional branches. If there is a PHI node in 3617 // the common successor, verify that the same value flows in from both 3618 // blocks. 3619 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3620 continue; 3621 3622 // Determine if the two branches share a common destination. 3623 Instruction::BinaryOps Opc; 3624 bool InvertPredCond; 3625 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3626 std::tie(Opc, InvertPredCond) = *Recipe; 3627 else 3628 continue; 3629 3630 // Check the cost of inserting the necessary logic before performing the 3631 // transformation. 3632 if (TTI) { 3633 Type *Ty = BI->getCondition()->getType(); 3634 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3635 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3636 !isa<CmpInst>(PBI->getCondition()))) 3637 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3638 3639 if (Cost > BranchFoldThreshold) 3640 continue; 3641 } 3642 3643 // Ok, we do want to deal with this predecessor. Record it. 3644 Preds.emplace_back(PredBlock); 3645 } 3646 3647 // If there aren't any predecessors into which we can fold, 3648 // don't bother checking the cost. 3649 if (Preds.empty()) 3650 return false; 3651 3652 // Only allow this transformation if computing the condition doesn't involve 3653 // too many instructions and these involved instructions can be executed 3654 // unconditionally. We denote all involved instructions except the condition 3655 // as "bonus instructions", and only allow this transformation when the 3656 // number of the bonus instructions we'll need to create when cloning into 3657 // each predecessor does not exceed a certain threshold. 3658 unsigned NumBonusInsts = 0; 3659 bool SawVectorOp = false; 3660 const unsigned PredCount = Preds.size(); 3661 for (Instruction &I : *BB) { 3662 // Don't check the branch condition comparison itself. 3663 if (&I == Cond) 3664 continue; 3665 // Ignore dbg intrinsics, and the terminator. 3666 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3667 continue; 3668 // I must be safe to execute unconditionally. 3669 if (!isSafeToSpeculativelyExecute(&I)) 3670 return false; 3671 SawVectorOp |= isVectorOp(I); 3672 3673 // Account for the cost of duplicating this instruction into each 3674 // predecessor. Ignore free instructions. 3675 if (!TTI || 3676 TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) { 3677 NumBonusInsts += PredCount; 3678 3679 // Early exits once we reach the limit. 3680 if (NumBonusInsts > 3681 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) 3682 return false; 3683 } 3684 3685 auto IsBCSSAUse = [BB, &I](Use &U) { 3686 auto *UI = cast<Instruction>(U.getUser()); 3687 if (auto *PN = dyn_cast<PHINode>(UI)) 3688 return PN->getIncomingBlock(U) == BB; 3689 return UI->getParent() == BB && I.comesBefore(UI); 3690 }; 3691 3692 // Does this instruction require rewriting of uses? 3693 if (!all_of(I.uses(), IsBCSSAUse)) 3694 return false; 3695 } 3696 if (NumBonusInsts > 3697 BonusInstThreshold * 3698 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) 3699 return false; 3700 3701 // Ok, we have the budget. Perform the transformation. 3702 for (BasicBlock *PredBlock : Preds) { 3703 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3704 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3705 } 3706 return false; 3707 } 3708 3709 // If there is only one store in BB1 and BB2, return it, otherwise return 3710 // nullptr. 3711 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3712 StoreInst *S = nullptr; 3713 for (auto *BB : {BB1, BB2}) { 3714 if (!BB) 3715 continue; 3716 for (auto &I : *BB) 3717 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3718 if (S) 3719 // Multiple stores seen. 3720 return nullptr; 3721 else 3722 S = SI; 3723 } 3724 } 3725 return S; 3726 } 3727 3728 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3729 Value *AlternativeV = nullptr) { 3730 // PHI is going to be a PHI node that allows the value V that is defined in 3731 // BB to be referenced in BB's only successor. 3732 // 3733 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3734 // doesn't matter to us what the other operand is (it'll never get used). We 3735 // could just create a new PHI with an undef incoming value, but that could 3736 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3737 // other PHI. So here we directly look for some PHI in BB's successor with V 3738 // as an incoming operand. If we find one, we use it, else we create a new 3739 // one. 3740 // 3741 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3742 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3743 // where OtherBB is the single other predecessor of BB's only successor. 3744 PHINode *PHI = nullptr; 3745 BasicBlock *Succ = BB->getSingleSuccessor(); 3746 3747 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3748 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3749 PHI = cast<PHINode>(I); 3750 if (!AlternativeV) 3751 break; 3752 3753 assert(Succ->hasNPredecessors(2)); 3754 auto PredI = pred_begin(Succ); 3755 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3756 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3757 break; 3758 PHI = nullptr; 3759 } 3760 if (PHI) 3761 return PHI; 3762 3763 // If V is not an instruction defined in BB, just return it. 3764 if (!AlternativeV && 3765 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3766 return V; 3767 3768 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3769 PHI->addIncoming(V, BB); 3770 for (BasicBlock *PredBB : predecessors(Succ)) 3771 if (PredBB != BB) 3772 PHI->addIncoming( 3773 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3774 return PHI; 3775 } 3776 3777 static bool mergeConditionalStoreToAddress( 3778 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3779 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3780 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3781 // For every pointer, there must be exactly two stores, one coming from 3782 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3783 // store (to any address) in PTB,PFB or QTB,QFB. 3784 // FIXME: We could relax this restriction with a bit more work and performance 3785 // testing. 3786 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3787 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3788 if (!PStore || !QStore) 3789 return false; 3790 3791 // Now check the stores are compatible. 3792 if (!QStore->isUnordered() || !PStore->isUnordered() || 3793 PStore->getValueOperand()->getType() != 3794 QStore->getValueOperand()->getType()) 3795 return false; 3796 3797 // Check that sinking the store won't cause program behavior changes. Sinking 3798 // the store out of the Q blocks won't change any behavior as we're sinking 3799 // from a block to its unconditional successor. But we're moving a store from 3800 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3801 // So we need to check that there are no aliasing loads or stores in 3802 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3803 // operations between PStore and the end of its parent block. 3804 // 3805 // The ideal way to do this is to query AliasAnalysis, but we don't 3806 // preserve AA currently so that is dangerous. Be super safe and just 3807 // check there are no other memory operations at all. 3808 for (auto &I : *QFB->getSinglePredecessor()) 3809 if (I.mayReadOrWriteMemory()) 3810 return false; 3811 for (auto &I : *QFB) 3812 if (&I != QStore && I.mayReadOrWriteMemory()) 3813 return false; 3814 if (QTB) 3815 for (auto &I : *QTB) 3816 if (&I != QStore && I.mayReadOrWriteMemory()) 3817 return false; 3818 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3819 I != E; ++I) 3820 if (&*I != PStore && I->mayReadOrWriteMemory()) 3821 return false; 3822 3823 // If we're not in aggressive mode, we only optimize if we have some 3824 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3825 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3826 if (!BB) 3827 return true; 3828 // Heuristic: if the block can be if-converted/phi-folded and the 3829 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3830 // thread this store. 3831 InstructionCost Cost = 0; 3832 InstructionCost Budget = 3833 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3834 for (auto &I : BB->instructionsWithoutDebug(false)) { 3835 // Consider terminator instruction to be free. 3836 if (I.isTerminator()) 3837 continue; 3838 // If this is one the stores that we want to speculate out of this BB, 3839 // then don't count it's cost, consider it to be free. 3840 if (auto *S = dyn_cast<StoreInst>(&I)) 3841 if (llvm::find(FreeStores, S)) 3842 continue; 3843 // Else, we have a white-list of instructions that we are ak speculating. 3844 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3845 return false; // Not in white-list - not worthwhile folding. 3846 // And finally, if this is a non-free instruction that we are okay 3847 // speculating, ensure that we consider the speculation budget. 3848 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3849 if (Cost > Budget) 3850 return false; // Eagerly refuse to fold as soon as we're out of budget. 3851 } 3852 assert(Cost <= Budget && 3853 "When we run out of budget we will eagerly return from within the " 3854 "per-instruction loop."); 3855 return true; 3856 }; 3857 3858 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3859 if (!MergeCondStoresAggressively && 3860 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3861 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3862 return false; 3863 3864 // If PostBB has more than two predecessors, we need to split it so we can 3865 // sink the store. 3866 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3867 // We know that QFB's only successor is PostBB. And QFB has a single 3868 // predecessor. If QTB exists, then its only successor is also PostBB. 3869 // If QTB does not exist, then QFB's only predecessor has a conditional 3870 // branch to QFB and PostBB. 3871 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3872 BasicBlock *NewBB = 3873 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3874 if (!NewBB) 3875 return false; 3876 PostBB = NewBB; 3877 } 3878 3879 // OK, we're going to sink the stores to PostBB. The store has to be 3880 // conditional though, so first create the predicate. 3881 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3882 ->getCondition(); 3883 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3884 ->getCondition(); 3885 3886 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3887 PStore->getParent()); 3888 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3889 QStore->getParent(), PPHI); 3890 3891 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3892 3893 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3894 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3895 3896 if (InvertPCond) 3897 PPred = QB.CreateNot(PPred); 3898 if (InvertQCond) 3899 QPred = QB.CreateNot(QPred); 3900 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3901 3902 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3903 /*Unreachable=*/false, 3904 /*BranchWeights=*/nullptr, DTU); 3905 QB.SetInsertPoint(T); 3906 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3907 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); 3908 // Choose the minimum alignment. If we could prove both stores execute, we 3909 // could use biggest one. In this case, though, we only know that one of the 3910 // stores executes. And we don't know it's safe to take the alignment from a 3911 // store that doesn't execute. 3912 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3913 3914 QStore->eraseFromParent(); 3915 PStore->eraseFromParent(); 3916 3917 return true; 3918 } 3919 3920 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3921 DomTreeUpdater *DTU, const DataLayout &DL, 3922 const TargetTransformInfo &TTI) { 3923 // The intention here is to find diamonds or triangles (see below) where each 3924 // conditional block contains a store to the same address. Both of these 3925 // stores are conditional, so they can't be unconditionally sunk. But it may 3926 // be profitable to speculatively sink the stores into one merged store at the 3927 // end, and predicate the merged store on the union of the two conditions of 3928 // PBI and QBI. 3929 // 3930 // This can reduce the number of stores executed if both of the conditions are 3931 // true, and can allow the blocks to become small enough to be if-converted. 3932 // This optimization will also chain, so that ladders of test-and-set 3933 // sequences can be if-converted away. 3934 // 3935 // We only deal with simple diamonds or triangles: 3936 // 3937 // PBI or PBI or a combination of the two 3938 // / \ | \ 3939 // PTB PFB | PFB 3940 // \ / | / 3941 // QBI QBI 3942 // / \ | \ 3943 // QTB QFB | QFB 3944 // \ / | / 3945 // PostBB PostBB 3946 // 3947 // We model triangles as a type of diamond with a nullptr "true" block. 3948 // Triangles are canonicalized so that the fallthrough edge is represented by 3949 // a true condition, as in the diagram above. 3950 BasicBlock *PTB = PBI->getSuccessor(0); 3951 BasicBlock *PFB = PBI->getSuccessor(1); 3952 BasicBlock *QTB = QBI->getSuccessor(0); 3953 BasicBlock *QFB = QBI->getSuccessor(1); 3954 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3955 3956 // Make sure we have a good guess for PostBB. If QTB's only successor is 3957 // QFB, then QFB is a better PostBB. 3958 if (QTB->getSingleSuccessor() == QFB) 3959 PostBB = QFB; 3960 3961 // If we couldn't find a good PostBB, stop. 3962 if (!PostBB) 3963 return false; 3964 3965 bool InvertPCond = false, InvertQCond = false; 3966 // Canonicalize fallthroughs to the true branches. 3967 if (PFB == QBI->getParent()) { 3968 std::swap(PFB, PTB); 3969 InvertPCond = true; 3970 } 3971 if (QFB == PostBB) { 3972 std::swap(QFB, QTB); 3973 InvertQCond = true; 3974 } 3975 3976 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3977 // and QFB may not. Model fallthroughs as a nullptr block. 3978 if (PTB == QBI->getParent()) 3979 PTB = nullptr; 3980 if (QTB == PostBB) 3981 QTB = nullptr; 3982 3983 // Legality bailouts. We must have at least the non-fallthrough blocks and 3984 // the post-dominating block, and the non-fallthroughs must only have one 3985 // predecessor. 3986 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3987 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3988 }; 3989 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3990 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3991 return false; 3992 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3993 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3994 return false; 3995 if (!QBI->getParent()->hasNUses(2)) 3996 return false; 3997 3998 // OK, this is a sequence of two diamonds or triangles. 3999 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 4000 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 4001 for (auto *BB : {PTB, PFB}) { 4002 if (!BB) 4003 continue; 4004 for (auto &I : *BB) 4005 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4006 PStoreAddresses.insert(SI->getPointerOperand()); 4007 } 4008 for (auto *BB : {QTB, QFB}) { 4009 if (!BB) 4010 continue; 4011 for (auto &I : *BB) 4012 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4013 QStoreAddresses.insert(SI->getPointerOperand()); 4014 } 4015 4016 set_intersect(PStoreAddresses, QStoreAddresses); 4017 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 4018 // clear what it contains. 4019 auto &CommonAddresses = PStoreAddresses; 4020 4021 bool Changed = false; 4022 for (auto *Address : CommonAddresses) 4023 Changed |= 4024 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 4025 InvertPCond, InvertQCond, DTU, DL, TTI); 4026 return Changed; 4027 } 4028 4029 /// If the previous block ended with a widenable branch, determine if reusing 4030 /// the target block is profitable and legal. This will have the effect of 4031 /// "widening" PBI, but doesn't require us to reason about hosting safety. 4032 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4033 DomTreeUpdater *DTU) { 4034 // TODO: This can be generalized in two important ways: 4035 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 4036 // values from the PBI edge. 4037 // 2) We can sink side effecting instructions into BI's fallthrough 4038 // successor provided they doesn't contribute to computation of 4039 // BI's condition. 4040 Value *CondWB, *WC; 4041 BasicBlock *IfTrueBB, *IfFalseBB; 4042 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 4043 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 4044 return false; 4045 if (!IfFalseBB->phis().empty()) 4046 return false; // TODO 4047 // Use lambda to lazily compute expensive condition after cheap ones. 4048 auto NoSideEffects = [](BasicBlock &BB) { 4049 return llvm::none_of(BB, [](const Instruction &I) { 4050 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 4051 }); 4052 }; 4053 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 4054 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 4055 NoSideEffects(*BI->getParent())) { 4056 auto *OldSuccessor = BI->getSuccessor(1); 4057 OldSuccessor->removePredecessor(BI->getParent()); 4058 BI->setSuccessor(1, IfFalseBB); 4059 if (DTU) 4060 DTU->applyUpdates( 4061 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4062 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4063 return true; 4064 } 4065 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 4066 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 4067 NoSideEffects(*BI->getParent())) { 4068 auto *OldSuccessor = BI->getSuccessor(0); 4069 OldSuccessor->removePredecessor(BI->getParent()); 4070 BI->setSuccessor(0, IfFalseBB); 4071 if (DTU) 4072 DTU->applyUpdates( 4073 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4074 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4075 return true; 4076 } 4077 return false; 4078 } 4079 4080 /// If we have a conditional branch as a predecessor of another block, 4081 /// this function tries to simplify it. We know 4082 /// that PBI and BI are both conditional branches, and BI is in one of the 4083 /// successor blocks of PBI - PBI branches to BI. 4084 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4085 DomTreeUpdater *DTU, 4086 const DataLayout &DL, 4087 const TargetTransformInfo &TTI) { 4088 assert(PBI->isConditional() && BI->isConditional()); 4089 BasicBlock *BB = BI->getParent(); 4090 4091 // If this block ends with a branch instruction, and if there is a 4092 // predecessor that ends on a branch of the same condition, make 4093 // this conditional branch redundant. 4094 if (PBI->getCondition() == BI->getCondition() && 4095 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4096 // Okay, the outcome of this conditional branch is statically 4097 // knowable. If this block had a single pred, handle specially, otherwise 4098 // FoldCondBranchOnValueKnownInPredecessor() will handle it. 4099 if (BB->getSinglePredecessor()) { 4100 // Turn this into a branch on constant. 4101 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4102 BI->setCondition( 4103 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 4104 return true; // Nuke the branch on constant. 4105 } 4106 } 4107 4108 // If the previous block ended with a widenable branch, determine if reusing 4109 // the target block is profitable and legal. This will have the effect of 4110 // "widening" PBI, but doesn't require us to reason about hosting safety. 4111 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 4112 return true; 4113 4114 if (canTrap(BI->getCondition())) 4115 return false; 4116 4117 // If both branches are conditional and both contain stores to the same 4118 // address, remove the stores from the conditionals and create a conditional 4119 // merged store at the end. 4120 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 4121 return true; 4122 4123 // If this is a conditional branch in an empty block, and if any 4124 // predecessors are a conditional branch to one of our destinations, 4125 // fold the conditions into logical ops and one cond br. 4126 4127 // Ignore dbg intrinsics. 4128 if (&*BB->instructionsWithoutDebug(false).begin() != BI) 4129 return false; 4130 4131 int PBIOp, BIOp; 4132 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 4133 PBIOp = 0; 4134 BIOp = 0; 4135 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 4136 PBIOp = 0; 4137 BIOp = 1; 4138 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4139 PBIOp = 1; 4140 BIOp = 0; 4141 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 4142 PBIOp = 1; 4143 BIOp = 1; 4144 } else { 4145 return false; 4146 } 4147 4148 // Check to make sure that the other destination of this branch 4149 // isn't BB itself. If so, this is an infinite loop that will 4150 // keep getting unwound. 4151 if (PBI->getSuccessor(PBIOp) == BB) 4152 return false; 4153 4154 // Do not perform this transformation if it would require 4155 // insertion of a large number of select instructions. For targets 4156 // without predication/cmovs, this is a big pessimization. 4157 4158 // Also do not perform this transformation if any phi node in the common 4159 // destination block can trap when reached by BB or PBB (PR17073). In that 4160 // case, it would be unsafe to hoist the operation into a select instruction. 4161 4162 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 4163 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 4164 unsigned NumPhis = 0; 4165 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 4166 ++II, ++NumPhis) { 4167 if (NumPhis > 2) // Disable this xform. 4168 return false; 4169 4170 PHINode *PN = cast<PHINode>(II); 4171 Value *BIV = PN->getIncomingValueForBlock(BB); 4172 if (canTrap(BIV)) 4173 return false; 4174 4175 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 4176 Value *PBIV = PN->getIncomingValue(PBBIdx); 4177 if (canTrap(PBIV)) 4178 return false; 4179 } 4180 4181 // Finally, if everything is ok, fold the branches to logical ops. 4182 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 4183 4184 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 4185 << "AND: " << *BI->getParent()); 4186 4187 SmallVector<DominatorTree::UpdateType, 5> Updates; 4188 4189 // If OtherDest *is* BB, then BB is a basic block with a single conditional 4190 // branch in it, where one edge (OtherDest) goes back to itself but the other 4191 // exits. We don't *know* that the program avoids the infinite loop 4192 // (even though that seems likely). If we do this xform naively, we'll end up 4193 // recursively unpeeling the loop. Since we know that (after the xform is 4194 // done) that the block *is* infinite if reached, we just make it an obviously 4195 // infinite loop with no cond branch. 4196 if (OtherDest == BB) { 4197 // Insert it at the end of the function, because it's either code, 4198 // or it won't matter if it's hot. :) 4199 BasicBlock *InfLoopBlock = 4200 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 4201 BranchInst::Create(InfLoopBlock, InfLoopBlock); 4202 if (DTU) 4203 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 4204 OtherDest = InfLoopBlock; 4205 } 4206 4207 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4208 4209 // BI may have other predecessors. Because of this, we leave 4210 // it alone, but modify PBI. 4211 4212 // Make sure we get to CommonDest on True&True directions. 4213 Value *PBICond = PBI->getCondition(); 4214 IRBuilder<NoFolder> Builder(PBI); 4215 if (PBIOp) 4216 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 4217 4218 Value *BICond = BI->getCondition(); 4219 if (BIOp) 4220 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 4221 4222 // Merge the conditions. 4223 Value *Cond = 4224 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 4225 4226 // Modify PBI to branch on the new condition to the new dests. 4227 PBI->setCondition(Cond); 4228 PBI->setSuccessor(0, CommonDest); 4229 PBI->setSuccessor(1, OtherDest); 4230 4231 if (DTU) { 4232 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 4233 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 4234 4235 DTU->applyUpdates(Updates); 4236 } 4237 4238 // Update branch weight for PBI. 4239 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4240 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 4241 bool HasWeights = 4242 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4243 SuccTrueWeight, SuccFalseWeight); 4244 if (HasWeights) { 4245 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4246 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4247 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4248 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4249 // The weight to CommonDest should be PredCommon * SuccTotal + 4250 // PredOther * SuccCommon. 4251 // The weight to OtherDest should be PredOther * SuccOther. 4252 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 4253 PredOther * SuccCommon, 4254 PredOther * SuccOther}; 4255 // Halve the weights if any of them cannot fit in an uint32_t 4256 FitWeights(NewWeights); 4257 4258 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 4259 } 4260 4261 // OtherDest may have phi nodes. If so, add an entry from PBI's 4262 // block that are identical to the entries for BI's block. 4263 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 4264 4265 // We know that the CommonDest already had an edge from PBI to 4266 // it. If it has PHIs though, the PHIs may have different 4267 // entries for BB and PBI's BB. If so, insert a select to make 4268 // them agree. 4269 for (PHINode &PN : CommonDest->phis()) { 4270 Value *BIV = PN.getIncomingValueForBlock(BB); 4271 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 4272 Value *PBIV = PN.getIncomingValue(PBBIdx); 4273 if (BIV != PBIV) { 4274 // Insert a select in PBI to pick the right value. 4275 SelectInst *NV = cast<SelectInst>( 4276 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 4277 PN.setIncomingValue(PBBIdx, NV); 4278 // Although the select has the same condition as PBI, the original branch 4279 // weights for PBI do not apply to the new select because the select's 4280 // 'logical' edges are incoming edges of the phi that is eliminated, not 4281 // the outgoing edges of PBI. 4282 if (HasWeights) { 4283 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4284 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4285 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4286 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4287 // The weight to PredCommonDest should be PredCommon * SuccTotal. 4288 // The weight to PredOtherDest should be PredOther * SuccCommon. 4289 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 4290 PredOther * SuccCommon}; 4291 4292 FitWeights(NewWeights); 4293 4294 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 4295 } 4296 } 4297 } 4298 4299 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 4300 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4301 4302 // This basic block is probably dead. We know it has at least 4303 // one fewer predecessor. 4304 return true; 4305 } 4306 4307 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 4308 // true or to FalseBB if Cond is false. 4309 // Takes care of updating the successors and removing the old terminator. 4310 // Also makes sure not to introduce new successors by assuming that edges to 4311 // non-successor TrueBBs and FalseBBs aren't reachable. 4312 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 4313 Value *Cond, BasicBlock *TrueBB, 4314 BasicBlock *FalseBB, 4315 uint32_t TrueWeight, 4316 uint32_t FalseWeight) { 4317 auto *BB = OldTerm->getParent(); 4318 // Remove any superfluous successor edges from the CFG. 4319 // First, figure out which successors to preserve. 4320 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 4321 // successor. 4322 BasicBlock *KeepEdge1 = TrueBB; 4323 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 4324 4325 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 4326 4327 // Then remove the rest. 4328 for (BasicBlock *Succ : successors(OldTerm)) { 4329 // Make sure only to keep exactly one copy of each edge. 4330 if (Succ == KeepEdge1) 4331 KeepEdge1 = nullptr; 4332 else if (Succ == KeepEdge2) 4333 KeepEdge2 = nullptr; 4334 else { 4335 Succ->removePredecessor(BB, 4336 /*KeepOneInputPHIs=*/true); 4337 4338 if (Succ != TrueBB && Succ != FalseBB) 4339 RemovedSuccessors.insert(Succ); 4340 } 4341 } 4342 4343 IRBuilder<> Builder(OldTerm); 4344 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 4345 4346 // Insert an appropriate new terminator. 4347 if (!KeepEdge1 && !KeepEdge2) { 4348 if (TrueBB == FalseBB) { 4349 // We were only looking for one successor, and it was present. 4350 // Create an unconditional branch to it. 4351 Builder.CreateBr(TrueBB); 4352 } else { 4353 // We found both of the successors we were looking for. 4354 // Create a conditional branch sharing the condition of the select. 4355 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 4356 if (TrueWeight != FalseWeight) 4357 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4358 } 4359 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 4360 // Neither of the selected blocks were successors, so this 4361 // terminator must be unreachable. 4362 new UnreachableInst(OldTerm->getContext(), OldTerm); 4363 } else { 4364 // One of the selected values was a successor, but the other wasn't. 4365 // Insert an unconditional branch to the one that was found; 4366 // the edge to the one that wasn't must be unreachable. 4367 if (!KeepEdge1) { 4368 // Only TrueBB was found. 4369 Builder.CreateBr(TrueBB); 4370 } else { 4371 // Only FalseBB was found. 4372 Builder.CreateBr(FalseBB); 4373 } 4374 } 4375 4376 EraseTerminatorAndDCECond(OldTerm); 4377 4378 if (DTU) { 4379 SmallVector<DominatorTree::UpdateType, 2> Updates; 4380 Updates.reserve(RemovedSuccessors.size()); 4381 for (auto *RemovedSuccessor : RemovedSuccessors) 4382 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4383 DTU->applyUpdates(Updates); 4384 } 4385 4386 return true; 4387 } 4388 4389 // Replaces 4390 // (switch (select cond, X, Y)) on constant X, Y 4391 // with a branch - conditional if X and Y lead to distinct BBs, 4392 // unconditional otherwise. 4393 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4394 SelectInst *Select) { 4395 // Check for constant integer values in the select. 4396 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4397 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4398 if (!TrueVal || !FalseVal) 4399 return false; 4400 4401 // Find the relevant condition and destinations. 4402 Value *Condition = Select->getCondition(); 4403 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4404 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4405 4406 // Get weight for TrueBB and FalseBB. 4407 uint32_t TrueWeight = 0, FalseWeight = 0; 4408 SmallVector<uint64_t, 8> Weights; 4409 bool HasWeights = HasBranchWeights(SI); 4410 if (HasWeights) { 4411 GetBranchWeights(SI, Weights); 4412 if (Weights.size() == 1 + SI->getNumCases()) { 4413 TrueWeight = 4414 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4415 FalseWeight = 4416 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4417 } 4418 } 4419 4420 // Perform the actual simplification. 4421 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4422 FalseWeight); 4423 } 4424 4425 // Replaces 4426 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4427 // blockaddress(@fn, BlockB))) 4428 // with 4429 // (br cond, BlockA, BlockB). 4430 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4431 SelectInst *SI) { 4432 // Check that both operands of the select are block addresses. 4433 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4434 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4435 if (!TBA || !FBA) 4436 return false; 4437 4438 // Extract the actual blocks. 4439 BasicBlock *TrueBB = TBA->getBasicBlock(); 4440 BasicBlock *FalseBB = FBA->getBasicBlock(); 4441 4442 // Perform the actual simplification. 4443 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4444 0); 4445 } 4446 4447 /// This is called when we find an icmp instruction 4448 /// (a seteq/setne with a constant) as the only instruction in a 4449 /// block that ends with an uncond branch. We are looking for a very specific 4450 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4451 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4452 /// default value goes to an uncond block with a seteq in it, we get something 4453 /// like: 4454 /// 4455 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4456 /// DEFAULT: 4457 /// %tmp = icmp eq i8 %A, 92 4458 /// br label %end 4459 /// end: 4460 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4461 /// 4462 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4463 /// the PHI, merging the third icmp into the switch. 4464 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4465 ICmpInst *ICI, IRBuilder<> &Builder) { 4466 BasicBlock *BB = ICI->getParent(); 4467 4468 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4469 // complex. 4470 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4471 return false; 4472 4473 Value *V = ICI->getOperand(0); 4474 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4475 4476 // The pattern we're looking for is where our only predecessor is a switch on 4477 // 'V' and this block is the default case for the switch. In this case we can 4478 // fold the compared value into the switch to simplify things. 4479 BasicBlock *Pred = BB->getSinglePredecessor(); 4480 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4481 return false; 4482 4483 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4484 if (SI->getCondition() != V) 4485 return false; 4486 4487 // If BB is reachable on a non-default case, then we simply know the value of 4488 // V in this block. Substitute it and constant fold the icmp instruction 4489 // away. 4490 if (SI->getDefaultDest() != BB) { 4491 ConstantInt *VVal = SI->findCaseDest(BB); 4492 assert(VVal && "Should have a unique destination value"); 4493 ICI->setOperand(0, VVal); 4494 4495 if (Value *V = simplifyInstruction(ICI, {DL, ICI})) { 4496 ICI->replaceAllUsesWith(V); 4497 ICI->eraseFromParent(); 4498 } 4499 // BB is now empty, so it is likely to simplify away. 4500 return requestResimplify(); 4501 } 4502 4503 // Ok, the block is reachable from the default dest. If the constant we're 4504 // comparing exists in one of the other edges, then we can constant fold ICI 4505 // and zap it. 4506 if (SI->findCaseValue(Cst) != SI->case_default()) { 4507 Value *V; 4508 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4509 V = ConstantInt::getFalse(BB->getContext()); 4510 else 4511 V = ConstantInt::getTrue(BB->getContext()); 4512 4513 ICI->replaceAllUsesWith(V); 4514 ICI->eraseFromParent(); 4515 // BB is now empty, so it is likely to simplify away. 4516 return requestResimplify(); 4517 } 4518 4519 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4520 // the block. 4521 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4522 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4523 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4524 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4525 return false; 4526 4527 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4528 // true in the PHI. 4529 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4530 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4531 4532 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4533 std::swap(DefaultCst, NewCst); 4534 4535 // Replace ICI (which is used by the PHI for the default value) with true or 4536 // false depending on if it is EQ or NE. 4537 ICI->replaceAllUsesWith(DefaultCst); 4538 ICI->eraseFromParent(); 4539 4540 SmallVector<DominatorTree::UpdateType, 2> Updates; 4541 4542 // Okay, the switch goes to this block on a default value. Add an edge from 4543 // the switch to the merge point on the compared value. 4544 BasicBlock *NewBB = 4545 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4546 { 4547 SwitchInstProfUpdateWrapper SIW(*SI); 4548 auto W0 = SIW.getSuccessorWeight(0); 4549 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4550 if (W0) { 4551 NewW = ((uint64_t(*W0) + 1) >> 1); 4552 SIW.setSuccessorWeight(0, *NewW); 4553 } 4554 SIW.addCase(Cst, NewBB, NewW); 4555 if (DTU) 4556 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4557 } 4558 4559 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4560 Builder.SetInsertPoint(NewBB); 4561 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4562 Builder.CreateBr(SuccBlock); 4563 PHIUse->addIncoming(NewCst, NewBB); 4564 if (DTU) { 4565 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4566 DTU->applyUpdates(Updates); 4567 } 4568 return true; 4569 } 4570 4571 /// The specified branch is a conditional branch. 4572 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4573 /// fold it into a switch instruction if so. 4574 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4575 IRBuilder<> &Builder, 4576 const DataLayout &DL) { 4577 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4578 if (!Cond) 4579 return false; 4580 4581 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4582 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4583 // 'setne's and'ed together, collect them. 4584 4585 // Try to gather values from a chain of and/or to be turned into a switch 4586 ConstantComparesGatherer ConstantCompare(Cond, DL); 4587 // Unpack the result 4588 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4589 Value *CompVal = ConstantCompare.CompValue; 4590 unsigned UsedICmps = ConstantCompare.UsedICmps; 4591 Value *ExtraCase = ConstantCompare.Extra; 4592 4593 // If we didn't have a multiply compared value, fail. 4594 if (!CompVal) 4595 return false; 4596 4597 // Avoid turning single icmps into a switch. 4598 if (UsedICmps <= 1) 4599 return false; 4600 4601 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4602 4603 // There might be duplicate constants in the list, which the switch 4604 // instruction can't handle, remove them now. 4605 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4606 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4607 4608 // If Extra was used, we require at least two switch values to do the 4609 // transformation. A switch with one value is just a conditional branch. 4610 if (ExtraCase && Values.size() < 2) 4611 return false; 4612 4613 // TODO: Preserve branch weight metadata, similarly to how 4614 // FoldValueComparisonIntoPredecessors preserves it. 4615 4616 // Figure out which block is which destination. 4617 BasicBlock *DefaultBB = BI->getSuccessor(1); 4618 BasicBlock *EdgeBB = BI->getSuccessor(0); 4619 if (!TrueWhenEqual) 4620 std::swap(DefaultBB, EdgeBB); 4621 4622 BasicBlock *BB = BI->getParent(); 4623 4624 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4625 << " cases into SWITCH. BB is:\n" 4626 << *BB); 4627 4628 SmallVector<DominatorTree::UpdateType, 2> Updates; 4629 4630 // If there are any extra values that couldn't be folded into the switch 4631 // then we evaluate them with an explicit branch first. Split the block 4632 // right before the condbr to handle it. 4633 if (ExtraCase) { 4634 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4635 /*MSSAU=*/nullptr, "switch.early.test"); 4636 4637 // Remove the uncond branch added to the old block. 4638 Instruction *OldTI = BB->getTerminator(); 4639 Builder.SetInsertPoint(OldTI); 4640 4641 // There can be an unintended UB if extra values are Poison. Before the 4642 // transformation, extra values may not be evaluated according to the 4643 // condition, and it will not raise UB. But after transformation, we are 4644 // evaluating extra values before checking the condition, and it will raise 4645 // UB. It can be solved by adding freeze instruction to extra values. 4646 AssumptionCache *AC = Options.AC; 4647 4648 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 4649 ExtraCase = Builder.CreateFreeze(ExtraCase); 4650 4651 if (TrueWhenEqual) 4652 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4653 else 4654 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4655 4656 OldTI->eraseFromParent(); 4657 4658 if (DTU) 4659 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4660 4661 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4662 // for the edge we just added. 4663 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4664 4665 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4666 << "\nEXTRABB = " << *BB); 4667 BB = NewBB; 4668 } 4669 4670 Builder.SetInsertPoint(BI); 4671 // Convert pointer to int before we switch. 4672 if (CompVal->getType()->isPointerTy()) { 4673 CompVal = Builder.CreatePtrToInt( 4674 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4675 } 4676 4677 // Create the new switch instruction now. 4678 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4679 4680 // Add all of the 'cases' to the switch instruction. 4681 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4682 New->addCase(Values[i], EdgeBB); 4683 4684 // We added edges from PI to the EdgeBB. As such, if there were any 4685 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4686 // the number of edges added. 4687 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4688 PHINode *PN = cast<PHINode>(BBI); 4689 Value *InVal = PN->getIncomingValueForBlock(BB); 4690 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4691 PN->addIncoming(InVal, BB); 4692 } 4693 4694 // Erase the old branch instruction. 4695 EraseTerminatorAndDCECond(BI); 4696 if (DTU) 4697 DTU->applyUpdates(Updates); 4698 4699 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4700 return true; 4701 } 4702 4703 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4704 if (isa<PHINode>(RI->getValue())) 4705 return simplifyCommonResume(RI); 4706 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4707 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4708 // The resume must unwind the exception that caused control to branch here. 4709 return simplifySingleResume(RI); 4710 4711 return false; 4712 } 4713 4714 // Check if cleanup block is empty 4715 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4716 for (Instruction &I : R) { 4717 auto *II = dyn_cast<IntrinsicInst>(&I); 4718 if (!II) 4719 return false; 4720 4721 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4722 switch (IntrinsicID) { 4723 case Intrinsic::dbg_declare: 4724 case Intrinsic::dbg_value: 4725 case Intrinsic::dbg_label: 4726 case Intrinsic::lifetime_end: 4727 break; 4728 default: 4729 return false; 4730 } 4731 } 4732 return true; 4733 } 4734 4735 // Simplify resume that is shared by several landing pads (phi of landing pad). 4736 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4737 BasicBlock *BB = RI->getParent(); 4738 4739 // Check that there are no other instructions except for debug and lifetime 4740 // intrinsics between the phi's and resume instruction. 4741 if (!isCleanupBlockEmpty( 4742 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4743 return false; 4744 4745 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4746 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4747 4748 // Check incoming blocks to see if any of them are trivial. 4749 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4750 Idx++) { 4751 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4752 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4753 4754 // If the block has other successors, we can not delete it because 4755 // it has other dependents. 4756 if (IncomingBB->getUniqueSuccessor() != BB) 4757 continue; 4758 4759 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4760 // Not the landing pad that caused the control to branch here. 4761 if (IncomingValue != LandingPad) 4762 continue; 4763 4764 if (isCleanupBlockEmpty( 4765 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4766 TrivialUnwindBlocks.insert(IncomingBB); 4767 } 4768 4769 // If no trivial unwind blocks, don't do any simplifications. 4770 if (TrivialUnwindBlocks.empty()) 4771 return false; 4772 4773 // Turn all invokes that unwind here into calls. 4774 for (auto *TrivialBB : TrivialUnwindBlocks) { 4775 // Blocks that will be simplified should be removed from the phi node. 4776 // Note there could be multiple edges to the resume block, and we need 4777 // to remove them all. 4778 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4779 BB->removePredecessor(TrivialBB, true); 4780 4781 for (BasicBlock *Pred : 4782 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4783 removeUnwindEdge(Pred, DTU); 4784 ++NumInvokes; 4785 } 4786 4787 // In each SimplifyCFG run, only the current processed block can be erased. 4788 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4789 // of erasing TrivialBB, we only remove the branch to the common resume 4790 // block so that we can later erase the resume block since it has no 4791 // predecessors. 4792 TrivialBB->getTerminator()->eraseFromParent(); 4793 new UnreachableInst(RI->getContext(), TrivialBB); 4794 if (DTU) 4795 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4796 } 4797 4798 // Delete the resume block if all its predecessors have been removed. 4799 if (pred_empty(BB)) 4800 DeleteDeadBlock(BB, DTU); 4801 4802 return !TrivialUnwindBlocks.empty(); 4803 } 4804 4805 // Simplify resume that is only used by a single (non-phi) landing pad. 4806 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4807 BasicBlock *BB = RI->getParent(); 4808 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4809 assert(RI->getValue() == LPInst && 4810 "Resume must unwind the exception that caused control to here"); 4811 4812 // Check that there are no other instructions except for debug intrinsics. 4813 if (!isCleanupBlockEmpty( 4814 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4815 return false; 4816 4817 // Turn all invokes that unwind here into calls and delete the basic block. 4818 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4819 removeUnwindEdge(Pred, DTU); 4820 ++NumInvokes; 4821 } 4822 4823 // The landingpad is now unreachable. Zap it. 4824 DeleteDeadBlock(BB, DTU); 4825 return true; 4826 } 4827 4828 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4829 // If this is a trivial cleanup pad that executes no instructions, it can be 4830 // eliminated. If the cleanup pad continues to the caller, any predecessor 4831 // that is an EH pad will be updated to continue to the caller and any 4832 // predecessor that terminates with an invoke instruction will have its invoke 4833 // instruction converted to a call instruction. If the cleanup pad being 4834 // simplified does not continue to the caller, each predecessor will be 4835 // updated to continue to the unwind destination of the cleanup pad being 4836 // simplified. 4837 BasicBlock *BB = RI->getParent(); 4838 CleanupPadInst *CPInst = RI->getCleanupPad(); 4839 if (CPInst->getParent() != BB) 4840 // This isn't an empty cleanup. 4841 return false; 4842 4843 // We cannot kill the pad if it has multiple uses. This typically arises 4844 // from unreachable basic blocks. 4845 if (!CPInst->hasOneUse()) 4846 return false; 4847 4848 // Check that there are no other instructions except for benign intrinsics. 4849 if (!isCleanupBlockEmpty( 4850 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4851 return false; 4852 4853 // If the cleanup return we are simplifying unwinds to the caller, this will 4854 // set UnwindDest to nullptr. 4855 BasicBlock *UnwindDest = RI->getUnwindDest(); 4856 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4857 4858 // We're about to remove BB from the control flow. Before we do, sink any 4859 // PHINodes into the unwind destination. Doing this before changing the 4860 // control flow avoids some potentially slow checks, since we can currently 4861 // be certain that UnwindDest and BB have no common predecessors (since they 4862 // are both EH pads). 4863 if (UnwindDest) { 4864 // First, go through the PHI nodes in UnwindDest and update any nodes that 4865 // reference the block we are removing 4866 for (PHINode &DestPN : UnwindDest->phis()) { 4867 int Idx = DestPN.getBasicBlockIndex(BB); 4868 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4869 assert(Idx != -1); 4870 // This PHI node has an incoming value that corresponds to a control 4871 // path through the cleanup pad we are removing. If the incoming 4872 // value is in the cleanup pad, it must be a PHINode (because we 4873 // verified above that the block is otherwise empty). Otherwise, the 4874 // value is either a constant or a value that dominates the cleanup 4875 // pad being removed. 4876 // 4877 // Because BB and UnwindDest are both EH pads, all of their 4878 // predecessors must unwind to these blocks, and since no instruction 4879 // can have multiple unwind destinations, there will be no overlap in 4880 // incoming blocks between SrcPN and DestPN. 4881 Value *SrcVal = DestPN.getIncomingValue(Idx); 4882 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4883 4884 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 4885 for (auto *Pred : predecessors(BB)) { 4886 Value *Incoming = 4887 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 4888 DestPN.addIncoming(Incoming, Pred); 4889 } 4890 } 4891 4892 // Sink any remaining PHI nodes directly into UnwindDest. 4893 Instruction *InsertPt = DestEHPad; 4894 for (PHINode &PN : make_early_inc_range(BB->phis())) { 4895 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 4896 // If the PHI node has no uses or all of its uses are in this basic 4897 // block (meaning they are debug or lifetime intrinsics), just leave 4898 // it. It will be erased when we erase BB below. 4899 continue; 4900 4901 // Otherwise, sink this PHI node into UnwindDest. 4902 // Any predecessors to UnwindDest which are not already represented 4903 // must be back edges which inherit the value from the path through 4904 // BB. In this case, the PHI value must reference itself. 4905 for (auto *pred : predecessors(UnwindDest)) 4906 if (pred != BB) 4907 PN.addIncoming(&PN, pred); 4908 PN.moveBefore(InsertPt); 4909 // Also, add a dummy incoming value for the original BB itself, 4910 // so that the PHI is well-formed until we drop said predecessor. 4911 PN.addIncoming(UndefValue::get(PN.getType()), BB); 4912 } 4913 } 4914 4915 std::vector<DominatorTree::UpdateType> Updates; 4916 4917 // We use make_early_inc_range here because we will remove all predecessors. 4918 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4919 if (UnwindDest == nullptr) { 4920 if (DTU) { 4921 DTU->applyUpdates(Updates); 4922 Updates.clear(); 4923 } 4924 removeUnwindEdge(PredBB, DTU); 4925 ++NumInvokes; 4926 } else { 4927 BB->removePredecessor(PredBB); 4928 Instruction *TI = PredBB->getTerminator(); 4929 TI->replaceUsesOfWith(BB, UnwindDest); 4930 if (DTU) { 4931 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4932 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4933 } 4934 } 4935 } 4936 4937 if (DTU) 4938 DTU->applyUpdates(Updates); 4939 4940 DeleteDeadBlock(BB, DTU); 4941 4942 return true; 4943 } 4944 4945 // Try to merge two cleanuppads together. 4946 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4947 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4948 // with. 4949 BasicBlock *UnwindDest = RI->getUnwindDest(); 4950 if (!UnwindDest) 4951 return false; 4952 4953 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4954 // be safe to merge without code duplication. 4955 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4956 return false; 4957 4958 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4959 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4960 if (!SuccessorCleanupPad) 4961 return false; 4962 4963 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4964 // Replace any uses of the successor cleanupad with the predecessor pad 4965 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4966 // funclet bundle operands. 4967 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4968 // Remove the old cleanuppad. 4969 SuccessorCleanupPad->eraseFromParent(); 4970 // Now, we simply replace the cleanupret with a branch to the unwind 4971 // destination. 4972 BranchInst::Create(UnwindDest, RI->getParent()); 4973 RI->eraseFromParent(); 4974 4975 return true; 4976 } 4977 4978 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4979 // It is possible to transiantly have an undef cleanuppad operand because we 4980 // have deleted some, but not all, dead blocks. 4981 // Eventually, this block will be deleted. 4982 if (isa<UndefValue>(RI->getOperand(0))) 4983 return false; 4984 4985 if (mergeCleanupPad(RI)) 4986 return true; 4987 4988 if (removeEmptyCleanup(RI, DTU)) 4989 return true; 4990 4991 return false; 4992 } 4993 4994 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 4995 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4996 BasicBlock *BB = UI->getParent(); 4997 4998 bool Changed = false; 4999 5000 // If there are any instructions immediately before the unreachable that can 5001 // be removed, do so. 5002 while (UI->getIterator() != BB->begin()) { 5003 BasicBlock::iterator BBI = UI->getIterator(); 5004 --BBI; 5005 5006 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 5007 break; // Can not drop any more instructions. We're done here. 5008 // Otherwise, this instruction can be freely erased, 5009 // even if it is not side-effect free. 5010 5011 // Note that deleting EH's here is in fact okay, although it involves a bit 5012 // of subtle reasoning. If this inst is an EH, all the predecessors of this 5013 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 5014 // and we can therefore guarantee this block will be erased. 5015 5016 // Delete this instruction (any uses are guaranteed to be dead) 5017 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 5018 BBI->eraseFromParent(); 5019 Changed = true; 5020 } 5021 5022 // If the unreachable instruction is the first in the block, take a gander 5023 // at all of the predecessors of this instruction, and simplify them. 5024 if (&BB->front() != UI) 5025 return Changed; 5026 5027 std::vector<DominatorTree::UpdateType> Updates; 5028 5029 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 5030 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 5031 auto *Predecessor = Preds[i]; 5032 Instruction *TI = Predecessor->getTerminator(); 5033 IRBuilder<> Builder(TI); 5034 if (auto *BI = dyn_cast<BranchInst>(TI)) { 5035 // We could either have a proper unconditional branch, 5036 // or a degenerate conditional branch with matching destinations. 5037 if (all_of(BI->successors(), 5038 [BB](auto *Successor) { return Successor == BB; })) { 5039 new UnreachableInst(TI->getContext(), TI); 5040 TI->eraseFromParent(); 5041 Changed = true; 5042 } else { 5043 assert(BI->isConditional() && "Can't get here with an uncond branch."); 5044 Value* Cond = BI->getCondition(); 5045 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 5046 "The destinations are guaranteed to be different here."); 5047 if (BI->getSuccessor(0) == BB) { 5048 Builder.CreateAssumption(Builder.CreateNot(Cond)); 5049 Builder.CreateBr(BI->getSuccessor(1)); 5050 } else { 5051 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 5052 Builder.CreateAssumption(Cond); 5053 Builder.CreateBr(BI->getSuccessor(0)); 5054 } 5055 EraseTerminatorAndDCECond(BI); 5056 Changed = true; 5057 } 5058 if (DTU) 5059 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5060 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 5061 SwitchInstProfUpdateWrapper SU(*SI); 5062 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 5063 if (i->getCaseSuccessor() != BB) { 5064 ++i; 5065 continue; 5066 } 5067 BB->removePredecessor(SU->getParent()); 5068 i = SU.removeCase(i); 5069 e = SU->case_end(); 5070 Changed = true; 5071 } 5072 // Note that the default destination can't be removed! 5073 if (DTU && SI->getDefaultDest() != BB) 5074 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5075 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 5076 if (II->getUnwindDest() == BB) { 5077 if (DTU) { 5078 DTU->applyUpdates(Updates); 5079 Updates.clear(); 5080 } 5081 removeUnwindEdge(TI->getParent(), DTU); 5082 Changed = true; 5083 } 5084 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 5085 if (CSI->getUnwindDest() == BB) { 5086 if (DTU) { 5087 DTU->applyUpdates(Updates); 5088 Updates.clear(); 5089 } 5090 removeUnwindEdge(TI->getParent(), DTU); 5091 Changed = true; 5092 continue; 5093 } 5094 5095 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 5096 E = CSI->handler_end(); 5097 I != E; ++I) { 5098 if (*I == BB) { 5099 CSI->removeHandler(I); 5100 --I; 5101 --E; 5102 Changed = true; 5103 } 5104 } 5105 if (DTU) 5106 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5107 if (CSI->getNumHandlers() == 0) { 5108 if (CSI->hasUnwindDest()) { 5109 // Redirect all predecessors of the block containing CatchSwitchInst 5110 // to instead branch to the CatchSwitchInst's unwind destination. 5111 if (DTU) { 5112 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 5113 Updates.push_back({DominatorTree::Insert, 5114 PredecessorOfPredecessor, 5115 CSI->getUnwindDest()}); 5116 Updates.push_back({DominatorTree::Delete, 5117 PredecessorOfPredecessor, Predecessor}); 5118 } 5119 } 5120 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 5121 } else { 5122 // Rewrite all preds to unwind to caller (or from invoke to call). 5123 if (DTU) { 5124 DTU->applyUpdates(Updates); 5125 Updates.clear(); 5126 } 5127 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 5128 for (BasicBlock *EHPred : EHPreds) 5129 removeUnwindEdge(EHPred, DTU); 5130 } 5131 // The catchswitch is no longer reachable. 5132 new UnreachableInst(CSI->getContext(), CSI); 5133 CSI->eraseFromParent(); 5134 Changed = true; 5135 } 5136 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 5137 (void)CRI; 5138 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 5139 "Expected to always have an unwind to BB."); 5140 if (DTU) 5141 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5142 new UnreachableInst(TI->getContext(), TI); 5143 TI->eraseFromParent(); 5144 Changed = true; 5145 } 5146 } 5147 5148 if (DTU) 5149 DTU->applyUpdates(Updates); 5150 5151 // If this block is now dead, remove it. 5152 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 5153 DeleteDeadBlock(BB, DTU); 5154 return true; 5155 } 5156 5157 return Changed; 5158 } 5159 5160 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 5161 assert(Cases.size() >= 1); 5162 5163 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 5164 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 5165 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 5166 return false; 5167 } 5168 return true; 5169 } 5170 5171 static void createUnreachableSwitchDefault(SwitchInst *Switch, 5172 DomTreeUpdater *DTU) { 5173 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 5174 auto *BB = Switch->getParent(); 5175 auto *OrigDefaultBlock = Switch->getDefaultDest(); 5176 OrigDefaultBlock->removePredecessor(BB); 5177 BasicBlock *NewDefaultBlock = BasicBlock::Create( 5178 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), 5179 OrigDefaultBlock); 5180 new UnreachableInst(Switch->getContext(), NewDefaultBlock); 5181 Switch->setDefaultDest(&*NewDefaultBlock); 5182 if (DTU) { 5183 SmallVector<DominatorTree::UpdateType, 2> Updates; 5184 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); 5185 if (!is_contained(successors(BB), OrigDefaultBlock)) 5186 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); 5187 DTU->applyUpdates(Updates); 5188 } 5189 } 5190 5191 /// Turn a switch into an integer range comparison and branch. 5192 /// Switches with more than 2 destinations are ignored. 5193 /// Switches with 1 destination are also ignored. 5194 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 5195 IRBuilder<> &Builder) { 5196 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5197 5198 bool HasDefault = 5199 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5200 5201 auto *BB = SI->getParent(); 5202 5203 // Partition the cases into two sets with different destinations. 5204 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 5205 BasicBlock *DestB = nullptr; 5206 SmallVector<ConstantInt *, 16> CasesA; 5207 SmallVector<ConstantInt *, 16> CasesB; 5208 5209 for (auto Case : SI->cases()) { 5210 BasicBlock *Dest = Case.getCaseSuccessor(); 5211 if (!DestA) 5212 DestA = Dest; 5213 if (Dest == DestA) { 5214 CasesA.push_back(Case.getCaseValue()); 5215 continue; 5216 } 5217 if (!DestB) 5218 DestB = Dest; 5219 if (Dest == DestB) { 5220 CasesB.push_back(Case.getCaseValue()); 5221 continue; 5222 } 5223 return false; // More than two destinations. 5224 } 5225 if (!DestB) 5226 return false; // All destinations are the same and the default is unreachable 5227 5228 assert(DestA && DestB && 5229 "Single-destination switch should have been folded."); 5230 assert(DestA != DestB); 5231 assert(DestB != SI->getDefaultDest()); 5232 assert(!CasesB.empty() && "There must be non-default cases."); 5233 assert(!CasesA.empty() || HasDefault); 5234 5235 // Figure out if one of the sets of cases form a contiguous range. 5236 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 5237 BasicBlock *ContiguousDest = nullptr; 5238 BasicBlock *OtherDest = nullptr; 5239 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 5240 ContiguousCases = &CasesA; 5241 ContiguousDest = DestA; 5242 OtherDest = DestB; 5243 } else if (CasesAreContiguous(CasesB)) { 5244 ContiguousCases = &CasesB; 5245 ContiguousDest = DestB; 5246 OtherDest = DestA; 5247 } else 5248 return false; 5249 5250 // Start building the compare and branch. 5251 5252 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 5253 Constant *NumCases = 5254 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 5255 5256 Value *Sub = SI->getCondition(); 5257 if (!Offset->isNullValue()) 5258 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 5259 5260 Value *Cmp; 5261 // If NumCases overflowed, then all possible values jump to the successor. 5262 if (NumCases->isNullValue() && !ContiguousCases->empty()) 5263 Cmp = ConstantInt::getTrue(SI->getContext()); 5264 else 5265 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 5266 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 5267 5268 // Update weight for the newly-created conditional branch. 5269 if (HasBranchWeights(SI)) { 5270 SmallVector<uint64_t, 8> Weights; 5271 GetBranchWeights(SI, Weights); 5272 if (Weights.size() == 1 + SI->getNumCases()) { 5273 uint64_t TrueWeight = 0; 5274 uint64_t FalseWeight = 0; 5275 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 5276 if (SI->getSuccessor(I) == ContiguousDest) 5277 TrueWeight += Weights[I]; 5278 else 5279 FalseWeight += Weights[I]; 5280 } 5281 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 5282 TrueWeight /= 2; 5283 FalseWeight /= 2; 5284 } 5285 setBranchWeights(NewBI, TrueWeight, FalseWeight); 5286 } 5287 } 5288 5289 // Prune obsolete incoming values off the successors' PHI nodes. 5290 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 5291 unsigned PreviousEdges = ContiguousCases->size(); 5292 if (ContiguousDest == SI->getDefaultDest()) 5293 ++PreviousEdges; 5294 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5295 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5296 } 5297 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5298 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5299 if (OtherDest == SI->getDefaultDest()) 5300 ++PreviousEdges; 5301 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5302 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5303 } 5304 5305 // Clean up the default block - it may have phis or other instructions before 5306 // the unreachable terminator. 5307 if (!HasDefault) 5308 createUnreachableSwitchDefault(SI, DTU); 5309 5310 auto *UnreachableDefault = SI->getDefaultDest(); 5311 5312 // Drop the switch. 5313 SI->eraseFromParent(); 5314 5315 if (!HasDefault && DTU) 5316 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5317 5318 return true; 5319 } 5320 5321 /// Compute masked bits for the condition of a switch 5322 /// and use it to remove dead cases. 5323 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5324 AssumptionCache *AC, 5325 const DataLayout &DL) { 5326 Value *Cond = SI->getCondition(); 5327 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5328 5329 // We can also eliminate cases by determining that their values are outside of 5330 // the limited range of the condition based on how many significant (non-sign) 5331 // bits are in the condition value. 5332 unsigned MaxSignificantBitsInCond = 5333 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); 5334 5335 // Gather dead cases. 5336 SmallVector<ConstantInt *, 8> DeadCases; 5337 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5338 SmallVector<BasicBlock *, 8> UniqueSuccessors; 5339 for (auto &Case : SI->cases()) { 5340 auto *Successor = Case.getCaseSuccessor(); 5341 if (DTU) { 5342 if (!NumPerSuccessorCases.count(Successor)) 5343 UniqueSuccessors.push_back(Successor); 5344 ++NumPerSuccessorCases[Successor]; 5345 } 5346 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5347 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5348 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5349 DeadCases.push_back(Case.getCaseValue()); 5350 if (DTU) 5351 --NumPerSuccessorCases[Successor]; 5352 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5353 << " is dead.\n"); 5354 } 5355 } 5356 5357 // If we can prove that the cases must cover all possible values, the 5358 // default destination becomes dead and we can remove it. If we know some 5359 // of the bits in the value, we can use that to more precisely compute the 5360 // number of possible unique case values. 5361 bool HasDefault = 5362 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5363 const unsigned NumUnknownBits = 5364 Known.getBitWidth() - (Known.Zero | Known.One).countPopulation(); 5365 assert(NumUnknownBits <= Known.getBitWidth()); 5366 if (HasDefault && DeadCases.empty() && 5367 NumUnknownBits < 64 /* avoid overflow */ && 5368 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5369 createUnreachableSwitchDefault(SI, DTU); 5370 return true; 5371 } 5372 5373 if (DeadCases.empty()) 5374 return false; 5375 5376 SwitchInstProfUpdateWrapper SIW(*SI); 5377 for (ConstantInt *DeadCase : DeadCases) { 5378 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5379 assert(CaseI != SI->case_default() && 5380 "Case was not found. Probably mistake in DeadCases forming."); 5381 // Prune unused values from PHI nodes. 5382 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5383 SIW.removeCase(CaseI); 5384 } 5385 5386 if (DTU) { 5387 std::vector<DominatorTree::UpdateType> Updates; 5388 for (auto *Successor : UniqueSuccessors) 5389 if (NumPerSuccessorCases[Successor] == 0) 5390 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); 5391 DTU->applyUpdates(Updates); 5392 } 5393 5394 return true; 5395 } 5396 5397 /// If BB would be eligible for simplification by 5398 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5399 /// by an unconditional branch), look at the phi node for BB in the successor 5400 /// block and see if the incoming value is equal to CaseValue. If so, return 5401 /// the phi node, and set PhiIndex to BB's index in the phi node. 5402 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5403 BasicBlock *BB, int *PhiIndex) { 5404 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5405 return nullptr; // BB must be empty to be a candidate for simplification. 5406 if (!BB->getSinglePredecessor()) 5407 return nullptr; // BB must be dominated by the switch. 5408 5409 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5410 if (!Branch || !Branch->isUnconditional()) 5411 return nullptr; // Terminator must be unconditional branch. 5412 5413 BasicBlock *Succ = Branch->getSuccessor(0); 5414 5415 for (PHINode &PHI : Succ->phis()) { 5416 int Idx = PHI.getBasicBlockIndex(BB); 5417 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5418 5419 Value *InValue = PHI.getIncomingValue(Idx); 5420 if (InValue != CaseValue) 5421 continue; 5422 5423 *PhiIndex = Idx; 5424 return &PHI; 5425 } 5426 5427 return nullptr; 5428 } 5429 5430 /// Try to forward the condition of a switch instruction to a phi node 5431 /// dominated by the switch, if that would mean that some of the destination 5432 /// blocks of the switch can be folded away. Return true if a change is made. 5433 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5434 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5435 5436 ForwardingNodesMap ForwardingNodes; 5437 BasicBlock *SwitchBlock = SI->getParent(); 5438 bool Changed = false; 5439 for (auto &Case : SI->cases()) { 5440 ConstantInt *CaseValue = Case.getCaseValue(); 5441 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5442 5443 // Replace phi operands in successor blocks that are using the constant case 5444 // value rather than the switch condition variable: 5445 // switchbb: 5446 // switch i32 %x, label %default [ 5447 // i32 17, label %succ 5448 // ... 5449 // succ: 5450 // %r = phi i32 ... [ 17, %switchbb ] ... 5451 // --> 5452 // %r = phi i32 ... [ %x, %switchbb ] ... 5453 5454 for (PHINode &Phi : CaseDest->phis()) { 5455 // This only works if there is exactly 1 incoming edge from the switch to 5456 // a phi. If there is >1, that means multiple cases of the switch map to 1 5457 // value in the phi, and that phi value is not the switch condition. Thus, 5458 // this transform would not make sense (the phi would be invalid because 5459 // a phi can't have different incoming values from the same block). 5460 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5461 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5462 count(Phi.blocks(), SwitchBlock) == 1) { 5463 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5464 Changed = true; 5465 } 5466 } 5467 5468 // Collect phi nodes that are indirectly using this switch's case constants. 5469 int PhiIdx; 5470 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5471 ForwardingNodes[Phi].push_back(PhiIdx); 5472 } 5473 5474 for (auto &ForwardingNode : ForwardingNodes) { 5475 PHINode *Phi = ForwardingNode.first; 5476 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5477 if (Indexes.size() < 2) 5478 continue; 5479 5480 for (int Index : Indexes) 5481 Phi->setIncomingValue(Index, SI->getCondition()); 5482 Changed = true; 5483 } 5484 5485 return Changed; 5486 } 5487 5488 /// Return true if the backend will be able to handle 5489 /// initializing an array of constants like C. 5490 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5491 if (C->isThreadDependent()) 5492 return false; 5493 if (C->isDLLImportDependent()) 5494 return false; 5495 5496 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5497 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5498 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5499 return false; 5500 5501 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5502 // Pointer casts and in-bounds GEPs will not prohibit the backend from 5503 // materializing the array of constants. 5504 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); 5505 if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI)) 5506 return false; 5507 } 5508 5509 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5510 return false; 5511 5512 return true; 5513 } 5514 5515 /// If V is a Constant, return it. Otherwise, try to look up 5516 /// its constant value in ConstantPool, returning 0 if it's not there. 5517 static Constant * 5518 LookupConstant(Value *V, 5519 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5520 if (Constant *C = dyn_cast<Constant>(V)) 5521 return C; 5522 return ConstantPool.lookup(V); 5523 } 5524 5525 /// Try to fold instruction I into a constant. This works for 5526 /// simple instructions such as binary operations where both operands are 5527 /// constant or can be replaced by constants from the ConstantPool. Returns the 5528 /// resulting constant on success, 0 otherwise. 5529 static Constant * 5530 ConstantFold(Instruction *I, const DataLayout &DL, 5531 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5532 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5533 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5534 if (!A) 5535 return nullptr; 5536 if (A->isAllOnesValue()) 5537 return LookupConstant(Select->getTrueValue(), ConstantPool); 5538 if (A->isNullValue()) 5539 return LookupConstant(Select->getFalseValue(), ConstantPool); 5540 return nullptr; 5541 } 5542 5543 SmallVector<Constant *, 4> COps; 5544 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5545 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5546 COps.push_back(A); 5547 else 5548 return nullptr; 5549 } 5550 5551 return ConstantFoldInstOperands(I, COps, DL); 5552 } 5553 5554 /// Try to determine the resulting constant values in phi nodes 5555 /// at the common destination basic block, *CommonDest, for one of the case 5556 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5557 /// case), of a switch instruction SI. 5558 static bool 5559 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5560 BasicBlock **CommonDest, 5561 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5562 const DataLayout &DL, const TargetTransformInfo &TTI) { 5563 // The block from which we enter the common destination. 5564 BasicBlock *Pred = SI->getParent(); 5565 5566 // If CaseDest is empty except for some side-effect free instructions through 5567 // which we can constant-propagate the CaseVal, continue to its successor. 5568 SmallDenseMap<Value *, Constant *> ConstantPool; 5569 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5570 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { 5571 if (I.isTerminator()) { 5572 // If the terminator is a simple branch, continue to the next block. 5573 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5574 return false; 5575 Pred = CaseDest; 5576 CaseDest = I.getSuccessor(0); 5577 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5578 // Instruction is side-effect free and constant. 5579 5580 // If the instruction has uses outside this block or a phi node slot for 5581 // the block, it is not safe to bypass the instruction since it would then 5582 // no longer dominate all its uses. 5583 for (auto &Use : I.uses()) { 5584 User *User = Use.getUser(); 5585 if (Instruction *I = dyn_cast<Instruction>(User)) 5586 if (I->getParent() == CaseDest) 5587 continue; 5588 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5589 if (Phi->getIncomingBlock(Use) == CaseDest) 5590 continue; 5591 return false; 5592 } 5593 5594 ConstantPool.insert(std::make_pair(&I, C)); 5595 } else { 5596 break; 5597 } 5598 } 5599 5600 // If we did not have a CommonDest before, use the current one. 5601 if (!*CommonDest) 5602 *CommonDest = CaseDest; 5603 // If the destination isn't the common one, abort. 5604 if (CaseDest != *CommonDest) 5605 return false; 5606 5607 // Get the values for this case from phi nodes in the destination block. 5608 for (PHINode &PHI : (*CommonDest)->phis()) { 5609 int Idx = PHI.getBasicBlockIndex(Pred); 5610 if (Idx == -1) 5611 continue; 5612 5613 Constant *ConstVal = 5614 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5615 if (!ConstVal) 5616 return false; 5617 5618 // Be conservative about which kinds of constants we support. 5619 if (!ValidLookupTableConstant(ConstVal, TTI)) 5620 return false; 5621 5622 Res.push_back(std::make_pair(&PHI, ConstVal)); 5623 } 5624 5625 return Res.size() > 0; 5626 } 5627 5628 // Helper function used to add CaseVal to the list of cases that generate 5629 // Result. Returns the updated number of cases that generate this result. 5630 static size_t mapCaseToResult(ConstantInt *CaseVal, 5631 SwitchCaseResultVectorTy &UniqueResults, 5632 Constant *Result) { 5633 for (auto &I : UniqueResults) { 5634 if (I.first == Result) { 5635 I.second.push_back(CaseVal); 5636 return I.second.size(); 5637 } 5638 } 5639 UniqueResults.push_back( 5640 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5641 return 1; 5642 } 5643 5644 // Helper function that initializes a map containing 5645 // results for the PHI node of the common destination block for a switch 5646 // instruction. Returns false if multiple PHI nodes have been found or if 5647 // there is not a common destination block for the switch. 5648 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 5649 BasicBlock *&CommonDest, 5650 SwitchCaseResultVectorTy &UniqueResults, 5651 Constant *&DefaultResult, 5652 const DataLayout &DL, 5653 const TargetTransformInfo &TTI, 5654 uintptr_t MaxUniqueResults) { 5655 for (auto &I : SI->cases()) { 5656 ConstantInt *CaseVal = I.getCaseValue(); 5657 5658 // Resulting value at phi nodes for this case value. 5659 SwitchCaseResultsTy Results; 5660 if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5661 DL, TTI)) 5662 return false; 5663 5664 // Only one value per case is permitted. 5665 if (Results.size() > 1) 5666 return false; 5667 5668 // Add the case->result mapping to UniqueResults. 5669 const size_t NumCasesForResult = 5670 mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5671 5672 // Early out if there are too many cases for this result. 5673 if (NumCasesForResult > MaxSwitchCasesPerResult) 5674 return false; 5675 5676 // Early out if there are too many unique results. 5677 if (UniqueResults.size() > MaxUniqueResults) 5678 return false; 5679 5680 // Check the PHI consistency. 5681 if (!PHI) 5682 PHI = Results[0].first; 5683 else if (PHI != Results[0].first) 5684 return false; 5685 } 5686 // Find the default result value. 5687 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5688 BasicBlock *DefaultDest = SI->getDefaultDest(); 5689 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5690 DL, TTI); 5691 // If the default value is not found abort unless the default destination 5692 // is unreachable. 5693 DefaultResult = 5694 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5695 if ((!DefaultResult && 5696 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5697 return false; 5698 5699 return true; 5700 } 5701 5702 // Helper function that checks if it is possible to transform a switch with only 5703 // two cases (or two cases + default) that produces a result into a select. 5704 // TODO: Handle switches with more than 2 cases that map to the same result. 5705 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector, 5706 Constant *DefaultResult, Value *Condition, 5707 IRBuilder<> &Builder) { 5708 // If we are selecting between only two cases transform into a simple 5709 // select or a two-way select if default is possible. 5710 // Example: 5711 // switch (a) { %0 = icmp eq i32 %a, 10 5712 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4 5713 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20 5714 // default: return 4; %3 = select i1 %2, i32 2, i32 %1 5715 // } 5716 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5717 ResultVector[1].second.size() == 1) { 5718 ConstantInt *FirstCase = ResultVector[0].second[0]; 5719 ConstantInt *SecondCase = ResultVector[1].second[0]; 5720 Value *SelectValue = ResultVector[1].first; 5721 if (DefaultResult) { 5722 Value *ValueCompare = 5723 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5724 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5725 DefaultResult, "switch.select"); 5726 } 5727 Value *ValueCompare = 5728 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5729 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5730 SelectValue, "switch.select"); 5731 } 5732 5733 // Handle the degenerate case where two cases have the same result value. 5734 if (ResultVector.size() == 1 && DefaultResult) { 5735 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second; 5736 unsigned CaseCount = CaseValues.size(); 5737 // n bits group cases map to the same result: 5738 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default 5739 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default 5740 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default 5741 if (isPowerOf2_32(CaseCount)) { 5742 ConstantInt *MinCaseVal = CaseValues[0]; 5743 // Find mininal value. 5744 for (auto Case : CaseValues) 5745 if (Case->getValue().slt(MinCaseVal->getValue())) 5746 MinCaseVal = Case; 5747 5748 // Mark the bits case number touched. 5749 APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth()); 5750 for (auto Case : CaseValues) 5751 BitMask |= (Case->getValue() - MinCaseVal->getValue()); 5752 5753 // Check if cases with the same result can cover all number 5754 // in touched bits. 5755 if (BitMask.countPopulation() == Log2_32(CaseCount)) { 5756 if (!MinCaseVal->isNullValue()) 5757 Condition = Builder.CreateSub(Condition, MinCaseVal); 5758 Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and"); 5759 Value *Cmp = Builder.CreateICmpEQ( 5760 And, Constant::getNullValue(And->getType()), "switch.selectcmp"); 5761 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5762 } 5763 } 5764 5765 // Handle the degenerate case where two cases have the same value. 5766 if (CaseValues.size() == 2) { 5767 Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0], 5768 "switch.selectcmp.case1"); 5769 Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1], 5770 "switch.selectcmp.case2"); 5771 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5772 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5773 } 5774 } 5775 5776 return nullptr; 5777 } 5778 5779 // Helper function to cleanup a switch instruction that has been converted into 5780 // a select, fixing up PHI nodes and basic blocks. 5781 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI, 5782 Value *SelectValue, 5783 IRBuilder<> &Builder, 5784 DomTreeUpdater *DTU) { 5785 std::vector<DominatorTree::UpdateType> Updates; 5786 5787 BasicBlock *SelectBB = SI->getParent(); 5788 BasicBlock *DestBB = PHI->getParent(); 5789 5790 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5791 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5792 Builder.CreateBr(DestBB); 5793 5794 // Remove the switch. 5795 5796 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5797 PHI->removeIncomingValue(SelectBB); 5798 PHI->addIncoming(SelectValue, SelectBB); 5799 5800 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5801 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5802 BasicBlock *Succ = SI->getSuccessor(i); 5803 5804 if (Succ == DestBB) 5805 continue; 5806 Succ->removePredecessor(SelectBB); 5807 if (DTU && RemovedSuccessors.insert(Succ).second) 5808 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5809 } 5810 SI->eraseFromParent(); 5811 if (DTU) 5812 DTU->applyUpdates(Updates); 5813 } 5814 5815 /// If a switch is only used to initialize one or more phi nodes in a common 5816 /// successor block with only two different constant values, try to replace the 5817 /// switch with a select. Returns true if the fold was made. 5818 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5819 DomTreeUpdater *DTU, const DataLayout &DL, 5820 const TargetTransformInfo &TTI) { 5821 Value *const Cond = SI->getCondition(); 5822 PHINode *PHI = nullptr; 5823 BasicBlock *CommonDest = nullptr; 5824 Constant *DefaultResult; 5825 SwitchCaseResultVectorTy UniqueResults; 5826 // Collect all the cases that will deliver the same value from the switch. 5827 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5828 DL, TTI, /*MaxUniqueResults*/ 2)) 5829 return false; 5830 5831 assert(PHI != nullptr && "PHI for value select not found"); 5832 Builder.SetInsertPoint(SI); 5833 Value *SelectValue = 5834 foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder); 5835 if (!SelectValue) 5836 return false; 5837 5838 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU); 5839 return true; 5840 } 5841 5842 namespace { 5843 5844 /// This class represents a lookup table that can be used to replace a switch. 5845 class SwitchLookupTable { 5846 public: 5847 /// Create a lookup table to use as a switch replacement with the contents 5848 /// of Values, using DefaultValue to fill any holes in the table. 5849 SwitchLookupTable( 5850 Module &M, uint64_t TableSize, ConstantInt *Offset, 5851 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5852 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5853 5854 /// Build instructions with Builder to retrieve the value at 5855 /// the position given by Index in the lookup table. 5856 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5857 5858 /// Return true if a table with TableSize elements of 5859 /// type ElementType would fit in a target-legal register. 5860 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5861 Type *ElementType); 5862 5863 private: 5864 // Depending on the contents of the table, it can be represented in 5865 // different ways. 5866 enum { 5867 // For tables where each element contains the same value, we just have to 5868 // store that single value and return it for each lookup. 5869 SingleValueKind, 5870 5871 // For tables where there is a linear relationship between table index 5872 // and values. We calculate the result with a simple multiplication 5873 // and addition instead of a table lookup. 5874 LinearMapKind, 5875 5876 // For small tables with integer elements, we can pack them into a bitmap 5877 // that fits into a target-legal register. Values are retrieved by 5878 // shift and mask operations. 5879 BitMapKind, 5880 5881 // The table is stored as an array of values. Values are retrieved by load 5882 // instructions from the table. 5883 ArrayKind 5884 } Kind; 5885 5886 // For SingleValueKind, this is the single value. 5887 Constant *SingleValue = nullptr; 5888 5889 // For BitMapKind, this is the bitmap. 5890 ConstantInt *BitMap = nullptr; 5891 IntegerType *BitMapElementTy = nullptr; 5892 5893 // For LinearMapKind, these are the constants used to derive the value. 5894 ConstantInt *LinearOffset = nullptr; 5895 ConstantInt *LinearMultiplier = nullptr; 5896 5897 // For ArrayKind, this is the array. 5898 GlobalVariable *Array = nullptr; 5899 }; 5900 5901 } // end anonymous namespace 5902 5903 SwitchLookupTable::SwitchLookupTable( 5904 Module &M, uint64_t TableSize, ConstantInt *Offset, 5905 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5906 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5907 assert(Values.size() && "Can't build lookup table without values!"); 5908 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5909 5910 // If all values in the table are equal, this is that value. 5911 SingleValue = Values.begin()->second; 5912 5913 Type *ValueType = Values.begin()->second->getType(); 5914 5915 // Build up the table contents. 5916 SmallVector<Constant *, 64> TableContents(TableSize); 5917 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5918 ConstantInt *CaseVal = Values[I].first; 5919 Constant *CaseRes = Values[I].second; 5920 assert(CaseRes->getType() == ValueType); 5921 5922 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5923 TableContents[Idx] = CaseRes; 5924 5925 if (CaseRes != SingleValue) 5926 SingleValue = nullptr; 5927 } 5928 5929 // Fill in any holes in the table with the default result. 5930 if (Values.size() < TableSize) { 5931 assert(DefaultValue && 5932 "Need a default value to fill the lookup table holes."); 5933 assert(DefaultValue->getType() == ValueType); 5934 for (uint64_t I = 0; I < TableSize; ++I) { 5935 if (!TableContents[I]) 5936 TableContents[I] = DefaultValue; 5937 } 5938 5939 if (DefaultValue != SingleValue) 5940 SingleValue = nullptr; 5941 } 5942 5943 // If each element in the table contains the same value, we only need to store 5944 // that single value. 5945 if (SingleValue) { 5946 Kind = SingleValueKind; 5947 return; 5948 } 5949 5950 // Check if we can derive the value with a linear transformation from the 5951 // table index. 5952 if (isa<IntegerType>(ValueType)) { 5953 bool LinearMappingPossible = true; 5954 APInt PrevVal; 5955 APInt DistToPrev; 5956 assert(TableSize >= 2 && "Should be a SingleValue table."); 5957 // Check if there is the same distance between two consecutive values. 5958 for (uint64_t I = 0; I < TableSize; ++I) { 5959 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5960 if (!ConstVal) { 5961 // This is an undef. We could deal with it, but undefs in lookup tables 5962 // are very seldom. It's probably not worth the additional complexity. 5963 LinearMappingPossible = false; 5964 break; 5965 } 5966 const APInt &Val = ConstVal->getValue(); 5967 if (I != 0) { 5968 APInt Dist = Val - PrevVal; 5969 if (I == 1) { 5970 DistToPrev = Dist; 5971 } else if (Dist != DistToPrev) { 5972 LinearMappingPossible = false; 5973 break; 5974 } 5975 } 5976 PrevVal = Val; 5977 } 5978 if (LinearMappingPossible) { 5979 LinearOffset = cast<ConstantInt>(TableContents[0]); 5980 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5981 Kind = LinearMapKind; 5982 ++NumLinearMaps; 5983 return; 5984 } 5985 } 5986 5987 // If the type is integer and the table fits in a register, build a bitmap. 5988 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5989 IntegerType *IT = cast<IntegerType>(ValueType); 5990 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5991 for (uint64_t I = TableSize; I > 0; --I) { 5992 TableInt <<= IT->getBitWidth(); 5993 // Insert values into the bitmap. Undef values are set to zero. 5994 if (!isa<UndefValue>(TableContents[I - 1])) { 5995 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5996 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5997 } 5998 } 5999 BitMap = ConstantInt::get(M.getContext(), TableInt); 6000 BitMapElementTy = IT; 6001 Kind = BitMapKind; 6002 ++NumBitMaps; 6003 return; 6004 } 6005 6006 // Store the table in an array. 6007 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 6008 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 6009 6010 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 6011 GlobalVariable::PrivateLinkage, Initializer, 6012 "switch.table." + FuncName); 6013 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 6014 // Set the alignment to that of an array items. We will be only loading one 6015 // value out of it. 6016 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 6017 Kind = ArrayKind; 6018 } 6019 6020 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 6021 switch (Kind) { 6022 case SingleValueKind: 6023 return SingleValue; 6024 case LinearMapKind: { 6025 // Derive the result value from the input value. 6026 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 6027 false, "switch.idx.cast"); 6028 if (!LinearMultiplier->isOne()) 6029 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 6030 if (!LinearOffset->isZero()) 6031 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 6032 return Result; 6033 } 6034 case BitMapKind: { 6035 // Type of the bitmap (e.g. i59). 6036 IntegerType *MapTy = BitMap->getType(); 6037 6038 // Cast Index to the same type as the bitmap. 6039 // Note: The Index is <= the number of elements in the table, so 6040 // truncating it to the width of the bitmask is safe. 6041 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 6042 6043 // Multiply the shift amount by the element width. 6044 ShiftAmt = Builder.CreateMul( 6045 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 6046 "switch.shiftamt"); 6047 6048 // Shift down. 6049 Value *DownShifted = 6050 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 6051 // Mask off. 6052 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 6053 } 6054 case ArrayKind: { 6055 // Make sure the table index will not overflow when treated as signed. 6056 IntegerType *IT = cast<IntegerType>(Index->getType()); 6057 uint64_t TableSize = 6058 Array->getInitializer()->getType()->getArrayNumElements(); 6059 if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u))) 6060 Index = Builder.CreateZExt( 6061 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 6062 "switch.tableidx.zext"); 6063 6064 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 6065 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 6066 GEPIndices, "switch.gep"); 6067 return Builder.CreateLoad( 6068 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 6069 "switch.load"); 6070 } 6071 } 6072 llvm_unreachable("Unknown lookup table kind!"); 6073 } 6074 6075 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 6076 uint64_t TableSize, 6077 Type *ElementType) { 6078 auto *IT = dyn_cast<IntegerType>(ElementType); 6079 if (!IT) 6080 return false; 6081 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 6082 // are <= 15, we could try to narrow the type. 6083 6084 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 6085 if (TableSize >= UINT_MAX / IT->getBitWidth()) 6086 return false; 6087 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 6088 } 6089 6090 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, 6091 const DataLayout &DL) { 6092 // Allow any legal type. 6093 if (TTI.isTypeLegal(Ty)) 6094 return true; 6095 6096 auto *IT = dyn_cast<IntegerType>(Ty); 6097 if (!IT) 6098 return false; 6099 6100 // Also allow power of 2 integer types that have at least 8 bits and fit in 6101 // a register. These types are common in frontend languages and targets 6102 // usually support loads of these types. 6103 // TODO: We could relax this to any integer that fits in a register and rely 6104 // on ABI alignment and padding in the table to allow the load to be widened. 6105 // Or we could widen the constants and truncate the load. 6106 unsigned BitWidth = IT->getBitWidth(); 6107 return BitWidth >= 8 && isPowerOf2_32(BitWidth) && 6108 DL.fitsInLegalInteger(IT->getBitWidth()); 6109 } 6110 6111 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) { 6112 // 40% is the default density for building a jump table in optsize/minsize 6113 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this 6114 // function was based on. 6115 const uint64_t MinDensity = 40; 6116 6117 if (CaseRange >= UINT64_MAX / 100) 6118 return false; // Avoid multiplication overflows below. 6119 6120 return NumCases * 100 >= CaseRange * MinDensity; 6121 } 6122 6123 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6124 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6125 uint64_t Range = Diff + 1; 6126 if (Range < Diff) 6127 return false; // Overflow. 6128 6129 return isSwitchDense(Values.size(), Range); 6130 } 6131 6132 /// Determine whether a lookup table should be built for this switch, based on 6133 /// the number of cases, size of the table, and the types of the results. 6134 // TODO: We could support larger than legal types by limiting based on the 6135 // number of loads required and/or table size. If the constants are small we 6136 // could use smaller table entries and extend after the load. 6137 static bool 6138 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 6139 const TargetTransformInfo &TTI, const DataLayout &DL, 6140 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 6141 if (SI->getNumCases() > TableSize) 6142 return false; // TableSize overflowed. 6143 6144 bool AllTablesFitInRegister = true; 6145 bool HasIllegalType = false; 6146 for (const auto &I : ResultTypes) { 6147 Type *Ty = I.second; 6148 6149 // Saturate this flag to true. 6150 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); 6151 6152 // Saturate this flag to false. 6153 AllTablesFitInRegister = 6154 AllTablesFitInRegister && 6155 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 6156 6157 // If both flags saturate, we're done. NOTE: This *only* works with 6158 // saturating flags, and all flags have to saturate first due to the 6159 // non-deterministic behavior of iterating over a dense map. 6160 if (HasIllegalType && !AllTablesFitInRegister) 6161 break; 6162 } 6163 6164 // If each table would fit in a register, we should build it anyway. 6165 if (AllTablesFitInRegister) 6166 return true; 6167 6168 // Don't build a table that doesn't fit in-register if it has illegal types. 6169 if (HasIllegalType) 6170 return false; 6171 6172 return isSwitchDense(SI->getNumCases(), TableSize); 6173 } 6174 6175 /// Try to reuse the switch table index compare. Following pattern: 6176 /// \code 6177 /// if (idx < tablesize) 6178 /// r = table[idx]; // table does not contain default_value 6179 /// else 6180 /// r = default_value; 6181 /// if (r != default_value) 6182 /// ... 6183 /// \endcode 6184 /// Is optimized to: 6185 /// \code 6186 /// cond = idx < tablesize; 6187 /// if (cond) 6188 /// r = table[idx]; 6189 /// else 6190 /// r = default_value; 6191 /// if (cond) 6192 /// ... 6193 /// \endcode 6194 /// Jump threading will then eliminate the second if(cond). 6195 static void reuseTableCompare( 6196 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 6197 Constant *DefaultValue, 6198 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 6199 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 6200 if (!CmpInst) 6201 return; 6202 6203 // We require that the compare is in the same block as the phi so that jump 6204 // threading can do its work afterwards. 6205 if (CmpInst->getParent() != PhiBlock) 6206 return; 6207 6208 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 6209 if (!CmpOp1) 6210 return; 6211 6212 Value *RangeCmp = RangeCheckBranch->getCondition(); 6213 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 6214 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 6215 6216 // Check if the compare with the default value is constant true or false. 6217 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6218 DefaultValue, CmpOp1, true); 6219 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 6220 return; 6221 6222 // Check if the compare with the case values is distinct from the default 6223 // compare result. 6224 for (auto ValuePair : Values) { 6225 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6226 ValuePair.second, CmpOp1, true); 6227 if (!CaseConst || CaseConst == DefaultConst || 6228 (CaseConst != TrueConst && CaseConst != FalseConst)) 6229 return; 6230 } 6231 6232 // Check if the branch instruction dominates the phi node. It's a simple 6233 // dominance check, but sufficient for our needs. 6234 // Although this check is invariant in the calling loops, it's better to do it 6235 // at this late stage. Practically we do it at most once for a switch. 6236 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 6237 for (BasicBlock *Pred : predecessors(PhiBlock)) { 6238 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 6239 return; 6240 } 6241 6242 if (DefaultConst == FalseConst) { 6243 // The compare yields the same result. We can replace it. 6244 CmpInst->replaceAllUsesWith(RangeCmp); 6245 ++NumTableCmpReuses; 6246 } else { 6247 // The compare yields the same result, just inverted. We can replace it. 6248 Value *InvertedTableCmp = BinaryOperator::CreateXor( 6249 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 6250 RangeCheckBranch); 6251 CmpInst->replaceAllUsesWith(InvertedTableCmp); 6252 ++NumTableCmpReuses; 6253 } 6254 } 6255 6256 /// If the switch is only used to initialize one or more phi nodes in a common 6257 /// successor block with different constant values, replace the switch with 6258 /// lookup tables. 6259 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 6260 DomTreeUpdater *DTU, const DataLayout &DL, 6261 const TargetTransformInfo &TTI) { 6262 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 6263 6264 BasicBlock *BB = SI->getParent(); 6265 Function *Fn = BB->getParent(); 6266 // Only build lookup table when we have a target that supports it or the 6267 // attribute is not set. 6268 if (!TTI.shouldBuildLookupTables() || 6269 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 6270 return false; 6271 6272 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 6273 // split off a dense part and build a lookup table for that. 6274 6275 // FIXME: This creates arrays of GEPs to constant strings, which means each 6276 // GEP needs a runtime relocation in PIC code. We should just build one big 6277 // string and lookup indices into that. 6278 6279 // Ignore switches with less than three cases. Lookup tables will not make 6280 // them faster, so we don't analyze them. 6281 if (SI->getNumCases() < 3) 6282 return false; 6283 6284 // Figure out the corresponding result for each case value and phi node in the 6285 // common destination, as well as the min and max case values. 6286 assert(!SI->cases().empty()); 6287 SwitchInst::CaseIt CI = SI->case_begin(); 6288 ConstantInt *MinCaseVal = CI->getCaseValue(); 6289 ConstantInt *MaxCaseVal = CI->getCaseValue(); 6290 6291 BasicBlock *CommonDest = nullptr; 6292 6293 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 6294 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 6295 6296 SmallDenseMap<PHINode *, Constant *> DefaultResults; 6297 SmallDenseMap<PHINode *, Type *> ResultTypes; 6298 SmallVector<PHINode *, 4> PHIs; 6299 6300 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 6301 ConstantInt *CaseVal = CI->getCaseValue(); 6302 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 6303 MinCaseVal = CaseVal; 6304 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 6305 MaxCaseVal = CaseVal; 6306 6307 // Resulting value at phi nodes for this case value. 6308 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 6309 ResultsTy Results; 6310 if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 6311 Results, DL, TTI)) 6312 return false; 6313 6314 // Append the result from this case to the list for each phi. 6315 for (const auto &I : Results) { 6316 PHINode *PHI = I.first; 6317 Constant *Value = I.second; 6318 if (!ResultLists.count(PHI)) 6319 PHIs.push_back(PHI); 6320 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 6321 } 6322 } 6323 6324 // Keep track of the result types. 6325 for (PHINode *PHI : PHIs) { 6326 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 6327 } 6328 6329 uint64_t NumResults = ResultLists[PHIs[0]].size(); 6330 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 6331 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 6332 bool TableHasHoles = (NumResults < TableSize); 6333 6334 // If the table has holes, we need a constant result for the default case 6335 // or a bitmask that fits in a register. 6336 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 6337 bool HasDefaultResults = 6338 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 6339 DefaultResultsList, DL, TTI); 6340 6341 bool NeedMask = (TableHasHoles && !HasDefaultResults); 6342 if (NeedMask) { 6343 // As an extra penalty for the validity test we require more cases. 6344 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 6345 return false; 6346 if (!DL.fitsInLegalInteger(TableSize)) 6347 return false; 6348 } 6349 6350 for (const auto &I : DefaultResultsList) { 6351 PHINode *PHI = I.first; 6352 Constant *Result = I.second; 6353 DefaultResults[PHI] = Result; 6354 } 6355 6356 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 6357 return false; 6358 6359 std::vector<DominatorTree::UpdateType> Updates; 6360 6361 // Create the BB that does the lookups. 6362 Module &Mod = *CommonDest->getParent()->getParent(); 6363 BasicBlock *LookupBB = BasicBlock::Create( 6364 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 6365 6366 // Compute the table index value. 6367 Builder.SetInsertPoint(SI); 6368 Value *TableIndex; 6369 if (MinCaseVal->isNullValue()) 6370 TableIndex = SI->getCondition(); 6371 else 6372 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 6373 "switch.tableidx"); 6374 6375 // Compute the maximum table size representable by the integer type we are 6376 // switching upon. 6377 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 6378 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 6379 assert(MaxTableSize >= TableSize && 6380 "It is impossible for a switch to have more entries than the max " 6381 "representable value of its input integer type's size."); 6382 6383 // If the default destination is unreachable, or if the lookup table covers 6384 // all values of the conditional variable, branch directly to the lookup table 6385 // BB. Otherwise, check that the condition is within the case range. 6386 const bool DefaultIsReachable = 6387 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6388 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6389 BranchInst *RangeCheckBranch = nullptr; 6390 6391 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6392 Builder.CreateBr(LookupBB); 6393 if (DTU) 6394 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6395 // Note: We call removeProdecessor later since we need to be able to get the 6396 // PHI value for the default case in case we're using a bit mask. 6397 } else { 6398 Value *Cmp = Builder.CreateICmpULT( 6399 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6400 RangeCheckBranch = 6401 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6402 if (DTU) 6403 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6404 } 6405 6406 // Populate the BB that does the lookups. 6407 Builder.SetInsertPoint(LookupBB); 6408 6409 if (NeedMask) { 6410 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6411 // re-purposed to do the hole check, and we create a new LookupBB. 6412 BasicBlock *MaskBB = LookupBB; 6413 MaskBB->setName("switch.hole_check"); 6414 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6415 CommonDest->getParent(), CommonDest); 6416 6417 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6418 // unnecessary illegal types. 6419 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6420 APInt MaskInt(TableSizePowOf2, 0); 6421 APInt One(TableSizePowOf2, 1); 6422 // Build bitmask; fill in a 1 bit for every case. 6423 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6424 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6425 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6426 .getLimitedValue(); 6427 MaskInt |= One << Idx; 6428 } 6429 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6430 6431 // Get the TableIndex'th bit of the bitmask. 6432 // If this bit is 0 (meaning hole) jump to the default destination, 6433 // else continue with table lookup. 6434 IntegerType *MapTy = TableMask->getType(); 6435 Value *MaskIndex = 6436 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6437 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6438 Value *LoBit = Builder.CreateTrunc( 6439 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6440 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6441 if (DTU) { 6442 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6443 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6444 } 6445 Builder.SetInsertPoint(LookupBB); 6446 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6447 } 6448 6449 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6450 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6451 // do not delete PHINodes here. 6452 SI->getDefaultDest()->removePredecessor(BB, 6453 /*KeepOneInputPHIs=*/true); 6454 if (DTU) 6455 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6456 } 6457 6458 for (PHINode *PHI : PHIs) { 6459 const ResultListTy &ResultList = ResultLists[PHI]; 6460 6461 // If using a bitmask, use any value to fill the lookup table holes. 6462 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6463 StringRef FuncName = Fn->getName(); 6464 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6465 FuncName); 6466 6467 Value *Result = Table.BuildLookup(TableIndex, Builder); 6468 6469 // Do a small peephole optimization: re-use the switch table compare if 6470 // possible. 6471 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6472 BasicBlock *PhiBlock = PHI->getParent(); 6473 // Search for compare instructions which use the phi. 6474 for (auto *User : PHI->users()) { 6475 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6476 } 6477 } 6478 6479 PHI->addIncoming(Result, LookupBB); 6480 } 6481 6482 Builder.CreateBr(CommonDest); 6483 if (DTU) 6484 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6485 6486 // Remove the switch. 6487 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6488 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6489 BasicBlock *Succ = SI->getSuccessor(i); 6490 6491 if (Succ == SI->getDefaultDest()) 6492 continue; 6493 Succ->removePredecessor(BB); 6494 if (DTU && RemovedSuccessors.insert(Succ).second) 6495 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6496 } 6497 SI->eraseFromParent(); 6498 6499 if (DTU) 6500 DTU->applyUpdates(Updates); 6501 6502 ++NumLookupTables; 6503 if (NeedMask) 6504 ++NumLookupTablesHoles; 6505 return true; 6506 } 6507 6508 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6509 /// of cases. 6510 /// 6511 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6512 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6513 /// 6514 /// This converts a sparse switch into a dense switch which allows better 6515 /// lowering and could also allow transforming into a lookup table. 6516 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6517 const DataLayout &DL, 6518 const TargetTransformInfo &TTI) { 6519 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6520 if (CondTy->getIntegerBitWidth() > 64 || 6521 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6522 return false; 6523 // Only bother with this optimization if there are more than 3 switch cases; 6524 // SDAG will only bother creating jump tables for 4 or more cases. 6525 if (SI->getNumCases() < 4) 6526 return false; 6527 6528 // This transform is agnostic to the signedness of the input or case values. We 6529 // can treat the case values as signed or unsigned. We can optimize more common 6530 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6531 // as signed. 6532 SmallVector<int64_t,4> Values; 6533 for (auto &C : SI->cases()) 6534 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6535 llvm::sort(Values); 6536 6537 // If the switch is already dense, there's nothing useful to do here. 6538 if (isSwitchDense(Values)) 6539 return false; 6540 6541 // First, transform the values such that they start at zero and ascend. 6542 int64_t Base = Values[0]; 6543 for (auto &V : Values) 6544 V -= (uint64_t)(Base); 6545 6546 // Now we have signed numbers that have been shifted so that, given enough 6547 // precision, there are no negative values. Since the rest of the transform 6548 // is bitwise only, we switch now to an unsigned representation. 6549 6550 // This transform can be done speculatively because it is so cheap - it 6551 // results in a single rotate operation being inserted. 6552 // FIXME: It's possible that optimizing a switch on powers of two might also 6553 // be beneficial - flag values are often powers of two and we could use a CLZ 6554 // as the key function. 6555 6556 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6557 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6558 // less than 64. 6559 unsigned Shift = 64; 6560 for (auto &V : Values) 6561 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6562 assert(Shift < 64); 6563 if (Shift > 0) 6564 for (auto &V : Values) 6565 V = (int64_t)((uint64_t)V >> Shift); 6566 6567 if (!isSwitchDense(Values)) 6568 // Transform didn't create a dense switch. 6569 return false; 6570 6571 // The obvious transform is to shift the switch condition right and emit a 6572 // check that the condition actually cleanly divided by GCD, i.e. 6573 // C & (1 << Shift - 1) == 0 6574 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6575 // 6576 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6577 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6578 // are nonzero then the switch condition will be very large and will hit the 6579 // default case. 6580 6581 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6582 Builder.SetInsertPoint(SI); 6583 auto *ShiftC = ConstantInt::get(Ty, Shift); 6584 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6585 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6586 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6587 auto *Rot = Builder.CreateOr(LShr, Shl); 6588 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6589 6590 for (auto Case : SI->cases()) { 6591 auto *Orig = Case.getCaseValue(); 6592 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6593 Case.setValue( 6594 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6595 } 6596 return true; 6597 } 6598 6599 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6600 BasicBlock *BB = SI->getParent(); 6601 6602 if (isValueEqualityComparison(SI)) { 6603 // If we only have one predecessor, and if it is a branch on this value, 6604 // see if that predecessor totally determines the outcome of this switch. 6605 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6606 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6607 return requestResimplify(); 6608 6609 Value *Cond = SI->getCondition(); 6610 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6611 if (SimplifySwitchOnSelect(SI, Select)) 6612 return requestResimplify(); 6613 6614 // If the block only contains the switch, see if we can fold the block 6615 // away into any preds. 6616 if (SI == &*BB->instructionsWithoutDebug(false).begin()) 6617 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6618 return requestResimplify(); 6619 } 6620 6621 // Try to transform the switch into an icmp and a branch. 6622 // The conversion from switch to comparison may lose information on 6623 // impossible switch values, so disable it early in the pipeline. 6624 if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder)) 6625 return requestResimplify(); 6626 6627 // Remove unreachable cases. 6628 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6629 return requestResimplify(); 6630 6631 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI)) 6632 return requestResimplify(); 6633 6634 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6635 return requestResimplify(); 6636 6637 // The conversion from switch to lookup tables results in difficult-to-analyze 6638 // code and makes pruning branches much harder. This is a problem if the 6639 // switch expression itself can still be restricted as a result of inlining or 6640 // CVP. Therefore, only apply this transformation during late stages of the 6641 // optimisation pipeline. 6642 if (Options.ConvertSwitchToLookupTable && 6643 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6644 return requestResimplify(); 6645 6646 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6647 return requestResimplify(); 6648 6649 return false; 6650 } 6651 6652 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6653 BasicBlock *BB = IBI->getParent(); 6654 bool Changed = false; 6655 6656 // Eliminate redundant destinations. 6657 SmallPtrSet<Value *, 8> Succs; 6658 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6659 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6660 BasicBlock *Dest = IBI->getDestination(i); 6661 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6662 if (!Dest->hasAddressTaken()) 6663 RemovedSuccs.insert(Dest); 6664 Dest->removePredecessor(BB); 6665 IBI->removeDestination(i); 6666 --i; 6667 --e; 6668 Changed = true; 6669 } 6670 } 6671 6672 if (DTU) { 6673 std::vector<DominatorTree::UpdateType> Updates; 6674 Updates.reserve(RemovedSuccs.size()); 6675 for (auto *RemovedSucc : RemovedSuccs) 6676 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6677 DTU->applyUpdates(Updates); 6678 } 6679 6680 if (IBI->getNumDestinations() == 0) { 6681 // If the indirectbr has no successors, change it to unreachable. 6682 new UnreachableInst(IBI->getContext(), IBI); 6683 EraseTerminatorAndDCECond(IBI); 6684 return true; 6685 } 6686 6687 if (IBI->getNumDestinations() == 1) { 6688 // If the indirectbr has one successor, change it to a direct branch. 6689 BranchInst::Create(IBI->getDestination(0), IBI); 6690 EraseTerminatorAndDCECond(IBI); 6691 return true; 6692 } 6693 6694 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6695 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6696 return requestResimplify(); 6697 } 6698 return Changed; 6699 } 6700 6701 /// Given an block with only a single landing pad and a unconditional branch 6702 /// try to find another basic block which this one can be merged with. This 6703 /// handles cases where we have multiple invokes with unique landing pads, but 6704 /// a shared handler. 6705 /// 6706 /// We specifically choose to not worry about merging non-empty blocks 6707 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6708 /// practice, the optimizer produces empty landing pad blocks quite frequently 6709 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6710 /// sinking in this file) 6711 /// 6712 /// This is primarily a code size optimization. We need to avoid performing 6713 /// any transform which might inhibit optimization (such as our ability to 6714 /// specialize a particular handler via tail commoning). We do this by not 6715 /// merging any blocks which require us to introduce a phi. Since the same 6716 /// values are flowing through both blocks, we don't lose any ability to 6717 /// specialize. If anything, we make such specialization more likely. 6718 /// 6719 /// TODO - This transformation could remove entries from a phi in the target 6720 /// block when the inputs in the phi are the same for the two blocks being 6721 /// merged. In some cases, this could result in removal of the PHI entirely. 6722 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6723 BasicBlock *BB, DomTreeUpdater *DTU) { 6724 auto Succ = BB->getUniqueSuccessor(); 6725 assert(Succ); 6726 // If there's a phi in the successor block, we'd likely have to introduce 6727 // a phi into the merged landing pad block. 6728 if (isa<PHINode>(*Succ->begin())) 6729 return false; 6730 6731 for (BasicBlock *OtherPred : predecessors(Succ)) { 6732 if (BB == OtherPred) 6733 continue; 6734 BasicBlock::iterator I = OtherPred->begin(); 6735 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6736 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6737 continue; 6738 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6739 ; 6740 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6741 if (!BI2 || !BI2->isIdenticalTo(BI)) 6742 continue; 6743 6744 std::vector<DominatorTree::UpdateType> Updates; 6745 6746 // We've found an identical block. Update our predecessors to take that 6747 // path instead and make ourselves dead. 6748 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); 6749 for (BasicBlock *Pred : UniquePreds) { 6750 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6751 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6752 "unexpected successor"); 6753 II->setUnwindDest(OtherPred); 6754 if (DTU) { 6755 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6756 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6757 } 6758 } 6759 6760 // The debug info in OtherPred doesn't cover the merged control flow that 6761 // used to go through BB. We need to delete it or update it. 6762 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) 6763 if (isa<DbgInfoIntrinsic>(Inst)) 6764 Inst.eraseFromParent(); 6765 6766 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); 6767 for (BasicBlock *Succ : UniqueSuccs) { 6768 Succ->removePredecessor(BB); 6769 if (DTU) 6770 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6771 } 6772 6773 IRBuilder<> Builder(BI); 6774 Builder.CreateUnreachable(); 6775 BI->eraseFromParent(); 6776 if (DTU) 6777 DTU->applyUpdates(Updates); 6778 return true; 6779 } 6780 return false; 6781 } 6782 6783 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6784 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6785 : simplifyCondBranch(Branch, Builder); 6786 } 6787 6788 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6789 IRBuilder<> &Builder) { 6790 BasicBlock *BB = BI->getParent(); 6791 BasicBlock *Succ = BI->getSuccessor(0); 6792 6793 // If the Terminator is the only non-phi instruction, simplify the block. 6794 // If LoopHeader is provided, check if the block or its successor is a loop 6795 // header. (This is for early invocations before loop simplify and 6796 // vectorization to keep canonical loop forms for nested loops. These blocks 6797 // can be eliminated when the pass is invoked later in the back-end.) 6798 // Note that if BB has only one predecessor then we do not introduce new 6799 // backedge, so we can eliminate BB. 6800 bool NeedCanonicalLoop = 6801 Options.NeedCanonicalLoop && 6802 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6803 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6804 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6805 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6806 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6807 return true; 6808 6809 // If the only instruction in the block is a seteq/setne comparison against a 6810 // constant, try to simplify the block. 6811 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6812 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6813 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6814 ; 6815 if (I->isTerminator() && 6816 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6817 return true; 6818 } 6819 6820 // See if we can merge an empty landing pad block with another which is 6821 // equivalent. 6822 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6823 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6824 ; 6825 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6826 return true; 6827 } 6828 6829 // If this basic block is ONLY a compare and a branch, and if a predecessor 6830 // branches to us and our successor, fold the comparison into the 6831 // predecessor and use logical operations to update the incoming value 6832 // for PHI nodes in common successor. 6833 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6834 Options.BonusInstThreshold)) 6835 return requestResimplify(); 6836 return false; 6837 } 6838 6839 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6840 BasicBlock *PredPred = nullptr; 6841 for (auto *P : predecessors(BB)) { 6842 BasicBlock *PPred = P->getSinglePredecessor(); 6843 if (!PPred || (PredPred && PredPred != PPred)) 6844 return nullptr; 6845 PredPred = PPred; 6846 } 6847 return PredPred; 6848 } 6849 6850 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6851 assert( 6852 !isa<ConstantInt>(BI->getCondition()) && 6853 BI->getSuccessor(0) != BI->getSuccessor(1) && 6854 "Tautological conditional branch should have been eliminated already."); 6855 6856 BasicBlock *BB = BI->getParent(); 6857 if (!Options.SimplifyCondBranch) 6858 return false; 6859 6860 // Conditional branch 6861 if (isValueEqualityComparison(BI)) { 6862 // If we only have one predecessor, and if it is a branch on this value, 6863 // see if that predecessor totally determines the outcome of this 6864 // switch. 6865 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6866 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6867 return requestResimplify(); 6868 6869 // This block must be empty, except for the setcond inst, if it exists. 6870 // Ignore dbg and pseudo intrinsics. 6871 auto I = BB->instructionsWithoutDebug(true).begin(); 6872 if (&*I == BI) { 6873 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6874 return requestResimplify(); 6875 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6876 ++I; 6877 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6878 return requestResimplify(); 6879 } 6880 } 6881 6882 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6883 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6884 return true; 6885 6886 // If this basic block has dominating predecessor blocks and the dominating 6887 // blocks' conditions imply BI's condition, we know the direction of BI. 6888 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6889 if (Imp) { 6890 // Turn this into a branch on constant. 6891 auto *OldCond = BI->getCondition(); 6892 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6893 : ConstantInt::getFalse(BB->getContext()); 6894 BI->setCondition(TorF); 6895 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6896 return requestResimplify(); 6897 } 6898 6899 // If this basic block is ONLY a compare and a branch, and if a predecessor 6900 // branches to us and one of our successors, fold the comparison into the 6901 // predecessor and use logical operations to pick the right destination. 6902 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6903 Options.BonusInstThreshold)) 6904 return requestResimplify(); 6905 6906 // We have a conditional branch to two blocks that are only reachable 6907 // from BI. We know that the condbr dominates the two blocks, so see if 6908 // there is any identical code in the "then" and "else" blocks. If so, we 6909 // can hoist it up to the branching block. 6910 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6911 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6912 if (HoistCommon && 6913 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6914 return requestResimplify(); 6915 } else { 6916 // If Successor #1 has multiple preds, we may be able to conditionally 6917 // execute Successor #0 if it branches to Successor #1. 6918 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6919 if (Succ0TI->getNumSuccessors() == 1 && 6920 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6921 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6922 return requestResimplify(); 6923 } 6924 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6925 // If Successor #0 has multiple preds, we may be able to conditionally 6926 // execute Successor #1 if it branches to Successor #0. 6927 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6928 if (Succ1TI->getNumSuccessors() == 1 && 6929 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6930 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6931 return requestResimplify(); 6932 } 6933 6934 // If this is a branch on something for which we know the constant value in 6935 // predecessors (e.g. a phi node in the current block), thread control 6936 // through this block. 6937 if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC)) 6938 return requestResimplify(); 6939 6940 // Scan predecessor blocks for conditional branches. 6941 for (BasicBlock *Pred : predecessors(BB)) 6942 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6943 if (PBI != BI && PBI->isConditional()) 6944 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6945 return requestResimplify(); 6946 6947 // Look for diamond patterns. 6948 if (MergeCondStores) 6949 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6950 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6951 if (PBI != BI && PBI->isConditional()) 6952 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6953 return requestResimplify(); 6954 6955 return false; 6956 } 6957 6958 /// Check if passing a value to an instruction will cause undefined behavior. 6959 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6960 Constant *C = dyn_cast<Constant>(V); 6961 if (!C) 6962 return false; 6963 6964 if (I->use_empty()) 6965 return false; 6966 6967 if (C->isNullValue() || isa<UndefValue>(C)) { 6968 // Only look at the first use, avoid hurting compile time with long uselists 6969 auto *Use = cast<Instruction>(*I->user_begin()); 6970 // Bail out if Use is not in the same BB as I or Use == I or Use comes 6971 // before I in the block. The latter two can be the case if Use is a PHI 6972 // node. 6973 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) 6974 return false; 6975 6976 // Now make sure that there are no instructions in between that can alter 6977 // control flow (eg. calls) 6978 auto InstrRange = 6979 make_range(std::next(I->getIterator()), Use->getIterator()); 6980 if (any_of(InstrRange, [](Instruction &I) { 6981 return !isGuaranteedToTransferExecutionToSuccessor(&I); 6982 })) 6983 return false; 6984 6985 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6986 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6987 if (GEP->getPointerOperand() == I) { 6988 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6989 PtrValueMayBeModified = true; 6990 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6991 } 6992 6993 // Look through bitcasts. 6994 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6995 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6996 6997 // Load from null is undefined. 6998 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6999 if (!LI->isVolatile()) 7000 return !NullPointerIsDefined(LI->getFunction(), 7001 LI->getPointerAddressSpace()); 7002 7003 // Store to null is undefined. 7004 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 7005 if (!SI->isVolatile()) 7006 return (!NullPointerIsDefined(SI->getFunction(), 7007 SI->getPointerAddressSpace())) && 7008 SI->getPointerOperand() == I; 7009 7010 if (auto *CB = dyn_cast<CallBase>(Use)) { 7011 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 7012 return false; 7013 // A call to null is undefined. 7014 if (CB->getCalledOperand() == I) 7015 return true; 7016 7017 if (C->isNullValue()) { 7018 for (const llvm::Use &Arg : CB->args()) 7019 if (Arg == I) { 7020 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7021 if (CB->isPassingUndefUB(ArgIdx) && 7022 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 7023 // Passing null to a nonnnull+noundef argument is undefined. 7024 return !PtrValueMayBeModified; 7025 } 7026 } 7027 } else if (isa<UndefValue>(C)) { 7028 // Passing undef to a noundef argument is undefined. 7029 for (const llvm::Use &Arg : CB->args()) 7030 if (Arg == I) { 7031 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7032 if (CB->isPassingUndefUB(ArgIdx)) { 7033 // Passing undef to a noundef argument is undefined. 7034 return true; 7035 } 7036 } 7037 } 7038 } 7039 } 7040 return false; 7041 } 7042 7043 /// If BB has an incoming value that will always trigger undefined behavior 7044 /// (eg. null pointer dereference), remove the branch leading here. 7045 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 7046 DomTreeUpdater *DTU) { 7047 for (PHINode &PHI : BB->phis()) 7048 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 7049 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 7050 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 7051 Instruction *T = Predecessor->getTerminator(); 7052 IRBuilder<> Builder(T); 7053 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 7054 BB->removePredecessor(Predecessor); 7055 // Turn uncoditional branches into unreachables and remove the dead 7056 // destination from conditional branches. 7057 if (BI->isUnconditional()) 7058 Builder.CreateUnreachable(); 7059 else { 7060 // Preserve guarding condition in assume, because it might not be 7061 // inferrable from any dominating condition. 7062 Value *Cond = BI->getCondition(); 7063 if (BI->getSuccessor(0) == BB) 7064 Builder.CreateAssumption(Builder.CreateNot(Cond)); 7065 else 7066 Builder.CreateAssumption(Cond); 7067 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 7068 : BI->getSuccessor(0)); 7069 } 7070 BI->eraseFromParent(); 7071 if (DTU) 7072 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 7073 return true; 7074 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 7075 // Redirect all branches leading to UB into 7076 // a newly created unreachable block. 7077 BasicBlock *Unreachable = BasicBlock::Create( 7078 Predecessor->getContext(), "unreachable", BB->getParent(), BB); 7079 Builder.SetInsertPoint(Unreachable); 7080 // The new block contains only one instruction: Unreachable 7081 Builder.CreateUnreachable(); 7082 for (auto &Case : SI->cases()) 7083 if (Case.getCaseSuccessor() == BB) { 7084 BB->removePredecessor(Predecessor); 7085 Case.setSuccessor(Unreachable); 7086 } 7087 if (SI->getDefaultDest() == BB) { 7088 BB->removePredecessor(Predecessor); 7089 SI->setDefaultDest(Unreachable); 7090 } 7091 7092 if (DTU) 7093 DTU->applyUpdates( 7094 { { DominatorTree::Insert, Predecessor, Unreachable }, 7095 { DominatorTree::Delete, Predecessor, BB } }); 7096 return true; 7097 } 7098 } 7099 7100 return false; 7101 } 7102 7103 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 7104 bool Changed = false; 7105 7106 assert(BB && BB->getParent() && "Block not embedded in function!"); 7107 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 7108 7109 // Remove basic blocks that have no predecessors (except the entry block)... 7110 // or that just have themself as a predecessor. These are unreachable. 7111 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 7112 BB->getSinglePredecessor() == BB) { 7113 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 7114 DeleteDeadBlock(BB, DTU); 7115 return true; 7116 } 7117 7118 // Check to see if we can constant propagate this terminator instruction 7119 // away... 7120 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 7121 /*TLI=*/nullptr, DTU); 7122 7123 // Check for and eliminate duplicate PHI nodes in this block. 7124 Changed |= EliminateDuplicatePHINodes(BB); 7125 7126 // Check for and remove branches that will always cause undefined behavior. 7127 if (removeUndefIntroducingPredecessor(BB, DTU)) 7128 return requestResimplify(); 7129 7130 // Merge basic blocks into their predecessor if there is only one distinct 7131 // pred, and if there is only one distinct successor of the predecessor, and 7132 // if there are no PHI nodes. 7133 if (MergeBlockIntoPredecessor(BB, DTU)) 7134 return true; 7135 7136 if (SinkCommon && Options.SinkCommonInsts) 7137 if (SinkCommonCodeFromPredecessors(BB, DTU) || 7138 MergeCompatibleInvokes(BB, DTU)) { 7139 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 7140 // so we may now how duplicate PHI's. 7141 // Let's rerun EliminateDuplicatePHINodes() first, 7142 // before FoldTwoEntryPHINode() potentially converts them into select's, 7143 // after which we'd need a whole EarlyCSE pass run to cleanup them. 7144 return true; 7145 } 7146 7147 IRBuilder<> Builder(BB); 7148 7149 if (Options.FoldTwoEntryPHINode) { 7150 // If there is a trivial two-entry PHI node in this basic block, and we can 7151 // eliminate it, do so now. 7152 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 7153 if (PN->getNumIncomingValues() == 2) 7154 if (FoldTwoEntryPHINode(PN, TTI, DTU, DL)) 7155 return true; 7156 } 7157 7158 Instruction *Terminator = BB->getTerminator(); 7159 Builder.SetInsertPoint(Terminator); 7160 switch (Terminator->getOpcode()) { 7161 case Instruction::Br: 7162 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 7163 break; 7164 case Instruction::Resume: 7165 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 7166 break; 7167 case Instruction::CleanupRet: 7168 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 7169 break; 7170 case Instruction::Switch: 7171 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 7172 break; 7173 case Instruction::Unreachable: 7174 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 7175 break; 7176 case Instruction::IndirectBr: 7177 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 7178 break; 7179 } 7180 7181 return Changed; 7182 } 7183 7184 bool SimplifyCFGOpt::run(BasicBlock *BB) { 7185 bool Changed = false; 7186 7187 // Repeated simplify BB as long as resimplification is requested. 7188 do { 7189 Resimplify = false; 7190 7191 // Perform one round of simplifcation. Resimplify flag will be set if 7192 // another iteration is requested. 7193 Changed |= simplifyOnce(BB); 7194 } while (Resimplify); 7195 7196 return Changed; 7197 } 7198 7199 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 7200 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 7201 ArrayRef<WeakVH> LoopHeaders) { 7202 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 7203 Options) 7204 .run(BB); 7205 } 7206