1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SetOperations.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/ConstantRange.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/NoFolder.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/PatternMatch.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include "llvm/Transforms/Utils/ValueMapper.h"
49 #include <algorithm>
50 #include <map>
51 #include <set>
52 using namespace llvm;
53 using namespace PatternMatch;
54 
55 #define DEBUG_TYPE "simplifycfg"
56 
57 // Chosen as 2 so as to be cheap, but still to have enough power to fold
58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
59 // To catch this, we need to fold a compare and a select, hence '2' being the
60 // minimum reasonable default.
61 static cl::opt<unsigned>
62 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2),
63    cl::desc("Control the amount of phi node folding to perform (default = 2)"));
64 
65 static cl::opt<bool>
66 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
67        cl::desc("Duplicate return instructions into unconditional branches"));
68 
69 static cl::opt<bool>
70 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
71        cl::desc("Sink common instructions down to the end block"));
72 
73 static cl::opt<bool> HoistCondStores(
74     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
75     cl::desc("Hoist conditional stores if an unconditional store precedes"));
76 
77 static cl::opt<bool> MergeCondStores(
78     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
79     cl::desc("Hoist conditional stores even if an unconditional store does not "
80              "precede - hoist multiple conditional stores into a single "
81              "predicated store"));
82 
83 static cl::opt<bool> MergeCondStoresAggressively(
84     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
85     cl::desc("When merging conditional stores, do so even if the resultant "
86              "basic blocks are unlikely to be if-converted as a result"));
87 
88 static cl::opt<bool> SpeculateOneExpensiveInst(
89     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
90     cl::desc("Allow exactly one expensive instruction to be speculatively "
91              "executed"));
92 
93 static cl::opt<unsigned> MaxSpeculationDepth(
94     "max-speculation-depth", cl::Hidden, cl::init(10),
95     cl::desc("Limit maximum recursion depth when calculating costs of "
96              "speculatively executed instructions"));
97 
98 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
99 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
100 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
101 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
102 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
103 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
104 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
105 
106 namespace {
107   // The first field contains the value that the switch produces when a certain
108   // case group is selected, and the second field is a vector containing the
109   // cases composing the case group.
110   typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
111     SwitchCaseResultVectorTy;
112   // The first field contains the phi node that generates a result of the switch
113   // and the second field contains the value generated for a certain case in the
114   // switch for that PHI.
115   typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
116 
117   /// ValueEqualityComparisonCase - Represents a case of a switch.
118   struct ValueEqualityComparisonCase {
119     ConstantInt *Value;
120     BasicBlock *Dest;
121 
122     ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
123       : Value(Value), Dest(Dest) {}
124 
125     bool operator<(ValueEqualityComparisonCase RHS) const {
126       // Comparing pointers is ok as we only rely on the order for uniquing.
127       return Value < RHS.Value;
128     }
129 
130     bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
131   };
132 
133 class SimplifyCFGOpt {
134   const TargetTransformInfo &TTI;
135   const DataLayout &DL;
136   unsigned BonusInstThreshold;
137   AssumptionCache *AC;
138   Value *isValueEqualityComparison(TerminatorInst *TI);
139   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
140                                std::vector<ValueEqualityComparisonCase> &Cases);
141   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
142                                                      BasicBlock *Pred,
143                                                      IRBuilder<> &Builder);
144   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
145                                            IRBuilder<> &Builder);
146 
147   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
148   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
149   bool SimplifySingleResume(ResumeInst *RI);
150   bool SimplifyCommonResume(ResumeInst *RI);
151   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
152   bool SimplifyUnreachable(UnreachableInst *UI);
153   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
154   bool SimplifyIndirectBr(IndirectBrInst *IBI);
155   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
156   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
157 
158 public:
159   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
160                  unsigned BonusInstThreshold, AssumptionCache *AC)
161       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {}
162   bool run(BasicBlock *BB);
163 };
164 }
165 
166 /// Return true if it is safe to merge these two
167 /// terminator instructions together.
168 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
169   if (SI1 == SI2) return false;  // Can't merge with self!
170 
171   // It is not safe to merge these two switch instructions if they have a common
172   // successor, and if that successor has a PHI node, and if *that* PHI node has
173   // conflicting incoming values from the two switch blocks.
174   BasicBlock *SI1BB = SI1->getParent();
175   BasicBlock *SI2BB = SI2->getParent();
176   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
177 
178   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
179     if (SI1Succs.count(*I))
180       for (BasicBlock::iterator BBI = (*I)->begin();
181            isa<PHINode>(BBI); ++BBI) {
182         PHINode *PN = cast<PHINode>(BBI);
183         if (PN->getIncomingValueForBlock(SI1BB) !=
184             PN->getIncomingValueForBlock(SI2BB))
185           return false;
186       }
187 
188   return true;
189 }
190 
191 /// Return true if it is safe and profitable to merge these two terminator
192 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
193 /// store all PHI nodes in common successors.
194 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
195                                           BranchInst *SI2,
196                                           Instruction *Cond,
197                                           SmallVectorImpl<PHINode*> &PhiNodes) {
198   if (SI1 == SI2) return false;  // Can't merge with self!
199   assert(SI1->isUnconditional() && SI2->isConditional());
200 
201   // We fold the unconditional branch if we can easily update all PHI nodes in
202   // common successors:
203   // 1> We have a constant incoming value for the conditional branch;
204   // 2> We have "Cond" as the incoming value for the unconditional branch;
205   // 3> SI2->getCondition() and Cond have same operands.
206   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
207   if (!Ci2) return false;
208   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
209         Cond->getOperand(1) == Ci2->getOperand(1)) &&
210       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
211         Cond->getOperand(1) == Ci2->getOperand(0)))
212     return false;
213 
214   BasicBlock *SI1BB = SI1->getParent();
215   BasicBlock *SI2BB = SI2->getParent();
216   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
217   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
218     if (SI1Succs.count(*I))
219       for (BasicBlock::iterator BBI = (*I)->begin();
220            isa<PHINode>(BBI); ++BBI) {
221         PHINode *PN = cast<PHINode>(BBI);
222         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
223             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
224           return false;
225         PhiNodes.push_back(PN);
226       }
227   return true;
228 }
229 
230 /// Update PHI nodes in Succ to indicate that there will now be entries in it
231 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
232 /// will be the same as those coming in from ExistPred, an existing predecessor
233 /// of Succ.
234 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
235                                   BasicBlock *ExistPred) {
236   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
237 
238   PHINode *PN;
239   for (BasicBlock::iterator I = Succ->begin();
240        (PN = dyn_cast<PHINode>(I)); ++I)
241     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
242 }
243 
244 /// Compute an abstract "cost" of speculating the given instruction,
245 /// which is assumed to be safe to speculate. TCC_Free means cheap,
246 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
247 /// expensive.
248 static unsigned ComputeSpeculationCost(const User *I,
249                                        const TargetTransformInfo &TTI) {
250   assert(isSafeToSpeculativelyExecute(I) &&
251          "Instruction is not safe to speculatively execute!");
252   return TTI.getUserCost(I);
253 }
254 
255 /// If we have a merge point of an "if condition" as accepted above,
256 /// return true if the specified value dominates the block.  We
257 /// don't handle the true generality of domination here, just a special case
258 /// which works well enough for us.
259 ///
260 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
261 /// see if V (which must be an instruction) and its recursive operands
262 /// that do not dominate BB have a combined cost lower than CostRemaining and
263 /// are non-trapping.  If both are true, the instruction is inserted into the
264 /// set and true is returned.
265 ///
266 /// The cost for most non-trapping instructions is defined as 1 except for
267 /// Select whose cost is 2.
268 ///
269 /// After this function returns, CostRemaining is decreased by the cost of
270 /// V plus its non-dominating operands.  If that cost is greater than
271 /// CostRemaining, false is returned and CostRemaining is undefined.
272 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
273                                 SmallPtrSetImpl<Instruction*> *AggressiveInsts,
274                                 unsigned &CostRemaining,
275                                 const TargetTransformInfo &TTI,
276                                 unsigned Depth = 0) {
277   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
278   // so limit the recursion depth.
279   // TODO: While this recursion limit does prevent pathological behavior, it
280   // would be better to track visited instructions to avoid cycles.
281   if (Depth == MaxSpeculationDepth)
282     return false;
283 
284   Instruction *I = dyn_cast<Instruction>(V);
285   if (!I) {
286     // Non-instructions all dominate instructions, but not all constantexprs
287     // can be executed unconditionally.
288     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
289       if (C->canTrap())
290         return false;
291     return true;
292   }
293   BasicBlock *PBB = I->getParent();
294 
295   // We don't want to allow weird loops that might have the "if condition" in
296   // the bottom of this block.
297   if (PBB == BB) return false;
298 
299   // If this instruction is defined in a block that contains an unconditional
300   // branch to BB, then it must be in the 'conditional' part of the "if
301   // statement".  If not, it definitely dominates the region.
302   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
303   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
304     return true;
305 
306   // If we aren't allowing aggressive promotion anymore, then don't consider
307   // instructions in the 'if region'.
308   if (!AggressiveInsts) return false;
309 
310   // If we have seen this instruction before, don't count it again.
311   if (AggressiveInsts->count(I)) return true;
312 
313   // Okay, it looks like the instruction IS in the "condition".  Check to
314   // see if it's a cheap instruction to unconditionally compute, and if it
315   // only uses stuff defined outside of the condition.  If so, hoist it out.
316   if (!isSafeToSpeculativelyExecute(I))
317     return false;
318 
319   unsigned Cost = ComputeSpeculationCost(I, TTI);
320 
321   // Allow exactly one instruction to be speculated regardless of its cost
322   // (as long as it is safe to do so).
323   // This is intended to flatten the CFG even if the instruction is a division
324   // or other expensive operation. The speculation of an expensive instruction
325   // is expected to be undone in CodeGenPrepare if the speculation has not
326   // enabled further IR optimizations.
327   if (Cost > CostRemaining &&
328       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
329     return false;
330 
331   // Avoid unsigned wrap.
332   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
333 
334   // Okay, we can only really hoist these out if their operands do
335   // not take us over the cost threshold.
336   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
337     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
338                              Depth + 1))
339       return false;
340   // Okay, it's safe to do this!  Remember this instruction.
341   AggressiveInsts->insert(I);
342   return true;
343 }
344 
345 /// Extract ConstantInt from value, looking through IntToPtr
346 /// and PointerNullValue. Return NULL if value is not a constant int.
347 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
348   // Normal constant int.
349   ConstantInt *CI = dyn_cast<ConstantInt>(V);
350   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
351     return CI;
352 
353   // This is some kind of pointer constant. Turn it into a pointer-sized
354   // ConstantInt if possible.
355   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
356 
357   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
358   if (isa<ConstantPointerNull>(V))
359     return ConstantInt::get(PtrTy, 0);
360 
361   // IntToPtr const int.
362   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
363     if (CE->getOpcode() == Instruction::IntToPtr)
364       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
365         // The constant is very likely to have the right type already.
366         if (CI->getType() == PtrTy)
367           return CI;
368         else
369           return cast<ConstantInt>
370             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
371       }
372   return nullptr;
373 }
374 
375 namespace {
376 
377 /// Given a chain of or (||) or and (&&) comparison of a value against a
378 /// constant, this will try to recover the information required for a switch
379 /// structure.
380 /// It will depth-first traverse the chain of comparison, seeking for patterns
381 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
382 /// representing the different cases for the switch.
383 /// Note that if the chain is composed of '||' it will build the set of elements
384 /// that matches the comparisons (i.e. any of this value validate the chain)
385 /// while for a chain of '&&' it will build the set elements that make the test
386 /// fail.
387 struct ConstantComparesGatherer {
388   const DataLayout &DL;
389   Value *CompValue; /// Value found for the switch comparison
390   Value *Extra;     /// Extra clause to be checked before the switch
391   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
392   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
393 
394   /// Construct and compute the result for the comparison instruction Cond
395   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
396       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
397     gather(Cond);
398   }
399 
400   /// Prevent copy
401   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
402   ConstantComparesGatherer &
403   operator=(const ConstantComparesGatherer &) = delete;
404 
405 private:
406 
407   /// Try to set the current value used for the comparison, it succeeds only if
408   /// it wasn't set before or if the new value is the same as the old one
409   bool setValueOnce(Value *NewVal) {
410     if(CompValue && CompValue != NewVal) return false;
411     CompValue = NewVal;
412     return (CompValue != nullptr);
413   }
414 
415   /// Try to match Instruction "I" as a comparison against a constant and
416   /// populates the array Vals with the set of values that match (or do not
417   /// match depending on isEQ).
418   /// Return false on failure. On success, the Value the comparison matched
419   /// against is placed in CompValue.
420   /// If CompValue is already set, the function is expected to fail if a match
421   /// is found but the value compared to is different.
422   bool matchInstruction(Instruction *I, bool isEQ) {
423     // If this is an icmp against a constant, handle this as one of the cases.
424     ICmpInst *ICI;
425     ConstantInt *C;
426     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
427              (C = GetConstantInt(I->getOperand(1), DL)))) {
428       return false;
429     }
430 
431     Value *RHSVal;
432     ConstantInt *RHSC;
433 
434     // Pattern match a special case
435     // (x & ~2^z) == y --> x == y || x == y|2^z
436     // This undoes a transformation done by instcombine to fuse 2 compares.
437     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
438       if (match(ICI->getOperand(0),
439                 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
440         APInt Not = ~RHSC->getValue();
441         if (Not.isPowerOf2() && C->getValue().isPowerOf2() &&
442             Not != C->getValue()) {
443           // If we already have a value for the switch, it has to match!
444           if(!setValueOnce(RHSVal))
445             return false;
446 
447           Vals.push_back(C);
448           Vals.push_back(ConstantInt::get(C->getContext(),
449                                           C->getValue() | Not));
450           UsedICmps++;
451           return true;
452         }
453       }
454 
455       // If we already have a value for the switch, it has to match!
456       if(!setValueOnce(ICI->getOperand(0)))
457         return false;
458 
459       UsedICmps++;
460       Vals.push_back(C);
461       return ICI->getOperand(0);
462     }
463 
464     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
465     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
466         ICI->getPredicate(), C->getValue());
467 
468     // Shift the range if the compare is fed by an add. This is the range
469     // compare idiom as emitted by instcombine.
470     Value *CandidateVal = I->getOperand(0);
471     if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
472       Span = Span.subtract(RHSC->getValue());
473       CandidateVal = RHSVal;
474     }
475 
476     // If this is an and/!= check, then we are looking to build the set of
477     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
478     // x != 0 && x != 1.
479     if (!isEQ)
480       Span = Span.inverse();
481 
482     // If there are a ton of values, we don't want to make a ginormous switch.
483     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
484       return false;
485     }
486 
487     // If we already have a value for the switch, it has to match!
488     if(!setValueOnce(CandidateVal))
489       return false;
490 
491     // Add all values from the range to the set
492     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
493       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
494 
495     UsedICmps++;
496     return true;
497 
498   }
499 
500   /// Given a potentially 'or'd or 'and'd together collection of icmp
501   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
502   /// the value being compared, and stick the list constants into the Vals
503   /// vector.
504   /// One "Extra" case is allowed to differ from the other.
505   void gather(Value *V) {
506     Instruction *I = dyn_cast<Instruction>(V);
507     bool isEQ = (I->getOpcode() == Instruction::Or);
508 
509     // Keep a stack (SmallVector for efficiency) for depth-first traversal
510     SmallVector<Value *, 8> DFT;
511     SmallPtrSet<Value *, 8> Visited;
512 
513     // Initialize
514     Visited.insert(V);
515     DFT.push_back(V);
516 
517     while(!DFT.empty()) {
518       V = DFT.pop_back_val();
519 
520       if (Instruction *I = dyn_cast<Instruction>(V)) {
521         // If it is a || (or && depending on isEQ), process the operands.
522         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
523           if (Visited.insert(I->getOperand(1)).second)
524             DFT.push_back(I->getOperand(1));
525           if (Visited.insert(I->getOperand(0)).second)
526             DFT.push_back(I->getOperand(0));
527           continue;
528         }
529 
530         // Try to match the current instruction
531         if (matchInstruction(I, isEQ))
532           // Match succeed, continue the loop
533           continue;
534       }
535 
536       // One element of the sequence of || (or &&) could not be match as a
537       // comparison against the same value as the others.
538       // We allow only one "Extra" case to be checked before the switch
539       if (!Extra) {
540         Extra = V;
541         continue;
542       }
543       // Failed to parse a proper sequence, abort now
544       CompValue = nullptr;
545       break;
546     }
547   }
548 };
549 
550 }
551 
552 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
553   Instruction *Cond = nullptr;
554   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
555     Cond = dyn_cast<Instruction>(SI->getCondition());
556   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
557     if (BI->isConditional())
558       Cond = dyn_cast<Instruction>(BI->getCondition());
559   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
560     Cond = dyn_cast<Instruction>(IBI->getAddress());
561   }
562 
563   TI->eraseFromParent();
564   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
565 }
566 
567 /// Return true if the specified terminator checks
568 /// to see if a value is equal to constant integer value.
569 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
570   Value *CV = nullptr;
571   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
572     // Do not permit merging of large switch instructions into their
573     // predecessors unless there is only one predecessor.
574     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
575                                              pred_end(SI->getParent())) <= 128)
576       CV = SI->getCondition();
577   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
578     if (BI->isConditional() && BI->getCondition()->hasOneUse())
579       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
580         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
581           CV = ICI->getOperand(0);
582       }
583 
584   // Unwrap any lossless ptrtoint cast.
585   if (CV) {
586     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
587       Value *Ptr = PTII->getPointerOperand();
588       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
589         CV = Ptr;
590     }
591   }
592   return CV;
593 }
594 
595 /// Given a value comparison instruction,
596 /// decode all of the 'cases' that it represents and return the 'default' block.
597 BasicBlock *SimplifyCFGOpt::
598 GetValueEqualityComparisonCases(TerminatorInst *TI,
599                                 std::vector<ValueEqualityComparisonCase>
600                                                                        &Cases) {
601   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
602     Cases.reserve(SI->getNumCases());
603     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
604       Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
605                                                   i.getCaseSuccessor()));
606     return SI->getDefaultDest();
607   }
608 
609   BranchInst *BI = cast<BranchInst>(TI);
610   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
611   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
612   Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
613                                                              DL),
614                                               Succ));
615   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
616 }
617 
618 
619 /// Given a vector of bb/value pairs, remove any entries
620 /// in the list that match the specified block.
621 static void EliminateBlockCases(BasicBlock *BB,
622                               std::vector<ValueEqualityComparisonCase> &Cases) {
623   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
624 }
625 
626 /// Return true if there are any keys in C1 that exist in C2 as well.
627 static bool
628 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
629               std::vector<ValueEqualityComparisonCase > &C2) {
630   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
631 
632   // Make V1 be smaller than V2.
633   if (V1->size() > V2->size())
634     std::swap(V1, V2);
635 
636   if (V1->size() == 0) return false;
637   if (V1->size() == 1) {
638     // Just scan V2.
639     ConstantInt *TheVal = (*V1)[0].Value;
640     for (unsigned i = 0, e = V2->size(); i != e; ++i)
641       if (TheVal == (*V2)[i].Value)
642         return true;
643   }
644 
645   // Otherwise, just sort both lists and compare element by element.
646   array_pod_sort(V1->begin(), V1->end());
647   array_pod_sort(V2->begin(), V2->end());
648   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
649   while (i1 != e1 && i2 != e2) {
650     if ((*V1)[i1].Value == (*V2)[i2].Value)
651       return true;
652     if ((*V1)[i1].Value < (*V2)[i2].Value)
653       ++i1;
654     else
655       ++i2;
656   }
657   return false;
658 }
659 
660 /// If TI is known to be a terminator instruction and its block is known to
661 /// only have a single predecessor block, check to see if that predecessor is
662 /// also a value comparison with the same value, and if that comparison
663 /// determines the outcome of this comparison. If so, simplify TI. This does a
664 /// very limited form of jump threading.
665 bool SimplifyCFGOpt::
666 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
667                                               BasicBlock *Pred,
668                                               IRBuilder<> &Builder) {
669   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
670   if (!PredVal) return false;  // Not a value comparison in predecessor.
671 
672   Value *ThisVal = isValueEqualityComparison(TI);
673   assert(ThisVal && "This isn't a value comparison!!");
674   if (ThisVal != PredVal) return false;  // Different predicates.
675 
676   // TODO: Preserve branch weight metadata, similarly to how
677   // FoldValueComparisonIntoPredecessors preserves it.
678 
679   // Find out information about when control will move from Pred to TI's block.
680   std::vector<ValueEqualityComparisonCase> PredCases;
681   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
682                                                         PredCases);
683   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
684 
685   // Find information about how control leaves this block.
686   std::vector<ValueEqualityComparisonCase> ThisCases;
687   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
688   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
689 
690   // If TI's block is the default block from Pred's comparison, potentially
691   // simplify TI based on this knowledge.
692   if (PredDef == TI->getParent()) {
693     // If we are here, we know that the value is none of those cases listed in
694     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
695     // can simplify TI.
696     if (!ValuesOverlap(PredCases, ThisCases))
697       return false;
698 
699     if (isa<BranchInst>(TI)) {
700       // Okay, one of the successors of this condbr is dead.  Convert it to a
701       // uncond br.
702       assert(ThisCases.size() == 1 && "Branch can only have one case!");
703       // Insert the new branch.
704       Instruction *NI = Builder.CreateBr(ThisDef);
705       (void) NI;
706 
707       // Remove PHI node entries for the dead edge.
708       ThisCases[0].Dest->removePredecessor(TI->getParent());
709 
710       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
711            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
712 
713       EraseTerminatorInstAndDCECond(TI);
714       return true;
715     }
716 
717     SwitchInst *SI = cast<SwitchInst>(TI);
718     // Okay, TI has cases that are statically dead, prune them away.
719     SmallPtrSet<Constant*, 16> DeadCases;
720     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
721       DeadCases.insert(PredCases[i].Value);
722 
723     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
724                  << "Through successor TI: " << *TI);
725 
726     // Collect branch weights into a vector.
727     SmallVector<uint32_t, 8> Weights;
728     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
729     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
730     if (HasWeight)
731       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
732            ++MD_i) {
733         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
734         Weights.push_back(CI->getValue().getZExtValue());
735       }
736     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
737       --i;
738       if (DeadCases.count(i.getCaseValue())) {
739         if (HasWeight) {
740           std::swap(Weights[i.getCaseIndex()+1], Weights.back());
741           Weights.pop_back();
742         }
743         i.getCaseSuccessor()->removePredecessor(TI->getParent());
744         SI->removeCase(i);
745       }
746     }
747     if (HasWeight && Weights.size() >= 2)
748       SI->setMetadata(LLVMContext::MD_prof,
749                       MDBuilder(SI->getParent()->getContext()).
750                       createBranchWeights(Weights));
751 
752     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
753     return true;
754   }
755 
756   // Otherwise, TI's block must correspond to some matched value.  Find out
757   // which value (or set of values) this is.
758   ConstantInt *TIV = nullptr;
759   BasicBlock *TIBB = TI->getParent();
760   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
761     if (PredCases[i].Dest == TIBB) {
762       if (TIV)
763         return false;  // Cannot handle multiple values coming to this block.
764       TIV = PredCases[i].Value;
765     }
766   assert(TIV && "No edge from pred to succ?");
767 
768   // Okay, we found the one constant that our value can be if we get into TI's
769   // BB.  Find out which successor will unconditionally be branched to.
770   BasicBlock *TheRealDest = nullptr;
771   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
772     if (ThisCases[i].Value == TIV) {
773       TheRealDest = ThisCases[i].Dest;
774       break;
775     }
776 
777   // If not handled by any explicit cases, it is handled by the default case.
778   if (!TheRealDest) TheRealDest = ThisDef;
779 
780   // Remove PHI node entries for dead edges.
781   BasicBlock *CheckEdge = TheRealDest;
782   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
783     if (*SI != CheckEdge)
784       (*SI)->removePredecessor(TIBB);
785     else
786       CheckEdge = nullptr;
787 
788   // Insert the new branch.
789   Instruction *NI = Builder.CreateBr(TheRealDest);
790   (void) NI;
791 
792   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
793             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
794 
795   EraseTerminatorInstAndDCECond(TI);
796   return true;
797 }
798 
799 namespace {
800   /// This class implements a stable ordering of constant
801   /// integers that does not depend on their address.  This is important for
802   /// applications that sort ConstantInt's to ensure uniqueness.
803   struct ConstantIntOrdering {
804     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
805       return LHS->getValue().ult(RHS->getValue());
806     }
807   };
808 }
809 
810 static int ConstantIntSortPredicate(ConstantInt *const *P1,
811                                     ConstantInt *const *P2) {
812   const ConstantInt *LHS = *P1;
813   const ConstantInt *RHS = *P2;
814   if (LHS == RHS)
815     return 0;
816   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
817 }
818 
819 static inline bool HasBranchWeights(const Instruction* I) {
820   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
821   if (ProfMD && ProfMD->getOperand(0))
822     if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
823       return MDS->getString().equals("branch_weights");
824 
825   return false;
826 }
827 
828 /// Get Weights of a given TerminatorInst, the default weight is at the front
829 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
830 /// metadata.
831 static void GetBranchWeights(TerminatorInst *TI,
832                              SmallVectorImpl<uint64_t> &Weights) {
833   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
834   assert(MD);
835   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
836     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
837     Weights.push_back(CI->getValue().getZExtValue());
838   }
839 
840   // If TI is a conditional eq, the default case is the false case,
841   // and the corresponding branch-weight data is at index 2. We swap the
842   // default weight to be the first entry.
843   if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
844     assert(Weights.size() == 2);
845     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
846     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
847       std::swap(Weights.front(), Weights.back());
848   }
849 }
850 
851 /// Keep halving the weights until all can fit in uint32_t.
852 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
853   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
854   if (Max > UINT_MAX) {
855     unsigned Offset = 32 - countLeadingZeros(Max);
856     for (uint64_t &I : Weights)
857       I >>= Offset;
858   }
859 }
860 
861 /// The specified terminator is a value equality comparison instruction
862 /// (either a switch or a branch on "X == c").
863 /// See if any of the predecessors of the terminator block are value comparisons
864 /// on the same value.  If so, and if safe to do so, fold them together.
865 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
866                                                          IRBuilder<> &Builder) {
867   BasicBlock *BB = TI->getParent();
868   Value *CV = isValueEqualityComparison(TI);  // CondVal
869   assert(CV && "Not a comparison?");
870   bool Changed = false;
871 
872   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
873   while (!Preds.empty()) {
874     BasicBlock *Pred = Preds.pop_back_val();
875 
876     // See if the predecessor is a comparison with the same value.
877     TerminatorInst *PTI = Pred->getTerminator();
878     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
879 
880     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
881       // Figure out which 'cases' to copy from SI to PSI.
882       std::vector<ValueEqualityComparisonCase> BBCases;
883       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
884 
885       std::vector<ValueEqualityComparisonCase> PredCases;
886       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
887 
888       // Based on whether the default edge from PTI goes to BB or not, fill in
889       // PredCases and PredDefault with the new switch cases we would like to
890       // build.
891       SmallVector<BasicBlock*, 8> NewSuccessors;
892 
893       // Update the branch weight metadata along the way
894       SmallVector<uint64_t, 8> Weights;
895       bool PredHasWeights = HasBranchWeights(PTI);
896       bool SuccHasWeights = HasBranchWeights(TI);
897 
898       if (PredHasWeights) {
899         GetBranchWeights(PTI, Weights);
900         // branch-weight metadata is inconsistent here.
901         if (Weights.size() != 1 + PredCases.size())
902           PredHasWeights = SuccHasWeights = false;
903       } else if (SuccHasWeights)
904         // If there are no predecessor weights but there are successor weights,
905         // populate Weights with 1, which will later be scaled to the sum of
906         // successor's weights
907         Weights.assign(1 + PredCases.size(), 1);
908 
909       SmallVector<uint64_t, 8> SuccWeights;
910       if (SuccHasWeights) {
911         GetBranchWeights(TI, SuccWeights);
912         // branch-weight metadata is inconsistent here.
913         if (SuccWeights.size() != 1 + BBCases.size())
914           PredHasWeights = SuccHasWeights = false;
915       } else if (PredHasWeights)
916         SuccWeights.assign(1 + BBCases.size(), 1);
917 
918       if (PredDefault == BB) {
919         // If this is the default destination from PTI, only the edges in TI
920         // that don't occur in PTI, or that branch to BB will be activated.
921         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
922         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
923           if (PredCases[i].Dest != BB)
924             PTIHandled.insert(PredCases[i].Value);
925           else {
926             // The default destination is BB, we don't need explicit targets.
927             std::swap(PredCases[i], PredCases.back());
928 
929             if (PredHasWeights || SuccHasWeights) {
930               // Increase weight for the default case.
931               Weights[0] += Weights[i+1];
932               std::swap(Weights[i+1], Weights.back());
933               Weights.pop_back();
934             }
935 
936             PredCases.pop_back();
937             --i; --e;
938           }
939 
940         // Reconstruct the new switch statement we will be building.
941         if (PredDefault != BBDefault) {
942           PredDefault->removePredecessor(Pred);
943           PredDefault = BBDefault;
944           NewSuccessors.push_back(BBDefault);
945         }
946 
947         unsigned CasesFromPred = Weights.size();
948         uint64_t ValidTotalSuccWeight = 0;
949         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
950           if (!PTIHandled.count(BBCases[i].Value) &&
951               BBCases[i].Dest != BBDefault) {
952             PredCases.push_back(BBCases[i]);
953             NewSuccessors.push_back(BBCases[i].Dest);
954             if (SuccHasWeights || PredHasWeights) {
955               // The default weight is at index 0, so weight for the ith case
956               // should be at index i+1. Scale the cases from successor by
957               // PredDefaultWeight (Weights[0]).
958               Weights.push_back(Weights[0] * SuccWeights[i+1]);
959               ValidTotalSuccWeight += SuccWeights[i+1];
960             }
961           }
962 
963         if (SuccHasWeights || PredHasWeights) {
964           ValidTotalSuccWeight += SuccWeights[0];
965           // Scale the cases from predecessor by ValidTotalSuccWeight.
966           for (unsigned i = 1; i < CasesFromPred; ++i)
967             Weights[i] *= ValidTotalSuccWeight;
968           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
969           Weights[0] *= SuccWeights[0];
970         }
971       } else {
972         // If this is not the default destination from PSI, only the edges
973         // in SI that occur in PSI with a destination of BB will be
974         // activated.
975         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
976         std::map<ConstantInt*, uint64_t> WeightsForHandled;
977         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
978           if (PredCases[i].Dest == BB) {
979             PTIHandled.insert(PredCases[i].Value);
980 
981             if (PredHasWeights || SuccHasWeights) {
982               WeightsForHandled[PredCases[i].Value] = Weights[i+1];
983               std::swap(Weights[i+1], Weights.back());
984               Weights.pop_back();
985             }
986 
987             std::swap(PredCases[i], PredCases.back());
988             PredCases.pop_back();
989             --i; --e;
990           }
991 
992         // Okay, now we know which constants were sent to BB from the
993         // predecessor.  Figure out where they will all go now.
994         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
995           if (PTIHandled.count(BBCases[i].Value)) {
996             // If this is one we are capable of getting...
997             if (PredHasWeights || SuccHasWeights)
998               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
999             PredCases.push_back(BBCases[i]);
1000             NewSuccessors.push_back(BBCases[i].Dest);
1001             PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
1002           }
1003 
1004         // If there are any constants vectored to BB that TI doesn't handle,
1005         // they must go to the default destination of TI.
1006         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
1007                                     PTIHandled.begin(),
1008                E = PTIHandled.end(); I != E; ++I) {
1009           if (PredHasWeights || SuccHasWeights)
1010             Weights.push_back(WeightsForHandled[*I]);
1011           PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
1012           NewSuccessors.push_back(BBDefault);
1013         }
1014       }
1015 
1016       // Okay, at this point, we know which new successor Pred will get.  Make
1017       // sure we update the number of entries in the PHI nodes for these
1018       // successors.
1019       for (BasicBlock *NewSuccessor : NewSuccessors)
1020         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1021 
1022       Builder.SetInsertPoint(PTI);
1023       // Convert pointer to int before we switch.
1024       if (CV->getType()->isPointerTy()) {
1025         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1026                                     "magicptr");
1027       }
1028 
1029       // Now that the successors are updated, create the new Switch instruction.
1030       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
1031                                                PredCases.size());
1032       NewSI->setDebugLoc(PTI->getDebugLoc());
1033       for (ValueEqualityComparisonCase &V : PredCases)
1034         NewSI->addCase(V.Value, V.Dest);
1035 
1036       if (PredHasWeights || SuccHasWeights) {
1037         // Halve the weights if any of them cannot fit in an uint32_t
1038         FitWeights(Weights);
1039 
1040         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1041 
1042         NewSI->setMetadata(LLVMContext::MD_prof,
1043                            MDBuilder(BB->getContext()).
1044                            createBranchWeights(MDWeights));
1045       }
1046 
1047       EraseTerminatorInstAndDCECond(PTI);
1048 
1049       // Okay, last check.  If BB is still a successor of PSI, then we must
1050       // have an infinite loop case.  If so, add an infinitely looping block
1051       // to handle the case to preserve the behavior of the code.
1052       BasicBlock *InfLoopBlock = nullptr;
1053       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1054         if (NewSI->getSuccessor(i) == BB) {
1055           if (!InfLoopBlock) {
1056             // Insert it at the end of the function, because it's either code,
1057             // or it won't matter if it's hot. :)
1058             InfLoopBlock = BasicBlock::Create(BB->getContext(),
1059                                               "infloop", BB->getParent());
1060             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1061           }
1062           NewSI->setSuccessor(i, InfLoopBlock);
1063         }
1064 
1065       Changed = true;
1066     }
1067   }
1068   return Changed;
1069 }
1070 
1071 // If we would need to insert a select that uses the value of this invoke
1072 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1073 // can't hoist the invoke, as there is nowhere to put the select in this case.
1074 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1075                                 Instruction *I1, Instruction *I2) {
1076   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1077     PHINode *PN;
1078     for (BasicBlock::iterator BBI = SI->begin();
1079          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1080       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1081       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1082       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1083         return false;
1084       }
1085     }
1086   }
1087   return true;
1088 }
1089 
1090 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1091 
1092 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1093 /// in the two blocks up into the branch block. The caller of this function
1094 /// guarantees that BI's block dominates BB1 and BB2.
1095 static bool HoistThenElseCodeToIf(BranchInst *BI,
1096                                   const TargetTransformInfo &TTI) {
1097   // This does very trivial matching, with limited scanning, to find identical
1098   // instructions in the two blocks.  In particular, we don't want to get into
1099   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1100   // such, we currently just scan for obviously identical instructions in an
1101   // identical order.
1102   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1103   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1104 
1105   BasicBlock::iterator BB1_Itr = BB1->begin();
1106   BasicBlock::iterator BB2_Itr = BB2->begin();
1107 
1108   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1109   // Skip debug info if it is not identical.
1110   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1111   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1112   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1113     while (isa<DbgInfoIntrinsic>(I1))
1114       I1 = &*BB1_Itr++;
1115     while (isa<DbgInfoIntrinsic>(I2))
1116       I2 = &*BB2_Itr++;
1117   }
1118   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1119       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1120     return false;
1121 
1122   BasicBlock *BIParent = BI->getParent();
1123 
1124   bool Changed = false;
1125   do {
1126     // If we are hoisting the terminator instruction, don't move one (making a
1127     // broken BB), instead clone it, and remove BI.
1128     if (isa<TerminatorInst>(I1))
1129       goto HoistTerminator;
1130 
1131     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1132       return Changed;
1133 
1134     // For a normal instruction, we just move one to right before the branch,
1135     // then replace all uses of the other with the first.  Finally, we remove
1136     // the now redundant second instruction.
1137     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1138     if (!I2->use_empty())
1139       I2->replaceAllUsesWith(I1);
1140     I1->intersectOptionalDataWith(I2);
1141     unsigned KnownIDs[] = {
1142         LLVMContext::MD_tbaa,    LLVMContext::MD_range,
1143         LLVMContext::MD_fpmath,  LLVMContext::MD_invariant_load,
1144         LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group,
1145         LLVMContext::MD_align,   LLVMContext::MD_dereferenceable,
1146         LLVMContext::MD_dereferenceable_or_null};
1147     combineMetadata(I1, I2, KnownIDs);
1148     I2->eraseFromParent();
1149     Changed = true;
1150 
1151     I1 = &*BB1_Itr++;
1152     I2 = &*BB2_Itr++;
1153     // Skip debug info if it is not identical.
1154     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1155     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1156     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1157       while (isa<DbgInfoIntrinsic>(I1))
1158         I1 = &*BB1_Itr++;
1159       while (isa<DbgInfoIntrinsic>(I2))
1160         I2 = &*BB2_Itr++;
1161     }
1162   } while (I1->isIdenticalToWhenDefined(I2));
1163 
1164   return true;
1165 
1166 HoistTerminator:
1167   // It may not be possible to hoist an invoke.
1168   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1169     return Changed;
1170 
1171   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1172     PHINode *PN;
1173     for (BasicBlock::iterator BBI = SI->begin();
1174          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1175       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1176       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1177       if (BB1V == BB2V)
1178         continue;
1179 
1180       // Check for passingValueIsAlwaysUndefined here because we would rather
1181       // eliminate undefined control flow then converting it to a select.
1182       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1183           passingValueIsAlwaysUndefined(BB2V, PN))
1184        return Changed;
1185 
1186       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1187         return Changed;
1188       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1189         return Changed;
1190     }
1191   }
1192 
1193   // Okay, it is safe to hoist the terminator.
1194   Instruction *NT = I1->clone();
1195   BIParent->getInstList().insert(BI->getIterator(), NT);
1196   if (!NT->getType()->isVoidTy()) {
1197     I1->replaceAllUsesWith(NT);
1198     I2->replaceAllUsesWith(NT);
1199     NT->takeName(I1);
1200   }
1201 
1202   IRBuilder<true, NoFolder> Builder(NT);
1203   // Hoisting one of the terminators from our successor is a great thing.
1204   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1205   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1206   // nodes, so we insert select instruction to compute the final result.
1207   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1208   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1209     PHINode *PN;
1210     for (BasicBlock::iterator BBI = SI->begin();
1211          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1212       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1213       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1214       if (BB1V == BB2V) continue;
1215 
1216       // These values do not agree.  Insert a select instruction before NT
1217       // that determines the right value.
1218       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1219       if (!SI)
1220         SI = cast<SelectInst>
1221           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1222                                 BB1V->getName()+"."+BB2V->getName()));
1223 
1224       // Make the PHI node use the select for all incoming values for BB1/BB2
1225       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1226         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1227           PN->setIncomingValue(i, SI);
1228     }
1229   }
1230 
1231   // Update any PHI nodes in our new successors.
1232   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1233     AddPredecessorToBlock(*SI, BIParent, BB1);
1234 
1235   EraseTerminatorInstAndDCECond(BI);
1236   return true;
1237 }
1238 
1239 /// Given an unconditional branch that goes to BBEnd,
1240 /// check whether BBEnd has only two predecessors and the other predecessor
1241 /// ends with an unconditional branch. If it is true, sink any common code
1242 /// in the two predecessors to BBEnd.
1243 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1244   assert(BI1->isUnconditional());
1245   BasicBlock *BB1 = BI1->getParent();
1246   BasicBlock *BBEnd = BI1->getSuccessor(0);
1247 
1248   // Check that BBEnd has two predecessors and the other predecessor ends with
1249   // an unconditional branch.
1250   pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1251   BasicBlock *Pred0 = *PI++;
1252   if (PI == PE) // Only one predecessor.
1253     return false;
1254   BasicBlock *Pred1 = *PI++;
1255   if (PI != PE) // More than two predecessors.
1256     return false;
1257   BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1258   BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1259   if (!BI2 || !BI2->isUnconditional())
1260     return false;
1261 
1262   // Gather the PHI nodes in BBEnd.
1263   SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
1264   Instruction *FirstNonPhiInBBEnd = nullptr;
1265   for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
1266     if (PHINode *PN = dyn_cast<PHINode>(I)) {
1267       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1268       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1269       JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
1270     } else {
1271       FirstNonPhiInBBEnd = &*I;
1272       break;
1273     }
1274   }
1275   if (!FirstNonPhiInBBEnd)
1276     return false;
1277 
1278   // This does very trivial matching, with limited scanning, to find identical
1279   // instructions in the two blocks.  We scan backward for obviously identical
1280   // instructions in an identical order.
1281   BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1282                                              RE1 = BB1->getInstList().rend(),
1283                                              RI2 = BB2->getInstList().rbegin(),
1284                                              RE2 = BB2->getInstList().rend();
1285   // Skip debug info.
1286   while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1287   if (RI1 == RE1)
1288     return false;
1289   while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1290   if (RI2 == RE2)
1291     return false;
1292   // Skip the unconditional branches.
1293   ++RI1;
1294   ++RI2;
1295 
1296   bool Changed = false;
1297   while (RI1 != RE1 && RI2 != RE2) {
1298     // Skip debug info.
1299     while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1300     if (RI1 == RE1)
1301       return Changed;
1302     while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1303     if (RI2 == RE2)
1304       return Changed;
1305 
1306     Instruction *I1 = &*RI1, *I2 = &*RI2;
1307     auto InstPair = std::make_pair(I1, I2);
1308     // I1 and I2 should have a single use in the same PHI node, and they
1309     // perform the same operation.
1310     // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1311     if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1312         isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1313         I1->isEHPad() || I2->isEHPad() ||
1314         isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1315         I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1316         I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1317         !I1->hasOneUse() || !I2->hasOneUse() ||
1318         !JointValueMap.count(InstPair))
1319       return Changed;
1320 
1321     // Check whether we should swap the operands of ICmpInst.
1322     // TODO: Add support of communativity.
1323     ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1324     bool SwapOpnds = false;
1325     if (ICmp1 && ICmp2 &&
1326         ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1327         ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1328         (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1329          ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1330       ICmp2->swapOperands();
1331       SwapOpnds = true;
1332     }
1333     if (!I1->isSameOperationAs(I2)) {
1334       if (SwapOpnds)
1335         ICmp2->swapOperands();
1336       return Changed;
1337     }
1338 
1339     // The operands should be either the same or they need to be generated
1340     // with a PHI node after sinking. We only handle the case where there is
1341     // a single pair of different operands.
1342     Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1343     unsigned Op1Idx = ~0U;
1344     for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1345       if (I1->getOperand(I) == I2->getOperand(I))
1346         continue;
1347       // Early exit if we have more-than one pair of different operands or if
1348       // we need a PHI node to replace a constant.
1349       if (Op1Idx != ~0U ||
1350           isa<Constant>(I1->getOperand(I)) ||
1351           isa<Constant>(I2->getOperand(I))) {
1352         // If we can't sink the instructions, undo the swapping.
1353         if (SwapOpnds)
1354           ICmp2->swapOperands();
1355         return Changed;
1356       }
1357       DifferentOp1 = I1->getOperand(I);
1358       Op1Idx = I;
1359       DifferentOp2 = I2->getOperand(I);
1360     }
1361 
1362     DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
1363     DEBUG(dbgs() << "                         " << *I2 << "\n");
1364 
1365     // We insert the pair of different operands to JointValueMap and
1366     // remove (I1, I2) from JointValueMap.
1367     if (Op1Idx != ~0U) {
1368       auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
1369       if (!NewPN) {
1370         NewPN =
1371             PHINode::Create(DifferentOp1->getType(), 2,
1372                             DifferentOp1->getName() + ".sink", &BBEnd->front());
1373         NewPN->addIncoming(DifferentOp1, BB1);
1374         NewPN->addIncoming(DifferentOp2, BB2);
1375         DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1376       }
1377       // I1 should use NewPN instead of DifferentOp1.
1378       I1->setOperand(Op1Idx, NewPN);
1379     }
1380     PHINode *OldPN = JointValueMap[InstPair];
1381     JointValueMap.erase(InstPair);
1382 
1383     // We need to update RE1 and RE2 if we are going to sink the first
1384     // instruction in the basic block down.
1385     bool UpdateRE1 = (I1 == &BB1->front()), UpdateRE2 = (I2 == &BB2->front());
1386     // Sink the instruction.
1387     BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(),
1388                                 BB1->getInstList(), I1);
1389     if (!OldPN->use_empty())
1390       OldPN->replaceAllUsesWith(I1);
1391     OldPN->eraseFromParent();
1392 
1393     if (!I2->use_empty())
1394       I2->replaceAllUsesWith(I1);
1395     I1->intersectOptionalDataWith(I2);
1396     // TODO: Use combineMetadata here to preserve what metadata we can
1397     // (analogous to the hoisting case above).
1398     I2->eraseFromParent();
1399 
1400     if (UpdateRE1)
1401       RE1 = BB1->getInstList().rend();
1402     if (UpdateRE2)
1403       RE2 = BB2->getInstList().rend();
1404     FirstNonPhiInBBEnd = &*I1;
1405     NumSinkCommons++;
1406     Changed = true;
1407   }
1408   return Changed;
1409 }
1410 
1411 /// \brief Determine if we can hoist sink a sole store instruction out of a
1412 /// conditional block.
1413 ///
1414 /// We are looking for code like the following:
1415 ///   BrBB:
1416 ///     store i32 %add, i32* %arrayidx2
1417 ///     ... // No other stores or function calls (we could be calling a memory
1418 ///     ... // function).
1419 ///     %cmp = icmp ult %x, %y
1420 ///     br i1 %cmp, label %EndBB, label %ThenBB
1421 ///   ThenBB:
1422 ///     store i32 %add5, i32* %arrayidx2
1423 ///     br label EndBB
1424 ///   EndBB:
1425 ///     ...
1426 ///   We are going to transform this into:
1427 ///   BrBB:
1428 ///     store i32 %add, i32* %arrayidx2
1429 ///     ... //
1430 ///     %cmp = icmp ult %x, %y
1431 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1432 ///     store i32 %add.add5, i32* %arrayidx2
1433 ///     ...
1434 ///
1435 /// \return The pointer to the value of the previous store if the store can be
1436 ///         hoisted into the predecessor block. 0 otherwise.
1437 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1438                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1439   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1440   if (!StoreToHoist)
1441     return nullptr;
1442 
1443   // Volatile or atomic.
1444   if (!StoreToHoist->isSimple())
1445     return nullptr;
1446 
1447   Value *StorePtr = StoreToHoist->getPointerOperand();
1448 
1449   // Look for a store to the same pointer in BrBB.
1450   unsigned MaxNumInstToLookAt = 10;
1451   for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1452        RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1453     Instruction *CurI = &*RI;
1454 
1455     // Could be calling an instruction that effects memory like free().
1456     if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1457       return nullptr;
1458 
1459     StoreInst *SI = dyn_cast<StoreInst>(CurI);
1460     // Found the previous store make sure it stores to the same location.
1461     if (SI && SI->getPointerOperand() == StorePtr)
1462       // Found the previous store, return its value operand.
1463       return SI->getValueOperand();
1464     else if (SI)
1465       return nullptr; // Unknown store.
1466   }
1467 
1468   return nullptr;
1469 }
1470 
1471 /// \brief Speculate a conditional basic block flattening the CFG.
1472 ///
1473 /// Note that this is a very risky transform currently. Speculating
1474 /// instructions like this is most often not desirable. Instead, there is an MI
1475 /// pass which can do it with full awareness of the resource constraints.
1476 /// However, some cases are "obvious" and we should do directly. An example of
1477 /// this is speculating a single, reasonably cheap instruction.
1478 ///
1479 /// There is only one distinct advantage to flattening the CFG at the IR level:
1480 /// it makes very common but simplistic optimizations such as are common in
1481 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1482 /// modeling their effects with easier to reason about SSA value graphs.
1483 ///
1484 ///
1485 /// An illustration of this transform is turning this IR:
1486 /// \code
1487 ///   BB:
1488 ///     %cmp = icmp ult %x, %y
1489 ///     br i1 %cmp, label %EndBB, label %ThenBB
1490 ///   ThenBB:
1491 ///     %sub = sub %x, %y
1492 ///     br label BB2
1493 ///   EndBB:
1494 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1495 ///     ...
1496 /// \endcode
1497 ///
1498 /// Into this IR:
1499 /// \code
1500 ///   BB:
1501 ///     %cmp = icmp ult %x, %y
1502 ///     %sub = sub %x, %y
1503 ///     %cond = select i1 %cmp, 0, %sub
1504 ///     ...
1505 /// \endcode
1506 ///
1507 /// \returns true if the conditional block is removed.
1508 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1509                                    const TargetTransformInfo &TTI) {
1510   // Be conservative for now. FP select instruction can often be expensive.
1511   Value *BrCond = BI->getCondition();
1512   if (isa<FCmpInst>(BrCond))
1513     return false;
1514 
1515   BasicBlock *BB = BI->getParent();
1516   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1517 
1518   // If ThenBB is actually on the false edge of the conditional branch, remember
1519   // to swap the select operands later.
1520   bool Invert = false;
1521   if (ThenBB != BI->getSuccessor(0)) {
1522     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1523     Invert = true;
1524   }
1525   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1526 
1527   // Keep a count of how many times instructions are used within CondBB when
1528   // they are candidates for sinking into CondBB. Specifically:
1529   // - They are defined in BB, and
1530   // - They have no side effects, and
1531   // - All of their uses are in CondBB.
1532   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1533 
1534   unsigned SpeculationCost = 0;
1535   Value *SpeculatedStoreValue = nullptr;
1536   StoreInst *SpeculatedStore = nullptr;
1537   for (BasicBlock::iterator BBI = ThenBB->begin(),
1538                             BBE = std::prev(ThenBB->end());
1539        BBI != BBE; ++BBI) {
1540     Instruction *I = &*BBI;
1541     // Skip debug info.
1542     if (isa<DbgInfoIntrinsic>(I))
1543       continue;
1544 
1545     // Only speculatively execute a single instruction (not counting the
1546     // terminator) for now.
1547     ++SpeculationCost;
1548     if (SpeculationCost > 1)
1549       return false;
1550 
1551     // Don't hoist the instruction if it's unsafe or expensive.
1552     if (!isSafeToSpeculativelyExecute(I) &&
1553         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1554                                   I, BB, ThenBB, EndBB))))
1555       return false;
1556     if (!SpeculatedStoreValue &&
1557         ComputeSpeculationCost(I, TTI) >
1558             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1559       return false;
1560 
1561     // Store the store speculation candidate.
1562     if (SpeculatedStoreValue)
1563       SpeculatedStore = cast<StoreInst>(I);
1564 
1565     // Do not hoist the instruction if any of its operands are defined but not
1566     // used in BB. The transformation will prevent the operand from
1567     // being sunk into the use block.
1568     for (User::op_iterator i = I->op_begin(), e = I->op_end();
1569          i != e; ++i) {
1570       Instruction *OpI = dyn_cast<Instruction>(*i);
1571       if (!OpI || OpI->getParent() != BB ||
1572           OpI->mayHaveSideEffects())
1573         continue; // Not a candidate for sinking.
1574 
1575       ++SinkCandidateUseCounts[OpI];
1576     }
1577   }
1578 
1579   // Consider any sink candidates which are only used in CondBB as costs for
1580   // speculation. Note, while we iterate over a DenseMap here, we are summing
1581   // and so iteration order isn't significant.
1582   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1583            SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1584        I != E; ++I)
1585     if (I->first->getNumUses() == I->second) {
1586       ++SpeculationCost;
1587       if (SpeculationCost > 1)
1588         return false;
1589     }
1590 
1591   // Check that the PHI nodes can be converted to selects.
1592   bool HaveRewritablePHIs = false;
1593   for (BasicBlock::iterator I = EndBB->begin();
1594        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1595     Value *OrigV = PN->getIncomingValueForBlock(BB);
1596     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1597 
1598     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1599     // Skip PHIs which are trivial.
1600     if (ThenV == OrigV)
1601       continue;
1602 
1603     // Don't convert to selects if we could remove undefined behavior instead.
1604     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1605         passingValueIsAlwaysUndefined(ThenV, PN))
1606       return false;
1607 
1608     HaveRewritablePHIs = true;
1609     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1610     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1611     if (!OrigCE && !ThenCE)
1612       continue; // Known safe and cheap.
1613 
1614     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1615         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1616       return false;
1617     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1618     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1619     unsigned MaxCost = 2 * PHINodeFoldingThreshold *
1620       TargetTransformInfo::TCC_Basic;
1621     if (OrigCost + ThenCost > MaxCost)
1622       return false;
1623 
1624     // Account for the cost of an unfolded ConstantExpr which could end up
1625     // getting expanded into Instructions.
1626     // FIXME: This doesn't account for how many operations are combined in the
1627     // constant expression.
1628     ++SpeculationCost;
1629     if (SpeculationCost > 1)
1630       return false;
1631   }
1632 
1633   // If there are no PHIs to process, bail early. This helps ensure idempotence
1634   // as well.
1635   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1636     return false;
1637 
1638   // If we get here, we can hoist the instruction and if-convert.
1639   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1640 
1641   // Insert a select of the value of the speculated store.
1642   if (SpeculatedStoreValue) {
1643     IRBuilder<true, NoFolder> Builder(BI);
1644     Value *TrueV = SpeculatedStore->getValueOperand();
1645     Value *FalseV = SpeculatedStoreValue;
1646     if (Invert)
1647       std::swap(TrueV, FalseV);
1648     Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1649                                     "." + FalseV->getName());
1650     SpeculatedStore->setOperand(0, S);
1651   }
1652 
1653   // Metadata can be dependent on the condition we are hoisting above.
1654   // Conservatively strip all metadata on the instruction.
1655   for (auto &I: *ThenBB)
1656     I.dropUnknownNonDebugMetadata();
1657 
1658   // Hoist the instructions.
1659   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
1660                            ThenBB->begin(), std::prev(ThenBB->end()));
1661 
1662   // Insert selects and rewrite the PHI operands.
1663   IRBuilder<true, NoFolder> Builder(BI);
1664   for (BasicBlock::iterator I = EndBB->begin();
1665        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1666     unsigned OrigI = PN->getBasicBlockIndex(BB);
1667     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1668     Value *OrigV = PN->getIncomingValue(OrigI);
1669     Value *ThenV = PN->getIncomingValue(ThenI);
1670 
1671     // Skip PHIs which are trivial.
1672     if (OrigV == ThenV)
1673       continue;
1674 
1675     // Create a select whose true value is the speculatively executed value and
1676     // false value is the preexisting value. Swap them if the branch
1677     // destinations were inverted.
1678     Value *TrueV = ThenV, *FalseV = OrigV;
1679     if (Invert)
1680       std::swap(TrueV, FalseV);
1681     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1682                                     TrueV->getName() + "." + FalseV->getName());
1683     PN->setIncomingValue(OrigI, V);
1684     PN->setIncomingValue(ThenI, V);
1685   }
1686 
1687   ++NumSpeculations;
1688   return true;
1689 }
1690 
1691 /// Return true if we can thread a branch across this block.
1692 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1693   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1694   unsigned Size = 0;
1695 
1696   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1697     if (isa<DbgInfoIntrinsic>(BBI))
1698       continue;
1699     if (Size > 10) return false;  // Don't clone large BB's.
1700     ++Size;
1701 
1702     // We can only support instructions that do not define values that are
1703     // live outside of the current basic block.
1704     for (User *U : BBI->users()) {
1705       Instruction *UI = cast<Instruction>(U);
1706       if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
1707     }
1708 
1709     // Looks ok, continue checking.
1710   }
1711 
1712   return true;
1713 }
1714 
1715 /// If we have a conditional branch on a PHI node value that is defined in the
1716 /// same block as the branch and if any PHI entries are constants, thread edges
1717 /// corresponding to that entry to be branches to their ultimate destination.
1718 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
1719   BasicBlock *BB = BI->getParent();
1720   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1721   // NOTE: we currently cannot transform this case if the PHI node is used
1722   // outside of the block.
1723   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1724     return false;
1725 
1726   // Degenerate case of a single entry PHI.
1727   if (PN->getNumIncomingValues() == 1) {
1728     FoldSingleEntryPHINodes(PN->getParent());
1729     return true;
1730   }
1731 
1732   // Now we know that this block has multiple preds and two succs.
1733   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1734 
1735   // Can't fold blocks that contain noduplicate or convergent calls.
1736   if (llvm::any_of(*BB, [](const Instruction &I) {
1737         const CallInst *CI = dyn_cast<CallInst>(&I);
1738         return CI && (CI->cannotDuplicate() || CI->isConvergent());
1739       }))
1740     return false;
1741 
1742   // Okay, this is a simple enough basic block.  See if any phi values are
1743   // constants.
1744   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1745     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1746     if (!CB || !CB->getType()->isIntegerTy(1)) continue;
1747 
1748     // Okay, we now know that all edges from PredBB should be revectored to
1749     // branch to RealDest.
1750     BasicBlock *PredBB = PN->getIncomingBlock(i);
1751     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1752 
1753     if (RealDest == BB) continue;  // Skip self loops.
1754     // Skip if the predecessor's terminator is an indirect branch.
1755     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1756 
1757     // The dest block might have PHI nodes, other predecessors and other
1758     // difficult cases.  Instead of being smart about this, just insert a new
1759     // block that jumps to the destination block, effectively splitting
1760     // the edge we are about to create.
1761     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1762                                             RealDest->getName()+".critedge",
1763                                             RealDest->getParent(), RealDest);
1764     BranchInst::Create(RealDest, EdgeBB);
1765 
1766     // Update PHI nodes.
1767     AddPredecessorToBlock(RealDest, EdgeBB, BB);
1768 
1769     // BB may have instructions that are being threaded over.  Clone these
1770     // instructions into EdgeBB.  We know that there will be no uses of the
1771     // cloned instructions outside of EdgeBB.
1772     BasicBlock::iterator InsertPt = EdgeBB->begin();
1773     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1774     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1775       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1776         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1777         continue;
1778       }
1779       // Clone the instruction.
1780       Instruction *N = BBI->clone();
1781       if (BBI->hasName()) N->setName(BBI->getName()+".c");
1782 
1783       // Update operands due to translation.
1784       for (User::op_iterator i = N->op_begin(), e = N->op_end();
1785            i != e; ++i) {
1786         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1787         if (PI != TranslateMap.end())
1788           *i = PI->second;
1789       }
1790 
1791       // Check for trivial simplification.
1792       if (Value *V = SimplifyInstruction(N, DL)) {
1793         TranslateMap[&*BBI] = V;
1794         delete N;   // Instruction folded away, don't need actual inst
1795       } else {
1796         // Insert the new instruction into its new home.
1797         EdgeBB->getInstList().insert(InsertPt, N);
1798         if (!BBI->use_empty())
1799           TranslateMap[&*BBI] = N;
1800       }
1801     }
1802 
1803     // Loop over all of the edges from PredBB to BB, changing them to branch
1804     // to EdgeBB instead.
1805     TerminatorInst *PredBBTI = PredBB->getTerminator();
1806     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1807       if (PredBBTI->getSuccessor(i) == BB) {
1808         BB->removePredecessor(PredBB);
1809         PredBBTI->setSuccessor(i, EdgeBB);
1810       }
1811 
1812     // Recurse, simplifying any other constants.
1813     return FoldCondBranchOnPHI(BI, DL) | true;
1814   }
1815 
1816   return false;
1817 }
1818 
1819 /// Given a BB that starts with the specified two-entry PHI node,
1820 /// see if we can eliminate it.
1821 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
1822                                 const DataLayout &DL) {
1823   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1824   // statement", which has a very simple dominance structure.  Basically, we
1825   // are trying to find the condition that is being branched on, which
1826   // subsequently causes this merge to happen.  We really want control
1827   // dependence information for this check, but simplifycfg can't keep it up
1828   // to date, and this catches most of the cases we care about anyway.
1829   BasicBlock *BB = PN->getParent();
1830   BasicBlock *IfTrue, *IfFalse;
1831   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1832   if (!IfCond ||
1833       // Don't bother if the branch will be constant folded trivially.
1834       isa<ConstantInt>(IfCond))
1835     return false;
1836 
1837   // Okay, we found that we can merge this two-entry phi node into a select.
1838   // Doing so would require us to fold *all* two entry phi nodes in this block.
1839   // At some point this becomes non-profitable (particularly if the target
1840   // doesn't support cmov's).  Only do this transformation if there are two or
1841   // fewer PHI nodes in this block.
1842   unsigned NumPhis = 0;
1843   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1844     if (NumPhis > 2)
1845       return false;
1846 
1847   // Loop over the PHI's seeing if we can promote them all to select
1848   // instructions.  While we are at it, keep track of the instructions
1849   // that need to be moved to the dominating block.
1850   SmallPtrSet<Instruction*, 4> AggressiveInsts;
1851   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1852            MaxCostVal1 = PHINodeFoldingThreshold;
1853   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
1854   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
1855 
1856   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1857     PHINode *PN = cast<PHINode>(II++);
1858     if (Value *V = SimplifyInstruction(PN, DL)) {
1859       PN->replaceAllUsesWith(V);
1860       PN->eraseFromParent();
1861       continue;
1862     }
1863 
1864     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1865                              MaxCostVal0, TTI) ||
1866         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1867                              MaxCostVal1, TTI))
1868       return false;
1869   }
1870 
1871   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1872   // we ran out of PHIs then we simplified them all.
1873   PN = dyn_cast<PHINode>(BB->begin());
1874   if (!PN) return true;
1875 
1876   // Don't fold i1 branches on PHIs which contain binary operators.  These can
1877   // often be turned into switches and other things.
1878   if (PN->getType()->isIntegerTy(1) &&
1879       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1880        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1881        isa<BinaryOperator>(IfCond)))
1882     return false;
1883 
1884   // If we all PHI nodes are promotable, check to make sure that all
1885   // instructions in the predecessor blocks can be promoted as well.  If
1886   // not, we won't be able to get rid of the control flow, so it's not
1887   // worth promoting to select instructions.
1888   BasicBlock *DomBlock = nullptr;
1889   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1890   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1891   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1892     IfBlock1 = nullptr;
1893   } else {
1894     DomBlock = *pred_begin(IfBlock1);
1895     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1896       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
1897         // This is not an aggressive instruction that we can promote.
1898         // Because of this, we won't be able to get rid of the control
1899         // flow, so the xform is not worth it.
1900         return false;
1901       }
1902   }
1903 
1904   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1905     IfBlock2 = nullptr;
1906   } else {
1907     DomBlock = *pred_begin(IfBlock2);
1908     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1909       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
1910         // This is not an aggressive instruction that we can promote.
1911         // Because of this, we won't be able to get rid of the control
1912         // flow, so the xform is not worth it.
1913         return false;
1914       }
1915   }
1916 
1917   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1918                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1919 
1920   // If we can still promote the PHI nodes after this gauntlet of tests,
1921   // do all of the PHI's now.
1922   Instruction *InsertPt = DomBlock->getTerminator();
1923   IRBuilder<true, NoFolder> Builder(InsertPt);
1924 
1925   // Move all 'aggressive' instructions, which are defined in the
1926   // conditional parts of the if's up to the dominating block.
1927   if (IfBlock1)
1928     DomBlock->getInstList().splice(InsertPt->getIterator(),
1929                                    IfBlock1->getInstList(), IfBlock1->begin(),
1930                                    IfBlock1->getTerminator()->getIterator());
1931   if (IfBlock2)
1932     DomBlock->getInstList().splice(InsertPt->getIterator(),
1933                                    IfBlock2->getInstList(), IfBlock2->begin(),
1934                                    IfBlock2->getTerminator()->getIterator());
1935 
1936   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1937     // Change the PHI node into a select instruction.
1938     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1939     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1940 
1941     SelectInst *NV =
1942       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1943     PN->replaceAllUsesWith(NV);
1944     NV->takeName(PN);
1945     PN->eraseFromParent();
1946   }
1947 
1948   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1949   // has been flattened.  Change DomBlock to jump directly to our new block to
1950   // avoid other simplifycfg's kicking in on the diamond.
1951   TerminatorInst *OldTI = DomBlock->getTerminator();
1952   Builder.SetInsertPoint(OldTI);
1953   Builder.CreateBr(BB);
1954   OldTI->eraseFromParent();
1955   return true;
1956 }
1957 
1958 /// If we found a conditional branch that goes to two returning blocks,
1959 /// try to merge them together into one return,
1960 /// introducing a select if the return values disagree.
1961 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1962                                            IRBuilder<> &Builder) {
1963   assert(BI->isConditional() && "Must be a conditional branch");
1964   BasicBlock *TrueSucc = BI->getSuccessor(0);
1965   BasicBlock *FalseSucc = BI->getSuccessor(1);
1966   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1967   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1968 
1969   // Check to ensure both blocks are empty (just a return) or optionally empty
1970   // with PHI nodes.  If there are other instructions, merging would cause extra
1971   // computation on one path or the other.
1972   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1973     return false;
1974   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1975     return false;
1976 
1977   Builder.SetInsertPoint(BI);
1978   // Okay, we found a branch that is going to two return nodes.  If
1979   // there is no return value for this function, just change the
1980   // branch into a return.
1981   if (FalseRet->getNumOperands() == 0) {
1982     TrueSucc->removePredecessor(BI->getParent());
1983     FalseSucc->removePredecessor(BI->getParent());
1984     Builder.CreateRetVoid();
1985     EraseTerminatorInstAndDCECond(BI);
1986     return true;
1987   }
1988 
1989   // Otherwise, figure out what the true and false return values are
1990   // so we can insert a new select instruction.
1991   Value *TrueValue = TrueRet->getReturnValue();
1992   Value *FalseValue = FalseRet->getReturnValue();
1993 
1994   // Unwrap any PHI nodes in the return blocks.
1995   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1996     if (TVPN->getParent() == TrueSucc)
1997       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1998   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1999     if (FVPN->getParent() == FalseSucc)
2000       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2001 
2002   // In order for this transformation to be safe, we must be able to
2003   // unconditionally execute both operands to the return.  This is
2004   // normally the case, but we could have a potentially-trapping
2005   // constant expression that prevents this transformation from being
2006   // safe.
2007   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2008     if (TCV->canTrap())
2009       return false;
2010   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2011     if (FCV->canTrap())
2012       return false;
2013 
2014   // Okay, we collected all the mapped values and checked them for sanity, and
2015   // defined to really do this transformation.  First, update the CFG.
2016   TrueSucc->removePredecessor(BI->getParent());
2017   FalseSucc->removePredecessor(BI->getParent());
2018 
2019   // Insert select instructions where needed.
2020   Value *BrCond = BI->getCondition();
2021   if (TrueValue) {
2022     // Insert a select if the results differ.
2023     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2024     } else if (isa<UndefValue>(TrueValue)) {
2025       TrueValue = FalseValue;
2026     } else {
2027       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
2028                                        FalseValue, "retval");
2029     }
2030   }
2031 
2032   Value *RI = !TrueValue ?
2033     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2034 
2035   (void) RI;
2036 
2037   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2038                << "\n  " << *BI << "NewRet = " << *RI
2039                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
2040 
2041   EraseTerminatorInstAndDCECond(BI);
2042 
2043   return true;
2044 }
2045 
2046 /// Given a conditional BranchInstruction, retrieve the probabilities of the
2047 /// branch taking each edge. Fills in the two APInt parameters and returns true,
2048 /// or returns false if no or invalid metadata was found.
2049 static bool ExtractBranchMetadata(BranchInst *BI,
2050                                   uint64_t &ProbTrue, uint64_t &ProbFalse) {
2051   assert(BI->isConditional() &&
2052          "Looking for probabilities on unconditional branch?");
2053   MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
2054   if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
2055   ConstantInt *CITrue =
2056       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
2057   ConstantInt *CIFalse =
2058       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
2059   if (!CITrue || !CIFalse) return false;
2060   ProbTrue = CITrue->getValue().getZExtValue();
2061   ProbFalse = CIFalse->getValue().getZExtValue();
2062   return true;
2063 }
2064 
2065 /// Return true if the given instruction is available
2066 /// in its predecessor block. If yes, the instruction will be removed.
2067 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2068   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2069     return false;
2070   for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
2071     Instruction *PBI = &*I;
2072     // Check whether Inst and PBI generate the same value.
2073     if (Inst->isIdenticalTo(PBI)) {
2074       Inst->replaceAllUsesWith(PBI);
2075       Inst->eraseFromParent();
2076       return true;
2077     }
2078   }
2079   return false;
2080 }
2081 
2082 /// If this basic block is simple enough, and if a predecessor branches to us
2083 /// and one of our successors, fold the block into the predecessor and use
2084 /// logical operations to pick the right destination.
2085 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2086   BasicBlock *BB = BI->getParent();
2087 
2088   Instruction *Cond = nullptr;
2089   if (BI->isConditional())
2090     Cond = dyn_cast<Instruction>(BI->getCondition());
2091   else {
2092     // For unconditional branch, check for a simple CFG pattern, where
2093     // BB has a single predecessor and BB's successor is also its predecessor's
2094     // successor. If such pattern exisits, check for CSE between BB and its
2095     // predecessor.
2096     if (BasicBlock *PB = BB->getSinglePredecessor())
2097       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2098         if (PBI->isConditional() &&
2099             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2100              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2101           for (BasicBlock::iterator I = BB->begin(), E = BB->end();
2102                I != E; ) {
2103             Instruction *Curr = &*I++;
2104             if (isa<CmpInst>(Curr)) {
2105               Cond = Curr;
2106               break;
2107             }
2108             // Quit if we can't remove this instruction.
2109             if (!checkCSEInPredecessor(Curr, PB))
2110               return false;
2111           }
2112         }
2113 
2114     if (!Cond)
2115       return false;
2116   }
2117 
2118   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2119       Cond->getParent() != BB || !Cond->hasOneUse())
2120   return false;
2121 
2122   // Make sure the instruction after the condition is the cond branch.
2123   BasicBlock::iterator CondIt = ++Cond->getIterator();
2124 
2125   // Ignore dbg intrinsics.
2126   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2127 
2128   if (&*CondIt != BI)
2129     return false;
2130 
2131   // Only allow this transformation if computing the condition doesn't involve
2132   // too many instructions and these involved instructions can be executed
2133   // unconditionally. We denote all involved instructions except the condition
2134   // as "bonus instructions", and only allow this transformation when the
2135   // number of the bonus instructions does not exceed a certain threshold.
2136   unsigned NumBonusInsts = 0;
2137   for (auto I = BB->begin(); Cond != &*I; ++I) {
2138     // Ignore dbg intrinsics.
2139     if (isa<DbgInfoIntrinsic>(I))
2140       continue;
2141     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2142       return false;
2143     // I has only one use and can be executed unconditionally.
2144     Instruction *User = dyn_cast<Instruction>(I->user_back());
2145     if (User == nullptr || User->getParent() != BB)
2146       return false;
2147     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2148     // to use any other instruction, User must be an instruction between next(I)
2149     // and Cond.
2150     ++NumBonusInsts;
2151     // Early exits once we reach the limit.
2152     if (NumBonusInsts > BonusInstThreshold)
2153       return false;
2154   }
2155 
2156   // Cond is known to be a compare or binary operator.  Check to make sure that
2157   // neither operand is a potentially-trapping constant expression.
2158   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2159     if (CE->canTrap())
2160       return false;
2161   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2162     if (CE->canTrap())
2163       return false;
2164 
2165   // Finally, don't infinitely unroll conditional loops.
2166   BasicBlock *TrueDest  = BI->getSuccessor(0);
2167   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2168   if (TrueDest == BB || FalseDest == BB)
2169     return false;
2170 
2171   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2172     BasicBlock *PredBlock = *PI;
2173     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2174 
2175     // Check that we have two conditional branches.  If there is a PHI node in
2176     // the common successor, verify that the same value flows in from both
2177     // blocks.
2178     SmallVector<PHINode*, 4> PHIs;
2179     if (!PBI || PBI->isUnconditional() ||
2180         (BI->isConditional() &&
2181          !SafeToMergeTerminators(BI, PBI)) ||
2182         (!BI->isConditional() &&
2183          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2184       continue;
2185 
2186     // Determine if the two branches share a common destination.
2187     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2188     bool InvertPredCond = false;
2189 
2190     if (BI->isConditional()) {
2191       if (PBI->getSuccessor(0) == TrueDest) {
2192         Opc = Instruction::Or;
2193       } else if (PBI->getSuccessor(1) == FalseDest) {
2194         Opc = Instruction::And;
2195       } else if (PBI->getSuccessor(0) == FalseDest) {
2196         Opc = Instruction::And;
2197         InvertPredCond = true;
2198       } else if (PBI->getSuccessor(1) == TrueDest) {
2199         Opc = Instruction::Or;
2200         InvertPredCond = true;
2201       } else {
2202         continue;
2203       }
2204     } else {
2205       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2206         continue;
2207     }
2208 
2209     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2210     IRBuilder<> Builder(PBI);
2211 
2212     // If we need to invert the condition in the pred block to match, do so now.
2213     if (InvertPredCond) {
2214       Value *NewCond = PBI->getCondition();
2215 
2216       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2217         CmpInst *CI = cast<CmpInst>(NewCond);
2218         CI->setPredicate(CI->getInversePredicate());
2219       } else {
2220         NewCond = Builder.CreateNot(NewCond,
2221                                     PBI->getCondition()->getName()+".not");
2222       }
2223 
2224       PBI->setCondition(NewCond);
2225       PBI->swapSuccessors();
2226     }
2227 
2228     // If we have bonus instructions, clone them into the predecessor block.
2229     // Note that there may be multiple predecessor blocks, so we cannot move
2230     // bonus instructions to a predecessor block.
2231     ValueToValueMapTy VMap; // maps original values to cloned values
2232     // We already make sure Cond is the last instruction before BI. Therefore,
2233     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2234     // instructions.
2235     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2236       if (isa<DbgInfoIntrinsic>(BonusInst))
2237         continue;
2238       Instruction *NewBonusInst = BonusInst->clone();
2239       RemapInstruction(NewBonusInst, VMap,
2240                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2241       VMap[&*BonusInst] = NewBonusInst;
2242 
2243       // If we moved a load, we cannot any longer claim any knowledge about
2244       // its potential value. The previous information might have been valid
2245       // only given the branch precondition.
2246       // For an analogous reason, we must also drop all the metadata whose
2247       // semantics we don't understand.
2248       NewBonusInst->dropUnknownNonDebugMetadata();
2249 
2250       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2251       NewBonusInst->takeName(&*BonusInst);
2252       BonusInst->setName(BonusInst->getName() + ".old");
2253     }
2254 
2255     // Clone Cond into the predecessor basic block, and or/and the
2256     // two conditions together.
2257     Instruction *New = Cond->clone();
2258     RemapInstruction(New, VMap,
2259                      RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2260     PredBlock->getInstList().insert(PBI->getIterator(), New);
2261     New->takeName(Cond);
2262     Cond->setName(New->getName() + ".old");
2263 
2264     if (BI->isConditional()) {
2265       Instruction *NewCond =
2266         cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2267                                             New, "or.cond"));
2268       PBI->setCondition(NewCond);
2269 
2270       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2271       bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2272                                                   PredFalseWeight);
2273       bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2274                                                   SuccFalseWeight);
2275       SmallVector<uint64_t, 8> NewWeights;
2276 
2277       if (PBI->getSuccessor(0) == BB) {
2278         if (PredHasWeights && SuccHasWeights) {
2279           // PBI: br i1 %x, BB, FalseDest
2280           // BI:  br i1 %y, TrueDest, FalseDest
2281           //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2282           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2283           //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2284           //               TrueWeight for PBI * FalseWeight for BI.
2285           // We assume that total weights of a BranchInst can fit into 32 bits.
2286           // Therefore, we will not have overflow using 64-bit arithmetic.
2287           NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2288                SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2289         }
2290         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2291         PBI->setSuccessor(0, TrueDest);
2292       }
2293       if (PBI->getSuccessor(1) == BB) {
2294         if (PredHasWeights && SuccHasWeights) {
2295           // PBI: br i1 %x, TrueDest, BB
2296           // BI:  br i1 %y, TrueDest, FalseDest
2297           //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2298           //              FalseWeight for PBI * TrueWeight for BI.
2299           NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2300               SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2301           //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2302           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2303         }
2304         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2305         PBI->setSuccessor(1, FalseDest);
2306       }
2307       if (NewWeights.size() == 2) {
2308         // Halve the weights if any of them cannot fit in an uint32_t
2309         FitWeights(NewWeights);
2310 
2311         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2312         PBI->setMetadata(LLVMContext::MD_prof,
2313                          MDBuilder(BI->getContext()).
2314                          createBranchWeights(MDWeights));
2315       } else
2316         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2317     } else {
2318       // Update PHI nodes in the common successors.
2319       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2320         ConstantInt *PBI_C = cast<ConstantInt>(
2321           PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2322         assert(PBI_C->getType()->isIntegerTy(1));
2323         Instruction *MergedCond = nullptr;
2324         if (PBI->getSuccessor(0) == TrueDest) {
2325           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2326           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2327           //       is false: !PBI_Cond and BI_Value
2328           Instruction *NotCond =
2329             cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2330                                 "not.cond"));
2331           MergedCond =
2332             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2333                                 NotCond, New,
2334                                 "and.cond"));
2335           if (PBI_C->isOne())
2336             MergedCond =
2337               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2338                                   PBI->getCondition(), MergedCond,
2339                                   "or.cond"));
2340         } else {
2341           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2342           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2343           //       is false: PBI_Cond and BI_Value
2344           MergedCond =
2345             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2346                                 PBI->getCondition(), New,
2347                                 "and.cond"));
2348           if (PBI_C->isOne()) {
2349             Instruction *NotCond =
2350               cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2351                                   "not.cond"));
2352             MergedCond =
2353               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2354                                   NotCond, MergedCond,
2355                                   "or.cond"));
2356           }
2357         }
2358         // Update PHI Node.
2359         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2360                                   MergedCond);
2361       }
2362       // Change PBI from Conditional to Unconditional.
2363       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2364       EraseTerminatorInstAndDCECond(PBI);
2365       PBI = New_PBI;
2366     }
2367 
2368     // TODO: If BB is reachable from all paths through PredBlock, then we
2369     // could replace PBI's branch probabilities with BI's.
2370 
2371     // Copy any debug value intrinsics into the end of PredBlock.
2372     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2373       if (isa<DbgInfoIntrinsic>(*I))
2374         I->clone()->insertBefore(PBI);
2375 
2376     return true;
2377   }
2378   return false;
2379 }
2380 
2381 // If there is only one store in BB1 and BB2, return it, otherwise return
2382 // nullptr.
2383 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2384   StoreInst *S = nullptr;
2385   for (auto *BB : {BB1, BB2}) {
2386     if (!BB)
2387       continue;
2388     for (auto &I : *BB)
2389       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2390         if (S)
2391           // Multiple stores seen.
2392           return nullptr;
2393         else
2394           S = SI;
2395       }
2396   }
2397   return S;
2398 }
2399 
2400 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2401                                               Value *AlternativeV = nullptr) {
2402   // PHI is going to be a PHI node that allows the value V that is defined in
2403   // BB to be referenced in BB's only successor.
2404   //
2405   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2406   // doesn't matter to us what the other operand is (it'll never get used). We
2407   // could just create a new PHI with an undef incoming value, but that could
2408   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2409   // other PHI. So here we directly look for some PHI in BB's successor with V
2410   // as an incoming operand. If we find one, we use it, else we create a new
2411   // one.
2412   //
2413   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2414   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2415   // where OtherBB is the single other predecessor of BB's only successor.
2416   PHINode *PHI = nullptr;
2417   BasicBlock *Succ = BB->getSingleSuccessor();
2418 
2419   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2420     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2421       PHI = cast<PHINode>(I);
2422       if (!AlternativeV)
2423         break;
2424 
2425       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2426       auto PredI = pred_begin(Succ);
2427       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2428       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2429         break;
2430       PHI = nullptr;
2431     }
2432   if (PHI)
2433     return PHI;
2434 
2435   // If V is not an instruction defined in BB, just return it.
2436   if (!AlternativeV &&
2437       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2438     return V;
2439 
2440   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2441   PHI->addIncoming(V, BB);
2442   for (BasicBlock *PredBB : predecessors(Succ))
2443     if (PredBB != BB)
2444       PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()),
2445                        PredBB);
2446   return PHI;
2447 }
2448 
2449 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2450                                            BasicBlock *QTB, BasicBlock *QFB,
2451                                            BasicBlock *PostBB, Value *Address,
2452                                            bool InvertPCond, bool InvertQCond) {
2453   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2454     return Operator::getOpcode(&I) == Instruction::BitCast &&
2455            I.getType()->isPointerTy();
2456   };
2457 
2458   // If we're not in aggressive mode, we only optimize if we have some
2459   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2460   auto IsWorthwhile = [&](BasicBlock *BB) {
2461     if (!BB)
2462       return true;
2463     // Heuristic: if the block can be if-converted/phi-folded and the
2464     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2465     // thread this store.
2466     unsigned N = 0;
2467     for (auto &I : *BB) {
2468       // Cheap instructions viable for folding.
2469       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2470           isa<StoreInst>(I))
2471         ++N;
2472       // Free instructions.
2473       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2474                IsaBitcastOfPointerType(I))
2475         continue;
2476       else
2477         return false;
2478     }
2479     return N <= PHINodeFoldingThreshold;
2480   };
2481 
2482   if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) ||
2483                                        !IsWorthwhile(PFB) ||
2484                                        !IsWorthwhile(QTB) ||
2485                                        !IsWorthwhile(QFB)))
2486     return false;
2487 
2488   // For every pointer, there must be exactly two stores, one coming from
2489   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2490   // store (to any address) in PTB,PFB or QTB,QFB.
2491   // FIXME: We could relax this restriction with a bit more work and performance
2492   // testing.
2493   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2494   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2495   if (!PStore || !QStore)
2496     return false;
2497 
2498   // Now check the stores are compatible.
2499   if (!QStore->isUnordered() || !PStore->isUnordered())
2500     return false;
2501 
2502   // Check that sinking the store won't cause program behavior changes. Sinking
2503   // the store out of the Q blocks won't change any behavior as we're sinking
2504   // from a block to its unconditional successor. But we're moving a store from
2505   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2506   // So we need to check that there are no aliasing loads or stores in
2507   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2508   // operations between PStore and the end of its parent block.
2509   //
2510   // The ideal way to do this is to query AliasAnalysis, but we don't
2511   // preserve AA currently so that is dangerous. Be super safe and just
2512   // check there are no other memory operations at all.
2513   for (auto &I : *QFB->getSinglePredecessor())
2514     if (I.mayReadOrWriteMemory())
2515       return false;
2516   for (auto &I : *QFB)
2517     if (&I != QStore && I.mayReadOrWriteMemory())
2518       return false;
2519   if (QTB)
2520     for (auto &I : *QTB)
2521       if (&I != QStore && I.mayReadOrWriteMemory())
2522         return false;
2523   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2524        I != E; ++I)
2525     if (&*I != PStore && I->mayReadOrWriteMemory())
2526       return false;
2527 
2528   // OK, we're going to sink the stores to PostBB. The store has to be
2529   // conditional though, so first create the predicate.
2530   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2531                      ->getCondition();
2532   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2533                      ->getCondition();
2534 
2535   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2536                                                 PStore->getParent());
2537   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2538                                                 QStore->getParent(), PPHI);
2539 
2540   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2541 
2542   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2543   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2544 
2545   if (InvertPCond)
2546     PPred = QB.CreateNot(PPred);
2547   if (InvertQCond)
2548     QPred = QB.CreateNot(QPred);
2549   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2550 
2551   auto *T =
2552       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2553   QB.SetInsertPoint(T);
2554   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2555   AAMDNodes AAMD;
2556   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2557   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2558   SI->setAAMetadata(AAMD);
2559 
2560   QStore->eraseFromParent();
2561   PStore->eraseFromParent();
2562 
2563   return true;
2564 }
2565 
2566 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2567   // The intention here is to find diamonds or triangles (see below) where each
2568   // conditional block contains a store to the same address. Both of these
2569   // stores are conditional, so they can't be unconditionally sunk. But it may
2570   // be profitable to speculatively sink the stores into one merged store at the
2571   // end, and predicate the merged store on the union of the two conditions of
2572   // PBI and QBI.
2573   //
2574   // This can reduce the number of stores executed if both of the conditions are
2575   // true, and can allow the blocks to become small enough to be if-converted.
2576   // This optimization will also chain, so that ladders of test-and-set
2577   // sequences can be if-converted away.
2578   //
2579   // We only deal with simple diamonds or triangles:
2580   //
2581   //     PBI       or      PBI        or a combination of the two
2582   //    /   \               | \
2583   //   PTB  PFB             |  PFB
2584   //    \   /               | /
2585   //     QBI                QBI
2586   //    /  \                | \
2587   //   QTB  QFB             |  QFB
2588   //    \  /                | /
2589   //    PostBB            PostBB
2590   //
2591   // We model triangles as a type of diamond with a nullptr "true" block.
2592   // Triangles are canonicalized so that the fallthrough edge is represented by
2593   // a true condition, as in the diagram above.
2594   //
2595   BasicBlock *PTB = PBI->getSuccessor(0);
2596   BasicBlock *PFB = PBI->getSuccessor(1);
2597   BasicBlock *QTB = QBI->getSuccessor(0);
2598   BasicBlock *QFB = QBI->getSuccessor(1);
2599   BasicBlock *PostBB = QFB->getSingleSuccessor();
2600 
2601   bool InvertPCond = false, InvertQCond = false;
2602   // Canonicalize fallthroughs to the true branches.
2603   if (PFB == QBI->getParent()) {
2604     std::swap(PFB, PTB);
2605     InvertPCond = true;
2606   }
2607   if (QFB == PostBB) {
2608     std::swap(QFB, QTB);
2609     InvertQCond = true;
2610   }
2611 
2612   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
2613   // and QFB may not. Model fallthroughs as a nullptr block.
2614   if (PTB == QBI->getParent())
2615     PTB = nullptr;
2616   if (QTB == PostBB)
2617     QTB = nullptr;
2618 
2619   // Legality bailouts. We must have at least the non-fallthrough blocks and
2620   // the post-dominating block, and the non-fallthroughs must only have one
2621   // predecessor.
2622   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
2623     return BB->getSinglePredecessor() == P &&
2624            BB->getSingleSuccessor() == S;
2625   };
2626   if (!PostBB ||
2627       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
2628       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
2629     return false;
2630   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
2631       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
2632     return false;
2633   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
2634     return false;
2635 
2636   // OK, this is a sequence of two diamonds or triangles.
2637   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
2638   SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses;
2639   for (auto *BB : {PTB, PFB}) {
2640     if (!BB)
2641       continue;
2642     for (auto &I : *BB)
2643       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2644         PStoreAddresses.insert(SI->getPointerOperand());
2645   }
2646   for (auto *BB : {QTB, QFB}) {
2647     if (!BB)
2648       continue;
2649     for (auto &I : *BB)
2650       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2651         QStoreAddresses.insert(SI->getPointerOperand());
2652   }
2653 
2654   set_intersect(PStoreAddresses, QStoreAddresses);
2655   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
2656   // clear what it contains.
2657   auto &CommonAddresses = PStoreAddresses;
2658 
2659   bool Changed = false;
2660   for (auto *Address : CommonAddresses)
2661     Changed |= mergeConditionalStoreToAddress(
2662         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
2663   return Changed;
2664 }
2665 
2666 /// If we have a conditional branch as a predecessor of another block,
2667 /// this function tries to simplify it.  We know
2668 /// that PBI and BI are both conditional branches, and BI is in one of the
2669 /// successor blocks of PBI - PBI branches to BI.
2670 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
2671                                            const DataLayout &DL) {
2672   assert(PBI->isConditional() && BI->isConditional());
2673   BasicBlock *BB = BI->getParent();
2674 
2675   // If this block ends with a branch instruction, and if there is a
2676   // predecessor that ends on a branch of the same condition, make
2677   // this conditional branch redundant.
2678   if (PBI->getCondition() == BI->getCondition() &&
2679       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2680     // Okay, the outcome of this conditional branch is statically
2681     // knowable.  If this block had a single pred, handle specially.
2682     if (BB->getSinglePredecessor()) {
2683       // Turn this into a branch on constant.
2684       bool CondIsTrue = PBI->getSuccessor(0) == BB;
2685       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2686                                         CondIsTrue));
2687       return true;  // Nuke the branch on constant.
2688     }
2689 
2690     // Otherwise, if there are multiple predecessors, insert a PHI that merges
2691     // in the constant and simplify the block result.  Subsequent passes of
2692     // simplifycfg will thread the block.
2693     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2694       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2695       PHINode *NewPN = PHINode::Create(
2696           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
2697           BI->getCondition()->getName() + ".pr", &BB->front());
2698       // Okay, we're going to insert the PHI node.  Since PBI is not the only
2699       // predecessor, compute the PHI'd conditional value for all of the preds.
2700       // Any predecessor where the condition is not computable we keep symbolic.
2701       for (pred_iterator PI = PB; PI != PE; ++PI) {
2702         BasicBlock *P = *PI;
2703         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2704             PBI != BI && PBI->isConditional() &&
2705             PBI->getCondition() == BI->getCondition() &&
2706             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2707           bool CondIsTrue = PBI->getSuccessor(0) == BB;
2708           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2709                                               CondIsTrue), P);
2710         } else {
2711           NewPN->addIncoming(BI->getCondition(), P);
2712         }
2713       }
2714 
2715       BI->setCondition(NewPN);
2716       return true;
2717     }
2718   }
2719 
2720   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2721     if (CE->canTrap())
2722       return false;
2723 
2724   // If BI is reached from the true path of PBI and PBI's condition implies
2725   // BI's condition, we know the direction of the BI branch.
2726   if (PBI->getSuccessor(0) == BI->getParent() &&
2727       isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL) &&
2728       PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
2729       BB->getSinglePredecessor()) {
2730     // Turn this into a branch on constant.
2731     auto *OldCond = BI->getCondition();
2732     BI->setCondition(ConstantInt::getTrue(BB->getContext()));
2733     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
2734     return true;  // Nuke the branch on constant.
2735   }
2736 
2737   // If both branches are conditional and both contain stores to the same
2738   // address, remove the stores from the conditionals and create a conditional
2739   // merged store at the end.
2740   if (MergeCondStores && mergeConditionalStores(PBI, BI))
2741     return true;
2742 
2743   // If this is a conditional branch in an empty block, and if any
2744   // predecessors are a conditional branch to one of our destinations,
2745   // fold the conditions into logical ops and one cond br.
2746   BasicBlock::iterator BBI = BB->begin();
2747   // Ignore dbg intrinsics.
2748   while (isa<DbgInfoIntrinsic>(BBI))
2749     ++BBI;
2750   if (&*BBI != BI)
2751     return false;
2752 
2753   int PBIOp, BIOp;
2754   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
2755     PBIOp = 0;
2756     BIOp = 0;
2757   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
2758     PBIOp = 0;
2759     BIOp = 1;
2760   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
2761     PBIOp = 1;
2762     BIOp = 0;
2763   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
2764     PBIOp = 1;
2765     BIOp = 1;
2766   } else {
2767     return false;
2768   }
2769 
2770   // Check to make sure that the other destination of this branch
2771   // isn't BB itself.  If so, this is an infinite loop that will
2772   // keep getting unwound.
2773   if (PBI->getSuccessor(PBIOp) == BB)
2774     return false;
2775 
2776   // Do not perform this transformation if it would require
2777   // insertion of a large number of select instructions. For targets
2778   // without predication/cmovs, this is a big pessimization.
2779 
2780   // Also do not perform this transformation if any phi node in the common
2781   // destination block can trap when reached by BB or PBB (PR17073). In that
2782   // case, it would be unsafe to hoist the operation into a select instruction.
2783 
2784   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2785   unsigned NumPhis = 0;
2786   for (BasicBlock::iterator II = CommonDest->begin();
2787        isa<PHINode>(II); ++II, ++NumPhis) {
2788     if (NumPhis > 2) // Disable this xform.
2789       return false;
2790 
2791     PHINode *PN = cast<PHINode>(II);
2792     Value *BIV = PN->getIncomingValueForBlock(BB);
2793     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2794       if (CE->canTrap())
2795         return false;
2796 
2797     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2798     Value *PBIV = PN->getIncomingValue(PBBIdx);
2799     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2800       if (CE->canTrap())
2801         return false;
2802   }
2803 
2804   // Finally, if everything is ok, fold the branches to logical ops.
2805   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2806 
2807   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2808                << "AND: " << *BI->getParent());
2809 
2810 
2811   // If OtherDest *is* BB, then BB is a basic block with a single conditional
2812   // branch in it, where one edge (OtherDest) goes back to itself but the other
2813   // exits.  We don't *know* that the program avoids the infinite loop
2814   // (even though that seems likely).  If we do this xform naively, we'll end up
2815   // recursively unpeeling the loop.  Since we know that (after the xform is
2816   // done) that the block *is* infinite if reached, we just make it an obviously
2817   // infinite loop with no cond branch.
2818   if (OtherDest == BB) {
2819     // Insert it at the end of the function, because it's either code,
2820     // or it won't matter if it's hot. :)
2821     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2822                                                   "infloop", BB->getParent());
2823     BranchInst::Create(InfLoopBlock, InfLoopBlock);
2824     OtherDest = InfLoopBlock;
2825   }
2826 
2827   DEBUG(dbgs() << *PBI->getParent()->getParent());
2828 
2829   // BI may have other predecessors.  Because of this, we leave
2830   // it alone, but modify PBI.
2831 
2832   // Make sure we get to CommonDest on True&True directions.
2833   Value *PBICond = PBI->getCondition();
2834   IRBuilder<true, NoFolder> Builder(PBI);
2835   if (PBIOp)
2836     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2837 
2838   Value *BICond = BI->getCondition();
2839   if (BIOp)
2840     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2841 
2842   // Merge the conditions.
2843   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2844 
2845   // Modify PBI to branch on the new condition to the new dests.
2846   PBI->setCondition(Cond);
2847   PBI->setSuccessor(0, CommonDest);
2848   PBI->setSuccessor(1, OtherDest);
2849 
2850   // Update branch weight for PBI.
2851   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2852   bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2853                                               PredFalseWeight);
2854   bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2855                                               SuccFalseWeight);
2856   if (PredHasWeights && SuccHasWeights) {
2857     uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2858     uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2859     uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2860     uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2861     // The weight to CommonDest should be PredCommon * SuccTotal +
2862     //                                    PredOther * SuccCommon.
2863     // The weight to OtherDest should be PredOther * SuccOther.
2864     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
2865                                   PredOther * SuccCommon,
2866                               PredOther * SuccOther};
2867     // Halve the weights if any of them cannot fit in an uint32_t
2868     FitWeights(NewWeights);
2869 
2870     PBI->setMetadata(LLVMContext::MD_prof,
2871                      MDBuilder(BI->getContext())
2872                          .createBranchWeights(NewWeights[0], NewWeights[1]));
2873   }
2874 
2875   // OtherDest may have phi nodes.  If so, add an entry from PBI's
2876   // block that are identical to the entries for BI's block.
2877   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2878 
2879   // We know that the CommonDest already had an edge from PBI to
2880   // it.  If it has PHIs though, the PHIs may have different
2881   // entries for BB and PBI's BB.  If so, insert a select to make
2882   // them agree.
2883   PHINode *PN;
2884   for (BasicBlock::iterator II = CommonDest->begin();
2885        (PN = dyn_cast<PHINode>(II)); ++II) {
2886     Value *BIV = PN->getIncomingValueForBlock(BB);
2887     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2888     Value *PBIV = PN->getIncomingValue(PBBIdx);
2889     if (BIV != PBIV) {
2890       // Insert a select in PBI to pick the right value.
2891       Value *NV = cast<SelectInst>
2892         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2893       PN->setIncomingValue(PBBIdx, NV);
2894     }
2895   }
2896 
2897   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2898   DEBUG(dbgs() << *PBI->getParent()->getParent());
2899 
2900   // This basic block is probably dead.  We know it has at least
2901   // one fewer predecessor.
2902   return true;
2903 }
2904 
2905 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
2906 // true or to FalseBB if Cond is false.
2907 // Takes care of updating the successors and removing the old terminator.
2908 // Also makes sure not to introduce new successors by assuming that edges to
2909 // non-successor TrueBBs and FalseBBs aren't reachable.
2910 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2911                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
2912                                        uint32_t TrueWeight,
2913                                        uint32_t FalseWeight){
2914   // Remove any superfluous successor edges from the CFG.
2915   // First, figure out which successors to preserve.
2916   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2917   // successor.
2918   BasicBlock *KeepEdge1 = TrueBB;
2919   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
2920 
2921   // Then remove the rest.
2922   for (BasicBlock *Succ : OldTerm->successors()) {
2923     // Make sure only to keep exactly one copy of each edge.
2924     if (Succ == KeepEdge1)
2925       KeepEdge1 = nullptr;
2926     else if (Succ == KeepEdge2)
2927       KeepEdge2 = nullptr;
2928     else
2929       Succ->removePredecessor(OldTerm->getParent(),
2930                               /*DontDeleteUselessPHIs=*/true);
2931   }
2932 
2933   IRBuilder<> Builder(OldTerm);
2934   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2935 
2936   // Insert an appropriate new terminator.
2937   if (!KeepEdge1 && !KeepEdge2) {
2938     if (TrueBB == FalseBB)
2939       // We were only looking for one successor, and it was present.
2940       // Create an unconditional branch to it.
2941       Builder.CreateBr(TrueBB);
2942     else {
2943       // We found both of the successors we were looking for.
2944       // Create a conditional branch sharing the condition of the select.
2945       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2946       if (TrueWeight != FalseWeight)
2947         NewBI->setMetadata(LLVMContext::MD_prof,
2948                            MDBuilder(OldTerm->getContext()).
2949                            createBranchWeights(TrueWeight, FalseWeight));
2950     }
2951   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2952     // Neither of the selected blocks were successors, so this
2953     // terminator must be unreachable.
2954     new UnreachableInst(OldTerm->getContext(), OldTerm);
2955   } else {
2956     // One of the selected values was a successor, but the other wasn't.
2957     // Insert an unconditional branch to the one that was found;
2958     // the edge to the one that wasn't must be unreachable.
2959     if (!KeepEdge1)
2960       // Only TrueBB was found.
2961       Builder.CreateBr(TrueBB);
2962     else
2963       // Only FalseBB was found.
2964       Builder.CreateBr(FalseBB);
2965   }
2966 
2967   EraseTerminatorInstAndDCECond(OldTerm);
2968   return true;
2969 }
2970 
2971 // Replaces
2972 //   (switch (select cond, X, Y)) on constant X, Y
2973 // with a branch - conditional if X and Y lead to distinct BBs,
2974 // unconditional otherwise.
2975 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2976   // Check for constant integer values in the select.
2977   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2978   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2979   if (!TrueVal || !FalseVal)
2980     return false;
2981 
2982   // Find the relevant condition and destinations.
2983   Value *Condition = Select->getCondition();
2984   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2985   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2986 
2987   // Get weight for TrueBB and FalseBB.
2988   uint32_t TrueWeight = 0, FalseWeight = 0;
2989   SmallVector<uint64_t, 8> Weights;
2990   bool HasWeights = HasBranchWeights(SI);
2991   if (HasWeights) {
2992     GetBranchWeights(SI, Weights);
2993     if (Weights.size() == 1 + SI->getNumCases()) {
2994       TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2995                                      getSuccessorIndex()];
2996       FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2997                                       getSuccessorIndex()];
2998     }
2999   }
3000 
3001   // Perform the actual simplification.
3002   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
3003                                     TrueWeight, FalseWeight);
3004 }
3005 
3006 // Replaces
3007 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3008 //                             blockaddress(@fn, BlockB)))
3009 // with
3010 //   (br cond, BlockA, BlockB).
3011 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3012   // Check that both operands of the select are block addresses.
3013   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3014   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3015   if (!TBA || !FBA)
3016     return false;
3017 
3018   // Extract the actual blocks.
3019   BasicBlock *TrueBB = TBA->getBasicBlock();
3020   BasicBlock *FalseBB = FBA->getBasicBlock();
3021 
3022   // Perform the actual simplification.
3023   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
3024                                     0, 0);
3025 }
3026 
3027 /// This is called when we find an icmp instruction
3028 /// (a seteq/setne with a constant) as the only instruction in a
3029 /// block that ends with an uncond branch.  We are looking for a very specific
3030 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3031 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3032 /// default value goes to an uncond block with a seteq in it, we get something
3033 /// like:
3034 ///
3035 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3036 /// DEFAULT:
3037 ///   %tmp = icmp eq i8 %A, 92
3038 ///   br label %end
3039 /// end:
3040 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3041 ///
3042 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3043 /// the PHI, merging the third icmp into the switch.
3044 static bool TryToSimplifyUncondBranchWithICmpInIt(
3045     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3046     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3047     AssumptionCache *AC) {
3048   BasicBlock *BB = ICI->getParent();
3049 
3050   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3051   // complex.
3052   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
3053 
3054   Value *V = ICI->getOperand(0);
3055   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3056 
3057   // The pattern we're looking for is where our only predecessor is a switch on
3058   // 'V' and this block is the default case for the switch.  In this case we can
3059   // fold the compared value into the switch to simplify things.
3060   BasicBlock *Pred = BB->getSinglePredecessor();
3061   if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
3062 
3063   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3064   if (SI->getCondition() != V)
3065     return false;
3066 
3067   // If BB is reachable on a non-default case, then we simply know the value of
3068   // V in this block.  Substitute it and constant fold the icmp instruction
3069   // away.
3070   if (SI->getDefaultDest() != BB) {
3071     ConstantInt *VVal = SI->findCaseDest(BB);
3072     assert(VVal && "Should have a unique destination value");
3073     ICI->setOperand(0, VVal);
3074 
3075     if (Value *V = SimplifyInstruction(ICI, DL)) {
3076       ICI->replaceAllUsesWith(V);
3077       ICI->eraseFromParent();
3078     }
3079     // BB is now empty, so it is likely to simplify away.
3080     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3081   }
3082 
3083   // Ok, the block is reachable from the default dest.  If the constant we're
3084   // comparing exists in one of the other edges, then we can constant fold ICI
3085   // and zap it.
3086   if (SI->findCaseValue(Cst) != SI->case_default()) {
3087     Value *V;
3088     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3089       V = ConstantInt::getFalse(BB->getContext());
3090     else
3091       V = ConstantInt::getTrue(BB->getContext());
3092 
3093     ICI->replaceAllUsesWith(V);
3094     ICI->eraseFromParent();
3095     // BB is now empty, so it is likely to simplify away.
3096     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3097   }
3098 
3099   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3100   // the block.
3101   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3102   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3103   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3104       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3105     return false;
3106 
3107   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3108   // true in the PHI.
3109   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3110   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
3111 
3112   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3113     std::swap(DefaultCst, NewCst);
3114 
3115   // Replace ICI (which is used by the PHI for the default value) with true or
3116   // false depending on if it is EQ or NE.
3117   ICI->replaceAllUsesWith(DefaultCst);
3118   ICI->eraseFromParent();
3119 
3120   // Okay, the switch goes to this block on a default value.  Add an edge from
3121   // the switch to the merge point on the compared value.
3122   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
3123                                          BB->getParent(), BB);
3124   SmallVector<uint64_t, 8> Weights;
3125   bool HasWeights = HasBranchWeights(SI);
3126   if (HasWeights) {
3127     GetBranchWeights(SI, Weights);
3128     if (Weights.size() == 1 + SI->getNumCases()) {
3129       // Split weight for default case to case for "Cst".
3130       Weights[0] = (Weights[0]+1) >> 1;
3131       Weights.push_back(Weights[0]);
3132 
3133       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3134       SI->setMetadata(LLVMContext::MD_prof,
3135                       MDBuilder(SI->getContext()).
3136                       createBranchWeights(MDWeights));
3137     }
3138   }
3139   SI->addCase(Cst, NewBB);
3140 
3141   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3142   Builder.SetInsertPoint(NewBB);
3143   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3144   Builder.CreateBr(SuccBlock);
3145   PHIUse->addIncoming(NewCst, NewBB);
3146   return true;
3147 }
3148 
3149 /// The specified branch is a conditional branch.
3150 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3151 /// fold it into a switch instruction if so.
3152 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3153                                       const DataLayout &DL) {
3154   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3155   if (!Cond) return false;
3156 
3157   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3158   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3159   // 'setne's and'ed together, collect them.
3160 
3161   // Try to gather values from a chain of and/or to be turned into a switch
3162   ConstantComparesGatherer ConstantCompare(Cond, DL);
3163   // Unpack the result
3164   SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals;
3165   Value *CompVal = ConstantCompare.CompValue;
3166   unsigned UsedICmps = ConstantCompare.UsedICmps;
3167   Value *ExtraCase = ConstantCompare.Extra;
3168 
3169   // If we didn't have a multiply compared value, fail.
3170   if (!CompVal) return false;
3171 
3172   // Avoid turning single icmps into a switch.
3173   if (UsedICmps <= 1)
3174     return false;
3175 
3176   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3177 
3178   // There might be duplicate constants in the list, which the switch
3179   // instruction can't handle, remove them now.
3180   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3181   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3182 
3183   // If Extra was used, we require at least two switch values to do the
3184   // transformation.  A switch with one value is just a conditional branch.
3185   if (ExtraCase && Values.size() < 2) return false;
3186 
3187   // TODO: Preserve branch weight metadata, similarly to how
3188   // FoldValueComparisonIntoPredecessors preserves it.
3189 
3190   // Figure out which block is which destination.
3191   BasicBlock *DefaultBB = BI->getSuccessor(1);
3192   BasicBlock *EdgeBB    = BI->getSuccessor(0);
3193   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
3194 
3195   BasicBlock *BB = BI->getParent();
3196 
3197   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3198                << " cases into SWITCH.  BB is:\n" << *BB);
3199 
3200   // If there are any extra values that couldn't be folded into the switch
3201   // then we evaluate them with an explicit branch first.  Split the block
3202   // right before the condbr to handle it.
3203   if (ExtraCase) {
3204     BasicBlock *NewBB =
3205         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3206     // Remove the uncond branch added to the old block.
3207     TerminatorInst *OldTI = BB->getTerminator();
3208     Builder.SetInsertPoint(OldTI);
3209 
3210     if (TrueWhenEqual)
3211       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3212     else
3213       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3214 
3215     OldTI->eraseFromParent();
3216 
3217     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3218     // for the edge we just added.
3219     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3220 
3221     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3222           << "\nEXTRABB = " << *BB);
3223     BB = NewBB;
3224   }
3225 
3226   Builder.SetInsertPoint(BI);
3227   // Convert pointer to int before we switch.
3228   if (CompVal->getType()->isPointerTy()) {
3229     CompVal = Builder.CreatePtrToInt(
3230         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3231   }
3232 
3233   // Create the new switch instruction now.
3234   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3235 
3236   // Add all of the 'cases' to the switch instruction.
3237   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3238     New->addCase(Values[i], EdgeBB);
3239 
3240   // We added edges from PI to the EdgeBB.  As such, if there were any
3241   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3242   // the number of edges added.
3243   for (BasicBlock::iterator BBI = EdgeBB->begin();
3244        isa<PHINode>(BBI); ++BBI) {
3245     PHINode *PN = cast<PHINode>(BBI);
3246     Value *InVal = PN->getIncomingValueForBlock(BB);
3247     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
3248       PN->addIncoming(InVal, BB);
3249   }
3250 
3251   // Erase the old branch instruction.
3252   EraseTerminatorInstAndDCECond(BI);
3253 
3254   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3255   return true;
3256 }
3257 
3258 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3259   if (isa<PHINode>(RI->getValue()))
3260     return SimplifyCommonResume(RI);
3261   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3262            RI->getValue() == RI->getParent()->getFirstNonPHI())
3263     // The resume must unwind the exception that caused control to branch here.
3264     return SimplifySingleResume(RI);
3265 
3266   return false;
3267 }
3268 
3269 // Simplify resume that is shared by several landing pads (phi of landing pad).
3270 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3271   BasicBlock *BB = RI->getParent();
3272 
3273   // Check that there are no other instructions except for debug intrinsics
3274   // between the phi of landing pads (RI->getValue()) and resume instruction.
3275   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3276 		  	  	  	   E = RI->getIterator();
3277   while (++I != E)
3278     if (!isa<DbgInfoIntrinsic>(I))
3279       return false;
3280 
3281   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3282   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3283 
3284   // Check incoming blocks to see if any of them are trivial.
3285   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues();
3286        Idx != End; Idx++) {
3287     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3288     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3289 
3290     // If the block has other successors, we can not delete it because
3291     // it has other dependents.
3292     if (IncomingBB->getUniqueSuccessor() != BB)
3293       continue;
3294 
3295     auto *LandingPad =
3296         dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3297     // Not the landing pad that caused the control to branch here.
3298     if (IncomingValue != LandingPad)
3299       continue;
3300 
3301     bool isTrivial = true;
3302 
3303     I = IncomingBB->getFirstNonPHI()->getIterator();
3304     E = IncomingBB->getTerminator()->getIterator();
3305     while (++I != E)
3306       if (!isa<DbgInfoIntrinsic>(I)) {
3307         isTrivial = false;
3308         break;
3309       }
3310 
3311     if (isTrivial)
3312       TrivialUnwindBlocks.insert(IncomingBB);
3313   }
3314 
3315   // If no trivial unwind blocks, don't do any simplifications.
3316   if (TrivialUnwindBlocks.empty()) return false;
3317 
3318   // Turn all invokes that unwind here into calls.
3319   for (auto *TrivialBB : TrivialUnwindBlocks) {
3320     // Blocks that will be simplified should be removed from the phi node.
3321     // Note there could be multiple edges to the resume block, and we need
3322     // to remove them all.
3323     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3324       BB->removePredecessor(TrivialBB, true);
3325 
3326     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3327          PI != PE;) {
3328       BasicBlock *Pred = *PI++;
3329       removeUnwindEdge(Pred);
3330     }
3331 
3332     // In each SimplifyCFG run, only the current processed block can be erased.
3333     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3334     // of erasing TrivialBB, we only remove the branch to the common resume
3335     // block so that we can later erase the resume block since it has no
3336     // predecessors.
3337     TrivialBB->getTerminator()->eraseFromParent();
3338     new UnreachableInst(RI->getContext(), TrivialBB);
3339   }
3340 
3341   // Delete the resume block if all its predecessors have been removed.
3342   if (pred_empty(BB))
3343     BB->eraseFromParent();
3344 
3345   return !TrivialUnwindBlocks.empty();
3346 }
3347 
3348 // Simplify resume that is only used by a single (non-phi) landing pad.
3349 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3350   BasicBlock *BB = RI->getParent();
3351   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3352   assert (RI->getValue() == LPInst &&
3353           "Resume must unwind the exception that caused control to here");
3354 
3355   // Check that there are no other instructions except for debug intrinsics.
3356   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3357   while (++I != E)
3358     if (!isa<DbgInfoIntrinsic>(I))
3359       return false;
3360 
3361   // Turn all invokes that unwind here into calls and delete the basic block.
3362   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3363     BasicBlock *Pred = *PI++;
3364     removeUnwindEdge(Pred);
3365   }
3366 
3367   // The landingpad is now unreachable.  Zap it.
3368   BB->eraseFromParent();
3369   return true;
3370 }
3371 
3372 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3373   // If this is a trivial cleanup pad that executes no instructions, it can be
3374   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3375   // that is an EH pad will be updated to continue to the caller and any
3376   // predecessor that terminates with an invoke instruction will have its invoke
3377   // instruction converted to a call instruction.  If the cleanup pad being
3378   // simplified does not continue to the caller, each predecessor will be
3379   // updated to continue to the unwind destination of the cleanup pad being
3380   // simplified.
3381   BasicBlock *BB = RI->getParent();
3382   CleanupPadInst *CPInst = RI->getCleanupPad();
3383   if (CPInst->getParent() != BB)
3384     // This isn't an empty cleanup.
3385     return false;
3386 
3387   // Check that there are no other instructions except for debug intrinsics.
3388   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3389   while (++I != E)
3390     if (!isa<DbgInfoIntrinsic>(I))
3391       return false;
3392 
3393   // If the cleanup return we are simplifying unwinds to the caller, this will
3394   // set UnwindDest to nullptr.
3395   BasicBlock *UnwindDest = RI->getUnwindDest();
3396   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3397 
3398   // We're about to remove BB from the control flow.  Before we do, sink any
3399   // PHINodes into the unwind destination.  Doing this before changing the
3400   // control flow avoids some potentially slow checks, since we can currently
3401   // be certain that UnwindDest and BB have no common predecessors (since they
3402   // are both EH pads).
3403   if (UnwindDest) {
3404     // First, go through the PHI nodes in UnwindDest and update any nodes that
3405     // reference the block we are removing
3406     for (BasicBlock::iterator I = UnwindDest->begin(),
3407                               IE = DestEHPad->getIterator();
3408          I != IE; ++I) {
3409       PHINode *DestPN = cast<PHINode>(I);
3410 
3411       int Idx = DestPN->getBasicBlockIndex(BB);
3412       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3413       assert(Idx != -1);
3414       // This PHI node has an incoming value that corresponds to a control
3415       // path through the cleanup pad we are removing.  If the incoming
3416       // value is in the cleanup pad, it must be a PHINode (because we
3417       // verified above that the block is otherwise empty).  Otherwise, the
3418       // value is either a constant or a value that dominates the cleanup
3419       // pad being removed.
3420       //
3421       // Because BB and UnwindDest are both EH pads, all of their
3422       // predecessors must unwind to these blocks, and since no instruction
3423       // can have multiple unwind destinations, there will be no overlap in
3424       // incoming blocks between SrcPN and DestPN.
3425       Value *SrcVal = DestPN->getIncomingValue(Idx);
3426       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3427 
3428       // Remove the entry for the block we are deleting.
3429       DestPN->removeIncomingValue(Idx, false);
3430 
3431       if (SrcPN && SrcPN->getParent() == BB) {
3432         // If the incoming value was a PHI node in the cleanup pad we are
3433         // removing, we need to merge that PHI node's incoming values into
3434         // DestPN.
3435         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3436               SrcIdx != SrcE; ++SrcIdx) {
3437           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3438                               SrcPN->getIncomingBlock(SrcIdx));
3439         }
3440       } else {
3441         // Otherwise, the incoming value came from above BB and
3442         // so we can just reuse it.  We must associate all of BB's
3443         // predecessors with this value.
3444         for (auto *pred : predecessors(BB)) {
3445           DestPN->addIncoming(SrcVal, pred);
3446         }
3447       }
3448     }
3449 
3450     // Sink any remaining PHI nodes directly into UnwindDest.
3451     Instruction *InsertPt = DestEHPad;
3452     for (BasicBlock::iterator I = BB->begin(),
3453                               IE = BB->getFirstNonPHI()->getIterator();
3454          I != IE;) {
3455       // The iterator must be incremented here because the instructions are
3456       // being moved to another block.
3457       PHINode *PN = cast<PHINode>(I++);
3458       if (PN->use_empty())
3459         // If the PHI node has no uses, just leave it.  It will be erased
3460         // when we erase BB below.
3461         continue;
3462 
3463       // Otherwise, sink this PHI node into UnwindDest.
3464       // Any predecessors to UnwindDest which are not already represented
3465       // must be back edges which inherit the value from the path through
3466       // BB.  In this case, the PHI value must reference itself.
3467       for (auto *pred : predecessors(UnwindDest))
3468         if (pred != BB)
3469           PN->addIncoming(PN, pred);
3470       PN->moveBefore(InsertPt);
3471     }
3472   }
3473 
3474   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3475     // The iterator must be updated here because we are removing this pred.
3476     BasicBlock *PredBB = *PI++;
3477     if (UnwindDest == nullptr) {
3478       removeUnwindEdge(PredBB);
3479     } else {
3480       TerminatorInst *TI = PredBB->getTerminator();
3481       TI->replaceUsesOfWith(BB, UnwindDest);
3482     }
3483   }
3484 
3485   // The cleanup pad is now unreachable.  Zap it.
3486   BB->eraseFromParent();
3487   return true;
3488 }
3489 
3490 // Try to merge two cleanuppads together.
3491 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3492   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3493   // with.
3494   BasicBlock *UnwindDest = RI->getUnwindDest();
3495   if (!UnwindDest)
3496     return false;
3497 
3498   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3499   // be safe to merge without code duplication.
3500   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3501     return false;
3502 
3503   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3504   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3505   if (!SuccessorCleanupPad)
3506     return false;
3507 
3508   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3509   // Replace any uses of the successor cleanupad with the predecessor pad
3510   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3511   // funclet bundle operands.
3512   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3513   // Remove the old cleanuppad.
3514   SuccessorCleanupPad->eraseFromParent();
3515   // Now, we simply replace the cleanupret with a branch to the unwind
3516   // destination.
3517   BranchInst::Create(UnwindDest, RI->getParent());
3518   RI->eraseFromParent();
3519 
3520   return true;
3521 }
3522 
3523 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3524   if (removeEmptyCleanup(RI))
3525     return true;
3526 
3527   if (mergeCleanupPad(RI))
3528     return true;
3529 
3530   return false;
3531 }
3532 
3533 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3534   BasicBlock *BB = RI->getParent();
3535   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
3536 
3537   // Find predecessors that end with branches.
3538   SmallVector<BasicBlock*, 8> UncondBranchPreds;
3539   SmallVector<BranchInst*, 8> CondBranchPreds;
3540   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3541     BasicBlock *P = *PI;
3542     TerminatorInst *PTI = P->getTerminator();
3543     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3544       if (BI->isUnconditional())
3545         UncondBranchPreds.push_back(P);
3546       else
3547         CondBranchPreds.push_back(BI);
3548     }
3549   }
3550 
3551   // If we found some, do the transformation!
3552   if (!UncondBranchPreds.empty() && DupRet) {
3553     while (!UncondBranchPreds.empty()) {
3554       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3555       DEBUG(dbgs() << "FOLDING: " << *BB
3556             << "INTO UNCOND BRANCH PRED: " << *Pred);
3557       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3558     }
3559 
3560     // If we eliminated all predecessors of the block, delete the block now.
3561     if (pred_empty(BB))
3562       // We know there are no successors, so just nuke the block.
3563       BB->eraseFromParent();
3564 
3565     return true;
3566   }
3567 
3568   // Check out all of the conditional branches going to this return
3569   // instruction.  If any of them just select between returns, change the
3570   // branch itself into a select/return pair.
3571   while (!CondBranchPreds.empty()) {
3572     BranchInst *BI = CondBranchPreds.pop_back_val();
3573 
3574     // Check to see if the non-BB successor is also a return block.
3575     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3576         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3577         SimplifyCondBranchToTwoReturns(BI, Builder))
3578       return true;
3579   }
3580   return false;
3581 }
3582 
3583 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3584   BasicBlock *BB = UI->getParent();
3585 
3586   bool Changed = false;
3587 
3588   // If there are any instructions immediately before the unreachable that can
3589   // be removed, do so.
3590   while (UI->getIterator() != BB->begin()) {
3591     BasicBlock::iterator BBI = UI->getIterator();
3592     --BBI;
3593     // Do not delete instructions that can have side effects which might cause
3594     // the unreachable to not be reachable; specifically, calls and volatile
3595     // operations may have this effect.
3596     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
3597 
3598     if (BBI->mayHaveSideEffects()) {
3599       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
3600         if (SI->isVolatile())
3601           break;
3602       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
3603         if (LI->isVolatile())
3604           break;
3605       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3606         if (RMWI->isVolatile())
3607           break;
3608       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3609         if (CXI->isVolatile())
3610           break;
3611       } else if (isa<CatchPadInst>(BBI)) {
3612         // A catchpad may invoke exception object constructors and such, which
3613         // in some languages can be arbitrary code, so be conservative by
3614         // default.
3615         // For CoreCLR, it just involves a type test, so can be removed.
3616         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
3617             EHPersonality::CoreCLR)
3618           break;
3619       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3620                  !isa<LandingPadInst>(BBI)) {
3621         break;
3622       }
3623       // Note that deleting LandingPad's here is in fact okay, although it
3624       // involves a bit of subtle reasoning. If this inst is a LandingPad,
3625       // all the predecessors of this block will be the unwind edges of Invokes,
3626       // and we can therefore guarantee this block will be erased.
3627     }
3628 
3629     // Delete this instruction (any uses are guaranteed to be dead)
3630     if (!BBI->use_empty())
3631       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3632     BBI->eraseFromParent();
3633     Changed = true;
3634   }
3635 
3636   // If the unreachable instruction is the first in the block, take a gander
3637   // at all of the predecessors of this instruction, and simplify them.
3638   if (&BB->front() != UI) return Changed;
3639 
3640   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3641   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3642     TerminatorInst *TI = Preds[i]->getTerminator();
3643     IRBuilder<> Builder(TI);
3644     if (auto *BI = dyn_cast<BranchInst>(TI)) {
3645       if (BI->isUnconditional()) {
3646         if (BI->getSuccessor(0) == BB) {
3647           new UnreachableInst(TI->getContext(), TI);
3648           TI->eraseFromParent();
3649           Changed = true;
3650         }
3651       } else {
3652         if (BI->getSuccessor(0) == BB) {
3653           Builder.CreateBr(BI->getSuccessor(1));
3654           EraseTerminatorInstAndDCECond(BI);
3655         } else if (BI->getSuccessor(1) == BB) {
3656           Builder.CreateBr(BI->getSuccessor(0));
3657           EraseTerminatorInstAndDCECond(BI);
3658           Changed = true;
3659         }
3660       }
3661     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
3662       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3663            i != e; ++i)
3664         if (i.getCaseSuccessor() == BB) {
3665           BB->removePredecessor(SI->getParent());
3666           SI->removeCase(i);
3667           --i; --e;
3668           Changed = true;
3669         }
3670     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
3671       if (II->getUnwindDest() == BB) {
3672         removeUnwindEdge(TI->getParent());
3673         Changed = true;
3674       }
3675     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3676       if (CSI->getUnwindDest() == BB) {
3677         removeUnwindEdge(TI->getParent());
3678         Changed = true;
3679         continue;
3680       }
3681 
3682       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
3683                                              E = CSI->handler_end();
3684            I != E; ++I) {
3685         if (*I == BB) {
3686           CSI->removeHandler(I);
3687           --I;
3688           --E;
3689           Changed = true;
3690         }
3691       }
3692       if (CSI->getNumHandlers() == 0) {
3693         BasicBlock *CatchSwitchBB = CSI->getParent();
3694         if (CSI->hasUnwindDest()) {
3695           // Redirect preds to the unwind dest
3696           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
3697         } else {
3698           // Rewrite all preds to unwind to caller (or from invoke to call).
3699           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
3700           for (BasicBlock *EHPred : EHPreds)
3701             removeUnwindEdge(EHPred);
3702         }
3703         // The catchswitch is no longer reachable.
3704         new UnreachableInst(CSI->getContext(), CSI);
3705         CSI->eraseFromParent();
3706         Changed = true;
3707       }
3708     } else if (isa<CleanupReturnInst>(TI)) {
3709       new UnreachableInst(TI->getContext(), TI);
3710       TI->eraseFromParent();
3711       Changed = true;
3712     }
3713   }
3714 
3715   // If this block is now dead, remove it.
3716   if (pred_empty(BB) &&
3717       BB != &BB->getParent()->getEntryBlock()) {
3718     // We know there are no successors, so just nuke the block.
3719     BB->eraseFromParent();
3720     return true;
3721   }
3722 
3723   return Changed;
3724 }
3725 
3726 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
3727   assert(Cases.size() >= 1);
3728 
3729   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3730   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
3731     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
3732       return false;
3733   }
3734   return true;
3735 }
3736 
3737 /// Turn a switch with two reachable destinations into an integer range
3738 /// comparison and branch.
3739 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3740   assert(SI->getNumCases() > 1 && "Degenerate switch?");
3741 
3742   bool HasDefault =
3743       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3744 
3745   // Partition the cases into two sets with different destinations.
3746   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
3747   BasicBlock *DestB = nullptr;
3748   SmallVector <ConstantInt *, 16> CasesA;
3749   SmallVector <ConstantInt *, 16> CasesB;
3750 
3751   for (SwitchInst::CaseIt I : SI->cases()) {
3752     BasicBlock *Dest = I.getCaseSuccessor();
3753     if (!DestA) DestA = Dest;
3754     if (Dest == DestA) {
3755       CasesA.push_back(I.getCaseValue());
3756       continue;
3757     }
3758     if (!DestB) DestB = Dest;
3759     if (Dest == DestB) {
3760       CasesB.push_back(I.getCaseValue());
3761       continue;
3762     }
3763     return false;  // More than two destinations.
3764   }
3765 
3766   assert(DestA && DestB && "Single-destination switch should have been folded.");
3767   assert(DestA != DestB);
3768   assert(DestB != SI->getDefaultDest());
3769   assert(!CasesB.empty() && "There must be non-default cases.");
3770   assert(!CasesA.empty() || HasDefault);
3771 
3772   // Figure out if one of the sets of cases form a contiguous range.
3773   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
3774   BasicBlock *ContiguousDest = nullptr;
3775   BasicBlock *OtherDest = nullptr;
3776   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
3777     ContiguousCases = &CasesA;
3778     ContiguousDest = DestA;
3779     OtherDest = DestB;
3780   } else if (CasesAreContiguous(CasesB)) {
3781     ContiguousCases = &CasesB;
3782     ContiguousDest = DestB;
3783     OtherDest = DestA;
3784   } else
3785     return false;
3786 
3787   // Start building the compare and branch.
3788 
3789   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
3790   Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size());
3791 
3792   Value *Sub = SI->getCondition();
3793   if (!Offset->isNullValue())
3794     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
3795 
3796   Value *Cmp;
3797   // If NumCases overflowed, then all possible values jump to the successor.
3798   if (NumCases->isNullValue() && !ContiguousCases->empty())
3799     Cmp = ConstantInt::getTrue(SI->getContext());
3800   else
3801     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3802   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
3803 
3804   // Update weight for the newly-created conditional branch.
3805   if (HasBranchWeights(SI)) {
3806     SmallVector<uint64_t, 8> Weights;
3807     GetBranchWeights(SI, Weights);
3808     if (Weights.size() == 1 + SI->getNumCases()) {
3809       uint64_t TrueWeight = 0;
3810       uint64_t FalseWeight = 0;
3811       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
3812         if (SI->getSuccessor(I) == ContiguousDest)
3813           TrueWeight += Weights[I];
3814         else
3815           FalseWeight += Weights[I];
3816       }
3817       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
3818         TrueWeight /= 2;
3819         FalseWeight /= 2;
3820       }
3821       NewBI->setMetadata(LLVMContext::MD_prof,
3822                          MDBuilder(SI->getContext()).createBranchWeights(
3823                              (uint32_t)TrueWeight, (uint32_t)FalseWeight));
3824     }
3825   }
3826 
3827   // Prune obsolete incoming values off the successors' PHI nodes.
3828   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
3829     unsigned PreviousEdges = ContiguousCases->size();
3830     if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges;
3831     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3832       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3833   }
3834   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
3835     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
3836     if (OtherDest == SI->getDefaultDest()) ++PreviousEdges;
3837     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3838       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3839   }
3840 
3841   // Drop the switch.
3842   SI->eraseFromParent();
3843 
3844   return true;
3845 }
3846 
3847 /// Compute masked bits for the condition of a switch
3848 /// and use it to remove dead cases.
3849 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
3850                                      const DataLayout &DL) {
3851   Value *Cond = SI->getCondition();
3852   unsigned Bits = Cond->getType()->getIntegerBitWidth();
3853   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3854   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
3855 
3856   // Gather dead cases.
3857   SmallVector<ConstantInt*, 8> DeadCases;
3858   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3859     if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3860         (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3861       DeadCases.push_back(I.getCaseValue());
3862       DEBUG(dbgs() << "SimplifyCFG: switch case '"
3863                    << I.getCaseValue() << "' is dead.\n");
3864     }
3865   }
3866 
3867   // If we can prove that the cases must cover all possible values, the
3868   // default destination becomes dead and we can remove it.  If we know some
3869   // of the bits in the value, we can use that to more precisely compute the
3870   // number of possible unique case values.
3871   bool HasDefault =
3872     !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3873   const unsigned NumUnknownBits = Bits -
3874     (KnownZero.Or(KnownOne)).countPopulation();
3875   assert(NumUnknownBits <= Bits);
3876   if (HasDefault && DeadCases.empty() &&
3877       NumUnknownBits < 64 /* avoid overflow */ &&
3878       SI->getNumCases() == (1ULL << NumUnknownBits)) {
3879     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
3880     BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(),
3881                                                     SI->getParent(), "");
3882     SI->setDefaultDest(&*NewDefault);
3883     SplitBlock(&*NewDefault, &NewDefault->front());
3884     auto *OldTI = NewDefault->getTerminator();
3885     new UnreachableInst(SI->getContext(), OldTI);
3886     EraseTerminatorInstAndDCECond(OldTI);
3887     return true;
3888   }
3889 
3890   SmallVector<uint64_t, 8> Weights;
3891   bool HasWeight = HasBranchWeights(SI);
3892   if (HasWeight) {
3893     GetBranchWeights(SI, Weights);
3894     HasWeight = (Weights.size() == 1 + SI->getNumCases());
3895   }
3896 
3897   // Remove dead cases from the switch.
3898   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3899     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3900     assert(Case != SI->case_default() &&
3901            "Case was not found. Probably mistake in DeadCases forming.");
3902     if (HasWeight) {
3903       std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3904       Weights.pop_back();
3905     }
3906 
3907     // Prune unused values from PHI nodes.
3908     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3909     SI->removeCase(Case);
3910   }
3911   if (HasWeight && Weights.size() >= 2) {
3912     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3913     SI->setMetadata(LLVMContext::MD_prof,
3914                     MDBuilder(SI->getParent()->getContext()).
3915                     createBranchWeights(MDWeights));
3916   }
3917 
3918   return !DeadCases.empty();
3919 }
3920 
3921 /// If BB would be eligible for simplification by
3922 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3923 /// by an unconditional branch), look at the phi node for BB in the successor
3924 /// block and see if the incoming value is equal to CaseValue. If so, return
3925 /// the phi node, and set PhiIndex to BB's index in the phi node.
3926 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3927                                               BasicBlock *BB,
3928                                               int *PhiIndex) {
3929   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3930     return nullptr; // BB must be empty to be a candidate for simplification.
3931   if (!BB->getSinglePredecessor())
3932     return nullptr; // BB must be dominated by the switch.
3933 
3934   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3935   if (!Branch || !Branch->isUnconditional())
3936     return nullptr; // Terminator must be unconditional branch.
3937 
3938   BasicBlock *Succ = Branch->getSuccessor(0);
3939 
3940   BasicBlock::iterator I = Succ->begin();
3941   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3942     int Idx = PHI->getBasicBlockIndex(BB);
3943     assert(Idx >= 0 && "PHI has no entry for predecessor?");
3944 
3945     Value *InValue = PHI->getIncomingValue(Idx);
3946     if (InValue != CaseValue) continue;
3947 
3948     *PhiIndex = Idx;
3949     return PHI;
3950   }
3951 
3952   return nullptr;
3953 }
3954 
3955 /// Try to forward the condition of a switch instruction to a phi node
3956 /// dominated by the switch, if that would mean that some of the destination
3957 /// blocks of the switch can be folded away.
3958 /// Returns true if a change is made.
3959 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3960   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3961   ForwardingNodesMap ForwardingNodes;
3962 
3963   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3964     ConstantInt *CaseValue = I.getCaseValue();
3965     BasicBlock *CaseDest = I.getCaseSuccessor();
3966 
3967     int PhiIndex;
3968     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3969                                                  &PhiIndex);
3970     if (!PHI) continue;
3971 
3972     ForwardingNodes[PHI].push_back(PhiIndex);
3973   }
3974 
3975   bool Changed = false;
3976 
3977   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3978        E = ForwardingNodes.end(); I != E; ++I) {
3979     PHINode *Phi = I->first;
3980     SmallVectorImpl<int> &Indexes = I->second;
3981 
3982     if (Indexes.size() < 2) continue;
3983 
3984     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3985       Phi->setIncomingValue(Indexes[I], SI->getCondition());
3986     Changed = true;
3987   }
3988 
3989   return Changed;
3990 }
3991 
3992 /// Return true if the backend will be able to handle
3993 /// initializing an array of constants like C.
3994 static bool ValidLookupTableConstant(Constant *C) {
3995   if (C->isThreadDependent())
3996     return false;
3997   if (C->isDLLImportDependent())
3998     return false;
3999 
4000   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
4001     return CE->isGEPWithNoNotionalOverIndexing();
4002 
4003   return isa<ConstantFP>(C) ||
4004       isa<ConstantInt>(C) ||
4005       isa<ConstantPointerNull>(C) ||
4006       isa<GlobalValue>(C) ||
4007       isa<UndefValue>(C);
4008 }
4009 
4010 /// If V is a Constant, return it. Otherwise, try to look up
4011 /// its constant value in ConstantPool, returning 0 if it's not there.
4012 static Constant *LookupConstant(Value *V,
4013                          const SmallDenseMap<Value*, Constant*>& ConstantPool) {
4014   if (Constant *C = dyn_cast<Constant>(V))
4015     return C;
4016   return ConstantPool.lookup(V);
4017 }
4018 
4019 /// Try to fold instruction I into a constant. This works for
4020 /// simple instructions such as binary operations where both operands are
4021 /// constant or can be replaced by constants from the ConstantPool. Returns the
4022 /// resulting constant on success, 0 otherwise.
4023 static Constant *
4024 ConstantFold(Instruction *I, const DataLayout &DL,
4025              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4026   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4027     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4028     if (!A)
4029       return nullptr;
4030     if (A->isAllOnesValue())
4031       return LookupConstant(Select->getTrueValue(), ConstantPool);
4032     if (A->isNullValue())
4033       return LookupConstant(Select->getFalseValue(), ConstantPool);
4034     return nullptr;
4035   }
4036 
4037   SmallVector<Constant *, 4> COps;
4038   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4039     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4040       COps.push_back(A);
4041     else
4042       return nullptr;
4043   }
4044 
4045   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4046     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4047                                            COps[1], DL);
4048   }
4049 
4050   return ConstantFoldInstOperands(I, COps, DL);
4051 }
4052 
4053 /// Try to determine the resulting constant values in phi nodes
4054 /// at the common destination basic block, *CommonDest, for one of the case
4055 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4056 /// case), of a switch instruction SI.
4057 static bool
4058 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4059                BasicBlock **CommonDest,
4060                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4061                const DataLayout &DL) {
4062   // The block from which we enter the common destination.
4063   BasicBlock *Pred = SI->getParent();
4064 
4065   // If CaseDest is empty except for some side-effect free instructions through
4066   // which we can constant-propagate the CaseVal, continue to its successor.
4067   SmallDenseMap<Value*, Constant*> ConstantPool;
4068   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4069   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4070        ++I) {
4071     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4072       // If the terminator is a simple branch, continue to the next block.
4073       if (T->getNumSuccessors() != 1)
4074         return false;
4075       Pred = CaseDest;
4076       CaseDest = T->getSuccessor(0);
4077     } else if (isa<DbgInfoIntrinsic>(I)) {
4078       // Skip debug intrinsic.
4079       continue;
4080     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4081       // Instruction is side-effect free and constant.
4082 
4083       // If the instruction has uses outside this block or a phi node slot for
4084       // the block, it is not safe to bypass the instruction since it would then
4085       // no longer dominate all its uses.
4086       for (auto &Use : I->uses()) {
4087         User *User = Use.getUser();
4088         if (Instruction *I = dyn_cast<Instruction>(User))
4089           if (I->getParent() == CaseDest)
4090             continue;
4091         if (PHINode *Phi = dyn_cast<PHINode>(User))
4092           if (Phi->getIncomingBlock(Use) == CaseDest)
4093             continue;
4094         return false;
4095       }
4096 
4097       ConstantPool.insert(std::make_pair(&*I, C));
4098     } else {
4099       break;
4100     }
4101   }
4102 
4103   // If we did not have a CommonDest before, use the current one.
4104   if (!*CommonDest)
4105     *CommonDest = CaseDest;
4106   // If the destination isn't the common one, abort.
4107   if (CaseDest != *CommonDest)
4108     return false;
4109 
4110   // Get the values for this case from phi nodes in the destination block.
4111   BasicBlock::iterator I = (*CommonDest)->begin();
4112   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4113     int Idx = PHI->getBasicBlockIndex(Pred);
4114     if (Idx == -1)
4115       continue;
4116 
4117     Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
4118                                         ConstantPool);
4119     if (!ConstVal)
4120       return false;
4121 
4122     // Be conservative about which kinds of constants we support.
4123     if (!ValidLookupTableConstant(ConstVal))
4124       return false;
4125 
4126     Res.push_back(std::make_pair(PHI, ConstVal));
4127   }
4128 
4129   return Res.size() > 0;
4130 }
4131 
4132 // Helper function used to add CaseVal to the list of cases that generate
4133 // Result.
4134 static void MapCaseToResult(ConstantInt *CaseVal,
4135     SwitchCaseResultVectorTy &UniqueResults,
4136     Constant *Result) {
4137   for (auto &I : UniqueResults) {
4138     if (I.first == Result) {
4139       I.second.push_back(CaseVal);
4140       return;
4141     }
4142   }
4143   UniqueResults.push_back(std::make_pair(Result,
4144         SmallVector<ConstantInt*, 4>(1, CaseVal)));
4145 }
4146 
4147 // Helper function that initializes a map containing
4148 // results for the PHI node of the common destination block for a switch
4149 // instruction. Returns false if multiple PHI nodes have been found or if
4150 // there is not a common destination block for the switch.
4151 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4152                                   BasicBlock *&CommonDest,
4153                                   SwitchCaseResultVectorTy &UniqueResults,
4154                                   Constant *&DefaultResult,
4155                                   const DataLayout &DL) {
4156   for (auto &I : SI->cases()) {
4157     ConstantInt *CaseVal = I.getCaseValue();
4158 
4159     // Resulting value at phi nodes for this case value.
4160     SwitchCaseResultsTy Results;
4161     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4162                         DL))
4163       return false;
4164 
4165     // Only one value per case is permitted
4166     if (Results.size() > 1)
4167       return false;
4168     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4169 
4170     // Check the PHI consistency.
4171     if (!PHI)
4172       PHI = Results[0].first;
4173     else if (PHI != Results[0].first)
4174       return false;
4175   }
4176   // Find the default result value.
4177   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4178   BasicBlock *DefaultDest = SI->getDefaultDest();
4179   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4180                  DL);
4181   // If the default value is not found abort unless the default destination
4182   // is unreachable.
4183   DefaultResult =
4184       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4185   if ((!DefaultResult &&
4186         !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4187     return false;
4188 
4189   return true;
4190 }
4191 
4192 // Helper function that checks if it is possible to transform a switch with only
4193 // two cases (or two cases + default) that produces a result into a select.
4194 // Example:
4195 // switch (a) {
4196 //   case 10:                %0 = icmp eq i32 %a, 10
4197 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4198 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4199 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4200 //   default:
4201 //     return 4;
4202 // }
4203 static Value *
4204 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4205                      Constant *DefaultResult, Value *Condition,
4206                      IRBuilder<> &Builder) {
4207   assert(ResultVector.size() == 2 &&
4208       "We should have exactly two unique results at this point");
4209   // If we are selecting between only two cases transform into a simple
4210   // select or a two-way select if default is possible.
4211   if (ResultVector[0].second.size() == 1 &&
4212       ResultVector[1].second.size() == 1) {
4213     ConstantInt *const FirstCase = ResultVector[0].second[0];
4214     ConstantInt *const SecondCase = ResultVector[1].second[0];
4215 
4216     bool DefaultCanTrigger = DefaultResult;
4217     Value *SelectValue = ResultVector[1].first;
4218     if (DefaultCanTrigger) {
4219       Value *const ValueCompare =
4220           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4221       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4222                                          DefaultResult, "switch.select");
4223     }
4224     Value *const ValueCompare =
4225         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4226     return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue,
4227                                 "switch.select");
4228   }
4229 
4230   return nullptr;
4231 }
4232 
4233 // Helper function to cleanup a switch instruction that has been converted into
4234 // a select, fixing up PHI nodes and basic blocks.
4235 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4236                                               Value *SelectValue,
4237                                               IRBuilder<> &Builder) {
4238   BasicBlock *SelectBB = SI->getParent();
4239   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4240     PHI->removeIncomingValue(SelectBB);
4241   PHI->addIncoming(SelectValue, SelectBB);
4242 
4243   Builder.CreateBr(PHI->getParent());
4244 
4245   // Remove the switch.
4246   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4247     BasicBlock *Succ = SI->getSuccessor(i);
4248 
4249     if (Succ == PHI->getParent())
4250       continue;
4251     Succ->removePredecessor(SelectBB);
4252   }
4253   SI->eraseFromParent();
4254 }
4255 
4256 /// If the switch is only used to initialize one or more
4257 /// phi nodes in a common successor block with only two different
4258 /// constant values, replace the switch with select.
4259 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4260                            AssumptionCache *AC, const DataLayout &DL) {
4261   Value *const Cond = SI->getCondition();
4262   PHINode *PHI = nullptr;
4263   BasicBlock *CommonDest = nullptr;
4264   Constant *DefaultResult;
4265   SwitchCaseResultVectorTy UniqueResults;
4266   // Collect all the cases that will deliver the same value from the switch.
4267   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4268                              DL))
4269     return false;
4270   // Selects choose between maximum two values.
4271   if (UniqueResults.size() != 2)
4272     return false;
4273   assert(PHI != nullptr && "PHI for value select not found");
4274 
4275   Builder.SetInsertPoint(SI);
4276   Value *SelectValue = ConvertTwoCaseSwitch(
4277       UniqueResults,
4278       DefaultResult, Cond, Builder);
4279   if (SelectValue) {
4280     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4281     return true;
4282   }
4283   // The switch couldn't be converted into a select.
4284   return false;
4285 }
4286 
4287 namespace {
4288   /// This class represents a lookup table that can be used to replace a switch.
4289   class SwitchLookupTable {
4290   public:
4291     /// Create a lookup table to use as a switch replacement with the contents
4292     /// of Values, using DefaultValue to fill any holes in the table.
4293     SwitchLookupTable(
4294         Module &M, uint64_t TableSize, ConstantInt *Offset,
4295         const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4296         Constant *DefaultValue, const DataLayout &DL);
4297 
4298     /// Build instructions with Builder to retrieve the value at
4299     /// the position given by Index in the lookup table.
4300     Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4301 
4302     /// Return true if a table with TableSize elements of
4303     /// type ElementType would fit in a target-legal register.
4304     static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4305                                    Type *ElementType);
4306 
4307   private:
4308     // Depending on the contents of the table, it can be represented in
4309     // different ways.
4310     enum {
4311       // For tables where each element contains the same value, we just have to
4312       // store that single value and return it for each lookup.
4313       SingleValueKind,
4314 
4315       // For tables where there is a linear relationship between table index
4316       // and values. We calculate the result with a simple multiplication
4317       // and addition instead of a table lookup.
4318       LinearMapKind,
4319 
4320       // For small tables with integer elements, we can pack them into a bitmap
4321       // that fits into a target-legal register. Values are retrieved by
4322       // shift and mask operations.
4323       BitMapKind,
4324 
4325       // The table is stored as an array of values. Values are retrieved by load
4326       // instructions from the table.
4327       ArrayKind
4328     } Kind;
4329 
4330     // For SingleValueKind, this is the single value.
4331     Constant *SingleValue;
4332 
4333     // For BitMapKind, this is the bitmap.
4334     ConstantInt *BitMap;
4335     IntegerType *BitMapElementTy;
4336 
4337     // For LinearMapKind, these are the constants used to derive the value.
4338     ConstantInt *LinearOffset;
4339     ConstantInt *LinearMultiplier;
4340 
4341     // For ArrayKind, this is the array.
4342     GlobalVariable *Array;
4343   };
4344 }
4345 
4346 SwitchLookupTable::SwitchLookupTable(
4347     Module &M, uint64_t TableSize, ConstantInt *Offset,
4348     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4349     Constant *DefaultValue, const DataLayout &DL)
4350     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4351       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4352   assert(Values.size() && "Can't build lookup table without values!");
4353   assert(TableSize >= Values.size() && "Can't fit values in table!");
4354 
4355   // If all values in the table are equal, this is that value.
4356   SingleValue = Values.begin()->second;
4357 
4358   Type *ValueType = Values.begin()->second->getType();
4359 
4360   // Build up the table contents.
4361   SmallVector<Constant*, 64> TableContents(TableSize);
4362   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4363     ConstantInt *CaseVal = Values[I].first;
4364     Constant *CaseRes = Values[I].second;
4365     assert(CaseRes->getType() == ValueType);
4366 
4367     uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
4368                    .getLimitedValue();
4369     TableContents[Idx] = CaseRes;
4370 
4371     if (CaseRes != SingleValue)
4372       SingleValue = nullptr;
4373   }
4374 
4375   // Fill in any holes in the table with the default result.
4376   if (Values.size() < TableSize) {
4377     assert(DefaultValue &&
4378            "Need a default value to fill the lookup table holes.");
4379     assert(DefaultValue->getType() == ValueType);
4380     for (uint64_t I = 0; I < TableSize; ++I) {
4381       if (!TableContents[I])
4382         TableContents[I] = DefaultValue;
4383     }
4384 
4385     if (DefaultValue != SingleValue)
4386       SingleValue = nullptr;
4387   }
4388 
4389   // If each element in the table contains the same value, we only need to store
4390   // that single value.
4391   if (SingleValue) {
4392     Kind = SingleValueKind;
4393     return;
4394   }
4395 
4396   // Check if we can derive the value with a linear transformation from the
4397   // table index.
4398   if (isa<IntegerType>(ValueType)) {
4399     bool LinearMappingPossible = true;
4400     APInt PrevVal;
4401     APInt DistToPrev;
4402     assert(TableSize >= 2 && "Should be a SingleValue table.");
4403     // Check if there is the same distance between two consecutive values.
4404     for (uint64_t I = 0; I < TableSize; ++I) {
4405       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4406       if (!ConstVal) {
4407         // This is an undef. We could deal with it, but undefs in lookup tables
4408         // are very seldom. It's probably not worth the additional complexity.
4409         LinearMappingPossible = false;
4410         break;
4411       }
4412       APInt Val = ConstVal->getValue();
4413       if (I != 0) {
4414         APInt Dist = Val - PrevVal;
4415         if (I == 1) {
4416           DistToPrev = Dist;
4417         } else if (Dist != DistToPrev) {
4418           LinearMappingPossible = false;
4419           break;
4420         }
4421       }
4422       PrevVal = Val;
4423     }
4424     if (LinearMappingPossible) {
4425       LinearOffset = cast<ConstantInt>(TableContents[0]);
4426       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4427       Kind = LinearMapKind;
4428       ++NumLinearMaps;
4429       return;
4430     }
4431   }
4432 
4433   // If the type is integer and the table fits in a register, build a bitmap.
4434   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4435     IntegerType *IT = cast<IntegerType>(ValueType);
4436     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4437     for (uint64_t I = TableSize; I > 0; --I) {
4438       TableInt <<= IT->getBitWidth();
4439       // Insert values into the bitmap. Undef values are set to zero.
4440       if (!isa<UndefValue>(TableContents[I - 1])) {
4441         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4442         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4443       }
4444     }
4445     BitMap = ConstantInt::get(M.getContext(), TableInt);
4446     BitMapElementTy = IT;
4447     Kind = BitMapKind;
4448     ++NumBitMaps;
4449     return;
4450   }
4451 
4452   // Store the table in an array.
4453   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4454   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4455 
4456   Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
4457                              GlobalVariable::PrivateLinkage,
4458                              Initializer,
4459                              "switch.table");
4460   Array->setUnnamedAddr(true);
4461   Kind = ArrayKind;
4462 }
4463 
4464 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4465   switch (Kind) {
4466     case SingleValueKind:
4467       return SingleValue;
4468     case LinearMapKind: {
4469       // Derive the result value from the input value.
4470       Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4471                                             false, "switch.idx.cast");
4472       if (!LinearMultiplier->isOne())
4473         Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4474       if (!LinearOffset->isZero())
4475         Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4476       return Result;
4477     }
4478     case BitMapKind: {
4479       // Type of the bitmap (e.g. i59).
4480       IntegerType *MapTy = BitMap->getType();
4481 
4482       // Cast Index to the same type as the bitmap.
4483       // Note: The Index is <= the number of elements in the table, so
4484       // truncating it to the width of the bitmask is safe.
4485       Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4486 
4487       // Multiply the shift amount by the element width.
4488       ShiftAmt = Builder.CreateMul(ShiftAmt,
4489                       ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4490                                    "switch.shiftamt");
4491 
4492       // Shift down.
4493       Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
4494                                               "switch.downshift");
4495       // Mask off.
4496       return Builder.CreateTrunc(DownShifted, BitMapElementTy,
4497                                  "switch.masked");
4498     }
4499     case ArrayKind: {
4500       // Make sure the table index will not overflow when treated as signed.
4501       IntegerType *IT = cast<IntegerType>(Index->getType());
4502       uint64_t TableSize = Array->getInitializer()->getType()
4503                                 ->getArrayNumElements();
4504       if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
4505         Index = Builder.CreateZExt(Index,
4506                                    IntegerType::get(IT->getContext(),
4507                                                     IT->getBitWidth() + 1),
4508                                    "switch.tableidx.zext");
4509 
4510       Value *GEPIndices[] = { Builder.getInt32(0), Index };
4511       Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
4512                                              GEPIndices, "switch.gep");
4513       return Builder.CreateLoad(GEP, "switch.load");
4514     }
4515   }
4516   llvm_unreachable("Unknown lookup table kind!");
4517 }
4518 
4519 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
4520                                            uint64_t TableSize,
4521                                            Type *ElementType) {
4522   auto *IT = dyn_cast<IntegerType>(ElementType);
4523   if (!IT)
4524     return false;
4525   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
4526   // are <= 15, we could try to narrow the type.
4527 
4528   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
4529   if (TableSize >= UINT_MAX/IT->getBitWidth())
4530     return false;
4531   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
4532 }
4533 
4534 /// Determine whether a lookup table should be built for this switch, based on
4535 /// the number of cases, size of the table, and the types of the results.
4536 static bool
4537 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
4538                        const TargetTransformInfo &TTI, const DataLayout &DL,
4539                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
4540   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
4541     return false; // TableSize overflowed, or mul below might overflow.
4542 
4543   bool AllTablesFitInRegister = true;
4544   bool HasIllegalType = false;
4545   for (const auto &I : ResultTypes) {
4546     Type *Ty = I.second;
4547 
4548     // Saturate this flag to true.
4549     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
4550 
4551     // Saturate this flag to false.
4552     AllTablesFitInRegister = AllTablesFitInRegister &&
4553       SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
4554 
4555     // If both flags saturate, we're done. NOTE: This *only* works with
4556     // saturating flags, and all flags have to saturate first due to the
4557     // non-deterministic behavior of iterating over a dense map.
4558     if (HasIllegalType && !AllTablesFitInRegister)
4559       break;
4560   }
4561 
4562   // If each table would fit in a register, we should build it anyway.
4563   if (AllTablesFitInRegister)
4564     return true;
4565 
4566   // Don't build a table that doesn't fit in-register if it has illegal types.
4567   if (HasIllegalType)
4568     return false;
4569 
4570   // The table density should be at least 40%. This is the same criterion as for
4571   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
4572   // FIXME: Find the best cut-off.
4573   return SI->getNumCases() * 10 >= TableSize * 4;
4574 }
4575 
4576 /// Try to reuse the switch table index compare. Following pattern:
4577 /// \code
4578 ///     if (idx < tablesize)
4579 ///        r = table[idx]; // table does not contain default_value
4580 ///     else
4581 ///        r = default_value;
4582 ///     if (r != default_value)
4583 ///        ...
4584 /// \endcode
4585 /// Is optimized to:
4586 /// \code
4587 ///     cond = idx < tablesize;
4588 ///     if (cond)
4589 ///        r = table[idx];
4590 ///     else
4591 ///        r = default_value;
4592 ///     if (cond)
4593 ///        ...
4594 /// \endcode
4595 /// Jump threading will then eliminate the second if(cond).
4596 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
4597           BranchInst *RangeCheckBranch, Constant *DefaultValue,
4598           const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) {
4599 
4600   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
4601   if (!CmpInst)
4602     return;
4603 
4604   // We require that the compare is in the same block as the phi so that jump
4605   // threading can do its work afterwards.
4606   if (CmpInst->getParent() != PhiBlock)
4607     return;
4608 
4609   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
4610   if (!CmpOp1)
4611     return;
4612 
4613   Value *RangeCmp = RangeCheckBranch->getCondition();
4614   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
4615   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
4616 
4617   // Check if the compare with the default value is constant true or false.
4618   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4619                                                  DefaultValue, CmpOp1, true);
4620   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
4621     return;
4622 
4623   // Check if the compare with the case values is distinct from the default
4624   // compare result.
4625   for (auto ValuePair : Values) {
4626     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4627                               ValuePair.second, CmpOp1, true);
4628     if (!CaseConst || CaseConst == DefaultConst)
4629       return;
4630     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
4631            "Expect true or false as compare result.");
4632   }
4633 
4634   // Check if the branch instruction dominates the phi node. It's a simple
4635   // dominance check, but sufficient for our needs.
4636   // Although this check is invariant in the calling loops, it's better to do it
4637   // at this late stage. Practically we do it at most once for a switch.
4638   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
4639   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
4640     BasicBlock *Pred = *PI;
4641     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
4642       return;
4643   }
4644 
4645   if (DefaultConst == FalseConst) {
4646     // The compare yields the same result. We can replace it.
4647     CmpInst->replaceAllUsesWith(RangeCmp);
4648     ++NumTableCmpReuses;
4649   } else {
4650     // The compare yields the same result, just inverted. We can replace it.
4651     Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp,
4652                 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
4653                 RangeCheckBranch);
4654     CmpInst->replaceAllUsesWith(InvertedTableCmp);
4655     ++NumTableCmpReuses;
4656   }
4657 }
4658 
4659 /// If the switch is only used to initialize one or more phi nodes in a common
4660 /// successor block with different constant values, replace the switch with
4661 /// lookup tables.
4662 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
4663                                 const DataLayout &DL,
4664                                 const TargetTransformInfo &TTI) {
4665   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4666 
4667   // Only build lookup table when we have a target that supports it.
4668   if (!TTI.shouldBuildLookupTables())
4669     return false;
4670 
4671   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
4672   // split off a dense part and build a lookup table for that.
4673 
4674   // FIXME: This creates arrays of GEPs to constant strings, which means each
4675   // GEP needs a runtime relocation in PIC code. We should just build one big
4676   // string and lookup indices into that.
4677 
4678   // Ignore switches with less than three cases. Lookup tables will not make them
4679   // faster, so we don't analyze them.
4680   if (SI->getNumCases() < 3)
4681     return false;
4682 
4683   // Figure out the corresponding result for each case value and phi node in the
4684   // common destination, as well as the min and max case values.
4685   assert(SI->case_begin() != SI->case_end());
4686   SwitchInst::CaseIt CI = SI->case_begin();
4687   ConstantInt *MinCaseVal = CI.getCaseValue();
4688   ConstantInt *MaxCaseVal = CI.getCaseValue();
4689 
4690   BasicBlock *CommonDest = nullptr;
4691   typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
4692   SmallDenseMap<PHINode*, ResultListTy> ResultLists;
4693   SmallDenseMap<PHINode*, Constant*> DefaultResults;
4694   SmallDenseMap<PHINode*, Type*> ResultTypes;
4695   SmallVector<PHINode*, 4> PHIs;
4696 
4697   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
4698     ConstantInt *CaseVal = CI.getCaseValue();
4699     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
4700       MinCaseVal = CaseVal;
4701     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
4702       MaxCaseVal = CaseVal;
4703 
4704     // Resulting value at phi nodes for this case value.
4705     typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
4706     ResultsTy Results;
4707     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
4708                         Results, DL))
4709       return false;
4710 
4711     // Append the result from this case to the list for each phi.
4712     for (const auto &I : Results) {
4713       PHINode *PHI = I.first;
4714       Constant *Value = I.second;
4715       if (!ResultLists.count(PHI))
4716         PHIs.push_back(PHI);
4717       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
4718     }
4719   }
4720 
4721   // Keep track of the result types.
4722   for (PHINode *PHI : PHIs) {
4723     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
4724   }
4725 
4726   uint64_t NumResults = ResultLists[PHIs[0]].size();
4727   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
4728   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
4729   bool TableHasHoles = (NumResults < TableSize);
4730 
4731   // If the table has holes, we need a constant result for the default case
4732   // or a bitmask that fits in a register.
4733   SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
4734   bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
4735                                           &CommonDest, DefaultResultsList, DL);
4736 
4737   bool NeedMask = (TableHasHoles && !HasDefaultResults);
4738   if (NeedMask) {
4739     // As an extra penalty for the validity test we require more cases.
4740     if (SI->getNumCases() < 4)  // FIXME: Find best threshold value (benchmark).
4741       return false;
4742     if (!DL.fitsInLegalInteger(TableSize))
4743       return false;
4744   }
4745 
4746   for (const auto &I : DefaultResultsList) {
4747     PHINode *PHI = I.first;
4748     Constant *Result = I.second;
4749     DefaultResults[PHI] = Result;
4750   }
4751 
4752   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
4753     return false;
4754 
4755   // Create the BB that does the lookups.
4756   Module &Mod = *CommonDest->getParent()->getParent();
4757   BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
4758                                             "switch.lookup",
4759                                             CommonDest->getParent(),
4760                                             CommonDest);
4761 
4762   // Compute the table index value.
4763   Builder.SetInsertPoint(SI);
4764   Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
4765                                         "switch.tableidx");
4766 
4767   // Compute the maximum table size representable by the integer type we are
4768   // switching upon.
4769   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
4770   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
4771   assert(MaxTableSize >= TableSize &&
4772          "It is impossible for a switch to have more entries than the max "
4773          "representable value of its input integer type's size.");
4774 
4775   // If the default destination is unreachable, or if the lookup table covers
4776   // all values of the conditional variable, branch directly to the lookup table
4777   // BB. Otherwise, check that the condition is within the case range.
4778   const bool DefaultIsReachable =
4779       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4780   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
4781   BranchInst *RangeCheckBranch = nullptr;
4782 
4783   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4784     Builder.CreateBr(LookupBB);
4785     // Note: We call removeProdecessor later since we need to be able to get the
4786     // PHI value for the default case in case we're using a bit mask.
4787   } else {
4788     Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
4789                                        MinCaseVal->getType(), TableSize));
4790     RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
4791   }
4792 
4793   // Populate the BB that does the lookups.
4794   Builder.SetInsertPoint(LookupBB);
4795 
4796   if (NeedMask) {
4797     // Before doing the lookup we do the hole check.
4798     // The LookupBB is therefore re-purposed to do the hole check
4799     // and we create a new LookupBB.
4800     BasicBlock *MaskBB = LookupBB;
4801     MaskBB->setName("switch.hole_check");
4802     LookupBB = BasicBlock::Create(Mod.getContext(),
4803                                   "switch.lookup",
4804                                   CommonDest->getParent(),
4805                                   CommonDest);
4806 
4807     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
4808     // unnecessary illegal types.
4809     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
4810     APInt MaskInt(TableSizePowOf2, 0);
4811     APInt One(TableSizePowOf2, 1);
4812     // Build bitmask; fill in a 1 bit for every case.
4813     const ResultListTy &ResultList = ResultLists[PHIs[0]];
4814     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
4815       uint64_t Idx = (ResultList[I].first->getValue() -
4816                       MinCaseVal->getValue()).getLimitedValue();
4817       MaskInt |= One << Idx;
4818     }
4819     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
4820 
4821     // Get the TableIndex'th bit of the bitmask.
4822     // If this bit is 0 (meaning hole) jump to the default destination,
4823     // else continue with table lookup.
4824     IntegerType *MapTy = TableMask->getType();
4825     Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
4826                                                  "switch.maskindex");
4827     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
4828                                         "switch.shifted");
4829     Value *LoBit = Builder.CreateTrunc(Shifted,
4830                                        Type::getInt1Ty(Mod.getContext()),
4831                                        "switch.lobit");
4832     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
4833 
4834     Builder.SetInsertPoint(LookupBB);
4835     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
4836   }
4837 
4838   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4839     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
4840     // do not delete PHINodes here.
4841     SI->getDefaultDest()->removePredecessor(SI->getParent(),
4842                                             /*DontDeleteUselessPHIs=*/true);
4843   }
4844 
4845   bool ReturnedEarly = false;
4846   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
4847     PHINode *PHI = PHIs[I];
4848     const ResultListTy &ResultList = ResultLists[PHI];
4849 
4850     // If using a bitmask, use any value to fill the lookup table holes.
4851     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
4852     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
4853 
4854     Value *Result = Table.BuildLookup(TableIndex, Builder);
4855 
4856     // If the result is used to return immediately from the function, we want to
4857     // do that right here.
4858     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
4859         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
4860       Builder.CreateRet(Result);
4861       ReturnedEarly = true;
4862       break;
4863     }
4864 
4865     // Do a small peephole optimization: re-use the switch table compare if
4866     // possible.
4867     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
4868       BasicBlock *PhiBlock = PHI->getParent();
4869       // Search for compare instructions which use the phi.
4870       for (auto *User : PHI->users()) {
4871         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
4872       }
4873     }
4874 
4875     PHI->addIncoming(Result, LookupBB);
4876   }
4877 
4878   if (!ReturnedEarly)
4879     Builder.CreateBr(CommonDest);
4880 
4881   // Remove the switch.
4882   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4883     BasicBlock *Succ = SI->getSuccessor(i);
4884 
4885     if (Succ == SI->getDefaultDest())
4886       continue;
4887     Succ->removePredecessor(SI->getParent());
4888   }
4889   SI->eraseFromParent();
4890 
4891   ++NumLookupTables;
4892   if (NeedMask)
4893     ++NumLookupTablesHoles;
4894   return true;
4895 }
4896 
4897 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
4898   BasicBlock *BB = SI->getParent();
4899 
4900   if (isValueEqualityComparison(SI)) {
4901     // If we only have one predecessor, and if it is a branch on this value,
4902     // see if that predecessor totally determines the outcome of this switch.
4903     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4904       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
4905         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4906 
4907     Value *Cond = SI->getCondition();
4908     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
4909       if (SimplifySwitchOnSelect(SI, Select))
4910         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4911 
4912     // If the block only contains the switch, see if we can fold the block
4913     // away into any preds.
4914     BasicBlock::iterator BBI = BB->begin();
4915     // Ignore dbg intrinsics.
4916     while (isa<DbgInfoIntrinsic>(BBI))
4917       ++BBI;
4918     if (SI == &*BBI)
4919       if (FoldValueComparisonIntoPredecessors(SI, Builder))
4920         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4921   }
4922 
4923   // Try to transform the switch into an icmp and a branch.
4924   if (TurnSwitchRangeIntoICmp(SI, Builder))
4925     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4926 
4927   // Remove unreachable cases.
4928   if (EliminateDeadSwitchCases(SI, AC, DL))
4929     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4930 
4931   if (SwitchToSelect(SI, Builder, AC, DL))
4932     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4933 
4934   if (ForwardSwitchConditionToPHI(SI))
4935     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4936 
4937   if (SwitchToLookupTable(SI, Builder, DL, TTI))
4938     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4939 
4940   return false;
4941 }
4942 
4943 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
4944   BasicBlock *BB = IBI->getParent();
4945   bool Changed = false;
4946 
4947   // Eliminate redundant destinations.
4948   SmallPtrSet<Value *, 8> Succs;
4949   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
4950     BasicBlock *Dest = IBI->getDestination(i);
4951     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
4952       Dest->removePredecessor(BB);
4953       IBI->removeDestination(i);
4954       --i; --e;
4955       Changed = true;
4956     }
4957   }
4958 
4959   if (IBI->getNumDestinations() == 0) {
4960     // If the indirectbr has no successors, change it to unreachable.
4961     new UnreachableInst(IBI->getContext(), IBI);
4962     EraseTerminatorInstAndDCECond(IBI);
4963     return true;
4964   }
4965 
4966   if (IBI->getNumDestinations() == 1) {
4967     // If the indirectbr has one successor, change it to a direct branch.
4968     BranchInst::Create(IBI->getDestination(0), IBI);
4969     EraseTerminatorInstAndDCECond(IBI);
4970     return true;
4971   }
4972 
4973   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
4974     if (SimplifyIndirectBrOnSelect(IBI, SI))
4975       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4976   }
4977   return Changed;
4978 }
4979 
4980 /// Given an block with only a single landing pad and a unconditional branch
4981 /// try to find another basic block which this one can be merged with.  This
4982 /// handles cases where we have multiple invokes with unique landing pads, but
4983 /// a shared handler.
4984 ///
4985 /// We specifically choose to not worry about merging non-empty blocks
4986 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
4987 /// practice, the optimizer produces empty landing pad blocks quite frequently
4988 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
4989 /// sinking in this file)
4990 ///
4991 /// This is primarily a code size optimization.  We need to avoid performing
4992 /// any transform which might inhibit optimization (such as our ability to
4993 /// specialize a particular handler via tail commoning).  We do this by not
4994 /// merging any blocks which require us to introduce a phi.  Since the same
4995 /// values are flowing through both blocks, we don't loose any ability to
4996 /// specialize.  If anything, we make such specialization more likely.
4997 ///
4998 /// TODO - This transformation could remove entries from a phi in the target
4999 /// block when the inputs in the phi are the same for the two blocks being
5000 /// merged.  In some cases, this could result in removal of the PHI entirely.
5001 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5002                                  BasicBlock *BB) {
5003   auto Succ = BB->getUniqueSuccessor();
5004   assert(Succ);
5005   // If there's a phi in the successor block, we'd likely have to introduce
5006   // a phi into the merged landing pad block.
5007   if (isa<PHINode>(*Succ->begin()))
5008     return false;
5009 
5010   for (BasicBlock *OtherPred : predecessors(Succ)) {
5011     if (BB == OtherPred)
5012       continue;
5013     BasicBlock::iterator I = OtherPred->begin();
5014     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5015     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5016       continue;
5017     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
5018     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5019     if (!BI2 || !BI2->isIdenticalTo(BI))
5020       continue;
5021 
5022     // We've found an identical block.  Update our predecessors to take that
5023     // path instead and make ourselves dead.
5024     SmallSet<BasicBlock *, 16> Preds;
5025     Preds.insert(pred_begin(BB), pred_end(BB));
5026     for (BasicBlock *Pred : Preds) {
5027       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5028       assert(II->getNormalDest() != BB &&
5029              II->getUnwindDest() == BB && "unexpected successor");
5030       II->setUnwindDest(OtherPred);
5031     }
5032 
5033     // The debug info in OtherPred doesn't cover the merged control flow that
5034     // used to go through BB.  We need to delete it or update it.
5035     for (auto I = OtherPred->begin(), E = OtherPred->end();
5036          I != E;) {
5037       Instruction &Inst = *I; I++;
5038       if (isa<DbgInfoIntrinsic>(Inst))
5039         Inst.eraseFromParent();
5040     }
5041 
5042     SmallSet<BasicBlock *, 16> Succs;
5043     Succs.insert(succ_begin(BB), succ_end(BB));
5044     for (BasicBlock *Succ : Succs) {
5045       Succ->removePredecessor(BB);
5046     }
5047 
5048     IRBuilder<> Builder(BI);
5049     Builder.CreateUnreachable();
5050     BI->eraseFromParent();
5051     return true;
5052   }
5053   return false;
5054 }
5055 
5056 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
5057   BasicBlock *BB = BI->getParent();
5058 
5059   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5060     return true;
5061 
5062   // If the Terminator is the only non-phi instruction, simplify the block.
5063   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5064   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5065       TryToSimplifyUncondBranchFromEmptyBlock(BB))
5066     return true;
5067 
5068   // If the only instruction in the block is a seteq/setne comparison
5069   // against a constant, try to simplify the block.
5070   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5071     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5072       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5073         ;
5074       if (I->isTerminator() &&
5075           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5076                                                 BonusInstThreshold, AC))
5077         return true;
5078     }
5079 
5080   // See if we can merge an empty landing pad block with another which is
5081   // equivalent.
5082   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5083     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
5084     if (I->isTerminator() &&
5085         TryToMergeLandingPad(LPad, BI, BB))
5086       return true;
5087   }
5088 
5089   // If this basic block is ONLY a compare and a branch, and if a predecessor
5090   // branches to us and our successor, fold the comparison into the
5091   // predecessor and use logical operations to update the incoming value
5092   // for PHI nodes in common successor.
5093   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5094     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5095   return false;
5096 }
5097 
5098 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5099   BasicBlock *PredPred = nullptr;
5100   for (auto *P : predecessors(BB)) {
5101     BasicBlock *PPred = P->getSinglePredecessor();
5102     if (!PPred || (PredPred && PredPred != PPred))
5103       return nullptr;
5104     PredPred = PPred;
5105   }
5106   return PredPred;
5107 }
5108 
5109 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5110   BasicBlock *BB = BI->getParent();
5111 
5112   // Conditional branch
5113   if (isValueEqualityComparison(BI)) {
5114     // If we only have one predecessor, and if it is a branch on this value,
5115     // see if that predecessor totally determines the outcome of this
5116     // switch.
5117     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5118       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5119         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5120 
5121     // This block must be empty, except for the setcond inst, if it exists.
5122     // Ignore dbg intrinsics.
5123     BasicBlock::iterator I = BB->begin();
5124     // Ignore dbg intrinsics.
5125     while (isa<DbgInfoIntrinsic>(I))
5126       ++I;
5127     if (&*I == BI) {
5128       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5129         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5130     } else if (&*I == cast<Instruction>(BI->getCondition())){
5131       ++I;
5132       // Ignore dbg intrinsics.
5133       while (isa<DbgInfoIntrinsic>(I))
5134         ++I;
5135       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5136         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5137     }
5138   }
5139 
5140   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5141   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5142     return true;
5143 
5144   // If this basic block is ONLY a compare and a branch, and if a predecessor
5145   // branches to us and one of our successors, fold the comparison into the
5146   // predecessor and use logical operations to pick the right destination.
5147   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5148     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5149 
5150   // We have a conditional branch to two blocks that are only reachable
5151   // from BI.  We know that the condbr dominates the two blocks, so see if
5152   // there is any identical code in the "then" and "else" blocks.  If so, we
5153   // can hoist it up to the branching block.
5154   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5155     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5156       if (HoistThenElseCodeToIf(BI, TTI))
5157         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5158     } else {
5159       // If Successor #1 has multiple preds, we may be able to conditionally
5160       // execute Successor #0 if it branches to Successor #1.
5161       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5162       if (Succ0TI->getNumSuccessors() == 1 &&
5163           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5164         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5165           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5166     }
5167   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5168     // If Successor #0 has multiple preds, we may be able to conditionally
5169     // execute Successor #1 if it branches to Successor #0.
5170     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5171     if (Succ1TI->getNumSuccessors() == 1 &&
5172         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5173       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5174         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5175   }
5176 
5177   // If this is a branch on a phi node in the current block, thread control
5178   // through this block if any PHI node entries are constants.
5179   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5180     if (PN->getParent() == BI->getParent())
5181       if (FoldCondBranchOnPHI(BI, DL))
5182         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5183 
5184   // Scan predecessor blocks for conditional branches.
5185   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5186     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5187       if (PBI != BI && PBI->isConditional())
5188         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5189           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5190 
5191   // Look for diamond patterns.
5192   if (MergeCondStores)
5193     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5194       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5195         if (PBI != BI && PBI->isConditional())
5196           if (mergeConditionalStores(PBI, BI))
5197             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5198 
5199   return false;
5200 }
5201 
5202 /// Check if passing a value to an instruction will cause undefined behavior.
5203 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5204   Constant *C = dyn_cast<Constant>(V);
5205   if (!C)
5206     return false;
5207 
5208   if (I->use_empty())
5209     return false;
5210 
5211   if (C->isNullValue()) {
5212     // Only look at the first use, avoid hurting compile time with long uselists
5213     User *Use = *I->user_begin();
5214 
5215     // Now make sure that there are no instructions in between that can alter
5216     // control flow (eg. calls)
5217     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
5218       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5219         return false;
5220 
5221     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5222     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5223       if (GEP->getPointerOperand() == I)
5224         return passingValueIsAlwaysUndefined(V, GEP);
5225 
5226     // Look through bitcasts.
5227     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5228       return passingValueIsAlwaysUndefined(V, BC);
5229 
5230     // Load from null is undefined.
5231     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5232       if (!LI->isVolatile())
5233         return LI->getPointerAddressSpace() == 0;
5234 
5235     // Store to null is undefined.
5236     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5237       if (!SI->isVolatile())
5238         return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
5239   }
5240   return false;
5241 }
5242 
5243 /// If BB has an incoming value that will always trigger undefined behavior
5244 /// (eg. null pointer dereference), remove the branch leading here.
5245 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5246   for (BasicBlock::iterator i = BB->begin();
5247        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5248     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5249       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5250         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5251         IRBuilder<> Builder(T);
5252         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5253           BB->removePredecessor(PHI->getIncomingBlock(i));
5254           // Turn uncoditional branches into unreachables and remove the dead
5255           // destination from conditional branches.
5256           if (BI->isUnconditional())
5257             Builder.CreateUnreachable();
5258           else
5259             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
5260                                                          BI->getSuccessor(0));
5261           BI->eraseFromParent();
5262           return true;
5263         }
5264         // TODO: SwitchInst.
5265       }
5266 
5267   return false;
5268 }
5269 
5270 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5271   bool Changed = false;
5272 
5273   assert(BB && BB->getParent() && "Block not embedded in function!");
5274   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5275 
5276   // Remove basic blocks that have no predecessors (except the entry block)...
5277   // or that just have themself as a predecessor.  These are unreachable.
5278   if ((pred_empty(BB) &&
5279        BB != &BB->getParent()->getEntryBlock()) ||
5280       BB->getSinglePredecessor() == BB) {
5281     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5282     DeleteDeadBlock(BB);
5283     return true;
5284   }
5285 
5286   // Check to see if we can constant propagate this terminator instruction
5287   // away...
5288   Changed |= ConstantFoldTerminator(BB, true);
5289 
5290   // Check for and eliminate duplicate PHI nodes in this block.
5291   Changed |= EliminateDuplicatePHINodes(BB);
5292 
5293   // Check for and remove branches that will always cause undefined behavior.
5294   Changed |= removeUndefIntroducingPredecessor(BB);
5295 
5296   // Merge basic blocks into their predecessor if there is only one distinct
5297   // pred, and if there is only one distinct successor of the predecessor, and
5298   // if there are no PHI nodes.
5299   //
5300   if (MergeBlockIntoPredecessor(BB))
5301     return true;
5302 
5303   IRBuilder<> Builder(BB);
5304 
5305   // If there is a trivial two-entry PHI node in this basic block, and we can
5306   // eliminate it, do so now.
5307   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5308     if (PN->getNumIncomingValues() == 2)
5309       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5310 
5311   Builder.SetInsertPoint(BB->getTerminator());
5312   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5313     if (BI->isUnconditional()) {
5314       if (SimplifyUncondBranch(BI, Builder)) return true;
5315     } else {
5316       if (SimplifyCondBranch(BI, Builder)) return true;
5317     }
5318   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5319     if (SimplifyReturn(RI, Builder)) return true;
5320   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5321     if (SimplifyResume(RI, Builder)) return true;
5322   } else if (CleanupReturnInst *RI =
5323                dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5324     if (SimplifyCleanupReturn(RI)) return true;
5325   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5326     if (SimplifySwitch(SI, Builder)) return true;
5327   } else if (UnreachableInst *UI =
5328                dyn_cast<UnreachableInst>(BB->getTerminator())) {
5329     if (SimplifyUnreachable(UI)) return true;
5330   } else if (IndirectBrInst *IBI =
5331                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5332     if (SimplifyIndirectBr(IBI)) return true;
5333   }
5334 
5335   return Changed;
5336 }
5337 
5338 /// This function is used to do simplification of a CFG.
5339 /// For example, it adjusts branches to branches to eliminate the extra hop,
5340 /// eliminates unreachable basic blocks, and does other "peephole" optimization
5341 /// of the CFG.  It returns true if a modification was made.
5342 ///
5343 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5344                        unsigned BonusInstThreshold, AssumptionCache *AC) {
5345   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
5346                         BonusInstThreshold, AC).run(BB);
5347 }
5348