1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/MemorySSA.h" 31 #include "llvm/Analysis/MemorySSAUpdater.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/NoFolder.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/PatternMatch.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include "llvm/Transforms/Utils/SSAUpdater.h" 72 #include "llvm/Transforms/Utils/ValueMapper.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <climits> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <set> 81 #include <tuple> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 using namespace PatternMatch; 87 88 #define DEBUG_TYPE "simplifycfg" 89 90 cl::opt<bool> llvm::RequireAndPreserveDomTree( 91 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 92 cl::init(false), 93 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 94 "into preserving DomTree,")); 95 96 // Chosen as 2 so as to be cheap, but still to have enough power to fold 97 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 98 // To catch this, we need to fold a compare and a select, hence '2' being the 99 // minimum reasonable default. 100 static cl::opt<unsigned> PHINodeFoldingThreshold( 101 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 102 cl::desc( 103 "Control the amount of phi node folding to perform (default = 2)")); 104 105 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 106 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 107 cl::desc("Control the maximal total instruction cost that we are willing " 108 "to speculatively execute to fold a 2-entry PHI node into a " 109 "select (default = 4)")); 110 111 static cl::opt<bool> DupRet( 112 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 113 cl::desc("Duplicate return instructions into unconditional branches")); 114 115 static cl::opt<bool> 116 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 117 cl::desc("Hoist common instructions up to the parent block")); 118 119 static cl::opt<bool> 120 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 121 cl::desc("Sink common instructions down to the end block")); 122 123 static cl::opt<bool> HoistCondStores( 124 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 125 cl::desc("Hoist conditional stores if an unconditional store precedes")); 126 127 static cl::opt<bool> MergeCondStores( 128 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 129 cl::desc("Hoist conditional stores even if an unconditional store does not " 130 "precede - hoist multiple conditional stores into a single " 131 "predicated store")); 132 133 static cl::opt<bool> MergeCondStoresAggressively( 134 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 135 cl::desc("When merging conditional stores, do so even if the resultant " 136 "basic blocks are unlikely to be if-converted as a result")); 137 138 static cl::opt<bool> SpeculateOneExpensiveInst( 139 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 140 cl::desc("Allow exactly one expensive instruction to be speculatively " 141 "executed")); 142 143 static cl::opt<unsigned> MaxSpeculationDepth( 144 "max-speculation-depth", cl::Hidden, cl::init(10), 145 cl::desc("Limit maximum recursion depth when calculating costs of " 146 "speculatively executed instructions")); 147 148 static cl::opt<int> 149 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 150 cl::desc("Max size of a block which is still considered " 151 "small enough to thread through")); 152 153 // Two is chosen to allow one negation and a logical combine. 154 static cl::opt<unsigned> 155 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 156 cl::init(2), 157 cl::desc("Maximum cost of combining conditions when " 158 "folding branches")); 159 160 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 161 STATISTIC(NumLinearMaps, 162 "Number of switch instructions turned into linear mapping"); 163 STATISTIC(NumLookupTables, 164 "Number of switch instructions turned into lookup tables"); 165 STATISTIC( 166 NumLookupTablesHoles, 167 "Number of switch instructions turned into lookup tables (holes checked)"); 168 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 169 STATISTIC(NumFoldValueComparisonIntoPredecessors, 170 "Number of value comparisons folded into predecessor basic blocks"); 171 STATISTIC(NumFoldBranchToCommonDest, 172 "Number of branches folded into predecessor basic block"); 173 STATISTIC( 174 NumHoistCommonCode, 175 "Number of common instruction 'blocks' hoisted up to the begin block"); 176 STATISTIC(NumHoistCommonInstrs, 177 "Number of common instructions hoisted up to the begin block"); 178 STATISTIC(NumSinkCommonCode, 179 "Number of common instruction 'blocks' sunk down to the end block"); 180 STATISTIC(NumSinkCommonInstrs, 181 "Number of common instructions sunk down to the end block"); 182 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 183 STATISTIC(NumInvokes, 184 "Number of invokes with empty resume blocks simplified into calls"); 185 186 namespace { 187 188 // The first field contains the value that the switch produces when a certain 189 // case group is selected, and the second field is a vector containing the 190 // cases composing the case group. 191 using SwitchCaseResultVectorTy = 192 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 193 194 // The first field contains the phi node that generates a result of the switch 195 // and the second field contains the value generated for a certain case in the 196 // switch for that PHI. 197 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 198 199 /// ValueEqualityComparisonCase - Represents a case of a switch. 200 struct ValueEqualityComparisonCase { 201 ConstantInt *Value; 202 BasicBlock *Dest; 203 204 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 205 : Value(Value), Dest(Dest) {} 206 207 bool operator<(ValueEqualityComparisonCase RHS) const { 208 // Comparing pointers is ok as we only rely on the order for uniquing. 209 return Value < RHS.Value; 210 } 211 212 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 213 }; 214 215 class SimplifyCFGOpt { 216 const TargetTransformInfo &TTI; 217 DomTreeUpdater *DTU; 218 const DataLayout &DL; 219 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 220 const SimplifyCFGOptions &Options; 221 bool Resimplify; 222 223 Value *isValueEqualityComparison(Instruction *TI); 224 BasicBlock *GetValueEqualityComparisonCases( 225 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 226 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 227 BasicBlock *Pred, 228 IRBuilder<> &Builder); 229 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 230 IRBuilder<> &Builder); 231 232 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 233 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 234 bool simplifySingleResume(ResumeInst *RI); 235 bool simplifyCommonResume(ResumeInst *RI); 236 bool simplifyCleanupReturn(CleanupReturnInst *RI); 237 bool simplifyUnreachable(UnreachableInst *UI); 238 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 239 bool simplifyIndirectBr(IndirectBrInst *IBI); 240 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 241 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 242 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 243 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 244 245 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 246 IRBuilder<> &Builder); 247 248 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 249 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 250 const TargetTransformInfo &TTI); 251 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 252 BasicBlock *TrueBB, BasicBlock *FalseBB, 253 uint32_t TrueWeight, uint32_t FalseWeight); 254 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 255 const DataLayout &DL); 256 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 257 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 258 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 259 260 public: 261 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 262 const DataLayout &DL, 263 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 264 const SimplifyCFGOptions &Opts) 265 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 266 267 bool run(BasicBlock *BB); 268 bool simplifyOnce(BasicBlock *BB); 269 270 // Helper to set Resimplify and return change indication. 271 bool requestResimplify() { 272 Resimplify = true; 273 return true; 274 } 275 }; 276 277 } // end anonymous namespace 278 279 /// Return true if it is safe to merge these two 280 /// terminator instructions together. 281 static bool 282 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 283 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 284 if (SI1 == SI2) 285 return false; // Can't merge with self! 286 287 // It is not safe to merge these two switch instructions if they have a common 288 // successor, and if that successor has a PHI node, and if *that* PHI node has 289 // conflicting incoming values from the two switch blocks. 290 BasicBlock *SI1BB = SI1->getParent(); 291 BasicBlock *SI2BB = SI2->getParent(); 292 293 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 294 bool Fail = false; 295 for (BasicBlock *Succ : successors(SI2BB)) 296 if (SI1Succs.count(Succ)) 297 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 298 PHINode *PN = cast<PHINode>(BBI); 299 if (PN->getIncomingValueForBlock(SI1BB) != 300 PN->getIncomingValueForBlock(SI2BB)) { 301 if (FailBlocks) 302 FailBlocks->insert(Succ); 303 Fail = true; 304 } 305 } 306 307 return !Fail; 308 } 309 310 /// Return true if it is safe and profitable to merge these two terminator 311 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 312 /// store all PHI nodes in common successors. 313 static bool 314 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 315 Instruction *Cond, 316 SmallVectorImpl<PHINode *> &PhiNodes) { 317 if (SI1 == SI2) 318 return false; // Can't merge with self! 319 assert(SI1->isUnconditional() && SI2->isConditional()); 320 321 // We fold the unconditional branch if we can easily update all PHI nodes in 322 // common successors: 323 // 1> We have a constant incoming value for the conditional branch; 324 // 2> We have "Cond" as the incoming value for the unconditional branch; 325 // 3> SI2->getCondition() and Cond have same operands. 326 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 327 if (!Ci2) 328 return false; 329 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 330 Cond->getOperand(1) == Ci2->getOperand(1)) && 331 !(Cond->getOperand(0) == Ci2->getOperand(1) && 332 Cond->getOperand(1) == Ci2->getOperand(0))) 333 return false; 334 335 BasicBlock *SI1BB = SI1->getParent(); 336 BasicBlock *SI2BB = SI2->getParent(); 337 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 338 for (BasicBlock *Succ : successors(SI2BB)) 339 if (SI1Succs.count(Succ)) 340 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 341 PHINode *PN = cast<PHINode>(BBI); 342 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 343 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 344 return false; 345 PhiNodes.push_back(PN); 346 } 347 return true; 348 } 349 350 /// Update PHI nodes in Succ to indicate that there will now be entries in it 351 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 352 /// will be the same as those coming in from ExistPred, an existing predecessor 353 /// of Succ. 354 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 355 BasicBlock *ExistPred, 356 MemorySSAUpdater *MSSAU = nullptr) { 357 for (PHINode &PN : Succ->phis()) 358 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 359 if (MSSAU) 360 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 361 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 362 } 363 364 /// Compute an abstract "cost" of speculating the given instruction, 365 /// which is assumed to be safe to speculate. TCC_Free means cheap, 366 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 367 /// expensive. 368 static unsigned ComputeSpeculationCost(const User *I, 369 const TargetTransformInfo &TTI) { 370 assert(isSafeToSpeculativelyExecute(I) && 371 "Instruction is not safe to speculatively execute!"); 372 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 373 } 374 375 /// If we have a merge point of an "if condition" as accepted above, 376 /// return true if the specified value dominates the block. We 377 /// don't handle the true generality of domination here, just a special case 378 /// which works well enough for us. 379 /// 380 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 381 /// see if V (which must be an instruction) and its recursive operands 382 /// that do not dominate BB have a combined cost lower than CostRemaining and 383 /// are non-trapping. If both are true, the instruction is inserted into the 384 /// set and true is returned. 385 /// 386 /// The cost for most non-trapping instructions is defined as 1 except for 387 /// Select whose cost is 2. 388 /// 389 /// After this function returns, CostRemaining is decreased by the cost of 390 /// V plus its non-dominating operands. If that cost is greater than 391 /// CostRemaining, false is returned and CostRemaining is undefined. 392 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 393 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 394 int &BudgetRemaining, 395 const TargetTransformInfo &TTI, 396 unsigned Depth = 0) { 397 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 398 // so limit the recursion depth. 399 // TODO: While this recursion limit does prevent pathological behavior, it 400 // would be better to track visited instructions to avoid cycles. 401 if (Depth == MaxSpeculationDepth) 402 return false; 403 404 Instruction *I = dyn_cast<Instruction>(V); 405 if (!I) { 406 // Non-instructions all dominate instructions, but not all constantexprs 407 // can be executed unconditionally. 408 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 409 if (C->canTrap()) 410 return false; 411 return true; 412 } 413 BasicBlock *PBB = I->getParent(); 414 415 // We don't want to allow weird loops that might have the "if condition" in 416 // the bottom of this block. 417 if (PBB == BB) 418 return false; 419 420 // If this instruction is defined in a block that contains an unconditional 421 // branch to BB, then it must be in the 'conditional' part of the "if 422 // statement". If not, it definitely dominates the region. 423 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 424 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 425 return true; 426 427 // If we have seen this instruction before, don't count it again. 428 if (AggressiveInsts.count(I)) 429 return true; 430 431 // Okay, it looks like the instruction IS in the "condition". Check to 432 // see if it's a cheap instruction to unconditionally compute, and if it 433 // only uses stuff defined outside of the condition. If so, hoist it out. 434 if (!isSafeToSpeculativelyExecute(I)) 435 return false; 436 437 BudgetRemaining -= ComputeSpeculationCost(I, TTI); 438 439 // Allow exactly one instruction to be speculated regardless of its cost 440 // (as long as it is safe to do so). 441 // This is intended to flatten the CFG even if the instruction is a division 442 // or other expensive operation. The speculation of an expensive instruction 443 // is expected to be undone in CodeGenPrepare if the speculation has not 444 // enabled further IR optimizations. 445 if (BudgetRemaining < 0 && 446 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 447 return false; 448 449 // Okay, we can only really hoist these out if their operands do 450 // not take us over the cost threshold. 451 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 452 if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI, 453 Depth + 1)) 454 return false; 455 // Okay, it's safe to do this! Remember this instruction. 456 AggressiveInsts.insert(I); 457 return true; 458 } 459 460 /// Extract ConstantInt from value, looking through IntToPtr 461 /// and PointerNullValue. Return NULL if value is not a constant int. 462 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 463 // Normal constant int. 464 ConstantInt *CI = dyn_cast<ConstantInt>(V); 465 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 466 return CI; 467 468 // This is some kind of pointer constant. Turn it into a pointer-sized 469 // ConstantInt if possible. 470 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 471 472 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 473 if (isa<ConstantPointerNull>(V)) 474 return ConstantInt::get(PtrTy, 0); 475 476 // IntToPtr const int. 477 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 478 if (CE->getOpcode() == Instruction::IntToPtr) 479 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 480 // The constant is very likely to have the right type already. 481 if (CI->getType() == PtrTy) 482 return CI; 483 else 484 return cast<ConstantInt>( 485 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 486 } 487 return nullptr; 488 } 489 490 namespace { 491 492 /// Given a chain of or (||) or and (&&) comparison of a value against a 493 /// constant, this will try to recover the information required for a switch 494 /// structure. 495 /// It will depth-first traverse the chain of comparison, seeking for patterns 496 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 497 /// representing the different cases for the switch. 498 /// Note that if the chain is composed of '||' it will build the set of elements 499 /// that matches the comparisons (i.e. any of this value validate the chain) 500 /// while for a chain of '&&' it will build the set elements that make the test 501 /// fail. 502 struct ConstantComparesGatherer { 503 const DataLayout &DL; 504 505 /// Value found for the switch comparison 506 Value *CompValue = nullptr; 507 508 /// Extra clause to be checked before the switch 509 Value *Extra = nullptr; 510 511 /// Set of integers to match in switch 512 SmallVector<ConstantInt *, 8> Vals; 513 514 /// Number of comparisons matched in the and/or chain 515 unsigned UsedICmps = 0; 516 517 /// Construct and compute the result for the comparison instruction Cond 518 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 519 gather(Cond); 520 } 521 522 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 523 ConstantComparesGatherer & 524 operator=(const ConstantComparesGatherer &) = delete; 525 526 private: 527 /// Try to set the current value used for the comparison, it succeeds only if 528 /// it wasn't set before or if the new value is the same as the old one 529 bool setValueOnce(Value *NewVal) { 530 if (CompValue && CompValue != NewVal) 531 return false; 532 CompValue = NewVal; 533 return (CompValue != nullptr); 534 } 535 536 /// Try to match Instruction "I" as a comparison against a constant and 537 /// populates the array Vals with the set of values that match (or do not 538 /// match depending on isEQ). 539 /// Return false on failure. On success, the Value the comparison matched 540 /// against is placed in CompValue. 541 /// If CompValue is already set, the function is expected to fail if a match 542 /// is found but the value compared to is different. 543 bool matchInstruction(Instruction *I, bool isEQ) { 544 // If this is an icmp against a constant, handle this as one of the cases. 545 ICmpInst *ICI; 546 ConstantInt *C; 547 if (!((ICI = dyn_cast<ICmpInst>(I)) && 548 (C = GetConstantInt(I->getOperand(1), DL)))) { 549 return false; 550 } 551 552 Value *RHSVal; 553 const APInt *RHSC; 554 555 // Pattern match a special case 556 // (x & ~2^z) == y --> x == y || x == y|2^z 557 // This undoes a transformation done by instcombine to fuse 2 compares. 558 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 559 // It's a little bit hard to see why the following transformations are 560 // correct. Here is a CVC3 program to verify them for 64-bit values: 561 562 /* 563 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 564 x : BITVECTOR(64); 565 y : BITVECTOR(64); 566 z : BITVECTOR(64); 567 mask : BITVECTOR(64) = BVSHL(ONE, z); 568 QUERY( (y & ~mask = y) => 569 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 570 ); 571 QUERY( (y | mask = y) => 572 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 573 ); 574 */ 575 576 // Please note that each pattern must be a dual implication (<--> or 577 // iff). One directional implication can create spurious matches. If the 578 // implication is only one-way, an unsatisfiable condition on the left 579 // side can imply a satisfiable condition on the right side. Dual 580 // implication ensures that satisfiable conditions are transformed to 581 // other satisfiable conditions and unsatisfiable conditions are 582 // transformed to other unsatisfiable conditions. 583 584 // Here is a concrete example of a unsatisfiable condition on the left 585 // implying a satisfiable condition on the right: 586 // 587 // mask = (1 << z) 588 // (x & ~mask) == y --> (x == y || x == (y | mask)) 589 // 590 // Substituting y = 3, z = 0 yields: 591 // (x & -2) == 3 --> (x == 3 || x == 2) 592 593 // Pattern match a special case: 594 /* 595 QUERY( (y & ~mask = y) => 596 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 597 ); 598 */ 599 if (match(ICI->getOperand(0), 600 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 601 APInt Mask = ~*RHSC; 602 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 603 // If we already have a value for the switch, it has to match! 604 if (!setValueOnce(RHSVal)) 605 return false; 606 607 Vals.push_back(C); 608 Vals.push_back( 609 ConstantInt::get(C->getContext(), 610 C->getValue() | Mask)); 611 UsedICmps++; 612 return true; 613 } 614 } 615 616 // Pattern match a special case: 617 /* 618 QUERY( (y | mask = y) => 619 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 620 ); 621 */ 622 if (match(ICI->getOperand(0), 623 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 624 APInt Mask = *RHSC; 625 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 626 // If we already have a value for the switch, it has to match! 627 if (!setValueOnce(RHSVal)) 628 return false; 629 630 Vals.push_back(C); 631 Vals.push_back(ConstantInt::get(C->getContext(), 632 C->getValue() & ~Mask)); 633 UsedICmps++; 634 return true; 635 } 636 } 637 638 // If we already have a value for the switch, it has to match! 639 if (!setValueOnce(ICI->getOperand(0))) 640 return false; 641 642 UsedICmps++; 643 Vals.push_back(C); 644 return ICI->getOperand(0); 645 } 646 647 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 648 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 649 ICI->getPredicate(), C->getValue()); 650 651 // Shift the range if the compare is fed by an add. This is the range 652 // compare idiom as emitted by instcombine. 653 Value *CandidateVal = I->getOperand(0); 654 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 655 Span = Span.subtract(*RHSC); 656 CandidateVal = RHSVal; 657 } 658 659 // If this is an and/!= check, then we are looking to build the set of 660 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 661 // x != 0 && x != 1. 662 if (!isEQ) 663 Span = Span.inverse(); 664 665 // If there are a ton of values, we don't want to make a ginormous switch. 666 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 667 return false; 668 } 669 670 // If we already have a value for the switch, it has to match! 671 if (!setValueOnce(CandidateVal)) 672 return false; 673 674 // Add all values from the range to the set 675 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 676 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 677 678 UsedICmps++; 679 return true; 680 } 681 682 /// Given a potentially 'or'd or 'and'd together collection of icmp 683 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 684 /// the value being compared, and stick the list constants into the Vals 685 /// vector. 686 /// One "Extra" case is allowed to differ from the other. 687 void gather(Value *V) { 688 bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or); 689 690 // Keep a stack (SmallVector for efficiency) for depth-first traversal 691 SmallVector<Value *, 8> DFT; 692 SmallPtrSet<Value *, 8> Visited; 693 694 // Initialize 695 Visited.insert(V); 696 DFT.push_back(V); 697 698 while (!DFT.empty()) { 699 V = DFT.pop_back_val(); 700 701 if (Instruction *I = dyn_cast<Instruction>(V)) { 702 // If it is a || (or && depending on isEQ), process the operands. 703 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 704 if (Visited.insert(I->getOperand(1)).second) 705 DFT.push_back(I->getOperand(1)); 706 if (Visited.insert(I->getOperand(0)).second) 707 DFT.push_back(I->getOperand(0)); 708 continue; 709 } 710 711 // Try to match the current instruction 712 if (matchInstruction(I, isEQ)) 713 // Match succeed, continue the loop 714 continue; 715 } 716 717 // One element of the sequence of || (or &&) could not be match as a 718 // comparison against the same value as the others. 719 // We allow only one "Extra" case to be checked before the switch 720 if (!Extra) { 721 Extra = V; 722 continue; 723 } 724 // Failed to parse a proper sequence, abort now 725 CompValue = nullptr; 726 break; 727 } 728 } 729 }; 730 731 } // end anonymous namespace 732 733 static void EraseTerminatorAndDCECond(Instruction *TI, 734 MemorySSAUpdater *MSSAU = nullptr) { 735 Instruction *Cond = nullptr; 736 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 737 Cond = dyn_cast<Instruction>(SI->getCondition()); 738 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 739 if (BI->isConditional()) 740 Cond = dyn_cast<Instruction>(BI->getCondition()); 741 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 742 Cond = dyn_cast<Instruction>(IBI->getAddress()); 743 } 744 745 TI->eraseFromParent(); 746 if (Cond) 747 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 748 } 749 750 /// Return true if the specified terminator checks 751 /// to see if a value is equal to constant integer value. 752 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 753 Value *CV = nullptr; 754 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 755 // Do not permit merging of large switch instructions into their 756 // predecessors unless there is only one predecessor. 757 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 758 CV = SI->getCondition(); 759 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 760 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 761 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 762 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 763 CV = ICI->getOperand(0); 764 } 765 766 // Unwrap any lossless ptrtoint cast. 767 if (CV) { 768 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 769 Value *Ptr = PTII->getPointerOperand(); 770 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 771 CV = Ptr; 772 } 773 } 774 return CV; 775 } 776 777 /// Given a value comparison instruction, 778 /// decode all of the 'cases' that it represents and return the 'default' block. 779 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 780 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 781 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 782 Cases.reserve(SI->getNumCases()); 783 for (auto Case : SI->cases()) 784 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 785 Case.getCaseSuccessor())); 786 return SI->getDefaultDest(); 787 } 788 789 BranchInst *BI = cast<BranchInst>(TI); 790 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 791 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 792 Cases.push_back(ValueEqualityComparisonCase( 793 GetConstantInt(ICI->getOperand(1), DL), Succ)); 794 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 795 } 796 797 /// Given a vector of bb/value pairs, remove any entries 798 /// in the list that match the specified block. 799 static void 800 EliminateBlockCases(BasicBlock *BB, 801 std::vector<ValueEqualityComparisonCase> &Cases) { 802 llvm::erase_value(Cases, BB); 803 } 804 805 /// Return true if there are any keys in C1 that exist in C2 as well. 806 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 807 std::vector<ValueEqualityComparisonCase> &C2) { 808 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 809 810 // Make V1 be smaller than V2. 811 if (V1->size() > V2->size()) 812 std::swap(V1, V2); 813 814 if (V1->empty()) 815 return false; 816 if (V1->size() == 1) { 817 // Just scan V2. 818 ConstantInt *TheVal = (*V1)[0].Value; 819 for (unsigned i = 0, e = V2->size(); i != e; ++i) 820 if (TheVal == (*V2)[i].Value) 821 return true; 822 } 823 824 // Otherwise, just sort both lists and compare element by element. 825 array_pod_sort(V1->begin(), V1->end()); 826 array_pod_sort(V2->begin(), V2->end()); 827 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 828 while (i1 != e1 && i2 != e2) { 829 if ((*V1)[i1].Value == (*V2)[i2].Value) 830 return true; 831 if ((*V1)[i1].Value < (*V2)[i2].Value) 832 ++i1; 833 else 834 ++i2; 835 } 836 return false; 837 } 838 839 // Set branch weights on SwitchInst. This sets the metadata if there is at 840 // least one non-zero weight. 841 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 842 // Check that there is at least one non-zero weight. Otherwise, pass 843 // nullptr to setMetadata which will erase the existing metadata. 844 MDNode *N = nullptr; 845 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 846 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 847 SI->setMetadata(LLVMContext::MD_prof, N); 848 } 849 850 // Similar to the above, but for branch and select instructions that take 851 // exactly 2 weights. 852 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 853 uint32_t FalseWeight) { 854 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 855 // Check that there is at least one non-zero weight. Otherwise, pass 856 // nullptr to setMetadata which will erase the existing metadata. 857 MDNode *N = nullptr; 858 if (TrueWeight || FalseWeight) 859 N = MDBuilder(I->getParent()->getContext()) 860 .createBranchWeights(TrueWeight, FalseWeight); 861 I->setMetadata(LLVMContext::MD_prof, N); 862 } 863 864 /// If TI is known to be a terminator instruction and its block is known to 865 /// only have a single predecessor block, check to see if that predecessor is 866 /// also a value comparison with the same value, and if that comparison 867 /// determines the outcome of this comparison. If so, simplify TI. This does a 868 /// very limited form of jump threading. 869 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 870 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 871 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 872 if (!PredVal) 873 return false; // Not a value comparison in predecessor. 874 875 Value *ThisVal = isValueEqualityComparison(TI); 876 assert(ThisVal && "This isn't a value comparison!!"); 877 if (ThisVal != PredVal) 878 return false; // Different predicates. 879 880 // TODO: Preserve branch weight metadata, similarly to how 881 // FoldValueComparisonIntoPredecessors preserves it. 882 883 // Find out information about when control will move from Pred to TI's block. 884 std::vector<ValueEqualityComparisonCase> PredCases; 885 BasicBlock *PredDef = 886 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 887 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 888 889 // Find information about how control leaves this block. 890 std::vector<ValueEqualityComparisonCase> ThisCases; 891 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 892 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 893 894 // If TI's block is the default block from Pred's comparison, potentially 895 // simplify TI based on this knowledge. 896 if (PredDef == TI->getParent()) { 897 // If we are here, we know that the value is none of those cases listed in 898 // PredCases. If there are any cases in ThisCases that are in PredCases, we 899 // can simplify TI. 900 if (!ValuesOverlap(PredCases, ThisCases)) 901 return false; 902 903 if (isa<BranchInst>(TI)) { 904 // Okay, one of the successors of this condbr is dead. Convert it to a 905 // uncond br. 906 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 907 // Insert the new branch. 908 Instruction *NI = Builder.CreateBr(ThisDef); 909 (void)NI; 910 911 // Remove PHI node entries for the dead edge. 912 ThisCases[0].Dest->removePredecessor(TI->getParent()); 913 914 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 915 << "Through successor TI: " << *TI << "Leaving: " << *NI 916 << "\n"); 917 918 EraseTerminatorAndDCECond(TI); 919 return true; 920 } 921 922 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 923 // Okay, TI has cases that are statically dead, prune them away. 924 SmallPtrSet<Constant *, 16> DeadCases; 925 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 926 DeadCases.insert(PredCases[i].Value); 927 928 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 929 << "Through successor TI: " << *TI); 930 931 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 932 --i; 933 if (DeadCases.count(i->getCaseValue())) { 934 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 935 SI.removeCase(i); 936 } 937 } 938 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 939 return true; 940 } 941 942 // Otherwise, TI's block must correspond to some matched value. Find out 943 // which value (or set of values) this is. 944 ConstantInt *TIV = nullptr; 945 BasicBlock *TIBB = TI->getParent(); 946 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 947 if (PredCases[i].Dest == TIBB) { 948 if (TIV) 949 return false; // Cannot handle multiple values coming to this block. 950 TIV = PredCases[i].Value; 951 } 952 assert(TIV && "No edge from pred to succ?"); 953 954 // Okay, we found the one constant that our value can be if we get into TI's 955 // BB. Find out which successor will unconditionally be branched to. 956 BasicBlock *TheRealDest = nullptr; 957 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 958 if (ThisCases[i].Value == TIV) { 959 TheRealDest = ThisCases[i].Dest; 960 break; 961 } 962 963 // If not handled by any explicit cases, it is handled by the default case. 964 if (!TheRealDest) 965 TheRealDest = ThisDef; 966 967 // Remove PHI node entries for dead edges. 968 BasicBlock *CheckEdge = TheRealDest; 969 for (BasicBlock *Succ : successors(TIBB)) 970 if (Succ != CheckEdge) 971 Succ->removePredecessor(TIBB); 972 else 973 CheckEdge = nullptr; 974 975 // Insert the new branch. 976 Instruction *NI = Builder.CreateBr(TheRealDest); 977 (void)NI; 978 979 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 980 << "Through successor TI: " << *TI << "Leaving: " << *NI 981 << "\n"); 982 983 EraseTerminatorAndDCECond(TI); 984 return true; 985 } 986 987 namespace { 988 989 /// This class implements a stable ordering of constant 990 /// integers that does not depend on their address. This is important for 991 /// applications that sort ConstantInt's to ensure uniqueness. 992 struct ConstantIntOrdering { 993 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 994 return LHS->getValue().ult(RHS->getValue()); 995 } 996 }; 997 998 } // end anonymous namespace 999 1000 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1001 ConstantInt *const *P2) { 1002 const ConstantInt *LHS = *P1; 1003 const ConstantInt *RHS = *P2; 1004 if (LHS == RHS) 1005 return 0; 1006 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1007 } 1008 1009 static inline bool HasBranchWeights(const Instruction *I) { 1010 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1011 if (ProfMD && ProfMD->getOperand(0)) 1012 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1013 return MDS->getString().equals("branch_weights"); 1014 1015 return false; 1016 } 1017 1018 /// Get Weights of a given terminator, the default weight is at the front 1019 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1020 /// metadata. 1021 static void GetBranchWeights(Instruction *TI, 1022 SmallVectorImpl<uint64_t> &Weights) { 1023 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1024 assert(MD); 1025 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1026 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1027 Weights.push_back(CI->getValue().getZExtValue()); 1028 } 1029 1030 // If TI is a conditional eq, the default case is the false case, 1031 // and the corresponding branch-weight data is at index 2. We swap the 1032 // default weight to be the first entry. 1033 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1034 assert(Weights.size() == 2); 1035 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1036 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1037 std::swap(Weights.front(), Weights.back()); 1038 } 1039 } 1040 1041 /// Keep halving the weights until all can fit in uint32_t. 1042 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1043 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1044 if (Max > UINT_MAX) { 1045 unsigned Offset = 32 - countLeadingZeros(Max); 1046 for (uint64_t &I : Weights) 1047 I >>= Offset; 1048 } 1049 } 1050 1051 /// The specified terminator is a value equality comparison instruction 1052 /// (either a switch or a branch on "X == c"). 1053 /// See if any of the predecessors of the terminator block are value comparisons 1054 /// on the same value. If so, and if safe to do so, fold them together. 1055 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1056 IRBuilder<> &Builder) { 1057 BasicBlock *BB = TI->getParent(); 1058 Value *CV = isValueEqualityComparison(TI); // CondVal 1059 assert(CV && "Not a comparison?"); 1060 1061 bool Changed = false; 1062 1063 auto _ = make_scope_exit([&]() { 1064 if (Changed) 1065 ++NumFoldValueComparisonIntoPredecessors; 1066 }); 1067 1068 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1069 while (!Preds.empty()) { 1070 BasicBlock *Pred = Preds.pop_back_val(); 1071 1072 // See if the predecessor is a comparison with the same value. 1073 Instruction *PTI = Pred->getTerminator(); 1074 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1075 1076 if (PCV == CV && TI != PTI) { 1077 SmallSetVector<BasicBlock*, 4> FailBlocks; 1078 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1079 for (auto *Succ : FailBlocks) { 1080 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1081 return false; 1082 } 1083 } 1084 1085 // Figure out which 'cases' to copy from SI to PSI. 1086 std::vector<ValueEqualityComparisonCase> BBCases; 1087 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1088 1089 std::vector<ValueEqualityComparisonCase> PredCases; 1090 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1091 1092 // Based on whether the default edge from PTI goes to BB or not, fill in 1093 // PredCases and PredDefault with the new switch cases we would like to 1094 // build. 1095 SmallVector<BasicBlock *, 8> NewSuccessors; 1096 1097 // Update the branch weight metadata along the way 1098 SmallVector<uint64_t, 8> Weights; 1099 bool PredHasWeights = HasBranchWeights(PTI); 1100 bool SuccHasWeights = HasBranchWeights(TI); 1101 1102 if (PredHasWeights) { 1103 GetBranchWeights(PTI, Weights); 1104 // branch-weight metadata is inconsistent here. 1105 if (Weights.size() != 1 + PredCases.size()) 1106 PredHasWeights = SuccHasWeights = false; 1107 } else if (SuccHasWeights) 1108 // If there are no predecessor weights but there are successor weights, 1109 // populate Weights with 1, which will later be scaled to the sum of 1110 // successor's weights 1111 Weights.assign(1 + PredCases.size(), 1); 1112 1113 SmallVector<uint64_t, 8> SuccWeights; 1114 if (SuccHasWeights) { 1115 GetBranchWeights(TI, SuccWeights); 1116 // branch-weight metadata is inconsistent here. 1117 if (SuccWeights.size() != 1 + BBCases.size()) 1118 PredHasWeights = SuccHasWeights = false; 1119 } else if (PredHasWeights) 1120 SuccWeights.assign(1 + BBCases.size(), 1); 1121 1122 if (PredDefault == BB) { 1123 // If this is the default destination from PTI, only the edges in TI 1124 // that don't occur in PTI, or that branch to BB will be activated. 1125 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1126 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1127 if (PredCases[i].Dest != BB) 1128 PTIHandled.insert(PredCases[i].Value); 1129 else { 1130 // The default destination is BB, we don't need explicit targets. 1131 std::swap(PredCases[i], PredCases.back()); 1132 1133 if (PredHasWeights || SuccHasWeights) { 1134 // Increase weight for the default case. 1135 Weights[0] += Weights[i + 1]; 1136 std::swap(Weights[i + 1], Weights.back()); 1137 Weights.pop_back(); 1138 } 1139 1140 PredCases.pop_back(); 1141 --i; 1142 --e; 1143 } 1144 1145 // Reconstruct the new switch statement we will be building. 1146 if (PredDefault != BBDefault) { 1147 PredDefault->removePredecessor(Pred); 1148 PredDefault = BBDefault; 1149 NewSuccessors.push_back(BBDefault); 1150 } 1151 1152 unsigned CasesFromPred = Weights.size(); 1153 uint64_t ValidTotalSuccWeight = 0; 1154 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1155 if (!PTIHandled.count(BBCases[i].Value) && 1156 BBCases[i].Dest != BBDefault) { 1157 PredCases.push_back(BBCases[i]); 1158 NewSuccessors.push_back(BBCases[i].Dest); 1159 if (SuccHasWeights || PredHasWeights) { 1160 // The default weight is at index 0, so weight for the ith case 1161 // should be at index i+1. Scale the cases from successor by 1162 // PredDefaultWeight (Weights[0]). 1163 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1164 ValidTotalSuccWeight += SuccWeights[i + 1]; 1165 } 1166 } 1167 1168 if (SuccHasWeights || PredHasWeights) { 1169 ValidTotalSuccWeight += SuccWeights[0]; 1170 // Scale the cases from predecessor by ValidTotalSuccWeight. 1171 for (unsigned i = 1; i < CasesFromPred; ++i) 1172 Weights[i] *= ValidTotalSuccWeight; 1173 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1174 Weights[0] *= SuccWeights[0]; 1175 } 1176 } else { 1177 // If this is not the default destination from PSI, only the edges 1178 // in SI that occur in PSI with a destination of BB will be 1179 // activated. 1180 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1181 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1182 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1183 if (PredCases[i].Dest == BB) { 1184 PTIHandled.insert(PredCases[i].Value); 1185 1186 if (PredHasWeights || SuccHasWeights) { 1187 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1188 std::swap(Weights[i + 1], Weights.back()); 1189 Weights.pop_back(); 1190 } 1191 1192 std::swap(PredCases[i], PredCases.back()); 1193 PredCases.pop_back(); 1194 --i; 1195 --e; 1196 } 1197 1198 // Okay, now we know which constants were sent to BB from the 1199 // predecessor. Figure out where they will all go now. 1200 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1201 if (PTIHandled.count(BBCases[i].Value)) { 1202 // If this is one we are capable of getting... 1203 if (PredHasWeights || SuccHasWeights) 1204 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1205 PredCases.push_back(BBCases[i]); 1206 NewSuccessors.push_back(BBCases[i].Dest); 1207 PTIHandled.erase( 1208 BBCases[i].Value); // This constant is taken care of 1209 } 1210 1211 // If there are any constants vectored to BB that TI doesn't handle, 1212 // they must go to the default destination of TI. 1213 for (ConstantInt *I : PTIHandled) { 1214 if (PredHasWeights || SuccHasWeights) 1215 Weights.push_back(WeightsForHandled[I]); 1216 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1217 NewSuccessors.push_back(BBDefault); 1218 } 1219 } 1220 1221 // Okay, at this point, we know which new successor Pred will get. Make 1222 // sure we update the number of entries in the PHI nodes for these 1223 // successors. 1224 for (BasicBlock *NewSuccessor : NewSuccessors) 1225 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1226 1227 Builder.SetInsertPoint(PTI); 1228 // Convert pointer to int before we switch. 1229 if (CV->getType()->isPointerTy()) { 1230 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1231 "magicptr"); 1232 } 1233 1234 // Now that the successors are updated, create the new Switch instruction. 1235 SwitchInst *NewSI = 1236 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1237 NewSI->setDebugLoc(PTI->getDebugLoc()); 1238 for (ValueEqualityComparisonCase &V : PredCases) 1239 NewSI->addCase(V.Value, V.Dest); 1240 1241 if (PredHasWeights || SuccHasWeights) { 1242 // Halve the weights if any of them cannot fit in an uint32_t 1243 FitWeights(Weights); 1244 1245 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1246 1247 setBranchWeights(NewSI, MDWeights); 1248 } 1249 1250 EraseTerminatorAndDCECond(PTI); 1251 1252 // Okay, last check. If BB is still a successor of PSI, then we must 1253 // have an infinite loop case. If so, add an infinitely looping block 1254 // to handle the case to preserve the behavior of the code. 1255 BasicBlock *InfLoopBlock = nullptr; 1256 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1257 if (NewSI->getSuccessor(i) == BB) { 1258 if (!InfLoopBlock) { 1259 // Insert it at the end of the function, because it's either code, 1260 // or it won't matter if it's hot. :) 1261 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1262 BB->getParent()); 1263 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1264 } 1265 NewSI->setSuccessor(i, InfLoopBlock); 1266 } 1267 1268 Changed = true; 1269 } 1270 } 1271 return Changed; 1272 } 1273 1274 // If we would need to insert a select that uses the value of this invoke 1275 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1276 // can't hoist the invoke, as there is nowhere to put the select in this case. 1277 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1278 Instruction *I1, Instruction *I2) { 1279 for (BasicBlock *Succ : successors(BB1)) { 1280 for (const PHINode &PN : Succ->phis()) { 1281 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1282 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1283 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1284 return false; 1285 } 1286 } 1287 } 1288 return true; 1289 } 1290 1291 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1292 1293 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1294 /// in the two blocks up into the branch block. The caller of this function 1295 /// guarantees that BI's block dominates BB1 and BB2. 1296 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1297 const TargetTransformInfo &TTI) { 1298 // This does very trivial matching, with limited scanning, to find identical 1299 // instructions in the two blocks. In particular, we don't want to get into 1300 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1301 // such, we currently just scan for obviously identical instructions in an 1302 // identical order. 1303 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1304 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1305 1306 BasicBlock::iterator BB1_Itr = BB1->begin(); 1307 BasicBlock::iterator BB2_Itr = BB2->begin(); 1308 1309 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1310 // Skip debug info if it is not identical. 1311 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1312 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1313 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1314 while (isa<DbgInfoIntrinsic>(I1)) 1315 I1 = &*BB1_Itr++; 1316 while (isa<DbgInfoIntrinsic>(I2)) 1317 I2 = &*BB2_Itr++; 1318 } 1319 // FIXME: Can we define a safety predicate for CallBr? 1320 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1321 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1322 isa<CallBrInst>(I1)) 1323 return false; 1324 1325 BasicBlock *BIParent = BI->getParent(); 1326 1327 bool Changed = false; 1328 1329 auto _ = make_scope_exit([&]() { 1330 if (Changed) 1331 ++NumHoistCommonCode; 1332 }); 1333 1334 do { 1335 // If we are hoisting the terminator instruction, don't move one (making a 1336 // broken BB), instead clone it, and remove BI. 1337 if (I1->isTerminator()) 1338 goto HoistTerminator; 1339 1340 // If we're going to hoist a call, make sure that the two instructions we're 1341 // commoning/hoisting are both marked with musttail, or neither of them is 1342 // marked as such. Otherwise, we might end up in a situation where we hoist 1343 // from a block where the terminator is a `ret` to a block where the terminator 1344 // is a `br`, and `musttail` calls expect to be followed by a return. 1345 auto *C1 = dyn_cast<CallInst>(I1); 1346 auto *C2 = dyn_cast<CallInst>(I2); 1347 if (C1 && C2) 1348 if (C1->isMustTailCall() != C2->isMustTailCall()) 1349 return Changed; 1350 1351 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1352 return Changed; 1353 1354 // If any of the two call sites has nomerge attribute, stop hoisting. 1355 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1356 if (CB1->cannotMerge()) 1357 return Changed; 1358 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1359 if (CB2->cannotMerge()) 1360 return Changed; 1361 1362 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1363 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1364 // The debug location is an integral part of a debug info intrinsic 1365 // and can't be separated from it or replaced. Instead of attempting 1366 // to merge locations, simply hoist both copies of the intrinsic. 1367 BIParent->getInstList().splice(BI->getIterator(), 1368 BB1->getInstList(), I1); 1369 BIParent->getInstList().splice(BI->getIterator(), 1370 BB2->getInstList(), I2); 1371 Changed = true; 1372 } else { 1373 // For a normal instruction, we just move one to right before the branch, 1374 // then replace all uses of the other with the first. Finally, we remove 1375 // the now redundant second instruction. 1376 BIParent->getInstList().splice(BI->getIterator(), 1377 BB1->getInstList(), I1); 1378 if (!I2->use_empty()) 1379 I2->replaceAllUsesWith(I1); 1380 I1->andIRFlags(I2); 1381 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1382 LLVMContext::MD_range, 1383 LLVMContext::MD_fpmath, 1384 LLVMContext::MD_invariant_load, 1385 LLVMContext::MD_nonnull, 1386 LLVMContext::MD_invariant_group, 1387 LLVMContext::MD_align, 1388 LLVMContext::MD_dereferenceable, 1389 LLVMContext::MD_dereferenceable_or_null, 1390 LLVMContext::MD_mem_parallel_loop_access, 1391 LLVMContext::MD_access_group, 1392 LLVMContext::MD_preserve_access_index}; 1393 combineMetadata(I1, I2, KnownIDs, true); 1394 1395 // I1 and I2 are being combined into a single instruction. Its debug 1396 // location is the merged locations of the original instructions. 1397 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1398 1399 I2->eraseFromParent(); 1400 Changed = true; 1401 } 1402 ++NumHoistCommonInstrs; 1403 1404 I1 = &*BB1_Itr++; 1405 I2 = &*BB2_Itr++; 1406 // Skip debug info if it is not identical. 1407 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1408 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1409 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1410 while (isa<DbgInfoIntrinsic>(I1)) 1411 I1 = &*BB1_Itr++; 1412 while (isa<DbgInfoIntrinsic>(I2)) 1413 I2 = &*BB2_Itr++; 1414 } 1415 } while (I1->isIdenticalToWhenDefined(I2)); 1416 1417 return true; 1418 1419 HoistTerminator: 1420 // It may not be possible to hoist an invoke. 1421 // FIXME: Can we define a safety predicate for CallBr? 1422 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1423 return Changed; 1424 1425 // TODO: callbr hoisting currently disabled pending further study. 1426 if (isa<CallBrInst>(I1)) 1427 return Changed; 1428 1429 for (BasicBlock *Succ : successors(BB1)) { 1430 for (PHINode &PN : Succ->phis()) { 1431 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1432 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1433 if (BB1V == BB2V) 1434 continue; 1435 1436 // Check for passingValueIsAlwaysUndefined here because we would rather 1437 // eliminate undefined control flow then converting it to a select. 1438 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1439 passingValueIsAlwaysUndefined(BB2V, &PN)) 1440 return Changed; 1441 1442 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1443 return Changed; 1444 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1445 return Changed; 1446 } 1447 } 1448 1449 // Okay, it is safe to hoist the terminator. 1450 Instruction *NT = I1->clone(); 1451 BIParent->getInstList().insert(BI->getIterator(), NT); 1452 if (!NT->getType()->isVoidTy()) { 1453 I1->replaceAllUsesWith(NT); 1454 I2->replaceAllUsesWith(NT); 1455 NT->takeName(I1); 1456 } 1457 Changed = true; 1458 ++NumHoistCommonInstrs; 1459 1460 // Ensure terminator gets a debug location, even an unknown one, in case 1461 // it involves inlinable calls. 1462 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1463 1464 // PHIs created below will adopt NT's merged DebugLoc. 1465 IRBuilder<NoFolder> Builder(NT); 1466 1467 // Hoisting one of the terminators from our successor is a great thing. 1468 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1469 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1470 // nodes, so we insert select instruction to compute the final result. 1471 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1472 for (BasicBlock *Succ : successors(BB1)) { 1473 for (PHINode &PN : Succ->phis()) { 1474 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1475 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1476 if (BB1V == BB2V) 1477 continue; 1478 1479 // These values do not agree. Insert a select instruction before NT 1480 // that determines the right value. 1481 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1482 if (!SI) { 1483 // Propagate fast-math-flags from phi node to its replacement select. 1484 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1485 if (isa<FPMathOperator>(PN)) 1486 Builder.setFastMathFlags(PN.getFastMathFlags()); 1487 1488 SI = cast<SelectInst>( 1489 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1490 BB1V->getName() + "." + BB2V->getName(), BI)); 1491 } 1492 1493 // Make the PHI node use the select for all incoming values for BB1/BB2 1494 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1495 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1496 PN.setIncomingValue(i, SI); 1497 } 1498 } 1499 1500 // Update any PHI nodes in our new successors. 1501 for (BasicBlock *Succ : successors(BB1)) 1502 AddPredecessorToBlock(Succ, BIParent, BB1); 1503 1504 EraseTerminatorAndDCECond(BI); 1505 return Changed; 1506 } 1507 1508 // Check lifetime markers. 1509 static bool isLifeTimeMarker(const Instruction *I) { 1510 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1511 switch (II->getIntrinsicID()) { 1512 default: 1513 break; 1514 case Intrinsic::lifetime_start: 1515 case Intrinsic::lifetime_end: 1516 return true; 1517 } 1518 } 1519 return false; 1520 } 1521 1522 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1523 // into variables. 1524 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1525 int OpIdx) { 1526 return !isa<IntrinsicInst>(I); 1527 } 1528 1529 // All instructions in Insts belong to different blocks that all unconditionally 1530 // branch to a common successor. Analyze each instruction and return true if it 1531 // would be possible to sink them into their successor, creating one common 1532 // instruction instead. For every value that would be required to be provided by 1533 // PHI node (because an operand varies in each input block), add to PHIOperands. 1534 static bool canSinkInstructions( 1535 ArrayRef<Instruction *> Insts, 1536 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1537 // Prune out obviously bad instructions to move. Each instruction must have 1538 // exactly zero or one use, and we check later that use is by a single, common 1539 // PHI instruction in the successor. 1540 bool HasUse = !Insts.front()->user_empty(); 1541 for (auto *I : Insts) { 1542 // These instructions may change or break semantics if moved. 1543 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1544 I->getType()->isTokenTy()) 1545 return false; 1546 1547 // Conservatively return false if I is an inline-asm instruction. Sinking 1548 // and merging inline-asm instructions can potentially create arguments 1549 // that cannot satisfy the inline-asm constraints. 1550 // If the instruction has nomerge attribute, return false. 1551 if (const auto *C = dyn_cast<CallBase>(I)) 1552 if (C->isInlineAsm() || C->cannotMerge()) 1553 return false; 1554 1555 // Each instruction must have zero or one use. 1556 if (HasUse && !I->hasOneUse()) 1557 return false; 1558 if (!HasUse && !I->user_empty()) 1559 return false; 1560 } 1561 1562 const Instruction *I0 = Insts.front(); 1563 for (auto *I : Insts) 1564 if (!I->isSameOperationAs(I0)) 1565 return false; 1566 1567 // All instructions in Insts are known to be the same opcode. If they have a 1568 // use, check that the only user is a PHI or in the same block as the 1569 // instruction, because if a user is in the same block as an instruction we're 1570 // contemplating sinking, it must already be determined to be sinkable. 1571 if (HasUse) { 1572 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1573 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1574 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1575 auto *U = cast<Instruction>(*I->user_begin()); 1576 return (PNUse && 1577 PNUse->getParent() == Succ && 1578 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1579 U->getParent() == I->getParent(); 1580 })) 1581 return false; 1582 } 1583 1584 // Because SROA can't handle speculating stores of selects, try not to sink 1585 // loads, stores or lifetime markers of allocas when we'd have to create a 1586 // PHI for the address operand. Also, because it is likely that loads or 1587 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1588 // them. 1589 // This can cause code churn which can have unintended consequences down 1590 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1591 // FIXME: This is a workaround for a deficiency in SROA - see 1592 // https://llvm.org/bugs/show_bug.cgi?id=30188 1593 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1594 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1595 })) 1596 return false; 1597 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1598 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1599 })) 1600 return false; 1601 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1602 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1603 })) 1604 return false; 1605 1606 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1607 Value *Op = I0->getOperand(OI); 1608 if (Op->getType()->isTokenTy()) 1609 // Don't touch any operand of token type. 1610 return false; 1611 1612 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1613 assert(I->getNumOperands() == I0->getNumOperands()); 1614 return I->getOperand(OI) == I0->getOperand(OI); 1615 }; 1616 if (!all_of(Insts, SameAsI0)) { 1617 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1618 !canReplaceOperandWithVariable(I0, OI)) 1619 // We can't create a PHI from this GEP. 1620 return false; 1621 // Don't create indirect calls! The called value is the final operand. 1622 if (isa<CallBase>(I0) && OI == OE - 1) { 1623 // FIXME: if the call was *already* indirect, we should do this. 1624 return false; 1625 } 1626 for (auto *I : Insts) 1627 PHIOperands[I].push_back(I->getOperand(OI)); 1628 } 1629 } 1630 return true; 1631 } 1632 1633 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1634 // instruction of every block in Blocks to their common successor, commoning 1635 // into one instruction. 1636 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1637 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1638 1639 // canSinkLastInstruction returning true guarantees that every block has at 1640 // least one non-terminator instruction. 1641 SmallVector<Instruction*,4> Insts; 1642 for (auto *BB : Blocks) { 1643 Instruction *I = BB->getTerminator(); 1644 do { 1645 I = I->getPrevNode(); 1646 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1647 if (!isa<DbgInfoIntrinsic>(I)) 1648 Insts.push_back(I); 1649 } 1650 1651 // The only checking we need to do now is that all users of all instructions 1652 // are the same PHI node. canSinkLastInstruction should have checked this but 1653 // it is slightly over-aggressive - it gets confused by commutative instructions 1654 // so double-check it here. 1655 Instruction *I0 = Insts.front(); 1656 if (!I0->user_empty()) { 1657 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1658 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1659 auto *U = cast<Instruction>(*I->user_begin()); 1660 return U == PNUse; 1661 })) 1662 return false; 1663 } 1664 1665 // We don't need to do any more checking here; canSinkLastInstruction should 1666 // have done it all for us. 1667 SmallVector<Value*, 4> NewOperands; 1668 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1669 // This check is different to that in canSinkLastInstruction. There, we 1670 // cared about the global view once simplifycfg (and instcombine) have 1671 // completed - it takes into account PHIs that become trivially 1672 // simplifiable. However here we need a more local view; if an operand 1673 // differs we create a PHI and rely on instcombine to clean up the very 1674 // small mess we may make. 1675 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1676 return I->getOperand(O) != I0->getOperand(O); 1677 }); 1678 if (!NeedPHI) { 1679 NewOperands.push_back(I0->getOperand(O)); 1680 continue; 1681 } 1682 1683 // Create a new PHI in the successor block and populate it. 1684 auto *Op = I0->getOperand(O); 1685 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1686 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1687 Op->getName() + ".sink", &BBEnd->front()); 1688 for (auto *I : Insts) 1689 PN->addIncoming(I->getOperand(O), I->getParent()); 1690 NewOperands.push_back(PN); 1691 } 1692 1693 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1694 // and move it to the start of the successor block. 1695 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1696 I0->getOperandUse(O).set(NewOperands[O]); 1697 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1698 1699 // Update metadata and IR flags, and merge debug locations. 1700 for (auto *I : Insts) 1701 if (I != I0) { 1702 // The debug location for the "common" instruction is the merged locations 1703 // of all the commoned instructions. We start with the original location 1704 // of the "common" instruction and iteratively merge each location in the 1705 // loop below. 1706 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1707 // However, as N-way merge for CallInst is rare, so we use simplified API 1708 // instead of using complex API for N-way merge. 1709 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1710 combineMetadataForCSE(I0, I, true); 1711 I0->andIRFlags(I); 1712 } 1713 1714 if (!I0->user_empty()) { 1715 // canSinkLastInstruction checked that all instructions were used by 1716 // one and only one PHI node. Find that now, RAUW it to our common 1717 // instruction and nuke it. 1718 auto *PN = cast<PHINode>(*I0->user_begin()); 1719 PN->replaceAllUsesWith(I0); 1720 PN->eraseFromParent(); 1721 } 1722 1723 // Finally nuke all instructions apart from the common instruction. 1724 for (auto *I : Insts) 1725 if (I != I0) 1726 I->eraseFromParent(); 1727 1728 return true; 1729 } 1730 1731 namespace { 1732 1733 // LockstepReverseIterator - Iterates through instructions 1734 // in a set of blocks in reverse order from the first non-terminator. 1735 // For example (assume all blocks have size n): 1736 // LockstepReverseIterator I([B1, B2, B3]); 1737 // *I-- = [B1[n], B2[n], B3[n]]; 1738 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1739 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1740 // ... 1741 class LockstepReverseIterator { 1742 ArrayRef<BasicBlock*> Blocks; 1743 SmallVector<Instruction*,4> Insts; 1744 bool Fail; 1745 1746 public: 1747 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1748 reset(); 1749 } 1750 1751 void reset() { 1752 Fail = false; 1753 Insts.clear(); 1754 for (auto *BB : Blocks) { 1755 Instruction *Inst = BB->getTerminator(); 1756 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1757 Inst = Inst->getPrevNode(); 1758 if (!Inst) { 1759 // Block wasn't big enough. 1760 Fail = true; 1761 return; 1762 } 1763 Insts.push_back(Inst); 1764 } 1765 } 1766 1767 bool isValid() const { 1768 return !Fail; 1769 } 1770 1771 void operator--() { 1772 if (Fail) 1773 return; 1774 for (auto *&Inst : Insts) { 1775 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1776 Inst = Inst->getPrevNode(); 1777 // Already at beginning of block. 1778 if (!Inst) { 1779 Fail = true; 1780 return; 1781 } 1782 } 1783 } 1784 1785 ArrayRef<Instruction*> operator * () const { 1786 return Insts; 1787 } 1788 }; 1789 1790 } // end anonymous namespace 1791 1792 /// Check whether BB's predecessors end with unconditional branches. If it is 1793 /// true, sink any common code from the predecessors to BB. 1794 /// We also allow one predecessor to end with conditional branch (but no more 1795 /// than one). 1796 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1797 // We support two situations: 1798 // (1) all incoming arcs are unconditional 1799 // (2) one incoming arc is conditional 1800 // 1801 // (2) is very common in switch defaults and 1802 // else-if patterns; 1803 // 1804 // if (a) f(1); 1805 // else if (b) f(2); 1806 // 1807 // produces: 1808 // 1809 // [if] 1810 // / \ 1811 // [f(1)] [if] 1812 // | | \ 1813 // | | | 1814 // | [f(2)]| 1815 // \ | / 1816 // [ end ] 1817 // 1818 // [end] has two unconditional predecessor arcs and one conditional. The 1819 // conditional refers to the implicit empty 'else' arc. This conditional 1820 // arc can also be caused by an empty default block in a switch. 1821 // 1822 // In this case, we attempt to sink code from all *unconditional* arcs. 1823 // If we can sink instructions from these arcs (determined during the scan 1824 // phase below) we insert a common successor for all unconditional arcs and 1825 // connect that to [end], to enable sinking: 1826 // 1827 // [if] 1828 // / \ 1829 // [x(1)] [if] 1830 // | | \ 1831 // | | \ 1832 // | [x(2)] | 1833 // \ / | 1834 // [sink.split] | 1835 // \ / 1836 // [ end ] 1837 // 1838 SmallVector<BasicBlock*,4> UnconditionalPreds; 1839 Instruction *Cond = nullptr; 1840 for (auto *B : predecessors(BB)) { 1841 auto *T = B->getTerminator(); 1842 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1843 UnconditionalPreds.push_back(B); 1844 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1845 Cond = T; 1846 else 1847 return false; 1848 } 1849 if (UnconditionalPreds.size() < 2) 1850 return false; 1851 1852 // We take a two-step approach to tail sinking. First we scan from the end of 1853 // each block upwards in lockstep. If the n'th instruction from the end of each 1854 // block can be sunk, those instructions are added to ValuesToSink and we 1855 // carry on. If we can sink an instruction but need to PHI-merge some operands 1856 // (because they're not identical in each instruction) we add these to 1857 // PHIOperands. 1858 unsigned ScanIdx = 0; 1859 SmallPtrSet<Value*,4> InstructionsToSink; 1860 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1861 LockstepReverseIterator LRI(UnconditionalPreds); 1862 while (LRI.isValid() && 1863 canSinkInstructions(*LRI, PHIOperands)) { 1864 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1865 << "\n"); 1866 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1867 ++ScanIdx; 1868 --LRI; 1869 } 1870 1871 // If no instructions can be sunk, early-return. 1872 if (ScanIdx == 0) 1873 return false; 1874 1875 bool Changed = false; 1876 1877 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1878 unsigned NumPHIdValues = 0; 1879 for (auto *I : *LRI) 1880 for (auto *V : PHIOperands[I]) 1881 if (InstructionsToSink.count(V) == 0) 1882 ++NumPHIdValues; 1883 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1884 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1885 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1886 NumPHIInsts++; 1887 1888 return NumPHIInsts <= 1; 1889 }; 1890 1891 if (Cond) { 1892 // Check if we would actually sink anything first! This mutates the CFG and 1893 // adds an extra block. The goal in doing this is to allow instructions that 1894 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1895 // (such as trunc, add) can be sunk and predicated already. So we check that 1896 // we're going to sink at least one non-speculatable instruction. 1897 LRI.reset(); 1898 unsigned Idx = 0; 1899 bool Profitable = false; 1900 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1901 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1902 Profitable = true; 1903 break; 1904 } 1905 --LRI; 1906 ++Idx; 1907 } 1908 if (!Profitable) 1909 return false; 1910 1911 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1912 // We have a conditional edge and we're going to sink some instructions. 1913 // Insert a new block postdominating all blocks we're going to sink from. 1914 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1915 // Edges couldn't be split. 1916 return false; 1917 Changed = true; 1918 } 1919 1920 // Now that we've analyzed all potential sinking candidates, perform the 1921 // actual sink. We iteratively sink the last non-terminator of the source 1922 // blocks into their common successor unless doing so would require too 1923 // many PHI instructions to be generated (currently only one PHI is allowed 1924 // per sunk instruction). 1925 // 1926 // We can use InstructionsToSink to discount values needing PHI-merging that will 1927 // actually be sunk in a later iteration. This allows us to be more 1928 // aggressive in what we sink. This does allow a false positive where we 1929 // sink presuming a later value will also be sunk, but stop half way through 1930 // and never actually sink it which means we produce more PHIs than intended. 1931 // This is unlikely in practice though. 1932 unsigned SinkIdx = 0; 1933 for (; SinkIdx != ScanIdx; ++SinkIdx) { 1934 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1935 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1936 << "\n"); 1937 1938 // Because we've sunk every instruction in turn, the current instruction to 1939 // sink is always at index 0. 1940 LRI.reset(); 1941 if (!ProfitableToSinkInstruction(LRI)) { 1942 // Too many PHIs would be created. 1943 LLVM_DEBUG( 1944 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1945 break; 1946 } 1947 1948 if (!sinkLastInstruction(UnconditionalPreds)) { 1949 LLVM_DEBUG( 1950 dbgs() 1951 << "SINK: stopping here, failed to actually sink instruction!\n"); 1952 break; 1953 } 1954 1955 NumSinkCommonInstrs++; 1956 Changed = true; 1957 } 1958 if (SinkIdx != 0) 1959 ++NumSinkCommonCode; 1960 return Changed; 1961 } 1962 1963 /// Determine if we can hoist sink a sole store instruction out of a 1964 /// conditional block. 1965 /// 1966 /// We are looking for code like the following: 1967 /// BrBB: 1968 /// store i32 %add, i32* %arrayidx2 1969 /// ... // No other stores or function calls (we could be calling a memory 1970 /// ... // function). 1971 /// %cmp = icmp ult %x, %y 1972 /// br i1 %cmp, label %EndBB, label %ThenBB 1973 /// ThenBB: 1974 /// store i32 %add5, i32* %arrayidx2 1975 /// br label EndBB 1976 /// EndBB: 1977 /// ... 1978 /// We are going to transform this into: 1979 /// BrBB: 1980 /// store i32 %add, i32* %arrayidx2 1981 /// ... // 1982 /// %cmp = icmp ult %x, %y 1983 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1984 /// store i32 %add.add5, i32* %arrayidx2 1985 /// ... 1986 /// 1987 /// \return The pointer to the value of the previous store if the store can be 1988 /// hoisted into the predecessor block. 0 otherwise. 1989 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1990 BasicBlock *StoreBB, BasicBlock *EndBB) { 1991 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1992 if (!StoreToHoist) 1993 return nullptr; 1994 1995 // Volatile or atomic. 1996 if (!StoreToHoist->isSimple()) 1997 return nullptr; 1998 1999 Value *StorePtr = StoreToHoist->getPointerOperand(); 2000 2001 // Look for a store to the same pointer in BrBB. 2002 unsigned MaxNumInstToLookAt = 9; 2003 // Skip pseudo probe intrinsic calls which are not really killing any memory 2004 // accesses. 2005 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2006 if (!MaxNumInstToLookAt) 2007 break; 2008 --MaxNumInstToLookAt; 2009 2010 // Could be calling an instruction that affects memory like free(). 2011 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2012 return nullptr; 2013 2014 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2015 // Found the previous store make sure it stores to the same location. 2016 if (SI->getPointerOperand() == StorePtr) 2017 // Found the previous store, return its value operand. 2018 return SI->getValueOperand(); 2019 return nullptr; // Unknown store. 2020 } 2021 } 2022 2023 return nullptr; 2024 } 2025 2026 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2027 /// converted to selects. 2028 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2029 BasicBlock *EndBB, 2030 unsigned &SpeculatedInstructions, 2031 int &BudgetRemaining, 2032 const TargetTransformInfo &TTI) { 2033 TargetTransformInfo::TargetCostKind CostKind = 2034 BB->getParent()->hasMinSize() 2035 ? TargetTransformInfo::TCK_CodeSize 2036 : TargetTransformInfo::TCK_SizeAndLatency; 2037 2038 bool HaveRewritablePHIs = false; 2039 for (PHINode &PN : EndBB->phis()) { 2040 Value *OrigV = PN.getIncomingValueForBlock(BB); 2041 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2042 2043 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2044 // Skip PHIs which are trivial. 2045 if (ThenV == OrigV) 2046 continue; 2047 2048 BudgetRemaining -= 2049 TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2050 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2051 2052 // Don't convert to selects if we could remove undefined behavior instead. 2053 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2054 passingValueIsAlwaysUndefined(ThenV, &PN)) 2055 return false; 2056 2057 HaveRewritablePHIs = true; 2058 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2059 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2060 if (!OrigCE && !ThenCE) 2061 continue; // Known safe and cheap. 2062 2063 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2064 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2065 return false; 2066 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2067 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2068 unsigned MaxCost = 2069 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2070 if (OrigCost + ThenCost > MaxCost) 2071 return false; 2072 2073 // Account for the cost of an unfolded ConstantExpr which could end up 2074 // getting expanded into Instructions. 2075 // FIXME: This doesn't account for how many operations are combined in the 2076 // constant expression. 2077 ++SpeculatedInstructions; 2078 if (SpeculatedInstructions > 1) 2079 return false; 2080 } 2081 2082 return HaveRewritablePHIs; 2083 } 2084 2085 /// Speculate a conditional basic block flattening the CFG. 2086 /// 2087 /// Note that this is a very risky transform currently. Speculating 2088 /// instructions like this is most often not desirable. Instead, there is an MI 2089 /// pass which can do it with full awareness of the resource constraints. 2090 /// However, some cases are "obvious" and we should do directly. An example of 2091 /// this is speculating a single, reasonably cheap instruction. 2092 /// 2093 /// There is only one distinct advantage to flattening the CFG at the IR level: 2094 /// it makes very common but simplistic optimizations such as are common in 2095 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2096 /// modeling their effects with easier to reason about SSA value graphs. 2097 /// 2098 /// 2099 /// An illustration of this transform is turning this IR: 2100 /// \code 2101 /// BB: 2102 /// %cmp = icmp ult %x, %y 2103 /// br i1 %cmp, label %EndBB, label %ThenBB 2104 /// ThenBB: 2105 /// %sub = sub %x, %y 2106 /// br label BB2 2107 /// EndBB: 2108 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2109 /// ... 2110 /// \endcode 2111 /// 2112 /// Into this IR: 2113 /// \code 2114 /// BB: 2115 /// %cmp = icmp ult %x, %y 2116 /// %sub = sub %x, %y 2117 /// %cond = select i1 %cmp, 0, %sub 2118 /// ... 2119 /// \endcode 2120 /// 2121 /// \returns true if the conditional block is removed. 2122 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2123 const TargetTransformInfo &TTI) { 2124 // Be conservative for now. FP select instruction can often be expensive. 2125 Value *BrCond = BI->getCondition(); 2126 if (isa<FCmpInst>(BrCond)) 2127 return false; 2128 2129 BasicBlock *BB = BI->getParent(); 2130 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2131 int BudgetRemaining = 2132 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2133 2134 // If ThenBB is actually on the false edge of the conditional branch, remember 2135 // to swap the select operands later. 2136 bool Invert = false; 2137 if (ThenBB != BI->getSuccessor(0)) { 2138 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2139 Invert = true; 2140 } 2141 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2142 2143 // Keep a count of how many times instructions are used within ThenBB when 2144 // they are candidates for sinking into ThenBB. Specifically: 2145 // - They are defined in BB, and 2146 // - They have no side effects, and 2147 // - All of their uses are in ThenBB. 2148 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2149 2150 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2151 2152 unsigned SpeculatedInstructions = 0; 2153 Value *SpeculatedStoreValue = nullptr; 2154 StoreInst *SpeculatedStore = nullptr; 2155 for (BasicBlock::iterator BBI = ThenBB->begin(), 2156 BBE = std::prev(ThenBB->end()); 2157 BBI != BBE; ++BBI) { 2158 Instruction *I = &*BBI; 2159 // Skip debug info. 2160 if (isa<DbgInfoIntrinsic>(I)) { 2161 SpeculatedDbgIntrinsics.push_back(I); 2162 continue; 2163 } 2164 2165 // Skip pseudo probes. The consequence is we lose track of the branch 2166 // probability for ThenBB, which is fine since the optimization here takes 2167 // place regardless of the branch probability. 2168 if (isa<PseudoProbeInst>(I)) { 2169 SpeculatedDbgIntrinsics.push_back(I); 2170 continue; 2171 } 2172 2173 // Only speculatively execute a single instruction (not counting the 2174 // terminator) for now. 2175 ++SpeculatedInstructions; 2176 if (SpeculatedInstructions > 1) 2177 return false; 2178 2179 // Don't hoist the instruction if it's unsafe or expensive. 2180 if (!isSafeToSpeculativelyExecute(I) && 2181 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2182 I, BB, ThenBB, EndBB)))) 2183 return false; 2184 if (!SpeculatedStoreValue && 2185 ComputeSpeculationCost(I, TTI) > 2186 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2187 return false; 2188 2189 // Store the store speculation candidate. 2190 if (SpeculatedStoreValue) 2191 SpeculatedStore = cast<StoreInst>(I); 2192 2193 // Do not hoist the instruction if any of its operands are defined but not 2194 // used in BB. The transformation will prevent the operand from 2195 // being sunk into the use block. 2196 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2197 Instruction *OpI = dyn_cast<Instruction>(*i); 2198 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2199 continue; // Not a candidate for sinking. 2200 2201 ++SinkCandidateUseCounts[OpI]; 2202 } 2203 } 2204 2205 // Consider any sink candidates which are only used in ThenBB as costs for 2206 // speculation. Note, while we iterate over a DenseMap here, we are summing 2207 // and so iteration order isn't significant. 2208 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2209 I = SinkCandidateUseCounts.begin(), 2210 E = SinkCandidateUseCounts.end(); 2211 I != E; ++I) 2212 if (I->first->hasNUses(I->second)) { 2213 ++SpeculatedInstructions; 2214 if (SpeculatedInstructions > 1) 2215 return false; 2216 } 2217 2218 // Check that we can insert the selects and that it's not too expensive to do 2219 // so. 2220 bool Convert = SpeculatedStore != nullptr; 2221 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2222 SpeculatedInstructions, 2223 BudgetRemaining, TTI); 2224 if (!Convert || BudgetRemaining < 0) 2225 return false; 2226 2227 // If we get here, we can hoist the instruction and if-convert. 2228 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2229 2230 // Insert a select of the value of the speculated store. 2231 if (SpeculatedStoreValue) { 2232 IRBuilder<NoFolder> Builder(BI); 2233 Value *TrueV = SpeculatedStore->getValueOperand(); 2234 Value *FalseV = SpeculatedStoreValue; 2235 if (Invert) 2236 std::swap(TrueV, FalseV); 2237 Value *S = Builder.CreateSelect( 2238 BrCond, TrueV, FalseV, "spec.store.select", BI); 2239 SpeculatedStore->setOperand(0, S); 2240 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2241 SpeculatedStore->getDebugLoc()); 2242 } 2243 2244 // Metadata can be dependent on the condition we are hoisting above. 2245 // Conservatively strip all metadata on the instruction. Drop the debug loc 2246 // to avoid making it appear as if the condition is a constant, which would 2247 // be misleading while debugging. 2248 for (auto &I : *ThenBB) { 2249 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2250 I.setDebugLoc(DebugLoc()); 2251 I.dropUnknownNonDebugMetadata(); 2252 } 2253 2254 // Hoist the instructions. 2255 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2256 ThenBB->begin(), std::prev(ThenBB->end())); 2257 2258 // Insert selects and rewrite the PHI operands. 2259 IRBuilder<NoFolder> Builder(BI); 2260 for (PHINode &PN : EndBB->phis()) { 2261 unsigned OrigI = PN.getBasicBlockIndex(BB); 2262 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2263 Value *OrigV = PN.getIncomingValue(OrigI); 2264 Value *ThenV = PN.getIncomingValue(ThenI); 2265 2266 // Skip PHIs which are trivial. 2267 if (OrigV == ThenV) 2268 continue; 2269 2270 // Create a select whose true value is the speculatively executed value and 2271 // false value is the pre-existing value. Swap them if the branch 2272 // destinations were inverted. 2273 Value *TrueV = ThenV, *FalseV = OrigV; 2274 if (Invert) 2275 std::swap(TrueV, FalseV); 2276 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2277 PN.setIncomingValue(OrigI, V); 2278 PN.setIncomingValue(ThenI, V); 2279 } 2280 2281 // Remove speculated dbg intrinsics. 2282 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2283 // dbg value for the different flows and inserting it after the select. 2284 for (Instruction *I : SpeculatedDbgIntrinsics) 2285 I->eraseFromParent(); 2286 2287 ++NumSpeculations; 2288 return true; 2289 } 2290 2291 /// Return true if we can thread a branch across this block. 2292 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2293 int Size = 0; 2294 2295 for (Instruction &I : BB->instructionsWithoutDebug()) { 2296 if (Size > MaxSmallBlockSize) 2297 return false; // Don't clone large BB's. 2298 2299 // Can't fold blocks that contain noduplicate or convergent calls. 2300 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2301 if (CI->cannotDuplicate() || CI->isConvergent()) 2302 return false; 2303 2304 // We will delete Phis while threading, so Phis should not be accounted in 2305 // block's size 2306 if (!isa<PHINode>(I)) 2307 ++Size; 2308 2309 // We can only support instructions that do not define values that are 2310 // live outside of the current basic block. 2311 for (User *U : I.users()) { 2312 Instruction *UI = cast<Instruction>(U); 2313 if (UI->getParent() != BB || isa<PHINode>(UI)) 2314 return false; 2315 } 2316 2317 // Looks ok, continue checking. 2318 } 2319 2320 return true; 2321 } 2322 2323 /// If we have a conditional branch on a PHI node value that is defined in the 2324 /// same block as the branch and if any PHI entries are constants, thread edges 2325 /// corresponding to that entry to be branches to their ultimate destination. 2326 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2327 AssumptionCache *AC) { 2328 BasicBlock *BB = BI->getParent(); 2329 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2330 // NOTE: we currently cannot transform this case if the PHI node is used 2331 // outside of the block. 2332 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2333 return false; 2334 2335 // Degenerate case of a single entry PHI. 2336 if (PN->getNumIncomingValues() == 1) { 2337 FoldSingleEntryPHINodes(PN->getParent()); 2338 return true; 2339 } 2340 2341 // Now we know that this block has multiple preds and two succs. 2342 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2343 return false; 2344 2345 // Okay, this is a simple enough basic block. See if any phi values are 2346 // constants. 2347 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2348 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2349 if (!CB || !CB->getType()->isIntegerTy(1)) 2350 continue; 2351 2352 // Okay, we now know that all edges from PredBB should be revectored to 2353 // branch to RealDest. 2354 BasicBlock *PredBB = PN->getIncomingBlock(i); 2355 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2356 2357 if (RealDest == BB) 2358 continue; // Skip self loops. 2359 // Skip if the predecessor's terminator is an indirect branch. 2360 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2361 continue; 2362 2363 // The dest block might have PHI nodes, other predecessors and other 2364 // difficult cases. Instead of being smart about this, just insert a new 2365 // block that jumps to the destination block, effectively splitting 2366 // the edge we are about to create. 2367 BasicBlock *EdgeBB = 2368 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2369 RealDest->getParent(), RealDest); 2370 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2371 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2372 2373 // Update PHI nodes. 2374 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2375 2376 // BB may have instructions that are being threaded over. Clone these 2377 // instructions into EdgeBB. We know that there will be no uses of the 2378 // cloned instructions outside of EdgeBB. 2379 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2380 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2381 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2382 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2383 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2384 continue; 2385 } 2386 // Clone the instruction. 2387 Instruction *N = BBI->clone(); 2388 if (BBI->hasName()) 2389 N->setName(BBI->getName() + ".c"); 2390 2391 // Update operands due to translation. 2392 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2393 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2394 if (PI != TranslateMap.end()) 2395 *i = PI->second; 2396 } 2397 2398 // Check for trivial simplification. 2399 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2400 if (!BBI->use_empty()) 2401 TranslateMap[&*BBI] = V; 2402 if (!N->mayHaveSideEffects()) { 2403 N->deleteValue(); // Instruction folded away, don't need actual inst 2404 N = nullptr; 2405 } 2406 } else { 2407 if (!BBI->use_empty()) 2408 TranslateMap[&*BBI] = N; 2409 } 2410 if (N) { 2411 // Insert the new instruction into its new home. 2412 EdgeBB->getInstList().insert(InsertPt, N); 2413 2414 // Register the new instruction with the assumption cache if necessary. 2415 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2416 AC->registerAssumption(cast<IntrinsicInst>(N)); 2417 } 2418 } 2419 2420 // Loop over all of the edges from PredBB to BB, changing them to branch 2421 // to EdgeBB instead. 2422 Instruction *PredBBTI = PredBB->getTerminator(); 2423 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2424 if (PredBBTI->getSuccessor(i) == BB) { 2425 BB->removePredecessor(PredBB); 2426 PredBBTI->setSuccessor(i, EdgeBB); 2427 } 2428 2429 // Recurse, simplifying any other constants. 2430 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2431 } 2432 2433 return false; 2434 } 2435 2436 /// Given a BB that starts with the specified two-entry PHI node, 2437 /// see if we can eliminate it. 2438 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2439 const DataLayout &DL) { 2440 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2441 // statement", which has a very simple dominance structure. Basically, we 2442 // are trying to find the condition that is being branched on, which 2443 // subsequently causes this merge to happen. We really want control 2444 // dependence information for this check, but simplifycfg can't keep it up 2445 // to date, and this catches most of the cases we care about anyway. 2446 BasicBlock *BB = PN->getParent(); 2447 2448 BasicBlock *IfTrue, *IfFalse; 2449 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2450 if (!IfCond || 2451 // Don't bother if the branch will be constant folded trivially. 2452 isa<ConstantInt>(IfCond)) 2453 return false; 2454 2455 // Okay, we found that we can merge this two-entry phi node into a select. 2456 // Doing so would require us to fold *all* two entry phi nodes in this block. 2457 // At some point this becomes non-profitable (particularly if the target 2458 // doesn't support cmov's). Only do this transformation if there are two or 2459 // fewer PHI nodes in this block. 2460 unsigned NumPhis = 0; 2461 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2462 if (NumPhis > 2) 2463 return false; 2464 2465 // Loop over the PHI's seeing if we can promote them all to select 2466 // instructions. While we are at it, keep track of the instructions 2467 // that need to be moved to the dominating block. 2468 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2469 int BudgetRemaining = 2470 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2471 2472 bool Changed = false; 2473 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2474 PHINode *PN = cast<PHINode>(II++); 2475 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2476 PN->replaceAllUsesWith(V); 2477 PN->eraseFromParent(); 2478 Changed = true; 2479 continue; 2480 } 2481 2482 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2483 BudgetRemaining, TTI) || 2484 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2485 BudgetRemaining, TTI)) 2486 return Changed; 2487 } 2488 2489 // If we folded the first phi, PN dangles at this point. Refresh it. If 2490 // we ran out of PHIs then we simplified them all. 2491 PN = dyn_cast<PHINode>(BB->begin()); 2492 if (!PN) 2493 return true; 2494 2495 // Return true if at least one of these is a 'not', and another is either 2496 // a 'not' too, or a constant. 2497 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2498 if (!match(V0, m_Not(m_Value()))) 2499 std::swap(V0, V1); 2500 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2501 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2502 }; 2503 2504 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2505 // of the incoming values is an 'not' and another one is freely invertible. 2506 // These can often be turned into switches and other things. 2507 if (PN->getType()->isIntegerTy(1) && 2508 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2509 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2510 isa<BinaryOperator>(IfCond)) && 2511 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2512 PN->getIncomingValue(1))) 2513 return Changed; 2514 2515 // If all PHI nodes are promotable, check to make sure that all instructions 2516 // in the predecessor blocks can be promoted as well. If not, we won't be able 2517 // to get rid of the control flow, so it's not worth promoting to select 2518 // instructions. 2519 BasicBlock *DomBlock = nullptr; 2520 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2521 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2522 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2523 IfBlock1 = nullptr; 2524 } else { 2525 DomBlock = *pred_begin(IfBlock1); 2526 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2527 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2528 !isa<PseudoProbeInst>(I)) { 2529 // This is not an aggressive instruction that we can promote. 2530 // Because of this, we won't be able to get rid of the control flow, so 2531 // the xform is not worth it. 2532 return Changed; 2533 } 2534 } 2535 2536 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2537 IfBlock2 = nullptr; 2538 } else { 2539 DomBlock = *pred_begin(IfBlock2); 2540 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2541 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2542 !isa<PseudoProbeInst>(I)) { 2543 // This is not an aggressive instruction that we can promote. 2544 // Because of this, we won't be able to get rid of the control flow, so 2545 // the xform is not worth it. 2546 return Changed; 2547 } 2548 } 2549 assert(DomBlock && "Failed to find root DomBlock"); 2550 2551 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2552 << " T: " << IfTrue->getName() 2553 << " F: " << IfFalse->getName() << "\n"); 2554 2555 // If we can still promote the PHI nodes after this gauntlet of tests, 2556 // do all of the PHI's now. 2557 Instruction *InsertPt = DomBlock->getTerminator(); 2558 IRBuilder<NoFolder> Builder(InsertPt); 2559 2560 // Move all 'aggressive' instructions, which are defined in the 2561 // conditional parts of the if's up to the dominating block. 2562 if (IfBlock1) 2563 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2564 if (IfBlock2) 2565 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2566 2567 // Propagate fast-math-flags from phi nodes to replacement selects. 2568 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2569 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2570 if (isa<FPMathOperator>(PN)) 2571 Builder.setFastMathFlags(PN->getFastMathFlags()); 2572 2573 // Change the PHI node into a select instruction. 2574 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2575 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2576 2577 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2578 PN->replaceAllUsesWith(Sel); 2579 Sel->takeName(PN); 2580 PN->eraseFromParent(); 2581 } 2582 2583 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2584 // has been flattened. Change DomBlock to jump directly to our new block to 2585 // avoid other simplifycfg's kicking in on the diamond. 2586 Instruction *OldTI = DomBlock->getTerminator(); 2587 Builder.SetInsertPoint(OldTI); 2588 Builder.CreateBr(BB); 2589 OldTI->eraseFromParent(); 2590 return true; 2591 } 2592 2593 /// If we found a conditional branch that goes to two returning blocks, 2594 /// try to merge them together into one return, 2595 /// introducing a select if the return values disagree. 2596 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2597 IRBuilder<> &Builder) { 2598 assert(BI->isConditional() && "Must be a conditional branch"); 2599 BasicBlock *TrueSucc = BI->getSuccessor(0); 2600 BasicBlock *FalseSucc = BI->getSuccessor(1); 2601 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2602 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2603 2604 // Check to ensure both blocks are empty (just a return) or optionally empty 2605 // with PHI nodes. If there are other instructions, merging would cause extra 2606 // computation on one path or the other. 2607 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2608 return false; 2609 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2610 return false; 2611 2612 Builder.SetInsertPoint(BI); 2613 // Okay, we found a branch that is going to two return nodes. If 2614 // there is no return value for this function, just change the 2615 // branch into a return. 2616 if (FalseRet->getNumOperands() == 0) { 2617 TrueSucc->removePredecessor(BI->getParent()); 2618 FalseSucc->removePredecessor(BI->getParent()); 2619 Builder.CreateRetVoid(); 2620 EraseTerminatorAndDCECond(BI); 2621 return true; 2622 } 2623 2624 // Otherwise, figure out what the true and false return values are 2625 // so we can insert a new select instruction. 2626 Value *TrueValue = TrueRet->getReturnValue(); 2627 Value *FalseValue = FalseRet->getReturnValue(); 2628 2629 // Unwrap any PHI nodes in the return blocks. 2630 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2631 if (TVPN->getParent() == TrueSucc) 2632 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2633 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2634 if (FVPN->getParent() == FalseSucc) 2635 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2636 2637 // In order for this transformation to be safe, we must be able to 2638 // unconditionally execute both operands to the return. This is 2639 // normally the case, but we could have a potentially-trapping 2640 // constant expression that prevents this transformation from being 2641 // safe. 2642 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2643 if (TCV->canTrap()) 2644 return false; 2645 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2646 if (FCV->canTrap()) 2647 return false; 2648 2649 // Okay, we collected all the mapped values and checked them for sanity, and 2650 // defined to really do this transformation. First, update the CFG. 2651 TrueSucc->removePredecessor(BI->getParent()); 2652 FalseSucc->removePredecessor(BI->getParent()); 2653 2654 // Insert select instructions where needed. 2655 Value *BrCond = BI->getCondition(); 2656 if (TrueValue) { 2657 // Insert a select if the results differ. 2658 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2659 } else if (isa<UndefValue>(TrueValue)) { 2660 TrueValue = FalseValue; 2661 } else { 2662 TrueValue = 2663 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2664 } 2665 } 2666 2667 Value *RI = 2668 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2669 2670 (void)RI; 2671 2672 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2673 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2674 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2675 2676 EraseTerminatorAndDCECond(BI); 2677 2678 return true; 2679 } 2680 2681 /// Return true if the given instruction is available 2682 /// in its predecessor block. If yes, the instruction will be removed. 2683 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2684 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2685 return false; 2686 for (Instruction &I : *PB) { 2687 Instruction *PBI = &I; 2688 // Check whether Inst and PBI generate the same value. 2689 if (Inst->isIdenticalTo(PBI)) { 2690 Inst->replaceAllUsesWith(PBI); 2691 Inst->eraseFromParent(); 2692 return true; 2693 } 2694 } 2695 return false; 2696 } 2697 2698 /// Return true if either PBI or BI has branch weight available, and store 2699 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2700 /// not have branch weight, use 1:1 as its weight. 2701 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2702 uint64_t &PredTrueWeight, 2703 uint64_t &PredFalseWeight, 2704 uint64_t &SuccTrueWeight, 2705 uint64_t &SuccFalseWeight) { 2706 bool PredHasWeights = 2707 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2708 bool SuccHasWeights = 2709 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2710 if (PredHasWeights || SuccHasWeights) { 2711 if (!PredHasWeights) 2712 PredTrueWeight = PredFalseWeight = 1; 2713 if (!SuccHasWeights) 2714 SuccTrueWeight = SuccFalseWeight = 1; 2715 return true; 2716 } else { 2717 return false; 2718 } 2719 } 2720 2721 /// If this basic block is simple enough, and if a predecessor branches to us 2722 /// and one of our successors, fold the block into the predecessor and use 2723 /// logical operations to pick the right destination. 2724 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, 2725 const TargetTransformInfo *TTI, 2726 unsigned BonusInstThreshold) { 2727 BasicBlock *BB = BI->getParent(); 2728 2729 const unsigned PredCount = pred_size(BB); 2730 2731 bool Changed = false; 2732 2733 auto _ = make_scope_exit([&]() { 2734 if (Changed) 2735 ++NumFoldBranchToCommonDest; 2736 }); 2737 2738 TargetTransformInfo::TargetCostKind CostKind = 2739 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 2740 : TargetTransformInfo::TCK_SizeAndLatency; 2741 2742 Instruction *Cond = nullptr; 2743 if (BI->isConditional()) 2744 Cond = dyn_cast<Instruction>(BI->getCondition()); 2745 else { 2746 // For unconditional branch, check for a simple CFG pattern, where 2747 // BB has a single predecessor and BB's successor is also its predecessor's 2748 // successor. If such pattern exists, check for CSE between BB and its 2749 // predecessor. 2750 if (BasicBlock *PB = BB->getSinglePredecessor()) 2751 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2752 if (PBI->isConditional() && 2753 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2754 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2755 for (auto I = BB->instructionsWithoutDebug().begin(), 2756 E = BB->instructionsWithoutDebug().end(); 2757 I != E;) { 2758 Instruction *Curr = &*I++; 2759 if (isa<CmpInst>(Curr)) { 2760 Cond = Curr; 2761 break; 2762 } 2763 // Quit if we can't remove this instruction. 2764 if (!tryCSEWithPredecessor(Curr, PB)) 2765 return Changed; 2766 Changed = true; 2767 } 2768 } 2769 2770 if (!Cond) 2771 return Changed; 2772 } 2773 2774 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2775 Cond->getParent() != BB || !Cond->hasOneUse()) 2776 return Changed; 2777 2778 // Only allow this transformation if computing the condition doesn't involve 2779 // too many instructions and these involved instructions can be executed 2780 // unconditionally. We denote all involved instructions except the condition 2781 // as "bonus instructions", and only allow this transformation when the 2782 // number of the bonus instructions we'll need to create when cloning into 2783 // each predecessor does not exceed a certain threshold. 2784 unsigned NumBonusInsts = 0; 2785 for (Instruction &I : *BB) { 2786 // Don't check the branch condition comparison itself. 2787 if (&I == Cond) 2788 continue; 2789 // Ignore dbg intrinsics, and the terminator. 2790 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 2791 continue; 2792 // I must be safe to execute unconditionally. 2793 if (!isSafeToSpeculativelyExecute(&I)) 2794 return Changed; 2795 2796 // Account for the cost of duplicating this instruction into each 2797 // predecessor. 2798 NumBonusInsts += PredCount; 2799 // Early exits once we reach the limit. 2800 if (NumBonusInsts > BonusInstThreshold) 2801 return Changed; 2802 } 2803 2804 // Also, for now, all liveout uses of bonus instructions must be in PHI nodes 2805 // in successor blocks as incoming values from the bonus instructions's block, 2806 // otherwise we'll fail to update them. 2807 // FIXME: We could lift this restriction, but we need to form PHI nodes and 2808 // rewrite offending uses, but we can't do that without having a domtree. 2809 if (any_of(*BB, [BB](Instruction &I) { 2810 return any_of(I.uses(), [BB](Use &U) { 2811 auto *User = cast<Instruction>(U.getUser()); 2812 if (User->getParent() == BB) 2813 return false; // Not an external use. 2814 auto *PN = dyn_cast<PHINode>(User); 2815 return !PN || PN->getIncomingBlock(U) != BB; 2816 }); 2817 })) 2818 return Changed; 2819 2820 // Cond is known to be a compare or binary operator. Check to make sure that 2821 // neither operand is a potentially-trapping constant expression. 2822 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2823 if (CE->canTrap()) 2824 return Changed; 2825 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2826 if (CE->canTrap()) 2827 return Changed; 2828 2829 // Finally, don't infinitely unroll conditional loops. 2830 BasicBlock *TrueDest = BI->getSuccessor(0); 2831 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2832 if (TrueDest == BB || FalseDest == BB) 2833 return Changed; 2834 2835 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2836 BasicBlock *PredBlock = *PI; 2837 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2838 2839 // Check that we have two conditional branches. If there is a PHI node in 2840 // the common successor, verify that the same value flows in from both 2841 // blocks. 2842 SmallVector<PHINode *, 4> PHIs; 2843 if (!PBI || PBI->isUnconditional() || 2844 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2845 (!BI->isConditional() && 2846 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2847 continue; 2848 2849 // Determine if the two branches share a common destination. 2850 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2851 bool InvertPredCond = false; 2852 2853 if (BI->isConditional()) { 2854 if (PBI->getSuccessor(0) == TrueDest) { 2855 Opc = Instruction::Or; 2856 } else if (PBI->getSuccessor(1) == FalseDest) { 2857 Opc = Instruction::And; 2858 } else if (PBI->getSuccessor(0) == FalseDest) { 2859 Opc = Instruction::And; 2860 InvertPredCond = true; 2861 } else if (PBI->getSuccessor(1) == TrueDest) { 2862 Opc = Instruction::Or; 2863 InvertPredCond = true; 2864 } else { 2865 continue; 2866 } 2867 } else { 2868 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2869 continue; 2870 } 2871 2872 // Check the cost of inserting the necessary logic before performing the 2873 // transformation. 2874 if (TTI && Opc != Instruction::BinaryOpsEnd) { 2875 Type *Ty = BI->getCondition()->getType(); 2876 unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 2877 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 2878 !isa<CmpInst>(PBI->getCondition()))) 2879 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 2880 2881 if (Cost > BranchFoldThreshold) 2882 continue; 2883 } 2884 2885 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2886 Changed = true; 2887 2888 IRBuilder<> Builder(PBI); 2889 2890 // If we need to invert the condition in the pred block to match, do so now. 2891 if (InvertPredCond) { 2892 Value *NewCond = PBI->getCondition(); 2893 2894 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2895 CmpInst *CI = cast<CmpInst>(NewCond); 2896 CI->setPredicate(CI->getInversePredicate()); 2897 } else { 2898 NewCond = 2899 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2900 } 2901 2902 PBI->setCondition(NewCond); 2903 PBI->swapSuccessors(); 2904 } 2905 2906 BasicBlock *UniqueSucc = 2907 BI->isConditional() 2908 ? (PBI->getSuccessor(0) == BB ? TrueDest : FalseDest) 2909 : TrueDest; 2910 2911 // Before cloning instructions, notify the successor basic block that it 2912 // is about to have a new predecessor. This will update PHI nodes, 2913 // which will allow us to update live-out uses of bonus instructions. 2914 if (BI->isConditional()) 2915 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 2916 2917 // If we have bonus instructions, clone them into the predecessor block. 2918 // Note that there may be multiple predecessor blocks, so we cannot move 2919 // bonus instructions to a predecessor block. 2920 ValueToValueMapTy VMap; // maps original values to cloned values 2921 Instruction *CondInPred; 2922 for (Instruction &BonusInst : *BB) { 2923 if (isa<DbgInfoIntrinsic>(BonusInst) || isa<BranchInst>(BonusInst)) 2924 continue; 2925 2926 Instruction *NewBonusInst = BonusInst.clone(); 2927 2928 if (&BonusInst == Cond) 2929 CondInPred = NewBonusInst; 2930 2931 // When we fold the bonus instructions we want to make sure we 2932 // reset their debug locations in order to avoid stepping on dead 2933 // code caused by folding dead branches. 2934 NewBonusInst->setDebugLoc(DebugLoc()); 2935 2936 RemapInstruction(NewBonusInst, VMap, 2937 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2938 VMap[&BonusInst] = NewBonusInst; 2939 2940 // If we moved a load, we cannot any longer claim any knowledge about 2941 // its potential value. The previous information might have been valid 2942 // only given the branch precondition. 2943 // For an analogous reason, we must also drop all the metadata whose 2944 // semantics we don't understand. 2945 NewBonusInst->dropUnknownNonDebugMetadata(); 2946 2947 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2948 NewBonusInst->takeName(&BonusInst); 2949 BonusInst.setName(BonusInst.getName() + ".old"); 2950 BonusInst.replaceUsesWithIf( 2951 NewBonusInst, [BB, BI, UniqueSucc, PredBlock](Use &U) { 2952 auto *User = cast<Instruction>(U.getUser()); 2953 // Ignore non-external uses of bonus instructions. 2954 if (User->getParent() == BB) { 2955 assert(!isa<PHINode>(User) && 2956 "Non-external users are never PHI instructions."); 2957 return false; 2958 } 2959 (void)BI; 2960 assert(isa<PHINode>(User) && "All external users must be PHI's."); 2961 auto *PN = cast<PHINode>(User); 2962 assert(is_contained(successors(BB), User->getParent()) && 2963 "All external users must be in successors of BB."); 2964 assert((PN->getIncomingBlock(U) == BB || 2965 PN->getIncomingBlock(U) == PredBlock) && 2966 "The incoming block for that incoming value external use " 2967 "must be either the original block with bonus instructions, " 2968 "or the new predecessor block."); 2969 // UniqueSucc is the block for which we change it's predecessors, 2970 // so it is the only block in which we'll need to update PHI nodes. 2971 if (User->getParent() != UniqueSucc) 2972 return false; 2973 // Update the incoming value for the new predecessor. 2974 return PN->getIncomingBlock(U) == 2975 (BI->isConditional() ? PredBlock : BB); 2976 }); 2977 } 2978 2979 // Now that the Cond was cloned into the predecessor basic block, 2980 // or/and the two conditions together. 2981 if (BI->isConditional()) { 2982 Instruction *NewCond = cast<Instruction>( 2983 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2984 PBI->setCondition(NewCond); 2985 2986 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2987 bool HasWeights = 2988 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2989 SuccTrueWeight, SuccFalseWeight); 2990 SmallVector<uint64_t, 8> NewWeights; 2991 2992 if (PBI->getSuccessor(0) == BB) { 2993 if (HasWeights) { 2994 // PBI: br i1 %x, BB, FalseDest 2995 // BI: br i1 %y, UniqueSucc, FalseDest 2996 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2997 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2998 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2999 // TrueWeight for PBI * FalseWeight for BI. 3000 // We assume that total weights of a BranchInst can fit into 32 bits. 3001 // Therefore, we will not have overflow using 64-bit arithmetic. 3002 NewWeights.push_back(PredFalseWeight * 3003 (SuccFalseWeight + SuccTrueWeight) + 3004 PredTrueWeight * SuccFalseWeight); 3005 } 3006 PBI->setSuccessor(0, UniqueSucc); 3007 } 3008 if (PBI->getSuccessor(1) == BB) { 3009 if (HasWeights) { 3010 // PBI: br i1 %x, TrueDest, BB 3011 // BI: br i1 %y, TrueDest, UniqueSucc 3012 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3013 // FalseWeight for PBI * TrueWeight for BI. 3014 NewWeights.push_back(PredTrueWeight * 3015 (SuccFalseWeight + SuccTrueWeight) + 3016 PredFalseWeight * SuccTrueWeight); 3017 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3018 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3019 } 3020 PBI->setSuccessor(1, UniqueSucc); 3021 } 3022 if (NewWeights.size() == 2) { 3023 // Halve the weights if any of them cannot fit in an uint32_t 3024 FitWeights(NewWeights); 3025 3026 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 3027 NewWeights.end()); 3028 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3029 } else 3030 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3031 } else { 3032 // Update PHI nodes in the common successors. 3033 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 3034 ConstantInt *PBI_C = cast<ConstantInt>( 3035 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 3036 assert(PBI_C->getType()->isIntegerTy(1)); 3037 Instruction *MergedCond = nullptr; 3038 if (PBI->getSuccessor(0) == UniqueSucc) { 3039 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 3040 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 3041 // is false: !PBI_Cond and BI_Value 3042 Instruction *NotCond = cast<Instruction>( 3043 Builder.CreateNot(PBI->getCondition(), "not.cond")); 3044 MergedCond = cast<Instruction>( 3045 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 3046 "and.cond")); 3047 if (PBI_C->isOne()) 3048 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3049 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 3050 } else { 3051 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 3052 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 3053 // is false: PBI_Cond and BI_Value 3054 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3055 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 3056 if (PBI_C->isOne()) { 3057 Instruction *NotCond = cast<Instruction>( 3058 Builder.CreateNot(PBI->getCondition(), "not.cond")); 3059 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3060 Instruction::Or, NotCond, MergedCond, "or.cond")); 3061 } 3062 } 3063 // Update PHI Node. 3064 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond); 3065 } 3066 3067 // PBI is changed to branch to UniqueSucc below. Remove itself from 3068 // potential phis from all other successors. 3069 if (MSSAU) 3070 MSSAU->changeCondBranchToUnconditionalTo(PBI, UniqueSucc); 3071 3072 // Change PBI from Conditional to Unconditional. 3073 BranchInst *New_PBI = BranchInst::Create(UniqueSucc, PBI); 3074 EraseTerminatorAndDCECond(PBI, MSSAU); 3075 PBI = New_PBI; 3076 } 3077 3078 // If BI was a loop latch, it may have had associated loop metadata. 3079 // We need to copy it to the new latch, that is, PBI. 3080 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3081 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3082 3083 // TODO: If BB is reachable from all paths through PredBlock, then we 3084 // could replace PBI's branch probabilities with BI's. 3085 3086 // Copy any debug value intrinsics into the end of PredBlock. 3087 for (Instruction &I : *BB) { 3088 if (isa<DbgInfoIntrinsic>(I)) { 3089 Instruction *NewI = I.clone(); 3090 RemapInstruction(NewI, VMap, 3091 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3092 NewI->insertBefore(PBI); 3093 } 3094 } 3095 3096 return Changed; 3097 } 3098 return Changed; 3099 } 3100 3101 // If there is only one store in BB1 and BB2, return it, otherwise return 3102 // nullptr. 3103 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3104 StoreInst *S = nullptr; 3105 for (auto *BB : {BB1, BB2}) { 3106 if (!BB) 3107 continue; 3108 for (auto &I : *BB) 3109 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3110 if (S) 3111 // Multiple stores seen. 3112 return nullptr; 3113 else 3114 S = SI; 3115 } 3116 } 3117 return S; 3118 } 3119 3120 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3121 Value *AlternativeV = nullptr) { 3122 // PHI is going to be a PHI node that allows the value V that is defined in 3123 // BB to be referenced in BB's only successor. 3124 // 3125 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3126 // doesn't matter to us what the other operand is (it'll never get used). We 3127 // could just create a new PHI with an undef incoming value, but that could 3128 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3129 // other PHI. So here we directly look for some PHI in BB's successor with V 3130 // as an incoming operand. If we find one, we use it, else we create a new 3131 // one. 3132 // 3133 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3134 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3135 // where OtherBB is the single other predecessor of BB's only successor. 3136 PHINode *PHI = nullptr; 3137 BasicBlock *Succ = BB->getSingleSuccessor(); 3138 3139 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3140 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3141 PHI = cast<PHINode>(I); 3142 if (!AlternativeV) 3143 break; 3144 3145 assert(Succ->hasNPredecessors(2)); 3146 auto PredI = pred_begin(Succ); 3147 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3148 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3149 break; 3150 PHI = nullptr; 3151 } 3152 if (PHI) 3153 return PHI; 3154 3155 // If V is not an instruction defined in BB, just return it. 3156 if (!AlternativeV && 3157 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3158 return V; 3159 3160 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3161 PHI->addIncoming(V, BB); 3162 for (BasicBlock *PredBB : predecessors(Succ)) 3163 if (PredBB != BB) 3164 PHI->addIncoming( 3165 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3166 return PHI; 3167 } 3168 3169 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 3170 BasicBlock *QTB, BasicBlock *QFB, 3171 BasicBlock *PostBB, Value *Address, 3172 bool InvertPCond, bool InvertQCond, 3173 const DataLayout &DL, 3174 const TargetTransformInfo &TTI) { 3175 // For every pointer, there must be exactly two stores, one coming from 3176 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3177 // store (to any address) in PTB,PFB or QTB,QFB. 3178 // FIXME: We could relax this restriction with a bit more work and performance 3179 // testing. 3180 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3181 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3182 if (!PStore || !QStore) 3183 return false; 3184 3185 // Now check the stores are compatible. 3186 if (!QStore->isUnordered() || !PStore->isUnordered()) 3187 return false; 3188 3189 // Check that sinking the store won't cause program behavior changes. Sinking 3190 // the store out of the Q blocks won't change any behavior as we're sinking 3191 // from a block to its unconditional successor. But we're moving a store from 3192 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3193 // So we need to check that there are no aliasing loads or stores in 3194 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3195 // operations between PStore and the end of its parent block. 3196 // 3197 // The ideal way to do this is to query AliasAnalysis, but we don't 3198 // preserve AA currently so that is dangerous. Be super safe and just 3199 // check there are no other memory operations at all. 3200 for (auto &I : *QFB->getSinglePredecessor()) 3201 if (I.mayReadOrWriteMemory()) 3202 return false; 3203 for (auto &I : *QFB) 3204 if (&I != QStore && I.mayReadOrWriteMemory()) 3205 return false; 3206 if (QTB) 3207 for (auto &I : *QTB) 3208 if (&I != QStore && I.mayReadOrWriteMemory()) 3209 return false; 3210 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3211 I != E; ++I) 3212 if (&*I != PStore && I->mayReadOrWriteMemory()) 3213 return false; 3214 3215 // If we're not in aggressive mode, we only optimize if we have some 3216 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3217 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3218 if (!BB) 3219 return true; 3220 // Heuristic: if the block can be if-converted/phi-folded and the 3221 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3222 // thread this store. 3223 int BudgetRemaining = 3224 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3225 for (auto &I : BB->instructionsWithoutDebug()) { 3226 // Consider terminator instruction to be free. 3227 if (I.isTerminator()) 3228 continue; 3229 // If this is one the stores that we want to speculate out of this BB, 3230 // then don't count it's cost, consider it to be free. 3231 if (auto *S = dyn_cast<StoreInst>(&I)) 3232 if (llvm::find(FreeStores, S)) 3233 continue; 3234 // Else, we have a white-list of instructions that we are ak speculating. 3235 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3236 return false; // Not in white-list - not worthwhile folding. 3237 // And finally, if this is a non-free instruction that we are okay 3238 // speculating, ensure that we consider the speculation budget. 3239 BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3240 if (BudgetRemaining < 0) 3241 return false; // Eagerly refuse to fold as soon as we're out of budget. 3242 } 3243 assert(BudgetRemaining >= 0 && 3244 "When we run out of budget we will eagerly return from within the " 3245 "per-instruction loop."); 3246 return true; 3247 }; 3248 3249 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3250 if (!MergeCondStoresAggressively && 3251 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3252 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3253 return false; 3254 3255 // If PostBB has more than two predecessors, we need to split it so we can 3256 // sink the store. 3257 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3258 // We know that QFB's only successor is PostBB. And QFB has a single 3259 // predecessor. If QTB exists, then its only successor is also PostBB. 3260 // If QTB does not exist, then QFB's only predecessor has a conditional 3261 // branch to QFB and PostBB. 3262 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3263 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3264 "condstore.split"); 3265 if (!NewBB) 3266 return false; 3267 PostBB = NewBB; 3268 } 3269 3270 // OK, we're going to sink the stores to PostBB. The store has to be 3271 // conditional though, so first create the predicate. 3272 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3273 ->getCondition(); 3274 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3275 ->getCondition(); 3276 3277 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3278 PStore->getParent()); 3279 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3280 QStore->getParent(), PPHI); 3281 3282 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3283 3284 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3285 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3286 3287 if (InvertPCond) 3288 PPred = QB.CreateNot(PPred); 3289 if (InvertQCond) 3290 QPred = QB.CreateNot(QPred); 3291 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3292 3293 auto *T = 3294 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3295 QB.SetInsertPoint(T); 3296 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3297 AAMDNodes AAMD; 3298 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3299 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3300 SI->setAAMetadata(AAMD); 3301 // Choose the minimum alignment. If we could prove both stores execute, we 3302 // could use biggest one. In this case, though, we only know that one of the 3303 // stores executes. And we don't know it's safe to take the alignment from a 3304 // store that doesn't execute. 3305 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3306 3307 QStore->eraseFromParent(); 3308 PStore->eraseFromParent(); 3309 3310 return true; 3311 } 3312 3313 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3314 const DataLayout &DL, 3315 const TargetTransformInfo &TTI) { 3316 // The intention here is to find diamonds or triangles (see below) where each 3317 // conditional block contains a store to the same address. Both of these 3318 // stores are conditional, so they can't be unconditionally sunk. But it may 3319 // be profitable to speculatively sink the stores into one merged store at the 3320 // end, and predicate the merged store on the union of the two conditions of 3321 // PBI and QBI. 3322 // 3323 // This can reduce the number of stores executed if both of the conditions are 3324 // true, and can allow the blocks to become small enough to be if-converted. 3325 // This optimization will also chain, so that ladders of test-and-set 3326 // sequences can be if-converted away. 3327 // 3328 // We only deal with simple diamonds or triangles: 3329 // 3330 // PBI or PBI or a combination of the two 3331 // / \ | \ 3332 // PTB PFB | PFB 3333 // \ / | / 3334 // QBI QBI 3335 // / \ | \ 3336 // QTB QFB | QFB 3337 // \ / | / 3338 // PostBB PostBB 3339 // 3340 // We model triangles as a type of diamond with a nullptr "true" block. 3341 // Triangles are canonicalized so that the fallthrough edge is represented by 3342 // a true condition, as in the diagram above. 3343 BasicBlock *PTB = PBI->getSuccessor(0); 3344 BasicBlock *PFB = PBI->getSuccessor(1); 3345 BasicBlock *QTB = QBI->getSuccessor(0); 3346 BasicBlock *QFB = QBI->getSuccessor(1); 3347 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3348 3349 // Make sure we have a good guess for PostBB. If QTB's only successor is 3350 // QFB, then QFB is a better PostBB. 3351 if (QTB->getSingleSuccessor() == QFB) 3352 PostBB = QFB; 3353 3354 // If we couldn't find a good PostBB, stop. 3355 if (!PostBB) 3356 return false; 3357 3358 bool InvertPCond = false, InvertQCond = false; 3359 // Canonicalize fallthroughs to the true branches. 3360 if (PFB == QBI->getParent()) { 3361 std::swap(PFB, PTB); 3362 InvertPCond = true; 3363 } 3364 if (QFB == PostBB) { 3365 std::swap(QFB, QTB); 3366 InvertQCond = true; 3367 } 3368 3369 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3370 // and QFB may not. Model fallthroughs as a nullptr block. 3371 if (PTB == QBI->getParent()) 3372 PTB = nullptr; 3373 if (QTB == PostBB) 3374 QTB = nullptr; 3375 3376 // Legality bailouts. We must have at least the non-fallthrough blocks and 3377 // the post-dominating block, and the non-fallthroughs must only have one 3378 // predecessor. 3379 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3380 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3381 }; 3382 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3383 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3384 return false; 3385 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3386 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3387 return false; 3388 if (!QBI->getParent()->hasNUses(2)) 3389 return false; 3390 3391 // OK, this is a sequence of two diamonds or triangles. 3392 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3393 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3394 for (auto *BB : {PTB, PFB}) { 3395 if (!BB) 3396 continue; 3397 for (auto &I : *BB) 3398 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3399 PStoreAddresses.insert(SI->getPointerOperand()); 3400 } 3401 for (auto *BB : {QTB, QFB}) { 3402 if (!BB) 3403 continue; 3404 for (auto &I : *BB) 3405 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3406 QStoreAddresses.insert(SI->getPointerOperand()); 3407 } 3408 3409 set_intersect(PStoreAddresses, QStoreAddresses); 3410 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3411 // clear what it contains. 3412 auto &CommonAddresses = PStoreAddresses; 3413 3414 bool Changed = false; 3415 for (auto *Address : CommonAddresses) 3416 Changed |= mergeConditionalStoreToAddress( 3417 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI); 3418 return Changed; 3419 } 3420 3421 3422 /// If the previous block ended with a widenable branch, determine if reusing 3423 /// the target block is profitable and legal. This will have the effect of 3424 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3425 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 3426 // TODO: This can be generalized in two important ways: 3427 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3428 // values from the PBI edge. 3429 // 2) We can sink side effecting instructions into BI's fallthrough 3430 // successor provided they doesn't contribute to computation of 3431 // BI's condition. 3432 Value *CondWB, *WC; 3433 BasicBlock *IfTrueBB, *IfFalseBB; 3434 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3435 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3436 return false; 3437 if (!IfFalseBB->phis().empty()) 3438 return false; // TODO 3439 // Use lambda to lazily compute expensive condition after cheap ones. 3440 auto NoSideEffects = [](BasicBlock &BB) { 3441 return !llvm::any_of(BB, [](const Instruction &I) { 3442 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3443 }); 3444 }; 3445 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3446 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3447 NoSideEffects(*BI->getParent())) { 3448 BI->getSuccessor(1)->removePredecessor(BI->getParent()); 3449 BI->setSuccessor(1, IfFalseBB); 3450 return true; 3451 } 3452 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3453 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3454 NoSideEffects(*BI->getParent())) { 3455 BI->getSuccessor(0)->removePredecessor(BI->getParent()); 3456 BI->setSuccessor(0, IfFalseBB); 3457 return true; 3458 } 3459 return false; 3460 } 3461 3462 /// If we have a conditional branch as a predecessor of another block, 3463 /// this function tries to simplify it. We know 3464 /// that PBI and BI are both conditional branches, and BI is in one of the 3465 /// successor blocks of PBI - PBI branches to BI. 3466 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3467 const DataLayout &DL, 3468 const TargetTransformInfo &TTI) { 3469 assert(PBI->isConditional() && BI->isConditional()); 3470 BasicBlock *BB = BI->getParent(); 3471 3472 // If this block ends with a branch instruction, and if there is a 3473 // predecessor that ends on a branch of the same condition, make 3474 // this conditional branch redundant. 3475 if (PBI->getCondition() == BI->getCondition() && 3476 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3477 // Okay, the outcome of this conditional branch is statically 3478 // knowable. If this block had a single pred, handle specially. 3479 if (BB->getSinglePredecessor()) { 3480 // Turn this into a branch on constant. 3481 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3482 BI->setCondition( 3483 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3484 return true; // Nuke the branch on constant. 3485 } 3486 3487 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3488 // in the constant and simplify the block result. Subsequent passes of 3489 // simplifycfg will thread the block. 3490 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3491 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3492 PHINode *NewPN = PHINode::Create( 3493 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3494 BI->getCondition()->getName() + ".pr", &BB->front()); 3495 // Okay, we're going to insert the PHI node. Since PBI is not the only 3496 // predecessor, compute the PHI'd conditional value for all of the preds. 3497 // Any predecessor where the condition is not computable we keep symbolic. 3498 for (pred_iterator PI = PB; PI != PE; ++PI) { 3499 BasicBlock *P = *PI; 3500 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3501 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3502 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3503 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3504 NewPN->addIncoming( 3505 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3506 P); 3507 } else { 3508 NewPN->addIncoming(BI->getCondition(), P); 3509 } 3510 } 3511 3512 BI->setCondition(NewPN); 3513 return true; 3514 } 3515 } 3516 3517 // If the previous block ended with a widenable branch, determine if reusing 3518 // the target block is profitable and legal. This will have the effect of 3519 // "widening" PBI, but doesn't require us to reason about hosting safety. 3520 if (tryWidenCondBranchToCondBranch(PBI, BI)) 3521 return true; 3522 3523 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3524 if (CE->canTrap()) 3525 return false; 3526 3527 // If both branches are conditional and both contain stores to the same 3528 // address, remove the stores from the conditionals and create a conditional 3529 // merged store at the end. 3530 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI)) 3531 return true; 3532 3533 // If this is a conditional branch in an empty block, and if any 3534 // predecessors are a conditional branch to one of our destinations, 3535 // fold the conditions into logical ops and one cond br. 3536 3537 // Ignore dbg intrinsics. 3538 if (&*BB->instructionsWithoutDebug().begin() != BI) 3539 return false; 3540 3541 int PBIOp, BIOp; 3542 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3543 PBIOp = 0; 3544 BIOp = 0; 3545 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3546 PBIOp = 0; 3547 BIOp = 1; 3548 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3549 PBIOp = 1; 3550 BIOp = 0; 3551 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3552 PBIOp = 1; 3553 BIOp = 1; 3554 } else { 3555 return false; 3556 } 3557 3558 // Check to make sure that the other destination of this branch 3559 // isn't BB itself. If so, this is an infinite loop that will 3560 // keep getting unwound. 3561 if (PBI->getSuccessor(PBIOp) == BB) 3562 return false; 3563 3564 // Do not perform this transformation if it would require 3565 // insertion of a large number of select instructions. For targets 3566 // without predication/cmovs, this is a big pessimization. 3567 3568 // Also do not perform this transformation if any phi node in the common 3569 // destination block can trap when reached by BB or PBB (PR17073). In that 3570 // case, it would be unsafe to hoist the operation into a select instruction. 3571 3572 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3573 unsigned NumPhis = 0; 3574 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3575 ++II, ++NumPhis) { 3576 if (NumPhis > 2) // Disable this xform. 3577 return false; 3578 3579 PHINode *PN = cast<PHINode>(II); 3580 Value *BIV = PN->getIncomingValueForBlock(BB); 3581 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3582 if (CE->canTrap()) 3583 return false; 3584 3585 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3586 Value *PBIV = PN->getIncomingValue(PBBIdx); 3587 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3588 if (CE->canTrap()) 3589 return false; 3590 } 3591 3592 // Finally, if everything is ok, fold the branches to logical ops. 3593 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3594 3595 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3596 << "AND: " << *BI->getParent()); 3597 3598 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3599 // branch in it, where one edge (OtherDest) goes back to itself but the other 3600 // exits. We don't *know* that the program avoids the infinite loop 3601 // (even though that seems likely). If we do this xform naively, we'll end up 3602 // recursively unpeeling the loop. Since we know that (after the xform is 3603 // done) that the block *is* infinite if reached, we just make it an obviously 3604 // infinite loop with no cond branch. 3605 if (OtherDest == BB) { 3606 // Insert it at the end of the function, because it's either code, 3607 // or it won't matter if it's hot. :) 3608 BasicBlock *InfLoopBlock = 3609 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3610 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3611 OtherDest = InfLoopBlock; 3612 } 3613 3614 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3615 3616 // BI may have other predecessors. Because of this, we leave 3617 // it alone, but modify PBI. 3618 3619 // Make sure we get to CommonDest on True&True directions. 3620 Value *PBICond = PBI->getCondition(); 3621 IRBuilder<NoFolder> Builder(PBI); 3622 if (PBIOp) 3623 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3624 3625 Value *BICond = BI->getCondition(); 3626 if (BIOp) 3627 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3628 3629 // Merge the conditions. 3630 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3631 3632 // Modify PBI to branch on the new condition to the new dests. 3633 PBI->setCondition(Cond); 3634 PBI->setSuccessor(0, CommonDest); 3635 PBI->setSuccessor(1, OtherDest); 3636 3637 // Update branch weight for PBI. 3638 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3639 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3640 bool HasWeights = 3641 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3642 SuccTrueWeight, SuccFalseWeight); 3643 if (HasWeights) { 3644 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3645 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3646 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3647 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3648 // The weight to CommonDest should be PredCommon * SuccTotal + 3649 // PredOther * SuccCommon. 3650 // The weight to OtherDest should be PredOther * SuccOther. 3651 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3652 PredOther * SuccCommon, 3653 PredOther * SuccOther}; 3654 // Halve the weights if any of them cannot fit in an uint32_t 3655 FitWeights(NewWeights); 3656 3657 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3658 } 3659 3660 // OtherDest may have phi nodes. If so, add an entry from PBI's 3661 // block that are identical to the entries for BI's block. 3662 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3663 3664 // We know that the CommonDest already had an edge from PBI to 3665 // it. If it has PHIs though, the PHIs may have different 3666 // entries for BB and PBI's BB. If so, insert a select to make 3667 // them agree. 3668 for (PHINode &PN : CommonDest->phis()) { 3669 Value *BIV = PN.getIncomingValueForBlock(BB); 3670 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3671 Value *PBIV = PN.getIncomingValue(PBBIdx); 3672 if (BIV != PBIV) { 3673 // Insert a select in PBI to pick the right value. 3674 SelectInst *NV = cast<SelectInst>( 3675 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3676 PN.setIncomingValue(PBBIdx, NV); 3677 // Although the select has the same condition as PBI, the original branch 3678 // weights for PBI do not apply to the new select because the select's 3679 // 'logical' edges are incoming edges of the phi that is eliminated, not 3680 // the outgoing edges of PBI. 3681 if (HasWeights) { 3682 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3683 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3684 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3685 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3686 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3687 // The weight to PredOtherDest should be PredOther * SuccCommon. 3688 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3689 PredOther * SuccCommon}; 3690 3691 FitWeights(NewWeights); 3692 3693 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3694 } 3695 } 3696 } 3697 3698 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3699 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3700 3701 // This basic block is probably dead. We know it has at least 3702 // one fewer predecessor. 3703 return true; 3704 } 3705 3706 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3707 // true or to FalseBB if Cond is false. 3708 // Takes care of updating the successors and removing the old terminator. 3709 // Also makes sure not to introduce new successors by assuming that edges to 3710 // non-successor TrueBBs and FalseBBs aren't reachable. 3711 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3712 Value *Cond, BasicBlock *TrueBB, 3713 BasicBlock *FalseBB, 3714 uint32_t TrueWeight, 3715 uint32_t FalseWeight) { 3716 // Remove any superfluous successor edges from the CFG. 3717 // First, figure out which successors to preserve. 3718 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3719 // successor. 3720 BasicBlock *KeepEdge1 = TrueBB; 3721 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3722 3723 // Then remove the rest. 3724 for (BasicBlock *Succ : successors(OldTerm)) { 3725 // Make sure only to keep exactly one copy of each edge. 3726 if (Succ == KeepEdge1) 3727 KeepEdge1 = nullptr; 3728 else if (Succ == KeepEdge2) 3729 KeepEdge2 = nullptr; 3730 else 3731 Succ->removePredecessor(OldTerm->getParent(), 3732 /*KeepOneInputPHIs=*/true); 3733 } 3734 3735 IRBuilder<> Builder(OldTerm); 3736 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3737 3738 // Insert an appropriate new terminator. 3739 if (!KeepEdge1 && !KeepEdge2) { 3740 if (TrueBB == FalseBB) 3741 // We were only looking for one successor, and it was present. 3742 // Create an unconditional branch to it. 3743 Builder.CreateBr(TrueBB); 3744 else { 3745 // We found both of the successors we were looking for. 3746 // Create a conditional branch sharing the condition of the select. 3747 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3748 if (TrueWeight != FalseWeight) 3749 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3750 } 3751 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3752 // Neither of the selected blocks were successors, so this 3753 // terminator must be unreachable. 3754 new UnreachableInst(OldTerm->getContext(), OldTerm); 3755 } else { 3756 // One of the selected values was a successor, but the other wasn't. 3757 // Insert an unconditional branch to the one that was found; 3758 // the edge to the one that wasn't must be unreachable. 3759 if (!KeepEdge1) 3760 // Only TrueBB was found. 3761 Builder.CreateBr(TrueBB); 3762 else 3763 // Only FalseBB was found. 3764 Builder.CreateBr(FalseBB); 3765 } 3766 3767 EraseTerminatorAndDCECond(OldTerm); 3768 return true; 3769 } 3770 3771 // Replaces 3772 // (switch (select cond, X, Y)) on constant X, Y 3773 // with a branch - conditional if X and Y lead to distinct BBs, 3774 // unconditional otherwise. 3775 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3776 SelectInst *Select) { 3777 // Check for constant integer values in the select. 3778 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3779 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3780 if (!TrueVal || !FalseVal) 3781 return false; 3782 3783 // Find the relevant condition and destinations. 3784 Value *Condition = Select->getCondition(); 3785 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3786 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3787 3788 // Get weight for TrueBB and FalseBB. 3789 uint32_t TrueWeight = 0, FalseWeight = 0; 3790 SmallVector<uint64_t, 8> Weights; 3791 bool HasWeights = HasBranchWeights(SI); 3792 if (HasWeights) { 3793 GetBranchWeights(SI, Weights); 3794 if (Weights.size() == 1 + SI->getNumCases()) { 3795 TrueWeight = 3796 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3797 FalseWeight = 3798 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3799 } 3800 } 3801 3802 // Perform the actual simplification. 3803 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3804 FalseWeight); 3805 } 3806 3807 // Replaces 3808 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3809 // blockaddress(@fn, BlockB))) 3810 // with 3811 // (br cond, BlockA, BlockB). 3812 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3813 SelectInst *SI) { 3814 // Check that both operands of the select are block addresses. 3815 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3816 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3817 if (!TBA || !FBA) 3818 return false; 3819 3820 // Extract the actual blocks. 3821 BasicBlock *TrueBB = TBA->getBasicBlock(); 3822 BasicBlock *FalseBB = FBA->getBasicBlock(); 3823 3824 // Perform the actual simplification. 3825 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3826 0); 3827 } 3828 3829 /// This is called when we find an icmp instruction 3830 /// (a seteq/setne with a constant) as the only instruction in a 3831 /// block that ends with an uncond branch. We are looking for a very specific 3832 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3833 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3834 /// default value goes to an uncond block with a seteq in it, we get something 3835 /// like: 3836 /// 3837 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3838 /// DEFAULT: 3839 /// %tmp = icmp eq i8 %A, 92 3840 /// br label %end 3841 /// end: 3842 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3843 /// 3844 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3845 /// the PHI, merging the third icmp into the switch. 3846 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3847 ICmpInst *ICI, IRBuilder<> &Builder) { 3848 BasicBlock *BB = ICI->getParent(); 3849 3850 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3851 // complex. 3852 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3853 return false; 3854 3855 Value *V = ICI->getOperand(0); 3856 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3857 3858 // The pattern we're looking for is where our only predecessor is a switch on 3859 // 'V' and this block is the default case for the switch. In this case we can 3860 // fold the compared value into the switch to simplify things. 3861 BasicBlock *Pred = BB->getSinglePredecessor(); 3862 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3863 return false; 3864 3865 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3866 if (SI->getCondition() != V) 3867 return false; 3868 3869 // If BB is reachable on a non-default case, then we simply know the value of 3870 // V in this block. Substitute it and constant fold the icmp instruction 3871 // away. 3872 if (SI->getDefaultDest() != BB) { 3873 ConstantInt *VVal = SI->findCaseDest(BB); 3874 assert(VVal && "Should have a unique destination value"); 3875 ICI->setOperand(0, VVal); 3876 3877 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3878 ICI->replaceAllUsesWith(V); 3879 ICI->eraseFromParent(); 3880 } 3881 // BB is now empty, so it is likely to simplify away. 3882 return requestResimplify(); 3883 } 3884 3885 // Ok, the block is reachable from the default dest. If the constant we're 3886 // comparing exists in one of the other edges, then we can constant fold ICI 3887 // and zap it. 3888 if (SI->findCaseValue(Cst) != SI->case_default()) { 3889 Value *V; 3890 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3891 V = ConstantInt::getFalse(BB->getContext()); 3892 else 3893 V = ConstantInt::getTrue(BB->getContext()); 3894 3895 ICI->replaceAllUsesWith(V); 3896 ICI->eraseFromParent(); 3897 // BB is now empty, so it is likely to simplify away. 3898 return requestResimplify(); 3899 } 3900 3901 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3902 // the block. 3903 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3904 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3905 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3906 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3907 return false; 3908 3909 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3910 // true in the PHI. 3911 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3912 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3913 3914 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3915 std::swap(DefaultCst, NewCst); 3916 3917 // Replace ICI (which is used by the PHI for the default value) with true or 3918 // false depending on if it is EQ or NE. 3919 ICI->replaceAllUsesWith(DefaultCst); 3920 ICI->eraseFromParent(); 3921 3922 // Okay, the switch goes to this block on a default value. Add an edge from 3923 // the switch to the merge point on the compared value. 3924 BasicBlock *NewBB = 3925 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3926 { 3927 SwitchInstProfUpdateWrapper SIW(*SI); 3928 auto W0 = SIW.getSuccessorWeight(0); 3929 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3930 if (W0) { 3931 NewW = ((uint64_t(*W0) + 1) >> 1); 3932 SIW.setSuccessorWeight(0, *NewW); 3933 } 3934 SIW.addCase(Cst, NewBB, NewW); 3935 } 3936 3937 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3938 Builder.SetInsertPoint(NewBB); 3939 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3940 Builder.CreateBr(SuccBlock); 3941 PHIUse->addIncoming(NewCst, NewBB); 3942 return true; 3943 } 3944 3945 /// The specified branch is a conditional branch. 3946 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3947 /// fold it into a switch instruction if so. 3948 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3949 IRBuilder<> &Builder, 3950 const DataLayout &DL) { 3951 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3952 if (!Cond) 3953 return false; 3954 3955 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3956 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3957 // 'setne's and'ed together, collect them. 3958 3959 // Try to gather values from a chain of and/or to be turned into a switch 3960 ConstantComparesGatherer ConstantCompare(Cond, DL); 3961 // Unpack the result 3962 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3963 Value *CompVal = ConstantCompare.CompValue; 3964 unsigned UsedICmps = ConstantCompare.UsedICmps; 3965 Value *ExtraCase = ConstantCompare.Extra; 3966 3967 // If we didn't have a multiply compared value, fail. 3968 if (!CompVal) 3969 return false; 3970 3971 // Avoid turning single icmps into a switch. 3972 if (UsedICmps <= 1) 3973 return false; 3974 3975 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3976 3977 // There might be duplicate constants in the list, which the switch 3978 // instruction can't handle, remove them now. 3979 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3980 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3981 3982 // If Extra was used, we require at least two switch values to do the 3983 // transformation. A switch with one value is just a conditional branch. 3984 if (ExtraCase && Values.size() < 2) 3985 return false; 3986 3987 // TODO: Preserve branch weight metadata, similarly to how 3988 // FoldValueComparisonIntoPredecessors preserves it. 3989 3990 // Figure out which block is which destination. 3991 BasicBlock *DefaultBB = BI->getSuccessor(1); 3992 BasicBlock *EdgeBB = BI->getSuccessor(0); 3993 if (!TrueWhenEqual) 3994 std::swap(DefaultBB, EdgeBB); 3995 3996 BasicBlock *BB = BI->getParent(); 3997 3998 // MSAN does not like undefs as branch condition which can be introduced 3999 // with "explicit branch". 4000 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4001 return false; 4002 4003 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4004 << " cases into SWITCH. BB is:\n" 4005 << *BB); 4006 4007 // If there are any extra values that couldn't be folded into the switch 4008 // then we evaluate them with an explicit branch first. Split the block 4009 // right before the condbr to handle it. 4010 if (ExtraCase) { 4011 BasicBlock *NewBB = 4012 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 4013 // Remove the uncond branch added to the old block. 4014 Instruction *OldTI = BB->getTerminator(); 4015 Builder.SetInsertPoint(OldTI); 4016 4017 if (TrueWhenEqual) 4018 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4019 else 4020 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4021 4022 OldTI->eraseFromParent(); 4023 4024 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4025 // for the edge we just added. 4026 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4027 4028 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4029 << "\nEXTRABB = " << *BB); 4030 BB = NewBB; 4031 } 4032 4033 Builder.SetInsertPoint(BI); 4034 // Convert pointer to int before we switch. 4035 if (CompVal->getType()->isPointerTy()) { 4036 CompVal = Builder.CreatePtrToInt( 4037 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4038 } 4039 4040 // Create the new switch instruction now. 4041 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4042 4043 // Add all of the 'cases' to the switch instruction. 4044 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4045 New->addCase(Values[i], EdgeBB); 4046 4047 // We added edges from PI to the EdgeBB. As such, if there were any 4048 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4049 // the number of edges added. 4050 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4051 PHINode *PN = cast<PHINode>(BBI); 4052 Value *InVal = PN->getIncomingValueForBlock(BB); 4053 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4054 PN->addIncoming(InVal, BB); 4055 } 4056 4057 // Erase the old branch instruction. 4058 EraseTerminatorAndDCECond(BI); 4059 4060 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4061 return true; 4062 } 4063 4064 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4065 if (isa<PHINode>(RI->getValue())) 4066 return simplifyCommonResume(RI); 4067 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4068 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4069 // The resume must unwind the exception that caused control to branch here. 4070 return simplifySingleResume(RI); 4071 4072 return false; 4073 } 4074 4075 // Check if cleanup block is empty 4076 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4077 for (Instruction &I : R) { 4078 auto *II = dyn_cast<IntrinsicInst>(&I); 4079 if (!II) 4080 return false; 4081 4082 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4083 switch (IntrinsicID) { 4084 case Intrinsic::dbg_declare: 4085 case Intrinsic::dbg_value: 4086 case Intrinsic::dbg_label: 4087 case Intrinsic::lifetime_end: 4088 break; 4089 default: 4090 return false; 4091 } 4092 } 4093 return true; 4094 } 4095 4096 // Simplify resume that is shared by several landing pads (phi of landing pad). 4097 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4098 BasicBlock *BB = RI->getParent(); 4099 4100 // Check that there are no other instructions except for debug and lifetime 4101 // intrinsics between the phi's and resume instruction. 4102 if (!isCleanupBlockEmpty( 4103 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4104 return false; 4105 4106 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4107 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4108 4109 // Check incoming blocks to see if any of them are trivial. 4110 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4111 Idx++) { 4112 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4113 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4114 4115 // If the block has other successors, we can not delete it because 4116 // it has other dependents. 4117 if (IncomingBB->getUniqueSuccessor() != BB) 4118 continue; 4119 4120 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4121 // Not the landing pad that caused the control to branch here. 4122 if (IncomingValue != LandingPad) 4123 continue; 4124 4125 if (isCleanupBlockEmpty( 4126 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4127 TrivialUnwindBlocks.insert(IncomingBB); 4128 } 4129 4130 // If no trivial unwind blocks, don't do any simplifications. 4131 if (TrivialUnwindBlocks.empty()) 4132 return false; 4133 4134 // Turn all invokes that unwind here into calls. 4135 for (auto *TrivialBB : TrivialUnwindBlocks) { 4136 // Blocks that will be simplified should be removed from the phi node. 4137 // Note there could be multiple edges to the resume block, and we need 4138 // to remove them all. 4139 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4140 BB->removePredecessor(TrivialBB, true); 4141 4142 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 4143 PI != PE;) { 4144 BasicBlock *Pred = *PI++; 4145 removeUnwindEdge(Pred); 4146 ++NumInvokes; 4147 } 4148 4149 // In each SimplifyCFG run, only the current processed block can be erased. 4150 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4151 // of erasing TrivialBB, we only remove the branch to the common resume 4152 // block so that we can later erase the resume block since it has no 4153 // predecessors. 4154 TrivialBB->getTerminator()->eraseFromParent(); 4155 new UnreachableInst(RI->getContext(), TrivialBB); 4156 } 4157 4158 // Delete the resume block if all its predecessors have been removed. 4159 if (pred_empty(BB)) 4160 BB->eraseFromParent(); 4161 4162 return !TrivialUnwindBlocks.empty(); 4163 } 4164 4165 // Simplify resume that is only used by a single (non-phi) landing pad. 4166 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4167 BasicBlock *BB = RI->getParent(); 4168 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4169 assert(RI->getValue() == LPInst && 4170 "Resume must unwind the exception that caused control to here"); 4171 4172 // Check that there are no other instructions except for debug intrinsics. 4173 if (!isCleanupBlockEmpty( 4174 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4175 return false; 4176 4177 // Turn all invokes that unwind here into calls and delete the basic block. 4178 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4179 BasicBlock *Pred = *PI++; 4180 removeUnwindEdge(Pred); 4181 ++NumInvokes; 4182 } 4183 4184 // The landingpad is now unreachable. Zap it. 4185 if (LoopHeaders) 4186 LoopHeaders->erase(BB); 4187 BB->eraseFromParent(); 4188 return true; 4189 } 4190 4191 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 4192 // If this is a trivial cleanup pad that executes no instructions, it can be 4193 // eliminated. If the cleanup pad continues to the caller, any predecessor 4194 // that is an EH pad will be updated to continue to the caller and any 4195 // predecessor that terminates with an invoke instruction will have its invoke 4196 // instruction converted to a call instruction. If the cleanup pad being 4197 // simplified does not continue to the caller, each predecessor will be 4198 // updated to continue to the unwind destination of the cleanup pad being 4199 // simplified. 4200 BasicBlock *BB = RI->getParent(); 4201 CleanupPadInst *CPInst = RI->getCleanupPad(); 4202 if (CPInst->getParent() != BB) 4203 // This isn't an empty cleanup. 4204 return false; 4205 4206 // We cannot kill the pad if it has multiple uses. This typically arises 4207 // from unreachable basic blocks. 4208 if (!CPInst->hasOneUse()) 4209 return false; 4210 4211 // Check that there are no other instructions except for benign intrinsics. 4212 if (!isCleanupBlockEmpty( 4213 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4214 return false; 4215 4216 // If the cleanup return we are simplifying unwinds to the caller, this will 4217 // set UnwindDest to nullptr. 4218 BasicBlock *UnwindDest = RI->getUnwindDest(); 4219 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4220 4221 // We're about to remove BB from the control flow. Before we do, sink any 4222 // PHINodes into the unwind destination. Doing this before changing the 4223 // control flow avoids some potentially slow checks, since we can currently 4224 // be certain that UnwindDest and BB have no common predecessors (since they 4225 // are both EH pads). 4226 if (UnwindDest) { 4227 // First, go through the PHI nodes in UnwindDest and update any nodes that 4228 // reference the block we are removing 4229 for (BasicBlock::iterator I = UnwindDest->begin(), 4230 IE = DestEHPad->getIterator(); 4231 I != IE; ++I) { 4232 PHINode *DestPN = cast<PHINode>(I); 4233 4234 int Idx = DestPN->getBasicBlockIndex(BB); 4235 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4236 assert(Idx != -1); 4237 // This PHI node has an incoming value that corresponds to a control 4238 // path through the cleanup pad we are removing. If the incoming 4239 // value is in the cleanup pad, it must be a PHINode (because we 4240 // verified above that the block is otherwise empty). Otherwise, the 4241 // value is either a constant or a value that dominates the cleanup 4242 // pad being removed. 4243 // 4244 // Because BB and UnwindDest are both EH pads, all of their 4245 // predecessors must unwind to these blocks, and since no instruction 4246 // can have multiple unwind destinations, there will be no overlap in 4247 // incoming blocks between SrcPN and DestPN. 4248 Value *SrcVal = DestPN->getIncomingValue(Idx); 4249 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4250 4251 // Remove the entry for the block we are deleting. 4252 DestPN->removeIncomingValue(Idx, false); 4253 4254 if (SrcPN && SrcPN->getParent() == BB) { 4255 // If the incoming value was a PHI node in the cleanup pad we are 4256 // removing, we need to merge that PHI node's incoming values into 4257 // DestPN. 4258 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4259 SrcIdx != SrcE; ++SrcIdx) { 4260 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4261 SrcPN->getIncomingBlock(SrcIdx)); 4262 } 4263 } else { 4264 // Otherwise, the incoming value came from above BB and 4265 // so we can just reuse it. We must associate all of BB's 4266 // predecessors with this value. 4267 for (auto *pred : predecessors(BB)) { 4268 DestPN->addIncoming(SrcVal, pred); 4269 } 4270 } 4271 } 4272 4273 // Sink any remaining PHI nodes directly into UnwindDest. 4274 Instruction *InsertPt = DestEHPad; 4275 for (BasicBlock::iterator I = BB->begin(), 4276 IE = BB->getFirstNonPHI()->getIterator(); 4277 I != IE;) { 4278 // The iterator must be incremented here because the instructions are 4279 // being moved to another block. 4280 PHINode *PN = cast<PHINode>(I++); 4281 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4282 // If the PHI node has no uses or all of its uses are in this basic 4283 // block (meaning they are debug or lifetime intrinsics), just leave 4284 // it. It will be erased when we erase BB below. 4285 continue; 4286 4287 // Otherwise, sink this PHI node into UnwindDest. 4288 // Any predecessors to UnwindDest which are not already represented 4289 // must be back edges which inherit the value from the path through 4290 // BB. In this case, the PHI value must reference itself. 4291 for (auto *pred : predecessors(UnwindDest)) 4292 if (pred != BB) 4293 PN->addIncoming(PN, pred); 4294 PN->moveBefore(InsertPt); 4295 } 4296 } 4297 4298 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4299 // The iterator must be updated here because we are removing this pred. 4300 BasicBlock *PredBB = *PI++; 4301 if (UnwindDest == nullptr) { 4302 removeUnwindEdge(PredBB); 4303 ++NumInvokes; 4304 } else { 4305 Instruction *TI = PredBB->getTerminator(); 4306 TI->replaceUsesOfWith(BB, UnwindDest); 4307 } 4308 } 4309 4310 // The cleanup pad is now unreachable. Zap it. 4311 BB->eraseFromParent(); 4312 return true; 4313 } 4314 4315 // Try to merge two cleanuppads together. 4316 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4317 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4318 // with. 4319 BasicBlock *UnwindDest = RI->getUnwindDest(); 4320 if (!UnwindDest) 4321 return false; 4322 4323 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4324 // be safe to merge without code duplication. 4325 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4326 return false; 4327 4328 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4329 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4330 if (!SuccessorCleanupPad) 4331 return false; 4332 4333 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4334 // Replace any uses of the successor cleanupad with the predecessor pad 4335 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4336 // funclet bundle operands. 4337 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4338 // Remove the old cleanuppad. 4339 SuccessorCleanupPad->eraseFromParent(); 4340 // Now, we simply replace the cleanupret with a branch to the unwind 4341 // destination. 4342 BranchInst::Create(UnwindDest, RI->getParent()); 4343 RI->eraseFromParent(); 4344 4345 return true; 4346 } 4347 4348 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4349 // It is possible to transiantly have an undef cleanuppad operand because we 4350 // have deleted some, but not all, dead blocks. 4351 // Eventually, this block will be deleted. 4352 if (isa<UndefValue>(RI->getOperand(0))) 4353 return false; 4354 4355 if (mergeCleanupPad(RI)) 4356 return true; 4357 4358 if (removeEmptyCleanup(RI)) 4359 return true; 4360 4361 return false; 4362 } 4363 4364 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4365 BasicBlock *BB = RI->getParent(); 4366 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4367 return false; 4368 4369 // Find predecessors that end with branches. 4370 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4371 SmallVector<BranchInst *, 8> CondBranchPreds; 4372 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4373 BasicBlock *P = *PI; 4374 Instruction *PTI = P->getTerminator(); 4375 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4376 if (BI->isUnconditional()) 4377 UncondBranchPreds.push_back(P); 4378 else 4379 CondBranchPreds.push_back(BI); 4380 } 4381 } 4382 4383 // If we found some, do the transformation! 4384 if (!UncondBranchPreds.empty() && DupRet) { 4385 while (!UncondBranchPreds.empty()) { 4386 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4387 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4388 << "INTO UNCOND BRANCH PRED: " << *Pred); 4389 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4390 } 4391 4392 // If we eliminated all predecessors of the block, delete the block now. 4393 if (pred_empty(BB)) { 4394 // We know there are no successors, so just nuke the block. 4395 if (LoopHeaders) 4396 LoopHeaders->erase(BB); 4397 BB->eraseFromParent(); 4398 } 4399 4400 return true; 4401 } 4402 4403 // Check out all of the conditional branches going to this return 4404 // instruction. If any of them just select between returns, change the 4405 // branch itself into a select/return pair. 4406 while (!CondBranchPreds.empty()) { 4407 BranchInst *BI = CondBranchPreds.pop_back_val(); 4408 4409 // Check to see if the non-BB successor is also a return block. 4410 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4411 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4412 SimplifyCondBranchToTwoReturns(BI, Builder)) 4413 return true; 4414 } 4415 return false; 4416 } 4417 4418 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4419 BasicBlock *BB = UI->getParent(); 4420 4421 bool Changed = false; 4422 4423 // If there are any instructions immediately before the unreachable that can 4424 // be removed, do so. 4425 while (UI->getIterator() != BB->begin()) { 4426 BasicBlock::iterator BBI = UI->getIterator(); 4427 --BBI; 4428 // Do not delete instructions that can have side effects which might cause 4429 // the unreachable to not be reachable; specifically, calls and volatile 4430 // operations may have this effect. 4431 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4432 break; 4433 4434 if (BBI->mayHaveSideEffects()) { 4435 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4436 if (SI->isVolatile()) 4437 break; 4438 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4439 if (LI->isVolatile()) 4440 break; 4441 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4442 if (RMWI->isVolatile()) 4443 break; 4444 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4445 if (CXI->isVolatile()) 4446 break; 4447 } else if (isa<CatchPadInst>(BBI)) { 4448 // A catchpad may invoke exception object constructors and such, which 4449 // in some languages can be arbitrary code, so be conservative by 4450 // default. 4451 // For CoreCLR, it just involves a type test, so can be removed. 4452 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4453 EHPersonality::CoreCLR) 4454 break; 4455 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4456 !isa<LandingPadInst>(BBI)) { 4457 break; 4458 } 4459 // Note that deleting LandingPad's here is in fact okay, although it 4460 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4461 // all the predecessors of this block will be the unwind edges of Invokes, 4462 // and we can therefore guarantee this block will be erased. 4463 } 4464 4465 // Delete this instruction (any uses are guaranteed to be dead) 4466 if (!BBI->use_empty()) 4467 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4468 BBI->eraseFromParent(); 4469 Changed = true; 4470 } 4471 4472 // If the unreachable instruction is the first in the block, take a gander 4473 // at all of the predecessors of this instruction, and simplify them. 4474 if (&BB->front() != UI) 4475 return Changed; 4476 4477 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4478 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4479 Instruction *TI = Preds[i]->getTerminator(); 4480 IRBuilder<> Builder(TI); 4481 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4482 if (BI->isUnconditional()) { 4483 assert(BI->getSuccessor(0) == BB && "Incorrect CFG"); 4484 new UnreachableInst(TI->getContext(), TI); 4485 TI->eraseFromParent(); 4486 Changed = true; 4487 } else { 4488 Value* Cond = BI->getCondition(); 4489 if (BI->getSuccessor(0) == BB) { 4490 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4491 Builder.CreateBr(BI->getSuccessor(1)); 4492 } else { 4493 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4494 Builder.CreateAssumption(Cond); 4495 Builder.CreateBr(BI->getSuccessor(0)); 4496 } 4497 EraseTerminatorAndDCECond(BI); 4498 Changed = true; 4499 } 4500 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4501 SwitchInstProfUpdateWrapper SU(*SI); 4502 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4503 if (i->getCaseSuccessor() != BB) { 4504 ++i; 4505 continue; 4506 } 4507 BB->removePredecessor(SU->getParent()); 4508 i = SU.removeCase(i); 4509 e = SU->case_end(); 4510 Changed = true; 4511 } 4512 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4513 if (II->getUnwindDest() == BB) { 4514 removeUnwindEdge(TI->getParent()); 4515 Changed = true; 4516 } 4517 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4518 if (CSI->getUnwindDest() == BB) { 4519 removeUnwindEdge(TI->getParent()); 4520 Changed = true; 4521 continue; 4522 } 4523 4524 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4525 E = CSI->handler_end(); 4526 I != E; ++I) { 4527 if (*I == BB) { 4528 CSI->removeHandler(I); 4529 --I; 4530 --E; 4531 Changed = true; 4532 } 4533 } 4534 if (CSI->getNumHandlers() == 0) { 4535 BasicBlock *CatchSwitchBB = CSI->getParent(); 4536 if (CSI->hasUnwindDest()) { 4537 // Redirect preds to the unwind dest 4538 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4539 } else { 4540 // Rewrite all preds to unwind to caller (or from invoke to call). 4541 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4542 for (BasicBlock *EHPred : EHPreds) 4543 removeUnwindEdge(EHPred); 4544 } 4545 // The catchswitch is no longer reachable. 4546 new UnreachableInst(CSI->getContext(), CSI); 4547 CSI->eraseFromParent(); 4548 Changed = true; 4549 } 4550 } else if (isa<CleanupReturnInst>(TI)) { 4551 new UnreachableInst(TI->getContext(), TI); 4552 TI->eraseFromParent(); 4553 Changed = true; 4554 } 4555 } 4556 4557 // If this block is now dead, remove it. 4558 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4559 // We know there are no successors, so just nuke the block. 4560 if (LoopHeaders) 4561 LoopHeaders->erase(BB); 4562 BB->eraseFromParent(); 4563 return true; 4564 } 4565 4566 return Changed; 4567 } 4568 4569 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4570 assert(Cases.size() >= 1); 4571 4572 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4573 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4574 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4575 return false; 4576 } 4577 return true; 4578 } 4579 4580 static void createUnreachableSwitchDefault(SwitchInst *Switch) { 4581 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4582 BasicBlock *NewDefaultBlock = 4583 SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), ""); 4584 Switch->setDefaultDest(&*NewDefaultBlock); 4585 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front()); 4586 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4587 new UnreachableInst(Switch->getContext(), NewTerminator); 4588 EraseTerminatorAndDCECond(NewTerminator); 4589 } 4590 4591 /// Turn a switch with two reachable destinations into an integer range 4592 /// comparison and branch. 4593 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4594 IRBuilder<> &Builder) { 4595 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4596 4597 bool HasDefault = 4598 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4599 4600 // Partition the cases into two sets with different destinations. 4601 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4602 BasicBlock *DestB = nullptr; 4603 SmallVector<ConstantInt *, 16> CasesA; 4604 SmallVector<ConstantInt *, 16> CasesB; 4605 4606 for (auto Case : SI->cases()) { 4607 BasicBlock *Dest = Case.getCaseSuccessor(); 4608 if (!DestA) 4609 DestA = Dest; 4610 if (Dest == DestA) { 4611 CasesA.push_back(Case.getCaseValue()); 4612 continue; 4613 } 4614 if (!DestB) 4615 DestB = Dest; 4616 if (Dest == DestB) { 4617 CasesB.push_back(Case.getCaseValue()); 4618 continue; 4619 } 4620 return false; // More than two destinations. 4621 } 4622 4623 assert(DestA && DestB && 4624 "Single-destination switch should have been folded."); 4625 assert(DestA != DestB); 4626 assert(DestB != SI->getDefaultDest()); 4627 assert(!CasesB.empty() && "There must be non-default cases."); 4628 assert(!CasesA.empty() || HasDefault); 4629 4630 // Figure out if one of the sets of cases form a contiguous range. 4631 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4632 BasicBlock *ContiguousDest = nullptr; 4633 BasicBlock *OtherDest = nullptr; 4634 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4635 ContiguousCases = &CasesA; 4636 ContiguousDest = DestA; 4637 OtherDest = DestB; 4638 } else if (CasesAreContiguous(CasesB)) { 4639 ContiguousCases = &CasesB; 4640 ContiguousDest = DestB; 4641 OtherDest = DestA; 4642 } else 4643 return false; 4644 4645 // Start building the compare and branch. 4646 4647 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4648 Constant *NumCases = 4649 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4650 4651 Value *Sub = SI->getCondition(); 4652 if (!Offset->isNullValue()) 4653 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4654 4655 Value *Cmp; 4656 // If NumCases overflowed, then all possible values jump to the successor. 4657 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4658 Cmp = ConstantInt::getTrue(SI->getContext()); 4659 else 4660 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4661 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4662 4663 // Update weight for the newly-created conditional branch. 4664 if (HasBranchWeights(SI)) { 4665 SmallVector<uint64_t, 8> Weights; 4666 GetBranchWeights(SI, Weights); 4667 if (Weights.size() == 1 + SI->getNumCases()) { 4668 uint64_t TrueWeight = 0; 4669 uint64_t FalseWeight = 0; 4670 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4671 if (SI->getSuccessor(I) == ContiguousDest) 4672 TrueWeight += Weights[I]; 4673 else 4674 FalseWeight += Weights[I]; 4675 } 4676 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4677 TrueWeight /= 2; 4678 FalseWeight /= 2; 4679 } 4680 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4681 } 4682 } 4683 4684 // Prune obsolete incoming values off the successors' PHI nodes. 4685 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4686 unsigned PreviousEdges = ContiguousCases->size(); 4687 if (ContiguousDest == SI->getDefaultDest()) 4688 ++PreviousEdges; 4689 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4690 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4691 } 4692 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4693 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4694 if (OtherDest == SI->getDefaultDest()) 4695 ++PreviousEdges; 4696 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4697 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4698 } 4699 4700 // Clean up the default block - it may have phis or other instructions before 4701 // the unreachable terminator. 4702 if (!HasDefault) 4703 createUnreachableSwitchDefault(SI); 4704 4705 // Drop the switch. 4706 SI->eraseFromParent(); 4707 4708 return true; 4709 } 4710 4711 /// Compute masked bits for the condition of a switch 4712 /// and use it to remove dead cases. 4713 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4714 const DataLayout &DL) { 4715 Value *Cond = SI->getCondition(); 4716 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4717 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4718 4719 // We can also eliminate cases by determining that their values are outside of 4720 // the limited range of the condition based on how many significant (non-sign) 4721 // bits are in the condition value. 4722 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4723 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4724 4725 // Gather dead cases. 4726 SmallVector<ConstantInt *, 8> DeadCases; 4727 for (auto &Case : SI->cases()) { 4728 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4729 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4730 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4731 DeadCases.push_back(Case.getCaseValue()); 4732 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4733 << " is dead.\n"); 4734 } 4735 } 4736 4737 // If we can prove that the cases must cover all possible values, the 4738 // default destination becomes dead and we can remove it. If we know some 4739 // of the bits in the value, we can use that to more precisely compute the 4740 // number of possible unique case values. 4741 bool HasDefault = 4742 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4743 const unsigned NumUnknownBits = 4744 Bits - (Known.Zero | Known.One).countPopulation(); 4745 assert(NumUnknownBits <= Bits); 4746 if (HasDefault && DeadCases.empty() && 4747 NumUnknownBits < 64 /* avoid overflow */ && 4748 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4749 createUnreachableSwitchDefault(SI); 4750 return true; 4751 } 4752 4753 if (DeadCases.empty()) 4754 return false; 4755 4756 SwitchInstProfUpdateWrapper SIW(*SI); 4757 for (ConstantInt *DeadCase : DeadCases) { 4758 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4759 assert(CaseI != SI->case_default() && 4760 "Case was not found. Probably mistake in DeadCases forming."); 4761 // Prune unused values from PHI nodes. 4762 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4763 SIW.removeCase(CaseI); 4764 } 4765 4766 return true; 4767 } 4768 4769 /// If BB would be eligible for simplification by 4770 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4771 /// by an unconditional branch), look at the phi node for BB in the successor 4772 /// block and see if the incoming value is equal to CaseValue. If so, return 4773 /// the phi node, and set PhiIndex to BB's index in the phi node. 4774 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4775 BasicBlock *BB, int *PhiIndex) { 4776 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4777 return nullptr; // BB must be empty to be a candidate for simplification. 4778 if (!BB->getSinglePredecessor()) 4779 return nullptr; // BB must be dominated by the switch. 4780 4781 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4782 if (!Branch || !Branch->isUnconditional()) 4783 return nullptr; // Terminator must be unconditional branch. 4784 4785 BasicBlock *Succ = Branch->getSuccessor(0); 4786 4787 for (PHINode &PHI : Succ->phis()) { 4788 int Idx = PHI.getBasicBlockIndex(BB); 4789 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4790 4791 Value *InValue = PHI.getIncomingValue(Idx); 4792 if (InValue != CaseValue) 4793 continue; 4794 4795 *PhiIndex = Idx; 4796 return &PHI; 4797 } 4798 4799 return nullptr; 4800 } 4801 4802 /// Try to forward the condition of a switch instruction to a phi node 4803 /// dominated by the switch, if that would mean that some of the destination 4804 /// blocks of the switch can be folded away. Return true if a change is made. 4805 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4806 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4807 4808 ForwardingNodesMap ForwardingNodes; 4809 BasicBlock *SwitchBlock = SI->getParent(); 4810 bool Changed = false; 4811 for (auto &Case : SI->cases()) { 4812 ConstantInt *CaseValue = Case.getCaseValue(); 4813 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4814 4815 // Replace phi operands in successor blocks that are using the constant case 4816 // value rather than the switch condition variable: 4817 // switchbb: 4818 // switch i32 %x, label %default [ 4819 // i32 17, label %succ 4820 // ... 4821 // succ: 4822 // %r = phi i32 ... [ 17, %switchbb ] ... 4823 // --> 4824 // %r = phi i32 ... [ %x, %switchbb ] ... 4825 4826 for (PHINode &Phi : CaseDest->phis()) { 4827 // This only works if there is exactly 1 incoming edge from the switch to 4828 // a phi. If there is >1, that means multiple cases of the switch map to 1 4829 // value in the phi, and that phi value is not the switch condition. Thus, 4830 // this transform would not make sense (the phi would be invalid because 4831 // a phi can't have different incoming values from the same block). 4832 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4833 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4834 count(Phi.blocks(), SwitchBlock) == 1) { 4835 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4836 Changed = true; 4837 } 4838 } 4839 4840 // Collect phi nodes that are indirectly using this switch's case constants. 4841 int PhiIdx; 4842 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4843 ForwardingNodes[Phi].push_back(PhiIdx); 4844 } 4845 4846 for (auto &ForwardingNode : ForwardingNodes) { 4847 PHINode *Phi = ForwardingNode.first; 4848 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4849 if (Indexes.size() < 2) 4850 continue; 4851 4852 for (int Index : Indexes) 4853 Phi->setIncomingValue(Index, SI->getCondition()); 4854 Changed = true; 4855 } 4856 4857 return Changed; 4858 } 4859 4860 /// Return true if the backend will be able to handle 4861 /// initializing an array of constants like C. 4862 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4863 if (C->isThreadDependent()) 4864 return false; 4865 if (C->isDLLImportDependent()) 4866 return false; 4867 4868 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4869 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4870 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4871 return false; 4872 4873 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4874 if (!CE->isGEPWithNoNotionalOverIndexing()) 4875 return false; 4876 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4877 return false; 4878 } 4879 4880 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4881 return false; 4882 4883 return true; 4884 } 4885 4886 /// If V is a Constant, return it. Otherwise, try to look up 4887 /// its constant value in ConstantPool, returning 0 if it's not there. 4888 static Constant * 4889 LookupConstant(Value *V, 4890 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4891 if (Constant *C = dyn_cast<Constant>(V)) 4892 return C; 4893 return ConstantPool.lookup(V); 4894 } 4895 4896 /// Try to fold instruction I into a constant. This works for 4897 /// simple instructions such as binary operations where both operands are 4898 /// constant or can be replaced by constants from the ConstantPool. Returns the 4899 /// resulting constant on success, 0 otherwise. 4900 static Constant * 4901 ConstantFold(Instruction *I, const DataLayout &DL, 4902 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4903 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4904 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4905 if (!A) 4906 return nullptr; 4907 if (A->isAllOnesValue()) 4908 return LookupConstant(Select->getTrueValue(), ConstantPool); 4909 if (A->isNullValue()) 4910 return LookupConstant(Select->getFalseValue(), ConstantPool); 4911 return nullptr; 4912 } 4913 4914 SmallVector<Constant *, 4> COps; 4915 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4916 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4917 COps.push_back(A); 4918 else 4919 return nullptr; 4920 } 4921 4922 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4923 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4924 COps[1], DL); 4925 } 4926 4927 return ConstantFoldInstOperands(I, COps, DL); 4928 } 4929 4930 /// Try to determine the resulting constant values in phi nodes 4931 /// at the common destination basic block, *CommonDest, for one of the case 4932 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4933 /// case), of a switch instruction SI. 4934 static bool 4935 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4936 BasicBlock **CommonDest, 4937 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4938 const DataLayout &DL, const TargetTransformInfo &TTI) { 4939 // The block from which we enter the common destination. 4940 BasicBlock *Pred = SI->getParent(); 4941 4942 // If CaseDest is empty except for some side-effect free instructions through 4943 // which we can constant-propagate the CaseVal, continue to its successor. 4944 SmallDenseMap<Value *, Constant *> ConstantPool; 4945 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4946 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4947 if (I.isTerminator()) { 4948 // If the terminator is a simple branch, continue to the next block. 4949 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4950 return false; 4951 Pred = CaseDest; 4952 CaseDest = I.getSuccessor(0); 4953 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4954 // Instruction is side-effect free and constant. 4955 4956 // If the instruction has uses outside this block or a phi node slot for 4957 // the block, it is not safe to bypass the instruction since it would then 4958 // no longer dominate all its uses. 4959 for (auto &Use : I.uses()) { 4960 User *User = Use.getUser(); 4961 if (Instruction *I = dyn_cast<Instruction>(User)) 4962 if (I->getParent() == CaseDest) 4963 continue; 4964 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4965 if (Phi->getIncomingBlock(Use) == CaseDest) 4966 continue; 4967 return false; 4968 } 4969 4970 ConstantPool.insert(std::make_pair(&I, C)); 4971 } else { 4972 break; 4973 } 4974 } 4975 4976 // If we did not have a CommonDest before, use the current one. 4977 if (!*CommonDest) 4978 *CommonDest = CaseDest; 4979 // If the destination isn't the common one, abort. 4980 if (CaseDest != *CommonDest) 4981 return false; 4982 4983 // Get the values for this case from phi nodes in the destination block. 4984 for (PHINode &PHI : (*CommonDest)->phis()) { 4985 int Idx = PHI.getBasicBlockIndex(Pred); 4986 if (Idx == -1) 4987 continue; 4988 4989 Constant *ConstVal = 4990 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4991 if (!ConstVal) 4992 return false; 4993 4994 // Be conservative about which kinds of constants we support. 4995 if (!ValidLookupTableConstant(ConstVal, TTI)) 4996 return false; 4997 4998 Res.push_back(std::make_pair(&PHI, ConstVal)); 4999 } 5000 5001 return Res.size() > 0; 5002 } 5003 5004 // Helper function used to add CaseVal to the list of cases that generate 5005 // Result. Returns the updated number of cases that generate this result. 5006 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5007 SwitchCaseResultVectorTy &UniqueResults, 5008 Constant *Result) { 5009 for (auto &I : UniqueResults) { 5010 if (I.first == Result) { 5011 I.second.push_back(CaseVal); 5012 return I.second.size(); 5013 } 5014 } 5015 UniqueResults.push_back( 5016 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5017 return 1; 5018 } 5019 5020 // Helper function that initializes a map containing 5021 // results for the PHI node of the common destination block for a switch 5022 // instruction. Returns false if multiple PHI nodes have been found or if 5023 // there is not a common destination block for the switch. 5024 static bool 5025 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5026 SwitchCaseResultVectorTy &UniqueResults, 5027 Constant *&DefaultResult, const DataLayout &DL, 5028 const TargetTransformInfo &TTI, 5029 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5030 for (auto &I : SI->cases()) { 5031 ConstantInt *CaseVal = I.getCaseValue(); 5032 5033 // Resulting value at phi nodes for this case value. 5034 SwitchCaseResultsTy Results; 5035 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5036 DL, TTI)) 5037 return false; 5038 5039 // Only one value per case is permitted. 5040 if (Results.size() > 1) 5041 return false; 5042 5043 // Add the case->result mapping to UniqueResults. 5044 const uintptr_t NumCasesForResult = 5045 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5046 5047 // Early out if there are too many cases for this result. 5048 if (NumCasesForResult > MaxCasesPerResult) 5049 return false; 5050 5051 // Early out if there are too many unique results. 5052 if (UniqueResults.size() > MaxUniqueResults) 5053 return false; 5054 5055 // Check the PHI consistency. 5056 if (!PHI) 5057 PHI = Results[0].first; 5058 else if (PHI != Results[0].first) 5059 return false; 5060 } 5061 // Find the default result value. 5062 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5063 BasicBlock *DefaultDest = SI->getDefaultDest(); 5064 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5065 DL, TTI); 5066 // If the default value is not found abort unless the default destination 5067 // is unreachable. 5068 DefaultResult = 5069 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5070 if ((!DefaultResult && 5071 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5072 return false; 5073 5074 return true; 5075 } 5076 5077 // Helper function that checks if it is possible to transform a switch with only 5078 // two cases (or two cases + default) that produces a result into a select. 5079 // Example: 5080 // switch (a) { 5081 // case 10: %0 = icmp eq i32 %a, 10 5082 // return 10; %1 = select i1 %0, i32 10, i32 4 5083 // case 20: ----> %2 = icmp eq i32 %a, 20 5084 // return 2; %3 = select i1 %2, i32 2, i32 %1 5085 // default: 5086 // return 4; 5087 // } 5088 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5089 Constant *DefaultResult, Value *Condition, 5090 IRBuilder<> &Builder) { 5091 assert(ResultVector.size() == 2 && 5092 "We should have exactly two unique results at this point"); 5093 // If we are selecting between only two cases transform into a simple 5094 // select or a two-way select if default is possible. 5095 if (ResultVector[0].second.size() == 1 && 5096 ResultVector[1].second.size() == 1) { 5097 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5098 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5099 5100 bool DefaultCanTrigger = DefaultResult; 5101 Value *SelectValue = ResultVector[1].first; 5102 if (DefaultCanTrigger) { 5103 Value *const ValueCompare = 5104 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5105 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5106 DefaultResult, "switch.select"); 5107 } 5108 Value *const ValueCompare = 5109 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5110 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5111 SelectValue, "switch.select"); 5112 } 5113 5114 return nullptr; 5115 } 5116 5117 // Helper function to cleanup a switch instruction that has been converted into 5118 // a select, fixing up PHI nodes and basic blocks. 5119 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5120 Value *SelectValue, 5121 IRBuilder<> &Builder) { 5122 BasicBlock *SelectBB = SI->getParent(); 5123 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5124 PHI->removeIncomingValue(SelectBB); 5125 PHI->addIncoming(SelectValue, SelectBB); 5126 5127 Builder.CreateBr(PHI->getParent()); 5128 5129 // Remove the switch. 5130 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5131 BasicBlock *Succ = SI->getSuccessor(i); 5132 5133 if (Succ == PHI->getParent()) 5134 continue; 5135 Succ->removePredecessor(SelectBB); 5136 } 5137 SI->eraseFromParent(); 5138 } 5139 5140 /// If the switch is only used to initialize one or more 5141 /// phi nodes in a common successor block with only two different 5142 /// constant values, replace the switch with select. 5143 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5144 const DataLayout &DL, 5145 const TargetTransformInfo &TTI) { 5146 Value *const Cond = SI->getCondition(); 5147 PHINode *PHI = nullptr; 5148 BasicBlock *CommonDest = nullptr; 5149 Constant *DefaultResult; 5150 SwitchCaseResultVectorTy UniqueResults; 5151 // Collect all the cases that will deliver the same value from the switch. 5152 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5153 DL, TTI, 2, 1)) 5154 return false; 5155 // Selects choose between maximum two values. 5156 if (UniqueResults.size() != 2) 5157 return false; 5158 assert(PHI != nullptr && "PHI for value select not found"); 5159 5160 Builder.SetInsertPoint(SI); 5161 Value *SelectValue = 5162 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5163 if (SelectValue) { 5164 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 5165 return true; 5166 } 5167 // The switch couldn't be converted into a select. 5168 return false; 5169 } 5170 5171 namespace { 5172 5173 /// This class represents a lookup table that can be used to replace a switch. 5174 class SwitchLookupTable { 5175 public: 5176 /// Create a lookup table to use as a switch replacement with the contents 5177 /// of Values, using DefaultValue to fill any holes in the table. 5178 SwitchLookupTable( 5179 Module &M, uint64_t TableSize, ConstantInt *Offset, 5180 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5181 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5182 5183 /// Build instructions with Builder to retrieve the value at 5184 /// the position given by Index in the lookup table. 5185 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5186 5187 /// Return true if a table with TableSize elements of 5188 /// type ElementType would fit in a target-legal register. 5189 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5190 Type *ElementType); 5191 5192 private: 5193 // Depending on the contents of the table, it can be represented in 5194 // different ways. 5195 enum { 5196 // For tables where each element contains the same value, we just have to 5197 // store that single value and return it for each lookup. 5198 SingleValueKind, 5199 5200 // For tables where there is a linear relationship between table index 5201 // and values. We calculate the result with a simple multiplication 5202 // and addition instead of a table lookup. 5203 LinearMapKind, 5204 5205 // For small tables with integer elements, we can pack them into a bitmap 5206 // that fits into a target-legal register. Values are retrieved by 5207 // shift and mask operations. 5208 BitMapKind, 5209 5210 // The table is stored as an array of values. Values are retrieved by load 5211 // instructions from the table. 5212 ArrayKind 5213 } Kind; 5214 5215 // For SingleValueKind, this is the single value. 5216 Constant *SingleValue = nullptr; 5217 5218 // For BitMapKind, this is the bitmap. 5219 ConstantInt *BitMap = nullptr; 5220 IntegerType *BitMapElementTy = nullptr; 5221 5222 // For LinearMapKind, these are the constants used to derive the value. 5223 ConstantInt *LinearOffset = nullptr; 5224 ConstantInt *LinearMultiplier = nullptr; 5225 5226 // For ArrayKind, this is the array. 5227 GlobalVariable *Array = nullptr; 5228 }; 5229 5230 } // end anonymous namespace 5231 5232 SwitchLookupTable::SwitchLookupTable( 5233 Module &M, uint64_t TableSize, ConstantInt *Offset, 5234 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5235 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5236 assert(Values.size() && "Can't build lookup table without values!"); 5237 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5238 5239 // If all values in the table are equal, this is that value. 5240 SingleValue = Values.begin()->second; 5241 5242 Type *ValueType = Values.begin()->second->getType(); 5243 5244 // Build up the table contents. 5245 SmallVector<Constant *, 64> TableContents(TableSize); 5246 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5247 ConstantInt *CaseVal = Values[I].first; 5248 Constant *CaseRes = Values[I].second; 5249 assert(CaseRes->getType() == ValueType); 5250 5251 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5252 TableContents[Idx] = CaseRes; 5253 5254 if (CaseRes != SingleValue) 5255 SingleValue = nullptr; 5256 } 5257 5258 // Fill in any holes in the table with the default result. 5259 if (Values.size() < TableSize) { 5260 assert(DefaultValue && 5261 "Need a default value to fill the lookup table holes."); 5262 assert(DefaultValue->getType() == ValueType); 5263 for (uint64_t I = 0; I < TableSize; ++I) { 5264 if (!TableContents[I]) 5265 TableContents[I] = DefaultValue; 5266 } 5267 5268 if (DefaultValue != SingleValue) 5269 SingleValue = nullptr; 5270 } 5271 5272 // If each element in the table contains the same value, we only need to store 5273 // that single value. 5274 if (SingleValue) { 5275 Kind = SingleValueKind; 5276 return; 5277 } 5278 5279 // Check if we can derive the value with a linear transformation from the 5280 // table index. 5281 if (isa<IntegerType>(ValueType)) { 5282 bool LinearMappingPossible = true; 5283 APInt PrevVal; 5284 APInt DistToPrev; 5285 assert(TableSize >= 2 && "Should be a SingleValue table."); 5286 // Check if there is the same distance between two consecutive values. 5287 for (uint64_t I = 0; I < TableSize; ++I) { 5288 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5289 if (!ConstVal) { 5290 // This is an undef. We could deal with it, but undefs in lookup tables 5291 // are very seldom. It's probably not worth the additional complexity. 5292 LinearMappingPossible = false; 5293 break; 5294 } 5295 const APInt &Val = ConstVal->getValue(); 5296 if (I != 0) { 5297 APInt Dist = Val - PrevVal; 5298 if (I == 1) { 5299 DistToPrev = Dist; 5300 } else if (Dist != DistToPrev) { 5301 LinearMappingPossible = false; 5302 break; 5303 } 5304 } 5305 PrevVal = Val; 5306 } 5307 if (LinearMappingPossible) { 5308 LinearOffset = cast<ConstantInt>(TableContents[0]); 5309 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5310 Kind = LinearMapKind; 5311 ++NumLinearMaps; 5312 return; 5313 } 5314 } 5315 5316 // If the type is integer and the table fits in a register, build a bitmap. 5317 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5318 IntegerType *IT = cast<IntegerType>(ValueType); 5319 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5320 for (uint64_t I = TableSize; I > 0; --I) { 5321 TableInt <<= IT->getBitWidth(); 5322 // Insert values into the bitmap. Undef values are set to zero. 5323 if (!isa<UndefValue>(TableContents[I - 1])) { 5324 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5325 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5326 } 5327 } 5328 BitMap = ConstantInt::get(M.getContext(), TableInt); 5329 BitMapElementTy = IT; 5330 Kind = BitMapKind; 5331 ++NumBitMaps; 5332 return; 5333 } 5334 5335 // Store the table in an array. 5336 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5337 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5338 5339 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5340 GlobalVariable::PrivateLinkage, Initializer, 5341 "switch.table." + FuncName); 5342 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5343 // Set the alignment to that of an array items. We will be only loading one 5344 // value out of it. 5345 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5346 Kind = ArrayKind; 5347 } 5348 5349 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5350 switch (Kind) { 5351 case SingleValueKind: 5352 return SingleValue; 5353 case LinearMapKind: { 5354 // Derive the result value from the input value. 5355 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5356 false, "switch.idx.cast"); 5357 if (!LinearMultiplier->isOne()) 5358 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5359 if (!LinearOffset->isZero()) 5360 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5361 return Result; 5362 } 5363 case BitMapKind: { 5364 // Type of the bitmap (e.g. i59). 5365 IntegerType *MapTy = BitMap->getType(); 5366 5367 // Cast Index to the same type as the bitmap. 5368 // Note: The Index is <= the number of elements in the table, so 5369 // truncating it to the width of the bitmask is safe. 5370 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5371 5372 // Multiply the shift amount by the element width. 5373 ShiftAmt = Builder.CreateMul( 5374 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5375 "switch.shiftamt"); 5376 5377 // Shift down. 5378 Value *DownShifted = 5379 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5380 // Mask off. 5381 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5382 } 5383 case ArrayKind: { 5384 // Make sure the table index will not overflow when treated as signed. 5385 IntegerType *IT = cast<IntegerType>(Index->getType()); 5386 uint64_t TableSize = 5387 Array->getInitializer()->getType()->getArrayNumElements(); 5388 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5389 Index = Builder.CreateZExt( 5390 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5391 "switch.tableidx.zext"); 5392 5393 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5394 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5395 GEPIndices, "switch.gep"); 5396 return Builder.CreateLoad( 5397 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5398 "switch.load"); 5399 } 5400 } 5401 llvm_unreachable("Unknown lookup table kind!"); 5402 } 5403 5404 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5405 uint64_t TableSize, 5406 Type *ElementType) { 5407 auto *IT = dyn_cast<IntegerType>(ElementType); 5408 if (!IT) 5409 return false; 5410 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5411 // are <= 15, we could try to narrow the type. 5412 5413 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5414 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5415 return false; 5416 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5417 } 5418 5419 /// Determine whether a lookup table should be built for this switch, based on 5420 /// the number of cases, size of the table, and the types of the results. 5421 static bool 5422 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5423 const TargetTransformInfo &TTI, const DataLayout &DL, 5424 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5425 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5426 return false; // TableSize overflowed, or mul below might overflow. 5427 5428 bool AllTablesFitInRegister = true; 5429 bool HasIllegalType = false; 5430 for (const auto &I : ResultTypes) { 5431 Type *Ty = I.second; 5432 5433 // Saturate this flag to true. 5434 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5435 5436 // Saturate this flag to false. 5437 AllTablesFitInRegister = 5438 AllTablesFitInRegister && 5439 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5440 5441 // If both flags saturate, we're done. NOTE: This *only* works with 5442 // saturating flags, and all flags have to saturate first due to the 5443 // non-deterministic behavior of iterating over a dense map. 5444 if (HasIllegalType && !AllTablesFitInRegister) 5445 break; 5446 } 5447 5448 // If each table would fit in a register, we should build it anyway. 5449 if (AllTablesFitInRegister) 5450 return true; 5451 5452 // Don't build a table that doesn't fit in-register if it has illegal types. 5453 if (HasIllegalType) 5454 return false; 5455 5456 // The table density should be at least 40%. This is the same criterion as for 5457 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5458 // FIXME: Find the best cut-off. 5459 return SI->getNumCases() * 10 >= TableSize * 4; 5460 } 5461 5462 /// Try to reuse the switch table index compare. Following pattern: 5463 /// \code 5464 /// if (idx < tablesize) 5465 /// r = table[idx]; // table does not contain default_value 5466 /// else 5467 /// r = default_value; 5468 /// if (r != default_value) 5469 /// ... 5470 /// \endcode 5471 /// Is optimized to: 5472 /// \code 5473 /// cond = idx < tablesize; 5474 /// if (cond) 5475 /// r = table[idx]; 5476 /// else 5477 /// r = default_value; 5478 /// if (cond) 5479 /// ... 5480 /// \endcode 5481 /// Jump threading will then eliminate the second if(cond). 5482 static void reuseTableCompare( 5483 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5484 Constant *DefaultValue, 5485 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5486 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5487 if (!CmpInst) 5488 return; 5489 5490 // We require that the compare is in the same block as the phi so that jump 5491 // threading can do its work afterwards. 5492 if (CmpInst->getParent() != PhiBlock) 5493 return; 5494 5495 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5496 if (!CmpOp1) 5497 return; 5498 5499 Value *RangeCmp = RangeCheckBranch->getCondition(); 5500 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5501 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5502 5503 // Check if the compare with the default value is constant true or false. 5504 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5505 DefaultValue, CmpOp1, true); 5506 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5507 return; 5508 5509 // Check if the compare with the case values is distinct from the default 5510 // compare result. 5511 for (auto ValuePair : Values) { 5512 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5513 ValuePair.second, CmpOp1, true); 5514 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5515 return; 5516 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5517 "Expect true or false as compare result."); 5518 } 5519 5520 // Check if the branch instruction dominates the phi node. It's a simple 5521 // dominance check, but sufficient for our needs. 5522 // Although this check is invariant in the calling loops, it's better to do it 5523 // at this late stage. Practically we do it at most once for a switch. 5524 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5525 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5526 BasicBlock *Pred = *PI; 5527 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5528 return; 5529 } 5530 5531 if (DefaultConst == FalseConst) { 5532 // The compare yields the same result. We can replace it. 5533 CmpInst->replaceAllUsesWith(RangeCmp); 5534 ++NumTableCmpReuses; 5535 } else { 5536 // The compare yields the same result, just inverted. We can replace it. 5537 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5538 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5539 RangeCheckBranch); 5540 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5541 ++NumTableCmpReuses; 5542 } 5543 } 5544 5545 /// If the switch is only used to initialize one or more phi nodes in a common 5546 /// successor block with different constant values, replace the switch with 5547 /// lookup tables. 5548 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5549 const DataLayout &DL, 5550 const TargetTransformInfo &TTI) { 5551 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5552 5553 Function *Fn = SI->getParent()->getParent(); 5554 // Only build lookup table when we have a target that supports it or the 5555 // attribute is not set. 5556 if (!TTI.shouldBuildLookupTables() || 5557 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5558 return false; 5559 5560 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5561 // split off a dense part and build a lookup table for that. 5562 5563 // FIXME: This creates arrays of GEPs to constant strings, which means each 5564 // GEP needs a runtime relocation in PIC code. We should just build one big 5565 // string and lookup indices into that. 5566 5567 // Ignore switches with less than three cases. Lookup tables will not make 5568 // them faster, so we don't analyze them. 5569 if (SI->getNumCases() < 3) 5570 return false; 5571 5572 // Figure out the corresponding result for each case value and phi node in the 5573 // common destination, as well as the min and max case values. 5574 assert(!SI->cases().empty()); 5575 SwitchInst::CaseIt CI = SI->case_begin(); 5576 ConstantInt *MinCaseVal = CI->getCaseValue(); 5577 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5578 5579 BasicBlock *CommonDest = nullptr; 5580 5581 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5582 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5583 5584 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5585 SmallDenseMap<PHINode *, Type *> ResultTypes; 5586 SmallVector<PHINode *, 4> PHIs; 5587 5588 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5589 ConstantInt *CaseVal = CI->getCaseValue(); 5590 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5591 MinCaseVal = CaseVal; 5592 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5593 MaxCaseVal = CaseVal; 5594 5595 // Resulting value at phi nodes for this case value. 5596 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5597 ResultsTy Results; 5598 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5599 Results, DL, TTI)) 5600 return false; 5601 5602 // Append the result from this case to the list for each phi. 5603 for (const auto &I : Results) { 5604 PHINode *PHI = I.first; 5605 Constant *Value = I.second; 5606 if (!ResultLists.count(PHI)) 5607 PHIs.push_back(PHI); 5608 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5609 } 5610 } 5611 5612 // Keep track of the result types. 5613 for (PHINode *PHI : PHIs) { 5614 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5615 } 5616 5617 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5618 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5619 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5620 bool TableHasHoles = (NumResults < TableSize); 5621 5622 // If the table has holes, we need a constant result for the default case 5623 // or a bitmask that fits in a register. 5624 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5625 bool HasDefaultResults = 5626 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5627 DefaultResultsList, DL, TTI); 5628 5629 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5630 if (NeedMask) { 5631 // As an extra penalty for the validity test we require more cases. 5632 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5633 return false; 5634 if (!DL.fitsInLegalInteger(TableSize)) 5635 return false; 5636 } 5637 5638 for (const auto &I : DefaultResultsList) { 5639 PHINode *PHI = I.first; 5640 Constant *Result = I.second; 5641 DefaultResults[PHI] = Result; 5642 } 5643 5644 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5645 return false; 5646 5647 // Create the BB that does the lookups. 5648 Module &Mod = *CommonDest->getParent()->getParent(); 5649 BasicBlock *LookupBB = BasicBlock::Create( 5650 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5651 5652 // Compute the table index value. 5653 Builder.SetInsertPoint(SI); 5654 Value *TableIndex; 5655 if (MinCaseVal->isNullValue()) 5656 TableIndex = SI->getCondition(); 5657 else 5658 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5659 "switch.tableidx"); 5660 5661 // Compute the maximum table size representable by the integer type we are 5662 // switching upon. 5663 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5664 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5665 assert(MaxTableSize >= TableSize && 5666 "It is impossible for a switch to have more entries than the max " 5667 "representable value of its input integer type's size."); 5668 5669 // If the default destination is unreachable, or if the lookup table covers 5670 // all values of the conditional variable, branch directly to the lookup table 5671 // BB. Otherwise, check that the condition is within the case range. 5672 const bool DefaultIsReachable = 5673 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5674 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5675 BranchInst *RangeCheckBranch = nullptr; 5676 5677 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5678 Builder.CreateBr(LookupBB); 5679 // Note: We call removeProdecessor later since we need to be able to get the 5680 // PHI value for the default case in case we're using a bit mask. 5681 } else { 5682 Value *Cmp = Builder.CreateICmpULT( 5683 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5684 RangeCheckBranch = 5685 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5686 } 5687 5688 // Populate the BB that does the lookups. 5689 Builder.SetInsertPoint(LookupBB); 5690 5691 if (NeedMask) { 5692 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5693 // re-purposed to do the hole check, and we create a new LookupBB. 5694 BasicBlock *MaskBB = LookupBB; 5695 MaskBB->setName("switch.hole_check"); 5696 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5697 CommonDest->getParent(), CommonDest); 5698 5699 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5700 // unnecessary illegal types. 5701 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5702 APInt MaskInt(TableSizePowOf2, 0); 5703 APInt One(TableSizePowOf2, 1); 5704 // Build bitmask; fill in a 1 bit for every case. 5705 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5706 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5707 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5708 .getLimitedValue(); 5709 MaskInt |= One << Idx; 5710 } 5711 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5712 5713 // Get the TableIndex'th bit of the bitmask. 5714 // If this bit is 0 (meaning hole) jump to the default destination, 5715 // else continue with table lookup. 5716 IntegerType *MapTy = TableMask->getType(); 5717 Value *MaskIndex = 5718 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5719 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5720 Value *LoBit = Builder.CreateTrunc( 5721 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5722 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5723 5724 Builder.SetInsertPoint(LookupBB); 5725 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5726 } 5727 5728 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5729 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5730 // do not delete PHINodes here. 5731 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5732 /*KeepOneInputPHIs=*/true); 5733 } 5734 5735 bool ReturnedEarly = false; 5736 for (PHINode *PHI : PHIs) { 5737 const ResultListTy &ResultList = ResultLists[PHI]; 5738 5739 // If using a bitmask, use any value to fill the lookup table holes. 5740 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5741 StringRef FuncName = Fn->getName(); 5742 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5743 FuncName); 5744 5745 Value *Result = Table.BuildLookup(TableIndex, Builder); 5746 5747 // If the result is used to return immediately from the function, we want to 5748 // do that right here. 5749 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5750 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5751 Builder.CreateRet(Result); 5752 ReturnedEarly = true; 5753 break; 5754 } 5755 5756 // Do a small peephole optimization: re-use the switch table compare if 5757 // possible. 5758 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5759 BasicBlock *PhiBlock = PHI->getParent(); 5760 // Search for compare instructions which use the phi. 5761 for (auto *User : PHI->users()) { 5762 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5763 } 5764 } 5765 5766 PHI->addIncoming(Result, LookupBB); 5767 } 5768 5769 if (!ReturnedEarly) 5770 Builder.CreateBr(CommonDest); 5771 5772 // Remove the switch. 5773 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5774 BasicBlock *Succ = SI->getSuccessor(i); 5775 5776 if (Succ == SI->getDefaultDest()) 5777 continue; 5778 Succ->removePredecessor(SI->getParent()); 5779 } 5780 SI->eraseFromParent(); 5781 5782 ++NumLookupTables; 5783 if (NeedMask) 5784 ++NumLookupTablesHoles; 5785 return true; 5786 } 5787 5788 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5789 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5790 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5791 uint64_t Range = Diff + 1; 5792 uint64_t NumCases = Values.size(); 5793 // 40% is the default density for building a jump table in optsize/minsize mode. 5794 uint64_t MinDensity = 40; 5795 5796 return NumCases * 100 >= Range * MinDensity; 5797 } 5798 5799 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5800 /// of cases. 5801 /// 5802 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5803 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5804 /// 5805 /// This converts a sparse switch into a dense switch which allows better 5806 /// lowering and could also allow transforming into a lookup table. 5807 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5808 const DataLayout &DL, 5809 const TargetTransformInfo &TTI) { 5810 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5811 if (CondTy->getIntegerBitWidth() > 64 || 5812 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5813 return false; 5814 // Only bother with this optimization if there are more than 3 switch cases; 5815 // SDAG will only bother creating jump tables for 4 or more cases. 5816 if (SI->getNumCases() < 4) 5817 return false; 5818 5819 // This transform is agnostic to the signedness of the input or case values. We 5820 // can treat the case values as signed or unsigned. We can optimize more common 5821 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5822 // as signed. 5823 SmallVector<int64_t,4> Values; 5824 for (auto &C : SI->cases()) 5825 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5826 llvm::sort(Values); 5827 5828 // If the switch is already dense, there's nothing useful to do here. 5829 if (isSwitchDense(Values)) 5830 return false; 5831 5832 // First, transform the values such that they start at zero and ascend. 5833 int64_t Base = Values[0]; 5834 for (auto &V : Values) 5835 V -= (uint64_t)(Base); 5836 5837 // Now we have signed numbers that have been shifted so that, given enough 5838 // precision, there are no negative values. Since the rest of the transform 5839 // is bitwise only, we switch now to an unsigned representation. 5840 5841 // This transform can be done speculatively because it is so cheap - it 5842 // results in a single rotate operation being inserted. 5843 // FIXME: It's possible that optimizing a switch on powers of two might also 5844 // be beneficial - flag values are often powers of two and we could use a CLZ 5845 // as the key function. 5846 5847 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5848 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5849 // less than 64. 5850 unsigned Shift = 64; 5851 for (auto &V : Values) 5852 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5853 assert(Shift < 64); 5854 if (Shift > 0) 5855 for (auto &V : Values) 5856 V = (int64_t)((uint64_t)V >> Shift); 5857 5858 if (!isSwitchDense(Values)) 5859 // Transform didn't create a dense switch. 5860 return false; 5861 5862 // The obvious transform is to shift the switch condition right and emit a 5863 // check that the condition actually cleanly divided by GCD, i.e. 5864 // C & (1 << Shift - 1) == 0 5865 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5866 // 5867 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5868 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5869 // are nonzero then the switch condition will be very large and will hit the 5870 // default case. 5871 5872 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5873 Builder.SetInsertPoint(SI); 5874 auto *ShiftC = ConstantInt::get(Ty, Shift); 5875 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5876 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5877 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5878 auto *Rot = Builder.CreateOr(LShr, Shl); 5879 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5880 5881 for (auto Case : SI->cases()) { 5882 auto *Orig = Case.getCaseValue(); 5883 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5884 Case.setValue( 5885 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5886 } 5887 return true; 5888 } 5889 5890 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5891 BasicBlock *BB = SI->getParent(); 5892 5893 if (isValueEqualityComparison(SI)) { 5894 // If we only have one predecessor, and if it is a branch on this value, 5895 // see if that predecessor totally determines the outcome of this switch. 5896 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5897 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5898 return requestResimplify(); 5899 5900 Value *Cond = SI->getCondition(); 5901 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5902 if (SimplifySwitchOnSelect(SI, Select)) 5903 return requestResimplify(); 5904 5905 // If the block only contains the switch, see if we can fold the block 5906 // away into any preds. 5907 if (SI == &*BB->instructionsWithoutDebug().begin()) 5908 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5909 return requestResimplify(); 5910 } 5911 5912 // Try to transform the switch into an icmp and a branch. 5913 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5914 return requestResimplify(); 5915 5916 // Remove unreachable cases. 5917 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5918 return requestResimplify(); 5919 5920 if (switchToSelect(SI, Builder, DL, TTI)) 5921 return requestResimplify(); 5922 5923 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5924 return requestResimplify(); 5925 5926 // The conversion from switch to lookup tables results in difficult-to-analyze 5927 // code and makes pruning branches much harder. This is a problem if the 5928 // switch expression itself can still be restricted as a result of inlining or 5929 // CVP. Therefore, only apply this transformation during late stages of the 5930 // optimisation pipeline. 5931 if (Options.ConvertSwitchToLookupTable && 5932 SwitchToLookupTable(SI, Builder, DL, TTI)) 5933 return requestResimplify(); 5934 5935 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5936 return requestResimplify(); 5937 5938 return false; 5939 } 5940 5941 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 5942 BasicBlock *BB = IBI->getParent(); 5943 bool Changed = false; 5944 5945 // Eliminate redundant destinations. 5946 SmallPtrSet<Value *, 8> Succs; 5947 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5948 BasicBlock *Dest = IBI->getDestination(i); 5949 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5950 Dest->removePredecessor(BB); 5951 IBI->removeDestination(i); 5952 --i; 5953 --e; 5954 Changed = true; 5955 } 5956 } 5957 5958 if (IBI->getNumDestinations() == 0) { 5959 // If the indirectbr has no successors, change it to unreachable. 5960 new UnreachableInst(IBI->getContext(), IBI); 5961 EraseTerminatorAndDCECond(IBI); 5962 return true; 5963 } 5964 5965 if (IBI->getNumDestinations() == 1) { 5966 // If the indirectbr has one successor, change it to a direct branch. 5967 BranchInst::Create(IBI->getDestination(0), IBI); 5968 EraseTerminatorAndDCECond(IBI); 5969 return true; 5970 } 5971 5972 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5973 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5974 return requestResimplify(); 5975 } 5976 return Changed; 5977 } 5978 5979 /// Given an block with only a single landing pad and a unconditional branch 5980 /// try to find another basic block which this one can be merged with. This 5981 /// handles cases where we have multiple invokes with unique landing pads, but 5982 /// a shared handler. 5983 /// 5984 /// We specifically choose to not worry about merging non-empty blocks 5985 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5986 /// practice, the optimizer produces empty landing pad blocks quite frequently 5987 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5988 /// sinking in this file) 5989 /// 5990 /// This is primarily a code size optimization. We need to avoid performing 5991 /// any transform which might inhibit optimization (such as our ability to 5992 /// specialize a particular handler via tail commoning). We do this by not 5993 /// merging any blocks which require us to introduce a phi. Since the same 5994 /// values are flowing through both blocks, we don't lose any ability to 5995 /// specialize. If anything, we make such specialization more likely. 5996 /// 5997 /// TODO - This transformation could remove entries from a phi in the target 5998 /// block when the inputs in the phi are the same for the two blocks being 5999 /// merged. In some cases, this could result in removal of the PHI entirely. 6000 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6001 BasicBlock *BB) { 6002 auto Succ = BB->getUniqueSuccessor(); 6003 assert(Succ); 6004 // If there's a phi in the successor block, we'd likely have to introduce 6005 // a phi into the merged landing pad block. 6006 if (isa<PHINode>(*Succ->begin())) 6007 return false; 6008 6009 for (BasicBlock *OtherPred : predecessors(Succ)) { 6010 if (BB == OtherPred) 6011 continue; 6012 BasicBlock::iterator I = OtherPred->begin(); 6013 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6014 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6015 continue; 6016 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6017 ; 6018 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6019 if (!BI2 || !BI2->isIdenticalTo(BI)) 6020 continue; 6021 6022 // We've found an identical block. Update our predecessors to take that 6023 // path instead and make ourselves dead. 6024 SmallPtrSet<BasicBlock *, 16> Preds; 6025 Preds.insert(pred_begin(BB), pred_end(BB)); 6026 for (BasicBlock *Pred : Preds) { 6027 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6028 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6029 "unexpected successor"); 6030 II->setUnwindDest(OtherPred); 6031 } 6032 6033 // The debug info in OtherPred doesn't cover the merged control flow that 6034 // used to go through BB. We need to delete it or update it. 6035 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6036 Instruction &Inst = *I; 6037 I++; 6038 if (isa<DbgInfoIntrinsic>(Inst)) 6039 Inst.eraseFromParent(); 6040 } 6041 6042 SmallPtrSet<BasicBlock *, 16> Succs; 6043 Succs.insert(succ_begin(BB), succ_end(BB)); 6044 for (BasicBlock *Succ : Succs) { 6045 Succ->removePredecessor(BB); 6046 } 6047 6048 IRBuilder<> Builder(BI); 6049 Builder.CreateUnreachable(); 6050 BI->eraseFromParent(); 6051 return true; 6052 } 6053 return false; 6054 } 6055 6056 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6057 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6058 : simplifyCondBranch(Branch, Builder); 6059 } 6060 6061 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6062 IRBuilder<> &Builder) { 6063 BasicBlock *BB = BI->getParent(); 6064 BasicBlock *Succ = BI->getSuccessor(0); 6065 6066 // If the Terminator is the only non-phi instruction, simplify the block. 6067 // If LoopHeader is provided, check if the block or its successor is a loop 6068 // header. (This is for early invocations before loop simplify and 6069 // vectorization to keep canonical loop forms for nested loops. These blocks 6070 // can be eliminated when the pass is invoked later in the back-end.) 6071 // Note that if BB has only one predecessor then we do not introduce new 6072 // backedge, so we can eliminate BB. 6073 bool NeedCanonicalLoop = 6074 Options.NeedCanonicalLoop && 6075 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 6076 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 6077 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 6078 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6079 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6080 return true; 6081 6082 // If the only instruction in the block is a seteq/setne comparison against a 6083 // constant, try to simplify the block. 6084 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6085 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6086 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6087 ; 6088 if (I->isTerminator() && 6089 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6090 return true; 6091 } 6092 6093 // See if we can merge an empty landing pad block with another which is 6094 // equivalent. 6095 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6096 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6097 ; 6098 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 6099 return true; 6100 } 6101 6102 // If this basic block is ONLY a compare and a branch, and if a predecessor 6103 // branches to us and our successor, fold the comparison into the 6104 // predecessor and use logical operations to update the incoming value 6105 // for PHI nodes in common successor. 6106 if (FoldBranchToCommonDest(BI, nullptr, &TTI, Options.BonusInstThreshold)) 6107 return requestResimplify(); 6108 return false; 6109 } 6110 6111 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6112 BasicBlock *PredPred = nullptr; 6113 for (auto *P : predecessors(BB)) { 6114 BasicBlock *PPred = P->getSinglePredecessor(); 6115 if (!PPred || (PredPred && PredPred != PPred)) 6116 return nullptr; 6117 PredPred = PPred; 6118 } 6119 return PredPred; 6120 } 6121 6122 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6123 BasicBlock *BB = BI->getParent(); 6124 if (!Options.SimplifyCondBranch) 6125 return false; 6126 6127 // Conditional branch 6128 if (isValueEqualityComparison(BI)) { 6129 // If we only have one predecessor, and if it is a branch on this value, 6130 // see if that predecessor totally determines the outcome of this 6131 // switch. 6132 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6133 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6134 return requestResimplify(); 6135 6136 // This block must be empty, except for the setcond inst, if it exists. 6137 // Ignore dbg intrinsics. 6138 auto I = BB->instructionsWithoutDebug().begin(); 6139 if (&*I == BI) { 6140 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6141 return requestResimplify(); 6142 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6143 ++I; 6144 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6145 return requestResimplify(); 6146 } 6147 } 6148 6149 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6150 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6151 return true; 6152 6153 // If this basic block has dominating predecessor blocks and the dominating 6154 // blocks' conditions imply BI's condition, we know the direction of BI. 6155 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6156 if (Imp) { 6157 // Turn this into a branch on constant. 6158 auto *OldCond = BI->getCondition(); 6159 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6160 : ConstantInt::getFalse(BB->getContext()); 6161 BI->setCondition(TorF); 6162 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6163 return requestResimplify(); 6164 } 6165 6166 // If this basic block is ONLY a compare and a branch, and if a predecessor 6167 // branches to us and one of our successors, fold the comparison into the 6168 // predecessor and use logical operations to pick the right destination. 6169 if (FoldBranchToCommonDest(BI, nullptr, &TTI, Options.BonusInstThreshold)) 6170 return requestResimplify(); 6171 6172 // We have a conditional branch to two blocks that are only reachable 6173 // from BI. We know that the condbr dominates the two blocks, so see if 6174 // there is any identical code in the "then" and "else" blocks. If so, we 6175 // can hoist it up to the branching block. 6176 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6177 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6178 if (HoistCommon && Options.HoistCommonInsts) 6179 if (HoistThenElseCodeToIf(BI, TTI)) 6180 return requestResimplify(); 6181 } else { 6182 // If Successor #1 has multiple preds, we may be able to conditionally 6183 // execute Successor #0 if it branches to Successor #1. 6184 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6185 if (Succ0TI->getNumSuccessors() == 1 && 6186 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6187 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6188 return requestResimplify(); 6189 } 6190 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6191 // If Successor #0 has multiple preds, we may be able to conditionally 6192 // execute Successor #1 if it branches to Successor #0. 6193 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6194 if (Succ1TI->getNumSuccessors() == 1 && 6195 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6196 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6197 return requestResimplify(); 6198 } 6199 6200 // If this is a branch on a phi node in the current block, thread control 6201 // through this block if any PHI node entries are constants. 6202 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6203 if (PN->getParent() == BI->getParent()) 6204 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 6205 return requestResimplify(); 6206 6207 // Scan predecessor blocks for conditional branches. 6208 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 6209 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 6210 if (PBI != BI && PBI->isConditional()) 6211 if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI)) 6212 return requestResimplify(); 6213 6214 // Look for diamond patterns. 6215 if (MergeCondStores) 6216 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6217 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6218 if (PBI != BI && PBI->isConditional()) 6219 if (mergeConditionalStores(PBI, BI, DL, TTI)) 6220 return requestResimplify(); 6221 6222 return false; 6223 } 6224 6225 /// Check if passing a value to an instruction will cause undefined behavior. 6226 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 6227 Constant *C = dyn_cast<Constant>(V); 6228 if (!C) 6229 return false; 6230 6231 if (I->use_empty()) 6232 return false; 6233 6234 if (C->isNullValue() || isa<UndefValue>(C)) { 6235 // Only look at the first use, avoid hurting compile time with long uselists 6236 User *Use = *I->user_begin(); 6237 6238 // Now make sure that there are no instructions in between that can alter 6239 // control flow (eg. calls) 6240 for (BasicBlock::iterator 6241 i = ++BasicBlock::iterator(I), 6242 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6243 i != UI; ++i) 6244 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6245 return false; 6246 6247 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6248 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6249 if (GEP->getPointerOperand() == I) 6250 return passingValueIsAlwaysUndefined(V, GEP); 6251 6252 // Look through bitcasts. 6253 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6254 return passingValueIsAlwaysUndefined(V, BC); 6255 6256 // Load from null is undefined. 6257 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6258 if (!LI->isVolatile()) 6259 return !NullPointerIsDefined(LI->getFunction(), 6260 LI->getPointerAddressSpace()); 6261 6262 // Store to null is undefined. 6263 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6264 if (!SI->isVolatile()) 6265 return (!NullPointerIsDefined(SI->getFunction(), 6266 SI->getPointerAddressSpace())) && 6267 SI->getPointerOperand() == I; 6268 6269 // A call to null is undefined. 6270 if (auto *CB = dyn_cast<CallBase>(Use)) 6271 return !NullPointerIsDefined(CB->getFunction()) && 6272 CB->getCalledOperand() == I; 6273 } 6274 return false; 6275 } 6276 6277 /// If BB has an incoming value that will always trigger undefined behavior 6278 /// (eg. null pointer dereference), remove the branch leading here. 6279 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 6280 for (PHINode &PHI : BB->phis()) 6281 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6282 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6283 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 6284 IRBuilder<> Builder(T); 6285 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6286 BB->removePredecessor(PHI.getIncomingBlock(i)); 6287 // Turn uncoditional branches into unreachables and remove the dead 6288 // destination from conditional branches. 6289 if (BI->isUnconditional()) 6290 Builder.CreateUnreachable(); 6291 else 6292 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6293 : BI->getSuccessor(0)); 6294 BI->eraseFromParent(); 6295 return true; 6296 } 6297 // TODO: SwitchInst. 6298 } 6299 6300 return false; 6301 } 6302 6303 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6304 bool Changed = false; 6305 6306 assert(BB && BB->getParent() && "Block not embedded in function!"); 6307 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6308 6309 // Remove basic blocks that have no predecessors (except the entry block)... 6310 // or that just have themself as a predecessor. These are unreachable. 6311 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6312 BB->getSinglePredecessor() == BB) { 6313 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6314 DeleteDeadBlock(BB); 6315 return true; 6316 } 6317 6318 // Check to see if we can constant propagate this terminator instruction 6319 // away... 6320 Changed |= ConstantFoldTerminator(BB, true); 6321 6322 // Check for and eliminate duplicate PHI nodes in this block. 6323 Changed |= EliminateDuplicatePHINodes(BB); 6324 6325 // Check for and remove branches that will always cause undefined behavior. 6326 Changed |= removeUndefIntroducingPredecessor(BB); 6327 6328 // Merge basic blocks into their predecessor if there is only one distinct 6329 // pred, and if there is only one distinct successor of the predecessor, and 6330 // if there are no PHI nodes. 6331 if (MergeBlockIntoPredecessor(BB, DTU)) 6332 return true; 6333 6334 if (SinkCommon && Options.SinkCommonInsts) 6335 Changed |= SinkCommonCodeFromPredecessors(BB); 6336 6337 IRBuilder<> Builder(BB); 6338 6339 if (Options.FoldTwoEntryPHINode) { 6340 // If there is a trivial two-entry PHI node in this basic block, and we can 6341 // eliminate it, do so now. 6342 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6343 if (PN->getNumIncomingValues() == 2) 6344 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6345 } 6346 6347 Instruction *Terminator = BB->getTerminator(); 6348 Builder.SetInsertPoint(Terminator); 6349 switch (Terminator->getOpcode()) { 6350 case Instruction::Br: 6351 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6352 break; 6353 case Instruction::Ret: 6354 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6355 break; 6356 case Instruction::Resume: 6357 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6358 break; 6359 case Instruction::CleanupRet: 6360 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6361 break; 6362 case Instruction::Switch: 6363 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6364 break; 6365 case Instruction::Unreachable: 6366 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6367 break; 6368 case Instruction::IndirectBr: 6369 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6370 break; 6371 } 6372 6373 return Changed; 6374 } 6375 6376 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6377 bool Changed = false; 6378 6379 // Repeated simplify BB as long as resimplification is requested. 6380 do { 6381 Resimplify = false; 6382 6383 // Perform one round of simplifcation. Resimplify flag will be set if 6384 // another iteration is requested. 6385 Changed |= simplifyOnce(BB); 6386 } while (Resimplify); 6387 6388 return Changed; 6389 } 6390 6391 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6392 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6393 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6394 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6395 Options) 6396 .run(BB); 6397 } 6398