1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/SSAUpdater.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 97 cl::init(false), 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> DupRet( 117 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 118 cl::desc("Duplicate return instructions into unconditional branches")); 119 120 static cl::opt<bool> 121 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 122 cl::desc("Hoist common instructions up to the parent block")); 123 124 static cl::opt<bool> 125 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 126 cl::desc("Sink common instructions down to the end block")); 127 128 static cl::opt<bool> HoistCondStores( 129 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 130 cl::desc("Hoist conditional stores if an unconditional store precedes")); 131 132 static cl::opt<bool> MergeCondStores( 133 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 134 cl::desc("Hoist conditional stores even if an unconditional store does not " 135 "precede - hoist multiple conditional stores into a single " 136 "predicated store")); 137 138 static cl::opt<bool> MergeCondStoresAggressively( 139 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 140 cl::desc("When merging conditional stores, do so even if the resultant " 141 "basic blocks are unlikely to be if-converted as a result")); 142 143 static cl::opt<bool> SpeculateOneExpensiveInst( 144 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 145 cl::desc("Allow exactly one expensive instruction to be speculatively " 146 "executed")); 147 148 static cl::opt<unsigned> MaxSpeculationDepth( 149 "max-speculation-depth", cl::Hidden, cl::init(10), 150 cl::desc("Limit maximum recursion depth when calculating costs of " 151 "speculatively executed instructions")); 152 153 static cl::opt<int> 154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 155 cl::desc("Max size of a block which is still considered " 156 "small enough to thread through")); 157 158 // Two is chosen to allow one negation and a logical combine. 159 static cl::opt<unsigned> 160 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 161 cl::init(2), 162 cl::desc("Maximum cost of combining conditions when " 163 "folding branches")); 164 165 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 166 STATISTIC(NumLinearMaps, 167 "Number of switch instructions turned into linear mapping"); 168 STATISTIC(NumLookupTables, 169 "Number of switch instructions turned into lookup tables"); 170 STATISTIC( 171 NumLookupTablesHoles, 172 "Number of switch instructions turned into lookup tables (holes checked)"); 173 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 174 STATISTIC(NumFoldValueComparisonIntoPredecessors, 175 "Number of value comparisons folded into predecessor basic blocks"); 176 STATISTIC(NumFoldBranchToCommonDest, 177 "Number of branches folded into predecessor basic block"); 178 STATISTIC( 179 NumHoistCommonCode, 180 "Number of common instruction 'blocks' hoisted up to the begin block"); 181 STATISTIC(NumHoistCommonInstrs, 182 "Number of common instructions hoisted up to the begin block"); 183 STATISTIC(NumSinkCommonCode, 184 "Number of common instruction 'blocks' sunk down to the end block"); 185 STATISTIC(NumSinkCommonInstrs, 186 "Number of common instructions sunk down to the end block"); 187 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 188 STATISTIC(NumInvokes, 189 "Number of invokes with empty resume blocks simplified into calls"); 190 191 namespace { 192 193 // The first field contains the value that the switch produces when a certain 194 // case group is selected, and the second field is a vector containing the 195 // cases composing the case group. 196 using SwitchCaseResultVectorTy = 197 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 198 199 // The first field contains the phi node that generates a result of the switch 200 // and the second field contains the value generated for a certain case in the 201 // switch for that PHI. 202 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 203 204 /// ValueEqualityComparisonCase - Represents a case of a switch. 205 struct ValueEqualityComparisonCase { 206 ConstantInt *Value; 207 BasicBlock *Dest; 208 209 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 210 : Value(Value), Dest(Dest) {} 211 212 bool operator<(ValueEqualityComparisonCase RHS) const { 213 // Comparing pointers is ok as we only rely on the order for uniquing. 214 return Value < RHS.Value; 215 } 216 217 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 218 }; 219 220 class SimplifyCFGOpt { 221 const TargetTransformInfo &TTI; 222 DomTreeUpdater *DTU; 223 const DataLayout &DL; 224 ArrayRef<WeakVH> LoopHeaders; 225 const SimplifyCFGOptions &Options; 226 bool Resimplify; 227 228 Value *isValueEqualityComparison(Instruction *TI); 229 BasicBlock *GetValueEqualityComparisonCases( 230 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 231 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 232 BasicBlock *Pred, 233 IRBuilder<> &Builder); 234 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 235 Instruction *PTI, 236 IRBuilder<> &Builder); 237 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 238 IRBuilder<> &Builder); 239 240 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 241 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 242 bool simplifySingleResume(ResumeInst *RI); 243 bool simplifyCommonResume(ResumeInst *RI); 244 bool simplifyCleanupReturn(CleanupReturnInst *RI); 245 bool simplifyUnreachable(UnreachableInst *UI); 246 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 247 bool simplifyIndirectBr(IndirectBrInst *IBI); 248 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 249 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 250 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 251 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 252 253 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 254 IRBuilder<> &Builder); 255 256 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 257 bool EqTermsOnly); 258 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 259 const TargetTransformInfo &TTI); 260 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 261 BasicBlock *TrueBB, BasicBlock *FalseBB, 262 uint32_t TrueWeight, uint32_t FalseWeight); 263 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 264 const DataLayout &DL); 265 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 266 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 267 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 268 269 public: 270 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 271 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 272 const SimplifyCFGOptions &Opts) 273 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 274 assert((!DTU || !DTU->hasPostDomTree()) && 275 "SimplifyCFG is not yet capable of maintaining validity of a " 276 "PostDomTree, so don't ask for it."); 277 } 278 279 bool simplifyOnce(BasicBlock *BB); 280 bool simplifyOnceImpl(BasicBlock *BB); 281 bool run(BasicBlock *BB); 282 283 // Helper to set Resimplify and return change indication. 284 bool requestResimplify() { 285 Resimplify = true; 286 return true; 287 } 288 }; 289 290 } // end anonymous namespace 291 292 /// Return true if it is safe to merge these two 293 /// terminator instructions together. 294 static bool 295 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 296 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 297 if (SI1 == SI2) 298 return false; // Can't merge with self! 299 300 // It is not safe to merge these two switch instructions if they have a common 301 // successor, and if that successor has a PHI node, and if *that* PHI node has 302 // conflicting incoming values from the two switch blocks. 303 BasicBlock *SI1BB = SI1->getParent(); 304 BasicBlock *SI2BB = SI2->getParent(); 305 306 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 307 bool Fail = false; 308 for (BasicBlock *Succ : successors(SI2BB)) 309 if (SI1Succs.count(Succ)) 310 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 311 PHINode *PN = cast<PHINode>(BBI); 312 if (PN->getIncomingValueForBlock(SI1BB) != 313 PN->getIncomingValueForBlock(SI2BB)) { 314 if (FailBlocks) 315 FailBlocks->insert(Succ); 316 Fail = true; 317 } 318 } 319 320 return !Fail; 321 } 322 323 /// Update PHI nodes in Succ to indicate that there will now be entries in it 324 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 325 /// will be the same as those coming in from ExistPred, an existing predecessor 326 /// of Succ. 327 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 328 BasicBlock *ExistPred, 329 MemorySSAUpdater *MSSAU = nullptr) { 330 for (PHINode &PN : Succ->phis()) 331 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 332 if (MSSAU) 333 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 334 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 335 } 336 337 /// Compute an abstract "cost" of speculating the given instruction, 338 /// which is assumed to be safe to speculate. TCC_Free means cheap, 339 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 340 /// expensive. 341 static InstructionCost computeSpeculationCost(const User *I, 342 const TargetTransformInfo &TTI) { 343 assert(isSafeToSpeculativelyExecute(I) && 344 "Instruction is not safe to speculatively execute!"); 345 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 346 } 347 348 /// If we have a merge point of an "if condition" as accepted above, 349 /// return true if the specified value dominates the block. We 350 /// don't handle the true generality of domination here, just a special case 351 /// which works well enough for us. 352 /// 353 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 354 /// see if V (which must be an instruction) and its recursive operands 355 /// that do not dominate BB have a combined cost lower than Budget and 356 /// are non-trapping. If both are true, the instruction is inserted into the 357 /// set and true is returned. 358 /// 359 /// The cost for most non-trapping instructions is defined as 1 except for 360 /// Select whose cost is 2. 361 /// 362 /// After this function returns, Cost is increased by the cost of 363 /// V plus its non-dominating operands. If that cost is greater than 364 /// Budget, false is returned and Cost is undefined. 365 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 366 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 367 InstructionCost &Cost, 368 InstructionCost Budget, 369 const TargetTransformInfo &TTI, 370 unsigned Depth = 0) { 371 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 372 // so limit the recursion depth. 373 // TODO: While this recursion limit does prevent pathological behavior, it 374 // would be better to track visited instructions to avoid cycles. 375 if (Depth == MaxSpeculationDepth) 376 return false; 377 378 Instruction *I = dyn_cast<Instruction>(V); 379 if (!I) { 380 // Non-instructions all dominate instructions, but not all constantexprs 381 // can be executed unconditionally. 382 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 383 if (C->canTrap()) 384 return false; 385 return true; 386 } 387 BasicBlock *PBB = I->getParent(); 388 389 // We don't want to allow weird loops that might have the "if condition" in 390 // the bottom of this block. 391 if (PBB == BB) 392 return false; 393 394 // If this instruction is defined in a block that contains an unconditional 395 // branch to BB, then it must be in the 'conditional' part of the "if 396 // statement". If not, it definitely dominates the region. 397 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 398 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 399 return true; 400 401 // If we have seen this instruction before, don't count it again. 402 if (AggressiveInsts.count(I)) 403 return true; 404 405 // Okay, it looks like the instruction IS in the "condition". Check to 406 // see if it's a cheap instruction to unconditionally compute, and if it 407 // only uses stuff defined outside of the condition. If so, hoist it out. 408 if (!isSafeToSpeculativelyExecute(I)) 409 return false; 410 411 Cost += computeSpeculationCost(I, TTI); 412 413 // Allow exactly one instruction to be speculated regardless of its cost 414 // (as long as it is safe to do so). 415 // This is intended to flatten the CFG even if the instruction is a division 416 // or other expensive operation. The speculation of an expensive instruction 417 // is expected to be undone in CodeGenPrepare if the speculation has not 418 // enabled further IR optimizations. 419 if (Cost > Budget && 420 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 421 !Cost.isValid())) 422 return false; 423 424 // Okay, we can only really hoist these out if their operands do 425 // not take us over the cost threshold. 426 for (Use &Op : I->operands()) 427 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 428 Depth + 1)) 429 return false; 430 // Okay, it's safe to do this! Remember this instruction. 431 AggressiveInsts.insert(I); 432 return true; 433 } 434 435 /// Extract ConstantInt from value, looking through IntToPtr 436 /// and PointerNullValue. Return NULL if value is not a constant int. 437 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 438 // Normal constant int. 439 ConstantInt *CI = dyn_cast<ConstantInt>(V); 440 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 441 return CI; 442 443 // This is some kind of pointer constant. Turn it into a pointer-sized 444 // ConstantInt if possible. 445 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 446 447 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 448 if (isa<ConstantPointerNull>(V)) 449 return ConstantInt::get(PtrTy, 0); 450 451 // IntToPtr const int. 452 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 453 if (CE->getOpcode() == Instruction::IntToPtr) 454 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 455 // The constant is very likely to have the right type already. 456 if (CI->getType() == PtrTy) 457 return CI; 458 else 459 return cast<ConstantInt>( 460 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 461 } 462 return nullptr; 463 } 464 465 namespace { 466 467 /// Given a chain of or (||) or and (&&) comparison of a value against a 468 /// constant, this will try to recover the information required for a switch 469 /// structure. 470 /// It will depth-first traverse the chain of comparison, seeking for patterns 471 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 472 /// representing the different cases for the switch. 473 /// Note that if the chain is composed of '||' it will build the set of elements 474 /// that matches the comparisons (i.e. any of this value validate the chain) 475 /// while for a chain of '&&' it will build the set elements that make the test 476 /// fail. 477 struct ConstantComparesGatherer { 478 const DataLayout &DL; 479 480 /// Value found for the switch comparison 481 Value *CompValue = nullptr; 482 483 /// Extra clause to be checked before the switch 484 Value *Extra = nullptr; 485 486 /// Set of integers to match in switch 487 SmallVector<ConstantInt *, 8> Vals; 488 489 /// Number of comparisons matched in the and/or chain 490 unsigned UsedICmps = 0; 491 492 /// Construct and compute the result for the comparison instruction Cond 493 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 494 gather(Cond); 495 } 496 497 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 498 ConstantComparesGatherer & 499 operator=(const ConstantComparesGatherer &) = delete; 500 501 private: 502 /// Try to set the current value used for the comparison, it succeeds only if 503 /// it wasn't set before or if the new value is the same as the old one 504 bool setValueOnce(Value *NewVal) { 505 if (CompValue && CompValue != NewVal) 506 return false; 507 CompValue = NewVal; 508 return (CompValue != nullptr); 509 } 510 511 /// Try to match Instruction "I" as a comparison against a constant and 512 /// populates the array Vals with the set of values that match (or do not 513 /// match depending on isEQ). 514 /// Return false on failure. On success, the Value the comparison matched 515 /// against is placed in CompValue. 516 /// If CompValue is already set, the function is expected to fail if a match 517 /// is found but the value compared to is different. 518 bool matchInstruction(Instruction *I, bool isEQ) { 519 // If this is an icmp against a constant, handle this as one of the cases. 520 ICmpInst *ICI; 521 ConstantInt *C; 522 if (!((ICI = dyn_cast<ICmpInst>(I)) && 523 (C = GetConstantInt(I->getOperand(1), DL)))) { 524 return false; 525 } 526 527 Value *RHSVal; 528 const APInt *RHSC; 529 530 // Pattern match a special case 531 // (x & ~2^z) == y --> x == y || x == y|2^z 532 // This undoes a transformation done by instcombine to fuse 2 compares. 533 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 534 // It's a little bit hard to see why the following transformations are 535 // correct. Here is a CVC3 program to verify them for 64-bit values: 536 537 /* 538 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 539 x : BITVECTOR(64); 540 y : BITVECTOR(64); 541 z : BITVECTOR(64); 542 mask : BITVECTOR(64) = BVSHL(ONE, z); 543 QUERY( (y & ~mask = y) => 544 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 545 ); 546 QUERY( (y | mask = y) => 547 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 548 ); 549 */ 550 551 // Please note that each pattern must be a dual implication (<--> or 552 // iff). One directional implication can create spurious matches. If the 553 // implication is only one-way, an unsatisfiable condition on the left 554 // side can imply a satisfiable condition on the right side. Dual 555 // implication ensures that satisfiable conditions are transformed to 556 // other satisfiable conditions and unsatisfiable conditions are 557 // transformed to other unsatisfiable conditions. 558 559 // Here is a concrete example of a unsatisfiable condition on the left 560 // implying a satisfiable condition on the right: 561 // 562 // mask = (1 << z) 563 // (x & ~mask) == y --> (x == y || x == (y | mask)) 564 // 565 // Substituting y = 3, z = 0 yields: 566 // (x & -2) == 3 --> (x == 3 || x == 2) 567 568 // Pattern match a special case: 569 /* 570 QUERY( (y & ~mask = y) => 571 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 572 ); 573 */ 574 if (match(ICI->getOperand(0), 575 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 576 APInt Mask = ~*RHSC; 577 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 578 // If we already have a value for the switch, it has to match! 579 if (!setValueOnce(RHSVal)) 580 return false; 581 582 Vals.push_back(C); 583 Vals.push_back( 584 ConstantInt::get(C->getContext(), 585 C->getValue() | Mask)); 586 UsedICmps++; 587 return true; 588 } 589 } 590 591 // Pattern match a special case: 592 /* 593 QUERY( (y | mask = y) => 594 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 595 ); 596 */ 597 if (match(ICI->getOperand(0), 598 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 599 APInt Mask = *RHSC; 600 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 601 // If we already have a value for the switch, it has to match! 602 if (!setValueOnce(RHSVal)) 603 return false; 604 605 Vals.push_back(C); 606 Vals.push_back(ConstantInt::get(C->getContext(), 607 C->getValue() & ~Mask)); 608 UsedICmps++; 609 return true; 610 } 611 } 612 613 // If we already have a value for the switch, it has to match! 614 if (!setValueOnce(ICI->getOperand(0))) 615 return false; 616 617 UsedICmps++; 618 Vals.push_back(C); 619 return ICI->getOperand(0); 620 } 621 622 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 623 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 624 ICI->getPredicate(), C->getValue()); 625 626 // Shift the range if the compare is fed by an add. This is the range 627 // compare idiom as emitted by instcombine. 628 Value *CandidateVal = I->getOperand(0); 629 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 630 Span = Span.subtract(*RHSC); 631 CandidateVal = RHSVal; 632 } 633 634 // If this is an and/!= check, then we are looking to build the set of 635 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 636 // x != 0 && x != 1. 637 if (!isEQ) 638 Span = Span.inverse(); 639 640 // If there are a ton of values, we don't want to make a ginormous switch. 641 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 642 return false; 643 } 644 645 // If we already have a value for the switch, it has to match! 646 if (!setValueOnce(CandidateVal)) 647 return false; 648 649 // Add all values from the range to the set 650 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 651 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 652 653 UsedICmps++; 654 return true; 655 } 656 657 /// Given a potentially 'or'd or 'and'd together collection of icmp 658 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 659 /// the value being compared, and stick the list constants into the Vals 660 /// vector. 661 /// One "Extra" case is allowed to differ from the other. 662 void gather(Value *V) { 663 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 664 665 // Keep a stack (SmallVector for efficiency) for depth-first traversal 666 SmallVector<Value *, 8> DFT; 667 SmallPtrSet<Value *, 8> Visited; 668 669 // Initialize 670 Visited.insert(V); 671 DFT.push_back(V); 672 673 while (!DFT.empty()) { 674 V = DFT.pop_back_val(); 675 676 if (Instruction *I = dyn_cast<Instruction>(V)) { 677 // If it is a || (or && depending on isEQ), process the operands. 678 Value *Op0, *Op1; 679 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 680 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 681 if (Visited.insert(Op1).second) 682 DFT.push_back(Op1); 683 if (Visited.insert(Op0).second) 684 DFT.push_back(Op0); 685 686 continue; 687 } 688 689 // Try to match the current instruction 690 if (matchInstruction(I, isEQ)) 691 // Match succeed, continue the loop 692 continue; 693 } 694 695 // One element of the sequence of || (or &&) could not be match as a 696 // comparison against the same value as the others. 697 // We allow only one "Extra" case to be checked before the switch 698 if (!Extra) { 699 Extra = V; 700 continue; 701 } 702 // Failed to parse a proper sequence, abort now 703 CompValue = nullptr; 704 break; 705 } 706 } 707 }; 708 709 } // end anonymous namespace 710 711 static void EraseTerminatorAndDCECond(Instruction *TI, 712 MemorySSAUpdater *MSSAU = nullptr) { 713 Instruction *Cond = nullptr; 714 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 715 Cond = dyn_cast<Instruction>(SI->getCondition()); 716 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 717 if (BI->isConditional()) 718 Cond = dyn_cast<Instruction>(BI->getCondition()); 719 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 720 Cond = dyn_cast<Instruction>(IBI->getAddress()); 721 } 722 723 TI->eraseFromParent(); 724 if (Cond) 725 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 726 } 727 728 /// Return true if the specified terminator checks 729 /// to see if a value is equal to constant integer value. 730 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 731 Value *CV = nullptr; 732 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 733 // Do not permit merging of large switch instructions into their 734 // predecessors unless there is only one predecessor. 735 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 736 CV = SI->getCondition(); 737 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 738 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 739 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 740 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 741 CV = ICI->getOperand(0); 742 } 743 744 // Unwrap any lossless ptrtoint cast. 745 if (CV) { 746 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 747 Value *Ptr = PTII->getPointerOperand(); 748 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 749 CV = Ptr; 750 } 751 } 752 return CV; 753 } 754 755 /// Given a value comparison instruction, 756 /// decode all of the 'cases' that it represents and return the 'default' block. 757 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 758 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 759 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 760 Cases.reserve(SI->getNumCases()); 761 for (auto Case : SI->cases()) 762 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 763 Case.getCaseSuccessor())); 764 return SI->getDefaultDest(); 765 } 766 767 BranchInst *BI = cast<BranchInst>(TI); 768 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 769 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 770 Cases.push_back(ValueEqualityComparisonCase( 771 GetConstantInt(ICI->getOperand(1), DL), Succ)); 772 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 773 } 774 775 /// Given a vector of bb/value pairs, remove any entries 776 /// in the list that match the specified block. 777 static void 778 EliminateBlockCases(BasicBlock *BB, 779 std::vector<ValueEqualityComparisonCase> &Cases) { 780 llvm::erase_value(Cases, BB); 781 } 782 783 /// Return true if there are any keys in C1 that exist in C2 as well. 784 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 785 std::vector<ValueEqualityComparisonCase> &C2) { 786 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 787 788 // Make V1 be smaller than V2. 789 if (V1->size() > V2->size()) 790 std::swap(V1, V2); 791 792 if (V1->empty()) 793 return false; 794 if (V1->size() == 1) { 795 // Just scan V2. 796 ConstantInt *TheVal = (*V1)[0].Value; 797 for (unsigned i = 0, e = V2->size(); i != e; ++i) 798 if (TheVal == (*V2)[i].Value) 799 return true; 800 } 801 802 // Otherwise, just sort both lists and compare element by element. 803 array_pod_sort(V1->begin(), V1->end()); 804 array_pod_sort(V2->begin(), V2->end()); 805 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 806 while (i1 != e1 && i2 != e2) { 807 if ((*V1)[i1].Value == (*V2)[i2].Value) 808 return true; 809 if ((*V1)[i1].Value < (*V2)[i2].Value) 810 ++i1; 811 else 812 ++i2; 813 } 814 return false; 815 } 816 817 // Set branch weights on SwitchInst. This sets the metadata if there is at 818 // least one non-zero weight. 819 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 820 // Check that there is at least one non-zero weight. Otherwise, pass 821 // nullptr to setMetadata which will erase the existing metadata. 822 MDNode *N = nullptr; 823 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 824 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 825 SI->setMetadata(LLVMContext::MD_prof, N); 826 } 827 828 // Similar to the above, but for branch and select instructions that take 829 // exactly 2 weights. 830 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 831 uint32_t FalseWeight) { 832 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 833 // Check that there is at least one non-zero weight. Otherwise, pass 834 // nullptr to setMetadata which will erase the existing metadata. 835 MDNode *N = nullptr; 836 if (TrueWeight || FalseWeight) 837 N = MDBuilder(I->getParent()->getContext()) 838 .createBranchWeights(TrueWeight, FalseWeight); 839 I->setMetadata(LLVMContext::MD_prof, N); 840 } 841 842 /// If TI is known to be a terminator instruction and its block is known to 843 /// only have a single predecessor block, check to see if that predecessor is 844 /// also a value comparison with the same value, and if that comparison 845 /// determines the outcome of this comparison. If so, simplify TI. This does a 846 /// very limited form of jump threading. 847 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 848 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 849 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 850 if (!PredVal) 851 return false; // Not a value comparison in predecessor. 852 853 Value *ThisVal = isValueEqualityComparison(TI); 854 assert(ThisVal && "This isn't a value comparison!!"); 855 if (ThisVal != PredVal) 856 return false; // Different predicates. 857 858 // TODO: Preserve branch weight metadata, similarly to how 859 // FoldValueComparisonIntoPredecessors preserves it. 860 861 // Find out information about when control will move from Pred to TI's block. 862 std::vector<ValueEqualityComparisonCase> PredCases; 863 BasicBlock *PredDef = 864 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 865 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 866 867 // Find information about how control leaves this block. 868 std::vector<ValueEqualityComparisonCase> ThisCases; 869 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 870 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 871 872 // If TI's block is the default block from Pred's comparison, potentially 873 // simplify TI based on this knowledge. 874 if (PredDef == TI->getParent()) { 875 // If we are here, we know that the value is none of those cases listed in 876 // PredCases. If there are any cases in ThisCases that are in PredCases, we 877 // can simplify TI. 878 if (!ValuesOverlap(PredCases, ThisCases)) 879 return false; 880 881 if (isa<BranchInst>(TI)) { 882 // Okay, one of the successors of this condbr is dead. Convert it to a 883 // uncond br. 884 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 885 // Insert the new branch. 886 Instruction *NI = Builder.CreateBr(ThisDef); 887 (void)NI; 888 889 // Remove PHI node entries for the dead edge. 890 ThisCases[0].Dest->removePredecessor(PredDef); 891 892 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 893 << "Through successor TI: " << *TI << "Leaving: " << *NI 894 << "\n"); 895 896 EraseTerminatorAndDCECond(TI); 897 898 if (DTU) 899 DTU->applyUpdates( 900 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 901 902 return true; 903 } 904 905 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 906 // Okay, TI has cases that are statically dead, prune them away. 907 SmallPtrSet<Constant *, 16> DeadCases; 908 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 909 DeadCases.insert(PredCases[i].Value); 910 911 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 912 << "Through successor TI: " << *TI); 913 914 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 915 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 916 --i; 917 auto *Successor = i->getCaseSuccessor(); 918 if (DTU) 919 ++NumPerSuccessorCases[Successor]; 920 if (DeadCases.count(i->getCaseValue())) { 921 Successor->removePredecessor(PredDef); 922 SI.removeCase(i); 923 if (DTU) 924 --NumPerSuccessorCases[Successor]; 925 } 926 } 927 928 if (DTU) { 929 std::vector<DominatorTree::UpdateType> Updates; 930 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 931 if (I.second == 0) 932 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 933 DTU->applyUpdates(Updates); 934 } 935 936 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 937 return true; 938 } 939 940 // Otherwise, TI's block must correspond to some matched value. Find out 941 // which value (or set of values) this is. 942 ConstantInt *TIV = nullptr; 943 BasicBlock *TIBB = TI->getParent(); 944 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 945 if (PredCases[i].Dest == TIBB) { 946 if (TIV) 947 return false; // Cannot handle multiple values coming to this block. 948 TIV = PredCases[i].Value; 949 } 950 assert(TIV && "No edge from pred to succ?"); 951 952 // Okay, we found the one constant that our value can be if we get into TI's 953 // BB. Find out which successor will unconditionally be branched to. 954 BasicBlock *TheRealDest = nullptr; 955 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 956 if (ThisCases[i].Value == TIV) { 957 TheRealDest = ThisCases[i].Dest; 958 break; 959 } 960 961 // If not handled by any explicit cases, it is handled by the default case. 962 if (!TheRealDest) 963 TheRealDest = ThisDef; 964 965 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 966 967 // Remove PHI node entries for dead edges. 968 BasicBlock *CheckEdge = TheRealDest; 969 for (BasicBlock *Succ : successors(TIBB)) 970 if (Succ != CheckEdge) { 971 if (Succ != TheRealDest) 972 RemovedSuccs.insert(Succ); 973 Succ->removePredecessor(TIBB); 974 } else 975 CheckEdge = nullptr; 976 977 // Insert the new branch. 978 Instruction *NI = Builder.CreateBr(TheRealDest); 979 (void)NI; 980 981 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 982 << "Through successor TI: " << *TI << "Leaving: " << *NI 983 << "\n"); 984 985 EraseTerminatorAndDCECond(TI); 986 if (DTU) { 987 SmallVector<DominatorTree::UpdateType, 2> Updates; 988 Updates.reserve(RemovedSuccs.size()); 989 for (auto *RemovedSucc : RemovedSuccs) 990 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 991 DTU->applyUpdates(Updates); 992 } 993 return true; 994 } 995 996 namespace { 997 998 /// This class implements a stable ordering of constant 999 /// integers that does not depend on their address. This is important for 1000 /// applications that sort ConstantInt's to ensure uniqueness. 1001 struct ConstantIntOrdering { 1002 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1003 return LHS->getValue().ult(RHS->getValue()); 1004 } 1005 }; 1006 1007 } // end anonymous namespace 1008 1009 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1010 ConstantInt *const *P2) { 1011 const ConstantInt *LHS = *P1; 1012 const ConstantInt *RHS = *P2; 1013 if (LHS == RHS) 1014 return 0; 1015 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1016 } 1017 1018 static inline bool HasBranchWeights(const Instruction *I) { 1019 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1020 if (ProfMD && ProfMD->getOperand(0)) 1021 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1022 return MDS->getString().equals("branch_weights"); 1023 1024 return false; 1025 } 1026 1027 /// Get Weights of a given terminator, the default weight is at the front 1028 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1029 /// metadata. 1030 static void GetBranchWeights(Instruction *TI, 1031 SmallVectorImpl<uint64_t> &Weights) { 1032 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1033 assert(MD); 1034 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1035 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1036 Weights.push_back(CI->getValue().getZExtValue()); 1037 } 1038 1039 // If TI is a conditional eq, the default case is the false case, 1040 // and the corresponding branch-weight data is at index 2. We swap the 1041 // default weight to be the first entry. 1042 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1043 assert(Weights.size() == 2); 1044 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1045 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1046 std::swap(Weights.front(), Weights.back()); 1047 } 1048 } 1049 1050 /// Keep halving the weights until all can fit in uint32_t. 1051 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1052 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1053 if (Max > UINT_MAX) { 1054 unsigned Offset = 32 - countLeadingZeros(Max); 1055 for (uint64_t &I : Weights) 1056 I >>= Offset; 1057 } 1058 } 1059 1060 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1061 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1062 Instruction *PTI = PredBlock->getTerminator(); 1063 1064 // If we have bonus instructions, clone them into the predecessor block. 1065 // Note that there may be multiple predecessor blocks, so we cannot move 1066 // bonus instructions to a predecessor block. 1067 for (Instruction &BonusInst : *BB) { 1068 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1069 continue; 1070 1071 Instruction *NewBonusInst = BonusInst.clone(); 1072 1073 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1074 // Unless the instruction has the same !dbg location as the original 1075 // branch, drop it. When we fold the bonus instructions we want to make 1076 // sure we reset their debug locations in order to avoid stepping on 1077 // dead code caused by folding dead branches. 1078 NewBonusInst->setDebugLoc(DebugLoc()); 1079 } 1080 1081 RemapInstruction(NewBonusInst, VMap, 1082 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1083 VMap[&BonusInst] = NewBonusInst; 1084 1085 // If we moved a load, we cannot any longer claim any knowledge about 1086 // its potential value. The previous information might have been valid 1087 // only given the branch precondition. 1088 // For an analogous reason, we must also drop all the metadata whose 1089 // semantics we don't understand. We *can* preserve !annotation, because 1090 // it is tied to the instruction itself, not the value or position. 1091 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1092 1093 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1094 NewBonusInst->takeName(&BonusInst); 1095 BonusInst.setName(NewBonusInst->getName() + ".old"); 1096 1097 // Update (liveout) uses of bonus instructions, 1098 // now that the bonus instruction has been cloned into predecessor. 1099 SSAUpdater SSAUpdate; 1100 SSAUpdate.Initialize(BonusInst.getType(), 1101 (NewBonusInst->getName() + ".merge").str()); 1102 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1103 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1104 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1105 auto *UI = cast<Instruction>(U.getUser()); 1106 if (UI->getParent() != PredBlock) 1107 SSAUpdate.RewriteUseAfterInsertions(U); 1108 else // Use is in the same block as, and comes before, NewBonusInst. 1109 SSAUpdate.RewriteUse(U); 1110 } 1111 } 1112 } 1113 1114 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1115 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1116 BasicBlock *BB = TI->getParent(); 1117 BasicBlock *Pred = PTI->getParent(); 1118 1119 SmallVector<DominatorTree::UpdateType, 32> Updates; 1120 1121 // Figure out which 'cases' to copy from SI to PSI. 1122 std::vector<ValueEqualityComparisonCase> BBCases; 1123 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1124 1125 std::vector<ValueEqualityComparisonCase> PredCases; 1126 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1127 1128 // Based on whether the default edge from PTI goes to BB or not, fill in 1129 // PredCases and PredDefault with the new switch cases we would like to 1130 // build. 1131 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1132 1133 // Update the branch weight metadata along the way 1134 SmallVector<uint64_t, 8> Weights; 1135 bool PredHasWeights = HasBranchWeights(PTI); 1136 bool SuccHasWeights = HasBranchWeights(TI); 1137 1138 if (PredHasWeights) { 1139 GetBranchWeights(PTI, Weights); 1140 // branch-weight metadata is inconsistent here. 1141 if (Weights.size() != 1 + PredCases.size()) 1142 PredHasWeights = SuccHasWeights = false; 1143 } else if (SuccHasWeights) 1144 // If there are no predecessor weights but there are successor weights, 1145 // populate Weights with 1, which will later be scaled to the sum of 1146 // successor's weights 1147 Weights.assign(1 + PredCases.size(), 1); 1148 1149 SmallVector<uint64_t, 8> SuccWeights; 1150 if (SuccHasWeights) { 1151 GetBranchWeights(TI, SuccWeights); 1152 // branch-weight metadata is inconsistent here. 1153 if (SuccWeights.size() != 1 + BBCases.size()) 1154 PredHasWeights = SuccHasWeights = false; 1155 } else if (PredHasWeights) 1156 SuccWeights.assign(1 + BBCases.size(), 1); 1157 1158 if (PredDefault == BB) { 1159 // If this is the default destination from PTI, only the edges in TI 1160 // that don't occur in PTI, or that branch to BB will be activated. 1161 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1162 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1163 if (PredCases[i].Dest != BB) 1164 PTIHandled.insert(PredCases[i].Value); 1165 else { 1166 // The default destination is BB, we don't need explicit targets. 1167 std::swap(PredCases[i], PredCases.back()); 1168 1169 if (PredHasWeights || SuccHasWeights) { 1170 // Increase weight for the default case. 1171 Weights[0] += Weights[i + 1]; 1172 std::swap(Weights[i + 1], Weights.back()); 1173 Weights.pop_back(); 1174 } 1175 1176 PredCases.pop_back(); 1177 --i; 1178 --e; 1179 } 1180 1181 // Reconstruct the new switch statement we will be building. 1182 if (PredDefault != BBDefault) { 1183 PredDefault->removePredecessor(Pred); 1184 if (DTU && PredDefault != BB) 1185 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1186 PredDefault = BBDefault; 1187 ++NewSuccessors[BBDefault]; 1188 } 1189 1190 unsigned CasesFromPred = Weights.size(); 1191 uint64_t ValidTotalSuccWeight = 0; 1192 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1193 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1194 PredCases.push_back(BBCases[i]); 1195 ++NewSuccessors[BBCases[i].Dest]; 1196 if (SuccHasWeights || PredHasWeights) { 1197 // The default weight is at index 0, so weight for the ith case 1198 // should be at index i+1. Scale the cases from successor by 1199 // PredDefaultWeight (Weights[0]). 1200 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1201 ValidTotalSuccWeight += SuccWeights[i + 1]; 1202 } 1203 } 1204 1205 if (SuccHasWeights || PredHasWeights) { 1206 ValidTotalSuccWeight += SuccWeights[0]; 1207 // Scale the cases from predecessor by ValidTotalSuccWeight. 1208 for (unsigned i = 1; i < CasesFromPred; ++i) 1209 Weights[i] *= ValidTotalSuccWeight; 1210 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1211 Weights[0] *= SuccWeights[0]; 1212 } 1213 } else { 1214 // If this is not the default destination from PSI, only the edges 1215 // in SI that occur in PSI with a destination of BB will be 1216 // activated. 1217 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1218 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1219 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1220 if (PredCases[i].Dest == BB) { 1221 PTIHandled.insert(PredCases[i].Value); 1222 1223 if (PredHasWeights || SuccHasWeights) { 1224 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1225 std::swap(Weights[i + 1], Weights.back()); 1226 Weights.pop_back(); 1227 } 1228 1229 std::swap(PredCases[i], PredCases.back()); 1230 PredCases.pop_back(); 1231 --i; 1232 --e; 1233 } 1234 1235 // Okay, now we know which constants were sent to BB from the 1236 // predecessor. Figure out where they will all go now. 1237 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1238 if (PTIHandled.count(BBCases[i].Value)) { 1239 // If this is one we are capable of getting... 1240 if (PredHasWeights || SuccHasWeights) 1241 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1242 PredCases.push_back(BBCases[i]); 1243 ++NewSuccessors[BBCases[i].Dest]; 1244 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1245 } 1246 1247 // If there are any constants vectored to BB that TI doesn't handle, 1248 // they must go to the default destination of TI. 1249 for (ConstantInt *I : PTIHandled) { 1250 if (PredHasWeights || SuccHasWeights) 1251 Weights.push_back(WeightsForHandled[I]); 1252 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1253 ++NewSuccessors[BBDefault]; 1254 } 1255 } 1256 1257 // Okay, at this point, we know which new successor Pred will get. Make 1258 // sure we update the number of entries in the PHI nodes for these 1259 // successors. 1260 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1261 if (DTU) { 1262 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1263 Updates.reserve(Updates.size() + NewSuccessors.size()); 1264 } 1265 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1266 NewSuccessors) { 1267 for (auto I : seq(0, NewSuccessor.second)) { 1268 (void)I; 1269 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1270 } 1271 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1272 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1273 } 1274 1275 Builder.SetInsertPoint(PTI); 1276 // Convert pointer to int before we switch. 1277 if (CV->getType()->isPointerTy()) { 1278 CV = 1279 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1280 } 1281 1282 // Now that the successors are updated, create the new Switch instruction. 1283 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1284 NewSI->setDebugLoc(PTI->getDebugLoc()); 1285 for (ValueEqualityComparisonCase &V : PredCases) 1286 NewSI->addCase(V.Value, V.Dest); 1287 1288 if (PredHasWeights || SuccHasWeights) { 1289 // Halve the weights if any of them cannot fit in an uint32_t 1290 FitWeights(Weights); 1291 1292 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1293 1294 setBranchWeights(NewSI, MDWeights); 1295 } 1296 1297 EraseTerminatorAndDCECond(PTI); 1298 1299 // Okay, last check. If BB is still a successor of PSI, then we must 1300 // have an infinite loop case. If so, add an infinitely looping block 1301 // to handle the case to preserve the behavior of the code. 1302 BasicBlock *InfLoopBlock = nullptr; 1303 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1304 if (NewSI->getSuccessor(i) == BB) { 1305 if (!InfLoopBlock) { 1306 // Insert it at the end of the function, because it's either code, 1307 // or it won't matter if it's hot. :) 1308 InfLoopBlock = 1309 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1310 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1311 if (DTU) 1312 Updates.push_back( 1313 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1314 } 1315 NewSI->setSuccessor(i, InfLoopBlock); 1316 } 1317 1318 if (DTU) { 1319 if (InfLoopBlock) 1320 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1321 1322 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1323 1324 DTU->applyUpdates(Updates); 1325 } 1326 1327 ++NumFoldValueComparisonIntoPredecessors; 1328 return true; 1329 } 1330 1331 /// The specified terminator is a value equality comparison instruction 1332 /// (either a switch or a branch on "X == c"). 1333 /// See if any of the predecessors of the terminator block are value comparisons 1334 /// on the same value. If so, and if safe to do so, fold them together. 1335 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1336 IRBuilder<> &Builder) { 1337 BasicBlock *BB = TI->getParent(); 1338 Value *CV = isValueEqualityComparison(TI); // CondVal 1339 assert(CV && "Not a comparison?"); 1340 1341 bool Changed = false; 1342 1343 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1344 while (!Preds.empty()) { 1345 BasicBlock *Pred = Preds.pop_back_val(); 1346 Instruction *PTI = Pred->getTerminator(); 1347 1348 // Don't try to fold into itself. 1349 if (Pred == BB) 1350 continue; 1351 1352 // See if the predecessor is a comparison with the same value. 1353 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1354 if (PCV != CV) 1355 continue; 1356 1357 SmallSetVector<BasicBlock *, 4> FailBlocks; 1358 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1359 for (auto *Succ : FailBlocks) { 1360 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1361 return false; 1362 } 1363 } 1364 1365 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1366 Changed = true; 1367 } 1368 return Changed; 1369 } 1370 1371 // If we would need to insert a select that uses the value of this invoke 1372 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1373 // can't hoist the invoke, as there is nowhere to put the select in this case. 1374 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1375 Instruction *I1, Instruction *I2) { 1376 for (BasicBlock *Succ : successors(BB1)) { 1377 for (const PHINode &PN : Succ->phis()) { 1378 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1379 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1380 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1381 return false; 1382 } 1383 } 1384 } 1385 return true; 1386 } 1387 1388 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1389 1390 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1391 /// in the two blocks up into the branch block. The caller of this function 1392 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1393 /// only perform hoisting in case both blocks only contain a terminator. In that 1394 /// case, only the original BI will be replaced and selects for PHIs are added. 1395 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1396 const TargetTransformInfo &TTI, 1397 bool EqTermsOnly) { 1398 // This does very trivial matching, with limited scanning, to find identical 1399 // instructions in the two blocks. In particular, we don't want to get into 1400 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1401 // such, we currently just scan for obviously identical instructions in an 1402 // identical order. 1403 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1404 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1405 1406 BasicBlock::iterator BB1_Itr = BB1->begin(); 1407 BasicBlock::iterator BB2_Itr = BB2->begin(); 1408 1409 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1410 // Skip debug info if it is not identical. 1411 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1412 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1413 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1414 while (isa<DbgInfoIntrinsic>(I1)) 1415 I1 = &*BB1_Itr++; 1416 while (isa<DbgInfoIntrinsic>(I2)) 1417 I2 = &*BB2_Itr++; 1418 } 1419 // FIXME: Can we define a safety predicate for CallBr? 1420 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1421 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1422 isa<CallBrInst>(I1)) 1423 return false; 1424 1425 BasicBlock *BIParent = BI->getParent(); 1426 1427 bool Changed = false; 1428 1429 auto _ = make_scope_exit([&]() { 1430 if (Changed) 1431 ++NumHoistCommonCode; 1432 }); 1433 1434 // Check if only hoisting terminators is allowed. This does not add new 1435 // instructions to the hoist location. 1436 if (EqTermsOnly) { 1437 // Skip any debug intrinsics, as they are free to hoist. 1438 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1439 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1440 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1441 return false; 1442 if (!I1NonDbg->isTerminator()) 1443 return false; 1444 // Now we know that we only need to hoist debug instrinsics and the 1445 // terminator. Let the loop below handle those 2 cases. 1446 } 1447 1448 do { 1449 // If we are hoisting the terminator instruction, don't move one (making a 1450 // broken BB), instead clone it, and remove BI. 1451 if (I1->isTerminator()) 1452 goto HoistTerminator; 1453 1454 // If we're going to hoist a call, make sure that the two instructions we're 1455 // commoning/hoisting are both marked with musttail, or neither of them is 1456 // marked as such. Otherwise, we might end up in a situation where we hoist 1457 // from a block where the terminator is a `ret` to a block where the terminator 1458 // is a `br`, and `musttail` calls expect to be followed by a return. 1459 auto *C1 = dyn_cast<CallInst>(I1); 1460 auto *C2 = dyn_cast<CallInst>(I2); 1461 if (C1 && C2) 1462 if (C1->isMustTailCall() != C2->isMustTailCall()) 1463 return Changed; 1464 1465 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1466 return Changed; 1467 1468 // If any of the two call sites has nomerge attribute, stop hoisting. 1469 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1470 if (CB1->cannotMerge()) 1471 return Changed; 1472 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1473 if (CB2->cannotMerge()) 1474 return Changed; 1475 1476 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1477 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1478 // The debug location is an integral part of a debug info intrinsic 1479 // and can't be separated from it or replaced. Instead of attempting 1480 // to merge locations, simply hoist both copies of the intrinsic. 1481 BIParent->getInstList().splice(BI->getIterator(), 1482 BB1->getInstList(), I1); 1483 BIParent->getInstList().splice(BI->getIterator(), 1484 BB2->getInstList(), I2); 1485 Changed = true; 1486 } else { 1487 // For a normal instruction, we just move one to right before the branch, 1488 // then replace all uses of the other with the first. Finally, we remove 1489 // the now redundant second instruction. 1490 BIParent->getInstList().splice(BI->getIterator(), 1491 BB1->getInstList(), I1); 1492 if (!I2->use_empty()) 1493 I2->replaceAllUsesWith(I1); 1494 I1->andIRFlags(I2); 1495 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1496 LLVMContext::MD_range, 1497 LLVMContext::MD_fpmath, 1498 LLVMContext::MD_invariant_load, 1499 LLVMContext::MD_nonnull, 1500 LLVMContext::MD_invariant_group, 1501 LLVMContext::MD_align, 1502 LLVMContext::MD_dereferenceable, 1503 LLVMContext::MD_dereferenceable_or_null, 1504 LLVMContext::MD_mem_parallel_loop_access, 1505 LLVMContext::MD_access_group, 1506 LLVMContext::MD_preserve_access_index}; 1507 combineMetadata(I1, I2, KnownIDs, true); 1508 1509 // I1 and I2 are being combined into a single instruction. Its debug 1510 // location is the merged locations of the original instructions. 1511 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1512 1513 I2->eraseFromParent(); 1514 Changed = true; 1515 } 1516 ++NumHoistCommonInstrs; 1517 1518 I1 = &*BB1_Itr++; 1519 I2 = &*BB2_Itr++; 1520 // Skip debug info if it is not identical. 1521 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1522 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1523 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1524 while (isa<DbgInfoIntrinsic>(I1)) 1525 I1 = &*BB1_Itr++; 1526 while (isa<DbgInfoIntrinsic>(I2)) 1527 I2 = &*BB2_Itr++; 1528 } 1529 } while (I1->isIdenticalToWhenDefined(I2)); 1530 1531 return true; 1532 1533 HoistTerminator: 1534 // It may not be possible to hoist an invoke. 1535 // FIXME: Can we define a safety predicate for CallBr? 1536 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1537 return Changed; 1538 1539 // TODO: callbr hoisting currently disabled pending further study. 1540 if (isa<CallBrInst>(I1)) 1541 return Changed; 1542 1543 for (BasicBlock *Succ : successors(BB1)) { 1544 for (PHINode &PN : Succ->phis()) { 1545 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1546 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1547 if (BB1V == BB2V) 1548 continue; 1549 1550 // Check for passingValueIsAlwaysUndefined here because we would rather 1551 // eliminate undefined control flow then converting it to a select. 1552 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1553 passingValueIsAlwaysUndefined(BB2V, &PN)) 1554 return Changed; 1555 1556 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1557 return Changed; 1558 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1559 return Changed; 1560 } 1561 } 1562 1563 // Okay, it is safe to hoist the terminator. 1564 Instruction *NT = I1->clone(); 1565 BIParent->getInstList().insert(BI->getIterator(), NT); 1566 if (!NT->getType()->isVoidTy()) { 1567 I1->replaceAllUsesWith(NT); 1568 I2->replaceAllUsesWith(NT); 1569 NT->takeName(I1); 1570 } 1571 Changed = true; 1572 ++NumHoistCommonInstrs; 1573 1574 // Ensure terminator gets a debug location, even an unknown one, in case 1575 // it involves inlinable calls. 1576 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1577 1578 // PHIs created below will adopt NT's merged DebugLoc. 1579 IRBuilder<NoFolder> Builder(NT); 1580 1581 // Hoisting one of the terminators from our successor is a great thing. 1582 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1583 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1584 // nodes, so we insert select instruction to compute the final result. 1585 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1586 for (BasicBlock *Succ : successors(BB1)) { 1587 for (PHINode &PN : Succ->phis()) { 1588 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1589 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1590 if (BB1V == BB2V) 1591 continue; 1592 1593 // These values do not agree. Insert a select instruction before NT 1594 // that determines the right value. 1595 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1596 if (!SI) { 1597 // Propagate fast-math-flags from phi node to its replacement select. 1598 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1599 if (isa<FPMathOperator>(PN)) 1600 Builder.setFastMathFlags(PN.getFastMathFlags()); 1601 1602 SI = cast<SelectInst>( 1603 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1604 BB1V->getName() + "." + BB2V->getName(), BI)); 1605 } 1606 1607 // Make the PHI node use the select for all incoming values for BB1/BB2 1608 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1609 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1610 PN.setIncomingValue(i, SI); 1611 } 1612 } 1613 1614 SmallVector<DominatorTree::UpdateType, 4> Updates; 1615 1616 // Update any PHI nodes in our new successors. 1617 for (BasicBlock *Succ : successors(BB1)) { 1618 AddPredecessorToBlock(Succ, BIParent, BB1); 1619 if (DTU) 1620 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1621 } 1622 1623 if (DTU) 1624 for (BasicBlock *Succ : successors(BI)) 1625 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1626 1627 EraseTerminatorAndDCECond(BI); 1628 if (DTU) 1629 DTU->applyUpdates(Updates); 1630 return Changed; 1631 } 1632 1633 // Check lifetime markers. 1634 static bool isLifeTimeMarker(const Instruction *I) { 1635 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1636 switch (II->getIntrinsicID()) { 1637 default: 1638 break; 1639 case Intrinsic::lifetime_start: 1640 case Intrinsic::lifetime_end: 1641 return true; 1642 } 1643 } 1644 return false; 1645 } 1646 1647 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1648 // into variables. 1649 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1650 int OpIdx) { 1651 return !isa<IntrinsicInst>(I); 1652 } 1653 1654 // All instructions in Insts belong to different blocks that all unconditionally 1655 // branch to a common successor. Analyze each instruction and return true if it 1656 // would be possible to sink them into their successor, creating one common 1657 // instruction instead. For every value that would be required to be provided by 1658 // PHI node (because an operand varies in each input block), add to PHIOperands. 1659 static bool canSinkInstructions( 1660 ArrayRef<Instruction *> Insts, 1661 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1662 // Prune out obviously bad instructions to move. Each instruction must have 1663 // exactly zero or one use, and we check later that use is by a single, common 1664 // PHI instruction in the successor. 1665 bool HasUse = !Insts.front()->user_empty(); 1666 for (auto *I : Insts) { 1667 // These instructions may change or break semantics if moved. 1668 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1669 I->getType()->isTokenTy()) 1670 return false; 1671 1672 // Do not try to sink an instruction in an infinite loop - it can cause 1673 // this algorithm to infinite loop. 1674 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1675 return false; 1676 1677 // Conservatively return false if I is an inline-asm instruction. Sinking 1678 // and merging inline-asm instructions can potentially create arguments 1679 // that cannot satisfy the inline-asm constraints. 1680 // If the instruction has nomerge attribute, return false. 1681 if (const auto *C = dyn_cast<CallBase>(I)) 1682 if (C->isInlineAsm() || C->cannotMerge()) 1683 return false; 1684 1685 // Each instruction must have zero or one use. 1686 if (HasUse && !I->hasOneUse()) 1687 return false; 1688 if (!HasUse && !I->user_empty()) 1689 return false; 1690 } 1691 1692 const Instruction *I0 = Insts.front(); 1693 for (auto *I : Insts) 1694 if (!I->isSameOperationAs(I0)) 1695 return false; 1696 1697 // All instructions in Insts are known to be the same opcode. If they have a 1698 // use, check that the only user is a PHI or in the same block as the 1699 // instruction, because if a user is in the same block as an instruction we're 1700 // contemplating sinking, it must already be determined to be sinkable. 1701 if (HasUse) { 1702 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1703 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1704 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1705 auto *U = cast<Instruction>(*I->user_begin()); 1706 return (PNUse && 1707 PNUse->getParent() == Succ && 1708 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1709 U->getParent() == I->getParent(); 1710 })) 1711 return false; 1712 } 1713 1714 // Because SROA can't handle speculating stores of selects, try not to sink 1715 // loads, stores or lifetime markers of allocas when we'd have to create a 1716 // PHI for the address operand. Also, because it is likely that loads or 1717 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1718 // them. 1719 // This can cause code churn which can have unintended consequences down 1720 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1721 // FIXME: This is a workaround for a deficiency in SROA - see 1722 // https://llvm.org/bugs/show_bug.cgi?id=30188 1723 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1724 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1725 })) 1726 return false; 1727 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1728 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1729 })) 1730 return false; 1731 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1732 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1733 })) 1734 return false; 1735 1736 // For calls to be sinkable, they must all be indirect, or have same callee. 1737 // I.e. if we have two direct calls to different callees, we don't want to 1738 // turn that into an indirect call. Likewise, if we have an indirect call, 1739 // and a direct call, we don't actually want to have a single indirect call. 1740 if (isa<CallBase>(I0)) { 1741 auto IsIndirectCall = [](const Instruction *I) { 1742 return cast<CallBase>(I)->isIndirectCall(); 1743 }; 1744 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1745 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1746 if (HaveIndirectCalls) { 1747 if (!AllCallsAreIndirect) 1748 return false; 1749 } else { 1750 // All callees must be identical. 1751 Value *Callee = nullptr; 1752 for (const Instruction *I : Insts) { 1753 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1754 if (!Callee) 1755 Callee = CurrCallee; 1756 else if (Callee != CurrCallee) 1757 return false; 1758 } 1759 } 1760 } 1761 1762 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1763 Value *Op = I0->getOperand(OI); 1764 if (Op->getType()->isTokenTy()) 1765 // Don't touch any operand of token type. 1766 return false; 1767 1768 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1769 assert(I->getNumOperands() == I0->getNumOperands()); 1770 return I->getOperand(OI) == I0->getOperand(OI); 1771 }; 1772 if (!all_of(Insts, SameAsI0)) { 1773 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1774 !canReplaceOperandWithVariable(I0, OI)) 1775 // We can't create a PHI from this GEP. 1776 return false; 1777 for (auto *I : Insts) 1778 PHIOperands[I].push_back(I->getOperand(OI)); 1779 } 1780 } 1781 return true; 1782 } 1783 1784 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1785 // instruction of every block in Blocks to their common successor, commoning 1786 // into one instruction. 1787 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1788 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1789 1790 // canSinkInstructions returning true guarantees that every block has at 1791 // least one non-terminator instruction. 1792 SmallVector<Instruction*,4> Insts; 1793 for (auto *BB : Blocks) { 1794 Instruction *I = BB->getTerminator(); 1795 do { 1796 I = I->getPrevNode(); 1797 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1798 if (!isa<DbgInfoIntrinsic>(I)) 1799 Insts.push_back(I); 1800 } 1801 1802 // The only checking we need to do now is that all users of all instructions 1803 // are the same PHI node. canSinkInstructions should have checked this but 1804 // it is slightly over-aggressive - it gets confused by commutative 1805 // instructions so double-check it here. 1806 Instruction *I0 = Insts.front(); 1807 if (!I0->user_empty()) { 1808 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1809 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1810 auto *U = cast<Instruction>(*I->user_begin()); 1811 return U == PNUse; 1812 })) 1813 return false; 1814 } 1815 1816 // We don't need to do any more checking here; canSinkInstructions should 1817 // have done it all for us. 1818 SmallVector<Value*, 4> NewOperands; 1819 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1820 // This check is different to that in canSinkInstructions. There, we 1821 // cared about the global view once simplifycfg (and instcombine) have 1822 // completed - it takes into account PHIs that become trivially 1823 // simplifiable. However here we need a more local view; if an operand 1824 // differs we create a PHI and rely on instcombine to clean up the very 1825 // small mess we may make. 1826 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1827 return I->getOperand(O) != I0->getOperand(O); 1828 }); 1829 if (!NeedPHI) { 1830 NewOperands.push_back(I0->getOperand(O)); 1831 continue; 1832 } 1833 1834 // Create a new PHI in the successor block and populate it. 1835 auto *Op = I0->getOperand(O); 1836 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1837 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1838 Op->getName() + ".sink", &BBEnd->front()); 1839 for (auto *I : Insts) 1840 PN->addIncoming(I->getOperand(O), I->getParent()); 1841 NewOperands.push_back(PN); 1842 } 1843 1844 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1845 // and move it to the start of the successor block. 1846 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1847 I0->getOperandUse(O).set(NewOperands[O]); 1848 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1849 1850 // Update metadata and IR flags, and merge debug locations. 1851 for (auto *I : Insts) 1852 if (I != I0) { 1853 // The debug location for the "common" instruction is the merged locations 1854 // of all the commoned instructions. We start with the original location 1855 // of the "common" instruction and iteratively merge each location in the 1856 // loop below. 1857 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1858 // However, as N-way merge for CallInst is rare, so we use simplified API 1859 // instead of using complex API for N-way merge. 1860 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1861 combineMetadataForCSE(I0, I, true); 1862 I0->andIRFlags(I); 1863 } 1864 1865 if (!I0->user_empty()) { 1866 // canSinkLastInstruction checked that all instructions were used by 1867 // one and only one PHI node. Find that now, RAUW it to our common 1868 // instruction and nuke it. 1869 auto *PN = cast<PHINode>(*I0->user_begin()); 1870 PN->replaceAllUsesWith(I0); 1871 PN->eraseFromParent(); 1872 } 1873 1874 // Finally nuke all instructions apart from the common instruction. 1875 for (auto *I : Insts) 1876 if (I != I0) 1877 I->eraseFromParent(); 1878 1879 return true; 1880 } 1881 1882 namespace { 1883 1884 // LockstepReverseIterator - Iterates through instructions 1885 // in a set of blocks in reverse order from the first non-terminator. 1886 // For example (assume all blocks have size n): 1887 // LockstepReverseIterator I([B1, B2, B3]); 1888 // *I-- = [B1[n], B2[n], B3[n]]; 1889 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1890 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1891 // ... 1892 class LockstepReverseIterator { 1893 ArrayRef<BasicBlock*> Blocks; 1894 SmallVector<Instruction*,4> Insts; 1895 bool Fail; 1896 1897 public: 1898 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1899 reset(); 1900 } 1901 1902 void reset() { 1903 Fail = false; 1904 Insts.clear(); 1905 for (auto *BB : Blocks) { 1906 Instruction *Inst = BB->getTerminator(); 1907 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1908 Inst = Inst->getPrevNode(); 1909 if (!Inst) { 1910 // Block wasn't big enough. 1911 Fail = true; 1912 return; 1913 } 1914 Insts.push_back(Inst); 1915 } 1916 } 1917 1918 bool isValid() const { 1919 return !Fail; 1920 } 1921 1922 void operator--() { 1923 if (Fail) 1924 return; 1925 for (auto *&Inst : Insts) { 1926 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1927 Inst = Inst->getPrevNode(); 1928 // Already at beginning of block. 1929 if (!Inst) { 1930 Fail = true; 1931 return; 1932 } 1933 } 1934 } 1935 1936 void operator++() { 1937 if (Fail) 1938 return; 1939 for (auto *&Inst : Insts) { 1940 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1941 Inst = Inst->getNextNode(); 1942 // Already at end of block. 1943 if (!Inst) { 1944 Fail = true; 1945 return; 1946 } 1947 } 1948 } 1949 1950 ArrayRef<Instruction*> operator * () const { 1951 return Insts; 1952 } 1953 }; 1954 1955 } // end anonymous namespace 1956 1957 /// Check whether BB's predecessors end with unconditional branches. If it is 1958 /// true, sink any common code from the predecessors to BB. 1959 /// We also allow one predecessor to end with conditional branch (but no more 1960 /// than one). 1961 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1962 DomTreeUpdater *DTU) { 1963 // We support two situations: 1964 // (1) all incoming arcs are unconditional 1965 // (2) one incoming arc is conditional 1966 // 1967 // (2) is very common in switch defaults and 1968 // else-if patterns; 1969 // 1970 // if (a) f(1); 1971 // else if (b) f(2); 1972 // 1973 // produces: 1974 // 1975 // [if] 1976 // / \ 1977 // [f(1)] [if] 1978 // | | \ 1979 // | | | 1980 // | [f(2)]| 1981 // \ | / 1982 // [ end ] 1983 // 1984 // [end] has two unconditional predecessor arcs and one conditional. The 1985 // conditional refers to the implicit empty 'else' arc. This conditional 1986 // arc can also be caused by an empty default block in a switch. 1987 // 1988 // In this case, we attempt to sink code from all *unconditional* arcs. 1989 // If we can sink instructions from these arcs (determined during the scan 1990 // phase below) we insert a common successor for all unconditional arcs and 1991 // connect that to [end], to enable sinking: 1992 // 1993 // [if] 1994 // / \ 1995 // [x(1)] [if] 1996 // | | \ 1997 // | | \ 1998 // | [x(2)] | 1999 // \ / | 2000 // [sink.split] | 2001 // \ / 2002 // [ end ] 2003 // 2004 SmallVector<BasicBlock*,4> UnconditionalPreds; 2005 bool HaveNonUnconditionalPredecessors = false; 2006 for (auto *PredBB : predecessors(BB)) { 2007 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2008 if (PredBr && PredBr->isUnconditional()) 2009 UnconditionalPreds.push_back(PredBB); 2010 else 2011 HaveNonUnconditionalPredecessors = true; 2012 } 2013 if (UnconditionalPreds.size() < 2) 2014 return false; 2015 2016 // We take a two-step approach to tail sinking. First we scan from the end of 2017 // each block upwards in lockstep. If the n'th instruction from the end of each 2018 // block can be sunk, those instructions are added to ValuesToSink and we 2019 // carry on. If we can sink an instruction but need to PHI-merge some operands 2020 // (because they're not identical in each instruction) we add these to 2021 // PHIOperands. 2022 int ScanIdx = 0; 2023 SmallPtrSet<Value*,4> InstructionsToSink; 2024 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2025 LockstepReverseIterator LRI(UnconditionalPreds); 2026 while (LRI.isValid() && 2027 canSinkInstructions(*LRI, PHIOperands)) { 2028 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2029 << "\n"); 2030 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2031 ++ScanIdx; 2032 --LRI; 2033 } 2034 2035 // If no instructions can be sunk, early-return. 2036 if (ScanIdx == 0) 2037 return false; 2038 2039 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2040 // actually sink before encountering instruction that is unprofitable to sink? 2041 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2042 unsigned NumPHIdValues = 0; 2043 for (auto *I : *LRI) 2044 for (auto *V : PHIOperands[I]) { 2045 if (InstructionsToSink.count(V) == 0) 2046 ++NumPHIdValues; 2047 // FIXME: this check is overly optimistic. We may end up not sinking 2048 // said instruction, due to the very same profitability check. 2049 // See @creating_too_many_phis in sink-common-code.ll. 2050 } 2051 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2052 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2053 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2054 NumPHIInsts++; 2055 2056 return NumPHIInsts <= 1; 2057 }; 2058 2059 // If no instructions can be sunk, early-return. 2060 if (ScanIdx == 0) 2061 return false; 2062 2063 // We've determined that we are going to sink last ScanIdx instructions, 2064 // and recorded them in InstructionsToSink. Now, some instructions may be 2065 // unprofitable to sink. But that determination depends on the instructions 2066 // that we are going to sink. 2067 2068 // First, forward scan: find the first instruction unprofitable to sink, 2069 // recording all the ones that are profitable to sink. 2070 // FIXME: would it be better, after we detect that not all are profitable. 2071 // to either record the profitable ones, or erase the unprofitable ones? 2072 // Maybe we need to choose (at runtime) the one that will touch least instrs? 2073 LRI.reset(); 2074 int Idx = 0; 2075 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2076 while (Idx < ScanIdx) { 2077 if (!ProfitableToSinkInstruction(LRI)) { 2078 // Too many PHIs would be created. 2079 LLVM_DEBUG( 2080 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2081 break; 2082 } 2083 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2084 --LRI; 2085 ++Idx; 2086 } 2087 2088 // If no instructions can be sunk, early-return. 2089 if (Idx == 0) 2090 return false; 2091 2092 // Did we determine that (only) some instructions are unprofitable to sink? 2093 if (Idx < ScanIdx) { 2094 // Okay, some instructions are unprofitable. 2095 ScanIdx = Idx; 2096 InstructionsToSink = InstructionsProfitableToSink; 2097 2098 // But, that may make other instructions unprofitable, too. 2099 // So, do a backward scan, do any earlier instructions become unprofitable? 2100 assert(!ProfitableToSinkInstruction(LRI) && 2101 "We already know that the last instruction is unprofitable to sink"); 2102 ++LRI; 2103 --Idx; 2104 while (Idx >= 0) { 2105 // If we detect that an instruction becomes unprofitable to sink, 2106 // all earlier instructions won't be sunk either, 2107 // so preemptively keep InstructionsProfitableToSink in sync. 2108 // FIXME: is this the most performant approach? 2109 for (auto *I : *LRI) 2110 InstructionsProfitableToSink.erase(I); 2111 if (!ProfitableToSinkInstruction(LRI)) { 2112 // Everything starting with this instruction won't be sunk. 2113 ScanIdx = Idx; 2114 InstructionsToSink = InstructionsProfitableToSink; 2115 } 2116 ++LRI; 2117 --Idx; 2118 } 2119 } 2120 2121 // If no instructions can be sunk, early-return. 2122 if (ScanIdx == 0) 2123 return false; 2124 2125 bool Changed = false; 2126 2127 if (HaveNonUnconditionalPredecessors) { 2128 // It is always legal to sink common instructions from unconditional 2129 // predecessors. However, if not all predecessors are unconditional, 2130 // this transformation might be pessimizing. So as a rule of thumb, 2131 // don't do it unless we'd sink at least one non-speculatable instruction. 2132 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2133 LRI.reset(); 2134 int Idx = 0; 2135 bool Profitable = false; 2136 while (Idx < ScanIdx) { 2137 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2138 Profitable = true; 2139 break; 2140 } 2141 --LRI; 2142 ++Idx; 2143 } 2144 if (!Profitable) 2145 return false; 2146 2147 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2148 // We have a conditional edge and we're going to sink some instructions. 2149 // Insert a new block postdominating all blocks we're going to sink from. 2150 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2151 // Edges couldn't be split. 2152 return false; 2153 Changed = true; 2154 } 2155 2156 // Now that we've analyzed all potential sinking candidates, perform the 2157 // actual sink. We iteratively sink the last non-terminator of the source 2158 // blocks into their common successor unless doing so would require too 2159 // many PHI instructions to be generated (currently only one PHI is allowed 2160 // per sunk instruction). 2161 // 2162 // We can use InstructionsToSink to discount values needing PHI-merging that will 2163 // actually be sunk in a later iteration. This allows us to be more 2164 // aggressive in what we sink. This does allow a false positive where we 2165 // sink presuming a later value will also be sunk, but stop half way through 2166 // and never actually sink it which means we produce more PHIs than intended. 2167 // This is unlikely in practice though. 2168 int SinkIdx = 0; 2169 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2170 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2171 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2172 << "\n"); 2173 2174 // Because we've sunk every instruction in turn, the current instruction to 2175 // sink is always at index 0. 2176 LRI.reset(); 2177 2178 if (!sinkLastInstruction(UnconditionalPreds)) { 2179 LLVM_DEBUG( 2180 dbgs() 2181 << "SINK: stopping here, failed to actually sink instruction!\n"); 2182 break; 2183 } 2184 2185 NumSinkCommonInstrs++; 2186 Changed = true; 2187 } 2188 if (SinkIdx != 0) 2189 ++NumSinkCommonCode; 2190 return Changed; 2191 } 2192 2193 /// Determine if we can hoist sink a sole store instruction out of a 2194 /// conditional block. 2195 /// 2196 /// We are looking for code like the following: 2197 /// BrBB: 2198 /// store i32 %add, i32* %arrayidx2 2199 /// ... // No other stores or function calls (we could be calling a memory 2200 /// ... // function). 2201 /// %cmp = icmp ult %x, %y 2202 /// br i1 %cmp, label %EndBB, label %ThenBB 2203 /// ThenBB: 2204 /// store i32 %add5, i32* %arrayidx2 2205 /// br label EndBB 2206 /// EndBB: 2207 /// ... 2208 /// We are going to transform this into: 2209 /// BrBB: 2210 /// store i32 %add, i32* %arrayidx2 2211 /// ... // 2212 /// %cmp = icmp ult %x, %y 2213 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2214 /// store i32 %add.add5, i32* %arrayidx2 2215 /// ... 2216 /// 2217 /// \return The pointer to the value of the previous store if the store can be 2218 /// hoisted into the predecessor block. 0 otherwise. 2219 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2220 BasicBlock *StoreBB, BasicBlock *EndBB) { 2221 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2222 if (!StoreToHoist) 2223 return nullptr; 2224 2225 // Volatile or atomic. 2226 if (!StoreToHoist->isSimple()) 2227 return nullptr; 2228 2229 Value *StorePtr = StoreToHoist->getPointerOperand(); 2230 2231 // Look for a store to the same pointer in BrBB. 2232 unsigned MaxNumInstToLookAt = 9; 2233 // Skip pseudo probe intrinsic calls which are not really killing any memory 2234 // accesses. 2235 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2236 if (!MaxNumInstToLookAt) 2237 break; 2238 --MaxNumInstToLookAt; 2239 2240 // Could be calling an instruction that affects memory like free(). 2241 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2242 return nullptr; 2243 2244 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2245 // Found the previous store make sure it stores to the same location. 2246 if (SI->getPointerOperand() == StorePtr) 2247 // Found the previous store, return its value operand. 2248 return SI->getValueOperand(); 2249 return nullptr; // Unknown store. 2250 } 2251 } 2252 2253 return nullptr; 2254 } 2255 2256 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2257 /// converted to selects. 2258 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2259 BasicBlock *EndBB, 2260 unsigned &SpeculatedInstructions, 2261 InstructionCost &Cost, 2262 const TargetTransformInfo &TTI) { 2263 TargetTransformInfo::TargetCostKind CostKind = 2264 BB->getParent()->hasMinSize() 2265 ? TargetTransformInfo::TCK_CodeSize 2266 : TargetTransformInfo::TCK_SizeAndLatency; 2267 2268 bool HaveRewritablePHIs = false; 2269 for (PHINode &PN : EndBB->phis()) { 2270 Value *OrigV = PN.getIncomingValueForBlock(BB); 2271 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2272 2273 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2274 // Skip PHIs which are trivial. 2275 if (ThenV == OrigV) 2276 continue; 2277 2278 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2279 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2280 2281 // Don't convert to selects if we could remove undefined behavior instead. 2282 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2283 passingValueIsAlwaysUndefined(ThenV, &PN)) 2284 return false; 2285 2286 HaveRewritablePHIs = true; 2287 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2288 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2289 if (!OrigCE && !ThenCE) 2290 continue; // Known safe and cheap. 2291 2292 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2293 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2294 return false; 2295 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2296 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2297 InstructionCost MaxCost = 2298 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2299 if (OrigCost + ThenCost > MaxCost) 2300 return false; 2301 2302 // Account for the cost of an unfolded ConstantExpr which could end up 2303 // getting expanded into Instructions. 2304 // FIXME: This doesn't account for how many operations are combined in the 2305 // constant expression. 2306 ++SpeculatedInstructions; 2307 if (SpeculatedInstructions > 1) 2308 return false; 2309 } 2310 2311 return HaveRewritablePHIs; 2312 } 2313 2314 /// Speculate a conditional basic block flattening the CFG. 2315 /// 2316 /// Note that this is a very risky transform currently. Speculating 2317 /// instructions like this is most often not desirable. Instead, there is an MI 2318 /// pass which can do it with full awareness of the resource constraints. 2319 /// However, some cases are "obvious" and we should do directly. An example of 2320 /// this is speculating a single, reasonably cheap instruction. 2321 /// 2322 /// There is only one distinct advantage to flattening the CFG at the IR level: 2323 /// it makes very common but simplistic optimizations such as are common in 2324 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2325 /// modeling their effects with easier to reason about SSA value graphs. 2326 /// 2327 /// 2328 /// An illustration of this transform is turning this IR: 2329 /// \code 2330 /// BB: 2331 /// %cmp = icmp ult %x, %y 2332 /// br i1 %cmp, label %EndBB, label %ThenBB 2333 /// ThenBB: 2334 /// %sub = sub %x, %y 2335 /// br label BB2 2336 /// EndBB: 2337 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2338 /// ... 2339 /// \endcode 2340 /// 2341 /// Into this IR: 2342 /// \code 2343 /// BB: 2344 /// %cmp = icmp ult %x, %y 2345 /// %sub = sub %x, %y 2346 /// %cond = select i1 %cmp, 0, %sub 2347 /// ... 2348 /// \endcode 2349 /// 2350 /// \returns true if the conditional block is removed. 2351 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2352 const TargetTransformInfo &TTI) { 2353 // Be conservative for now. FP select instruction can often be expensive. 2354 Value *BrCond = BI->getCondition(); 2355 if (isa<FCmpInst>(BrCond)) 2356 return false; 2357 2358 BasicBlock *BB = BI->getParent(); 2359 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2360 InstructionCost Budget = 2361 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2362 2363 // If ThenBB is actually on the false edge of the conditional branch, remember 2364 // to swap the select operands later. 2365 bool Invert = false; 2366 if (ThenBB != BI->getSuccessor(0)) { 2367 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2368 Invert = true; 2369 } 2370 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2371 2372 // Keep a count of how many times instructions are used within ThenBB when 2373 // they are candidates for sinking into ThenBB. Specifically: 2374 // - They are defined in BB, and 2375 // - They have no side effects, and 2376 // - All of their uses are in ThenBB. 2377 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2378 2379 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2380 2381 unsigned SpeculatedInstructions = 0; 2382 Value *SpeculatedStoreValue = nullptr; 2383 StoreInst *SpeculatedStore = nullptr; 2384 for (BasicBlock::iterator BBI = ThenBB->begin(), 2385 BBE = std::prev(ThenBB->end()); 2386 BBI != BBE; ++BBI) { 2387 Instruction *I = &*BBI; 2388 // Skip debug info. 2389 if (isa<DbgInfoIntrinsic>(I)) { 2390 SpeculatedDbgIntrinsics.push_back(I); 2391 continue; 2392 } 2393 2394 // Skip pseudo probes. The consequence is we lose track of the branch 2395 // probability for ThenBB, which is fine since the optimization here takes 2396 // place regardless of the branch probability. 2397 if (isa<PseudoProbeInst>(I)) { 2398 continue; 2399 } 2400 2401 // Only speculatively execute a single instruction (not counting the 2402 // terminator) for now. 2403 ++SpeculatedInstructions; 2404 if (SpeculatedInstructions > 1) 2405 return false; 2406 2407 // Don't hoist the instruction if it's unsafe or expensive. 2408 if (!isSafeToSpeculativelyExecute(I) && 2409 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2410 I, BB, ThenBB, EndBB)))) 2411 return false; 2412 if (!SpeculatedStoreValue && 2413 computeSpeculationCost(I, TTI) > 2414 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2415 return false; 2416 2417 // Store the store speculation candidate. 2418 if (SpeculatedStoreValue) 2419 SpeculatedStore = cast<StoreInst>(I); 2420 2421 // Do not hoist the instruction if any of its operands are defined but not 2422 // used in BB. The transformation will prevent the operand from 2423 // being sunk into the use block. 2424 for (Use &Op : I->operands()) { 2425 Instruction *OpI = dyn_cast<Instruction>(Op); 2426 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2427 continue; // Not a candidate for sinking. 2428 2429 ++SinkCandidateUseCounts[OpI]; 2430 } 2431 } 2432 2433 // Consider any sink candidates which are only used in ThenBB as costs for 2434 // speculation. Note, while we iterate over a DenseMap here, we are summing 2435 // and so iteration order isn't significant. 2436 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2437 I = SinkCandidateUseCounts.begin(), 2438 E = SinkCandidateUseCounts.end(); 2439 I != E; ++I) 2440 if (I->first->hasNUses(I->second)) { 2441 ++SpeculatedInstructions; 2442 if (SpeculatedInstructions > 1) 2443 return false; 2444 } 2445 2446 // Check that we can insert the selects and that it's not too expensive to do 2447 // so. 2448 bool Convert = SpeculatedStore != nullptr; 2449 InstructionCost Cost = 0; 2450 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2451 SpeculatedInstructions, 2452 Cost, TTI); 2453 if (!Convert || Cost > Budget) 2454 return false; 2455 2456 // If we get here, we can hoist the instruction and if-convert. 2457 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2458 2459 // Insert a select of the value of the speculated store. 2460 if (SpeculatedStoreValue) { 2461 IRBuilder<NoFolder> Builder(BI); 2462 Value *TrueV = SpeculatedStore->getValueOperand(); 2463 Value *FalseV = SpeculatedStoreValue; 2464 if (Invert) 2465 std::swap(TrueV, FalseV); 2466 Value *S = Builder.CreateSelect( 2467 BrCond, TrueV, FalseV, "spec.store.select", BI); 2468 SpeculatedStore->setOperand(0, S); 2469 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2470 SpeculatedStore->getDebugLoc()); 2471 } 2472 2473 // A hoisted conditional probe should be treated as dangling so that it will 2474 // not be over-counted when the samples collected on the non-conditional path 2475 // are counted towards the conditional path. We leave it for the counts 2476 // inference algorithm to figure out a proper count for a danglng probe. 2477 moveAndDanglePseudoProbes(ThenBB, BI); 2478 2479 // Metadata can be dependent on the condition we are hoisting above. 2480 // Conservatively strip all metadata on the instruction. Drop the debug loc 2481 // to avoid making it appear as if the condition is a constant, which would 2482 // be misleading while debugging. 2483 for (auto &I : *ThenBB) { 2484 assert(!isa<PseudoProbeInst>(I) && 2485 "Should not drop debug info from any pseudo probes."); 2486 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2487 I.setDebugLoc(DebugLoc()); 2488 I.dropUnknownNonDebugMetadata(); 2489 } 2490 2491 // Hoist the instructions. 2492 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2493 ThenBB->begin(), std::prev(ThenBB->end())); 2494 2495 // Insert selects and rewrite the PHI operands. 2496 IRBuilder<NoFolder> Builder(BI); 2497 for (PHINode &PN : EndBB->phis()) { 2498 unsigned OrigI = PN.getBasicBlockIndex(BB); 2499 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2500 Value *OrigV = PN.getIncomingValue(OrigI); 2501 Value *ThenV = PN.getIncomingValue(ThenI); 2502 2503 // Skip PHIs which are trivial. 2504 if (OrigV == ThenV) 2505 continue; 2506 2507 // Create a select whose true value is the speculatively executed value and 2508 // false value is the pre-existing value. Swap them if the branch 2509 // destinations were inverted. 2510 Value *TrueV = ThenV, *FalseV = OrigV; 2511 if (Invert) 2512 std::swap(TrueV, FalseV); 2513 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2514 PN.setIncomingValue(OrigI, V); 2515 PN.setIncomingValue(ThenI, V); 2516 } 2517 2518 // Remove speculated dbg intrinsics. 2519 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2520 // dbg value for the different flows and inserting it after the select. 2521 for (Instruction *I : SpeculatedDbgIntrinsics) 2522 I->eraseFromParent(); 2523 2524 ++NumSpeculations; 2525 return true; 2526 } 2527 2528 /// Return true if we can thread a branch across this block. 2529 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2530 int Size = 0; 2531 2532 for (Instruction &I : BB->instructionsWithoutDebug()) { 2533 if (Size > MaxSmallBlockSize) 2534 return false; // Don't clone large BB's. 2535 2536 // Can't fold blocks that contain noduplicate or convergent calls. 2537 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2538 if (CI->cannotDuplicate() || CI->isConvergent()) 2539 return false; 2540 2541 // We will delete Phis while threading, so Phis should not be accounted in 2542 // block's size 2543 if (!isa<PHINode>(I)) 2544 ++Size; 2545 2546 // We can only support instructions that do not define values that are 2547 // live outside of the current basic block. 2548 for (User *U : I.users()) { 2549 Instruction *UI = cast<Instruction>(U); 2550 if (UI->getParent() != BB || isa<PHINode>(UI)) 2551 return false; 2552 } 2553 2554 // Looks ok, continue checking. 2555 } 2556 2557 return true; 2558 } 2559 2560 /// If we have a conditional branch on a PHI node value that is defined in the 2561 /// same block as the branch and if any PHI entries are constants, thread edges 2562 /// corresponding to that entry to be branches to their ultimate destination. 2563 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2564 const DataLayout &DL, AssumptionCache *AC) { 2565 BasicBlock *BB = BI->getParent(); 2566 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2567 // NOTE: we currently cannot transform this case if the PHI node is used 2568 // outside of the block. 2569 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2570 return false; 2571 2572 // Degenerate case of a single entry PHI. 2573 if (PN->getNumIncomingValues() == 1) { 2574 FoldSingleEntryPHINodes(PN->getParent()); 2575 return true; 2576 } 2577 2578 // Now we know that this block has multiple preds and two succs. 2579 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2580 return false; 2581 2582 // Okay, this is a simple enough basic block. See if any phi values are 2583 // constants. 2584 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2585 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2586 if (!CB || !CB->getType()->isIntegerTy(1)) 2587 continue; 2588 2589 // Okay, we now know that all edges from PredBB should be revectored to 2590 // branch to RealDest. 2591 BasicBlock *PredBB = PN->getIncomingBlock(i); 2592 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2593 2594 if (RealDest == BB) 2595 continue; // Skip self loops. 2596 // Skip if the predecessor's terminator is an indirect branch. 2597 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2598 continue; 2599 2600 SmallVector<DominatorTree::UpdateType, 3> Updates; 2601 2602 // The dest block might have PHI nodes, other predecessors and other 2603 // difficult cases. Instead of being smart about this, just insert a new 2604 // block that jumps to the destination block, effectively splitting 2605 // the edge we are about to create. 2606 BasicBlock *EdgeBB = 2607 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2608 RealDest->getParent(), RealDest); 2609 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2610 if (DTU) 2611 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2612 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2613 2614 // Update PHI nodes. 2615 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2616 2617 // BB may have instructions that are being threaded over. Clone these 2618 // instructions into EdgeBB. We know that there will be no uses of the 2619 // cloned instructions outside of EdgeBB. 2620 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2621 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2622 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2623 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2624 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2625 continue; 2626 } 2627 // Clone the instruction. 2628 Instruction *N = BBI->clone(); 2629 if (BBI->hasName()) 2630 N->setName(BBI->getName() + ".c"); 2631 2632 // Update operands due to translation. 2633 for (Use &Op : N->operands()) { 2634 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2635 if (PI != TranslateMap.end()) 2636 Op = PI->second; 2637 } 2638 2639 // Check for trivial simplification. 2640 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2641 if (!BBI->use_empty()) 2642 TranslateMap[&*BBI] = V; 2643 if (!N->mayHaveSideEffects()) { 2644 N->deleteValue(); // Instruction folded away, don't need actual inst 2645 N = nullptr; 2646 } 2647 } else { 2648 if (!BBI->use_empty()) 2649 TranslateMap[&*BBI] = N; 2650 } 2651 if (N) { 2652 // Insert the new instruction into its new home. 2653 EdgeBB->getInstList().insert(InsertPt, N); 2654 2655 // Register the new instruction with the assumption cache if necessary. 2656 if (auto *Assume = dyn_cast<AssumeInst>(N)) 2657 if (AC) 2658 AC->registerAssumption(Assume); 2659 } 2660 } 2661 2662 // Loop over all of the edges from PredBB to BB, changing them to branch 2663 // to EdgeBB instead. 2664 Instruction *PredBBTI = PredBB->getTerminator(); 2665 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2666 if (PredBBTI->getSuccessor(i) == BB) { 2667 BB->removePredecessor(PredBB); 2668 PredBBTI->setSuccessor(i, EdgeBB); 2669 } 2670 2671 if (DTU) { 2672 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2673 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2674 2675 DTU->applyUpdates(Updates); 2676 } 2677 2678 // Recurse, simplifying any other constants. 2679 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2680 } 2681 2682 return false; 2683 } 2684 2685 /// Given a BB that starts with the specified two-entry PHI node, 2686 /// see if we can eliminate it. 2687 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2688 DomTreeUpdater *DTU, const DataLayout &DL) { 2689 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2690 // statement", which has a very simple dominance structure. Basically, we 2691 // are trying to find the condition that is being branched on, which 2692 // subsequently causes this merge to happen. We really want control 2693 // dependence information for this check, but simplifycfg can't keep it up 2694 // to date, and this catches most of the cases we care about anyway. 2695 BasicBlock *BB = PN->getParent(); 2696 2697 BasicBlock *IfTrue, *IfFalse; 2698 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2699 if (!IfCond || 2700 // Don't bother if the branch will be constant folded trivially. 2701 isa<ConstantInt>(IfCond)) 2702 return false; 2703 2704 // Okay, we found that we can merge this two-entry phi node into a select. 2705 // Doing so would require us to fold *all* two entry phi nodes in this block. 2706 // At some point this becomes non-profitable (particularly if the target 2707 // doesn't support cmov's). Only do this transformation if there are two or 2708 // fewer PHI nodes in this block. 2709 unsigned NumPhis = 0; 2710 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2711 if (NumPhis > 2) 2712 return false; 2713 2714 // Loop over the PHI's seeing if we can promote them all to select 2715 // instructions. While we are at it, keep track of the instructions 2716 // that need to be moved to the dominating block. 2717 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2718 InstructionCost Cost = 0; 2719 InstructionCost Budget = 2720 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2721 2722 bool Changed = false; 2723 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2724 PHINode *PN = cast<PHINode>(II++); 2725 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2726 PN->replaceAllUsesWith(V); 2727 PN->eraseFromParent(); 2728 Changed = true; 2729 continue; 2730 } 2731 2732 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2733 Cost, Budget, TTI) || 2734 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2735 Cost, Budget, TTI)) 2736 return Changed; 2737 } 2738 2739 // If we folded the first phi, PN dangles at this point. Refresh it. If 2740 // we ran out of PHIs then we simplified them all. 2741 PN = dyn_cast<PHINode>(BB->begin()); 2742 if (!PN) 2743 return true; 2744 2745 // Return true if at least one of these is a 'not', and another is either 2746 // a 'not' too, or a constant. 2747 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2748 if (!match(V0, m_Not(m_Value()))) 2749 std::swap(V0, V1); 2750 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2751 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2752 }; 2753 2754 // Don't fold i1 branches on PHIs which contain binary operators or 2755 // select form of or/ands, unless one of the incoming values is an 'not' and 2756 // another one is freely invertible. 2757 // These can often be turned into switches and other things. 2758 auto IsBinOpOrAnd = [](Value *V) { 2759 return match( 2760 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2761 }; 2762 if (PN->getType()->isIntegerTy(1) && 2763 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2764 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2765 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2766 PN->getIncomingValue(1))) 2767 return Changed; 2768 2769 // If all PHI nodes are promotable, check to make sure that all instructions 2770 // in the predecessor blocks can be promoted as well. If not, we won't be able 2771 // to get rid of the control flow, so it's not worth promoting to select 2772 // instructions. 2773 BasicBlock *DomBlock = nullptr; 2774 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2775 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2776 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2777 IfBlock1 = nullptr; 2778 } else { 2779 DomBlock = *pred_begin(IfBlock1); 2780 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2781 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2782 !isa<PseudoProbeInst>(I)) { 2783 // This is not an aggressive instruction that we can promote. 2784 // Because of this, we won't be able to get rid of the control flow, so 2785 // the xform is not worth it. 2786 return Changed; 2787 } 2788 } 2789 2790 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2791 IfBlock2 = nullptr; 2792 } else { 2793 DomBlock = *pred_begin(IfBlock2); 2794 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2795 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2796 !isa<PseudoProbeInst>(I)) { 2797 // This is not an aggressive instruction that we can promote. 2798 // Because of this, we won't be able to get rid of the control flow, so 2799 // the xform is not worth it. 2800 return Changed; 2801 } 2802 } 2803 assert(DomBlock && "Failed to find root DomBlock"); 2804 2805 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2806 << " T: " << IfTrue->getName() 2807 << " F: " << IfFalse->getName() << "\n"); 2808 2809 // If we can still promote the PHI nodes after this gauntlet of tests, 2810 // do all of the PHI's now. 2811 Instruction *InsertPt = DomBlock->getTerminator(); 2812 IRBuilder<NoFolder> Builder(InsertPt); 2813 2814 // Move all 'aggressive' instructions, which are defined in the 2815 // conditional parts of the if's up to the dominating block. 2816 if (IfBlock1) 2817 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2818 if (IfBlock2) 2819 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2820 2821 // Propagate fast-math-flags from phi nodes to replacement selects. 2822 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2823 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2824 if (isa<FPMathOperator>(PN)) 2825 Builder.setFastMathFlags(PN->getFastMathFlags()); 2826 2827 // Change the PHI node into a select instruction. 2828 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2829 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2830 2831 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2832 PN->replaceAllUsesWith(Sel); 2833 Sel->takeName(PN); 2834 PN->eraseFromParent(); 2835 } 2836 2837 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2838 // has been flattened. Change DomBlock to jump directly to our new block to 2839 // avoid other simplifycfg's kicking in on the diamond. 2840 Instruction *OldTI = DomBlock->getTerminator(); 2841 Builder.SetInsertPoint(OldTI); 2842 Builder.CreateBr(BB); 2843 2844 SmallVector<DominatorTree::UpdateType, 3> Updates; 2845 if (DTU) { 2846 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2847 for (auto *Successor : successors(DomBlock)) 2848 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2849 } 2850 2851 OldTI->eraseFromParent(); 2852 if (DTU) 2853 DTU->applyUpdates(Updates); 2854 2855 return true; 2856 } 2857 2858 /// If we found a conditional branch that goes to two returning blocks, 2859 /// try to merge them together into one return, 2860 /// introducing a select if the return values disagree. 2861 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2862 IRBuilder<> &Builder) { 2863 auto *BB = BI->getParent(); 2864 assert(BI->isConditional() && "Must be a conditional branch"); 2865 BasicBlock *TrueSucc = BI->getSuccessor(0); 2866 BasicBlock *FalseSucc = BI->getSuccessor(1); 2867 // NOTE: destinations may match, this could be degenerate uncond branch. 2868 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2869 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2870 2871 // Check to ensure both blocks are empty (just a return) or optionally empty 2872 // with PHI nodes. If there are other instructions, merging would cause extra 2873 // computation on one path or the other. 2874 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2875 return false; 2876 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2877 return false; 2878 2879 Builder.SetInsertPoint(BI); 2880 // Okay, we found a branch that is going to two return nodes. If 2881 // there is no return value for this function, just change the 2882 // branch into a return. 2883 if (FalseRet->getNumOperands() == 0) { 2884 TrueSucc->removePredecessor(BB); 2885 FalseSucc->removePredecessor(BB); 2886 Builder.CreateRetVoid(); 2887 EraseTerminatorAndDCECond(BI); 2888 if (DTU) { 2889 SmallVector<DominatorTree::UpdateType, 2> Updates; 2890 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2891 if (TrueSucc != FalseSucc) 2892 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2893 DTU->applyUpdates(Updates); 2894 } 2895 return true; 2896 } 2897 2898 // Otherwise, figure out what the true and false return values are 2899 // so we can insert a new select instruction. 2900 Value *TrueValue = TrueRet->getReturnValue(); 2901 Value *FalseValue = FalseRet->getReturnValue(); 2902 2903 // Unwrap any PHI nodes in the return blocks. 2904 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2905 if (TVPN->getParent() == TrueSucc) 2906 TrueValue = TVPN->getIncomingValueForBlock(BB); 2907 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2908 if (FVPN->getParent() == FalseSucc) 2909 FalseValue = FVPN->getIncomingValueForBlock(BB); 2910 2911 // In order for this transformation to be safe, we must be able to 2912 // unconditionally execute both operands to the return. This is 2913 // normally the case, but we could have a potentially-trapping 2914 // constant expression that prevents this transformation from being 2915 // safe. 2916 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2917 if (TCV->canTrap()) 2918 return false; 2919 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2920 if (FCV->canTrap()) 2921 return false; 2922 2923 // Okay, we collected all the mapped values and checked them for sanity, and 2924 // defined to really do this transformation. First, update the CFG. 2925 TrueSucc->removePredecessor(BB); 2926 FalseSucc->removePredecessor(BB); 2927 2928 // Insert select instructions where needed. 2929 Value *BrCond = BI->getCondition(); 2930 if (TrueValue) { 2931 // Insert a select if the results differ. 2932 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2933 } else if (isa<UndefValue>(TrueValue)) { 2934 TrueValue = FalseValue; 2935 } else { 2936 TrueValue = 2937 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2938 } 2939 } 2940 2941 Value *RI = 2942 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2943 2944 (void)RI; 2945 2946 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2947 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2948 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2949 2950 EraseTerminatorAndDCECond(BI); 2951 if (DTU) { 2952 SmallVector<DominatorTree::UpdateType, 2> Updates; 2953 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2954 if (TrueSucc != FalseSucc) 2955 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2956 DTU->applyUpdates(Updates); 2957 } 2958 2959 return true; 2960 } 2961 2962 static Value *createLogicalOp(IRBuilderBase &Builder, 2963 Instruction::BinaryOps Opc, Value *LHS, 2964 Value *RHS, const Twine &Name = "") { 2965 // Try to relax logical op to binary op. 2966 if (impliesPoison(RHS, LHS)) 2967 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 2968 if (Opc == Instruction::And) 2969 return Builder.CreateLogicalAnd(LHS, RHS, Name); 2970 if (Opc == Instruction::Or) 2971 return Builder.CreateLogicalOr(LHS, RHS, Name); 2972 llvm_unreachable("Invalid logical opcode"); 2973 } 2974 2975 /// Return true if either PBI or BI has branch weight available, and store 2976 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2977 /// not have branch weight, use 1:1 as its weight. 2978 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2979 uint64_t &PredTrueWeight, 2980 uint64_t &PredFalseWeight, 2981 uint64_t &SuccTrueWeight, 2982 uint64_t &SuccFalseWeight) { 2983 bool PredHasWeights = 2984 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2985 bool SuccHasWeights = 2986 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2987 if (PredHasWeights || SuccHasWeights) { 2988 if (!PredHasWeights) 2989 PredTrueWeight = PredFalseWeight = 1; 2990 if (!SuccHasWeights) 2991 SuccTrueWeight = SuccFalseWeight = 1; 2992 return true; 2993 } else { 2994 return false; 2995 } 2996 } 2997 2998 /// Determine if the two branches share a common destination and deduce a glue 2999 /// that joins the branches' conditions to arrive at the common destination if 3000 /// that would be profitable. 3001 static Optional<std::pair<Instruction::BinaryOps, bool>> 3002 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3003 const TargetTransformInfo *TTI) { 3004 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3005 "Both blocks must end with a conditional branches."); 3006 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3007 "PredBB must be a predecessor of BB."); 3008 3009 // We have the potential to fold the conditions together, but if the 3010 // predecessor branch is predictable, we may not want to merge them. 3011 uint64_t PTWeight, PFWeight; 3012 BranchProbability PBITrueProb, Likely; 3013 if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) && 3014 (PTWeight + PFWeight) != 0) { 3015 PBITrueProb = 3016 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3017 Likely = TTI->getPredictableBranchThreshold(); 3018 } 3019 3020 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3021 // Speculate the 2nd condition unless the 1st is probably true. 3022 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3023 return {{Instruction::Or, false}}; 3024 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3025 // Speculate the 2nd condition unless the 1st is probably false. 3026 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3027 return {{Instruction::And, false}}; 3028 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3029 // Speculate the 2nd condition unless the 1st is probably true. 3030 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3031 return {{Instruction::And, true}}; 3032 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3033 // Speculate the 2nd condition unless the 1st is probably false. 3034 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3035 return {{Instruction::Or, true}}; 3036 } 3037 return None; 3038 } 3039 3040 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3041 DomTreeUpdater *DTU, 3042 MemorySSAUpdater *MSSAU, 3043 const TargetTransformInfo *TTI) { 3044 BasicBlock *BB = BI->getParent(); 3045 BasicBlock *PredBlock = PBI->getParent(); 3046 3047 // Determine if the two branches share a common destination. 3048 Instruction::BinaryOps Opc; 3049 bool InvertPredCond; 3050 std::tie(Opc, InvertPredCond) = 3051 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3052 3053 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3054 3055 IRBuilder<> Builder(PBI); 3056 // The builder is used to create instructions to eliminate the branch in BB. 3057 // If BB's terminator has !annotation metadata, add it to the new 3058 // instructions. 3059 Builder.CollectMetadataToCopy(BB->getTerminator(), 3060 {LLVMContext::MD_annotation}); 3061 3062 // If we need to invert the condition in the pred block to match, do so now. 3063 if (InvertPredCond) { 3064 Value *NewCond = PBI->getCondition(); 3065 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3066 CmpInst *CI = cast<CmpInst>(NewCond); 3067 CI->setPredicate(CI->getInversePredicate()); 3068 } else { 3069 NewCond = 3070 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3071 } 3072 3073 PBI->setCondition(NewCond); 3074 PBI->swapSuccessors(); 3075 } 3076 3077 BasicBlock *UniqueSucc = 3078 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3079 3080 // Before cloning instructions, notify the successor basic block that it 3081 // is about to have a new predecessor. This will update PHI nodes, 3082 // which will allow us to update live-out uses of bonus instructions. 3083 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3084 3085 // Try to update branch weights. 3086 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3087 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3088 SuccTrueWeight, SuccFalseWeight)) { 3089 SmallVector<uint64_t, 8> NewWeights; 3090 3091 if (PBI->getSuccessor(0) == BB) { 3092 // PBI: br i1 %x, BB, FalseDest 3093 // BI: br i1 %y, UniqueSucc, FalseDest 3094 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3095 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3096 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3097 // TrueWeight for PBI * FalseWeight for BI. 3098 // We assume that total weights of a BranchInst can fit into 32 bits. 3099 // Therefore, we will not have overflow using 64-bit arithmetic. 3100 NewWeights.push_back(PredFalseWeight * 3101 (SuccFalseWeight + SuccTrueWeight) + 3102 PredTrueWeight * SuccFalseWeight); 3103 } else { 3104 // PBI: br i1 %x, TrueDest, BB 3105 // BI: br i1 %y, TrueDest, UniqueSucc 3106 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3107 // FalseWeight for PBI * TrueWeight for BI. 3108 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3109 PredFalseWeight * SuccTrueWeight); 3110 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3111 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3112 } 3113 3114 // Halve the weights if any of them cannot fit in an uint32_t 3115 FitWeights(NewWeights); 3116 3117 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3118 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3119 3120 // TODO: If BB is reachable from all paths through PredBlock, then we 3121 // could replace PBI's branch probabilities with BI's. 3122 } else 3123 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3124 3125 // Now, update the CFG. 3126 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3127 3128 if (DTU) 3129 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3130 {DominatorTree::Delete, PredBlock, BB}}); 3131 3132 // If BI was a loop latch, it may have had associated loop metadata. 3133 // We need to copy it to the new latch, that is, PBI. 3134 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3135 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3136 3137 ValueToValueMapTy VMap; // maps original values to cloned values 3138 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3139 3140 // Now that the Cond was cloned into the predecessor basic block, 3141 // or/and the two conditions together. 3142 Value *BICond = VMap[BI->getCondition()]; 3143 PBI->setCondition( 3144 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3145 3146 // Copy any debug value intrinsics into the end of PredBlock. 3147 for (Instruction &I : *BB) { 3148 if (isa<DbgInfoIntrinsic>(I)) { 3149 Instruction *NewI = I.clone(); 3150 RemapInstruction(NewI, VMap, 3151 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3152 NewI->insertBefore(PBI); 3153 } 3154 } 3155 3156 ++NumFoldBranchToCommonDest; 3157 return true; 3158 } 3159 3160 /// If this basic block is simple enough, and if a predecessor branches to us 3161 /// and one of our successors, fold the block into the predecessor and use 3162 /// logical operations to pick the right destination. 3163 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3164 MemorySSAUpdater *MSSAU, 3165 const TargetTransformInfo *TTI, 3166 unsigned BonusInstThreshold) { 3167 // If this block ends with an unconditional branch, 3168 // let SpeculativelyExecuteBB() deal with it. 3169 if (!BI->isConditional()) 3170 return false; 3171 3172 BasicBlock *BB = BI->getParent(); 3173 3174 bool Changed = false; 3175 3176 TargetTransformInfo::TargetCostKind CostKind = 3177 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3178 : TargetTransformInfo::TCK_SizeAndLatency; 3179 3180 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3181 3182 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3183 Cond->getParent() != BB || !Cond->hasOneUse()) 3184 return Changed; 3185 3186 // Cond is known to be a compare or binary operator. Check to make sure that 3187 // neither operand is a potentially-trapping constant expression. 3188 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3189 if (CE->canTrap()) 3190 return Changed; 3191 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3192 if (CE->canTrap()) 3193 return Changed; 3194 3195 // Finally, don't infinitely unroll conditional loops. 3196 if (is_contained(successors(BB), BB)) 3197 return Changed; 3198 3199 // With which predecessors will we want to deal with? 3200 SmallVector<BasicBlock *, 8> Preds; 3201 for (BasicBlock *PredBlock : predecessors(BB)) { 3202 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3203 3204 // Check that we have two conditional branches. If there is a PHI node in 3205 // the common successor, verify that the same value flows in from both 3206 // blocks. 3207 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3208 continue; 3209 3210 // Determine if the two branches share a common destination. 3211 Instruction::BinaryOps Opc; 3212 bool InvertPredCond; 3213 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3214 std::tie(Opc, InvertPredCond) = *Recipe; 3215 else 3216 continue; 3217 3218 // Check the cost of inserting the necessary logic before performing the 3219 // transformation. 3220 if (TTI) { 3221 Type *Ty = BI->getCondition()->getType(); 3222 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3223 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3224 !isa<CmpInst>(PBI->getCondition()))) 3225 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3226 3227 if (Cost > BranchFoldThreshold) 3228 continue; 3229 } 3230 3231 // Ok, we do want to deal with this predecessor. Record it. 3232 Preds.emplace_back(PredBlock); 3233 } 3234 3235 // If there aren't any predecessors into which we can fold, 3236 // don't bother checking the cost. 3237 if (Preds.empty()) 3238 return Changed; 3239 3240 // Only allow this transformation if computing the condition doesn't involve 3241 // too many instructions and these involved instructions can be executed 3242 // unconditionally. We denote all involved instructions except the condition 3243 // as "bonus instructions", and only allow this transformation when the 3244 // number of the bonus instructions we'll need to create when cloning into 3245 // each predecessor does not exceed a certain threshold. 3246 unsigned NumBonusInsts = 0; 3247 const unsigned PredCount = Preds.size(); 3248 for (Instruction &I : *BB) { 3249 // Don't check the branch condition comparison itself. 3250 if (&I == Cond) 3251 continue; 3252 // Ignore dbg intrinsics, and the terminator. 3253 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3254 continue; 3255 // I must be safe to execute unconditionally. 3256 if (!isSafeToSpeculativelyExecute(&I)) 3257 return Changed; 3258 3259 // Account for the cost of duplicating this instruction into each 3260 // predecessor. 3261 NumBonusInsts += PredCount; 3262 // Early exits once we reach the limit. 3263 if (NumBonusInsts > BonusInstThreshold) 3264 return Changed; 3265 } 3266 3267 // Ok, we have the budget. Perform the transformation. 3268 for (BasicBlock *PredBlock : Preds) { 3269 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3270 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3271 } 3272 return Changed; 3273 } 3274 3275 // If there is only one store in BB1 and BB2, return it, otherwise return 3276 // nullptr. 3277 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3278 StoreInst *S = nullptr; 3279 for (auto *BB : {BB1, BB2}) { 3280 if (!BB) 3281 continue; 3282 for (auto &I : *BB) 3283 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3284 if (S) 3285 // Multiple stores seen. 3286 return nullptr; 3287 else 3288 S = SI; 3289 } 3290 } 3291 return S; 3292 } 3293 3294 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3295 Value *AlternativeV = nullptr) { 3296 // PHI is going to be a PHI node that allows the value V that is defined in 3297 // BB to be referenced in BB's only successor. 3298 // 3299 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3300 // doesn't matter to us what the other operand is (it'll never get used). We 3301 // could just create a new PHI with an undef incoming value, but that could 3302 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3303 // other PHI. So here we directly look for some PHI in BB's successor with V 3304 // as an incoming operand. If we find one, we use it, else we create a new 3305 // one. 3306 // 3307 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3308 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3309 // where OtherBB is the single other predecessor of BB's only successor. 3310 PHINode *PHI = nullptr; 3311 BasicBlock *Succ = BB->getSingleSuccessor(); 3312 3313 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3314 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3315 PHI = cast<PHINode>(I); 3316 if (!AlternativeV) 3317 break; 3318 3319 assert(Succ->hasNPredecessors(2)); 3320 auto PredI = pred_begin(Succ); 3321 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3322 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3323 break; 3324 PHI = nullptr; 3325 } 3326 if (PHI) 3327 return PHI; 3328 3329 // If V is not an instruction defined in BB, just return it. 3330 if (!AlternativeV && 3331 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3332 return V; 3333 3334 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3335 PHI->addIncoming(V, BB); 3336 for (BasicBlock *PredBB : predecessors(Succ)) 3337 if (PredBB != BB) 3338 PHI->addIncoming( 3339 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3340 return PHI; 3341 } 3342 3343 static bool mergeConditionalStoreToAddress( 3344 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3345 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3346 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3347 // For every pointer, there must be exactly two stores, one coming from 3348 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3349 // store (to any address) in PTB,PFB or QTB,QFB. 3350 // FIXME: We could relax this restriction with a bit more work and performance 3351 // testing. 3352 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3353 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3354 if (!PStore || !QStore) 3355 return false; 3356 3357 // Now check the stores are compatible. 3358 if (!QStore->isUnordered() || !PStore->isUnordered()) 3359 return false; 3360 3361 // Check that sinking the store won't cause program behavior changes. Sinking 3362 // the store out of the Q blocks won't change any behavior as we're sinking 3363 // from a block to its unconditional successor. But we're moving a store from 3364 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3365 // So we need to check that there are no aliasing loads or stores in 3366 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3367 // operations between PStore and the end of its parent block. 3368 // 3369 // The ideal way to do this is to query AliasAnalysis, but we don't 3370 // preserve AA currently so that is dangerous. Be super safe and just 3371 // check there are no other memory operations at all. 3372 for (auto &I : *QFB->getSinglePredecessor()) 3373 if (I.mayReadOrWriteMemory()) 3374 return false; 3375 for (auto &I : *QFB) 3376 if (&I != QStore && I.mayReadOrWriteMemory()) 3377 return false; 3378 if (QTB) 3379 for (auto &I : *QTB) 3380 if (&I != QStore && I.mayReadOrWriteMemory()) 3381 return false; 3382 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3383 I != E; ++I) 3384 if (&*I != PStore && I->mayReadOrWriteMemory()) 3385 return false; 3386 3387 // If we're not in aggressive mode, we only optimize if we have some 3388 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3389 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3390 if (!BB) 3391 return true; 3392 // Heuristic: if the block can be if-converted/phi-folded and the 3393 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3394 // thread this store. 3395 InstructionCost Cost = 0; 3396 InstructionCost Budget = 3397 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3398 for (auto &I : BB->instructionsWithoutDebug()) { 3399 // Consider terminator instruction to be free. 3400 if (I.isTerminator()) 3401 continue; 3402 // If this is one the stores that we want to speculate out of this BB, 3403 // then don't count it's cost, consider it to be free. 3404 if (auto *S = dyn_cast<StoreInst>(&I)) 3405 if (llvm::find(FreeStores, S)) 3406 continue; 3407 // Else, we have a white-list of instructions that we are ak speculating. 3408 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3409 return false; // Not in white-list - not worthwhile folding. 3410 // And finally, if this is a non-free instruction that we are okay 3411 // speculating, ensure that we consider the speculation budget. 3412 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3413 if (Cost > Budget) 3414 return false; // Eagerly refuse to fold as soon as we're out of budget. 3415 } 3416 assert(Cost <= Budget && 3417 "When we run out of budget we will eagerly return from within the " 3418 "per-instruction loop."); 3419 return true; 3420 }; 3421 3422 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3423 if (!MergeCondStoresAggressively && 3424 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3425 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3426 return false; 3427 3428 // If PostBB has more than two predecessors, we need to split it so we can 3429 // sink the store. 3430 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3431 // We know that QFB's only successor is PostBB. And QFB has a single 3432 // predecessor. If QTB exists, then its only successor is also PostBB. 3433 // If QTB does not exist, then QFB's only predecessor has a conditional 3434 // branch to QFB and PostBB. 3435 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3436 BasicBlock *NewBB = 3437 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3438 if (!NewBB) 3439 return false; 3440 PostBB = NewBB; 3441 } 3442 3443 // OK, we're going to sink the stores to PostBB. The store has to be 3444 // conditional though, so first create the predicate. 3445 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3446 ->getCondition(); 3447 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3448 ->getCondition(); 3449 3450 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3451 PStore->getParent()); 3452 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3453 QStore->getParent(), PPHI); 3454 3455 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3456 3457 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3458 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3459 3460 if (InvertPCond) 3461 PPred = QB.CreateNot(PPred); 3462 if (InvertQCond) 3463 QPred = QB.CreateNot(QPred); 3464 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3465 3466 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3467 /*Unreachable=*/false, 3468 /*BranchWeights=*/nullptr, DTU); 3469 QB.SetInsertPoint(T); 3470 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3471 AAMDNodes AAMD; 3472 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3473 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3474 SI->setAAMetadata(AAMD); 3475 // Choose the minimum alignment. If we could prove both stores execute, we 3476 // could use biggest one. In this case, though, we only know that one of the 3477 // stores executes. And we don't know it's safe to take the alignment from a 3478 // store that doesn't execute. 3479 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3480 3481 QStore->eraseFromParent(); 3482 PStore->eraseFromParent(); 3483 3484 return true; 3485 } 3486 3487 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3488 DomTreeUpdater *DTU, const DataLayout &DL, 3489 const TargetTransformInfo &TTI) { 3490 // The intention here is to find diamonds or triangles (see below) where each 3491 // conditional block contains a store to the same address. Both of these 3492 // stores are conditional, so they can't be unconditionally sunk. But it may 3493 // be profitable to speculatively sink the stores into one merged store at the 3494 // end, and predicate the merged store on the union of the two conditions of 3495 // PBI and QBI. 3496 // 3497 // This can reduce the number of stores executed if both of the conditions are 3498 // true, and can allow the blocks to become small enough to be if-converted. 3499 // This optimization will also chain, so that ladders of test-and-set 3500 // sequences can be if-converted away. 3501 // 3502 // We only deal with simple diamonds or triangles: 3503 // 3504 // PBI or PBI or a combination of the two 3505 // / \ | \ 3506 // PTB PFB | PFB 3507 // \ / | / 3508 // QBI QBI 3509 // / \ | \ 3510 // QTB QFB | QFB 3511 // \ / | / 3512 // PostBB PostBB 3513 // 3514 // We model triangles as a type of diamond with a nullptr "true" block. 3515 // Triangles are canonicalized so that the fallthrough edge is represented by 3516 // a true condition, as in the diagram above. 3517 BasicBlock *PTB = PBI->getSuccessor(0); 3518 BasicBlock *PFB = PBI->getSuccessor(1); 3519 BasicBlock *QTB = QBI->getSuccessor(0); 3520 BasicBlock *QFB = QBI->getSuccessor(1); 3521 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3522 3523 // Make sure we have a good guess for PostBB. If QTB's only successor is 3524 // QFB, then QFB is a better PostBB. 3525 if (QTB->getSingleSuccessor() == QFB) 3526 PostBB = QFB; 3527 3528 // If we couldn't find a good PostBB, stop. 3529 if (!PostBB) 3530 return false; 3531 3532 bool InvertPCond = false, InvertQCond = false; 3533 // Canonicalize fallthroughs to the true branches. 3534 if (PFB == QBI->getParent()) { 3535 std::swap(PFB, PTB); 3536 InvertPCond = true; 3537 } 3538 if (QFB == PostBB) { 3539 std::swap(QFB, QTB); 3540 InvertQCond = true; 3541 } 3542 3543 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3544 // and QFB may not. Model fallthroughs as a nullptr block. 3545 if (PTB == QBI->getParent()) 3546 PTB = nullptr; 3547 if (QTB == PostBB) 3548 QTB = nullptr; 3549 3550 // Legality bailouts. We must have at least the non-fallthrough blocks and 3551 // the post-dominating block, and the non-fallthroughs must only have one 3552 // predecessor. 3553 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3554 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3555 }; 3556 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3557 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3558 return false; 3559 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3560 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3561 return false; 3562 if (!QBI->getParent()->hasNUses(2)) 3563 return false; 3564 3565 // OK, this is a sequence of two diamonds or triangles. 3566 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3567 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3568 for (auto *BB : {PTB, PFB}) { 3569 if (!BB) 3570 continue; 3571 for (auto &I : *BB) 3572 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3573 PStoreAddresses.insert(SI->getPointerOperand()); 3574 } 3575 for (auto *BB : {QTB, QFB}) { 3576 if (!BB) 3577 continue; 3578 for (auto &I : *BB) 3579 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3580 QStoreAddresses.insert(SI->getPointerOperand()); 3581 } 3582 3583 set_intersect(PStoreAddresses, QStoreAddresses); 3584 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3585 // clear what it contains. 3586 auto &CommonAddresses = PStoreAddresses; 3587 3588 bool Changed = false; 3589 for (auto *Address : CommonAddresses) 3590 Changed |= 3591 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3592 InvertPCond, InvertQCond, DTU, DL, TTI); 3593 return Changed; 3594 } 3595 3596 /// If the previous block ended with a widenable branch, determine if reusing 3597 /// the target block is profitable and legal. This will have the effect of 3598 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3599 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3600 DomTreeUpdater *DTU) { 3601 // TODO: This can be generalized in two important ways: 3602 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3603 // values from the PBI edge. 3604 // 2) We can sink side effecting instructions into BI's fallthrough 3605 // successor provided they doesn't contribute to computation of 3606 // BI's condition. 3607 Value *CondWB, *WC; 3608 BasicBlock *IfTrueBB, *IfFalseBB; 3609 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3610 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3611 return false; 3612 if (!IfFalseBB->phis().empty()) 3613 return false; // TODO 3614 // Use lambda to lazily compute expensive condition after cheap ones. 3615 auto NoSideEffects = [](BasicBlock &BB) { 3616 return !llvm::any_of(BB, [](const Instruction &I) { 3617 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3618 }); 3619 }; 3620 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3621 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3622 NoSideEffects(*BI->getParent())) { 3623 auto *OldSuccessor = BI->getSuccessor(1); 3624 OldSuccessor->removePredecessor(BI->getParent()); 3625 BI->setSuccessor(1, IfFalseBB); 3626 if (DTU) 3627 DTU->applyUpdates( 3628 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3629 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3630 return true; 3631 } 3632 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3633 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3634 NoSideEffects(*BI->getParent())) { 3635 auto *OldSuccessor = BI->getSuccessor(0); 3636 OldSuccessor->removePredecessor(BI->getParent()); 3637 BI->setSuccessor(0, IfFalseBB); 3638 if (DTU) 3639 DTU->applyUpdates( 3640 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3641 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3642 return true; 3643 } 3644 return false; 3645 } 3646 3647 /// If we have a conditional branch as a predecessor of another block, 3648 /// this function tries to simplify it. We know 3649 /// that PBI and BI are both conditional branches, and BI is in one of the 3650 /// successor blocks of PBI - PBI branches to BI. 3651 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3652 DomTreeUpdater *DTU, 3653 const DataLayout &DL, 3654 const TargetTransformInfo &TTI) { 3655 assert(PBI->isConditional() && BI->isConditional()); 3656 BasicBlock *BB = BI->getParent(); 3657 3658 // If this block ends with a branch instruction, and if there is a 3659 // predecessor that ends on a branch of the same condition, make 3660 // this conditional branch redundant. 3661 if (PBI->getCondition() == BI->getCondition() && 3662 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3663 // Okay, the outcome of this conditional branch is statically 3664 // knowable. If this block had a single pred, handle specially. 3665 if (BB->getSinglePredecessor()) { 3666 // Turn this into a branch on constant. 3667 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3668 BI->setCondition( 3669 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3670 return true; // Nuke the branch on constant. 3671 } 3672 3673 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3674 // in the constant and simplify the block result. Subsequent passes of 3675 // simplifycfg will thread the block. 3676 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3677 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3678 PHINode *NewPN = PHINode::Create( 3679 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3680 BI->getCondition()->getName() + ".pr", &BB->front()); 3681 // Okay, we're going to insert the PHI node. Since PBI is not the only 3682 // predecessor, compute the PHI'd conditional value for all of the preds. 3683 // Any predecessor where the condition is not computable we keep symbolic. 3684 for (pred_iterator PI = PB; PI != PE; ++PI) { 3685 BasicBlock *P = *PI; 3686 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3687 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3688 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3689 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3690 NewPN->addIncoming( 3691 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3692 P); 3693 } else { 3694 NewPN->addIncoming(BI->getCondition(), P); 3695 } 3696 } 3697 3698 BI->setCondition(NewPN); 3699 return true; 3700 } 3701 } 3702 3703 // If the previous block ended with a widenable branch, determine if reusing 3704 // the target block is profitable and legal. This will have the effect of 3705 // "widening" PBI, but doesn't require us to reason about hosting safety. 3706 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3707 return true; 3708 3709 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3710 if (CE->canTrap()) 3711 return false; 3712 3713 // If both branches are conditional and both contain stores to the same 3714 // address, remove the stores from the conditionals and create a conditional 3715 // merged store at the end. 3716 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3717 return true; 3718 3719 // If this is a conditional branch in an empty block, and if any 3720 // predecessors are a conditional branch to one of our destinations, 3721 // fold the conditions into logical ops and one cond br. 3722 3723 // Ignore dbg intrinsics. 3724 if (&*BB->instructionsWithoutDebug().begin() != BI) 3725 return false; 3726 3727 int PBIOp, BIOp; 3728 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3729 PBIOp = 0; 3730 BIOp = 0; 3731 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3732 PBIOp = 0; 3733 BIOp = 1; 3734 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3735 PBIOp = 1; 3736 BIOp = 0; 3737 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3738 PBIOp = 1; 3739 BIOp = 1; 3740 } else { 3741 return false; 3742 } 3743 3744 // Check to make sure that the other destination of this branch 3745 // isn't BB itself. If so, this is an infinite loop that will 3746 // keep getting unwound. 3747 if (PBI->getSuccessor(PBIOp) == BB) 3748 return false; 3749 3750 // Do not perform this transformation if it would require 3751 // insertion of a large number of select instructions. For targets 3752 // without predication/cmovs, this is a big pessimization. 3753 3754 // Also do not perform this transformation if any phi node in the common 3755 // destination block can trap when reached by BB or PBB (PR17073). In that 3756 // case, it would be unsafe to hoist the operation into a select instruction. 3757 3758 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3759 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3760 unsigned NumPhis = 0; 3761 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3762 ++II, ++NumPhis) { 3763 if (NumPhis > 2) // Disable this xform. 3764 return false; 3765 3766 PHINode *PN = cast<PHINode>(II); 3767 Value *BIV = PN->getIncomingValueForBlock(BB); 3768 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3769 if (CE->canTrap()) 3770 return false; 3771 3772 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3773 Value *PBIV = PN->getIncomingValue(PBBIdx); 3774 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3775 if (CE->canTrap()) 3776 return false; 3777 } 3778 3779 // Finally, if everything is ok, fold the branches to logical ops. 3780 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3781 3782 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3783 << "AND: " << *BI->getParent()); 3784 3785 SmallVector<DominatorTree::UpdateType, 5> Updates; 3786 3787 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3788 // branch in it, where one edge (OtherDest) goes back to itself but the other 3789 // exits. We don't *know* that the program avoids the infinite loop 3790 // (even though that seems likely). If we do this xform naively, we'll end up 3791 // recursively unpeeling the loop. Since we know that (after the xform is 3792 // done) that the block *is* infinite if reached, we just make it an obviously 3793 // infinite loop with no cond branch. 3794 if (OtherDest == BB) { 3795 // Insert it at the end of the function, because it's either code, 3796 // or it won't matter if it's hot. :) 3797 BasicBlock *InfLoopBlock = 3798 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3799 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3800 if (DTU) 3801 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3802 OtherDest = InfLoopBlock; 3803 } 3804 3805 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3806 3807 // BI may have other predecessors. Because of this, we leave 3808 // it alone, but modify PBI. 3809 3810 // Make sure we get to CommonDest on True&True directions. 3811 Value *PBICond = PBI->getCondition(); 3812 IRBuilder<NoFolder> Builder(PBI); 3813 if (PBIOp) 3814 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3815 3816 Value *BICond = BI->getCondition(); 3817 if (BIOp) 3818 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3819 3820 // Merge the conditions. 3821 Value *Cond = 3822 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 3823 3824 // Modify PBI to branch on the new condition to the new dests. 3825 PBI->setCondition(Cond); 3826 PBI->setSuccessor(0, CommonDest); 3827 PBI->setSuccessor(1, OtherDest); 3828 3829 if (DTU) { 3830 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3831 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3832 3833 DTU->applyUpdates(Updates); 3834 } 3835 3836 // Update branch weight for PBI. 3837 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3838 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3839 bool HasWeights = 3840 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3841 SuccTrueWeight, SuccFalseWeight); 3842 if (HasWeights) { 3843 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3844 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3845 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3846 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3847 // The weight to CommonDest should be PredCommon * SuccTotal + 3848 // PredOther * SuccCommon. 3849 // The weight to OtherDest should be PredOther * SuccOther. 3850 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3851 PredOther * SuccCommon, 3852 PredOther * SuccOther}; 3853 // Halve the weights if any of them cannot fit in an uint32_t 3854 FitWeights(NewWeights); 3855 3856 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3857 } 3858 3859 // OtherDest may have phi nodes. If so, add an entry from PBI's 3860 // block that are identical to the entries for BI's block. 3861 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3862 3863 // We know that the CommonDest already had an edge from PBI to 3864 // it. If it has PHIs though, the PHIs may have different 3865 // entries for BB and PBI's BB. If so, insert a select to make 3866 // them agree. 3867 for (PHINode &PN : CommonDest->phis()) { 3868 Value *BIV = PN.getIncomingValueForBlock(BB); 3869 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3870 Value *PBIV = PN.getIncomingValue(PBBIdx); 3871 if (BIV != PBIV) { 3872 // Insert a select in PBI to pick the right value. 3873 SelectInst *NV = cast<SelectInst>( 3874 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3875 PN.setIncomingValue(PBBIdx, NV); 3876 // Although the select has the same condition as PBI, the original branch 3877 // weights for PBI do not apply to the new select because the select's 3878 // 'logical' edges are incoming edges of the phi that is eliminated, not 3879 // the outgoing edges of PBI. 3880 if (HasWeights) { 3881 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3882 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3883 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3884 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3885 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3886 // The weight to PredOtherDest should be PredOther * SuccCommon. 3887 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3888 PredOther * SuccCommon}; 3889 3890 FitWeights(NewWeights); 3891 3892 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3893 } 3894 } 3895 } 3896 3897 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3898 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3899 3900 // This basic block is probably dead. We know it has at least 3901 // one fewer predecessor. 3902 return true; 3903 } 3904 3905 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3906 // true or to FalseBB if Cond is false. 3907 // Takes care of updating the successors and removing the old terminator. 3908 // Also makes sure not to introduce new successors by assuming that edges to 3909 // non-successor TrueBBs and FalseBBs aren't reachable. 3910 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3911 Value *Cond, BasicBlock *TrueBB, 3912 BasicBlock *FalseBB, 3913 uint32_t TrueWeight, 3914 uint32_t FalseWeight) { 3915 auto *BB = OldTerm->getParent(); 3916 // Remove any superfluous successor edges from the CFG. 3917 // First, figure out which successors to preserve. 3918 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3919 // successor. 3920 BasicBlock *KeepEdge1 = TrueBB; 3921 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3922 3923 SmallPtrSet<BasicBlock *, 2> RemovedSuccessors; 3924 3925 // Then remove the rest. 3926 for (BasicBlock *Succ : successors(OldTerm)) { 3927 // Make sure only to keep exactly one copy of each edge. 3928 if (Succ == KeepEdge1) 3929 KeepEdge1 = nullptr; 3930 else if (Succ == KeepEdge2) 3931 KeepEdge2 = nullptr; 3932 else { 3933 Succ->removePredecessor(BB, 3934 /*KeepOneInputPHIs=*/true); 3935 3936 if (Succ != TrueBB && Succ != FalseBB) 3937 RemovedSuccessors.insert(Succ); 3938 } 3939 } 3940 3941 IRBuilder<> Builder(OldTerm); 3942 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3943 3944 // Insert an appropriate new terminator. 3945 if (!KeepEdge1 && !KeepEdge2) { 3946 if (TrueBB == FalseBB) { 3947 // We were only looking for one successor, and it was present. 3948 // Create an unconditional branch to it. 3949 Builder.CreateBr(TrueBB); 3950 } else { 3951 // We found both of the successors we were looking for. 3952 // Create a conditional branch sharing the condition of the select. 3953 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3954 if (TrueWeight != FalseWeight) 3955 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3956 } 3957 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3958 // Neither of the selected blocks were successors, so this 3959 // terminator must be unreachable. 3960 new UnreachableInst(OldTerm->getContext(), OldTerm); 3961 } else { 3962 // One of the selected values was a successor, but the other wasn't. 3963 // Insert an unconditional branch to the one that was found; 3964 // the edge to the one that wasn't must be unreachable. 3965 if (!KeepEdge1) { 3966 // Only TrueBB was found. 3967 Builder.CreateBr(TrueBB); 3968 } else { 3969 // Only FalseBB was found. 3970 Builder.CreateBr(FalseBB); 3971 } 3972 } 3973 3974 EraseTerminatorAndDCECond(OldTerm); 3975 3976 if (DTU) { 3977 SmallVector<DominatorTree::UpdateType, 2> Updates; 3978 Updates.reserve(RemovedSuccessors.size()); 3979 for (auto *RemovedSuccessor : RemovedSuccessors) 3980 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3981 DTU->applyUpdates(Updates); 3982 } 3983 3984 return true; 3985 } 3986 3987 // Replaces 3988 // (switch (select cond, X, Y)) on constant X, Y 3989 // with a branch - conditional if X and Y lead to distinct BBs, 3990 // unconditional otherwise. 3991 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3992 SelectInst *Select) { 3993 // Check for constant integer values in the select. 3994 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3995 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3996 if (!TrueVal || !FalseVal) 3997 return false; 3998 3999 // Find the relevant condition and destinations. 4000 Value *Condition = Select->getCondition(); 4001 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4002 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4003 4004 // Get weight for TrueBB and FalseBB. 4005 uint32_t TrueWeight = 0, FalseWeight = 0; 4006 SmallVector<uint64_t, 8> Weights; 4007 bool HasWeights = HasBranchWeights(SI); 4008 if (HasWeights) { 4009 GetBranchWeights(SI, Weights); 4010 if (Weights.size() == 1 + SI->getNumCases()) { 4011 TrueWeight = 4012 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4013 FalseWeight = 4014 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4015 } 4016 } 4017 4018 // Perform the actual simplification. 4019 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4020 FalseWeight); 4021 } 4022 4023 // Replaces 4024 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4025 // blockaddress(@fn, BlockB))) 4026 // with 4027 // (br cond, BlockA, BlockB). 4028 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4029 SelectInst *SI) { 4030 // Check that both operands of the select are block addresses. 4031 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4032 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4033 if (!TBA || !FBA) 4034 return false; 4035 4036 // Extract the actual blocks. 4037 BasicBlock *TrueBB = TBA->getBasicBlock(); 4038 BasicBlock *FalseBB = FBA->getBasicBlock(); 4039 4040 // Perform the actual simplification. 4041 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4042 0); 4043 } 4044 4045 /// This is called when we find an icmp instruction 4046 /// (a seteq/setne with a constant) as the only instruction in a 4047 /// block that ends with an uncond branch. We are looking for a very specific 4048 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4049 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4050 /// default value goes to an uncond block with a seteq in it, we get something 4051 /// like: 4052 /// 4053 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4054 /// DEFAULT: 4055 /// %tmp = icmp eq i8 %A, 92 4056 /// br label %end 4057 /// end: 4058 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4059 /// 4060 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4061 /// the PHI, merging the third icmp into the switch. 4062 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4063 ICmpInst *ICI, IRBuilder<> &Builder) { 4064 BasicBlock *BB = ICI->getParent(); 4065 4066 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4067 // complex. 4068 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4069 return false; 4070 4071 Value *V = ICI->getOperand(0); 4072 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4073 4074 // The pattern we're looking for is where our only predecessor is a switch on 4075 // 'V' and this block is the default case for the switch. In this case we can 4076 // fold the compared value into the switch to simplify things. 4077 BasicBlock *Pred = BB->getSinglePredecessor(); 4078 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4079 return false; 4080 4081 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4082 if (SI->getCondition() != V) 4083 return false; 4084 4085 // If BB is reachable on a non-default case, then we simply know the value of 4086 // V in this block. Substitute it and constant fold the icmp instruction 4087 // away. 4088 if (SI->getDefaultDest() != BB) { 4089 ConstantInt *VVal = SI->findCaseDest(BB); 4090 assert(VVal && "Should have a unique destination value"); 4091 ICI->setOperand(0, VVal); 4092 4093 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 4094 ICI->replaceAllUsesWith(V); 4095 ICI->eraseFromParent(); 4096 } 4097 // BB is now empty, so it is likely to simplify away. 4098 return requestResimplify(); 4099 } 4100 4101 // Ok, the block is reachable from the default dest. If the constant we're 4102 // comparing exists in one of the other edges, then we can constant fold ICI 4103 // and zap it. 4104 if (SI->findCaseValue(Cst) != SI->case_default()) { 4105 Value *V; 4106 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4107 V = ConstantInt::getFalse(BB->getContext()); 4108 else 4109 V = ConstantInt::getTrue(BB->getContext()); 4110 4111 ICI->replaceAllUsesWith(V); 4112 ICI->eraseFromParent(); 4113 // BB is now empty, so it is likely to simplify away. 4114 return requestResimplify(); 4115 } 4116 4117 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4118 // the block. 4119 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4120 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4121 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4122 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4123 return false; 4124 4125 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4126 // true in the PHI. 4127 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4128 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4129 4130 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4131 std::swap(DefaultCst, NewCst); 4132 4133 // Replace ICI (which is used by the PHI for the default value) with true or 4134 // false depending on if it is EQ or NE. 4135 ICI->replaceAllUsesWith(DefaultCst); 4136 ICI->eraseFromParent(); 4137 4138 SmallVector<DominatorTree::UpdateType, 2> Updates; 4139 4140 // Okay, the switch goes to this block on a default value. Add an edge from 4141 // the switch to the merge point on the compared value. 4142 BasicBlock *NewBB = 4143 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4144 { 4145 SwitchInstProfUpdateWrapper SIW(*SI); 4146 auto W0 = SIW.getSuccessorWeight(0); 4147 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4148 if (W0) { 4149 NewW = ((uint64_t(*W0) + 1) >> 1); 4150 SIW.setSuccessorWeight(0, *NewW); 4151 } 4152 SIW.addCase(Cst, NewBB, NewW); 4153 if (DTU) 4154 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4155 } 4156 4157 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4158 Builder.SetInsertPoint(NewBB); 4159 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4160 Builder.CreateBr(SuccBlock); 4161 PHIUse->addIncoming(NewCst, NewBB); 4162 if (DTU) { 4163 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4164 DTU->applyUpdates(Updates); 4165 } 4166 return true; 4167 } 4168 4169 /// The specified branch is a conditional branch. 4170 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4171 /// fold it into a switch instruction if so. 4172 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4173 IRBuilder<> &Builder, 4174 const DataLayout &DL) { 4175 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4176 if (!Cond) 4177 return false; 4178 4179 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4180 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4181 // 'setne's and'ed together, collect them. 4182 4183 // Try to gather values from a chain of and/or to be turned into a switch 4184 ConstantComparesGatherer ConstantCompare(Cond, DL); 4185 // Unpack the result 4186 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4187 Value *CompVal = ConstantCompare.CompValue; 4188 unsigned UsedICmps = ConstantCompare.UsedICmps; 4189 Value *ExtraCase = ConstantCompare.Extra; 4190 4191 // If we didn't have a multiply compared value, fail. 4192 if (!CompVal) 4193 return false; 4194 4195 // Avoid turning single icmps into a switch. 4196 if (UsedICmps <= 1) 4197 return false; 4198 4199 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4200 4201 // There might be duplicate constants in the list, which the switch 4202 // instruction can't handle, remove them now. 4203 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4204 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4205 4206 // If Extra was used, we require at least two switch values to do the 4207 // transformation. A switch with one value is just a conditional branch. 4208 if (ExtraCase && Values.size() < 2) 4209 return false; 4210 4211 // TODO: Preserve branch weight metadata, similarly to how 4212 // FoldValueComparisonIntoPredecessors preserves it. 4213 4214 // Figure out which block is which destination. 4215 BasicBlock *DefaultBB = BI->getSuccessor(1); 4216 BasicBlock *EdgeBB = BI->getSuccessor(0); 4217 if (!TrueWhenEqual) 4218 std::swap(DefaultBB, EdgeBB); 4219 4220 BasicBlock *BB = BI->getParent(); 4221 4222 // MSAN does not like undefs as branch condition which can be introduced 4223 // with "explicit branch". 4224 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4225 return false; 4226 4227 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4228 << " cases into SWITCH. BB is:\n" 4229 << *BB); 4230 4231 SmallVector<DominatorTree::UpdateType, 2> Updates; 4232 4233 // If there are any extra values that couldn't be folded into the switch 4234 // then we evaluate them with an explicit branch first. Split the block 4235 // right before the condbr to handle it. 4236 if (ExtraCase) { 4237 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4238 /*MSSAU=*/nullptr, "switch.early.test"); 4239 4240 // Remove the uncond branch added to the old block. 4241 Instruction *OldTI = BB->getTerminator(); 4242 Builder.SetInsertPoint(OldTI); 4243 4244 if (TrueWhenEqual) 4245 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4246 else 4247 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4248 4249 OldTI->eraseFromParent(); 4250 4251 if (DTU) 4252 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4253 4254 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4255 // for the edge we just added. 4256 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4257 4258 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4259 << "\nEXTRABB = " << *BB); 4260 BB = NewBB; 4261 } 4262 4263 Builder.SetInsertPoint(BI); 4264 // Convert pointer to int before we switch. 4265 if (CompVal->getType()->isPointerTy()) { 4266 CompVal = Builder.CreatePtrToInt( 4267 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4268 } 4269 4270 // Create the new switch instruction now. 4271 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4272 4273 // Add all of the 'cases' to the switch instruction. 4274 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4275 New->addCase(Values[i], EdgeBB); 4276 4277 // We added edges from PI to the EdgeBB. As such, if there were any 4278 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4279 // the number of edges added. 4280 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4281 PHINode *PN = cast<PHINode>(BBI); 4282 Value *InVal = PN->getIncomingValueForBlock(BB); 4283 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4284 PN->addIncoming(InVal, BB); 4285 } 4286 4287 // Erase the old branch instruction. 4288 EraseTerminatorAndDCECond(BI); 4289 if (DTU) 4290 DTU->applyUpdates(Updates); 4291 4292 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4293 return true; 4294 } 4295 4296 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4297 if (isa<PHINode>(RI->getValue())) 4298 return simplifyCommonResume(RI); 4299 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4300 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4301 // The resume must unwind the exception that caused control to branch here. 4302 return simplifySingleResume(RI); 4303 4304 return false; 4305 } 4306 4307 // Check if cleanup block is empty 4308 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4309 for (Instruction &I : R) { 4310 auto *II = dyn_cast<IntrinsicInst>(&I); 4311 if (!II) 4312 return false; 4313 4314 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4315 switch (IntrinsicID) { 4316 case Intrinsic::dbg_declare: 4317 case Intrinsic::dbg_value: 4318 case Intrinsic::dbg_label: 4319 case Intrinsic::lifetime_end: 4320 break; 4321 default: 4322 return false; 4323 } 4324 } 4325 return true; 4326 } 4327 4328 // Simplify resume that is shared by several landing pads (phi of landing pad). 4329 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4330 BasicBlock *BB = RI->getParent(); 4331 4332 // Check that there are no other instructions except for debug and lifetime 4333 // intrinsics between the phi's and resume instruction. 4334 if (!isCleanupBlockEmpty( 4335 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4336 return false; 4337 4338 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4339 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4340 4341 // Check incoming blocks to see if any of them are trivial. 4342 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4343 Idx++) { 4344 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4345 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4346 4347 // If the block has other successors, we can not delete it because 4348 // it has other dependents. 4349 if (IncomingBB->getUniqueSuccessor() != BB) 4350 continue; 4351 4352 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4353 // Not the landing pad that caused the control to branch here. 4354 if (IncomingValue != LandingPad) 4355 continue; 4356 4357 if (isCleanupBlockEmpty( 4358 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4359 TrivialUnwindBlocks.insert(IncomingBB); 4360 } 4361 4362 // If no trivial unwind blocks, don't do any simplifications. 4363 if (TrivialUnwindBlocks.empty()) 4364 return false; 4365 4366 // Turn all invokes that unwind here into calls. 4367 for (auto *TrivialBB : TrivialUnwindBlocks) { 4368 // Blocks that will be simplified should be removed from the phi node. 4369 // Note there could be multiple edges to the resume block, and we need 4370 // to remove them all. 4371 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4372 BB->removePredecessor(TrivialBB, true); 4373 4374 for (BasicBlock *Pred : 4375 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4376 removeUnwindEdge(Pred, DTU); 4377 ++NumInvokes; 4378 } 4379 4380 // In each SimplifyCFG run, only the current processed block can be erased. 4381 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4382 // of erasing TrivialBB, we only remove the branch to the common resume 4383 // block so that we can later erase the resume block since it has no 4384 // predecessors. 4385 TrivialBB->getTerminator()->eraseFromParent(); 4386 new UnreachableInst(RI->getContext(), TrivialBB); 4387 if (DTU) 4388 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4389 } 4390 4391 // Delete the resume block if all its predecessors have been removed. 4392 if (pred_empty(BB)) { 4393 if (DTU) 4394 DTU->deleteBB(BB); 4395 else 4396 BB->eraseFromParent(); 4397 } 4398 4399 return !TrivialUnwindBlocks.empty(); 4400 } 4401 4402 // Simplify resume that is only used by a single (non-phi) landing pad. 4403 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4404 BasicBlock *BB = RI->getParent(); 4405 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4406 assert(RI->getValue() == LPInst && 4407 "Resume must unwind the exception that caused control to here"); 4408 4409 // Check that there are no other instructions except for debug intrinsics. 4410 if (!isCleanupBlockEmpty( 4411 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4412 return false; 4413 4414 // Turn all invokes that unwind here into calls and delete the basic block. 4415 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4416 removeUnwindEdge(Pred, DTU); 4417 ++NumInvokes; 4418 } 4419 4420 // The landingpad is now unreachable. Zap it. 4421 if (DTU) 4422 DTU->deleteBB(BB); 4423 else 4424 BB->eraseFromParent(); 4425 return true; 4426 } 4427 4428 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4429 // If this is a trivial cleanup pad that executes no instructions, it can be 4430 // eliminated. If the cleanup pad continues to the caller, any predecessor 4431 // that is an EH pad will be updated to continue to the caller and any 4432 // predecessor that terminates with an invoke instruction will have its invoke 4433 // instruction converted to a call instruction. If the cleanup pad being 4434 // simplified does not continue to the caller, each predecessor will be 4435 // updated to continue to the unwind destination of the cleanup pad being 4436 // simplified. 4437 BasicBlock *BB = RI->getParent(); 4438 CleanupPadInst *CPInst = RI->getCleanupPad(); 4439 if (CPInst->getParent() != BB) 4440 // This isn't an empty cleanup. 4441 return false; 4442 4443 // We cannot kill the pad if it has multiple uses. This typically arises 4444 // from unreachable basic blocks. 4445 if (!CPInst->hasOneUse()) 4446 return false; 4447 4448 // Check that there are no other instructions except for benign intrinsics. 4449 if (!isCleanupBlockEmpty( 4450 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4451 return false; 4452 4453 // If the cleanup return we are simplifying unwinds to the caller, this will 4454 // set UnwindDest to nullptr. 4455 BasicBlock *UnwindDest = RI->getUnwindDest(); 4456 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4457 4458 // We're about to remove BB from the control flow. Before we do, sink any 4459 // PHINodes into the unwind destination. Doing this before changing the 4460 // control flow avoids some potentially slow checks, since we can currently 4461 // be certain that UnwindDest and BB have no common predecessors (since they 4462 // are both EH pads). 4463 if (UnwindDest) { 4464 // First, go through the PHI nodes in UnwindDest and update any nodes that 4465 // reference the block we are removing 4466 for (BasicBlock::iterator I = UnwindDest->begin(), 4467 IE = DestEHPad->getIterator(); 4468 I != IE; ++I) { 4469 PHINode *DestPN = cast<PHINode>(I); 4470 4471 int Idx = DestPN->getBasicBlockIndex(BB); 4472 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4473 assert(Idx != -1); 4474 // This PHI node has an incoming value that corresponds to a control 4475 // path through the cleanup pad we are removing. If the incoming 4476 // value is in the cleanup pad, it must be a PHINode (because we 4477 // verified above that the block is otherwise empty). Otherwise, the 4478 // value is either a constant or a value that dominates the cleanup 4479 // pad being removed. 4480 // 4481 // Because BB and UnwindDest are both EH pads, all of their 4482 // predecessors must unwind to these blocks, and since no instruction 4483 // can have multiple unwind destinations, there will be no overlap in 4484 // incoming blocks between SrcPN and DestPN. 4485 Value *SrcVal = DestPN->getIncomingValue(Idx); 4486 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4487 4488 // Remove the entry for the block we are deleting. 4489 DestPN->removeIncomingValue(Idx, false); 4490 4491 if (SrcPN && SrcPN->getParent() == BB) { 4492 // If the incoming value was a PHI node in the cleanup pad we are 4493 // removing, we need to merge that PHI node's incoming values into 4494 // DestPN. 4495 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4496 SrcIdx != SrcE; ++SrcIdx) { 4497 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4498 SrcPN->getIncomingBlock(SrcIdx)); 4499 } 4500 } else { 4501 // Otherwise, the incoming value came from above BB and 4502 // so we can just reuse it. We must associate all of BB's 4503 // predecessors with this value. 4504 for (auto *pred : predecessors(BB)) { 4505 DestPN->addIncoming(SrcVal, pred); 4506 } 4507 } 4508 } 4509 4510 // Sink any remaining PHI nodes directly into UnwindDest. 4511 Instruction *InsertPt = DestEHPad; 4512 for (BasicBlock::iterator I = BB->begin(), 4513 IE = BB->getFirstNonPHI()->getIterator(); 4514 I != IE;) { 4515 // The iterator must be incremented here because the instructions are 4516 // being moved to another block. 4517 PHINode *PN = cast<PHINode>(I++); 4518 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4519 // If the PHI node has no uses or all of its uses are in this basic 4520 // block (meaning they are debug or lifetime intrinsics), just leave 4521 // it. It will be erased when we erase BB below. 4522 continue; 4523 4524 // Otherwise, sink this PHI node into UnwindDest. 4525 // Any predecessors to UnwindDest which are not already represented 4526 // must be back edges which inherit the value from the path through 4527 // BB. In this case, the PHI value must reference itself. 4528 for (auto *pred : predecessors(UnwindDest)) 4529 if (pred != BB) 4530 PN->addIncoming(PN, pred); 4531 PN->moveBefore(InsertPt); 4532 } 4533 } 4534 4535 std::vector<DominatorTree::UpdateType> Updates; 4536 4537 // We use make_early_inc_range here because we may remove some predecessors. 4538 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4539 if (UnwindDest == nullptr) { 4540 if (DTU) { 4541 DTU->applyUpdates(Updates); 4542 Updates.clear(); 4543 } 4544 removeUnwindEdge(PredBB, DTU); 4545 ++NumInvokes; 4546 } else { 4547 Instruction *TI = PredBB->getTerminator(); 4548 TI->replaceUsesOfWith(BB, UnwindDest); 4549 if (DTU) { 4550 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4551 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4552 } 4553 } 4554 } 4555 4556 if (DTU) { 4557 DTU->applyUpdates(Updates); 4558 DTU->deleteBB(BB); 4559 } else 4560 // The cleanup pad is now unreachable. Zap it. 4561 BB->eraseFromParent(); 4562 4563 return true; 4564 } 4565 4566 // Try to merge two cleanuppads together. 4567 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4568 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4569 // with. 4570 BasicBlock *UnwindDest = RI->getUnwindDest(); 4571 if (!UnwindDest) 4572 return false; 4573 4574 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4575 // be safe to merge without code duplication. 4576 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4577 return false; 4578 4579 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4580 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4581 if (!SuccessorCleanupPad) 4582 return false; 4583 4584 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4585 // Replace any uses of the successor cleanupad with the predecessor pad 4586 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4587 // funclet bundle operands. 4588 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4589 // Remove the old cleanuppad. 4590 SuccessorCleanupPad->eraseFromParent(); 4591 // Now, we simply replace the cleanupret with a branch to the unwind 4592 // destination. 4593 BranchInst::Create(UnwindDest, RI->getParent()); 4594 RI->eraseFromParent(); 4595 4596 return true; 4597 } 4598 4599 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4600 // It is possible to transiantly have an undef cleanuppad operand because we 4601 // have deleted some, but not all, dead blocks. 4602 // Eventually, this block will be deleted. 4603 if (isa<UndefValue>(RI->getOperand(0))) 4604 return false; 4605 4606 if (mergeCleanupPad(RI)) 4607 return true; 4608 4609 if (removeEmptyCleanup(RI, DTU)) 4610 return true; 4611 4612 return false; 4613 } 4614 4615 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4616 BasicBlock *BB = RI->getParent(); 4617 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4618 return false; 4619 4620 // Find predecessors that end with branches. 4621 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4622 SmallVector<BranchInst *, 8> CondBranchPreds; 4623 for (BasicBlock *P : predecessors(BB)) { 4624 Instruction *PTI = P->getTerminator(); 4625 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4626 if (BI->isUnconditional()) 4627 UncondBranchPreds.push_back(P); 4628 else 4629 CondBranchPreds.push_back(BI); 4630 } 4631 } 4632 4633 // If we found some, do the transformation! 4634 if (!UncondBranchPreds.empty() && DupRet) { 4635 while (!UncondBranchPreds.empty()) { 4636 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4637 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4638 << "INTO UNCOND BRANCH PRED: " << *Pred); 4639 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4640 } 4641 4642 // If we eliminated all predecessors of the block, delete the block now. 4643 if (pred_empty(BB)) { 4644 // We know there are no successors, so just nuke the block. 4645 if (DTU) 4646 DTU->deleteBB(BB); 4647 else 4648 BB->eraseFromParent(); 4649 } 4650 4651 return true; 4652 } 4653 4654 // Check out all of the conditional branches going to this return 4655 // instruction. If any of them just select between returns, change the 4656 // branch itself into a select/return pair. 4657 while (!CondBranchPreds.empty()) { 4658 BranchInst *BI = CondBranchPreds.pop_back_val(); 4659 4660 // Check to see if the non-BB successor is also a return block. 4661 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4662 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4663 SimplifyCondBranchToTwoReturns(BI, Builder)) 4664 return true; 4665 } 4666 return false; 4667 } 4668 4669 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4670 BasicBlock *BB = UI->getParent(); 4671 4672 bool Changed = false; 4673 4674 // If there are any instructions immediately before the unreachable that can 4675 // be removed, do so. 4676 while (UI->getIterator() != BB->begin()) { 4677 BasicBlock::iterator BBI = UI->getIterator(); 4678 --BBI; 4679 // Do not delete instructions that can have side effects which might cause 4680 // the unreachable to not be reachable; specifically, calls and volatile 4681 // operations may have this effect. 4682 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4683 break; 4684 4685 if (BBI->mayHaveSideEffects()) { 4686 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4687 if (SI->isVolatile()) 4688 break; 4689 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4690 if (LI->isVolatile()) 4691 break; 4692 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4693 if (RMWI->isVolatile()) 4694 break; 4695 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4696 if (CXI->isVolatile()) 4697 break; 4698 } else if (isa<CatchPadInst>(BBI)) { 4699 // A catchpad may invoke exception object constructors and such, which 4700 // in some languages can be arbitrary code, so be conservative by 4701 // default. 4702 // For CoreCLR, it just involves a type test, so can be removed. 4703 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4704 EHPersonality::CoreCLR) 4705 break; 4706 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4707 !isa<LandingPadInst>(BBI)) { 4708 break; 4709 } 4710 // Note that deleting LandingPad's here is in fact okay, although it 4711 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4712 // all the predecessors of this block will be the unwind edges of Invokes, 4713 // and we can therefore guarantee this block will be erased. 4714 } 4715 4716 // Delete this instruction (any uses are guaranteed to be dead) 4717 if (!BBI->use_empty()) 4718 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4719 BBI->eraseFromParent(); 4720 Changed = true; 4721 } 4722 4723 // If the unreachable instruction is the first in the block, take a gander 4724 // at all of the predecessors of this instruction, and simplify them. 4725 if (&BB->front() != UI) 4726 return Changed; 4727 4728 std::vector<DominatorTree::UpdateType> Updates; 4729 4730 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4731 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4732 auto *Predecessor = Preds[i]; 4733 Instruction *TI = Predecessor->getTerminator(); 4734 IRBuilder<> Builder(TI); 4735 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4736 // We could either have a proper unconditional branch, 4737 // or a degenerate conditional branch with matching destinations. 4738 if (all_of(BI->successors(), 4739 [BB](auto *Successor) { return Successor == BB; })) { 4740 new UnreachableInst(TI->getContext(), TI); 4741 TI->eraseFromParent(); 4742 Changed = true; 4743 } else { 4744 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4745 Value* Cond = BI->getCondition(); 4746 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4747 "The destinations are guaranteed to be different here."); 4748 if (BI->getSuccessor(0) == BB) { 4749 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4750 Builder.CreateBr(BI->getSuccessor(1)); 4751 } else { 4752 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4753 Builder.CreateAssumption(Cond); 4754 Builder.CreateBr(BI->getSuccessor(0)); 4755 } 4756 EraseTerminatorAndDCECond(BI); 4757 Changed = true; 4758 } 4759 if (DTU) 4760 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4761 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4762 SwitchInstProfUpdateWrapper SU(*SI); 4763 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4764 if (i->getCaseSuccessor() != BB) { 4765 ++i; 4766 continue; 4767 } 4768 BB->removePredecessor(SU->getParent()); 4769 i = SU.removeCase(i); 4770 e = SU->case_end(); 4771 Changed = true; 4772 } 4773 // Note that the default destination can't be removed! 4774 if (DTU && SI->getDefaultDest() != BB) 4775 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4776 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4777 if (II->getUnwindDest() == BB) { 4778 if (DTU) { 4779 DTU->applyUpdates(Updates); 4780 Updates.clear(); 4781 } 4782 removeUnwindEdge(TI->getParent(), DTU); 4783 Changed = true; 4784 } 4785 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4786 if (CSI->getUnwindDest() == BB) { 4787 if (DTU) { 4788 DTU->applyUpdates(Updates); 4789 Updates.clear(); 4790 } 4791 removeUnwindEdge(TI->getParent(), DTU); 4792 Changed = true; 4793 continue; 4794 } 4795 4796 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4797 E = CSI->handler_end(); 4798 I != E; ++I) { 4799 if (*I == BB) { 4800 CSI->removeHandler(I); 4801 --I; 4802 --E; 4803 Changed = true; 4804 } 4805 } 4806 if (DTU) 4807 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4808 if (CSI->getNumHandlers() == 0) { 4809 if (CSI->hasUnwindDest()) { 4810 // Redirect all predecessors of the block containing CatchSwitchInst 4811 // to instead branch to the CatchSwitchInst's unwind destination. 4812 if (DTU) { 4813 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4814 Updates.push_back({DominatorTree::Insert, 4815 PredecessorOfPredecessor, 4816 CSI->getUnwindDest()}); 4817 Updates.push_back({DominatorTree::Delete, 4818 PredecessorOfPredecessor, Predecessor}); 4819 } 4820 } 4821 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4822 } else { 4823 // Rewrite all preds to unwind to caller (or from invoke to call). 4824 if (DTU) { 4825 DTU->applyUpdates(Updates); 4826 Updates.clear(); 4827 } 4828 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4829 for (BasicBlock *EHPred : EHPreds) 4830 removeUnwindEdge(EHPred, DTU); 4831 } 4832 // The catchswitch is no longer reachable. 4833 new UnreachableInst(CSI->getContext(), CSI); 4834 CSI->eraseFromParent(); 4835 Changed = true; 4836 } 4837 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4838 (void)CRI; 4839 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4840 "Expected to always have an unwind to BB."); 4841 if (DTU) 4842 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4843 new UnreachableInst(TI->getContext(), TI); 4844 TI->eraseFromParent(); 4845 Changed = true; 4846 } 4847 } 4848 4849 if (DTU) 4850 DTU->applyUpdates(Updates); 4851 4852 // If this block is now dead, remove it. 4853 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4854 // We know there are no successors, so just nuke the block. 4855 if (DTU) 4856 DTU->deleteBB(BB); 4857 else 4858 BB->eraseFromParent(); 4859 return true; 4860 } 4861 4862 return Changed; 4863 } 4864 4865 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4866 assert(Cases.size() >= 1); 4867 4868 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4869 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4870 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4871 return false; 4872 } 4873 return true; 4874 } 4875 4876 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4877 DomTreeUpdater *DTU) { 4878 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4879 auto *BB = Switch->getParent(); 4880 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4881 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4882 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4883 Switch->setDefaultDest(&*NewDefaultBlock); 4884 if (DTU) 4885 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4886 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4887 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4888 SmallVector<DominatorTree::UpdateType, 2> Updates; 4889 if (DTU) 4890 for (auto *Successor : successors(NewDefaultBlock)) 4891 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4892 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4893 new UnreachableInst(Switch->getContext(), NewTerminator); 4894 EraseTerminatorAndDCECond(NewTerminator); 4895 if (DTU) 4896 DTU->applyUpdates(Updates); 4897 } 4898 4899 /// Turn a switch with two reachable destinations into an integer range 4900 /// comparison and branch. 4901 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4902 IRBuilder<> &Builder) { 4903 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4904 4905 bool HasDefault = 4906 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4907 4908 auto *BB = SI->getParent(); 4909 4910 // Partition the cases into two sets with different destinations. 4911 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4912 BasicBlock *DestB = nullptr; 4913 SmallVector<ConstantInt *, 16> CasesA; 4914 SmallVector<ConstantInt *, 16> CasesB; 4915 4916 for (auto Case : SI->cases()) { 4917 BasicBlock *Dest = Case.getCaseSuccessor(); 4918 if (!DestA) 4919 DestA = Dest; 4920 if (Dest == DestA) { 4921 CasesA.push_back(Case.getCaseValue()); 4922 continue; 4923 } 4924 if (!DestB) 4925 DestB = Dest; 4926 if (Dest == DestB) { 4927 CasesB.push_back(Case.getCaseValue()); 4928 continue; 4929 } 4930 return false; // More than two destinations. 4931 } 4932 4933 assert(DestA && DestB && 4934 "Single-destination switch should have been folded."); 4935 assert(DestA != DestB); 4936 assert(DestB != SI->getDefaultDest()); 4937 assert(!CasesB.empty() && "There must be non-default cases."); 4938 assert(!CasesA.empty() || HasDefault); 4939 4940 // Figure out if one of the sets of cases form a contiguous range. 4941 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4942 BasicBlock *ContiguousDest = nullptr; 4943 BasicBlock *OtherDest = nullptr; 4944 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4945 ContiguousCases = &CasesA; 4946 ContiguousDest = DestA; 4947 OtherDest = DestB; 4948 } else if (CasesAreContiguous(CasesB)) { 4949 ContiguousCases = &CasesB; 4950 ContiguousDest = DestB; 4951 OtherDest = DestA; 4952 } else 4953 return false; 4954 4955 // Start building the compare and branch. 4956 4957 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4958 Constant *NumCases = 4959 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4960 4961 Value *Sub = SI->getCondition(); 4962 if (!Offset->isNullValue()) 4963 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4964 4965 Value *Cmp; 4966 // If NumCases overflowed, then all possible values jump to the successor. 4967 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4968 Cmp = ConstantInt::getTrue(SI->getContext()); 4969 else 4970 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4971 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4972 4973 // Update weight for the newly-created conditional branch. 4974 if (HasBranchWeights(SI)) { 4975 SmallVector<uint64_t, 8> Weights; 4976 GetBranchWeights(SI, Weights); 4977 if (Weights.size() == 1 + SI->getNumCases()) { 4978 uint64_t TrueWeight = 0; 4979 uint64_t FalseWeight = 0; 4980 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4981 if (SI->getSuccessor(I) == ContiguousDest) 4982 TrueWeight += Weights[I]; 4983 else 4984 FalseWeight += Weights[I]; 4985 } 4986 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4987 TrueWeight /= 2; 4988 FalseWeight /= 2; 4989 } 4990 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4991 } 4992 } 4993 4994 // Prune obsolete incoming values off the successors' PHI nodes. 4995 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4996 unsigned PreviousEdges = ContiguousCases->size(); 4997 if (ContiguousDest == SI->getDefaultDest()) 4998 ++PreviousEdges; 4999 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5000 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5001 } 5002 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5003 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5004 if (OtherDest == SI->getDefaultDest()) 5005 ++PreviousEdges; 5006 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5007 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5008 } 5009 5010 // Clean up the default block - it may have phis or other instructions before 5011 // the unreachable terminator. 5012 if (!HasDefault) 5013 createUnreachableSwitchDefault(SI, DTU); 5014 5015 auto *UnreachableDefault = SI->getDefaultDest(); 5016 5017 // Drop the switch. 5018 SI->eraseFromParent(); 5019 5020 if (!HasDefault && DTU) 5021 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5022 5023 return true; 5024 } 5025 5026 /// Compute masked bits for the condition of a switch 5027 /// and use it to remove dead cases. 5028 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5029 AssumptionCache *AC, 5030 const DataLayout &DL) { 5031 Value *Cond = SI->getCondition(); 5032 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 5033 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5034 5035 // We can also eliminate cases by determining that their values are outside of 5036 // the limited range of the condition based on how many significant (non-sign) 5037 // bits are in the condition value. 5038 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 5039 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 5040 5041 // Gather dead cases. 5042 SmallVector<ConstantInt *, 8> DeadCases; 5043 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5044 for (auto &Case : SI->cases()) { 5045 auto *Successor = Case.getCaseSuccessor(); 5046 if (DTU) 5047 ++NumPerSuccessorCases[Successor]; 5048 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5049 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5050 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5051 DeadCases.push_back(Case.getCaseValue()); 5052 if (DTU) 5053 --NumPerSuccessorCases[Successor]; 5054 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5055 << " is dead.\n"); 5056 } 5057 } 5058 5059 // If we can prove that the cases must cover all possible values, the 5060 // default destination becomes dead and we can remove it. If we know some 5061 // of the bits in the value, we can use that to more precisely compute the 5062 // number of possible unique case values. 5063 bool HasDefault = 5064 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5065 const unsigned NumUnknownBits = 5066 Bits - (Known.Zero | Known.One).countPopulation(); 5067 assert(NumUnknownBits <= Bits); 5068 if (HasDefault && DeadCases.empty() && 5069 NumUnknownBits < 64 /* avoid overflow */ && 5070 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5071 createUnreachableSwitchDefault(SI, DTU); 5072 return true; 5073 } 5074 5075 if (DeadCases.empty()) 5076 return false; 5077 5078 SwitchInstProfUpdateWrapper SIW(*SI); 5079 for (ConstantInt *DeadCase : DeadCases) { 5080 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5081 assert(CaseI != SI->case_default() && 5082 "Case was not found. Probably mistake in DeadCases forming."); 5083 // Prune unused values from PHI nodes. 5084 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5085 SIW.removeCase(CaseI); 5086 } 5087 5088 if (DTU) { 5089 std::vector<DominatorTree::UpdateType> Updates; 5090 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 5091 if (I.second == 0) 5092 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 5093 DTU->applyUpdates(Updates); 5094 } 5095 5096 return true; 5097 } 5098 5099 /// If BB would be eligible for simplification by 5100 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5101 /// by an unconditional branch), look at the phi node for BB in the successor 5102 /// block and see if the incoming value is equal to CaseValue. If so, return 5103 /// the phi node, and set PhiIndex to BB's index in the phi node. 5104 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5105 BasicBlock *BB, int *PhiIndex) { 5106 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5107 return nullptr; // BB must be empty to be a candidate for simplification. 5108 if (!BB->getSinglePredecessor()) 5109 return nullptr; // BB must be dominated by the switch. 5110 5111 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5112 if (!Branch || !Branch->isUnconditional()) 5113 return nullptr; // Terminator must be unconditional branch. 5114 5115 BasicBlock *Succ = Branch->getSuccessor(0); 5116 5117 for (PHINode &PHI : Succ->phis()) { 5118 int Idx = PHI.getBasicBlockIndex(BB); 5119 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5120 5121 Value *InValue = PHI.getIncomingValue(Idx); 5122 if (InValue != CaseValue) 5123 continue; 5124 5125 *PhiIndex = Idx; 5126 return &PHI; 5127 } 5128 5129 return nullptr; 5130 } 5131 5132 /// Try to forward the condition of a switch instruction to a phi node 5133 /// dominated by the switch, if that would mean that some of the destination 5134 /// blocks of the switch can be folded away. Return true if a change is made. 5135 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5136 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5137 5138 ForwardingNodesMap ForwardingNodes; 5139 BasicBlock *SwitchBlock = SI->getParent(); 5140 bool Changed = false; 5141 for (auto &Case : SI->cases()) { 5142 ConstantInt *CaseValue = Case.getCaseValue(); 5143 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5144 5145 // Replace phi operands in successor blocks that are using the constant case 5146 // value rather than the switch condition variable: 5147 // switchbb: 5148 // switch i32 %x, label %default [ 5149 // i32 17, label %succ 5150 // ... 5151 // succ: 5152 // %r = phi i32 ... [ 17, %switchbb ] ... 5153 // --> 5154 // %r = phi i32 ... [ %x, %switchbb ] ... 5155 5156 for (PHINode &Phi : CaseDest->phis()) { 5157 // This only works if there is exactly 1 incoming edge from the switch to 5158 // a phi. If there is >1, that means multiple cases of the switch map to 1 5159 // value in the phi, and that phi value is not the switch condition. Thus, 5160 // this transform would not make sense (the phi would be invalid because 5161 // a phi can't have different incoming values from the same block). 5162 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5163 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5164 count(Phi.blocks(), SwitchBlock) == 1) { 5165 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5166 Changed = true; 5167 } 5168 } 5169 5170 // Collect phi nodes that are indirectly using this switch's case constants. 5171 int PhiIdx; 5172 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5173 ForwardingNodes[Phi].push_back(PhiIdx); 5174 } 5175 5176 for (auto &ForwardingNode : ForwardingNodes) { 5177 PHINode *Phi = ForwardingNode.first; 5178 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5179 if (Indexes.size() < 2) 5180 continue; 5181 5182 for (int Index : Indexes) 5183 Phi->setIncomingValue(Index, SI->getCondition()); 5184 Changed = true; 5185 } 5186 5187 return Changed; 5188 } 5189 5190 /// Return true if the backend will be able to handle 5191 /// initializing an array of constants like C. 5192 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5193 if (C->isThreadDependent()) 5194 return false; 5195 if (C->isDLLImportDependent()) 5196 return false; 5197 5198 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5199 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5200 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5201 return false; 5202 5203 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5204 if (!CE->isGEPWithNoNotionalOverIndexing()) 5205 return false; 5206 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5207 return false; 5208 } 5209 5210 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5211 return false; 5212 5213 return true; 5214 } 5215 5216 /// If V is a Constant, return it. Otherwise, try to look up 5217 /// its constant value in ConstantPool, returning 0 if it's not there. 5218 static Constant * 5219 LookupConstant(Value *V, 5220 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5221 if (Constant *C = dyn_cast<Constant>(V)) 5222 return C; 5223 return ConstantPool.lookup(V); 5224 } 5225 5226 /// Try to fold instruction I into a constant. This works for 5227 /// simple instructions such as binary operations where both operands are 5228 /// constant or can be replaced by constants from the ConstantPool. Returns the 5229 /// resulting constant on success, 0 otherwise. 5230 static Constant * 5231 ConstantFold(Instruction *I, const DataLayout &DL, 5232 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5233 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5234 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5235 if (!A) 5236 return nullptr; 5237 if (A->isAllOnesValue()) 5238 return LookupConstant(Select->getTrueValue(), ConstantPool); 5239 if (A->isNullValue()) 5240 return LookupConstant(Select->getFalseValue(), ConstantPool); 5241 return nullptr; 5242 } 5243 5244 SmallVector<Constant *, 4> COps; 5245 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5246 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5247 COps.push_back(A); 5248 else 5249 return nullptr; 5250 } 5251 5252 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5253 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5254 COps[1], DL); 5255 } 5256 5257 return ConstantFoldInstOperands(I, COps, DL); 5258 } 5259 5260 /// Try to determine the resulting constant values in phi nodes 5261 /// at the common destination basic block, *CommonDest, for one of the case 5262 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5263 /// case), of a switch instruction SI. 5264 static bool 5265 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5266 BasicBlock **CommonDest, 5267 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5268 const DataLayout &DL, const TargetTransformInfo &TTI) { 5269 // The block from which we enter the common destination. 5270 BasicBlock *Pred = SI->getParent(); 5271 5272 // If CaseDest is empty except for some side-effect free instructions through 5273 // which we can constant-propagate the CaseVal, continue to its successor. 5274 SmallDenseMap<Value *, Constant *> ConstantPool; 5275 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5276 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5277 if (I.isTerminator()) { 5278 // If the terminator is a simple branch, continue to the next block. 5279 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5280 return false; 5281 Pred = CaseDest; 5282 CaseDest = I.getSuccessor(0); 5283 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5284 // Instruction is side-effect free and constant. 5285 5286 // If the instruction has uses outside this block or a phi node slot for 5287 // the block, it is not safe to bypass the instruction since it would then 5288 // no longer dominate all its uses. 5289 for (auto &Use : I.uses()) { 5290 User *User = Use.getUser(); 5291 if (Instruction *I = dyn_cast<Instruction>(User)) 5292 if (I->getParent() == CaseDest) 5293 continue; 5294 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5295 if (Phi->getIncomingBlock(Use) == CaseDest) 5296 continue; 5297 return false; 5298 } 5299 5300 ConstantPool.insert(std::make_pair(&I, C)); 5301 } else { 5302 break; 5303 } 5304 } 5305 5306 // If we did not have a CommonDest before, use the current one. 5307 if (!*CommonDest) 5308 *CommonDest = CaseDest; 5309 // If the destination isn't the common one, abort. 5310 if (CaseDest != *CommonDest) 5311 return false; 5312 5313 // Get the values for this case from phi nodes in the destination block. 5314 for (PHINode &PHI : (*CommonDest)->phis()) { 5315 int Idx = PHI.getBasicBlockIndex(Pred); 5316 if (Idx == -1) 5317 continue; 5318 5319 Constant *ConstVal = 5320 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5321 if (!ConstVal) 5322 return false; 5323 5324 // Be conservative about which kinds of constants we support. 5325 if (!ValidLookupTableConstant(ConstVal, TTI)) 5326 return false; 5327 5328 Res.push_back(std::make_pair(&PHI, ConstVal)); 5329 } 5330 5331 return Res.size() > 0; 5332 } 5333 5334 // Helper function used to add CaseVal to the list of cases that generate 5335 // Result. Returns the updated number of cases that generate this result. 5336 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5337 SwitchCaseResultVectorTy &UniqueResults, 5338 Constant *Result) { 5339 for (auto &I : UniqueResults) { 5340 if (I.first == Result) { 5341 I.second.push_back(CaseVal); 5342 return I.second.size(); 5343 } 5344 } 5345 UniqueResults.push_back( 5346 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5347 return 1; 5348 } 5349 5350 // Helper function that initializes a map containing 5351 // results for the PHI node of the common destination block for a switch 5352 // instruction. Returns false if multiple PHI nodes have been found or if 5353 // there is not a common destination block for the switch. 5354 static bool 5355 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5356 SwitchCaseResultVectorTy &UniqueResults, 5357 Constant *&DefaultResult, const DataLayout &DL, 5358 const TargetTransformInfo &TTI, 5359 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5360 for (auto &I : SI->cases()) { 5361 ConstantInt *CaseVal = I.getCaseValue(); 5362 5363 // Resulting value at phi nodes for this case value. 5364 SwitchCaseResultsTy Results; 5365 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5366 DL, TTI)) 5367 return false; 5368 5369 // Only one value per case is permitted. 5370 if (Results.size() > 1) 5371 return false; 5372 5373 // Add the case->result mapping to UniqueResults. 5374 const uintptr_t NumCasesForResult = 5375 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5376 5377 // Early out if there are too many cases for this result. 5378 if (NumCasesForResult > MaxCasesPerResult) 5379 return false; 5380 5381 // Early out if there are too many unique results. 5382 if (UniqueResults.size() > MaxUniqueResults) 5383 return false; 5384 5385 // Check the PHI consistency. 5386 if (!PHI) 5387 PHI = Results[0].first; 5388 else if (PHI != Results[0].first) 5389 return false; 5390 } 5391 // Find the default result value. 5392 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5393 BasicBlock *DefaultDest = SI->getDefaultDest(); 5394 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5395 DL, TTI); 5396 // If the default value is not found abort unless the default destination 5397 // is unreachable. 5398 DefaultResult = 5399 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5400 if ((!DefaultResult && 5401 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5402 return false; 5403 5404 return true; 5405 } 5406 5407 // Helper function that checks if it is possible to transform a switch with only 5408 // two cases (or two cases + default) that produces a result into a select. 5409 // Example: 5410 // switch (a) { 5411 // case 10: %0 = icmp eq i32 %a, 10 5412 // return 10; %1 = select i1 %0, i32 10, i32 4 5413 // case 20: ----> %2 = icmp eq i32 %a, 20 5414 // return 2; %3 = select i1 %2, i32 2, i32 %1 5415 // default: 5416 // return 4; 5417 // } 5418 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5419 Constant *DefaultResult, Value *Condition, 5420 IRBuilder<> &Builder) { 5421 // If we are selecting between only two cases transform into a simple 5422 // select or a two-way select if default is possible. 5423 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5424 ResultVector[1].second.size() == 1) { 5425 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5426 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5427 5428 bool DefaultCanTrigger = DefaultResult; 5429 Value *SelectValue = ResultVector[1].first; 5430 if (DefaultCanTrigger) { 5431 Value *const ValueCompare = 5432 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5433 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5434 DefaultResult, "switch.select"); 5435 } 5436 Value *const ValueCompare = 5437 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5438 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5439 SelectValue, "switch.select"); 5440 } 5441 5442 // Handle the degenerate case where two cases have the same value. 5443 if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 && 5444 DefaultResult) { 5445 Value *Cmp1 = Builder.CreateICmpEQ( 5446 Condition, ResultVector[0].second[0], "switch.selectcmp.case1"); 5447 Value *Cmp2 = Builder.CreateICmpEQ( 5448 Condition, ResultVector[0].second[1], "switch.selectcmp.case2"); 5449 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5450 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5451 } 5452 5453 return nullptr; 5454 } 5455 5456 // Helper function to cleanup a switch instruction that has been converted into 5457 // a select, fixing up PHI nodes and basic blocks. 5458 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5459 Value *SelectValue, 5460 IRBuilder<> &Builder, 5461 DomTreeUpdater *DTU) { 5462 std::vector<DominatorTree::UpdateType> Updates; 5463 5464 BasicBlock *SelectBB = SI->getParent(); 5465 BasicBlock *DestBB = PHI->getParent(); 5466 5467 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5468 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5469 Builder.CreateBr(DestBB); 5470 5471 // Remove the switch. 5472 5473 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5474 PHI->removeIncomingValue(SelectBB); 5475 PHI->addIncoming(SelectValue, SelectBB); 5476 5477 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5478 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5479 BasicBlock *Succ = SI->getSuccessor(i); 5480 5481 if (Succ == DestBB) 5482 continue; 5483 Succ->removePredecessor(SelectBB); 5484 if (DTU && RemovedSuccessors.insert(Succ).second) 5485 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5486 } 5487 SI->eraseFromParent(); 5488 if (DTU) 5489 DTU->applyUpdates(Updates); 5490 } 5491 5492 /// If the switch is only used to initialize one or more 5493 /// phi nodes in a common successor block with only two different 5494 /// constant values, replace the switch with select. 5495 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5496 DomTreeUpdater *DTU, const DataLayout &DL, 5497 const TargetTransformInfo &TTI) { 5498 Value *const Cond = SI->getCondition(); 5499 PHINode *PHI = nullptr; 5500 BasicBlock *CommonDest = nullptr; 5501 Constant *DefaultResult; 5502 SwitchCaseResultVectorTy UniqueResults; 5503 // Collect all the cases that will deliver the same value from the switch. 5504 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5505 DL, TTI, /*MaxUniqueResults*/2, 5506 /*MaxCasesPerResult*/2)) 5507 return false; 5508 assert(PHI != nullptr && "PHI for value select not found"); 5509 5510 Builder.SetInsertPoint(SI); 5511 Value *SelectValue = 5512 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5513 if (SelectValue) { 5514 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5515 return true; 5516 } 5517 // The switch couldn't be converted into a select. 5518 return false; 5519 } 5520 5521 namespace { 5522 5523 /// This class represents a lookup table that can be used to replace a switch. 5524 class SwitchLookupTable { 5525 public: 5526 /// Create a lookup table to use as a switch replacement with the contents 5527 /// of Values, using DefaultValue to fill any holes in the table. 5528 SwitchLookupTable( 5529 Module &M, uint64_t TableSize, ConstantInt *Offset, 5530 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5531 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5532 5533 /// Build instructions with Builder to retrieve the value at 5534 /// the position given by Index in the lookup table. 5535 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5536 5537 /// Return true if a table with TableSize elements of 5538 /// type ElementType would fit in a target-legal register. 5539 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5540 Type *ElementType); 5541 5542 private: 5543 // Depending on the contents of the table, it can be represented in 5544 // different ways. 5545 enum { 5546 // For tables where each element contains the same value, we just have to 5547 // store that single value and return it for each lookup. 5548 SingleValueKind, 5549 5550 // For tables where there is a linear relationship between table index 5551 // and values. We calculate the result with a simple multiplication 5552 // and addition instead of a table lookup. 5553 LinearMapKind, 5554 5555 // For small tables with integer elements, we can pack them into a bitmap 5556 // that fits into a target-legal register. Values are retrieved by 5557 // shift and mask operations. 5558 BitMapKind, 5559 5560 // The table is stored as an array of values. Values are retrieved by load 5561 // instructions from the table. 5562 ArrayKind 5563 } Kind; 5564 5565 // For SingleValueKind, this is the single value. 5566 Constant *SingleValue = nullptr; 5567 5568 // For BitMapKind, this is the bitmap. 5569 ConstantInt *BitMap = nullptr; 5570 IntegerType *BitMapElementTy = nullptr; 5571 5572 // For LinearMapKind, these are the constants used to derive the value. 5573 ConstantInt *LinearOffset = nullptr; 5574 ConstantInt *LinearMultiplier = nullptr; 5575 5576 // For ArrayKind, this is the array. 5577 GlobalVariable *Array = nullptr; 5578 }; 5579 5580 } // end anonymous namespace 5581 5582 SwitchLookupTable::SwitchLookupTable( 5583 Module &M, uint64_t TableSize, ConstantInt *Offset, 5584 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5585 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5586 assert(Values.size() && "Can't build lookup table without values!"); 5587 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5588 5589 // If all values in the table are equal, this is that value. 5590 SingleValue = Values.begin()->second; 5591 5592 Type *ValueType = Values.begin()->second->getType(); 5593 5594 // Build up the table contents. 5595 SmallVector<Constant *, 64> TableContents(TableSize); 5596 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5597 ConstantInt *CaseVal = Values[I].first; 5598 Constant *CaseRes = Values[I].second; 5599 assert(CaseRes->getType() == ValueType); 5600 5601 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5602 TableContents[Idx] = CaseRes; 5603 5604 if (CaseRes != SingleValue) 5605 SingleValue = nullptr; 5606 } 5607 5608 // Fill in any holes in the table with the default result. 5609 if (Values.size() < TableSize) { 5610 assert(DefaultValue && 5611 "Need a default value to fill the lookup table holes."); 5612 assert(DefaultValue->getType() == ValueType); 5613 for (uint64_t I = 0; I < TableSize; ++I) { 5614 if (!TableContents[I]) 5615 TableContents[I] = DefaultValue; 5616 } 5617 5618 if (DefaultValue != SingleValue) 5619 SingleValue = nullptr; 5620 } 5621 5622 // If each element in the table contains the same value, we only need to store 5623 // that single value. 5624 if (SingleValue) { 5625 Kind = SingleValueKind; 5626 return; 5627 } 5628 5629 // Check if we can derive the value with a linear transformation from the 5630 // table index. 5631 if (isa<IntegerType>(ValueType)) { 5632 bool LinearMappingPossible = true; 5633 APInt PrevVal; 5634 APInt DistToPrev; 5635 assert(TableSize >= 2 && "Should be a SingleValue table."); 5636 // Check if there is the same distance between two consecutive values. 5637 for (uint64_t I = 0; I < TableSize; ++I) { 5638 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5639 if (!ConstVal) { 5640 // This is an undef. We could deal with it, but undefs in lookup tables 5641 // are very seldom. It's probably not worth the additional complexity. 5642 LinearMappingPossible = false; 5643 break; 5644 } 5645 const APInt &Val = ConstVal->getValue(); 5646 if (I != 0) { 5647 APInt Dist = Val - PrevVal; 5648 if (I == 1) { 5649 DistToPrev = Dist; 5650 } else if (Dist != DistToPrev) { 5651 LinearMappingPossible = false; 5652 break; 5653 } 5654 } 5655 PrevVal = Val; 5656 } 5657 if (LinearMappingPossible) { 5658 LinearOffset = cast<ConstantInt>(TableContents[0]); 5659 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5660 Kind = LinearMapKind; 5661 ++NumLinearMaps; 5662 return; 5663 } 5664 } 5665 5666 // If the type is integer and the table fits in a register, build a bitmap. 5667 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5668 IntegerType *IT = cast<IntegerType>(ValueType); 5669 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5670 for (uint64_t I = TableSize; I > 0; --I) { 5671 TableInt <<= IT->getBitWidth(); 5672 // Insert values into the bitmap. Undef values are set to zero. 5673 if (!isa<UndefValue>(TableContents[I - 1])) { 5674 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5675 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5676 } 5677 } 5678 BitMap = ConstantInt::get(M.getContext(), TableInt); 5679 BitMapElementTy = IT; 5680 Kind = BitMapKind; 5681 ++NumBitMaps; 5682 return; 5683 } 5684 5685 // Store the table in an array. 5686 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5687 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5688 5689 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5690 GlobalVariable::PrivateLinkage, Initializer, 5691 "switch.table." + FuncName); 5692 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5693 // Set the alignment to that of an array items. We will be only loading one 5694 // value out of it. 5695 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5696 Kind = ArrayKind; 5697 } 5698 5699 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5700 switch (Kind) { 5701 case SingleValueKind: 5702 return SingleValue; 5703 case LinearMapKind: { 5704 // Derive the result value from the input value. 5705 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5706 false, "switch.idx.cast"); 5707 if (!LinearMultiplier->isOne()) 5708 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5709 if (!LinearOffset->isZero()) 5710 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5711 return Result; 5712 } 5713 case BitMapKind: { 5714 // Type of the bitmap (e.g. i59). 5715 IntegerType *MapTy = BitMap->getType(); 5716 5717 // Cast Index to the same type as the bitmap. 5718 // Note: The Index is <= the number of elements in the table, so 5719 // truncating it to the width of the bitmask is safe. 5720 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5721 5722 // Multiply the shift amount by the element width. 5723 ShiftAmt = Builder.CreateMul( 5724 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5725 "switch.shiftamt"); 5726 5727 // Shift down. 5728 Value *DownShifted = 5729 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5730 // Mask off. 5731 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5732 } 5733 case ArrayKind: { 5734 // Make sure the table index will not overflow when treated as signed. 5735 IntegerType *IT = cast<IntegerType>(Index->getType()); 5736 uint64_t TableSize = 5737 Array->getInitializer()->getType()->getArrayNumElements(); 5738 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5739 Index = Builder.CreateZExt( 5740 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5741 "switch.tableidx.zext"); 5742 5743 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5744 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5745 GEPIndices, "switch.gep"); 5746 return Builder.CreateLoad( 5747 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5748 "switch.load"); 5749 } 5750 } 5751 llvm_unreachable("Unknown lookup table kind!"); 5752 } 5753 5754 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5755 uint64_t TableSize, 5756 Type *ElementType) { 5757 auto *IT = dyn_cast<IntegerType>(ElementType); 5758 if (!IT) 5759 return false; 5760 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5761 // are <= 15, we could try to narrow the type. 5762 5763 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5764 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5765 return false; 5766 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5767 } 5768 5769 /// Determine whether a lookup table should be built for this switch, based on 5770 /// the number of cases, size of the table, and the types of the results. 5771 static bool 5772 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5773 const TargetTransformInfo &TTI, const DataLayout &DL, 5774 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5775 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5776 return false; // TableSize overflowed, or mul below might overflow. 5777 5778 bool AllTablesFitInRegister = true; 5779 bool HasIllegalType = false; 5780 for (const auto &I : ResultTypes) { 5781 Type *Ty = I.second; 5782 5783 // Saturate this flag to true. 5784 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5785 5786 // Saturate this flag to false. 5787 AllTablesFitInRegister = 5788 AllTablesFitInRegister && 5789 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5790 5791 // If both flags saturate, we're done. NOTE: This *only* works with 5792 // saturating flags, and all flags have to saturate first due to the 5793 // non-deterministic behavior of iterating over a dense map. 5794 if (HasIllegalType && !AllTablesFitInRegister) 5795 break; 5796 } 5797 5798 // If each table would fit in a register, we should build it anyway. 5799 if (AllTablesFitInRegister) 5800 return true; 5801 5802 // Don't build a table that doesn't fit in-register if it has illegal types. 5803 if (HasIllegalType) 5804 return false; 5805 5806 // The table density should be at least 40%. This is the same criterion as for 5807 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5808 // FIXME: Find the best cut-off. 5809 return SI->getNumCases() * 10 >= TableSize * 4; 5810 } 5811 5812 /// Try to reuse the switch table index compare. Following pattern: 5813 /// \code 5814 /// if (idx < tablesize) 5815 /// r = table[idx]; // table does not contain default_value 5816 /// else 5817 /// r = default_value; 5818 /// if (r != default_value) 5819 /// ... 5820 /// \endcode 5821 /// Is optimized to: 5822 /// \code 5823 /// cond = idx < tablesize; 5824 /// if (cond) 5825 /// r = table[idx]; 5826 /// else 5827 /// r = default_value; 5828 /// if (cond) 5829 /// ... 5830 /// \endcode 5831 /// Jump threading will then eliminate the second if(cond). 5832 static void reuseTableCompare( 5833 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5834 Constant *DefaultValue, 5835 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5836 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5837 if (!CmpInst) 5838 return; 5839 5840 // We require that the compare is in the same block as the phi so that jump 5841 // threading can do its work afterwards. 5842 if (CmpInst->getParent() != PhiBlock) 5843 return; 5844 5845 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5846 if (!CmpOp1) 5847 return; 5848 5849 Value *RangeCmp = RangeCheckBranch->getCondition(); 5850 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5851 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5852 5853 // Check if the compare with the default value is constant true or false. 5854 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5855 DefaultValue, CmpOp1, true); 5856 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5857 return; 5858 5859 // Check if the compare with the case values is distinct from the default 5860 // compare result. 5861 for (auto ValuePair : Values) { 5862 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5863 ValuePair.second, CmpOp1, true); 5864 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5865 return; 5866 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5867 "Expect true or false as compare result."); 5868 } 5869 5870 // Check if the branch instruction dominates the phi node. It's a simple 5871 // dominance check, but sufficient for our needs. 5872 // Although this check is invariant in the calling loops, it's better to do it 5873 // at this late stage. Practically we do it at most once for a switch. 5874 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5875 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5876 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5877 return; 5878 } 5879 5880 if (DefaultConst == FalseConst) { 5881 // The compare yields the same result. We can replace it. 5882 CmpInst->replaceAllUsesWith(RangeCmp); 5883 ++NumTableCmpReuses; 5884 } else { 5885 // The compare yields the same result, just inverted. We can replace it. 5886 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5887 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5888 RangeCheckBranch); 5889 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5890 ++NumTableCmpReuses; 5891 } 5892 } 5893 5894 /// If the switch is only used to initialize one or more phi nodes in a common 5895 /// successor block with different constant values, replace the switch with 5896 /// lookup tables. 5897 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5898 DomTreeUpdater *DTU, const DataLayout &DL, 5899 const TargetTransformInfo &TTI) { 5900 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5901 5902 BasicBlock *BB = SI->getParent(); 5903 Function *Fn = BB->getParent(); 5904 // Only build lookup table when we have a target that supports it or the 5905 // attribute is not set. 5906 if (!TTI.shouldBuildLookupTables() || 5907 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 5908 return false; 5909 5910 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5911 // split off a dense part and build a lookup table for that. 5912 5913 // FIXME: This creates arrays of GEPs to constant strings, which means each 5914 // GEP needs a runtime relocation in PIC code. We should just build one big 5915 // string and lookup indices into that. 5916 5917 // Ignore switches with less than three cases. Lookup tables will not make 5918 // them faster, so we don't analyze them. 5919 if (SI->getNumCases() < 3) 5920 return false; 5921 5922 // Figure out the corresponding result for each case value and phi node in the 5923 // common destination, as well as the min and max case values. 5924 assert(!SI->cases().empty()); 5925 SwitchInst::CaseIt CI = SI->case_begin(); 5926 ConstantInt *MinCaseVal = CI->getCaseValue(); 5927 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5928 5929 BasicBlock *CommonDest = nullptr; 5930 5931 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5932 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5933 5934 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5935 SmallDenseMap<PHINode *, Type *> ResultTypes; 5936 SmallVector<PHINode *, 4> PHIs; 5937 5938 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5939 ConstantInt *CaseVal = CI->getCaseValue(); 5940 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5941 MinCaseVal = CaseVal; 5942 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5943 MaxCaseVal = CaseVal; 5944 5945 // Resulting value at phi nodes for this case value. 5946 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5947 ResultsTy Results; 5948 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5949 Results, DL, TTI)) 5950 return false; 5951 5952 // Append the result from this case to the list for each phi. 5953 for (const auto &I : Results) { 5954 PHINode *PHI = I.first; 5955 Constant *Value = I.second; 5956 if (!ResultLists.count(PHI)) 5957 PHIs.push_back(PHI); 5958 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5959 } 5960 } 5961 5962 // Keep track of the result types. 5963 for (PHINode *PHI : PHIs) { 5964 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5965 } 5966 5967 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5968 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5969 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5970 bool TableHasHoles = (NumResults < TableSize); 5971 5972 // If the table has holes, we need a constant result for the default case 5973 // or a bitmask that fits in a register. 5974 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5975 bool HasDefaultResults = 5976 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5977 DefaultResultsList, DL, TTI); 5978 5979 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5980 if (NeedMask) { 5981 // As an extra penalty for the validity test we require more cases. 5982 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5983 return false; 5984 if (!DL.fitsInLegalInteger(TableSize)) 5985 return false; 5986 } 5987 5988 for (const auto &I : DefaultResultsList) { 5989 PHINode *PHI = I.first; 5990 Constant *Result = I.second; 5991 DefaultResults[PHI] = Result; 5992 } 5993 5994 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5995 return false; 5996 5997 std::vector<DominatorTree::UpdateType> Updates; 5998 5999 // Create the BB that does the lookups. 6000 Module &Mod = *CommonDest->getParent()->getParent(); 6001 BasicBlock *LookupBB = BasicBlock::Create( 6002 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 6003 6004 // Compute the table index value. 6005 Builder.SetInsertPoint(SI); 6006 Value *TableIndex; 6007 if (MinCaseVal->isNullValue()) 6008 TableIndex = SI->getCondition(); 6009 else 6010 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 6011 "switch.tableidx"); 6012 6013 // Compute the maximum table size representable by the integer type we are 6014 // switching upon. 6015 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 6016 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 6017 assert(MaxTableSize >= TableSize && 6018 "It is impossible for a switch to have more entries than the max " 6019 "representable value of its input integer type's size."); 6020 6021 // If the default destination is unreachable, or if the lookup table covers 6022 // all values of the conditional variable, branch directly to the lookup table 6023 // BB. Otherwise, check that the condition is within the case range. 6024 const bool DefaultIsReachable = 6025 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6026 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6027 BranchInst *RangeCheckBranch = nullptr; 6028 6029 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6030 Builder.CreateBr(LookupBB); 6031 if (DTU) 6032 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6033 // Note: We call removeProdecessor later since we need to be able to get the 6034 // PHI value for the default case in case we're using a bit mask. 6035 } else { 6036 Value *Cmp = Builder.CreateICmpULT( 6037 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6038 RangeCheckBranch = 6039 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6040 if (DTU) 6041 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6042 } 6043 6044 // Populate the BB that does the lookups. 6045 Builder.SetInsertPoint(LookupBB); 6046 6047 if (NeedMask) { 6048 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6049 // re-purposed to do the hole check, and we create a new LookupBB. 6050 BasicBlock *MaskBB = LookupBB; 6051 MaskBB->setName("switch.hole_check"); 6052 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6053 CommonDest->getParent(), CommonDest); 6054 6055 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6056 // unnecessary illegal types. 6057 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6058 APInt MaskInt(TableSizePowOf2, 0); 6059 APInt One(TableSizePowOf2, 1); 6060 // Build bitmask; fill in a 1 bit for every case. 6061 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6062 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6063 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6064 .getLimitedValue(); 6065 MaskInt |= One << Idx; 6066 } 6067 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6068 6069 // Get the TableIndex'th bit of the bitmask. 6070 // If this bit is 0 (meaning hole) jump to the default destination, 6071 // else continue with table lookup. 6072 IntegerType *MapTy = TableMask->getType(); 6073 Value *MaskIndex = 6074 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6075 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6076 Value *LoBit = Builder.CreateTrunc( 6077 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6078 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6079 if (DTU) { 6080 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6081 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6082 } 6083 Builder.SetInsertPoint(LookupBB); 6084 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6085 } 6086 6087 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6088 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6089 // do not delete PHINodes here. 6090 SI->getDefaultDest()->removePredecessor(BB, 6091 /*KeepOneInputPHIs=*/true); 6092 if (DTU) 6093 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6094 } 6095 6096 bool ReturnedEarly = false; 6097 for (PHINode *PHI : PHIs) { 6098 const ResultListTy &ResultList = ResultLists[PHI]; 6099 6100 // If using a bitmask, use any value to fill the lookup table holes. 6101 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6102 StringRef FuncName = Fn->getName(); 6103 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6104 FuncName); 6105 6106 Value *Result = Table.BuildLookup(TableIndex, Builder); 6107 6108 // If the result is used to return immediately from the function, we want to 6109 // do that right here. 6110 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 6111 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 6112 Builder.CreateRet(Result); 6113 ReturnedEarly = true; 6114 break; 6115 } 6116 6117 // Do a small peephole optimization: re-use the switch table compare if 6118 // possible. 6119 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6120 BasicBlock *PhiBlock = PHI->getParent(); 6121 // Search for compare instructions which use the phi. 6122 for (auto *User : PHI->users()) { 6123 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6124 } 6125 } 6126 6127 PHI->addIncoming(Result, LookupBB); 6128 } 6129 6130 if (!ReturnedEarly) { 6131 Builder.CreateBr(CommonDest); 6132 if (DTU) 6133 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6134 } 6135 6136 // Remove the switch. 6137 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6138 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6139 BasicBlock *Succ = SI->getSuccessor(i); 6140 6141 if (Succ == SI->getDefaultDest()) 6142 continue; 6143 Succ->removePredecessor(BB); 6144 RemovedSuccessors.insert(Succ); 6145 } 6146 SI->eraseFromParent(); 6147 6148 if (DTU) { 6149 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 6150 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 6151 DTU->applyUpdates(Updates); 6152 } 6153 6154 ++NumLookupTables; 6155 if (NeedMask) 6156 ++NumLookupTablesHoles; 6157 return true; 6158 } 6159 6160 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6161 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6162 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6163 uint64_t Range = Diff + 1; 6164 uint64_t NumCases = Values.size(); 6165 // 40% is the default density for building a jump table in optsize/minsize mode. 6166 uint64_t MinDensity = 40; 6167 6168 return NumCases * 100 >= Range * MinDensity; 6169 } 6170 6171 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6172 /// of cases. 6173 /// 6174 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6175 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6176 /// 6177 /// This converts a sparse switch into a dense switch which allows better 6178 /// lowering and could also allow transforming into a lookup table. 6179 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6180 const DataLayout &DL, 6181 const TargetTransformInfo &TTI) { 6182 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6183 if (CondTy->getIntegerBitWidth() > 64 || 6184 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6185 return false; 6186 // Only bother with this optimization if there are more than 3 switch cases; 6187 // SDAG will only bother creating jump tables for 4 or more cases. 6188 if (SI->getNumCases() < 4) 6189 return false; 6190 6191 // This transform is agnostic to the signedness of the input or case values. We 6192 // can treat the case values as signed or unsigned. We can optimize more common 6193 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6194 // as signed. 6195 SmallVector<int64_t,4> Values; 6196 for (auto &C : SI->cases()) 6197 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6198 llvm::sort(Values); 6199 6200 // If the switch is already dense, there's nothing useful to do here. 6201 if (isSwitchDense(Values)) 6202 return false; 6203 6204 // First, transform the values such that they start at zero and ascend. 6205 int64_t Base = Values[0]; 6206 for (auto &V : Values) 6207 V -= (uint64_t)(Base); 6208 6209 // Now we have signed numbers that have been shifted so that, given enough 6210 // precision, there are no negative values. Since the rest of the transform 6211 // is bitwise only, we switch now to an unsigned representation. 6212 6213 // This transform can be done speculatively because it is so cheap - it 6214 // results in a single rotate operation being inserted. 6215 // FIXME: It's possible that optimizing a switch on powers of two might also 6216 // be beneficial - flag values are often powers of two and we could use a CLZ 6217 // as the key function. 6218 6219 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6220 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6221 // less than 64. 6222 unsigned Shift = 64; 6223 for (auto &V : Values) 6224 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6225 assert(Shift < 64); 6226 if (Shift > 0) 6227 for (auto &V : Values) 6228 V = (int64_t)((uint64_t)V >> Shift); 6229 6230 if (!isSwitchDense(Values)) 6231 // Transform didn't create a dense switch. 6232 return false; 6233 6234 // The obvious transform is to shift the switch condition right and emit a 6235 // check that the condition actually cleanly divided by GCD, i.e. 6236 // C & (1 << Shift - 1) == 0 6237 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6238 // 6239 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6240 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6241 // are nonzero then the switch condition will be very large and will hit the 6242 // default case. 6243 6244 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6245 Builder.SetInsertPoint(SI); 6246 auto *ShiftC = ConstantInt::get(Ty, Shift); 6247 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6248 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6249 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6250 auto *Rot = Builder.CreateOr(LShr, Shl); 6251 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6252 6253 for (auto Case : SI->cases()) { 6254 auto *Orig = Case.getCaseValue(); 6255 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6256 Case.setValue( 6257 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6258 } 6259 return true; 6260 } 6261 6262 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6263 BasicBlock *BB = SI->getParent(); 6264 6265 if (isValueEqualityComparison(SI)) { 6266 // If we only have one predecessor, and if it is a branch on this value, 6267 // see if that predecessor totally determines the outcome of this switch. 6268 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6269 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6270 return requestResimplify(); 6271 6272 Value *Cond = SI->getCondition(); 6273 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6274 if (SimplifySwitchOnSelect(SI, Select)) 6275 return requestResimplify(); 6276 6277 // If the block only contains the switch, see if we can fold the block 6278 // away into any preds. 6279 if (SI == &*BB->instructionsWithoutDebug().begin()) 6280 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6281 return requestResimplify(); 6282 } 6283 6284 // Try to transform the switch into an icmp and a branch. 6285 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6286 return requestResimplify(); 6287 6288 // Remove unreachable cases. 6289 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6290 return requestResimplify(); 6291 6292 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6293 return requestResimplify(); 6294 6295 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6296 return requestResimplify(); 6297 6298 // The conversion from switch to lookup tables results in difficult-to-analyze 6299 // code and makes pruning branches much harder. This is a problem if the 6300 // switch expression itself can still be restricted as a result of inlining or 6301 // CVP. Therefore, only apply this transformation during late stages of the 6302 // optimisation pipeline. 6303 if (Options.ConvertSwitchToLookupTable && 6304 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6305 return requestResimplify(); 6306 6307 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6308 return requestResimplify(); 6309 6310 return false; 6311 } 6312 6313 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6314 BasicBlock *BB = IBI->getParent(); 6315 bool Changed = false; 6316 6317 // Eliminate redundant destinations. 6318 SmallPtrSet<Value *, 8> Succs; 6319 SmallPtrSet<BasicBlock *, 8> RemovedSuccs; 6320 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6321 BasicBlock *Dest = IBI->getDestination(i); 6322 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6323 if (!Dest->hasAddressTaken()) 6324 RemovedSuccs.insert(Dest); 6325 Dest->removePredecessor(BB); 6326 IBI->removeDestination(i); 6327 --i; 6328 --e; 6329 Changed = true; 6330 } 6331 } 6332 6333 if (DTU) { 6334 std::vector<DominatorTree::UpdateType> Updates; 6335 Updates.reserve(RemovedSuccs.size()); 6336 for (auto *RemovedSucc : RemovedSuccs) 6337 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6338 DTU->applyUpdates(Updates); 6339 } 6340 6341 if (IBI->getNumDestinations() == 0) { 6342 // If the indirectbr has no successors, change it to unreachable. 6343 new UnreachableInst(IBI->getContext(), IBI); 6344 EraseTerminatorAndDCECond(IBI); 6345 return true; 6346 } 6347 6348 if (IBI->getNumDestinations() == 1) { 6349 // If the indirectbr has one successor, change it to a direct branch. 6350 BranchInst::Create(IBI->getDestination(0), IBI); 6351 EraseTerminatorAndDCECond(IBI); 6352 return true; 6353 } 6354 6355 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6356 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6357 return requestResimplify(); 6358 } 6359 return Changed; 6360 } 6361 6362 /// Given an block with only a single landing pad and a unconditional branch 6363 /// try to find another basic block which this one can be merged with. This 6364 /// handles cases where we have multiple invokes with unique landing pads, but 6365 /// a shared handler. 6366 /// 6367 /// We specifically choose to not worry about merging non-empty blocks 6368 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6369 /// practice, the optimizer produces empty landing pad blocks quite frequently 6370 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6371 /// sinking in this file) 6372 /// 6373 /// This is primarily a code size optimization. We need to avoid performing 6374 /// any transform which might inhibit optimization (such as our ability to 6375 /// specialize a particular handler via tail commoning). We do this by not 6376 /// merging any blocks which require us to introduce a phi. Since the same 6377 /// values are flowing through both blocks, we don't lose any ability to 6378 /// specialize. If anything, we make such specialization more likely. 6379 /// 6380 /// TODO - This transformation could remove entries from a phi in the target 6381 /// block when the inputs in the phi are the same for the two blocks being 6382 /// merged. In some cases, this could result in removal of the PHI entirely. 6383 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6384 BasicBlock *BB, DomTreeUpdater *DTU) { 6385 auto Succ = BB->getUniqueSuccessor(); 6386 assert(Succ); 6387 // If there's a phi in the successor block, we'd likely have to introduce 6388 // a phi into the merged landing pad block. 6389 if (isa<PHINode>(*Succ->begin())) 6390 return false; 6391 6392 for (BasicBlock *OtherPred : predecessors(Succ)) { 6393 if (BB == OtherPred) 6394 continue; 6395 BasicBlock::iterator I = OtherPred->begin(); 6396 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6397 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6398 continue; 6399 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6400 ; 6401 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6402 if (!BI2 || !BI2->isIdenticalTo(BI)) 6403 continue; 6404 6405 std::vector<DominatorTree::UpdateType> Updates; 6406 6407 // We've found an identical block. Update our predecessors to take that 6408 // path instead and make ourselves dead. 6409 SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 6410 for (BasicBlock *Pred : Preds) { 6411 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6412 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6413 "unexpected successor"); 6414 II->setUnwindDest(OtherPred); 6415 if (DTU) { 6416 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6417 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6418 } 6419 } 6420 6421 // The debug info in OtherPred doesn't cover the merged control flow that 6422 // used to go through BB. We need to delete it or update it. 6423 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6424 Instruction &Inst = *I; 6425 I++; 6426 if (isa<DbgInfoIntrinsic>(Inst)) 6427 Inst.eraseFromParent(); 6428 } 6429 6430 SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB)); 6431 for (BasicBlock *Succ : Succs) { 6432 Succ->removePredecessor(BB); 6433 if (DTU) 6434 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6435 } 6436 6437 IRBuilder<> Builder(BI); 6438 Builder.CreateUnreachable(); 6439 BI->eraseFromParent(); 6440 if (DTU) 6441 DTU->applyUpdates(Updates); 6442 return true; 6443 } 6444 return false; 6445 } 6446 6447 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6448 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6449 : simplifyCondBranch(Branch, Builder); 6450 } 6451 6452 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6453 IRBuilder<> &Builder) { 6454 BasicBlock *BB = BI->getParent(); 6455 BasicBlock *Succ = BI->getSuccessor(0); 6456 6457 // If the Terminator is the only non-phi instruction, simplify the block. 6458 // If LoopHeader is provided, check if the block or its successor is a loop 6459 // header. (This is for early invocations before loop simplify and 6460 // vectorization to keep canonical loop forms for nested loops. These blocks 6461 // can be eliminated when the pass is invoked later in the back-end.) 6462 // Note that if BB has only one predecessor then we do not introduce new 6463 // backedge, so we can eliminate BB. 6464 bool NeedCanonicalLoop = 6465 Options.NeedCanonicalLoop && 6466 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6467 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6468 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6469 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6470 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6471 return true; 6472 6473 // If the only instruction in the block is a seteq/setne comparison against a 6474 // constant, try to simplify the block. 6475 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6476 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6477 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6478 ; 6479 if (I->isTerminator() && 6480 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6481 return true; 6482 } 6483 6484 // See if we can merge an empty landing pad block with another which is 6485 // equivalent. 6486 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6487 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6488 ; 6489 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6490 return true; 6491 } 6492 6493 // If this basic block is ONLY a compare and a branch, and if a predecessor 6494 // branches to us and our successor, fold the comparison into the 6495 // predecessor and use logical operations to update the incoming value 6496 // for PHI nodes in common successor. 6497 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6498 Options.BonusInstThreshold)) 6499 return requestResimplify(); 6500 return false; 6501 } 6502 6503 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6504 BasicBlock *PredPred = nullptr; 6505 for (auto *P : predecessors(BB)) { 6506 BasicBlock *PPred = P->getSinglePredecessor(); 6507 if (!PPred || (PredPred && PredPred != PPred)) 6508 return nullptr; 6509 PredPred = PPred; 6510 } 6511 return PredPred; 6512 } 6513 6514 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6515 BasicBlock *BB = BI->getParent(); 6516 if (!Options.SimplifyCondBranch) 6517 return false; 6518 6519 // Conditional branch 6520 if (isValueEqualityComparison(BI)) { 6521 // If we only have one predecessor, and if it is a branch on this value, 6522 // see if that predecessor totally determines the outcome of this 6523 // switch. 6524 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6525 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6526 return requestResimplify(); 6527 6528 // This block must be empty, except for the setcond inst, if it exists. 6529 // Ignore dbg and pseudo intrinsics. 6530 auto I = BB->instructionsWithoutDebug(true).begin(); 6531 if (&*I == BI) { 6532 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6533 return requestResimplify(); 6534 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6535 ++I; 6536 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6537 return requestResimplify(); 6538 } 6539 } 6540 6541 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6542 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6543 return true; 6544 6545 // If this basic block has dominating predecessor blocks and the dominating 6546 // blocks' conditions imply BI's condition, we know the direction of BI. 6547 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6548 if (Imp) { 6549 // Turn this into a branch on constant. 6550 auto *OldCond = BI->getCondition(); 6551 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6552 : ConstantInt::getFalse(BB->getContext()); 6553 BI->setCondition(TorF); 6554 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6555 return requestResimplify(); 6556 } 6557 6558 // If this basic block is ONLY a compare and a branch, and if a predecessor 6559 // branches to us and one of our successors, fold the comparison into the 6560 // predecessor and use logical operations to pick the right destination. 6561 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6562 Options.BonusInstThreshold)) 6563 return requestResimplify(); 6564 6565 // We have a conditional branch to two blocks that are only reachable 6566 // from BI. We know that the condbr dominates the two blocks, so see if 6567 // there is any identical code in the "then" and "else" blocks. If so, we 6568 // can hoist it up to the branching block. 6569 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6570 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6571 if (HoistCommon && 6572 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6573 return requestResimplify(); 6574 } else { 6575 // If Successor #1 has multiple preds, we may be able to conditionally 6576 // execute Successor #0 if it branches to Successor #1. 6577 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6578 if (Succ0TI->getNumSuccessors() == 1 && 6579 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6580 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6581 return requestResimplify(); 6582 } 6583 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6584 // If Successor #0 has multiple preds, we may be able to conditionally 6585 // execute Successor #1 if it branches to Successor #0. 6586 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6587 if (Succ1TI->getNumSuccessors() == 1 && 6588 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6589 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6590 return requestResimplify(); 6591 } 6592 6593 // If this is a branch on a phi node in the current block, thread control 6594 // through this block if any PHI node entries are constants. 6595 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6596 if (PN->getParent() == BI->getParent()) 6597 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6598 return requestResimplify(); 6599 6600 // Scan predecessor blocks for conditional branches. 6601 for (BasicBlock *Pred : predecessors(BB)) 6602 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6603 if (PBI != BI && PBI->isConditional()) 6604 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6605 return requestResimplify(); 6606 6607 // Look for diamond patterns. 6608 if (MergeCondStores) 6609 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6610 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6611 if (PBI != BI && PBI->isConditional()) 6612 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6613 return requestResimplify(); 6614 6615 return false; 6616 } 6617 6618 /// Check if passing a value to an instruction will cause undefined behavior. 6619 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6620 Constant *C = dyn_cast<Constant>(V); 6621 if (!C) 6622 return false; 6623 6624 if (I->use_empty()) 6625 return false; 6626 6627 if (C->isNullValue() || isa<UndefValue>(C)) { 6628 // Only look at the first use, avoid hurting compile time with long uselists 6629 User *Use = *I->user_begin(); 6630 6631 // Now make sure that there are no instructions in between that can alter 6632 // control flow (eg. calls) 6633 for (BasicBlock::iterator 6634 i = ++BasicBlock::iterator(I), 6635 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6636 i != UI; ++i) { 6637 if (i == I->getParent()->end()) 6638 return false; 6639 if (!isGuaranteedToTransferExecutionToSuccessor(&*i)) 6640 return false; 6641 } 6642 6643 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6644 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6645 if (GEP->getPointerOperand() == I) { 6646 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6647 PtrValueMayBeModified = true; 6648 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6649 } 6650 6651 // Look through bitcasts. 6652 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6653 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6654 6655 // Load from null is undefined. 6656 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6657 if (!LI->isVolatile()) 6658 return !NullPointerIsDefined(LI->getFunction(), 6659 LI->getPointerAddressSpace()); 6660 6661 // Store to null is undefined. 6662 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6663 if (!SI->isVolatile()) 6664 return (!NullPointerIsDefined(SI->getFunction(), 6665 SI->getPointerAddressSpace())) && 6666 SI->getPointerOperand() == I; 6667 6668 if (auto *CB = dyn_cast<CallBase>(Use)) { 6669 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6670 return false; 6671 // A call to null is undefined. 6672 if (CB->getCalledOperand() == I) 6673 return true; 6674 6675 if (C->isNullValue()) { 6676 for (const llvm::Use &Arg : CB->args()) 6677 if (Arg == I) { 6678 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6679 if (CB->isPassingUndefUB(ArgIdx) && 6680 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6681 // Passing null to a nonnnull+noundef argument is undefined. 6682 return !PtrValueMayBeModified; 6683 } 6684 } 6685 } else if (isa<UndefValue>(C)) { 6686 // Passing undef to a noundef argument is undefined. 6687 for (const llvm::Use &Arg : CB->args()) 6688 if (Arg == I) { 6689 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6690 if (CB->isPassingUndefUB(ArgIdx)) { 6691 // Passing undef to a noundef argument is undefined. 6692 return true; 6693 } 6694 } 6695 } 6696 } 6697 } 6698 return false; 6699 } 6700 6701 /// If BB has an incoming value that will always trigger undefined behavior 6702 /// (eg. null pointer dereference), remove the branch leading here. 6703 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6704 DomTreeUpdater *DTU) { 6705 for (PHINode &PHI : BB->phis()) 6706 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6707 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6708 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6709 Instruction *T = Predecessor->getTerminator(); 6710 IRBuilder<> Builder(T); 6711 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6712 BB->removePredecessor(Predecessor); 6713 // Turn uncoditional branches into unreachables and remove the dead 6714 // destination from conditional branches. 6715 if (BI->isUnconditional()) 6716 Builder.CreateUnreachable(); 6717 else 6718 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6719 : BI->getSuccessor(0)); 6720 BI->eraseFromParent(); 6721 if (DTU) 6722 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6723 return true; 6724 } 6725 // TODO: SwitchInst. 6726 } 6727 6728 return false; 6729 } 6730 6731 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6732 bool Changed = false; 6733 6734 assert(BB && BB->getParent() && "Block not embedded in function!"); 6735 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6736 6737 // Remove basic blocks that have no predecessors (except the entry block)... 6738 // or that just have themself as a predecessor. These are unreachable. 6739 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6740 BB->getSinglePredecessor() == BB) { 6741 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6742 DeleteDeadBlock(BB, DTU); 6743 return true; 6744 } 6745 6746 // Check to see if we can constant propagate this terminator instruction 6747 // away... 6748 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6749 /*TLI=*/nullptr, DTU); 6750 6751 // Check for and eliminate duplicate PHI nodes in this block. 6752 Changed |= EliminateDuplicatePHINodes(BB); 6753 6754 // Check for and remove branches that will always cause undefined behavior. 6755 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6756 6757 // Merge basic blocks into their predecessor if there is only one distinct 6758 // pred, and if there is only one distinct successor of the predecessor, and 6759 // if there are no PHI nodes. 6760 if (MergeBlockIntoPredecessor(BB, DTU)) 6761 return true; 6762 6763 if (SinkCommon && Options.SinkCommonInsts) 6764 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6765 6766 IRBuilder<> Builder(BB); 6767 6768 if (Options.FoldTwoEntryPHINode) { 6769 // If there is a trivial two-entry PHI node in this basic block, and we can 6770 // eliminate it, do so now. 6771 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6772 if (PN->getNumIncomingValues() == 2) 6773 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6774 } 6775 6776 Instruction *Terminator = BB->getTerminator(); 6777 Builder.SetInsertPoint(Terminator); 6778 switch (Terminator->getOpcode()) { 6779 case Instruction::Br: 6780 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6781 break; 6782 case Instruction::Ret: 6783 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6784 break; 6785 case Instruction::Resume: 6786 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6787 break; 6788 case Instruction::CleanupRet: 6789 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6790 break; 6791 case Instruction::Switch: 6792 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6793 break; 6794 case Instruction::Unreachable: 6795 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6796 break; 6797 case Instruction::IndirectBr: 6798 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6799 break; 6800 } 6801 6802 return Changed; 6803 } 6804 6805 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6806 bool Changed = simplifyOnceImpl(BB); 6807 6808 return Changed; 6809 } 6810 6811 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6812 bool Changed = false; 6813 6814 // Repeated simplify BB as long as resimplification is requested. 6815 do { 6816 Resimplify = false; 6817 6818 // Perform one round of simplifcation. Resimplify flag will be set if 6819 // another iteration is requested. 6820 Changed |= simplifyOnce(BB); 6821 } while (Resimplify); 6822 6823 return Changed; 6824 } 6825 6826 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6827 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6828 ArrayRef<WeakVH> LoopHeaders) { 6829 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6830 Options) 6831 .run(BB); 6832 } 6833