1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/GuardUtils.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/MemorySSA.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/ConstantRange.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/ValueHandle.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/ValueMapper.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <climits> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <set> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 using namespace PatternMatch; 90 91 #define DEBUG_TYPE "simplifycfg" 92 93 cl::opt<bool> llvm::RequireAndPreserveDomTree( 94 "simplifycfg-require-and-preserve-domtree", cl::Hidden, 95 96 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 97 "into preserving DomTree,")); 98 99 // Chosen as 2 so as to be cheap, but still to have enough power to fold 100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 101 // To catch this, we need to fold a compare and a select, hence '2' being the 102 // minimum reasonable default. 103 static cl::opt<unsigned> PHINodeFoldingThreshold( 104 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 105 cl::desc( 106 "Control the amount of phi node folding to perform (default = 2)")); 107 108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 109 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 110 cl::desc("Control the maximal total instruction cost that we are willing " 111 "to speculatively execute to fold a 2-entry PHI node into a " 112 "select (default = 4)")); 113 114 static cl::opt<bool> 115 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 116 cl::desc("Hoist common instructions up to the parent block")); 117 118 static cl::opt<bool> 119 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 120 cl::desc("Sink common instructions down to the end block")); 121 122 static cl::opt<bool> HoistCondStores( 123 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 124 cl::desc("Hoist conditional stores if an unconditional store precedes")); 125 126 static cl::opt<bool> MergeCondStores( 127 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 128 cl::desc("Hoist conditional stores even if an unconditional store does not " 129 "precede - hoist multiple conditional stores into a single " 130 "predicated store")); 131 132 static cl::opt<bool> MergeCondStoresAggressively( 133 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 134 cl::desc("When merging conditional stores, do so even if the resultant " 135 "basic blocks are unlikely to be if-converted as a result")); 136 137 static cl::opt<bool> SpeculateOneExpensiveInst( 138 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 139 cl::desc("Allow exactly one expensive instruction to be speculatively " 140 "executed")); 141 142 static cl::opt<unsigned> MaxSpeculationDepth( 143 "max-speculation-depth", cl::Hidden, cl::init(10), 144 cl::desc("Limit maximum recursion depth when calculating costs of " 145 "speculatively executed instructions")); 146 147 static cl::opt<int> 148 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 149 cl::init(10), 150 cl::desc("Max size of a block which is still considered " 151 "small enough to thread through")); 152 153 // Two is chosen to allow one negation and a logical combine. 154 static cl::opt<unsigned> 155 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 156 cl::init(2), 157 cl::desc("Maximum cost of combining conditions when " 158 "folding branches")); 159 160 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( 161 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, 162 cl::init(2), 163 cl::desc("Multiplier to apply to threshold when determining whether or not " 164 "to fold branch to common destination when vector operations are " 165 "present")); 166 167 static cl::opt<bool> EnableMergeCompatibleInvokes( 168 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true), 169 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate")); 170 171 static cl::opt<unsigned> MaxSwitchCasesPerResult( 172 "max-switch-cases-per-result", cl::Hidden, cl::init(16), 173 cl::desc("Limit cases to analyze when converting a switch to select")); 174 175 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 176 STATISTIC(NumLinearMaps, 177 "Number of switch instructions turned into linear mapping"); 178 STATISTIC(NumLookupTables, 179 "Number of switch instructions turned into lookup tables"); 180 STATISTIC( 181 NumLookupTablesHoles, 182 "Number of switch instructions turned into lookup tables (holes checked)"); 183 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 184 STATISTIC(NumFoldValueComparisonIntoPredecessors, 185 "Number of value comparisons folded into predecessor basic blocks"); 186 STATISTIC(NumFoldBranchToCommonDest, 187 "Number of branches folded into predecessor basic block"); 188 STATISTIC( 189 NumHoistCommonCode, 190 "Number of common instruction 'blocks' hoisted up to the begin block"); 191 STATISTIC(NumHoistCommonInstrs, 192 "Number of common instructions hoisted up to the begin block"); 193 STATISTIC(NumSinkCommonCode, 194 "Number of common instruction 'blocks' sunk down to the end block"); 195 STATISTIC(NumSinkCommonInstrs, 196 "Number of common instructions sunk down to the end block"); 197 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 198 STATISTIC(NumInvokes, 199 "Number of invokes with empty resume blocks simplified into calls"); 200 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); 201 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); 202 203 namespace { 204 205 // The first field contains the value that the switch produces when a certain 206 // case group is selected, and the second field is a vector containing the 207 // cases composing the case group. 208 using SwitchCaseResultVectorTy = 209 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 210 211 // The first field contains the phi node that generates a result of the switch 212 // and the second field contains the value generated for a certain case in the 213 // switch for that PHI. 214 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 215 216 /// ValueEqualityComparisonCase - Represents a case of a switch. 217 struct ValueEqualityComparisonCase { 218 ConstantInt *Value; 219 BasicBlock *Dest; 220 221 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 222 : Value(Value), Dest(Dest) {} 223 224 bool operator<(ValueEqualityComparisonCase RHS) const { 225 // Comparing pointers is ok as we only rely on the order for uniquing. 226 return Value < RHS.Value; 227 } 228 229 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 230 }; 231 232 class SimplifyCFGOpt { 233 const TargetTransformInfo &TTI; 234 DomTreeUpdater *DTU; 235 const DataLayout &DL; 236 ArrayRef<WeakVH> LoopHeaders; 237 const SimplifyCFGOptions &Options; 238 bool Resimplify; 239 240 Value *isValueEqualityComparison(Instruction *TI); 241 BasicBlock *GetValueEqualityComparisonCases( 242 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 243 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 244 BasicBlock *Pred, 245 IRBuilder<> &Builder); 246 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 247 Instruction *PTI, 248 IRBuilder<> &Builder); 249 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 250 IRBuilder<> &Builder); 251 252 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 253 bool simplifySingleResume(ResumeInst *RI); 254 bool simplifyCommonResume(ResumeInst *RI); 255 bool simplifyCleanupReturn(CleanupReturnInst *RI); 256 bool simplifyUnreachable(UnreachableInst *UI); 257 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 258 bool simplifyIndirectBr(IndirectBrInst *IBI); 259 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 260 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 261 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 262 263 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 264 IRBuilder<> &Builder); 265 266 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 267 bool EqTermsOnly); 268 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 269 const TargetTransformInfo &TTI); 270 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 271 BasicBlock *TrueBB, BasicBlock *FalseBB, 272 uint32_t TrueWeight, uint32_t FalseWeight); 273 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 274 const DataLayout &DL); 275 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 276 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 277 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 278 279 public: 280 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 281 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 282 const SimplifyCFGOptions &Opts) 283 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 284 assert((!DTU || !DTU->hasPostDomTree()) && 285 "SimplifyCFG is not yet capable of maintaining validity of a " 286 "PostDomTree, so don't ask for it."); 287 } 288 289 bool simplifyOnce(BasicBlock *BB); 290 bool run(BasicBlock *BB); 291 292 // Helper to set Resimplify and return change indication. 293 bool requestResimplify() { 294 Resimplify = true; 295 return true; 296 } 297 }; 298 299 } // end anonymous namespace 300 301 /// Return true if all the PHI nodes in the basic block \p BB 302 /// receive compatible (identical) incoming values when coming from 303 /// all of the predecessor blocks that are specified in \p IncomingBlocks. 304 /// 305 /// Note that if the values aren't exactly identical, but \p EquivalenceSet 306 /// is provided, and *both* of the values are present in the set, 307 /// then they are considered equal. 308 static bool IncomingValuesAreCompatible( 309 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, 310 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { 311 assert(IncomingBlocks.size() == 2 && 312 "Only for a pair of incoming blocks at the time!"); 313 314 // FIXME: it is okay if one of the incoming values is an `undef` value, 315 // iff the other incoming value is guaranteed to be a non-poison value. 316 // FIXME: it is okay if one of the incoming values is a `poison` value. 317 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { 318 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); 319 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); 320 if (IV0 == IV1) 321 return true; 322 if (EquivalenceSet && EquivalenceSet->contains(IV0) && 323 EquivalenceSet->contains(IV1)) 324 return true; 325 return false; 326 }); 327 } 328 329 /// Return true if it is safe to merge these two 330 /// terminator instructions together. 331 static bool 332 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 333 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 334 if (SI1 == SI2) 335 return false; // Can't merge with self! 336 337 // It is not safe to merge these two switch instructions if they have a common 338 // successor, and if that successor has a PHI node, and if *that* PHI node has 339 // conflicting incoming values from the two switch blocks. 340 BasicBlock *SI1BB = SI1->getParent(); 341 BasicBlock *SI2BB = SI2->getParent(); 342 343 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 344 bool Fail = false; 345 for (BasicBlock *Succ : successors(SI2BB)) { 346 if (!SI1Succs.count(Succ)) 347 continue; 348 if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) 349 continue; 350 Fail = true; 351 if (FailBlocks) 352 FailBlocks->insert(Succ); 353 else 354 break; 355 } 356 357 return !Fail; 358 } 359 360 /// Update PHI nodes in Succ to indicate that there will now be entries in it 361 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 362 /// will be the same as those coming in from ExistPred, an existing predecessor 363 /// of Succ. 364 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 365 BasicBlock *ExistPred, 366 MemorySSAUpdater *MSSAU = nullptr) { 367 for (PHINode &PN : Succ->phis()) 368 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 369 if (MSSAU) 370 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 371 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 372 } 373 374 /// Compute an abstract "cost" of speculating the given instruction, 375 /// which is assumed to be safe to speculate. TCC_Free means cheap, 376 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 377 /// expensive. 378 static InstructionCost computeSpeculationCost(const User *I, 379 const TargetTransformInfo &TTI) { 380 assert(isSafeToSpeculativelyExecute(I) && 381 "Instruction is not safe to speculatively execute!"); 382 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 383 } 384 385 /// Check whether this is a potentially trapping constant. 386 static bool canTrap(const Value *V) { 387 if (auto *C = dyn_cast<Constant>(V)) 388 return C->canTrap(); 389 return false; 390 } 391 392 /// If we have a merge point of an "if condition" as accepted above, 393 /// return true if the specified value dominates the block. We 394 /// don't handle the true generality of domination here, just a special case 395 /// which works well enough for us. 396 /// 397 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 398 /// see if V (which must be an instruction) and its recursive operands 399 /// that do not dominate BB have a combined cost lower than Budget and 400 /// are non-trapping. If both are true, the instruction is inserted into the 401 /// set and true is returned. 402 /// 403 /// The cost for most non-trapping instructions is defined as 1 except for 404 /// Select whose cost is 2. 405 /// 406 /// After this function returns, Cost is increased by the cost of 407 /// V plus its non-dominating operands. If that cost is greater than 408 /// Budget, false is returned and Cost is undefined. 409 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 410 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 411 InstructionCost &Cost, 412 InstructionCost Budget, 413 const TargetTransformInfo &TTI, 414 unsigned Depth = 0) { 415 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 416 // so limit the recursion depth. 417 // TODO: While this recursion limit does prevent pathological behavior, it 418 // would be better to track visited instructions to avoid cycles. 419 if (Depth == MaxSpeculationDepth) 420 return false; 421 422 Instruction *I = dyn_cast<Instruction>(V); 423 if (!I) { 424 // Non-instructions all dominate instructions, but not all constantexprs 425 // can be executed unconditionally. 426 return !canTrap(V); 427 } 428 BasicBlock *PBB = I->getParent(); 429 430 // We don't want to allow weird loops that might have the "if condition" in 431 // the bottom of this block. 432 if (PBB == BB) 433 return false; 434 435 // If this instruction is defined in a block that contains an unconditional 436 // branch to BB, then it must be in the 'conditional' part of the "if 437 // statement". If not, it definitely dominates the region. 438 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 439 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 440 return true; 441 442 // If we have seen this instruction before, don't count it again. 443 if (AggressiveInsts.count(I)) 444 return true; 445 446 // Okay, it looks like the instruction IS in the "condition". Check to 447 // see if it's a cheap instruction to unconditionally compute, and if it 448 // only uses stuff defined outside of the condition. If so, hoist it out. 449 if (!isSafeToSpeculativelyExecute(I)) 450 return false; 451 452 Cost += computeSpeculationCost(I, TTI); 453 454 // Allow exactly one instruction to be speculated regardless of its cost 455 // (as long as it is safe to do so). 456 // This is intended to flatten the CFG even if the instruction is a division 457 // or other expensive operation. The speculation of an expensive instruction 458 // is expected to be undone in CodeGenPrepare if the speculation has not 459 // enabled further IR optimizations. 460 if (Cost > Budget && 461 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 462 !Cost.isValid())) 463 return false; 464 465 // Okay, we can only really hoist these out if their operands do 466 // not take us over the cost threshold. 467 for (Use &Op : I->operands()) 468 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 469 Depth + 1)) 470 return false; 471 // Okay, it's safe to do this! Remember this instruction. 472 AggressiveInsts.insert(I); 473 return true; 474 } 475 476 /// Extract ConstantInt from value, looking through IntToPtr 477 /// and PointerNullValue. Return NULL if value is not a constant int. 478 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 479 // Normal constant int. 480 ConstantInt *CI = dyn_cast<ConstantInt>(V); 481 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 482 return CI; 483 484 // This is some kind of pointer constant. Turn it into a pointer-sized 485 // ConstantInt if possible. 486 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 487 488 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 489 if (isa<ConstantPointerNull>(V)) 490 return ConstantInt::get(PtrTy, 0); 491 492 // IntToPtr const int. 493 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 494 if (CE->getOpcode() == Instruction::IntToPtr) 495 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 496 // The constant is very likely to have the right type already. 497 if (CI->getType() == PtrTy) 498 return CI; 499 else 500 return cast<ConstantInt>( 501 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 502 } 503 return nullptr; 504 } 505 506 namespace { 507 508 /// Given a chain of or (||) or and (&&) comparison of a value against a 509 /// constant, this will try to recover the information required for a switch 510 /// structure. 511 /// It will depth-first traverse the chain of comparison, seeking for patterns 512 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 513 /// representing the different cases for the switch. 514 /// Note that if the chain is composed of '||' it will build the set of elements 515 /// that matches the comparisons (i.e. any of this value validate the chain) 516 /// while for a chain of '&&' it will build the set elements that make the test 517 /// fail. 518 struct ConstantComparesGatherer { 519 const DataLayout &DL; 520 521 /// Value found for the switch comparison 522 Value *CompValue = nullptr; 523 524 /// Extra clause to be checked before the switch 525 Value *Extra = nullptr; 526 527 /// Set of integers to match in switch 528 SmallVector<ConstantInt *, 8> Vals; 529 530 /// Number of comparisons matched in the and/or chain 531 unsigned UsedICmps = 0; 532 533 /// Construct and compute the result for the comparison instruction Cond 534 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 535 gather(Cond); 536 } 537 538 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 539 ConstantComparesGatherer & 540 operator=(const ConstantComparesGatherer &) = delete; 541 542 private: 543 /// Try to set the current value used for the comparison, it succeeds only if 544 /// it wasn't set before or if the new value is the same as the old one 545 bool setValueOnce(Value *NewVal) { 546 if (CompValue && CompValue != NewVal) 547 return false; 548 CompValue = NewVal; 549 return (CompValue != nullptr); 550 } 551 552 /// Try to match Instruction "I" as a comparison against a constant and 553 /// populates the array Vals with the set of values that match (or do not 554 /// match depending on isEQ). 555 /// Return false on failure. On success, the Value the comparison matched 556 /// against is placed in CompValue. 557 /// If CompValue is already set, the function is expected to fail if a match 558 /// is found but the value compared to is different. 559 bool matchInstruction(Instruction *I, bool isEQ) { 560 // If this is an icmp against a constant, handle this as one of the cases. 561 ICmpInst *ICI; 562 ConstantInt *C; 563 if (!((ICI = dyn_cast<ICmpInst>(I)) && 564 (C = GetConstantInt(I->getOperand(1), DL)))) { 565 return false; 566 } 567 568 Value *RHSVal; 569 const APInt *RHSC; 570 571 // Pattern match a special case 572 // (x & ~2^z) == y --> x == y || x == y|2^z 573 // This undoes a transformation done by instcombine to fuse 2 compares. 574 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 575 // It's a little bit hard to see why the following transformations are 576 // correct. Here is a CVC3 program to verify them for 64-bit values: 577 578 /* 579 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 580 x : BITVECTOR(64); 581 y : BITVECTOR(64); 582 z : BITVECTOR(64); 583 mask : BITVECTOR(64) = BVSHL(ONE, z); 584 QUERY( (y & ~mask = y) => 585 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 586 ); 587 QUERY( (y | mask = y) => 588 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 589 ); 590 */ 591 592 // Please note that each pattern must be a dual implication (<--> or 593 // iff). One directional implication can create spurious matches. If the 594 // implication is only one-way, an unsatisfiable condition on the left 595 // side can imply a satisfiable condition on the right side. Dual 596 // implication ensures that satisfiable conditions are transformed to 597 // other satisfiable conditions and unsatisfiable conditions are 598 // transformed to other unsatisfiable conditions. 599 600 // Here is a concrete example of a unsatisfiable condition on the left 601 // implying a satisfiable condition on the right: 602 // 603 // mask = (1 << z) 604 // (x & ~mask) == y --> (x == y || x == (y | mask)) 605 // 606 // Substituting y = 3, z = 0 yields: 607 // (x & -2) == 3 --> (x == 3 || x == 2) 608 609 // Pattern match a special case: 610 /* 611 QUERY( (y & ~mask = y) => 612 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 613 ); 614 */ 615 if (match(ICI->getOperand(0), 616 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 617 APInt Mask = ~*RHSC; 618 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 619 // If we already have a value for the switch, it has to match! 620 if (!setValueOnce(RHSVal)) 621 return false; 622 623 Vals.push_back(C); 624 Vals.push_back( 625 ConstantInt::get(C->getContext(), 626 C->getValue() | Mask)); 627 UsedICmps++; 628 return true; 629 } 630 } 631 632 // Pattern match a special case: 633 /* 634 QUERY( (y | mask = y) => 635 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 636 ); 637 */ 638 if (match(ICI->getOperand(0), 639 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 640 APInt Mask = *RHSC; 641 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 642 // If we already have a value for the switch, it has to match! 643 if (!setValueOnce(RHSVal)) 644 return false; 645 646 Vals.push_back(C); 647 Vals.push_back(ConstantInt::get(C->getContext(), 648 C->getValue() & ~Mask)); 649 UsedICmps++; 650 return true; 651 } 652 } 653 654 // If we already have a value for the switch, it has to match! 655 if (!setValueOnce(ICI->getOperand(0))) 656 return false; 657 658 UsedICmps++; 659 Vals.push_back(C); 660 return ICI->getOperand(0); 661 } 662 663 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 664 ConstantRange Span = 665 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 666 667 // Shift the range if the compare is fed by an add. This is the range 668 // compare idiom as emitted by instcombine. 669 Value *CandidateVal = I->getOperand(0); 670 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 671 Span = Span.subtract(*RHSC); 672 CandidateVal = RHSVal; 673 } 674 675 // If this is an and/!= check, then we are looking to build the set of 676 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 677 // x != 0 && x != 1. 678 if (!isEQ) 679 Span = Span.inverse(); 680 681 // If there are a ton of values, we don't want to make a ginormous switch. 682 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 683 return false; 684 } 685 686 // If we already have a value for the switch, it has to match! 687 if (!setValueOnce(CandidateVal)) 688 return false; 689 690 // Add all values from the range to the set 691 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 692 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 693 694 UsedICmps++; 695 return true; 696 } 697 698 /// Given a potentially 'or'd or 'and'd together collection of icmp 699 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 700 /// the value being compared, and stick the list constants into the Vals 701 /// vector. 702 /// One "Extra" case is allowed to differ from the other. 703 void gather(Value *V) { 704 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 705 706 // Keep a stack (SmallVector for efficiency) for depth-first traversal 707 SmallVector<Value *, 8> DFT; 708 SmallPtrSet<Value *, 8> Visited; 709 710 // Initialize 711 Visited.insert(V); 712 DFT.push_back(V); 713 714 while (!DFT.empty()) { 715 V = DFT.pop_back_val(); 716 717 if (Instruction *I = dyn_cast<Instruction>(V)) { 718 // If it is a || (or && depending on isEQ), process the operands. 719 Value *Op0, *Op1; 720 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 721 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 722 if (Visited.insert(Op1).second) 723 DFT.push_back(Op1); 724 if (Visited.insert(Op0).second) 725 DFT.push_back(Op0); 726 727 continue; 728 } 729 730 // Try to match the current instruction 731 if (matchInstruction(I, isEQ)) 732 // Match succeed, continue the loop 733 continue; 734 } 735 736 // One element of the sequence of || (or &&) could not be match as a 737 // comparison against the same value as the others. 738 // We allow only one "Extra" case to be checked before the switch 739 if (!Extra) { 740 Extra = V; 741 continue; 742 } 743 // Failed to parse a proper sequence, abort now 744 CompValue = nullptr; 745 break; 746 } 747 } 748 }; 749 750 } // end anonymous namespace 751 752 static void EraseTerminatorAndDCECond(Instruction *TI, 753 MemorySSAUpdater *MSSAU = nullptr) { 754 Instruction *Cond = nullptr; 755 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 756 Cond = dyn_cast<Instruction>(SI->getCondition()); 757 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 758 if (BI->isConditional()) 759 Cond = dyn_cast<Instruction>(BI->getCondition()); 760 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 761 Cond = dyn_cast<Instruction>(IBI->getAddress()); 762 } 763 764 TI->eraseFromParent(); 765 if (Cond) 766 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 767 } 768 769 /// Return true if the specified terminator checks 770 /// to see if a value is equal to constant integer value. 771 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 772 Value *CV = nullptr; 773 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 774 // Do not permit merging of large switch instructions into their 775 // predecessors unless there is only one predecessor. 776 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 777 CV = SI->getCondition(); 778 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 779 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 780 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 781 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 782 CV = ICI->getOperand(0); 783 } 784 785 // Unwrap any lossless ptrtoint cast. 786 if (CV) { 787 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 788 Value *Ptr = PTII->getPointerOperand(); 789 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 790 CV = Ptr; 791 } 792 } 793 return CV; 794 } 795 796 /// Given a value comparison instruction, 797 /// decode all of the 'cases' that it represents and return the 'default' block. 798 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 799 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 800 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 801 Cases.reserve(SI->getNumCases()); 802 for (auto Case : SI->cases()) 803 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 804 Case.getCaseSuccessor())); 805 return SI->getDefaultDest(); 806 } 807 808 BranchInst *BI = cast<BranchInst>(TI); 809 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 810 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 811 Cases.push_back(ValueEqualityComparisonCase( 812 GetConstantInt(ICI->getOperand(1), DL), Succ)); 813 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 814 } 815 816 /// Given a vector of bb/value pairs, remove any entries 817 /// in the list that match the specified block. 818 static void 819 EliminateBlockCases(BasicBlock *BB, 820 std::vector<ValueEqualityComparisonCase> &Cases) { 821 llvm::erase_value(Cases, BB); 822 } 823 824 /// Return true if there are any keys in C1 that exist in C2 as well. 825 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 826 std::vector<ValueEqualityComparisonCase> &C2) { 827 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 828 829 // Make V1 be smaller than V2. 830 if (V1->size() > V2->size()) 831 std::swap(V1, V2); 832 833 if (V1->empty()) 834 return false; 835 if (V1->size() == 1) { 836 // Just scan V2. 837 ConstantInt *TheVal = (*V1)[0].Value; 838 for (unsigned i = 0, e = V2->size(); i != e; ++i) 839 if (TheVal == (*V2)[i].Value) 840 return true; 841 } 842 843 // Otherwise, just sort both lists and compare element by element. 844 array_pod_sort(V1->begin(), V1->end()); 845 array_pod_sort(V2->begin(), V2->end()); 846 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 847 while (i1 != e1 && i2 != e2) { 848 if ((*V1)[i1].Value == (*V2)[i2].Value) 849 return true; 850 if ((*V1)[i1].Value < (*V2)[i2].Value) 851 ++i1; 852 else 853 ++i2; 854 } 855 return false; 856 } 857 858 // Set branch weights on SwitchInst. This sets the metadata if there is at 859 // least one non-zero weight. 860 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 861 // Check that there is at least one non-zero weight. Otherwise, pass 862 // nullptr to setMetadata which will erase the existing metadata. 863 MDNode *N = nullptr; 864 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 865 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 866 SI->setMetadata(LLVMContext::MD_prof, N); 867 } 868 869 // Similar to the above, but for branch and select instructions that take 870 // exactly 2 weights. 871 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 872 uint32_t FalseWeight) { 873 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 874 // Check that there is at least one non-zero weight. Otherwise, pass 875 // nullptr to setMetadata which will erase the existing metadata. 876 MDNode *N = nullptr; 877 if (TrueWeight || FalseWeight) 878 N = MDBuilder(I->getParent()->getContext()) 879 .createBranchWeights(TrueWeight, FalseWeight); 880 I->setMetadata(LLVMContext::MD_prof, N); 881 } 882 883 /// If TI is known to be a terminator instruction and its block is known to 884 /// only have a single predecessor block, check to see if that predecessor is 885 /// also a value comparison with the same value, and if that comparison 886 /// determines the outcome of this comparison. If so, simplify TI. This does a 887 /// very limited form of jump threading. 888 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 889 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 890 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 891 if (!PredVal) 892 return false; // Not a value comparison in predecessor. 893 894 Value *ThisVal = isValueEqualityComparison(TI); 895 assert(ThisVal && "This isn't a value comparison!!"); 896 if (ThisVal != PredVal) 897 return false; // Different predicates. 898 899 // TODO: Preserve branch weight metadata, similarly to how 900 // FoldValueComparisonIntoPredecessors preserves it. 901 902 // Find out information about when control will move from Pred to TI's block. 903 std::vector<ValueEqualityComparisonCase> PredCases; 904 BasicBlock *PredDef = 905 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 906 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 907 908 // Find information about how control leaves this block. 909 std::vector<ValueEqualityComparisonCase> ThisCases; 910 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 911 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 912 913 // If TI's block is the default block from Pred's comparison, potentially 914 // simplify TI based on this knowledge. 915 if (PredDef == TI->getParent()) { 916 // If we are here, we know that the value is none of those cases listed in 917 // PredCases. If there are any cases in ThisCases that are in PredCases, we 918 // can simplify TI. 919 if (!ValuesOverlap(PredCases, ThisCases)) 920 return false; 921 922 if (isa<BranchInst>(TI)) { 923 // Okay, one of the successors of this condbr is dead. Convert it to a 924 // uncond br. 925 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 926 // Insert the new branch. 927 Instruction *NI = Builder.CreateBr(ThisDef); 928 (void)NI; 929 930 // Remove PHI node entries for the dead edge. 931 ThisCases[0].Dest->removePredecessor(PredDef); 932 933 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 934 << "Through successor TI: " << *TI << "Leaving: " << *NI 935 << "\n"); 936 937 EraseTerminatorAndDCECond(TI); 938 939 if (DTU) 940 DTU->applyUpdates( 941 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 942 943 return true; 944 } 945 946 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 947 // Okay, TI has cases that are statically dead, prune them away. 948 SmallPtrSet<Constant *, 16> DeadCases; 949 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 950 DeadCases.insert(PredCases[i].Value); 951 952 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 953 << "Through successor TI: " << *TI); 954 955 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 956 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 957 --i; 958 auto *Successor = i->getCaseSuccessor(); 959 if (DTU) 960 ++NumPerSuccessorCases[Successor]; 961 if (DeadCases.count(i->getCaseValue())) { 962 Successor->removePredecessor(PredDef); 963 SI.removeCase(i); 964 if (DTU) 965 --NumPerSuccessorCases[Successor]; 966 } 967 } 968 969 if (DTU) { 970 std::vector<DominatorTree::UpdateType> Updates; 971 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 972 if (I.second == 0) 973 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 974 DTU->applyUpdates(Updates); 975 } 976 977 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 978 return true; 979 } 980 981 // Otherwise, TI's block must correspond to some matched value. Find out 982 // which value (or set of values) this is. 983 ConstantInt *TIV = nullptr; 984 BasicBlock *TIBB = TI->getParent(); 985 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 986 if (PredCases[i].Dest == TIBB) { 987 if (TIV) 988 return false; // Cannot handle multiple values coming to this block. 989 TIV = PredCases[i].Value; 990 } 991 assert(TIV && "No edge from pred to succ?"); 992 993 // Okay, we found the one constant that our value can be if we get into TI's 994 // BB. Find out which successor will unconditionally be branched to. 995 BasicBlock *TheRealDest = nullptr; 996 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 997 if (ThisCases[i].Value == TIV) { 998 TheRealDest = ThisCases[i].Dest; 999 break; 1000 } 1001 1002 // If not handled by any explicit cases, it is handled by the default case. 1003 if (!TheRealDest) 1004 TheRealDest = ThisDef; 1005 1006 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 1007 1008 // Remove PHI node entries for dead edges. 1009 BasicBlock *CheckEdge = TheRealDest; 1010 for (BasicBlock *Succ : successors(TIBB)) 1011 if (Succ != CheckEdge) { 1012 if (Succ != TheRealDest) 1013 RemovedSuccs.insert(Succ); 1014 Succ->removePredecessor(TIBB); 1015 } else 1016 CheckEdge = nullptr; 1017 1018 // Insert the new branch. 1019 Instruction *NI = Builder.CreateBr(TheRealDest); 1020 (void)NI; 1021 1022 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1023 << "Through successor TI: " << *TI << "Leaving: " << *NI 1024 << "\n"); 1025 1026 EraseTerminatorAndDCECond(TI); 1027 if (DTU) { 1028 SmallVector<DominatorTree::UpdateType, 2> Updates; 1029 Updates.reserve(RemovedSuccs.size()); 1030 for (auto *RemovedSucc : RemovedSuccs) 1031 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1032 DTU->applyUpdates(Updates); 1033 } 1034 return true; 1035 } 1036 1037 namespace { 1038 1039 /// This class implements a stable ordering of constant 1040 /// integers that does not depend on their address. This is important for 1041 /// applications that sort ConstantInt's to ensure uniqueness. 1042 struct ConstantIntOrdering { 1043 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1044 return LHS->getValue().ult(RHS->getValue()); 1045 } 1046 }; 1047 1048 } // end anonymous namespace 1049 1050 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1051 ConstantInt *const *P2) { 1052 const ConstantInt *LHS = *P1; 1053 const ConstantInt *RHS = *P2; 1054 if (LHS == RHS) 1055 return 0; 1056 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1057 } 1058 1059 static inline bool HasBranchWeights(const Instruction *I) { 1060 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1061 if (ProfMD && ProfMD->getOperand(0)) 1062 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1063 return MDS->getString().equals("branch_weights"); 1064 1065 return false; 1066 } 1067 1068 /// Get Weights of a given terminator, the default weight is at the front 1069 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1070 /// metadata. 1071 static void GetBranchWeights(Instruction *TI, 1072 SmallVectorImpl<uint64_t> &Weights) { 1073 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1074 assert(MD); 1075 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1076 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1077 Weights.push_back(CI->getValue().getZExtValue()); 1078 } 1079 1080 // If TI is a conditional eq, the default case is the false case, 1081 // and the corresponding branch-weight data is at index 2. We swap the 1082 // default weight to be the first entry. 1083 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1084 assert(Weights.size() == 2); 1085 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1086 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1087 std::swap(Weights.front(), Weights.back()); 1088 } 1089 } 1090 1091 /// Keep halving the weights until all can fit in uint32_t. 1092 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1093 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1094 if (Max > UINT_MAX) { 1095 unsigned Offset = 32 - countLeadingZeros(Max); 1096 for (uint64_t &I : Weights) 1097 I >>= Offset; 1098 } 1099 } 1100 1101 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1102 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1103 Instruction *PTI = PredBlock->getTerminator(); 1104 1105 // If we have bonus instructions, clone them into the predecessor block. 1106 // Note that there may be multiple predecessor blocks, so we cannot move 1107 // bonus instructions to a predecessor block. 1108 for (Instruction &BonusInst : *BB) { 1109 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1110 continue; 1111 1112 Instruction *NewBonusInst = BonusInst.clone(); 1113 1114 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1115 // Unless the instruction has the same !dbg location as the original 1116 // branch, drop it. When we fold the bonus instructions we want to make 1117 // sure we reset their debug locations in order to avoid stepping on 1118 // dead code caused by folding dead branches. 1119 NewBonusInst->setDebugLoc(DebugLoc()); 1120 } 1121 1122 RemapInstruction(NewBonusInst, VMap, 1123 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1124 VMap[&BonusInst] = NewBonusInst; 1125 1126 // If we moved a load, we cannot any longer claim any knowledge about 1127 // its potential value. The previous information might have been valid 1128 // only given the branch precondition. 1129 // For an analogous reason, we must also drop all the metadata whose 1130 // semantics we don't understand. We *can* preserve !annotation, because 1131 // it is tied to the instruction itself, not the value or position. 1132 // Similarly strip attributes on call parameters that may cause UB in 1133 // location the call is moved to. 1134 NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata( 1135 LLVMContext::MD_annotation); 1136 1137 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1138 NewBonusInst->takeName(&BonusInst); 1139 BonusInst.setName(NewBonusInst->getName() + ".old"); 1140 1141 // Update (liveout) uses of bonus instructions, 1142 // now that the bonus instruction has been cloned into predecessor. 1143 // Note that we expect to be in a block-closed SSA form for this to work! 1144 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1145 auto *UI = cast<Instruction>(U.getUser()); 1146 auto *PN = dyn_cast<PHINode>(UI); 1147 if (!PN) { 1148 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && 1149 "If the user is not a PHI node, then it should be in the same " 1150 "block as, and come after, the original bonus instruction."); 1151 continue; // Keep using the original bonus instruction. 1152 } 1153 // Is this the block-closed SSA form PHI node? 1154 if (PN->getIncomingBlock(U) == BB) 1155 continue; // Great, keep using the original bonus instruction. 1156 // The only other alternative is an "use" when coming from 1157 // the predecessor block - here we should refer to the cloned bonus instr. 1158 assert(PN->getIncomingBlock(U) == PredBlock && 1159 "Not in block-closed SSA form?"); 1160 U.set(NewBonusInst); 1161 } 1162 } 1163 } 1164 1165 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1166 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1167 BasicBlock *BB = TI->getParent(); 1168 BasicBlock *Pred = PTI->getParent(); 1169 1170 SmallVector<DominatorTree::UpdateType, 32> Updates; 1171 1172 // Figure out which 'cases' to copy from SI to PSI. 1173 std::vector<ValueEqualityComparisonCase> BBCases; 1174 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1175 1176 std::vector<ValueEqualityComparisonCase> PredCases; 1177 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1178 1179 // Based on whether the default edge from PTI goes to BB or not, fill in 1180 // PredCases and PredDefault with the new switch cases we would like to 1181 // build. 1182 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1183 1184 // Update the branch weight metadata along the way 1185 SmallVector<uint64_t, 8> Weights; 1186 bool PredHasWeights = HasBranchWeights(PTI); 1187 bool SuccHasWeights = HasBranchWeights(TI); 1188 1189 if (PredHasWeights) { 1190 GetBranchWeights(PTI, Weights); 1191 // branch-weight metadata is inconsistent here. 1192 if (Weights.size() != 1 + PredCases.size()) 1193 PredHasWeights = SuccHasWeights = false; 1194 } else if (SuccHasWeights) 1195 // If there are no predecessor weights but there are successor weights, 1196 // populate Weights with 1, which will later be scaled to the sum of 1197 // successor's weights 1198 Weights.assign(1 + PredCases.size(), 1); 1199 1200 SmallVector<uint64_t, 8> SuccWeights; 1201 if (SuccHasWeights) { 1202 GetBranchWeights(TI, SuccWeights); 1203 // branch-weight metadata is inconsistent here. 1204 if (SuccWeights.size() != 1 + BBCases.size()) 1205 PredHasWeights = SuccHasWeights = false; 1206 } else if (PredHasWeights) 1207 SuccWeights.assign(1 + BBCases.size(), 1); 1208 1209 if (PredDefault == BB) { 1210 // If this is the default destination from PTI, only the edges in TI 1211 // that don't occur in PTI, or that branch to BB will be activated. 1212 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1213 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1214 if (PredCases[i].Dest != BB) 1215 PTIHandled.insert(PredCases[i].Value); 1216 else { 1217 // The default destination is BB, we don't need explicit targets. 1218 std::swap(PredCases[i], PredCases.back()); 1219 1220 if (PredHasWeights || SuccHasWeights) { 1221 // Increase weight for the default case. 1222 Weights[0] += Weights[i + 1]; 1223 std::swap(Weights[i + 1], Weights.back()); 1224 Weights.pop_back(); 1225 } 1226 1227 PredCases.pop_back(); 1228 --i; 1229 --e; 1230 } 1231 1232 // Reconstruct the new switch statement we will be building. 1233 if (PredDefault != BBDefault) { 1234 PredDefault->removePredecessor(Pred); 1235 if (DTU && PredDefault != BB) 1236 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1237 PredDefault = BBDefault; 1238 ++NewSuccessors[BBDefault]; 1239 } 1240 1241 unsigned CasesFromPred = Weights.size(); 1242 uint64_t ValidTotalSuccWeight = 0; 1243 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1244 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1245 PredCases.push_back(BBCases[i]); 1246 ++NewSuccessors[BBCases[i].Dest]; 1247 if (SuccHasWeights || PredHasWeights) { 1248 // The default weight is at index 0, so weight for the ith case 1249 // should be at index i+1. Scale the cases from successor by 1250 // PredDefaultWeight (Weights[0]). 1251 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1252 ValidTotalSuccWeight += SuccWeights[i + 1]; 1253 } 1254 } 1255 1256 if (SuccHasWeights || PredHasWeights) { 1257 ValidTotalSuccWeight += SuccWeights[0]; 1258 // Scale the cases from predecessor by ValidTotalSuccWeight. 1259 for (unsigned i = 1; i < CasesFromPred; ++i) 1260 Weights[i] *= ValidTotalSuccWeight; 1261 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1262 Weights[0] *= SuccWeights[0]; 1263 } 1264 } else { 1265 // If this is not the default destination from PSI, only the edges 1266 // in SI that occur in PSI with a destination of BB will be 1267 // activated. 1268 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1269 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1270 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1271 if (PredCases[i].Dest == BB) { 1272 PTIHandled.insert(PredCases[i].Value); 1273 1274 if (PredHasWeights || SuccHasWeights) { 1275 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1276 std::swap(Weights[i + 1], Weights.back()); 1277 Weights.pop_back(); 1278 } 1279 1280 std::swap(PredCases[i], PredCases.back()); 1281 PredCases.pop_back(); 1282 --i; 1283 --e; 1284 } 1285 1286 // Okay, now we know which constants were sent to BB from the 1287 // predecessor. Figure out where they will all go now. 1288 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1289 if (PTIHandled.count(BBCases[i].Value)) { 1290 // If this is one we are capable of getting... 1291 if (PredHasWeights || SuccHasWeights) 1292 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1293 PredCases.push_back(BBCases[i]); 1294 ++NewSuccessors[BBCases[i].Dest]; 1295 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1296 } 1297 1298 // If there are any constants vectored to BB that TI doesn't handle, 1299 // they must go to the default destination of TI. 1300 for (ConstantInt *I : PTIHandled) { 1301 if (PredHasWeights || SuccHasWeights) 1302 Weights.push_back(WeightsForHandled[I]); 1303 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1304 ++NewSuccessors[BBDefault]; 1305 } 1306 } 1307 1308 // Okay, at this point, we know which new successor Pred will get. Make 1309 // sure we update the number of entries in the PHI nodes for these 1310 // successors. 1311 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1312 if (DTU) { 1313 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1314 Updates.reserve(Updates.size() + NewSuccessors.size()); 1315 } 1316 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1317 NewSuccessors) { 1318 for (auto I : seq(0, NewSuccessor.second)) { 1319 (void)I; 1320 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1321 } 1322 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1323 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1324 } 1325 1326 Builder.SetInsertPoint(PTI); 1327 // Convert pointer to int before we switch. 1328 if (CV->getType()->isPointerTy()) { 1329 CV = 1330 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1331 } 1332 1333 // Now that the successors are updated, create the new Switch instruction. 1334 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1335 NewSI->setDebugLoc(PTI->getDebugLoc()); 1336 for (ValueEqualityComparisonCase &V : PredCases) 1337 NewSI->addCase(V.Value, V.Dest); 1338 1339 if (PredHasWeights || SuccHasWeights) { 1340 // Halve the weights if any of them cannot fit in an uint32_t 1341 FitWeights(Weights); 1342 1343 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1344 1345 setBranchWeights(NewSI, MDWeights); 1346 } 1347 1348 EraseTerminatorAndDCECond(PTI); 1349 1350 // Okay, last check. If BB is still a successor of PSI, then we must 1351 // have an infinite loop case. If so, add an infinitely looping block 1352 // to handle the case to preserve the behavior of the code. 1353 BasicBlock *InfLoopBlock = nullptr; 1354 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1355 if (NewSI->getSuccessor(i) == BB) { 1356 if (!InfLoopBlock) { 1357 // Insert it at the end of the function, because it's either code, 1358 // or it won't matter if it's hot. :) 1359 InfLoopBlock = 1360 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1361 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1362 if (DTU) 1363 Updates.push_back( 1364 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1365 } 1366 NewSI->setSuccessor(i, InfLoopBlock); 1367 } 1368 1369 if (DTU) { 1370 if (InfLoopBlock) 1371 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1372 1373 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1374 1375 DTU->applyUpdates(Updates); 1376 } 1377 1378 ++NumFoldValueComparisonIntoPredecessors; 1379 return true; 1380 } 1381 1382 /// The specified terminator is a value equality comparison instruction 1383 /// (either a switch or a branch on "X == c"). 1384 /// See if any of the predecessors of the terminator block are value comparisons 1385 /// on the same value. If so, and if safe to do so, fold them together. 1386 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1387 IRBuilder<> &Builder) { 1388 BasicBlock *BB = TI->getParent(); 1389 Value *CV = isValueEqualityComparison(TI); // CondVal 1390 assert(CV && "Not a comparison?"); 1391 1392 bool Changed = false; 1393 1394 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1395 while (!Preds.empty()) { 1396 BasicBlock *Pred = Preds.pop_back_val(); 1397 Instruction *PTI = Pred->getTerminator(); 1398 1399 // Don't try to fold into itself. 1400 if (Pred == BB) 1401 continue; 1402 1403 // See if the predecessor is a comparison with the same value. 1404 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1405 if (PCV != CV) 1406 continue; 1407 1408 SmallSetVector<BasicBlock *, 4> FailBlocks; 1409 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1410 for (auto *Succ : FailBlocks) { 1411 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1412 return false; 1413 } 1414 } 1415 1416 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1417 Changed = true; 1418 } 1419 return Changed; 1420 } 1421 1422 // If we would need to insert a select that uses the value of this invoke 1423 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1424 // can't hoist the invoke, as there is nowhere to put the select in this case. 1425 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1426 Instruction *I1, Instruction *I2) { 1427 for (BasicBlock *Succ : successors(BB1)) { 1428 for (const PHINode &PN : Succ->phis()) { 1429 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1430 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1431 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1432 return false; 1433 } 1434 } 1435 } 1436 return true; 1437 } 1438 1439 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1440 1441 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1442 /// in the two blocks up into the branch block. The caller of this function 1443 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1444 /// only perform hoisting in case both blocks only contain a terminator. In that 1445 /// case, only the original BI will be replaced and selects for PHIs are added. 1446 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1447 const TargetTransformInfo &TTI, 1448 bool EqTermsOnly) { 1449 // This does very trivial matching, with limited scanning, to find identical 1450 // instructions in the two blocks. In particular, we don't want to get into 1451 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1452 // such, we currently just scan for obviously identical instructions in an 1453 // identical order. 1454 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1455 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1456 1457 // If either of the blocks has it's address taken, then we can't do this fold, 1458 // because the code we'd hoist would no longer run when we jump into the block 1459 // by it's address. 1460 if (BB1->hasAddressTaken() || BB2->hasAddressTaken()) 1461 return false; 1462 1463 BasicBlock::iterator BB1_Itr = BB1->begin(); 1464 BasicBlock::iterator BB2_Itr = BB2->begin(); 1465 1466 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1467 // Skip debug info if it is not identical. 1468 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1469 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1470 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1471 while (isa<DbgInfoIntrinsic>(I1)) 1472 I1 = &*BB1_Itr++; 1473 while (isa<DbgInfoIntrinsic>(I2)) 1474 I2 = &*BB2_Itr++; 1475 } 1476 // FIXME: Can we define a safety predicate for CallBr? 1477 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1478 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1479 isa<CallBrInst>(I1)) 1480 return false; 1481 1482 BasicBlock *BIParent = BI->getParent(); 1483 1484 bool Changed = false; 1485 1486 auto _ = make_scope_exit([&]() { 1487 if (Changed) 1488 ++NumHoistCommonCode; 1489 }); 1490 1491 // Check if only hoisting terminators is allowed. This does not add new 1492 // instructions to the hoist location. 1493 if (EqTermsOnly) { 1494 // Skip any debug intrinsics, as they are free to hoist. 1495 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1496 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1497 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1498 return false; 1499 if (!I1NonDbg->isTerminator()) 1500 return false; 1501 // Now we know that we only need to hoist debug intrinsics and the 1502 // terminator. Let the loop below handle those 2 cases. 1503 } 1504 1505 do { 1506 // If we are hoisting the terminator instruction, don't move one (making a 1507 // broken BB), instead clone it, and remove BI. 1508 if (I1->isTerminator()) 1509 goto HoistTerminator; 1510 1511 // If we're going to hoist a call, make sure that the two instructions we're 1512 // commoning/hoisting are both marked with musttail, or neither of them is 1513 // marked as such. Otherwise, we might end up in a situation where we hoist 1514 // from a block where the terminator is a `ret` to a block where the terminator 1515 // is a `br`, and `musttail` calls expect to be followed by a return. 1516 auto *C1 = dyn_cast<CallInst>(I1); 1517 auto *C2 = dyn_cast<CallInst>(I2); 1518 if (C1 && C2) 1519 if (C1->isMustTailCall() != C2->isMustTailCall()) 1520 return Changed; 1521 1522 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1523 return Changed; 1524 1525 // If any of the two call sites has nomerge attribute, stop hoisting. 1526 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1527 if (CB1->cannotMerge()) 1528 return Changed; 1529 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1530 if (CB2->cannotMerge()) 1531 return Changed; 1532 1533 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1534 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1535 // The debug location is an integral part of a debug info intrinsic 1536 // and can't be separated from it or replaced. Instead of attempting 1537 // to merge locations, simply hoist both copies of the intrinsic. 1538 BIParent->getInstList().splice(BI->getIterator(), 1539 BB1->getInstList(), I1); 1540 BIParent->getInstList().splice(BI->getIterator(), 1541 BB2->getInstList(), I2); 1542 Changed = true; 1543 } else { 1544 // For a normal instruction, we just move one to right before the branch, 1545 // then replace all uses of the other with the first. Finally, we remove 1546 // the now redundant second instruction. 1547 BIParent->getInstList().splice(BI->getIterator(), 1548 BB1->getInstList(), I1); 1549 if (!I2->use_empty()) 1550 I2->replaceAllUsesWith(I1); 1551 I1->andIRFlags(I2); 1552 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1553 LLVMContext::MD_range, 1554 LLVMContext::MD_fpmath, 1555 LLVMContext::MD_invariant_load, 1556 LLVMContext::MD_nonnull, 1557 LLVMContext::MD_invariant_group, 1558 LLVMContext::MD_align, 1559 LLVMContext::MD_dereferenceable, 1560 LLVMContext::MD_dereferenceable_or_null, 1561 LLVMContext::MD_mem_parallel_loop_access, 1562 LLVMContext::MD_access_group, 1563 LLVMContext::MD_preserve_access_index}; 1564 combineMetadata(I1, I2, KnownIDs, true); 1565 1566 // I1 and I2 are being combined into a single instruction. Its debug 1567 // location is the merged locations of the original instructions. 1568 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1569 1570 I2->eraseFromParent(); 1571 Changed = true; 1572 } 1573 ++NumHoistCommonInstrs; 1574 1575 I1 = &*BB1_Itr++; 1576 I2 = &*BB2_Itr++; 1577 // Skip debug info if it is not identical. 1578 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1579 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1580 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1581 while (isa<DbgInfoIntrinsic>(I1)) 1582 I1 = &*BB1_Itr++; 1583 while (isa<DbgInfoIntrinsic>(I2)) 1584 I2 = &*BB2_Itr++; 1585 } 1586 } while (I1->isIdenticalToWhenDefined(I2)); 1587 1588 return true; 1589 1590 HoistTerminator: 1591 // It may not be possible to hoist an invoke. 1592 // FIXME: Can we define a safety predicate for CallBr? 1593 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1594 return Changed; 1595 1596 // TODO: callbr hoisting currently disabled pending further study. 1597 if (isa<CallBrInst>(I1)) 1598 return Changed; 1599 1600 for (BasicBlock *Succ : successors(BB1)) { 1601 for (PHINode &PN : Succ->phis()) { 1602 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1603 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1604 if (BB1V == BB2V) 1605 continue; 1606 1607 // Check for passingValueIsAlwaysUndefined here because we would rather 1608 // eliminate undefined control flow then converting it to a select. 1609 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1610 passingValueIsAlwaysUndefined(BB2V, &PN)) 1611 return Changed; 1612 1613 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1614 return Changed; 1615 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1616 return Changed; 1617 } 1618 } 1619 1620 // Okay, it is safe to hoist the terminator. 1621 Instruction *NT = I1->clone(); 1622 BIParent->getInstList().insert(BI->getIterator(), NT); 1623 if (!NT->getType()->isVoidTy()) { 1624 I1->replaceAllUsesWith(NT); 1625 I2->replaceAllUsesWith(NT); 1626 NT->takeName(I1); 1627 } 1628 Changed = true; 1629 ++NumHoistCommonInstrs; 1630 1631 // Ensure terminator gets a debug location, even an unknown one, in case 1632 // it involves inlinable calls. 1633 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1634 1635 // PHIs created below will adopt NT's merged DebugLoc. 1636 IRBuilder<NoFolder> Builder(NT); 1637 1638 // Hoisting one of the terminators from our successor is a great thing. 1639 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1640 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1641 // nodes, so we insert select instruction to compute the final result. 1642 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1643 for (BasicBlock *Succ : successors(BB1)) { 1644 for (PHINode &PN : Succ->phis()) { 1645 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1646 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1647 if (BB1V == BB2V) 1648 continue; 1649 1650 // These values do not agree. Insert a select instruction before NT 1651 // that determines the right value. 1652 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1653 if (!SI) { 1654 // Propagate fast-math-flags from phi node to its replacement select. 1655 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1656 if (isa<FPMathOperator>(PN)) 1657 Builder.setFastMathFlags(PN.getFastMathFlags()); 1658 1659 SI = cast<SelectInst>( 1660 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1661 BB1V->getName() + "." + BB2V->getName(), BI)); 1662 } 1663 1664 // Make the PHI node use the select for all incoming values for BB1/BB2 1665 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1666 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1667 PN.setIncomingValue(i, SI); 1668 } 1669 } 1670 1671 SmallVector<DominatorTree::UpdateType, 4> Updates; 1672 1673 // Update any PHI nodes in our new successors. 1674 for (BasicBlock *Succ : successors(BB1)) { 1675 AddPredecessorToBlock(Succ, BIParent, BB1); 1676 if (DTU) 1677 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1678 } 1679 1680 if (DTU) 1681 for (BasicBlock *Succ : successors(BI)) 1682 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1683 1684 EraseTerminatorAndDCECond(BI); 1685 if (DTU) 1686 DTU->applyUpdates(Updates); 1687 return Changed; 1688 } 1689 1690 // Check lifetime markers. 1691 static bool isLifeTimeMarker(const Instruction *I) { 1692 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1693 switch (II->getIntrinsicID()) { 1694 default: 1695 break; 1696 case Intrinsic::lifetime_start: 1697 case Intrinsic::lifetime_end: 1698 return true; 1699 } 1700 } 1701 return false; 1702 } 1703 1704 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1705 // into variables. 1706 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1707 int OpIdx) { 1708 return !isa<IntrinsicInst>(I); 1709 } 1710 1711 // All instructions in Insts belong to different blocks that all unconditionally 1712 // branch to a common successor. Analyze each instruction and return true if it 1713 // would be possible to sink them into their successor, creating one common 1714 // instruction instead. For every value that would be required to be provided by 1715 // PHI node (because an operand varies in each input block), add to PHIOperands. 1716 static bool canSinkInstructions( 1717 ArrayRef<Instruction *> Insts, 1718 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1719 // Prune out obviously bad instructions to move. Each instruction must have 1720 // exactly zero or one use, and we check later that use is by a single, common 1721 // PHI instruction in the successor. 1722 bool HasUse = !Insts.front()->user_empty(); 1723 for (auto *I : Insts) { 1724 // These instructions may change or break semantics if moved. 1725 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1726 I->getType()->isTokenTy()) 1727 return false; 1728 1729 // Do not try to sink an instruction in an infinite loop - it can cause 1730 // this algorithm to infinite loop. 1731 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1732 return false; 1733 1734 // Conservatively return false if I is an inline-asm instruction. Sinking 1735 // and merging inline-asm instructions can potentially create arguments 1736 // that cannot satisfy the inline-asm constraints. 1737 // If the instruction has nomerge attribute, return false. 1738 if (const auto *C = dyn_cast<CallBase>(I)) 1739 if (C->isInlineAsm() || C->cannotMerge()) 1740 return false; 1741 1742 // Each instruction must have zero or one use. 1743 if (HasUse && !I->hasOneUse()) 1744 return false; 1745 if (!HasUse && !I->user_empty()) 1746 return false; 1747 } 1748 1749 const Instruction *I0 = Insts.front(); 1750 for (auto *I : Insts) 1751 if (!I->isSameOperationAs(I0)) 1752 return false; 1753 1754 // All instructions in Insts are known to be the same opcode. If they have a 1755 // use, check that the only user is a PHI or in the same block as the 1756 // instruction, because if a user is in the same block as an instruction we're 1757 // contemplating sinking, it must already be determined to be sinkable. 1758 if (HasUse) { 1759 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1760 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1761 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1762 auto *U = cast<Instruction>(*I->user_begin()); 1763 return (PNUse && 1764 PNUse->getParent() == Succ && 1765 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1766 U->getParent() == I->getParent(); 1767 })) 1768 return false; 1769 } 1770 1771 // Because SROA can't handle speculating stores of selects, try not to sink 1772 // loads, stores or lifetime markers of allocas when we'd have to create a 1773 // PHI for the address operand. Also, because it is likely that loads or 1774 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1775 // them. 1776 // This can cause code churn which can have unintended consequences down 1777 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1778 // FIXME: This is a workaround for a deficiency in SROA - see 1779 // https://llvm.org/bugs/show_bug.cgi?id=30188 1780 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1781 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1782 })) 1783 return false; 1784 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1785 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1786 })) 1787 return false; 1788 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1789 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1790 })) 1791 return false; 1792 1793 // For calls to be sinkable, they must all be indirect, or have same callee. 1794 // I.e. if we have two direct calls to different callees, we don't want to 1795 // turn that into an indirect call. Likewise, if we have an indirect call, 1796 // and a direct call, we don't actually want to have a single indirect call. 1797 if (isa<CallBase>(I0)) { 1798 auto IsIndirectCall = [](const Instruction *I) { 1799 return cast<CallBase>(I)->isIndirectCall(); 1800 }; 1801 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1802 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1803 if (HaveIndirectCalls) { 1804 if (!AllCallsAreIndirect) 1805 return false; 1806 } else { 1807 // All callees must be identical. 1808 Value *Callee = nullptr; 1809 for (const Instruction *I : Insts) { 1810 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1811 if (!Callee) 1812 Callee = CurrCallee; 1813 else if (Callee != CurrCallee) 1814 return false; 1815 } 1816 } 1817 } 1818 1819 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1820 Value *Op = I0->getOperand(OI); 1821 if (Op->getType()->isTokenTy()) 1822 // Don't touch any operand of token type. 1823 return false; 1824 1825 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1826 assert(I->getNumOperands() == I0->getNumOperands()); 1827 return I->getOperand(OI) == I0->getOperand(OI); 1828 }; 1829 if (!all_of(Insts, SameAsI0)) { 1830 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1831 !canReplaceOperandWithVariable(I0, OI)) 1832 // We can't create a PHI from this GEP. 1833 return false; 1834 for (auto *I : Insts) 1835 PHIOperands[I].push_back(I->getOperand(OI)); 1836 } 1837 } 1838 return true; 1839 } 1840 1841 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1842 // instruction of every block in Blocks to their common successor, commoning 1843 // into one instruction. 1844 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1845 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1846 1847 // canSinkInstructions returning true guarantees that every block has at 1848 // least one non-terminator instruction. 1849 SmallVector<Instruction*,4> Insts; 1850 for (auto *BB : Blocks) { 1851 Instruction *I = BB->getTerminator(); 1852 do { 1853 I = I->getPrevNode(); 1854 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1855 if (!isa<DbgInfoIntrinsic>(I)) 1856 Insts.push_back(I); 1857 } 1858 1859 // The only checking we need to do now is that all users of all instructions 1860 // are the same PHI node. canSinkInstructions should have checked this but 1861 // it is slightly over-aggressive - it gets confused by commutative 1862 // instructions so double-check it here. 1863 Instruction *I0 = Insts.front(); 1864 if (!I0->user_empty()) { 1865 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1866 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1867 auto *U = cast<Instruction>(*I->user_begin()); 1868 return U == PNUse; 1869 })) 1870 return false; 1871 } 1872 1873 // We don't need to do any more checking here; canSinkInstructions should 1874 // have done it all for us. 1875 SmallVector<Value*, 4> NewOperands; 1876 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1877 // This check is different to that in canSinkInstructions. There, we 1878 // cared about the global view once simplifycfg (and instcombine) have 1879 // completed - it takes into account PHIs that become trivially 1880 // simplifiable. However here we need a more local view; if an operand 1881 // differs we create a PHI and rely on instcombine to clean up the very 1882 // small mess we may make. 1883 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1884 return I->getOperand(O) != I0->getOperand(O); 1885 }); 1886 if (!NeedPHI) { 1887 NewOperands.push_back(I0->getOperand(O)); 1888 continue; 1889 } 1890 1891 // Create a new PHI in the successor block and populate it. 1892 auto *Op = I0->getOperand(O); 1893 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1894 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1895 Op->getName() + ".sink", &BBEnd->front()); 1896 for (auto *I : Insts) 1897 PN->addIncoming(I->getOperand(O), I->getParent()); 1898 NewOperands.push_back(PN); 1899 } 1900 1901 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1902 // and move it to the start of the successor block. 1903 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1904 I0->getOperandUse(O).set(NewOperands[O]); 1905 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1906 1907 // Update metadata and IR flags, and merge debug locations. 1908 for (auto *I : Insts) 1909 if (I != I0) { 1910 // The debug location for the "common" instruction is the merged locations 1911 // of all the commoned instructions. We start with the original location 1912 // of the "common" instruction and iteratively merge each location in the 1913 // loop below. 1914 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1915 // However, as N-way merge for CallInst is rare, so we use simplified API 1916 // instead of using complex API for N-way merge. 1917 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1918 combineMetadataForCSE(I0, I, true); 1919 I0->andIRFlags(I); 1920 } 1921 1922 if (!I0->user_empty()) { 1923 // canSinkLastInstruction checked that all instructions were used by 1924 // one and only one PHI node. Find that now, RAUW it to our common 1925 // instruction and nuke it. 1926 auto *PN = cast<PHINode>(*I0->user_begin()); 1927 PN->replaceAllUsesWith(I0); 1928 PN->eraseFromParent(); 1929 } 1930 1931 // Finally nuke all instructions apart from the common instruction. 1932 for (auto *I : Insts) 1933 if (I != I0) 1934 I->eraseFromParent(); 1935 1936 return true; 1937 } 1938 1939 namespace { 1940 1941 // LockstepReverseIterator - Iterates through instructions 1942 // in a set of blocks in reverse order from the first non-terminator. 1943 // For example (assume all blocks have size n): 1944 // LockstepReverseIterator I([B1, B2, B3]); 1945 // *I-- = [B1[n], B2[n], B3[n]]; 1946 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1947 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1948 // ... 1949 class LockstepReverseIterator { 1950 ArrayRef<BasicBlock*> Blocks; 1951 SmallVector<Instruction*,4> Insts; 1952 bool Fail; 1953 1954 public: 1955 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1956 reset(); 1957 } 1958 1959 void reset() { 1960 Fail = false; 1961 Insts.clear(); 1962 for (auto *BB : Blocks) { 1963 Instruction *Inst = BB->getTerminator(); 1964 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1965 Inst = Inst->getPrevNode(); 1966 if (!Inst) { 1967 // Block wasn't big enough. 1968 Fail = true; 1969 return; 1970 } 1971 Insts.push_back(Inst); 1972 } 1973 } 1974 1975 bool isValid() const { 1976 return !Fail; 1977 } 1978 1979 void operator--() { 1980 if (Fail) 1981 return; 1982 for (auto *&Inst : Insts) { 1983 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1984 Inst = Inst->getPrevNode(); 1985 // Already at beginning of block. 1986 if (!Inst) { 1987 Fail = true; 1988 return; 1989 } 1990 } 1991 } 1992 1993 void operator++() { 1994 if (Fail) 1995 return; 1996 for (auto *&Inst : Insts) { 1997 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1998 Inst = Inst->getNextNode(); 1999 // Already at end of block. 2000 if (!Inst) { 2001 Fail = true; 2002 return; 2003 } 2004 } 2005 } 2006 2007 ArrayRef<Instruction*> operator * () const { 2008 return Insts; 2009 } 2010 }; 2011 2012 } // end anonymous namespace 2013 2014 /// Check whether BB's predecessors end with unconditional branches. If it is 2015 /// true, sink any common code from the predecessors to BB. 2016 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 2017 DomTreeUpdater *DTU) { 2018 // We support two situations: 2019 // (1) all incoming arcs are unconditional 2020 // (2) there are non-unconditional incoming arcs 2021 // 2022 // (2) is very common in switch defaults and 2023 // else-if patterns; 2024 // 2025 // if (a) f(1); 2026 // else if (b) f(2); 2027 // 2028 // produces: 2029 // 2030 // [if] 2031 // / \ 2032 // [f(1)] [if] 2033 // | | \ 2034 // | | | 2035 // | [f(2)]| 2036 // \ | / 2037 // [ end ] 2038 // 2039 // [end] has two unconditional predecessor arcs and one conditional. The 2040 // conditional refers to the implicit empty 'else' arc. This conditional 2041 // arc can also be caused by an empty default block in a switch. 2042 // 2043 // In this case, we attempt to sink code from all *unconditional* arcs. 2044 // If we can sink instructions from these arcs (determined during the scan 2045 // phase below) we insert a common successor for all unconditional arcs and 2046 // connect that to [end], to enable sinking: 2047 // 2048 // [if] 2049 // / \ 2050 // [x(1)] [if] 2051 // | | \ 2052 // | | \ 2053 // | [x(2)] | 2054 // \ / | 2055 // [sink.split] | 2056 // \ / 2057 // [ end ] 2058 // 2059 SmallVector<BasicBlock*,4> UnconditionalPreds; 2060 bool HaveNonUnconditionalPredecessors = false; 2061 for (auto *PredBB : predecessors(BB)) { 2062 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2063 if (PredBr && PredBr->isUnconditional()) 2064 UnconditionalPreds.push_back(PredBB); 2065 else 2066 HaveNonUnconditionalPredecessors = true; 2067 } 2068 if (UnconditionalPreds.size() < 2) 2069 return false; 2070 2071 // We take a two-step approach to tail sinking. First we scan from the end of 2072 // each block upwards in lockstep. If the n'th instruction from the end of each 2073 // block can be sunk, those instructions are added to ValuesToSink and we 2074 // carry on. If we can sink an instruction but need to PHI-merge some operands 2075 // (because they're not identical in each instruction) we add these to 2076 // PHIOperands. 2077 int ScanIdx = 0; 2078 SmallPtrSet<Value*,4> InstructionsToSink; 2079 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2080 LockstepReverseIterator LRI(UnconditionalPreds); 2081 while (LRI.isValid() && 2082 canSinkInstructions(*LRI, PHIOperands)) { 2083 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2084 << "\n"); 2085 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2086 ++ScanIdx; 2087 --LRI; 2088 } 2089 2090 // If no instructions can be sunk, early-return. 2091 if (ScanIdx == 0) 2092 return false; 2093 2094 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); 2095 2096 if (!followedByDeoptOrUnreachable) { 2097 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2098 // actually sink before encountering instruction that is unprofitable to 2099 // sink? 2100 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2101 unsigned NumPHIdValues = 0; 2102 for (auto *I : *LRI) 2103 for (auto *V : PHIOperands[I]) { 2104 if (!InstructionsToSink.contains(V)) 2105 ++NumPHIdValues; 2106 // FIXME: this check is overly optimistic. We may end up not sinking 2107 // said instruction, due to the very same profitability check. 2108 // See @creating_too_many_phis in sink-common-code.ll. 2109 } 2110 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2111 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2112 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2113 NumPHIInsts++; 2114 2115 return NumPHIInsts <= 1; 2116 }; 2117 2118 // We've determined that we are going to sink last ScanIdx instructions, 2119 // and recorded them in InstructionsToSink. Now, some instructions may be 2120 // unprofitable to sink. But that determination depends on the instructions 2121 // that we are going to sink. 2122 2123 // First, forward scan: find the first instruction unprofitable to sink, 2124 // recording all the ones that are profitable to sink. 2125 // FIXME: would it be better, after we detect that not all are profitable. 2126 // to either record the profitable ones, or erase the unprofitable ones? 2127 // Maybe we need to choose (at runtime) the one that will touch least 2128 // instrs? 2129 LRI.reset(); 2130 int Idx = 0; 2131 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2132 while (Idx < ScanIdx) { 2133 if (!ProfitableToSinkInstruction(LRI)) { 2134 // Too many PHIs would be created. 2135 LLVM_DEBUG( 2136 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2137 break; 2138 } 2139 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2140 --LRI; 2141 ++Idx; 2142 } 2143 2144 // If no instructions can be sunk, early-return. 2145 if (Idx == 0) 2146 return false; 2147 2148 // Did we determine that (only) some instructions are unprofitable to sink? 2149 if (Idx < ScanIdx) { 2150 // Okay, some instructions are unprofitable. 2151 ScanIdx = Idx; 2152 InstructionsToSink = InstructionsProfitableToSink; 2153 2154 // But, that may make other instructions unprofitable, too. 2155 // So, do a backward scan, do any earlier instructions become 2156 // unprofitable? 2157 assert( 2158 !ProfitableToSinkInstruction(LRI) && 2159 "We already know that the last instruction is unprofitable to sink"); 2160 ++LRI; 2161 --Idx; 2162 while (Idx >= 0) { 2163 // If we detect that an instruction becomes unprofitable to sink, 2164 // all earlier instructions won't be sunk either, 2165 // so preemptively keep InstructionsProfitableToSink in sync. 2166 // FIXME: is this the most performant approach? 2167 for (auto *I : *LRI) 2168 InstructionsProfitableToSink.erase(I); 2169 if (!ProfitableToSinkInstruction(LRI)) { 2170 // Everything starting with this instruction won't be sunk. 2171 ScanIdx = Idx; 2172 InstructionsToSink = InstructionsProfitableToSink; 2173 } 2174 ++LRI; 2175 --Idx; 2176 } 2177 } 2178 2179 // If no instructions can be sunk, early-return. 2180 if (ScanIdx == 0) 2181 return false; 2182 } 2183 2184 bool Changed = false; 2185 2186 if (HaveNonUnconditionalPredecessors) { 2187 if (!followedByDeoptOrUnreachable) { 2188 // It is always legal to sink common instructions from unconditional 2189 // predecessors. However, if not all predecessors are unconditional, 2190 // this transformation might be pessimizing. So as a rule of thumb, 2191 // don't do it unless we'd sink at least one non-speculatable instruction. 2192 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2193 LRI.reset(); 2194 int Idx = 0; 2195 bool Profitable = false; 2196 while (Idx < ScanIdx) { 2197 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2198 Profitable = true; 2199 break; 2200 } 2201 --LRI; 2202 ++Idx; 2203 } 2204 if (!Profitable) 2205 return false; 2206 } 2207 2208 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2209 // We have a conditional edge and we're going to sink some instructions. 2210 // Insert a new block postdominating all blocks we're going to sink from. 2211 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2212 // Edges couldn't be split. 2213 return false; 2214 Changed = true; 2215 } 2216 2217 // Now that we've analyzed all potential sinking candidates, perform the 2218 // actual sink. We iteratively sink the last non-terminator of the source 2219 // blocks into their common successor unless doing so would require too 2220 // many PHI instructions to be generated (currently only one PHI is allowed 2221 // per sunk instruction). 2222 // 2223 // We can use InstructionsToSink to discount values needing PHI-merging that will 2224 // actually be sunk in a later iteration. This allows us to be more 2225 // aggressive in what we sink. This does allow a false positive where we 2226 // sink presuming a later value will also be sunk, but stop half way through 2227 // and never actually sink it which means we produce more PHIs than intended. 2228 // This is unlikely in practice though. 2229 int SinkIdx = 0; 2230 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2231 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2232 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2233 << "\n"); 2234 2235 // Because we've sunk every instruction in turn, the current instruction to 2236 // sink is always at index 0. 2237 LRI.reset(); 2238 2239 if (!sinkLastInstruction(UnconditionalPreds)) { 2240 LLVM_DEBUG( 2241 dbgs() 2242 << "SINK: stopping here, failed to actually sink instruction!\n"); 2243 break; 2244 } 2245 2246 NumSinkCommonInstrs++; 2247 Changed = true; 2248 } 2249 if (SinkIdx != 0) 2250 ++NumSinkCommonCode; 2251 return Changed; 2252 } 2253 2254 namespace { 2255 2256 struct CompatibleSets { 2257 using SetTy = SmallVector<InvokeInst *, 2>; 2258 2259 SmallVector<SetTy, 1> Sets; 2260 2261 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); 2262 2263 SetTy &getCompatibleSet(InvokeInst *II); 2264 2265 void insert(InvokeInst *II); 2266 }; 2267 2268 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { 2269 // Perform a linear scan over all the existing sets, see if the new `invoke` 2270 // is compatible with any particular set. Since we know that all the `invokes` 2271 // within a set are compatible, only check the first `invoke` in each set. 2272 // WARNING: at worst, this has quadratic complexity. 2273 for (CompatibleSets::SetTy &Set : Sets) { 2274 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) 2275 return Set; 2276 } 2277 2278 // Otherwise, we either had no sets yet, or this invoke forms a new set. 2279 return Sets.emplace_back(); 2280 } 2281 2282 void CompatibleSets::insert(InvokeInst *II) { 2283 getCompatibleSet(II).emplace_back(II); 2284 } 2285 2286 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { 2287 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2288 2289 // Can we theoretically merge these `invoke`s? 2290 auto IsIllegalToMerge = [](InvokeInst *II) { 2291 return II->cannotMerge() || II->isInlineAsm(); 2292 }; 2293 if (any_of(Invokes, IsIllegalToMerge)) 2294 return false; 2295 2296 // Either both `invoke`s must be direct, 2297 // or both `invoke`s must be indirect. 2298 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; 2299 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); 2300 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); 2301 if (HaveIndirectCalls) { 2302 if (!AllCallsAreIndirect) 2303 return false; 2304 } else { 2305 // All callees must be identical. 2306 Value *Callee = nullptr; 2307 for (InvokeInst *II : Invokes) { 2308 Value *CurrCallee = II->getCalledOperand(); 2309 assert(CurrCallee && "There is always a called operand."); 2310 if (!Callee) 2311 Callee = CurrCallee; 2312 else if (Callee != CurrCallee) 2313 return false; 2314 } 2315 } 2316 2317 // Either both `invoke`s must not have a normal destination, 2318 // or both `invoke`s must have a normal destination, 2319 auto HasNormalDest = [](InvokeInst *II) { 2320 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); 2321 }; 2322 if (any_of(Invokes, HasNormalDest)) { 2323 // Do not merge `invoke` that does not have a normal destination with one 2324 // that does have a normal destination, even though doing so would be legal. 2325 if (!all_of(Invokes, HasNormalDest)) 2326 return false; 2327 2328 // All normal destinations must be identical. 2329 BasicBlock *NormalBB = nullptr; 2330 for (InvokeInst *II : Invokes) { 2331 BasicBlock *CurrNormalBB = II->getNormalDest(); 2332 assert(CurrNormalBB && "There is always a 'continue to' basic block."); 2333 if (!NormalBB) 2334 NormalBB = CurrNormalBB; 2335 else if (NormalBB != CurrNormalBB) 2336 return false; 2337 } 2338 2339 // In the normal destination, the incoming values for these two `invoke`s 2340 // must be compatible. 2341 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); 2342 if (!IncomingValuesAreCompatible( 2343 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, 2344 &EquivalenceSet)) 2345 return false; 2346 } 2347 2348 #ifndef NDEBUG 2349 // All unwind destinations must be identical. 2350 // We know that because we have started from said unwind destination. 2351 BasicBlock *UnwindBB = nullptr; 2352 for (InvokeInst *II : Invokes) { 2353 BasicBlock *CurrUnwindBB = II->getUnwindDest(); 2354 assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); 2355 if (!UnwindBB) 2356 UnwindBB = CurrUnwindBB; 2357 else 2358 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); 2359 } 2360 #endif 2361 2362 // In the unwind destination, the incoming values for these two `invoke`s 2363 // must be compatible. 2364 if (!IncomingValuesAreCompatible( 2365 Invokes.front()->getUnwindDest(), 2366 {Invokes[0]->getParent(), Invokes[1]->getParent()})) 2367 return false; 2368 2369 // Ignoring arguments, these `invoke`s must be identical, 2370 // including operand bundles. 2371 const InvokeInst *II0 = Invokes.front(); 2372 for (auto *II : Invokes.drop_front()) 2373 if (!II->isSameOperationAs(II0)) 2374 return false; 2375 2376 // Can we theoretically form the data operands for the merged `invoke`? 2377 auto IsIllegalToMergeArguments = [](auto Ops) { 2378 Type *Ty = std::get<0>(Ops)->getType(); 2379 assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?"); 2380 return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops); 2381 }; 2382 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2383 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), 2384 IsIllegalToMergeArguments)) 2385 return false; 2386 2387 return true; 2388 } 2389 2390 } // namespace 2391 2392 // Merge all invokes in the provided set, all of which are compatible 2393 // as per the `CompatibleSets::shouldBelongToSameSet()`. 2394 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, 2395 DomTreeUpdater *DTU) { 2396 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); 2397 2398 SmallVector<DominatorTree::UpdateType, 8> Updates; 2399 if (DTU) 2400 Updates.reserve(2 + 3 * Invokes.size()); 2401 2402 bool HasNormalDest = 2403 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); 2404 2405 // Clone one of the invokes into a new basic block. 2406 // Since they are all compatible, it doesn't matter which invoke is cloned. 2407 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { 2408 InvokeInst *II0 = Invokes.front(); 2409 BasicBlock *II0BB = II0->getParent(); 2410 BasicBlock *InsertBeforeBlock = 2411 II0->getParent()->getIterator()->getNextNode(); 2412 Function *Func = II0BB->getParent(); 2413 LLVMContext &Ctx = II0->getContext(); 2414 2415 BasicBlock *MergedInvokeBB = BasicBlock::Create( 2416 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); 2417 2418 auto *MergedInvoke = cast<InvokeInst>(II0->clone()); 2419 // NOTE: all invokes have the same attributes, so no handling needed. 2420 MergedInvokeBB->getInstList().push_back(MergedInvoke); 2421 2422 if (!HasNormalDest) { 2423 // This set does not have a normal destination, 2424 // so just form a new block with unreachable terminator. 2425 BasicBlock *MergedNormalDest = BasicBlock::Create( 2426 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); 2427 new UnreachableInst(Ctx, MergedNormalDest); 2428 MergedInvoke->setNormalDest(MergedNormalDest); 2429 } 2430 2431 // The unwind destination, however, remainds identical for all invokes here. 2432 2433 return MergedInvoke; 2434 }(); 2435 2436 if (DTU) { 2437 // Predecessor blocks that contained these invokes will now branch to 2438 // the new block that contains the merged invoke, ... 2439 for (InvokeInst *II : Invokes) 2440 Updates.push_back( 2441 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); 2442 2443 // ... which has the new `unreachable` block as normal destination, 2444 // or unwinds to the (same for all `invoke`s in this set) `landingpad`, 2445 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) 2446 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), 2447 SuccBBOfMergedInvoke}); 2448 2449 // Since predecessor blocks now unconditionally branch to a new block, 2450 // they no longer branch to their original successors. 2451 for (InvokeInst *II : Invokes) 2452 for (BasicBlock *SuccOfPredBB : successors(II->getParent())) 2453 Updates.push_back( 2454 {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); 2455 } 2456 2457 bool IsIndirectCall = Invokes[0]->isIndirectCall(); 2458 2459 // Form the merged operands for the merged invoke. 2460 for (Use &U : MergedInvoke->operands()) { 2461 // Only PHI together the indirect callees and data operands. 2462 if (MergedInvoke->isCallee(&U)) { 2463 if (!IsIndirectCall) 2464 continue; 2465 } else if (!MergedInvoke->isDataOperand(&U)) 2466 continue; 2467 2468 // Don't create trivial PHI's with all-identical incoming values. 2469 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { 2470 return II->getOperand(U.getOperandNo()) != U.get(); 2471 }); 2472 if (!NeedPHI) 2473 continue; 2474 2475 // Form a PHI out of all the data ops under this index. 2476 PHINode *PN = PHINode::Create( 2477 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke); 2478 for (InvokeInst *II : Invokes) 2479 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); 2480 2481 U.set(PN); 2482 } 2483 2484 // We've ensured that each PHI node has compatible (identical) incoming values 2485 // when coming from each of the `invoke`s in the current merge set, 2486 // so update the PHI nodes accordingly. 2487 for (BasicBlock *Succ : successors(MergedInvoke)) 2488 AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), 2489 /*ExistPred=*/Invokes.front()->getParent()); 2490 2491 // And finally, replace the original `invoke`s with an unconditional branch 2492 // to the block with the merged `invoke`. Also, give that merged `invoke` 2493 // the merged debugloc of all the original `invoke`s. 2494 const DILocation *MergedDebugLoc = nullptr; 2495 for (InvokeInst *II : Invokes) { 2496 // Compute the debug location common to all the original `invoke`s. 2497 if (!MergedDebugLoc) 2498 MergedDebugLoc = II->getDebugLoc(); 2499 else 2500 MergedDebugLoc = 2501 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); 2502 2503 // And replace the old `invoke` with an unconditionally branch 2504 // to the block with the merged `invoke`. 2505 for (BasicBlock *OrigSuccBB : successors(II->getParent())) 2506 OrigSuccBB->removePredecessor(II->getParent()); 2507 BranchInst::Create(MergedInvoke->getParent(), II->getParent()); 2508 II->replaceAllUsesWith(MergedInvoke); 2509 II->eraseFromParent(); 2510 ++NumInvokesMerged; 2511 } 2512 MergedInvoke->setDebugLoc(MergedDebugLoc); 2513 ++NumInvokeSetsFormed; 2514 2515 if (DTU) 2516 DTU->applyUpdates(Updates); 2517 } 2518 2519 /// If this block is a `landingpad` exception handling block, categorize all 2520 /// the predecessor `invoke`s into sets, with all `invoke`s in each set 2521 /// being "mergeable" together, and then merge invokes in each set together. 2522 /// 2523 /// This is a weird mix of hoisting and sinking. Visually, it goes from: 2524 /// [...] [...] 2525 /// | | 2526 /// [invoke0] [invoke1] 2527 /// / \ / \ 2528 /// [cont0] [landingpad] [cont1] 2529 /// to: 2530 /// [...] [...] 2531 /// \ / 2532 /// [invoke] 2533 /// / \ 2534 /// [cont] [landingpad] 2535 /// 2536 /// But of course we can only do that if the invokes share the `landingpad`, 2537 /// edges invoke0->cont0 and invoke1->cont1 are "compatible", 2538 /// and the invoked functions are "compatible". 2539 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { 2540 if (!EnableMergeCompatibleInvokes) 2541 return false; 2542 2543 bool Changed = false; 2544 2545 // FIXME: generalize to all exception handling blocks? 2546 if (!BB->isLandingPad()) 2547 return Changed; 2548 2549 CompatibleSets Grouper; 2550 2551 // Record all the predecessors of this `landingpad`. As per verifier, 2552 // the only allowed predecessor is the unwind edge of an `invoke`. 2553 // We want to group "compatible" `invokes` into the same set to be merged. 2554 for (BasicBlock *PredBB : predecessors(BB)) 2555 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); 2556 2557 // And now, merge `invoke`s that were grouped togeter. 2558 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { 2559 if (Invokes.size() < 2) 2560 continue; 2561 Changed = true; 2562 MergeCompatibleInvokesImpl(Invokes, DTU); 2563 } 2564 2565 return Changed; 2566 } 2567 2568 /// Determine if we can hoist sink a sole store instruction out of a 2569 /// conditional block. 2570 /// 2571 /// We are looking for code like the following: 2572 /// BrBB: 2573 /// store i32 %add, i32* %arrayidx2 2574 /// ... // No other stores or function calls (we could be calling a memory 2575 /// ... // function). 2576 /// %cmp = icmp ult %x, %y 2577 /// br i1 %cmp, label %EndBB, label %ThenBB 2578 /// ThenBB: 2579 /// store i32 %add5, i32* %arrayidx2 2580 /// br label EndBB 2581 /// EndBB: 2582 /// ... 2583 /// We are going to transform this into: 2584 /// BrBB: 2585 /// store i32 %add, i32* %arrayidx2 2586 /// ... // 2587 /// %cmp = icmp ult %x, %y 2588 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2589 /// store i32 %add.add5, i32* %arrayidx2 2590 /// ... 2591 /// 2592 /// \return The pointer to the value of the previous store if the store can be 2593 /// hoisted into the predecessor block. 0 otherwise. 2594 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2595 BasicBlock *StoreBB, BasicBlock *EndBB) { 2596 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2597 if (!StoreToHoist) 2598 return nullptr; 2599 2600 // Volatile or atomic. 2601 if (!StoreToHoist->isSimple()) 2602 return nullptr; 2603 2604 Value *StorePtr = StoreToHoist->getPointerOperand(); 2605 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 2606 2607 // Look for a store to the same pointer in BrBB. 2608 unsigned MaxNumInstToLookAt = 9; 2609 // Skip pseudo probe intrinsic calls which are not really killing any memory 2610 // accesses. 2611 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2612 if (!MaxNumInstToLookAt) 2613 break; 2614 --MaxNumInstToLookAt; 2615 2616 // Could be calling an instruction that affects memory like free(). 2617 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 2618 return nullptr; 2619 2620 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2621 // Found the previous store to same location and type. Make sure it is 2622 // simple, to avoid introducing a spurious non-atomic write after an 2623 // atomic write. 2624 if (SI->getPointerOperand() == StorePtr && 2625 SI->getValueOperand()->getType() == StoreTy && SI->isSimple()) 2626 // Found the previous store, return its value operand. 2627 return SI->getValueOperand(); 2628 return nullptr; // Unknown store. 2629 } 2630 2631 if (auto *LI = dyn_cast<LoadInst>(&CurI)) { 2632 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && 2633 LI->isSimple()) { 2634 // Local objects (created by an `alloca` instruction) are always 2635 // writable, so once we are past a read from a location it is valid to 2636 // also write to that same location. 2637 // If the address of the local object never escapes the function, that 2638 // means it's never concurrently read or written, hence moving the store 2639 // from under the condition will not introduce a data race. 2640 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr)); 2641 if (AI && !PointerMayBeCaptured(AI, false, true)) 2642 // Found a previous load, return it. 2643 return LI; 2644 } 2645 // The load didn't work out, but we may still find a store. 2646 } 2647 } 2648 2649 return nullptr; 2650 } 2651 2652 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2653 /// converted to selects. 2654 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2655 BasicBlock *EndBB, 2656 unsigned &SpeculatedInstructions, 2657 InstructionCost &Cost, 2658 const TargetTransformInfo &TTI) { 2659 TargetTransformInfo::TargetCostKind CostKind = 2660 BB->getParent()->hasMinSize() 2661 ? TargetTransformInfo::TCK_CodeSize 2662 : TargetTransformInfo::TCK_SizeAndLatency; 2663 2664 bool HaveRewritablePHIs = false; 2665 for (PHINode &PN : EndBB->phis()) { 2666 Value *OrigV = PN.getIncomingValueForBlock(BB); 2667 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2668 2669 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2670 // Skip PHIs which are trivial. 2671 if (ThenV == OrigV) 2672 continue; 2673 2674 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2675 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2676 2677 // Don't convert to selects if we could remove undefined behavior instead. 2678 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2679 passingValueIsAlwaysUndefined(ThenV, &PN)) 2680 return false; 2681 2682 if (canTrap(OrigV) || canTrap(ThenV)) 2683 return false; 2684 2685 HaveRewritablePHIs = true; 2686 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2687 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2688 if (!OrigCE && !ThenCE) 2689 continue; // Known cheap (FIXME: Maybe not true for aggregates). 2690 2691 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2692 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2693 InstructionCost MaxCost = 2694 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2695 if (OrigCost + ThenCost > MaxCost) 2696 return false; 2697 2698 // Account for the cost of an unfolded ConstantExpr which could end up 2699 // getting expanded into Instructions. 2700 // FIXME: This doesn't account for how many operations are combined in the 2701 // constant expression. 2702 ++SpeculatedInstructions; 2703 if (SpeculatedInstructions > 1) 2704 return false; 2705 } 2706 2707 return HaveRewritablePHIs; 2708 } 2709 2710 /// Speculate a conditional basic block flattening the CFG. 2711 /// 2712 /// Note that this is a very risky transform currently. Speculating 2713 /// instructions like this is most often not desirable. Instead, there is an MI 2714 /// pass which can do it with full awareness of the resource constraints. 2715 /// However, some cases are "obvious" and we should do directly. An example of 2716 /// this is speculating a single, reasonably cheap instruction. 2717 /// 2718 /// There is only one distinct advantage to flattening the CFG at the IR level: 2719 /// it makes very common but simplistic optimizations such as are common in 2720 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2721 /// modeling their effects with easier to reason about SSA value graphs. 2722 /// 2723 /// 2724 /// An illustration of this transform is turning this IR: 2725 /// \code 2726 /// BB: 2727 /// %cmp = icmp ult %x, %y 2728 /// br i1 %cmp, label %EndBB, label %ThenBB 2729 /// ThenBB: 2730 /// %sub = sub %x, %y 2731 /// br label BB2 2732 /// EndBB: 2733 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2734 /// ... 2735 /// \endcode 2736 /// 2737 /// Into this IR: 2738 /// \code 2739 /// BB: 2740 /// %cmp = icmp ult %x, %y 2741 /// %sub = sub %x, %y 2742 /// %cond = select i1 %cmp, 0, %sub 2743 /// ... 2744 /// \endcode 2745 /// 2746 /// \returns true if the conditional block is removed. 2747 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2748 const TargetTransformInfo &TTI) { 2749 // Be conservative for now. FP select instruction can often be expensive. 2750 Value *BrCond = BI->getCondition(); 2751 if (isa<FCmpInst>(BrCond)) 2752 return false; 2753 2754 BasicBlock *BB = BI->getParent(); 2755 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2756 InstructionCost Budget = 2757 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2758 2759 // If ThenBB is actually on the false edge of the conditional branch, remember 2760 // to swap the select operands later. 2761 bool Invert = false; 2762 if (ThenBB != BI->getSuccessor(0)) { 2763 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2764 Invert = true; 2765 } 2766 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2767 2768 // If the branch is non-unpredictable, and is predicted to *not* branch to 2769 // the `then` block, then avoid speculating it. 2770 if (!BI->getMetadata(LLVMContext::MD_unpredictable)) { 2771 uint64_t TWeight, FWeight; 2772 if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) { 2773 uint64_t EndWeight = Invert ? TWeight : FWeight; 2774 BranchProbability BIEndProb = 2775 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 2776 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 2777 if (BIEndProb >= Likely) 2778 return false; 2779 } 2780 } 2781 2782 // Keep a count of how many times instructions are used within ThenBB when 2783 // they are candidates for sinking into ThenBB. Specifically: 2784 // - They are defined in BB, and 2785 // - They have no side effects, and 2786 // - All of their uses are in ThenBB. 2787 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2788 2789 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2790 2791 unsigned SpeculatedInstructions = 0; 2792 Value *SpeculatedStoreValue = nullptr; 2793 StoreInst *SpeculatedStore = nullptr; 2794 for (BasicBlock::iterator BBI = ThenBB->begin(), 2795 BBE = std::prev(ThenBB->end()); 2796 BBI != BBE; ++BBI) { 2797 Instruction *I = &*BBI; 2798 // Skip debug info. 2799 if (isa<DbgInfoIntrinsic>(I)) { 2800 SpeculatedDbgIntrinsics.push_back(I); 2801 continue; 2802 } 2803 2804 // Skip pseudo probes. The consequence is we lose track of the branch 2805 // probability for ThenBB, which is fine since the optimization here takes 2806 // place regardless of the branch probability. 2807 if (isa<PseudoProbeInst>(I)) { 2808 // The probe should be deleted so that it will not be over-counted when 2809 // the samples collected on the non-conditional path are counted towards 2810 // the conditional path. We leave it for the counts inference algorithm to 2811 // figure out a proper count for an unknown probe. 2812 SpeculatedDbgIntrinsics.push_back(I); 2813 continue; 2814 } 2815 2816 // Only speculatively execute a single instruction (not counting the 2817 // terminator) for now. 2818 ++SpeculatedInstructions; 2819 if (SpeculatedInstructions > 1) 2820 return false; 2821 2822 // Don't hoist the instruction if it's unsafe or expensive. 2823 if (!isSafeToSpeculativelyExecute(I) && 2824 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2825 I, BB, ThenBB, EndBB)))) 2826 return false; 2827 if (!SpeculatedStoreValue && 2828 computeSpeculationCost(I, TTI) > 2829 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2830 return false; 2831 2832 // Store the store speculation candidate. 2833 if (SpeculatedStoreValue) 2834 SpeculatedStore = cast<StoreInst>(I); 2835 2836 // Do not hoist the instruction if any of its operands are defined but not 2837 // used in BB. The transformation will prevent the operand from 2838 // being sunk into the use block. 2839 for (Use &Op : I->operands()) { 2840 Instruction *OpI = dyn_cast<Instruction>(Op); 2841 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2842 continue; // Not a candidate for sinking. 2843 2844 ++SinkCandidateUseCounts[OpI]; 2845 } 2846 } 2847 2848 // Consider any sink candidates which are only used in ThenBB as costs for 2849 // speculation. Note, while we iterate over a DenseMap here, we are summing 2850 // and so iteration order isn't significant. 2851 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2852 I = SinkCandidateUseCounts.begin(), 2853 E = SinkCandidateUseCounts.end(); 2854 I != E; ++I) 2855 if (I->first->hasNUses(I->second)) { 2856 ++SpeculatedInstructions; 2857 if (SpeculatedInstructions > 1) 2858 return false; 2859 } 2860 2861 // Check that we can insert the selects and that it's not too expensive to do 2862 // so. 2863 bool Convert = SpeculatedStore != nullptr; 2864 InstructionCost Cost = 0; 2865 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2866 SpeculatedInstructions, 2867 Cost, TTI); 2868 if (!Convert || Cost > Budget) 2869 return false; 2870 2871 // If we get here, we can hoist the instruction and if-convert. 2872 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2873 2874 // Insert a select of the value of the speculated store. 2875 if (SpeculatedStoreValue) { 2876 IRBuilder<NoFolder> Builder(BI); 2877 Value *TrueV = SpeculatedStore->getValueOperand(); 2878 Value *FalseV = SpeculatedStoreValue; 2879 if (Invert) 2880 std::swap(TrueV, FalseV); 2881 Value *S = Builder.CreateSelect( 2882 BrCond, TrueV, FalseV, "spec.store.select", BI); 2883 SpeculatedStore->setOperand(0, S); 2884 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2885 SpeculatedStore->getDebugLoc()); 2886 } 2887 2888 // Metadata can be dependent on the condition we are hoisting above. 2889 // Conservatively strip all metadata on the instruction. Drop the debug loc 2890 // to avoid making it appear as if the condition is a constant, which would 2891 // be misleading while debugging. 2892 // Similarly strip attributes that maybe dependent on condition we are 2893 // hoisting above. 2894 for (auto &I : *ThenBB) { 2895 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2896 I.setDebugLoc(DebugLoc()); 2897 I.dropUndefImplyingAttrsAndUnknownMetadata(); 2898 } 2899 2900 // Hoist the instructions. 2901 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2902 ThenBB->begin(), std::prev(ThenBB->end())); 2903 2904 // Insert selects and rewrite the PHI operands. 2905 IRBuilder<NoFolder> Builder(BI); 2906 for (PHINode &PN : EndBB->phis()) { 2907 unsigned OrigI = PN.getBasicBlockIndex(BB); 2908 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2909 Value *OrigV = PN.getIncomingValue(OrigI); 2910 Value *ThenV = PN.getIncomingValue(ThenI); 2911 2912 // Skip PHIs which are trivial. 2913 if (OrigV == ThenV) 2914 continue; 2915 2916 // Create a select whose true value is the speculatively executed value and 2917 // false value is the pre-existing value. Swap them if the branch 2918 // destinations were inverted. 2919 Value *TrueV = ThenV, *FalseV = OrigV; 2920 if (Invert) 2921 std::swap(TrueV, FalseV); 2922 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2923 PN.setIncomingValue(OrigI, V); 2924 PN.setIncomingValue(ThenI, V); 2925 } 2926 2927 // Remove speculated dbg intrinsics. 2928 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2929 // dbg value for the different flows and inserting it after the select. 2930 for (Instruction *I : SpeculatedDbgIntrinsics) 2931 I->eraseFromParent(); 2932 2933 ++NumSpeculations; 2934 return true; 2935 } 2936 2937 /// Return true if we can thread a branch across this block. 2938 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2939 int Size = 0; 2940 2941 SmallPtrSet<const Value *, 32> EphValues; 2942 auto IsEphemeral = [&](const Instruction *I) { 2943 if (isa<AssumeInst>(I)) 2944 return true; 2945 return !I->mayHaveSideEffects() && !I->isTerminator() && 2946 all_of(I->users(), 2947 [&](const User *U) { return EphValues.count(U); }); 2948 }; 2949 2950 // Walk the loop in reverse so that we can identify ephemeral values properly 2951 // (values only feeding assumes). 2952 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { 2953 // Can't fold blocks that contain noduplicate or convergent calls. 2954 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2955 if (CI->cannotDuplicate() || CI->isConvergent()) 2956 return false; 2957 2958 // Ignore ephemeral values which are deleted during codegen. 2959 if (IsEphemeral(&I)) 2960 EphValues.insert(&I); 2961 // We will delete Phis while threading, so Phis should not be accounted in 2962 // block's size. 2963 else if (!isa<PHINode>(I)) { 2964 if (Size++ > MaxSmallBlockSize) 2965 return false; // Don't clone large BB's. 2966 } 2967 2968 // We can only support instructions that do not define values that are 2969 // live outside of the current basic block. 2970 for (User *U : I.users()) { 2971 Instruction *UI = cast<Instruction>(U); 2972 if (UI->getParent() != BB || isa<PHINode>(UI)) 2973 return false; 2974 } 2975 2976 // Looks ok, continue checking. 2977 } 2978 2979 return true; 2980 } 2981 2982 static ConstantInt * 2983 getKnownValueOnEdge(Value *V, BasicBlock *From, BasicBlock *To, 2984 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, 2985 ConstantInt *> &Visited) { 2986 // Don't look past the block defining the value, we might get the value from 2987 // a previous loop iteration. 2988 auto *I = dyn_cast<Instruction>(V); 2989 if (I && I->getParent() == To) 2990 return nullptr; 2991 2992 // We know the value if the From block branches on it. 2993 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 2994 if (BI && BI->isConditional() && BI->getCondition() == V && 2995 BI->getSuccessor(0) != BI->getSuccessor(1)) 2996 return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext()) 2997 : ConstantInt::getFalse(BI->getContext()); 2998 2999 // Limit the amount of blocks we inspect. 3000 if (Visited.size() >= 8) 3001 return nullptr; 3002 3003 auto Pair = Visited.try_emplace({From, To}, nullptr); 3004 if (!Pair.second) 3005 return Pair.first->second; 3006 3007 // Check whether the known value is the same for all predecessors. 3008 ConstantInt *Common = nullptr; 3009 for (BasicBlock *Pred : predecessors(From)) { 3010 ConstantInt *C = getKnownValueOnEdge(V, Pred, From, Visited); 3011 if (!C || (Common && Common != C)) 3012 return nullptr; 3013 Common = C; 3014 } 3015 return Visited[{From, To}] = Common; 3016 } 3017 3018 /// If we have a conditional branch on something for which we know the constant 3019 /// value in predecessors (e.g. a phi node in the current block), thread edges 3020 /// from the predecessor to their ultimate destination. 3021 static Optional<bool> 3022 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU, 3023 const DataLayout &DL, 3024 AssumptionCache *AC) { 3025 SmallMapVector<BasicBlock *, ConstantInt *, 8> KnownValues; 3026 BasicBlock *BB = BI->getParent(); 3027 Value *Cond = BI->getCondition(); 3028 PHINode *PN = dyn_cast<PHINode>(Cond); 3029 if (PN && PN->getParent() == BB) { 3030 // Degenerate case of a single entry PHI. 3031 if (PN->getNumIncomingValues() == 1) { 3032 FoldSingleEntryPHINodes(PN->getParent()); 3033 return true; 3034 } 3035 3036 for (Use &U : PN->incoming_values()) 3037 if (auto *CB = dyn_cast<ConstantInt>(U)) 3038 KnownValues.insert({PN->getIncomingBlock(U), CB}); 3039 } else { 3040 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, ConstantInt *> Visited; 3041 for (BasicBlock *Pred : predecessors(BB)) { 3042 if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB, Visited)) 3043 KnownValues.insert({Pred, CB}); 3044 } 3045 } 3046 3047 if (KnownValues.empty()) 3048 return false; 3049 3050 // Now we know that this block has multiple preds and two succs. 3051 // Check that the block is small enough and values defined in the block are 3052 // not used outside of it. 3053 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 3054 return false; 3055 3056 for (const auto &Pair : KnownValues) { 3057 // Okay, we now know that all edges from PredBB should be revectored to 3058 // branch to RealDest. 3059 ConstantInt *CB = Pair.second; 3060 BasicBlock *PredBB = Pair.first; 3061 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 3062 3063 if (RealDest == BB) 3064 continue; // Skip self loops. 3065 // Skip if the predecessor's terminator is an indirect branch. 3066 if (isa<IndirectBrInst>(PredBB->getTerminator())) 3067 continue; 3068 3069 SmallVector<DominatorTree::UpdateType, 3> Updates; 3070 3071 // The dest block might have PHI nodes, other predecessors and other 3072 // difficult cases. Instead of being smart about this, just insert a new 3073 // block that jumps to the destination block, effectively splitting 3074 // the edge we are about to create. 3075 BasicBlock *EdgeBB = 3076 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 3077 RealDest->getParent(), RealDest); 3078 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 3079 if (DTU) 3080 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 3081 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 3082 3083 // Update PHI nodes. 3084 AddPredecessorToBlock(RealDest, EdgeBB, BB); 3085 3086 // BB may have instructions that are being threaded over. Clone these 3087 // instructions into EdgeBB. We know that there will be no uses of the 3088 // cloned instructions outside of EdgeBB. 3089 BasicBlock::iterator InsertPt = EdgeBB->begin(); 3090 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 3091 TranslateMap[Cond] = Pair.second; 3092 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 3093 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 3094 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 3095 continue; 3096 } 3097 // Clone the instruction. 3098 Instruction *N = BBI->clone(); 3099 if (BBI->hasName()) 3100 N->setName(BBI->getName() + ".c"); 3101 3102 // Update operands due to translation. 3103 for (Use &Op : N->operands()) { 3104 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 3105 if (PI != TranslateMap.end()) 3106 Op = PI->second; 3107 } 3108 3109 // Check for trivial simplification. 3110 if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 3111 if (!BBI->use_empty()) 3112 TranslateMap[&*BBI] = V; 3113 if (!N->mayHaveSideEffects()) { 3114 N->deleteValue(); // Instruction folded away, don't need actual inst 3115 N = nullptr; 3116 } 3117 } else { 3118 if (!BBI->use_empty()) 3119 TranslateMap[&*BBI] = N; 3120 } 3121 if (N) { 3122 // Insert the new instruction into its new home. 3123 EdgeBB->getInstList().insert(InsertPt, N); 3124 3125 // Register the new instruction with the assumption cache if necessary. 3126 if (auto *Assume = dyn_cast<AssumeInst>(N)) 3127 if (AC) 3128 AC->registerAssumption(Assume); 3129 } 3130 } 3131 3132 // Loop over all of the edges from PredBB to BB, changing them to branch 3133 // to EdgeBB instead. 3134 Instruction *PredBBTI = PredBB->getTerminator(); 3135 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 3136 if (PredBBTI->getSuccessor(i) == BB) { 3137 BB->removePredecessor(PredBB); 3138 PredBBTI->setSuccessor(i, EdgeBB); 3139 } 3140 3141 if (DTU) { 3142 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 3143 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 3144 3145 DTU->applyUpdates(Updates); 3146 } 3147 3148 // Signal repeat, simplifying any other constants. 3149 return None; 3150 } 3151 3152 return false; 3153 } 3154 3155 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI, 3156 DomTreeUpdater *DTU, 3157 const DataLayout &DL, 3158 AssumptionCache *AC) { 3159 Optional<bool> Result; 3160 bool EverChanged = false; 3161 do { 3162 // Note that None means "we changed things, but recurse further." 3163 Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC); 3164 EverChanged |= Result == None || *Result; 3165 } while (Result == None); 3166 return EverChanged; 3167 } 3168 3169 /// Given a BB that starts with the specified two-entry PHI node, 3170 /// see if we can eliminate it. 3171 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 3172 DomTreeUpdater *DTU, const DataLayout &DL) { 3173 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 3174 // statement", which has a very simple dominance structure. Basically, we 3175 // are trying to find the condition that is being branched on, which 3176 // subsequently causes this merge to happen. We really want control 3177 // dependence information for this check, but simplifycfg can't keep it up 3178 // to date, and this catches most of the cases we care about anyway. 3179 BasicBlock *BB = PN->getParent(); 3180 3181 BasicBlock *IfTrue, *IfFalse; 3182 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 3183 if (!DomBI) 3184 return false; 3185 Value *IfCond = DomBI->getCondition(); 3186 // Don't bother if the branch will be constant folded trivially. 3187 if (isa<ConstantInt>(IfCond)) 3188 return false; 3189 3190 BasicBlock *DomBlock = DomBI->getParent(); 3191 SmallVector<BasicBlock *, 2> IfBlocks; 3192 llvm::copy_if( 3193 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 3194 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 3195 }); 3196 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 3197 "Will have either one or two blocks to speculate."); 3198 3199 // If the branch is non-unpredictable, see if we either predictably jump to 3200 // the merge bb (if we have only a single 'then' block), or if we predictably 3201 // jump to one specific 'then' block (if we have two of them). 3202 // It isn't beneficial to speculatively execute the code 3203 // from the block that we know is predictably not entered. 3204 if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) { 3205 uint64_t TWeight, FWeight; 3206 if (DomBI->extractProfMetadata(TWeight, FWeight) && 3207 (TWeight + FWeight) != 0) { 3208 BranchProbability BITrueProb = 3209 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 3210 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3211 BranchProbability BIFalseProb = BITrueProb.getCompl(); 3212 if (IfBlocks.size() == 1) { 3213 BranchProbability BIBBProb = 3214 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 3215 if (BIBBProb >= Likely) 3216 return false; 3217 } else { 3218 if (BITrueProb >= Likely || BIFalseProb >= Likely) 3219 return false; 3220 } 3221 } 3222 } 3223 3224 // Don't try to fold an unreachable block. For example, the phi node itself 3225 // can't be the candidate if-condition for a select that we want to form. 3226 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 3227 if (IfCondPhiInst->getParent() == BB) 3228 return false; 3229 3230 // Okay, we found that we can merge this two-entry phi node into a select. 3231 // Doing so would require us to fold *all* two entry phi nodes in this block. 3232 // At some point this becomes non-profitable (particularly if the target 3233 // doesn't support cmov's). Only do this transformation if there are two or 3234 // fewer PHI nodes in this block. 3235 unsigned NumPhis = 0; 3236 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 3237 if (NumPhis > 2) 3238 return false; 3239 3240 // Loop over the PHI's seeing if we can promote them all to select 3241 // instructions. While we are at it, keep track of the instructions 3242 // that need to be moved to the dominating block. 3243 SmallPtrSet<Instruction *, 4> AggressiveInsts; 3244 InstructionCost Cost = 0; 3245 InstructionCost Budget = 3246 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3247 3248 bool Changed = false; 3249 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 3250 PHINode *PN = cast<PHINode>(II++); 3251 if (Value *V = simplifyInstruction(PN, {DL, PN})) { 3252 PN->replaceAllUsesWith(V); 3253 PN->eraseFromParent(); 3254 Changed = true; 3255 continue; 3256 } 3257 3258 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 3259 Cost, Budget, TTI) || 3260 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 3261 Cost, Budget, TTI)) 3262 return Changed; 3263 } 3264 3265 // If we folded the first phi, PN dangles at this point. Refresh it. If 3266 // we ran out of PHIs then we simplified them all. 3267 PN = dyn_cast<PHINode>(BB->begin()); 3268 if (!PN) 3269 return true; 3270 3271 // Return true if at least one of these is a 'not', and another is either 3272 // a 'not' too, or a constant. 3273 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 3274 if (!match(V0, m_Not(m_Value()))) 3275 std::swap(V0, V1); 3276 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 3277 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 3278 }; 3279 3280 // Don't fold i1 branches on PHIs which contain binary operators or 3281 // (possibly inverted) select form of or/ands, unless one of 3282 // the incoming values is an 'not' and another one is freely invertible. 3283 // These can often be turned into switches and other things. 3284 auto IsBinOpOrAnd = [](Value *V) { 3285 return match( 3286 V, m_CombineOr( 3287 m_BinOp(), 3288 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()), 3289 m_Select(m_Value(), m_Value(), m_ImmConstant())))); 3290 }; 3291 if (PN->getType()->isIntegerTy(1) && 3292 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 3293 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 3294 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 3295 PN->getIncomingValue(1))) 3296 return Changed; 3297 3298 // If all PHI nodes are promotable, check to make sure that all instructions 3299 // in the predecessor blocks can be promoted as well. If not, we won't be able 3300 // to get rid of the control flow, so it's not worth promoting to select 3301 // instructions. 3302 for (BasicBlock *IfBlock : IfBlocks) 3303 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 3304 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { 3305 // This is not an aggressive instruction that we can promote. 3306 // Because of this, we won't be able to get rid of the control flow, so 3307 // the xform is not worth it. 3308 return Changed; 3309 } 3310 3311 // If either of the blocks has it's address taken, we can't do this fold. 3312 if (any_of(IfBlocks, 3313 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 3314 return Changed; 3315 3316 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 3317 << " T: " << IfTrue->getName() 3318 << " F: " << IfFalse->getName() << "\n"); 3319 3320 // If we can still promote the PHI nodes after this gauntlet of tests, 3321 // do all of the PHI's now. 3322 3323 // Move all 'aggressive' instructions, which are defined in the 3324 // conditional parts of the if's up to the dominating block. 3325 for (BasicBlock *IfBlock : IfBlocks) 3326 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 3327 3328 IRBuilder<NoFolder> Builder(DomBI); 3329 // Propagate fast-math-flags from phi nodes to replacement selects. 3330 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 3331 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 3332 if (isa<FPMathOperator>(PN)) 3333 Builder.setFastMathFlags(PN->getFastMathFlags()); 3334 3335 // Change the PHI node into a select instruction. 3336 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 3337 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 3338 3339 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI); 3340 PN->replaceAllUsesWith(Sel); 3341 Sel->takeName(PN); 3342 PN->eraseFromParent(); 3343 } 3344 3345 // At this point, all IfBlocks are empty, so our if statement 3346 // has been flattened. Change DomBlock to jump directly to our new block to 3347 // avoid other simplifycfg's kicking in on the diamond. 3348 Builder.CreateBr(BB); 3349 3350 SmallVector<DominatorTree::UpdateType, 3> Updates; 3351 if (DTU) { 3352 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 3353 for (auto *Successor : successors(DomBlock)) 3354 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 3355 } 3356 3357 DomBI->eraseFromParent(); 3358 if (DTU) 3359 DTU->applyUpdates(Updates); 3360 3361 return true; 3362 } 3363 3364 static Value *createLogicalOp(IRBuilderBase &Builder, 3365 Instruction::BinaryOps Opc, Value *LHS, 3366 Value *RHS, const Twine &Name = "") { 3367 // Try to relax logical op to binary op. 3368 if (impliesPoison(RHS, LHS)) 3369 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 3370 if (Opc == Instruction::And) 3371 return Builder.CreateLogicalAnd(LHS, RHS, Name); 3372 if (Opc == Instruction::Or) 3373 return Builder.CreateLogicalOr(LHS, RHS, Name); 3374 llvm_unreachable("Invalid logical opcode"); 3375 } 3376 3377 /// Return true if either PBI or BI has branch weight available, and store 3378 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3379 /// not have branch weight, use 1:1 as its weight. 3380 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3381 uint64_t &PredTrueWeight, 3382 uint64_t &PredFalseWeight, 3383 uint64_t &SuccTrueWeight, 3384 uint64_t &SuccFalseWeight) { 3385 bool PredHasWeights = 3386 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 3387 bool SuccHasWeights = 3388 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 3389 if (PredHasWeights || SuccHasWeights) { 3390 if (!PredHasWeights) 3391 PredTrueWeight = PredFalseWeight = 1; 3392 if (!SuccHasWeights) 3393 SuccTrueWeight = SuccFalseWeight = 1; 3394 return true; 3395 } else { 3396 return false; 3397 } 3398 } 3399 3400 /// Determine if the two branches share a common destination and deduce a glue 3401 /// that joins the branches' conditions to arrive at the common destination if 3402 /// that would be profitable. 3403 static Optional<std::pair<Instruction::BinaryOps, bool>> 3404 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3405 const TargetTransformInfo *TTI) { 3406 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3407 "Both blocks must end with a conditional branches."); 3408 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3409 "PredBB must be a predecessor of BB."); 3410 3411 // We have the potential to fold the conditions together, but if the 3412 // predecessor branch is predictable, we may not want to merge them. 3413 uint64_t PTWeight, PFWeight; 3414 BranchProbability PBITrueProb, Likely; 3415 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 3416 PBI->extractProfMetadata(PTWeight, PFWeight) && 3417 (PTWeight + PFWeight) != 0) { 3418 PBITrueProb = 3419 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3420 Likely = TTI->getPredictableBranchThreshold(); 3421 } 3422 3423 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3424 // Speculate the 2nd condition unless the 1st is probably true. 3425 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3426 return {{Instruction::Or, false}}; 3427 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3428 // Speculate the 2nd condition unless the 1st is probably false. 3429 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3430 return {{Instruction::And, false}}; 3431 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3432 // Speculate the 2nd condition unless the 1st is probably true. 3433 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3434 return {{Instruction::And, true}}; 3435 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3436 // Speculate the 2nd condition unless the 1st is probably false. 3437 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3438 return {{Instruction::Or, true}}; 3439 } 3440 return None; 3441 } 3442 3443 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3444 DomTreeUpdater *DTU, 3445 MemorySSAUpdater *MSSAU, 3446 const TargetTransformInfo *TTI) { 3447 BasicBlock *BB = BI->getParent(); 3448 BasicBlock *PredBlock = PBI->getParent(); 3449 3450 // Determine if the two branches share a common destination. 3451 Instruction::BinaryOps Opc; 3452 bool InvertPredCond; 3453 std::tie(Opc, InvertPredCond) = 3454 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3455 3456 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3457 3458 IRBuilder<> Builder(PBI); 3459 // The builder is used to create instructions to eliminate the branch in BB. 3460 // If BB's terminator has !annotation metadata, add it to the new 3461 // instructions. 3462 Builder.CollectMetadataToCopy(BB->getTerminator(), 3463 {LLVMContext::MD_annotation}); 3464 3465 // If we need to invert the condition in the pred block to match, do so now. 3466 if (InvertPredCond) { 3467 Value *NewCond = PBI->getCondition(); 3468 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3469 CmpInst *CI = cast<CmpInst>(NewCond); 3470 CI->setPredicate(CI->getInversePredicate()); 3471 } else { 3472 NewCond = 3473 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3474 } 3475 3476 PBI->setCondition(NewCond); 3477 PBI->swapSuccessors(); 3478 } 3479 3480 BasicBlock *UniqueSucc = 3481 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3482 3483 // Before cloning instructions, notify the successor basic block that it 3484 // is about to have a new predecessor. This will update PHI nodes, 3485 // which will allow us to update live-out uses of bonus instructions. 3486 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3487 3488 // Try to update branch weights. 3489 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3490 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3491 SuccTrueWeight, SuccFalseWeight)) { 3492 SmallVector<uint64_t, 8> NewWeights; 3493 3494 if (PBI->getSuccessor(0) == BB) { 3495 // PBI: br i1 %x, BB, FalseDest 3496 // BI: br i1 %y, UniqueSucc, FalseDest 3497 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3498 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3499 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3500 // TrueWeight for PBI * FalseWeight for BI. 3501 // We assume that total weights of a BranchInst can fit into 32 bits. 3502 // Therefore, we will not have overflow using 64-bit arithmetic. 3503 NewWeights.push_back(PredFalseWeight * 3504 (SuccFalseWeight + SuccTrueWeight) + 3505 PredTrueWeight * SuccFalseWeight); 3506 } else { 3507 // PBI: br i1 %x, TrueDest, BB 3508 // BI: br i1 %y, TrueDest, UniqueSucc 3509 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3510 // FalseWeight for PBI * TrueWeight for BI. 3511 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3512 PredFalseWeight * SuccTrueWeight); 3513 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3514 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3515 } 3516 3517 // Halve the weights if any of them cannot fit in an uint32_t 3518 FitWeights(NewWeights); 3519 3520 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3521 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3522 3523 // TODO: If BB is reachable from all paths through PredBlock, then we 3524 // could replace PBI's branch probabilities with BI's. 3525 } else 3526 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3527 3528 // Now, update the CFG. 3529 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3530 3531 if (DTU) 3532 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3533 {DominatorTree::Delete, PredBlock, BB}}); 3534 3535 // If BI was a loop latch, it may have had associated loop metadata. 3536 // We need to copy it to the new latch, that is, PBI. 3537 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3538 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3539 3540 ValueToValueMapTy VMap; // maps original values to cloned values 3541 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3542 3543 // Now that the Cond was cloned into the predecessor basic block, 3544 // or/and the two conditions together. 3545 Value *BICond = VMap[BI->getCondition()]; 3546 PBI->setCondition( 3547 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3548 3549 // Copy any debug value intrinsics into the end of PredBlock. 3550 for (Instruction &I : *BB) { 3551 if (isa<DbgInfoIntrinsic>(I)) { 3552 Instruction *NewI = I.clone(); 3553 RemapInstruction(NewI, VMap, 3554 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3555 NewI->insertBefore(PBI); 3556 } 3557 } 3558 3559 ++NumFoldBranchToCommonDest; 3560 return true; 3561 } 3562 3563 /// Return if an instruction's type or any of its operands' types are a vector 3564 /// type. 3565 static bool isVectorOp(Instruction &I) { 3566 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { 3567 return U->getType()->isVectorTy(); 3568 }); 3569 } 3570 3571 /// If this basic block is simple enough, and if a predecessor branches to us 3572 /// and one of our successors, fold the block into the predecessor and use 3573 /// logical operations to pick the right destination. 3574 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3575 MemorySSAUpdater *MSSAU, 3576 const TargetTransformInfo *TTI, 3577 unsigned BonusInstThreshold) { 3578 // If this block ends with an unconditional branch, 3579 // let SpeculativelyExecuteBB() deal with it. 3580 if (!BI->isConditional()) 3581 return false; 3582 3583 BasicBlock *BB = BI->getParent(); 3584 TargetTransformInfo::TargetCostKind CostKind = 3585 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3586 : TargetTransformInfo::TCK_SizeAndLatency; 3587 3588 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3589 3590 if (!Cond || 3591 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) && 3592 !isa<SelectInst>(Cond)) || 3593 Cond->getParent() != BB || !Cond->hasOneUse()) 3594 return false; 3595 3596 // Cond is known to be a compare or binary operator. Check to make sure that 3597 // neither operand is a potentially-trapping constant expression. 3598 if (canTrap(Cond->getOperand(0))) 3599 return false; 3600 if (canTrap(Cond->getOperand(1))) 3601 return false; 3602 3603 // Finally, don't infinitely unroll conditional loops. 3604 if (is_contained(successors(BB), BB)) 3605 return false; 3606 3607 // With which predecessors will we want to deal with? 3608 SmallVector<BasicBlock *, 8> Preds; 3609 for (BasicBlock *PredBlock : predecessors(BB)) { 3610 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3611 3612 // Check that we have two conditional branches. If there is a PHI node in 3613 // the common successor, verify that the same value flows in from both 3614 // blocks. 3615 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3616 continue; 3617 3618 // Determine if the two branches share a common destination. 3619 Instruction::BinaryOps Opc; 3620 bool InvertPredCond; 3621 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3622 std::tie(Opc, InvertPredCond) = *Recipe; 3623 else 3624 continue; 3625 3626 // Check the cost of inserting the necessary logic before performing the 3627 // transformation. 3628 if (TTI) { 3629 Type *Ty = BI->getCondition()->getType(); 3630 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3631 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3632 !isa<CmpInst>(PBI->getCondition()))) 3633 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3634 3635 if (Cost > BranchFoldThreshold) 3636 continue; 3637 } 3638 3639 // Ok, we do want to deal with this predecessor. Record it. 3640 Preds.emplace_back(PredBlock); 3641 } 3642 3643 // If there aren't any predecessors into which we can fold, 3644 // don't bother checking the cost. 3645 if (Preds.empty()) 3646 return false; 3647 3648 // Only allow this transformation if computing the condition doesn't involve 3649 // too many instructions and these involved instructions can be executed 3650 // unconditionally. We denote all involved instructions except the condition 3651 // as "bonus instructions", and only allow this transformation when the 3652 // number of the bonus instructions we'll need to create when cloning into 3653 // each predecessor does not exceed a certain threshold. 3654 unsigned NumBonusInsts = 0; 3655 bool SawVectorOp = false; 3656 const unsigned PredCount = Preds.size(); 3657 for (Instruction &I : *BB) { 3658 // Don't check the branch condition comparison itself. 3659 if (&I == Cond) 3660 continue; 3661 // Ignore dbg intrinsics, and the terminator. 3662 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3663 continue; 3664 // I must be safe to execute unconditionally. 3665 if (!isSafeToSpeculativelyExecute(&I)) 3666 return false; 3667 SawVectorOp |= isVectorOp(I); 3668 3669 // Account for the cost of duplicating this instruction into each 3670 // predecessor. Ignore free instructions. 3671 if (!TTI || 3672 TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) { 3673 NumBonusInsts += PredCount; 3674 3675 // Early exits once we reach the limit. 3676 if (NumBonusInsts > 3677 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) 3678 return false; 3679 } 3680 3681 auto IsBCSSAUse = [BB, &I](Use &U) { 3682 auto *UI = cast<Instruction>(U.getUser()); 3683 if (auto *PN = dyn_cast<PHINode>(UI)) 3684 return PN->getIncomingBlock(U) == BB; 3685 return UI->getParent() == BB && I.comesBefore(UI); 3686 }; 3687 3688 // Does this instruction require rewriting of uses? 3689 if (!all_of(I.uses(), IsBCSSAUse)) 3690 return false; 3691 } 3692 if (NumBonusInsts > 3693 BonusInstThreshold * 3694 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) 3695 return false; 3696 3697 // Ok, we have the budget. Perform the transformation. 3698 for (BasicBlock *PredBlock : Preds) { 3699 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3700 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3701 } 3702 return false; 3703 } 3704 3705 // If there is only one store in BB1 and BB2, return it, otherwise return 3706 // nullptr. 3707 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3708 StoreInst *S = nullptr; 3709 for (auto *BB : {BB1, BB2}) { 3710 if (!BB) 3711 continue; 3712 for (auto &I : *BB) 3713 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3714 if (S) 3715 // Multiple stores seen. 3716 return nullptr; 3717 else 3718 S = SI; 3719 } 3720 } 3721 return S; 3722 } 3723 3724 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3725 Value *AlternativeV = nullptr) { 3726 // PHI is going to be a PHI node that allows the value V that is defined in 3727 // BB to be referenced in BB's only successor. 3728 // 3729 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3730 // doesn't matter to us what the other operand is (it'll never get used). We 3731 // could just create a new PHI with an undef incoming value, but that could 3732 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3733 // other PHI. So here we directly look for some PHI in BB's successor with V 3734 // as an incoming operand. If we find one, we use it, else we create a new 3735 // one. 3736 // 3737 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3738 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3739 // where OtherBB is the single other predecessor of BB's only successor. 3740 PHINode *PHI = nullptr; 3741 BasicBlock *Succ = BB->getSingleSuccessor(); 3742 3743 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3744 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3745 PHI = cast<PHINode>(I); 3746 if (!AlternativeV) 3747 break; 3748 3749 assert(Succ->hasNPredecessors(2)); 3750 auto PredI = pred_begin(Succ); 3751 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3752 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3753 break; 3754 PHI = nullptr; 3755 } 3756 if (PHI) 3757 return PHI; 3758 3759 // If V is not an instruction defined in BB, just return it. 3760 if (!AlternativeV && 3761 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3762 return V; 3763 3764 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3765 PHI->addIncoming(V, BB); 3766 for (BasicBlock *PredBB : predecessors(Succ)) 3767 if (PredBB != BB) 3768 PHI->addIncoming( 3769 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3770 return PHI; 3771 } 3772 3773 static bool mergeConditionalStoreToAddress( 3774 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3775 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3776 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3777 // For every pointer, there must be exactly two stores, one coming from 3778 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3779 // store (to any address) in PTB,PFB or QTB,QFB. 3780 // FIXME: We could relax this restriction with a bit more work and performance 3781 // testing. 3782 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3783 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3784 if (!PStore || !QStore) 3785 return false; 3786 3787 // Now check the stores are compatible. 3788 if (!QStore->isUnordered() || !PStore->isUnordered() || 3789 PStore->getValueOperand()->getType() != 3790 QStore->getValueOperand()->getType()) 3791 return false; 3792 3793 // Check that sinking the store won't cause program behavior changes. Sinking 3794 // the store out of the Q blocks won't change any behavior as we're sinking 3795 // from a block to its unconditional successor. But we're moving a store from 3796 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3797 // So we need to check that there are no aliasing loads or stores in 3798 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3799 // operations between PStore and the end of its parent block. 3800 // 3801 // The ideal way to do this is to query AliasAnalysis, but we don't 3802 // preserve AA currently so that is dangerous. Be super safe and just 3803 // check there are no other memory operations at all. 3804 for (auto &I : *QFB->getSinglePredecessor()) 3805 if (I.mayReadOrWriteMemory()) 3806 return false; 3807 for (auto &I : *QFB) 3808 if (&I != QStore && I.mayReadOrWriteMemory()) 3809 return false; 3810 if (QTB) 3811 for (auto &I : *QTB) 3812 if (&I != QStore && I.mayReadOrWriteMemory()) 3813 return false; 3814 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3815 I != E; ++I) 3816 if (&*I != PStore && I->mayReadOrWriteMemory()) 3817 return false; 3818 3819 // If we're not in aggressive mode, we only optimize if we have some 3820 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3821 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3822 if (!BB) 3823 return true; 3824 // Heuristic: if the block can be if-converted/phi-folded and the 3825 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3826 // thread this store. 3827 InstructionCost Cost = 0; 3828 InstructionCost Budget = 3829 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3830 for (auto &I : BB->instructionsWithoutDebug(false)) { 3831 // Consider terminator instruction to be free. 3832 if (I.isTerminator()) 3833 continue; 3834 // If this is one the stores that we want to speculate out of this BB, 3835 // then don't count it's cost, consider it to be free. 3836 if (auto *S = dyn_cast<StoreInst>(&I)) 3837 if (llvm::find(FreeStores, S)) 3838 continue; 3839 // Else, we have a white-list of instructions that we are ak speculating. 3840 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3841 return false; // Not in white-list - not worthwhile folding. 3842 // And finally, if this is a non-free instruction that we are okay 3843 // speculating, ensure that we consider the speculation budget. 3844 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3845 if (Cost > Budget) 3846 return false; // Eagerly refuse to fold as soon as we're out of budget. 3847 } 3848 assert(Cost <= Budget && 3849 "When we run out of budget we will eagerly return from within the " 3850 "per-instruction loop."); 3851 return true; 3852 }; 3853 3854 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3855 if (!MergeCondStoresAggressively && 3856 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3857 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3858 return false; 3859 3860 // If PostBB has more than two predecessors, we need to split it so we can 3861 // sink the store. 3862 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3863 // We know that QFB's only successor is PostBB. And QFB has a single 3864 // predecessor. If QTB exists, then its only successor is also PostBB. 3865 // If QTB does not exist, then QFB's only predecessor has a conditional 3866 // branch to QFB and PostBB. 3867 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3868 BasicBlock *NewBB = 3869 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3870 if (!NewBB) 3871 return false; 3872 PostBB = NewBB; 3873 } 3874 3875 // OK, we're going to sink the stores to PostBB. The store has to be 3876 // conditional though, so first create the predicate. 3877 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3878 ->getCondition(); 3879 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3880 ->getCondition(); 3881 3882 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3883 PStore->getParent()); 3884 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3885 QStore->getParent(), PPHI); 3886 3887 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3888 3889 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3890 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3891 3892 if (InvertPCond) 3893 PPred = QB.CreateNot(PPred); 3894 if (InvertQCond) 3895 QPred = QB.CreateNot(QPred); 3896 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3897 3898 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3899 /*Unreachable=*/false, 3900 /*BranchWeights=*/nullptr, DTU); 3901 QB.SetInsertPoint(T); 3902 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3903 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); 3904 // Choose the minimum alignment. If we could prove both stores execute, we 3905 // could use biggest one. In this case, though, we only know that one of the 3906 // stores executes. And we don't know it's safe to take the alignment from a 3907 // store that doesn't execute. 3908 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3909 3910 QStore->eraseFromParent(); 3911 PStore->eraseFromParent(); 3912 3913 return true; 3914 } 3915 3916 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3917 DomTreeUpdater *DTU, const DataLayout &DL, 3918 const TargetTransformInfo &TTI) { 3919 // The intention here is to find diamonds or triangles (see below) where each 3920 // conditional block contains a store to the same address. Both of these 3921 // stores are conditional, so they can't be unconditionally sunk. But it may 3922 // be profitable to speculatively sink the stores into one merged store at the 3923 // end, and predicate the merged store on the union of the two conditions of 3924 // PBI and QBI. 3925 // 3926 // This can reduce the number of stores executed if both of the conditions are 3927 // true, and can allow the blocks to become small enough to be if-converted. 3928 // This optimization will also chain, so that ladders of test-and-set 3929 // sequences can be if-converted away. 3930 // 3931 // We only deal with simple diamonds or triangles: 3932 // 3933 // PBI or PBI or a combination of the two 3934 // / \ | \ 3935 // PTB PFB | PFB 3936 // \ / | / 3937 // QBI QBI 3938 // / \ | \ 3939 // QTB QFB | QFB 3940 // \ / | / 3941 // PostBB PostBB 3942 // 3943 // We model triangles as a type of diamond with a nullptr "true" block. 3944 // Triangles are canonicalized so that the fallthrough edge is represented by 3945 // a true condition, as in the diagram above. 3946 BasicBlock *PTB = PBI->getSuccessor(0); 3947 BasicBlock *PFB = PBI->getSuccessor(1); 3948 BasicBlock *QTB = QBI->getSuccessor(0); 3949 BasicBlock *QFB = QBI->getSuccessor(1); 3950 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3951 3952 // Make sure we have a good guess for PostBB. If QTB's only successor is 3953 // QFB, then QFB is a better PostBB. 3954 if (QTB->getSingleSuccessor() == QFB) 3955 PostBB = QFB; 3956 3957 // If we couldn't find a good PostBB, stop. 3958 if (!PostBB) 3959 return false; 3960 3961 bool InvertPCond = false, InvertQCond = false; 3962 // Canonicalize fallthroughs to the true branches. 3963 if (PFB == QBI->getParent()) { 3964 std::swap(PFB, PTB); 3965 InvertPCond = true; 3966 } 3967 if (QFB == PostBB) { 3968 std::swap(QFB, QTB); 3969 InvertQCond = true; 3970 } 3971 3972 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3973 // and QFB may not. Model fallthroughs as a nullptr block. 3974 if (PTB == QBI->getParent()) 3975 PTB = nullptr; 3976 if (QTB == PostBB) 3977 QTB = nullptr; 3978 3979 // Legality bailouts. We must have at least the non-fallthrough blocks and 3980 // the post-dominating block, and the non-fallthroughs must only have one 3981 // predecessor. 3982 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3983 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3984 }; 3985 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3986 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3987 return false; 3988 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3989 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3990 return false; 3991 if (!QBI->getParent()->hasNUses(2)) 3992 return false; 3993 3994 // OK, this is a sequence of two diamonds or triangles. 3995 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3996 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3997 for (auto *BB : {PTB, PFB}) { 3998 if (!BB) 3999 continue; 4000 for (auto &I : *BB) 4001 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4002 PStoreAddresses.insert(SI->getPointerOperand()); 4003 } 4004 for (auto *BB : {QTB, QFB}) { 4005 if (!BB) 4006 continue; 4007 for (auto &I : *BB) 4008 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4009 QStoreAddresses.insert(SI->getPointerOperand()); 4010 } 4011 4012 set_intersect(PStoreAddresses, QStoreAddresses); 4013 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 4014 // clear what it contains. 4015 auto &CommonAddresses = PStoreAddresses; 4016 4017 bool Changed = false; 4018 for (auto *Address : CommonAddresses) 4019 Changed |= 4020 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 4021 InvertPCond, InvertQCond, DTU, DL, TTI); 4022 return Changed; 4023 } 4024 4025 /// If the previous block ended with a widenable branch, determine if reusing 4026 /// the target block is profitable and legal. This will have the effect of 4027 /// "widening" PBI, but doesn't require us to reason about hosting safety. 4028 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4029 DomTreeUpdater *DTU) { 4030 // TODO: This can be generalized in two important ways: 4031 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 4032 // values from the PBI edge. 4033 // 2) We can sink side effecting instructions into BI's fallthrough 4034 // successor provided they doesn't contribute to computation of 4035 // BI's condition. 4036 Value *CondWB, *WC; 4037 BasicBlock *IfTrueBB, *IfFalseBB; 4038 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 4039 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 4040 return false; 4041 if (!IfFalseBB->phis().empty()) 4042 return false; // TODO 4043 // Use lambda to lazily compute expensive condition after cheap ones. 4044 auto NoSideEffects = [](BasicBlock &BB) { 4045 return llvm::none_of(BB, [](const Instruction &I) { 4046 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 4047 }); 4048 }; 4049 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 4050 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 4051 NoSideEffects(*BI->getParent())) { 4052 auto *OldSuccessor = BI->getSuccessor(1); 4053 OldSuccessor->removePredecessor(BI->getParent()); 4054 BI->setSuccessor(1, IfFalseBB); 4055 if (DTU) 4056 DTU->applyUpdates( 4057 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4058 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4059 return true; 4060 } 4061 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 4062 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 4063 NoSideEffects(*BI->getParent())) { 4064 auto *OldSuccessor = BI->getSuccessor(0); 4065 OldSuccessor->removePredecessor(BI->getParent()); 4066 BI->setSuccessor(0, IfFalseBB); 4067 if (DTU) 4068 DTU->applyUpdates( 4069 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4070 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4071 return true; 4072 } 4073 return false; 4074 } 4075 4076 /// If we have a conditional branch as a predecessor of another block, 4077 /// this function tries to simplify it. We know 4078 /// that PBI and BI are both conditional branches, and BI is in one of the 4079 /// successor blocks of PBI - PBI branches to BI. 4080 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4081 DomTreeUpdater *DTU, 4082 const DataLayout &DL, 4083 const TargetTransformInfo &TTI) { 4084 assert(PBI->isConditional() && BI->isConditional()); 4085 BasicBlock *BB = BI->getParent(); 4086 4087 // If this block ends with a branch instruction, and if there is a 4088 // predecessor that ends on a branch of the same condition, make 4089 // this conditional branch redundant. 4090 if (PBI->getCondition() == BI->getCondition() && 4091 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4092 // Okay, the outcome of this conditional branch is statically 4093 // knowable. If this block had a single pred, handle specially, otherwise 4094 // FoldCondBranchOnValueKnownInPredecessor() will handle it. 4095 if (BB->getSinglePredecessor()) { 4096 // Turn this into a branch on constant. 4097 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4098 BI->setCondition( 4099 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 4100 return true; // Nuke the branch on constant. 4101 } 4102 } 4103 4104 // If the previous block ended with a widenable branch, determine if reusing 4105 // the target block is profitable and legal. This will have the effect of 4106 // "widening" PBI, but doesn't require us to reason about hosting safety. 4107 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 4108 return true; 4109 4110 if (canTrap(BI->getCondition())) 4111 return false; 4112 4113 // If both branches are conditional and both contain stores to the same 4114 // address, remove the stores from the conditionals and create a conditional 4115 // merged store at the end. 4116 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 4117 return true; 4118 4119 // If this is a conditional branch in an empty block, and if any 4120 // predecessors are a conditional branch to one of our destinations, 4121 // fold the conditions into logical ops and one cond br. 4122 4123 // Ignore dbg intrinsics. 4124 if (&*BB->instructionsWithoutDebug(false).begin() != BI) 4125 return false; 4126 4127 int PBIOp, BIOp; 4128 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 4129 PBIOp = 0; 4130 BIOp = 0; 4131 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 4132 PBIOp = 0; 4133 BIOp = 1; 4134 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4135 PBIOp = 1; 4136 BIOp = 0; 4137 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 4138 PBIOp = 1; 4139 BIOp = 1; 4140 } else { 4141 return false; 4142 } 4143 4144 // Check to make sure that the other destination of this branch 4145 // isn't BB itself. If so, this is an infinite loop that will 4146 // keep getting unwound. 4147 if (PBI->getSuccessor(PBIOp) == BB) 4148 return false; 4149 4150 // Do not perform this transformation if it would require 4151 // insertion of a large number of select instructions. For targets 4152 // without predication/cmovs, this is a big pessimization. 4153 4154 // Also do not perform this transformation if any phi node in the common 4155 // destination block can trap when reached by BB or PBB (PR17073). In that 4156 // case, it would be unsafe to hoist the operation into a select instruction. 4157 4158 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 4159 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 4160 unsigned NumPhis = 0; 4161 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 4162 ++II, ++NumPhis) { 4163 if (NumPhis > 2) // Disable this xform. 4164 return false; 4165 4166 PHINode *PN = cast<PHINode>(II); 4167 Value *BIV = PN->getIncomingValueForBlock(BB); 4168 if (canTrap(BIV)) 4169 return false; 4170 4171 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 4172 Value *PBIV = PN->getIncomingValue(PBBIdx); 4173 if (canTrap(PBIV)) 4174 return false; 4175 } 4176 4177 // Finally, if everything is ok, fold the branches to logical ops. 4178 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 4179 4180 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 4181 << "AND: " << *BI->getParent()); 4182 4183 SmallVector<DominatorTree::UpdateType, 5> Updates; 4184 4185 // If OtherDest *is* BB, then BB is a basic block with a single conditional 4186 // branch in it, where one edge (OtherDest) goes back to itself but the other 4187 // exits. We don't *know* that the program avoids the infinite loop 4188 // (even though that seems likely). If we do this xform naively, we'll end up 4189 // recursively unpeeling the loop. Since we know that (after the xform is 4190 // done) that the block *is* infinite if reached, we just make it an obviously 4191 // infinite loop with no cond branch. 4192 if (OtherDest == BB) { 4193 // Insert it at the end of the function, because it's either code, 4194 // or it won't matter if it's hot. :) 4195 BasicBlock *InfLoopBlock = 4196 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 4197 BranchInst::Create(InfLoopBlock, InfLoopBlock); 4198 if (DTU) 4199 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 4200 OtherDest = InfLoopBlock; 4201 } 4202 4203 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4204 4205 // BI may have other predecessors. Because of this, we leave 4206 // it alone, but modify PBI. 4207 4208 // Make sure we get to CommonDest on True&True directions. 4209 Value *PBICond = PBI->getCondition(); 4210 IRBuilder<NoFolder> Builder(PBI); 4211 if (PBIOp) 4212 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 4213 4214 Value *BICond = BI->getCondition(); 4215 if (BIOp) 4216 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 4217 4218 // Merge the conditions. 4219 Value *Cond = 4220 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 4221 4222 // Modify PBI to branch on the new condition to the new dests. 4223 PBI->setCondition(Cond); 4224 PBI->setSuccessor(0, CommonDest); 4225 PBI->setSuccessor(1, OtherDest); 4226 4227 if (DTU) { 4228 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 4229 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 4230 4231 DTU->applyUpdates(Updates); 4232 } 4233 4234 // Update branch weight for PBI. 4235 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4236 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 4237 bool HasWeights = 4238 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4239 SuccTrueWeight, SuccFalseWeight); 4240 if (HasWeights) { 4241 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4242 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4243 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4244 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4245 // The weight to CommonDest should be PredCommon * SuccTotal + 4246 // PredOther * SuccCommon. 4247 // The weight to OtherDest should be PredOther * SuccOther. 4248 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 4249 PredOther * SuccCommon, 4250 PredOther * SuccOther}; 4251 // Halve the weights if any of them cannot fit in an uint32_t 4252 FitWeights(NewWeights); 4253 4254 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 4255 } 4256 4257 // OtherDest may have phi nodes. If so, add an entry from PBI's 4258 // block that are identical to the entries for BI's block. 4259 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 4260 4261 // We know that the CommonDest already had an edge from PBI to 4262 // it. If it has PHIs though, the PHIs may have different 4263 // entries for BB and PBI's BB. If so, insert a select to make 4264 // them agree. 4265 for (PHINode &PN : CommonDest->phis()) { 4266 Value *BIV = PN.getIncomingValueForBlock(BB); 4267 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 4268 Value *PBIV = PN.getIncomingValue(PBBIdx); 4269 if (BIV != PBIV) { 4270 // Insert a select in PBI to pick the right value. 4271 SelectInst *NV = cast<SelectInst>( 4272 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 4273 PN.setIncomingValue(PBBIdx, NV); 4274 // Although the select has the same condition as PBI, the original branch 4275 // weights for PBI do not apply to the new select because the select's 4276 // 'logical' edges are incoming edges of the phi that is eliminated, not 4277 // the outgoing edges of PBI. 4278 if (HasWeights) { 4279 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4280 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4281 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4282 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4283 // The weight to PredCommonDest should be PredCommon * SuccTotal. 4284 // The weight to PredOtherDest should be PredOther * SuccCommon. 4285 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 4286 PredOther * SuccCommon}; 4287 4288 FitWeights(NewWeights); 4289 4290 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 4291 } 4292 } 4293 } 4294 4295 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 4296 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4297 4298 // This basic block is probably dead. We know it has at least 4299 // one fewer predecessor. 4300 return true; 4301 } 4302 4303 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 4304 // true or to FalseBB if Cond is false. 4305 // Takes care of updating the successors and removing the old terminator. 4306 // Also makes sure not to introduce new successors by assuming that edges to 4307 // non-successor TrueBBs and FalseBBs aren't reachable. 4308 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 4309 Value *Cond, BasicBlock *TrueBB, 4310 BasicBlock *FalseBB, 4311 uint32_t TrueWeight, 4312 uint32_t FalseWeight) { 4313 auto *BB = OldTerm->getParent(); 4314 // Remove any superfluous successor edges from the CFG. 4315 // First, figure out which successors to preserve. 4316 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 4317 // successor. 4318 BasicBlock *KeepEdge1 = TrueBB; 4319 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 4320 4321 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 4322 4323 // Then remove the rest. 4324 for (BasicBlock *Succ : successors(OldTerm)) { 4325 // Make sure only to keep exactly one copy of each edge. 4326 if (Succ == KeepEdge1) 4327 KeepEdge1 = nullptr; 4328 else if (Succ == KeepEdge2) 4329 KeepEdge2 = nullptr; 4330 else { 4331 Succ->removePredecessor(BB, 4332 /*KeepOneInputPHIs=*/true); 4333 4334 if (Succ != TrueBB && Succ != FalseBB) 4335 RemovedSuccessors.insert(Succ); 4336 } 4337 } 4338 4339 IRBuilder<> Builder(OldTerm); 4340 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 4341 4342 // Insert an appropriate new terminator. 4343 if (!KeepEdge1 && !KeepEdge2) { 4344 if (TrueBB == FalseBB) { 4345 // We were only looking for one successor, and it was present. 4346 // Create an unconditional branch to it. 4347 Builder.CreateBr(TrueBB); 4348 } else { 4349 // We found both of the successors we were looking for. 4350 // Create a conditional branch sharing the condition of the select. 4351 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 4352 if (TrueWeight != FalseWeight) 4353 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4354 } 4355 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 4356 // Neither of the selected blocks were successors, so this 4357 // terminator must be unreachable. 4358 new UnreachableInst(OldTerm->getContext(), OldTerm); 4359 } else { 4360 // One of the selected values was a successor, but the other wasn't. 4361 // Insert an unconditional branch to the one that was found; 4362 // the edge to the one that wasn't must be unreachable. 4363 if (!KeepEdge1) { 4364 // Only TrueBB was found. 4365 Builder.CreateBr(TrueBB); 4366 } else { 4367 // Only FalseBB was found. 4368 Builder.CreateBr(FalseBB); 4369 } 4370 } 4371 4372 EraseTerminatorAndDCECond(OldTerm); 4373 4374 if (DTU) { 4375 SmallVector<DominatorTree::UpdateType, 2> Updates; 4376 Updates.reserve(RemovedSuccessors.size()); 4377 for (auto *RemovedSuccessor : RemovedSuccessors) 4378 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4379 DTU->applyUpdates(Updates); 4380 } 4381 4382 return true; 4383 } 4384 4385 // Replaces 4386 // (switch (select cond, X, Y)) on constant X, Y 4387 // with a branch - conditional if X and Y lead to distinct BBs, 4388 // unconditional otherwise. 4389 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4390 SelectInst *Select) { 4391 // Check for constant integer values in the select. 4392 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4393 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4394 if (!TrueVal || !FalseVal) 4395 return false; 4396 4397 // Find the relevant condition and destinations. 4398 Value *Condition = Select->getCondition(); 4399 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4400 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4401 4402 // Get weight for TrueBB and FalseBB. 4403 uint32_t TrueWeight = 0, FalseWeight = 0; 4404 SmallVector<uint64_t, 8> Weights; 4405 bool HasWeights = HasBranchWeights(SI); 4406 if (HasWeights) { 4407 GetBranchWeights(SI, Weights); 4408 if (Weights.size() == 1 + SI->getNumCases()) { 4409 TrueWeight = 4410 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4411 FalseWeight = 4412 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4413 } 4414 } 4415 4416 // Perform the actual simplification. 4417 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4418 FalseWeight); 4419 } 4420 4421 // Replaces 4422 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4423 // blockaddress(@fn, BlockB))) 4424 // with 4425 // (br cond, BlockA, BlockB). 4426 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4427 SelectInst *SI) { 4428 // Check that both operands of the select are block addresses. 4429 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4430 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4431 if (!TBA || !FBA) 4432 return false; 4433 4434 // Extract the actual blocks. 4435 BasicBlock *TrueBB = TBA->getBasicBlock(); 4436 BasicBlock *FalseBB = FBA->getBasicBlock(); 4437 4438 // Perform the actual simplification. 4439 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4440 0); 4441 } 4442 4443 /// This is called when we find an icmp instruction 4444 /// (a seteq/setne with a constant) as the only instruction in a 4445 /// block that ends with an uncond branch. We are looking for a very specific 4446 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4447 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4448 /// default value goes to an uncond block with a seteq in it, we get something 4449 /// like: 4450 /// 4451 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4452 /// DEFAULT: 4453 /// %tmp = icmp eq i8 %A, 92 4454 /// br label %end 4455 /// end: 4456 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4457 /// 4458 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4459 /// the PHI, merging the third icmp into the switch. 4460 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4461 ICmpInst *ICI, IRBuilder<> &Builder) { 4462 BasicBlock *BB = ICI->getParent(); 4463 4464 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4465 // complex. 4466 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4467 return false; 4468 4469 Value *V = ICI->getOperand(0); 4470 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4471 4472 // The pattern we're looking for is where our only predecessor is a switch on 4473 // 'V' and this block is the default case for the switch. In this case we can 4474 // fold the compared value into the switch to simplify things. 4475 BasicBlock *Pred = BB->getSinglePredecessor(); 4476 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4477 return false; 4478 4479 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4480 if (SI->getCondition() != V) 4481 return false; 4482 4483 // If BB is reachable on a non-default case, then we simply know the value of 4484 // V in this block. Substitute it and constant fold the icmp instruction 4485 // away. 4486 if (SI->getDefaultDest() != BB) { 4487 ConstantInt *VVal = SI->findCaseDest(BB); 4488 assert(VVal && "Should have a unique destination value"); 4489 ICI->setOperand(0, VVal); 4490 4491 if (Value *V = simplifyInstruction(ICI, {DL, ICI})) { 4492 ICI->replaceAllUsesWith(V); 4493 ICI->eraseFromParent(); 4494 } 4495 // BB is now empty, so it is likely to simplify away. 4496 return requestResimplify(); 4497 } 4498 4499 // Ok, the block is reachable from the default dest. If the constant we're 4500 // comparing exists in one of the other edges, then we can constant fold ICI 4501 // and zap it. 4502 if (SI->findCaseValue(Cst) != SI->case_default()) { 4503 Value *V; 4504 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4505 V = ConstantInt::getFalse(BB->getContext()); 4506 else 4507 V = ConstantInt::getTrue(BB->getContext()); 4508 4509 ICI->replaceAllUsesWith(V); 4510 ICI->eraseFromParent(); 4511 // BB is now empty, so it is likely to simplify away. 4512 return requestResimplify(); 4513 } 4514 4515 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4516 // the block. 4517 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4518 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4519 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4520 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4521 return false; 4522 4523 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4524 // true in the PHI. 4525 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4526 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4527 4528 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4529 std::swap(DefaultCst, NewCst); 4530 4531 // Replace ICI (which is used by the PHI for the default value) with true or 4532 // false depending on if it is EQ or NE. 4533 ICI->replaceAllUsesWith(DefaultCst); 4534 ICI->eraseFromParent(); 4535 4536 SmallVector<DominatorTree::UpdateType, 2> Updates; 4537 4538 // Okay, the switch goes to this block on a default value. Add an edge from 4539 // the switch to the merge point on the compared value. 4540 BasicBlock *NewBB = 4541 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4542 { 4543 SwitchInstProfUpdateWrapper SIW(*SI); 4544 auto W0 = SIW.getSuccessorWeight(0); 4545 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4546 if (W0) { 4547 NewW = ((uint64_t(*W0) + 1) >> 1); 4548 SIW.setSuccessorWeight(0, *NewW); 4549 } 4550 SIW.addCase(Cst, NewBB, NewW); 4551 if (DTU) 4552 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4553 } 4554 4555 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4556 Builder.SetInsertPoint(NewBB); 4557 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4558 Builder.CreateBr(SuccBlock); 4559 PHIUse->addIncoming(NewCst, NewBB); 4560 if (DTU) { 4561 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4562 DTU->applyUpdates(Updates); 4563 } 4564 return true; 4565 } 4566 4567 /// The specified branch is a conditional branch. 4568 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4569 /// fold it into a switch instruction if so. 4570 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4571 IRBuilder<> &Builder, 4572 const DataLayout &DL) { 4573 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4574 if (!Cond) 4575 return false; 4576 4577 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4578 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4579 // 'setne's and'ed together, collect them. 4580 4581 // Try to gather values from a chain of and/or to be turned into a switch 4582 ConstantComparesGatherer ConstantCompare(Cond, DL); 4583 // Unpack the result 4584 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4585 Value *CompVal = ConstantCompare.CompValue; 4586 unsigned UsedICmps = ConstantCompare.UsedICmps; 4587 Value *ExtraCase = ConstantCompare.Extra; 4588 4589 // If we didn't have a multiply compared value, fail. 4590 if (!CompVal) 4591 return false; 4592 4593 // Avoid turning single icmps into a switch. 4594 if (UsedICmps <= 1) 4595 return false; 4596 4597 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4598 4599 // There might be duplicate constants in the list, which the switch 4600 // instruction can't handle, remove them now. 4601 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4602 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4603 4604 // If Extra was used, we require at least two switch values to do the 4605 // transformation. A switch with one value is just a conditional branch. 4606 if (ExtraCase && Values.size() < 2) 4607 return false; 4608 4609 // TODO: Preserve branch weight metadata, similarly to how 4610 // FoldValueComparisonIntoPredecessors preserves it. 4611 4612 // Figure out which block is which destination. 4613 BasicBlock *DefaultBB = BI->getSuccessor(1); 4614 BasicBlock *EdgeBB = BI->getSuccessor(0); 4615 if (!TrueWhenEqual) 4616 std::swap(DefaultBB, EdgeBB); 4617 4618 BasicBlock *BB = BI->getParent(); 4619 4620 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4621 << " cases into SWITCH. BB is:\n" 4622 << *BB); 4623 4624 SmallVector<DominatorTree::UpdateType, 2> Updates; 4625 4626 // If there are any extra values that couldn't be folded into the switch 4627 // then we evaluate them with an explicit branch first. Split the block 4628 // right before the condbr to handle it. 4629 if (ExtraCase) { 4630 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4631 /*MSSAU=*/nullptr, "switch.early.test"); 4632 4633 // Remove the uncond branch added to the old block. 4634 Instruction *OldTI = BB->getTerminator(); 4635 Builder.SetInsertPoint(OldTI); 4636 4637 // There can be an unintended UB if extra values are Poison. Before the 4638 // transformation, extra values may not be evaluated according to the 4639 // condition, and it will not raise UB. But after transformation, we are 4640 // evaluating extra values before checking the condition, and it will raise 4641 // UB. It can be solved by adding freeze instruction to extra values. 4642 AssumptionCache *AC = Options.AC; 4643 4644 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 4645 ExtraCase = Builder.CreateFreeze(ExtraCase); 4646 4647 if (TrueWhenEqual) 4648 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4649 else 4650 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4651 4652 OldTI->eraseFromParent(); 4653 4654 if (DTU) 4655 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4656 4657 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4658 // for the edge we just added. 4659 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4660 4661 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4662 << "\nEXTRABB = " << *BB); 4663 BB = NewBB; 4664 } 4665 4666 Builder.SetInsertPoint(BI); 4667 // Convert pointer to int before we switch. 4668 if (CompVal->getType()->isPointerTy()) { 4669 CompVal = Builder.CreatePtrToInt( 4670 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4671 } 4672 4673 // Create the new switch instruction now. 4674 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4675 4676 // Add all of the 'cases' to the switch instruction. 4677 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4678 New->addCase(Values[i], EdgeBB); 4679 4680 // We added edges from PI to the EdgeBB. As such, if there were any 4681 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4682 // the number of edges added. 4683 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4684 PHINode *PN = cast<PHINode>(BBI); 4685 Value *InVal = PN->getIncomingValueForBlock(BB); 4686 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4687 PN->addIncoming(InVal, BB); 4688 } 4689 4690 // Erase the old branch instruction. 4691 EraseTerminatorAndDCECond(BI); 4692 if (DTU) 4693 DTU->applyUpdates(Updates); 4694 4695 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4696 return true; 4697 } 4698 4699 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4700 if (isa<PHINode>(RI->getValue())) 4701 return simplifyCommonResume(RI); 4702 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4703 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4704 // The resume must unwind the exception that caused control to branch here. 4705 return simplifySingleResume(RI); 4706 4707 return false; 4708 } 4709 4710 // Check if cleanup block is empty 4711 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4712 for (Instruction &I : R) { 4713 auto *II = dyn_cast<IntrinsicInst>(&I); 4714 if (!II) 4715 return false; 4716 4717 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4718 switch (IntrinsicID) { 4719 case Intrinsic::dbg_declare: 4720 case Intrinsic::dbg_value: 4721 case Intrinsic::dbg_label: 4722 case Intrinsic::lifetime_end: 4723 break; 4724 default: 4725 return false; 4726 } 4727 } 4728 return true; 4729 } 4730 4731 // Simplify resume that is shared by several landing pads (phi of landing pad). 4732 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4733 BasicBlock *BB = RI->getParent(); 4734 4735 // Check that there are no other instructions except for debug and lifetime 4736 // intrinsics between the phi's and resume instruction. 4737 if (!isCleanupBlockEmpty( 4738 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4739 return false; 4740 4741 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4742 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4743 4744 // Check incoming blocks to see if any of them are trivial. 4745 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4746 Idx++) { 4747 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4748 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4749 4750 // If the block has other successors, we can not delete it because 4751 // it has other dependents. 4752 if (IncomingBB->getUniqueSuccessor() != BB) 4753 continue; 4754 4755 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4756 // Not the landing pad that caused the control to branch here. 4757 if (IncomingValue != LandingPad) 4758 continue; 4759 4760 if (isCleanupBlockEmpty( 4761 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4762 TrivialUnwindBlocks.insert(IncomingBB); 4763 } 4764 4765 // If no trivial unwind blocks, don't do any simplifications. 4766 if (TrivialUnwindBlocks.empty()) 4767 return false; 4768 4769 // Turn all invokes that unwind here into calls. 4770 for (auto *TrivialBB : TrivialUnwindBlocks) { 4771 // Blocks that will be simplified should be removed from the phi node. 4772 // Note there could be multiple edges to the resume block, and we need 4773 // to remove them all. 4774 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4775 BB->removePredecessor(TrivialBB, true); 4776 4777 for (BasicBlock *Pred : 4778 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4779 removeUnwindEdge(Pred, DTU); 4780 ++NumInvokes; 4781 } 4782 4783 // In each SimplifyCFG run, only the current processed block can be erased. 4784 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4785 // of erasing TrivialBB, we only remove the branch to the common resume 4786 // block so that we can later erase the resume block since it has no 4787 // predecessors. 4788 TrivialBB->getTerminator()->eraseFromParent(); 4789 new UnreachableInst(RI->getContext(), TrivialBB); 4790 if (DTU) 4791 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4792 } 4793 4794 // Delete the resume block if all its predecessors have been removed. 4795 if (pred_empty(BB)) 4796 DeleteDeadBlock(BB, DTU); 4797 4798 return !TrivialUnwindBlocks.empty(); 4799 } 4800 4801 // Simplify resume that is only used by a single (non-phi) landing pad. 4802 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4803 BasicBlock *BB = RI->getParent(); 4804 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4805 assert(RI->getValue() == LPInst && 4806 "Resume must unwind the exception that caused control to here"); 4807 4808 // Check that there are no other instructions except for debug intrinsics. 4809 if (!isCleanupBlockEmpty( 4810 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4811 return false; 4812 4813 // Turn all invokes that unwind here into calls and delete the basic block. 4814 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4815 removeUnwindEdge(Pred, DTU); 4816 ++NumInvokes; 4817 } 4818 4819 // The landingpad is now unreachable. Zap it. 4820 DeleteDeadBlock(BB, DTU); 4821 return true; 4822 } 4823 4824 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4825 // If this is a trivial cleanup pad that executes no instructions, it can be 4826 // eliminated. If the cleanup pad continues to the caller, any predecessor 4827 // that is an EH pad will be updated to continue to the caller and any 4828 // predecessor that terminates with an invoke instruction will have its invoke 4829 // instruction converted to a call instruction. If the cleanup pad being 4830 // simplified does not continue to the caller, each predecessor will be 4831 // updated to continue to the unwind destination of the cleanup pad being 4832 // simplified. 4833 BasicBlock *BB = RI->getParent(); 4834 CleanupPadInst *CPInst = RI->getCleanupPad(); 4835 if (CPInst->getParent() != BB) 4836 // This isn't an empty cleanup. 4837 return false; 4838 4839 // We cannot kill the pad if it has multiple uses. This typically arises 4840 // from unreachable basic blocks. 4841 if (!CPInst->hasOneUse()) 4842 return false; 4843 4844 // Check that there are no other instructions except for benign intrinsics. 4845 if (!isCleanupBlockEmpty( 4846 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4847 return false; 4848 4849 // If the cleanup return we are simplifying unwinds to the caller, this will 4850 // set UnwindDest to nullptr. 4851 BasicBlock *UnwindDest = RI->getUnwindDest(); 4852 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4853 4854 // We're about to remove BB from the control flow. Before we do, sink any 4855 // PHINodes into the unwind destination. Doing this before changing the 4856 // control flow avoids some potentially slow checks, since we can currently 4857 // be certain that UnwindDest and BB have no common predecessors (since they 4858 // are both EH pads). 4859 if (UnwindDest) { 4860 // First, go through the PHI nodes in UnwindDest and update any nodes that 4861 // reference the block we are removing 4862 for (PHINode &DestPN : UnwindDest->phis()) { 4863 int Idx = DestPN.getBasicBlockIndex(BB); 4864 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4865 assert(Idx != -1); 4866 // This PHI node has an incoming value that corresponds to a control 4867 // path through the cleanup pad we are removing. If the incoming 4868 // value is in the cleanup pad, it must be a PHINode (because we 4869 // verified above that the block is otherwise empty). Otherwise, the 4870 // value is either a constant or a value that dominates the cleanup 4871 // pad being removed. 4872 // 4873 // Because BB and UnwindDest are both EH pads, all of their 4874 // predecessors must unwind to these blocks, and since no instruction 4875 // can have multiple unwind destinations, there will be no overlap in 4876 // incoming blocks between SrcPN and DestPN. 4877 Value *SrcVal = DestPN.getIncomingValue(Idx); 4878 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4879 4880 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 4881 for (auto *Pred : predecessors(BB)) { 4882 Value *Incoming = 4883 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 4884 DestPN.addIncoming(Incoming, Pred); 4885 } 4886 } 4887 4888 // Sink any remaining PHI nodes directly into UnwindDest. 4889 Instruction *InsertPt = DestEHPad; 4890 for (PHINode &PN : make_early_inc_range(BB->phis())) { 4891 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 4892 // If the PHI node has no uses or all of its uses are in this basic 4893 // block (meaning they are debug or lifetime intrinsics), just leave 4894 // it. It will be erased when we erase BB below. 4895 continue; 4896 4897 // Otherwise, sink this PHI node into UnwindDest. 4898 // Any predecessors to UnwindDest which are not already represented 4899 // must be back edges which inherit the value from the path through 4900 // BB. In this case, the PHI value must reference itself. 4901 for (auto *pred : predecessors(UnwindDest)) 4902 if (pred != BB) 4903 PN.addIncoming(&PN, pred); 4904 PN.moveBefore(InsertPt); 4905 // Also, add a dummy incoming value for the original BB itself, 4906 // so that the PHI is well-formed until we drop said predecessor. 4907 PN.addIncoming(UndefValue::get(PN.getType()), BB); 4908 } 4909 } 4910 4911 std::vector<DominatorTree::UpdateType> Updates; 4912 4913 // We use make_early_inc_range here because we will remove all predecessors. 4914 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4915 if (UnwindDest == nullptr) { 4916 if (DTU) { 4917 DTU->applyUpdates(Updates); 4918 Updates.clear(); 4919 } 4920 removeUnwindEdge(PredBB, DTU); 4921 ++NumInvokes; 4922 } else { 4923 BB->removePredecessor(PredBB); 4924 Instruction *TI = PredBB->getTerminator(); 4925 TI->replaceUsesOfWith(BB, UnwindDest); 4926 if (DTU) { 4927 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4928 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4929 } 4930 } 4931 } 4932 4933 if (DTU) 4934 DTU->applyUpdates(Updates); 4935 4936 DeleteDeadBlock(BB, DTU); 4937 4938 return true; 4939 } 4940 4941 // Try to merge two cleanuppads together. 4942 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4943 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4944 // with. 4945 BasicBlock *UnwindDest = RI->getUnwindDest(); 4946 if (!UnwindDest) 4947 return false; 4948 4949 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4950 // be safe to merge without code duplication. 4951 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4952 return false; 4953 4954 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4955 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4956 if (!SuccessorCleanupPad) 4957 return false; 4958 4959 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4960 // Replace any uses of the successor cleanupad with the predecessor pad 4961 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4962 // funclet bundle operands. 4963 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4964 // Remove the old cleanuppad. 4965 SuccessorCleanupPad->eraseFromParent(); 4966 // Now, we simply replace the cleanupret with a branch to the unwind 4967 // destination. 4968 BranchInst::Create(UnwindDest, RI->getParent()); 4969 RI->eraseFromParent(); 4970 4971 return true; 4972 } 4973 4974 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4975 // It is possible to transiantly have an undef cleanuppad operand because we 4976 // have deleted some, but not all, dead blocks. 4977 // Eventually, this block will be deleted. 4978 if (isa<UndefValue>(RI->getOperand(0))) 4979 return false; 4980 4981 if (mergeCleanupPad(RI)) 4982 return true; 4983 4984 if (removeEmptyCleanup(RI, DTU)) 4985 return true; 4986 4987 return false; 4988 } 4989 4990 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 4991 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4992 BasicBlock *BB = UI->getParent(); 4993 4994 bool Changed = false; 4995 4996 // If there are any instructions immediately before the unreachable that can 4997 // be removed, do so. 4998 while (UI->getIterator() != BB->begin()) { 4999 BasicBlock::iterator BBI = UI->getIterator(); 5000 --BBI; 5001 5002 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 5003 break; // Can not drop any more instructions. We're done here. 5004 // Otherwise, this instruction can be freely erased, 5005 // even if it is not side-effect free. 5006 5007 // Note that deleting EH's here is in fact okay, although it involves a bit 5008 // of subtle reasoning. If this inst is an EH, all the predecessors of this 5009 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 5010 // and we can therefore guarantee this block will be erased. 5011 5012 // Delete this instruction (any uses are guaranteed to be dead) 5013 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 5014 BBI->eraseFromParent(); 5015 Changed = true; 5016 } 5017 5018 // If the unreachable instruction is the first in the block, take a gander 5019 // at all of the predecessors of this instruction, and simplify them. 5020 if (&BB->front() != UI) 5021 return Changed; 5022 5023 std::vector<DominatorTree::UpdateType> Updates; 5024 5025 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 5026 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 5027 auto *Predecessor = Preds[i]; 5028 Instruction *TI = Predecessor->getTerminator(); 5029 IRBuilder<> Builder(TI); 5030 if (auto *BI = dyn_cast<BranchInst>(TI)) { 5031 // We could either have a proper unconditional branch, 5032 // or a degenerate conditional branch with matching destinations. 5033 if (all_of(BI->successors(), 5034 [BB](auto *Successor) { return Successor == BB; })) { 5035 new UnreachableInst(TI->getContext(), TI); 5036 TI->eraseFromParent(); 5037 Changed = true; 5038 } else { 5039 assert(BI->isConditional() && "Can't get here with an uncond branch."); 5040 Value* Cond = BI->getCondition(); 5041 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 5042 "The destinations are guaranteed to be different here."); 5043 if (BI->getSuccessor(0) == BB) { 5044 Builder.CreateAssumption(Builder.CreateNot(Cond)); 5045 Builder.CreateBr(BI->getSuccessor(1)); 5046 } else { 5047 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 5048 Builder.CreateAssumption(Cond); 5049 Builder.CreateBr(BI->getSuccessor(0)); 5050 } 5051 EraseTerminatorAndDCECond(BI); 5052 Changed = true; 5053 } 5054 if (DTU) 5055 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5056 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 5057 SwitchInstProfUpdateWrapper SU(*SI); 5058 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 5059 if (i->getCaseSuccessor() != BB) { 5060 ++i; 5061 continue; 5062 } 5063 BB->removePredecessor(SU->getParent()); 5064 i = SU.removeCase(i); 5065 e = SU->case_end(); 5066 Changed = true; 5067 } 5068 // Note that the default destination can't be removed! 5069 if (DTU && SI->getDefaultDest() != BB) 5070 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5071 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 5072 if (II->getUnwindDest() == BB) { 5073 if (DTU) { 5074 DTU->applyUpdates(Updates); 5075 Updates.clear(); 5076 } 5077 removeUnwindEdge(TI->getParent(), DTU); 5078 Changed = true; 5079 } 5080 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 5081 if (CSI->getUnwindDest() == BB) { 5082 if (DTU) { 5083 DTU->applyUpdates(Updates); 5084 Updates.clear(); 5085 } 5086 removeUnwindEdge(TI->getParent(), DTU); 5087 Changed = true; 5088 continue; 5089 } 5090 5091 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 5092 E = CSI->handler_end(); 5093 I != E; ++I) { 5094 if (*I == BB) { 5095 CSI->removeHandler(I); 5096 --I; 5097 --E; 5098 Changed = true; 5099 } 5100 } 5101 if (DTU) 5102 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5103 if (CSI->getNumHandlers() == 0) { 5104 if (CSI->hasUnwindDest()) { 5105 // Redirect all predecessors of the block containing CatchSwitchInst 5106 // to instead branch to the CatchSwitchInst's unwind destination. 5107 if (DTU) { 5108 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 5109 Updates.push_back({DominatorTree::Insert, 5110 PredecessorOfPredecessor, 5111 CSI->getUnwindDest()}); 5112 Updates.push_back({DominatorTree::Delete, 5113 PredecessorOfPredecessor, Predecessor}); 5114 } 5115 } 5116 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 5117 } else { 5118 // Rewrite all preds to unwind to caller (or from invoke to call). 5119 if (DTU) { 5120 DTU->applyUpdates(Updates); 5121 Updates.clear(); 5122 } 5123 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 5124 for (BasicBlock *EHPred : EHPreds) 5125 removeUnwindEdge(EHPred, DTU); 5126 } 5127 // The catchswitch is no longer reachable. 5128 new UnreachableInst(CSI->getContext(), CSI); 5129 CSI->eraseFromParent(); 5130 Changed = true; 5131 } 5132 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 5133 (void)CRI; 5134 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 5135 "Expected to always have an unwind to BB."); 5136 if (DTU) 5137 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5138 new UnreachableInst(TI->getContext(), TI); 5139 TI->eraseFromParent(); 5140 Changed = true; 5141 } 5142 } 5143 5144 if (DTU) 5145 DTU->applyUpdates(Updates); 5146 5147 // If this block is now dead, remove it. 5148 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 5149 DeleteDeadBlock(BB, DTU); 5150 return true; 5151 } 5152 5153 return Changed; 5154 } 5155 5156 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 5157 assert(Cases.size() >= 1); 5158 5159 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 5160 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 5161 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 5162 return false; 5163 } 5164 return true; 5165 } 5166 5167 static void createUnreachableSwitchDefault(SwitchInst *Switch, 5168 DomTreeUpdater *DTU) { 5169 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 5170 auto *BB = Switch->getParent(); 5171 auto *OrigDefaultBlock = Switch->getDefaultDest(); 5172 OrigDefaultBlock->removePredecessor(BB); 5173 BasicBlock *NewDefaultBlock = BasicBlock::Create( 5174 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), 5175 OrigDefaultBlock); 5176 new UnreachableInst(Switch->getContext(), NewDefaultBlock); 5177 Switch->setDefaultDest(&*NewDefaultBlock); 5178 if (DTU) { 5179 SmallVector<DominatorTree::UpdateType, 2> Updates; 5180 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); 5181 if (!is_contained(successors(BB), OrigDefaultBlock)) 5182 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); 5183 DTU->applyUpdates(Updates); 5184 } 5185 } 5186 5187 /// Turn a switch with two reachable destinations into an integer range 5188 /// comparison and branch. 5189 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 5190 IRBuilder<> &Builder) { 5191 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5192 5193 bool HasDefault = 5194 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5195 5196 auto *BB = SI->getParent(); 5197 5198 // Partition the cases into two sets with different destinations. 5199 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 5200 BasicBlock *DestB = nullptr; 5201 SmallVector<ConstantInt *, 16> CasesA; 5202 SmallVector<ConstantInt *, 16> CasesB; 5203 5204 for (auto Case : SI->cases()) { 5205 BasicBlock *Dest = Case.getCaseSuccessor(); 5206 if (!DestA) 5207 DestA = Dest; 5208 if (Dest == DestA) { 5209 CasesA.push_back(Case.getCaseValue()); 5210 continue; 5211 } 5212 if (!DestB) 5213 DestB = Dest; 5214 if (Dest == DestB) { 5215 CasesB.push_back(Case.getCaseValue()); 5216 continue; 5217 } 5218 return false; // More than two destinations. 5219 } 5220 5221 assert(DestA && DestB && 5222 "Single-destination switch should have been folded."); 5223 assert(DestA != DestB); 5224 assert(DestB != SI->getDefaultDest()); 5225 assert(!CasesB.empty() && "There must be non-default cases."); 5226 assert(!CasesA.empty() || HasDefault); 5227 5228 // Figure out if one of the sets of cases form a contiguous range. 5229 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 5230 BasicBlock *ContiguousDest = nullptr; 5231 BasicBlock *OtherDest = nullptr; 5232 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 5233 ContiguousCases = &CasesA; 5234 ContiguousDest = DestA; 5235 OtherDest = DestB; 5236 } else if (CasesAreContiguous(CasesB)) { 5237 ContiguousCases = &CasesB; 5238 ContiguousDest = DestB; 5239 OtherDest = DestA; 5240 } else 5241 return false; 5242 5243 // Start building the compare and branch. 5244 5245 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 5246 Constant *NumCases = 5247 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 5248 5249 Value *Sub = SI->getCondition(); 5250 if (!Offset->isNullValue()) 5251 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 5252 5253 Value *Cmp; 5254 // If NumCases overflowed, then all possible values jump to the successor. 5255 if (NumCases->isNullValue() && !ContiguousCases->empty()) 5256 Cmp = ConstantInt::getTrue(SI->getContext()); 5257 else 5258 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 5259 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 5260 5261 // Update weight for the newly-created conditional branch. 5262 if (HasBranchWeights(SI)) { 5263 SmallVector<uint64_t, 8> Weights; 5264 GetBranchWeights(SI, Weights); 5265 if (Weights.size() == 1 + SI->getNumCases()) { 5266 uint64_t TrueWeight = 0; 5267 uint64_t FalseWeight = 0; 5268 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 5269 if (SI->getSuccessor(I) == ContiguousDest) 5270 TrueWeight += Weights[I]; 5271 else 5272 FalseWeight += Weights[I]; 5273 } 5274 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 5275 TrueWeight /= 2; 5276 FalseWeight /= 2; 5277 } 5278 setBranchWeights(NewBI, TrueWeight, FalseWeight); 5279 } 5280 } 5281 5282 // Prune obsolete incoming values off the successors' PHI nodes. 5283 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 5284 unsigned PreviousEdges = ContiguousCases->size(); 5285 if (ContiguousDest == SI->getDefaultDest()) 5286 ++PreviousEdges; 5287 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5288 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5289 } 5290 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5291 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5292 if (OtherDest == SI->getDefaultDest()) 5293 ++PreviousEdges; 5294 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5295 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5296 } 5297 5298 // Clean up the default block - it may have phis or other instructions before 5299 // the unreachable terminator. 5300 if (!HasDefault) 5301 createUnreachableSwitchDefault(SI, DTU); 5302 5303 auto *UnreachableDefault = SI->getDefaultDest(); 5304 5305 // Drop the switch. 5306 SI->eraseFromParent(); 5307 5308 if (!HasDefault && DTU) 5309 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5310 5311 return true; 5312 } 5313 5314 /// Compute masked bits for the condition of a switch 5315 /// and use it to remove dead cases. 5316 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5317 AssumptionCache *AC, 5318 const DataLayout &DL) { 5319 Value *Cond = SI->getCondition(); 5320 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5321 5322 // We can also eliminate cases by determining that their values are outside of 5323 // the limited range of the condition based on how many significant (non-sign) 5324 // bits are in the condition value. 5325 unsigned MaxSignificantBitsInCond = 5326 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); 5327 5328 // Gather dead cases. 5329 SmallVector<ConstantInt *, 8> DeadCases; 5330 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5331 SmallVector<BasicBlock *, 8> UniqueSuccessors; 5332 for (auto &Case : SI->cases()) { 5333 auto *Successor = Case.getCaseSuccessor(); 5334 if (DTU) { 5335 if (!NumPerSuccessorCases.count(Successor)) 5336 UniqueSuccessors.push_back(Successor); 5337 ++NumPerSuccessorCases[Successor]; 5338 } 5339 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5340 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5341 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5342 DeadCases.push_back(Case.getCaseValue()); 5343 if (DTU) 5344 --NumPerSuccessorCases[Successor]; 5345 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5346 << " is dead.\n"); 5347 } 5348 } 5349 5350 // If we can prove that the cases must cover all possible values, the 5351 // default destination becomes dead and we can remove it. If we know some 5352 // of the bits in the value, we can use that to more precisely compute the 5353 // number of possible unique case values. 5354 bool HasDefault = 5355 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5356 const unsigned NumUnknownBits = 5357 Known.getBitWidth() - (Known.Zero | Known.One).countPopulation(); 5358 assert(NumUnknownBits <= Known.getBitWidth()); 5359 if (HasDefault && DeadCases.empty() && 5360 NumUnknownBits < 64 /* avoid overflow */ && 5361 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5362 createUnreachableSwitchDefault(SI, DTU); 5363 return true; 5364 } 5365 5366 if (DeadCases.empty()) 5367 return false; 5368 5369 SwitchInstProfUpdateWrapper SIW(*SI); 5370 for (ConstantInt *DeadCase : DeadCases) { 5371 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5372 assert(CaseI != SI->case_default() && 5373 "Case was not found. Probably mistake in DeadCases forming."); 5374 // Prune unused values from PHI nodes. 5375 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5376 SIW.removeCase(CaseI); 5377 } 5378 5379 if (DTU) { 5380 std::vector<DominatorTree::UpdateType> Updates; 5381 for (auto *Successor : UniqueSuccessors) 5382 if (NumPerSuccessorCases[Successor] == 0) 5383 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); 5384 DTU->applyUpdates(Updates); 5385 } 5386 5387 return true; 5388 } 5389 5390 /// If BB would be eligible for simplification by 5391 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5392 /// by an unconditional branch), look at the phi node for BB in the successor 5393 /// block and see if the incoming value is equal to CaseValue. If so, return 5394 /// the phi node, and set PhiIndex to BB's index in the phi node. 5395 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5396 BasicBlock *BB, int *PhiIndex) { 5397 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5398 return nullptr; // BB must be empty to be a candidate for simplification. 5399 if (!BB->getSinglePredecessor()) 5400 return nullptr; // BB must be dominated by the switch. 5401 5402 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5403 if (!Branch || !Branch->isUnconditional()) 5404 return nullptr; // Terminator must be unconditional branch. 5405 5406 BasicBlock *Succ = Branch->getSuccessor(0); 5407 5408 for (PHINode &PHI : Succ->phis()) { 5409 int Idx = PHI.getBasicBlockIndex(BB); 5410 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5411 5412 Value *InValue = PHI.getIncomingValue(Idx); 5413 if (InValue != CaseValue) 5414 continue; 5415 5416 *PhiIndex = Idx; 5417 return &PHI; 5418 } 5419 5420 return nullptr; 5421 } 5422 5423 /// Try to forward the condition of a switch instruction to a phi node 5424 /// dominated by the switch, if that would mean that some of the destination 5425 /// blocks of the switch can be folded away. Return true if a change is made. 5426 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5427 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5428 5429 ForwardingNodesMap ForwardingNodes; 5430 BasicBlock *SwitchBlock = SI->getParent(); 5431 bool Changed = false; 5432 for (auto &Case : SI->cases()) { 5433 ConstantInt *CaseValue = Case.getCaseValue(); 5434 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5435 5436 // Replace phi operands in successor blocks that are using the constant case 5437 // value rather than the switch condition variable: 5438 // switchbb: 5439 // switch i32 %x, label %default [ 5440 // i32 17, label %succ 5441 // ... 5442 // succ: 5443 // %r = phi i32 ... [ 17, %switchbb ] ... 5444 // --> 5445 // %r = phi i32 ... [ %x, %switchbb ] ... 5446 5447 for (PHINode &Phi : CaseDest->phis()) { 5448 // This only works if there is exactly 1 incoming edge from the switch to 5449 // a phi. If there is >1, that means multiple cases of the switch map to 1 5450 // value in the phi, and that phi value is not the switch condition. Thus, 5451 // this transform would not make sense (the phi would be invalid because 5452 // a phi can't have different incoming values from the same block). 5453 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5454 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5455 count(Phi.blocks(), SwitchBlock) == 1) { 5456 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5457 Changed = true; 5458 } 5459 } 5460 5461 // Collect phi nodes that are indirectly using this switch's case constants. 5462 int PhiIdx; 5463 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5464 ForwardingNodes[Phi].push_back(PhiIdx); 5465 } 5466 5467 for (auto &ForwardingNode : ForwardingNodes) { 5468 PHINode *Phi = ForwardingNode.first; 5469 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5470 if (Indexes.size() < 2) 5471 continue; 5472 5473 for (int Index : Indexes) 5474 Phi->setIncomingValue(Index, SI->getCondition()); 5475 Changed = true; 5476 } 5477 5478 return Changed; 5479 } 5480 5481 /// Return true if the backend will be able to handle 5482 /// initializing an array of constants like C. 5483 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5484 if (C->isThreadDependent()) 5485 return false; 5486 if (C->isDLLImportDependent()) 5487 return false; 5488 5489 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5490 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5491 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5492 return false; 5493 5494 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5495 // Pointer casts and in-bounds GEPs will not prohibit the backend from 5496 // materializing the array of constants. 5497 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); 5498 if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI)) 5499 return false; 5500 } 5501 5502 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5503 return false; 5504 5505 return true; 5506 } 5507 5508 /// If V is a Constant, return it. Otherwise, try to look up 5509 /// its constant value in ConstantPool, returning 0 if it's not there. 5510 static Constant * 5511 LookupConstant(Value *V, 5512 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5513 if (Constant *C = dyn_cast<Constant>(V)) 5514 return C; 5515 return ConstantPool.lookup(V); 5516 } 5517 5518 /// Try to fold instruction I into a constant. This works for 5519 /// simple instructions such as binary operations where both operands are 5520 /// constant or can be replaced by constants from the ConstantPool. Returns the 5521 /// resulting constant on success, 0 otherwise. 5522 static Constant * 5523 ConstantFold(Instruction *I, const DataLayout &DL, 5524 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5525 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5526 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5527 if (!A) 5528 return nullptr; 5529 if (A->isAllOnesValue()) 5530 return LookupConstant(Select->getTrueValue(), ConstantPool); 5531 if (A->isNullValue()) 5532 return LookupConstant(Select->getFalseValue(), ConstantPool); 5533 return nullptr; 5534 } 5535 5536 SmallVector<Constant *, 4> COps; 5537 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5538 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5539 COps.push_back(A); 5540 else 5541 return nullptr; 5542 } 5543 5544 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5545 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5546 COps[1], DL); 5547 } 5548 5549 return ConstantFoldInstOperands(I, COps, DL); 5550 } 5551 5552 /// Try to determine the resulting constant values in phi nodes 5553 /// at the common destination basic block, *CommonDest, for one of the case 5554 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5555 /// case), of a switch instruction SI. 5556 static bool 5557 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5558 BasicBlock **CommonDest, 5559 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5560 const DataLayout &DL, const TargetTransformInfo &TTI) { 5561 // The block from which we enter the common destination. 5562 BasicBlock *Pred = SI->getParent(); 5563 5564 // If CaseDest is empty except for some side-effect free instructions through 5565 // which we can constant-propagate the CaseVal, continue to its successor. 5566 SmallDenseMap<Value *, Constant *> ConstantPool; 5567 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5568 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { 5569 if (I.isTerminator()) { 5570 // If the terminator is a simple branch, continue to the next block. 5571 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5572 return false; 5573 Pred = CaseDest; 5574 CaseDest = I.getSuccessor(0); 5575 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5576 // Instruction is side-effect free and constant. 5577 5578 // If the instruction has uses outside this block or a phi node slot for 5579 // the block, it is not safe to bypass the instruction since it would then 5580 // no longer dominate all its uses. 5581 for (auto &Use : I.uses()) { 5582 User *User = Use.getUser(); 5583 if (Instruction *I = dyn_cast<Instruction>(User)) 5584 if (I->getParent() == CaseDest) 5585 continue; 5586 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5587 if (Phi->getIncomingBlock(Use) == CaseDest) 5588 continue; 5589 return false; 5590 } 5591 5592 ConstantPool.insert(std::make_pair(&I, C)); 5593 } else { 5594 break; 5595 } 5596 } 5597 5598 // If we did not have a CommonDest before, use the current one. 5599 if (!*CommonDest) 5600 *CommonDest = CaseDest; 5601 // If the destination isn't the common one, abort. 5602 if (CaseDest != *CommonDest) 5603 return false; 5604 5605 // Get the values for this case from phi nodes in the destination block. 5606 for (PHINode &PHI : (*CommonDest)->phis()) { 5607 int Idx = PHI.getBasicBlockIndex(Pred); 5608 if (Idx == -1) 5609 continue; 5610 5611 Constant *ConstVal = 5612 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5613 if (!ConstVal) 5614 return false; 5615 5616 // Be conservative about which kinds of constants we support. 5617 if (!ValidLookupTableConstant(ConstVal, TTI)) 5618 return false; 5619 5620 Res.push_back(std::make_pair(&PHI, ConstVal)); 5621 } 5622 5623 return Res.size() > 0; 5624 } 5625 5626 // Helper function used to add CaseVal to the list of cases that generate 5627 // Result. Returns the updated number of cases that generate this result. 5628 static size_t mapCaseToResult(ConstantInt *CaseVal, 5629 SwitchCaseResultVectorTy &UniqueResults, 5630 Constant *Result) { 5631 for (auto &I : UniqueResults) { 5632 if (I.first == Result) { 5633 I.second.push_back(CaseVal); 5634 return I.second.size(); 5635 } 5636 } 5637 UniqueResults.push_back( 5638 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5639 return 1; 5640 } 5641 5642 // Helper function that initializes a map containing 5643 // results for the PHI node of the common destination block for a switch 5644 // instruction. Returns false if multiple PHI nodes have been found or if 5645 // there is not a common destination block for the switch. 5646 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 5647 BasicBlock *&CommonDest, 5648 SwitchCaseResultVectorTy &UniqueResults, 5649 Constant *&DefaultResult, 5650 const DataLayout &DL, 5651 const TargetTransformInfo &TTI, 5652 uintptr_t MaxUniqueResults) { 5653 for (auto &I : SI->cases()) { 5654 ConstantInt *CaseVal = I.getCaseValue(); 5655 5656 // Resulting value at phi nodes for this case value. 5657 SwitchCaseResultsTy Results; 5658 if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5659 DL, TTI)) 5660 return false; 5661 5662 // Only one value per case is permitted. 5663 if (Results.size() > 1) 5664 return false; 5665 5666 // Add the case->result mapping to UniqueResults. 5667 const size_t NumCasesForResult = 5668 mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5669 5670 // Early out if there are too many cases for this result. 5671 if (NumCasesForResult > MaxSwitchCasesPerResult) 5672 return false; 5673 5674 // Early out if there are too many unique results. 5675 if (UniqueResults.size() > MaxUniqueResults) 5676 return false; 5677 5678 // Check the PHI consistency. 5679 if (!PHI) 5680 PHI = Results[0].first; 5681 else if (PHI != Results[0].first) 5682 return false; 5683 } 5684 // Find the default result value. 5685 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5686 BasicBlock *DefaultDest = SI->getDefaultDest(); 5687 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5688 DL, TTI); 5689 // If the default value is not found abort unless the default destination 5690 // is unreachable. 5691 DefaultResult = 5692 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5693 if ((!DefaultResult && 5694 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5695 return false; 5696 5697 return true; 5698 } 5699 5700 // Helper function that checks if it is possible to transform a switch with only 5701 // two cases (or two cases + default) that produces a result into a select. 5702 // TODO: Handle switches with more than 2 cases that map to the same result. 5703 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector, 5704 Constant *DefaultResult, Value *Condition, 5705 IRBuilder<> &Builder) { 5706 // If we are selecting between only two cases transform into a simple 5707 // select or a two-way select if default is possible. 5708 // Example: 5709 // switch (a) { %0 = icmp eq i32 %a, 10 5710 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4 5711 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20 5712 // default: return 4; %3 = select i1 %2, i32 2, i32 %1 5713 // } 5714 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5715 ResultVector[1].second.size() == 1) { 5716 ConstantInt *FirstCase = ResultVector[0].second[0]; 5717 ConstantInt *SecondCase = ResultVector[1].second[0]; 5718 Value *SelectValue = ResultVector[1].first; 5719 if (DefaultResult) { 5720 Value *ValueCompare = 5721 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5722 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5723 DefaultResult, "switch.select"); 5724 } 5725 Value *ValueCompare = 5726 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5727 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5728 SelectValue, "switch.select"); 5729 } 5730 5731 // Handle the degenerate case where two cases have the same result value. 5732 if (ResultVector.size() == 1 && DefaultResult) { 5733 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second; 5734 unsigned CaseCount = CaseValues.size(); 5735 // n bits group cases map to the same result: 5736 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default 5737 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default 5738 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default 5739 if (isPowerOf2_32(CaseCount)) { 5740 ConstantInt *MinCaseVal = CaseValues[0]; 5741 // Find mininal value. 5742 for (auto Case : CaseValues) 5743 if (Case->getValue().slt(MinCaseVal->getValue())) 5744 MinCaseVal = Case; 5745 5746 // Mark the bits case number touched. 5747 APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth()); 5748 for (auto Case : CaseValues) 5749 BitMask |= (Case->getValue() - MinCaseVal->getValue()); 5750 5751 // Check if cases with the same result can cover all number 5752 // in touched bits. 5753 if (BitMask.countPopulation() == Log2_32(CaseCount)) { 5754 if (!MinCaseVal->isNullValue()) 5755 Condition = Builder.CreateSub(Condition, MinCaseVal); 5756 Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and"); 5757 Value *Cmp = Builder.CreateICmpEQ( 5758 And, Constant::getNullValue(And->getType()), "switch.selectcmp"); 5759 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5760 } 5761 } 5762 5763 // Handle the degenerate case where two cases have the same value. 5764 if (CaseValues.size() == 2) { 5765 Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0], 5766 "switch.selectcmp.case1"); 5767 Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1], 5768 "switch.selectcmp.case2"); 5769 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5770 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5771 } 5772 } 5773 5774 return nullptr; 5775 } 5776 5777 // Helper function to cleanup a switch instruction that has been converted into 5778 // a select, fixing up PHI nodes and basic blocks. 5779 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI, 5780 Value *SelectValue, 5781 IRBuilder<> &Builder, 5782 DomTreeUpdater *DTU) { 5783 std::vector<DominatorTree::UpdateType> Updates; 5784 5785 BasicBlock *SelectBB = SI->getParent(); 5786 BasicBlock *DestBB = PHI->getParent(); 5787 5788 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5789 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5790 Builder.CreateBr(DestBB); 5791 5792 // Remove the switch. 5793 5794 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5795 PHI->removeIncomingValue(SelectBB); 5796 PHI->addIncoming(SelectValue, SelectBB); 5797 5798 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5799 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5800 BasicBlock *Succ = SI->getSuccessor(i); 5801 5802 if (Succ == DestBB) 5803 continue; 5804 Succ->removePredecessor(SelectBB); 5805 if (DTU && RemovedSuccessors.insert(Succ).second) 5806 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5807 } 5808 SI->eraseFromParent(); 5809 if (DTU) 5810 DTU->applyUpdates(Updates); 5811 } 5812 5813 /// If a switch is only used to initialize one or more phi nodes in a common 5814 /// successor block with only two different constant values, try to replace the 5815 /// switch with a select. Returns true if the fold was made. 5816 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5817 DomTreeUpdater *DTU, const DataLayout &DL, 5818 const TargetTransformInfo &TTI) { 5819 Value *const Cond = SI->getCondition(); 5820 PHINode *PHI = nullptr; 5821 BasicBlock *CommonDest = nullptr; 5822 Constant *DefaultResult; 5823 SwitchCaseResultVectorTy UniqueResults; 5824 // Collect all the cases that will deliver the same value from the switch. 5825 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5826 DL, TTI, /*MaxUniqueResults*/ 2)) 5827 return false; 5828 5829 assert(PHI != nullptr && "PHI for value select not found"); 5830 Builder.SetInsertPoint(SI); 5831 Value *SelectValue = 5832 foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder); 5833 if (!SelectValue) 5834 return false; 5835 5836 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU); 5837 return true; 5838 } 5839 5840 namespace { 5841 5842 /// This class represents a lookup table that can be used to replace a switch. 5843 class SwitchLookupTable { 5844 public: 5845 /// Create a lookup table to use as a switch replacement with the contents 5846 /// of Values, using DefaultValue to fill any holes in the table. 5847 SwitchLookupTable( 5848 Module &M, uint64_t TableSize, ConstantInt *Offset, 5849 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5850 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5851 5852 /// Build instructions with Builder to retrieve the value at 5853 /// the position given by Index in the lookup table. 5854 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5855 5856 /// Return true if a table with TableSize elements of 5857 /// type ElementType would fit in a target-legal register. 5858 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5859 Type *ElementType); 5860 5861 private: 5862 // Depending on the contents of the table, it can be represented in 5863 // different ways. 5864 enum { 5865 // For tables where each element contains the same value, we just have to 5866 // store that single value and return it for each lookup. 5867 SingleValueKind, 5868 5869 // For tables where there is a linear relationship between table index 5870 // and values. We calculate the result with a simple multiplication 5871 // and addition instead of a table lookup. 5872 LinearMapKind, 5873 5874 // For small tables with integer elements, we can pack them into a bitmap 5875 // that fits into a target-legal register. Values are retrieved by 5876 // shift and mask operations. 5877 BitMapKind, 5878 5879 // The table is stored as an array of values. Values are retrieved by load 5880 // instructions from the table. 5881 ArrayKind 5882 } Kind; 5883 5884 // For SingleValueKind, this is the single value. 5885 Constant *SingleValue = nullptr; 5886 5887 // For BitMapKind, this is the bitmap. 5888 ConstantInt *BitMap = nullptr; 5889 IntegerType *BitMapElementTy = nullptr; 5890 5891 // For LinearMapKind, these are the constants used to derive the value. 5892 ConstantInt *LinearOffset = nullptr; 5893 ConstantInt *LinearMultiplier = nullptr; 5894 5895 // For ArrayKind, this is the array. 5896 GlobalVariable *Array = nullptr; 5897 }; 5898 5899 } // end anonymous namespace 5900 5901 SwitchLookupTable::SwitchLookupTable( 5902 Module &M, uint64_t TableSize, ConstantInt *Offset, 5903 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5904 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5905 assert(Values.size() && "Can't build lookup table without values!"); 5906 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5907 5908 // If all values in the table are equal, this is that value. 5909 SingleValue = Values.begin()->second; 5910 5911 Type *ValueType = Values.begin()->second->getType(); 5912 5913 // Build up the table contents. 5914 SmallVector<Constant *, 64> TableContents(TableSize); 5915 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5916 ConstantInt *CaseVal = Values[I].first; 5917 Constant *CaseRes = Values[I].second; 5918 assert(CaseRes->getType() == ValueType); 5919 5920 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5921 TableContents[Idx] = CaseRes; 5922 5923 if (CaseRes != SingleValue) 5924 SingleValue = nullptr; 5925 } 5926 5927 // Fill in any holes in the table with the default result. 5928 if (Values.size() < TableSize) { 5929 assert(DefaultValue && 5930 "Need a default value to fill the lookup table holes."); 5931 assert(DefaultValue->getType() == ValueType); 5932 for (uint64_t I = 0; I < TableSize; ++I) { 5933 if (!TableContents[I]) 5934 TableContents[I] = DefaultValue; 5935 } 5936 5937 if (DefaultValue != SingleValue) 5938 SingleValue = nullptr; 5939 } 5940 5941 // If each element in the table contains the same value, we only need to store 5942 // that single value. 5943 if (SingleValue) { 5944 Kind = SingleValueKind; 5945 return; 5946 } 5947 5948 // Check if we can derive the value with a linear transformation from the 5949 // table index. 5950 if (isa<IntegerType>(ValueType)) { 5951 bool LinearMappingPossible = true; 5952 APInt PrevVal; 5953 APInt DistToPrev; 5954 assert(TableSize >= 2 && "Should be a SingleValue table."); 5955 // Check if there is the same distance between two consecutive values. 5956 for (uint64_t I = 0; I < TableSize; ++I) { 5957 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5958 if (!ConstVal) { 5959 // This is an undef. We could deal with it, but undefs in lookup tables 5960 // are very seldom. It's probably not worth the additional complexity. 5961 LinearMappingPossible = false; 5962 break; 5963 } 5964 const APInt &Val = ConstVal->getValue(); 5965 if (I != 0) { 5966 APInt Dist = Val - PrevVal; 5967 if (I == 1) { 5968 DistToPrev = Dist; 5969 } else if (Dist != DistToPrev) { 5970 LinearMappingPossible = false; 5971 break; 5972 } 5973 } 5974 PrevVal = Val; 5975 } 5976 if (LinearMappingPossible) { 5977 LinearOffset = cast<ConstantInt>(TableContents[0]); 5978 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5979 Kind = LinearMapKind; 5980 ++NumLinearMaps; 5981 return; 5982 } 5983 } 5984 5985 // If the type is integer and the table fits in a register, build a bitmap. 5986 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5987 IntegerType *IT = cast<IntegerType>(ValueType); 5988 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5989 for (uint64_t I = TableSize; I > 0; --I) { 5990 TableInt <<= IT->getBitWidth(); 5991 // Insert values into the bitmap. Undef values are set to zero. 5992 if (!isa<UndefValue>(TableContents[I - 1])) { 5993 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5994 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5995 } 5996 } 5997 BitMap = ConstantInt::get(M.getContext(), TableInt); 5998 BitMapElementTy = IT; 5999 Kind = BitMapKind; 6000 ++NumBitMaps; 6001 return; 6002 } 6003 6004 // Store the table in an array. 6005 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 6006 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 6007 6008 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 6009 GlobalVariable::PrivateLinkage, Initializer, 6010 "switch.table." + FuncName); 6011 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 6012 // Set the alignment to that of an array items. We will be only loading one 6013 // value out of it. 6014 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 6015 Kind = ArrayKind; 6016 } 6017 6018 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 6019 switch (Kind) { 6020 case SingleValueKind: 6021 return SingleValue; 6022 case LinearMapKind: { 6023 // Derive the result value from the input value. 6024 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 6025 false, "switch.idx.cast"); 6026 if (!LinearMultiplier->isOne()) 6027 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 6028 if (!LinearOffset->isZero()) 6029 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 6030 return Result; 6031 } 6032 case BitMapKind: { 6033 // Type of the bitmap (e.g. i59). 6034 IntegerType *MapTy = BitMap->getType(); 6035 6036 // Cast Index to the same type as the bitmap. 6037 // Note: The Index is <= the number of elements in the table, so 6038 // truncating it to the width of the bitmask is safe. 6039 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 6040 6041 // Multiply the shift amount by the element width. 6042 ShiftAmt = Builder.CreateMul( 6043 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 6044 "switch.shiftamt"); 6045 6046 // Shift down. 6047 Value *DownShifted = 6048 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 6049 // Mask off. 6050 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 6051 } 6052 case ArrayKind: { 6053 // Make sure the table index will not overflow when treated as signed. 6054 IntegerType *IT = cast<IntegerType>(Index->getType()); 6055 uint64_t TableSize = 6056 Array->getInitializer()->getType()->getArrayNumElements(); 6057 if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u))) 6058 Index = Builder.CreateZExt( 6059 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 6060 "switch.tableidx.zext"); 6061 6062 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 6063 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 6064 GEPIndices, "switch.gep"); 6065 return Builder.CreateLoad( 6066 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 6067 "switch.load"); 6068 } 6069 } 6070 llvm_unreachable("Unknown lookup table kind!"); 6071 } 6072 6073 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 6074 uint64_t TableSize, 6075 Type *ElementType) { 6076 auto *IT = dyn_cast<IntegerType>(ElementType); 6077 if (!IT) 6078 return false; 6079 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 6080 // are <= 15, we could try to narrow the type. 6081 6082 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 6083 if (TableSize >= UINT_MAX / IT->getBitWidth()) 6084 return false; 6085 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 6086 } 6087 6088 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, 6089 const DataLayout &DL) { 6090 // Allow any legal type. 6091 if (TTI.isTypeLegal(Ty)) 6092 return true; 6093 6094 auto *IT = dyn_cast<IntegerType>(Ty); 6095 if (!IT) 6096 return false; 6097 6098 // Also allow power of 2 integer types that have at least 8 bits and fit in 6099 // a register. These types are common in frontend languages and targets 6100 // usually support loads of these types. 6101 // TODO: We could relax this to any integer that fits in a register and rely 6102 // on ABI alignment and padding in the table to allow the load to be widened. 6103 // Or we could widen the constants and truncate the load. 6104 unsigned BitWidth = IT->getBitWidth(); 6105 return BitWidth >= 8 && isPowerOf2_32(BitWidth) && 6106 DL.fitsInLegalInteger(IT->getBitWidth()); 6107 } 6108 6109 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) { 6110 // 40% is the default density for building a jump table in optsize/minsize 6111 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this 6112 // function was based on. 6113 const uint64_t MinDensity = 40; 6114 6115 if (CaseRange >= UINT64_MAX / 100) 6116 return false; // Avoid multiplication overflows below. 6117 6118 return NumCases * 100 >= CaseRange * MinDensity; 6119 } 6120 6121 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6122 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6123 uint64_t Range = Diff + 1; 6124 if (Range < Diff) 6125 return false; // Overflow. 6126 6127 return isSwitchDense(Values.size(), Range); 6128 } 6129 6130 /// Determine whether a lookup table should be built for this switch, based on 6131 /// the number of cases, size of the table, and the types of the results. 6132 // TODO: We could support larger than legal types by limiting based on the 6133 // number of loads required and/or table size. If the constants are small we 6134 // could use smaller table entries and extend after the load. 6135 static bool 6136 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 6137 const TargetTransformInfo &TTI, const DataLayout &DL, 6138 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 6139 if (SI->getNumCases() > TableSize) 6140 return false; // TableSize overflowed. 6141 6142 bool AllTablesFitInRegister = true; 6143 bool HasIllegalType = false; 6144 for (const auto &I : ResultTypes) { 6145 Type *Ty = I.second; 6146 6147 // Saturate this flag to true. 6148 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); 6149 6150 // Saturate this flag to false. 6151 AllTablesFitInRegister = 6152 AllTablesFitInRegister && 6153 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 6154 6155 // If both flags saturate, we're done. NOTE: This *only* works with 6156 // saturating flags, and all flags have to saturate first due to the 6157 // non-deterministic behavior of iterating over a dense map. 6158 if (HasIllegalType && !AllTablesFitInRegister) 6159 break; 6160 } 6161 6162 // If each table would fit in a register, we should build it anyway. 6163 if (AllTablesFitInRegister) 6164 return true; 6165 6166 // Don't build a table that doesn't fit in-register if it has illegal types. 6167 if (HasIllegalType) 6168 return false; 6169 6170 return isSwitchDense(SI->getNumCases(), TableSize); 6171 } 6172 6173 /// Try to reuse the switch table index compare. Following pattern: 6174 /// \code 6175 /// if (idx < tablesize) 6176 /// r = table[idx]; // table does not contain default_value 6177 /// else 6178 /// r = default_value; 6179 /// if (r != default_value) 6180 /// ... 6181 /// \endcode 6182 /// Is optimized to: 6183 /// \code 6184 /// cond = idx < tablesize; 6185 /// if (cond) 6186 /// r = table[idx]; 6187 /// else 6188 /// r = default_value; 6189 /// if (cond) 6190 /// ... 6191 /// \endcode 6192 /// Jump threading will then eliminate the second if(cond). 6193 static void reuseTableCompare( 6194 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 6195 Constant *DefaultValue, 6196 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 6197 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 6198 if (!CmpInst) 6199 return; 6200 6201 // We require that the compare is in the same block as the phi so that jump 6202 // threading can do its work afterwards. 6203 if (CmpInst->getParent() != PhiBlock) 6204 return; 6205 6206 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 6207 if (!CmpOp1) 6208 return; 6209 6210 Value *RangeCmp = RangeCheckBranch->getCondition(); 6211 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 6212 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 6213 6214 // Check if the compare with the default value is constant true or false. 6215 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6216 DefaultValue, CmpOp1, true); 6217 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 6218 return; 6219 6220 // Check if the compare with the case values is distinct from the default 6221 // compare result. 6222 for (auto ValuePair : Values) { 6223 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6224 ValuePair.second, CmpOp1, true); 6225 if (!CaseConst || CaseConst == DefaultConst || 6226 (CaseConst != TrueConst && CaseConst != FalseConst)) 6227 return; 6228 } 6229 6230 // Check if the branch instruction dominates the phi node. It's a simple 6231 // dominance check, but sufficient for our needs. 6232 // Although this check is invariant in the calling loops, it's better to do it 6233 // at this late stage. Practically we do it at most once for a switch. 6234 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 6235 for (BasicBlock *Pred : predecessors(PhiBlock)) { 6236 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 6237 return; 6238 } 6239 6240 if (DefaultConst == FalseConst) { 6241 // The compare yields the same result. We can replace it. 6242 CmpInst->replaceAllUsesWith(RangeCmp); 6243 ++NumTableCmpReuses; 6244 } else { 6245 // The compare yields the same result, just inverted. We can replace it. 6246 Value *InvertedTableCmp = BinaryOperator::CreateXor( 6247 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 6248 RangeCheckBranch); 6249 CmpInst->replaceAllUsesWith(InvertedTableCmp); 6250 ++NumTableCmpReuses; 6251 } 6252 } 6253 6254 /// If the switch is only used to initialize one or more phi nodes in a common 6255 /// successor block with different constant values, replace the switch with 6256 /// lookup tables. 6257 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 6258 DomTreeUpdater *DTU, const DataLayout &DL, 6259 const TargetTransformInfo &TTI) { 6260 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 6261 6262 BasicBlock *BB = SI->getParent(); 6263 Function *Fn = BB->getParent(); 6264 // Only build lookup table when we have a target that supports it or the 6265 // attribute is not set. 6266 if (!TTI.shouldBuildLookupTables() || 6267 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 6268 return false; 6269 6270 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 6271 // split off a dense part and build a lookup table for that. 6272 6273 // FIXME: This creates arrays of GEPs to constant strings, which means each 6274 // GEP needs a runtime relocation in PIC code. We should just build one big 6275 // string and lookup indices into that. 6276 6277 // Ignore switches with less than three cases. Lookup tables will not make 6278 // them faster, so we don't analyze them. 6279 if (SI->getNumCases() < 3) 6280 return false; 6281 6282 // Figure out the corresponding result for each case value and phi node in the 6283 // common destination, as well as the min and max case values. 6284 assert(!SI->cases().empty()); 6285 SwitchInst::CaseIt CI = SI->case_begin(); 6286 ConstantInt *MinCaseVal = CI->getCaseValue(); 6287 ConstantInt *MaxCaseVal = CI->getCaseValue(); 6288 6289 BasicBlock *CommonDest = nullptr; 6290 6291 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 6292 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 6293 6294 SmallDenseMap<PHINode *, Constant *> DefaultResults; 6295 SmallDenseMap<PHINode *, Type *> ResultTypes; 6296 SmallVector<PHINode *, 4> PHIs; 6297 6298 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 6299 ConstantInt *CaseVal = CI->getCaseValue(); 6300 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 6301 MinCaseVal = CaseVal; 6302 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 6303 MaxCaseVal = CaseVal; 6304 6305 // Resulting value at phi nodes for this case value. 6306 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 6307 ResultsTy Results; 6308 if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 6309 Results, DL, TTI)) 6310 return false; 6311 6312 // Append the result from this case to the list for each phi. 6313 for (const auto &I : Results) { 6314 PHINode *PHI = I.first; 6315 Constant *Value = I.second; 6316 if (!ResultLists.count(PHI)) 6317 PHIs.push_back(PHI); 6318 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 6319 } 6320 } 6321 6322 // Keep track of the result types. 6323 for (PHINode *PHI : PHIs) { 6324 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 6325 } 6326 6327 uint64_t NumResults = ResultLists[PHIs[0]].size(); 6328 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 6329 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 6330 bool TableHasHoles = (NumResults < TableSize); 6331 6332 // If the table has holes, we need a constant result for the default case 6333 // or a bitmask that fits in a register. 6334 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 6335 bool HasDefaultResults = 6336 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 6337 DefaultResultsList, DL, TTI); 6338 6339 bool NeedMask = (TableHasHoles && !HasDefaultResults); 6340 if (NeedMask) { 6341 // As an extra penalty for the validity test we require more cases. 6342 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 6343 return false; 6344 if (!DL.fitsInLegalInteger(TableSize)) 6345 return false; 6346 } 6347 6348 for (const auto &I : DefaultResultsList) { 6349 PHINode *PHI = I.first; 6350 Constant *Result = I.second; 6351 DefaultResults[PHI] = Result; 6352 } 6353 6354 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 6355 return false; 6356 6357 std::vector<DominatorTree::UpdateType> Updates; 6358 6359 // Create the BB that does the lookups. 6360 Module &Mod = *CommonDest->getParent()->getParent(); 6361 BasicBlock *LookupBB = BasicBlock::Create( 6362 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 6363 6364 // Compute the table index value. 6365 Builder.SetInsertPoint(SI); 6366 Value *TableIndex; 6367 if (MinCaseVal->isNullValue()) 6368 TableIndex = SI->getCondition(); 6369 else 6370 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 6371 "switch.tableidx"); 6372 6373 // Compute the maximum table size representable by the integer type we are 6374 // switching upon. 6375 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 6376 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 6377 assert(MaxTableSize >= TableSize && 6378 "It is impossible for a switch to have more entries than the max " 6379 "representable value of its input integer type's size."); 6380 6381 // If the default destination is unreachable, or if the lookup table covers 6382 // all values of the conditional variable, branch directly to the lookup table 6383 // BB. Otherwise, check that the condition is within the case range. 6384 const bool DefaultIsReachable = 6385 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6386 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6387 BranchInst *RangeCheckBranch = nullptr; 6388 6389 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6390 Builder.CreateBr(LookupBB); 6391 if (DTU) 6392 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6393 // Note: We call removeProdecessor later since we need to be able to get the 6394 // PHI value for the default case in case we're using a bit mask. 6395 } else { 6396 Value *Cmp = Builder.CreateICmpULT( 6397 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6398 RangeCheckBranch = 6399 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6400 if (DTU) 6401 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6402 } 6403 6404 // Populate the BB that does the lookups. 6405 Builder.SetInsertPoint(LookupBB); 6406 6407 if (NeedMask) { 6408 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6409 // re-purposed to do the hole check, and we create a new LookupBB. 6410 BasicBlock *MaskBB = LookupBB; 6411 MaskBB->setName("switch.hole_check"); 6412 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6413 CommonDest->getParent(), CommonDest); 6414 6415 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6416 // unnecessary illegal types. 6417 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6418 APInt MaskInt(TableSizePowOf2, 0); 6419 APInt One(TableSizePowOf2, 1); 6420 // Build bitmask; fill in a 1 bit for every case. 6421 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6422 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6423 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6424 .getLimitedValue(); 6425 MaskInt |= One << Idx; 6426 } 6427 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6428 6429 // Get the TableIndex'th bit of the bitmask. 6430 // If this bit is 0 (meaning hole) jump to the default destination, 6431 // else continue with table lookup. 6432 IntegerType *MapTy = TableMask->getType(); 6433 Value *MaskIndex = 6434 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6435 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6436 Value *LoBit = Builder.CreateTrunc( 6437 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6438 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6439 if (DTU) { 6440 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6441 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6442 } 6443 Builder.SetInsertPoint(LookupBB); 6444 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6445 } 6446 6447 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6448 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6449 // do not delete PHINodes here. 6450 SI->getDefaultDest()->removePredecessor(BB, 6451 /*KeepOneInputPHIs=*/true); 6452 if (DTU) 6453 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6454 } 6455 6456 for (PHINode *PHI : PHIs) { 6457 const ResultListTy &ResultList = ResultLists[PHI]; 6458 6459 // If using a bitmask, use any value to fill the lookup table holes. 6460 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6461 StringRef FuncName = Fn->getName(); 6462 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6463 FuncName); 6464 6465 Value *Result = Table.BuildLookup(TableIndex, Builder); 6466 6467 // Do a small peephole optimization: re-use the switch table compare if 6468 // possible. 6469 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6470 BasicBlock *PhiBlock = PHI->getParent(); 6471 // Search for compare instructions which use the phi. 6472 for (auto *User : PHI->users()) { 6473 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6474 } 6475 } 6476 6477 PHI->addIncoming(Result, LookupBB); 6478 } 6479 6480 Builder.CreateBr(CommonDest); 6481 if (DTU) 6482 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6483 6484 // Remove the switch. 6485 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6486 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6487 BasicBlock *Succ = SI->getSuccessor(i); 6488 6489 if (Succ == SI->getDefaultDest()) 6490 continue; 6491 Succ->removePredecessor(BB); 6492 if (DTU && RemovedSuccessors.insert(Succ).second) 6493 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6494 } 6495 SI->eraseFromParent(); 6496 6497 if (DTU) 6498 DTU->applyUpdates(Updates); 6499 6500 ++NumLookupTables; 6501 if (NeedMask) 6502 ++NumLookupTablesHoles; 6503 return true; 6504 } 6505 6506 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6507 /// of cases. 6508 /// 6509 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6510 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6511 /// 6512 /// This converts a sparse switch into a dense switch which allows better 6513 /// lowering and could also allow transforming into a lookup table. 6514 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6515 const DataLayout &DL, 6516 const TargetTransformInfo &TTI) { 6517 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6518 if (CondTy->getIntegerBitWidth() > 64 || 6519 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6520 return false; 6521 // Only bother with this optimization if there are more than 3 switch cases; 6522 // SDAG will only bother creating jump tables for 4 or more cases. 6523 if (SI->getNumCases() < 4) 6524 return false; 6525 6526 // This transform is agnostic to the signedness of the input or case values. We 6527 // can treat the case values as signed or unsigned. We can optimize more common 6528 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6529 // as signed. 6530 SmallVector<int64_t,4> Values; 6531 for (auto &C : SI->cases()) 6532 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6533 llvm::sort(Values); 6534 6535 // If the switch is already dense, there's nothing useful to do here. 6536 if (isSwitchDense(Values)) 6537 return false; 6538 6539 // First, transform the values such that they start at zero and ascend. 6540 int64_t Base = Values[0]; 6541 for (auto &V : Values) 6542 V -= (uint64_t)(Base); 6543 6544 // Now we have signed numbers that have been shifted so that, given enough 6545 // precision, there are no negative values. Since the rest of the transform 6546 // is bitwise only, we switch now to an unsigned representation. 6547 6548 // This transform can be done speculatively because it is so cheap - it 6549 // results in a single rotate operation being inserted. 6550 // FIXME: It's possible that optimizing a switch on powers of two might also 6551 // be beneficial - flag values are often powers of two and we could use a CLZ 6552 // as the key function. 6553 6554 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6555 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6556 // less than 64. 6557 unsigned Shift = 64; 6558 for (auto &V : Values) 6559 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6560 assert(Shift < 64); 6561 if (Shift > 0) 6562 for (auto &V : Values) 6563 V = (int64_t)((uint64_t)V >> Shift); 6564 6565 if (!isSwitchDense(Values)) 6566 // Transform didn't create a dense switch. 6567 return false; 6568 6569 // The obvious transform is to shift the switch condition right and emit a 6570 // check that the condition actually cleanly divided by GCD, i.e. 6571 // C & (1 << Shift - 1) == 0 6572 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6573 // 6574 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6575 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6576 // are nonzero then the switch condition will be very large and will hit the 6577 // default case. 6578 6579 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6580 Builder.SetInsertPoint(SI); 6581 auto *ShiftC = ConstantInt::get(Ty, Shift); 6582 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6583 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6584 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6585 auto *Rot = Builder.CreateOr(LShr, Shl); 6586 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6587 6588 for (auto Case : SI->cases()) { 6589 auto *Orig = Case.getCaseValue(); 6590 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6591 Case.setValue( 6592 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6593 } 6594 return true; 6595 } 6596 6597 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6598 BasicBlock *BB = SI->getParent(); 6599 6600 if (isValueEqualityComparison(SI)) { 6601 // If we only have one predecessor, and if it is a branch on this value, 6602 // see if that predecessor totally determines the outcome of this switch. 6603 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6604 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6605 return requestResimplify(); 6606 6607 Value *Cond = SI->getCondition(); 6608 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6609 if (SimplifySwitchOnSelect(SI, Select)) 6610 return requestResimplify(); 6611 6612 // If the block only contains the switch, see if we can fold the block 6613 // away into any preds. 6614 if (SI == &*BB->instructionsWithoutDebug(false).begin()) 6615 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6616 return requestResimplify(); 6617 } 6618 6619 // Try to transform the switch into an icmp and a branch. 6620 // The conversion from switch to comparison may lose information on 6621 // impossible switch values, so disable it early in the pipeline. 6622 if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder)) 6623 return requestResimplify(); 6624 6625 // Remove unreachable cases. 6626 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6627 return requestResimplify(); 6628 6629 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI)) 6630 return requestResimplify(); 6631 6632 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6633 return requestResimplify(); 6634 6635 // The conversion from switch to lookup tables results in difficult-to-analyze 6636 // code and makes pruning branches much harder. This is a problem if the 6637 // switch expression itself can still be restricted as a result of inlining or 6638 // CVP. Therefore, only apply this transformation during late stages of the 6639 // optimisation pipeline. 6640 if (Options.ConvertSwitchToLookupTable && 6641 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6642 return requestResimplify(); 6643 6644 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6645 return requestResimplify(); 6646 6647 return false; 6648 } 6649 6650 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6651 BasicBlock *BB = IBI->getParent(); 6652 bool Changed = false; 6653 6654 // Eliminate redundant destinations. 6655 SmallPtrSet<Value *, 8> Succs; 6656 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6657 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6658 BasicBlock *Dest = IBI->getDestination(i); 6659 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6660 if (!Dest->hasAddressTaken()) 6661 RemovedSuccs.insert(Dest); 6662 Dest->removePredecessor(BB); 6663 IBI->removeDestination(i); 6664 --i; 6665 --e; 6666 Changed = true; 6667 } 6668 } 6669 6670 if (DTU) { 6671 std::vector<DominatorTree::UpdateType> Updates; 6672 Updates.reserve(RemovedSuccs.size()); 6673 for (auto *RemovedSucc : RemovedSuccs) 6674 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6675 DTU->applyUpdates(Updates); 6676 } 6677 6678 if (IBI->getNumDestinations() == 0) { 6679 // If the indirectbr has no successors, change it to unreachable. 6680 new UnreachableInst(IBI->getContext(), IBI); 6681 EraseTerminatorAndDCECond(IBI); 6682 return true; 6683 } 6684 6685 if (IBI->getNumDestinations() == 1) { 6686 // If the indirectbr has one successor, change it to a direct branch. 6687 BranchInst::Create(IBI->getDestination(0), IBI); 6688 EraseTerminatorAndDCECond(IBI); 6689 return true; 6690 } 6691 6692 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6693 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6694 return requestResimplify(); 6695 } 6696 return Changed; 6697 } 6698 6699 /// Given an block with only a single landing pad and a unconditional branch 6700 /// try to find another basic block which this one can be merged with. This 6701 /// handles cases where we have multiple invokes with unique landing pads, but 6702 /// a shared handler. 6703 /// 6704 /// We specifically choose to not worry about merging non-empty blocks 6705 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6706 /// practice, the optimizer produces empty landing pad blocks quite frequently 6707 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6708 /// sinking in this file) 6709 /// 6710 /// This is primarily a code size optimization. We need to avoid performing 6711 /// any transform which might inhibit optimization (such as our ability to 6712 /// specialize a particular handler via tail commoning). We do this by not 6713 /// merging any blocks which require us to introduce a phi. Since the same 6714 /// values are flowing through both blocks, we don't lose any ability to 6715 /// specialize. If anything, we make such specialization more likely. 6716 /// 6717 /// TODO - This transformation could remove entries from a phi in the target 6718 /// block when the inputs in the phi are the same for the two blocks being 6719 /// merged. In some cases, this could result in removal of the PHI entirely. 6720 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6721 BasicBlock *BB, DomTreeUpdater *DTU) { 6722 auto Succ = BB->getUniqueSuccessor(); 6723 assert(Succ); 6724 // If there's a phi in the successor block, we'd likely have to introduce 6725 // a phi into the merged landing pad block. 6726 if (isa<PHINode>(*Succ->begin())) 6727 return false; 6728 6729 for (BasicBlock *OtherPred : predecessors(Succ)) { 6730 if (BB == OtherPred) 6731 continue; 6732 BasicBlock::iterator I = OtherPred->begin(); 6733 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6734 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6735 continue; 6736 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6737 ; 6738 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6739 if (!BI2 || !BI2->isIdenticalTo(BI)) 6740 continue; 6741 6742 std::vector<DominatorTree::UpdateType> Updates; 6743 6744 // We've found an identical block. Update our predecessors to take that 6745 // path instead and make ourselves dead. 6746 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); 6747 for (BasicBlock *Pred : UniquePreds) { 6748 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6749 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6750 "unexpected successor"); 6751 II->setUnwindDest(OtherPred); 6752 if (DTU) { 6753 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6754 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6755 } 6756 } 6757 6758 // The debug info in OtherPred doesn't cover the merged control flow that 6759 // used to go through BB. We need to delete it or update it. 6760 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) 6761 if (isa<DbgInfoIntrinsic>(Inst)) 6762 Inst.eraseFromParent(); 6763 6764 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); 6765 for (BasicBlock *Succ : UniqueSuccs) { 6766 Succ->removePredecessor(BB); 6767 if (DTU) 6768 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6769 } 6770 6771 IRBuilder<> Builder(BI); 6772 Builder.CreateUnreachable(); 6773 BI->eraseFromParent(); 6774 if (DTU) 6775 DTU->applyUpdates(Updates); 6776 return true; 6777 } 6778 return false; 6779 } 6780 6781 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6782 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6783 : simplifyCondBranch(Branch, Builder); 6784 } 6785 6786 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6787 IRBuilder<> &Builder) { 6788 BasicBlock *BB = BI->getParent(); 6789 BasicBlock *Succ = BI->getSuccessor(0); 6790 6791 // If the Terminator is the only non-phi instruction, simplify the block. 6792 // If LoopHeader is provided, check if the block or its successor is a loop 6793 // header. (This is for early invocations before loop simplify and 6794 // vectorization to keep canonical loop forms for nested loops. These blocks 6795 // can be eliminated when the pass is invoked later in the back-end.) 6796 // Note that if BB has only one predecessor then we do not introduce new 6797 // backedge, so we can eliminate BB. 6798 bool NeedCanonicalLoop = 6799 Options.NeedCanonicalLoop && 6800 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6801 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6802 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6803 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6804 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6805 return true; 6806 6807 // If the only instruction in the block is a seteq/setne comparison against a 6808 // constant, try to simplify the block. 6809 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6810 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6811 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6812 ; 6813 if (I->isTerminator() && 6814 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6815 return true; 6816 } 6817 6818 // See if we can merge an empty landing pad block with another which is 6819 // equivalent. 6820 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6821 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6822 ; 6823 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6824 return true; 6825 } 6826 6827 // If this basic block is ONLY a compare and a branch, and if a predecessor 6828 // branches to us and our successor, fold the comparison into the 6829 // predecessor and use logical operations to update the incoming value 6830 // for PHI nodes in common successor. 6831 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6832 Options.BonusInstThreshold)) 6833 return requestResimplify(); 6834 return false; 6835 } 6836 6837 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6838 BasicBlock *PredPred = nullptr; 6839 for (auto *P : predecessors(BB)) { 6840 BasicBlock *PPred = P->getSinglePredecessor(); 6841 if (!PPred || (PredPred && PredPred != PPred)) 6842 return nullptr; 6843 PredPred = PPred; 6844 } 6845 return PredPred; 6846 } 6847 6848 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6849 assert( 6850 !isa<ConstantInt>(BI->getCondition()) && 6851 BI->getSuccessor(0) != BI->getSuccessor(1) && 6852 "Tautological conditional branch should have been eliminated already."); 6853 6854 BasicBlock *BB = BI->getParent(); 6855 if (!Options.SimplifyCondBranch) 6856 return false; 6857 6858 // Conditional branch 6859 if (isValueEqualityComparison(BI)) { 6860 // If we only have one predecessor, and if it is a branch on this value, 6861 // see if that predecessor totally determines the outcome of this 6862 // switch. 6863 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6864 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6865 return requestResimplify(); 6866 6867 // This block must be empty, except for the setcond inst, if it exists. 6868 // Ignore dbg and pseudo intrinsics. 6869 auto I = BB->instructionsWithoutDebug(true).begin(); 6870 if (&*I == BI) { 6871 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6872 return requestResimplify(); 6873 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6874 ++I; 6875 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6876 return requestResimplify(); 6877 } 6878 } 6879 6880 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6881 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6882 return true; 6883 6884 // If this basic block has dominating predecessor blocks and the dominating 6885 // blocks' conditions imply BI's condition, we know the direction of BI. 6886 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6887 if (Imp) { 6888 // Turn this into a branch on constant. 6889 auto *OldCond = BI->getCondition(); 6890 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6891 : ConstantInt::getFalse(BB->getContext()); 6892 BI->setCondition(TorF); 6893 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6894 return requestResimplify(); 6895 } 6896 6897 // If this basic block is ONLY a compare and a branch, and if a predecessor 6898 // branches to us and one of our successors, fold the comparison into the 6899 // predecessor and use logical operations to pick the right destination. 6900 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6901 Options.BonusInstThreshold)) 6902 return requestResimplify(); 6903 6904 // We have a conditional branch to two blocks that are only reachable 6905 // from BI. We know that the condbr dominates the two blocks, so see if 6906 // there is any identical code in the "then" and "else" blocks. If so, we 6907 // can hoist it up to the branching block. 6908 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6909 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6910 if (HoistCommon && 6911 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6912 return requestResimplify(); 6913 } else { 6914 // If Successor #1 has multiple preds, we may be able to conditionally 6915 // execute Successor #0 if it branches to Successor #1. 6916 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6917 if (Succ0TI->getNumSuccessors() == 1 && 6918 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6919 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6920 return requestResimplify(); 6921 } 6922 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6923 // If Successor #0 has multiple preds, we may be able to conditionally 6924 // execute Successor #1 if it branches to Successor #0. 6925 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6926 if (Succ1TI->getNumSuccessors() == 1 && 6927 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6928 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6929 return requestResimplify(); 6930 } 6931 6932 // If this is a branch on something for which we know the constant value in 6933 // predecessors (e.g. a phi node in the current block), thread control 6934 // through this block. 6935 if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC)) 6936 return requestResimplify(); 6937 6938 // Scan predecessor blocks for conditional branches. 6939 for (BasicBlock *Pred : predecessors(BB)) 6940 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6941 if (PBI != BI && PBI->isConditional()) 6942 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6943 return requestResimplify(); 6944 6945 // Look for diamond patterns. 6946 if (MergeCondStores) 6947 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6948 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6949 if (PBI != BI && PBI->isConditional()) 6950 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6951 return requestResimplify(); 6952 6953 return false; 6954 } 6955 6956 /// Check if passing a value to an instruction will cause undefined behavior. 6957 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6958 Constant *C = dyn_cast<Constant>(V); 6959 if (!C) 6960 return false; 6961 6962 if (I->use_empty()) 6963 return false; 6964 6965 if (C->isNullValue() || isa<UndefValue>(C)) { 6966 // Only look at the first use, avoid hurting compile time with long uselists 6967 auto *Use = cast<Instruction>(*I->user_begin()); 6968 // Bail out if Use is not in the same BB as I or Use == I or Use comes 6969 // before I in the block. The latter two can be the case if Use is a PHI 6970 // node. 6971 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) 6972 return false; 6973 6974 // Now make sure that there are no instructions in between that can alter 6975 // control flow (eg. calls) 6976 auto InstrRange = 6977 make_range(std::next(I->getIterator()), Use->getIterator()); 6978 if (any_of(InstrRange, [](Instruction &I) { 6979 return !isGuaranteedToTransferExecutionToSuccessor(&I); 6980 })) 6981 return false; 6982 6983 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6984 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6985 if (GEP->getPointerOperand() == I) { 6986 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6987 PtrValueMayBeModified = true; 6988 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6989 } 6990 6991 // Look through bitcasts. 6992 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6993 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6994 6995 // Load from null is undefined. 6996 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6997 if (!LI->isVolatile()) 6998 return !NullPointerIsDefined(LI->getFunction(), 6999 LI->getPointerAddressSpace()); 7000 7001 // Store to null is undefined. 7002 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 7003 if (!SI->isVolatile()) 7004 return (!NullPointerIsDefined(SI->getFunction(), 7005 SI->getPointerAddressSpace())) && 7006 SI->getPointerOperand() == I; 7007 7008 if (auto *CB = dyn_cast<CallBase>(Use)) { 7009 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 7010 return false; 7011 // A call to null is undefined. 7012 if (CB->getCalledOperand() == I) 7013 return true; 7014 7015 if (C->isNullValue()) { 7016 for (const llvm::Use &Arg : CB->args()) 7017 if (Arg == I) { 7018 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7019 if (CB->isPassingUndefUB(ArgIdx) && 7020 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 7021 // Passing null to a nonnnull+noundef argument is undefined. 7022 return !PtrValueMayBeModified; 7023 } 7024 } 7025 } else if (isa<UndefValue>(C)) { 7026 // Passing undef to a noundef argument is undefined. 7027 for (const llvm::Use &Arg : CB->args()) 7028 if (Arg == I) { 7029 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7030 if (CB->isPassingUndefUB(ArgIdx)) { 7031 // Passing undef to a noundef argument is undefined. 7032 return true; 7033 } 7034 } 7035 } 7036 } 7037 } 7038 return false; 7039 } 7040 7041 /// If BB has an incoming value that will always trigger undefined behavior 7042 /// (eg. null pointer dereference), remove the branch leading here. 7043 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 7044 DomTreeUpdater *DTU) { 7045 for (PHINode &PHI : BB->phis()) 7046 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 7047 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 7048 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 7049 Instruction *T = Predecessor->getTerminator(); 7050 IRBuilder<> Builder(T); 7051 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 7052 BB->removePredecessor(Predecessor); 7053 // Turn uncoditional branches into unreachables and remove the dead 7054 // destination from conditional branches. 7055 if (BI->isUnconditional()) 7056 Builder.CreateUnreachable(); 7057 else { 7058 // Preserve guarding condition in assume, because it might not be 7059 // inferrable from any dominating condition. 7060 Value *Cond = BI->getCondition(); 7061 if (BI->getSuccessor(0) == BB) 7062 Builder.CreateAssumption(Builder.CreateNot(Cond)); 7063 else 7064 Builder.CreateAssumption(Cond); 7065 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 7066 : BI->getSuccessor(0)); 7067 } 7068 BI->eraseFromParent(); 7069 if (DTU) 7070 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 7071 return true; 7072 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 7073 // Redirect all branches leading to UB into 7074 // a newly created unreachable block. 7075 BasicBlock *Unreachable = BasicBlock::Create( 7076 Predecessor->getContext(), "unreachable", BB->getParent(), BB); 7077 Builder.SetInsertPoint(Unreachable); 7078 // The new block contains only one instruction: Unreachable 7079 Builder.CreateUnreachable(); 7080 for (auto &Case : SI->cases()) 7081 if (Case.getCaseSuccessor() == BB) { 7082 BB->removePredecessor(Predecessor); 7083 Case.setSuccessor(Unreachable); 7084 } 7085 if (SI->getDefaultDest() == BB) { 7086 BB->removePredecessor(Predecessor); 7087 SI->setDefaultDest(Unreachable); 7088 } 7089 7090 if (DTU) 7091 DTU->applyUpdates( 7092 { { DominatorTree::Insert, Predecessor, Unreachable }, 7093 { DominatorTree::Delete, Predecessor, BB } }); 7094 return true; 7095 } 7096 } 7097 7098 return false; 7099 } 7100 7101 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 7102 bool Changed = false; 7103 7104 assert(BB && BB->getParent() && "Block not embedded in function!"); 7105 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 7106 7107 // Remove basic blocks that have no predecessors (except the entry block)... 7108 // or that just have themself as a predecessor. These are unreachable. 7109 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 7110 BB->getSinglePredecessor() == BB) { 7111 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 7112 DeleteDeadBlock(BB, DTU); 7113 return true; 7114 } 7115 7116 // Check to see if we can constant propagate this terminator instruction 7117 // away... 7118 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 7119 /*TLI=*/nullptr, DTU); 7120 7121 // Check for and eliminate duplicate PHI nodes in this block. 7122 Changed |= EliminateDuplicatePHINodes(BB); 7123 7124 // Check for and remove branches that will always cause undefined behavior. 7125 if (removeUndefIntroducingPredecessor(BB, DTU)) 7126 return requestResimplify(); 7127 7128 // Merge basic blocks into their predecessor if there is only one distinct 7129 // pred, and if there is only one distinct successor of the predecessor, and 7130 // if there are no PHI nodes. 7131 if (MergeBlockIntoPredecessor(BB, DTU)) 7132 return true; 7133 7134 if (SinkCommon && Options.SinkCommonInsts) 7135 if (SinkCommonCodeFromPredecessors(BB, DTU) || 7136 MergeCompatibleInvokes(BB, DTU)) { 7137 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 7138 // so we may now how duplicate PHI's. 7139 // Let's rerun EliminateDuplicatePHINodes() first, 7140 // before FoldTwoEntryPHINode() potentially converts them into select's, 7141 // after which we'd need a whole EarlyCSE pass run to cleanup them. 7142 return true; 7143 } 7144 7145 IRBuilder<> Builder(BB); 7146 7147 if (Options.FoldTwoEntryPHINode) { 7148 // If there is a trivial two-entry PHI node in this basic block, and we can 7149 // eliminate it, do so now. 7150 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 7151 if (PN->getNumIncomingValues() == 2) 7152 if (FoldTwoEntryPHINode(PN, TTI, DTU, DL)) 7153 return true; 7154 } 7155 7156 Instruction *Terminator = BB->getTerminator(); 7157 Builder.SetInsertPoint(Terminator); 7158 switch (Terminator->getOpcode()) { 7159 case Instruction::Br: 7160 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 7161 break; 7162 case Instruction::Resume: 7163 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 7164 break; 7165 case Instruction::CleanupRet: 7166 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 7167 break; 7168 case Instruction::Switch: 7169 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 7170 break; 7171 case Instruction::Unreachable: 7172 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 7173 break; 7174 case Instruction::IndirectBr: 7175 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 7176 break; 7177 } 7178 7179 return Changed; 7180 } 7181 7182 bool SimplifyCFGOpt::run(BasicBlock *BB) { 7183 bool Changed = false; 7184 7185 // Repeated simplify BB as long as resimplification is requested. 7186 do { 7187 Resimplify = false; 7188 7189 // Perform one round of simplifcation. Resimplify flag will be set if 7190 // another iteration is requested. 7191 Changed |= simplifyOnce(BB); 7192 } while (Resimplify); 7193 7194 return Changed; 7195 } 7196 7197 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 7198 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 7199 ArrayRef<WeakVH> LoopHeaders) { 7200 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 7201 Options) 7202 .run(BB); 7203 } 7204