1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SetOperations.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/MemorySSA.h"
32 #include "llvm/Analysis/MemorySSAUpdater.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/IRBuilder.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/MDBuilder.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/NoFolder.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/PatternMatch.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/KnownBits.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/SSAUpdater.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <climits>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <map>
81 #include <set>
82 #include <tuple>
83 #include <utility>
84 #include <vector>
85 
86 using namespace llvm;
87 using namespace PatternMatch;
88 
89 #define DEBUG_TYPE "simplifycfg"
90 
91 cl::opt<bool> llvm::RequireAndPreserveDomTree(
92     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
93     cl::init(false),
94     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
95              "into preserving DomTree,"));
96 
97 // Chosen as 2 so as to be cheap, but still to have enough power to fold
98 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
99 // To catch this, we need to fold a compare and a select, hence '2' being the
100 // minimum reasonable default.
101 static cl::opt<unsigned> PHINodeFoldingThreshold(
102     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
103     cl::desc(
104         "Control the amount of phi node folding to perform (default = 2)"));
105 
106 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
107     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
108     cl::desc("Control the maximal total instruction cost that we are willing "
109              "to speculatively execute to fold a 2-entry PHI node into a "
110              "select (default = 4)"));
111 
112 static cl::opt<bool> DupRet(
113     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
114     cl::desc("Duplicate return instructions into unconditional branches"));
115 
116 static cl::opt<bool>
117     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
118                 cl::desc("Hoist common instructions up to the parent block"));
119 
120 static cl::opt<bool>
121     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
122                cl::desc("Sink common instructions down to the end block"));
123 
124 static cl::opt<bool> HoistCondStores(
125     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
126     cl::desc("Hoist conditional stores if an unconditional store precedes"));
127 
128 static cl::opt<bool> MergeCondStores(
129     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
130     cl::desc("Hoist conditional stores even if an unconditional store does not "
131              "precede - hoist multiple conditional stores into a single "
132              "predicated store"));
133 
134 static cl::opt<bool> MergeCondStoresAggressively(
135     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
136     cl::desc("When merging conditional stores, do so even if the resultant "
137              "basic blocks are unlikely to be if-converted as a result"));
138 
139 static cl::opt<bool> SpeculateOneExpensiveInst(
140     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
141     cl::desc("Allow exactly one expensive instruction to be speculatively "
142              "executed"));
143 
144 static cl::opt<unsigned> MaxSpeculationDepth(
145     "max-speculation-depth", cl::Hidden, cl::init(10),
146     cl::desc("Limit maximum recursion depth when calculating costs of "
147              "speculatively executed instructions"));
148 
149 static cl::opt<int>
150 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
151                   cl::desc("Max size of a block which is still considered "
152                            "small enough to thread through"));
153 
154 // Two is chosen to allow one negation and a logical combine.
155 static cl::opt<unsigned>
156     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
157                         cl::init(2),
158                         cl::desc("Maximum cost of combining conditions when "
159                                  "folding branches"));
160 
161 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
162 STATISTIC(NumLinearMaps,
163           "Number of switch instructions turned into linear mapping");
164 STATISTIC(NumLookupTables,
165           "Number of switch instructions turned into lookup tables");
166 STATISTIC(
167     NumLookupTablesHoles,
168     "Number of switch instructions turned into lookup tables (holes checked)");
169 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
170 STATISTIC(NumFoldValueComparisonIntoPredecessors,
171           "Number of value comparisons folded into predecessor basic blocks");
172 STATISTIC(NumFoldBranchToCommonDest,
173           "Number of branches folded into predecessor basic block");
174 STATISTIC(
175     NumHoistCommonCode,
176     "Number of common instruction 'blocks' hoisted up to the begin block");
177 STATISTIC(NumHoistCommonInstrs,
178           "Number of common instructions hoisted up to the begin block");
179 STATISTIC(NumSinkCommonCode,
180           "Number of common instruction 'blocks' sunk down to the end block");
181 STATISTIC(NumSinkCommonInstrs,
182           "Number of common instructions sunk down to the end block");
183 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
184 STATISTIC(NumInvokes,
185           "Number of invokes with empty resume blocks simplified into calls");
186 
187 namespace {
188 
189 // The first field contains the value that the switch produces when a certain
190 // case group is selected, and the second field is a vector containing the
191 // cases composing the case group.
192 using SwitchCaseResultVectorTy =
193     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
194 
195 // The first field contains the phi node that generates a result of the switch
196 // and the second field contains the value generated for a certain case in the
197 // switch for that PHI.
198 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
199 
200 /// ValueEqualityComparisonCase - Represents a case of a switch.
201 struct ValueEqualityComparisonCase {
202   ConstantInt *Value;
203   BasicBlock *Dest;
204 
205   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
206       : Value(Value), Dest(Dest) {}
207 
208   bool operator<(ValueEqualityComparisonCase RHS) const {
209     // Comparing pointers is ok as we only rely on the order for uniquing.
210     return Value < RHS.Value;
211   }
212 
213   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
214 };
215 
216 class SimplifyCFGOpt {
217   const TargetTransformInfo &TTI;
218   DomTreeUpdater *DTU;
219   const DataLayout &DL;
220   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
221   const SimplifyCFGOptions &Options;
222   bool Resimplify;
223 
224   Value *isValueEqualityComparison(Instruction *TI);
225   BasicBlock *GetValueEqualityComparisonCases(
226       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
227   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
228                                                      BasicBlock *Pred,
229                                                      IRBuilder<> &Builder);
230   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
231                                            IRBuilder<> &Builder);
232 
233   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
234   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
235   bool simplifySingleResume(ResumeInst *RI);
236   bool simplifyCommonResume(ResumeInst *RI);
237   bool simplifyCleanupReturn(CleanupReturnInst *RI);
238   bool simplifyUnreachable(UnreachableInst *UI);
239   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
240   bool simplifyIndirectBr(IndirectBrInst *IBI);
241   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
242   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
243   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
244   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
245 
246   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
247                                              IRBuilder<> &Builder);
248 
249   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
250   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
251                               const TargetTransformInfo &TTI);
252   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
253                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
254                                   uint32_t TrueWeight, uint32_t FalseWeight);
255   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
256                                  const DataLayout &DL);
257   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
258   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
259   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
260 
261 public:
262   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
263                  const DataLayout &DL,
264                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
265                  const SimplifyCFGOptions &Opts)
266       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
267 
268   bool simplifyOnce(BasicBlock *BB);
269   bool simplifyOnceImpl(BasicBlock *BB);
270   bool run(BasicBlock *BB);
271 
272   // Helper to set Resimplify and return change indication.
273   bool requestResimplify() {
274     Resimplify = true;
275     return true;
276   }
277 };
278 
279 } // end anonymous namespace
280 
281 /// Return true if it is safe to merge these two
282 /// terminator instructions together.
283 static bool
284 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
285                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
286   if (SI1 == SI2)
287     return false; // Can't merge with self!
288 
289   // It is not safe to merge these two switch instructions if they have a common
290   // successor, and if that successor has a PHI node, and if *that* PHI node has
291   // conflicting incoming values from the two switch blocks.
292   BasicBlock *SI1BB = SI1->getParent();
293   BasicBlock *SI2BB = SI2->getParent();
294 
295   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
296   bool Fail = false;
297   for (BasicBlock *Succ : successors(SI2BB))
298     if (SI1Succs.count(Succ))
299       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
300         PHINode *PN = cast<PHINode>(BBI);
301         if (PN->getIncomingValueForBlock(SI1BB) !=
302             PN->getIncomingValueForBlock(SI2BB)) {
303           if (FailBlocks)
304             FailBlocks->insert(Succ);
305           Fail = true;
306         }
307       }
308 
309   return !Fail;
310 }
311 
312 /// Return true if it is safe and profitable to merge these two terminator
313 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
314 /// store all PHI nodes in common successors.
315 static bool
316 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
317                                 Instruction *Cond,
318                                 SmallVectorImpl<PHINode *> &PhiNodes) {
319   if (SI1 == SI2)
320     return false; // Can't merge with self!
321   assert(SI1->isUnconditional() && SI2->isConditional());
322 
323   // We fold the unconditional branch if we can easily update all PHI nodes in
324   // common successors:
325   // 1> We have a constant incoming value for the conditional branch;
326   // 2> We have "Cond" as the incoming value for the unconditional branch;
327   // 3> SI2->getCondition() and Cond have same operands.
328   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
329   if (!Ci2)
330     return false;
331   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
332         Cond->getOperand(1) == Ci2->getOperand(1)) &&
333       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
334         Cond->getOperand(1) == Ci2->getOperand(0)))
335     return false;
336 
337   BasicBlock *SI1BB = SI1->getParent();
338   BasicBlock *SI2BB = SI2->getParent();
339   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
340   for (BasicBlock *Succ : successors(SI2BB))
341     if (SI1Succs.count(Succ))
342       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
343         PHINode *PN = cast<PHINode>(BBI);
344         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
345             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
346           return false;
347         PhiNodes.push_back(PN);
348       }
349   return true;
350 }
351 
352 /// Update PHI nodes in Succ to indicate that there will now be entries in it
353 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
354 /// will be the same as those coming in from ExistPred, an existing predecessor
355 /// of Succ.
356 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
357                                   BasicBlock *ExistPred,
358                                   MemorySSAUpdater *MSSAU = nullptr) {
359   for (PHINode &PN : Succ->phis())
360     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
361   if (MSSAU)
362     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
363       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
364 }
365 
366 /// Compute an abstract "cost" of speculating the given instruction,
367 /// which is assumed to be safe to speculate. TCC_Free means cheap,
368 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
369 /// expensive.
370 static unsigned ComputeSpeculationCost(const User *I,
371                                        const TargetTransformInfo &TTI) {
372   assert(isSafeToSpeculativelyExecute(I) &&
373          "Instruction is not safe to speculatively execute!");
374   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
375 }
376 
377 /// If we have a merge point of an "if condition" as accepted above,
378 /// return true if the specified value dominates the block.  We
379 /// don't handle the true generality of domination here, just a special case
380 /// which works well enough for us.
381 ///
382 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
383 /// see if V (which must be an instruction) and its recursive operands
384 /// that do not dominate BB have a combined cost lower than CostRemaining and
385 /// are non-trapping.  If both are true, the instruction is inserted into the
386 /// set and true is returned.
387 ///
388 /// The cost for most non-trapping instructions is defined as 1 except for
389 /// Select whose cost is 2.
390 ///
391 /// After this function returns, CostRemaining is decreased by the cost of
392 /// V plus its non-dominating operands.  If that cost is greater than
393 /// CostRemaining, false is returned and CostRemaining is undefined.
394 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
395                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
396                                 int &BudgetRemaining,
397                                 const TargetTransformInfo &TTI,
398                                 unsigned Depth = 0) {
399   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
400   // so limit the recursion depth.
401   // TODO: While this recursion limit does prevent pathological behavior, it
402   // would be better to track visited instructions to avoid cycles.
403   if (Depth == MaxSpeculationDepth)
404     return false;
405 
406   Instruction *I = dyn_cast<Instruction>(V);
407   if (!I) {
408     // Non-instructions all dominate instructions, but not all constantexprs
409     // can be executed unconditionally.
410     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
411       if (C->canTrap())
412         return false;
413     return true;
414   }
415   BasicBlock *PBB = I->getParent();
416 
417   // We don't want to allow weird loops that might have the "if condition" in
418   // the bottom of this block.
419   if (PBB == BB)
420     return false;
421 
422   // If this instruction is defined in a block that contains an unconditional
423   // branch to BB, then it must be in the 'conditional' part of the "if
424   // statement".  If not, it definitely dominates the region.
425   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
426   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
427     return true;
428 
429   // If we have seen this instruction before, don't count it again.
430   if (AggressiveInsts.count(I))
431     return true;
432 
433   // Okay, it looks like the instruction IS in the "condition".  Check to
434   // see if it's a cheap instruction to unconditionally compute, and if it
435   // only uses stuff defined outside of the condition.  If so, hoist it out.
436   if (!isSafeToSpeculativelyExecute(I))
437     return false;
438 
439   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
440 
441   // Allow exactly one instruction to be speculated regardless of its cost
442   // (as long as it is safe to do so).
443   // This is intended to flatten the CFG even if the instruction is a division
444   // or other expensive operation. The speculation of an expensive instruction
445   // is expected to be undone in CodeGenPrepare if the speculation has not
446   // enabled further IR optimizations.
447   if (BudgetRemaining < 0 &&
448       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
449     return false;
450 
451   // Okay, we can only really hoist these out if their operands do
452   // not take us over the cost threshold.
453   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
454     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
455                              Depth + 1))
456       return false;
457   // Okay, it's safe to do this!  Remember this instruction.
458   AggressiveInsts.insert(I);
459   return true;
460 }
461 
462 /// Extract ConstantInt from value, looking through IntToPtr
463 /// and PointerNullValue. Return NULL if value is not a constant int.
464 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
465   // Normal constant int.
466   ConstantInt *CI = dyn_cast<ConstantInt>(V);
467   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
468     return CI;
469 
470   // This is some kind of pointer constant. Turn it into a pointer-sized
471   // ConstantInt if possible.
472   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
473 
474   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
475   if (isa<ConstantPointerNull>(V))
476     return ConstantInt::get(PtrTy, 0);
477 
478   // IntToPtr const int.
479   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
480     if (CE->getOpcode() == Instruction::IntToPtr)
481       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
482         // The constant is very likely to have the right type already.
483         if (CI->getType() == PtrTy)
484           return CI;
485         else
486           return cast<ConstantInt>(
487               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
488       }
489   return nullptr;
490 }
491 
492 namespace {
493 
494 /// Given a chain of or (||) or and (&&) comparison of a value against a
495 /// constant, this will try to recover the information required for a switch
496 /// structure.
497 /// It will depth-first traverse the chain of comparison, seeking for patterns
498 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
499 /// representing the different cases for the switch.
500 /// Note that if the chain is composed of '||' it will build the set of elements
501 /// that matches the comparisons (i.e. any of this value validate the chain)
502 /// while for a chain of '&&' it will build the set elements that make the test
503 /// fail.
504 struct ConstantComparesGatherer {
505   const DataLayout &DL;
506 
507   /// Value found for the switch comparison
508   Value *CompValue = nullptr;
509 
510   /// Extra clause to be checked before the switch
511   Value *Extra = nullptr;
512 
513   /// Set of integers to match in switch
514   SmallVector<ConstantInt *, 8> Vals;
515 
516   /// Number of comparisons matched in the and/or chain
517   unsigned UsedICmps = 0;
518 
519   /// Construct and compute the result for the comparison instruction Cond
520   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
521     gather(Cond);
522   }
523 
524   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
525   ConstantComparesGatherer &
526   operator=(const ConstantComparesGatherer &) = delete;
527 
528 private:
529   /// Try to set the current value used for the comparison, it succeeds only if
530   /// it wasn't set before or if the new value is the same as the old one
531   bool setValueOnce(Value *NewVal) {
532     if (CompValue && CompValue != NewVal)
533       return false;
534     CompValue = NewVal;
535     return (CompValue != nullptr);
536   }
537 
538   /// Try to match Instruction "I" as a comparison against a constant and
539   /// populates the array Vals with the set of values that match (or do not
540   /// match depending on isEQ).
541   /// Return false on failure. On success, the Value the comparison matched
542   /// against is placed in CompValue.
543   /// If CompValue is already set, the function is expected to fail if a match
544   /// is found but the value compared to is different.
545   bool matchInstruction(Instruction *I, bool isEQ) {
546     // If this is an icmp against a constant, handle this as one of the cases.
547     ICmpInst *ICI;
548     ConstantInt *C;
549     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
550           (C = GetConstantInt(I->getOperand(1), DL)))) {
551       return false;
552     }
553 
554     Value *RHSVal;
555     const APInt *RHSC;
556 
557     // Pattern match a special case
558     // (x & ~2^z) == y --> x == y || x == y|2^z
559     // This undoes a transformation done by instcombine to fuse 2 compares.
560     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
561       // It's a little bit hard to see why the following transformations are
562       // correct. Here is a CVC3 program to verify them for 64-bit values:
563 
564       /*
565          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
566          x    : BITVECTOR(64);
567          y    : BITVECTOR(64);
568          z    : BITVECTOR(64);
569          mask : BITVECTOR(64) = BVSHL(ONE, z);
570          QUERY( (y & ~mask = y) =>
571                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
572          );
573          QUERY( (y |  mask = y) =>
574                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
575          );
576       */
577 
578       // Please note that each pattern must be a dual implication (<--> or
579       // iff). One directional implication can create spurious matches. If the
580       // implication is only one-way, an unsatisfiable condition on the left
581       // side can imply a satisfiable condition on the right side. Dual
582       // implication ensures that satisfiable conditions are transformed to
583       // other satisfiable conditions and unsatisfiable conditions are
584       // transformed to other unsatisfiable conditions.
585 
586       // Here is a concrete example of a unsatisfiable condition on the left
587       // implying a satisfiable condition on the right:
588       //
589       // mask = (1 << z)
590       // (x & ~mask) == y  --> (x == y || x == (y | mask))
591       //
592       // Substituting y = 3, z = 0 yields:
593       // (x & -2) == 3 --> (x == 3 || x == 2)
594 
595       // Pattern match a special case:
596       /*
597         QUERY( (y & ~mask = y) =>
598                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
599         );
600       */
601       if (match(ICI->getOperand(0),
602                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
603         APInt Mask = ~*RHSC;
604         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
605           // If we already have a value for the switch, it has to match!
606           if (!setValueOnce(RHSVal))
607             return false;
608 
609           Vals.push_back(C);
610           Vals.push_back(
611               ConstantInt::get(C->getContext(),
612                                C->getValue() | Mask));
613           UsedICmps++;
614           return true;
615         }
616       }
617 
618       // Pattern match a special case:
619       /*
620         QUERY( (y |  mask = y) =>
621                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
622         );
623       */
624       if (match(ICI->getOperand(0),
625                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
626         APInt Mask = *RHSC;
627         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
628           // If we already have a value for the switch, it has to match!
629           if (!setValueOnce(RHSVal))
630             return false;
631 
632           Vals.push_back(C);
633           Vals.push_back(ConstantInt::get(C->getContext(),
634                                           C->getValue() & ~Mask));
635           UsedICmps++;
636           return true;
637         }
638       }
639 
640       // If we already have a value for the switch, it has to match!
641       if (!setValueOnce(ICI->getOperand(0)))
642         return false;
643 
644       UsedICmps++;
645       Vals.push_back(C);
646       return ICI->getOperand(0);
647     }
648 
649     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
650     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
651         ICI->getPredicate(), C->getValue());
652 
653     // Shift the range if the compare is fed by an add. This is the range
654     // compare idiom as emitted by instcombine.
655     Value *CandidateVal = I->getOperand(0);
656     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
657       Span = Span.subtract(*RHSC);
658       CandidateVal = RHSVal;
659     }
660 
661     // If this is an and/!= check, then we are looking to build the set of
662     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
663     // x != 0 && x != 1.
664     if (!isEQ)
665       Span = Span.inverse();
666 
667     // If there are a ton of values, we don't want to make a ginormous switch.
668     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
669       return false;
670     }
671 
672     // If we already have a value for the switch, it has to match!
673     if (!setValueOnce(CandidateVal))
674       return false;
675 
676     // Add all values from the range to the set
677     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
678       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
679 
680     UsedICmps++;
681     return true;
682   }
683 
684   /// Given a potentially 'or'd or 'and'd together collection of icmp
685   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
686   /// the value being compared, and stick the list constants into the Vals
687   /// vector.
688   /// One "Extra" case is allowed to differ from the other.
689   void gather(Value *V) {
690     bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
691 
692     // Keep a stack (SmallVector for efficiency) for depth-first traversal
693     SmallVector<Value *, 8> DFT;
694     SmallPtrSet<Value *, 8> Visited;
695 
696     // Initialize
697     Visited.insert(V);
698     DFT.push_back(V);
699 
700     while (!DFT.empty()) {
701       V = DFT.pop_back_val();
702 
703       if (Instruction *I = dyn_cast<Instruction>(V)) {
704         // If it is a || (or && depending on isEQ), process the operands.
705         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
706           if (Visited.insert(I->getOperand(1)).second)
707             DFT.push_back(I->getOperand(1));
708           if (Visited.insert(I->getOperand(0)).second)
709             DFT.push_back(I->getOperand(0));
710           continue;
711         }
712 
713         // Try to match the current instruction
714         if (matchInstruction(I, isEQ))
715           // Match succeed, continue the loop
716           continue;
717       }
718 
719       // One element of the sequence of || (or &&) could not be match as a
720       // comparison against the same value as the others.
721       // We allow only one "Extra" case to be checked before the switch
722       if (!Extra) {
723         Extra = V;
724         continue;
725       }
726       // Failed to parse a proper sequence, abort now
727       CompValue = nullptr;
728       break;
729     }
730   }
731 };
732 
733 } // end anonymous namespace
734 
735 static void EraseTerminatorAndDCECond(Instruction *TI,
736                                       MemorySSAUpdater *MSSAU = nullptr) {
737   Instruction *Cond = nullptr;
738   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
739     Cond = dyn_cast<Instruction>(SI->getCondition());
740   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
741     if (BI->isConditional())
742       Cond = dyn_cast<Instruction>(BI->getCondition());
743   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
744     Cond = dyn_cast<Instruction>(IBI->getAddress());
745   }
746 
747   TI->eraseFromParent();
748   if (Cond)
749     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
750 }
751 
752 /// Return true if the specified terminator checks
753 /// to see if a value is equal to constant integer value.
754 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
755   Value *CV = nullptr;
756   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
757     // Do not permit merging of large switch instructions into their
758     // predecessors unless there is only one predecessor.
759     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
760       CV = SI->getCondition();
761   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
762     if (BI->isConditional() && BI->getCondition()->hasOneUse())
763       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
764         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
765           CV = ICI->getOperand(0);
766       }
767 
768   // Unwrap any lossless ptrtoint cast.
769   if (CV) {
770     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
771       Value *Ptr = PTII->getPointerOperand();
772       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
773         CV = Ptr;
774     }
775   }
776   return CV;
777 }
778 
779 /// Given a value comparison instruction,
780 /// decode all of the 'cases' that it represents and return the 'default' block.
781 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
782     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
783   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
784     Cases.reserve(SI->getNumCases());
785     for (auto Case : SI->cases())
786       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
787                                                   Case.getCaseSuccessor()));
788     return SI->getDefaultDest();
789   }
790 
791   BranchInst *BI = cast<BranchInst>(TI);
792   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
793   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
794   Cases.push_back(ValueEqualityComparisonCase(
795       GetConstantInt(ICI->getOperand(1), DL), Succ));
796   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
797 }
798 
799 /// Given a vector of bb/value pairs, remove any entries
800 /// in the list that match the specified block.
801 static void
802 EliminateBlockCases(BasicBlock *BB,
803                     std::vector<ValueEqualityComparisonCase> &Cases) {
804   llvm::erase_value(Cases, BB);
805 }
806 
807 /// Return true if there are any keys in C1 that exist in C2 as well.
808 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
809                           std::vector<ValueEqualityComparisonCase> &C2) {
810   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
811 
812   // Make V1 be smaller than V2.
813   if (V1->size() > V2->size())
814     std::swap(V1, V2);
815 
816   if (V1->empty())
817     return false;
818   if (V1->size() == 1) {
819     // Just scan V2.
820     ConstantInt *TheVal = (*V1)[0].Value;
821     for (unsigned i = 0, e = V2->size(); i != e; ++i)
822       if (TheVal == (*V2)[i].Value)
823         return true;
824   }
825 
826   // Otherwise, just sort both lists and compare element by element.
827   array_pod_sort(V1->begin(), V1->end());
828   array_pod_sort(V2->begin(), V2->end());
829   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
830   while (i1 != e1 && i2 != e2) {
831     if ((*V1)[i1].Value == (*V2)[i2].Value)
832       return true;
833     if ((*V1)[i1].Value < (*V2)[i2].Value)
834       ++i1;
835     else
836       ++i2;
837   }
838   return false;
839 }
840 
841 // Set branch weights on SwitchInst. This sets the metadata if there is at
842 // least one non-zero weight.
843 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
844   // Check that there is at least one non-zero weight. Otherwise, pass
845   // nullptr to setMetadata which will erase the existing metadata.
846   MDNode *N = nullptr;
847   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
848     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
849   SI->setMetadata(LLVMContext::MD_prof, N);
850 }
851 
852 // Similar to the above, but for branch and select instructions that take
853 // exactly 2 weights.
854 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
855                              uint32_t FalseWeight) {
856   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
857   // Check that there is at least one non-zero weight. Otherwise, pass
858   // nullptr to setMetadata which will erase the existing metadata.
859   MDNode *N = nullptr;
860   if (TrueWeight || FalseWeight)
861     N = MDBuilder(I->getParent()->getContext())
862             .createBranchWeights(TrueWeight, FalseWeight);
863   I->setMetadata(LLVMContext::MD_prof, N);
864 }
865 
866 /// If TI is known to be a terminator instruction and its block is known to
867 /// only have a single predecessor block, check to see if that predecessor is
868 /// also a value comparison with the same value, and if that comparison
869 /// determines the outcome of this comparison. If so, simplify TI. This does a
870 /// very limited form of jump threading.
871 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
872     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
873   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
874   if (!PredVal)
875     return false; // Not a value comparison in predecessor.
876 
877   Value *ThisVal = isValueEqualityComparison(TI);
878   assert(ThisVal && "This isn't a value comparison!!");
879   if (ThisVal != PredVal)
880     return false; // Different predicates.
881 
882   // TODO: Preserve branch weight metadata, similarly to how
883   // FoldValueComparisonIntoPredecessors preserves it.
884 
885   // Find out information about when control will move from Pred to TI's block.
886   std::vector<ValueEqualityComparisonCase> PredCases;
887   BasicBlock *PredDef =
888       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
889   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
890 
891   // Find information about how control leaves this block.
892   std::vector<ValueEqualityComparisonCase> ThisCases;
893   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
894   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
895 
896   // If TI's block is the default block from Pred's comparison, potentially
897   // simplify TI based on this knowledge.
898   if (PredDef == TI->getParent()) {
899     // If we are here, we know that the value is none of those cases listed in
900     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
901     // can simplify TI.
902     if (!ValuesOverlap(PredCases, ThisCases))
903       return false;
904 
905     if (isa<BranchInst>(TI)) {
906       // Okay, one of the successors of this condbr is dead.  Convert it to a
907       // uncond br.
908       assert(ThisCases.size() == 1 && "Branch can only have one case!");
909       // Insert the new branch.
910       Instruction *NI = Builder.CreateBr(ThisDef);
911       (void)NI;
912 
913       // Remove PHI node entries for the dead edge.
914       ThisCases[0].Dest->removePredecessor(PredDef);
915 
916       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
917                         << "Through successor TI: " << *TI << "Leaving: " << *NI
918                         << "\n");
919 
920       EraseTerminatorAndDCECond(TI);
921 
922       if (DTU)
923         DTU->applyUpdatesPermissive(
924             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
925 
926       return true;
927     }
928 
929     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
930     // Okay, TI has cases that are statically dead, prune them away.
931     SmallPtrSet<Constant *, 16> DeadCases;
932     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
933       DeadCases.insert(PredCases[i].Value);
934 
935     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
936                       << "Through successor TI: " << *TI);
937 
938     SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
939     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
940       --i;
941       auto *Successor = i->getCaseSuccessor();
942       ++NumPerSuccessorCases[Successor];
943       if (DeadCases.count(i->getCaseValue())) {
944         Successor->removePredecessor(PredDef);
945         SI.removeCase(i);
946         --NumPerSuccessorCases[Successor];
947       }
948     }
949 
950     std::vector<DominatorTree::UpdateType> Updates;
951     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
952       if (I.second == 0)
953         Updates.push_back({DominatorTree::Delete, PredDef, I.first});
954     if (DTU)
955       DTU->applyUpdatesPermissive(Updates);
956 
957     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
958     return true;
959   }
960 
961   // Otherwise, TI's block must correspond to some matched value.  Find out
962   // which value (or set of values) this is.
963   ConstantInt *TIV = nullptr;
964   BasicBlock *TIBB = TI->getParent();
965   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
966     if (PredCases[i].Dest == TIBB) {
967       if (TIV)
968         return false; // Cannot handle multiple values coming to this block.
969       TIV = PredCases[i].Value;
970     }
971   assert(TIV && "No edge from pred to succ?");
972 
973   // Okay, we found the one constant that our value can be if we get into TI's
974   // BB.  Find out which successor will unconditionally be branched to.
975   BasicBlock *TheRealDest = nullptr;
976   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
977     if (ThisCases[i].Value == TIV) {
978       TheRealDest = ThisCases[i].Dest;
979       break;
980     }
981 
982   // If not handled by any explicit cases, it is handled by the default case.
983   if (!TheRealDest)
984     TheRealDest = ThisDef;
985 
986   SmallVector<DominatorTree::UpdateType, 2> Updates;
987 
988   // Remove PHI node entries for dead edges.
989   BasicBlock *CheckEdge = TheRealDest;
990   for (BasicBlock *Succ : successors(TIBB))
991     if (Succ != CheckEdge) {
992       Succ->removePredecessor(TIBB);
993       Updates.push_back({DominatorTree::Delete, TIBB, Succ});
994     } else
995       CheckEdge = nullptr;
996 
997   // Insert the new branch.
998   Instruction *NI = Builder.CreateBr(TheRealDest);
999   (void)NI;
1000 
1001   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1002                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1003                     << "\n");
1004 
1005   EraseTerminatorAndDCECond(TI);
1006   if (DTU)
1007     DTU->applyUpdatesPermissive(Updates);
1008   return true;
1009 }
1010 
1011 namespace {
1012 
1013 /// This class implements a stable ordering of constant
1014 /// integers that does not depend on their address.  This is important for
1015 /// applications that sort ConstantInt's to ensure uniqueness.
1016 struct ConstantIntOrdering {
1017   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1018     return LHS->getValue().ult(RHS->getValue());
1019   }
1020 };
1021 
1022 } // end anonymous namespace
1023 
1024 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1025                                     ConstantInt *const *P2) {
1026   const ConstantInt *LHS = *P1;
1027   const ConstantInt *RHS = *P2;
1028   if (LHS == RHS)
1029     return 0;
1030   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1031 }
1032 
1033 static inline bool HasBranchWeights(const Instruction *I) {
1034   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1035   if (ProfMD && ProfMD->getOperand(0))
1036     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1037       return MDS->getString().equals("branch_weights");
1038 
1039   return false;
1040 }
1041 
1042 /// Get Weights of a given terminator, the default weight is at the front
1043 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1044 /// metadata.
1045 static void GetBranchWeights(Instruction *TI,
1046                              SmallVectorImpl<uint64_t> &Weights) {
1047   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1048   assert(MD);
1049   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1050     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1051     Weights.push_back(CI->getValue().getZExtValue());
1052   }
1053 
1054   // If TI is a conditional eq, the default case is the false case,
1055   // and the corresponding branch-weight data is at index 2. We swap the
1056   // default weight to be the first entry.
1057   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1058     assert(Weights.size() == 2);
1059     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1060     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1061       std::swap(Weights.front(), Weights.back());
1062   }
1063 }
1064 
1065 /// Keep halving the weights until all can fit in uint32_t.
1066 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1067   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1068   if (Max > UINT_MAX) {
1069     unsigned Offset = 32 - countLeadingZeros(Max);
1070     for (uint64_t &I : Weights)
1071       I >>= Offset;
1072   }
1073 }
1074 
1075 /// The specified terminator is a value equality comparison instruction
1076 /// (either a switch or a branch on "X == c").
1077 /// See if any of the predecessors of the terminator block are value comparisons
1078 /// on the same value.  If so, and if safe to do so, fold them together.
1079 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1080                                                          IRBuilder<> &Builder) {
1081   BasicBlock *BB = TI->getParent();
1082   Value *CV = isValueEqualityComparison(TI); // CondVal
1083   assert(CV && "Not a comparison?");
1084 
1085   bool Changed = false;
1086 
1087   auto _ = make_scope_exit([&]() {
1088     if (Changed)
1089       ++NumFoldValueComparisonIntoPredecessors;
1090   });
1091 
1092   SmallVector<BasicBlock *, 16> Preds(predecessors(BB));
1093   while (!Preds.empty()) {
1094     BasicBlock *Pred = Preds.pop_back_val();
1095 
1096     // See if the predecessor is a comparison with the same value.
1097     Instruction *PTI = Pred->getTerminator();
1098     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1099 
1100     if (PCV == CV && TI != PTI) {
1101       SmallSetVector<BasicBlock*, 4> FailBlocks;
1102       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1103         for (auto *Succ : FailBlocks) {
1104           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split",
1105                                       DTU ? &DTU->getDomTree() : nullptr))
1106             return false;
1107         }
1108       }
1109 
1110       std::vector<DominatorTree::UpdateType> Updates;
1111 
1112       Updates.push_back({DominatorTree::Delete, Pred, BB});
1113 
1114       // Figure out which 'cases' to copy from SI to PSI.
1115       std::vector<ValueEqualityComparisonCase> BBCases;
1116       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1117 
1118       std::vector<ValueEqualityComparisonCase> PredCases;
1119       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1120 
1121       // Based on whether the default edge from PTI goes to BB or not, fill in
1122       // PredCases and PredDefault with the new switch cases we would like to
1123       // build.
1124       SmallVector<BasicBlock *, 8> NewSuccessors;
1125 
1126       // Update the branch weight metadata along the way
1127       SmallVector<uint64_t, 8> Weights;
1128       bool PredHasWeights = HasBranchWeights(PTI);
1129       bool SuccHasWeights = HasBranchWeights(TI);
1130 
1131       if (PredHasWeights) {
1132         GetBranchWeights(PTI, Weights);
1133         // branch-weight metadata is inconsistent here.
1134         if (Weights.size() != 1 + PredCases.size())
1135           PredHasWeights = SuccHasWeights = false;
1136       } else if (SuccHasWeights)
1137         // If there are no predecessor weights but there are successor weights,
1138         // populate Weights with 1, which will later be scaled to the sum of
1139         // successor's weights
1140         Weights.assign(1 + PredCases.size(), 1);
1141 
1142       SmallVector<uint64_t, 8> SuccWeights;
1143       if (SuccHasWeights) {
1144         GetBranchWeights(TI, SuccWeights);
1145         // branch-weight metadata is inconsistent here.
1146         if (SuccWeights.size() != 1 + BBCases.size())
1147           PredHasWeights = SuccHasWeights = false;
1148       } else if (PredHasWeights)
1149         SuccWeights.assign(1 + BBCases.size(), 1);
1150 
1151       if (PredDefault == BB) {
1152         // If this is the default destination from PTI, only the edges in TI
1153         // that don't occur in PTI, or that branch to BB will be activated.
1154         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1155         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1156           if (PredCases[i].Dest != BB)
1157             PTIHandled.insert(PredCases[i].Value);
1158           else {
1159             // The default destination is BB, we don't need explicit targets.
1160             std::swap(PredCases[i], PredCases.back());
1161 
1162             if (PredHasWeights || SuccHasWeights) {
1163               // Increase weight for the default case.
1164               Weights[0] += Weights[i + 1];
1165               std::swap(Weights[i + 1], Weights.back());
1166               Weights.pop_back();
1167             }
1168 
1169             PredCases.pop_back();
1170             --i;
1171             --e;
1172           }
1173 
1174         // Reconstruct the new switch statement we will be building.
1175         if (PredDefault != BBDefault) {
1176           PredDefault->removePredecessor(Pred);
1177           Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1178           PredDefault = BBDefault;
1179           NewSuccessors.push_back(BBDefault);
1180         }
1181 
1182         unsigned CasesFromPred = Weights.size();
1183         uint64_t ValidTotalSuccWeight = 0;
1184         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1185           if (!PTIHandled.count(BBCases[i].Value) &&
1186               BBCases[i].Dest != BBDefault) {
1187             PredCases.push_back(BBCases[i]);
1188             NewSuccessors.push_back(BBCases[i].Dest);
1189             if (SuccHasWeights || PredHasWeights) {
1190               // The default weight is at index 0, so weight for the ith case
1191               // should be at index i+1. Scale the cases from successor by
1192               // PredDefaultWeight (Weights[0]).
1193               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1194               ValidTotalSuccWeight += SuccWeights[i + 1];
1195             }
1196           }
1197 
1198         if (SuccHasWeights || PredHasWeights) {
1199           ValidTotalSuccWeight += SuccWeights[0];
1200           // Scale the cases from predecessor by ValidTotalSuccWeight.
1201           for (unsigned i = 1; i < CasesFromPred; ++i)
1202             Weights[i] *= ValidTotalSuccWeight;
1203           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1204           Weights[0] *= SuccWeights[0];
1205         }
1206       } else {
1207         // If this is not the default destination from PSI, only the edges
1208         // in SI that occur in PSI with a destination of BB will be
1209         // activated.
1210         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1211         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1212         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1213           if (PredCases[i].Dest == BB) {
1214             PTIHandled.insert(PredCases[i].Value);
1215 
1216             if (PredHasWeights || SuccHasWeights) {
1217               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1218               std::swap(Weights[i + 1], Weights.back());
1219               Weights.pop_back();
1220             }
1221 
1222             std::swap(PredCases[i], PredCases.back());
1223             PredCases.pop_back();
1224             --i;
1225             --e;
1226           }
1227 
1228         // Okay, now we know which constants were sent to BB from the
1229         // predecessor.  Figure out where they will all go now.
1230         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1231           if (PTIHandled.count(BBCases[i].Value)) {
1232             // If this is one we are capable of getting...
1233             if (PredHasWeights || SuccHasWeights)
1234               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1235             PredCases.push_back(BBCases[i]);
1236             NewSuccessors.push_back(BBCases[i].Dest);
1237             PTIHandled.erase(
1238                 BBCases[i].Value); // This constant is taken care of
1239           }
1240 
1241         // If there are any constants vectored to BB that TI doesn't handle,
1242         // they must go to the default destination of TI.
1243         for (ConstantInt *I : PTIHandled) {
1244           if (PredHasWeights || SuccHasWeights)
1245             Weights.push_back(WeightsForHandled[I]);
1246           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1247           NewSuccessors.push_back(BBDefault);
1248         }
1249       }
1250 
1251       // Okay, at this point, we know which new successor Pred will get.  Make
1252       // sure we update the number of entries in the PHI nodes for these
1253       // successors.
1254       for (BasicBlock *NewSuccessor : NewSuccessors) {
1255         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1256         Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor});
1257       }
1258 
1259       Builder.SetInsertPoint(PTI);
1260       // Convert pointer to int before we switch.
1261       if (CV->getType()->isPointerTy()) {
1262         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1263                                     "magicptr");
1264       }
1265 
1266       // Now that the successors are updated, create the new Switch instruction.
1267       SwitchInst *NewSI =
1268           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1269       NewSI->setDebugLoc(PTI->getDebugLoc());
1270       for (ValueEqualityComparisonCase &V : PredCases)
1271         NewSI->addCase(V.Value, V.Dest);
1272 
1273       if (PredHasWeights || SuccHasWeights) {
1274         // Halve the weights if any of them cannot fit in an uint32_t
1275         FitWeights(Weights);
1276 
1277         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1278 
1279         setBranchWeights(NewSI, MDWeights);
1280       }
1281 
1282       EraseTerminatorAndDCECond(PTI);
1283 
1284       // Okay, last check.  If BB is still a successor of PSI, then we must
1285       // have an infinite loop case.  If so, add an infinitely looping block
1286       // to handle the case to preserve the behavior of the code.
1287       BasicBlock *InfLoopBlock = nullptr;
1288       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1289         if (NewSI->getSuccessor(i) == BB) {
1290           if (!InfLoopBlock) {
1291             // Insert it at the end of the function, because it's either code,
1292             // or it won't matter if it's hot. :)
1293             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1294                                               BB->getParent());
1295             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1296             Updates.push_back(
1297                 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1298           }
1299           NewSI->setSuccessor(i, InfLoopBlock);
1300         }
1301 
1302       if (InfLoopBlock) {
1303         Updates.push_back({DominatorTree::Delete, Pred, BB});
1304         Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1305       }
1306 
1307       if (DTU)
1308         DTU->applyUpdatesPermissive(Updates);
1309 
1310       Changed = true;
1311     }
1312   }
1313   return Changed;
1314 }
1315 
1316 // If we would need to insert a select that uses the value of this invoke
1317 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1318 // can't hoist the invoke, as there is nowhere to put the select in this case.
1319 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1320                                 Instruction *I1, Instruction *I2) {
1321   for (BasicBlock *Succ : successors(BB1)) {
1322     for (const PHINode &PN : Succ->phis()) {
1323       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1324       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1325       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1326         return false;
1327       }
1328     }
1329   }
1330   return true;
1331 }
1332 
1333 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1334 
1335 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1336 /// in the two blocks up into the branch block. The caller of this function
1337 /// guarantees that BI's block dominates BB1 and BB2.
1338 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1339                                            const TargetTransformInfo &TTI) {
1340   // This does very trivial matching, with limited scanning, to find identical
1341   // instructions in the two blocks.  In particular, we don't want to get into
1342   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1343   // such, we currently just scan for obviously identical instructions in an
1344   // identical order.
1345   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1346   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1347 
1348   BasicBlock::iterator BB1_Itr = BB1->begin();
1349   BasicBlock::iterator BB2_Itr = BB2->begin();
1350 
1351   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1352   // Skip debug info if it is not identical.
1353   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1354   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1355   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1356     while (isa<DbgInfoIntrinsic>(I1))
1357       I1 = &*BB1_Itr++;
1358     while (isa<DbgInfoIntrinsic>(I2))
1359       I2 = &*BB2_Itr++;
1360   }
1361   // FIXME: Can we define a safety predicate for CallBr?
1362   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1363       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1364       isa<CallBrInst>(I1))
1365     return false;
1366 
1367   BasicBlock *BIParent = BI->getParent();
1368 
1369   bool Changed = false;
1370 
1371   auto _ = make_scope_exit([&]() {
1372     if (Changed)
1373       ++NumHoistCommonCode;
1374   });
1375 
1376   do {
1377     // If we are hoisting the terminator instruction, don't move one (making a
1378     // broken BB), instead clone it, and remove BI.
1379     if (I1->isTerminator())
1380       goto HoistTerminator;
1381 
1382     // If we're going to hoist a call, make sure that the two instructions we're
1383     // commoning/hoisting are both marked with musttail, or neither of them is
1384     // marked as such. Otherwise, we might end up in a situation where we hoist
1385     // from a block where the terminator is a `ret` to a block where the terminator
1386     // is a `br`, and `musttail` calls expect to be followed by a return.
1387     auto *C1 = dyn_cast<CallInst>(I1);
1388     auto *C2 = dyn_cast<CallInst>(I2);
1389     if (C1 && C2)
1390       if (C1->isMustTailCall() != C2->isMustTailCall())
1391         return Changed;
1392 
1393     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1394       return Changed;
1395 
1396     // If any of the two call sites has nomerge attribute, stop hoisting.
1397     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1398       if (CB1->cannotMerge())
1399         return Changed;
1400     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1401       if (CB2->cannotMerge())
1402         return Changed;
1403 
1404     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1405       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1406       // The debug location is an integral part of a debug info intrinsic
1407       // and can't be separated from it or replaced.  Instead of attempting
1408       // to merge locations, simply hoist both copies of the intrinsic.
1409       BIParent->getInstList().splice(BI->getIterator(),
1410                                      BB1->getInstList(), I1);
1411       BIParent->getInstList().splice(BI->getIterator(),
1412                                      BB2->getInstList(), I2);
1413       Changed = true;
1414     } else {
1415       // For a normal instruction, we just move one to right before the branch,
1416       // then replace all uses of the other with the first.  Finally, we remove
1417       // the now redundant second instruction.
1418       BIParent->getInstList().splice(BI->getIterator(),
1419                                      BB1->getInstList(), I1);
1420       if (!I2->use_empty())
1421         I2->replaceAllUsesWith(I1);
1422       I1->andIRFlags(I2);
1423       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1424                              LLVMContext::MD_range,
1425                              LLVMContext::MD_fpmath,
1426                              LLVMContext::MD_invariant_load,
1427                              LLVMContext::MD_nonnull,
1428                              LLVMContext::MD_invariant_group,
1429                              LLVMContext::MD_align,
1430                              LLVMContext::MD_dereferenceable,
1431                              LLVMContext::MD_dereferenceable_or_null,
1432                              LLVMContext::MD_mem_parallel_loop_access,
1433                              LLVMContext::MD_access_group,
1434                              LLVMContext::MD_preserve_access_index};
1435       combineMetadata(I1, I2, KnownIDs, true);
1436 
1437       // I1 and I2 are being combined into a single instruction.  Its debug
1438       // location is the merged locations of the original instructions.
1439       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1440 
1441       I2->eraseFromParent();
1442       Changed = true;
1443     }
1444     ++NumHoistCommonInstrs;
1445 
1446     I1 = &*BB1_Itr++;
1447     I2 = &*BB2_Itr++;
1448     // Skip debug info if it is not identical.
1449     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1450     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1451     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1452       while (isa<DbgInfoIntrinsic>(I1))
1453         I1 = &*BB1_Itr++;
1454       while (isa<DbgInfoIntrinsic>(I2))
1455         I2 = &*BB2_Itr++;
1456     }
1457   } while (I1->isIdenticalToWhenDefined(I2));
1458 
1459   return true;
1460 
1461 HoistTerminator:
1462   // It may not be possible to hoist an invoke.
1463   // FIXME: Can we define a safety predicate for CallBr?
1464   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1465     return Changed;
1466 
1467   // TODO: callbr hoisting currently disabled pending further study.
1468   if (isa<CallBrInst>(I1))
1469     return Changed;
1470 
1471   for (BasicBlock *Succ : successors(BB1)) {
1472     for (PHINode &PN : Succ->phis()) {
1473       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1474       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1475       if (BB1V == BB2V)
1476         continue;
1477 
1478       // Check for passingValueIsAlwaysUndefined here because we would rather
1479       // eliminate undefined control flow then converting it to a select.
1480       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1481           passingValueIsAlwaysUndefined(BB2V, &PN))
1482         return Changed;
1483 
1484       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1485         return Changed;
1486       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1487         return Changed;
1488     }
1489   }
1490 
1491   // Okay, it is safe to hoist the terminator.
1492   Instruction *NT = I1->clone();
1493   BIParent->getInstList().insert(BI->getIterator(), NT);
1494   if (!NT->getType()->isVoidTy()) {
1495     I1->replaceAllUsesWith(NT);
1496     I2->replaceAllUsesWith(NT);
1497     NT->takeName(I1);
1498   }
1499   Changed = true;
1500   ++NumHoistCommonInstrs;
1501 
1502   // Ensure terminator gets a debug location, even an unknown one, in case
1503   // it involves inlinable calls.
1504   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1505 
1506   // PHIs created below will adopt NT's merged DebugLoc.
1507   IRBuilder<NoFolder> Builder(NT);
1508 
1509   // Hoisting one of the terminators from our successor is a great thing.
1510   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1511   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1512   // nodes, so we insert select instruction to compute the final result.
1513   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1514   for (BasicBlock *Succ : successors(BB1)) {
1515     for (PHINode &PN : Succ->phis()) {
1516       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1517       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1518       if (BB1V == BB2V)
1519         continue;
1520 
1521       // These values do not agree.  Insert a select instruction before NT
1522       // that determines the right value.
1523       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1524       if (!SI) {
1525         // Propagate fast-math-flags from phi node to its replacement select.
1526         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1527         if (isa<FPMathOperator>(PN))
1528           Builder.setFastMathFlags(PN.getFastMathFlags());
1529 
1530         SI = cast<SelectInst>(
1531             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1532                                  BB1V->getName() + "." + BB2V->getName(), BI));
1533       }
1534 
1535       // Make the PHI node use the select for all incoming values for BB1/BB2
1536       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1537         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1538           PN.setIncomingValue(i, SI);
1539     }
1540   }
1541 
1542   SmallVector<DominatorTree::UpdateType, 4> Updates;
1543 
1544   // Update any PHI nodes in our new successors.
1545   for (BasicBlock *Succ : successors(BB1)) {
1546     AddPredecessorToBlock(Succ, BIParent, BB1);
1547     Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1548   }
1549   for (BasicBlock *Succ : successors(BI))
1550     Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1551 
1552   EraseTerminatorAndDCECond(BI);
1553   if (DTU)
1554     DTU->applyUpdatesPermissive(Updates);
1555   return Changed;
1556 }
1557 
1558 // Check lifetime markers.
1559 static bool isLifeTimeMarker(const Instruction *I) {
1560   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1561     switch (II->getIntrinsicID()) {
1562     default:
1563       break;
1564     case Intrinsic::lifetime_start:
1565     case Intrinsic::lifetime_end:
1566       return true;
1567     }
1568   }
1569   return false;
1570 }
1571 
1572 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1573 // into variables.
1574 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1575                                                 int OpIdx) {
1576   return !isa<IntrinsicInst>(I);
1577 }
1578 
1579 // All instructions in Insts belong to different blocks that all unconditionally
1580 // branch to a common successor. Analyze each instruction and return true if it
1581 // would be possible to sink them into their successor, creating one common
1582 // instruction instead. For every value that would be required to be provided by
1583 // PHI node (because an operand varies in each input block), add to PHIOperands.
1584 static bool canSinkInstructions(
1585     ArrayRef<Instruction *> Insts,
1586     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1587   // Prune out obviously bad instructions to move. Each instruction must have
1588   // exactly zero or one use, and we check later that use is by a single, common
1589   // PHI instruction in the successor.
1590   bool HasUse = !Insts.front()->user_empty();
1591   for (auto *I : Insts) {
1592     // These instructions may change or break semantics if moved.
1593     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1594         I->getType()->isTokenTy())
1595       return false;
1596 
1597     // Conservatively return false if I is an inline-asm instruction. Sinking
1598     // and merging inline-asm instructions can potentially create arguments
1599     // that cannot satisfy the inline-asm constraints.
1600     // If the instruction has nomerge attribute, return false.
1601     if (const auto *C = dyn_cast<CallBase>(I))
1602       if (C->isInlineAsm() || C->cannotMerge())
1603         return false;
1604 
1605     // Each instruction must have zero or one use.
1606     if (HasUse && !I->hasOneUse())
1607       return false;
1608     if (!HasUse && !I->user_empty())
1609       return false;
1610   }
1611 
1612   const Instruction *I0 = Insts.front();
1613   for (auto *I : Insts)
1614     if (!I->isSameOperationAs(I0))
1615       return false;
1616 
1617   // All instructions in Insts are known to be the same opcode. If they have a
1618   // use, check that the only user is a PHI or in the same block as the
1619   // instruction, because if a user is in the same block as an instruction we're
1620   // contemplating sinking, it must already be determined to be sinkable.
1621   if (HasUse) {
1622     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1623     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1624     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1625           auto *U = cast<Instruction>(*I->user_begin());
1626           return (PNUse &&
1627                   PNUse->getParent() == Succ &&
1628                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1629                  U->getParent() == I->getParent();
1630         }))
1631       return false;
1632   }
1633 
1634   // Because SROA can't handle speculating stores of selects, try not to sink
1635   // loads, stores or lifetime markers of allocas when we'd have to create a
1636   // PHI for the address operand. Also, because it is likely that loads or
1637   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1638   // them.
1639   // This can cause code churn which can have unintended consequences down
1640   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1641   // FIXME: This is a workaround for a deficiency in SROA - see
1642   // https://llvm.org/bugs/show_bug.cgi?id=30188
1643   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1644         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1645       }))
1646     return false;
1647   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1648         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1649       }))
1650     return false;
1651   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1652         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1653       }))
1654     return false;
1655 
1656   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1657     Value *Op = I0->getOperand(OI);
1658     if (Op->getType()->isTokenTy())
1659       // Don't touch any operand of token type.
1660       return false;
1661 
1662     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1663       assert(I->getNumOperands() == I0->getNumOperands());
1664       return I->getOperand(OI) == I0->getOperand(OI);
1665     };
1666     if (!all_of(Insts, SameAsI0)) {
1667       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1668           !canReplaceOperandWithVariable(I0, OI))
1669         // We can't create a PHI from this GEP.
1670         return false;
1671       // Don't create indirect calls! The called value is the final operand.
1672       if (isa<CallBase>(I0) && OI == OE - 1) {
1673         // FIXME: if the call was *already* indirect, we should do this.
1674         return false;
1675       }
1676       for (auto *I : Insts)
1677         PHIOperands[I].push_back(I->getOperand(OI));
1678     }
1679   }
1680   return true;
1681 }
1682 
1683 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1684 // instruction of every block in Blocks to their common successor, commoning
1685 // into one instruction.
1686 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1687   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1688 
1689   // canSinkLastInstruction returning true guarantees that every block has at
1690   // least one non-terminator instruction.
1691   SmallVector<Instruction*,4> Insts;
1692   for (auto *BB : Blocks) {
1693     Instruction *I = BB->getTerminator();
1694     do {
1695       I = I->getPrevNode();
1696     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1697     if (!isa<DbgInfoIntrinsic>(I))
1698       Insts.push_back(I);
1699   }
1700 
1701   // The only checking we need to do now is that all users of all instructions
1702   // are the same PHI node. canSinkLastInstruction should have checked this but
1703   // it is slightly over-aggressive - it gets confused by commutative instructions
1704   // so double-check it here.
1705   Instruction *I0 = Insts.front();
1706   if (!I0->user_empty()) {
1707     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1708     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1709           auto *U = cast<Instruction>(*I->user_begin());
1710           return U == PNUse;
1711         }))
1712       return false;
1713   }
1714 
1715   // We don't need to do any more checking here; canSinkLastInstruction should
1716   // have done it all for us.
1717   SmallVector<Value*, 4> NewOperands;
1718   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1719     // This check is different to that in canSinkLastInstruction. There, we
1720     // cared about the global view once simplifycfg (and instcombine) have
1721     // completed - it takes into account PHIs that become trivially
1722     // simplifiable.  However here we need a more local view; if an operand
1723     // differs we create a PHI and rely on instcombine to clean up the very
1724     // small mess we may make.
1725     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1726       return I->getOperand(O) != I0->getOperand(O);
1727     });
1728     if (!NeedPHI) {
1729       NewOperands.push_back(I0->getOperand(O));
1730       continue;
1731     }
1732 
1733     // Create a new PHI in the successor block and populate it.
1734     auto *Op = I0->getOperand(O);
1735     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1736     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1737                                Op->getName() + ".sink", &BBEnd->front());
1738     for (auto *I : Insts)
1739       PN->addIncoming(I->getOperand(O), I->getParent());
1740     NewOperands.push_back(PN);
1741   }
1742 
1743   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1744   // and move it to the start of the successor block.
1745   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1746     I0->getOperandUse(O).set(NewOperands[O]);
1747   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1748 
1749   // Update metadata and IR flags, and merge debug locations.
1750   for (auto *I : Insts)
1751     if (I != I0) {
1752       // The debug location for the "common" instruction is the merged locations
1753       // of all the commoned instructions.  We start with the original location
1754       // of the "common" instruction and iteratively merge each location in the
1755       // loop below.
1756       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1757       // However, as N-way merge for CallInst is rare, so we use simplified API
1758       // instead of using complex API for N-way merge.
1759       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1760       combineMetadataForCSE(I0, I, true);
1761       I0->andIRFlags(I);
1762     }
1763 
1764   if (!I0->user_empty()) {
1765     // canSinkLastInstruction checked that all instructions were used by
1766     // one and only one PHI node. Find that now, RAUW it to our common
1767     // instruction and nuke it.
1768     auto *PN = cast<PHINode>(*I0->user_begin());
1769     PN->replaceAllUsesWith(I0);
1770     PN->eraseFromParent();
1771   }
1772 
1773   // Finally nuke all instructions apart from the common instruction.
1774   for (auto *I : Insts)
1775     if (I != I0)
1776       I->eraseFromParent();
1777 
1778   return true;
1779 }
1780 
1781 namespace {
1782 
1783   // LockstepReverseIterator - Iterates through instructions
1784   // in a set of blocks in reverse order from the first non-terminator.
1785   // For example (assume all blocks have size n):
1786   //   LockstepReverseIterator I([B1, B2, B3]);
1787   //   *I-- = [B1[n], B2[n], B3[n]];
1788   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1789   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1790   //   ...
1791   class LockstepReverseIterator {
1792     ArrayRef<BasicBlock*> Blocks;
1793     SmallVector<Instruction*,4> Insts;
1794     bool Fail;
1795 
1796   public:
1797     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1798       reset();
1799     }
1800 
1801     void reset() {
1802       Fail = false;
1803       Insts.clear();
1804       for (auto *BB : Blocks) {
1805         Instruction *Inst = BB->getTerminator();
1806         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1807           Inst = Inst->getPrevNode();
1808         if (!Inst) {
1809           // Block wasn't big enough.
1810           Fail = true;
1811           return;
1812         }
1813         Insts.push_back(Inst);
1814       }
1815     }
1816 
1817     bool isValid() const {
1818       return !Fail;
1819     }
1820 
1821     void operator--() {
1822       if (Fail)
1823         return;
1824       for (auto *&Inst : Insts) {
1825         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1826           Inst = Inst->getPrevNode();
1827         // Already at beginning of block.
1828         if (!Inst) {
1829           Fail = true;
1830           return;
1831         }
1832       }
1833     }
1834 
1835     ArrayRef<Instruction*> operator * () const {
1836       return Insts;
1837     }
1838   };
1839 
1840 } // end anonymous namespace
1841 
1842 /// Check whether BB's predecessors end with unconditional branches. If it is
1843 /// true, sink any common code from the predecessors to BB.
1844 /// We also allow one predecessor to end with conditional branch (but no more
1845 /// than one).
1846 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1847                                            DomTreeUpdater *DTU) {
1848   // We support two situations:
1849   //   (1) all incoming arcs are unconditional
1850   //   (2) one incoming arc is conditional
1851   //
1852   // (2) is very common in switch defaults and
1853   // else-if patterns;
1854   //
1855   //   if (a) f(1);
1856   //   else if (b) f(2);
1857   //
1858   // produces:
1859   //
1860   //       [if]
1861   //      /    \
1862   //    [f(1)] [if]
1863   //      |     | \
1864   //      |     |  |
1865   //      |  [f(2)]|
1866   //       \    | /
1867   //        [ end ]
1868   //
1869   // [end] has two unconditional predecessor arcs and one conditional. The
1870   // conditional refers to the implicit empty 'else' arc. This conditional
1871   // arc can also be caused by an empty default block in a switch.
1872   //
1873   // In this case, we attempt to sink code from all *unconditional* arcs.
1874   // If we can sink instructions from these arcs (determined during the scan
1875   // phase below) we insert a common successor for all unconditional arcs and
1876   // connect that to [end], to enable sinking:
1877   //
1878   //       [if]
1879   //      /    \
1880   //    [x(1)] [if]
1881   //      |     | \
1882   //      |     |  \
1883   //      |  [x(2)] |
1884   //       \   /    |
1885   //   [sink.split] |
1886   //         \     /
1887   //         [ end ]
1888   //
1889   SmallVector<BasicBlock*,4> UnconditionalPreds;
1890   Instruction *Cond = nullptr;
1891   for (auto *B : predecessors(BB)) {
1892     auto *T = B->getTerminator();
1893     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1894       UnconditionalPreds.push_back(B);
1895     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1896       Cond = T;
1897     else
1898       return false;
1899   }
1900   if (UnconditionalPreds.size() < 2)
1901     return false;
1902 
1903   // We take a two-step approach to tail sinking. First we scan from the end of
1904   // each block upwards in lockstep. If the n'th instruction from the end of each
1905   // block can be sunk, those instructions are added to ValuesToSink and we
1906   // carry on. If we can sink an instruction but need to PHI-merge some operands
1907   // (because they're not identical in each instruction) we add these to
1908   // PHIOperands.
1909   unsigned ScanIdx = 0;
1910   SmallPtrSet<Value*,4> InstructionsToSink;
1911   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1912   LockstepReverseIterator LRI(UnconditionalPreds);
1913   while (LRI.isValid() &&
1914          canSinkInstructions(*LRI, PHIOperands)) {
1915     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1916                       << "\n");
1917     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1918     ++ScanIdx;
1919     --LRI;
1920   }
1921 
1922   // If no instructions can be sunk, early-return.
1923   if (ScanIdx == 0)
1924     return false;
1925 
1926   bool Changed = false;
1927 
1928   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1929     unsigned NumPHIdValues = 0;
1930     for (auto *I : *LRI)
1931       for (auto *V : PHIOperands[I])
1932         if (InstructionsToSink.count(V) == 0)
1933           ++NumPHIdValues;
1934     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1935     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1936     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1937         NumPHIInsts++;
1938 
1939     return NumPHIInsts <= 1;
1940   };
1941 
1942   if (Cond) {
1943     // Check if we would actually sink anything first! This mutates the CFG and
1944     // adds an extra block. The goal in doing this is to allow instructions that
1945     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1946     // (such as trunc, add) can be sunk and predicated already. So we check that
1947     // we're going to sink at least one non-speculatable instruction.
1948     LRI.reset();
1949     unsigned Idx = 0;
1950     bool Profitable = false;
1951     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1952       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1953         Profitable = true;
1954         break;
1955       }
1956       --LRI;
1957       ++Idx;
1958     }
1959     if (!Profitable)
1960       return false;
1961 
1962     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1963     // We have a conditional edge and we're going to sink some instructions.
1964     // Insert a new block postdominating all blocks we're going to sink from.
1965     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split",
1966                                 DTU ? &DTU->getDomTree() : nullptr))
1967       // Edges couldn't be split.
1968       return false;
1969     Changed = true;
1970   }
1971 
1972   // Now that we've analyzed all potential sinking candidates, perform the
1973   // actual sink. We iteratively sink the last non-terminator of the source
1974   // blocks into their common successor unless doing so would require too
1975   // many PHI instructions to be generated (currently only one PHI is allowed
1976   // per sunk instruction).
1977   //
1978   // We can use InstructionsToSink to discount values needing PHI-merging that will
1979   // actually be sunk in a later iteration. This allows us to be more
1980   // aggressive in what we sink. This does allow a false positive where we
1981   // sink presuming a later value will also be sunk, but stop half way through
1982   // and never actually sink it which means we produce more PHIs than intended.
1983   // This is unlikely in practice though.
1984   unsigned SinkIdx = 0;
1985   for (; SinkIdx != ScanIdx; ++SinkIdx) {
1986     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1987                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1988                       << "\n");
1989 
1990     // Because we've sunk every instruction in turn, the current instruction to
1991     // sink is always at index 0.
1992     LRI.reset();
1993     if (!ProfitableToSinkInstruction(LRI)) {
1994       // Too many PHIs would be created.
1995       LLVM_DEBUG(
1996           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1997       break;
1998     }
1999 
2000     if (!sinkLastInstruction(UnconditionalPreds)) {
2001       LLVM_DEBUG(
2002           dbgs()
2003           << "SINK: stopping here, failed to actually sink instruction!\n");
2004       break;
2005     }
2006 
2007     NumSinkCommonInstrs++;
2008     Changed = true;
2009   }
2010   if (SinkIdx != 0)
2011     ++NumSinkCommonCode;
2012   return Changed;
2013 }
2014 
2015 /// Determine if we can hoist sink a sole store instruction out of a
2016 /// conditional block.
2017 ///
2018 /// We are looking for code like the following:
2019 ///   BrBB:
2020 ///     store i32 %add, i32* %arrayidx2
2021 ///     ... // No other stores or function calls (we could be calling a memory
2022 ///     ... // function).
2023 ///     %cmp = icmp ult %x, %y
2024 ///     br i1 %cmp, label %EndBB, label %ThenBB
2025 ///   ThenBB:
2026 ///     store i32 %add5, i32* %arrayidx2
2027 ///     br label EndBB
2028 ///   EndBB:
2029 ///     ...
2030 ///   We are going to transform this into:
2031 ///   BrBB:
2032 ///     store i32 %add, i32* %arrayidx2
2033 ///     ... //
2034 ///     %cmp = icmp ult %x, %y
2035 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2036 ///     store i32 %add.add5, i32* %arrayidx2
2037 ///     ...
2038 ///
2039 /// \return The pointer to the value of the previous store if the store can be
2040 ///         hoisted into the predecessor block. 0 otherwise.
2041 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2042                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2043   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2044   if (!StoreToHoist)
2045     return nullptr;
2046 
2047   // Volatile or atomic.
2048   if (!StoreToHoist->isSimple())
2049     return nullptr;
2050 
2051   Value *StorePtr = StoreToHoist->getPointerOperand();
2052 
2053   // Look for a store to the same pointer in BrBB.
2054   unsigned MaxNumInstToLookAt = 9;
2055   // Skip pseudo probe intrinsic calls which are not really killing any memory
2056   // accesses.
2057   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2058     if (!MaxNumInstToLookAt)
2059       break;
2060     --MaxNumInstToLookAt;
2061 
2062     // Could be calling an instruction that affects memory like free().
2063     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2064       return nullptr;
2065 
2066     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2067       // Found the previous store make sure it stores to the same location.
2068       if (SI->getPointerOperand() == StorePtr)
2069         // Found the previous store, return its value operand.
2070         return SI->getValueOperand();
2071       return nullptr; // Unknown store.
2072     }
2073   }
2074 
2075   return nullptr;
2076 }
2077 
2078 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2079 /// converted to selects.
2080 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2081                                            BasicBlock *EndBB,
2082                                            unsigned &SpeculatedInstructions,
2083                                            int &BudgetRemaining,
2084                                            const TargetTransformInfo &TTI) {
2085   TargetTransformInfo::TargetCostKind CostKind =
2086     BB->getParent()->hasMinSize()
2087     ? TargetTransformInfo::TCK_CodeSize
2088     : TargetTransformInfo::TCK_SizeAndLatency;
2089 
2090   bool HaveRewritablePHIs = false;
2091   for (PHINode &PN : EndBB->phis()) {
2092     Value *OrigV = PN.getIncomingValueForBlock(BB);
2093     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2094 
2095     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2096     // Skip PHIs which are trivial.
2097     if (ThenV == OrigV)
2098       continue;
2099 
2100     BudgetRemaining -=
2101         TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2102                                CmpInst::BAD_ICMP_PREDICATE, CostKind);
2103 
2104     // Don't convert to selects if we could remove undefined behavior instead.
2105     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2106         passingValueIsAlwaysUndefined(ThenV, &PN))
2107       return false;
2108 
2109     HaveRewritablePHIs = true;
2110     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2111     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2112     if (!OrigCE && !ThenCE)
2113       continue; // Known safe and cheap.
2114 
2115     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2116         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2117       return false;
2118     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2119     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2120     unsigned MaxCost =
2121         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2122     if (OrigCost + ThenCost > MaxCost)
2123       return false;
2124 
2125     // Account for the cost of an unfolded ConstantExpr which could end up
2126     // getting expanded into Instructions.
2127     // FIXME: This doesn't account for how many operations are combined in the
2128     // constant expression.
2129     ++SpeculatedInstructions;
2130     if (SpeculatedInstructions > 1)
2131       return false;
2132   }
2133 
2134   return HaveRewritablePHIs;
2135 }
2136 
2137 /// Speculate a conditional basic block flattening the CFG.
2138 ///
2139 /// Note that this is a very risky transform currently. Speculating
2140 /// instructions like this is most often not desirable. Instead, there is an MI
2141 /// pass which can do it with full awareness of the resource constraints.
2142 /// However, some cases are "obvious" and we should do directly. An example of
2143 /// this is speculating a single, reasonably cheap instruction.
2144 ///
2145 /// There is only one distinct advantage to flattening the CFG at the IR level:
2146 /// it makes very common but simplistic optimizations such as are common in
2147 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2148 /// modeling their effects with easier to reason about SSA value graphs.
2149 ///
2150 ///
2151 /// An illustration of this transform is turning this IR:
2152 /// \code
2153 ///   BB:
2154 ///     %cmp = icmp ult %x, %y
2155 ///     br i1 %cmp, label %EndBB, label %ThenBB
2156 ///   ThenBB:
2157 ///     %sub = sub %x, %y
2158 ///     br label BB2
2159 ///   EndBB:
2160 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2161 ///     ...
2162 /// \endcode
2163 ///
2164 /// Into this IR:
2165 /// \code
2166 ///   BB:
2167 ///     %cmp = icmp ult %x, %y
2168 ///     %sub = sub %x, %y
2169 ///     %cond = select i1 %cmp, 0, %sub
2170 ///     ...
2171 /// \endcode
2172 ///
2173 /// \returns true if the conditional block is removed.
2174 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2175                                             const TargetTransformInfo &TTI) {
2176   // Be conservative for now. FP select instruction can often be expensive.
2177   Value *BrCond = BI->getCondition();
2178   if (isa<FCmpInst>(BrCond))
2179     return false;
2180 
2181   BasicBlock *BB = BI->getParent();
2182   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2183   int BudgetRemaining =
2184     PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2185 
2186   // If ThenBB is actually on the false edge of the conditional branch, remember
2187   // to swap the select operands later.
2188   bool Invert = false;
2189   if (ThenBB != BI->getSuccessor(0)) {
2190     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2191     Invert = true;
2192   }
2193   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2194 
2195   // Keep a count of how many times instructions are used within ThenBB when
2196   // they are candidates for sinking into ThenBB. Specifically:
2197   // - They are defined in BB, and
2198   // - They have no side effects, and
2199   // - All of their uses are in ThenBB.
2200   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2201 
2202   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2203 
2204   unsigned SpeculatedInstructions = 0;
2205   Value *SpeculatedStoreValue = nullptr;
2206   StoreInst *SpeculatedStore = nullptr;
2207   for (BasicBlock::iterator BBI = ThenBB->begin(),
2208                             BBE = std::prev(ThenBB->end());
2209        BBI != BBE; ++BBI) {
2210     Instruction *I = &*BBI;
2211     // Skip debug info.
2212     if (isa<DbgInfoIntrinsic>(I)) {
2213       SpeculatedDbgIntrinsics.push_back(I);
2214       continue;
2215     }
2216 
2217     // Skip pseudo probes. The consequence is we lose track of the branch
2218     // probability for ThenBB, which is fine since the optimization here takes
2219     // place regardless of the branch probability.
2220     if (isa<PseudoProbeInst>(I)) {
2221       SpeculatedDbgIntrinsics.push_back(I);
2222       continue;
2223     }
2224 
2225     // Only speculatively execute a single instruction (not counting the
2226     // terminator) for now.
2227     ++SpeculatedInstructions;
2228     if (SpeculatedInstructions > 1)
2229       return false;
2230 
2231     // Don't hoist the instruction if it's unsafe or expensive.
2232     if (!isSafeToSpeculativelyExecute(I) &&
2233         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2234                                   I, BB, ThenBB, EndBB))))
2235       return false;
2236     if (!SpeculatedStoreValue &&
2237         ComputeSpeculationCost(I, TTI) >
2238             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2239       return false;
2240 
2241     // Store the store speculation candidate.
2242     if (SpeculatedStoreValue)
2243       SpeculatedStore = cast<StoreInst>(I);
2244 
2245     // Do not hoist the instruction if any of its operands are defined but not
2246     // used in BB. The transformation will prevent the operand from
2247     // being sunk into the use block.
2248     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2249       Instruction *OpI = dyn_cast<Instruction>(*i);
2250       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2251         continue; // Not a candidate for sinking.
2252 
2253       ++SinkCandidateUseCounts[OpI];
2254     }
2255   }
2256 
2257   // Consider any sink candidates which are only used in ThenBB as costs for
2258   // speculation. Note, while we iterate over a DenseMap here, we are summing
2259   // and so iteration order isn't significant.
2260   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2261            I = SinkCandidateUseCounts.begin(),
2262            E = SinkCandidateUseCounts.end();
2263        I != E; ++I)
2264     if (I->first->hasNUses(I->second)) {
2265       ++SpeculatedInstructions;
2266       if (SpeculatedInstructions > 1)
2267         return false;
2268     }
2269 
2270   // Check that we can insert the selects and that it's not too expensive to do
2271   // so.
2272   bool Convert = SpeculatedStore != nullptr;
2273   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2274                                             SpeculatedInstructions,
2275                                             BudgetRemaining, TTI);
2276   if (!Convert || BudgetRemaining < 0)
2277     return false;
2278 
2279   // If we get here, we can hoist the instruction and if-convert.
2280   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2281 
2282   // Insert a select of the value of the speculated store.
2283   if (SpeculatedStoreValue) {
2284     IRBuilder<NoFolder> Builder(BI);
2285     Value *TrueV = SpeculatedStore->getValueOperand();
2286     Value *FalseV = SpeculatedStoreValue;
2287     if (Invert)
2288       std::swap(TrueV, FalseV);
2289     Value *S = Builder.CreateSelect(
2290         BrCond, TrueV, FalseV, "spec.store.select", BI);
2291     SpeculatedStore->setOperand(0, S);
2292     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2293                                          SpeculatedStore->getDebugLoc());
2294   }
2295 
2296   // Metadata can be dependent on the condition we are hoisting above.
2297   // Conservatively strip all metadata on the instruction. Drop the debug loc
2298   // to avoid making it appear as if the condition is a constant, which would
2299   // be misleading while debugging.
2300   for (auto &I : *ThenBB) {
2301     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2302       I.setDebugLoc(DebugLoc());
2303     I.dropUnknownNonDebugMetadata();
2304   }
2305 
2306   // Hoist the instructions.
2307   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2308                            ThenBB->begin(), std::prev(ThenBB->end()));
2309 
2310   // Insert selects and rewrite the PHI operands.
2311   IRBuilder<NoFolder> Builder(BI);
2312   for (PHINode &PN : EndBB->phis()) {
2313     unsigned OrigI = PN.getBasicBlockIndex(BB);
2314     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2315     Value *OrigV = PN.getIncomingValue(OrigI);
2316     Value *ThenV = PN.getIncomingValue(ThenI);
2317 
2318     // Skip PHIs which are trivial.
2319     if (OrigV == ThenV)
2320       continue;
2321 
2322     // Create a select whose true value is the speculatively executed value and
2323     // false value is the pre-existing value. Swap them if the branch
2324     // destinations were inverted.
2325     Value *TrueV = ThenV, *FalseV = OrigV;
2326     if (Invert)
2327       std::swap(TrueV, FalseV);
2328     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2329     PN.setIncomingValue(OrigI, V);
2330     PN.setIncomingValue(ThenI, V);
2331   }
2332 
2333   // Remove speculated dbg intrinsics.
2334   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2335   // dbg value for the different flows and inserting it after the select.
2336   for (Instruction *I : SpeculatedDbgIntrinsics)
2337     I->eraseFromParent();
2338 
2339   ++NumSpeculations;
2340   return true;
2341 }
2342 
2343 /// Return true if we can thread a branch across this block.
2344 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2345   int Size = 0;
2346 
2347   for (Instruction &I : BB->instructionsWithoutDebug()) {
2348     if (Size > MaxSmallBlockSize)
2349       return false; // Don't clone large BB's.
2350 
2351     // Can't fold blocks that contain noduplicate or convergent calls.
2352     if (CallInst *CI = dyn_cast<CallInst>(&I))
2353       if (CI->cannotDuplicate() || CI->isConvergent())
2354         return false;
2355 
2356     // We will delete Phis while threading, so Phis should not be accounted in
2357     // block's size
2358     if (!isa<PHINode>(I))
2359       ++Size;
2360 
2361     // We can only support instructions that do not define values that are
2362     // live outside of the current basic block.
2363     for (User *U : I.users()) {
2364       Instruction *UI = cast<Instruction>(U);
2365       if (UI->getParent() != BB || isa<PHINode>(UI))
2366         return false;
2367     }
2368 
2369     // Looks ok, continue checking.
2370   }
2371 
2372   return true;
2373 }
2374 
2375 /// If we have a conditional branch on a PHI node value that is defined in the
2376 /// same block as the branch and if any PHI entries are constants, thread edges
2377 /// corresponding to that entry to be branches to their ultimate destination.
2378 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2379                                 const DataLayout &DL, AssumptionCache *AC) {
2380   BasicBlock *BB = BI->getParent();
2381   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2382   // NOTE: we currently cannot transform this case if the PHI node is used
2383   // outside of the block.
2384   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2385     return false;
2386 
2387   // Degenerate case of a single entry PHI.
2388   if (PN->getNumIncomingValues() == 1) {
2389     FoldSingleEntryPHINodes(PN->getParent());
2390     return true;
2391   }
2392 
2393   // Now we know that this block has multiple preds and two succs.
2394   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2395     return false;
2396 
2397   // Okay, this is a simple enough basic block.  See if any phi values are
2398   // constants.
2399   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2400     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2401     if (!CB || !CB->getType()->isIntegerTy(1))
2402       continue;
2403 
2404     // Okay, we now know that all edges from PredBB should be revectored to
2405     // branch to RealDest.
2406     BasicBlock *PredBB = PN->getIncomingBlock(i);
2407     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2408 
2409     if (RealDest == BB)
2410       continue; // Skip self loops.
2411     // Skip if the predecessor's terminator is an indirect branch.
2412     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2413       continue;
2414 
2415     SmallVector<DominatorTree::UpdateType, 3> Updates;
2416 
2417     // The dest block might have PHI nodes, other predecessors and other
2418     // difficult cases.  Instead of being smart about this, just insert a new
2419     // block that jumps to the destination block, effectively splitting
2420     // the edge we are about to create.
2421     BasicBlock *EdgeBB =
2422         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2423                            RealDest->getParent(), RealDest);
2424     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2425     Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2426     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2427 
2428     // Update PHI nodes.
2429     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2430 
2431     // BB may have instructions that are being threaded over.  Clone these
2432     // instructions into EdgeBB.  We know that there will be no uses of the
2433     // cloned instructions outside of EdgeBB.
2434     BasicBlock::iterator InsertPt = EdgeBB->begin();
2435     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2436     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2437       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2438         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2439         continue;
2440       }
2441       // Clone the instruction.
2442       Instruction *N = BBI->clone();
2443       if (BBI->hasName())
2444         N->setName(BBI->getName() + ".c");
2445 
2446       // Update operands due to translation.
2447       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2448         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2449         if (PI != TranslateMap.end())
2450           *i = PI->second;
2451       }
2452 
2453       // Check for trivial simplification.
2454       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2455         if (!BBI->use_empty())
2456           TranslateMap[&*BBI] = V;
2457         if (!N->mayHaveSideEffects()) {
2458           N->deleteValue(); // Instruction folded away, don't need actual inst
2459           N = nullptr;
2460         }
2461       } else {
2462         if (!BBI->use_empty())
2463           TranslateMap[&*BBI] = N;
2464       }
2465       if (N) {
2466         // Insert the new instruction into its new home.
2467         EdgeBB->getInstList().insert(InsertPt, N);
2468 
2469         // Register the new instruction with the assumption cache if necessary.
2470         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2471           AC->registerAssumption(cast<IntrinsicInst>(N));
2472       }
2473     }
2474 
2475     // Loop over all of the edges from PredBB to BB, changing them to branch
2476     // to EdgeBB instead.
2477     Instruction *PredBBTI = PredBB->getTerminator();
2478     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2479       if (PredBBTI->getSuccessor(i) == BB) {
2480         BB->removePredecessor(PredBB);
2481         PredBBTI->setSuccessor(i, EdgeBB);
2482       }
2483 
2484     Updates.push_back({DominatorTree::Delete, PredBB, BB});
2485     Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2486 
2487     if (DTU)
2488       DTU->applyUpdatesPermissive(Updates);
2489 
2490     // Recurse, simplifying any other constants.
2491     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2492   }
2493 
2494   return false;
2495 }
2496 
2497 /// Given a BB that starts with the specified two-entry PHI node,
2498 /// see if we can eliminate it.
2499 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2500                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2501   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2502   // statement", which has a very simple dominance structure.  Basically, we
2503   // are trying to find the condition that is being branched on, which
2504   // subsequently causes this merge to happen.  We really want control
2505   // dependence information for this check, but simplifycfg can't keep it up
2506   // to date, and this catches most of the cases we care about anyway.
2507   BasicBlock *BB = PN->getParent();
2508 
2509   BasicBlock *IfTrue, *IfFalse;
2510   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2511   if (!IfCond ||
2512       // Don't bother if the branch will be constant folded trivially.
2513       isa<ConstantInt>(IfCond))
2514     return false;
2515 
2516   // Okay, we found that we can merge this two-entry phi node into a select.
2517   // Doing so would require us to fold *all* two entry phi nodes in this block.
2518   // At some point this becomes non-profitable (particularly if the target
2519   // doesn't support cmov's).  Only do this transformation if there are two or
2520   // fewer PHI nodes in this block.
2521   unsigned NumPhis = 0;
2522   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2523     if (NumPhis > 2)
2524       return false;
2525 
2526   // Loop over the PHI's seeing if we can promote them all to select
2527   // instructions.  While we are at it, keep track of the instructions
2528   // that need to be moved to the dominating block.
2529   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2530   int BudgetRemaining =
2531       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2532 
2533   bool Changed = false;
2534   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2535     PHINode *PN = cast<PHINode>(II++);
2536     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2537       PN->replaceAllUsesWith(V);
2538       PN->eraseFromParent();
2539       Changed = true;
2540       continue;
2541     }
2542 
2543     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2544                              BudgetRemaining, TTI) ||
2545         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2546                              BudgetRemaining, TTI))
2547       return Changed;
2548   }
2549 
2550   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2551   // we ran out of PHIs then we simplified them all.
2552   PN = dyn_cast<PHINode>(BB->begin());
2553   if (!PN)
2554     return true;
2555 
2556   // Return true if at least one of these is a 'not', and another is either
2557   // a 'not' too, or a constant.
2558   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2559     if (!match(V0, m_Not(m_Value())))
2560       std::swap(V0, V1);
2561     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2562     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2563   };
2564 
2565   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2566   // of the incoming values is an 'not' and another one is freely invertible.
2567   // These can often be turned into switches and other things.
2568   if (PN->getType()->isIntegerTy(1) &&
2569       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2570        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2571        isa<BinaryOperator>(IfCond)) &&
2572       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2573                                  PN->getIncomingValue(1)))
2574     return Changed;
2575 
2576   // If all PHI nodes are promotable, check to make sure that all instructions
2577   // in the predecessor blocks can be promoted as well. If not, we won't be able
2578   // to get rid of the control flow, so it's not worth promoting to select
2579   // instructions.
2580   BasicBlock *DomBlock = nullptr;
2581   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2582   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2583   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2584     IfBlock1 = nullptr;
2585   } else {
2586     DomBlock = *pred_begin(IfBlock1);
2587     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2588       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2589           !isa<PseudoProbeInst>(I)) {
2590         // This is not an aggressive instruction that we can promote.
2591         // Because of this, we won't be able to get rid of the control flow, so
2592         // the xform is not worth it.
2593         return Changed;
2594       }
2595   }
2596 
2597   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2598     IfBlock2 = nullptr;
2599   } else {
2600     DomBlock = *pred_begin(IfBlock2);
2601     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2602       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2603           !isa<PseudoProbeInst>(I)) {
2604         // This is not an aggressive instruction that we can promote.
2605         // Because of this, we won't be able to get rid of the control flow, so
2606         // the xform is not worth it.
2607         return Changed;
2608       }
2609   }
2610   assert(DomBlock && "Failed to find root DomBlock");
2611 
2612   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2613                     << "  T: " << IfTrue->getName()
2614                     << "  F: " << IfFalse->getName() << "\n");
2615 
2616   // If we can still promote the PHI nodes after this gauntlet of tests,
2617   // do all of the PHI's now.
2618   Instruction *InsertPt = DomBlock->getTerminator();
2619   IRBuilder<NoFolder> Builder(InsertPt);
2620 
2621   // Move all 'aggressive' instructions, which are defined in the
2622   // conditional parts of the if's up to the dominating block.
2623   if (IfBlock1)
2624     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2625   if (IfBlock2)
2626     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2627 
2628   // Propagate fast-math-flags from phi nodes to replacement selects.
2629   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2630   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2631     if (isa<FPMathOperator>(PN))
2632       Builder.setFastMathFlags(PN->getFastMathFlags());
2633 
2634     // Change the PHI node into a select instruction.
2635     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2636     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2637 
2638     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2639     PN->replaceAllUsesWith(Sel);
2640     Sel->takeName(PN);
2641     PN->eraseFromParent();
2642   }
2643 
2644   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2645   // has been flattened.  Change DomBlock to jump directly to our new block to
2646   // avoid other simplifycfg's kicking in on the diamond.
2647   Instruction *OldTI = DomBlock->getTerminator();
2648   Builder.SetInsertPoint(OldTI);
2649   Builder.CreateBr(BB);
2650 
2651   SmallVector<DominatorTree::UpdateType, 3> Updates;
2652   if (DTU) {
2653     for (auto *Successor : successors(DomBlock))
2654       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2655     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2656   }
2657 
2658   OldTI->eraseFromParent();
2659   if (DTU)
2660     DTU->applyUpdatesPermissive(Updates);
2661 
2662   return true;
2663 }
2664 
2665 /// If we found a conditional branch that goes to two returning blocks,
2666 /// try to merge them together into one return,
2667 /// introducing a select if the return values disagree.
2668 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2669                                                     IRBuilder<> &Builder) {
2670   auto *BB = BI->getParent();
2671   assert(BI->isConditional() && "Must be a conditional branch");
2672   BasicBlock *TrueSucc = BI->getSuccessor(0);
2673   BasicBlock *FalseSucc = BI->getSuccessor(1);
2674   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2675   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2676 
2677   // Check to ensure both blocks are empty (just a return) or optionally empty
2678   // with PHI nodes.  If there are other instructions, merging would cause extra
2679   // computation on one path or the other.
2680   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2681     return false;
2682   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2683     return false;
2684 
2685   Builder.SetInsertPoint(BI);
2686   // Okay, we found a branch that is going to two return nodes.  If
2687   // there is no return value for this function, just change the
2688   // branch into a return.
2689   if (FalseRet->getNumOperands() == 0) {
2690     TrueSucc->removePredecessor(BB);
2691     FalseSucc->removePredecessor(BB);
2692     Builder.CreateRetVoid();
2693     EraseTerminatorAndDCECond(BI);
2694     if (DTU) {
2695       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, TrueSucc},
2696                                    {DominatorTree::Delete, BB, FalseSucc}});
2697     }
2698     return true;
2699   }
2700 
2701   // Otherwise, figure out what the true and false return values are
2702   // so we can insert a new select instruction.
2703   Value *TrueValue = TrueRet->getReturnValue();
2704   Value *FalseValue = FalseRet->getReturnValue();
2705 
2706   // Unwrap any PHI nodes in the return blocks.
2707   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2708     if (TVPN->getParent() == TrueSucc)
2709       TrueValue = TVPN->getIncomingValueForBlock(BB);
2710   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2711     if (FVPN->getParent() == FalseSucc)
2712       FalseValue = FVPN->getIncomingValueForBlock(BB);
2713 
2714   // In order for this transformation to be safe, we must be able to
2715   // unconditionally execute both operands to the return.  This is
2716   // normally the case, but we could have a potentially-trapping
2717   // constant expression that prevents this transformation from being
2718   // safe.
2719   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2720     if (TCV->canTrap())
2721       return false;
2722   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2723     if (FCV->canTrap())
2724       return false;
2725 
2726   // Okay, we collected all the mapped values and checked them for sanity, and
2727   // defined to really do this transformation.  First, update the CFG.
2728   TrueSucc->removePredecessor(BB);
2729   FalseSucc->removePredecessor(BB);
2730 
2731   // Insert select instructions where needed.
2732   Value *BrCond = BI->getCondition();
2733   if (TrueValue) {
2734     // Insert a select if the results differ.
2735     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2736     } else if (isa<UndefValue>(TrueValue)) {
2737       TrueValue = FalseValue;
2738     } else {
2739       TrueValue =
2740           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2741     }
2742   }
2743 
2744   Value *RI =
2745       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2746 
2747   (void)RI;
2748 
2749   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2750                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2751                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2752 
2753   EraseTerminatorAndDCECond(BI);
2754 
2755   if (DTU) {
2756     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, TrueSucc},
2757                                  {DominatorTree::Delete, BB, FalseSucc}});
2758   }
2759 
2760   return true;
2761 }
2762 
2763 /// Return true if the given instruction is available
2764 /// in its predecessor block. If yes, the instruction will be removed.
2765 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2766   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2767     return false;
2768   for (Instruction &I : *PB) {
2769     Instruction *PBI = &I;
2770     // Check whether Inst and PBI generate the same value.
2771     if (Inst->isIdenticalTo(PBI)) {
2772       Inst->replaceAllUsesWith(PBI);
2773       Inst->eraseFromParent();
2774       return true;
2775     }
2776   }
2777   return false;
2778 }
2779 
2780 /// Return true if either PBI or BI has branch weight available, and store
2781 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2782 /// not have branch weight, use 1:1 as its weight.
2783 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2784                                    uint64_t &PredTrueWeight,
2785                                    uint64_t &PredFalseWeight,
2786                                    uint64_t &SuccTrueWeight,
2787                                    uint64_t &SuccFalseWeight) {
2788   bool PredHasWeights =
2789       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2790   bool SuccHasWeights =
2791       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2792   if (PredHasWeights || SuccHasWeights) {
2793     if (!PredHasWeights)
2794       PredTrueWeight = PredFalseWeight = 1;
2795     if (!SuccHasWeights)
2796       SuccTrueWeight = SuccFalseWeight = 1;
2797     return true;
2798   } else {
2799     return false;
2800   }
2801 }
2802 
2803 /// If this basic block is simple enough, and if a predecessor branches to us
2804 /// and one of our successors, fold the block into the predecessor and use
2805 /// logical operations to pick the right destination.
2806 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
2807                                   MemorySSAUpdater *MSSAU,
2808                                   const TargetTransformInfo *TTI,
2809                                   unsigned BonusInstThreshold) {
2810   BasicBlock *BB = BI->getParent();
2811 
2812   const unsigned PredCount = pred_size(BB);
2813 
2814   bool Changed = false;
2815 
2816   auto _ = make_scope_exit([&]() {
2817     if (Changed)
2818       ++NumFoldBranchToCommonDest;
2819   });
2820 
2821   TargetTransformInfo::TargetCostKind CostKind =
2822     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
2823                                   : TargetTransformInfo::TCK_SizeAndLatency;
2824 
2825   Instruction *Cond = nullptr;
2826   if (BI->isConditional())
2827     Cond = dyn_cast<Instruction>(BI->getCondition());
2828   else {
2829     // For unconditional branch, check for a simple CFG pattern, where
2830     // BB has a single predecessor and BB's successor is also its predecessor's
2831     // successor. If such pattern exists, check for CSE between BB and its
2832     // predecessor.
2833     if (BasicBlock *PB = BB->getSinglePredecessor())
2834       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2835         if (PBI->isConditional() &&
2836             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2837              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2838           for (auto I = BB->instructionsWithoutDebug().begin(),
2839                     E = BB->instructionsWithoutDebug().end();
2840                I != E;) {
2841             Instruction *Curr = &*I++;
2842             if (isa<CmpInst>(Curr)) {
2843               Cond = Curr;
2844               break;
2845             }
2846             // Quit if we can't remove this instruction.
2847             if (!tryCSEWithPredecessor(Curr, PB))
2848               return Changed;
2849             Changed = true;
2850           }
2851         }
2852 
2853     if (!Cond)
2854       return Changed;
2855   }
2856 
2857   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2858       Cond->getParent() != BB || !Cond->hasOneUse())
2859     return Changed;
2860 
2861   // Only allow this transformation if computing the condition doesn't involve
2862   // too many instructions and these involved instructions can be executed
2863   // unconditionally. We denote all involved instructions except the condition
2864   // as "bonus instructions", and only allow this transformation when the
2865   // number of the bonus instructions we'll need to create when cloning into
2866   // each predecessor does not exceed a certain threshold.
2867   unsigned NumBonusInsts = 0;
2868   for (Instruction &I : *BB) {
2869     // Don't check the branch condition comparison itself.
2870     if (&I == Cond)
2871       continue;
2872     // Ignore dbg intrinsics, and the terminator.
2873     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
2874       continue;
2875     // I must be safe to execute unconditionally.
2876     if (!isSafeToSpeculativelyExecute(&I))
2877       return Changed;
2878 
2879     // Account for the cost of duplicating this instruction into each
2880     // predecessor.
2881     NumBonusInsts += PredCount;
2882     // Early exits once we reach the limit.
2883     if (NumBonusInsts > BonusInstThreshold)
2884       return Changed;
2885   }
2886 
2887   // Also, for now, all liveout uses of bonus instructions must be in PHI nodes
2888   // in successor blocks as incoming values from the bonus instructions's block,
2889   // otherwise we'll fail to update them.
2890   // FIXME: We could lift this restriction, but we need to form PHI nodes and
2891   // rewrite offending uses, but we can't do that without having a domtree.
2892   if (any_of(*BB, [BB](Instruction &I) {
2893         return any_of(I.uses(), [BB](Use &U) {
2894           auto *User = cast<Instruction>(U.getUser());
2895           if (User->getParent() == BB)
2896             return false; // Not an external use.
2897           auto *PN = dyn_cast<PHINode>(User);
2898           return !PN || PN->getIncomingBlock(U) != BB;
2899         });
2900       }))
2901     return Changed;
2902 
2903   // Cond is known to be a compare or binary operator.  Check to make sure that
2904   // neither operand is a potentially-trapping constant expression.
2905   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2906     if (CE->canTrap())
2907       return Changed;
2908   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2909     if (CE->canTrap())
2910       return Changed;
2911 
2912   // Finally, don't infinitely unroll conditional loops.
2913   BasicBlock *TrueDest = BI->getSuccessor(0);
2914   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2915   if (TrueDest == BB || FalseDest == BB)
2916     return Changed;
2917 
2918   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2919     BasicBlock *PredBlock = *PI;
2920     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2921 
2922     // Check that we have two conditional branches.  If there is a PHI node in
2923     // the common successor, verify that the same value flows in from both
2924     // blocks.
2925     SmallVector<PHINode *, 4> PHIs;
2926     if (!PBI || PBI->isUnconditional() ||
2927         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2928         (!BI->isConditional() &&
2929          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2930       continue;
2931 
2932     // Determine if the two branches share a common destination.
2933     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2934     bool InvertPredCond = false;
2935 
2936     if (BI->isConditional()) {
2937       if (PBI->getSuccessor(0) == TrueDest) {
2938         Opc = Instruction::Or;
2939       } else if (PBI->getSuccessor(1) == FalseDest) {
2940         Opc = Instruction::And;
2941       } else if (PBI->getSuccessor(0) == FalseDest) {
2942         Opc = Instruction::And;
2943         InvertPredCond = true;
2944       } else if (PBI->getSuccessor(1) == TrueDest) {
2945         Opc = Instruction::Or;
2946         InvertPredCond = true;
2947       } else {
2948         continue;
2949       }
2950     } else {
2951       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2952         continue;
2953     }
2954 
2955     // Check the cost of inserting the necessary logic before performing the
2956     // transformation.
2957     if (TTI && Opc != Instruction::BinaryOpsEnd) {
2958       Type *Ty = BI->getCondition()->getType();
2959       unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
2960       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
2961           !isa<CmpInst>(PBI->getCondition())))
2962         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
2963 
2964       if (Cost > BranchFoldThreshold)
2965         continue;
2966     }
2967 
2968     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2969     Changed = true;
2970 
2971     SmallVector<DominatorTree::UpdateType, 3> Updates;
2972 
2973     IRBuilder<> Builder(PBI);
2974     // The builder is used to create instructions to eliminate the branch in BB.
2975     // If BB's terminator has !annotation metadata, add it to the new
2976     // instructions.
2977     Builder.CollectMetadataToCopy(BB->getTerminator(),
2978                                   {LLVMContext::MD_annotation});
2979 
2980     // If we need to invert the condition in the pred block to match, do so now.
2981     if (InvertPredCond) {
2982       Value *NewCond = PBI->getCondition();
2983       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2984         CmpInst *CI = cast<CmpInst>(NewCond);
2985         CI->setPredicate(CI->getInversePredicate());
2986       } else {
2987         NewCond =
2988             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2989       }
2990 
2991       PBI->setCondition(NewCond);
2992       PBI->swapSuccessors();
2993     }
2994 
2995     BasicBlock *UniqueSucc =
2996         BI->isConditional()
2997             ? (PBI->getSuccessor(0) == BB ? TrueDest : FalseDest)
2998             : TrueDest;
2999 
3000     // Before cloning instructions, notify the successor basic block that it
3001     // is about to have a new predecessor. This will update PHI nodes,
3002     // which will allow us to update live-out uses of bonus instructions.
3003     if (BI->isConditional())
3004       AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3005 
3006     // If we have bonus instructions, clone them into the predecessor block.
3007     // Note that there may be multiple predecessor blocks, so we cannot move
3008     // bonus instructions to a predecessor block.
3009     ValueToValueMapTy VMap; // maps original values to cloned values
3010     Instruction *CondInPred;
3011     for (Instruction &BonusInst : *BB) {
3012       if (isa<DbgInfoIntrinsic>(BonusInst) || isa<BranchInst>(BonusInst))
3013         continue;
3014 
3015       Instruction *NewBonusInst = BonusInst.clone();
3016 
3017       if (&BonusInst == Cond)
3018         CondInPred = NewBonusInst;
3019 
3020       // When we fold the bonus instructions we want to make sure we
3021       // reset their debug locations in order to avoid stepping on dead
3022       // code caused by folding dead branches.
3023       NewBonusInst->setDebugLoc(DebugLoc());
3024 
3025       RemapInstruction(NewBonusInst, VMap,
3026                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3027       VMap[&BonusInst] = NewBonusInst;
3028 
3029       // If we moved a load, we cannot any longer claim any knowledge about
3030       // its potential value. The previous information might have been valid
3031       // only given the branch precondition.
3032       // For an analogous reason, we must also drop all the metadata whose
3033       // semantics we don't understand. We *can* preserve !annotation, because
3034       // it is tied to the instruction itself, not the value or position.
3035       NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
3036 
3037       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
3038       NewBonusInst->takeName(&BonusInst);
3039       BonusInst.setName(BonusInst.getName() + ".old");
3040       BonusInst.replaceUsesWithIf(
3041           NewBonusInst, [BB, BI, UniqueSucc, PredBlock](Use &U) {
3042             auto *User = cast<Instruction>(U.getUser());
3043             // Ignore non-external uses of bonus instructions.
3044             if (User->getParent() == BB) {
3045               assert(!isa<PHINode>(User) &&
3046                      "Non-external users are never PHI instructions.");
3047               return false;
3048             }
3049             if (User->getParent() == PredBlock) {
3050               // The "exteral" use is in the block into which we just cloned the
3051               // bonus instruction. This means two things: 1. we are in an
3052               // unreachable block 2. the instruction is self-referencing.
3053               // So let's just rewrite it...
3054               return true;
3055             }
3056             (void)BI;
3057             assert(isa<PHINode>(User) && "All external users must be PHI's.");
3058             auto *PN = cast<PHINode>(User);
3059             assert(is_contained(successors(BB), User->getParent()) &&
3060                    "All external users must be in successors of BB.");
3061             assert((PN->getIncomingBlock(U) == BB ||
3062                     PN->getIncomingBlock(U) == PredBlock) &&
3063                    "The incoming block for that incoming value external use "
3064                    "must be either the original block with bonus instructions, "
3065                    "or the new predecessor block.");
3066             // UniqueSucc is the block for which we change it's predecessors,
3067             // so it is the only block in which we'll need to update PHI nodes.
3068             if (User->getParent() != UniqueSucc)
3069               return false;
3070             // Update the incoming value for the new predecessor.
3071             return PN->getIncomingBlock(U) ==
3072                    (BI->isConditional() ? PredBlock : BB);
3073           });
3074     }
3075 
3076     // Now that the Cond was cloned into the predecessor basic block,
3077     // or/and the two conditions together.
3078     if (BI->isConditional()) {
3079       Instruction *NewCond = cast<Instruction>(
3080           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
3081       PBI->setCondition(NewCond);
3082 
3083       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3084       bool HasWeights =
3085           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3086                                  SuccTrueWeight, SuccFalseWeight);
3087       SmallVector<uint64_t, 8> NewWeights;
3088 
3089       if (PBI->getSuccessor(0) == BB) {
3090         if (HasWeights) {
3091           // PBI: br i1 %x, BB, FalseDest
3092           // BI:  br i1 %y, UniqueSucc, FalseDest
3093           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3094           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3095           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3096           //               TrueWeight for PBI * FalseWeight for BI.
3097           // We assume that total weights of a BranchInst can fit into 32 bits.
3098           // Therefore, we will not have overflow using 64-bit arithmetic.
3099           NewWeights.push_back(PredFalseWeight *
3100                                    (SuccFalseWeight + SuccTrueWeight) +
3101                                PredTrueWeight * SuccFalseWeight);
3102         }
3103         PBI->setSuccessor(0, UniqueSucc);
3104       }
3105       if (PBI->getSuccessor(1) == BB) {
3106         if (HasWeights) {
3107           // PBI: br i1 %x, TrueDest, BB
3108           // BI:  br i1 %y, TrueDest, UniqueSucc
3109           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3110           //              FalseWeight for PBI * TrueWeight for BI.
3111           NewWeights.push_back(PredTrueWeight *
3112                                    (SuccFalseWeight + SuccTrueWeight) +
3113                                PredFalseWeight * SuccTrueWeight);
3114           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3115           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3116         }
3117         PBI->setSuccessor(1, UniqueSucc);
3118       }
3119       if (NewWeights.size() == 2) {
3120         // Halve the weights if any of them cannot fit in an uint32_t
3121         FitWeights(NewWeights);
3122 
3123         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
3124                                            NewWeights.end());
3125         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3126       } else
3127         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3128 
3129       Updates.push_back({DominatorTree::Delete, PredBlock, BB});
3130       Updates.push_back({DominatorTree::Insert, PredBlock, UniqueSucc});
3131     } else {
3132       // Update PHI nodes in the common successors.
3133       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
3134         ConstantInt *PBI_C = cast<ConstantInt>(
3135             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
3136         assert(PBI_C->getType()->isIntegerTy(1));
3137         Instruction *MergedCond = nullptr;
3138         if (PBI->getSuccessor(0) == UniqueSucc) {
3139           Updates.push_back(
3140               {DominatorTree::Delete, PredBlock, PBI->getSuccessor(1)});
3141           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
3142           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
3143           //       is false: !PBI_Cond and BI_Value
3144           Instruction *NotCond = cast<Instruction>(
3145               Builder.CreateNot(PBI->getCondition(), "not.cond"));
3146           MergedCond = cast<Instruction>(
3147                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
3148                                    "and.cond"));
3149           if (PBI_C->isOne())
3150             MergedCond = cast<Instruction>(Builder.CreateBinOp(
3151                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
3152         } else {
3153           assert(PBI->getSuccessor(1) == UniqueSucc && "Unexpected branch");
3154           Updates.push_back(
3155               {DominatorTree::Delete, PredBlock, PBI->getSuccessor(0)});
3156           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
3157           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
3158           //       is false: PBI_Cond and BI_Value
3159           MergedCond = cast<Instruction>(Builder.CreateBinOp(
3160               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
3161           if (PBI_C->isOne()) {
3162             Instruction *NotCond = cast<Instruction>(
3163                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
3164             MergedCond = cast<Instruction>(Builder.CreateBinOp(
3165                 Instruction::Or, NotCond, MergedCond, "or.cond"));
3166           }
3167         }
3168         // Update PHI Node.
3169 	PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
3170       }
3171 
3172       // PBI is changed to branch to UniqueSucc below. Remove itself from
3173       // potential phis from all other successors.
3174       if (MSSAU)
3175         MSSAU->changeCondBranchToUnconditionalTo(PBI, UniqueSucc);
3176 
3177       // Change PBI from Conditional to Unconditional.
3178       BranchInst *New_PBI = BranchInst::Create(UniqueSucc, PBI);
3179       EraseTerminatorAndDCECond(PBI, MSSAU);
3180       PBI = New_PBI;
3181     }
3182 
3183     if (DTU)
3184       DTU->applyUpdatesPermissive(Updates);
3185 
3186     // If BI was a loop latch, it may have had associated loop metadata.
3187     // We need to copy it to the new latch, that is, PBI.
3188     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3189       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3190 
3191     // TODO: If BB is reachable from all paths through PredBlock, then we
3192     // could replace PBI's branch probabilities with BI's.
3193 
3194     // Copy any debug value intrinsics into the end of PredBlock.
3195     for (Instruction &I : *BB) {
3196       if (isa<DbgInfoIntrinsic>(I)) {
3197         Instruction *NewI = I.clone();
3198         RemapInstruction(NewI, VMap,
3199                          RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3200         NewI->insertBefore(PBI);
3201       }
3202     }
3203 
3204     return Changed;
3205   }
3206   return Changed;
3207 }
3208 
3209 // If there is only one store in BB1 and BB2, return it, otherwise return
3210 // nullptr.
3211 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3212   StoreInst *S = nullptr;
3213   for (auto *BB : {BB1, BB2}) {
3214     if (!BB)
3215       continue;
3216     for (auto &I : *BB)
3217       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3218         if (S)
3219           // Multiple stores seen.
3220           return nullptr;
3221         else
3222           S = SI;
3223       }
3224   }
3225   return S;
3226 }
3227 
3228 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3229                                               Value *AlternativeV = nullptr) {
3230   // PHI is going to be a PHI node that allows the value V that is defined in
3231   // BB to be referenced in BB's only successor.
3232   //
3233   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3234   // doesn't matter to us what the other operand is (it'll never get used). We
3235   // could just create a new PHI with an undef incoming value, but that could
3236   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3237   // other PHI. So here we directly look for some PHI in BB's successor with V
3238   // as an incoming operand. If we find one, we use it, else we create a new
3239   // one.
3240   //
3241   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3242   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3243   // where OtherBB is the single other predecessor of BB's only successor.
3244   PHINode *PHI = nullptr;
3245   BasicBlock *Succ = BB->getSingleSuccessor();
3246 
3247   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3248     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3249       PHI = cast<PHINode>(I);
3250       if (!AlternativeV)
3251         break;
3252 
3253       assert(Succ->hasNPredecessors(2));
3254       auto PredI = pred_begin(Succ);
3255       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3256       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3257         break;
3258       PHI = nullptr;
3259     }
3260   if (PHI)
3261     return PHI;
3262 
3263   // If V is not an instruction defined in BB, just return it.
3264   if (!AlternativeV &&
3265       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3266     return V;
3267 
3268   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3269   PHI->addIncoming(V, BB);
3270   for (BasicBlock *PredBB : predecessors(Succ))
3271     if (PredBB != BB)
3272       PHI->addIncoming(
3273           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3274   return PHI;
3275 }
3276 
3277 static bool mergeConditionalStoreToAddress(
3278     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3279     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3280     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3281   // For every pointer, there must be exactly two stores, one coming from
3282   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3283   // store (to any address) in PTB,PFB or QTB,QFB.
3284   // FIXME: We could relax this restriction with a bit more work and performance
3285   // testing.
3286   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3287   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3288   if (!PStore || !QStore)
3289     return false;
3290 
3291   // Now check the stores are compatible.
3292   if (!QStore->isUnordered() || !PStore->isUnordered())
3293     return false;
3294 
3295   // Check that sinking the store won't cause program behavior changes. Sinking
3296   // the store out of the Q blocks won't change any behavior as we're sinking
3297   // from a block to its unconditional successor. But we're moving a store from
3298   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3299   // So we need to check that there are no aliasing loads or stores in
3300   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3301   // operations between PStore and the end of its parent block.
3302   //
3303   // The ideal way to do this is to query AliasAnalysis, but we don't
3304   // preserve AA currently so that is dangerous. Be super safe and just
3305   // check there are no other memory operations at all.
3306   for (auto &I : *QFB->getSinglePredecessor())
3307     if (I.mayReadOrWriteMemory())
3308       return false;
3309   for (auto &I : *QFB)
3310     if (&I != QStore && I.mayReadOrWriteMemory())
3311       return false;
3312   if (QTB)
3313     for (auto &I : *QTB)
3314       if (&I != QStore && I.mayReadOrWriteMemory())
3315         return false;
3316   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3317        I != E; ++I)
3318     if (&*I != PStore && I->mayReadOrWriteMemory())
3319       return false;
3320 
3321   // If we're not in aggressive mode, we only optimize if we have some
3322   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3323   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3324     if (!BB)
3325       return true;
3326     // Heuristic: if the block can be if-converted/phi-folded and the
3327     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3328     // thread this store.
3329     int BudgetRemaining =
3330         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3331     for (auto &I : BB->instructionsWithoutDebug()) {
3332       // Consider terminator instruction to be free.
3333       if (I.isTerminator())
3334         continue;
3335       // If this is one the stores that we want to speculate out of this BB,
3336       // then don't count it's cost, consider it to be free.
3337       if (auto *S = dyn_cast<StoreInst>(&I))
3338         if (llvm::find(FreeStores, S))
3339           continue;
3340       // Else, we have a white-list of instructions that we are ak speculating.
3341       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3342         return false; // Not in white-list - not worthwhile folding.
3343       // And finally, if this is a non-free instruction that we are okay
3344       // speculating, ensure that we consider the speculation budget.
3345       BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3346       if (BudgetRemaining < 0)
3347         return false; // Eagerly refuse to fold as soon as we're out of budget.
3348     }
3349     assert(BudgetRemaining >= 0 &&
3350            "When we run out of budget we will eagerly return from within the "
3351            "per-instruction loop.");
3352     return true;
3353   };
3354 
3355   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3356   if (!MergeCondStoresAggressively &&
3357       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3358        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3359     return false;
3360 
3361   // If PostBB has more than two predecessors, we need to split it so we can
3362   // sink the store.
3363   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3364     // We know that QFB's only successor is PostBB. And QFB has a single
3365     // predecessor. If QTB exists, then its only successor is also PostBB.
3366     // If QTB does not exist, then QFB's only predecessor has a conditional
3367     // branch to QFB and PostBB.
3368     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3369     BasicBlock *NewBB =
3370         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split",
3371                                DTU ? &DTU->getDomTree() : nullptr);
3372     if (!NewBB)
3373       return false;
3374     PostBB = NewBB;
3375   }
3376 
3377   // OK, we're going to sink the stores to PostBB. The store has to be
3378   // conditional though, so first create the predicate.
3379   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3380                      ->getCondition();
3381   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3382                      ->getCondition();
3383 
3384   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3385                                                 PStore->getParent());
3386   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3387                                                 QStore->getParent(), PPHI);
3388 
3389   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3390 
3391   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3392   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3393 
3394   if (InvertPCond)
3395     PPred = QB.CreateNot(PPred);
3396   if (InvertQCond)
3397     QPred = QB.CreateNot(QPred);
3398   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3399 
3400   auto *T = SplitBlockAndInsertIfThen(
3401       CombinedPred, &*QB.GetInsertPoint(), /*Unreachable=*/false,
3402       /*BranchWeights=*/nullptr, DTU ? &DTU->getDomTree() : nullptr);
3403   QB.SetInsertPoint(T);
3404   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3405   AAMDNodes AAMD;
3406   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3407   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3408   SI->setAAMetadata(AAMD);
3409   // Choose the minimum alignment. If we could prove both stores execute, we
3410   // could use biggest one.  In this case, though, we only know that one of the
3411   // stores executes.  And we don't know it's safe to take the alignment from a
3412   // store that doesn't execute.
3413   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3414 
3415   QStore->eraseFromParent();
3416   PStore->eraseFromParent();
3417 
3418   return true;
3419 }
3420 
3421 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3422                                    DomTreeUpdater *DTU, const DataLayout &DL,
3423                                    const TargetTransformInfo &TTI) {
3424   // The intention here is to find diamonds or triangles (see below) where each
3425   // conditional block contains a store to the same address. Both of these
3426   // stores are conditional, so they can't be unconditionally sunk. But it may
3427   // be profitable to speculatively sink the stores into one merged store at the
3428   // end, and predicate the merged store on the union of the two conditions of
3429   // PBI and QBI.
3430   //
3431   // This can reduce the number of stores executed if both of the conditions are
3432   // true, and can allow the blocks to become small enough to be if-converted.
3433   // This optimization will also chain, so that ladders of test-and-set
3434   // sequences can be if-converted away.
3435   //
3436   // We only deal with simple diamonds or triangles:
3437   //
3438   //     PBI       or      PBI        or a combination of the two
3439   //    /   \               | \
3440   //   PTB  PFB             |  PFB
3441   //    \   /               | /
3442   //     QBI                QBI
3443   //    /  \                | \
3444   //   QTB  QFB             |  QFB
3445   //    \  /                | /
3446   //    PostBB            PostBB
3447   //
3448   // We model triangles as a type of diamond with a nullptr "true" block.
3449   // Triangles are canonicalized so that the fallthrough edge is represented by
3450   // a true condition, as in the diagram above.
3451   BasicBlock *PTB = PBI->getSuccessor(0);
3452   BasicBlock *PFB = PBI->getSuccessor(1);
3453   BasicBlock *QTB = QBI->getSuccessor(0);
3454   BasicBlock *QFB = QBI->getSuccessor(1);
3455   BasicBlock *PostBB = QFB->getSingleSuccessor();
3456 
3457   // Make sure we have a good guess for PostBB. If QTB's only successor is
3458   // QFB, then QFB is a better PostBB.
3459   if (QTB->getSingleSuccessor() == QFB)
3460     PostBB = QFB;
3461 
3462   // If we couldn't find a good PostBB, stop.
3463   if (!PostBB)
3464     return false;
3465 
3466   bool InvertPCond = false, InvertQCond = false;
3467   // Canonicalize fallthroughs to the true branches.
3468   if (PFB == QBI->getParent()) {
3469     std::swap(PFB, PTB);
3470     InvertPCond = true;
3471   }
3472   if (QFB == PostBB) {
3473     std::swap(QFB, QTB);
3474     InvertQCond = true;
3475   }
3476 
3477   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3478   // and QFB may not. Model fallthroughs as a nullptr block.
3479   if (PTB == QBI->getParent())
3480     PTB = nullptr;
3481   if (QTB == PostBB)
3482     QTB = nullptr;
3483 
3484   // Legality bailouts. We must have at least the non-fallthrough blocks and
3485   // the post-dominating block, and the non-fallthroughs must only have one
3486   // predecessor.
3487   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3488     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3489   };
3490   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3491       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3492     return false;
3493   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3494       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3495     return false;
3496   if (!QBI->getParent()->hasNUses(2))
3497     return false;
3498 
3499   // OK, this is a sequence of two diamonds or triangles.
3500   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3501   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3502   for (auto *BB : {PTB, PFB}) {
3503     if (!BB)
3504       continue;
3505     for (auto &I : *BB)
3506       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3507         PStoreAddresses.insert(SI->getPointerOperand());
3508   }
3509   for (auto *BB : {QTB, QFB}) {
3510     if (!BB)
3511       continue;
3512     for (auto &I : *BB)
3513       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3514         QStoreAddresses.insert(SI->getPointerOperand());
3515   }
3516 
3517   set_intersect(PStoreAddresses, QStoreAddresses);
3518   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3519   // clear what it contains.
3520   auto &CommonAddresses = PStoreAddresses;
3521 
3522   bool Changed = false;
3523   for (auto *Address : CommonAddresses)
3524     Changed |=
3525         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3526                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3527   return Changed;
3528 }
3529 
3530 /// If the previous block ended with a widenable branch, determine if reusing
3531 /// the target block is profitable and legal.  This will have the effect of
3532 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3533 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3534                                            DomTreeUpdater *DTU) {
3535   // TODO: This can be generalized in two important ways:
3536   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3537   //    values from the PBI edge.
3538   // 2) We can sink side effecting instructions into BI's fallthrough
3539   //    successor provided they doesn't contribute to computation of
3540   //    BI's condition.
3541   Value *CondWB, *WC;
3542   BasicBlock *IfTrueBB, *IfFalseBB;
3543   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3544       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3545     return false;
3546   if (!IfFalseBB->phis().empty())
3547     return false; // TODO
3548   // Use lambda to lazily compute expensive condition after cheap ones.
3549   auto NoSideEffects = [](BasicBlock &BB) {
3550     return !llvm::any_of(BB, [](const Instruction &I) {
3551         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3552       });
3553   };
3554   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3555       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3556       NoSideEffects(*BI->getParent())) {
3557     auto *OldSuccessor = BI->getSuccessor(1);
3558     OldSuccessor->removePredecessor(BI->getParent());
3559     BI->setSuccessor(1, IfFalseBB);
3560     if (DTU)
3561       DTU->applyUpdatesPermissive(
3562           {{DominatorTree::Delete, BI->getParent(), OldSuccessor},
3563            {DominatorTree::Insert, BI->getParent(), IfFalseBB}});
3564     return true;
3565   }
3566   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3567       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3568       NoSideEffects(*BI->getParent())) {
3569     auto *OldSuccessor = BI->getSuccessor(0);
3570     OldSuccessor->removePredecessor(BI->getParent());
3571     BI->setSuccessor(0, IfFalseBB);
3572     if (DTU)
3573       DTU->applyUpdatesPermissive(
3574           {{DominatorTree::Delete, BI->getParent(), OldSuccessor},
3575            {DominatorTree::Insert, BI->getParent(), IfFalseBB}});
3576     return true;
3577   }
3578   return false;
3579 }
3580 
3581 /// If we have a conditional branch as a predecessor of another block,
3582 /// this function tries to simplify it.  We know
3583 /// that PBI and BI are both conditional branches, and BI is in one of the
3584 /// successor blocks of PBI - PBI branches to BI.
3585 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3586                                            DomTreeUpdater *DTU,
3587                                            const DataLayout &DL,
3588                                            const TargetTransformInfo &TTI) {
3589   assert(PBI->isConditional() && BI->isConditional());
3590   BasicBlock *BB = BI->getParent();
3591 
3592   // If this block ends with a branch instruction, and if there is a
3593   // predecessor that ends on a branch of the same condition, make
3594   // this conditional branch redundant.
3595   if (PBI->getCondition() == BI->getCondition() &&
3596       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3597     // Okay, the outcome of this conditional branch is statically
3598     // knowable.  If this block had a single pred, handle specially.
3599     if (BB->getSinglePredecessor()) {
3600       // Turn this into a branch on constant.
3601       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3602       BI->setCondition(
3603           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3604       return true; // Nuke the branch on constant.
3605     }
3606 
3607     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3608     // in the constant and simplify the block result.  Subsequent passes of
3609     // simplifycfg will thread the block.
3610     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3611       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3612       PHINode *NewPN = PHINode::Create(
3613           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3614           BI->getCondition()->getName() + ".pr", &BB->front());
3615       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3616       // predecessor, compute the PHI'd conditional value for all of the preds.
3617       // Any predecessor where the condition is not computable we keep symbolic.
3618       for (pred_iterator PI = PB; PI != PE; ++PI) {
3619         BasicBlock *P = *PI;
3620         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3621             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3622             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3623           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3624           NewPN->addIncoming(
3625               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3626               P);
3627         } else {
3628           NewPN->addIncoming(BI->getCondition(), P);
3629         }
3630       }
3631 
3632       BI->setCondition(NewPN);
3633       return true;
3634     }
3635   }
3636 
3637   // If the previous block ended with a widenable branch, determine if reusing
3638   // the target block is profitable and legal.  This will have the effect of
3639   // "widening" PBI, but doesn't require us to reason about hosting safety.
3640   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3641     return true;
3642 
3643   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3644     if (CE->canTrap())
3645       return false;
3646 
3647   // If both branches are conditional and both contain stores to the same
3648   // address, remove the stores from the conditionals and create a conditional
3649   // merged store at the end.
3650   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3651     return true;
3652 
3653   // If this is a conditional branch in an empty block, and if any
3654   // predecessors are a conditional branch to one of our destinations,
3655   // fold the conditions into logical ops and one cond br.
3656 
3657   // Ignore dbg intrinsics.
3658   if (&*BB->instructionsWithoutDebug().begin() != BI)
3659     return false;
3660 
3661   int PBIOp, BIOp;
3662   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3663     PBIOp = 0;
3664     BIOp = 0;
3665   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3666     PBIOp = 0;
3667     BIOp = 1;
3668   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3669     PBIOp = 1;
3670     BIOp = 0;
3671   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3672     PBIOp = 1;
3673     BIOp = 1;
3674   } else {
3675     return false;
3676   }
3677 
3678   // Check to make sure that the other destination of this branch
3679   // isn't BB itself.  If so, this is an infinite loop that will
3680   // keep getting unwound.
3681   if (PBI->getSuccessor(PBIOp) == BB)
3682     return false;
3683 
3684   // Do not perform this transformation if it would require
3685   // insertion of a large number of select instructions. For targets
3686   // without predication/cmovs, this is a big pessimization.
3687 
3688   // Also do not perform this transformation if any phi node in the common
3689   // destination block can trap when reached by BB or PBB (PR17073). In that
3690   // case, it would be unsafe to hoist the operation into a select instruction.
3691 
3692   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3693   unsigned NumPhis = 0;
3694   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3695        ++II, ++NumPhis) {
3696     if (NumPhis > 2) // Disable this xform.
3697       return false;
3698 
3699     PHINode *PN = cast<PHINode>(II);
3700     Value *BIV = PN->getIncomingValueForBlock(BB);
3701     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3702       if (CE->canTrap())
3703         return false;
3704 
3705     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3706     Value *PBIV = PN->getIncomingValue(PBBIdx);
3707     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3708       if (CE->canTrap())
3709         return false;
3710   }
3711 
3712   // Finally, if everything is ok, fold the branches to logical ops.
3713   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3714 
3715   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3716                     << "AND: " << *BI->getParent());
3717 
3718   SmallVector<DominatorTree::UpdateType, 5> Updates;
3719 
3720   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3721   // branch in it, where one edge (OtherDest) goes back to itself but the other
3722   // exits.  We don't *know* that the program avoids the infinite loop
3723   // (even though that seems likely).  If we do this xform naively, we'll end up
3724   // recursively unpeeling the loop.  Since we know that (after the xform is
3725   // done) that the block *is* infinite if reached, we just make it an obviously
3726   // infinite loop with no cond branch.
3727   if (OtherDest == BB) {
3728     // Insert it at the end of the function, because it's either code,
3729     // or it won't matter if it's hot. :)
3730     BasicBlock *InfLoopBlock =
3731         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3732     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3733     Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3734     OtherDest = InfLoopBlock;
3735   }
3736 
3737   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3738 
3739   // BI may have other predecessors.  Because of this, we leave
3740   // it alone, but modify PBI.
3741 
3742   // Make sure we get to CommonDest on True&True directions.
3743   Value *PBICond = PBI->getCondition();
3744   IRBuilder<NoFolder> Builder(PBI);
3745   if (PBIOp)
3746     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3747 
3748   Value *BICond = BI->getCondition();
3749   if (BIOp)
3750     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3751 
3752   // Merge the conditions.
3753   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3754 
3755   for (auto *Successor : successors(PBI->getParent()))
3756     Updates.push_back({DominatorTree::Delete, PBI->getParent(), Successor});
3757 
3758   // Modify PBI to branch on the new condition to the new dests.
3759   PBI->setCondition(Cond);
3760   PBI->setSuccessor(0, CommonDest);
3761   PBI->setSuccessor(1, OtherDest);
3762 
3763   for (auto *Successor : successors(PBI->getParent()))
3764     Updates.push_back({DominatorTree::Insert, PBI->getParent(), Successor});
3765 
3766   if (DTU)
3767     DTU->applyUpdatesPermissive(Updates);
3768 
3769   // Update branch weight for PBI.
3770   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3771   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3772   bool HasWeights =
3773       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3774                              SuccTrueWeight, SuccFalseWeight);
3775   if (HasWeights) {
3776     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3777     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3778     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3779     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3780     // The weight to CommonDest should be PredCommon * SuccTotal +
3781     //                                    PredOther * SuccCommon.
3782     // The weight to OtherDest should be PredOther * SuccOther.
3783     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3784                                   PredOther * SuccCommon,
3785                               PredOther * SuccOther};
3786     // Halve the weights if any of them cannot fit in an uint32_t
3787     FitWeights(NewWeights);
3788 
3789     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3790   }
3791 
3792   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3793   // block that are identical to the entries for BI's block.
3794   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3795 
3796   // We know that the CommonDest already had an edge from PBI to
3797   // it.  If it has PHIs though, the PHIs may have different
3798   // entries for BB and PBI's BB.  If so, insert a select to make
3799   // them agree.
3800   for (PHINode &PN : CommonDest->phis()) {
3801     Value *BIV = PN.getIncomingValueForBlock(BB);
3802     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3803     Value *PBIV = PN.getIncomingValue(PBBIdx);
3804     if (BIV != PBIV) {
3805       // Insert a select in PBI to pick the right value.
3806       SelectInst *NV = cast<SelectInst>(
3807           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3808       PN.setIncomingValue(PBBIdx, NV);
3809       // Although the select has the same condition as PBI, the original branch
3810       // weights for PBI do not apply to the new select because the select's
3811       // 'logical' edges are incoming edges of the phi that is eliminated, not
3812       // the outgoing edges of PBI.
3813       if (HasWeights) {
3814         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3815         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3816         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3817         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3818         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3819         // The weight to PredOtherDest should be PredOther * SuccCommon.
3820         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3821                                   PredOther * SuccCommon};
3822 
3823         FitWeights(NewWeights);
3824 
3825         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3826       }
3827     }
3828   }
3829 
3830   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3831   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3832 
3833   // This basic block is probably dead.  We know it has at least
3834   // one fewer predecessor.
3835   return true;
3836 }
3837 
3838 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3839 // true or to FalseBB if Cond is false.
3840 // Takes care of updating the successors and removing the old terminator.
3841 // Also makes sure not to introduce new successors by assuming that edges to
3842 // non-successor TrueBBs and FalseBBs aren't reachable.
3843 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3844                                                 Value *Cond, BasicBlock *TrueBB,
3845                                                 BasicBlock *FalseBB,
3846                                                 uint32_t TrueWeight,
3847                                                 uint32_t FalseWeight) {
3848   // Remove any superfluous successor edges from the CFG.
3849   // First, figure out which successors to preserve.
3850   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3851   // successor.
3852   BasicBlock *KeepEdge1 = TrueBB;
3853   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3854 
3855   SmallVector<DominatorTree::UpdateType, 4> Updates;
3856 
3857   // Then remove the rest.
3858   for (BasicBlock *Succ : successors(OldTerm)) {
3859     // Make sure only to keep exactly one copy of each edge.
3860     if (Succ == KeepEdge1)
3861       KeepEdge1 = nullptr;
3862     else if (Succ == KeepEdge2)
3863       KeepEdge2 = nullptr;
3864     else {
3865       Succ->removePredecessor(OldTerm->getParent(),
3866                               /*KeepOneInputPHIs=*/true);
3867       Updates.push_back({DominatorTree::Delete, OldTerm->getParent(), Succ});
3868     }
3869   }
3870 
3871   IRBuilder<> Builder(OldTerm);
3872   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3873 
3874   // Insert an appropriate new terminator.
3875   if (!KeepEdge1 && !KeepEdge2) {
3876     if (TrueBB == FalseBB) {
3877       // We were only looking for one successor, and it was present.
3878       // Create an unconditional branch to it.
3879       Builder.CreateBr(TrueBB);
3880       Updates.push_back({DominatorTree::Insert, OldTerm->getParent(), TrueBB});
3881     } else {
3882       // We found both of the successors we were looking for.
3883       // Create a conditional branch sharing the condition of the select.
3884       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3885       Updates.push_back({DominatorTree::Insert, OldTerm->getParent(), TrueBB});
3886       Updates.push_back({DominatorTree::Insert, OldTerm->getParent(), FalseBB});
3887       if (TrueWeight != FalseWeight)
3888         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3889     }
3890   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3891     // Neither of the selected blocks were successors, so this
3892     // terminator must be unreachable.
3893     new UnreachableInst(OldTerm->getContext(), OldTerm);
3894   } else {
3895     // One of the selected values was a successor, but the other wasn't.
3896     // Insert an unconditional branch to the one that was found;
3897     // the edge to the one that wasn't must be unreachable.
3898     if (!KeepEdge1) {
3899       // Only TrueBB was found.
3900       Builder.CreateBr(TrueBB);
3901       Updates.push_back({DominatorTree::Insert, OldTerm->getParent(), TrueBB});
3902     } else {
3903       // Only FalseBB was found.
3904       Builder.CreateBr(FalseBB);
3905       Updates.push_back({DominatorTree::Insert, OldTerm->getParent(), FalseBB});
3906     }
3907   }
3908 
3909   EraseTerminatorAndDCECond(OldTerm);
3910   if (DTU)
3911     DTU->applyUpdatesPermissive(Updates);
3912   return true;
3913 }
3914 
3915 // Replaces
3916 //   (switch (select cond, X, Y)) on constant X, Y
3917 // with a branch - conditional if X and Y lead to distinct BBs,
3918 // unconditional otherwise.
3919 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3920                                             SelectInst *Select) {
3921   // Check for constant integer values in the select.
3922   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3923   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3924   if (!TrueVal || !FalseVal)
3925     return false;
3926 
3927   // Find the relevant condition and destinations.
3928   Value *Condition = Select->getCondition();
3929   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3930   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3931 
3932   // Get weight for TrueBB and FalseBB.
3933   uint32_t TrueWeight = 0, FalseWeight = 0;
3934   SmallVector<uint64_t, 8> Weights;
3935   bool HasWeights = HasBranchWeights(SI);
3936   if (HasWeights) {
3937     GetBranchWeights(SI, Weights);
3938     if (Weights.size() == 1 + SI->getNumCases()) {
3939       TrueWeight =
3940           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3941       FalseWeight =
3942           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3943     }
3944   }
3945 
3946   // Perform the actual simplification.
3947   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3948                                     FalseWeight);
3949 }
3950 
3951 // Replaces
3952 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3953 //                             blockaddress(@fn, BlockB)))
3954 // with
3955 //   (br cond, BlockA, BlockB).
3956 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3957                                                 SelectInst *SI) {
3958   // Check that both operands of the select are block addresses.
3959   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3960   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3961   if (!TBA || !FBA)
3962     return false;
3963 
3964   // Extract the actual blocks.
3965   BasicBlock *TrueBB = TBA->getBasicBlock();
3966   BasicBlock *FalseBB = FBA->getBasicBlock();
3967 
3968   // Perform the actual simplification.
3969   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3970                                     0);
3971 }
3972 
3973 /// This is called when we find an icmp instruction
3974 /// (a seteq/setne with a constant) as the only instruction in a
3975 /// block that ends with an uncond branch.  We are looking for a very specific
3976 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3977 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3978 /// default value goes to an uncond block with a seteq in it, we get something
3979 /// like:
3980 ///
3981 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3982 /// DEFAULT:
3983 ///   %tmp = icmp eq i8 %A, 92
3984 ///   br label %end
3985 /// end:
3986 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3987 ///
3988 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3989 /// the PHI, merging the third icmp into the switch.
3990 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3991     ICmpInst *ICI, IRBuilder<> &Builder) {
3992   BasicBlock *BB = ICI->getParent();
3993 
3994   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3995   // complex.
3996   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3997     return false;
3998 
3999   Value *V = ICI->getOperand(0);
4000   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4001 
4002   // The pattern we're looking for is where our only predecessor is a switch on
4003   // 'V' and this block is the default case for the switch.  In this case we can
4004   // fold the compared value into the switch to simplify things.
4005   BasicBlock *Pred = BB->getSinglePredecessor();
4006   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4007     return false;
4008 
4009   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4010   if (SI->getCondition() != V)
4011     return false;
4012 
4013   // If BB is reachable on a non-default case, then we simply know the value of
4014   // V in this block.  Substitute it and constant fold the icmp instruction
4015   // away.
4016   if (SI->getDefaultDest() != BB) {
4017     ConstantInt *VVal = SI->findCaseDest(BB);
4018     assert(VVal && "Should have a unique destination value");
4019     ICI->setOperand(0, VVal);
4020 
4021     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4022       ICI->replaceAllUsesWith(V);
4023       ICI->eraseFromParent();
4024     }
4025     // BB is now empty, so it is likely to simplify away.
4026     return requestResimplify();
4027   }
4028 
4029   // Ok, the block is reachable from the default dest.  If the constant we're
4030   // comparing exists in one of the other edges, then we can constant fold ICI
4031   // and zap it.
4032   if (SI->findCaseValue(Cst) != SI->case_default()) {
4033     Value *V;
4034     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4035       V = ConstantInt::getFalse(BB->getContext());
4036     else
4037       V = ConstantInt::getTrue(BB->getContext());
4038 
4039     ICI->replaceAllUsesWith(V);
4040     ICI->eraseFromParent();
4041     // BB is now empty, so it is likely to simplify away.
4042     return requestResimplify();
4043   }
4044 
4045   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4046   // the block.
4047   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4048   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4049   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4050       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4051     return false;
4052 
4053   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4054   // true in the PHI.
4055   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4056   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4057 
4058   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4059     std::swap(DefaultCst, NewCst);
4060 
4061   // Replace ICI (which is used by the PHI for the default value) with true or
4062   // false depending on if it is EQ or NE.
4063   ICI->replaceAllUsesWith(DefaultCst);
4064   ICI->eraseFromParent();
4065 
4066   SmallVector<DominatorTree::UpdateType, 2> Updates;
4067 
4068   // Okay, the switch goes to this block on a default value.  Add an edge from
4069   // the switch to the merge point on the compared value.
4070   BasicBlock *NewBB =
4071       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4072   {
4073     SwitchInstProfUpdateWrapper SIW(*SI);
4074     auto W0 = SIW.getSuccessorWeight(0);
4075     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4076     if (W0) {
4077       NewW = ((uint64_t(*W0) + 1) >> 1);
4078       SIW.setSuccessorWeight(0, *NewW);
4079     }
4080     SIW.addCase(Cst, NewBB, NewW);
4081     Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4082   }
4083 
4084   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4085   Builder.SetInsertPoint(NewBB);
4086   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4087   Builder.CreateBr(SuccBlock);
4088   Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4089   PHIUse->addIncoming(NewCst, NewBB);
4090   if (DTU)
4091     DTU->applyUpdatesPermissive(Updates);
4092   return true;
4093 }
4094 
4095 /// The specified branch is a conditional branch.
4096 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4097 /// fold it into a switch instruction if so.
4098 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4099                                                IRBuilder<> &Builder,
4100                                                const DataLayout &DL) {
4101   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4102   if (!Cond)
4103     return false;
4104 
4105   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4106   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4107   // 'setne's and'ed together, collect them.
4108 
4109   // Try to gather values from a chain of and/or to be turned into a switch
4110   ConstantComparesGatherer ConstantCompare(Cond, DL);
4111   // Unpack the result
4112   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4113   Value *CompVal = ConstantCompare.CompValue;
4114   unsigned UsedICmps = ConstantCompare.UsedICmps;
4115   Value *ExtraCase = ConstantCompare.Extra;
4116 
4117   // If we didn't have a multiply compared value, fail.
4118   if (!CompVal)
4119     return false;
4120 
4121   // Avoid turning single icmps into a switch.
4122   if (UsedICmps <= 1)
4123     return false;
4124 
4125   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
4126 
4127   // There might be duplicate constants in the list, which the switch
4128   // instruction can't handle, remove them now.
4129   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4130   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4131 
4132   // If Extra was used, we require at least two switch values to do the
4133   // transformation.  A switch with one value is just a conditional branch.
4134   if (ExtraCase && Values.size() < 2)
4135     return false;
4136 
4137   // TODO: Preserve branch weight metadata, similarly to how
4138   // FoldValueComparisonIntoPredecessors preserves it.
4139 
4140   // Figure out which block is which destination.
4141   BasicBlock *DefaultBB = BI->getSuccessor(1);
4142   BasicBlock *EdgeBB = BI->getSuccessor(0);
4143   if (!TrueWhenEqual)
4144     std::swap(DefaultBB, EdgeBB);
4145 
4146   BasicBlock *BB = BI->getParent();
4147 
4148   // MSAN does not like undefs as branch condition which can be introduced
4149   // with "explicit branch".
4150   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4151     return false;
4152 
4153   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4154                     << " cases into SWITCH.  BB is:\n"
4155                     << *BB);
4156 
4157   SmallVector<DominatorTree::UpdateType, 2> Updates;
4158 
4159   // If there are any extra values that couldn't be folded into the switch
4160   // then we evaluate them with an explicit branch first. Split the block
4161   // right before the condbr to handle it.
4162   if (ExtraCase) {
4163     BasicBlock *NewBB =
4164         SplitBlock(BB, BI, DTU ? &DTU->getDomTree() : nullptr, /*LI=*/nullptr,
4165                    /*MSSAU=*/nullptr, "switch.early.test");
4166 
4167     // Remove the uncond branch added to the old block.
4168     Instruction *OldTI = BB->getTerminator();
4169     Builder.SetInsertPoint(OldTI);
4170 
4171     if (TrueWhenEqual)
4172       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4173     else
4174       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4175 
4176     OldTI->eraseFromParent();
4177 
4178     Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4179 
4180     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4181     // for the edge we just added.
4182     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4183 
4184     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4185                       << "\nEXTRABB = " << *BB);
4186     BB = NewBB;
4187   }
4188 
4189   Builder.SetInsertPoint(BI);
4190   // Convert pointer to int before we switch.
4191   if (CompVal->getType()->isPointerTy()) {
4192     CompVal = Builder.CreatePtrToInt(
4193         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4194   }
4195 
4196   // Create the new switch instruction now.
4197   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4198 
4199   // Add all of the 'cases' to the switch instruction.
4200   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4201     New->addCase(Values[i], EdgeBB);
4202 
4203   // We added edges from PI to the EdgeBB.  As such, if there were any
4204   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4205   // the number of edges added.
4206   Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4207   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4208     PHINode *PN = cast<PHINode>(BBI);
4209     Value *InVal = PN->getIncomingValueForBlock(BB);
4210     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4211       PN->addIncoming(InVal, BB);
4212   }
4213 
4214   // Erase the old branch instruction.
4215   EraseTerminatorAndDCECond(BI);
4216   if (DTU)
4217     DTU->applyUpdatesPermissive(Updates);
4218 
4219   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4220   return true;
4221 }
4222 
4223 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4224   if (isa<PHINode>(RI->getValue()))
4225     return simplifyCommonResume(RI);
4226   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4227            RI->getValue() == RI->getParent()->getFirstNonPHI())
4228     // The resume must unwind the exception that caused control to branch here.
4229     return simplifySingleResume(RI);
4230 
4231   return false;
4232 }
4233 
4234 // Check if cleanup block is empty
4235 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4236   for (Instruction &I : R) {
4237     auto *II = dyn_cast<IntrinsicInst>(&I);
4238     if (!II)
4239       return false;
4240 
4241     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4242     switch (IntrinsicID) {
4243     case Intrinsic::dbg_declare:
4244     case Intrinsic::dbg_value:
4245     case Intrinsic::dbg_label:
4246     case Intrinsic::lifetime_end:
4247       break;
4248     default:
4249       return false;
4250     }
4251   }
4252   return true;
4253 }
4254 
4255 // Simplify resume that is shared by several landing pads (phi of landing pad).
4256 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4257   BasicBlock *BB = RI->getParent();
4258 
4259   // Check that there are no other instructions except for debug and lifetime
4260   // intrinsics between the phi's and resume instruction.
4261   if (!isCleanupBlockEmpty(
4262           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4263     return false;
4264 
4265   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4266   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4267 
4268   // Check incoming blocks to see if any of them are trivial.
4269   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4270        Idx++) {
4271     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4272     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4273 
4274     // If the block has other successors, we can not delete it because
4275     // it has other dependents.
4276     if (IncomingBB->getUniqueSuccessor() != BB)
4277       continue;
4278 
4279     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4280     // Not the landing pad that caused the control to branch here.
4281     if (IncomingValue != LandingPad)
4282       continue;
4283 
4284     if (isCleanupBlockEmpty(
4285             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4286       TrivialUnwindBlocks.insert(IncomingBB);
4287   }
4288 
4289   // If no trivial unwind blocks, don't do any simplifications.
4290   if (TrivialUnwindBlocks.empty())
4291     return false;
4292 
4293   // Turn all invokes that unwind here into calls.
4294   for (auto *TrivialBB : TrivialUnwindBlocks) {
4295     // Blocks that will be simplified should be removed from the phi node.
4296     // Note there could be multiple edges to the resume block, and we need
4297     // to remove them all.
4298     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4299       BB->removePredecessor(TrivialBB, true);
4300 
4301     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
4302          PI != PE;) {
4303       BasicBlock *Pred = *PI++;
4304       removeUnwindEdge(Pred, DTU);
4305       ++NumInvokes;
4306     }
4307 
4308     // In each SimplifyCFG run, only the current processed block can be erased.
4309     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4310     // of erasing TrivialBB, we only remove the branch to the common resume
4311     // block so that we can later erase the resume block since it has no
4312     // predecessors.
4313     TrivialBB->getTerminator()->eraseFromParent();
4314     new UnreachableInst(RI->getContext(), TrivialBB);
4315     if (DTU)
4316       DTU->applyUpdatesPermissive({{DominatorTree::Delete, TrivialBB, BB}});
4317   }
4318 
4319   // Delete the resume block if all its predecessors have been removed.
4320   if (pred_empty(BB)) {
4321     if (DTU)
4322       DTU->deleteBB(BB);
4323     else
4324       BB->eraseFromParent();
4325   }
4326 
4327   return !TrivialUnwindBlocks.empty();
4328 }
4329 
4330 // Simplify resume that is only used by a single (non-phi) landing pad.
4331 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4332   BasicBlock *BB = RI->getParent();
4333   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4334   assert(RI->getValue() == LPInst &&
4335          "Resume must unwind the exception that caused control to here");
4336 
4337   // Check that there are no other instructions except for debug intrinsics.
4338   if (!isCleanupBlockEmpty(
4339           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4340     return false;
4341 
4342   // Turn all invokes that unwind here into calls and delete the basic block.
4343   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4344     BasicBlock *Pred = *PI++;
4345     removeUnwindEdge(Pred, DTU);
4346     ++NumInvokes;
4347   }
4348 
4349   // The landingpad is now unreachable.  Zap it.
4350   if (LoopHeaders)
4351     LoopHeaders->erase(BB);
4352   if (DTU)
4353     DTU->deleteBB(BB);
4354   else
4355     BB->eraseFromParent();
4356   return true;
4357 }
4358 
4359 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4360   // If this is a trivial cleanup pad that executes no instructions, it can be
4361   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4362   // that is an EH pad will be updated to continue to the caller and any
4363   // predecessor that terminates with an invoke instruction will have its invoke
4364   // instruction converted to a call instruction.  If the cleanup pad being
4365   // simplified does not continue to the caller, each predecessor will be
4366   // updated to continue to the unwind destination of the cleanup pad being
4367   // simplified.
4368   BasicBlock *BB = RI->getParent();
4369   CleanupPadInst *CPInst = RI->getCleanupPad();
4370   if (CPInst->getParent() != BB)
4371     // This isn't an empty cleanup.
4372     return false;
4373 
4374   // We cannot kill the pad if it has multiple uses.  This typically arises
4375   // from unreachable basic blocks.
4376   if (!CPInst->hasOneUse())
4377     return false;
4378 
4379   // Check that there are no other instructions except for benign intrinsics.
4380   if (!isCleanupBlockEmpty(
4381           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4382     return false;
4383 
4384   // If the cleanup return we are simplifying unwinds to the caller, this will
4385   // set UnwindDest to nullptr.
4386   BasicBlock *UnwindDest = RI->getUnwindDest();
4387   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4388 
4389   // We're about to remove BB from the control flow.  Before we do, sink any
4390   // PHINodes into the unwind destination.  Doing this before changing the
4391   // control flow avoids some potentially slow checks, since we can currently
4392   // be certain that UnwindDest and BB have no common predecessors (since they
4393   // are both EH pads).
4394   if (UnwindDest) {
4395     // First, go through the PHI nodes in UnwindDest and update any nodes that
4396     // reference the block we are removing
4397     for (BasicBlock::iterator I = UnwindDest->begin(),
4398                               IE = DestEHPad->getIterator();
4399          I != IE; ++I) {
4400       PHINode *DestPN = cast<PHINode>(I);
4401 
4402       int Idx = DestPN->getBasicBlockIndex(BB);
4403       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4404       assert(Idx != -1);
4405       // This PHI node has an incoming value that corresponds to a control
4406       // path through the cleanup pad we are removing.  If the incoming
4407       // value is in the cleanup pad, it must be a PHINode (because we
4408       // verified above that the block is otherwise empty).  Otherwise, the
4409       // value is either a constant or a value that dominates the cleanup
4410       // pad being removed.
4411       //
4412       // Because BB and UnwindDest are both EH pads, all of their
4413       // predecessors must unwind to these blocks, and since no instruction
4414       // can have multiple unwind destinations, there will be no overlap in
4415       // incoming blocks between SrcPN and DestPN.
4416       Value *SrcVal = DestPN->getIncomingValue(Idx);
4417       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4418 
4419       // Remove the entry for the block we are deleting.
4420       DestPN->removeIncomingValue(Idx, false);
4421 
4422       if (SrcPN && SrcPN->getParent() == BB) {
4423         // If the incoming value was a PHI node in the cleanup pad we are
4424         // removing, we need to merge that PHI node's incoming values into
4425         // DestPN.
4426         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4427              SrcIdx != SrcE; ++SrcIdx) {
4428           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4429                               SrcPN->getIncomingBlock(SrcIdx));
4430         }
4431       } else {
4432         // Otherwise, the incoming value came from above BB and
4433         // so we can just reuse it.  We must associate all of BB's
4434         // predecessors with this value.
4435         for (auto *pred : predecessors(BB)) {
4436           DestPN->addIncoming(SrcVal, pred);
4437         }
4438       }
4439     }
4440 
4441     // Sink any remaining PHI nodes directly into UnwindDest.
4442     Instruction *InsertPt = DestEHPad;
4443     for (BasicBlock::iterator I = BB->begin(),
4444                               IE = BB->getFirstNonPHI()->getIterator();
4445          I != IE;) {
4446       // The iterator must be incremented here because the instructions are
4447       // being moved to another block.
4448       PHINode *PN = cast<PHINode>(I++);
4449       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4450         // If the PHI node has no uses or all of its uses are in this basic
4451         // block (meaning they are debug or lifetime intrinsics), just leave
4452         // it.  It will be erased when we erase BB below.
4453         continue;
4454 
4455       // Otherwise, sink this PHI node into UnwindDest.
4456       // Any predecessors to UnwindDest which are not already represented
4457       // must be back edges which inherit the value from the path through
4458       // BB.  In this case, the PHI value must reference itself.
4459       for (auto *pred : predecessors(UnwindDest))
4460         if (pred != BB)
4461           PN->addIncoming(PN, pred);
4462       PN->moveBefore(InsertPt);
4463     }
4464   }
4465 
4466   std::vector<DominatorTree::UpdateType> Updates;
4467 
4468   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4469     // The iterator must be updated here because we are removing this pred.
4470     BasicBlock *PredBB = *PI++;
4471     if (UnwindDest == nullptr) {
4472       if (DTU)
4473         DTU->applyUpdatesPermissive(Updates);
4474       Updates.clear();
4475       removeUnwindEdge(PredBB, DTU);
4476       ++NumInvokes;
4477     } else {
4478       Instruction *TI = PredBB->getTerminator();
4479       TI->replaceUsesOfWith(BB, UnwindDest);
4480       Updates.push_back({DominatorTree::Delete, PredBB, BB});
4481       Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4482     }
4483   }
4484 
4485   if (DTU) {
4486     DTU->applyUpdatesPermissive(Updates);
4487     DTU->deleteBB(BB);
4488   } else
4489     // The cleanup pad is now unreachable.  Zap it.
4490     BB->eraseFromParent();
4491 
4492   return true;
4493 }
4494 
4495 // Try to merge two cleanuppads together.
4496 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4497   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4498   // with.
4499   BasicBlock *UnwindDest = RI->getUnwindDest();
4500   if (!UnwindDest)
4501     return false;
4502 
4503   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4504   // be safe to merge without code duplication.
4505   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4506     return false;
4507 
4508   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4509   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4510   if (!SuccessorCleanupPad)
4511     return false;
4512 
4513   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4514   // Replace any uses of the successor cleanupad with the predecessor pad
4515   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4516   // funclet bundle operands.
4517   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4518   // Remove the old cleanuppad.
4519   SuccessorCleanupPad->eraseFromParent();
4520   // Now, we simply replace the cleanupret with a branch to the unwind
4521   // destination.
4522   BranchInst::Create(UnwindDest, RI->getParent());
4523   RI->eraseFromParent();
4524 
4525   return true;
4526 }
4527 
4528 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4529   // It is possible to transiantly have an undef cleanuppad operand because we
4530   // have deleted some, but not all, dead blocks.
4531   // Eventually, this block will be deleted.
4532   if (isa<UndefValue>(RI->getOperand(0)))
4533     return false;
4534 
4535   if (mergeCleanupPad(RI))
4536     return true;
4537 
4538   if (removeEmptyCleanup(RI, DTU))
4539     return true;
4540 
4541   return false;
4542 }
4543 
4544 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4545   BasicBlock *BB = RI->getParent();
4546   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4547     return false;
4548 
4549   // Find predecessors that end with branches.
4550   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4551   SmallVector<BranchInst *, 8> CondBranchPreds;
4552   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4553     BasicBlock *P = *PI;
4554     Instruction *PTI = P->getTerminator();
4555     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4556       if (BI->isUnconditional())
4557         UncondBranchPreds.push_back(P);
4558       else
4559         CondBranchPreds.push_back(BI);
4560     }
4561   }
4562 
4563   // If we found some, do the transformation!
4564   if (!UncondBranchPreds.empty() && DupRet) {
4565     while (!UncondBranchPreds.empty()) {
4566       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4567       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4568                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4569       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4570     }
4571 
4572     // If we eliminated all predecessors of the block, delete the block now.
4573     if (pred_empty(BB)) {
4574       // We know there are no successors, so just nuke the block.
4575       if (LoopHeaders)
4576         LoopHeaders->erase(BB);
4577       if (DTU)
4578         DTU->deleteBB(BB);
4579       else
4580         BB->eraseFromParent();
4581     }
4582 
4583     return true;
4584   }
4585 
4586   // Check out all of the conditional branches going to this return
4587   // instruction.  If any of them just select between returns, change the
4588   // branch itself into a select/return pair.
4589   while (!CondBranchPreds.empty()) {
4590     BranchInst *BI = CondBranchPreds.pop_back_val();
4591 
4592     // Check to see if the non-BB successor is also a return block.
4593     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4594         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4595         SimplifyCondBranchToTwoReturns(BI, Builder))
4596       return true;
4597   }
4598   return false;
4599 }
4600 
4601 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4602   BasicBlock *BB = UI->getParent();
4603 
4604   bool Changed = false;
4605 
4606   // If there are any instructions immediately before the unreachable that can
4607   // be removed, do so.
4608   while (UI->getIterator() != BB->begin()) {
4609     BasicBlock::iterator BBI = UI->getIterator();
4610     --BBI;
4611     // Do not delete instructions that can have side effects which might cause
4612     // the unreachable to not be reachable; specifically, calls and volatile
4613     // operations may have this effect.
4614     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4615       break;
4616 
4617     if (BBI->mayHaveSideEffects()) {
4618       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4619         if (SI->isVolatile())
4620           break;
4621       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4622         if (LI->isVolatile())
4623           break;
4624       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4625         if (RMWI->isVolatile())
4626           break;
4627       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4628         if (CXI->isVolatile())
4629           break;
4630       } else if (isa<CatchPadInst>(BBI)) {
4631         // A catchpad may invoke exception object constructors and such, which
4632         // in some languages can be arbitrary code, so be conservative by
4633         // default.
4634         // For CoreCLR, it just involves a type test, so can be removed.
4635         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4636             EHPersonality::CoreCLR)
4637           break;
4638       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4639                  !isa<LandingPadInst>(BBI)) {
4640         break;
4641       }
4642       // Note that deleting LandingPad's here is in fact okay, although it
4643       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4644       // all the predecessors of this block will be the unwind edges of Invokes,
4645       // and we can therefore guarantee this block will be erased.
4646     }
4647 
4648     // Delete this instruction (any uses are guaranteed to be dead)
4649     if (!BBI->use_empty())
4650       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4651     BBI->eraseFromParent();
4652     Changed = true;
4653   }
4654 
4655   // If the unreachable instruction is the first in the block, take a gander
4656   // at all of the predecessors of this instruction, and simplify them.
4657   if (&BB->front() != UI)
4658     return Changed;
4659 
4660   std::vector<DominatorTree::UpdateType> Updates;
4661 
4662   SmallVector<BasicBlock *, 8> Preds(predecessors(BB));
4663   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4664     auto *Predecessor = Preds[i];
4665     Instruction *TI = Predecessor->getTerminator();
4666     IRBuilder<> Builder(TI);
4667     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4668       if (BI->isUnconditional()) {
4669         assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4670         new UnreachableInst(TI->getContext(), TI);
4671         TI->eraseFromParent();
4672         Changed = true;
4673       } else {
4674         Value* Cond = BI->getCondition();
4675         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4676                "Same-destination conditional branch instruction was "
4677                "already canonicalized into an unconditional branch.");
4678         if (BI->getSuccessor(0) == BB) {
4679           Builder.CreateAssumption(Builder.CreateNot(Cond));
4680           Builder.CreateBr(BI->getSuccessor(1));
4681         } else {
4682           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4683           Builder.CreateAssumption(Cond);
4684           Builder.CreateBr(BI->getSuccessor(0));
4685         }
4686         EraseTerminatorAndDCECond(BI);
4687         Changed = true;
4688       }
4689       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4690     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4691       SwitchInstProfUpdateWrapper SU(*SI);
4692       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4693         if (i->getCaseSuccessor() != BB) {
4694           ++i;
4695           continue;
4696         }
4697         BB->removePredecessor(SU->getParent());
4698         i = SU.removeCase(i);
4699         e = SU->case_end();
4700         Changed = true;
4701       }
4702       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4703     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4704       if (II->getUnwindDest() == BB) {
4705         if (DTU)
4706           DTU->applyUpdatesPermissive(Updates);
4707         Updates.clear();
4708         removeUnwindEdge(TI->getParent(), DTU);
4709         Changed = true;
4710       }
4711     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4712       if (CSI->getUnwindDest() == BB) {
4713         if (DTU)
4714           DTU->applyUpdatesPermissive(Updates);
4715         Updates.clear();
4716         removeUnwindEdge(TI->getParent(), DTU);
4717         Changed = true;
4718         continue;
4719       }
4720 
4721       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4722                                              E = CSI->handler_end();
4723            I != E; ++I) {
4724         if (*I == BB) {
4725           CSI->removeHandler(I);
4726           --I;
4727           --E;
4728           Changed = true;
4729         }
4730       }
4731       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4732       if (CSI->getNumHandlers() == 0) {
4733         if (CSI->hasUnwindDest()) {
4734           // Redirect all predecessors of the block containing CatchSwitchInst
4735           // to instead branch to the CatchSwitchInst's unwind destination.
4736           for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4737             Updates.push_back(
4738                 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor});
4739             Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor,
4740                                CSI->getUnwindDest()});
4741           }
4742           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4743         } else {
4744           // Rewrite all preds to unwind to caller (or from invoke to call).
4745           if (DTU)
4746             DTU->applyUpdatesPermissive(Updates);
4747           Updates.clear();
4748           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4749           for (BasicBlock *EHPred : EHPreds)
4750             removeUnwindEdge(EHPred, DTU);
4751         }
4752         // The catchswitch is no longer reachable.
4753         new UnreachableInst(CSI->getContext(), CSI);
4754         CSI->eraseFromParent();
4755         Changed = true;
4756       }
4757     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4758       (void)CRI;
4759       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4760              "Expected to always have an unwind to BB.");
4761       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4762       new UnreachableInst(TI->getContext(), TI);
4763       TI->eraseFromParent();
4764       Changed = true;
4765     }
4766   }
4767 
4768   if (DTU)
4769     DTU->applyUpdatesPermissive(Updates);
4770 
4771   // If this block is now dead, remove it.
4772   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4773     // We know there are no successors, so just nuke the block.
4774     if (LoopHeaders)
4775       LoopHeaders->erase(BB);
4776     if (DTU)
4777       DTU->deleteBB(BB);
4778     else
4779       BB->eraseFromParent();
4780     return true;
4781   }
4782 
4783   return Changed;
4784 }
4785 
4786 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4787   assert(Cases.size() >= 1);
4788 
4789   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4790   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4791     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4792       return false;
4793   }
4794   return true;
4795 }
4796 
4797 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4798                                            DomTreeUpdater *DTU) {
4799   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4800   auto *BB = Switch->getParent();
4801   BasicBlock *NewDefaultBlock =
4802       SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "",
4803                              DTU ? &DTU->getDomTree() : nullptr);
4804   auto *OrigDefaultBlock = Switch->getDefaultDest();
4805   Switch->setDefaultDest(&*NewDefaultBlock);
4806   if (DTU)
4807     DTU->applyUpdatesPermissive(
4808         {{DominatorTree::Delete, BB, OrigDefaultBlock},
4809          {DominatorTree::Insert, BB, &*NewDefaultBlock}});
4810   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(),
4811              DTU ? &DTU->getDomTree() : nullptr);
4812   SmallVector<DominatorTree::UpdateType, 2> Updates;
4813   for (auto *Successor : successors(NewDefaultBlock))
4814     Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4815   auto *NewTerminator = NewDefaultBlock->getTerminator();
4816   new UnreachableInst(Switch->getContext(), NewTerminator);
4817   EraseTerminatorAndDCECond(NewTerminator);
4818   if (DTU)
4819     DTU->applyUpdatesPermissive(Updates);
4820 }
4821 
4822 /// Turn a switch with two reachable destinations into an integer range
4823 /// comparison and branch.
4824 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4825                                              IRBuilder<> &Builder) {
4826   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4827 
4828   bool HasDefault =
4829       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4830 
4831   auto *BB = SI->getParent();
4832 
4833   // Partition the cases into two sets with different destinations.
4834   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4835   BasicBlock *DestB = nullptr;
4836   SmallVector<ConstantInt *, 16> CasesA;
4837   SmallVector<ConstantInt *, 16> CasesB;
4838 
4839   for (auto Case : SI->cases()) {
4840     BasicBlock *Dest = Case.getCaseSuccessor();
4841     if (!DestA)
4842       DestA = Dest;
4843     if (Dest == DestA) {
4844       CasesA.push_back(Case.getCaseValue());
4845       continue;
4846     }
4847     if (!DestB)
4848       DestB = Dest;
4849     if (Dest == DestB) {
4850       CasesB.push_back(Case.getCaseValue());
4851       continue;
4852     }
4853     return false; // More than two destinations.
4854   }
4855 
4856   assert(DestA && DestB &&
4857          "Single-destination switch should have been folded.");
4858   assert(DestA != DestB);
4859   assert(DestB != SI->getDefaultDest());
4860   assert(!CasesB.empty() && "There must be non-default cases.");
4861   assert(!CasesA.empty() || HasDefault);
4862 
4863   // Figure out if one of the sets of cases form a contiguous range.
4864   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4865   BasicBlock *ContiguousDest = nullptr;
4866   BasicBlock *OtherDest = nullptr;
4867   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4868     ContiguousCases = &CasesA;
4869     ContiguousDest = DestA;
4870     OtherDest = DestB;
4871   } else if (CasesAreContiguous(CasesB)) {
4872     ContiguousCases = &CasesB;
4873     ContiguousDest = DestB;
4874     OtherDest = DestA;
4875   } else
4876     return false;
4877 
4878   // Start building the compare and branch.
4879 
4880   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4881   Constant *NumCases =
4882       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4883 
4884   Value *Sub = SI->getCondition();
4885   if (!Offset->isNullValue())
4886     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4887 
4888   Value *Cmp;
4889   // If NumCases overflowed, then all possible values jump to the successor.
4890   if (NumCases->isNullValue() && !ContiguousCases->empty())
4891     Cmp = ConstantInt::getTrue(SI->getContext());
4892   else
4893     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4894   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4895 
4896   // Update weight for the newly-created conditional branch.
4897   if (HasBranchWeights(SI)) {
4898     SmallVector<uint64_t, 8> Weights;
4899     GetBranchWeights(SI, Weights);
4900     if (Weights.size() == 1 + SI->getNumCases()) {
4901       uint64_t TrueWeight = 0;
4902       uint64_t FalseWeight = 0;
4903       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4904         if (SI->getSuccessor(I) == ContiguousDest)
4905           TrueWeight += Weights[I];
4906         else
4907           FalseWeight += Weights[I];
4908       }
4909       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4910         TrueWeight /= 2;
4911         FalseWeight /= 2;
4912       }
4913       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4914     }
4915   }
4916 
4917   // Prune obsolete incoming values off the successors' PHI nodes.
4918   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4919     unsigned PreviousEdges = ContiguousCases->size();
4920     if (ContiguousDest == SI->getDefaultDest())
4921       ++PreviousEdges;
4922     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4923       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4924   }
4925   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4926     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4927     if (OtherDest == SI->getDefaultDest())
4928       ++PreviousEdges;
4929     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4930       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4931   }
4932 
4933   // Clean up the default block - it may have phis or other instructions before
4934   // the unreachable terminator.
4935   if (!HasDefault)
4936     createUnreachableSwitchDefault(SI, DTU);
4937 
4938   auto *UnreachableDefault = SI->getDefaultDest();
4939 
4940   // Drop the switch.
4941   SI->eraseFromParent();
4942 
4943   if (!HasDefault && DTU)
4944     DTU->applyUpdatesPermissive(
4945         {{DominatorTree::Delete, BB, UnreachableDefault}});
4946 
4947   return true;
4948 }
4949 
4950 /// Compute masked bits for the condition of a switch
4951 /// and use it to remove dead cases.
4952 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4953                                      AssumptionCache *AC,
4954                                      const DataLayout &DL) {
4955   Value *Cond = SI->getCondition();
4956   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4957   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4958 
4959   // We can also eliminate cases by determining that their values are outside of
4960   // the limited range of the condition based on how many significant (non-sign)
4961   // bits are in the condition value.
4962   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4963   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4964 
4965   // Gather dead cases.
4966   SmallVector<ConstantInt *, 8> DeadCases;
4967   SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
4968   for (auto &Case : SI->cases()) {
4969     auto *Successor = Case.getCaseSuccessor();
4970     ++NumPerSuccessorCases[Successor];
4971     const APInt &CaseVal = Case.getCaseValue()->getValue();
4972     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4973         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4974       DeadCases.push_back(Case.getCaseValue());
4975       --NumPerSuccessorCases[Successor];
4976       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4977                         << " is dead.\n");
4978     }
4979   }
4980 
4981   // If we can prove that the cases must cover all possible values, the
4982   // default destination becomes dead and we can remove it.  If we know some
4983   // of the bits in the value, we can use that to more precisely compute the
4984   // number of possible unique case values.
4985   bool HasDefault =
4986       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4987   const unsigned NumUnknownBits =
4988       Bits - (Known.Zero | Known.One).countPopulation();
4989   assert(NumUnknownBits <= Bits);
4990   if (HasDefault && DeadCases.empty() &&
4991       NumUnknownBits < 64 /* avoid overflow */ &&
4992       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4993     createUnreachableSwitchDefault(SI, DTU);
4994     return true;
4995   }
4996 
4997   if (DeadCases.empty())
4998     return false;
4999 
5000   SwitchInstProfUpdateWrapper SIW(*SI);
5001   for (ConstantInt *DeadCase : DeadCases) {
5002     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5003     assert(CaseI != SI->case_default() &&
5004            "Case was not found. Probably mistake in DeadCases forming.");
5005     // Prune unused values from PHI nodes.
5006     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5007     SIW.removeCase(CaseI);
5008   }
5009 
5010   std::vector<DominatorTree::UpdateType> Updates;
5011   for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
5012     if (I.second == 0)
5013       Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
5014   if (DTU)
5015     DTU->applyUpdatesPermissive(Updates);
5016 
5017   return true;
5018 }
5019 
5020 /// If BB would be eligible for simplification by
5021 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5022 /// by an unconditional branch), look at the phi node for BB in the successor
5023 /// block and see if the incoming value is equal to CaseValue. If so, return
5024 /// the phi node, and set PhiIndex to BB's index in the phi node.
5025 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5026                                               BasicBlock *BB, int *PhiIndex) {
5027   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5028     return nullptr; // BB must be empty to be a candidate for simplification.
5029   if (!BB->getSinglePredecessor())
5030     return nullptr; // BB must be dominated by the switch.
5031 
5032   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5033   if (!Branch || !Branch->isUnconditional())
5034     return nullptr; // Terminator must be unconditional branch.
5035 
5036   BasicBlock *Succ = Branch->getSuccessor(0);
5037 
5038   for (PHINode &PHI : Succ->phis()) {
5039     int Idx = PHI.getBasicBlockIndex(BB);
5040     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5041 
5042     Value *InValue = PHI.getIncomingValue(Idx);
5043     if (InValue != CaseValue)
5044       continue;
5045 
5046     *PhiIndex = Idx;
5047     return &PHI;
5048   }
5049 
5050   return nullptr;
5051 }
5052 
5053 /// Try to forward the condition of a switch instruction to a phi node
5054 /// dominated by the switch, if that would mean that some of the destination
5055 /// blocks of the switch can be folded away. Return true if a change is made.
5056 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5057   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5058 
5059   ForwardingNodesMap ForwardingNodes;
5060   BasicBlock *SwitchBlock = SI->getParent();
5061   bool Changed = false;
5062   for (auto &Case : SI->cases()) {
5063     ConstantInt *CaseValue = Case.getCaseValue();
5064     BasicBlock *CaseDest = Case.getCaseSuccessor();
5065 
5066     // Replace phi operands in successor blocks that are using the constant case
5067     // value rather than the switch condition variable:
5068     //   switchbb:
5069     //   switch i32 %x, label %default [
5070     //     i32 17, label %succ
5071     //   ...
5072     //   succ:
5073     //     %r = phi i32 ... [ 17, %switchbb ] ...
5074     // -->
5075     //     %r = phi i32 ... [ %x, %switchbb ] ...
5076 
5077     for (PHINode &Phi : CaseDest->phis()) {
5078       // This only works if there is exactly 1 incoming edge from the switch to
5079       // a phi. If there is >1, that means multiple cases of the switch map to 1
5080       // value in the phi, and that phi value is not the switch condition. Thus,
5081       // this transform would not make sense (the phi would be invalid because
5082       // a phi can't have different incoming values from the same block).
5083       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5084       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5085           count(Phi.blocks(), SwitchBlock) == 1) {
5086         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5087         Changed = true;
5088       }
5089     }
5090 
5091     // Collect phi nodes that are indirectly using this switch's case constants.
5092     int PhiIdx;
5093     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5094       ForwardingNodes[Phi].push_back(PhiIdx);
5095   }
5096 
5097   for (auto &ForwardingNode : ForwardingNodes) {
5098     PHINode *Phi = ForwardingNode.first;
5099     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5100     if (Indexes.size() < 2)
5101       continue;
5102 
5103     for (int Index : Indexes)
5104       Phi->setIncomingValue(Index, SI->getCondition());
5105     Changed = true;
5106   }
5107 
5108   return Changed;
5109 }
5110 
5111 /// Return true if the backend will be able to handle
5112 /// initializing an array of constants like C.
5113 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5114   if (C->isThreadDependent())
5115     return false;
5116   if (C->isDLLImportDependent())
5117     return false;
5118 
5119   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5120       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5121       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5122     return false;
5123 
5124   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5125     if (!CE->isGEPWithNoNotionalOverIndexing())
5126       return false;
5127     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5128       return false;
5129   }
5130 
5131   if (!TTI.shouldBuildLookupTablesForConstant(C))
5132     return false;
5133 
5134   return true;
5135 }
5136 
5137 /// If V is a Constant, return it. Otherwise, try to look up
5138 /// its constant value in ConstantPool, returning 0 if it's not there.
5139 static Constant *
5140 LookupConstant(Value *V,
5141                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5142   if (Constant *C = dyn_cast<Constant>(V))
5143     return C;
5144   return ConstantPool.lookup(V);
5145 }
5146 
5147 /// Try to fold instruction I into a constant. This works for
5148 /// simple instructions such as binary operations where both operands are
5149 /// constant or can be replaced by constants from the ConstantPool. Returns the
5150 /// resulting constant on success, 0 otherwise.
5151 static Constant *
5152 ConstantFold(Instruction *I, const DataLayout &DL,
5153              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5154   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5155     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5156     if (!A)
5157       return nullptr;
5158     if (A->isAllOnesValue())
5159       return LookupConstant(Select->getTrueValue(), ConstantPool);
5160     if (A->isNullValue())
5161       return LookupConstant(Select->getFalseValue(), ConstantPool);
5162     return nullptr;
5163   }
5164 
5165   SmallVector<Constant *, 4> COps;
5166   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5167     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5168       COps.push_back(A);
5169     else
5170       return nullptr;
5171   }
5172 
5173   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5174     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5175                                            COps[1], DL);
5176   }
5177 
5178   return ConstantFoldInstOperands(I, COps, DL);
5179 }
5180 
5181 /// Try to determine the resulting constant values in phi nodes
5182 /// at the common destination basic block, *CommonDest, for one of the case
5183 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5184 /// case), of a switch instruction SI.
5185 static bool
5186 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5187                BasicBlock **CommonDest,
5188                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5189                const DataLayout &DL, const TargetTransformInfo &TTI) {
5190   // The block from which we enter the common destination.
5191   BasicBlock *Pred = SI->getParent();
5192 
5193   // If CaseDest is empty except for some side-effect free instructions through
5194   // which we can constant-propagate the CaseVal, continue to its successor.
5195   SmallDenseMap<Value *, Constant *> ConstantPool;
5196   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5197   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5198     if (I.isTerminator()) {
5199       // If the terminator is a simple branch, continue to the next block.
5200       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5201         return false;
5202       Pred = CaseDest;
5203       CaseDest = I.getSuccessor(0);
5204     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5205       // Instruction is side-effect free and constant.
5206 
5207       // If the instruction has uses outside this block or a phi node slot for
5208       // the block, it is not safe to bypass the instruction since it would then
5209       // no longer dominate all its uses.
5210       for (auto &Use : I.uses()) {
5211         User *User = Use.getUser();
5212         if (Instruction *I = dyn_cast<Instruction>(User))
5213           if (I->getParent() == CaseDest)
5214             continue;
5215         if (PHINode *Phi = dyn_cast<PHINode>(User))
5216           if (Phi->getIncomingBlock(Use) == CaseDest)
5217             continue;
5218         return false;
5219       }
5220 
5221       ConstantPool.insert(std::make_pair(&I, C));
5222     } else {
5223       break;
5224     }
5225   }
5226 
5227   // If we did not have a CommonDest before, use the current one.
5228   if (!*CommonDest)
5229     *CommonDest = CaseDest;
5230   // If the destination isn't the common one, abort.
5231   if (CaseDest != *CommonDest)
5232     return false;
5233 
5234   // Get the values for this case from phi nodes in the destination block.
5235   for (PHINode &PHI : (*CommonDest)->phis()) {
5236     int Idx = PHI.getBasicBlockIndex(Pred);
5237     if (Idx == -1)
5238       continue;
5239 
5240     Constant *ConstVal =
5241         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5242     if (!ConstVal)
5243       return false;
5244 
5245     // Be conservative about which kinds of constants we support.
5246     if (!ValidLookupTableConstant(ConstVal, TTI))
5247       return false;
5248 
5249     Res.push_back(std::make_pair(&PHI, ConstVal));
5250   }
5251 
5252   return Res.size() > 0;
5253 }
5254 
5255 // Helper function used to add CaseVal to the list of cases that generate
5256 // Result. Returns the updated number of cases that generate this result.
5257 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5258                                  SwitchCaseResultVectorTy &UniqueResults,
5259                                  Constant *Result) {
5260   for (auto &I : UniqueResults) {
5261     if (I.first == Result) {
5262       I.second.push_back(CaseVal);
5263       return I.second.size();
5264     }
5265   }
5266   UniqueResults.push_back(
5267       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5268   return 1;
5269 }
5270 
5271 // Helper function that initializes a map containing
5272 // results for the PHI node of the common destination block for a switch
5273 // instruction. Returns false if multiple PHI nodes have been found or if
5274 // there is not a common destination block for the switch.
5275 static bool
5276 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5277                       SwitchCaseResultVectorTy &UniqueResults,
5278                       Constant *&DefaultResult, const DataLayout &DL,
5279                       const TargetTransformInfo &TTI,
5280                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5281   for (auto &I : SI->cases()) {
5282     ConstantInt *CaseVal = I.getCaseValue();
5283 
5284     // Resulting value at phi nodes for this case value.
5285     SwitchCaseResultsTy Results;
5286     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5287                         DL, TTI))
5288       return false;
5289 
5290     // Only one value per case is permitted.
5291     if (Results.size() > 1)
5292       return false;
5293 
5294     // Add the case->result mapping to UniqueResults.
5295     const uintptr_t NumCasesForResult =
5296         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5297 
5298     // Early out if there are too many cases for this result.
5299     if (NumCasesForResult > MaxCasesPerResult)
5300       return false;
5301 
5302     // Early out if there are too many unique results.
5303     if (UniqueResults.size() > MaxUniqueResults)
5304       return false;
5305 
5306     // Check the PHI consistency.
5307     if (!PHI)
5308       PHI = Results[0].first;
5309     else if (PHI != Results[0].first)
5310       return false;
5311   }
5312   // Find the default result value.
5313   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5314   BasicBlock *DefaultDest = SI->getDefaultDest();
5315   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5316                  DL, TTI);
5317   // If the default value is not found abort unless the default destination
5318   // is unreachable.
5319   DefaultResult =
5320       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5321   if ((!DefaultResult &&
5322        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5323     return false;
5324 
5325   return true;
5326 }
5327 
5328 // Helper function that checks if it is possible to transform a switch with only
5329 // two cases (or two cases + default) that produces a result into a select.
5330 // Example:
5331 // switch (a) {
5332 //   case 10:                %0 = icmp eq i32 %a, 10
5333 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5334 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5335 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5336 //   default:
5337 //     return 4;
5338 // }
5339 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5340                                    Constant *DefaultResult, Value *Condition,
5341                                    IRBuilder<> &Builder) {
5342   assert(ResultVector.size() == 2 &&
5343          "We should have exactly two unique results at this point");
5344   // If we are selecting between only two cases transform into a simple
5345   // select or a two-way select if default is possible.
5346   if (ResultVector[0].second.size() == 1 &&
5347       ResultVector[1].second.size() == 1) {
5348     ConstantInt *const FirstCase = ResultVector[0].second[0];
5349     ConstantInt *const SecondCase = ResultVector[1].second[0];
5350 
5351     bool DefaultCanTrigger = DefaultResult;
5352     Value *SelectValue = ResultVector[1].first;
5353     if (DefaultCanTrigger) {
5354       Value *const ValueCompare =
5355           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5356       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5357                                          DefaultResult, "switch.select");
5358     }
5359     Value *const ValueCompare =
5360         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5361     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5362                                 SelectValue, "switch.select");
5363   }
5364 
5365   return nullptr;
5366 }
5367 
5368 // Helper function to cleanup a switch instruction that has been converted into
5369 // a select, fixing up PHI nodes and basic blocks.
5370 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5371                                               Value *SelectValue,
5372                                               IRBuilder<> &Builder,
5373                                               DomTreeUpdater *DTU) {
5374   BasicBlock *SelectBB = SI->getParent();
5375   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5376     PHI->removeIncomingValue(SelectBB);
5377   PHI->addIncoming(SelectValue, SelectBB);
5378 
5379   Builder.CreateBr(PHI->getParent());
5380 
5381   std::vector<DominatorTree::UpdateType> Updates;
5382 
5383   // Remove the switch.
5384   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5385     BasicBlock *Succ = SI->getSuccessor(i);
5386 
5387     if (Succ == PHI->getParent())
5388       continue;
5389     Succ->removePredecessor(SelectBB);
5390     Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5391   }
5392   SI->eraseFromParent();
5393   if (DTU)
5394     DTU->applyUpdatesPermissive(Updates);
5395 }
5396 
5397 /// If the switch is only used to initialize one or more
5398 /// phi nodes in a common successor block with only two different
5399 /// constant values, replace the switch with select.
5400 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5401                            DomTreeUpdater *DTU, const DataLayout &DL,
5402                            const TargetTransformInfo &TTI) {
5403   Value *const Cond = SI->getCondition();
5404   PHINode *PHI = nullptr;
5405   BasicBlock *CommonDest = nullptr;
5406   Constant *DefaultResult;
5407   SwitchCaseResultVectorTy UniqueResults;
5408   // Collect all the cases that will deliver the same value from the switch.
5409   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5410                              DL, TTI, 2, 1))
5411     return false;
5412   // Selects choose between maximum two values.
5413   if (UniqueResults.size() != 2)
5414     return false;
5415   assert(PHI != nullptr && "PHI for value select not found");
5416 
5417   Builder.SetInsertPoint(SI);
5418   Value *SelectValue =
5419       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5420   if (SelectValue) {
5421     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5422     return true;
5423   }
5424   // The switch couldn't be converted into a select.
5425   return false;
5426 }
5427 
5428 namespace {
5429 
5430 /// This class represents a lookup table that can be used to replace a switch.
5431 class SwitchLookupTable {
5432 public:
5433   /// Create a lookup table to use as a switch replacement with the contents
5434   /// of Values, using DefaultValue to fill any holes in the table.
5435   SwitchLookupTable(
5436       Module &M, uint64_t TableSize, ConstantInt *Offset,
5437       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5438       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5439 
5440   /// Build instructions with Builder to retrieve the value at
5441   /// the position given by Index in the lookup table.
5442   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5443 
5444   /// Return true if a table with TableSize elements of
5445   /// type ElementType would fit in a target-legal register.
5446   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5447                                  Type *ElementType);
5448 
5449 private:
5450   // Depending on the contents of the table, it can be represented in
5451   // different ways.
5452   enum {
5453     // For tables where each element contains the same value, we just have to
5454     // store that single value and return it for each lookup.
5455     SingleValueKind,
5456 
5457     // For tables where there is a linear relationship between table index
5458     // and values. We calculate the result with a simple multiplication
5459     // and addition instead of a table lookup.
5460     LinearMapKind,
5461 
5462     // For small tables with integer elements, we can pack them into a bitmap
5463     // that fits into a target-legal register. Values are retrieved by
5464     // shift and mask operations.
5465     BitMapKind,
5466 
5467     // The table is stored as an array of values. Values are retrieved by load
5468     // instructions from the table.
5469     ArrayKind
5470   } Kind;
5471 
5472   // For SingleValueKind, this is the single value.
5473   Constant *SingleValue = nullptr;
5474 
5475   // For BitMapKind, this is the bitmap.
5476   ConstantInt *BitMap = nullptr;
5477   IntegerType *BitMapElementTy = nullptr;
5478 
5479   // For LinearMapKind, these are the constants used to derive the value.
5480   ConstantInt *LinearOffset = nullptr;
5481   ConstantInt *LinearMultiplier = nullptr;
5482 
5483   // For ArrayKind, this is the array.
5484   GlobalVariable *Array = nullptr;
5485 };
5486 
5487 } // end anonymous namespace
5488 
5489 SwitchLookupTable::SwitchLookupTable(
5490     Module &M, uint64_t TableSize, ConstantInt *Offset,
5491     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5492     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5493   assert(Values.size() && "Can't build lookup table without values!");
5494   assert(TableSize >= Values.size() && "Can't fit values in table!");
5495 
5496   // If all values in the table are equal, this is that value.
5497   SingleValue = Values.begin()->second;
5498 
5499   Type *ValueType = Values.begin()->second->getType();
5500 
5501   // Build up the table contents.
5502   SmallVector<Constant *, 64> TableContents(TableSize);
5503   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5504     ConstantInt *CaseVal = Values[I].first;
5505     Constant *CaseRes = Values[I].second;
5506     assert(CaseRes->getType() == ValueType);
5507 
5508     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5509     TableContents[Idx] = CaseRes;
5510 
5511     if (CaseRes != SingleValue)
5512       SingleValue = nullptr;
5513   }
5514 
5515   // Fill in any holes in the table with the default result.
5516   if (Values.size() < TableSize) {
5517     assert(DefaultValue &&
5518            "Need a default value to fill the lookup table holes.");
5519     assert(DefaultValue->getType() == ValueType);
5520     for (uint64_t I = 0; I < TableSize; ++I) {
5521       if (!TableContents[I])
5522         TableContents[I] = DefaultValue;
5523     }
5524 
5525     if (DefaultValue != SingleValue)
5526       SingleValue = nullptr;
5527   }
5528 
5529   // If each element in the table contains the same value, we only need to store
5530   // that single value.
5531   if (SingleValue) {
5532     Kind = SingleValueKind;
5533     return;
5534   }
5535 
5536   // Check if we can derive the value with a linear transformation from the
5537   // table index.
5538   if (isa<IntegerType>(ValueType)) {
5539     bool LinearMappingPossible = true;
5540     APInt PrevVal;
5541     APInt DistToPrev;
5542     assert(TableSize >= 2 && "Should be a SingleValue table.");
5543     // Check if there is the same distance between two consecutive values.
5544     for (uint64_t I = 0; I < TableSize; ++I) {
5545       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5546       if (!ConstVal) {
5547         // This is an undef. We could deal with it, but undefs in lookup tables
5548         // are very seldom. It's probably not worth the additional complexity.
5549         LinearMappingPossible = false;
5550         break;
5551       }
5552       const APInt &Val = ConstVal->getValue();
5553       if (I != 0) {
5554         APInt Dist = Val - PrevVal;
5555         if (I == 1) {
5556           DistToPrev = Dist;
5557         } else if (Dist != DistToPrev) {
5558           LinearMappingPossible = false;
5559           break;
5560         }
5561       }
5562       PrevVal = Val;
5563     }
5564     if (LinearMappingPossible) {
5565       LinearOffset = cast<ConstantInt>(TableContents[0]);
5566       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5567       Kind = LinearMapKind;
5568       ++NumLinearMaps;
5569       return;
5570     }
5571   }
5572 
5573   // If the type is integer and the table fits in a register, build a bitmap.
5574   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5575     IntegerType *IT = cast<IntegerType>(ValueType);
5576     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5577     for (uint64_t I = TableSize; I > 0; --I) {
5578       TableInt <<= IT->getBitWidth();
5579       // Insert values into the bitmap. Undef values are set to zero.
5580       if (!isa<UndefValue>(TableContents[I - 1])) {
5581         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5582         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5583       }
5584     }
5585     BitMap = ConstantInt::get(M.getContext(), TableInt);
5586     BitMapElementTy = IT;
5587     Kind = BitMapKind;
5588     ++NumBitMaps;
5589     return;
5590   }
5591 
5592   // Store the table in an array.
5593   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5594   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5595 
5596   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5597                              GlobalVariable::PrivateLinkage, Initializer,
5598                              "switch.table." + FuncName);
5599   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5600   // Set the alignment to that of an array items. We will be only loading one
5601   // value out of it.
5602   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5603   Kind = ArrayKind;
5604 }
5605 
5606 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5607   switch (Kind) {
5608   case SingleValueKind:
5609     return SingleValue;
5610   case LinearMapKind: {
5611     // Derive the result value from the input value.
5612     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5613                                           false, "switch.idx.cast");
5614     if (!LinearMultiplier->isOne())
5615       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5616     if (!LinearOffset->isZero())
5617       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5618     return Result;
5619   }
5620   case BitMapKind: {
5621     // Type of the bitmap (e.g. i59).
5622     IntegerType *MapTy = BitMap->getType();
5623 
5624     // Cast Index to the same type as the bitmap.
5625     // Note: The Index is <= the number of elements in the table, so
5626     // truncating it to the width of the bitmask is safe.
5627     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5628 
5629     // Multiply the shift amount by the element width.
5630     ShiftAmt = Builder.CreateMul(
5631         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5632         "switch.shiftamt");
5633 
5634     // Shift down.
5635     Value *DownShifted =
5636         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5637     // Mask off.
5638     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5639   }
5640   case ArrayKind: {
5641     // Make sure the table index will not overflow when treated as signed.
5642     IntegerType *IT = cast<IntegerType>(Index->getType());
5643     uint64_t TableSize =
5644         Array->getInitializer()->getType()->getArrayNumElements();
5645     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5646       Index = Builder.CreateZExt(
5647           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5648           "switch.tableidx.zext");
5649 
5650     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5651     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5652                                            GEPIndices, "switch.gep");
5653     return Builder.CreateLoad(
5654         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5655         "switch.load");
5656   }
5657   }
5658   llvm_unreachable("Unknown lookup table kind!");
5659 }
5660 
5661 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5662                                            uint64_t TableSize,
5663                                            Type *ElementType) {
5664   auto *IT = dyn_cast<IntegerType>(ElementType);
5665   if (!IT)
5666     return false;
5667   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5668   // are <= 15, we could try to narrow the type.
5669 
5670   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5671   if (TableSize >= UINT_MAX / IT->getBitWidth())
5672     return false;
5673   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5674 }
5675 
5676 /// Determine whether a lookup table should be built for this switch, based on
5677 /// the number of cases, size of the table, and the types of the results.
5678 static bool
5679 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5680                        const TargetTransformInfo &TTI, const DataLayout &DL,
5681                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5682   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5683     return false; // TableSize overflowed, or mul below might overflow.
5684 
5685   bool AllTablesFitInRegister = true;
5686   bool HasIllegalType = false;
5687   for (const auto &I : ResultTypes) {
5688     Type *Ty = I.second;
5689 
5690     // Saturate this flag to true.
5691     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5692 
5693     // Saturate this flag to false.
5694     AllTablesFitInRegister =
5695         AllTablesFitInRegister &&
5696         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5697 
5698     // If both flags saturate, we're done. NOTE: This *only* works with
5699     // saturating flags, and all flags have to saturate first due to the
5700     // non-deterministic behavior of iterating over a dense map.
5701     if (HasIllegalType && !AllTablesFitInRegister)
5702       break;
5703   }
5704 
5705   // If each table would fit in a register, we should build it anyway.
5706   if (AllTablesFitInRegister)
5707     return true;
5708 
5709   // Don't build a table that doesn't fit in-register if it has illegal types.
5710   if (HasIllegalType)
5711     return false;
5712 
5713   // The table density should be at least 40%. This is the same criterion as for
5714   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5715   // FIXME: Find the best cut-off.
5716   return SI->getNumCases() * 10 >= TableSize * 4;
5717 }
5718 
5719 /// Try to reuse the switch table index compare. Following pattern:
5720 /// \code
5721 ///     if (idx < tablesize)
5722 ///        r = table[idx]; // table does not contain default_value
5723 ///     else
5724 ///        r = default_value;
5725 ///     if (r != default_value)
5726 ///        ...
5727 /// \endcode
5728 /// Is optimized to:
5729 /// \code
5730 ///     cond = idx < tablesize;
5731 ///     if (cond)
5732 ///        r = table[idx];
5733 ///     else
5734 ///        r = default_value;
5735 ///     if (cond)
5736 ///        ...
5737 /// \endcode
5738 /// Jump threading will then eliminate the second if(cond).
5739 static void reuseTableCompare(
5740     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5741     Constant *DefaultValue,
5742     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5743   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5744   if (!CmpInst)
5745     return;
5746 
5747   // We require that the compare is in the same block as the phi so that jump
5748   // threading can do its work afterwards.
5749   if (CmpInst->getParent() != PhiBlock)
5750     return;
5751 
5752   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5753   if (!CmpOp1)
5754     return;
5755 
5756   Value *RangeCmp = RangeCheckBranch->getCondition();
5757   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5758   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5759 
5760   // Check if the compare with the default value is constant true or false.
5761   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5762                                                  DefaultValue, CmpOp1, true);
5763   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5764     return;
5765 
5766   // Check if the compare with the case values is distinct from the default
5767   // compare result.
5768   for (auto ValuePair : Values) {
5769     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5770                                                 ValuePair.second, CmpOp1, true);
5771     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5772       return;
5773     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5774            "Expect true or false as compare result.");
5775   }
5776 
5777   // Check if the branch instruction dominates the phi node. It's a simple
5778   // dominance check, but sufficient for our needs.
5779   // Although this check is invariant in the calling loops, it's better to do it
5780   // at this late stage. Practically we do it at most once for a switch.
5781   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5782   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5783     BasicBlock *Pred = *PI;
5784     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5785       return;
5786   }
5787 
5788   if (DefaultConst == FalseConst) {
5789     // The compare yields the same result. We can replace it.
5790     CmpInst->replaceAllUsesWith(RangeCmp);
5791     ++NumTableCmpReuses;
5792   } else {
5793     // The compare yields the same result, just inverted. We can replace it.
5794     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5795         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5796         RangeCheckBranch);
5797     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5798     ++NumTableCmpReuses;
5799   }
5800 }
5801 
5802 /// If the switch is only used to initialize one or more phi nodes in a common
5803 /// successor block with different constant values, replace the switch with
5804 /// lookup tables.
5805 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5806                                 DomTreeUpdater *DTU, const DataLayout &DL,
5807                                 const TargetTransformInfo &TTI) {
5808   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5809 
5810   Function *Fn = SI->getParent()->getParent();
5811   // Only build lookup table when we have a target that supports it or the
5812   // attribute is not set.
5813   if (!TTI.shouldBuildLookupTables() ||
5814       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5815     return false;
5816 
5817   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5818   // split off a dense part and build a lookup table for that.
5819 
5820   // FIXME: This creates arrays of GEPs to constant strings, which means each
5821   // GEP needs a runtime relocation in PIC code. We should just build one big
5822   // string and lookup indices into that.
5823 
5824   // Ignore switches with less than three cases. Lookup tables will not make
5825   // them faster, so we don't analyze them.
5826   if (SI->getNumCases() < 3)
5827     return false;
5828 
5829   // Figure out the corresponding result for each case value and phi node in the
5830   // common destination, as well as the min and max case values.
5831   assert(!SI->cases().empty());
5832   SwitchInst::CaseIt CI = SI->case_begin();
5833   ConstantInt *MinCaseVal = CI->getCaseValue();
5834   ConstantInt *MaxCaseVal = CI->getCaseValue();
5835 
5836   BasicBlock *CommonDest = nullptr;
5837 
5838   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5839   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5840 
5841   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5842   SmallDenseMap<PHINode *, Type *> ResultTypes;
5843   SmallVector<PHINode *, 4> PHIs;
5844 
5845   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5846     ConstantInt *CaseVal = CI->getCaseValue();
5847     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5848       MinCaseVal = CaseVal;
5849     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5850       MaxCaseVal = CaseVal;
5851 
5852     // Resulting value at phi nodes for this case value.
5853     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5854     ResultsTy Results;
5855     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5856                         Results, DL, TTI))
5857       return false;
5858 
5859     // Append the result from this case to the list for each phi.
5860     for (const auto &I : Results) {
5861       PHINode *PHI = I.first;
5862       Constant *Value = I.second;
5863       if (!ResultLists.count(PHI))
5864         PHIs.push_back(PHI);
5865       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5866     }
5867   }
5868 
5869   // Keep track of the result types.
5870   for (PHINode *PHI : PHIs) {
5871     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5872   }
5873 
5874   uint64_t NumResults = ResultLists[PHIs[0]].size();
5875   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5876   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5877   bool TableHasHoles = (NumResults < TableSize);
5878 
5879   // If the table has holes, we need a constant result for the default case
5880   // or a bitmask that fits in a register.
5881   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5882   bool HasDefaultResults =
5883       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5884                      DefaultResultsList, DL, TTI);
5885 
5886   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5887   if (NeedMask) {
5888     // As an extra penalty for the validity test we require more cases.
5889     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5890       return false;
5891     if (!DL.fitsInLegalInteger(TableSize))
5892       return false;
5893   }
5894 
5895   for (const auto &I : DefaultResultsList) {
5896     PHINode *PHI = I.first;
5897     Constant *Result = I.second;
5898     DefaultResults[PHI] = Result;
5899   }
5900 
5901   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5902     return false;
5903 
5904   std::vector<DominatorTree::UpdateType> Updates;
5905 
5906   // Create the BB that does the lookups.
5907   Module &Mod = *CommonDest->getParent()->getParent();
5908   BasicBlock *LookupBB = BasicBlock::Create(
5909       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5910 
5911   // Compute the table index value.
5912   Builder.SetInsertPoint(SI);
5913   Value *TableIndex;
5914   if (MinCaseVal->isNullValue())
5915     TableIndex = SI->getCondition();
5916   else
5917     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5918                                    "switch.tableidx");
5919 
5920   // Compute the maximum table size representable by the integer type we are
5921   // switching upon.
5922   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5923   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5924   assert(MaxTableSize >= TableSize &&
5925          "It is impossible for a switch to have more entries than the max "
5926          "representable value of its input integer type's size.");
5927 
5928   // If the default destination is unreachable, or if the lookup table covers
5929   // all values of the conditional variable, branch directly to the lookup table
5930   // BB. Otherwise, check that the condition is within the case range.
5931   const bool DefaultIsReachable =
5932       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5933   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5934   BranchInst *RangeCheckBranch = nullptr;
5935 
5936   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5937     Builder.CreateBr(LookupBB);
5938     Updates.push_back({DominatorTree::Insert, SI->getParent(), LookupBB});
5939     // Note: We call removeProdecessor later since we need to be able to get the
5940     // PHI value for the default case in case we're using a bit mask.
5941   } else {
5942     Value *Cmp = Builder.CreateICmpULT(
5943         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5944     RangeCheckBranch =
5945         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5946     Updates.push_back({DominatorTree::Insert, SI->getParent(), LookupBB});
5947     Updates.push_back(
5948         {DominatorTree::Insert, SI->getParent(), SI->getDefaultDest()});
5949   }
5950 
5951   // Populate the BB that does the lookups.
5952   Builder.SetInsertPoint(LookupBB);
5953 
5954   if (NeedMask) {
5955     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5956     // re-purposed to do the hole check, and we create a new LookupBB.
5957     BasicBlock *MaskBB = LookupBB;
5958     MaskBB->setName("switch.hole_check");
5959     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5960                                   CommonDest->getParent(), CommonDest);
5961 
5962     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5963     // unnecessary illegal types.
5964     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5965     APInt MaskInt(TableSizePowOf2, 0);
5966     APInt One(TableSizePowOf2, 1);
5967     // Build bitmask; fill in a 1 bit for every case.
5968     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5969     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5970       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5971                          .getLimitedValue();
5972       MaskInt |= One << Idx;
5973     }
5974     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5975 
5976     // Get the TableIndex'th bit of the bitmask.
5977     // If this bit is 0 (meaning hole) jump to the default destination,
5978     // else continue with table lookup.
5979     IntegerType *MapTy = TableMask->getType();
5980     Value *MaskIndex =
5981         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5982     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5983     Value *LoBit = Builder.CreateTrunc(
5984         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5985     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5986     Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
5987     Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
5988     Builder.SetInsertPoint(LookupBB);
5989     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5990   }
5991 
5992   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5993     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5994     // do not delete PHINodes here.
5995     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5996                                             /*KeepOneInputPHIs=*/true);
5997     Updates.push_back(
5998         {DominatorTree::Delete, SI->getParent(), SI->getDefaultDest()});
5999   }
6000 
6001   bool ReturnedEarly = false;
6002   for (PHINode *PHI : PHIs) {
6003     const ResultListTy &ResultList = ResultLists[PHI];
6004 
6005     // If using a bitmask, use any value to fill the lookup table holes.
6006     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6007     StringRef FuncName = Fn->getName();
6008     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6009                             FuncName);
6010 
6011     Value *Result = Table.BuildLookup(TableIndex, Builder);
6012 
6013     // If the result is used to return immediately from the function, we want to
6014     // do that right here.
6015     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
6016         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
6017       Builder.CreateRet(Result);
6018       ReturnedEarly = true;
6019       break;
6020     }
6021 
6022     // Do a small peephole optimization: re-use the switch table compare if
6023     // possible.
6024     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6025       BasicBlock *PhiBlock = PHI->getParent();
6026       // Search for compare instructions which use the phi.
6027       for (auto *User : PHI->users()) {
6028         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6029       }
6030     }
6031 
6032     PHI->addIncoming(Result, LookupBB);
6033   }
6034 
6035   if (!ReturnedEarly) {
6036     Builder.CreateBr(CommonDest);
6037     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6038   }
6039 
6040   // Remove the switch.
6041   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6042     BasicBlock *Succ = SI->getSuccessor(i);
6043 
6044     if (Succ == SI->getDefaultDest())
6045       continue;
6046     Succ->removePredecessor(SI->getParent());
6047     Updates.push_back({DominatorTree::Delete, SI->getParent(), Succ});
6048   }
6049   SI->eraseFromParent();
6050   if (DTU)
6051     DTU->applyUpdatesPermissive(Updates);
6052 
6053   ++NumLookupTables;
6054   if (NeedMask)
6055     ++NumLookupTablesHoles;
6056   return true;
6057 }
6058 
6059 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6060   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6061   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6062   uint64_t Range = Diff + 1;
6063   uint64_t NumCases = Values.size();
6064   // 40% is the default density for building a jump table in optsize/minsize mode.
6065   uint64_t MinDensity = 40;
6066 
6067   return NumCases * 100 >= Range * MinDensity;
6068 }
6069 
6070 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6071 /// of cases.
6072 ///
6073 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6074 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6075 ///
6076 /// This converts a sparse switch into a dense switch which allows better
6077 /// lowering and could also allow transforming into a lookup table.
6078 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6079                               const DataLayout &DL,
6080                               const TargetTransformInfo &TTI) {
6081   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6082   if (CondTy->getIntegerBitWidth() > 64 ||
6083       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6084     return false;
6085   // Only bother with this optimization if there are more than 3 switch cases;
6086   // SDAG will only bother creating jump tables for 4 or more cases.
6087   if (SI->getNumCases() < 4)
6088     return false;
6089 
6090   // This transform is agnostic to the signedness of the input or case values. We
6091   // can treat the case values as signed or unsigned. We can optimize more common
6092   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6093   // as signed.
6094   SmallVector<int64_t,4> Values;
6095   for (auto &C : SI->cases())
6096     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6097   llvm::sort(Values);
6098 
6099   // If the switch is already dense, there's nothing useful to do here.
6100   if (isSwitchDense(Values))
6101     return false;
6102 
6103   // First, transform the values such that they start at zero and ascend.
6104   int64_t Base = Values[0];
6105   for (auto &V : Values)
6106     V -= (uint64_t)(Base);
6107 
6108   // Now we have signed numbers that have been shifted so that, given enough
6109   // precision, there are no negative values. Since the rest of the transform
6110   // is bitwise only, we switch now to an unsigned representation.
6111 
6112   // This transform can be done speculatively because it is so cheap - it
6113   // results in a single rotate operation being inserted.
6114   // FIXME: It's possible that optimizing a switch on powers of two might also
6115   // be beneficial - flag values are often powers of two and we could use a CLZ
6116   // as the key function.
6117 
6118   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6119   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6120   // less than 64.
6121   unsigned Shift = 64;
6122   for (auto &V : Values)
6123     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6124   assert(Shift < 64);
6125   if (Shift > 0)
6126     for (auto &V : Values)
6127       V = (int64_t)((uint64_t)V >> Shift);
6128 
6129   if (!isSwitchDense(Values))
6130     // Transform didn't create a dense switch.
6131     return false;
6132 
6133   // The obvious transform is to shift the switch condition right and emit a
6134   // check that the condition actually cleanly divided by GCD, i.e.
6135   //   C & (1 << Shift - 1) == 0
6136   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6137   //
6138   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6139   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6140   // are nonzero then the switch condition will be very large and will hit the
6141   // default case.
6142 
6143   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6144   Builder.SetInsertPoint(SI);
6145   auto *ShiftC = ConstantInt::get(Ty, Shift);
6146   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6147   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6148   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6149   auto *Rot = Builder.CreateOr(LShr, Shl);
6150   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6151 
6152   for (auto Case : SI->cases()) {
6153     auto *Orig = Case.getCaseValue();
6154     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6155     Case.setValue(
6156         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6157   }
6158   return true;
6159 }
6160 
6161 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6162   BasicBlock *BB = SI->getParent();
6163 
6164   if (isValueEqualityComparison(SI)) {
6165     // If we only have one predecessor, and if it is a branch on this value,
6166     // see if that predecessor totally determines the outcome of this switch.
6167     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6168       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6169         return requestResimplify();
6170 
6171     Value *Cond = SI->getCondition();
6172     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6173       if (SimplifySwitchOnSelect(SI, Select))
6174         return requestResimplify();
6175 
6176     // If the block only contains the switch, see if we can fold the block
6177     // away into any preds.
6178     if (SI == &*BB->instructionsWithoutDebug().begin())
6179       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6180         return requestResimplify();
6181   }
6182 
6183   // Try to transform the switch into an icmp and a branch.
6184   if (TurnSwitchRangeIntoICmp(SI, Builder))
6185     return requestResimplify();
6186 
6187   // Remove unreachable cases.
6188   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6189     return requestResimplify();
6190 
6191   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6192     return requestResimplify();
6193 
6194   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6195     return requestResimplify();
6196 
6197   // The conversion from switch to lookup tables results in difficult-to-analyze
6198   // code and makes pruning branches much harder. This is a problem if the
6199   // switch expression itself can still be restricted as a result of inlining or
6200   // CVP. Therefore, only apply this transformation during late stages of the
6201   // optimisation pipeline.
6202   if (Options.ConvertSwitchToLookupTable &&
6203       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6204     return requestResimplify();
6205 
6206   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6207     return requestResimplify();
6208 
6209   return false;
6210 }
6211 
6212 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6213   BasicBlock *BB = IBI->getParent();
6214   bool Changed = false;
6215 
6216   // Eliminate redundant destinations.
6217   std::vector<DominatorTree::UpdateType> Updates;
6218   SmallPtrSet<Value *, 8> Succs;
6219   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6220     BasicBlock *Dest = IBI->getDestination(i);
6221     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6222       if (!Dest->hasAddressTaken())
6223         Updates.push_back({DominatorTree::Delete, BB, Dest});
6224       Dest->removePredecessor(BB);
6225       IBI->removeDestination(i);
6226       --i;
6227       --e;
6228       Changed = true;
6229     }
6230   }
6231 
6232   if (DTU)
6233     DTU->applyUpdatesPermissive(Updates);
6234   Updates.clear();
6235 
6236   if (IBI->getNumDestinations() == 0) {
6237     // If the indirectbr has no successors, change it to unreachable.
6238     new UnreachableInst(IBI->getContext(), IBI);
6239     EraseTerminatorAndDCECond(IBI);
6240     return true;
6241   }
6242 
6243   if (IBI->getNumDestinations() == 1) {
6244     // If the indirectbr has one successor, change it to a direct branch.
6245     BranchInst::Create(IBI->getDestination(0), IBI);
6246     EraseTerminatorAndDCECond(IBI);
6247     return true;
6248   }
6249 
6250   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6251     if (SimplifyIndirectBrOnSelect(IBI, SI))
6252       return requestResimplify();
6253   }
6254   return Changed;
6255 }
6256 
6257 /// Given an block with only a single landing pad and a unconditional branch
6258 /// try to find another basic block which this one can be merged with.  This
6259 /// handles cases where we have multiple invokes with unique landing pads, but
6260 /// a shared handler.
6261 ///
6262 /// We specifically choose to not worry about merging non-empty blocks
6263 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6264 /// practice, the optimizer produces empty landing pad blocks quite frequently
6265 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6266 /// sinking in this file)
6267 ///
6268 /// This is primarily a code size optimization.  We need to avoid performing
6269 /// any transform which might inhibit optimization (such as our ability to
6270 /// specialize a particular handler via tail commoning).  We do this by not
6271 /// merging any blocks which require us to introduce a phi.  Since the same
6272 /// values are flowing through both blocks, we don't lose any ability to
6273 /// specialize.  If anything, we make such specialization more likely.
6274 ///
6275 /// TODO - This transformation could remove entries from a phi in the target
6276 /// block when the inputs in the phi are the same for the two blocks being
6277 /// merged.  In some cases, this could result in removal of the PHI entirely.
6278 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6279                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6280   auto Succ = BB->getUniqueSuccessor();
6281   assert(Succ);
6282   // If there's a phi in the successor block, we'd likely have to introduce
6283   // a phi into the merged landing pad block.
6284   if (isa<PHINode>(*Succ->begin()))
6285     return false;
6286 
6287   for (BasicBlock *OtherPred : predecessors(Succ)) {
6288     if (BB == OtherPred)
6289       continue;
6290     BasicBlock::iterator I = OtherPred->begin();
6291     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6292     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6293       continue;
6294     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6295       ;
6296     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6297     if (!BI2 || !BI2->isIdenticalTo(BI))
6298       continue;
6299 
6300     std::vector<DominatorTree::UpdateType> Updates;
6301 
6302     // We've found an identical block.  Update our predecessors to take that
6303     // path instead and make ourselves dead.
6304     SmallPtrSet<BasicBlock *, 16> Preds;
6305     Preds.insert(pred_begin(BB), pred_end(BB));
6306     for (BasicBlock *Pred : Preds) {
6307       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6308       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6309              "unexpected successor");
6310       II->setUnwindDest(OtherPred);
6311       Updates.push_back({DominatorTree::Delete, Pred, BB});
6312       Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6313     }
6314 
6315     // The debug info in OtherPred doesn't cover the merged control flow that
6316     // used to go through BB.  We need to delete it or update it.
6317     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6318       Instruction &Inst = *I;
6319       I++;
6320       if (isa<DbgInfoIntrinsic>(Inst))
6321         Inst.eraseFromParent();
6322     }
6323 
6324     SmallPtrSet<BasicBlock *, 16> Succs;
6325     Succs.insert(succ_begin(BB), succ_end(BB));
6326     for (BasicBlock *Succ : Succs) {
6327       Succ->removePredecessor(BB);
6328       Updates.push_back({DominatorTree::Delete, BB, Succ});
6329     }
6330 
6331     IRBuilder<> Builder(BI);
6332     Builder.CreateUnreachable();
6333     BI->eraseFromParent();
6334     if (DTU)
6335       DTU->applyUpdatesPermissive(Updates);
6336     return true;
6337   }
6338   return false;
6339 }
6340 
6341 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6342   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6343                                    : simplifyCondBranch(Branch, Builder);
6344 }
6345 
6346 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6347                                           IRBuilder<> &Builder) {
6348   BasicBlock *BB = BI->getParent();
6349   BasicBlock *Succ = BI->getSuccessor(0);
6350 
6351   // If the Terminator is the only non-phi instruction, simplify the block.
6352   // If LoopHeader is provided, check if the block or its successor is a loop
6353   // header. (This is for early invocations before loop simplify and
6354   // vectorization to keep canonical loop forms for nested loops. These blocks
6355   // can be eliminated when the pass is invoked later in the back-end.)
6356   // Note that if BB has only one predecessor then we do not introduce new
6357   // backedge, so we can eliminate BB.
6358   bool NeedCanonicalLoop =
6359       Options.NeedCanonicalLoop &&
6360       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
6361        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
6362   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
6363   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6364       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6365     return true;
6366 
6367   // If the only instruction in the block is a seteq/setne comparison against a
6368   // constant, try to simplify the block.
6369   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6370     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6371       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6372         ;
6373       if (I->isTerminator() &&
6374           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6375         return true;
6376     }
6377 
6378   // See if we can merge an empty landing pad block with another which is
6379   // equivalent.
6380   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6381     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6382       ;
6383     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6384       return true;
6385   }
6386 
6387   // If this basic block is ONLY a compare and a branch, and if a predecessor
6388   // branches to us and our successor, fold the comparison into the
6389   // predecessor and use logical operations to update the incoming value
6390   // for PHI nodes in common successor.
6391   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6392                              Options.BonusInstThreshold))
6393     return requestResimplify();
6394   return false;
6395 }
6396 
6397 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6398   BasicBlock *PredPred = nullptr;
6399   for (auto *P : predecessors(BB)) {
6400     BasicBlock *PPred = P->getSinglePredecessor();
6401     if (!PPred || (PredPred && PredPred != PPred))
6402       return nullptr;
6403     PredPred = PPred;
6404   }
6405   return PredPred;
6406 }
6407 
6408 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6409   BasicBlock *BB = BI->getParent();
6410   if (!Options.SimplifyCondBranch)
6411     return false;
6412 
6413   // Conditional branch
6414   if (isValueEqualityComparison(BI)) {
6415     // If we only have one predecessor, and if it is a branch on this value,
6416     // see if that predecessor totally determines the outcome of this
6417     // switch.
6418     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6419       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6420         return requestResimplify();
6421 
6422     // This block must be empty, except for the setcond inst, if it exists.
6423     // Ignore dbg intrinsics.
6424     auto I = BB->instructionsWithoutDebug().begin();
6425     if (&*I == BI) {
6426       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6427         return requestResimplify();
6428     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6429       ++I;
6430       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6431         return requestResimplify();
6432     }
6433   }
6434 
6435   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6436   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6437     return true;
6438 
6439   // If this basic block has dominating predecessor blocks and the dominating
6440   // blocks' conditions imply BI's condition, we know the direction of BI.
6441   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6442   if (Imp) {
6443     // Turn this into a branch on constant.
6444     auto *OldCond = BI->getCondition();
6445     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6446                              : ConstantInt::getFalse(BB->getContext());
6447     BI->setCondition(TorF);
6448     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6449     return requestResimplify();
6450   }
6451 
6452   // If this basic block is ONLY a compare and a branch, and if a predecessor
6453   // branches to us and one of our successors, fold the comparison into the
6454   // predecessor and use logical operations to pick the right destination.
6455   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6456                              Options.BonusInstThreshold))
6457     return requestResimplify();
6458 
6459   // We have a conditional branch to two blocks that are only reachable
6460   // from BI.  We know that the condbr dominates the two blocks, so see if
6461   // there is any identical code in the "then" and "else" blocks.  If so, we
6462   // can hoist it up to the branching block.
6463   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6464     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6465       if (HoistCommon && Options.HoistCommonInsts)
6466         if (HoistThenElseCodeToIf(BI, TTI))
6467           return requestResimplify();
6468     } else {
6469       // If Successor #1 has multiple preds, we may be able to conditionally
6470       // execute Successor #0 if it branches to Successor #1.
6471       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6472       if (Succ0TI->getNumSuccessors() == 1 &&
6473           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6474         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6475           return requestResimplify();
6476     }
6477   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6478     // If Successor #0 has multiple preds, we may be able to conditionally
6479     // execute Successor #1 if it branches to Successor #0.
6480     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6481     if (Succ1TI->getNumSuccessors() == 1 &&
6482         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6483       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6484         return requestResimplify();
6485   }
6486 
6487   // If this is a branch on a phi node in the current block, thread control
6488   // through this block if any PHI node entries are constants.
6489   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6490     if (PN->getParent() == BI->getParent())
6491       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6492         return requestResimplify();
6493 
6494   // Scan predecessor blocks for conditional branches.
6495   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6496     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6497       if (PBI != BI && PBI->isConditional())
6498         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6499           return requestResimplify();
6500 
6501   // Look for diamond patterns.
6502   if (MergeCondStores)
6503     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6504       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6505         if (PBI != BI && PBI->isConditional())
6506           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6507             return requestResimplify();
6508 
6509   return false;
6510 }
6511 
6512 /// Check if passing a value to an instruction will cause undefined behavior.
6513 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
6514   Constant *C = dyn_cast<Constant>(V);
6515   if (!C)
6516     return false;
6517 
6518   if (I->use_empty())
6519     return false;
6520 
6521   if (C->isNullValue() || isa<UndefValue>(C)) {
6522     // Only look at the first use, avoid hurting compile time with long uselists
6523     User *Use = *I->user_begin();
6524 
6525     // Now make sure that there are no instructions in between that can alter
6526     // control flow (eg. calls)
6527     for (BasicBlock::iterator
6528              i = ++BasicBlock::iterator(I),
6529              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6530          i != UI; ++i)
6531       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6532         return false;
6533 
6534     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6535     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6536       if (GEP->getPointerOperand() == I)
6537         return passingValueIsAlwaysUndefined(V, GEP);
6538 
6539     // Look through bitcasts.
6540     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6541       return passingValueIsAlwaysUndefined(V, BC);
6542 
6543     // Load from null is undefined.
6544     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6545       if (!LI->isVolatile())
6546         return !NullPointerIsDefined(LI->getFunction(),
6547                                      LI->getPointerAddressSpace());
6548 
6549     // Store to null is undefined.
6550     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6551       if (!SI->isVolatile())
6552         return (!NullPointerIsDefined(SI->getFunction(),
6553                                       SI->getPointerAddressSpace())) &&
6554                SI->getPointerOperand() == I;
6555 
6556     // A call to null is undefined.
6557     if (auto *CB = dyn_cast<CallBase>(Use))
6558       return !NullPointerIsDefined(CB->getFunction()) &&
6559              CB->getCalledOperand() == I;
6560   }
6561   return false;
6562 }
6563 
6564 /// If BB has an incoming value that will always trigger undefined behavior
6565 /// (eg. null pointer dereference), remove the branch leading here.
6566 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6567                                               DomTreeUpdater *DTU) {
6568   for (PHINode &PHI : BB->phis())
6569     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6570       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6571         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6572         Instruction *T = Predecessor->getTerminator();
6573         IRBuilder<> Builder(T);
6574         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6575           BB->removePredecessor(Predecessor);
6576           // Turn uncoditional branches into unreachables and remove the dead
6577           // destination from conditional branches.
6578           if (BI->isUnconditional())
6579             Builder.CreateUnreachable();
6580           else
6581             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6582                                                        : BI->getSuccessor(0));
6583           BI->eraseFromParent();
6584           if (DTU)
6585             DTU->applyUpdatesPermissive(
6586                 {{DominatorTree::Delete, Predecessor, BB}});
6587           return true;
6588         }
6589         // TODO: SwitchInst.
6590       }
6591 
6592   return false;
6593 }
6594 
6595 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6596   bool Changed = false;
6597 
6598   assert(BB && BB->getParent() && "Block not embedded in function!");
6599   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6600 
6601   // Remove basic blocks that have no predecessors (except the entry block)...
6602   // or that just have themself as a predecessor.  These are unreachable.
6603   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6604       BB->getSinglePredecessor() == BB) {
6605     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6606     DeleteDeadBlock(BB, DTU);
6607     return true;
6608   }
6609 
6610   // Check to see if we can constant propagate this terminator instruction
6611   // away...
6612   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6613                                     /*TLI=*/nullptr, DTU);
6614 
6615   // Check for and eliminate duplicate PHI nodes in this block.
6616   Changed |= EliminateDuplicatePHINodes(BB);
6617 
6618   // Check for and remove branches that will always cause undefined behavior.
6619   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6620 
6621   // Merge basic blocks into their predecessor if there is only one distinct
6622   // pred, and if there is only one distinct successor of the predecessor, and
6623   // if there are no PHI nodes.
6624   if (MergeBlockIntoPredecessor(BB, DTU))
6625     return true;
6626 
6627   if (SinkCommon && Options.SinkCommonInsts)
6628     Changed |= SinkCommonCodeFromPredecessors(BB, DTU);
6629 
6630   IRBuilder<> Builder(BB);
6631 
6632   if (Options.FoldTwoEntryPHINode) {
6633     // If there is a trivial two-entry PHI node in this basic block, and we can
6634     // eliminate it, do so now.
6635     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6636       if (PN->getNumIncomingValues() == 2)
6637         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6638   }
6639 
6640   Instruction *Terminator = BB->getTerminator();
6641   Builder.SetInsertPoint(Terminator);
6642   switch (Terminator->getOpcode()) {
6643   case Instruction::Br:
6644     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6645     break;
6646   case Instruction::Ret:
6647     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6648     break;
6649   case Instruction::Resume:
6650     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6651     break;
6652   case Instruction::CleanupRet:
6653     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6654     break;
6655   case Instruction::Switch:
6656     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6657     break;
6658   case Instruction::Unreachable:
6659     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6660     break;
6661   case Instruction::IndirectBr:
6662     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6663     break;
6664   }
6665 
6666   return Changed;
6667 }
6668 
6669 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6670   assert((!RequireAndPreserveDomTree ||
6671           (DTU &&
6672            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6673          "Original domtree is invalid?");
6674 
6675   bool Changed = simplifyOnceImpl(BB);
6676 
6677   assert((!RequireAndPreserveDomTree ||
6678           (DTU &&
6679            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6680          "Failed to maintain validity of domtree!");
6681 
6682   return Changed;
6683 }
6684 
6685 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6686   bool Changed = false;
6687 
6688   // Repeated simplify BB as long as resimplification is requested.
6689   do {
6690     Resimplify = false;
6691 
6692     // Perform one round of simplifcation. Resimplify flag will be set if
6693     // another iteration is requested.
6694     Changed |= simplifyOnce(BB);
6695   } while (Resimplify);
6696 
6697   return Changed;
6698 }
6699 
6700 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6701                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6702                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6703   return SimplifyCFGOpt(TTI, RequireAndPreserveDomTree ? DTU : nullptr,
6704                         BB->getModule()->getDataLayout(), LoopHeaders, Options)
6705       .run(BB);
6706 }
6707