1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 72 #include "llvm/Transforms/Utils/Local.h" 73 #include "llvm/Transforms/Utils/SSAUpdater.h" 74 #include "llvm/Transforms/Utils/ValueMapper.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <climits> 78 #include <cstddef> 79 #include <cstdint> 80 #include <iterator> 81 #include <map> 82 #include <set> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace PatternMatch; 89 90 #define DEBUG_TYPE "simplifycfg" 91 92 cl::opt<bool> llvm::RequireAndPreserveDomTree( 93 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 94 cl::init(false), 95 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 96 "into preserving DomTree,")); 97 98 // Chosen as 2 so as to be cheap, but still to have enough power to fold 99 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 100 // To catch this, we need to fold a compare and a select, hence '2' being the 101 // minimum reasonable default. 102 static cl::opt<unsigned> PHINodeFoldingThreshold( 103 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 104 cl::desc( 105 "Control the amount of phi node folding to perform (default = 2)")); 106 107 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 108 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 109 cl::desc("Control the maximal total instruction cost that we are willing " 110 "to speculatively execute to fold a 2-entry PHI node into a " 111 "select (default = 4)")); 112 113 static cl::opt<bool> DupRet( 114 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 115 cl::desc("Duplicate return instructions into unconditional branches")); 116 117 static cl::opt<bool> 118 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 119 cl::desc("Hoist common instructions up to the parent block")); 120 121 static cl::opt<bool> 122 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 123 cl::desc("Sink common instructions down to the end block")); 124 125 static cl::opt<bool> HoistCondStores( 126 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 127 cl::desc("Hoist conditional stores if an unconditional store precedes")); 128 129 static cl::opt<bool> MergeCondStores( 130 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 131 cl::desc("Hoist conditional stores even if an unconditional store does not " 132 "precede - hoist multiple conditional stores into a single " 133 "predicated store")); 134 135 static cl::opt<bool> MergeCondStoresAggressively( 136 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 137 cl::desc("When merging conditional stores, do so even if the resultant " 138 "basic blocks are unlikely to be if-converted as a result")); 139 140 static cl::opt<bool> SpeculateOneExpensiveInst( 141 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 142 cl::desc("Allow exactly one expensive instruction to be speculatively " 143 "executed")); 144 145 static cl::opt<unsigned> MaxSpeculationDepth( 146 "max-speculation-depth", cl::Hidden, cl::init(10), 147 cl::desc("Limit maximum recursion depth when calculating costs of " 148 "speculatively executed instructions")); 149 150 static cl::opt<int> 151 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 152 cl::desc("Max size of a block which is still considered " 153 "small enough to thread through")); 154 155 // Two is chosen to allow one negation and a logical combine. 156 static cl::opt<unsigned> 157 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 158 cl::init(2), 159 cl::desc("Maximum cost of combining conditions when " 160 "folding branches")); 161 162 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 163 STATISTIC(NumLinearMaps, 164 "Number of switch instructions turned into linear mapping"); 165 STATISTIC(NumLookupTables, 166 "Number of switch instructions turned into lookup tables"); 167 STATISTIC( 168 NumLookupTablesHoles, 169 "Number of switch instructions turned into lookup tables (holes checked)"); 170 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 171 STATISTIC(NumFoldValueComparisonIntoPredecessors, 172 "Number of value comparisons folded into predecessor basic blocks"); 173 STATISTIC(NumFoldBranchToCommonDest, 174 "Number of branches folded into predecessor basic block"); 175 STATISTIC( 176 NumHoistCommonCode, 177 "Number of common instruction 'blocks' hoisted up to the begin block"); 178 STATISTIC(NumHoistCommonInstrs, 179 "Number of common instructions hoisted up to the begin block"); 180 STATISTIC(NumSinkCommonCode, 181 "Number of common instruction 'blocks' sunk down to the end block"); 182 STATISTIC(NumSinkCommonInstrs, 183 "Number of common instructions sunk down to the end block"); 184 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 185 STATISTIC(NumInvokes, 186 "Number of invokes with empty resume blocks simplified into calls"); 187 188 namespace { 189 190 // The first field contains the value that the switch produces when a certain 191 // case group is selected, and the second field is a vector containing the 192 // cases composing the case group. 193 using SwitchCaseResultVectorTy = 194 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 195 196 // The first field contains the phi node that generates a result of the switch 197 // and the second field contains the value generated for a certain case in the 198 // switch for that PHI. 199 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 200 201 /// ValueEqualityComparisonCase - Represents a case of a switch. 202 struct ValueEqualityComparisonCase { 203 ConstantInt *Value; 204 BasicBlock *Dest; 205 206 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 207 : Value(Value), Dest(Dest) {} 208 209 bool operator<(ValueEqualityComparisonCase RHS) const { 210 // Comparing pointers is ok as we only rely on the order for uniquing. 211 return Value < RHS.Value; 212 } 213 214 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 215 }; 216 217 class SimplifyCFGOpt { 218 const TargetTransformInfo &TTI; 219 DomTreeUpdater *DTU; 220 const DataLayout &DL; 221 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 222 const SimplifyCFGOptions &Options; 223 bool Resimplify; 224 225 Value *isValueEqualityComparison(Instruction *TI); 226 BasicBlock *GetValueEqualityComparisonCases( 227 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 228 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 229 BasicBlock *Pred, 230 IRBuilder<> &Builder); 231 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 232 IRBuilder<> &Builder); 233 234 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 235 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 236 bool simplifySingleResume(ResumeInst *RI); 237 bool simplifyCommonResume(ResumeInst *RI); 238 bool simplifyCleanupReturn(CleanupReturnInst *RI); 239 bool simplifyUnreachable(UnreachableInst *UI); 240 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 241 bool simplifyIndirectBr(IndirectBrInst *IBI); 242 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 243 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 244 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 245 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 246 247 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 248 IRBuilder<> &Builder); 249 250 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 251 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 252 const TargetTransformInfo &TTI); 253 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 254 BasicBlock *TrueBB, BasicBlock *FalseBB, 255 uint32_t TrueWeight, uint32_t FalseWeight); 256 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 257 const DataLayout &DL); 258 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 259 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 260 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 261 262 public: 263 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 264 const DataLayout &DL, 265 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 266 const SimplifyCFGOptions &Opts) 267 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 268 assert((!DTU || !DTU->hasPostDomTree()) && 269 "SimplifyCFG is not yet capable of maintaining validity of a " 270 "PostDomTree, so don't ask for it."); 271 } 272 273 bool simplifyOnce(BasicBlock *BB); 274 bool simplifyOnceImpl(BasicBlock *BB); 275 bool run(BasicBlock *BB); 276 277 // Helper to set Resimplify and return change indication. 278 bool requestResimplify() { 279 Resimplify = true; 280 return true; 281 } 282 }; 283 284 } // end anonymous namespace 285 286 /// Return true if it is safe to merge these two 287 /// terminator instructions together. 288 static bool 289 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 290 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 291 if (SI1 == SI2) 292 return false; // Can't merge with self! 293 294 // It is not safe to merge these two switch instructions if they have a common 295 // successor, and if that successor has a PHI node, and if *that* PHI node has 296 // conflicting incoming values from the two switch blocks. 297 BasicBlock *SI1BB = SI1->getParent(); 298 BasicBlock *SI2BB = SI2->getParent(); 299 300 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 301 bool Fail = false; 302 for (BasicBlock *Succ : successors(SI2BB)) 303 if (SI1Succs.count(Succ)) 304 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 305 PHINode *PN = cast<PHINode>(BBI); 306 if (PN->getIncomingValueForBlock(SI1BB) != 307 PN->getIncomingValueForBlock(SI2BB)) { 308 if (FailBlocks) 309 FailBlocks->insert(Succ); 310 Fail = true; 311 } 312 } 313 314 return !Fail; 315 } 316 317 /// Update PHI nodes in Succ to indicate that there will now be entries in it 318 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 319 /// will be the same as those coming in from ExistPred, an existing predecessor 320 /// of Succ. 321 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 322 BasicBlock *ExistPred, 323 MemorySSAUpdater *MSSAU = nullptr) { 324 for (PHINode &PN : Succ->phis()) 325 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 326 if (MSSAU) 327 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 328 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 329 } 330 331 /// Compute an abstract "cost" of speculating the given instruction, 332 /// which is assumed to be safe to speculate. TCC_Free means cheap, 333 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 334 /// expensive. 335 static unsigned ComputeSpeculationCost(const User *I, 336 const TargetTransformInfo &TTI) { 337 assert(isSafeToSpeculativelyExecute(I) && 338 "Instruction is not safe to speculatively execute!"); 339 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 340 } 341 342 /// If we have a merge point of an "if condition" as accepted above, 343 /// return true if the specified value dominates the block. We 344 /// don't handle the true generality of domination here, just a special case 345 /// which works well enough for us. 346 /// 347 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 348 /// see if V (which must be an instruction) and its recursive operands 349 /// that do not dominate BB have a combined cost lower than CostRemaining and 350 /// are non-trapping. If both are true, the instruction is inserted into the 351 /// set and true is returned. 352 /// 353 /// The cost for most non-trapping instructions is defined as 1 except for 354 /// Select whose cost is 2. 355 /// 356 /// After this function returns, CostRemaining is decreased by the cost of 357 /// V plus its non-dominating operands. If that cost is greater than 358 /// CostRemaining, false is returned and CostRemaining is undefined. 359 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 360 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 361 int &BudgetRemaining, 362 const TargetTransformInfo &TTI, 363 unsigned Depth = 0) { 364 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 365 // so limit the recursion depth. 366 // TODO: While this recursion limit does prevent pathological behavior, it 367 // would be better to track visited instructions to avoid cycles. 368 if (Depth == MaxSpeculationDepth) 369 return false; 370 371 Instruction *I = dyn_cast<Instruction>(V); 372 if (!I) { 373 // Non-instructions all dominate instructions, but not all constantexprs 374 // can be executed unconditionally. 375 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 376 if (C->canTrap()) 377 return false; 378 return true; 379 } 380 BasicBlock *PBB = I->getParent(); 381 382 // We don't want to allow weird loops that might have the "if condition" in 383 // the bottom of this block. 384 if (PBB == BB) 385 return false; 386 387 // If this instruction is defined in a block that contains an unconditional 388 // branch to BB, then it must be in the 'conditional' part of the "if 389 // statement". If not, it definitely dominates the region. 390 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 391 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 392 return true; 393 394 // If we have seen this instruction before, don't count it again. 395 if (AggressiveInsts.count(I)) 396 return true; 397 398 // Okay, it looks like the instruction IS in the "condition". Check to 399 // see if it's a cheap instruction to unconditionally compute, and if it 400 // only uses stuff defined outside of the condition. If so, hoist it out. 401 if (!isSafeToSpeculativelyExecute(I)) 402 return false; 403 404 BudgetRemaining -= ComputeSpeculationCost(I, TTI); 405 406 // Allow exactly one instruction to be speculated regardless of its cost 407 // (as long as it is safe to do so). 408 // This is intended to flatten the CFG even if the instruction is a division 409 // or other expensive operation. The speculation of an expensive instruction 410 // is expected to be undone in CodeGenPrepare if the speculation has not 411 // enabled further IR optimizations. 412 if (BudgetRemaining < 0 && 413 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 414 return false; 415 416 // Okay, we can only really hoist these out if their operands do 417 // not take us over the cost threshold. 418 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 419 if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI, 420 Depth + 1)) 421 return false; 422 // Okay, it's safe to do this! Remember this instruction. 423 AggressiveInsts.insert(I); 424 return true; 425 } 426 427 /// Extract ConstantInt from value, looking through IntToPtr 428 /// and PointerNullValue. Return NULL if value is not a constant int. 429 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 430 // Normal constant int. 431 ConstantInt *CI = dyn_cast<ConstantInt>(V); 432 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 433 return CI; 434 435 // This is some kind of pointer constant. Turn it into a pointer-sized 436 // ConstantInt if possible. 437 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 438 439 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 440 if (isa<ConstantPointerNull>(V)) 441 return ConstantInt::get(PtrTy, 0); 442 443 // IntToPtr const int. 444 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 445 if (CE->getOpcode() == Instruction::IntToPtr) 446 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 447 // The constant is very likely to have the right type already. 448 if (CI->getType() == PtrTy) 449 return CI; 450 else 451 return cast<ConstantInt>( 452 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 453 } 454 return nullptr; 455 } 456 457 namespace { 458 459 /// Given a chain of or (||) or and (&&) comparison of a value against a 460 /// constant, this will try to recover the information required for a switch 461 /// structure. 462 /// It will depth-first traverse the chain of comparison, seeking for patterns 463 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 464 /// representing the different cases for the switch. 465 /// Note that if the chain is composed of '||' it will build the set of elements 466 /// that matches the comparisons (i.e. any of this value validate the chain) 467 /// while for a chain of '&&' it will build the set elements that make the test 468 /// fail. 469 struct ConstantComparesGatherer { 470 const DataLayout &DL; 471 472 /// Value found for the switch comparison 473 Value *CompValue = nullptr; 474 475 /// Extra clause to be checked before the switch 476 Value *Extra = nullptr; 477 478 /// Set of integers to match in switch 479 SmallVector<ConstantInt *, 8> Vals; 480 481 /// Number of comparisons matched in the and/or chain 482 unsigned UsedICmps = 0; 483 484 /// Construct and compute the result for the comparison instruction Cond 485 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 486 gather(Cond); 487 } 488 489 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 490 ConstantComparesGatherer & 491 operator=(const ConstantComparesGatherer &) = delete; 492 493 private: 494 /// Try to set the current value used for the comparison, it succeeds only if 495 /// it wasn't set before or if the new value is the same as the old one 496 bool setValueOnce(Value *NewVal) { 497 if (CompValue && CompValue != NewVal) 498 return false; 499 CompValue = NewVal; 500 return (CompValue != nullptr); 501 } 502 503 /// Try to match Instruction "I" as a comparison against a constant and 504 /// populates the array Vals with the set of values that match (or do not 505 /// match depending on isEQ). 506 /// Return false on failure. On success, the Value the comparison matched 507 /// against is placed in CompValue. 508 /// If CompValue is already set, the function is expected to fail if a match 509 /// is found but the value compared to is different. 510 bool matchInstruction(Instruction *I, bool isEQ) { 511 // If this is an icmp against a constant, handle this as one of the cases. 512 ICmpInst *ICI; 513 ConstantInt *C; 514 if (!((ICI = dyn_cast<ICmpInst>(I)) && 515 (C = GetConstantInt(I->getOperand(1), DL)))) { 516 return false; 517 } 518 519 Value *RHSVal; 520 const APInt *RHSC; 521 522 // Pattern match a special case 523 // (x & ~2^z) == y --> x == y || x == y|2^z 524 // This undoes a transformation done by instcombine to fuse 2 compares. 525 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 526 // It's a little bit hard to see why the following transformations are 527 // correct. Here is a CVC3 program to verify them for 64-bit values: 528 529 /* 530 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 531 x : BITVECTOR(64); 532 y : BITVECTOR(64); 533 z : BITVECTOR(64); 534 mask : BITVECTOR(64) = BVSHL(ONE, z); 535 QUERY( (y & ~mask = y) => 536 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 537 ); 538 QUERY( (y | mask = y) => 539 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 540 ); 541 */ 542 543 // Please note that each pattern must be a dual implication (<--> or 544 // iff). One directional implication can create spurious matches. If the 545 // implication is only one-way, an unsatisfiable condition on the left 546 // side can imply a satisfiable condition on the right side. Dual 547 // implication ensures that satisfiable conditions are transformed to 548 // other satisfiable conditions and unsatisfiable conditions are 549 // transformed to other unsatisfiable conditions. 550 551 // Here is a concrete example of a unsatisfiable condition on the left 552 // implying a satisfiable condition on the right: 553 // 554 // mask = (1 << z) 555 // (x & ~mask) == y --> (x == y || x == (y | mask)) 556 // 557 // Substituting y = 3, z = 0 yields: 558 // (x & -2) == 3 --> (x == 3 || x == 2) 559 560 // Pattern match a special case: 561 /* 562 QUERY( (y & ~mask = y) => 563 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 564 ); 565 */ 566 if (match(ICI->getOperand(0), 567 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 568 APInt Mask = ~*RHSC; 569 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 570 // If we already have a value for the switch, it has to match! 571 if (!setValueOnce(RHSVal)) 572 return false; 573 574 Vals.push_back(C); 575 Vals.push_back( 576 ConstantInt::get(C->getContext(), 577 C->getValue() | Mask)); 578 UsedICmps++; 579 return true; 580 } 581 } 582 583 // Pattern match a special case: 584 /* 585 QUERY( (y | mask = y) => 586 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 587 ); 588 */ 589 if (match(ICI->getOperand(0), 590 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 591 APInt Mask = *RHSC; 592 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 593 // If we already have a value for the switch, it has to match! 594 if (!setValueOnce(RHSVal)) 595 return false; 596 597 Vals.push_back(C); 598 Vals.push_back(ConstantInt::get(C->getContext(), 599 C->getValue() & ~Mask)); 600 UsedICmps++; 601 return true; 602 } 603 } 604 605 // If we already have a value for the switch, it has to match! 606 if (!setValueOnce(ICI->getOperand(0))) 607 return false; 608 609 UsedICmps++; 610 Vals.push_back(C); 611 return ICI->getOperand(0); 612 } 613 614 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 615 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 616 ICI->getPredicate(), C->getValue()); 617 618 // Shift the range if the compare is fed by an add. This is the range 619 // compare idiom as emitted by instcombine. 620 Value *CandidateVal = I->getOperand(0); 621 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 622 Span = Span.subtract(*RHSC); 623 CandidateVal = RHSVal; 624 } 625 626 // If this is an and/!= check, then we are looking to build the set of 627 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 628 // x != 0 && x != 1. 629 if (!isEQ) 630 Span = Span.inverse(); 631 632 // If there are a ton of values, we don't want to make a ginormous switch. 633 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 634 return false; 635 } 636 637 // If we already have a value for the switch, it has to match! 638 if (!setValueOnce(CandidateVal)) 639 return false; 640 641 // Add all values from the range to the set 642 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 643 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 644 645 UsedICmps++; 646 return true; 647 } 648 649 /// Given a potentially 'or'd or 'and'd together collection of icmp 650 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 651 /// the value being compared, and stick the list constants into the Vals 652 /// vector. 653 /// One "Extra" case is allowed to differ from the other. 654 void gather(Value *V) { 655 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 656 657 // Keep a stack (SmallVector for efficiency) for depth-first traversal 658 SmallVector<Value *, 8> DFT; 659 SmallPtrSet<Value *, 8> Visited; 660 661 // Initialize 662 Visited.insert(V); 663 DFT.push_back(V); 664 665 while (!DFT.empty()) { 666 V = DFT.pop_back_val(); 667 668 if (Instruction *I = dyn_cast<Instruction>(V)) { 669 // If it is a || (or && depending on isEQ), process the operands. 670 Value *Op0, *Op1; 671 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 672 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 673 if (Visited.insert(Op1).second) 674 DFT.push_back(Op1); 675 if (Visited.insert(Op0).second) 676 DFT.push_back(Op0); 677 678 continue; 679 } 680 681 // Try to match the current instruction 682 if (matchInstruction(I, isEQ)) 683 // Match succeed, continue the loop 684 continue; 685 } 686 687 // One element of the sequence of || (or &&) could not be match as a 688 // comparison against the same value as the others. 689 // We allow only one "Extra" case to be checked before the switch 690 if (!Extra) { 691 Extra = V; 692 continue; 693 } 694 // Failed to parse a proper sequence, abort now 695 CompValue = nullptr; 696 break; 697 } 698 } 699 }; 700 701 } // end anonymous namespace 702 703 static void EraseTerminatorAndDCECond(Instruction *TI, 704 MemorySSAUpdater *MSSAU = nullptr) { 705 Instruction *Cond = nullptr; 706 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 707 Cond = dyn_cast<Instruction>(SI->getCondition()); 708 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 709 if (BI->isConditional()) 710 Cond = dyn_cast<Instruction>(BI->getCondition()); 711 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 712 Cond = dyn_cast<Instruction>(IBI->getAddress()); 713 } 714 715 TI->eraseFromParent(); 716 if (Cond) 717 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 718 } 719 720 /// Return true if the specified terminator checks 721 /// to see if a value is equal to constant integer value. 722 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 723 Value *CV = nullptr; 724 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 725 // Do not permit merging of large switch instructions into their 726 // predecessors unless there is only one predecessor. 727 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 728 CV = SI->getCondition(); 729 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 730 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 731 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 732 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 733 CV = ICI->getOperand(0); 734 } 735 736 // Unwrap any lossless ptrtoint cast. 737 if (CV) { 738 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 739 Value *Ptr = PTII->getPointerOperand(); 740 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 741 CV = Ptr; 742 } 743 } 744 return CV; 745 } 746 747 /// Given a value comparison instruction, 748 /// decode all of the 'cases' that it represents and return the 'default' block. 749 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 750 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 751 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 752 Cases.reserve(SI->getNumCases()); 753 for (auto Case : SI->cases()) 754 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 755 Case.getCaseSuccessor())); 756 return SI->getDefaultDest(); 757 } 758 759 BranchInst *BI = cast<BranchInst>(TI); 760 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 761 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 762 Cases.push_back(ValueEqualityComparisonCase( 763 GetConstantInt(ICI->getOperand(1), DL), Succ)); 764 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 765 } 766 767 /// Given a vector of bb/value pairs, remove any entries 768 /// in the list that match the specified block. 769 static void 770 EliminateBlockCases(BasicBlock *BB, 771 std::vector<ValueEqualityComparisonCase> &Cases) { 772 llvm::erase_value(Cases, BB); 773 } 774 775 /// Return true if there are any keys in C1 that exist in C2 as well. 776 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 777 std::vector<ValueEqualityComparisonCase> &C2) { 778 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 779 780 // Make V1 be smaller than V2. 781 if (V1->size() > V2->size()) 782 std::swap(V1, V2); 783 784 if (V1->empty()) 785 return false; 786 if (V1->size() == 1) { 787 // Just scan V2. 788 ConstantInt *TheVal = (*V1)[0].Value; 789 for (unsigned i = 0, e = V2->size(); i != e; ++i) 790 if (TheVal == (*V2)[i].Value) 791 return true; 792 } 793 794 // Otherwise, just sort both lists and compare element by element. 795 array_pod_sort(V1->begin(), V1->end()); 796 array_pod_sort(V2->begin(), V2->end()); 797 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 798 while (i1 != e1 && i2 != e2) { 799 if ((*V1)[i1].Value == (*V2)[i2].Value) 800 return true; 801 if ((*V1)[i1].Value < (*V2)[i2].Value) 802 ++i1; 803 else 804 ++i2; 805 } 806 return false; 807 } 808 809 // Set branch weights on SwitchInst. This sets the metadata if there is at 810 // least one non-zero weight. 811 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 812 // Check that there is at least one non-zero weight. Otherwise, pass 813 // nullptr to setMetadata which will erase the existing metadata. 814 MDNode *N = nullptr; 815 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 816 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 817 SI->setMetadata(LLVMContext::MD_prof, N); 818 } 819 820 // Similar to the above, but for branch and select instructions that take 821 // exactly 2 weights. 822 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 823 uint32_t FalseWeight) { 824 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 825 // Check that there is at least one non-zero weight. Otherwise, pass 826 // nullptr to setMetadata which will erase the existing metadata. 827 MDNode *N = nullptr; 828 if (TrueWeight || FalseWeight) 829 N = MDBuilder(I->getParent()->getContext()) 830 .createBranchWeights(TrueWeight, FalseWeight); 831 I->setMetadata(LLVMContext::MD_prof, N); 832 } 833 834 /// If TI is known to be a terminator instruction and its block is known to 835 /// only have a single predecessor block, check to see if that predecessor is 836 /// also a value comparison with the same value, and if that comparison 837 /// determines the outcome of this comparison. If so, simplify TI. This does a 838 /// very limited form of jump threading. 839 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 840 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 841 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 842 if (!PredVal) 843 return false; // Not a value comparison in predecessor. 844 845 Value *ThisVal = isValueEqualityComparison(TI); 846 assert(ThisVal && "This isn't a value comparison!!"); 847 if (ThisVal != PredVal) 848 return false; // Different predicates. 849 850 // TODO: Preserve branch weight metadata, similarly to how 851 // FoldValueComparisonIntoPredecessors preserves it. 852 853 // Find out information about when control will move from Pred to TI's block. 854 std::vector<ValueEqualityComparisonCase> PredCases; 855 BasicBlock *PredDef = 856 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 857 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 858 859 // Find information about how control leaves this block. 860 std::vector<ValueEqualityComparisonCase> ThisCases; 861 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 862 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 863 864 // If TI's block is the default block from Pred's comparison, potentially 865 // simplify TI based on this knowledge. 866 if (PredDef == TI->getParent()) { 867 // If we are here, we know that the value is none of those cases listed in 868 // PredCases. If there are any cases in ThisCases that are in PredCases, we 869 // can simplify TI. 870 if (!ValuesOverlap(PredCases, ThisCases)) 871 return false; 872 873 if (isa<BranchInst>(TI)) { 874 // Okay, one of the successors of this condbr is dead. Convert it to a 875 // uncond br. 876 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 877 // Insert the new branch. 878 Instruction *NI = Builder.CreateBr(ThisDef); 879 (void)NI; 880 881 // Remove PHI node entries for the dead edge. 882 ThisCases[0].Dest->removePredecessor(PredDef); 883 884 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 885 << "Through successor TI: " << *TI << "Leaving: " << *NI 886 << "\n"); 887 888 EraseTerminatorAndDCECond(TI); 889 890 if (DTU) 891 DTU->applyUpdates( 892 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 893 894 return true; 895 } 896 897 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 898 // Okay, TI has cases that are statically dead, prune them away. 899 SmallPtrSet<Constant *, 16> DeadCases; 900 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 901 DeadCases.insert(PredCases[i].Value); 902 903 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 904 << "Through successor TI: " << *TI); 905 906 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 907 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 908 --i; 909 auto *Successor = i->getCaseSuccessor(); 910 ++NumPerSuccessorCases[Successor]; 911 if (DeadCases.count(i->getCaseValue())) { 912 Successor->removePredecessor(PredDef); 913 SI.removeCase(i); 914 --NumPerSuccessorCases[Successor]; 915 } 916 } 917 918 std::vector<DominatorTree::UpdateType> Updates; 919 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 920 if (I.second == 0) 921 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 922 if (DTU) 923 DTU->applyUpdates(Updates); 924 925 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 926 return true; 927 } 928 929 // Otherwise, TI's block must correspond to some matched value. Find out 930 // which value (or set of values) this is. 931 ConstantInt *TIV = nullptr; 932 BasicBlock *TIBB = TI->getParent(); 933 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 934 if (PredCases[i].Dest == TIBB) { 935 if (TIV) 936 return false; // Cannot handle multiple values coming to this block. 937 TIV = PredCases[i].Value; 938 } 939 assert(TIV && "No edge from pred to succ?"); 940 941 // Okay, we found the one constant that our value can be if we get into TI's 942 // BB. Find out which successor will unconditionally be branched to. 943 BasicBlock *TheRealDest = nullptr; 944 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 945 if (ThisCases[i].Value == TIV) { 946 TheRealDest = ThisCases[i].Dest; 947 break; 948 } 949 950 // If not handled by any explicit cases, it is handled by the default case. 951 if (!TheRealDest) 952 TheRealDest = ThisDef; 953 954 SmallSetVector<BasicBlock *, 2> RemovedSuccs; 955 956 // Remove PHI node entries for dead edges. 957 BasicBlock *CheckEdge = TheRealDest; 958 for (BasicBlock *Succ : successors(TIBB)) 959 if (Succ != CheckEdge) { 960 if (Succ != TheRealDest) 961 RemovedSuccs.insert(Succ); 962 Succ->removePredecessor(TIBB); 963 } else 964 CheckEdge = nullptr; 965 966 // Insert the new branch. 967 Instruction *NI = Builder.CreateBr(TheRealDest); 968 (void)NI; 969 970 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 971 << "Through successor TI: " << *TI << "Leaving: " << *NI 972 << "\n"); 973 974 EraseTerminatorAndDCECond(TI); 975 if (DTU) { 976 SmallVector<DominatorTree::UpdateType, 2> Updates; 977 Updates.reserve(RemovedSuccs.size()); 978 for (auto *RemovedSucc : RemovedSuccs) 979 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 980 DTU->applyUpdates(Updates); 981 } 982 return true; 983 } 984 985 namespace { 986 987 /// This class implements a stable ordering of constant 988 /// integers that does not depend on their address. This is important for 989 /// applications that sort ConstantInt's to ensure uniqueness. 990 struct ConstantIntOrdering { 991 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 992 return LHS->getValue().ult(RHS->getValue()); 993 } 994 }; 995 996 } // end anonymous namespace 997 998 static int ConstantIntSortPredicate(ConstantInt *const *P1, 999 ConstantInt *const *P2) { 1000 const ConstantInt *LHS = *P1; 1001 const ConstantInt *RHS = *P2; 1002 if (LHS == RHS) 1003 return 0; 1004 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1005 } 1006 1007 static inline bool HasBranchWeights(const Instruction *I) { 1008 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1009 if (ProfMD && ProfMD->getOperand(0)) 1010 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1011 return MDS->getString().equals("branch_weights"); 1012 1013 return false; 1014 } 1015 1016 /// Get Weights of a given terminator, the default weight is at the front 1017 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1018 /// metadata. 1019 static void GetBranchWeights(Instruction *TI, 1020 SmallVectorImpl<uint64_t> &Weights) { 1021 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1022 assert(MD); 1023 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1024 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1025 Weights.push_back(CI->getValue().getZExtValue()); 1026 } 1027 1028 // If TI is a conditional eq, the default case is the false case, 1029 // and the corresponding branch-weight data is at index 2. We swap the 1030 // default weight to be the first entry. 1031 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1032 assert(Weights.size() == 2); 1033 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1034 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1035 std::swap(Weights.front(), Weights.back()); 1036 } 1037 } 1038 1039 /// Keep halving the weights until all can fit in uint32_t. 1040 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1041 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1042 if (Max > UINT_MAX) { 1043 unsigned Offset = 32 - countLeadingZeros(Max); 1044 for (uint64_t &I : Weights) 1045 I >>= Offset; 1046 } 1047 } 1048 1049 /// The specified terminator is a value equality comparison instruction 1050 /// (either a switch or a branch on "X == c"). 1051 /// See if any of the predecessors of the terminator block are value comparisons 1052 /// on the same value. If so, and if safe to do so, fold them together. 1053 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1054 IRBuilder<> &Builder) { 1055 BasicBlock *BB = TI->getParent(); 1056 Value *CV = isValueEqualityComparison(TI); // CondVal 1057 assert(CV && "Not a comparison?"); 1058 1059 bool Changed = false; 1060 1061 auto _ = make_scope_exit([&]() { 1062 if (Changed) 1063 ++NumFoldValueComparisonIntoPredecessors; 1064 }); 1065 1066 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1067 while (!Preds.empty()) { 1068 BasicBlock *Pred = Preds.pop_back_val(); 1069 1070 // See if the predecessor is a comparison with the same value. 1071 Instruction *PTI = Pred->getTerminator(); 1072 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1073 1074 if (PCV == CV && TI != PTI) { 1075 SmallSetVector<BasicBlock*, 4> FailBlocks; 1076 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1077 for (auto *Succ : FailBlocks) { 1078 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", 1079 DTU)) 1080 return false; 1081 } 1082 } 1083 1084 std::vector<DominatorTree::UpdateType> Updates; 1085 1086 // Figure out which 'cases' to copy from SI to PSI. 1087 std::vector<ValueEqualityComparisonCase> BBCases; 1088 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1089 1090 std::vector<ValueEqualityComparisonCase> PredCases; 1091 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1092 1093 // Based on whether the default edge from PTI goes to BB or not, fill in 1094 // PredCases and PredDefault with the new switch cases we would like to 1095 // build. 1096 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1097 1098 // Update the branch weight metadata along the way 1099 SmallVector<uint64_t, 8> Weights; 1100 bool PredHasWeights = HasBranchWeights(PTI); 1101 bool SuccHasWeights = HasBranchWeights(TI); 1102 1103 if (PredHasWeights) { 1104 GetBranchWeights(PTI, Weights); 1105 // branch-weight metadata is inconsistent here. 1106 if (Weights.size() != 1 + PredCases.size()) 1107 PredHasWeights = SuccHasWeights = false; 1108 } else if (SuccHasWeights) 1109 // If there are no predecessor weights but there are successor weights, 1110 // populate Weights with 1, which will later be scaled to the sum of 1111 // successor's weights 1112 Weights.assign(1 + PredCases.size(), 1); 1113 1114 SmallVector<uint64_t, 8> SuccWeights; 1115 if (SuccHasWeights) { 1116 GetBranchWeights(TI, SuccWeights); 1117 // branch-weight metadata is inconsistent here. 1118 if (SuccWeights.size() != 1 + BBCases.size()) 1119 PredHasWeights = SuccHasWeights = false; 1120 } else if (PredHasWeights) 1121 SuccWeights.assign(1 + BBCases.size(), 1); 1122 1123 if (PredDefault == BB) { 1124 // If this is the default destination from PTI, only the edges in TI 1125 // that don't occur in PTI, or that branch to BB will be activated. 1126 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1127 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1128 if (PredCases[i].Dest != BB) 1129 PTIHandled.insert(PredCases[i].Value); 1130 else { 1131 // The default destination is BB, we don't need explicit targets. 1132 std::swap(PredCases[i], PredCases.back()); 1133 1134 if (PredHasWeights || SuccHasWeights) { 1135 // Increase weight for the default case. 1136 Weights[0] += Weights[i + 1]; 1137 std::swap(Weights[i + 1], Weights.back()); 1138 Weights.pop_back(); 1139 } 1140 1141 PredCases.pop_back(); 1142 --i; 1143 --e; 1144 } 1145 1146 // Reconstruct the new switch statement we will be building. 1147 if (PredDefault != BBDefault) { 1148 PredDefault->removePredecessor(Pred); 1149 if (PredDefault != BB) 1150 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1151 PredDefault = BBDefault; 1152 ++NewSuccessors[BBDefault]; 1153 } 1154 1155 unsigned CasesFromPred = Weights.size(); 1156 uint64_t ValidTotalSuccWeight = 0; 1157 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1158 if (!PTIHandled.count(BBCases[i].Value) && 1159 BBCases[i].Dest != BBDefault) { 1160 PredCases.push_back(BBCases[i]); 1161 ++NewSuccessors[BBCases[i].Dest]; 1162 if (SuccHasWeights || PredHasWeights) { 1163 // The default weight is at index 0, so weight for the ith case 1164 // should be at index i+1. Scale the cases from successor by 1165 // PredDefaultWeight (Weights[0]). 1166 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1167 ValidTotalSuccWeight += SuccWeights[i + 1]; 1168 } 1169 } 1170 1171 if (SuccHasWeights || PredHasWeights) { 1172 ValidTotalSuccWeight += SuccWeights[0]; 1173 // Scale the cases from predecessor by ValidTotalSuccWeight. 1174 for (unsigned i = 1; i < CasesFromPred; ++i) 1175 Weights[i] *= ValidTotalSuccWeight; 1176 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1177 Weights[0] *= SuccWeights[0]; 1178 } 1179 } else { 1180 // If this is not the default destination from PSI, only the edges 1181 // in SI that occur in PSI with a destination of BB will be 1182 // activated. 1183 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1184 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1185 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1186 if (PredCases[i].Dest == BB) { 1187 PTIHandled.insert(PredCases[i].Value); 1188 1189 if (PredHasWeights || SuccHasWeights) { 1190 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1191 std::swap(Weights[i + 1], Weights.back()); 1192 Weights.pop_back(); 1193 } 1194 1195 std::swap(PredCases[i], PredCases.back()); 1196 PredCases.pop_back(); 1197 --i; 1198 --e; 1199 } 1200 1201 // Okay, now we know which constants were sent to BB from the 1202 // predecessor. Figure out where they will all go now. 1203 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1204 if (PTIHandled.count(BBCases[i].Value)) { 1205 // If this is one we are capable of getting... 1206 if (PredHasWeights || SuccHasWeights) 1207 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1208 PredCases.push_back(BBCases[i]); 1209 ++NewSuccessors[BBCases[i].Dest]; 1210 PTIHandled.erase( 1211 BBCases[i].Value); // This constant is taken care of 1212 } 1213 1214 // If there are any constants vectored to BB that TI doesn't handle, 1215 // they must go to the default destination of TI. 1216 for (ConstantInt *I : PTIHandled) { 1217 if (PredHasWeights || SuccHasWeights) 1218 Weights.push_back(WeightsForHandled[I]); 1219 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1220 ++NewSuccessors[BBDefault]; 1221 } 1222 } 1223 1224 // Okay, at this point, we know which new successor Pred will get. Make 1225 // sure we update the number of entries in the PHI nodes for these 1226 // successors. 1227 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1228 NewSuccessors) { 1229 for (auto I : seq(0, NewSuccessor.second)) { 1230 (void)I; 1231 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1232 } 1233 if (!is_contained(successors(Pred), NewSuccessor.first)) 1234 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1235 } 1236 1237 Builder.SetInsertPoint(PTI); 1238 // Convert pointer to int before we switch. 1239 if (CV->getType()->isPointerTy()) { 1240 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1241 "magicptr"); 1242 } 1243 1244 // Now that the successors are updated, create the new Switch instruction. 1245 SwitchInst *NewSI = 1246 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1247 NewSI->setDebugLoc(PTI->getDebugLoc()); 1248 for (ValueEqualityComparisonCase &V : PredCases) 1249 NewSI->addCase(V.Value, V.Dest); 1250 1251 if (PredHasWeights || SuccHasWeights) { 1252 // Halve the weights if any of them cannot fit in an uint32_t 1253 FitWeights(Weights); 1254 1255 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1256 1257 setBranchWeights(NewSI, MDWeights); 1258 } 1259 1260 EraseTerminatorAndDCECond(PTI); 1261 1262 // Okay, last check. If BB is still a successor of PSI, then we must 1263 // have an infinite loop case. If so, add an infinitely looping block 1264 // to handle the case to preserve the behavior of the code. 1265 BasicBlock *InfLoopBlock = nullptr; 1266 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1267 if (NewSI->getSuccessor(i) == BB) { 1268 if (!InfLoopBlock) { 1269 // Insert it at the end of the function, because it's either code, 1270 // or it won't matter if it's hot. :) 1271 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1272 BB->getParent()); 1273 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1274 Updates.push_back( 1275 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1276 } 1277 NewSI->setSuccessor(i, InfLoopBlock); 1278 } 1279 1280 if (InfLoopBlock) 1281 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1282 1283 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1284 1285 if (DTU) 1286 DTU->applyUpdates(Updates); 1287 1288 Changed = true; 1289 } 1290 } 1291 return Changed; 1292 } 1293 1294 // If we would need to insert a select that uses the value of this invoke 1295 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1296 // can't hoist the invoke, as there is nowhere to put the select in this case. 1297 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1298 Instruction *I1, Instruction *I2) { 1299 for (BasicBlock *Succ : successors(BB1)) { 1300 for (const PHINode &PN : Succ->phis()) { 1301 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1302 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1303 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1304 return false; 1305 } 1306 } 1307 } 1308 return true; 1309 } 1310 1311 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1312 1313 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1314 /// in the two blocks up into the branch block. The caller of this function 1315 /// guarantees that BI's block dominates BB1 and BB2. 1316 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1317 const TargetTransformInfo &TTI) { 1318 // This does very trivial matching, with limited scanning, to find identical 1319 // instructions in the two blocks. In particular, we don't want to get into 1320 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1321 // such, we currently just scan for obviously identical instructions in an 1322 // identical order. 1323 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1324 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1325 1326 BasicBlock::iterator BB1_Itr = BB1->begin(); 1327 BasicBlock::iterator BB2_Itr = BB2->begin(); 1328 1329 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1330 // Skip debug info if it is not identical. 1331 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1332 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1333 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1334 while (isa<DbgInfoIntrinsic>(I1)) 1335 I1 = &*BB1_Itr++; 1336 while (isa<DbgInfoIntrinsic>(I2)) 1337 I2 = &*BB2_Itr++; 1338 } 1339 // FIXME: Can we define a safety predicate for CallBr? 1340 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1341 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1342 isa<CallBrInst>(I1)) 1343 return false; 1344 1345 BasicBlock *BIParent = BI->getParent(); 1346 1347 bool Changed = false; 1348 1349 auto _ = make_scope_exit([&]() { 1350 if (Changed) 1351 ++NumHoistCommonCode; 1352 }); 1353 1354 do { 1355 // If we are hoisting the terminator instruction, don't move one (making a 1356 // broken BB), instead clone it, and remove BI. 1357 if (I1->isTerminator()) 1358 goto HoistTerminator; 1359 1360 // If we're going to hoist a call, make sure that the two instructions we're 1361 // commoning/hoisting are both marked with musttail, or neither of them is 1362 // marked as such. Otherwise, we might end up in a situation where we hoist 1363 // from a block where the terminator is a `ret` to a block where the terminator 1364 // is a `br`, and `musttail` calls expect to be followed by a return. 1365 auto *C1 = dyn_cast<CallInst>(I1); 1366 auto *C2 = dyn_cast<CallInst>(I2); 1367 if (C1 && C2) 1368 if (C1->isMustTailCall() != C2->isMustTailCall()) 1369 return Changed; 1370 1371 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1372 return Changed; 1373 1374 // If any of the two call sites has nomerge attribute, stop hoisting. 1375 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1376 if (CB1->cannotMerge()) 1377 return Changed; 1378 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1379 if (CB2->cannotMerge()) 1380 return Changed; 1381 1382 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1383 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1384 // The debug location is an integral part of a debug info intrinsic 1385 // and can't be separated from it or replaced. Instead of attempting 1386 // to merge locations, simply hoist both copies of the intrinsic. 1387 BIParent->getInstList().splice(BI->getIterator(), 1388 BB1->getInstList(), I1); 1389 BIParent->getInstList().splice(BI->getIterator(), 1390 BB2->getInstList(), I2); 1391 Changed = true; 1392 } else { 1393 // For a normal instruction, we just move one to right before the branch, 1394 // then replace all uses of the other with the first. Finally, we remove 1395 // the now redundant second instruction. 1396 BIParent->getInstList().splice(BI->getIterator(), 1397 BB1->getInstList(), I1); 1398 if (!I2->use_empty()) 1399 I2->replaceAllUsesWith(I1); 1400 I1->andIRFlags(I2); 1401 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1402 LLVMContext::MD_range, 1403 LLVMContext::MD_fpmath, 1404 LLVMContext::MD_invariant_load, 1405 LLVMContext::MD_nonnull, 1406 LLVMContext::MD_invariant_group, 1407 LLVMContext::MD_align, 1408 LLVMContext::MD_dereferenceable, 1409 LLVMContext::MD_dereferenceable_or_null, 1410 LLVMContext::MD_mem_parallel_loop_access, 1411 LLVMContext::MD_access_group, 1412 LLVMContext::MD_preserve_access_index}; 1413 combineMetadata(I1, I2, KnownIDs, true); 1414 1415 // I1 and I2 are being combined into a single instruction. Its debug 1416 // location is the merged locations of the original instructions. 1417 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1418 1419 I2->eraseFromParent(); 1420 Changed = true; 1421 } 1422 ++NumHoistCommonInstrs; 1423 1424 I1 = &*BB1_Itr++; 1425 I2 = &*BB2_Itr++; 1426 // Skip debug info if it is not identical. 1427 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1428 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1429 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1430 while (isa<DbgInfoIntrinsic>(I1)) 1431 I1 = &*BB1_Itr++; 1432 while (isa<DbgInfoIntrinsic>(I2)) 1433 I2 = &*BB2_Itr++; 1434 } 1435 } while (I1->isIdenticalToWhenDefined(I2)); 1436 1437 return true; 1438 1439 HoistTerminator: 1440 // It may not be possible to hoist an invoke. 1441 // FIXME: Can we define a safety predicate for CallBr? 1442 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1443 return Changed; 1444 1445 // TODO: callbr hoisting currently disabled pending further study. 1446 if (isa<CallBrInst>(I1)) 1447 return Changed; 1448 1449 for (BasicBlock *Succ : successors(BB1)) { 1450 for (PHINode &PN : Succ->phis()) { 1451 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1452 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1453 if (BB1V == BB2V) 1454 continue; 1455 1456 // Check for passingValueIsAlwaysUndefined here because we would rather 1457 // eliminate undefined control flow then converting it to a select. 1458 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1459 passingValueIsAlwaysUndefined(BB2V, &PN)) 1460 return Changed; 1461 1462 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1463 return Changed; 1464 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1465 return Changed; 1466 } 1467 } 1468 1469 // Okay, it is safe to hoist the terminator. 1470 Instruction *NT = I1->clone(); 1471 BIParent->getInstList().insert(BI->getIterator(), NT); 1472 if (!NT->getType()->isVoidTy()) { 1473 I1->replaceAllUsesWith(NT); 1474 I2->replaceAllUsesWith(NT); 1475 NT->takeName(I1); 1476 } 1477 Changed = true; 1478 ++NumHoistCommonInstrs; 1479 1480 // Ensure terminator gets a debug location, even an unknown one, in case 1481 // it involves inlinable calls. 1482 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1483 1484 // PHIs created below will adopt NT's merged DebugLoc. 1485 IRBuilder<NoFolder> Builder(NT); 1486 1487 // Hoisting one of the terminators from our successor is a great thing. 1488 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1489 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1490 // nodes, so we insert select instruction to compute the final result. 1491 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1492 for (BasicBlock *Succ : successors(BB1)) { 1493 for (PHINode &PN : Succ->phis()) { 1494 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1495 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1496 if (BB1V == BB2V) 1497 continue; 1498 1499 // These values do not agree. Insert a select instruction before NT 1500 // that determines the right value. 1501 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1502 if (!SI) { 1503 // Propagate fast-math-flags from phi node to its replacement select. 1504 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1505 if (isa<FPMathOperator>(PN)) 1506 Builder.setFastMathFlags(PN.getFastMathFlags()); 1507 1508 SI = cast<SelectInst>( 1509 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1510 BB1V->getName() + "." + BB2V->getName(), BI)); 1511 } 1512 1513 // Make the PHI node use the select for all incoming values for BB1/BB2 1514 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1515 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1516 PN.setIncomingValue(i, SI); 1517 } 1518 } 1519 1520 SmallVector<DominatorTree::UpdateType, 4> Updates; 1521 1522 // Update any PHI nodes in our new successors. 1523 for (BasicBlock *Succ : successors(BB1)) { 1524 AddPredecessorToBlock(Succ, BIParent, BB1); 1525 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1526 } 1527 for (BasicBlock *Succ : successors(BI)) 1528 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1529 1530 EraseTerminatorAndDCECond(BI); 1531 if (DTU) 1532 DTU->applyUpdates(Updates); 1533 return Changed; 1534 } 1535 1536 // Check lifetime markers. 1537 static bool isLifeTimeMarker(const Instruction *I) { 1538 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1539 switch (II->getIntrinsicID()) { 1540 default: 1541 break; 1542 case Intrinsic::lifetime_start: 1543 case Intrinsic::lifetime_end: 1544 return true; 1545 } 1546 } 1547 return false; 1548 } 1549 1550 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1551 // into variables. 1552 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1553 int OpIdx) { 1554 return !isa<IntrinsicInst>(I); 1555 } 1556 1557 // All instructions in Insts belong to different blocks that all unconditionally 1558 // branch to a common successor. Analyze each instruction and return true if it 1559 // would be possible to sink them into their successor, creating one common 1560 // instruction instead. For every value that would be required to be provided by 1561 // PHI node (because an operand varies in each input block), add to PHIOperands. 1562 static bool canSinkInstructions( 1563 ArrayRef<Instruction *> Insts, 1564 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1565 // Prune out obviously bad instructions to move. Each instruction must have 1566 // exactly zero or one use, and we check later that use is by a single, common 1567 // PHI instruction in the successor. 1568 bool HasUse = !Insts.front()->user_empty(); 1569 for (auto *I : Insts) { 1570 // These instructions may change or break semantics if moved. 1571 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1572 I->getType()->isTokenTy()) 1573 return false; 1574 1575 // Conservatively return false if I is an inline-asm instruction. Sinking 1576 // and merging inline-asm instructions can potentially create arguments 1577 // that cannot satisfy the inline-asm constraints. 1578 // If the instruction has nomerge attribute, return false. 1579 if (const auto *C = dyn_cast<CallBase>(I)) 1580 if (C->isInlineAsm() || C->cannotMerge()) 1581 return false; 1582 1583 // Each instruction must have zero or one use. 1584 if (HasUse && !I->hasOneUse()) 1585 return false; 1586 if (!HasUse && !I->user_empty()) 1587 return false; 1588 } 1589 1590 const Instruction *I0 = Insts.front(); 1591 for (auto *I : Insts) 1592 if (!I->isSameOperationAs(I0)) 1593 return false; 1594 1595 // All instructions in Insts are known to be the same opcode. If they have a 1596 // use, check that the only user is a PHI or in the same block as the 1597 // instruction, because if a user is in the same block as an instruction we're 1598 // contemplating sinking, it must already be determined to be sinkable. 1599 if (HasUse) { 1600 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1601 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1602 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1603 auto *U = cast<Instruction>(*I->user_begin()); 1604 return (PNUse && 1605 PNUse->getParent() == Succ && 1606 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1607 U->getParent() == I->getParent(); 1608 })) 1609 return false; 1610 } 1611 1612 // Because SROA can't handle speculating stores of selects, try not to sink 1613 // loads, stores or lifetime markers of allocas when we'd have to create a 1614 // PHI for the address operand. Also, because it is likely that loads or 1615 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1616 // them. 1617 // This can cause code churn which can have unintended consequences down 1618 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1619 // FIXME: This is a workaround for a deficiency in SROA - see 1620 // https://llvm.org/bugs/show_bug.cgi?id=30188 1621 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1622 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1623 })) 1624 return false; 1625 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1626 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1627 })) 1628 return false; 1629 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1630 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1631 })) 1632 return false; 1633 1634 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1635 Value *Op = I0->getOperand(OI); 1636 if (Op->getType()->isTokenTy()) 1637 // Don't touch any operand of token type. 1638 return false; 1639 1640 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1641 assert(I->getNumOperands() == I0->getNumOperands()); 1642 return I->getOperand(OI) == I0->getOperand(OI); 1643 }; 1644 if (!all_of(Insts, SameAsI0)) { 1645 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1646 !canReplaceOperandWithVariable(I0, OI)) 1647 // We can't create a PHI from this GEP. 1648 return false; 1649 // Don't create indirect calls! The called value is the final operand. 1650 if (isa<CallBase>(I0) && OI == OE - 1) { 1651 // FIXME: if the call was *already* indirect, we should do this. 1652 return false; 1653 } 1654 for (auto *I : Insts) 1655 PHIOperands[I].push_back(I->getOperand(OI)); 1656 } 1657 } 1658 return true; 1659 } 1660 1661 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1662 // instruction of every block in Blocks to their common successor, commoning 1663 // into one instruction. 1664 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1665 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1666 1667 // canSinkLastInstruction returning true guarantees that every block has at 1668 // least one non-terminator instruction. 1669 SmallVector<Instruction*,4> Insts; 1670 for (auto *BB : Blocks) { 1671 Instruction *I = BB->getTerminator(); 1672 do { 1673 I = I->getPrevNode(); 1674 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1675 if (!isa<DbgInfoIntrinsic>(I)) 1676 Insts.push_back(I); 1677 } 1678 1679 // The only checking we need to do now is that all users of all instructions 1680 // are the same PHI node. canSinkLastInstruction should have checked this but 1681 // it is slightly over-aggressive - it gets confused by commutative instructions 1682 // so double-check it here. 1683 Instruction *I0 = Insts.front(); 1684 if (!I0->user_empty()) { 1685 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1686 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1687 auto *U = cast<Instruction>(*I->user_begin()); 1688 return U == PNUse; 1689 })) 1690 return false; 1691 } 1692 1693 // We don't need to do any more checking here; canSinkLastInstruction should 1694 // have done it all for us. 1695 SmallVector<Value*, 4> NewOperands; 1696 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1697 // This check is different to that in canSinkLastInstruction. There, we 1698 // cared about the global view once simplifycfg (and instcombine) have 1699 // completed - it takes into account PHIs that become trivially 1700 // simplifiable. However here we need a more local view; if an operand 1701 // differs we create a PHI and rely on instcombine to clean up the very 1702 // small mess we may make. 1703 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1704 return I->getOperand(O) != I0->getOperand(O); 1705 }); 1706 if (!NeedPHI) { 1707 NewOperands.push_back(I0->getOperand(O)); 1708 continue; 1709 } 1710 1711 // Create a new PHI in the successor block and populate it. 1712 auto *Op = I0->getOperand(O); 1713 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1714 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1715 Op->getName() + ".sink", &BBEnd->front()); 1716 for (auto *I : Insts) 1717 PN->addIncoming(I->getOperand(O), I->getParent()); 1718 NewOperands.push_back(PN); 1719 } 1720 1721 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1722 // and move it to the start of the successor block. 1723 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1724 I0->getOperandUse(O).set(NewOperands[O]); 1725 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1726 1727 // Update metadata and IR flags, and merge debug locations. 1728 for (auto *I : Insts) 1729 if (I != I0) { 1730 // The debug location for the "common" instruction is the merged locations 1731 // of all the commoned instructions. We start with the original location 1732 // of the "common" instruction and iteratively merge each location in the 1733 // loop below. 1734 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1735 // However, as N-way merge for CallInst is rare, so we use simplified API 1736 // instead of using complex API for N-way merge. 1737 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1738 combineMetadataForCSE(I0, I, true); 1739 I0->andIRFlags(I); 1740 } 1741 1742 if (!I0->user_empty()) { 1743 // canSinkLastInstruction checked that all instructions were used by 1744 // one and only one PHI node. Find that now, RAUW it to our common 1745 // instruction and nuke it. 1746 auto *PN = cast<PHINode>(*I0->user_begin()); 1747 PN->replaceAllUsesWith(I0); 1748 PN->eraseFromParent(); 1749 } 1750 1751 // Finally nuke all instructions apart from the common instruction. 1752 for (auto *I : Insts) 1753 if (I != I0) 1754 I->eraseFromParent(); 1755 1756 return true; 1757 } 1758 1759 namespace { 1760 1761 // LockstepReverseIterator - Iterates through instructions 1762 // in a set of blocks in reverse order from the first non-terminator. 1763 // For example (assume all blocks have size n): 1764 // LockstepReverseIterator I([B1, B2, B3]); 1765 // *I-- = [B1[n], B2[n], B3[n]]; 1766 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1767 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1768 // ... 1769 class LockstepReverseIterator { 1770 ArrayRef<BasicBlock*> Blocks; 1771 SmallVector<Instruction*,4> Insts; 1772 bool Fail; 1773 1774 public: 1775 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1776 reset(); 1777 } 1778 1779 void reset() { 1780 Fail = false; 1781 Insts.clear(); 1782 for (auto *BB : Blocks) { 1783 Instruction *Inst = BB->getTerminator(); 1784 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1785 Inst = Inst->getPrevNode(); 1786 if (!Inst) { 1787 // Block wasn't big enough. 1788 Fail = true; 1789 return; 1790 } 1791 Insts.push_back(Inst); 1792 } 1793 } 1794 1795 bool isValid() const { 1796 return !Fail; 1797 } 1798 1799 void operator--() { 1800 if (Fail) 1801 return; 1802 for (auto *&Inst : Insts) { 1803 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1804 Inst = Inst->getPrevNode(); 1805 // Already at beginning of block. 1806 if (!Inst) { 1807 Fail = true; 1808 return; 1809 } 1810 } 1811 } 1812 1813 ArrayRef<Instruction*> operator * () const { 1814 return Insts; 1815 } 1816 }; 1817 1818 } // end anonymous namespace 1819 1820 /// Check whether BB's predecessors end with unconditional branches. If it is 1821 /// true, sink any common code from the predecessors to BB. 1822 /// We also allow one predecessor to end with conditional branch (but no more 1823 /// than one). 1824 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1825 DomTreeUpdater *DTU) { 1826 // We support two situations: 1827 // (1) all incoming arcs are unconditional 1828 // (2) one incoming arc is conditional 1829 // 1830 // (2) is very common in switch defaults and 1831 // else-if patterns; 1832 // 1833 // if (a) f(1); 1834 // else if (b) f(2); 1835 // 1836 // produces: 1837 // 1838 // [if] 1839 // / \ 1840 // [f(1)] [if] 1841 // | | \ 1842 // | | | 1843 // | [f(2)]| 1844 // \ | / 1845 // [ end ] 1846 // 1847 // [end] has two unconditional predecessor arcs and one conditional. The 1848 // conditional refers to the implicit empty 'else' arc. This conditional 1849 // arc can also be caused by an empty default block in a switch. 1850 // 1851 // In this case, we attempt to sink code from all *unconditional* arcs. 1852 // If we can sink instructions from these arcs (determined during the scan 1853 // phase below) we insert a common successor for all unconditional arcs and 1854 // connect that to [end], to enable sinking: 1855 // 1856 // [if] 1857 // / \ 1858 // [x(1)] [if] 1859 // | | \ 1860 // | | \ 1861 // | [x(2)] | 1862 // \ / | 1863 // [sink.split] | 1864 // \ / 1865 // [ end ] 1866 // 1867 SmallVector<BasicBlock*,4> UnconditionalPreds; 1868 Instruction *Cond = nullptr; 1869 for (auto *B : predecessors(BB)) { 1870 auto *T = B->getTerminator(); 1871 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1872 UnconditionalPreds.push_back(B); 1873 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1874 Cond = T; 1875 else 1876 return false; 1877 } 1878 if (UnconditionalPreds.size() < 2) 1879 return false; 1880 1881 // We take a two-step approach to tail sinking. First we scan from the end of 1882 // each block upwards in lockstep. If the n'th instruction from the end of each 1883 // block can be sunk, those instructions are added to ValuesToSink and we 1884 // carry on. If we can sink an instruction but need to PHI-merge some operands 1885 // (because they're not identical in each instruction) we add these to 1886 // PHIOperands. 1887 unsigned ScanIdx = 0; 1888 SmallPtrSet<Value*,4> InstructionsToSink; 1889 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1890 LockstepReverseIterator LRI(UnconditionalPreds); 1891 while (LRI.isValid() && 1892 canSinkInstructions(*LRI, PHIOperands)) { 1893 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1894 << "\n"); 1895 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1896 ++ScanIdx; 1897 --LRI; 1898 } 1899 1900 // If no instructions can be sunk, early-return. 1901 if (ScanIdx == 0) 1902 return false; 1903 1904 bool Changed = false; 1905 1906 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1907 unsigned NumPHIdValues = 0; 1908 for (auto *I : *LRI) 1909 for (auto *V : PHIOperands[I]) 1910 if (InstructionsToSink.count(V) == 0) 1911 ++NumPHIdValues; 1912 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1913 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1914 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1915 NumPHIInsts++; 1916 1917 return NumPHIInsts <= 1; 1918 }; 1919 1920 if (Cond) { 1921 // Check if we would actually sink anything first! This mutates the CFG and 1922 // adds an extra block. The goal in doing this is to allow instructions that 1923 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1924 // (such as trunc, add) can be sunk and predicated already. So we check that 1925 // we're going to sink at least one non-speculatable instruction. 1926 LRI.reset(); 1927 unsigned Idx = 0; 1928 bool Profitable = false; 1929 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1930 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1931 Profitable = true; 1932 break; 1933 } 1934 --LRI; 1935 ++Idx; 1936 } 1937 if (!Profitable) 1938 return false; 1939 1940 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1941 // We have a conditional edge and we're going to sink some instructions. 1942 // Insert a new block postdominating all blocks we're going to sink from. 1943 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 1944 // Edges couldn't be split. 1945 return false; 1946 Changed = true; 1947 } 1948 1949 // Now that we've analyzed all potential sinking candidates, perform the 1950 // actual sink. We iteratively sink the last non-terminator of the source 1951 // blocks into their common successor unless doing so would require too 1952 // many PHI instructions to be generated (currently only one PHI is allowed 1953 // per sunk instruction). 1954 // 1955 // We can use InstructionsToSink to discount values needing PHI-merging that will 1956 // actually be sunk in a later iteration. This allows us to be more 1957 // aggressive in what we sink. This does allow a false positive where we 1958 // sink presuming a later value will also be sunk, but stop half way through 1959 // and never actually sink it which means we produce more PHIs than intended. 1960 // This is unlikely in practice though. 1961 unsigned SinkIdx = 0; 1962 for (; SinkIdx != ScanIdx; ++SinkIdx) { 1963 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1964 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1965 << "\n"); 1966 1967 // Because we've sunk every instruction in turn, the current instruction to 1968 // sink is always at index 0. 1969 LRI.reset(); 1970 if (!ProfitableToSinkInstruction(LRI)) { 1971 // Too many PHIs would be created. 1972 LLVM_DEBUG( 1973 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1974 break; 1975 } 1976 1977 if (!sinkLastInstruction(UnconditionalPreds)) { 1978 LLVM_DEBUG( 1979 dbgs() 1980 << "SINK: stopping here, failed to actually sink instruction!\n"); 1981 break; 1982 } 1983 1984 NumSinkCommonInstrs++; 1985 Changed = true; 1986 } 1987 if (SinkIdx != 0) 1988 ++NumSinkCommonCode; 1989 return Changed; 1990 } 1991 1992 /// Determine if we can hoist sink a sole store instruction out of a 1993 /// conditional block. 1994 /// 1995 /// We are looking for code like the following: 1996 /// BrBB: 1997 /// store i32 %add, i32* %arrayidx2 1998 /// ... // No other stores or function calls (we could be calling a memory 1999 /// ... // function). 2000 /// %cmp = icmp ult %x, %y 2001 /// br i1 %cmp, label %EndBB, label %ThenBB 2002 /// ThenBB: 2003 /// store i32 %add5, i32* %arrayidx2 2004 /// br label EndBB 2005 /// EndBB: 2006 /// ... 2007 /// We are going to transform this into: 2008 /// BrBB: 2009 /// store i32 %add, i32* %arrayidx2 2010 /// ... // 2011 /// %cmp = icmp ult %x, %y 2012 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2013 /// store i32 %add.add5, i32* %arrayidx2 2014 /// ... 2015 /// 2016 /// \return The pointer to the value of the previous store if the store can be 2017 /// hoisted into the predecessor block. 0 otherwise. 2018 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2019 BasicBlock *StoreBB, BasicBlock *EndBB) { 2020 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2021 if (!StoreToHoist) 2022 return nullptr; 2023 2024 // Volatile or atomic. 2025 if (!StoreToHoist->isSimple()) 2026 return nullptr; 2027 2028 Value *StorePtr = StoreToHoist->getPointerOperand(); 2029 2030 // Look for a store to the same pointer in BrBB. 2031 unsigned MaxNumInstToLookAt = 9; 2032 // Skip pseudo probe intrinsic calls which are not really killing any memory 2033 // accesses. 2034 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2035 if (!MaxNumInstToLookAt) 2036 break; 2037 --MaxNumInstToLookAt; 2038 2039 // Could be calling an instruction that affects memory like free(). 2040 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2041 return nullptr; 2042 2043 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2044 // Found the previous store make sure it stores to the same location. 2045 if (SI->getPointerOperand() == StorePtr) 2046 // Found the previous store, return its value operand. 2047 return SI->getValueOperand(); 2048 return nullptr; // Unknown store. 2049 } 2050 } 2051 2052 return nullptr; 2053 } 2054 2055 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2056 /// converted to selects. 2057 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2058 BasicBlock *EndBB, 2059 unsigned &SpeculatedInstructions, 2060 int &BudgetRemaining, 2061 const TargetTransformInfo &TTI) { 2062 TargetTransformInfo::TargetCostKind CostKind = 2063 BB->getParent()->hasMinSize() 2064 ? TargetTransformInfo::TCK_CodeSize 2065 : TargetTransformInfo::TCK_SizeAndLatency; 2066 2067 bool HaveRewritablePHIs = false; 2068 for (PHINode &PN : EndBB->phis()) { 2069 Value *OrigV = PN.getIncomingValueForBlock(BB); 2070 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2071 2072 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2073 // Skip PHIs which are trivial. 2074 if (ThenV == OrigV) 2075 continue; 2076 2077 BudgetRemaining -= 2078 TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2079 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2080 2081 // Don't convert to selects if we could remove undefined behavior instead. 2082 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2083 passingValueIsAlwaysUndefined(ThenV, &PN)) 2084 return false; 2085 2086 HaveRewritablePHIs = true; 2087 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2088 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2089 if (!OrigCE && !ThenCE) 2090 continue; // Known safe and cheap. 2091 2092 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2093 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2094 return false; 2095 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2096 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2097 unsigned MaxCost = 2098 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2099 if (OrigCost + ThenCost > MaxCost) 2100 return false; 2101 2102 // Account for the cost of an unfolded ConstantExpr which could end up 2103 // getting expanded into Instructions. 2104 // FIXME: This doesn't account for how many operations are combined in the 2105 // constant expression. 2106 ++SpeculatedInstructions; 2107 if (SpeculatedInstructions > 1) 2108 return false; 2109 } 2110 2111 return HaveRewritablePHIs; 2112 } 2113 2114 /// Speculate a conditional basic block flattening the CFG. 2115 /// 2116 /// Note that this is a very risky transform currently. Speculating 2117 /// instructions like this is most often not desirable. Instead, there is an MI 2118 /// pass which can do it with full awareness of the resource constraints. 2119 /// However, some cases are "obvious" and we should do directly. An example of 2120 /// this is speculating a single, reasonably cheap instruction. 2121 /// 2122 /// There is only one distinct advantage to flattening the CFG at the IR level: 2123 /// it makes very common but simplistic optimizations such as are common in 2124 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2125 /// modeling their effects with easier to reason about SSA value graphs. 2126 /// 2127 /// 2128 /// An illustration of this transform is turning this IR: 2129 /// \code 2130 /// BB: 2131 /// %cmp = icmp ult %x, %y 2132 /// br i1 %cmp, label %EndBB, label %ThenBB 2133 /// ThenBB: 2134 /// %sub = sub %x, %y 2135 /// br label BB2 2136 /// EndBB: 2137 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2138 /// ... 2139 /// \endcode 2140 /// 2141 /// Into this IR: 2142 /// \code 2143 /// BB: 2144 /// %cmp = icmp ult %x, %y 2145 /// %sub = sub %x, %y 2146 /// %cond = select i1 %cmp, 0, %sub 2147 /// ... 2148 /// \endcode 2149 /// 2150 /// \returns true if the conditional block is removed. 2151 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2152 const TargetTransformInfo &TTI) { 2153 // Be conservative for now. FP select instruction can often be expensive. 2154 Value *BrCond = BI->getCondition(); 2155 if (isa<FCmpInst>(BrCond)) 2156 return false; 2157 2158 BasicBlock *BB = BI->getParent(); 2159 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2160 int BudgetRemaining = 2161 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2162 2163 // If ThenBB is actually on the false edge of the conditional branch, remember 2164 // to swap the select operands later. 2165 bool Invert = false; 2166 if (ThenBB != BI->getSuccessor(0)) { 2167 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2168 Invert = true; 2169 } 2170 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2171 2172 // Keep a count of how many times instructions are used within ThenBB when 2173 // they are candidates for sinking into ThenBB. Specifically: 2174 // - They are defined in BB, and 2175 // - They have no side effects, and 2176 // - All of their uses are in ThenBB. 2177 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2178 2179 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2180 2181 unsigned SpeculatedInstructions = 0; 2182 Value *SpeculatedStoreValue = nullptr; 2183 StoreInst *SpeculatedStore = nullptr; 2184 for (BasicBlock::iterator BBI = ThenBB->begin(), 2185 BBE = std::prev(ThenBB->end()); 2186 BBI != BBE; ++BBI) { 2187 Instruction *I = &*BBI; 2188 // Skip debug info. 2189 if (isa<DbgInfoIntrinsic>(I)) { 2190 SpeculatedDbgIntrinsics.push_back(I); 2191 continue; 2192 } 2193 2194 // Skip pseudo probes. The consequence is we lose track of the branch 2195 // probability for ThenBB, which is fine since the optimization here takes 2196 // place regardless of the branch probability. 2197 if (isa<PseudoProbeInst>(I)) { 2198 SpeculatedDbgIntrinsics.push_back(I); 2199 continue; 2200 } 2201 2202 // Only speculatively execute a single instruction (not counting the 2203 // terminator) for now. 2204 ++SpeculatedInstructions; 2205 if (SpeculatedInstructions > 1) 2206 return false; 2207 2208 // Don't hoist the instruction if it's unsafe or expensive. 2209 if (!isSafeToSpeculativelyExecute(I) && 2210 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2211 I, BB, ThenBB, EndBB)))) 2212 return false; 2213 if (!SpeculatedStoreValue && 2214 ComputeSpeculationCost(I, TTI) > 2215 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2216 return false; 2217 2218 // Store the store speculation candidate. 2219 if (SpeculatedStoreValue) 2220 SpeculatedStore = cast<StoreInst>(I); 2221 2222 // Do not hoist the instruction if any of its operands are defined but not 2223 // used in BB. The transformation will prevent the operand from 2224 // being sunk into the use block. 2225 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2226 Instruction *OpI = dyn_cast<Instruction>(*i); 2227 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2228 continue; // Not a candidate for sinking. 2229 2230 ++SinkCandidateUseCounts[OpI]; 2231 } 2232 } 2233 2234 // Consider any sink candidates which are only used in ThenBB as costs for 2235 // speculation. Note, while we iterate over a DenseMap here, we are summing 2236 // and so iteration order isn't significant. 2237 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2238 I = SinkCandidateUseCounts.begin(), 2239 E = SinkCandidateUseCounts.end(); 2240 I != E; ++I) 2241 if (I->first->hasNUses(I->second)) { 2242 ++SpeculatedInstructions; 2243 if (SpeculatedInstructions > 1) 2244 return false; 2245 } 2246 2247 // Check that we can insert the selects and that it's not too expensive to do 2248 // so. 2249 bool Convert = SpeculatedStore != nullptr; 2250 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2251 SpeculatedInstructions, 2252 BudgetRemaining, TTI); 2253 if (!Convert || BudgetRemaining < 0) 2254 return false; 2255 2256 // If we get here, we can hoist the instruction and if-convert. 2257 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2258 2259 // Insert a select of the value of the speculated store. 2260 if (SpeculatedStoreValue) { 2261 IRBuilder<NoFolder> Builder(BI); 2262 Value *TrueV = SpeculatedStore->getValueOperand(); 2263 Value *FalseV = SpeculatedStoreValue; 2264 if (Invert) 2265 std::swap(TrueV, FalseV); 2266 Value *S = Builder.CreateSelect( 2267 BrCond, TrueV, FalseV, "spec.store.select", BI); 2268 SpeculatedStore->setOperand(0, S); 2269 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2270 SpeculatedStore->getDebugLoc()); 2271 } 2272 2273 // Metadata can be dependent on the condition we are hoisting above. 2274 // Conservatively strip all metadata on the instruction. Drop the debug loc 2275 // to avoid making it appear as if the condition is a constant, which would 2276 // be misleading while debugging. 2277 for (auto &I : *ThenBB) { 2278 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2279 I.setDebugLoc(DebugLoc()); 2280 I.dropUnknownNonDebugMetadata(); 2281 } 2282 2283 // Hoist the instructions. 2284 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2285 ThenBB->begin(), std::prev(ThenBB->end())); 2286 2287 // Insert selects and rewrite the PHI operands. 2288 IRBuilder<NoFolder> Builder(BI); 2289 for (PHINode &PN : EndBB->phis()) { 2290 unsigned OrigI = PN.getBasicBlockIndex(BB); 2291 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2292 Value *OrigV = PN.getIncomingValue(OrigI); 2293 Value *ThenV = PN.getIncomingValue(ThenI); 2294 2295 // Skip PHIs which are trivial. 2296 if (OrigV == ThenV) 2297 continue; 2298 2299 // Create a select whose true value is the speculatively executed value and 2300 // false value is the pre-existing value. Swap them if the branch 2301 // destinations were inverted. 2302 Value *TrueV = ThenV, *FalseV = OrigV; 2303 if (Invert) 2304 std::swap(TrueV, FalseV); 2305 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2306 PN.setIncomingValue(OrigI, V); 2307 PN.setIncomingValue(ThenI, V); 2308 } 2309 2310 // Remove speculated dbg intrinsics. 2311 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2312 // dbg value for the different flows and inserting it after the select. 2313 for (Instruction *I : SpeculatedDbgIntrinsics) 2314 I->eraseFromParent(); 2315 2316 ++NumSpeculations; 2317 return true; 2318 } 2319 2320 /// Return true if we can thread a branch across this block. 2321 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2322 int Size = 0; 2323 2324 for (Instruction &I : BB->instructionsWithoutDebug()) { 2325 if (Size > MaxSmallBlockSize) 2326 return false; // Don't clone large BB's. 2327 2328 // Can't fold blocks that contain noduplicate or convergent calls. 2329 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2330 if (CI->cannotDuplicate() || CI->isConvergent()) 2331 return false; 2332 2333 // We will delete Phis while threading, so Phis should not be accounted in 2334 // block's size 2335 if (!isa<PHINode>(I)) 2336 ++Size; 2337 2338 // We can only support instructions that do not define values that are 2339 // live outside of the current basic block. 2340 for (User *U : I.users()) { 2341 Instruction *UI = cast<Instruction>(U); 2342 if (UI->getParent() != BB || isa<PHINode>(UI)) 2343 return false; 2344 } 2345 2346 // Looks ok, continue checking. 2347 } 2348 2349 return true; 2350 } 2351 2352 /// If we have a conditional branch on a PHI node value that is defined in the 2353 /// same block as the branch and if any PHI entries are constants, thread edges 2354 /// corresponding to that entry to be branches to their ultimate destination. 2355 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2356 const DataLayout &DL, AssumptionCache *AC) { 2357 BasicBlock *BB = BI->getParent(); 2358 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2359 // NOTE: we currently cannot transform this case if the PHI node is used 2360 // outside of the block. 2361 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2362 return false; 2363 2364 // Degenerate case of a single entry PHI. 2365 if (PN->getNumIncomingValues() == 1) { 2366 FoldSingleEntryPHINodes(PN->getParent()); 2367 return true; 2368 } 2369 2370 // Now we know that this block has multiple preds and two succs. 2371 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2372 return false; 2373 2374 // Okay, this is a simple enough basic block. See if any phi values are 2375 // constants. 2376 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2377 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2378 if (!CB || !CB->getType()->isIntegerTy(1)) 2379 continue; 2380 2381 // Okay, we now know that all edges from PredBB should be revectored to 2382 // branch to RealDest. 2383 BasicBlock *PredBB = PN->getIncomingBlock(i); 2384 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2385 2386 if (RealDest == BB) 2387 continue; // Skip self loops. 2388 // Skip if the predecessor's terminator is an indirect branch. 2389 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2390 continue; 2391 2392 SmallVector<DominatorTree::UpdateType, 3> Updates; 2393 2394 // The dest block might have PHI nodes, other predecessors and other 2395 // difficult cases. Instead of being smart about this, just insert a new 2396 // block that jumps to the destination block, effectively splitting 2397 // the edge we are about to create. 2398 BasicBlock *EdgeBB = 2399 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2400 RealDest->getParent(), RealDest); 2401 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2402 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2403 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2404 2405 // Update PHI nodes. 2406 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2407 2408 // BB may have instructions that are being threaded over. Clone these 2409 // instructions into EdgeBB. We know that there will be no uses of the 2410 // cloned instructions outside of EdgeBB. 2411 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2412 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2413 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2414 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2415 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2416 continue; 2417 } 2418 // Clone the instruction. 2419 Instruction *N = BBI->clone(); 2420 if (BBI->hasName()) 2421 N->setName(BBI->getName() + ".c"); 2422 2423 // Update operands due to translation. 2424 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2425 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2426 if (PI != TranslateMap.end()) 2427 *i = PI->second; 2428 } 2429 2430 // Check for trivial simplification. 2431 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2432 if (!BBI->use_empty()) 2433 TranslateMap[&*BBI] = V; 2434 if (!N->mayHaveSideEffects()) { 2435 N->deleteValue(); // Instruction folded away, don't need actual inst 2436 N = nullptr; 2437 } 2438 } else { 2439 if (!BBI->use_empty()) 2440 TranslateMap[&*BBI] = N; 2441 } 2442 if (N) { 2443 // Insert the new instruction into its new home. 2444 EdgeBB->getInstList().insert(InsertPt, N); 2445 2446 // Register the new instruction with the assumption cache if necessary. 2447 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2448 AC->registerAssumption(cast<IntrinsicInst>(N)); 2449 } 2450 } 2451 2452 // Loop over all of the edges from PredBB to BB, changing them to branch 2453 // to EdgeBB instead. 2454 Instruction *PredBBTI = PredBB->getTerminator(); 2455 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2456 if (PredBBTI->getSuccessor(i) == BB) { 2457 BB->removePredecessor(PredBB); 2458 PredBBTI->setSuccessor(i, EdgeBB); 2459 } 2460 2461 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2462 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2463 2464 if (DTU) 2465 DTU->applyUpdates(Updates); 2466 2467 // Recurse, simplifying any other constants. 2468 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2469 } 2470 2471 return false; 2472 } 2473 2474 /// Given a BB that starts with the specified two-entry PHI node, 2475 /// see if we can eliminate it. 2476 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2477 DomTreeUpdater *DTU, const DataLayout &DL) { 2478 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2479 // statement", which has a very simple dominance structure. Basically, we 2480 // are trying to find the condition that is being branched on, which 2481 // subsequently causes this merge to happen. We really want control 2482 // dependence information for this check, but simplifycfg can't keep it up 2483 // to date, and this catches most of the cases we care about anyway. 2484 BasicBlock *BB = PN->getParent(); 2485 2486 BasicBlock *IfTrue, *IfFalse; 2487 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2488 if (!IfCond || 2489 // Don't bother if the branch will be constant folded trivially. 2490 isa<ConstantInt>(IfCond)) 2491 return false; 2492 2493 // Okay, we found that we can merge this two-entry phi node into a select. 2494 // Doing so would require us to fold *all* two entry phi nodes in this block. 2495 // At some point this becomes non-profitable (particularly if the target 2496 // doesn't support cmov's). Only do this transformation if there are two or 2497 // fewer PHI nodes in this block. 2498 unsigned NumPhis = 0; 2499 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2500 if (NumPhis > 2) 2501 return false; 2502 2503 // Loop over the PHI's seeing if we can promote them all to select 2504 // instructions. While we are at it, keep track of the instructions 2505 // that need to be moved to the dominating block. 2506 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2507 int BudgetRemaining = 2508 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2509 2510 bool Changed = false; 2511 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2512 PHINode *PN = cast<PHINode>(II++); 2513 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2514 PN->replaceAllUsesWith(V); 2515 PN->eraseFromParent(); 2516 Changed = true; 2517 continue; 2518 } 2519 2520 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2521 BudgetRemaining, TTI) || 2522 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2523 BudgetRemaining, TTI)) 2524 return Changed; 2525 } 2526 2527 // If we folded the first phi, PN dangles at this point. Refresh it. If 2528 // we ran out of PHIs then we simplified them all. 2529 PN = dyn_cast<PHINode>(BB->begin()); 2530 if (!PN) 2531 return true; 2532 2533 // Return true if at least one of these is a 'not', and another is either 2534 // a 'not' too, or a constant. 2535 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2536 if (!match(V0, m_Not(m_Value()))) 2537 std::swap(V0, V1); 2538 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2539 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2540 }; 2541 2542 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2543 // of the incoming values is an 'not' and another one is freely invertible. 2544 // These can often be turned into switches and other things. 2545 if (PN->getType()->isIntegerTy(1) && 2546 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2547 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2548 isa<BinaryOperator>(IfCond)) && 2549 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2550 PN->getIncomingValue(1))) 2551 return Changed; 2552 2553 // If all PHI nodes are promotable, check to make sure that all instructions 2554 // in the predecessor blocks can be promoted as well. If not, we won't be able 2555 // to get rid of the control flow, so it's not worth promoting to select 2556 // instructions. 2557 BasicBlock *DomBlock = nullptr; 2558 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2559 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2560 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2561 IfBlock1 = nullptr; 2562 } else { 2563 DomBlock = *pred_begin(IfBlock1); 2564 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2565 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2566 !isa<PseudoProbeInst>(I)) { 2567 // This is not an aggressive instruction that we can promote. 2568 // Because of this, we won't be able to get rid of the control flow, so 2569 // the xform is not worth it. 2570 return Changed; 2571 } 2572 } 2573 2574 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2575 IfBlock2 = nullptr; 2576 } else { 2577 DomBlock = *pred_begin(IfBlock2); 2578 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2579 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2580 !isa<PseudoProbeInst>(I)) { 2581 // This is not an aggressive instruction that we can promote. 2582 // Because of this, we won't be able to get rid of the control flow, so 2583 // the xform is not worth it. 2584 return Changed; 2585 } 2586 } 2587 assert(DomBlock && "Failed to find root DomBlock"); 2588 2589 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2590 << " T: " << IfTrue->getName() 2591 << " F: " << IfFalse->getName() << "\n"); 2592 2593 // If we can still promote the PHI nodes after this gauntlet of tests, 2594 // do all of the PHI's now. 2595 Instruction *InsertPt = DomBlock->getTerminator(); 2596 IRBuilder<NoFolder> Builder(InsertPt); 2597 2598 // Move all 'aggressive' instructions, which are defined in the 2599 // conditional parts of the if's up to the dominating block. 2600 if (IfBlock1) 2601 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2602 if (IfBlock2) 2603 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2604 2605 // Propagate fast-math-flags from phi nodes to replacement selects. 2606 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2607 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2608 if (isa<FPMathOperator>(PN)) 2609 Builder.setFastMathFlags(PN->getFastMathFlags()); 2610 2611 // Change the PHI node into a select instruction. 2612 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2613 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2614 2615 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2616 PN->replaceAllUsesWith(Sel); 2617 Sel->takeName(PN); 2618 PN->eraseFromParent(); 2619 } 2620 2621 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2622 // has been flattened. Change DomBlock to jump directly to our new block to 2623 // avoid other simplifycfg's kicking in on the diamond. 2624 Instruction *OldTI = DomBlock->getTerminator(); 2625 Builder.SetInsertPoint(OldTI); 2626 Builder.CreateBr(BB); 2627 2628 SmallVector<DominatorTree::UpdateType, 3> Updates; 2629 if (DTU) { 2630 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2631 for (auto *Successor : successors(DomBlock)) 2632 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2633 } 2634 2635 OldTI->eraseFromParent(); 2636 if (DTU) 2637 DTU->applyUpdates(Updates); 2638 2639 return true; 2640 } 2641 2642 /// If we found a conditional branch that goes to two returning blocks, 2643 /// try to merge them together into one return, 2644 /// introducing a select if the return values disagree. 2645 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2646 IRBuilder<> &Builder) { 2647 auto *BB = BI->getParent(); 2648 assert(BI->isConditional() && "Must be a conditional branch"); 2649 BasicBlock *TrueSucc = BI->getSuccessor(0); 2650 BasicBlock *FalseSucc = BI->getSuccessor(1); 2651 // NOTE: destinations may match, this could be degenerate uncond branch. 2652 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2653 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2654 2655 // Check to ensure both blocks are empty (just a return) or optionally empty 2656 // with PHI nodes. If there are other instructions, merging would cause extra 2657 // computation on one path or the other. 2658 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2659 return false; 2660 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2661 return false; 2662 2663 Builder.SetInsertPoint(BI); 2664 // Okay, we found a branch that is going to two return nodes. If 2665 // there is no return value for this function, just change the 2666 // branch into a return. 2667 if (FalseRet->getNumOperands() == 0) { 2668 TrueSucc->removePredecessor(BB); 2669 FalseSucc->removePredecessor(BB); 2670 Builder.CreateRetVoid(); 2671 EraseTerminatorAndDCECond(BI); 2672 if (DTU) { 2673 SmallVector<DominatorTree::UpdateType, 2> Updates; 2674 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2675 if (TrueSucc != FalseSucc) 2676 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2677 DTU->applyUpdates(Updates); 2678 } 2679 return true; 2680 } 2681 2682 // Otherwise, figure out what the true and false return values are 2683 // so we can insert a new select instruction. 2684 Value *TrueValue = TrueRet->getReturnValue(); 2685 Value *FalseValue = FalseRet->getReturnValue(); 2686 2687 // Unwrap any PHI nodes in the return blocks. 2688 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2689 if (TVPN->getParent() == TrueSucc) 2690 TrueValue = TVPN->getIncomingValueForBlock(BB); 2691 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2692 if (FVPN->getParent() == FalseSucc) 2693 FalseValue = FVPN->getIncomingValueForBlock(BB); 2694 2695 // In order for this transformation to be safe, we must be able to 2696 // unconditionally execute both operands to the return. This is 2697 // normally the case, but we could have a potentially-trapping 2698 // constant expression that prevents this transformation from being 2699 // safe. 2700 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2701 if (TCV->canTrap()) 2702 return false; 2703 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2704 if (FCV->canTrap()) 2705 return false; 2706 2707 // Okay, we collected all the mapped values and checked them for sanity, and 2708 // defined to really do this transformation. First, update the CFG. 2709 TrueSucc->removePredecessor(BB); 2710 FalseSucc->removePredecessor(BB); 2711 2712 // Insert select instructions where needed. 2713 Value *BrCond = BI->getCondition(); 2714 if (TrueValue) { 2715 // Insert a select if the results differ. 2716 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2717 } else if (isa<UndefValue>(TrueValue)) { 2718 TrueValue = FalseValue; 2719 } else { 2720 TrueValue = 2721 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2722 } 2723 } 2724 2725 Value *RI = 2726 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2727 2728 (void)RI; 2729 2730 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2731 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2732 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2733 2734 EraseTerminatorAndDCECond(BI); 2735 if (DTU) { 2736 SmallVector<DominatorTree::UpdateType, 2> Updates; 2737 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2738 if (TrueSucc != FalseSucc) 2739 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2740 DTU->applyUpdates(Updates); 2741 } 2742 2743 return true; 2744 } 2745 2746 /// Return true if either PBI or BI has branch weight available, and store 2747 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2748 /// not have branch weight, use 1:1 as its weight. 2749 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2750 uint64_t &PredTrueWeight, 2751 uint64_t &PredFalseWeight, 2752 uint64_t &SuccTrueWeight, 2753 uint64_t &SuccFalseWeight) { 2754 bool PredHasWeights = 2755 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2756 bool SuccHasWeights = 2757 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2758 if (PredHasWeights || SuccHasWeights) { 2759 if (!PredHasWeights) 2760 PredTrueWeight = PredFalseWeight = 1; 2761 if (!SuccHasWeights) 2762 SuccTrueWeight = SuccFalseWeight = 1; 2763 return true; 2764 } else { 2765 return false; 2766 } 2767 } 2768 2769 // Determine if the two branches share a common destination, 2770 // and deduce a glue that we need to use to join branch's conditions 2771 // to arrive at the common destination. 2772 static Optional<std::pair<Instruction::BinaryOps, bool>> 2773 CheckIfCondBranchesShareCommonDestination(BranchInst *BI, BranchInst *PBI) { 2774 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 2775 "Both blocks must end with a conditional branches."); 2776 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 2777 "PredBB must be a predecessor of BB."); 2778 2779 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2780 return {{Instruction::Or, false}}; 2781 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2782 return {{Instruction::And, false}}; 2783 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2784 return {{Instruction::And, true}}; 2785 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2786 return {{Instruction::Or, true}}; 2787 return None; 2788 } 2789 2790 static bool PerformBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 2791 DomTreeUpdater *DTU, 2792 MemorySSAUpdater *MSSAU) { 2793 BasicBlock *BB = BI->getParent(); 2794 BasicBlock *PredBlock = PBI->getParent(); 2795 2796 // Determine if the two branches share a common destination. 2797 Instruction::BinaryOps Opc; 2798 bool InvertPredCond; 2799 std::tie(Opc, InvertPredCond) = 2800 *CheckIfCondBranchesShareCommonDestination(BI, PBI); 2801 2802 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2803 2804 IRBuilder<> Builder(PBI); 2805 // The builder is used to create instructions to eliminate the branch in BB. 2806 // If BB's terminator has !annotation metadata, add it to the new 2807 // instructions. 2808 Builder.CollectMetadataToCopy(BB->getTerminator(), 2809 {LLVMContext::MD_annotation}); 2810 2811 // If we need to invert the condition in the pred block to match, do so now. 2812 if (InvertPredCond) { 2813 Value *NewCond = PBI->getCondition(); 2814 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2815 CmpInst *CI = cast<CmpInst>(NewCond); 2816 CI->setPredicate(CI->getInversePredicate()); 2817 } else { 2818 NewCond = 2819 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2820 } 2821 2822 PBI->setCondition(NewCond); 2823 PBI->swapSuccessors(); 2824 } 2825 2826 BasicBlock *UniqueSucc = 2827 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 2828 2829 // Before cloning instructions, notify the successor basic block that it 2830 // is about to have a new predecessor. This will update PHI nodes, 2831 // which will allow us to update live-out uses of bonus instructions. 2832 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 2833 2834 // If we have bonus instructions, clone them into the predecessor block. 2835 // Note that there may be multiple predecessor blocks, so we cannot move 2836 // bonus instructions to a predecessor block. 2837 ValueToValueMapTy VMap; // maps original values to cloned values 2838 for (Instruction &BonusInst : *BB) { 2839 if (isa<DbgInfoIntrinsic>(BonusInst) || isa<BranchInst>(BonusInst)) 2840 continue; 2841 2842 Instruction *NewBonusInst = BonusInst.clone(); 2843 2844 if (PBI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 2845 // Unless the instruction has the same !dbg location as the original 2846 // branch, drop it. When we fold the bonus instructions we want to make 2847 // sure we reset their debug locations in order to avoid stepping on 2848 // dead code caused by folding dead branches. 2849 NewBonusInst->setDebugLoc(DebugLoc()); 2850 } 2851 2852 RemapInstruction(NewBonusInst, VMap, 2853 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2854 VMap[&BonusInst] = NewBonusInst; 2855 2856 // If we moved a load, we cannot any longer claim any knowledge about 2857 // its potential value. The previous information might have been valid 2858 // only given the branch precondition. 2859 // For an analogous reason, we must also drop all the metadata whose 2860 // semantics we don't understand. We *can* preserve !annotation, because 2861 // it is tied to the instruction itself, not the value or position. 2862 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 2863 2864 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2865 NewBonusInst->takeName(&BonusInst); 2866 BonusInst.setName(BonusInst.getName() + ".old"); 2867 BonusInst.replaceUsesWithIf( 2868 NewBonusInst, [BB, BI, UniqueSucc, PredBlock](Use &U) { 2869 auto *User = cast<Instruction>(U.getUser()); 2870 // Ignore non-external uses of bonus instructions. 2871 if (User->getParent() == BB) { 2872 assert(!isa<PHINode>(User) && 2873 "Non-external users are never PHI instructions."); 2874 return false; 2875 } 2876 if (User->getParent() == PredBlock) { 2877 // The "exteral" use is in the block into which we just cloned the 2878 // bonus instruction. This means two things: 1. we are in an 2879 // unreachable block 2. the instruction is self-referencing. 2880 // So let's just rewrite it... 2881 return true; 2882 } 2883 (void)BI; 2884 assert(isa<PHINode>(User) && "All external users must be PHI's."); 2885 auto *PN = cast<PHINode>(User); 2886 assert(is_contained(successors(BB), User->getParent()) && 2887 "All external users must be in successors of BB."); 2888 assert((PN->getIncomingBlock(U) == BB || 2889 PN->getIncomingBlock(U) == PredBlock) && 2890 "The incoming block for that incoming value external use " 2891 "must be either the original block with bonus instructions, " 2892 "or the new predecessor block."); 2893 // UniqueSucc is the block for which we change it's predecessors, 2894 // so it is the only block in which we'll need to update PHI nodes. 2895 if (User->getParent() != UniqueSucc) 2896 return false; 2897 // Update the incoming value for the new predecessor. 2898 return PN->getIncomingBlock(U) == PredBlock; 2899 }); 2900 } 2901 2902 // Now that the Cond was cloned into the predecessor basic block, 2903 // or/and the two conditions together. 2904 Instruction *NewCond = cast<Instruction>(Builder.CreateBinOp( 2905 Opc, PBI->getCondition(), VMap[BI->getCondition()], "or.cond")); 2906 PBI->setCondition(NewCond); 2907 2908 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2909 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2910 SuccTrueWeight, SuccFalseWeight)) { 2911 SmallVector<uint64_t, 8> NewWeights; 2912 2913 if (PBI->getSuccessor(0) == BB) { 2914 // PBI: br i1 %x, BB, FalseDest 2915 // BI: br i1 %y, UniqueSucc, FalseDest 2916 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2917 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2918 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2919 // TrueWeight for PBI * FalseWeight for BI. 2920 // We assume that total weights of a BranchInst can fit into 32 bits. 2921 // Therefore, we will not have overflow using 64-bit arithmetic. 2922 NewWeights.push_back(PredFalseWeight * 2923 (SuccFalseWeight + SuccTrueWeight) + 2924 PredTrueWeight * SuccFalseWeight); 2925 } else { 2926 // PBI: br i1 %x, TrueDest, BB 2927 // BI: br i1 %y, TrueDest, UniqueSucc 2928 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2929 // FalseWeight for PBI * TrueWeight for BI. 2930 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 2931 PredFalseWeight * SuccTrueWeight); 2932 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2933 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2934 } 2935 2936 // Halve the weights if any of them cannot fit in an uint32_t 2937 FitWeights(NewWeights); 2938 2939 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 2940 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2941 2942 // TODO: If BB is reachable from all paths through PredBlock, then we 2943 // could replace PBI's branch probabilities with BI's. 2944 } else 2945 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2946 2947 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 2948 2949 if (DTU) 2950 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 2951 {DominatorTree::Delete, PredBlock, BB}}); 2952 2953 // If BI was a loop latch, it may have had associated loop metadata. 2954 // We need to copy it to the new latch, that is, PBI. 2955 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2956 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2957 2958 // Copy any debug value intrinsics into the end of PredBlock. 2959 for (Instruction &I : *BB) { 2960 if (isa<DbgInfoIntrinsic>(I)) { 2961 Instruction *NewI = I.clone(); 2962 RemapInstruction(NewI, VMap, 2963 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2964 NewI->insertBefore(PBI); 2965 } 2966 } 2967 2968 ++NumFoldBranchToCommonDest; 2969 return true; 2970 } 2971 2972 /// If this basic block is simple enough, and if a predecessor branches to us 2973 /// and one of our successors, fold the block into the predecessor and use 2974 /// logical operations to pick the right destination. 2975 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 2976 MemorySSAUpdater *MSSAU, 2977 const TargetTransformInfo *TTI, 2978 unsigned BonusInstThreshold) { 2979 // If this block ends with an unconditional branch, 2980 // let SpeculativelyExecuteBB() deal with it. 2981 if (!BI->isConditional()) 2982 return false; 2983 2984 BasicBlock *BB = BI->getParent(); 2985 2986 const unsigned PredCount = pred_size(BB); 2987 2988 bool Changed = false; 2989 2990 TargetTransformInfo::TargetCostKind CostKind = 2991 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 2992 : TargetTransformInfo::TCK_SizeAndLatency; 2993 2994 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2995 2996 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2997 Cond->getParent() != BB || !Cond->hasOneUse()) 2998 return Changed; 2999 3000 // Only allow this transformation if computing the condition doesn't involve 3001 // too many instructions and these involved instructions can be executed 3002 // unconditionally. We denote all involved instructions except the condition 3003 // as "bonus instructions", and only allow this transformation when the 3004 // number of the bonus instructions we'll need to create when cloning into 3005 // each predecessor does not exceed a certain threshold. 3006 unsigned NumBonusInsts = 0; 3007 for (Instruction &I : *BB) { 3008 // Don't check the branch condition comparison itself. 3009 if (&I == Cond) 3010 continue; 3011 // Ignore dbg intrinsics, and the terminator. 3012 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3013 continue; 3014 // I must be safe to execute unconditionally. 3015 if (!isSafeToSpeculativelyExecute(&I)) 3016 return Changed; 3017 3018 // Account for the cost of duplicating this instruction into each 3019 // predecessor. 3020 NumBonusInsts += PredCount; 3021 // Early exits once we reach the limit. 3022 if (NumBonusInsts > BonusInstThreshold) 3023 return Changed; 3024 } 3025 3026 // Also, for now, all liveout uses of bonus instructions must be in PHI nodes 3027 // in successor blocks as incoming values from the bonus instructions's block, 3028 // otherwise we'll fail to update them. 3029 // FIXME: We could lift this restriction, but we need to form PHI nodes and 3030 // rewrite offending uses, but we can't do that without having a domtree. 3031 if (any_of(*BB, [BB](Instruction &I) { 3032 return any_of(I.uses(), [BB](Use &U) { 3033 auto *User = cast<Instruction>(U.getUser()); 3034 if (User->getParent() == BB) 3035 return false; // Not an external use. 3036 auto *PN = dyn_cast<PHINode>(User); 3037 return !PN || PN->getIncomingBlock(U) != BB; 3038 }); 3039 })) 3040 return Changed; 3041 3042 // Cond is known to be a compare or binary operator. Check to make sure that 3043 // neither operand is a potentially-trapping constant expression. 3044 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3045 if (CE->canTrap()) 3046 return Changed; 3047 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3048 if (CE->canTrap()) 3049 return Changed; 3050 3051 // Finally, don't infinitely unroll conditional loops. 3052 if (is_contained(successors(BB), BB)) 3053 return Changed; 3054 3055 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3056 BasicBlock *PredBlock = *PI; 3057 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3058 3059 // Check that we have two conditional branches. If there is a PHI node in 3060 // the common successor, verify that the same value flows in from both 3061 // blocks. 3062 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3063 continue; 3064 3065 // Determine if the two branches share a common destination. 3066 Instruction::BinaryOps Opc; 3067 bool InvertPredCond; 3068 if (auto Recepie = CheckIfCondBranchesShareCommonDestination(BI, PBI)) 3069 std::tie(Opc, InvertPredCond) = *Recepie; 3070 else 3071 continue; 3072 3073 // Check the cost of inserting the necessary logic before performing the 3074 // transformation. 3075 if (TTI) { 3076 Type *Ty = BI->getCondition()->getType(); 3077 unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3078 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3079 !isa<CmpInst>(PBI->getCondition()))) 3080 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3081 3082 if (Cost > BranchFoldThreshold) 3083 continue; 3084 } 3085 3086 return PerformBranchToCommonDestFolding(BI, PBI, DTU, MSSAU); 3087 } 3088 return Changed; 3089 } 3090 3091 // If there is only one store in BB1 and BB2, return it, otherwise return 3092 // nullptr. 3093 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3094 StoreInst *S = nullptr; 3095 for (auto *BB : {BB1, BB2}) { 3096 if (!BB) 3097 continue; 3098 for (auto &I : *BB) 3099 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3100 if (S) 3101 // Multiple stores seen. 3102 return nullptr; 3103 else 3104 S = SI; 3105 } 3106 } 3107 return S; 3108 } 3109 3110 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3111 Value *AlternativeV = nullptr) { 3112 // PHI is going to be a PHI node that allows the value V that is defined in 3113 // BB to be referenced in BB's only successor. 3114 // 3115 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3116 // doesn't matter to us what the other operand is (it'll never get used). We 3117 // could just create a new PHI with an undef incoming value, but that could 3118 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3119 // other PHI. So here we directly look for some PHI in BB's successor with V 3120 // as an incoming operand. If we find one, we use it, else we create a new 3121 // one. 3122 // 3123 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3124 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3125 // where OtherBB is the single other predecessor of BB's only successor. 3126 PHINode *PHI = nullptr; 3127 BasicBlock *Succ = BB->getSingleSuccessor(); 3128 3129 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3130 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3131 PHI = cast<PHINode>(I); 3132 if (!AlternativeV) 3133 break; 3134 3135 assert(Succ->hasNPredecessors(2)); 3136 auto PredI = pred_begin(Succ); 3137 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3138 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3139 break; 3140 PHI = nullptr; 3141 } 3142 if (PHI) 3143 return PHI; 3144 3145 // If V is not an instruction defined in BB, just return it. 3146 if (!AlternativeV && 3147 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3148 return V; 3149 3150 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3151 PHI->addIncoming(V, BB); 3152 for (BasicBlock *PredBB : predecessors(Succ)) 3153 if (PredBB != BB) 3154 PHI->addIncoming( 3155 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3156 return PHI; 3157 } 3158 3159 static bool mergeConditionalStoreToAddress( 3160 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3161 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3162 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3163 // For every pointer, there must be exactly two stores, one coming from 3164 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3165 // store (to any address) in PTB,PFB or QTB,QFB. 3166 // FIXME: We could relax this restriction with a bit more work and performance 3167 // testing. 3168 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3169 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3170 if (!PStore || !QStore) 3171 return false; 3172 3173 // Now check the stores are compatible. 3174 if (!QStore->isUnordered() || !PStore->isUnordered()) 3175 return false; 3176 3177 // Check that sinking the store won't cause program behavior changes. Sinking 3178 // the store out of the Q blocks won't change any behavior as we're sinking 3179 // from a block to its unconditional successor. But we're moving a store from 3180 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3181 // So we need to check that there are no aliasing loads or stores in 3182 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3183 // operations between PStore and the end of its parent block. 3184 // 3185 // The ideal way to do this is to query AliasAnalysis, but we don't 3186 // preserve AA currently so that is dangerous. Be super safe and just 3187 // check there are no other memory operations at all. 3188 for (auto &I : *QFB->getSinglePredecessor()) 3189 if (I.mayReadOrWriteMemory()) 3190 return false; 3191 for (auto &I : *QFB) 3192 if (&I != QStore && I.mayReadOrWriteMemory()) 3193 return false; 3194 if (QTB) 3195 for (auto &I : *QTB) 3196 if (&I != QStore && I.mayReadOrWriteMemory()) 3197 return false; 3198 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3199 I != E; ++I) 3200 if (&*I != PStore && I->mayReadOrWriteMemory()) 3201 return false; 3202 3203 // If we're not in aggressive mode, we only optimize if we have some 3204 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3205 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3206 if (!BB) 3207 return true; 3208 // Heuristic: if the block can be if-converted/phi-folded and the 3209 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3210 // thread this store. 3211 int BudgetRemaining = 3212 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3213 for (auto &I : BB->instructionsWithoutDebug()) { 3214 // Consider terminator instruction to be free. 3215 if (I.isTerminator()) 3216 continue; 3217 // If this is one the stores that we want to speculate out of this BB, 3218 // then don't count it's cost, consider it to be free. 3219 if (auto *S = dyn_cast<StoreInst>(&I)) 3220 if (llvm::find(FreeStores, S)) 3221 continue; 3222 // Else, we have a white-list of instructions that we are ak speculating. 3223 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3224 return false; // Not in white-list - not worthwhile folding. 3225 // And finally, if this is a non-free instruction that we are okay 3226 // speculating, ensure that we consider the speculation budget. 3227 BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3228 if (BudgetRemaining < 0) 3229 return false; // Eagerly refuse to fold as soon as we're out of budget. 3230 } 3231 assert(BudgetRemaining >= 0 && 3232 "When we run out of budget we will eagerly return from within the " 3233 "per-instruction loop."); 3234 return true; 3235 }; 3236 3237 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3238 if (!MergeCondStoresAggressively && 3239 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3240 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3241 return false; 3242 3243 // If PostBB has more than two predecessors, we need to split it so we can 3244 // sink the store. 3245 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3246 // We know that QFB's only successor is PostBB. And QFB has a single 3247 // predecessor. If QTB exists, then its only successor is also PostBB. 3248 // If QTB does not exist, then QFB's only predecessor has a conditional 3249 // branch to QFB and PostBB. 3250 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3251 BasicBlock *NewBB = 3252 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3253 if (!NewBB) 3254 return false; 3255 PostBB = NewBB; 3256 } 3257 3258 // OK, we're going to sink the stores to PostBB. The store has to be 3259 // conditional though, so first create the predicate. 3260 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3261 ->getCondition(); 3262 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3263 ->getCondition(); 3264 3265 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3266 PStore->getParent()); 3267 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3268 QStore->getParent(), PPHI); 3269 3270 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3271 3272 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3273 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3274 3275 if (InvertPCond) 3276 PPred = QB.CreateNot(PPred); 3277 if (InvertQCond) 3278 QPred = QB.CreateNot(QPred); 3279 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3280 3281 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3282 /*Unreachable=*/false, 3283 /*BranchWeights=*/nullptr, DTU); 3284 QB.SetInsertPoint(T); 3285 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3286 AAMDNodes AAMD; 3287 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3288 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3289 SI->setAAMetadata(AAMD); 3290 // Choose the minimum alignment. If we could prove both stores execute, we 3291 // could use biggest one. In this case, though, we only know that one of the 3292 // stores executes. And we don't know it's safe to take the alignment from a 3293 // store that doesn't execute. 3294 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3295 3296 QStore->eraseFromParent(); 3297 PStore->eraseFromParent(); 3298 3299 return true; 3300 } 3301 3302 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3303 DomTreeUpdater *DTU, const DataLayout &DL, 3304 const TargetTransformInfo &TTI) { 3305 // The intention here is to find diamonds or triangles (see below) where each 3306 // conditional block contains a store to the same address. Both of these 3307 // stores are conditional, so they can't be unconditionally sunk. But it may 3308 // be profitable to speculatively sink the stores into one merged store at the 3309 // end, and predicate the merged store on the union of the two conditions of 3310 // PBI and QBI. 3311 // 3312 // This can reduce the number of stores executed if both of the conditions are 3313 // true, and can allow the blocks to become small enough to be if-converted. 3314 // This optimization will also chain, so that ladders of test-and-set 3315 // sequences can be if-converted away. 3316 // 3317 // We only deal with simple diamonds or triangles: 3318 // 3319 // PBI or PBI or a combination of the two 3320 // / \ | \ 3321 // PTB PFB | PFB 3322 // \ / | / 3323 // QBI QBI 3324 // / \ | \ 3325 // QTB QFB | QFB 3326 // \ / | / 3327 // PostBB PostBB 3328 // 3329 // We model triangles as a type of diamond with a nullptr "true" block. 3330 // Triangles are canonicalized so that the fallthrough edge is represented by 3331 // a true condition, as in the diagram above. 3332 BasicBlock *PTB = PBI->getSuccessor(0); 3333 BasicBlock *PFB = PBI->getSuccessor(1); 3334 BasicBlock *QTB = QBI->getSuccessor(0); 3335 BasicBlock *QFB = QBI->getSuccessor(1); 3336 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3337 3338 // Make sure we have a good guess for PostBB. If QTB's only successor is 3339 // QFB, then QFB is a better PostBB. 3340 if (QTB->getSingleSuccessor() == QFB) 3341 PostBB = QFB; 3342 3343 // If we couldn't find a good PostBB, stop. 3344 if (!PostBB) 3345 return false; 3346 3347 bool InvertPCond = false, InvertQCond = false; 3348 // Canonicalize fallthroughs to the true branches. 3349 if (PFB == QBI->getParent()) { 3350 std::swap(PFB, PTB); 3351 InvertPCond = true; 3352 } 3353 if (QFB == PostBB) { 3354 std::swap(QFB, QTB); 3355 InvertQCond = true; 3356 } 3357 3358 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3359 // and QFB may not. Model fallthroughs as a nullptr block. 3360 if (PTB == QBI->getParent()) 3361 PTB = nullptr; 3362 if (QTB == PostBB) 3363 QTB = nullptr; 3364 3365 // Legality bailouts. We must have at least the non-fallthrough blocks and 3366 // the post-dominating block, and the non-fallthroughs must only have one 3367 // predecessor. 3368 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3369 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3370 }; 3371 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3372 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3373 return false; 3374 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3375 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3376 return false; 3377 if (!QBI->getParent()->hasNUses(2)) 3378 return false; 3379 3380 // OK, this is a sequence of two diamonds or triangles. 3381 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3382 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3383 for (auto *BB : {PTB, PFB}) { 3384 if (!BB) 3385 continue; 3386 for (auto &I : *BB) 3387 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3388 PStoreAddresses.insert(SI->getPointerOperand()); 3389 } 3390 for (auto *BB : {QTB, QFB}) { 3391 if (!BB) 3392 continue; 3393 for (auto &I : *BB) 3394 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3395 QStoreAddresses.insert(SI->getPointerOperand()); 3396 } 3397 3398 set_intersect(PStoreAddresses, QStoreAddresses); 3399 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3400 // clear what it contains. 3401 auto &CommonAddresses = PStoreAddresses; 3402 3403 bool Changed = false; 3404 for (auto *Address : CommonAddresses) 3405 Changed |= 3406 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3407 InvertPCond, InvertQCond, DTU, DL, TTI); 3408 return Changed; 3409 } 3410 3411 /// If the previous block ended with a widenable branch, determine if reusing 3412 /// the target block is profitable and legal. This will have the effect of 3413 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3414 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3415 DomTreeUpdater *DTU) { 3416 // TODO: This can be generalized in two important ways: 3417 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3418 // values from the PBI edge. 3419 // 2) We can sink side effecting instructions into BI's fallthrough 3420 // successor provided they doesn't contribute to computation of 3421 // BI's condition. 3422 Value *CondWB, *WC; 3423 BasicBlock *IfTrueBB, *IfFalseBB; 3424 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3425 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3426 return false; 3427 if (!IfFalseBB->phis().empty()) 3428 return false; // TODO 3429 // Use lambda to lazily compute expensive condition after cheap ones. 3430 auto NoSideEffects = [](BasicBlock &BB) { 3431 return !llvm::any_of(BB, [](const Instruction &I) { 3432 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3433 }); 3434 }; 3435 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3436 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3437 NoSideEffects(*BI->getParent())) { 3438 auto *OldSuccessor = BI->getSuccessor(1); 3439 OldSuccessor->removePredecessor(BI->getParent()); 3440 BI->setSuccessor(1, IfFalseBB); 3441 if (DTU) 3442 DTU->applyUpdates( 3443 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3444 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3445 return true; 3446 } 3447 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3448 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3449 NoSideEffects(*BI->getParent())) { 3450 auto *OldSuccessor = BI->getSuccessor(0); 3451 OldSuccessor->removePredecessor(BI->getParent()); 3452 BI->setSuccessor(0, IfFalseBB); 3453 if (DTU) 3454 DTU->applyUpdates( 3455 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3456 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3457 return true; 3458 } 3459 return false; 3460 } 3461 3462 /// If we have a conditional branch as a predecessor of another block, 3463 /// this function tries to simplify it. We know 3464 /// that PBI and BI are both conditional branches, and BI is in one of the 3465 /// successor blocks of PBI - PBI branches to BI. 3466 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3467 DomTreeUpdater *DTU, 3468 const DataLayout &DL, 3469 const TargetTransformInfo &TTI) { 3470 assert(PBI->isConditional() && BI->isConditional()); 3471 BasicBlock *BB = BI->getParent(); 3472 3473 // If this block ends with a branch instruction, and if there is a 3474 // predecessor that ends on a branch of the same condition, make 3475 // this conditional branch redundant. 3476 if (PBI->getCondition() == BI->getCondition() && 3477 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3478 // Okay, the outcome of this conditional branch is statically 3479 // knowable. If this block had a single pred, handle specially. 3480 if (BB->getSinglePredecessor()) { 3481 // Turn this into a branch on constant. 3482 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3483 BI->setCondition( 3484 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3485 return true; // Nuke the branch on constant. 3486 } 3487 3488 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3489 // in the constant and simplify the block result. Subsequent passes of 3490 // simplifycfg will thread the block. 3491 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3492 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3493 PHINode *NewPN = PHINode::Create( 3494 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3495 BI->getCondition()->getName() + ".pr", &BB->front()); 3496 // Okay, we're going to insert the PHI node. Since PBI is not the only 3497 // predecessor, compute the PHI'd conditional value for all of the preds. 3498 // Any predecessor where the condition is not computable we keep symbolic. 3499 for (pred_iterator PI = PB; PI != PE; ++PI) { 3500 BasicBlock *P = *PI; 3501 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3502 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3503 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3504 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3505 NewPN->addIncoming( 3506 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3507 P); 3508 } else { 3509 NewPN->addIncoming(BI->getCondition(), P); 3510 } 3511 } 3512 3513 BI->setCondition(NewPN); 3514 return true; 3515 } 3516 } 3517 3518 // If the previous block ended with a widenable branch, determine if reusing 3519 // the target block is profitable and legal. This will have the effect of 3520 // "widening" PBI, but doesn't require us to reason about hosting safety. 3521 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3522 return true; 3523 3524 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3525 if (CE->canTrap()) 3526 return false; 3527 3528 // If both branches are conditional and both contain stores to the same 3529 // address, remove the stores from the conditionals and create a conditional 3530 // merged store at the end. 3531 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3532 return true; 3533 3534 // If this is a conditional branch in an empty block, and if any 3535 // predecessors are a conditional branch to one of our destinations, 3536 // fold the conditions into logical ops and one cond br. 3537 3538 // Ignore dbg intrinsics. 3539 if (&*BB->instructionsWithoutDebug().begin() != BI) 3540 return false; 3541 3542 int PBIOp, BIOp; 3543 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3544 PBIOp = 0; 3545 BIOp = 0; 3546 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3547 PBIOp = 0; 3548 BIOp = 1; 3549 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3550 PBIOp = 1; 3551 BIOp = 0; 3552 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3553 PBIOp = 1; 3554 BIOp = 1; 3555 } else { 3556 return false; 3557 } 3558 3559 // Check to make sure that the other destination of this branch 3560 // isn't BB itself. If so, this is an infinite loop that will 3561 // keep getting unwound. 3562 if (PBI->getSuccessor(PBIOp) == BB) 3563 return false; 3564 3565 // Do not perform this transformation if it would require 3566 // insertion of a large number of select instructions. For targets 3567 // without predication/cmovs, this is a big pessimization. 3568 3569 // Also do not perform this transformation if any phi node in the common 3570 // destination block can trap when reached by BB or PBB (PR17073). In that 3571 // case, it would be unsafe to hoist the operation into a select instruction. 3572 3573 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3574 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3575 unsigned NumPhis = 0; 3576 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3577 ++II, ++NumPhis) { 3578 if (NumPhis > 2) // Disable this xform. 3579 return false; 3580 3581 PHINode *PN = cast<PHINode>(II); 3582 Value *BIV = PN->getIncomingValueForBlock(BB); 3583 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3584 if (CE->canTrap()) 3585 return false; 3586 3587 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3588 Value *PBIV = PN->getIncomingValue(PBBIdx); 3589 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3590 if (CE->canTrap()) 3591 return false; 3592 } 3593 3594 // Finally, if everything is ok, fold the branches to logical ops. 3595 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3596 3597 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3598 << "AND: " << *BI->getParent()); 3599 3600 SmallVector<DominatorTree::UpdateType, 5> Updates; 3601 3602 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3603 // branch in it, where one edge (OtherDest) goes back to itself but the other 3604 // exits. We don't *know* that the program avoids the infinite loop 3605 // (even though that seems likely). If we do this xform naively, we'll end up 3606 // recursively unpeeling the loop. Since we know that (after the xform is 3607 // done) that the block *is* infinite if reached, we just make it an obviously 3608 // infinite loop with no cond branch. 3609 if (OtherDest == BB) { 3610 // Insert it at the end of the function, because it's either code, 3611 // or it won't matter if it's hot. :) 3612 BasicBlock *InfLoopBlock = 3613 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3614 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3615 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3616 OtherDest = InfLoopBlock; 3617 } 3618 3619 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3620 3621 // BI may have other predecessors. Because of this, we leave 3622 // it alone, but modify PBI. 3623 3624 // Make sure we get to CommonDest on True&True directions. 3625 Value *PBICond = PBI->getCondition(); 3626 IRBuilder<NoFolder> Builder(PBI); 3627 if (PBIOp) 3628 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3629 3630 Value *BICond = BI->getCondition(); 3631 if (BIOp) 3632 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3633 3634 // Merge the conditions. 3635 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3636 3637 // Modify PBI to branch on the new condition to the new dests. 3638 PBI->setCondition(Cond); 3639 PBI->setSuccessor(0, CommonDest); 3640 PBI->setSuccessor(1, OtherDest); 3641 3642 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3643 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3644 3645 if (DTU) 3646 DTU->applyUpdates(Updates); 3647 3648 // Update branch weight for PBI. 3649 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3650 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3651 bool HasWeights = 3652 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3653 SuccTrueWeight, SuccFalseWeight); 3654 if (HasWeights) { 3655 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3656 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3657 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3658 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3659 // The weight to CommonDest should be PredCommon * SuccTotal + 3660 // PredOther * SuccCommon. 3661 // The weight to OtherDest should be PredOther * SuccOther. 3662 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3663 PredOther * SuccCommon, 3664 PredOther * SuccOther}; 3665 // Halve the weights if any of them cannot fit in an uint32_t 3666 FitWeights(NewWeights); 3667 3668 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3669 } 3670 3671 // OtherDest may have phi nodes. If so, add an entry from PBI's 3672 // block that are identical to the entries for BI's block. 3673 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3674 3675 // We know that the CommonDest already had an edge from PBI to 3676 // it. If it has PHIs though, the PHIs may have different 3677 // entries for BB and PBI's BB. If so, insert a select to make 3678 // them agree. 3679 for (PHINode &PN : CommonDest->phis()) { 3680 Value *BIV = PN.getIncomingValueForBlock(BB); 3681 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3682 Value *PBIV = PN.getIncomingValue(PBBIdx); 3683 if (BIV != PBIV) { 3684 // Insert a select in PBI to pick the right value. 3685 SelectInst *NV = cast<SelectInst>( 3686 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3687 PN.setIncomingValue(PBBIdx, NV); 3688 // Although the select has the same condition as PBI, the original branch 3689 // weights for PBI do not apply to the new select because the select's 3690 // 'logical' edges are incoming edges of the phi that is eliminated, not 3691 // the outgoing edges of PBI. 3692 if (HasWeights) { 3693 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3694 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3695 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3696 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3697 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3698 // The weight to PredOtherDest should be PredOther * SuccCommon. 3699 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3700 PredOther * SuccCommon}; 3701 3702 FitWeights(NewWeights); 3703 3704 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3705 } 3706 } 3707 } 3708 3709 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3710 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3711 3712 // This basic block is probably dead. We know it has at least 3713 // one fewer predecessor. 3714 return true; 3715 } 3716 3717 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3718 // true or to FalseBB if Cond is false. 3719 // Takes care of updating the successors and removing the old terminator. 3720 // Also makes sure not to introduce new successors by assuming that edges to 3721 // non-successor TrueBBs and FalseBBs aren't reachable. 3722 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3723 Value *Cond, BasicBlock *TrueBB, 3724 BasicBlock *FalseBB, 3725 uint32_t TrueWeight, 3726 uint32_t FalseWeight) { 3727 auto *BB = OldTerm->getParent(); 3728 // Remove any superfluous successor edges from the CFG. 3729 // First, figure out which successors to preserve. 3730 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3731 // successor. 3732 BasicBlock *KeepEdge1 = TrueBB; 3733 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3734 3735 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 3736 3737 // Then remove the rest. 3738 for (BasicBlock *Succ : successors(OldTerm)) { 3739 // Make sure only to keep exactly one copy of each edge. 3740 if (Succ == KeepEdge1) 3741 KeepEdge1 = nullptr; 3742 else if (Succ == KeepEdge2) 3743 KeepEdge2 = nullptr; 3744 else { 3745 Succ->removePredecessor(BB, 3746 /*KeepOneInputPHIs=*/true); 3747 3748 if (Succ != TrueBB && Succ != FalseBB) 3749 RemovedSuccessors.insert(Succ); 3750 } 3751 } 3752 3753 IRBuilder<> Builder(OldTerm); 3754 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3755 3756 // Insert an appropriate new terminator. 3757 if (!KeepEdge1 && !KeepEdge2) { 3758 if (TrueBB == FalseBB) { 3759 // We were only looking for one successor, and it was present. 3760 // Create an unconditional branch to it. 3761 Builder.CreateBr(TrueBB); 3762 } else { 3763 // We found both of the successors we were looking for. 3764 // Create a conditional branch sharing the condition of the select. 3765 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3766 if (TrueWeight != FalseWeight) 3767 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3768 } 3769 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3770 // Neither of the selected blocks were successors, so this 3771 // terminator must be unreachable. 3772 new UnreachableInst(OldTerm->getContext(), OldTerm); 3773 } else { 3774 // One of the selected values was a successor, but the other wasn't. 3775 // Insert an unconditional branch to the one that was found; 3776 // the edge to the one that wasn't must be unreachable. 3777 if (!KeepEdge1) { 3778 // Only TrueBB was found. 3779 Builder.CreateBr(TrueBB); 3780 } else { 3781 // Only FalseBB was found. 3782 Builder.CreateBr(FalseBB); 3783 } 3784 } 3785 3786 EraseTerminatorAndDCECond(OldTerm); 3787 3788 if (DTU) { 3789 SmallVector<DominatorTree::UpdateType, 2> Updates; 3790 Updates.reserve(RemovedSuccessors.size()); 3791 for (auto *RemovedSuccessor : RemovedSuccessors) 3792 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3793 DTU->applyUpdates(Updates); 3794 } 3795 3796 return true; 3797 } 3798 3799 // Replaces 3800 // (switch (select cond, X, Y)) on constant X, Y 3801 // with a branch - conditional if X and Y lead to distinct BBs, 3802 // unconditional otherwise. 3803 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3804 SelectInst *Select) { 3805 // Check for constant integer values in the select. 3806 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3807 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3808 if (!TrueVal || !FalseVal) 3809 return false; 3810 3811 // Find the relevant condition and destinations. 3812 Value *Condition = Select->getCondition(); 3813 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3814 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3815 3816 // Get weight for TrueBB and FalseBB. 3817 uint32_t TrueWeight = 0, FalseWeight = 0; 3818 SmallVector<uint64_t, 8> Weights; 3819 bool HasWeights = HasBranchWeights(SI); 3820 if (HasWeights) { 3821 GetBranchWeights(SI, Weights); 3822 if (Weights.size() == 1 + SI->getNumCases()) { 3823 TrueWeight = 3824 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3825 FalseWeight = 3826 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3827 } 3828 } 3829 3830 // Perform the actual simplification. 3831 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3832 FalseWeight); 3833 } 3834 3835 // Replaces 3836 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3837 // blockaddress(@fn, BlockB))) 3838 // with 3839 // (br cond, BlockA, BlockB). 3840 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3841 SelectInst *SI) { 3842 // Check that both operands of the select are block addresses. 3843 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3844 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3845 if (!TBA || !FBA) 3846 return false; 3847 3848 // Extract the actual blocks. 3849 BasicBlock *TrueBB = TBA->getBasicBlock(); 3850 BasicBlock *FalseBB = FBA->getBasicBlock(); 3851 3852 // Perform the actual simplification. 3853 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3854 0); 3855 } 3856 3857 /// This is called when we find an icmp instruction 3858 /// (a seteq/setne with a constant) as the only instruction in a 3859 /// block that ends with an uncond branch. We are looking for a very specific 3860 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3861 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3862 /// default value goes to an uncond block with a seteq in it, we get something 3863 /// like: 3864 /// 3865 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3866 /// DEFAULT: 3867 /// %tmp = icmp eq i8 %A, 92 3868 /// br label %end 3869 /// end: 3870 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3871 /// 3872 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3873 /// the PHI, merging the third icmp into the switch. 3874 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3875 ICmpInst *ICI, IRBuilder<> &Builder) { 3876 BasicBlock *BB = ICI->getParent(); 3877 3878 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3879 // complex. 3880 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3881 return false; 3882 3883 Value *V = ICI->getOperand(0); 3884 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3885 3886 // The pattern we're looking for is where our only predecessor is a switch on 3887 // 'V' and this block is the default case for the switch. In this case we can 3888 // fold the compared value into the switch to simplify things. 3889 BasicBlock *Pred = BB->getSinglePredecessor(); 3890 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3891 return false; 3892 3893 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3894 if (SI->getCondition() != V) 3895 return false; 3896 3897 // If BB is reachable on a non-default case, then we simply know the value of 3898 // V in this block. Substitute it and constant fold the icmp instruction 3899 // away. 3900 if (SI->getDefaultDest() != BB) { 3901 ConstantInt *VVal = SI->findCaseDest(BB); 3902 assert(VVal && "Should have a unique destination value"); 3903 ICI->setOperand(0, VVal); 3904 3905 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3906 ICI->replaceAllUsesWith(V); 3907 ICI->eraseFromParent(); 3908 } 3909 // BB is now empty, so it is likely to simplify away. 3910 return requestResimplify(); 3911 } 3912 3913 // Ok, the block is reachable from the default dest. If the constant we're 3914 // comparing exists in one of the other edges, then we can constant fold ICI 3915 // and zap it. 3916 if (SI->findCaseValue(Cst) != SI->case_default()) { 3917 Value *V; 3918 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3919 V = ConstantInt::getFalse(BB->getContext()); 3920 else 3921 V = ConstantInt::getTrue(BB->getContext()); 3922 3923 ICI->replaceAllUsesWith(V); 3924 ICI->eraseFromParent(); 3925 // BB is now empty, so it is likely to simplify away. 3926 return requestResimplify(); 3927 } 3928 3929 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3930 // the block. 3931 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3932 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3933 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3934 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3935 return false; 3936 3937 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3938 // true in the PHI. 3939 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3940 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3941 3942 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3943 std::swap(DefaultCst, NewCst); 3944 3945 // Replace ICI (which is used by the PHI for the default value) with true or 3946 // false depending on if it is EQ or NE. 3947 ICI->replaceAllUsesWith(DefaultCst); 3948 ICI->eraseFromParent(); 3949 3950 SmallVector<DominatorTree::UpdateType, 2> Updates; 3951 3952 // Okay, the switch goes to this block on a default value. Add an edge from 3953 // the switch to the merge point on the compared value. 3954 BasicBlock *NewBB = 3955 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3956 { 3957 SwitchInstProfUpdateWrapper SIW(*SI); 3958 auto W0 = SIW.getSuccessorWeight(0); 3959 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3960 if (W0) { 3961 NewW = ((uint64_t(*W0) + 1) >> 1); 3962 SIW.setSuccessorWeight(0, *NewW); 3963 } 3964 SIW.addCase(Cst, NewBB, NewW); 3965 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 3966 } 3967 3968 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3969 Builder.SetInsertPoint(NewBB); 3970 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3971 Builder.CreateBr(SuccBlock); 3972 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 3973 PHIUse->addIncoming(NewCst, NewBB); 3974 if (DTU) 3975 DTU->applyUpdates(Updates); 3976 return true; 3977 } 3978 3979 /// The specified branch is a conditional branch. 3980 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3981 /// fold it into a switch instruction if so. 3982 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3983 IRBuilder<> &Builder, 3984 const DataLayout &DL) { 3985 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3986 if (!Cond) 3987 return false; 3988 3989 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3990 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3991 // 'setne's and'ed together, collect them. 3992 3993 // Try to gather values from a chain of and/or to be turned into a switch 3994 ConstantComparesGatherer ConstantCompare(Cond, DL); 3995 // Unpack the result 3996 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3997 Value *CompVal = ConstantCompare.CompValue; 3998 unsigned UsedICmps = ConstantCompare.UsedICmps; 3999 Value *ExtraCase = ConstantCompare.Extra; 4000 4001 // If we didn't have a multiply compared value, fail. 4002 if (!CompVal) 4003 return false; 4004 4005 // Avoid turning single icmps into a switch. 4006 if (UsedICmps <= 1) 4007 return false; 4008 4009 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4010 4011 // There might be duplicate constants in the list, which the switch 4012 // instruction can't handle, remove them now. 4013 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4014 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4015 4016 // If Extra was used, we require at least two switch values to do the 4017 // transformation. A switch with one value is just a conditional branch. 4018 if (ExtraCase && Values.size() < 2) 4019 return false; 4020 4021 // TODO: Preserve branch weight metadata, similarly to how 4022 // FoldValueComparisonIntoPredecessors preserves it. 4023 4024 // Figure out which block is which destination. 4025 BasicBlock *DefaultBB = BI->getSuccessor(1); 4026 BasicBlock *EdgeBB = BI->getSuccessor(0); 4027 if (!TrueWhenEqual) 4028 std::swap(DefaultBB, EdgeBB); 4029 4030 BasicBlock *BB = BI->getParent(); 4031 4032 // MSAN does not like undefs as branch condition which can be introduced 4033 // with "explicit branch". 4034 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4035 return false; 4036 4037 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4038 << " cases into SWITCH. BB is:\n" 4039 << *BB); 4040 4041 SmallVector<DominatorTree::UpdateType, 2> Updates; 4042 4043 // If there are any extra values that couldn't be folded into the switch 4044 // then we evaluate them with an explicit branch first. Split the block 4045 // right before the condbr to handle it. 4046 if (ExtraCase) { 4047 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4048 /*MSSAU=*/nullptr, "switch.early.test"); 4049 4050 // Remove the uncond branch added to the old block. 4051 Instruction *OldTI = BB->getTerminator(); 4052 Builder.SetInsertPoint(OldTI); 4053 4054 if (TrueWhenEqual) 4055 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4056 else 4057 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4058 4059 OldTI->eraseFromParent(); 4060 4061 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4062 4063 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4064 // for the edge we just added. 4065 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4066 4067 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4068 << "\nEXTRABB = " << *BB); 4069 BB = NewBB; 4070 } 4071 4072 Builder.SetInsertPoint(BI); 4073 // Convert pointer to int before we switch. 4074 if (CompVal->getType()->isPointerTy()) { 4075 CompVal = Builder.CreatePtrToInt( 4076 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4077 } 4078 4079 // Create the new switch instruction now. 4080 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4081 4082 // Add all of the 'cases' to the switch instruction. 4083 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4084 New->addCase(Values[i], EdgeBB); 4085 4086 // We added edges from PI to the EdgeBB. As such, if there were any 4087 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4088 // the number of edges added. 4089 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4090 PHINode *PN = cast<PHINode>(BBI); 4091 Value *InVal = PN->getIncomingValueForBlock(BB); 4092 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4093 PN->addIncoming(InVal, BB); 4094 } 4095 4096 // Erase the old branch instruction. 4097 EraseTerminatorAndDCECond(BI); 4098 if (DTU) 4099 DTU->applyUpdates(Updates); 4100 4101 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4102 return true; 4103 } 4104 4105 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4106 if (isa<PHINode>(RI->getValue())) 4107 return simplifyCommonResume(RI); 4108 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4109 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4110 // The resume must unwind the exception that caused control to branch here. 4111 return simplifySingleResume(RI); 4112 4113 return false; 4114 } 4115 4116 // Check if cleanup block is empty 4117 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4118 for (Instruction &I : R) { 4119 auto *II = dyn_cast<IntrinsicInst>(&I); 4120 if (!II) 4121 return false; 4122 4123 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4124 switch (IntrinsicID) { 4125 case Intrinsic::dbg_declare: 4126 case Intrinsic::dbg_value: 4127 case Intrinsic::dbg_label: 4128 case Intrinsic::lifetime_end: 4129 break; 4130 default: 4131 return false; 4132 } 4133 } 4134 return true; 4135 } 4136 4137 // Simplify resume that is shared by several landing pads (phi of landing pad). 4138 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4139 BasicBlock *BB = RI->getParent(); 4140 4141 // Check that there are no other instructions except for debug and lifetime 4142 // intrinsics between the phi's and resume instruction. 4143 if (!isCleanupBlockEmpty( 4144 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4145 return false; 4146 4147 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4148 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4149 4150 // Check incoming blocks to see if any of them are trivial. 4151 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4152 Idx++) { 4153 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4154 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4155 4156 // If the block has other successors, we can not delete it because 4157 // it has other dependents. 4158 if (IncomingBB->getUniqueSuccessor() != BB) 4159 continue; 4160 4161 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4162 // Not the landing pad that caused the control to branch here. 4163 if (IncomingValue != LandingPad) 4164 continue; 4165 4166 if (isCleanupBlockEmpty( 4167 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4168 TrivialUnwindBlocks.insert(IncomingBB); 4169 } 4170 4171 // If no trivial unwind blocks, don't do any simplifications. 4172 if (TrivialUnwindBlocks.empty()) 4173 return false; 4174 4175 // Turn all invokes that unwind here into calls. 4176 for (auto *TrivialBB : TrivialUnwindBlocks) { 4177 // Blocks that will be simplified should be removed from the phi node. 4178 // Note there could be multiple edges to the resume block, and we need 4179 // to remove them all. 4180 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4181 BB->removePredecessor(TrivialBB, true); 4182 4183 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 4184 PI != PE;) { 4185 BasicBlock *Pred = *PI++; 4186 removeUnwindEdge(Pred, DTU); 4187 ++NumInvokes; 4188 } 4189 4190 // In each SimplifyCFG run, only the current processed block can be erased. 4191 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4192 // of erasing TrivialBB, we only remove the branch to the common resume 4193 // block so that we can later erase the resume block since it has no 4194 // predecessors. 4195 TrivialBB->getTerminator()->eraseFromParent(); 4196 new UnreachableInst(RI->getContext(), TrivialBB); 4197 if (DTU) 4198 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4199 } 4200 4201 // Delete the resume block if all its predecessors have been removed. 4202 if (pred_empty(BB)) { 4203 if (DTU) 4204 DTU->deleteBB(BB); 4205 else 4206 BB->eraseFromParent(); 4207 } 4208 4209 return !TrivialUnwindBlocks.empty(); 4210 } 4211 4212 // Simplify resume that is only used by a single (non-phi) landing pad. 4213 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4214 BasicBlock *BB = RI->getParent(); 4215 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4216 assert(RI->getValue() == LPInst && 4217 "Resume must unwind the exception that caused control to here"); 4218 4219 // Check that there are no other instructions except for debug intrinsics. 4220 if (!isCleanupBlockEmpty( 4221 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4222 return false; 4223 4224 // Turn all invokes that unwind here into calls and delete the basic block. 4225 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4226 BasicBlock *Pred = *PI++; 4227 removeUnwindEdge(Pred, DTU); 4228 ++NumInvokes; 4229 } 4230 4231 // The landingpad is now unreachable. Zap it. 4232 if (LoopHeaders) 4233 LoopHeaders->erase(BB); 4234 if (DTU) 4235 DTU->deleteBB(BB); 4236 else 4237 BB->eraseFromParent(); 4238 return true; 4239 } 4240 4241 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4242 // If this is a trivial cleanup pad that executes no instructions, it can be 4243 // eliminated. If the cleanup pad continues to the caller, any predecessor 4244 // that is an EH pad will be updated to continue to the caller and any 4245 // predecessor that terminates with an invoke instruction will have its invoke 4246 // instruction converted to a call instruction. If the cleanup pad being 4247 // simplified does not continue to the caller, each predecessor will be 4248 // updated to continue to the unwind destination of the cleanup pad being 4249 // simplified. 4250 BasicBlock *BB = RI->getParent(); 4251 CleanupPadInst *CPInst = RI->getCleanupPad(); 4252 if (CPInst->getParent() != BB) 4253 // This isn't an empty cleanup. 4254 return false; 4255 4256 // We cannot kill the pad if it has multiple uses. This typically arises 4257 // from unreachable basic blocks. 4258 if (!CPInst->hasOneUse()) 4259 return false; 4260 4261 // Check that there are no other instructions except for benign intrinsics. 4262 if (!isCleanupBlockEmpty( 4263 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4264 return false; 4265 4266 // If the cleanup return we are simplifying unwinds to the caller, this will 4267 // set UnwindDest to nullptr. 4268 BasicBlock *UnwindDest = RI->getUnwindDest(); 4269 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4270 4271 // We're about to remove BB from the control flow. Before we do, sink any 4272 // PHINodes into the unwind destination. Doing this before changing the 4273 // control flow avoids some potentially slow checks, since we can currently 4274 // be certain that UnwindDest and BB have no common predecessors (since they 4275 // are both EH pads). 4276 if (UnwindDest) { 4277 // First, go through the PHI nodes in UnwindDest and update any nodes that 4278 // reference the block we are removing 4279 for (BasicBlock::iterator I = UnwindDest->begin(), 4280 IE = DestEHPad->getIterator(); 4281 I != IE; ++I) { 4282 PHINode *DestPN = cast<PHINode>(I); 4283 4284 int Idx = DestPN->getBasicBlockIndex(BB); 4285 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4286 assert(Idx != -1); 4287 // This PHI node has an incoming value that corresponds to a control 4288 // path through the cleanup pad we are removing. If the incoming 4289 // value is in the cleanup pad, it must be a PHINode (because we 4290 // verified above that the block is otherwise empty). Otherwise, the 4291 // value is either a constant or a value that dominates the cleanup 4292 // pad being removed. 4293 // 4294 // Because BB and UnwindDest are both EH pads, all of their 4295 // predecessors must unwind to these blocks, and since no instruction 4296 // can have multiple unwind destinations, there will be no overlap in 4297 // incoming blocks between SrcPN and DestPN. 4298 Value *SrcVal = DestPN->getIncomingValue(Idx); 4299 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4300 4301 // Remove the entry for the block we are deleting. 4302 DestPN->removeIncomingValue(Idx, false); 4303 4304 if (SrcPN && SrcPN->getParent() == BB) { 4305 // If the incoming value was a PHI node in the cleanup pad we are 4306 // removing, we need to merge that PHI node's incoming values into 4307 // DestPN. 4308 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4309 SrcIdx != SrcE; ++SrcIdx) { 4310 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4311 SrcPN->getIncomingBlock(SrcIdx)); 4312 } 4313 } else { 4314 // Otherwise, the incoming value came from above BB and 4315 // so we can just reuse it. We must associate all of BB's 4316 // predecessors with this value. 4317 for (auto *pred : predecessors(BB)) { 4318 DestPN->addIncoming(SrcVal, pred); 4319 } 4320 } 4321 } 4322 4323 // Sink any remaining PHI nodes directly into UnwindDest. 4324 Instruction *InsertPt = DestEHPad; 4325 for (BasicBlock::iterator I = BB->begin(), 4326 IE = BB->getFirstNonPHI()->getIterator(); 4327 I != IE;) { 4328 // The iterator must be incremented here because the instructions are 4329 // being moved to another block. 4330 PHINode *PN = cast<PHINode>(I++); 4331 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4332 // If the PHI node has no uses or all of its uses are in this basic 4333 // block (meaning they are debug or lifetime intrinsics), just leave 4334 // it. It will be erased when we erase BB below. 4335 continue; 4336 4337 // Otherwise, sink this PHI node into UnwindDest. 4338 // Any predecessors to UnwindDest which are not already represented 4339 // must be back edges which inherit the value from the path through 4340 // BB. In this case, the PHI value must reference itself. 4341 for (auto *pred : predecessors(UnwindDest)) 4342 if (pred != BB) 4343 PN->addIncoming(PN, pred); 4344 PN->moveBefore(InsertPt); 4345 } 4346 } 4347 4348 std::vector<DominatorTree::UpdateType> Updates; 4349 4350 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4351 // The iterator must be updated here because we are removing this pred. 4352 BasicBlock *PredBB = *PI++; 4353 if (UnwindDest == nullptr) { 4354 if (DTU) 4355 DTU->applyUpdates(Updates); 4356 Updates.clear(); 4357 removeUnwindEdge(PredBB, DTU); 4358 ++NumInvokes; 4359 } else { 4360 Instruction *TI = PredBB->getTerminator(); 4361 TI->replaceUsesOfWith(BB, UnwindDest); 4362 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4363 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4364 } 4365 } 4366 4367 if (DTU) { 4368 DTU->applyUpdates(Updates); 4369 DTU->deleteBB(BB); 4370 } else 4371 // The cleanup pad is now unreachable. Zap it. 4372 BB->eraseFromParent(); 4373 4374 return true; 4375 } 4376 4377 // Try to merge two cleanuppads together. 4378 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4379 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4380 // with. 4381 BasicBlock *UnwindDest = RI->getUnwindDest(); 4382 if (!UnwindDest) 4383 return false; 4384 4385 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4386 // be safe to merge without code duplication. 4387 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4388 return false; 4389 4390 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4391 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4392 if (!SuccessorCleanupPad) 4393 return false; 4394 4395 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4396 // Replace any uses of the successor cleanupad with the predecessor pad 4397 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4398 // funclet bundle operands. 4399 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4400 // Remove the old cleanuppad. 4401 SuccessorCleanupPad->eraseFromParent(); 4402 // Now, we simply replace the cleanupret with a branch to the unwind 4403 // destination. 4404 BranchInst::Create(UnwindDest, RI->getParent()); 4405 RI->eraseFromParent(); 4406 4407 return true; 4408 } 4409 4410 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4411 // It is possible to transiantly have an undef cleanuppad operand because we 4412 // have deleted some, but not all, dead blocks. 4413 // Eventually, this block will be deleted. 4414 if (isa<UndefValue>(RI->getOperand(0))) 4415 return false; 4416 4417 if (mergeCleanupPad(RI)) 4418 return true; 4419 4420 if (removeEmptyCleanup(RI, DTU)) 4421 return true; 4422 4423 return false; 4424 } 4425 4426 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4427 BasicBlock *BB = RI->getParent(); 4428 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4429 return false; 4430 4431 // Find predecessors that end with branches. 4432 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4433 SmallVector<BranchInst *, 8> CondBranchPreds; 4434 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4435 BasicBlock *P = *PI; 4436 Instruction *PTI = P->getTerminator(); 4437 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4438 if (BI->isUnconditional()) 4439 UncondBranchPreds.push_back(P); 4440 else 4441 CondBranchPreds.push_back(BI); 4442 } 4443 } 4444 4445 // If we found some, do the transformation! 4446 if (!UncondBranchPreds.empty() && DupRet) { 4447 while (!UncondBranchPreds.empty()) { 4448 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4449 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4450 << "INTO UNCOND BRANCH PRED: " << *Pred); 4451 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4452 } 4453 4454 // If we eliminated all predecessors of the block, delete the block now. 4455 if (pred_empty(BB)) { 4456 // We know there are no successors, so just nuke the block. 4457 if (LoopHeaders) 4458 LoopHeaders->erase(BB); 4459 if (DTU) 4460 DTU->deleteBB(BB); 4461 else 4462 BB->eraseFromParent(); 4463 } 4464 4465 return true; 4466 } 4467 4468 // Check out all of the conditional branches going to this return 4469 // instruction. If any of them just select between returns, change the 4470 // branch itself into a select/return pair. 4471 while (!CondBranchPreds.empty()) { 4472 BranchInst *BI = CondBranchPreds.pop_back_val(); 4473 4474 // Check to see if the non-BB successor is also a return block. 4475 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4476 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4477 SimplifyCondBranchToTwoReturns(BI, Builder)) 4478 return true; 4479 } 4480 return false; 4481 } 4482 4483 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4484 BasicBlock *BB = UI->getParent(); 4485 4486 bool Changed = false; 4487 4488 // If there are any instructions immediately before the unreachable that can 4489 // be removed, do so. 4490 while (UI->getIterator() != BB->begin()) { 4491 BasicBlock::iterator BBI = UI->getIterator(); 4492 --BBI; 4493 // Do not delete instructions that can have side effects which might cause 4494 // the unreachable to not be reachable; specifically, calls and volatile 4495 // operations may have this effect. 4496 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4497 break; 4498 4499 if (BBI->mayHaveSideEffects()) { 4500 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4501 if (SI->isVolatile()) 4502 break; 4503 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4504 if (LI->isVolatile()) 4505 break; 4506 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4507 if (RMWI->isVolatile()) 4508 break; 4509 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4510 if (CXI->isVolatile()) 4511 break; 4512 } else if (isa<CatchPadInst>(BBI)) { 4513 // A catchpad may invoke exception object constructors and such, which 4514 // in some languages can be arbitrary code, so be conservative by 4515 // default. 4516 // For CoreCLR, it just involves a type test, so can be removed. 4517 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4518 EHPersonality::CoreCLR) 4519 break; 4520 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4521 !isa<LandingPadInst>(BBI)) { 4522 break; 4523 } 4524 // Note that deleting LandingPad's here is in fact okay, although it 4525 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4526 // all the predecessors of this block will be the unwind edges of Invokes, 4527 // and we can therefore guarantee this block will be erased. 4528 } 4529 4530 // Delete this instruction (any uses are guaranteed to be dead) 4531 if (!BBI->use_empty()) 4532 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4533 BBI->eraseFromParent(); 4534 Changed = true; 4535 } 4536 4537 // If the unreachable instruction is the first in the block, take a gander 4538 // at all of the predecessors of this instruction, and simplify them. 4539 if (&BB->front() != UI) 4540 return Changed; 4541 4542 std::vector<DominatorTree::UpdateType> Updates; 4543 4544 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4545 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4546 auto *Predecessor = Preds[i]; 4547 Instruction *TI = Predecessor->getTerminator(); 4548 IRBuilder<> Builder(TI); 4549 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4550 // We could either have a proper unconditional branch, 4551 // or a degenerate conditional branch with matching destinations. 4552 if (all_of(BI->successors(), 4553 [BB](auto *Successor) { return Successor == BB; })) { 4554 new UnreachableInst(TI->getContext(), TI); 4555 TI->eraseFromParent(); 4556 Changed = true; 4557 } else { 4558 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4559 Value* Cond = BI->getCondition(); 4560 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4561 "The destinations are guaranteed to be different here."); 4562 if (BI->getSuccessor(0) == BB) { 4563 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4564 Builder.CreateBr(BI->getSuccessor(1)); 4565 } else { 4566 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4567 Builder.CreateAssumption(Cond); 4568 Builder.CreateBr(BI->getSuccessor(0)); 4569 } 4570 EraseTerminatorAndDCECond(BI); 4571 Changed = true; 4572 } 4573 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4574 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4575 SwitchInstProfUpdateWrapper SU(*SI); 4576 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4577 if (i->getCaseSuccessor() != BB) { 4578 ++i; 4579 continue; 4580 } 4581 BB->removePredecessor(SU->getParent()); 4582 i = SU.removeCase(i); 4583 e = SU->case_end(); 4584 Changed = true; 4585 } 4586 // Note that the default destination can't be removed! 4587 if (SI->getDefaultDest() != BB) 4588 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4589 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4590 if (II->getUnwindDest() == BB) { 4591 if (DTU) 4592 DTU->applyUpdates(Updates); 4593 Updates.clear(); 4594 removeUnwindEdge(TI->getParent(), DTU); 4595 Changed = true; 4596 } 4597 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4598 if (CSI->getUnwindDest() == BB) { 4599 if (DTU) 4600 DTU->applyUpdates(Updates); 4601 Updates.clear(); 4602 removeUnwindEdge(TI->getParent(), DTU); 4603 Changed = true; 4604 continue; 4605 } 4606 4607 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4608 E = CSI->handler_end(); 4609 I != E; ++I) { 4610 if (*I == BB) { 4611 CSI->removeHandler(I); 4612 --I; 4613 --E; 4614 Changed = true; 4615 } 4616 } 4617 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4618 if (CSI->getNumHandlers() == 0) { 4619 if (CSI->hasUnwindDest()) { 4620 // Redirect all predecessors of the block containing CatchSwitchInst 4621 // to instead branch to the CatchSwitchInst's unwind destination. 4622 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4623 Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor, 4624 CSI->getUnwindDest()}); 4625 Updates.push_back( 4626 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor}); 4627 } 4628 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4629 } else { 4630 // Rewrite all preds to unwind to caller (or from invoke to call). 4631 if (DTU) 4632 DTU->applyUpdates(Updates); 4633 Updates.clear(); 4634 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4635 for (BasicBlock *EHPred : EHPreds) 4636 removeUnwindEdge(EHPred, DTU); 4637 } 4638 // The catchswitch is no longer reachable. 4639 new UnreachableInst(CSI->getContext(), CSI); 4640 CSI->eraseFromParent(); 4641 Changed = true; 4642 } 4643 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4644 (void)CRI; 4645 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4646 "Expected to always have an unwind to BB."); 4647 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4648 new UnreachableInst(TI->getContext(), TI); 4649 TI->eraseFromParent(); 4650 Changed = true; 4651 } 4652 } 4653 4654 if (DTU) 4655 DTU->applyUpdates(Updates); 4656 4657 // If this block is now dead, remove it. 4658 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4659 // We know there are no successors, so just nuke the block. 4660 if (LoopHeaders) 4661 LoopHeaders->erase(BB); 4662 if (DTU) 4663 DTU->deleteBB(BB); 4664 else 4665 BB->eraseFromParent(); 4666 return true; 4667 } 4668 4669 return Changed; 4670 } 4671 4672 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4673 assert(Cases.size() >= 1); 4674 4675 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4676 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4677 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4678 return false; 4679 } 4680 return true; 4681 } 4682 4683 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4684 DomTreeUpdater *DTU) { 4685 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4686 auto *BB = Switch->getParent(); 4687 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4688 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4689 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4690 Switch->setDefaultDest(&*NewDefaultBlock); 4691 if (DTU) 4692 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4693 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4694 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4695 SmallVector<DominatorTree::UpdateType, 2> Updates; 4696 for (auto *Successor : successors(NewDefaultBlock)) 4697 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4698 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4699 new UnreachableInst(Switch->getContext(), NewTerminator); 4700 EraseTerminatorAndDCECond(NewTerminator); 4701 if (DTU) 4702 DTU->applyUpdates(Updates); 4703 } 4704 4705 /// Turn a switch with two reachable destinations into an integer range 4706 /// comparison and branch. 4707 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4708 IRBuilder<> &Builder) { 4709 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4710 4711 bool HasDefault = 4712 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4713 4714 auto *BB = SI->getParent(); 4715 4716 // Partition the cases into two sets with different destinations. 4717 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4718 BasicBlock *DestB = nullptr; 4719 SmallVector<ConstantInt *, 16> CasesA; 4720 SmallVector<ConstantInt *, 16> CasesB; 4721 4722 for (auto Case : SI->cases()) { 4723 BasicBlock *Dest = Case.getCaseSuccessor(); 4724 if (!DestA) 4725 DestA = Dest; 4726 if (Dest == DestA) { 4727 CasesA.push_back(Case.getCaseValue()); 4728 continue; 4729 } 4730 if (!DestB) 4731 DestB = Dest; 4732 if (Dest == DestB) { 4733 CasesB.push_back(Case.getCaseValue()); 4734 continue; 4735 } 4736 return false; // More than two destinations. 4737 } 4738 4739 assert(DestA && DestB && 4740 "Single-destination switch should have been folded."); 4741 assert(DestA != DestB); 4742 assert(DestB != SI->getDefaultDest()); 4743 assert(!CasesB.empty() && "There must be non-default cases."); 4744 assert(!CasesA.empty() || HasDefault); 4745 4746 // Figure out if one of the sets of cases form a contiguous range. 4747 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4748 BasicBlock *ContiguousDest = nullptr; 4749 BasicBlock *OtherDest = nullptr; 4750 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4751 ContiguousCases = &CasesA; 4752 ContiguousDest = DestA; 4753 OtherDest = DestB; 4754 } else if (CasesAreContiguous(CasesB)) { 4755 ContiguousCases = &CasesB; 4756 ContiguousDest = DestB; 4757 OtherDest = DestA; 4758 } else 4759 return false; 4760 4761 // Start building the compare and branch. 4762 4763 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4764 Constant *NumCases = 4765 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4766 4767 Value *Sub = SI->getCondition(); 4768 if (!Offset->isNullValue()) 4769 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4770 4771 Value *Cmp; 4772 // If NumCases overflowed, then all possible values jump to the successor. 4773 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4774 Cmp = ConstantInt::getTrue(SI->getContext()); 4775 else 4776 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4777 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4778 4779 // Update weight for the newly-created conditional branch. 4780 if (HasBranchWeights(SI)) { 4781 SmallVector<uint64_t, 8> Weights; 4782 GetBranchWeights(SI, Weights); 4783 if (Weights.size() == 1 + SI->getNumCases()) { 4784 uint64_t TrueWeight = 0; 4785 uint64_t FalseWeight = 0; 4786 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4787 if (SI->getSuccessor(I) == ContiguousDest) 4788 TrueWeight += Weights[I]; 4789 else 4790 FalseWeight += Weights[I]; 4791 } 4792 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4793 TrueWeight /= 2; 4794 FalseWeight /= 2; 4795 } 4796 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4797 } 4798 } 4799 4800 // Prune obsolete incoming values off the successors' PHI nodes. 4801 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4802 unsigned PreviousEdges = ContiguousCases->size(); 4803 if (ContiguousDest == SI->getDefaultDest()) 4804 ++PreviousEdges; 4805 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4806 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4807 } 4808 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4809 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4810 if (OtherDest == SI->getDefaultDest()) 4811 ++PreviousEdges; 4812 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4813 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4814 } 4815 4816 // Clean up the default block - it may have phis or other instructions before 4817 // the unreachable terminator. 4818 if (!HasDefault) 4819 createUnreachableSwitchDefault(SI, DTU); 4820 4821 auto *UnreachableDefault = SI->getDefaultDest(); 4822 4823 // Drop the switch. 4824 SI->eraseFromParent(); 4825 4826 if (!HasDefault && DTU) 4827 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4828 4829 return true; 4830 } 4831 4832 /// Compute masked bits for the condition of a switch 4833 /// and use it to remove dead cases. 4834 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 4835 AssumptionCache *AC, 4836 const DataLayout &DL) { 4837 Value *Cond = SI->getCondition(); 4838 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4839 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4840 4841 // We can also eliminate cases by determining that their values are outside of 4842 // the limited range of the condition based on how many significant (non-sign) 4843 // bits are in the condition value. 4844 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4845 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4846 4847 // Gather dead cases. 4848 SmallVector<ConstantInt *, 8> DeadCases; 4849 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 4850 for (auto &Case : SI->cases()) { 4851 auto *Successor = Case.getCaseSuccessor(); 4852 ++NumPerSuccessorCases[Successor]; 4853 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4854 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4855 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4856 DeadCases.push_back(Case.getCaseValue()); 4857 --NumPerSuccessorCases[Successor]; 4858 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4859 << " is dead.\n"); 4860 } 4861 } 4862 4863 // If we can prove that the cases must cover all possible values, the 4864 // default destination becomes dead and we can remove it. If we know some 4865 // of the bits in the value, we can use that to more precisely compute the 4866 // number of possible unique case values. 4867 bool HasDefault = 4868 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4869 const unsigned NumUnknownBits = 4870 Bits - (Known.Zero | Known.One).countPopulation(); 4871 assert(NumUnknownBits <= Bits); 4872 if (HasDefault && DeadCases.empty() && 4873 NumUnknownBits < 64 /* avoid overflow */ && 4874 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4875 createUnreachableSwitchDefault(SI, DTU); 4876 return true; 4877 } 4878 4879 if (DeadCases.empty()) 4880 return false; 4881 4882 SwitchInstProfUpdateWrapper SIW(*SI); 4883 for (ConstantInt *DeadCase : DeadCases) { 4884 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4885 assert(CaseI != SI->case_default() && 4886 "Case was not found. Probably mistake in DeadCases forming."); 4887 // Prune unused values from PHI nodes. 4888 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4889 SIW.removeCase(CaseI); 4890 } 4891 4892 std::vector<DominatorTree::UpdateType> Updates; 4893 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 4894 if (I.second == 0) 4895 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 4896 if (DTU) 4897 DTU->applyUpdates(Updates); 4898 4899 return true; 4900 } 4901 4902 /// If BB would be eligible for simplification by 4903 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4904 /// by an unconditional branch), look at the phi node for BB in the successor 4905 /// block and see if the incoming value is equal to CaseValue. If so, return 4906 /// the phi node, and set PhiIndex to BB's index in the phi node. 4907 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4908 BasicBlock *BB, int *PhiIndex) { 4909 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4910 return nullptr; // BB must be empty to be a candidate for simplification. 4911 if (!BB->getSinglePredecessor()) 4912 return nullptr; // BB must be dominated by the switch. 4913 4914 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4915 if (!Branch || !Branch->isUnconditional()) 4916 return nullptr; // Terminator must be unconditional branch. 4917 4918 BasicBlock *Succ = Branch->getSuccessor(0); 4919 4920 for (PHINode &PHI : Succ->phis()) { 4921 int Idx = PHI.getBasicBlockIndex(BB); 4922 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4923 4924 Value *InValue = PHI.getIncomingValue(Idx); 4925 if (InValue != CaseValue) 4926 continue; 4927 4928 *PhiIndex = Idx; 4929 return &PHI; 4930 } 4931 4932 return nullptr; 4933 } 4934 4935 /// Try to forward the condition of a switch instruction to a phi node 4936 /// dominated by the switch, if that would mean that some of the destination 4937 /// blocks of the switch can be folded away. Return true if a change is made. 4938 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4939 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4940 4941 ForwardingNodesMap ForwardingNodes; 4942 BasicBlock *SwitchBlock = SI->getParent(); 4943 bool Changed = false; 4944 for (auto &Case : SI->cases()) { 4945 ConstantInt *CaseValue = Case.getCaseValue(); 4946 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4947 4948 // Replace phi operands in successor blocks that are using the constant case 4949 // value rather than the switch condition variable: 4950 // switchbb: 4951 // switch i32 %x, label %default [ 4952 // i32 17, label %succ 4953 // ... 4954 // succ: 4955 // %r = phi i32 ... [ 17, %switchbb ] ... 4956 // --> 4957 // %r = phi i32 ... [ %x, %switchbb ] ... 4958 4959 for (PHINode &Phi : CaseDest->phis()) { 4960 // This only works if there is exactly 1 incoming edge from the switch to 4961 // a phi. If there is >1, that means multiple cases of the switch map to 1 4962 // value in the phi, and that phi value is not the switch condition. Thus, 4963 // this transform would not make sense (the phi would be invalid because 4964 // a phi can't have different incoming values from the same block). 4965 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4966 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4967 count(Phi.blocks(), SwitchBlock) == 1) { 4968 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4969 Changed = true; 4970 } 4971 } 4972 4973 // Collect phi nodes that are indirectly using this switch's case constants. 4974 int PhiIdx; 4975 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4976 ForwardingNodes[Phi].push_back(PhiIdx); 4977 } 4978 4979 for (auto &ForwardingNode : ForwardingNodes) { 4980 PHINode *Phi = ForwardingNode.first; 4981 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4982 if (Indexes.size() < 2) 4983 continue; 4984 4985 for (int Index : Indexes) 4986 Phi->setIncomingValue(Index, SI->getCondition()); 4987 Changed = true; 4988 } 4989 4990 return Changed; 4991 } 4992 4993 /// Return true if the backend will be able to handle 4994 /// initializing an array of constants like C. 4995 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4996 if (C->isThreadDependent()) 4997 return false; 4998 if (C->isDLLImportDependent()) 4999 return false; 5000 5001 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5002 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5003 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5004 return false; 5005 5006 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5007 if (!CE->isGEPWithNoNotionalOverIndexing()) 5008 return false; 5009 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5010 return false; 5011 } 5012 5013 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5014 return false; 5015 5016 return true; 5017 } 5018 5019 /// If V is a Constant, return it. Otherwise, try to look up 5020 /// its constant value in ConstantPool, returning 0 if it's not there. 5021 static Constant * 5022 LookupConstant(Value *V, 5023 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5024 if (Constant *C = dyn_cast<Constant>(V)) 5025 return C; 5026 return ConstantPool.lookup(V); 5027 } 5028 5029 /// Try to fold instruction I into a constant. This works for 5030 /// simple instructions such as binary operations where both operands are 5031 /// constant or can be replaced by constants from the ConstantPool. Returns the 5032 /// resulting constant on success, 0 otherwise. 5033 static Constant * 5034 ConstantFold(Instruction *I, const DataLayout &DL, 5035 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5036 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5037 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5038 if (!A) 5039 return nullptr; 5040 if (A->isAllOnesValue()) 5041 return LookupConstant(Select->getTrueValue(), ConstantPool); 5042 if (A->isNullValue()) 5043 return LookupConstant(Select->getFalseValue(), ConstantPool); 5044 return nullptr; 5045 } 5046 5047 SmallVector<Constant *, 4> COps; 5048 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5049 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5050 COps.push_back(A); 5051 else 5052 return nullptr; 5053 } 5054 5055 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5056 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5057 COps[1], DL); 5058 } 5059 5060 return ConstantFoldInstOperands(I, COps, DL); 5061 } 5062 5063 /// Try to determine the resulting constant values in phi nodes 5064 /// at the common destination basic block, *CommonDest, for one of the case 5065 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5066 /// case), of a switch instruction SI. 5067 static bool 5068 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5069 BasicBlock **CommonDest, 5070 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5071 const DataLayout &DL, const TargetTransformInfo &TTI) { 5072 // The block from which we enter the common destination. 5073 BasicBlock *Pred = SI->getParent(); 5074 5075 // If CaseDest is empty except for some side-effect free instructions through 5076 // which we can constant-propagate the CaseVal, continue to its successor. 5077 SmallDenseMap<Value *, Constant *> ConstantPool; 5078 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5079 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5080 if (I.isTerminator()) { 5081 // If the terminator is a simple branch, continue to the next block. 5082 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5083 return false; 5084 Pred = CaseDest; 5085 CaseDest = I.getSuccessor(0); 5086 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5087 // Instruction is side-effect free and constant. 5088 5089 // If the instruction has uses outside this block or a phi node slot for 5090 // the block, it is not safe to bypass the instruction since it would then 5091 // no longer dominate all its uses. 5092 for (auto &Use : I.uses()) { 5093 User *User = Use.getUser(); 5094 if (Instruction *I = dyn_cast<Instruction>(User)) 5095 if (I->getParent() == CaseDest) 5096 continue; 5097 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5098 if (Phi->getIncomingBlock(Use) == CaseDest) 5099 continue; 5100 return false; 5101 } 5102 5103 ConstantPool.insert(std::make_pair(&I, C)); 5104 } else { 5105 break; 5106 } 5107 } 5108 5109 // If we did not have a CommonDest before, use the current one. 5110 if (!*CommonDest) 5111 *CommonDest = CaseDest; 5112 // If the destination isn't the common one, abort. 5113 if (CaseDest != *CommonDest) 5114 return false; 5115 5116 // Get the values for this case from phi nodes in the destination block. 5117 for (PHINode &PHI : (*CommonDest)->phis()) { 5118 int Idx = PHI.getBasicBlockIndex(Pred); 5119 if (Idx == -1) 5120 continue; 5121 5122 Constant *ConstVal = 5123 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5124 if (!ConstVal) 5125 return false; 5126 5127 // Be conservative about which kinds of constants we support. 5128 if (!ValidLookupTableConstant(ConstVal, TTI)) 5129 return false; 5130 5131 Res.push_back(std::make_pair(&PHI, ConstVal)); 5132 } 5133 5134 return Res.size() > 0; 5135 } 5136 5137 // Helper function used to add CaseVal to the list of cases that generate 5138 // Result. Returns the updated number of cases that generate this result. 5139 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5140 SwitchCaseResultVectorTy &UniqueResults, 5141 Constant *Result) { 5142 for (auto &I : UniqueResults) { 5143 if (I.first == Result) { 5144 I.second.push_back(CaseVal); 5145 return I.second.size(); 5146 } 5147 } 5148 UniqueResults.push_back( 5149 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5150 return 1; 5151 } 5152 5153 // Helper function that initializes a map containing 5154 // results for the PHI node of the common destination block for a switch 5155 // instruction. Returns false if multiple PHI nodes have been found or if 5156 // there is not a common destination block for the switch. 5157 static bool 5158 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5159 SwitchCaseResultVectorTy &UniqueResults, 5160 Constant *&DefaultResult, const DataLayout &DL, 5161 const TargetTransformInfo &TTI, 5162 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5163 for (auto &I : SI->cases()) { 5164 ConstantInt *CaseVal = I.getCaseValue(); 5165 5166 // Resulting value at phi nodes for this case value. 5167 SwitchCaseResultsTy Results; 5168 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5169 DL, TTI)) 5170 return false; 5171 5172 // Only one value per case is permitted. 5173 if (Results.size() > 1) 5174 return false; 5175 5176 // Add the case->result mapping to UniqueResults. 5177 const uintptr_t NumCasesForResult = 5178 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5179 5180 // Early out if there are too many cases for this result. 5181 if (NumCasesForResult > MaxCasesPerResult) 5182 return false; 5183 5184 // Early out if there are too many unique results. 5185 if (UniqueResults.size() > MaxUniqueResults) 5186 return false; 5187 5188 // Check the PHI consistency. 5189 if (!PHI) 5190 PHI = Results[0].first; 5191 else if (PHI != Results[0].first) 5192 return false; 5193 } 5194 // Find the default result value. 5195 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5196 BasicBlock *DefaultDest = SI->getDefaultDest(); 5197 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5198 DL, TTI); 5199 // If the default value is not found abort unless the default destination 5200 // is unreachable. 5201 DefaultResult = 5202 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5203 if ((!DefaultResult && 5204 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5205 return false; 5206 5207 return true; 5208 } 5209 5210 // Helper function that checks if it is possible to transform a switch with only 5211 // two cases (or two cases + default) that produces a result into a select. 5212 // Example: 5213 // switch (a) { 5214 // case 10: %0 = icmp eq i32 %a, 10 5215 // return 10; %1 = select i1 %0, i32 10, i32 4 5216 // case 20: ----> %2 = icmp eq i32 %a, 20 5217 // return 2; %3 = select i1 %2, i32 2, i32 %1 5218 // default: 5219 // return 4; 5220 // } 5221 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5222 Constant *DefaultResult, Value *Condition, 5223 IRBuilder<> &Builder) { 5224 assert(ResultVector.size() == 2 && 5225 "We should have exactly two unique results at this point"); 5226 // If we are selecting between only two cases transform into a simple 5227 // select or a two-way select if default is possible. 5228 if (ResultVector[0].second.size() == 1 && 5229 ResultVector[1].second.size() == 1) { 5230 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5231 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5232 5233 bool DefaultCanTrigger = DefaultResult; 5234 Value *SelectValue = ResultVector[1].first; 5235 if (DefaultCanTrigger) { 5236 Value *const ValueCompare = 5237 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5238 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5239 DefaultResult, "switch.select"); 5240 } 5241 Value *const ValueCompare = 5242 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5243 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5244 SelectValue, "switch.select"); 5245 } 5246 5247 return nullptr; 5248 } 5249 5250 // Helper function to cleanup a switch instruction that has been converted into 5251 // a select, fixing up PHI nodes and basic blocks. 5252 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5253 Value *SelectValue, 5254 IRBuilder<> &Builder, 5255 DomTreeUpdater *DTU) { 5256 std::vector<DominatorTree::UpdateType> Updates; 5257 5258 BasicBlock *SelectBB = SI->getParent(); 5259 BasicBlock *DestBB = PHI->getParent(); 5260 5261 if (!is_contained(predecessors(DestBB), SelectBB)) 5262 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5263 Builder.CreateBr(DestBB); 5264 5265 // Remove the switch. 5266 5267 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5268 PHI->removeIncomingValue(SelectBB); 5269 PHI->addIncoming(SelectValue, SelectBB); 5270 5271 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5272 BasicBlock *Succ = SI->getSuccessor(i); 5273 5274 if (Succ == DestBB) 5275 continue; 5276 Succ->removePredecessor(SelectBB); 5277 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5278 } 5279 SI->eraseFromParent(); 5280 if (DTU) 5281 DTU->applyUpdates(Updates); 5282 } 5283 5284 /// If the switch is only used to initialize one or more 5285 /// phi nodes in a common successor block with only two different 5286 /// constant values, replace the switch with select. 5287 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5288 DomTreeUpdater *DTU, const DataLayout &DL, 5289 const TargetTransformInfo &TTI) { 5290 Value *const Cond = SI->getCondition(); 5291 PHINode *PHI = nullptr; 5292 BasicBlock *CommonDest = nullptr; 5293 Constant *DefaultResult; 5294 SwitchCaseResultVectorTy UniqueResults; 5295 // Collect all the cases that will deliver the same value from the switch. 5296 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5297 DL, TTI, 2, 1)) 5298 return false; 5299 // Selects choose between maximum two values. 5300 if (UniqueResults.size() != 2) 5301 return false; 5302 assert(PHI != nullptr && "PHI for value select not found"); 5303 5304 Builder.SetInsertPoint(SI); 5305 Value *SelectValue = 5306 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5307 if (SelectValue) { 5308 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5309 return true; 5310 } 5311 // The switch couldn't be converted into a select. 5312 return false; 5313 } 5314 5315 namespace { 5316 5317 /// This class represents a lookup table that can be used to replace a switch. 5318 class SwitchLookupTable { 5319 public: 5320 /// Create a lookup table to use as a switch replacement with the contents 5321 /// of Values, using DefaultValue to fill any holes in the table. 5322 SwitchLookupTable( 5323 Module &M, uint64_t TableSize, ConstantInt *Offset, 5324 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5325 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5326 5327 /// Build instructions with Builder to retrieve the value at 5328 /// the position given by Index in the lookup table. 5329 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5330 5331 /// Return true if a table with TableSize elements of 5332 /// type ElementType would fit in a target-legal register. 5333 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5334 Type *ElementType); 5335 5336 private: 5337 // Depending on the contents of the table, it can be represented in 5338 // different ways. 5339 enum { 5340 // For tables where each element contains the same value, we just have to 5341 // store that single value and return it for each lookup. 5342 SingleValueKind, 5343 5344 // For tables where there is a linear relationship between table index 5345 // and values. We calculate the result with a simple multiplication 5346 // and addition instead of a table lookup. 5347 LinearMapKind, 5348 5349 // For small tables with integer elements, we can pack them into a bitmap 5350 // that fits into a target-legal register. Values are retrieved by 5351 // shift and mask operations. 5352 BitMapKind, 5353 5354 // The table is stored as an array of values. Values are retrieved by load 5355 // instructions from the table. 5356 ArrayKind 5357 } Kind; 5358 5359 // For SingleValueKind, this is the single value. 5360 Constant *SingleValue = nullptr; 5361 5362 // For BitMapKind, this is the bitmap. 5363 ConstantInt *BitMap = nullptr; 5364 IntegerType *BitMapElementTy = nullptr; 5365 5366 // For LinearMapKind, these are the constants used to derive the value. 5367 ConstantInt *LinearOffset = nullptr; 5368 ConstantInt *LinearMultiplier = nullptr; 5369 5370 // For ArrayKind, this is the array. 5371 GlobalVariable *Array = nullptr; 5372 }; 5373 5374 } // end anonymous namespace 5375 5376 SwitchLookupTable::SwitchLookupTable( 5377 Module &M, uint64_t TableSize, ConstantInt *Offset, 5378 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5379 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5380 assert(Values.size() && "Can't build lookup table without values!"); 5381 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5382 5383 // If all values in the table are equal, this is that value. 5384 SingleValue = Values.begin()->second; 5385 5386 Type *ValueType = Values.begin()->second->getType(); 5387 5388 // Build up the table contents. 5389 SmallVector<Constant *, 64> TableContents(TableSize); 5390 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5391 ConstantInt *CaseVal = Values[I].first; 5392 Constant *CaseRes = Values[I].second; 5393 assert(CaseRes->getType() == ValueType); 5394 5395 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5396 TableContents[Idx] = CaseRes; 5397 5398 if (CaseRes != SingleValue) 5399 SingleValue = nullptr; 5400 } 5401 5402 // Fill in any holes in the table with the default result. 5403 if (Values.size() < TableSize) { 5404 assert(DefaultValue && 5405 "Need a default value to fill the lookup table holes."); 5406 assert(DefaultValue->getType() == ValueType); 5407 for (uint64_t I = 0; I < TableSize; ++I) { 5408 if (!TableContents[I]) 5409 TableContents[I] = DefaultValue; 5410 } 5411 5412 if (DefaultValue != SingleValue) 5413 SingleValue = nullptr; 5414 } 5415 5416 // If each element in the table contains the same value, we only need to store 5417 // that single value. 5418 if (SingleValue) { 5419 Kind = SingleValueKind; 5420 return; 5421 } 5422 5423 // Check if we can derive the value with a linear transformation from the 5424 // table index. 5425 if (isa<IntegerType>(ValueType)) { 5426 bool LinearMappingPossible = true; 5427 APInt PrevVal; 5428 APInt DistToPrev; 5429 assert(TableSize >= 2 && "Should be a SingleValue table."); 5430 // Check if there is the same distance between two consecutive values. 5431 for (uint64_t I = 0; I < TableSize; ++I) { 5432 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5433 if (!ConstVal) { 5434 // This is an undef. We could deal with it, but undefs in lookup tables 5435 // are very seldom. It's probably not worth the additional complexity. 5436 LinearMappingPossible = false; 5437 break; 5438 } 5439 const APInt &Val = ConstVal->getValue(); 5440 if (I != 0) { 5441 APInt Dist = Val - PrevVal; 5442 if (I == 1) { 5443 DistToPrev = Dist; 5444 } else if (Dist != DistToPrev) { 5445 LinearMappingPossible = false; 5446 break; 5447 } 5448 } 5449 PrevVal = Val; 5450 } 5451 if (LinearMappingPossible) { 5452 LinearOffset = cast<ConstantInt>(TableContents[0]); 5453 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5454 Kind = LinearMapKind; 5455 ++NumLinearMaps; 5456 return; 5457 } 5458 } 5459 5460 // If the type is integer and the table fits in a register, build a bitmap. 5461 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5462 IntegerType *IT = cast<IntegerType>(ValueType); 5463 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5464 for (uint64_t I = TableSize; I > 0; --I) { 5465 TableInt <<= IT->getBitWidth(); 5466 // Insert values into the bitmap. Undef values are set to zero. 5467 if (!isa<UndefValue>(TableContents[I - 1])) { 5468 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5469 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5470 } 5471 } 5472 BitMap = ConstantInt::get(M.getContext(), TableInt); 5473 BitMapElementTy = IT; 5474 Kind = BitMapKind; 5475 ++NumBitMaps; 5476 return; 5477 } 5478 5479 // Store the table in an array. 5480 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5481 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5482 5483 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5484 GlobalVariable::PrivateLinkage, Initializer, 5485 "switch.table." + FuncName); 5486 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5487 // Set the alignment to that of an array items. We will be only loading one 5488 // value out of it. 5489 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5490 Kind = ArrayKind; 5491 } 5492 5493 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5494 switch (Kind) { 5495 case SingleValueKind: 5496 return SingleValue; 5497 case LinearMapKind: { 5498 // Derive the result value from the input value. 5499 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5500 false, "switch.idx.cast"); 5501 if (!LinearMultiplier->isOne()) 5502 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5503 if (!LinearOffset->isZero()) 5504 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5505 return Result; 5506 } 5507 case BitMapKind: { 5508 // Type of the bitmap (e.g. i59). 5509 IntegerType *MapTy = BitMap->getType(); 5510 5511 // Cast Index to the same type as the bitmap. 5512 // Note: The Index is <= the number of elements in the table, so 5513 // truncating it to the width of the bitmask is safe. 5514 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5515 5516 // Multiply the shift amount by the element width. 5517 ShiftAmt = Builder.CreateMul( 5518 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5519 "switch.shiftamt"); 5520 5521 // Shift down. 5522 Value *DownShifted = 5523 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5524 // Mask off. 5525 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5526 } 5527 case ArrayKind: { 5528 // Make sure the table index will not overflow when treated as signed. 5529 IntegerType *IT = cast<IntegerType>(Index->getType()); 5530 uint64_t TableSize = 5531 Array->getInitializer()->getType()->getArrayNumElements(); 5532 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5533 Index = Builder.CreateZExt( 5534 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5535 "switch.tableidx.zext"); 5536 5537 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5538 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5539 GEPIndices, "switch.gep"); 5540 return Builder.CreateLoad( 5541 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5542 "switch.load"); 5543 } 5544 } 5545 llvm_unreachable("Unknown lookup table kind!"); 5546 } 5547 5548 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5549 uint64_t TableSize, 5550 Type *ElementType) { 5551 auto *IT = dyn_cast<IntegerType>(ElementType); 5552 if (!IT) 5553 return false; 5554 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5555 // are <= 15, we could try to narrow the type. 5556 5557 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5558 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5559 return false; 5560 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5561 } 5562 5563 /// Determine whether a lookup table should be built for this switch, based on 5564 /// the number of cases, size of the table, and the types of the results. 5565 static bool 5566 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5567 const TargetTransformInfo &TTI, const DataLayout &DL, 5568 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5569 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5570 return false; // TableSize overflowed, or mul below might overflow. 5571 5572 bool AllTablesFitInRegister = true; 5573 bool HasIllegalType = false; 5574 for (const auto &I : ResultTypes) { 5575 Type *Ty = I.second; 5576 5577 // Saturate this flag to true. 5578 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5579 5580 // Saturate this flag to false. 5581 AllTablesFitInRegister = 5582 AllTablesFitInRegister && 5583 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5584 5585 // If both flags saturate, we're done. NOTE: This *only* works with 5586 // saturating flags, and all flags have to saturate first due to the 5587 // non-deterministic behavior of iterating over a dense map. 5588 if (HasIllegalType && !AllTablesFitInRegister) 5589 break; 5590 } 5591 5592 // If each table would fit in a register, we should build it anyway. 5593 if (AllTablesFitInRegister) 5594 return true; 5595 5596 // Don't build a table that doesn't fit in-register if it has illegal types. 5597 if (HasIllegalType) 5598 return false; 5599 5600 // The table density should be at least 40%. This is the same criterion as for 5601 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5602 // FIXME: Find the best cut-off. 5603 return SI->getNumCases() * 10 >= TableSize * 4; 5604 } 5605 5606 /// Try to reuse the switch table index compare. Following pattern: 5607 /// \code 5608 /// if (idx < tablesize) 5609 /// r = table[idx]; // table does not contain default_value 5610 /// else 5611 /// r = default_value; 5612 /// if (r != default_value) 5613 /// ... 5614 /// \endcode 5615 /// Is optimized to: 5616 /// \code 5617 /// cond = idx < tablesize; 5618 /// if (cond) 5619 /// r = table[idx]; 5620 /// else 5621 /// r = default_value; 5622 /// if (cond) 5623 /// ... 5624 /// \endcode 5625 /// Jump threading will then eliminate the second if(cond). 5626 static void reuseTableCompare( 5627 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5628 Constant *DefaultValue, 5629 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5630 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5631 if (!CmpInst) 5632 return; 5633 5634 // We require that the compare is in the same block as the phi so that jump 5635 // threading can do its work afterwards. 5636 if (CmpInst->getParent() != PhiBlock) 5637 return; 5638 5639 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5640 if (!CmpOp1) 5641 return; 5642 5643 Value *RangeCmp = RangeCheckBranch->getCondition(); 5644 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5645 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5646 5647 // Check if the compare with the default value is constant true or false. 5648 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5649 DefaultValue, CmpOp1, true); 5650 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5651 return; 5652 5653 // Check if the compare with the case values is distinct from the default 5654 // compare result. 5655 for (auto ValuePair : Values) { 5656 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5657 ValuePair.second, CmpOp1, true); 5658 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5659 return; 5660 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5661 "Expect true or false as compare result."); 5662 } 5663 5664 // Check if the branch instruction dominates the phi node. It's a simple 5665 // dominance check, but sufficient for our needs. 5666 // Although this check is invariant in the calling loops, it's better to do it 5667 // at this late stage. Practically we do it at most once for a switch. 5668 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5669 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5670 BasicBlock *Pred = *PI; 5671 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5672 return; 5673 } 5674 5675 if (DefaultConst == FalseConst) { 5676 // The compare yields the same result. We can replace it. 5677 CmpInst->replaceAllUsesWith(RangeCmp); 5678 ++NumTableCmpReuses; 5679 } else { 5680 // The compare yields the same result, just inverted. We can replace it. 5681 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5682 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5683 RangeCheckBranch); 5684 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5685 ++NumTableCmpReuses; 5686 } 5687 } 5688 5689 /// If the switch is only used to initialize one or more phi nodes in a common 5690 /// successor block with different constant values, replace the switch with 5691 /// lookup tables. 5692 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5693 DomTreeUpdater *DTU, const DataLayout &DL, 5694 const TargetTransformInfo &TTI) { 5695 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5696 5697 BasicBlock *BB = SI->getParent(); 5698 Function *Fn = BB->getParent(); 5699 // Only build lookup table when we have a target that supports it or the 5700 // attribute is not set. 5701 if (!TTI.shouldBuildLookupTables() || 5702 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5703 return false; 5704 5705 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5706 // split off a dense part and build a lookup table for that. 5707 5708 // FIXME: This creates arrays of GEPs to constant strings, which means each 5709 // GEP needs a runtime relocation in PIC code. We should just build one big 5710 // string and lookup indices into that. 5711 5712 // Ignore switches with less than three cases. Lookup tables will not make 5713 // them faster, so we don't analyze them. 5714 if (SI->getNumCases() < 3) 5715 return false; 5716 5717 // Figure out the corresponding result for each case value and phi node in the 5718 // common destination, as well as the min and max case values. 5719 assert(!SI->cases().empty()); 5720 SwitchInst::CaseIt CI = SI->case_begin(); 5721 ConstantInt *MinCaseVal = CI->getCaseValue(); 5722 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5723 5724 BasicBlock *CommonDest = nullptr; 5725 5726 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5727 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5728 5729 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5730 SmallDenseMap<PHINode *, Type *> ResultTypes; 5731 SmallVector<PHINode *, 4> PHIs; 5732 5733 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5734 ConstantInt *CaseVal = CI->getCaseValue(); 5735 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5736 MinCaseVal = CaseVal; 5737 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5738 MaxCaseVal = CaseVal; 5739 5740 // Resulting value at phi nodes for this case value. 5741 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5742 ResultsTy Results; 5743 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5744 Results, DL, TTI)) 5745 return false; 5746 5747 // Append the result from this case to the list for each phi. 5748 for (const auto &I : Results) { 5749 PHINode *PHI = I.first; 5750 Constant *Value = I.second; 5751 if (!ResultLists.count(PHI)) 5752 PHIs.push_back(PHI); 5753 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5754 } 5755 } 5756 5757 // Keep track of the result types. 5758 for (PHINode *PHI : PHIs) { 5759 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5760 } 5761 5762 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5763 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5764 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5765 bool TableHasHoles = (NumResults < TableSize); 5766 5767 // If the table has holes, we need a constant result for the default case 5768 // or a bitmask that fits in a register. 5769 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5770 bool HasDefaultResults = 5771 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5772 DefaultResultsList, DL, TTI); 5773 5774 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5775 if (NeedMask) { 5776 // As an extra penalty for the validity test we require more cases. 5777 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5778 return false; 5779 if (!DL.fitsInLegalInteger(TableSize)) 5780 return false; 5781 } 5782 5783 for (const auto &I : DefaultResultsList) { 5784 PHINode *PHI = I.first; 5785 Constant *Result = I.second; 5786 DefaultResults[PHI] = Result; 5787 } 5788 5789 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5790 return false; 5791 5792 std::vector<DominatorTree::UpdateType> Updates; 5793 5794 // Create the BB that does the lookups. 5795 Module &Mod = *CommonDest->getParent()->getParent(); 5796 BasicBlock *LookupBB = BasicBlock::Create( 5797 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5798 5799 // Compute the table index value. 5800 Builder.SetInsertPoint(SI); 5801 Value *TableIndex; 5802 if (MinCaseVal->isNullValue()) 5803 TableIndex = SI->getCondition(); 5804 else 5805 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5806 "switch.tableidx"); 5807 5808 // Compute the maximum table size representable by the integer type we are 5809 // switching upon. 5810 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5811 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5812 assert(MaxTableSize >= TableSize && 5813 "It is impossible for a switch to have more entries than the max " 5814 "representable value of its input integer type's size."); 5815 5816 // If the default destination is unreachable, or if the lookup table covers 5817 // all values of the conditional variable, branch directly to the lookup table 5818 // BB. Otherwise, check that the condition is within the case range. 5819 const bool DefaultIsReachable = 5820 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5821 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5822 BranchInst *RangeCheckBranch = nullptr; 5823 5824 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5825 Builder.CreateBr(LookupBB); 5826 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5827 // Note: We call removeProdecessor later since we need to be able to get the 5828 // PHI value for the default case in case we're using a bit mask. 5829 } else { 5830 Value *Cmp = Builder.CreateICmpULT( 5831 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5832 RangeCheckBranch = 5833 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5834 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5835 } 5836 5837 // Populate the BB that does the lookups. 5838 Builder.SetInsertPoint(LookupBB); 5839 5840 if (NeedMask) { 5841 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5842 // re-purposed to do the hole check, and we create a new LookupBB. 5843 BasicBlock *MaskBB = LookupBB; 5844 MaskBB->setName("switch.hole_check"); 5845 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5846 CommonDest->getParent(), CommonDest); 5847 5848 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5849 // unnecessary illegal types. 5850 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5851 APInt MaskInt(TableSizePowOf2, 0); 5852 APInt One(TableSizePowOf2, 1); 5853 // Build bitmask; fill in a 1 bit for every case. 5854 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5855 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5856 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5857 .getLimitedValue(); 5858 MaskInt |= One << Idx; 5859 } 5860 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5861 5862 // Get the TableIndex'th bit of the bitmask. 5863 // If this bit is 0 (meaning hole) jump to the default destination, 5864 // else continue with table lookup. 5865 IntegerType *MapTy = TableMask->getType(); 5866 Value *MaskIndex = 5867 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5868 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5869 Value *LoBit = Builder.CreateTrunc( 5870 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5871 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5872 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 5873 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 5874 Builder.SetInsertPoint(LookupBB); 5875 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 5876 } 5877 5878 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5879 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5880 // do not delete PHINodes here. 5881 SI->getDefaultDest()->removePredecessor(BB, 5882 /*KeepOneInputPHIs=*/true); 5883 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 5884 } 5885 5886 bool ReturnedEarly = false; 5887 for (PHINode *PHI : PHIs) { 5888 const ResultListTy &ResultList = ResultLists[PHI]; 5889 5890 // If using a bitmask, use any value to fill the lookup table holes. 5891 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5892 StringRef FuncName = Fn->getName(); 5893 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5894 FuncName); 5895 5896 Value *Result = Table.BuildLookup(TableIndex, Builder); 5897 5898 // If the result is used to return immediately from the function, we want to 5899 // do that right here. 5900 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5901 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5902 Builder.CreateRet(Result); 5903 ReturnedEarly = true; 5904 break; 5905 } 5906 5907 // Do a small peephole optimization: re-use the switch table compare if 5908 // possible. 5909 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5910 BasicBlock *PhiBlock = PHI->getParent(); 5911 // Search for compare instructions which use the phi. 5912 for (auto *User : PHI->users()) { 5913 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5914 } 5915 } 5916 5917 PHI->addIncoming(Result, LookupBB); 5918 } 5919 5920 if (!ReturnedEarly) { 5921 Builder.CreateBr(CommonDest); 5922 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 5923 } 5924 5925 // Remove the switch. 5926 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 5927 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5928 BasicBlock *Succ = SI->getSuccessor(i); 5929 5930 if (Succ == SI->getDefaultDest()) 5931 continue; 5932 Succ->removePredecessor(BB); 5933 RemovedSuccessors.insert(Succ); 5934 } 5935 SI->eraseFromParent(); 5936 5937 if (DTU) { 5938 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 5939 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 5940 DTU->applyUpdates(Updates); 5941 } 5942 5943 ++NumLookupTables; 5944 if (NeedMask) 5945 ++NumLookupTablesHoles; 5946 return true; 5947 } 5948 5949 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5950 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5951 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5952 uint64_t Range = Diff + 1; 5953 uint64_t NumCases = Values.size(); 5954 // 40% is the default density for building a jump table in optsize/minsize mode. 5955 uint64_t MinDensity = 40; 5956 5957 return NumCases * 100 >= Range * MinDensity; 5958 } 5959 5960 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5961 /// of cases. 5962 /// 5963 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5964 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5965 /// 5966 /// This converts a sparse switch into a dense switch which allows better 5967 /// lowering and could also allow transforming into a lookup table. 5968 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5969 const DataLayout &DL, 5970 const TargetTransformInfo &TTI) { 5971 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5972 if (CondTy->getIntegerBitWidth() > 64 || 5973 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5974 return false; 5975 // Only bother with this optimization if there are more than 3 switch cases; 5976 // SDAG will only bother creating jump tables for 4 or more cases. 5977 if (SI->getNumCases() < 4) 5978 return false; 5979 5980 // This transform is agnostic to the signedness of the input or case values. We 5981 // can treat the case values as signed or unsigned. We can optimize more common 5982 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5983 // as signed. 5984 SmallVector<int64_t,4> Values; 5985 for (auto &C : SI->cases()) 5986 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5987 llvm::sort(Values); 5988 5989 // If the switch is already dense, there's nothing useful to do here. 5990 if (isSwitchDense(Values)) 5991 return false; 5992 5993 // First, transform the values such that they start at zero and ascend. 5994 int64_t Base = Values[0]; 5995 for (auto &V : Values) 5996 V -= (uint64_t)(Base); 5997 5998 // Now we have signed numbers that have been shifted so that, given enough 5999 // precision, there are no negative values. Since the rest of the transform 6000 // is bitwise only, we switch now to an unsigned representation. 6001 6002 // This transform can be done speculatively because it is so cheap - it 6003 // results in a single rotate operation being inserted. 6004 // FIXME: It's possible that optimizing a switch on powers of two might also 6005 // be beneficial - flag values are often powers of two and we could use a CLZ 6006 // as the key function. 6007 6008 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6009 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6010 // less than 64. 6011 unsigned Shift = 64; 6012 for (auto &V : Values) 6013 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6014 assert(Shift < 64); 6015 if (Shift > 0) 6016 for (auto &V : Values) 6017 V = (int64_t)((uint64_t)V >> Shift); 6018 6019 if (!isSwitchDense(Values)) 6020 // Transform didn't create a dense switch. 6021 return false; 6022 6023 // The obvious transform is to shift the switch condition right and emit a 6024 // check that the condition actually cleanly divided by GCD, i.e. 6025 // C & (1 << Shift - 1) == 0 6026 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6027 // 6028 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6029 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6030 // are nonzero then the switch condition will be very large and will hit the 6031 // default case. 6032 6033 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6034 Builder.SetInsertPoint(SI); 6035 auto *ShiftC = ConstantInt::get(Ty, Shift); 6036 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6037 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6038 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6039 auto *Rot = Builder.CreateOr(LShr, Shl); 6040 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6041 6042 for (auto Case : SI->cases()) { 6043 auto *Orig = Case.getCaseValue(); 6044 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6045 Case.setValue( 6046 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6047 } 6048 return true; 6049 } 6050 6051 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6052 BasicBlock *BB = SI->getParent(); 6053 6054 if (isValueEqualityComparison(SI)) { 6055 // If we only have one predecessor, and if it is a branch on this value, 6056 // see if that predecessor totally determines the outcome of this switch. 6057 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6058 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6059 return requestResimplify(); 6060 6061 Value *Cond = SI->getCondition(); 6062 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6063 if (SimplifySwitchOnSelect(SI, Select)) 6064 return requestResimplify(); 6065 6066 // If the block only contains the switch, see if we can fold the block 6067 // away into any preds. 6068 if (SI == &*BB->instructionsWithoutDebug().begin()) 6069 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6070 return requestResimplify(); 6071 } 6072 6073 // Try to transform the switch into an icmp and a branch. 6074 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6075 return requestResimplify(); 6076 6077 // Remove unreachable cases. 6078 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6079 return requestResimplify(); 6080 6081 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6082 return requestResimplify(); 6083 6084 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6085 return requestResimplify(); 6086 6087 // The conversion from switch to lookup tables results in difficult-to-analyze 6088 // code and makes pruning branches much harder. This is a problem if the 6089 // switch expression itself can still be restricted as a result of inlining or 6090 // CVP. Therefore, only apply this transformation during late stages of the 6091 // optimisation pipeline. 6092 if (Options.ConvertSwitchToLookupTable && 6093 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6094 return requestResimplify(); 6095 6096 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6097 return requestResimplify(); 6098 6099 return false; 6100 } 6101 6102 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6103 BasicBlock *BB = IBI->getParent(); 6104 bool Changed = false; 6105 6106 // Eliminate redundant destinations. 6107 SmallPtrSet<Value *, 8> Succs; 6108 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6109 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6110 BasicBlock *Dest = IBI->getDestination(i); 6111 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6112 if (!Dest->hasAddressTaken()) 6113 RemovedSuccs.insert(Dest); 6114 Dest->removePredecessor(BB); 6115 IBI->removeDestination(i); 6116 --i; 6117 --e; 6118 Changed = true; 6119 } 6120 } 6121 6122 if (DTU) { 6123 std::vector<DominatorTree::UpdateType> Updates; 6124 Updates.reserve(RemovedSuccs.size()); 6125 for (auto *RemovedSucc : RemovedSuccs) 6126 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6127 DTU->applyUpdates(Updates); 6128 } 6129 6130 if (IBI->getNumDestinations() == 0) { 6131 // If the indirectbr has no successors, change it to unreachable. 6132 new UnreachableInst(IBI->getContext(), IBI); 6133 EraseTerminatorAndDCECond(IBI); 6134 return true; 6135 } 6136 6137 if (IBI->getNumDestinations() == 1) { 6138 // If the indirectbr has one successor, change it to a direct branch. 6139 BranchInst::Create(IBI->getDestination(0), IBI); 6140 EraseTerminatorAndDCECond(IBI); 6141 return true; 6142 } 6143 6144 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6145 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6146 return requestResimplify(); 6147 } 6148 return Changed; 6149 } 6150 6151 /// Given an block with only a single landing pad and a unconditional branch 6152 /// try to find another basic block which this one can be merged with. This 6153 /// handles cases where we have multiple invokes with unique landing pads, but 6154 /// a shared handler. 6155 /// 6156 /// We specifically choose to not worry about merging non-empty blocks 6157 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6158 /// practice, the optimizer produces empty landing pad blocks quite frequently 6159 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6160 /// sinking in this file) 6161 /// 6162 /// This is primarily a code size optimization. We need to avoid performing 6163 /// any transform which might inhibit optimization (such as our ability to 6164 /// specialize a particular handler via tail commoning). We do this by not 6165 /// merging any blocks which require us to introduce a phi. Since the same 6166 /// values are flowing through both blocks, we don't lose any ability to 6167 /// specialize. If anything, we make such specialization more likely. 6168 /// 6169 /// TODO - This transformation could remove entries from a phi in the target 6170 /// block when the inputs in the phi are the same for the two blocks being 6171 /// merged. In some cases, this could result in removal of the PHI entirely. 6172 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6173 BasicBlock *BB, DomTreeUpdater *DTU) { 6174 auto Succ = BB->getUniqueSuccessor(); 6175 assert(Succ); 6176 // If there's a phi in the successor block, we'd likely have to introduce 6177 // a phi into the merged landing pad block. 6178 if (isa<PHINode>(*Succ->begin())) 6179 return false; 6180 6181 for (BasicBlock *OtherPred : predecessors(Succ)) { 6182 if (BB == OtherPred) 6183 continue; 6184 BasicBlock::iterator I = OtherPred->begin(); 6185 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6186 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6187 continue; 6188 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6189 ; 6190 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6191 if (!BI2 || !BI2->isIdenticalTo(BI)) 6192 continue; 6193 6194 std::vector<DominatorTree::UpdateType> Updates; 6195 6196 // We've found an identical block. Update our predecessors to take that 6197 // path instead and make ourselves dead. 6198 SmallPtrSet<BasicBlock *, 16> Preds; 6199 Preds.insert(pred_begin(BB), pred_end(BB)); 6200 for (BasicBlock *Pred : Preds) { 6201 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6202 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6203 "unexpected successor"); 6204 II->setUnwindDest(OtherPred); 6205 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6206 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6207 } 6208 6209 // The debug info in OtherPred doesn't cover the merged control flow that 6210 // used to go through BB. We need to delete it or update it. 6211 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6212 Instruction &Inst = *I; 6213 I++; 6214 if (isa<DbgInfoIntrinsic>(Inst)) 6215 Inst.eraseFromParent(); 6216 } 6217 6218 SmallPtrSet<BasicBlock *, 16> Succs; 6219 Succs.insert(succ_begin(BB), succ_end(BB)); 6220 for (BasicBlock *Succ : Succs) { 6221 Succ->removePredecessor(BB); 6222 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6223 } 6224 6225 IRBuilder<> Builder(BI); 6226 Builder.CreateUnreachable(); 6227 BI->eraseFromParent(); 6228 if (DTU) 6229 DTU->applyUpdates(Updates); 6230 return true; 6231 } 6232 return false; 6233 } 6234 6235 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6236 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6237 : simplifyCondBranch(Branch, Builder); 6238 } 6239 6240 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6241 IRBuilder<> &Builder) { 6242 BasicBlock *BB = BI->getParent(); 6243 BasicBlock *Succ = BI->getSuccessor(0); 6244 6245 // If the Terminator is the only non-phi instruction, simplify the block. 6246 // If LoopHeader is provided, check if the block or its successor is a loop 6247 // header. (This is for early invocations before loop simplify and 6248 // vectorization to keep canonical loop forms for nested loops. These blocks 6249 // can be eliminated when the pass is invoked later in the back-end.) 6250 // Note that if BB has only one predecessor then we do not introduce new 6251 // backedge, so we can eliminate BB. 6252 bool NeedCanonicalLoop = 6253 Options.NeedCanonicalLoop && 6254 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 6255 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 6256 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 6257 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6258 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6259 return true; 6260 6261 // If the only instruction in the block is a seteq/setne comparison against a 6262 // constant, try to simplify the block. 6263 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6264 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6265 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6266 ; 6267 if (I->isTerminator() && 6268 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6269 return true; 6270 } 6271 6272 // See if we can merge an empty landing pad block with another which is 6273 // equivalent. 6274 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6275 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6276 ; 6277 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6278 return true; 6279 } 6280 6281 // If this basic block is ONLY a compare and a branch, and if a predecessor 6282 // branches to us and our successor, fold the comparison into the 6283 // predecessor and use logical operations to update the incoming value 6284 // for PHI nodes in common successor. 6285 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6286 Options.BonusInstThreshold)) 6287 return requestResimplify(); 6288 return false; 6289 } 6290 6291 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6292 BasicBlock *PredPred = nullptr; 6293 for (auto *P : predecessors(BB)) { 6294 BasicBlock *PPred = P->getSinglePredecessor(); 6295 if (!PPred || (PredPred && PredPred != PPred)) 6296 return nullptr; 6297 PredPred = PPred; 6298 } 6299 return PredPred; 6300 } 6301 6302 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6303 BasicBlock *BB = BI->getParent(); 6304 if (!Options.SimplifyCondBranch) 6305 return false; 6306 6307 // Conditional branch 6308 if (isValueEqualityComparison(BI)) { 6309 // If we only have one predecessor, and if it is a branch on this value, 6310 // see if that predecessor totally determines the outcome of this 6311 // switch. 6312 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6313 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6314 return requestResimplify(); 6315 6316 // This block must be empty, except for the setcond inst, if it exists. 6317 // Ignore dbg intrinsics. 6318 auto I = BB->instructionsWithoutDebug().begin(); 6319 if (&*I == BI) { 6320 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6321 return requestResimplify(); 6322 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6323 ++I; 6324 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6325 return requestResimplify(); 6326 } 6327 } 6328 6329 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6330 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6331 return true; 6332 6333 // If this basic block has dominating predecessor blocks and the dominating 6334 // blocks' conditions imply BI's condition, we know the direction of BI. 6335 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6336 if (Imp) { 6337 // Turn this into a branch on constant. 6338 auto *OldCond = BI->getCondition(); 6339 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6340 : ConstantInt::getFalse(BB->getContext()); 6341 BI->setCondition(TorF); 6342 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6343 return requestResimplify(); 6344 } 6345 6346 // If this basic block is ONLY a compare and a branch, and if a predecessor 6347 // branches to us and one of our successors, fold the comparison into the 6348 // predecessor and use logical operations to pick the right destination. 6349 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6350 Options.BonusInstThreshold)) 6351 return requestResimplify(); 6352 6353 // We have a conditional branch to two blocks that are only reachable 6354 // from BI. We know that the condbr dominates the two blocks, so see if 6355 // there is any identical code in the "then" and "else" blocks. If so, we 6356 // can hoist it up to the branching block. 6357 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6358 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6359 if (HoistCommon && Options.HoistCommonInsts) 6360 if (HoistThenElseCodeToIf(BI, TTI)) 6361 return requestResimplify(); 6362 } else { 6363 // If Successor #1 has multiple preds, we may be able to conditionally 6364 // execute Successor #0 if it branches to Successor #1. 6365 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6366 if (Succ0TI->getNumSuccessors() == 1 && 6367 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6368 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6369 return requestResimplify(); 6370 } 6371 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6372 // If Successor #0 has multiple preds, we may be able to conditionally 6373 // execute Successor #1 if it branches to Successor #0. 6374 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6375 if (Succ1TI->getNumSuccessors() == 1 && 6376 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6377 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6378 return requestResimplify(); 6379 } 6380 6381 // If this is a branch on a phi node in the current block, thread control 6382 // through this block if any PHI node entries are constants. 6383 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6384 if (PN->getParent() == BI->getParent()) 6385 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6386 return requestResimplify(); 6387 6388 // Scan predecessor blocks for conditional branches. 6389 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 6390 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 6391 if (PBI != BI && PBI->isConditional()) 6392 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6393 return requestResimplify(); 6394 6395 // Look for diamond patterns. 6396 if (MergeCondStores) 6397 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6398 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6399 if (PBI != BI && PBI->isConditional()) 6400 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6401 return requestResimplify(); 6402 6403 return false; 6404 } 6405 6406 /// Check if passing a value to an instruction will cause undefined behavior. 6407 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6408 Constant *C = dyn_cast<Constant>(V); 6409 if (!C) 6410 return false; 6411 6412 if (I->use_empty()) 6413 return false; 6414 6415 if (C->isNullValue() || isa<UndefValue>(C)) { 6416 // Only look at the first use, avoid hurting compile time with long uselists 6417 User *Use = *I->user_begin(); 6418 6419 // Now make sure that there are no instructions in between that can alter 6420 // control flow (eg. calls) 6421 for (BasicBlock::iterator 6422 i = ++BasicBlock::iterator(I), 6423 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6424 i != UI; ++i) 6425 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6426 return false; 6427 6428 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6429 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6430 if (GEP->getPointerOperand() == I) { 6431 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6432 PtrValueMayBeModified = true; 6433 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6434 } 6435 6436 // Look through bitcasts. 6437 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6438 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6439 6440 // Load from null is undefined. 6441 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6442 if (!LI->isVolatile()) 6443 return !NullPointerIsDefined(LI->getFunction(), 6444 LI->getPointerAddressSpace()); 6445 6446 // Store to null is undefined. 6447 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6448 if (!SI->isVolatile()) 6449 return (!NullPointerIsDefined(SI->getFunction(), 6450 SI->getPointerAddressSpace())) && 6451 SI->getPointerOperand() == I; 6452 6453 if (auto *CB = dyn_cast<CallBase>(Use)) { 6454 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6455 return false; 6456 // A call to null is undefined. 6457 if (CB->getCalledOperand() == I) 6458 return true; 6459 6460 if (C->isNullValue()) { 6461 for (const llvm::Use &Arg : CB->args()) 6462 if (Arg == I) { 6463 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6464 if (CB->paramHasAttr(ArgIdx, Attribute::NonNull) && 6465 CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) { 6466 // Passing null to a nonnnull+noundef argument is undefined. 6467 return !PtrValueMayBeModified; 6468 } 6469 } 6470 } else if (isa<UndefValue>(C)) { 6471 // Passing undef to a noundef argument is undefined. 6472 for (const llvm::Use &Arg : CB->args()) 6473 if (Arg == I) { 6474 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6475 if (CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) { 6476 // Passing undef to a noundef argument is undefined. 6477 return true; 6478 } 6479 } 6480 } 6481 } 6482 } 6483 return false; 6484 } 6485 6486 /// If BB has an incoming value that will always trigger undefined behavior 6487 /// (eg. null pointer dereference), remove the branch leading here. 6488 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6489 DomTreeUpdater *DTU) { 6490 for (PHINode &PHI : BB->phis()) 6491 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6492 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6493 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6494 Instruction *T = Predecessor->getTerminator(); 6495 IRBuilder<> Builder(T); 6496 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6497 BB->removePredecessor(Predecessor); 6498 // Turn uncoditional branches into unreachables and remove the dead 6499 // destination from conditional branches. 6500 if (BI->isUnconditional()) 6501 Builder.CreateUnreachable(); 6502 else 6503 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6504 : BI->getSuccessor(0)); 6505 BI->eraseFromParent(); 6506 if (DTU) 6507 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6508 return true; 6509 } 6510 // TODO: SwitchInst. 6511 } 6512 6513 return false; 6514 } 6515 6516 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6517 bool Changed = false; 6518 6519 assert(BB && BB->getParent() && "Block not embedded in function!"); 6520 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6521 6522 // Remove basic blocks that have no predecessors (except the entry block)... 6523 // or that just have themself as a predecessor. These are unreachable. 6524 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6525 BB->getSinglePredecessor() == BB) { 6526 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6527 DeleteDeadBlock(BB, DTU); 6528 return true; 6529 } 6530 6531 // Check to see if we can constant propagate this terminator instruction 6532 // away... 6533 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6534 /*TLI=*/nullptr, DTU); 6535 6536 // Check for and eliminate duplicate PHI nodes in this block. 6537 Changed |= EliminateDuplicatePHINodes(BB); 6538 6539 // Check for and remove branches that will always cause undefined behavior. 6540 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6541 6542 // Merge basic blocks into their predecessor if there is only one distinct 6543 // pred, and if there is only one distinct successor of the predecessor, and 6544 // if there are no PHI nodes. 6545 if (MergeBlockIntoPredecessor(BB, DTU)) 6546 return true; 6547 6548 if (SinkCommon && Options.SinkCommonInsts) 6549 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6550 6551 IRBuilder<> Builder(BB); 6552 6553 if (Options.FoldTwoEntryPHINode) { 6554 // If there is a trivial two-entry PHI node in this basic block, and we can 6555 // eliminate it, do so now. 6556 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6557 if (PN->getNumIncomingValues() == 2) 6558 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6559 } 6560 6561 Instruction *Terminator = BB->getTerminator(); 6562 Builder.SetInsertPoint(Terminator); 6563 switch (Terminator->getOpcode()) { 6564 case Instruction::Br: 6565 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6566 break; 6567 case Instruction::Ret: 6568 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6569 break; 6570 case Instruction::Resume: 6571 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6572 break; 6573 case Instruction::CleanupRet: 6574 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6575 break; 6576 case Instruction::Switch: 6577 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6578 break; 6579 case Instruction::Unreachable: 6580 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6581 break; 6582 case Instruction::IndirectBr: 6583 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6584 break; 6585 } 6586 6587 return Changed; 6588 } 6589 6590 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6591 bool Changed = simplifyOnceImpl(BB); 6592 6593 assert((!RequireAndPreserveDomTree || 6594 (DTU && 6595 DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) && 6596 "Failed to maintain validity of domtree!"); 6597 6598 return Changed; 6599 } 6600 6601 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6602 assert((!RequireAndPreserveDomTree || 6603 (DTU && 6604 DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) && 6605 "Original domtree is invalid?"); 6606 6607 bool Changed = false; 6608 6609 // Repeated simplify BB as long as resimplification is requested. 6610 do { 6611 Resimplify = false; 6612 6613 // Perform one round of simplifcation. Resimplify flag will be set if 6614 // another iteration is requested. 6615 Changed |= simplifyOnce(BB); 6616 } while (Resimplify); 6617 6618 return Changed; 6619 } 6620 6621 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6622 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6623 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6624 return SimplifyCFGOpt(TTI, RequireAndPreserveDomTree ? DTU : nullptr, 6625 BB->getModule()->getDataLayout(), LoopHeaders, Options) 6626 .run(BB); 6627 } 6628