1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/ValueHandle.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/KnownBits.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ValueMapper.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <climits>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <set>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 using namespace PatternMatch;
90 
91 #define DEBUG_TYPE "simplifycfg"
92 
93 cl::opt<bool> llvm::RequireAndPreserveDomTree(
94     "simplifycfg-require-and-preserve-domtree", cl::Hidden,
95 
96     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
97              "into preserving DomTree,"));
98 
99 // Chosen as 2 so as to be cheap, but still to have enough power to fold
100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
101 // To catch this, we need to fold a compare and a select, hence '2' being the
102 // minimum reasonable default.
103 static cl::opt<unsigned> PHINodeFoldingThreshold(
104     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
105     cl::desc(
106         "Control the amount of phi node folding to perform (default = 2)"));
107 
108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
109     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
110     cl::desc("Control the maximal total instruction cost that we are willing "
111              "to speculatively execute to fold a 2-entry PHI node into a "
112              "select (default = 4)"));
113 
114 static cl::opt<bool>
115     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
116                 cl::desc("Hoist common instructions up to the parent block"));
117 
118 static cl::opt<bool>
119     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
120                cl::desc("Sink common instructions down to the end block"));
121 
122 static cl::opt<bool> HoistCondStores(
123     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
124     cl::desc("Hoist conditional stores if an unconditional store precedes"));
125 
126 static cl::opt<bool> MergeCondStores(
127     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
128     cl::desc("Hoist conditional stores even if an unconditional store does not "
129              "precede - hoist multiple conditional stores into a single "
130              "predicated store"));
131 
132 static cl::opt<bool> MergeCondStoresAggressively(
133     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
134     cl::desc("When merging conditional stores, do so even if the resultant "
135              "basic blocks are unlikely to be if-converted as a result"));
136 
137 static cl::opt<bool> SpeculateOneExpensiveInst(
138     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
139     cl::desc("Allow exactly one expensive instruction to be speculatively "
140              "executed"));
141 
142 static cl::opt<unsigned> MaxSpeculationDepth(
143     "max-speculation-depth", cl::Hidden, cl::init(10),
144     cl::desc("Limit maximum recursion depth when calculating costs of "
145              "speculatively executed instructions"));
146 
147 static cl::opt<int>
148     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
149                       cl::init(10),
150                       cl::desc("Max size of a block which is still considered "
151                                "small enough to thread through"));
152 
153 // Two is chosen to allow one negation and a logical combine.
154 static cl::opt<unsigned>
155     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
156                         cl::init(2),
157                         cl::desc("Maximum cost of combining conditions when "
158                                  "folding branches"));
159 
160 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
161     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
162     cl::init(2),
163     cl::desc("Multiplier to apply to threshold when determining whether or not "
164              "to fold branch to common destination when vector operations are "
165              "present"));
166 
167 static cl::opt<bool> EnableMergeCompatibleInvokes(
168     "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
169     cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
170 
171 static cl::opt<unsigned> MaxSwitchCasesPerResult(
172     "max-switch-cases-per-result", cl::Hidden, cl::init(16),
173     cl::desc("Limit cases to analyze when converting a switch to select"));
174 
175 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
176 STATISTIC(NumLinearMaps,
177           "Number of switch instructions turned into linear mapping");
178 STATISTIC(NumLookupTables,
179           "Number of switch instructions turned into lookup tables");
180 STATISTIC(
181     NumLookupTablesHoles,
182     "Number of switch instructions turned into lookup tables (holes checked)");
183 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
184 STATISTIC(NumFoldValueComparisonIntoPredecessors,
185           "Number of value comparisons folded into predecessor basic blocks");
186 STATISTIC(NumFoldBranchToCommonDest,
187           "Number of branches folded into predecessor basic block");
188 STATISTIC(
189     NumHoistCommonCode,
190     "Number of common instruction 'blocks' hoisted up to the begin block");
191 STATISTIC(NumHoistCommonInstrs,
192           "Number of common instructions hoisted up to the begin block");
193 STATISTIC(NumSinkCommonCode,
194           "Number of common instruction 'blocks' sunk down to the end block");
195 STATISTIC(NumSinkCommonInstrs,
196           "Number of common instructions sunk down to the end block");
197 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
198 STATISTIC(NumInvokes,
199           "Number of invokes with empty resume blocks simplified into calls");
200 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
201 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
202 
203 namespace {
204 
205 // The first field contains the value that the switch produces when a certain
206 // case group is selected, and the second field is a vector containing the
207 // cases composing the case group.
208 using SwitchCaseResultVectorTy =
209     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
210 
211 // The first field contains the phi node that generates a result of the switch
212 // and the second field contains the value generated for a certain case in the
213 // switch for that PHI.
214 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
215 
216 /// ValueEqualityComparisonCase - Represents a case of a switch.
217 struct ValueEqualityComparisonCase {
218   ConstantInt *Value;
219   BasicBlock *Dest;
220 
221   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
222       : Value(Value), Dest(Dest) {}
223 
224   bool operator<(ValueEqualityComparisonCase RHS) const {
225     // Comparing pointers is ok as we only rely on the order for uniquing.
226     return Value < RHS.Value;
227   }
228 
229   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
230 };
231 
232 class SimplifyCFGOpt {
233   const TargetTransformInfo &TTI;
234   DomTreeUpdater *DTU;
235   const DataLayout &DL;
236   ArrayRef<WeakVH> LoopHeaders;
237   const SimplifyCFGOptions &Options;
238   bool Resimplify;
239 
240   Value *isValueEqualityComparison(Instruction *TI);
241   BasicBlock *GetValueEqualityComparisonCases(
242       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
243   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
244                                                      BasicBlock *Pred,
245                                                      IRBuilder<> &Builder);
246   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
247                                                     Instruction *PTI,
248                                                     IRBuilder<> &Builder);
249   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
250                                            IRBuilder<> &Builder);
251 
252   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
253   bool simplifySingleResume(ResumeInst *RI);
254   bool simplifyCommonResume(ResumeInst *RI);
255   bool simplifyCleanupReturn(CleanupReturnInst *RI);
256   bool simplifyUnreachable(UnreachableInst *UI);
257   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
258   bool simplifyIndirectBr(IndirectBrInst *IBI);
259   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
260   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
261   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
262 
263   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
264                                              IRBuilder<> &Builder);
265 
266   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
267                              bool EqTermsOnly);
268   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
269                               const TargetTransformInfo &TTI);
270   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
271                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
272                                   uint32_t TrueWeight, uint32_t FalseWeight);
273   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
274                                  const DataLayout &DL);
275   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
276   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
277   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
278 
279 public:
280   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
281                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
282                  const SimplifyCFGOptions &Opts)
283       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
284     assert((!DTU || !DTU->hasPostDomTree()) &&
285            "SimplifyCFG is not yet capable of maintaining validity of a "
286            "PostDomTree, so don't ask for it.");
287   }
288 
289   bool simplifyOnce(BasicBlock *BB);
290   bool run(BasicBlock *BB);
291 
292   // Helper to set Resimplify and return change indication.
293   bool requestResimplify() {
294     Resimplify = true;
295     return true;
296   }
297 };
298 
299 } // end anonymous namespace
300 
301 /// Return true if all the PHI nodes in the basic block \p BB
302 /// receive compatible (identical) incoming values when coming from
303 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
304 ///
305 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
306 /// is provided, and *both* of the values are present in the set,
307 /// then they are considered equal.
308 static bool IncomingValuesAreCompatible(
309     BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
310     SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
311   assert(IncomingBlocks.size() == 2 &&
312          "Only for a pair of incoming blocks at the time!");
313 
314   // FIXME: it is okay if one of the incoming values is an `undef` value,
315   //        iff the other incoming value is guaranteed to be a non-poison value.
316   // FIXME: it is okay if one of the incoming values is a `poison` value.
317   return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
318     Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
319     Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
320     if (IV0 == IV1)
321       return true;
322     if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
323         EquivalenceSet->contains(IV1))
324       return true;
325     return false;
326   });
327 }
328 
329 /// Return true if it is safe to merge these two
330 /// terminator instructions together.
331 static bool
332 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
333                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
334   if (SI1 == SI2)
335     return false; // Can't merge with self!
336 
337   // It is not safe to merge these two switch instructions if they have a common
338   // successor, and if that successor has a PHI node, and if *that* PHI node has
339   // conflicting incoming values from the two switch blocks.
340   BasicBlock *SI1BB = SI1->getParent();
341   BasicBlock *SI2BB = SI2->getParent();
342 
343   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
344   bool Fail = false;
345   for (BasicBlock *Succ : successors(SI2BB)) {
346     if (!SI1Succs.count(Succ))
347       continue;
348     if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
349       continue;
350     Fail = true;
351     if (FailBlocks)
352       FailBlocks->insert(Succ);
353     else
354       break;
355   }
356 
357   return !Fail;
358 }
359 
360 /// Update PHI nodes in Succ to indicate that there will now be entries in it
361 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
362 /// will be the same as those coming in from ExistPred, an existing predecessor
363 /// of Succ.
364 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
365                                   BasicBlock *ExistPred,
366                                   MemorySSAUpdater *MSSAU = nullptr) {
367   for (PHINode &PN : Succ->phis())
368     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
369   if (MSSAU)
370     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
371       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
372 }
373 
374 /// Compute an abstract "cost" of speculating the given instruction,
375 /// which is assumed to be safe to speculate. TCC_Free means cheap,
376 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
377 /// expensive.
378 static InstructionCost computeSpeculationCost(const User *I,
379                                               const TargetTransformInfo &TTI) {
380   assert(isSafeToSpeculativelyExecute(I) &&
381          "Instruction is not safe to speculatively execute!");
382   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
383 }
384 
385 /// Check whether this is a potentially trapping constant.
386 static bool canTrap(const Value *V) {
387   if (auto *C = dyn_cast<Constant>(V))
388     return C->canTrap();
389   return false;
390 }
391 
392 /// If we have a merge point of an "if condition" as accepted above,
393 /// return true if the specified value dominates the block.  We
394 /// don't handle the true generality of domination here, just a special case
395 /// which works well enough for us.
396 ///
397 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
398 /// see if V (which must be an instruction) and its recursive operands
399 /// that do not dominate BB have a combined cost lower than Budget and
400 /// are non-trapping.  If both are true, the instruction is inserted into the
401 /// set and true is returned.
402 ///
403 /// The cost for most non-trapping instructions is defined as 1 except for
404 /// Select whose cost is 2.
405 ///
406 /// After this function returns, Cost is increased by the cost of
407 /// V plus its non-dominating operands.  If that cost is greater than
408 /// Budget, false is returned and Cost is undefined.
409 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
410                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
411                                 InstructionCost &Cost,
412                                 InstructionCost Budget,
413                                 const TargetTransformInfo &TTI,
414                                 unsigned Depth = 0) {
415   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
416   // so limit the recursion depth.
417   // TODO: While this recursion limit does prevent pathological behavior, it
418   // would be better to track visited instructions to avoid cycles.
419   if (Depth == MaxSpeculationDepth)
420     return false;
421 
422   Instruction *I = dyn_cast<Instruction>(V);
423   if (!I) {
424     // Non-instructions all dominate instructions, but not all constantexprs
425     // can be executed unconditionally.
426     return !canTrap(V);
427   }
428   BasicBlock *PBB = I->getParent();
429 
430   // We don't want to allow weird loops that might have the "if condition" in
431   // the bottom of this block.
432   if (PBB == BB)
433     return false;
434 
435   // If this instruction is defined in a block that contains an unconditional
436   // branch to BB, then it must be in the 'conditional' part of the "if
437   // statement".  If not, it definitely dominates the region.
438   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
439   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
440     return true;
441 
442   // If we have seen this instruction before, don't count it again.
443   if (AggressiveInsts.count(I))
444     return true;
445 
446   // Okay, it looks like the instruction IS in the "condition".  Check to
447   // see if it's a cheap instruction to unconditionally compute, and if it
448   // only uses stuff defined outside of the condition.  If so, hoist it out.
449   if (!isSafeToSpeculativelyExecute(I))
450     return false;
451 
452   Cost += computeSpeculationCost(I, TTI);
453 
454   // Allow exactly one instruction to be speculated regardless of its cost
455   // (as long as it is safe to do so).
456   // This is intended to flatten the CFG even if the instruction is a division
457   // or other expensive operation. The speculation of an expensive instruction
458   // is expected to be undone in CodeGenPrepare if the speculation has not
459   // enabled further IR optimizations.
460   if (Cost > Budget &&
461       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
462        !Cost.isValid()))
463     return false;
464 
465   // Okay, we can only really hoist these out if their operands do
466   // not take us over the cost threshold.
467   for (Use &Op : I->operands())
468     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
469                              Depth + 1))
470       return false;
471   // Okay, it's safe to do this!  Remember this instruction.
472   AggressiveInsts.insert(I);
473   return true;
474 }
475 
476 /// Extract ConstantInt from value, looking through IntToPtr
477 /// and PointerNullValue. Return NULL if value is not a constant int.
478 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
479   // Normal constant int.
480   ConstantInt *CI = dyn_cast<ConstantInt>(V);
481   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
482     return CI;
483 
484   // This is some kind of pointer constant. Turn it into a pointer-sized
485   // ConstantInt if possible.
486   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
487 
488   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
489   if (isa<ConstantPointerNull>(V))
490     return ConstantInt::get(PtrTy, 0);
491 
492   // IntToPtr const int.
493   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
494     if (CE->getOpcode() == Instruction::IntToPtr)
495       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
496         // The constant is very likely to have the right type already.
497         if (CI->getType() == PtrTy)
498           return CI;
499         else
500           return cast<ConstantInt>(
501               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
502       }
503   return nullptr;
504 }
505 
506 namespace {
507 
508 /// Given a chain of or (||) or and (&&) comparison of a value against a
509 /// constant, this will try to recover the information required for a switch
510 /// structure.
511 /// It will depth-first traverse the chain of comparison, seeking for patterns
512 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
513 /// representing the different cases for the switch.
514 /// Note that if the chain is composed of '||' it will build the set of elements
515 /// that matches the comparisons (i.e. any of this value validate the chain)
516 /// while for a chain of '&&' it will build the set elements that make the test
517 /// fail.
518 struct ConstantComparesGatherer {
519   const DataLayout &DL;
520 
521   /// Value found for the switch comparison
522   Value *CompValue = nullptr;
523 
524   /// Extra clause to be checked before the switch
525   Value *Extra = nullptr;
526 
527   /// Set of integers to match in switch
528   SmallVector<ConstantInt *, 8> Vals;
529 
530   /// Number of comparisons matched in the and/or chain
531   unsigned UsedICmps = 0;
532 
533   /// Construct and compute the result for the comparison instruction Cond
534   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
535     gather(Cond);
536   }
537 
538   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
539   ConstantComparesGatherer &
540   operator=(const ConstantComparesGatherer &) = delete;
541 
542 private:
543   /// Try to set the current value used for the comparison, it succeeds only if
544   /// it wasn't set before or if the new value is the same as the old one
545   bool setValueOnce(Value *NewVal) {
546     if (CompValue && CompValue != NewVal)
547       return false;
548     CompValue = NewVal;
549     return (CompValue != nullptr);
550   }
551 
552   /// Try to match Instruction "I" as a comparison against a constant and
553   /// populates the array Vals with the set of values that match (or do not
554   /// match depending on isEQ).
555   /// Return false on failure. On success, the Value the comparison matched
556   /// against is placed in CompValue.
557   /// If CompValue is already set, the function is expected to fail if a match
558   /// is found but the value compared to is different.
559   bool matchInstruction(Instruction *I, bool isEQ) {
560     // If this is an icmp against a constant, handle this as one of the cases.
561     ICmpInst *ICI;
562     ConstantInt *C;
563     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
564           (C = GetConstantInt(I->getOperand(1), DL)))) {
565       return false;
566     }
567 
568     Value *RHSVal;
569     const APInt *RHSC;
570 
571     // Pattern match a special case
572     // (x & ~2^z) == y --> x == y || x == y|2^z
573     // This undoes a transformation done by instcombine to fuse 2 compares.
574     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
575       // It's a little bit hard to see why the following transformations are
576       // correct. Here is a CVC3 program to verify them for 64-bit values:
577 
578       /*
579          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
580          x    : BITVECTOR(64);
581          y    : BITVECTOR(64);
582          z    : BITVECTOR(64);
583          mask : BITVECTOR(64) = BVSHL(ONE, z);
584          QUERY( (y & ~mask = y) =>
585                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
586          );
587          QUERY( (y |  mask = y) =>
588                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
589          );
590       */
591 
592       // Please note that each pattern must be a dual implication (<--> or
593       // iff). One directional implication can create spurious matches. If the
594       // implication is only one-way, an unsatisfiable condition on the left
595       // side can imply a satisfiable condition on the right side. Dual
596       // implication ensures that satisfiable conditions are transformed to
597       // other satisfiable conditions and unsatisfiable conditions are
598       // transformed to other unsatisfiable conditions.
599 
600       // Here is a concrete example of a unsatisfiable condition on the left
601       // implying a satisfiable condition on the right:
602       //
603       // mask = (1 << z)
604       // (x & ~mask) == y  --> (x == y || x == (y | mask))
605       //
606       // Substituting y = 3, z = 0 yields:
607       // (x & -2) == 3 --> (x == 3 || x == 2)
608 
609       // Pattern match a special case:
610       /*
611         QUERY( (y & ~mask = y) =>
612                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
613         );
614       */
615       if (match(ICI->getOperand(0),
616                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
617         APInt Mask = ~*RHSC;
618         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
619           // If we already have a value for the switch, it has to match!
620           if (!setValueOnce(RHSVal))
621             return false;
622 
623           Vals.push_back(C);
624           Vals.push_back(
625               ConstantInt::get(C->getContext(),
626                                C->getValue() | Mask));
627           UsedICmps++;
628           return true;
629         }
630       }
631 
632       // Pattern match a special case:
633       /*
634         QUERY( (y |  mask = y) =>
635                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
636         );
637       */
638       if (match(ICI->getOperand(0),
639                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
640         APInt Mask = *RHSC;
641         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
642           // If we already have a value for the switch, it has to match!
643           if (!setValueOnce(RHSVal))
644             return false;
645 
646           Vals.push_back(C);
647           Vals.push_back(ConstantInt::get(C->getContext(),
648                                           C->getValue() & ~Mask));
649           UsedICmps++;
650           return true;
651         }
652       }
653 
654       // If we already have a value for the switch, it has to match!
655       if (!setValueOnce(ICI->getOperand(0)))
656         return false;
657 
658       UsedICmps++;
659       Vals.push_back(C);
660       return ICI->getOperand(0);
661     }
662 
663     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
664     ConstantRange Span =
665         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
666 
667     // Shift the range if the compare is fed by an add. This is the range
668     // compare idiom as emitted by instcombine.
669     Value *CandidateVal = I->getOperand(0);
670     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
671       Span = Span.subtract(*RHSC);
672       CandidateVal = RHSVal;
673     }
674 
675     // If this is an and/!= check, then we are looking to build the set of
676     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
677     // x != 0 && x != 1.
678     if (!isEQ)
679       Span = Span.inverse();
680 
681     // If there are a ton of values, we don't want to make a ginormous switch.
682     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
683       return false;
684     }
685 
686     // If we already have a value for the switch, it has to match!
687     if (!setValueOnce(CandidateVal))
688       return false;
689 
690     // Add all values from the range to the set
691     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
692       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
693 
694     UsedICmps++;
695     return true;
696   }
697 
698   /// Given a potentially 'or'd or 'and'd together collection of icmp
699   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
700   /// the value being compared, and stick the list constants into the Vals
701   /// vector.
702   /// One "Extra" case is allowed to differ from the other.
703   void gather(Value *V) {
704     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
705 
706     // Keep a stack (SmallVector for efficiency) for depth-first traversal
707     SmallVector<Value *, 8> DFT;
708     SmallPtrSet<Value *, 8> Visited;
709 
710     // Initialize
711     Visited.insert(V);
712     DFT.push_back(V);
713 
714     while (!DFT.empty()) {
715       V = DFT.pop_back_val();
716 
717       if (Instruction *I = dyn_cast<Instruction>(V)) {
718         // If it is a || (or && depending on isEQ), process the operands.
719         Value *Op0, *Op1;
720         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
721                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
722           if (Visited.insert(Op1).second)
723             DFT.push_back(Op1);
724           if (Visited.insert(Op0).second)
725             DFT.push_back(Op0);
726 
727           continue;
728         }
729 
730         // Try to match the current instruction
731         if (matchInstruction(I, isEQ))
732           // Match succeed, continue the loop
733           continue;
734       }
735 
736       // One element of the sequence of || (or &&) could not be match as a
737       // comparison against the same value as the others.
738       // We allow only one "Extra" case to be checked before the switch
739       if (!Extra) {
740         Extra = V;
741         continue;
742       }
743       // Failed to parse a proper sequence, abort now
744       CompValue = nullptr;
745       break;
746     }
747   }
748 };
749 
750 } // end anonymous namespace
751 
752 static void EraseTerminatorAndDCECond(Instruction *TI,
753                                       MemorySSAUpdater *MSSAU = nullptr) {
754   Instruction *Cond = nullptr;
755   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
756     Cond = dyn_cast<Instruction>(SI->getCondition());
757   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
758     if (BI->isConditional())
759       Cond = dyn_cast<Instruction>(BI->getCondition());
760   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
761     Cond = dyn_cast<Instruction>(IBI->getAddress());
762   }
763 
764   TI->eraseFromParent();
765   if (Cond)
766     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
767 }
768 
769 /// Return true if the specified terminator checks
770 /// to see if a value is equal to constant integer value.
771 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
772   Value *CV = nullptr;
773   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
774     // Do not permit merging of large switch instructions into their
775     // predecessors unless there is only one predecessor.
776     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
777       CV = SI->getCondition();
778   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
779     if (BI->isConditional() && BI->getCondition()->hasOneUse())
780       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
781         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
782           CV = ICI->getOperand(0);
783       }
784 
785   // Unwrap any lossless ptrtoint cast.
786   if (CV) {
787     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
788       Value *Ptr = PTII->getPointerOperand();
789       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
790         CV = Ptr;
791     }
792   }
793   return CV;
794 }
795 
796 /// Given a value comparison instruction,
797 /// decode all of the 'cases' that it represents and return the 'default' block.
798 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
799     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
800   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
801     Cases.reserve(SI->getNumCases());
802     for (auto Case : SI->cases())
803       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
804                                                   Case.getCaseSuccessor()));
805     return SI->getDefaultDest();
806   }
807 
808   BranchInst *BI = cast<BranchInst>(TI);
809   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
810   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
811   Cases.push_back(ValueEqualityComparisonCase(
812       GetConstantInt(ICI->getOperand(1), DL), Succ));
813   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
814 }
815 
816 /// Given a vector of bb/value pairs, remove any entries
817 /// in the list that match the specified block.
818 static void
819 EliminateBlockCases(BasicBlock *BB,
820                     std::vector<ValueEqualityComparisonCase> &Cases) {
821   llvm::erase_value(Cases, BB);
822 }
823 
824 /// Return true if there are any keys in C1 that exist in C2 as well.
825 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
826                           std::vector<ValueEqualityComparisonCase> &C2) {
827   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
828 
829   // Make V1 be smaller than V2.
830   if (V1->size() > V2->size())
831     std::swap(V1, V2);
832 
833   if (V1->empty())
834     return false;
835   if (V1->size() == 1) {
836     // Just scan V2.
837     ConstantInt *TheVal = (*V1)[0].Value;
838     for (unsigned i = 0, e = V2->size(); i != e; ++i)
839       if (TheVal == (*V2)[i].Value)
840         return true;
841   }
842 
843   // Otherwise, just sort both lists and compare element by element.
844   array_pod_sort(V1->begin(), V1->end());
845   array_pod_sort(V2->begin(), V2->end());
846   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
847   while (i1 != e1 && i2 != e2) {
848     if ((*V1)[i1].Value == (*V2)[i2].Value)
849       return true;
850     if ((*V1)[i1].Value < (*V2)[i2].Value)
851       ++i1;
852     else
853       ++i2;
854   }
855   return false;
856 }
857 
858 // Set branch weights on SwitchInst. This sets the metadata if there is at
859 // least one non-zero weight.
860 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
861   // Check that there is at least one non-zero weight. Otherwise, pass
862   // nullptr to setMetadata which will erase the existing metadata.
863   MDNode *N = nullptr;
864   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
865     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
866   SI->setMetadata(LLVMContext::MD_prof, N);
867 }
868 
869 // Similar to the above, but for branch and select instructions that take
870 // exactly 2 weights.
871 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
872                              uint32_t FalseWeight) {
873   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
874   // Check that there is at least one non-zero weight. Otherwise, pass
875   // nullptr to setMetadata which will erase the existing metadata.
876   MDNode *N = nullptr;
877   if (TrueWeight || FalseWeight)
878     N = MDBuilder(I->getParent()->getContext())
879             .createBranchWeights(TrueWeight, FalseWeight);
880   I->setMetadata(LLVMContext::MD_prof, N);
881 }
882 
883 /// If TI is known to be a terminator instruction and its block is known to
884 /// only have a single predecessor block, check to see if that predecessor is
885 /// also a value comparison with the same value, and if that comparison
886 /// determines the outcome of this comparison. If so, simplify TI. This does a
887 /// very limited form of jump threading.
888 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
889     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
890   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
891   if (!PredVal)
892     return false; // Not a value comparison in predecessor.
893 
894   Value *ThisVal = isValueEqualityComparison(TI);
895   assert(ThisVal && "This isn't a value comparison!!");
896   if (ThisVal != PredVal)
897     return false; // Different predicates.
898 
899   // TODO: Preserve branch weight metadata, similarly to how
900   // FoldValueComparisonIntoPredecessors preserves it.
901 
902   // Find out information about when control will move from Pred to TI's block.
903   std::vector<ValueEqualityComparisonCase> PredCases;
904   BasicBlock *PredDef =
905       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
906   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
907 
908   // Find information about how control leaves this block.
909   std::vector<ValueEqualityComparisonCase> ThisCases;
910   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
911   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
912 
913   // If TI's block is the default block from Pred's comparison, potentially
914   // simplify TI based on this knowledge.
915   if (PredDef == TI->getParent()) {
916     // If we are here, we know that the value is none of those cases listed in
917     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
918     // can simplify TI.
919     if (!ValuesOverlap(PredCases, ThisCases))
920       return false;
921 
922     if (isa<BranchInst>(TI)) {
923       // Okay, one of the successors of this condbr is dead.  Convert it to a
924       // uncond br.
925       assert(ThisCases.size() == 1 && "Branch can only have one case!");
926       // Insert the new branch.
927       Instruction *NI = Builder.CreateBr(ThisDef);
928       (void)NI;
929 
930       // Remove PHI node entries for the dead edge.
931       ThisCases[0].Dest->removePredecessor(PredDef);
932 
933       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
934                         << "Through successor TI: " << *TI << "Leaving: " << *NI
935                         << "\n");
936 
937       EraseTerminatorAndDCECond(TI);
938 
939       if (DTU)
940         DTU->applyUpdates(
941             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
942 
943       return true;
944     }
945 
946     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
947     // Okay, TI has cases that are statically dead, prune them away.
948     SmallPtrSet<Constant *, 16> DeadCases;
949     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
950       DeadCases.insert(PredCases[i].Value);
951 
952     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
953                       << "Through successor TI: " << *TI);
954 
955     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
956     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
957       --i;
958       auto *Successor = i->getCaseSuccessor();
959       if (DTU)
960         ++NumPerSuccessorCases[Successor];
961       if (DeadCases.count(i->getCaseValue())) {
962         Successor->removePredecessor(PredDef);
963         SI.removeCase(i);
964         if (DTU)
965           --NumPerSuccessorCases[Successor];
966       }
967     }
968 
969     if (DTU) {
970       std::vector<DominatorTree::UpdateType> Updates;
971       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
972         if (I.second == 0)
973           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
974       DTU->applyUpdates(Updates);
975     }
976 
977     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
978     return true;
979   }
980 
981   // Otherwise, TI's block must correspond to some matched value.  Find out
982   // which value (or set of values) this is.
983   ConstantInt *TIV = nullptr;
984   BasicBlock *TIBB = TI->getParent();
985   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
986     if (PredCases[i].Dest == TIBB) {
987       if (TIV)
988         return false; // Cannot handle multiple values coming to this block.
989       TIV = PredCases[i].Value;
990     }
991   assert(TIV && "No edge from pred to succ?");
992 
993   // Okay, we found the one constant that our value can be if we get into TI's
994   // BB.  Find out which successor will unconditionally be branched to.
995   BasicBlock *TheRealDest = nullptr;
996   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
997     if (ThisCases[i].Value == TIV) {
998       TheRealDest = ThisCases[i].Dest;
999       break;
1000     }
1001 
1002   // If not handled by any explicit cases, it is handled by the default case.
1003   if (!TheRealDest)
1004     TheRealDest = ThisDef;
1005 
1006   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1007 
1008   // Remove PHI node entries for dead edges.
1009   BasicBlock *CheckEdge = TheRealDest;
1010   for (BasicBlock *Succ : successors(TIBB))
1011     if (Succ != CheckEdge) {
1012       if (Succ != TheRealDest)
1013         RemovedSuccs.insert(Succ);
1014       Succ->removePredecessor(TIBB);
1015     } else
1016       CheckEdge = nullptr;
1017 
1018   // Insert the new branch.
1019   Instruction *NI = Builder.CreateBr(TheRealDest);
1020   (void)NI;
1021 
1022   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1023                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1024                     << "\n");
1025 
1026   EraseTerminatorAndDCECond(TI);
1027   if (DTU) {
1028     SmallVector<DominatorTree::UpdateType, 2> Updates;
1029     Updates.reserve(RemovedSuccs.size());
1030     for (auto *RemovedSucc : RemovedSuccs)
1031       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1032     DTU->applyUpdates(Updates);
1033   }
1034   return true;
1035 }
1036 
1037 namespace {
1038 
1039 /// This class implements a stable ordering of constant
1040 /// integers that does not depend on their address.  This is important for
1041 /// applications that sort ConstantInt's to ensure uniqueness.
1042 struct ConstantIntOrdering {
1043   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1044     return LHS->getValue().ult(RHS->getValue());
1045   }
1046 };
1047 
1048 } // end anonymous namespace
1049 
1050 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1051                                     ConstantInt *const *P2) {
1052   const ConstantInt *LHS = *P1;
1053   const ConstantInt *RHS = *P2;
1054   if (LHS == RHS)
1055     return 0;
1056   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1057 }
1058 
1059 static inline bool HasBranchWeights(const Instruction *I) {
1060   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1061   if (ProfMD && ProfMD->getOperand(0))
1062     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1063       return MDS->getString().equals("branch_weights");
1064 
1065   return false;
1066 }
1067 
1068 /// Get Weights of a given terminator, the default weight is at the front
1069 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1070 /// metadata.
1071 static void GetBranchWeights(Instruction *TI,
1072                              SmallVectorImpl<uint64_t> &Weights) {
1073   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1074   assert(MD);
1075   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1076     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1077     Weights.push_back(CI->getValue().getZExtValue());
1078   }
1079 
1080   // If TI is a conditional eq, the default case is the false case,
1081   // and the corresponding branch-weight data is at index 2. We swap the
1082   // default weight to be the first entry.
1083   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1084     assert(Weights.size() == 2);
1085     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1086     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1087       std::swap(Weights.front(), Weights.back());
1088   }
1089 }
1090 
1091 /// Keep halving the weights until all can fit in uint32_t.
1092 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1093   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1094   if (Max > UINT_MAX) {
1095     unsigned Offset = 32 - countLeadingZeros(Max);
1096     for (uint64_t &I : Weights)
1097       I >>= Offset;
1098   }
1099 }
1100 
1101 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1102     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1103   Instruction *PTI = PredBlock->getTerminator();
1104 
1105   // If we have bonus instructions, clone them into the predecessor block.
1106   // Note that there may be multiple predecessor blocks, so we cannot move
1107   // bonus instructions to a predecessor block.
1108   for (Instruction &BonusInst : *BB) {
1109     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1110       continue;
1111 
1112     Instruction *NewBonusInst = BonusInst.clone();
1113 
1114     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1115       // Unless the instruction has the same !dbg location as the original
1116       // branch, drop it. When we fold the bonus instructions we want to make
1117       // sure we reset their debug locations in order to avoid stepping on
1118       // dead code caused by folding dead branches.
1119       NewBonusInst->setDebugLoc(DebugLoc());
1120     }
1121 
1122     RemapInstruction(NewBonusInst, VMap,
1123                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1124     VMap[&BonusInst] = NewBonusInst;
1125 
1126     // If we moved a load, we cannot any longer claim any knowledge about
1127     // its potential value. The previous information might have been valid
1128     // only given the branch precondition.
1129     // For an analogous reason, we must also drop all the metadata whose
1130     // semantics we don't understand. We *can* preserve !annotation, because
1131     // it is tied to the instruction itself, not the value or position.
1132     // Similarly strip attributes on call parameters that may cause UB in
1133     // location the call is moved to.
1134     NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1135         LLVMContext::MD_annotation);
1136 
1137     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1138     NewBonusInst->takeName(&BonusInst);
1139     BonusInst.setName(NewBonusInst->getName() + ".old");
1140 
1141     // Update (liveout) uses of bonus instructions,
1142     // now that the bonus instruction has been cloned into predecessor.
1143     // Note that we expect to be in a block-closed SSA form for this to work!
1144     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1145       auto *UI = cast<Instruction>(U.getUser());
1146       auto *PN = dyn_cast<PHINode>(UI);
1147       if (!PN) {
1148         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1149                "If the user is not a PHI node, then it should be in the same "
1150                "block as, and come after, the original bonus instruction.");
1151         continue; // Keep using the original bonus instruction.
1152       }
1153       // Is this the block-closed SSA form PHI node?
1154       if (PN->getIncomingBlock(U) == BB)
1155         continue; // Great, keep using the original bonus instruction.
1156       // The only other alternative is an "use" when coming from
1157       // the predecessor block - here we should refer to the cloned bonus instr.
1158       assert(PN->getIncomingBlock(U) == PredBlock &&
1159              "Not in block-closed SSA form?");
1160       U.set(NewBonusInst);
1161     }
1162   }
1163 }
1164 
1165 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1166     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1167   BasicBlock *BB = TI->getParent();
1168   BasicBlock *Pred = PTI->getParent();
1169 
1170   SmallVector<DominatorTree::UpdateType, 32> Updates;
1171 
1172   // Figure out which 'cases' to copy from SI to PSI.
1173   std::vector<ValueEqualityComparisonCase> BBCases;
1174   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1175 
1176   std::vector<ValueEqualityComparisonCase> PredCases;
1177   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1178 
1179   // Based on whether the default edge from PTI goes to BB or not, fill in
1180   // PredCases and PredDefault with the new switch cases we would like to
1181   // build.
1182   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1183 
1184   // Update the branch weight metadata along the way
1185   SmallVector<uint64_t, 8> Weights;
1186   bool PredHasWeights = HasBranchWeights(PTI);
1187   bool SuccHasWeights = HasBranchWeights(TI);
1188 
1189   if (PredHasWeights) {
1190     GetBranchWeights(PTI, Weights);
1191     // branch-weight metadata is inconsistent here.
1192     if (Weights.size() != 1 + PredCases.size())
1193       PredHasWeights = SuccHasWeights = false;
1194   } else if (SuccHasWeights)
1195     // If there are no predecessor weights but there are successor weights,
1196     // populate Weights with 1, which will later be scaled to the sum of
1197     // successor's weights
1198     Weights.assign(1 + PredCases.size(), 1);
1199 
1200   SmallVector<uint64_t, 8> SuccWeights;
1201   if (SuccHasWeights) {
1202     GetBranchWeights(TI, SuccWeights);
1203     // branch-weight metadata is inconsistent here.
1204     if (SuccWeights.size() != 1 + BBCases.size())
1205       PredHasWeights = SuccHasWeights = false;
1206   } else if (PredHasWeights)
1207     SuccWeights.assign(1 + BBCases.size(), 1);
1208 
1209   if (PredDefault == BB) {
1210     // If this is the default destination from PTI, only the edges in TI
1211     // that don't occur in PTI, or that branch to BB will be activated.
1212     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1213     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1214       if (PredCases[i].Dest != BB)
1215         PTIHandled.insert(PredCases[i].Value);
1216       else {
1217         // The default destination is BB, we don't need explicit targets.
1218         std::swap(PredCases[i], PredCases.back());
1219 
1220         if (PredHasWeights || SuccHasWeights) {
1221           // Increase weight for the default case.
1222           Weights[0] += Weights[i + 1];
1223           std::swap(Weights[i + 1], Weights.back());
1224           Weights.pop_back();
1225         }
1226 
1227         PredCases.pop_back();
1228         --i;
1229         --e;
1230       }
1231 
1232     // Reconstruct the new switch statement we will be building.
1233     if (PredDefault != BBDefault) {
1234       PredDefault->removePredecessor(Pred);
1235       if (DTU && PredDefault != BB)
1236         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1237       PredDefault = BBDefault;
1238       ++NewSuccessors[BBDefault];
1239     }
1240 
1241     unsigned CasesFromPred = Weights.size();
1242     uint64_t ValidTotalSuccWeight = 0;
1243     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1244       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1245         PredCases.push_back(BBCases[i]);
1246         ++NewSuccessors[BBCases[i].Dest];
1247         if (SuccHasWeights || PredHasWeights) {
1248           // The default weight is at index 0, so weight for the ith case
1249           // should be at index i+1. Scale the cases from successor by
1250           // PredDefaultWeight (Weights[0]).
1251           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1252           ValidTotalSuccWeight += SuccWeights[i + 1];
1253         }
1254       }
1255 
1256     if (SuccHasWeights || PredHasWeights) {
1257       ValidTotalSuccWeight += SuccWeights[0];
1258       // Scale the cases from predecessor by ValidTotalSuccWeight.
1259       for (unsigned i = 1; i < CasesFromPred; ++i)
1260         Weights[i] *= ValidTotalSuccWeight;
1261       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1262       Weights[0] *= SuccWeights[0];
1263     }
1264   } else {
1265     // If this is not the default destination from PSI, only the edges
1266     // in SI that occur in PSI with a destination of BB will be
1267     // activated.
1268     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1269     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1270     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1271       if (PredCases[i].Dest == BB) {
1272         PTIHandled.insert(PredCases[i].Value);
1273 
1274         if (PredHasWeights || SuccHasWeights) {
1275           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1276           std::swap(Weights[i + 1], Weights.back());
1277           Weights.pop_back();
1278         }
1279 
1280         std::swap(PredCases[i], PredCases.back());
1281         PredCases.pop_back();
1282         --i;
1283         --e;
1284       }
1285 
1286     // Okay, now we know which constants were sent to BB from the
1287     // predecessor.  Figure out where they will all go now.
1288     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1289       if (PTIHandled.count(BBCases[i].Value)) {
1290         // If this is one we are capable of getting...
1291         if (PredHasWeights || SuccHasWeights)
1292           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1293         PredCases.push_back(BBCases[i]);
1294         ++NewSuccessors[BBCases[i].Dest];
1295         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1296       }
1297 
1298     // If there are any constants vectored to BB that TI doesn't handle,
1299     // they must go to the default destination of TI.
1300     for (ConstantInt *I : PTIHandled) {
1301       if (PredHasWeights || SuccHasWeights)
1302         Weights.push_back(WeightsForHandled[I]);
1303       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1304       ++NewSuccessors[BBDefault];
1305     }
1306   }
1307 
1308   // Okay, at this point, we know which new successor Pred will get.  Make
1309   // sure we update the number of entries in the PHI nodes for these
1310   // successors.
1311   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1312   if (DTU) {
1313     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1314     Updates.reserve(Updates.size() + NewSuccessors.size());
1315   }
1316   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1317        NewSuccessors) {
1318     for (auto I : seq(0, NewSuccessor.second)) {
1319       (void)I;
1320       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1321     }
1322     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1323       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1324   }
1325 
1326   Builder.SetInsertPoint(PTI);
1327   // Convert pointer to int before we switch.
1328   if (CV->getType()->isPointerTy()) {
1329     CV =
1330         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1331   }
1332 
1333   // Now that the successors are updated, create the new Switch instruction.
1334   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1335   NewSI->setDebugLoc(PTI->getDebugLoc());
1336   for (ValueEqualityComparisonCase &V : PredCases)
1337     NewSI->addCase(V.Value, V.Dest);
1338 
1339   if (PredHasWeights || SuccHasWeights) {
1340     // Halve the weights if any of them cannot fit in an uint32_t
1341     FitWeights(Weights);
1342 
1343     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1344 
1345     setBranchWeights(NewSI, MDWeights);
1346   }
1347 
1348   EraseTerminatorAndDCECond(PTI);
1349 
1350   // Okay, last check.  If BB is still a successor of PSI, then we must
1351   // have an infinite loop case.  If so, add an infinitely looping block
1352   // to handle the case to preserve the behavior of the code.
1353   BasicBlock *InfLoopBlock = nullptr;
1354   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1355     if (NewSI->getSuccessor(i) == BB) {
1356       if (!InfLoopBlock) {
1357         // Insert it at the end of the function, because it's either code,
1358         // or it won't matter if it's hot. :)
1359         InfLoopBlock =
1360             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1361         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1362         if (DTU)
1363           Updates.push_back(
1364               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1365       }
1366       NewSI->setSuccessor(i, InfLoopBlock);
1367     }
1368 
1369   if (DTU) {
1370     if (InfLoopBlock)
1371       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1372 
1373     Updates.push_back({DominatorTree::Delete, Pred, BB});
1374 
1375     DTU->applyUpdates(Updates);
1376   }
1377 
1378   ++NumFoldValueComparisonIntoPredecessors;
1379   return true;
1380 }
1381 
1382 /// The specified terminator is a value equality comparison instruction
1383 /// (either a switch or a branch on "X == c").
1384 /// See if any of the predecessors of the terminator block are value comparisons
1385 /// on the same value.  If so, and if safe to do so, fold them together.
1386 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1387                                                          IRBuilder<> &Builder) {
1388   BasicBlock *BB = TI->getParent();
1389   Value *CV = isValueEqualityComparison(TI); // CondVal
1390   assert(CV && "Not a comparison?");
1391 
1392   bool Changed = false;
1393 
1394   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1395   while (!Preds.empty()) {
1396     BasicBlock *Pred = Preds.pop_back_val();
1397     Instruction *PTI = Pred->getTerminator();
1398 
1399     // Don't try to fold into itself.
1400     if (Pred == BB)
1401       continue;
1402 
1403     // See if the predecessor is a comparison with the same value.
1404     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1405     if (PCV != CV)
1406       continue;
1407 
1408     SmallSetVector<BasicBlock *, 4> FailBlocks;
1409     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1410       for (auto *Succ : FailBlocks) {
1411         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1412           return false;
1413       }
1414     }
1415 
1416     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1417     Changed = true;
1418   }
1419   return Changed;
1420 }
1421 
1422 // If we would need to insert a select that uses the value of this invoke
1423 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1424 // can't hoist the invoke, as there is nowhere to put the select in this case.
1425 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1426                                 Instruction *I1, Instruction *I2) {
1427   for (BasicBlock *Succ : successors(BB1)) {
1428     for (const PHINode &PN : Succ->phis()) {
1429       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1430       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1431       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1432         return false;
1433       }
1434     }
1435   }
1436   return true;
1437 }
1438 
1439 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1440 
1441 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1442 /// in the two blocks up into the branch block. The caller of this function
1443 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1444 /// only perform hoisting in case both blocks only contain a terminator. In that
1445 /// case, only the original BI will be replaced and selects for PHIs are added.
1446 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1447                                            const TargetTransformInfo &TTI,
1448                                            bool EqTermsOnly) {
1449   // This does very trivial matching, with limited scanning, to find identical
1450   // instructions in the two blocks.  In particular, we don't want to get into
1451   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1452   // such, we currently just scan for obviously identical instructions in an
1453   // identical order.
1454   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1455   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1456 
1457   // If either of the blocks has it's address taken, then we can't do this fold,
1458   // because the code we'd hoist would no longer run when we jump into the block
1459   // by it's address.
1460   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1461     return false;
1462 
1463   BasicBlock::iterator BB1_Itr = BB1->begin();
1464   BasicBlock::iterator BB2_Itr = BB2->begin();
1465 
1466   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1467   // Skip debug info if it is not identical.
1468   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1469   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1470   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1471     while (isa<DbgInfoIntrinsic>(I1))
1472       I1 = &*BB1_Itr++;
1473     while (isa<DbgInfoIntrinsic>(I2))
1474       I2 = &*BB2_Itr++;
1475   }
1476   // FIXME: Can we define a safety predicate for CallBr?
1477   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1478       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1479       isa<CallBrInst>(I1))
1480     return false;
1481 
1482   BasicBlock *BIParent = BI->getParent();
1483 
1484   bool Changed = false;
1485 
1486   auto _ = make_scope_exit([&]() {
1487     if (Changed)
1488       ++NumHoistCommonCode;
1489   });
1490 
1491   // Check if only hoisting terminators is allowed. This does not add new
1492   // instructions to the hoist location.
1493   if (EqTermsOnly) {
1494     // Skip any debug intrinsics, as they are free to hoist.
1495     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1496     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1497     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1498       return false;
1499     if (!I1NonDbg->isTerminator())
1500       return false;
1501     // Now we know that we only need to hoist debug intrinsics and the
1502     // terminator. Let the loop below handle those 2 cases.
1503   }
1504 
1505   do {
1506     // If we are hoisting the terminator instruction, don't move one (making a
1507     // broken BB), instead clone it, and remove BI.
1508     if (I1->isTerminator())
1509       goto HoistTerminator;
1510 
1511     // If we're going to hoist a call, make sure that the two instructions we're
1512     // commoning/hoisting are both marked with musttail, or neither of them is
1513     // marked as such. Otherwise, we might end up in a situation where we hoist
1514     // from a block where the terminator is a `ret` to a block where the terminator
1515     // is a `br`, and `musttail` calls expect to be followed by a return.
1516     auto *C1 = dyn_cast<CallInst>(I1);
1517     auto *C2 = dyn_cast<CallInst>(I2);
1518     if (C1 && C2)
1519       if (C1->isMustTailCall() != C2->isMustTailCall())
1520         return Changed;
1521 
1522     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1523       return Changed;
1524 
1525     // If any of the two call sites has nomerge attribute, stop hoisting.
1526     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1527       if (CB1->cannotMerge())
1528         return Changed;
1529     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1530       if (CB2->cannotMerge())
1531         return Changed;
1532 
1533     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1534       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1535       // The debug location is an integral part of a debug info intrinsic
1536       // and can't be separated from it or replaced.  Instead of attempting
1537       // to merge locations, simply hoist both copies of the intrinsic.
1538       BIParent->getInstList().splice(BI->getIterator(),
1539                                      BB1->getInstList(), I1);
1540       BIParent->getInstList().splice(BI->getIterator(),
1541                                      BB2->getInstList(), I2);
1542       Changed = true;
1543     } else {
1544       // For a normal instruction, we just move one to right before the branch,
1545       // then replace all uses of the other with the first.  Finally, we remove
1546       // the now redundant second instruction.
1547       BIParent->getInstList().splice(BI->getIterator(),
1548                                      BB1->getInstList(), I1);
1549       if (!I2->use_empty())
1550         I2->replaceAllUsesWith(I1);
1551       I1->andIRFlags(I2);
1552       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1553                              LLVMContext::MD_range,
1554                              LLVMContext::MD_fpmath,
1555                              LLVMContext::MD_invariant_load,
1556                              LLVMContext::MD_nonnull,
1557                              LLVMContext::MD_invariant_group,
1558                              LLVMContext::MD_align,
1559                              LLVMContext::MD_dereferenceable,
1560                              LLVMContext::MD_dereferenceable_or_null,
1561                              LLVMContext::MD_mem_parallel_loop_access,
1562                              LLVMContext::MD_access_group,
1563                              LLVMContext::MD_preserve_access_index};
1564       combineMetadata(I1, I2, KnownIDs, true);
1565 
1566       // I1 and I2 are being combined into a single instruction.  Its debug
1567       // location is the merged locations of the original instructions.
1568       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1569 
1570       I2->eraseFromParent();
1571       Changed = true;
1572     }
1573     ++NumHoistCommonInstrs;
1574 
1575     I1 = &*BB1_Itr++;
1576     I2 = &*BB2_Itr++;
1577     // Skip debug info if it is not identical.
1578     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1579     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1580     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1581       while (isa<DbgInfoIntrinsic>(I1))
1582         I1 = &*BB1_Itr++;
1583       while (isa<DbgInfoIntrinsic>(I2))
1584         I2 = &*BB2_Itr++;
1585     }
1586   } while (I1->isIdenticalToWhenDefined(I2));
1587 
1588   return true;
1589 
1590 HoistTerminator:
1591   // It may not be possible to hoist an invoke.
1592   // FIXME: Can we define a safety predicate for CallBr?
1593   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1594     return Changed;
1595 
1596   // TODO: callbr hoisting currently disabled pending further study.
1597   if (isa<CallBrInst>(I1))
1598     return Changed;
1599 
1600   for (BasicBlock *Succ : successors(BB1)) {
1601     for (PHINode &PN : Succ->phis()) {
1602       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1603       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1604       if (BB1V == BB2V)
1605         continue;
1606 
1607       // Check for passingValueIsAlwaysUndefined here because we would rather
1608       // eliminate undefined control flow then converting it to a select.
1609       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1610           passingValueIsAlwaysUndefined(BB2V, &PN))
1611         return Changed;
1612 
1613       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1614         return Changed;
1615       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1616         return Changed;
1617     }
1618   }
1619 
1620   // Okay, it is safe to hoist the terminator.
1621   Instruction *NT = I1->clone();
1622   BIParent->getInstList().insert(BI->getIterator(), NT);
1623   if (!NT->getType()->isVoidTy()) {
1624     I1->replaceAllUsesWith(NT);
1625     I2->replaceAllUsesWith(NT);
1626     NT->takeName(I1);
1627   }
1628   Changed = true;
1629   ++NumHoistCommonInstrs;
1630 
1631   // Ensure terminator gets a debug location, even an unknown one, in case
1632   // it involves inlinable calls.
1633   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1634 
1635   // PHIs created below will adopt NT's merged DebugLoc.
1636   IRBuilder<NoFolder> Builder(NT);
1637 
1638   // Hoisting one of the terminators from our successor is a great thing.
1639   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1640   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1641   // nodes, so we insert select instruction to compute the final result.
1642   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1643   for (BasicBlock *Succ : successors(BB1)) {
1644     for (PHINode &PN : Succ->phis()) {
1645       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1646       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1647       if (BB1V == BB2V)
1648         continue;
1649 
1650       // These values do not agree.  Insert a select instruction before NT
1651       // that determines the right value.
1652       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1653       if (!SI) {
1654         // Propagate fast-math-flags from phi node to its replacement select.
1655         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1656         if (isa<FPMathOperator>(PN))
1657           Builder.setFastMathFlags(PN.getFastMathFlags());
1658 
1659         SI = cast<SelectInst>(
1660             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1661                                  BB1V->getName() + "." + BB2V->getName(), BI));
1662       }
1663 
1664       // Make the PHI node use the select for all incoming values for BB1/BB2
1665       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1666         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1667           PN.setIncomingValue(i, SI);
1668     }
1669   }
1670 
1671   SmallVector<DominatorTree::UpdateType, 4> Updates;
1672 
1673   // Update any PHI nodes in our new successors.
1674   for (BasicBlock *Succ : successors(BB1)) {
1675     AddPredecessorToBlock(Succ, BIParent, BB1);
1676     if (DTU)
1677       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1678   }
1679 
1680   if (DTU)
1681     for (BasicBlock *Succ : successors(BI))
1682       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1683 
1684   EraseTerminatorAndDCECond(BI);
1685   if (DTU)
1686     DTU->applyUpdates(Updates);
1687   return Changed;
1688 }
1689 
1690 // Check lifetime markers.
1691 static bool isLifeTimeMarker(const Instruction *I) {
1692   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1693     switch (II->getIntrinsicID()) {
1694     default:
1695       break;
1696     case Intrinsic::lifetime_start:
1697     case Intrinsic::lifetime_end:
1698       return true;
1699     }
1700   }
1701   return false;
1702 }
1703 
1704 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1705 // into variables.
1706 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1707                                                 int OpIdx) {
1708   return !isa<IntrinsicInst>(I);
1709 }
1710 
1711 // All instructions in Insts belong to different blocks that all unconditionally
1712 // branch to a common successor. Analyze each instruction and return true if it
1713 // would be possible to sink them into their successor, creating one common
1714 // instruction instead. For every value that would be required to be provided by
1715 // PHI node (because an operand varies in each input block), add to PHIOperands.
1716 static bool canSinkInstructions(
1717     ArrayRef<Instruction *> Insts,
1718     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1719   // Prune out obviously bad instructions to move. Each instruction must have
1720   // exactly zero or one use, and we check later that use is by a single, common
1721   // PHI instruction in the successor.
1722   bool HasUse = !Insts.front()->user_empty();
1723   for (auto *I : Insts) {
1724     // These instructions may change or break semantics if moved.
1725     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1726         I->getType()->isTokenTy())
1727       return false;
1728 
1729     // Do not try to sink an instruction in an infinite loop - it can cause
1730     // this algorithm to infinite loop.
1731     if (I->getParent()->getSingleSuccessor() == I->getParent())
1732       return false;
1733 
1734     // Conservatively return false if I is an inline-asm instruction. Sinking
1735     // and merging inline-asm instructions can potentially create arguments
1736     // that cannot satisfy the inline-asm constraints.
1737     // If the instruction has nomerge attribute, return false.
1738     if (const auto *C = dyn_cast<CallBase>(I))
1739       if (C->isInlineAsm() || C->cannotMerge())
1740         return false;
1741 
1742     // Each instruction must have zero or one use.
1743     if (HasUse && !I->hasOneUse())
1744       return false;
1745     if (!HasUse && !I->user_empty())
1746       return false;
1747   }
1748 
1749   const Instruction *I0 = Insts.front();
1750   for (auto *I : Insts)
1751     if (!I->isSameOperationAs(I0))
1752       return false;
1753 
1754   // All instructions in Insts are known to be the same opcode. If they have a
1755   // use, check that the only user is a PHI or in the same block as the
1756   // instruction, because if a user is in the same block as an instruction we're
1757   // contemplating sinking, it must already be determined to be sinkable.
1758   if (HasUse) {
1759     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1760     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1761     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1762           auto *U = cast<Instruction>(*I->user_begin());
1763           return (PNUse &&
1764                   PNUse->getParent() == Succ &&
1765                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1766                  U->getParent() == I->getParent();
1767         }))
1768       return false;
1769   }
1770 
1771   // Because SROA can't handle speculating stores of selects, try not to sink
1772   // loads, stores or lifetime markers of allocas when we'd have to create a
1773   // PHI for the address operand. Also, because it is likely that loads or
1774   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1775   // them.
1776   // This can cause code churn which can have unintended consequences down
1777   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1778   // FIXME: This is a workaround for a deficiency in SROA - see
1779   // https://llvm.org/bugs/show_bug.cgi?id=30188
1780   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1781         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1782       }))
1783     return false;
1784   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1785         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1786       }))
1787     return false;
1788   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1789         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1790       }))
1791     return false;
1792 
1793   // For calls to be sinkable, they must all be indirect, or have same callee.
1794   // I.e. if we have two direct calls to different callees, we don't want to
1795   // turn that into an indirect call. Likewise, if we have an indirect call,
1796   // and a direct call, we don't actually want to have a single indirect call.
1797   if (isa<CallBase>(I0)) {
1798     auto IsIndirectCall = [](const Instruction *I) {
1799       return cast<CallBase>(I)->isIndirectCall();
1800     };
1801     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1802     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1803     if (HaveIndirectCalls) {
1804       if (!AllCallsAreIndirect)
1805         return false;
1806     } else {
1807       // All callees must be identical.
1808       Value *Callee = nullptr;
1809       for (const Instruction *I : Insts) {
1810         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1811         if (!Callee)
1812           Callee = CurrCallee;
1813         else if (Callee != CurrCallee)
1814           return false;
1815       }
1816     }
1817   }
1818 
1819   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1820     Value *Op = I0->getOperand(OI);
1821     if (Op->getType()->isTokenTy())
1822       // Don't touch any operand of token type.
1823       return false;
1824 
1825     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1826       assert(I->getNumOperands() == I0->getNumOperands());
1827       return I->getOperand(OI) == I0->getOperand(OI);
1828     };
1829     if (!all_of(Insts, SameAsI0)) {
1830       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1831           !canReplaceOperandWithVariable(I0, OI))
1832         // We can't create a PHI from this GEP.
1833         return false;
1834       for (auto *I : Insts)
1835         PHIOperands[I].push_back(I->getOperand(OI));
1836     }
1837   }
1838   return true;
1839 }
1840 
1841 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1842 // instruction of every block in Blocks to their common successor, commoning
1843 // into one instruction.
1844 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1845   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1846 
1847   // canSinkInstructions returning true guarantees that every block has at
1848   // least one non-terminator instruction.
1849   SmallVector<Instruction*,4> Insts;
1850   for (auto *BB : Blocks) {
1851     Instruction *I = BB->getTerminator();
1852     do {
1853       I = I->getPrevNode();
1854     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1855     if (!isa<DbgInfoIntrinsic>(I))
1856       Insts.push_back(I);
1857   }
1858 
1859   // The only checking we need to do now is that all users of all instructions
1860   // are the same PHI node. canSinkInstructions should have checked this but
1861   // it is slightly over-aggressive - it gets confused by commutative
1862   // instructions so double-check it here.
1863   Instruction *I0 = Insts.front();
1864   if (!I0->user_empty()) {
1865     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1866     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1867           auto *U = cast<Instruction>(*I->user_begin());
1868           return U == PNUse;
1869         }))
1870       return false;
1871   }
1872 
1873   // We don't need to do any more checking here; canSinkInstructions should
1874   // have done it all for us.
1875   SmallVector<Value*, 4> NewOperands;
1876   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1877     // This check is different to that in canSinkInstructions. There, we
1878     // cared about the global view once simplifycfg (and instcombine) have
1879     // completed - it takes into account PHIs that become trivially
1880     // simplifiable.  However here we need a more local view; if an operand
1881     // differs we create a PHI and rely on instcombine to clean up the very
1882     // small mess we may make.
1883     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1884       return I->getOperand(O) != I0->getOperand(O);
1885     });
1886     if (!NeedPHI) {
1887       NewOperands.push_back(I0->getOperand(O));
1888       continue;
1889     }
1890 
1891     // Create a new PHI in the successor block and populate it.
1892     auto *Op = I0->getOperand(O);
1893     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1894     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1895                                Op->getName() + ".sink", &BBEnd->front());
1896     for (auto *I : Insts)
1897       PN->addIncoming(I->getOperand(O), I->getParent());
1898     NewOperands.push_back(PN);
1899   }
1900 
1901   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1902   // and move it to the start of the successor block.
1903   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1904     I0->getOperandUse(O).set(NewOperands[O]);
1905   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1906 
1907   // Update metadata and IR flags, and merge debug locations.
1908   for (auto *I : Insts)
1909     if (I != I0) {
1910       // The debug location for the "common" instruction is the merged locations
1911       // of all the commoned instructions.  We start with the original location
1912       // of the "common" instruction and iteratively merge each location in the
1913       // loop below.
1914       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1915       // However, as N-way merge for CallInst is rare, so we use simplified API
1916       // instead of using complex API for N-way merge.
1917       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1918       combineMetadataForCSE(I0, I, true);
1919       I0->andIRFlags(I);
1920     }
1921 
1922   if (!I0->user_empty()) {
1923     // canSinkLastInstruction checked that all instructions were used by
1924     // one and only one PHI node. Find that now, RAUW it to our common
1925     // instruction and nuke it.
1926     auto *PN = cast<PHINode>(*I0->user_begin());
1927     PN->replaceAllUsesWith(I0);
1928     PN->eraseFromParent();
1929   }
1930 
1931   // Finally nuke all instructions apart from the common instruction.
1932   for (auto *I : Insts)
1933     if (I != I0)
1934       I->eraseFromParent();
1935 
1936   return true;
1937 }
1938 
1939 namespace {
1940 
1941   // LockstepReverseIterator - Iterates through instructions
1942   // in a set of blocks in reverse order from the first non-terminator.
1943   // For example (assume all blocks have size n):
1944   //   LockstepReverseIterator I([B1, B2, B3]);
1945   //   *I-- = [B1[n], B2[n], B3[n]];
1946   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1947   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1948   //   ...
1949   class LockstepReverseIterator {
1950     ArrayRef<BasicBlock*> Blocks;
1951     SmallVector<Instruction*,4> Insts;
1952     bool Fail;
1953 
1954   public:
1955     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1956       reset();
1957     }
1958 
1959     void reset() {
1960       Fail = false;
1961       Insts.clear();
1962       for (auto *BB : Blocks) {
1963         Instruction *Inst = BB->getTerminator();
1964         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1965           Inst = Inst->getPrevNode();
1966         if (!Inst) {
1967           // Block wasn't big enough.
1968           Fail = true;
1969           return;
1970         }
1971         Insts.push_back(Inst);
1972       }
1973     }
1974 
1975     bool isValid() const {
1976       return !Fail;
1977     }
1978 
1979     void operator--() {
1980       if (Fail)
1981         return;
1982       for (auto *&Inst : Insts) {
1983         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1984           Inst = Inst->getPrevNode();
1985         // Already at beginning of block.
1986         if (!Inst) {
1987           Fail = true;
1988           return;
1989         }
1990       }
1991     }
1992 
1993     void operator++() {
1994       if (Fail)
1995         return;
1996       for (auto *&Inst : Insts) {
1997         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1998           Inst = Inst->getNextNode();
1999         // Already at end of block.
2000         if (!Inst) {
2001           Fail = true;
2002           return;
2003         }
2004       }
2005     }
2006 
2007     ArrayRef<Instruction*> operator * () const {
2008       return Insts;
2009     }
2010   };
2011 
2012 } // end anonymous namespace
2013 
2014 /// Check whether BB's predecessors end with unconditional branches. If it is
2015 /// true, sink any common code from the predecessors to BB.
2016 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
2017                                            DomTreeUpdater *DTU) {
2018   // We support two situations:
2019   //   (1) all incoming arcs are unconditional
2020   //   (2) there are non-unconditional incoming arcs
2021   //
2022   // (2) is very common in switch defaults and
2023   // else-if patterns;
2024   //
2025   //   if (a) f(1);
2026   //   else if (b) f(2);
2027   //
2028   // produces:
2029   //
2030   //       [if]
2031   //      /    \
2032   //    [f(1)] [if]
2033   //      |     | \
2034   //      |     |  |
2035   //      |  [f(2)]|
2036   //       \    | /
2037   //        [ end ]
2038   //
2039   // [end] has two unconditional predecessor arcs and one conditional. The
2040   // conditional refers to the implicit empty 'else' arc. This conditional
2041   // arc can also be caused by an empty default block in a switch.
2042   //
2043   // In this case, we attempt to sink code from all *unconditional* arcs.
2044   // If we can sink instructions from these arcs (determined during the scan
2045   // phase below) we insert a common successor for all unconditional arcs and
2046   // connect that to [end], to enable sinking:
2047   //
2048   //       [if]
2049   //      /    \
2050   //    [x(1)] [if]
2051   //      |     | \
2052   //      |     |  \
2053   //      |  [x(2)] |
2054   //       \   /    |
2055   //   [sink.split] |
2056   //         \     /
2057   //         [ end ]
2058   //
2059   SmallVector<BasicBlock*,4> UnconditionalPreds;
2060   bool HaveNonUnconditionalPredecessors = false;
2061   for (auto *PredBB : predecessors(BB)) {
2062     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2063     if (PredBr && PredBr->isUnconditional())
2064       UnconditionalPreds.push_back(PredBB);
2065     else
2066       HaveNonUnconditionalPredecessors = true;
2067   }
2068   if (UnconditionalPreds.size() < 2)
2069     return false;
2070 
2071   // We take a two-step approach to tail sinking. First we scan from the end of
2072   // each block upwards in lockstep. If the n'th instruction from the end of each
2073   // block can be sunk, those instructions are added to ValuesToSink and we
2074   // carry on. If we can sink an instruction but need to PHI-merge some operands
2075   // (because they're not identical in each instruction) we add these to
2076   // PHIOperands.
2077   int ScanIdx = 0;
2078   SmallPtrSet<Value*,4> InstructionsToSink;
2079   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2080   LockstepReverseIterator LRI(UnconditionalPreds);
2081   while (LRI.isValid() &&
2082          canSinkInstructions(*LRI, PHIOperands)) {
2083     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2084                       << "\n");
2085     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2086     ++ScanIdx;
2087     --LRI;
2088   }
2089 
2090   // If no instructions can be sunk, early-return.
2091   if (ScanIdx == 0)
2092     return false;
2093 
2094   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2095 
2096   if (!followedByDeoptOrUnreachable) {
2097     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2098     // actually sink before encountering instruction that is unprofitable to
2099     // sink?
2100     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2101       unsigned NumPHIdValues = 0;
2102       for (auto *I : *LRI)
2103         for (auto *V : PHIOperands[I]) {
2104           if (!InstructionsToSink.contains(V))
2105             ++NumPHIdValues;
2106           // FIXME: this check is overly optimistic. We may end up not sinking
2107           // said instruction, due to the very same profitability check.
2108           // See @creating_too_many_phis in sink-common-code.ll.
2109         }
2110       LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2111       unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2112       if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2113         NumPHIInsts++;
2114 
2115       return NumPHIInsts <= 1;
2116     };
2117 
2118     // We've determined that we are going to sink last ScanIdx instructions,
2119     // and recorded them in InstructionsToSink. Now, some instructions may be
2120     // unprofitable to sink. But that determination depends on the instructions
2121     // that we are going to sink.
2122 
2123     // First, forward scan: find the first instruction unprofitable to sink,
2124     // recording all the ones that are profitable to sink.
2125     // FIXME: would it be better, after we detect that not all are profitable.
2126     // to either record the profitable ones, or erase the unprofitable ones?
2127     // Maybe we need to choose (at runtime) the one that will touch least
2128     // instrs?
2129     LRI.reset();
2130     int Idx = 0;
2131     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2132     while (Idx < ScanIdx) {
2133       if (!ProfitableToSinkInstruction(LRI)) {
2134         // Too many PHIs would be created.
2135         LLVM_DEBUG(
2136             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2137         break;
2138       }
2139       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2140       --LRI;
2141       ++Idx;
2142     }
2143 
2144     // If no instructions can be sunk, early-return.
2145     if (Idx == 0)
2146       return false;
2147 
2148     // Did we determine that (only) some instructions are unprofitable to sink?
2149     if (Idx < ScanIdx) {
2150       // Okay, some instructions are unprofitable.
2151       ScanIdx = Idx;
2152       InstructionsToSink = InstructionsProfitableToSink;
2153 
2154       // But, that may make other instructions unprofitable, too.
2155       // So, do a backward scan, do any earlier instructions become
2156       // unprofitable?
2157       assert(
2158           !ProfitableToSinkInstruction(LRI) &&
2159           "We already know that the last instruction is unprofitable to sink");
2160       ++LRI;
2161       --Idx;
2162       while (Idx >= 0) {
2163         // If we detect that an instruction becomes unprofitable to sink,
2164         // all earlier instructions won't be sunk either,
2165         // so preemptively keep InstructionsProfitableToSink in sync.
2166         // FIXME: is this the most performant approach?
2167         for (auto *I : *LRI)
2168           InstructionsProfitableToSink.erase(I);
2169         if (!ProfitableToSinkInstruction(LRI)) {
2170           // Everything starting with this instruction won't be sunk.
2171           ScanIdx = Idx;
2172           InstructionsToSink = InstructionsProfitableToSink;
2173         }
2174         ++LRI;
2175         --Idx;
2176       }
2177     }
2178 
2179     // If no instructions can be sunk, early-return.
2180     if (ScanIdx == 0)
2181       return false;
2182   }
2183 
2184   bool Changed = false;
2185 
2186   if (HaveNonUnconditionalPredecessors) {
2187     if (!followedByDeoptOrUnreachable) {
2188       // It is always legal to sink common instructions from unconditional
2189       // predecessors. However, if not all predecessors are unconditional,
2190       // this transformation might be pessimizing. So as a rule of thumb,
2191       // don't do it unless we'd sink at least one non-speculatable instruction.
2192       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2193       LRI.reset();
2194       int Idx = 0;
2195       bool Profitable = false;
2196       while (Idx < ScanIdx) {
2197         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2198           Profitable = true;
2199           break;
2200         }
2201         --LRI;
2202         ++Idx;
2203       }
2204       if (!Profitable)
2205         return false;
2206     }
2207 
2208     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2209     // We have a conditional edge and we're going to sink some instructions.
2210     // Insert a new block postdominating all blocks we're going to sink from.
2211     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2212       // Edges couldn't be split.
2213       return false;
2214     Changed = true;
2215   }
2216 
2217   // Now that we've analyzed all potential sinking candidates, perform the
2218   // actual sink. We iteratively sink the last non-terminator of the source
2219   // blocks into their common successor unless doing so would require too
2220   // many PHI instructions to be generated (currently only one PHI is allowed
2221   // per sunk instruction).
2222   //
2223   // We can use InstructionsToSink to discount values needing PHI-merging that will
2224   // actually be sunk in a later iteration. This allows us to be more
2225   // aggressive in what we sink. This does allow a false positive where we
2226   // sink presuming a later value will also be sunk, but stop half way through
2227   // and never actually sink it which means we produce more PHIs than intended.
2228   // This is unlikely in practice though.
2229   int SinkIdx = 0;
2230   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2231     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2232                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2233                       << "\n");
2234 
2235     // Because we've sunk every instruction in turn, the current instruction to
2236     // sink is always at index 0.
2237     LRI.reset();
2238 
2239     if (!sinkLastInstruction(UnconditionalPreds)) {
2240       LLVM_DEBUG(
2241           dbgs()
2242           << "SINK: stopping here, failed to actually sink instruction!\n");
2243       break;
2244     }
2245 
2246     NumSinkCommonInstrs++;
2247     Changed = true;
2248   }
2249   if (SinkIdx != 0)
2250     ++NumSinkCommonCode;
2251   return Changed;
2252 }
2253 
2254 namespace {
2255 
2256 struct CompatibleSets {
2257   using SetTy = SmallVector<InvokeInst *, 2>;
2258 
2259   SmallVector<SetTy, 1> Sets;
2260 
2261   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2262 
2263   SetTy &getCompatibleSet(InvokeInst *II);
2264 
2265   void insert(InvokeInst *II);
2266 };
2267 
2268 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2269   // Perform a linear scan over all the existing sets, see if the new `invoke`
2270   // is compatible with any particular set. Since we know that all the `invokes`
2271   // within a set are compatible, only check the first `invoke` in each set.
2272   // WARNING: at worst, this has quadratic complexity.
2273   for (CompatibleSets::SetTy &Set : Sets) {
2274     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2275       return Set;
2276   }
2277 
2278   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2279   return Sets.emplace_back();
2280 }
2281 
2282 void CompatibleSets::insert(InvokeInst *II) {
2283   getCompatibleSet(II).emplace_back(II);
2284 }
2285 
2286 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2287   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2288 
2289   // Can we theoretically merge these `invoke`s?
2290   auto IsIllegalToMerge = [](InvokeInst *II) {
2291     return II->cannotMerge() || II->isInlineAsm();
2292   };
2293   if (any_of(Invokes, IsIllegalToMerge))
2294     return false;
2295 
2296   // Either both `invoke`s must be   direct,
2297   // or     both `invoke`s must be indirect.
2298   auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2299   bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2300   bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2301   if (HaveIndirectCalls) {
2302     if (!AllCallsAreIndirect)
2303       return false;
2304   } else {
2305     // All callees must be identical.
2306     Value *Callee = nullptr;
2307     for (InvokeInst *II : Invokes) {
2308       Value *CurrCallee = II->getCalledOperand();
2309       assert(CurrCallee && "There is always a called operand.");
2310       if (!Callee)
2311         Callee = CurrCallee;
2312       else if (Callee != CurrCallee)
2313         return false;
2314     }
2315   }
2316 
2317   // Either both `invoke`s must not have a normal destination,
2318   // or     both `invoke`s must     have a normal destination,
2319   auto HasNormalDest = [](InvokeInst *II) {
2320     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2321   };
2322   if (any_of(Invokes, HasNormalDest)) {
2323     // Do not merge `invoke` that does not have a normal destination with one
2324     // that does have a normal destination, even though doing so would be legal.
2325     if (!all_of(Invokes, HasNormalDest))
2326       return false;
2327 
2328     // All normal destinations must be identical.
2329     BasicBlock *NormalBB = nullptr;
2330     for (InvokeInst *II : Invokes) {
2331       BasicBlock *CurrNormalBB = II->getNormalDest();
2332       assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2333       if (!NormalBB)
2334         NormalBB = CurrNormalBB;
2335       else if (NormalBB != CurrNormalBB)
2336         return false;
2337     }
2338 
2339     // In the normal destination, the incoming values for these two `invoke`s
2340     // must be compatible.
2341     SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2342     if (!IncomingValuesAreCompatible(
2343             NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2344             &EquivalenceSet))
2345       return false;
2346   }
2347 
2348 #ifndef NDEBUG
2349   // All unwind destinations must be identical.
2350   // We know that because we have started from said unwind destination.
2351   BasicBlock *UnwindBB = nullptr;
2352   for (InvokeInst *II : Invokes) {
2353     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2354     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2355     if (!UnwindBB)
2356       UnwindBB = CurrUnwindBB;
2357     else
2358       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2359   }
2360 #endif
2361 
2362   // In the unwind destination, the incoming values for these two `invoke`s
2363   // must be compatible.
2364   if (!IncomingValuesAreCompatible(
2365           Invokes.front()->getUnwindDest(),
2366           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2367     return false;
2368 
2369   // Ignoring arguments, these `invoke`s must be identical,
2370   // including operand bundles.
2371   const InvokeInst *II0 = Invokes.front();
2372   for (auto *II : Invokes.drop_front())
2373     if (!II->isSameOperationAs(II0))
2374       return false;
2375 
2376   // Can we theoretically form the data operands for the merged `invoke`?
2377   auto IsIllegalToMergeArguments = [](auto Ops) {
2378     Type *Ty = std::get<0>(Ops)->getType();
2379     assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?");
2380     return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops);
2381   };
2382   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2383   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2384              IsIllegalToMergeArguments))
2385     return false;
2386 
2387   return true;
2388 }
2389 
2390 } // namespace
2391 
2392 // Merge all invokes in the provided set, all of which are compatible
2393 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2394 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2395                                        DomTreeUpdater *DTU) {
2396   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2397 
2398   SmallVector<DominatorTree::UpdateType, 8> Updates;
2399   if (DTU)
2400     Updates.reserve(2 + 3 * Invokes.size());
2401 
2402   bool HasNormalDest =
2403       !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2404 
2405   // Clone one of the invokes into a new basic block.
2406   // Since they are all compatible, it doesn't matter which invoke is cloned.
2407   InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2408     InvokeInst *II0 = Invokes.front();
2409     BasicBlock *II0BB = II0->getParent();
2410     BasicBlock *InsertBeforeBlock =
2411         II0->getParent()->getIterator()->getNextNode();
2412     Function *Func = II0BB->getParent();
2413     LLVMContext &Ctx = II0->getContext();
2414 
2415     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2416         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2417 
2418     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2419     // NOTE: all invokes have the same attributes, so no handling needed.
2420     MergedInvokeBB->getInstList().push_back(MergedInvoke);
2421 
2422     if (!HasNormalDest) {
2423       // This set does not have a normal destination,
2424       // so just form a new block with unreachable terminator.
2425       BasicBlock *MergedNormalDest = BasicBlock::Create(
2426           Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2427       new UnreachableInst(Ctx, MergedNormalDest);
2428       MergedInvoke->setNormalDest(MergedNormalDest);
2429     }
2430 
2431     // The unwind destination, however, remainds identical for all invokes here.
2432 
2433     return MergedInvoke;
2434   }();
2435 
2436   if (DTU) {
2437     // Predecessor blocks that contained these invokes will now branch to
2438     // the new block that contains the merged invoke, ...
2439     for (InvokeInst *II : Invokes)
2440       Updates.push_back(
2441           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2442 
2443     // ... which has the new `unreachable` block as normal destination,
2444     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2445     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2446       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2447                          SuccBBOfMergedInvoke});
2448 
2449     // Since predecessor blocks now unconditionally branch to a new block,
2450     // they no longer branch to their original successors.
2451     for (InvokeInst *II : Invokes)
2452       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2453         Updates.push_back(
2454             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2455   }
2456 
2457   bool IsIndirectCall = Invokes[0]->isIndirectCall();
2458 
2459   // Form the merged operands for the merged invoke.
2460   for (Use &U : MergedInvoke->operands()) {
2461     // Only PHI together the indirect callees and data operands.
2462     if (MergedInvoke->isCallee(&U)) {
2463       if (!IsIndirectCall)
2464         continue;
2465     } else if (!MergedInvoke->isDataOperand(&U))
2466       continue;
2467 
2468     // Don't create trivial PHI's with all-identical incoming values.
2469     bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2470       return II->getOperand(U.getOperandNo()) != U.get();
2471     });
2472     if (!NeedPHI)
2473       continue;
2474 
2475     // Form a PHI out of all the data ops under this index.
2476     PHINode *PN = PHINode::Create(
2477         U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke);
2478     for (InvokeInst *II : Invokes)
2479       PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2480 
2481     U.set(PN);
2482   }
2483 
2484   // We've ensured that each PHI node has compatible (identical) incoming values
2485   // when coming from each of the `invoke`s in the current merge set,
2486   // so update the PHI nodes accordingly.
2487   for (BasicBlock *Succ : successors(MergedInvoke))
2488     AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2489                           /*ExistPred=*/Invokes.front()->getParent());
2490 
2491   // And finally, replace the original `invoke`s with an unconditional branch
2492   // to the block with the merged `invoke`. Also, give that merged `invoke`
2493   // the merged debugloc of all the original `invoke`s.
2494   const DILocation *MergedDebugLoc = nullptr;
2495   for (InvokeInst *II : Invokes) {
2496     // Compute the debug location common to all the original `invoke`s.
2497     if (!MergedDebugLoc)
2498       MergedDebugLoc = II->getDebugLoc();
2499     else
2500       MergedDebugLoc =
2501           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2502 
2503     // And replace the old `invoke` with an unconditionally branch
2504     // to the block with the merged `invoke`.
2505     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2506       OrigSuccBB->removePredecessor(II->getParent());
2507     BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2508     II->replaceAllUsesWith(MergedInvoke);
2509     II->eraseFromParent();
2510     ++NumInvokesMerged;
2511   }
2512   MergedInvoke->setDebugLoc(MergedDebugLoc);
2513   ++NumInvokeSetsFormed;
2514 
2515   if (DTU)
2516     DTU->applyUpdates(Updates);
2517 }
2518 
2519 /// If this block is a `landingpad` exception handling block, categorize all
2520 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2521 /// being "mergeable" together, and then merge invokes in each set together.
2522 ///
2523 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2524 ///          [...]        [...]
2525 ///            |            |
2526 ///        [invoke0]    [invoke1]
2527 ///           / \          / \
2528 ///     [cont0] [landingpad] [cont1]
2529 /// to:
2530 ///      [...] [...]
2531 ///          \ /
2532 ///       [invoke]
2533 ///          / \
2534 ///     [cont] [landingpad]
2535 ///
2536 /// But of course we can only do that if the invokes share the `landingpad`,
2537 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2538 /// and the invoked functions are "compatible".
2539 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2540   if (!EnableMergeCompatibleInvokes)
2541     return false;
2542 
2543   bool Changed = false;
2544 
2545   // FIXME: generalize to all exception handling blocks?
2546   if (!BB->isLandingPad())
2547     return Changed;
2548 
2549   CompatibleSets Grouper;
2550 
2551   // Record all the predecessors of this `landingpad`. As per verifier,
2552   // the only allowed predecessor is the unwind edge of an `invoke`.
2553   // We want to group "compatible" `invokes` into the same set to be merged.
2554   for (BasicBlock *PredBB : predecessors(BB))
2555     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2556 
2557   // And now, merge `invoke`s that were grouped togeter.
2558   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2559     if (Invokes.size() < 2)
2560       continue;
2561     Changed = true;
2562     MergeCompatibleInvokesImpl(Invokes, DTU);
2563   }
2564 
2565   return Changed;
2566 }
2567 
2568 /// Determine if we can hoist sink a sole store instruction out of a
2569 /// conditional block.
2570 ///
2571 /// We are looking for code like the following:
2572 ///   BrBB:
2573 ///     store i32 %add, i32* %arrayidx2
2574 ///     ... // No other stores or function calls (we could be calling a memory
2575 ///     ... // function).
2576 ///     %cmp = icmp ult %x, %y
2577 ///     br i1 %cmp, label %EndBB, label %ThenBB
2578 ///   ThenBB:
2579 ///     store i32 %add5, i32* %arrayidx2
2580 ///     br label EndBB
2581 ///   EndBB:
2582 ///     ...
2583 ///   We are going to transform this into:
2584 ///   BrBB:
2585 ///     store i32 %add, i32* %arrayidx2
2586 ///     ... //
2587 ///     %cmp = icmp ult %x, %y
2588 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2589 ///     store i32 %add.add5, i32* %arrayidx2
2590 ///     ...
2591 ///
2592 /// \return The pointer to the value of the previous store if the store can be
2593 ///         hoisted into the predecessor block. 0 otherwise.
2594 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2595                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2596   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2597   if (!StoreToHoist)
2598     return nullptr;
2599 
2600   // Volatile or atomic.
2601   if (!StoreToHoist->isSimple())
2602     return nullptr;
2603 
2604   Value *StorePtr = StoreToHoist->getPointerOperand();
2605   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2606 
2607   // Look for a store to the same pointer in BrBB.
2608   unsigned MaxNumInstToLookAt = 9;
2609   // Skip pseudo probe intrinsic calls which are not really killing any memory
2610   // accesses.
2611   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2612     if (!MaxNumInstToLookAt)
2613       break;
2614     --MaxNumInstToLookAt;
2615 
2616     // Could be calling an instruction that affects memory like free().
2617     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2618       return nullptr;
2619 
2620     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2621       // Found the previous store to same location and type. Make sure it is
2622       // simple, to avoid introducing a spurious non-atomic write after an
2623       // atomic write.
2624       if (SI->getPointerOperand() == StorePtr &&
2625           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2626         // Found the previous store, return its value operand.
2627         return SI->getValueOperand();
2628       return nullptr; // Unknown store.
2629     }
2630 
2631     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2632       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2633           LI->isSimple()) {
2634         // Local objects (created by an `alloca` instruction) are always
2635         // writable, so once we are past a read from a location it is valid to
2636         // also write to that same location.
2637         // If the address of the local object never escapes the function, that
2638         // means it's never concurrently read or written, hence moving the store
2639         // from under the condition will not introduce a data race.
2640         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2641         if (AI && !PointerMayBeCaptured(AI, false, true))
2642           // Found a previous load, return it.
2643           return LI;
2644       }
2645       // The load didn't work out, but we may still find a store.
2646     }
2647   }
2648 
2649   return nullptr;
2650 }
2651 
2652 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2653 /// converted to selects.
2654 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2655                                            BasicBlock *EndBB,
2656                                            unsigned &SpeculatedInstructions,
2657                                            InstructionCost &Cost,
2658                                            const TargetTransformInfo &TTI) {
2659   TargetTransformInfo::TargetCostKind CostKind =
2660     BB->getParent()->hasMinSize()
2661     ? TargetTransformInfo::TCK_CodeSize
2662     : TargetTransformInfo::TCK_SizeAndLatency;
2663 
2664   bool HaveRewritablePHIs = false;
2665   for (PHINode &PN : EndBB->phis()) {
2666     Value *OrigV = PN.getIncomingValueForBlock(BB);
2667     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2668 
2669     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2670     // Skip PHIs which are trivial.
2671     if (ThenV == OrigV)
2672       continue;
2673 
2674     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2675                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2676 
2677     // Don't convert to selects if we could remove undefined behavior instead.
2678     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2679         passingValueIsAlwaysUndefined(ThenV, &PN))
2680       return false;
2681 
2682     if (canTrap(OrigV) || canTrap(ThenV))
2683       return false;
2684 
2685     HaveRewritablePHIs = true;
2686     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2687     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2688     if (!OrigCE && !ThenCE)
2689       continue; // Known cheap (FIXME: Maybe not true for aggregates).
2690 
2691     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2692     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2693     InstructionCost MaxCost =
2694         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2695     if (OrigCost + ThenCost > MaxCost)
2696       return false;
2697 
2698     // Account for the cost of an unfolded ConstantExpr which could end up
2699     // getting expanded into Instructions.
2700     // FIXME: This doesn't account for how many operations are combined in the
2701     // constant expression.
2702     ++SpeculatedInstructions;
2703     if (SpeculatedInstructions > 1)
2704       return false;
2705   }
2706 
2707   return HaveRewritablePHIs;
2708 }
2709 
2710 /// Speculate a conditional basic block flattening the CFG.
2711 ///
2712 /// Note that this is a very risky transform currently. Speculating
2713 /// instructions like this is most often not desirable. Instead, there is an MI
2714 /// pass which can do it with full awareness of the resource constraints.
2715 /// However, some cases are "obvious" and we should do directly. An example of
2716 /// this is speculating a single, reasonably cheap instruction.
2717 ///
2718 /// There is only one distinct advantage to flattening the CFG at the IR level:
2719 /// it makes very common but simplistic optimizations such as are common in
2720 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2721 /// modeling their effects with easier to reason about SSA value graphs.
2722 ///
2723 ///
2724 /// An illustration of this transform is turning this IR:
2725 /// \code
2726 ///   BB:
2727 ///     %cmp = icmp ult %x, %y
2728 ///     br i1 %cmp, label %EndBB, label %ThenBB
2729 ///   ThenBB:
2730 ///     %sub = sub %x, %y
2731 ///     br label BB2
2732 ///   EndBB:
2733 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2734 ///     ...
2735 /// \endcode
2736 ///
2737 /// Into this IR:
2738 /// \code
2739 ///   BB:
2740 ///     %cmp = icmp ult %x, %y
2741 ///     %sub = sub %x, %y
2742 ///     %cond = select i1 %cmp, 0, %sub
2743 ///     ...
2744 /// \endcode
2745 ///
2746 /// \returns true if the conditional block is removed.
2747 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2748                                             const TargetTransformInfo &TTI) {
2749   // Be conservative for now. FP select instruction can often be expensive.
2750   Value *BrCond = BI->getCondition();
2751   if (isa<FCmpInst>(BrCond))
2752     return false;
2753 
2754   BasicBlock *BB = BI->getParent();
2755   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2756   InstructionCost Budget =
2757       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2758 
2759   // If ThenBB is actually on the false edge of the conditional branch, remember
2760   // to swap the select operands later.
2761   bool Invert = false;
2762   if (ThenBB != BI->getSuccessor(0)) {
2763     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2764     Invert = true;
2765   }
2766   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2767 
2768   // If the branch is non-unpredictable, and is predicted to *not* branch to
2769   // the `then` block, then avoid speculating it.
2770   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2771     uint64_t TWeight, FWeight;
2772     if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
2773       uint64_t EndWeight = Invert ? TWeight : FWeight;
2774       BranchProbability BIEndProb =
2775           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2776       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2777       if (BIEndProb >= Likely)
2778         return false;
2779     }
2780   }
2781 
2782   // Keep a count of how many times instructions are used within ThenBB when
2783   // they are candidates for sinking into ThenBB. Specifically:
2784   // - They are defined in BB, and
2785   // - They have no side effects, and
2786   // - All of their uses are in ThenBB.
2787   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2788 
2789   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2790 
2791   unsigned SpeculatedInstructions = 0;
2792   Value *SpeculatedStoreValue = nullptr;
2793   StoreInst *SpeculatedStore = nullptr;
2794   for (BasicBlock::iterator BBI = ThenBB->begin(),
2795                             BBE = std::prev(ThenBB->end());
2796        BBI != BBE; ++BBI) {
2797     Instruction *I = &*BBI;
2798     // Skip debug info.
2799     if (isa<DbgInfoIntrinsic>(I)) {
2800       SpeculatedDbgIntrinsics.push_back(I);
2801       continue;
2802     }
2803 
2804     // Skip pseudo probes. The consequence is we lose track of the branch
2805     // probability for ThenBB, which is fine since the optimization here takes
2806     // place regardless of the branch probability.
2807     if (isa<PseudoProbeInst>(I)) {
2808       // The probe should be deleted so that it will not be over-counted when
2809       // the samples collected on the non-conditional path are counted towards
2810       // the conditional path. We leave it for the counts inference algorithm to
2811       // figure out a proper count for an unknown probe.
2812       SpeculatedDbgIntrinsics.push_back(I);
2813       continue;
2814     }
2815 
2816     // Only speculatively execute a single instruction (not counting the
2817     // terminator) for now.
2818     ++SpeculatedInstructions;
2819     if (SpeculatedInstructions > 1)
2820       return false;
2821 
2822     // Don't hoist the instruction if it's unsafe or expensive.
2823     if (!isSafeToSpeculativelyExecute(I) &&
2824         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2825                                   I, BB, ThenBB, EndBB))))
2826       return false;
2827     if (!SpeculatedStoreValue &&
2828         computeSpeculationCost(I, TTI) >
2829             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2830       return false;
2831 
2832     // Store the store speculation candidate.
2833     if (SpeculatedStoreValue)
2834       SpeculatedStore = cast<StoreInst>(I);
2835 
2836     // Do not hoist the instruction if any of its operands are defined but not
2837     // used in BB. The transformation will prevent the operand from
2838     // being sunk into the use block.
2839     for (Use &Op : I->operands()) {
2840       Instruction *OpI = dyn_cast<Instruction>(Op);
2841       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2842         continue; // Not a candidate for sinking.
2843 
2844       ++SinkCandidateUseCounts[OpI];
2845     }
2846   }
2847 
2848   // Consider any sink candidates which are only used in ThenBB as costs for
2849   // speculation. Note, while we iterate over a DenseMap here, we are summing
2850   // and so iteration order isn't significant.
2851   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2852            I = SinkCandidateUseCounts.begin(),
2853            E = SinkCandidateUseCounts.end();
2854        I != E; ++I)
2855     if (I->first->hasNUses(I->second)) {
2856       ++SpeculatedInstructions;
2857       if (SpeculatedInstructions > 1)
2858         return false;
2859     }
2860 
2861   // Check that we can insert the selects and that it's not too expensive to do
2862   // so.
2863   bool Convert = SpeculatedStore != nullptr;
2864   InstructionCost Cost = 0;
2865   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2866                                             SpeculatedInstructions,
2867                                             Cost, TTI);
2868   if (!Convert || Cost > Budget)
2869     return false;
2870 
2871   // If we get here, we can hoist the instruction and if-convert.
2872   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2873 
2874   // Insert a select of the value of the speculated store.
2875   if (SpeculatedStoreValue) {
2876     IRBuilder<NoFolder> Builder(BI);
2877     Value *TrueV = SpeculatedStore->getValueOperand();
2878     Value *FalseV = SpeculatedStoreValue;
2879     if (Invert)
2880       std::swap(TrueV, FalseV);
2881     Value *S = Builder.CreateSelect(
2882         BrCond, TrueV, FalseV, "spec.store.select", BI);
2883     SpeculatedStore->setOperand(0, S);
2884     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2885                                          SpeculatedStore->getDebugLoc());
2886   }
2887 
2888   // Metadata can be dependent on the condition we are hoisting above.
2889   // Conservatively strip all metadata on the instruction. Drop the debug loc
2890   // to avoid making it appear as if the condition is a constant, which would
2891   // be misleading while debugging.
2892   // Similarly strip attributes that maybe dependent on condition we are
2893   // hoisting above.
2894   for (auto &I : *ThenBB) {
2895     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2896       I.setDebugLoc(DebugLoc());
2897     I.dropUndefImplyingAttrsAndUnknownMetadata();
2898   }
2899 
2900   // Hoist the instructions.
2901   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2902                            ThenBB->begin(), std::prev(ThenBB->end()));
2903 
2904   // Insert selects and rewrite the PHI operands.
2905   IRBuilder<NoFolder> Builder(BI);
2906   for (PHINode &PN : EndBB->phis()) {
2907     unsigned OrigI = PN.getBasicBlockIndex(BB);
2908     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2909     Value *OrigV = PN.getIncomingValue(OrigI);
2910     Value *ThenV = PN.getIncomingValue(ThenI);
2911 
2912     // Skip PHIs which are trivial.
2913     if (OrigV == ThenV)
2914       continue;
2915 
2916     // Create a select whose true value is the speculatively executed value and
2917     // false value is the pre-existing value. Swap them if the branch
2918     // destinations were inverted.
2919     Value *TrueV = ThenV, *FalseV = OrigV;
2920     if (Invert)
2921       std::swap(TrueV, FalseV);
2922     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2923     PN.setIncomingValue(OrigI, V);
2924     PN.setIncomingValue(ThenI, V);
2925   }
2926 
2927   // Remove speculated dbg intrinsics.
2928   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2929   // dbg value for the different flows and inserting it after the select.
2930   for (Instruction *I : SpeculatedDbgIntrinsics)
2931     I->eraseFromParent();
2932 
2933   ++NumSpeculations;
2934   return true;
2935 }
2936 
2937 /// Return true if we can thread a branch across this block.
2938 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2939   int Size = 0;
2940 
2941   SmallPtrSet<const Value *, 32> EphValues;
2942   auto IsEphemeral = [&](const Instruction *I) {
2943     if (isa<AssumeInst>(I))
2944       return true;
2945     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2946            all_of(I->users(),
2947                   [&](const User *U) { return EphValues.count(U); });
2948   };
2949 
2950   // Walk the loop in reverse so that we can identify ephemeral values properly
2951   // (values only feeding assumes).
2952   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
2953     // Can't fold blocks that contain noduplicate or convergent calls.
2954     if (CallInst *CI = dyn_cast<CallInst>(&I))
2955       if (CI->cannotDuplicate() || CI->isConvergent())
2956         return false;
2957 
2958     // Ignore ephemeral values which are deleted during codegen.
2959     if (IsEphemeral(&I))
2960       EphValues.insert(&I);
2961     // We will delete Phis while threading, so Phis should not be accounted in
2962     // block's size.
2963     else if (!isa<PHINode>(I)) {
2964       if (Size++ > MaxSmallBlockSize)
2965         return false; // Don't clone large BB's.
2966     }
2967 
2968     // We can only support instructions that do not define values that are
2969     // live outside of the current basic block.
2970     for (User *U : I.users()) {
2971       Instruction *UI = cast<Instruction>(U);
2972       if (UI->getParent() != BB || isa<PHINode>(UI))
2973         return false;
2974     }
2975 
2976     // Looks ok, continue checking.
2977   }
2978 
2979   return true;
2980 }
2981 
2982 static ConstantInt *
2983 getKnownValueOnEdge(Value *V, BasicBlock *From, BasicBlock *To,
2984                     SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>,
2985                                   ConstantInt *> &Visited) {
2986   // Don't look past the block defining the value, we might get the value from
2987   // a previous loop iteration.
2988   auto *I = dyn_cast<Instruction>(V);
2989   if (I && I->getParent() == To)
2990     return nullptr;
2991 
2992   // We know the value if the From block branches on it.
2993   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
2994   if (BI && BI->isConditional() && BI->getCondition() == V &&
2995       BI->getSuccessor(0) != BI->getSuccessor(1))
2996     return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
2997                                      : ConstantInt::getFalse(BI->getContext());
2998 
2999   // Limit the amount of blocks we inspect.
3000   if (Visited.size() >= 8)
3001     return nullptr;
3002 
3003   auto Pair = Visited.try_emplace({From, To}, nullptr);
3004   if (!Pair.second)
3005     return Pair.first->second;
3006 
3007   // Check whether the known value is the same for all predecessors.
3008   ConstantInt *Common = nullptr;
3009   for (BasicBlock *Pred : predecessors(From)) {
3010     ConstantInt *C = getKnownValueOnEdge(V, Pred, From, Visited);
3011     if (!C || (Common && Common != C))
3012       return nullptr;
3013     Common = C;
3014   }
3015   return Visited[{From, To}] = Common;
3016 }
3017 
3018 /// If we have a conditional branch on something for which we know the constant
3019 /// value in predecessors (e.g. a phi node in the current block), thread edges
3020 /// from the predecessor to their ultimate destination.
3021 static Optional<bool>
3022 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
3023                                             const DataLayout &DL,
3024                                             AssumptionCache *AC) {
3025   SmallMapVector<BasicBlock *, ConstantInt *, 8> KnownValues;
3026   BasicBlock *BB = BI->getParent();
3027   Value *Cond = BI->getCondition();
3028   PHINode *PN = dyn_cast<PHINode>(Cond);
3029   if (PN && PN->getParent() == BB) {
3030     // Degenerate case of a single entry PHI.
3031     if (PN->getNumIncomingValues() == 1) {
3032       FoldSingleEntryPHINodes(PN->getParent());
3033       return true;
3034     }
3035 
3036     for (Use &U : PN->incoming_values())
3037       if (auto *CB = dyn_cast<ConstantInt>(U))
3038         KnownValues.insert({PN->getIncomingBlock(U), CB});
3039   } else {
3040     SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, ConstantInt *> Visited;
3041     for (BasicBlock *Pred : predecessors(BB)) {
3042       if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB, Visited))
3043         KnownValues.insert({Pred, CB});
3044     }
3045   }
3046 
3047   if (KnownValues.empty())
3048     return false;
3049 
3050   // Now we know that this block has multiple preds and two succs.
3051   // Check that the block is small enough and values defined in the block are
3052   // not used outside of it.
3053   if (!BlockIsSimpleEnoughToThreadThrough(BB))
3054     return false;
3055 
3056   for (const auto &Pair : KnownValues) {
3057     // Okay, we now know that all edges from PredBB should be revectored to
3058     // branch to RealDest.
3059     ConstantInt *CB = Pair.second;
3060     BasicBlock *PredBB = Pair.first;
3061     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3062 
3063     if (RealDest == BB)
3064       continue; // Skip self loops.
3065     // Skip if the predecessor's terminator is an indirect branch.
3066     if (isa<IndirectBrInst>(PredBB->getTerminator()))
3067       continue;
3068 
3069     SmallVector<DominatorTree::UpdateType, 3> Updates;
3070 
3071     // The dest block might have PHI nodes, other predecessors and other
3072     // difficult cases.  Instead of being smart about this, just insert a new
3073     // block that jumps to the destination block, effectively splitting
3074     // the edge we are about to create.
3075     BasicBlock *EdgeBB =
3076         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
3077                            RealDest->getParent(), RealDest);
3078     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
3079     if (DTU)
3080       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3081     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
3082 
3083     // Update PHI nodes.
3084     AddPredecessorToBlock(RealDest, EdgeBB, BB);
3085 
3086     // BB may have instructions that are being threaded over.  Clone these
3087     // instructions into EdgeBB.  We know that there will be no uses of the
3088     // cloned instructions outside of EdgeBB.
3089     BasicBlock::iterator InsertPt = EdgeBB->begin();
3090     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3091     TranslateMap[Cond] = Pair.second;
3092     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3093       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3094         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
3095         continue;
3096       }
3097       // Clone the instruction.
3098       Instruction *N = BBI->clone();
3099       if (BBI->hasName())
3100         N->setName(BBI->getName() + ".c");
3101 
3102       // Update operands due to translation.
3103       for (Use &Op : N->operands()) {
3104         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3105         if (PI != TranslateMap.end())
3106           Op = PI->second;
3107       }
3108 
3109       // Check for trivial simplification.
3110       if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3111         if (!BBI->use_empty())
3112           TranslateMap[&*BBI] = V;
3113         if (!N->mayHaveSideEffects()) {
3114           N->deleteValue(); // Instruction folded away, don't need actual inst
3115           N = nullptr;
3116         }
3117       } else {
3118         if (!BBI->use_empty())
3119           TranslateMap[&*BBI] = N;
3120       }
3121       if (N) {
3122         // Insert the new instruction into its new home.
3123         EdgeBB->getInstList().insert(InsertPt, N);
3124 
3125         // Register the new instruction with the assumption cache if necessary.
3126         if (auto *Assume = dyn_cast<AssumeInst>(N))
3127           if (AC)
3128             AC->registerAssumption(Assume);
3129       }
3130     }
3131 
3132     // Loop over all of the edges from PredBB to BB, changing them to branch
3133     // to EdgeBB instead.
3134     Instruction *PredBBTI = PredBB->getTerminator();
3135     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
3136       if (PredBBTI->getSuccessor(i) == BB) {
3137         BB->removePredecessor(PredBB);
3138         PredBBTI->setSuccessor(i, EdgeBB);
3139       }
3140 
3141     if (DTU) {
3142       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
3143       Updates.push_back({DominatorTree::Delete, PredBB, BB});
3144 
3145       DTU->applyUpdates(Updates);
3146     }
3147 
3148     // Signal repeat, simplifying any other constants.
3149     return None;
3150   }
3151 
3152   return false;
3153 }
3154 
3155 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3156                                                     DomTreeUpdater *DTU,
3157                                                     const DataLayout &DL,
3158                                                     AssumptionCache *AC) {
3159   Optional<bool> Result;
3160   bool EverChanged = false;
3161   do {
3162     // Note that None means "we changed things, but recurse further."
3163     Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3164     EverChanged |= Result == None || *Result;
3165   } while (Result == None);
3166   return EverChanged;
3167 }
3168 
3169 /// Given a BB that starts with the specified two-entry PHI node,
3170 /// see if we can eliminate it.
3171 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3172                                 DomTreeUpdater *DTU, const DataLayout &DL) {
3173   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3174   // statement", which has a very simple dominance structure.  Basically, we
3175   // are trying to find the condition that is being branched on, which
3176   // subsequently causes this merge to happen.  We really want control
3177   // dependence information for this check, but simplifycfg can't keep it up
3178   // to date, and this catches most of the cases we care about anyway.
3179   BasicBlock *BB = PN->getParent();
3180 
3181   BasicBlock *IfTrue, *IfFalse;
3182   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3183   if (!DomBI)
3184     return false;
3185   Value *IfCond = DomBI->getCondition();
3186   // Don't bother if the branch will be constant folded trivially.
3187   if (isa<ConstantInt>(IfCond))
3188     return false;
3189 
3190   BasicBlock *DomBlock = DomBI->getParent();
3191   SmallVector<BasicBlock *, 2> IfBlocks;
3192   llvm::copy_if(
3193       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3194         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3195       });
3196   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3197          "Will have either one or two blocks to speculate.");
3198 
3199   // If the branch is non-unpredictable, see if we either predictably jump to
3200   // the merge bb (if we have only a single 'then' block), or if we predictably
3201   // jump to one specific 'then' block (if we have two of them).
3202   // It isn't beneficial to speculatively execute the code
3203   // from the block that we know is predictably not entered.
3204   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
3205     uint64_t TWeight, FWeight;
3206     if (DomBI->extractProfMetadata(TWeight, FWeight) &&
3207         (TWeight + FWeight) != 0) {
3208       BranchProbability BITrueProb =
3209           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3210       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3211       BranchProbability BIFalseProb = BITrueProb.getCompl();
3212       if (IfBlocks.size() == 1) {
3213         BranchProbability BIBBProb =
3214             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3215         if (BIBBProb >= Likely)
3216           return false;
3217       } else {
3218         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3219           return false;
3220       }
3221     }
3222   }
3223 
3224   // Don't try to fold an unreachable block. For example, the phi node itself
3225   // can't be the candidate if-condition for a select that we want to form.
3226   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3227     if (IfCondPhiInst->getParent() == BB)
3228       return false;
3229 
3230   // Okay, we found that we can merge this two-entry phi node into a select.
3231   // Doing so would require us to fold *all* two entry phi nodes in this block.
3232   // At some point this becomes non-profitable (particularly if the target
3233   // doesn't support cmov's).  Only do this transformation if there are two or
3234   // fewer PHI nodes in this block.
3235   unsigned NumPhis = 0;
3236   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3237     if (NumPhis > 2)
3238       return false;
3239 
3240   // Loop over the PHI's seeing if we can promote them all to select
3241   // instructions.  While we are at it, keep track of the instructions
3242   // that need to be moved to the dominating block.
3243   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3244   InstructionCost Cost = 0;
3245   InstructionCost Budget =
3246       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3247 
3248   bool Changed = false;
3249   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3250     PHINode *PN = cast<PHINode>(II++);
3251     if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3252       PN->replaceAllUsesWith(V);
3253       PN->eraseFromParent();
3254       Changed = true;
3255       continue;
3256     }
3257 
3258     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
3259                              Cost, Budget, TTI) ||
3260         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
3261                              Cost, Budget, TTI))
3262       return Changed;
3263   }
3264 
3265   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3266   // we ran out of PHIs then we simplified them all.
3267   PN = dyn_cast<PHINode>(BB->begin());
3268   if (!PN)
3269     return true;
3270 
3271   // Return true if at least one of these is a 'not', and another is either
3272   // a 'not' too, or a constant.
3273   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3274     if (!match(V0, m_Not(m_Value())))
3275       std::swap(V0, V1);
3276     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3277     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3278   };
3279 
3280   // Don't fold i1 branches on PHIs which contain binary operators or
3281   // (possibly inverted) select form of or/ands,  unless one of
3282   // the incoming values is an 'not' and another one is freely invertible.
3283   // These can often be turned into switches and other things.
3284   auto IsBinOpOrAnd = [](Value *V) {
3285     return match(
3286         V, m_CombineOr(
3287                m_BinOp(),
3288                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3289                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3290   };
3291   if (PN->getType()->isIntegerTy(1) &&
3292       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3293        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3294       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3295                                  PN->getIncomingValue(1)))
3296     return Changed;
3297 
3298   // If all PHI nodes are promotable, check to make sure that all instructions
3299   // in the predecessor blocks can be promoted as well. If not, we won't be able
3300   // to get rid of the control flow, so it's not worth promoting to select
3301   // instructions.
3302   for (BasicBlock *IfBlock : IfBlocks)
3303     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3304       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3305         // This is not an aggressive instruction that we can promote.
3306         // Because of this, we won't be able to get rid of the control flow, so
3307         // the xform is not worth it.
3308         return Changed;
3309       }
3310 
3311   // If either of the blocks has it's address taken, we can't do this fold.
3312   if (any_of(IfBlocks,
3313              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3314     return Changed;
3315 
3316   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
3317                     << "  T: " << IfTrue->getName()
3318                     << "  F: " << IfFalse->getName() << "\n");
3319 
3320   // If we can still promote the PHI nodes after this gauntlet of tests,
3321   // do all of the PHI's now.
3322 
3323   // Move all 'aggressive' instructions, which are defined in the
3324   // conditional parts of the if's up to the dominating block.
3325   for (BasicBlock *IfBlock : IfBlocks)
3326       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3327 
3328   IRBuilder<NoFolder> Builder(DomBI);
3329   // Propagate fast-math-flags from phi nodes to replacement selects.
3330   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3331   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3332     if (isa<FPMathOperator>(PN))
3333       Builder.setFastMathFlags(PN->getFastMathFlags());
3334 
3335     // Change the PHI node into a select instruction.
3336     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3337     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3338 
3339     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3340     PN->replaceAllUsesWith(Sel);
3341     Sel->takeName(PN);
3342     PN->eraseFromParent();
3343   }
3344 
3345   // At this point, all IfBlocks are empty, so our if statement
3346   // has been flattened.  Change DomBlock to jump directly to our new block to
3347   // avoid other simplifycfg's kicking in on the diamond.
3348   Builder.CreateBr(BB);
3349 
3350   SmallVector<DominatorTree::UpdateType, 3> Updates;
3351   if (DTU) {
3352     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3353     for (auto *Successor : successors(DomBlock))
3354       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3355   }
3356 
3357   DomBI->eraseFromParent();
3358   if (DTU)
3359     DTU->applyUpdates(Updates);
3360 
3361   return true;
3362 }
3363 
3364 static Value *createLogicalOp(IRBuilderBase &Builder,
3365                               Instruction::BinaryOps Opc, Value *LHS,
3366                               Value *RHS, const Twine &Name = "") {
3367   // Try to relax logical op to binary op.
3368   if (impliesPoison(RHS, LHS))
3369     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3370   if (Opc == Instruction::And)
3371     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3372   if (Opc == Instruction::Or)
3373     return Builder.CreateLogicalOr(LHS, RHS, Name);
3374   llvm_unreachable("Invalid logical opcode");
3375 }
3376 
3377 /// Return true if either PBI or BI has branch weight available, and store
3378 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3379 /// not have branch weight, use 1:1 as its weight.
3380 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3381                                    uint64_t &PredTrueWeight,
3382                                    uint64_t &PredFalseWeight,
3383                                    uint64_t &SuccTrueWeight,
3384                                    uint64_t &SuccFalseWeight) {
3385   bool PredHasWeights =
3386       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
3387   bool SuccHasWeights =
3388       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
3389   if (PredHasWeights || SuccHasWeights) {
3390     if (!PredHasWeights)
3391       PredTrueWeight = PredFalseWeight = 1;
3392     if (!SuccHasWeights)
3393       SuccTrueWeight = SuccFalseWeight = 1;
3394     return true;
3395   } else {
3396     return false;
3397   }
3398 }
3399 
3400 /// Determine if the two branches share a common destination and deduce a glue
3401 /// that joins the branches' conditions to arrive at the common destination if
3402 /// that would be profitable.
3403 static Optional<std::pair<Instruction::BinaryOps, bool>>
3404 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3405                                           const TargetTransformInfo *TTI) {
3406   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3407          "Both blocks must end with a conditional branches.");
3408   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3409          "PredBB must be a predecessor of BB.");
3410 
3411   // We have the potential to fold the conditions together, but if the
3412   // predecessor branch is predictable, we may not want to merge them.
3413   uint64_t PTWeight, PFWeight;
3414   BranchProbability PBITrueProb, Likely;
3415   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3416       PBI->extractProfMetadata(PTWeight, PFWeight) &&
3417       (PTWeight + PFWeight) != 0) {
3418     PBITrueProb =
3419         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3420     Likely = TTI->getPredictableBranchThreshold();
3421   }
3422 
3423   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3424     // Speculate the 2nd condition unless the 1st is probably true.
3425     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3426       return {{Instruction::Or, false}};
3427   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3428     // Speculate the 2nd condition unless the 1st is probably false.
3429     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3430       return {{Instruction::And, false}};
3431   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3432     // Speculate the 2nd condition unless the 1st is probably true.
3433     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3434       return {{Instruction::And, true}};
3435   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3436     // Speculate the 2nd condition unless the 1st is probably false.
3437     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3438       return {{Instruction::Or, true}};
3439   }
3440   return None;
3441 }
3442 
3443 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3444                                              DomTreeUpdater *DTU,
3445                                              MemorySSAUpdater *MSSAU,
3446                                              const TargetTransformInfo *TTI) {
3447   BasicBlock *BB = BI->getParent();
3448   BasicBlock *PredBlock = PBI->getParent();
3449 
3450   // Determine if the two branches share a common destination.
3451   Instruction::BinaryOps Opc;
3452   bool InvertPredCond;
3453   std::tie(Opc, InvertPredCond) =
3454       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3455 
3456   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3457 
3458   IRBuilder<> Builder(PBI);
3459   // The builder is used to create instructions to eliminate the branch in BB.
3460   // If BB's terminator has !annotation metadata, add it to the new
3461   // instructions.
3462   Builder.CollectMetadataToCopy(BB->getTerminator(),
3463                                 {LLVMContext::MD_annotation});
3464 
3465   // If we need to invert the condition in the pred block to match, do so now.
3466   if (InvertPredCond) {
3467     Value *NewCond = PBI->getCondition();
3468     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3469       CmpInst *CI = cast<CmpInst>(NewCond);
3470       CI->setPredicate(CI->getInversePredicate());
3471     } else {
3472       NewCond =
3473           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3474     }
3475 
3476     PBI->setCondition(NewCond);
3477     PBI->swapSuccessors();
3478   }
3479 
3480   BasicBlock *UniqueSucc =
3481       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3482 
3483   // Before cloning instructions, notify the successor basic block that it
3484   // is about to have a new predecessor. This will update PHI nodes,
3485   // which will allow us to update live-out uses of bonus instructions.
3486   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3487 
3488   // Try to update branch weights.
3489   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3490   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3491                              SuccTrueWeight, SuccFalseWeight)) {
3492     SmallVector<uint64_t, 8> NewWeights;
3493 
3494     if (PBI->getSuccessor(0) == BB) {
3495       // PBI: br i1 %x, BB, FalseDest
3496       // BI:  br i1 %y, UniqueSucc, FalseDest
3497       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3498       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3499       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3500       //               TrueWeight for PBI * FalseWeight for BI.
3501       // We assume that total weights of a BranchInst can fit into 32 bits.
3502       // Therefore, we will not have overflow using 64-bit arithmetic.
3503       NewWeights.push_back(PredFalseWeight *
3504                                (SuccFalseWeight + SuccTrueWeight) +
3505                            PredTrueWeight * SuccFalseWeight);
3506     } else {
3507       // PBI: br i1 %x, TrueDest, BB
3508       // BI:  br i1 %y, TrueDest, UniqueSucc
3509       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3510       //              FalseWeight for PBI * TrueWeight for BI.
3511       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3512                            PredFalseWeight * SuccTrueWeight);
3513       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3514       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3515     }
3516 
3517     // Halve the weights if any of them cannot fit in an uint32_t
3518     FitWeights(NewWeights);
3519 
3520     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3521     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3522 
3523     // TODO: If BB is reachable from all paths through PredBlock, then we
3524     // could replace PBI's branch probabilities with BI's.
3525   } else
3526     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3527 
3528   // Now, update the CFG.
3529   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3530 
3531   if (DTU)
3532     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3533                        {DominatorTree::Delete, PredBlock, BB}});
3534 
3535   // If BI was a loop latch, it may have had associated loop metadata.
3536   // We need to copy it to the new latch, that is, PBI.
3537   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3538     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3539 
3540   ValueToValueMapTy VMap; // maps original values to cloned values
3541   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3542 
3543   // Now that the Cond was cloned into the predecessor basic block,
3544   // or/and the two conditions together.
3545   Value *BICond = VMap[BI->getCondition()];
3546   PBI->setCondition(
3547       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3548 
3549   // Copy any debug value intrinsics into the end of PredBlock.
3550   for (Instruction &I : *BB) {
3551     if (isa<DbgInfoIntrinsic>(I)) {
3552       Instruction *NewI = I.clone();
3553       RemapInstruction(NewI, VMap,
3554                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3555       NewI->insertBefore(PBI);
3556     }
3557   }
3558 
3559   ++NumFoldBranchToCommonDest;
3560   return true;
3561 }
3562 
3563 /// Return if an instruction's type or any of its operands' types are a vector
3564 /// type.
3565 static bool isVectorOp(Instruction &I) {
3566   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3567            return U->getType()->isVectorTy();
3568          });
3569 }
3570 
3571 /// If this basic block is simple enough, and if a predecessor branches to us
3572 /// and one of our successors, fold the block into the predecessor and use
3573 /// logical operations to pick the right destination.
3574 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3575                                   MemorySSAUpdater *MSSAU,
3576                                   const TargetTransformInfo *TTI,
3577                                   unsigned BonusInstThreshold) {
3578   // If this block ends with an unconditional branch,
3579   // let SpeculativelyExecuteBB() deal with it.
3580   if (!BI->isConditional())
3581     return false;
3582 
3583   BasicBlock *BB = BI->getParent();
3584   TargetTransformInfo::TargetCostKind CostKind =
3585     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3586                                   : TargetTransformInfo::TCK_SizeAndLatency;
3587 
3588   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3589 
3590   if (!Cond ||
3591       (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
3592        !isa<SelectInst>(Cond)) ||
3593       Cond->getParent() != BB || !Cond->hasOneUse())
3594     return false;
3595 
3596   // Cond is known to be a compare or binary operator.  Check to make sure that
3597   // neither operand is a potentially-trapping constant expression.
3598   if (canTrap(Cond->getOperand(0)))
3599     return false;
3600   if (canTrap(Cond->getOperand(1)))
3601     return false;
3602 
3603   // Finally, don't infinitely unroll conditional loops.
3604   if (is_contained(successors(BB), BB))
3605     return false;
3606 
3607   // With which predecessors will we want to deal with?
3608   SmallVector<BasicBlock *, 8> Preds;
3609   for (BasicBlock *PredBlock : predecessors(BB)) {
3610     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3611 
3612     // Check that we have two conditional branches.  If there is a PHI node in
3613     // the common successor, verify that the same value flows in from both
3614     // blocks.
3615     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3616       continue;
3617 
3618     // Determine if the two branches share a common destination.
3619     Instruction::BinaryOps Opc;
3620     bool InvertPredCond;
3621     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3622       std::tie(Opc, InvertPredCond) = *Recipe;
3623     else
3624       continue;
3625 
3626     // Check the cost of inserting the necessary logic before performing the
3627     // transformation.
3628     if (TTI) {
3629       Type *Ty = BI->getCondition()->getType();
3630       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3631       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3632           !isa<CmpInst>(PBI->getCondition())))
3633         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3634 
3635       if (Cost > BranchFoldThreshold)
3636         continue;
3637     }
3638 
3639     // Ok, we do want to deal with this predecessor. Record it.
3640     Preds.emplace_back(PredBlock);
3641   }
3642 
3643   // If there aren't any predecessors into which we can fold,
3644   // don't bother checking the cost.
3645   if (Preds.empty())
3646     return false;
3647 
3648   // Only allow this transformation if computing the condition doesn't involve
3649   // too many instructions and these involved instructions can be executed
3650   // unconditionally. We denote all involved instructions except the condition
3651   // as "bonus instructions", and only allow this transformation when the
3652   // number of the bonus instructions we'll need to create when cloning into
3653   // each predecessor does not exceed a certain threshold.
3654   unsigned NumBonusInsts = 0;
3655   bool SawVectorOp = false;
3656   const unsigned PredCount = Preds.size();
3657   for (Instruction &I : *BB) {
3658     // Don't check the branch condition comparison itself.
3659     if (&I == Cond)
3660       continue;
3661     // Ignore dbg intrinsics, and the terminator.
3662     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3663       continue;
3664     // I must be safe to execute unconditionally.
3665     if (!isSafeToSpeculativelyExecute(&I))
3666       return false;
3667     SawVectorOp |= isVectorOp(I);
3668 
3669     // Account for the cost of duplicating this instruction into each
3670     // predecessor. Ignore free instructions.
3671     if (!TTI ||
3672         TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) {
3673       NumBonusInsts += PredCount;
3674 
3675       // Early exits once we reach the limit.
3676       if (NumBonusInsts >
3677           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3678         return false;
3679     }
3680 
3681     auto IsBCSSAUse = [BB, &I](Use &U) {
3682       auto *UI = cast<Instruction>(U.getUser());
3683       if (auto *PN = dyn_cast<PHINode>(UI))
3684         return PN->getIncomingBlock(U) == BB;
3685       return UI->getParent() == BB && I.comesBefore(UI);
3686     };
3687 
3688     // Does this instruction require rewriting of uses?
3689     if (!all_of(I.uses(), IsBCSSAUse))
3690       return false;
3691   }
3692   if (NumBonusInsts >
3693       BonusInstThreshold *
3694           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3695     return false;
3696 
3697   // Ok, we have the budget. Perform the transformation.
3698   for (BasicBlock *PredBlock : Preds) {
3699     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3700     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3701   }
3702   return false;
3703 }
3704 
3705 // If there is only one store in BB1 and BB2, return it, otherwise return
3706 // nullptr.
3707 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3708   StoreInst *S = nullptr;
3709   for (auto *BB : {BB1, BB2}) {
3710     if (!BB)
3711       continue;
3712     for (auto &I : *BB)
3713       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3714         if (S)
3715           // Multiple stores seen.
3716           return nullptr;
3717         else
3718           S = SI;
3719       }
3720   }
3721   return S;
3722 }
3723 
3724 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3725                                               Value *AlternativeV = nullptr) {
3726   // PHI is going to be a PHI node that allows the value V that is defined in
3727   // BB to be referenced in BB's only successor.
3728   //
3729   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3730   // doesn't matter to us what the other operand is (it'll never get used). We
3731   // could just create a new PHI with an undef incoming value, but that could
3732   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3733   // other PHI. So here we directly look for some PHI in BB's successor with V
3734   // as an incoming operand. If we find one, we use it, else we create a new
3735   // one.
3736   //
3737   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3738   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3739   // where OtherBB is the single other predecessor of BB's only successor.
3740   PHINode *PHI = nullptr;
3741   BasicBlock *Succ = BB->getSingleSuccessor();
3742 
3743   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3744     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3745       PHI = cast<PHINode>(I);
3746       if (!AlternativeV)
3747         break;
3748 
3749       assert(Succ->hasNPredecessors(2));
3750       auto PredI = pred_begin(Succ);
3751       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3752       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3753         break;
3754       PHI = nullptr;
3755     }
3756   if (PHI)
3757     return PHI;
3758 
3759   // If V is not an instruction defined in BB, just return it.
3760   if (!AlternativeV &&
3761       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3762     return V;
3763 
3764   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3765   PHI->addIncoming(V, BB);
3766   for (BasicBlock *PredBB : predecessors(Succ))
3767     if (PredBB != BB)
3768       PHI->addIncoming(
3769           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3770   return PHI;
3771 }
3772 
3773 static bool mergeConditionalStoreToAddress(
3774     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3775     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3776     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3777   // For every pointer, there must be exactly two stores, one coming from
3778   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3779   // store (to any address) in PTB,PFB or QTB,QFB.
3780   // FIXME: We could relax this restriction with a bit more work and performance
3781   // testing.
3782   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3783   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3784   if (!PStore || !QStore)
3785     return false;
3786 
3787   // Now check the stores are compatible.
3788   if (!QStore->isUnordered() || !PStore->isUnordered() ||
3789       PStore->getValueOperand()->getType() !=
3790           QStore->getValueOperand()->getType())
3791     return false;
3792 
3793   // Check that sinking the store won't cause program behavior changes. Sinking
3794   // the store out of the Q blocks won't change any behavior as we're sinking
3795   // from a block to its unconditional successor. But we're moving a store from
3796   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3797   // So we need to check that there are no aliasing loads or stores in
3798   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3799   // operations between PStore and the end of its parent block.
3800   //
3801   // The ideal way to do this is to query AliasAnalysis, but we don't
3802   // preserve AA currently so that is dangerous. Be super safe and just
3803   // check there are no other memory operations at all.
3804   for (auto &I : *QFB->getSinglePredecessor())
3805     if (I.mayReadOrWriteMemory())
3806       return false;
3807   for (auto &I : *QFB)
3808     if (&I != QStore && I.mayReadOrWriteMemory())
3809       return false;
3810   if (QTB)
3811     for (auto &I : *QTB)
3812       if (&I != QStore && I.mayReadOrWriteMemory())
3813         return false;
3814   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3815        I != E; ++I)
3816     if (&*I != PStore && I->mayReadOrWriteMemory())
3817       return false;
3818 
3819   // If we're not in aggressive mode, we only optimize if we have some
3820   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3821   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3822     if (!BB)
3823       return true;
3824     // Heuristic: if the block can be if-converted/phi-folded and the
3825     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3826     // thread this store.
3827     InstructionCost Cost = 0;
3828     InstructionCost Budget =
3829         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3830     for (auto &I : BB->instructionsWithoutDebug(false)) {
3831       // Consider terminator instruction to be free.
3832       if (I.isTerminator())
3833         continue;
3834       // If this is one the stores that we want to speculate out of this BB,
3835       // then don't count it's cost, consider it to be free.
3836       if (auto *S = dyn_cast<StoreInst>(&I))
3837         if (llvm::find(FreeStores, S))
3838           continue;
3839       // Else, we have a white-list of instructions that we are ak speculating.
3840       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3841         return false; // Not in white-list - not worthwhile folding.
3842       // And finally, if this is a non-free instruction that we are okay
3843       // speculating, ensure that we consider the speculation budget.
3844       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3845       if (Cost > Budget)
3846         return false; // Eagerly refuse to fold as soon as we're out of budget.
3847     }
3848     assert(Cost <= Budget &&
3849            "When we run out of budget we will eagerly return from within the "
3850            "per-instruction loop.");
3851     return true;
3852   };
3853 
3854   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3855   if (!MergeCondStoresAggressively &&
3856       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3857        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3858     return false;
3859 
3860   // If PostBB has more than two predecessors, we need to split it so we can
3861   // sink the store.
3862   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3863     // We know that QFB's only successor is PostBB. And QFB has a single
3864     // predecessor. If QTB exists, then its only successor is also PostBB.
3865     // If QTB does not exist, then QFB's only predecessor has a conditional
3866     // branch to QFB and PostBB.
3867     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3868     BasicBlock *NewBB =
3869         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3870     if (!NewBB)
3871       return false;
3872     PostBB = NewBB;
3873   }
3874 
3875   // OK, we're going to sink the stores to PostBB. The store has to be
3876   // conditional though, so first create the predicate.
3877   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3878                      ->getCondition();
3879   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3880                      ->getCondition();
3881 
3882   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3883                                                 PStore->getParent());
3884   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3885                                                 QStore->getParent(), PPHI);
3886 
3887   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3888 
3889   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3890   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3891 
3892   if (InvertPCond)
3893     PPred = QB.CreateNot(PPred);
3894   if (InvertQCond)
3895     QPred = QB.CreateNot(QPred);
3896   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3897 
3898   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3899                                       /*Unreachable=*/false,
3900                                       /*BranchWeights=*/nullptr, DTU);
3901   QB.SetInsertPoint(T);
3902   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3903   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
3904   // Choose the minimum alignment. If we could prove both stores execute, we
3905   // could use biggest one.  In this case, though, we only know that one of the
3906   // stores executes.  And we don't know it's safe to take the alignment from a
3907   // store that doesn't execute.
3908   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3909 
3910   QStore->eraseFromParent();
3911   PStore->eraseFromParent();
3912 
3913   return true;
3914 }
3915 
3916 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3917                                    DomTreeUpdater *DTU, const DataLayout &DL,
3918                                    const TargetTransformInfo &TTI) {
3919   // The intention here is to find diamonds or triangles (see below) where each
3920   // conditional block contains a store to the same address. Both of these
3921   // stores are conditional, so they can't be unconditionally sunk. But it may
3922   // be profitable to speculatively sink the stores into one merged store at the
3923   // end, and predicate the merged store on the union of the two conditions of
3924   // PBI and QBI.
3925   //
3926   // This can reduce the number of stores executed if both of the conditions are
3927   // true, and can allow the blocks to become small enough to be if-converted.
3928   // This optimization will also chain, so that ladders of test-and-set
3929   // sequences can be if-converted away.
3930   //
3931   // We only deal with simple diamonds or triangles:
3932   //
3933   //     PBI       or      PBI        or a combination of the two
3934   //    /   \               | \
3935   //   PTB  PFB             |  PFB
3936   //    \   /               | /
3937   //     QBI                QBI
3938   //    /  \                | \
3939   //   QTB  QFB             |  QFB
3940   //    \  /                | /
3941   //    PostBB            PostBB
3942   //
3943   // We model triangles as a type of diamond with a nullptr "true" block.
3944   // Triangles are canonicalized so that the fallthrough edge is represented by
3945   // a true condition, as in the diagram above.
3946   BasicBlock *PTB = PBI->getSuccessor(0);
3947   BasicBlock *PFB = PBI->getSuccessor(1);
3948   BasicBlock *QTB = QBI->getSuccessor(0);
3949   BasicBlock *QFB = QBI->getSuccessor(1);
3950   BasicBlock *PostBB = QFB->getSingleSuccessor();
3951 
3952   // Make sure we have a good guess for PostBB. If QTB's only successor is
3953   // QFB, then QFB is a better PostBB.
3954   if (QTB->getSingleSuccessor() == QFB)
3955     PostBB = QFB;
3956 
3957   // If we couldn't find a good PostBB, stop.
3958   if (!PostBB)
3959     return false;
3960 
3961   bool InvertPCond = false, InvertQCond = false;
3962   // Canonicalize fallthroughs to the true branches.
3963   if (PFB == QBI->getParent()) {
3964     std::swap(PFB, PTB);
3965     InvertPCond = true;
3966   }
3967   if (QFB == PostBB) {
3968     std::swap(QFB, QTB);
3969     InvertQCond = true;
3970   }
3971 
3972   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3973   // and QFB may not. Model fallthroughs as a nullptr block.
3974   if (PTB == QBI->getParent())
3975     PTB = nullptr;
3976   if (QTB == PostBB)
3977     QTB = nullptr;
3978 
3979   // Legality bailouts. We must have at least the non-fallthrough blocks and
3980   // the post-dominating block, and the non-fallthroughs must only have one
3981   // predecessor.
3982   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3983     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3984   };
3985   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3986       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3987     return false;
3988   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3989       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3990     return false;
3991   if (!QBI->getParent()->hasNUses(2))
3992     return false;
3993 
3994   // OK, this is a sequence of two diamonds or triangles.
3995   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3996   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3997   for (auto *BB : {PTB, PFB}) {
3998     if (!BB)
3999       continue;
4000     for (auto &I : *BB)
4001       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4002         PStoreAddresses.insert(SI->getPointerOperand());
4003   }
4004   for (auto *BB : {QTB, QFB}) {
4005     if (!BB)
4006       continue;
4007     for (auto &I : *BB)
4008       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4009         QStoreAddresses.insert(SI->getPointerOperand());
4010   }
4011 
4012   set_intersect(PStoreAddresses, QStoreAddresses);
4013   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
4014   // clear what it contains.
4015   auto &CommonAddresses = PStoreAddresses;
4016 
4017   bool Changed = false;
4018   for (auto *Address : CommonAddresses)
4019     Changed |=
4020         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
4021                                        InvertPCond, InvertQCond, DTU, DL, TTI);
4022   return Changed;
4023 }
4024 
4025 /// If the previous block ended with a widenable branch, determine if reusing
4026 /// the target block is profitable and legal.  This will have the effect of
4027 /// "widening" PBI, but doesn't require us to reason about hosting safety.
4028 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4029                                            DomTreeUpdater *DTU) {
4030   // TODO: This can be generalized in two important ways:
4031   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4032   //    values from the PBI edge.
4033   // 2) We can sink side effecting instructions into BI's fallthrough
4034   //    successor provided they doesn't contribute to computation of
4035   //    BI's condition.
4036   Value *CondWB, *WC;
4037   BasicBlock *IfTrueBB, *IfFalseBB;
4038   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
4039       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
4040     return false;
4041   if (!IfFalseBB->phis().empty())
4042     return false; // TODO
4043   // Use lambda to lazily compute expensive condition after cheap ones.
4044   auto NoSideEffects = [](BasicBlock &BB) {
4045     return llvm::none_of(BB, [](const Instruction &I) {
4046         return I.mayWriteToMemory() || I.mayHaveSideEffects();
4047       });
4048   };
4049   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4050       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4051       NoSideEffects(*BI->getParent())) {
4052     auto *OldSuccessor = BI->getSuccessor(1);
4053     OldSuccessor->removePredecessor(BI->getParent());
4054     BI->setSuccessor(1, IfFalseBB);
4055     if (DTU)
4056       DTU->applyUpdates(
4057           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4058            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4059     return true;
4060   }
4061   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4062       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4063       NoSideEffects(*BI->getParent())) {
4064     auto *OldSuccessor = BI->getSuccessor(0);
4065     OldSuccessor->removePredecessor(BI->getParent());
4066     BI->setSuccessor(0, IfFalseBB);
4067     if (DTU)
4068       DTU->applyUpdates(
4069           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4070            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4071     return true;
4072   }
4073   return false;
4074 }
4075 
4076 /// If we have a conditional branch as a predecessor of another block,
4077 /// this function tries to simplify it.  We know
4078 /// that PBI and BI are both conditional branches, and BI is in one of the
4079 /// successor blocks of PBI - PBI branches to BI.
4080 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4081                                            DomTreeUpdater *DTU,
4082                                            const DataLayout &DL,
4083                                            const TargetTransformInfo &TTI) {
4084   assert(PBI->isConditional() && BI->isConditional());
4085   BasicBlock *BB = BI->getParent();
4086 
4087   // If this block ends with a branch instruction, and if there is a
4088   // predecessor that ends on a branch of the same condition, make
4089   // this conditional branch redundant.
4090   if (PBI->getCondition() == BI->getCondition() &&
4091       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4092     // Okay, the outcome of this conditional branch is statically
4093     // knowable.  If this block had a single pred, handle specially, otherwise
4094     // FoldCondBranchOnValueKnownInPredecessor() will handle it.
4095     if (BB->getSinglePredecessor()) {
4096       // Turn this into a branch on constant.
4097       bool CondIsTrue = PBI->getSuccessor(0) == BB;
4098       BI->setCondition(
4099           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4100       return true; // Nuke the branch on constant.
4101     }
4102   }
4103 
4104   // If the previous block ended with a widenable branch, determine if reusing
4105   // the target block is profitable and legal.  This will have the effect of
4106   // "widening" PBI, but doesn't require us to reason about hosting safety.
4107   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4108     return true;
4109 
4110   if (canTrap(BI->getCondition()))
4111     return false;
4112 
4113   // If both branches are conditional and both contain stores to the same
4114   // address, remove the stores from the conditionals and create a conditional
4115   // merged store at the end.
4116   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4117     return true;
4118 
4119   // If this is a conditional branch in an empty block, and if any
4120   // predecessors are a conditional branch to one of our destinations,
4121   // fold the conditions into logical ops and one cond br.
4122 
4123   // Ignore dbg intrinsics.
4124   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4125     return false;
4126 
4127   int PBIOp, BIOp;
4128   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4129     PBIOp = 0;
4130     BIOp = 0;
4131   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4132     PBIOp = 0;
4133     BIOp = 1;
4134   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4135     PBIOp = 1;
4136     BIOp = 0;
4137   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4138     PBIOp = 1;
4139     BIOp = 1;
4140   } else {
4141     return false;
4142   }
4143 
4144   // Check to make sure that the other destination of this branch
4145   // isn't BB itself.  If so, this is an infinite loop that will
4146   // keep getting unwound.
4147   if (PBI->getSuccessor(PBIOp) == BB)
4148     return false;
4149 
4150   // Do not perform this transformation if it would require
4151   // insertion of a large number of select instructions. For targets
4152   // without predication/cmovs, this is a big pessimization.
4153 
4154   // Also do not perform this transformation if any phi node in the common
4155   // destination block can trap when reached by BB or PBB (PR17073). In that
4156   // case, it would be unsafe to hoist the operation into a select instruction.
4157 
4158   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4159   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4160   unsigned NumPhis = 0;
4161   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4162        ++II, ++NumPhis) {
4163     if (NumPhis > 2) // Disable this xform.
4164       return false;
4165 
4166     PHINode *PN = cast<PHINode>(II);
4167     Value *BIV = PN->getIncomingValueForBlock(BB);
4168     if (canTrap(BIV))
4169       return false;
4170 
4171     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
4172     Value *PBIV = PN->getIncomingValue(PBBIdx);
4173     if (canTrap(PBIV))
4174       return false;
4175   }
4176 
4177   // Finally, if everything is ok, fold the branches to logical ops.
4178   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4179 
4180   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4181                     << "AND: " << *BI->getParent());
4182 
4183   SmallVector<DominatorTree::UpdateType, 5> Updates;
4184 
4185   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4186   // branch in it, where one edge (OtherDest) goes back to itself but the other
4187   // exits.  We don't *know* that the program avoids the infinite loop
4188   // (even though that seems likely).  If we do this xform naively, we'll end up
4189   // recursively unpeeling the loop.  Since we know that (after the xform is
4190   // done) that the block *is* infinite if reached, we just make it an obviously
4191   // infinite loop with no cond branch.
4192   if (OtherDest == BB) {
4193     // Insert it at the end of the function, because it's either code,
4194     // or it won't matter if it's hot. :)
4195     BasicBlock *InfLoopBlock =
4196         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4197     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4198     if (DTU)
4199       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4200     OtherDest = InfLoopBlock;
4201   }
4202 
4203   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4204 
4205   // BI may have other predecessors.  Because of this, we leave
4206   // it alone, but modify PBI.
4207 
4208   // Make sure we get to CommonDest on True&True directions.
4209   Value *PBICond = PBI->getCondition();
4210   IRBuilder<NoFolder> Builder(PBI);
4211   if (PBIOp)
4212     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4213 
4214   Value *BICond = BI->getCondition();
4215   if (BIOp)
4216     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4217 
4218   // Merge the conditions.
4219   Value *Cond =
4220       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4221 
4222   // Modify PBI to branch on the new condition to the new dests.
4223   PBI->setCondition(Cond);
4224   PBI->setSuccessor(0, CommonDest);
4225   PBI->setSuccessor(1, OtherDest);
4226 
4227   if (DTU) {
4228     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4229     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4230 
4231     DTU->applyUpdates(Updates);
4232   }
4233 
4234   // Update branch weight for PBI.
4235   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4236   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4237   bool HasWeights =
4238       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4239                              SuccTrueWeight, SuccFalseWeight);
4240   if (HasWeights) {
4241     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4242     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4243     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4244     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4245     // The weight to CommonDest should be PredCommon * SuccTotal +
4246     //                                    PredOther * SuccCommon.
4247     // The weight to OtherDest should be PredOther * SuccOther.
4248     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4249                                   PredOther * SuccCommon,
4250                               PredOther * SuccOther};
4251     // Halve the weights if any of them cannot fit in an uint32_t
4252     FitWeights(NewWeights);
4253 
4254     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
4255   }
4256 
4257   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4258   // block that are identical to the entries for BI's block.
4259   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4260 
4261   // We know that the CommonDest already had an edge from PBI to
4262   // it.  If it has PHIs though, the PHIs may have different
4263   // entries for BB and PBI's BB.  If so, insert a select to make
4264   // them agree.
4265   for (PHINode &PN : CommonDest->phis()) {
4266     Value *BIV = PN.getIncomingValueForBlock(BB);
4267     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4268     Value *PBIV = PN.getIncomingValue(PBBIdx);
4269     if (BIV != PBIV) {
4270       // Insert a select in PBI to pick the right value.
4271       SelectInst *NV = cast<SelectInst>(
4272           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4273       PN.setIncomingValue(PBBIdx, NV);
4274       // Although the select has the same condition as PBI, the original branch
4275       // weights for PBI do not apply to the new select because the select's
4276       // 'logical' edges are incoming edges of the phi that is eliminated, not
4277       // the outgoing edges of PBI.
4278       if (HasWeights) {
4279         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4280         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4281         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4282         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4283         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4284         // The weight to PredOtherDest should be PredOther * SuccCommon.
4285         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4286                                   PredOther * SuccCommon};
4287 
4288         FitWeights(NewWeights);
4289 
4290         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
4291       }
4292     }
4293   }
4294 
4295   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4296   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4297 
4298   // This basic block is probably dead.  We know it has at least
4299   // one fewer predecessor.
4300   return true;
4301 }
4302 
4303 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4304 // true or to FalseBB if Cond is false.
4305 // Takes care of updating the successors and removing the old terminator.
4306 // Also makes sure not to introduce new successors by assuming that edges to
4307 // non-successor TrueBBs and FalseBBs aren't reachable.
4308 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
4309                                                 Value *Cond, BasicBlock *TrueBB,
4310                                                 BasicBlock *FalseBB,
4311                                                 uint32_t TrueWeight,
4312                                                 uint32_t FalseWeight) {
4313   auto *BB = OldTerm->getParent();
4314   // Remove any superfluous successor edges from the CFG.
4315   // First, figure out which successors to preserve.
4316   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4317   // successor.
4318   BasicBlock *KeepEdge1 = TrueBB;
4319   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4320 
4321   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4322 
4323   // Then remove the rest.
4324   for (BasicBlock *Succ : successors(OldTerm)) {
4325     // Make sure only to keep exactly one copy of each edge.
4326     if (Succ == KeepEdge1)
4327       KeepEdge1 = nullptr;
4328     else if (Succ == KeepEdge2)
4329       KeepEdge2 = nullptr;
4330     else {
4331       Succ->removePredecessor(BB,
4332                               /*KeepOneInputPHIs=*/true);
4333 
4334       if (Succ != TrueBB && Succ != FalseBB)
4335         RemovedSuccessors.insert(Succ);
4336     }
4337   }
4338 
4339   IRBuilder<> Builder(OldTerm);
4340   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4341 
4342   // Insert an appropriate new terminator.
4343   if (!KeepEdge1 && !KeepEdge2) {
4344     if (TrueBB == FalseBB) {
4345       // We were only looking for one successor, and it was present.
4346       // Create an unconditional branch to it.
4347       Builder.CreateBr(TrueBB);
4348     } else {
4349       // We found both of the successors we were looking for.
4350       // Create a conditional branch sharing the condition of the select.
4351       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4352       if (TrueWeight != FalseWeight)
4353         setBranchWeights(NewBI, TrueWeight, FalseWeight);
4354     }
4355   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4356     // Neither of the selected blocks were successors, so this
4357     // terminator must be unreachable.
4358     new UnreachableInst(OldTerm->getContext(), OldTerm);
4359   } else {
4360     // One of the selected values was a successor, but the other wasn't.
4361     // Insert an unconditional branch to the one that was found;
4362     // the edge to the one that wasn't must be unreachable.
4363     if (!KeepEdge1) {
4364       // Only TrueBB was found.
4365       Builder.CreateBr(TrueBB);
4366     } else {
4367       // Only FalseBB was found.
4368       Builder.CreateBr(FalseBB);
4369     }
4370   }
4371 
4372   EraseTerminatorAndDCECond(OldTerm);
4373 
4374   if (DTU) {
4375     SmallVector<DominatorTree::UpdateType, 2> Updates;
4376     Updates.reserve(RemovedSuccessors.size());
4377     for (auto *RemovedSuccessor : RemovedSuccessors)
4378       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4379     DTU->applyUpdates(Updates);
4380   }
4381 
4382   return true;
4383 }
4384 
4385 // Replaces
4386 //   (switch (select cond, X, Y)) on constant X, Y
4387 // with a branch - conditional if X and Y lead to distinct BBs,
4388 // unconditional otherwise.
4389 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4390                                             SelectInst *Select) {
4391   // Check for constant integer values in the select.
4392   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4393   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4394   if (!TrueVal || !FalseVal)
4395     return false;
4396 
4397   // Find the relevant condition and destinations.
4398   Value *Condition = Select->getCondition();
4399   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4400   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4401 
4402   // Get weight for TrueBB and FalseBB.
4403   uint32_t TrueWeight = 0, FalseWeight = 0;
4404   SmallVector<uint64_t, 8> Weights;
4405   bool HasWeights = HasBranchWeights(SI);
4406   if (HasWeights) {
4407     GetBranchWeights(SI, Weights);
4408     if (Weights.size() == 1 + SI->getNumCases()) {
4409       TrueWeight =
4410           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4411       FalseWeight =
4412           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4413     }
4414   }
4415 
4416   // Perform the actual simplification.
4417   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4418                                     FalseWeight);
4419 }
4420 
4421 // Replaces
4422 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4423 //                             blockaddress(@fn, BlockB)))
4424 // with
4425 //   (br cond, BlockA, BlockB).
4426 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4427                                                 SelectInst *SI) {
4428   // Check that both operands of the select are block addresses.
4429   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4430   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4431   if (!TBA || !FBA)
4432     return false;
4433 
4434   // Extract the actual blocks.
4435   BasicBlock *TrueBB = TBA->getBasicBlock();
4436   BasicBlock *FalseBB = FBA->getBasicBlock();
4437 
4438   // Perform the actual simplification.
4439   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4440                                     0);
4441 }
4442 
4443 /// This is called when we find an icmp instruction
4444 /// (a seteq/setne with a constant) as the only instruction in a
4445 /// block that ends with an uncond branch.  We are looking for a very specific
4446 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4447 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4448 /// default value goes to an uncond block with a seteq in it, we get something
4449 /// like:
4450 ///
4451 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4452 /// DEFAULT:
4453 ///   %tmp = icmp eq i8 %A, 92
4454 ///   br label %end
4455 /// end:
4456 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4457 ///
4458 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4459 /// the PHI, merging the third icmp into the switch.
4460 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4461     ICmpInst *ICI, IRBuilder<> &Builder) {
4462   BasicBlock *BB = ICI->getParent();
4463 
4464   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4465   // complex.
4466   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4467     return false;
4468 
4469   Value *V = ICI->getOperand(0);
4470   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4471 
4472   // The pattern we're looking for is where our only predecessor is a switch on
4473   // 'V' and this block is the default case for the switch.  In this case we can
4474   // fold the compared value into the switch to simplify things.
4475   BasicBlock *Pred = BB->getSinglePredecessor();
4476   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4477     return false;
4478 
4479   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4480   if (SI->getCondition() != V)
4481     return false;
4482 
4483   // If BB is reachable on a non-default case, then we simply know the value of
4484   // V in this block.  Substitute it and constant fold the icmp instruction
4485   // away.
4486   if (SI->getDefaultDest() != BB) {
4487     ConstantInt *VVal = SI->findCaseDest(BB);
4488     assert(VVal && "Should have a unique destination value");
4489     ICI->setOperand(0, VVal);
4490 
4491     if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
4492       ICI->replaceAllUsesWith(V);
4493       ICI->eraseFromParent();
4494     }
4495     // BB is now empty, so it is likely to simplify away.
4496     return requestResimplify();
4497   }
4498 
4499   // Ok, the block is reachable from the default dest.  If the constant we're
4500   // comparing exists in one of the other edges, then we can constant fold ICI
4501   // and zap it.
4502   if (SI->findCaseValue(Cst) != SI->case_default()) {
4503     Value *V;
4504     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4505       V = ConstantInt::getFalse(BB->getContext());
4506     else
4507       V = ConstantInt::getTrue(BB->getContext());
4508 
4509     ICI->replaceAllUsesWith(V);
4510     ICI->eraseFromParent();
4511     // BB is now empty, so it is likely to simplify away.
4512     return requestResimplify();
4513   }
4514 
4515   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4516   // the block.
4517   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4518   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4519   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4520       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4521     return false;
4522 
4523   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4524   // true in the PHI.
4525   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4526   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4527 
4528   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4529     std::swap(DefaultCst, NewCst);
4530 
4531   // Replace ICI (which is used by the PHI for the default value) with true or
4532   // false depending on if it is EQ or NE.
4533   ICI->replaceAllUsesWith(DefaultCst);
4534   ICI->eraseFromParent();
4535 
4536   SmallVector<DominatorTree::UpdateType, 2> Updates;
4537 
4538   // Okay, the switch goes to this block on a default value.  Add an edge from
4539   // the switch to the merge point on the compared value.
4540   BasicBlock *NewBB =
4541       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4542   {
4543     SwitchInstProfUpdateWrapper SIW(*SI);
4544     auto W0 = SIW.getSuccessorWeight(0);
4545     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4546     if (W0) {
4547       NewW = ((uint64_t(*W0) + 1) >> 1);
4548       SIW.setSuccessorWeight(0, *NewW);
4549     }
4550     SIW.addCase(Cst, NewBB, NewW);
4551     if (DTU)
4552       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4553   }
4554 
4555   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4556   Builder.SetInsertPoint(NewBB);
4557   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4558   Builder.CreateBr(SuccBlock);
4559   PHIUse->addIncoming(NewCst, NewBB);
4560   if (DTU) {
4561     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4562     DTU->applyUpdates(Updates);
4563   }
4564   return true;
4565 }
4566 
4567 /// The specified branch is a conditional branch.
4568 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4569 /// fold it into a switch instruction if so.
4570 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4571                                                IRBuilder<> &Builder,
4572                                                const DataLayout &DL) {
4573   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4574   if (!Cond)
4575     return false;
4576 
4577   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4578   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4579   // 'setne's and'ed together, collect them.
4580 
4581   // Try to gather values from a chain of and/or to be turned into a switch
4582   ConstantComparesGatherer ConstantCompare(Cond, DL);
4583   // Unpack the result
4584   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4585   Value *CompVal = ConstantCompare.CompValue;
4586   unsigned UsedICmps = ConstantCompare.UsedICmps;
4587   Value *ExtraCase = ConstantCompare.Extra;
4588 
4589   // If we didn't have a multiply compared value, fail.
4590   if (!CompVal)
4591     return false;
4592 
4593   // Avoid turning single icmps into a switch.
4594   if (UsedICmps <= 1)
4595     return false;
4596 
4597   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4598 
4599   // There might be duplicate constants in the list, which the switch
4600   // instruction can't handle, remove them now.
4601   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4602   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4603 
4604   // If Extra was used, we require at least two switch values to do the
4605   // transformation.  A switch with one value is just a conditional branch.
4606   if (ExtraCase && Values.size() < 2)
4607     return false;
4608 
4609   // TODO: Preserve branch weight metadata, similarly to how
4610   // FoldValueComparisonIntoPredecessors preserves it.
4611 
4612   // Figure out which block is which destination.
4613   BasicBlock *DefaultBB = BI->getSuccessor(1);
4614   BasicBlock *EdgeBB = BI->getSuccessor(0);
4615   if (!TrueWhenEqual)
4616     std::swap(DefaultBB, EdgeBB);
4617 
4618   BasicBlock *BB = BI->getParent();
4619 
4620   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4621                     << " cases into SWITCH.  BB is:\n"
4622                     << *BB);
4623 
4624   SmallVector<DominatorTree::UpdateType, 2> Updates;
4625 
4626   // If there are any extra values that couldn't be folded into the switch
4627   // then we evaluate them with an explicit branch first. Split the block
4628   // right before the condbr to handle it.
4629   if (ExtraCase) {
4630     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4631                                    /*MSSAU=*/nullptr, "switch.early.test");
4632 
4633     // Remove the uncond branch added to the old block.
4634     Instruction *OldTI = BB->getTerminator();
4635     Builder.SetInsertPoint(OldTI);
4636 
4637     // There can be an unintended UB if extra values are Poison. Before the
4638     // transformation, extra values may not be evaluated according to the
4639     // condition, and it will not raise UB. But after transformation, we are
4640     // evaluating extra values before checking the condition, and it will raise
4641     // UB. It can be solved by adding freeze instruction to extra values.
4642     AssumptionCache *AC = Options.AC;
4643 
4644     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4645       ExtraCase = Builder.CreateFreeze(ExtraCase);
4646 
4647     if (TrueWhenEqual)
4648       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4649     else
4650       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4651 
4652     OldTI->eraseFromParent();
4653 
4654     if (DTU)
4655       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4656 
4657     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4658     // for the edge we just added.
4659     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4660 
4661     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4662                       << "\nEXTRABB = " << *BB);
4663     BB = NewBB;
4664   }
4665 
4666   Builder.SetInsertPoint(BI);
4667   // Convert pointer to int before we switch.
4668   if (CompVal->getType()->isPointerTy()) {
4669     CompVal = Builder.CreatePtrToInt(
4670         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4671   }
4672 
4673   // Create the new switch instruction now.
4674   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4675 
4676   // Add all of the 'cases' to the switch instruction.
4677   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4678     New->addCase(Values[i], EdgeBB);
4679 
4680   // We added edges from PI to the EdgeBB.  As such, if there were any
4681   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4682   // the number of edges added.
4683   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4684     PHINode *PN = cast<PHINode>(BBI);
4685     Value *InVal = PN->getIncomingValueForBlock(BB);
4686     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4687       PN->addIncoming(InVal, BB);
4688   }
4689 
4690   // Erase the old branch instruction.
4691   EraseTerminatorAndDCECond(BI);
4692   if (DTU)
4693     DTU->applyUpdates(Updates);
4694 
4695   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4696   return true;
4697 }
4698 
4699 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4700   if (isa<PHINode>(RI->getValue()))
4701     return simplifyCommonResume(RI);
4702   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4703            RI->getValue() == RI->getParent()->getFirstNonPHI())
4704     // The resume must unwind the exception that caused control to branch here.
4705     return simplifySingleResume(RI);
4706 
4707   return false;
4708 }
4709 
4710 // Check if cleanup block is empty
4711 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4712   for (Instruction &I : R) {
4713     auto *II = dyn_cast<IntrinsicInst>(&I);
4714     if (!II)
4715       return false;
4716 
4717     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4718     switch (IntrinsicID) {
4719     case Intrinsic::dbg_declare:
4720     case Intrinsic::dbg_value:
4721     case Intrinsic::dbg_label:
4722     case Intrinsic::lifetime_end:
4723       break;
4724     default:
4725       return false;
4726     }
4727   }
4728   return true;
4729 }
4730 
4731 // Simplify resume that is shared by several landing pads (phi of landing pad).
4732 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4733   BasicBlock *BB = RI->getParent();
4734 
4735   // Check that there are no other instructions except for debug and lifetime
4736   // intrinsics between the phi's and resume instruction.
4737   if (!isCleanupBlockEmpty(
4738           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4739     return false;
4740 
4741   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4742   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4743 
4744   // Check incoming blocks to see if any of them are trivial.
4745   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4746        Idx++) {
4747     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4748     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4749 
4750     // If the block has other successors, we can not delete it because
4751     // it has other dependents.
4752     if (IncomingBB->getUniqueSuccessor() != BB)
4753       continue;
4754 
4755     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4756     // Not the landing pad that caused the control to branch here.
4757     if (IncomingValue != LandingPad)
4758       continue;
4759 
4760     if (isCleanupBlockEmpty(
4761             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4762       TrivialUnwindBlocks.insert(IncomingBB);
4763   }
4764 
4765   // If no trivial unwind blocks, don't do any simplifications.
4766   if (TrivialUnwindBlocks.empty())
4767     return false;
4768 
4769   // Turn all invokes that unwind here into calls.
4770   for (auto *TrivialBB : TrivialUnwindBlocks) {
4771     // Blocks that will be simplified should be removed from the phi node.
4772     // Note there could be multiple edges to the resume block, and we need
4773     // to remove them all.
4774     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4775       BB->removePredecessor(TrivialBB, true);
4776 
4777     for (BasicBlock *Pred :
4778          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4779       removeUnwindEdge(Pred, DTU);
4780       ++NumInvokes;
4781     }
4782 
4783     // In each SimplifyCFG run, only the current processed block can be erased.
4784     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4785     // of erasing TrivialBB, we only remove the branch to the common resume
4786     // block so that we can later erase the resume block since it has no
4787     // predecessors.
4788     TrivialBB->getTerminator()->eraseFromParent();
4789     new UnreachableInst(RI->getContext(), TrivialBB);
4790     if (DTU)
4791       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4792   }
4793 
4794   // Delete the resume block if all its predecessors have been removed.
4795   if (pred_empty(BB))
4796     DeleteDeadBlock(BB, DTU);
4797 
4798   return !TrivialUnwindBlocks.empty();
4799 }
4800 
4801 // Simplify resume that is only used by a single (non-phi) landing pad.
4802 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4803   BasicBlock *BB = RI->getParent();
4804   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4805   assert(RI->getValue() == LPInst &&
4806          "Resume must unwind the exception that caused control to here");
4807 
4808   // Check that there are no other instructions except for debug intrinsics.
4809   if (!isCleanupBlockEmpty(
4810           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4811     return false;
4812 
4813   // Turn all invokes that unwind here into calls and delete the basic block.
4814   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4815     removeUnwindEdge(Pred, DTU);
4816     ++NumInvokes;
4817   }
4818 
4819   // The landingpad is now unreachable.  Zap it.
4820   DeleteDeadBlock(BB, DTU);
4821   return true;
4822 }
4823 
4824 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4825   // If this is a trivial cleanup pad that executes no instructions, it can be
4826   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4827   // that is an EH pad will be updated to continue to the caller and any
4828   // predecessor that terminates with an invoke instruction will have its invoke
4829   // instruction converted to a call instruction.  If the cleanup pad being
4830   // simplified does not continue to the caller, each predecessor will be
4831   // updated to continue to the unwind destination of the cleanup pad being
4832   // simplified.
4833   BasicBlock *BB = RI->getParent();
4834   CleanupPadInst *CPInst = RI->getCleanupPad();
4835   if (CPInst->getParent() != BB)
4836     // This isn't an empty cleanup.
4837     return false;
4838 
4839   // We cannot kill the pad if it has multiple uses.  This typically arises
4840   // from unreachable basic blocks.
4841   if (!CPInst->hasOneUse())
4842     return false;
4843 
4844   // Check that there are no other instructions except for benign intrinsics.
4845   if (!isCleanupBlockEmpty(
4846           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4847     return false;
4848 
4849   // If the cleanup return we are simplifying unwinds to the caller, this will
4850   // set UnwindDest to nullptr.
4851   BasicBlock *UnwindDest = RI->getUnwindDest();
4852   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4853 
4854   // We're about to remove BB from the control flow.  Before we do, sink any
4855   // PHINodes into the unwind destination.  Doing this before changing the
4856   // control flow avoids some potentially slow checks, since we can currently
4857   // be certain that UnwindDest and BB have no common predecessors (since they
4858   // are both EH pads).
4859   if (UnwindDest) {
4860     // First, go through the PHI nodes in UnwindDest and update any nodes that
4861     // reference the block we are removing
4862     for (PHINode &DestPN : UnwindDest->phis()) {
4863       int Idx = DestPN.getBasicBlockIndex(BB);
4864       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4865       assert(Idx != -1);
4866       // This PHI node has an incoming value that corresponds to a control
4867       // path through the cleanup pad we are removing.  If the incoming
4868       // value is in the cleanup pad, it must be a PHINode (because we
4869       // verified above that the block is otherwise empty).  Otherwise, the
4870       // value is either a constant or a value that dominates the cleanup
4871       // pad being removed.
4872       //
4873       // Because BB and UnwindDest are both EH pads, all of their
4874       // predecessors must unwind to these blocks, and since no instruction
4875       // can have multiple unwind destinations, there will be no overlap in
4876       // incoming blocks between SrcPN and DestPN.
4877       Value *SrcVal = DestPN.getIncomingValue(Idx);
4878       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4879 
4880       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4881       for (auto *Pred : predecessors(BB)) {
4882         Value *Incoming =
4883             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4884         DestPN.addIncoming(Incoming, Pred);
4885       }
4886     }
4887 
4888     // Sink any remaining PHI nodes directly into UnwindDest.
4889     Instruction *InsertPt = DestEHPad;
4890     for (PHINode &PN : make_early_inc_range(BB->phis())) {
4891       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4892         // If the PHI node has no uses or all of its uses are in this basic
4893         // block (meaning they are debug or lifetime intrinsics), just leave
4894         // it.  It will be erased when we erase BB below.
4895         continue;
4896 
4897       // Otherwise, sink this PHI node into UnwindDest.
4898       // Any predecessors to UnwindDest which are not already represented
4899       // must be back edges which inherit the value from the path through
4900       // BB.  In this case, the PHI value must reference itself.
4901       for (auto *pred : predecessors(UnwindDest))
4902         if (pred != BB)
4903           PN.addIncoming(&PN, pred);
4904       PN.moveBefore(InsertPt);
4905       // Also, add a dummy incoming value for the original BB itself,
4906       // so that the PHI is well-formed until we drop said predecessor.
4907       PN.addIncoming(UndefValue::get(PN.getType()), BB);
4908     }
4909   }
4910 
4911   std::vector<DominatorTree::UpdateType> Updates;
4912 
4913   // We use make_early_inc_range here because we will remove all predecessors.
4914   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4915     if (UnwindDest == nullptr) {
4916       if (DTU) {
4917         DTU->applyUpdates(Updates);
4918         Updates.clear();
4919       }
4920       removeUnwindEdge(PredBB, DTU);
4921       ++NumInvokes;
4922     } else {
4923       BB->removePredecessor(PredBB);
4924       Instruction *TI = PredBB->getTerminator();
4925       TI->replaceUsesOfWith(BB, UnwindDest);
4926       if (DTU) {
4927         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4928         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4929       }
4930     }
4931   }
4932 
4933   if (DTU)
4934     DTU->applyUpdates(Updates);
4935 
4936   DeleteDeadBlock(BB, DTU);
4937 
4938   return true;
4939 }
4940 
4941 // Try to merge two cleanuppads together.
4942 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4943   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4944   // with.
4945   BasicBlock *UnwindDest = RI->getUnwindDest();
4946   if (!UnwindDest)
4947     return false;
4948 
4949   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4950   // be safe to merge without code duplication.
4951   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4952     return false;
4953 
4954   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4955   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4956   if (!SuccessorCleanupPad)
4957     return false;
4958 
4959   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4960   // Replace any uses of the successor cleanupad with the predecessor pad
4961   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4962   // funclet bundle operands.
4963   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4964   // Remove the old cleanuppad.
4965   SuccessorCleanupPad->eraseFromParent();
4966   // Now, we simply replace the cleanupret with a branch to the unwind
4967   // destination.
4968   BranchInst::Create(UnwindDest, RI->getParent());
4969   RI->eraseFromParent();
4970 
4971   return true;
4972 }
4973 
4974 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4975   // It is possible to transiantly have an undef cleanuppad operand because we
4976   // have deleted some, but not all, dead blocks.
4977   // Eventually, this block will be deleted.
4978   if (isa<UndefValue>(RI->getOperand(0)))
4979     return false;
4980 
4981   if (mergeCleanupPad(RI))
4982     return true;
4983 
4984   if (removeEmptyCleanup(RI, DTU))
4985     return true;
4986 
4987   return false;
4988 }
4989 
4990 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4991 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4992   BasicBlock *BB = UI->getParent();
4993 
4994   bool Changed = false;
4995 
4996   // If there are any instructions immediately before the unreachable that can
4997   // be removed, do so.
4998   while (UI->getIterator() != BB->begin()) {
4999     BasicBlock::iterator BBI = UI->getIterator();
5000     --BBI;
5001 
5002     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
5003       break; // Can not drop any more instructions. We're done here.
5004     // Otherwise, this instruction can be freely erased,
5005     // even if it is not side-effect free.
5006 
5007     // Note that deleting EH's here is in fact okay, although it involves a bit
5008     // of subtle reasoning. If this inst is an EH, all the predecessors of this
5009     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
5010     // and we can therefore guarantee this block will be erased.
5011 
5012     // Delete this instruction (any uses are guaranteed to be dead)
5013     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
5014     BBI->eraseFromParent();
5015     Changed = true;
5016   }
5017 
5018   // If the unreachable instruction is the first in the block, take a gander
5019   // at all of the predecessors of this instruction, and simplify them.
5020   if (&BB->front() != UI)
5021     return Changed;
5022 
5023   std::vector<DominatorTree::UpdateType> Updates;
5024 
5025   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
5026   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
5027     auto *Predecessor = Preds[i];
5028     Instruction *TI = Predecessor->getTerminator();
5029     IRBuilder<> Builder(TI);
5030     if (auto *BI = dyn_cast<BranchInst>(TI)) {
5031       // We could either have a proper unconditional branch,
5032       // or a degenerate conditional branch with matching destinations.
5033       if (all_of(BI->successors(),
5034                  [BB](auto *Successor) { return Successor == BB; })) {
5035         new UnreachableInst(TI->getContext(), TI);
5036         TI->eraseFromParent();
5037         Changed = true;
5038       } else {
5039         assert(BI->isConditional() && "Can't get here with an uncond branch.");
5040         Value* Cond = BI->getCondition();
5041         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
5042                "The destinations are guaranteed to be different here.");
5043         if (BI->getSuccessor(0) == BB) {
5044           Builder.CreateAssumption(Builder.CreateNot(Cond));
5045           Builder.CreateBr(BI->getSuccessor(1));
5046         } else {
5047           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
5048           Builder.CreateAssumption(Cond);
5049           Builder.CreateBr(BI->getSuccessor(0));
5050         }
5051         EraseTerminatorAndDCECond(BI);
5052         Changed = true;
5053       }
5054       if (DTU)
5055         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5056     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5057       SwitchInstProfUpdateWrapper SU(*SI);
5058       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5059         if (i->getCaseSuccessor() != BB) {
5060           ++i;
5061           continue;
5062         }
5063         BB->removePredecessor(SU->getParent());
5064         i = SU.removeCase(i);
5065         e = SU->case_end();
5066         Changed = true;
5067       }
5068       // Note that the default destination can't be removed!
5069       if (DTU && SI->getDefaultDest() != BB)
5070         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5071     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5072       if (II->getUnwindDest() == BB) {
5073         if (DTU) {
5074           DTU->applyUpdates(Updates);
5075           Updates.clear();
5076         }
5077         removeUnwindEdge(TI->getParent(), DTU);
5078         Changed = true;
5079       }
5080     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5081       if (CSI->getUnwindDest() == BB) {
5082         if (DTU) {
5083           DTU->applyUpdates(Updates);
5084           Updates.clear();
5085         }
5086         removeUnwindEdge(TI->getParent(), DTU);
5087         Changed = true;
5088         continue;
5089       }
5090 
5091       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5092                                              E = CSI->handler_end();
5093            I != E; ++I) {
5094         if (*I == BB) {
5095           CSI->removeHandler(I);
5096           --I;
5097           --E;
5098           Changed = true;
5099         }
5100       }
5101       if (DTU)
5102         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5103       if (CSI->getNumHandlers() == 0) {
5104         if (CSI->hasUnwindDest()) {
5105           // Redirect all predecessors of the block containing CatchSwitchInst
5106           // to instead branch to the CatchSwitchInst's unwind destination.
5107           if (DTU) {
5108             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5109               Updates.push_back({DominatorTree::Insert,
5110                                  PredecessorOfPredecessor,
5111                                  CSI->getUnwindDest()});
5112               Updates.push_back({DominatorTree::Delete,
5113                                  PredecessorOfPredecessor, Predecessor});
5114             }
5115           }
5116           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5117         } else {
5118           // Rewrite all preds to unwind to caller (or from invoke to call).
5119           if (DTU) {
5120             DTU->applyUpdates(Updates);
5121             Updates.clear();
5122           }
5123           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5124           for (BasicBlock *EHPred : EHPreds)
5125             removeUnwindEdge(EHPred, DTU);
5126         }
5127         // The catchswitch is no longer reachable.
5128         new UnreachableInst(CSI->getContext(), CSI);
5129         CSI->eraseFromParent();
5130         Changed = true;
5131       }
5132     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5133       (void)CRI;
5134       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5135              "Expected to always have an unwind to BB.");
5136       if (DTU)
5137         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5138       new UnreachableInst(TI->getContext(), TI);
5139       TI->eraseFromParent();
5140       Changed = true;
5141     }
5142   }
5143 
5144   if (DTU)
5145     DTU->applyUpdates(Updates);
5146 
5147   // If this block is now dead, remove it.
5148   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5149     DeleteDeadBlock(BB, DTU);
5150     return true;
5151   }
5152 
5153   return Changed;
5154 }
5155 
5156 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5157   assert(Cases.size() >= 1);
5158 
5159   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
5160   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5161     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5162       return false;
5163   }
5164   return true;
5165 }
5166 
5167 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5168                                            DomTreeUpdater *DTU) {
5169   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5170   auto *BB = Switch->getParent();
5171   auto *OrigDefaultBlock = Switch->getDefaultDest();
5172   OrigDefaultBlock->removePredecessor(BB);
5173   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5174       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5175       OrigDefaultBlock);
5176   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5177   Switch->setDefaultDest(&*NewDefaultBlock);
5178   if (DTU) {
5179     SmallVector<DominatorTree::UpdateType, 2> Updates;
5180     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5181     if (!is_contained(successors(BB), OrigDefaultBlock))
5182       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5183     DTU->applyUpdates(Updates);
5184   }
5185 }
5186 
5187 /// Turn a switch with two reachable destinations into an integer range
5188 /// comparison and branch.
5189 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
5190                                              IRBuilder<> &Builder) {
5191   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5192 
5193   bool HasDefault =
5194       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5195 
5196   auto *BB = SI->getParent();
5197 
5198   // Partition the cases into two sets with different destinations.
5199   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5200   BasicBlock *DestB = nullptr;
5201   SmallVector<ConstantInt *, 16> CasesA;
5202   SmallVector<ConstantInt *, 16> CasesB;
5203 
5204   for (auto Case : SI->cases()) {
5205     BasicBlock *Dest = Case.getCaseSuccessor();
5206     if (!DestA)
5207       DestA = Dest;
5208     if (Dest == DestA) {
5209       CasesA.push_back(Case.getCaseValue());
5210       continue;
5211     }
5212     if (!DestB)
5213       DestB = Dest;
5214     if (Dest == DestB) {
5215       CasesB.push_back(Case.getCaseValue());
5216       continue;
5217     }
5218     return false; // More than two destinations.
5219   }
5220 
5221   assert(DestA && DestB &&
5222          "Single-destination switch should have been folded.");
5223   assert(DestA != DestB);
5224   assert(DestB != SI->getDefaultDest());
5225   assert(!CasesB.empty() && "There must be non-default cases.");
5226   assert(!CasesA.empty() || HasDefault);
5227 
5228   // Figure out if one of the sets of cases form a contiguous range.
5229   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5230   BasicBlock *ContiguousDest = nullptr;
5231   BasicBlock *OtherDest = nullptr;
5232   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
5233     ContiguousCases = &CasesA;
5234     ContiguousDest = DestA;
5235     OtherDest = DestB;
5236   } else if (CasesAreContiguous(CasesB)) {
5237     ContiguousCases = &CasesB;
5238     ContiguousDest = DestB;
5239     OtherDest = DestA;
5240   } else
5241     return false;
5242 
5243   // Start building the compare and branch.
5244 
5245   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5246   Constant *NumCases =
5247       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5248 
5249   Value *Sub = SI->getCondition();
5250   if (!Offset->isNullValue())
5251     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5252 
5253   Value *Cmp;
5254   // If NumCases overflowed, then all possible values jump to the successor.
5255   if (NumCases->isNullValue() && !ContiguousCases->empty())
5256     Cmp = ConstantInt::getTrue(SI->getContext());
5257   else
5258     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5259   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5260 
5261   // Update weight for the newly-created conditional branch.
5262   if (HasBranchWeights(SI)) {
5263     SmallVector<uint64_t, 8> Weights;
5264     GetBranchWeights(SI, Weights);
5265     if (Weights.size() == 1 + SI->getNumCases()) {
5266       uint64_t TrueWeight = 0;
5267       uint64_t FalseWeight = 0;
5268       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5269         if (SI->getSuccessor(I) == ContiguousDest)
5270           TrueWeight += Weights[I];
5271         else
5272           FalseWeight += Weights[I];
5273       }
5274       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5275         TrueWeight /= 2;
5276         FalseWeight /= 2;
5277       }
5278       setBranchWeights(NewBI, TrueWeight, FalseWeight);
5279     }
5280   }
5281 
5282   // Prune obsolete incoming values off the successors' PHI nodes.
5283   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5284     unsigned PreviousEdges = ContiguousCases->size();
5285     if (ContiguousDest == SI->getDefaultDest())
5286       ++PreviousEdges;
5287     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5288       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5289   }
5290   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5291     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5292     if (OtherDest == SI->getDefaultDest())
5293       ++PreviousEdges;
5294     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5295       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5296   }
5297 
5298   // Clean up the default block - it may have phis or other instructions before
5299   // the unreachable terminator.
5300   if (!HasDefault)
5301     createUnreachableSwitchDefault(SI, DTU);
5302 
5303   auto *UnreachableDefault = SI->getDefaultDest();
5304 
5305   // Drop the switch.
5306   SI->eraseFromParent();
5307 
5308   if (!HasDefault && DTU)
5309     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5310 
5311   return true;
5312 }
5313 
5314 /// Compute masked bits for the condition of a switch
5315 /// and use it to remove dead cases.
5316 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5317                                      AssumptionCache *AC,
5318                                      const DataLayout &DL) {
5319   Value *Cond = SI->getCondition();
5320   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5321 
5322   // We can also eliminate cases by determining that their values are outside of
5323   // the limited range of the condition based on how many significant (non-sign)
5324   // bits are in the condition value.
5325   unsigned MaxSignificantBitsInCond =
5326       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5327 
5328   // Gather dead cases.
5329   SmallVector<ConstantInt *, 8> DeadCases;
5330   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5331   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5332   for (auto &Case : SI->cases()) {
5333     auto *Successor = Case.getCaseSuccessor();
5334     if (DTU) {
5335       if (!NumPerSuccessorCases.count(Successor))
5336         UniqueSuccessors.push_back(Successor);
5337       ++NumPerSuccessorCases[Successor];
5338     }
5339     const APInt &CaseVal = Case.getCaseValue()->getValue();
5340     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5341         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5342       DeadCases.push_back(Case.getCaseValue());
5343       if (DTU)
5344         --NumPerSuccessorCases[Successor];
5345       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5346                         << " is dead.\n");
5347     }
5348   }
5349 
5350   // If we can prove that the cases must cover all possible values, the
5351   // default destination becomes dead and we can remove it.  If we know some
5352   // of the bits in the value, we can use that to more precisely compute the
5353   // number of possible unique case values.
5354   bool HasDefault =
5355       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5356   const unsigned NumUnknownBits =
5357       Known.getBitWidth() - (Known.Zero | Known.One).countPopulation();
5358   assert(NumUnknownBits <= Known.getBitWidth());
5359   if (HasDefault && DeadCases.empty() &&
5360       NumUnknownBits < 64 /* avoid overflow */ &&
5361       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5362     createUnreachableSwitchDefault(SI, DTU);
5363     return true;
5364   }
5365 
5366   if (DeadCases.empty())
5367     return false;
5368 
5369   SwitchInstProfUpdateWrapper SIW(*SI);
5370   for (ConstantInt *DeadCase : DeadCases) {
5371     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5372     assert(CaseI != SI->case_default() &&
5373            "Case was not found. Probably mistake in DeadCases forming.");
5374     // Prune unused values from PHI nodes.
5375     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5376     SIW.removeCase(CaseI);
5377   }
5378 
5379   if (DTU) {
5380     std::vector<DominatorTree::UpdateType> Updates;
5381     for (auto *Successor : UniqueSuccessors)
5382       if (NumPerSuccessorCases[Successor] == 0)
5383         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5384     DTU->applyUpdates(Updates);
5385   }
5386 
5387   return true;
5388 }
5389 
5390 /// If BB would be eligible for simplification by
5391 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5392 /// by an unconditional branch), look at the phi node for BB in the successor
5393 /// block and see if the incoming value is equal to CaseValue. If so, return
5394 /// the phi node, and set PhiIndex to BB's index in the phi node.
5395 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5396                                               BasicBlock *BB, int *PhiIndex) {
5397   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5398     return nullptr; // BB must be empty to be a candidate for simplification.
5399   if (!BB->getSinglePredecessor())
5400     return nullptr; // BB must be dominated by the switch.
5401 
5402   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5403   if (!Branch || !Branch->isUnconditional())
5404     return nullptr; // Terminator must be unconditional branch.
5405 
5406   BasicBlock *Succ = Branch->getSuccessor(0);
5407 
5408   for (PHINode &PHI : Succ->phis()) {
5409     int Idx = PHI.getBasicBlockIndex(BB);
5410     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5411 
5412     Value *InValue = PHI.getIncomingValue(Idx);
5413     if (InValue != CaseValue)
5414       continue;
5415 
5416     *PhiIndex = Idx;
5417     return &PHI;
5418   }
5419 
5420   return nullptr;
5421 }
5422 
5423 /// Try to forward the condition of a switch instruction to a phi node
5424 /// dominated by the switch, if that would mean that some of the destination
5425 /// blocks of the switch can be folded away. Return true if a change is made.
5426 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5427   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5428 
5429   ForwardingNodesMap ForwardingNodes;
5430   BasicBlock *SwitchBlock = SI->getParent();
5431   bool Changed = false;
5432   for (auto &Case : SI->cases()) {
5433     ConstantInt *CaseValue = Case.getCaseValue();
5434     BasicBlock *CaseDest = Case.getCaseSuccessor();
5435 
5436     // Replace phi operands in successor blocks that are using the constant case
5437     // value rather than the switch condition variable:
5438     //   switchbb:
5439     //   switch i32 %x, label %default [
5440     //     i32 17, label %succ
5441     //   ...
5442     //   succ:
5443     //     %r = phi i32 ... [ 17, %switchbb ] ...
5444     // -->
5445     //     %r = phi i32 ... [ %x, %switchbb ] ...
5446 
5447     for (PHINode &Phi : CaseDest->phis()) {
5448       // This only works if there is exactly 1 incoming edge from the switch to
5449       // a phi. If there is >1, that means multiple cases of the switch map to 1
5450       // value in the phi, and that phi value is not the switch condition. Thus,
5451       // this transform would not make sense (the phi would be invalid because
5452       // a phi can't have different incoming values from the same block).
5453       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5454       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5455           count(Phi.blocks(), SwitchBlock) == 1) {
5456         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5457         Changed = true;
5458       }
5459     }
5460 
5461     // Collect phi nodes that are indirectly using this switch's case constants.
5462     int PhiIdx;
5463     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5464       ForwardingNodes[Phi].push_back(PhiIdx);
5465   }
5466 
5467   for (auto &ForwardingNode : ForwardingNodes) {
5468     PHINode *Phi = ForwardingNode.first;
5469     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5470     if (Indexes.size() < 2)
5471       continue;
5472 
5473     for (int Index : Indexes)
5474       Phi->setIncomingValue(Index, SI->getCondition());
5475     Changed = true;
5476   }
5477 
5478   return Changed;
5479 }
5480 
5481 /// Return true if the backend will be able to handle
5482 /// initializing an array of constants like C.
5483 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5484   if (C->isThreadDependent())
5485     return false;
5486   if (C->isDLLImportDependent())
5487     return false;
5488 
5489   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5490       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5491       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5492     return false;
5493 
5494   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5495     // Pointer casts and in-bounds GEPs will not prohibit the backend from
5496     // materializing the array of constants.
5497     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5498     if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5499       return false;
5500   }
5501 
5502   if (!TTI.shouldBuildLookupTablesForConstant(C))
5503     return false;
5504 
5505   return true;
5506 }
5507 
5508 /// If V is a Constant, return it. Otherwise, try to look up
5509 /// its constant value in ConstantPool, returning 0 if it's not there.
5510 static Constant *
5511 LookupConstant(Value *V,
5512                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5513   if (Constant *C = dyn_cast<Constant>(V))
5514     return C;
5515   return ConstantPool.lookup(V);
5516 }
5517 
5518 /// Try to fold instruction I into a constant. This works for
5519 /// simple instructions such as binary operations where both operands are
5520 /// constant or can be replaced by constants from the ConstantPool. Returns the
5521 /// resulting constant on success, 0 otherwise.
5522 static Constant *
5523 ConstantFold(Instruction *I, const DataLayout &DL,
5524              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5525   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5526     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5527     if (!A)
5528       return nullptr;
5529     if (A->isAllOnesValue())
5530       return LookupConstant(Select->getTrueValue(), ConstantPool);
5531     if (A->isNullValue())
5532       return LookupConstant(Select->getFalseValue(), ConstantPool);
5533     return nullptr;
5534   }
5535 
5536   SmallVector<Constant *, 4> COps;
5537   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5538     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5539       COps.push_back(A);
5540     else
5541       return nullptr;
5542   }
5543 
5544   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5545     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5546                                            COps[1], DL);
5547   }
5548 
5549   return ConstantFoldInstOperands(I, COps, DL);
5550 }
5551 
5552 /// Try to determine the resulting constant values in phi nodes
5553 /// at the common destination basic block, *CommonDest, for one of the case
5554 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5555 /// case), of a switch instruction SI.
5556 static bool
5557 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5558                BasicBlock **CommonDest,
5559                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5560                const DataLayout &DL, const TargetTransformInfo &TTI) {
5561   // The block from which we enter the common destination.
5562   BasicBlock *Pred = SI->getParent();
5563 
5564   // If CaseDest is empty except for some side-effect free instructions through
5565   // which we can constant-propagate the CaseVal, continue to its successor.
5566   SmallDenseMap<Value *, Constant *> ConstantPool;
5567   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5568   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
5569     if (I.isTerminator()) {
5570       // If the terminator is a simple branch, continue to the next block.
5571       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5572         return false;
5573       Pred = CaseDest;
5574       CaseDest = I.getSuccessor(0);
5575     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5576       // Instruction is side-effect free and constant.
5577 
5578       // If the instruction has uses outside this block or a phi node slot for
5579       // the block, it is not safe to bypass the instruction since it would then
5580       // no longer dominate all its uses.
5581       for (auto &Use : I.uses()) {
5582         User *User = Use.getUser();
5583         if (Instruction *I = dyn_cast<Instruction>(User))
5584           if (I->getParent() == CaseDest)
5585             continue;
5586         if (PHINode *Phi = dyn_cast<PHINode>(User))
5587           if (Phi->getIncomingBlock(Use) == CaseDest)
5588             continue;
5589         return false;
5590       }
5591 
5592       ConstantPool.insert(std::make_pair(&I, C));
5593     } else {
5594       break;
5595     }
5596   }
5597 
5598   // If we did not have a CommonDest before, use the current one.
5599   if (!*CommonDest)
5600     *CommonDest = CaseDest;
5601   // If the destination isn't the common one, abort.
5602   if (CaseDest != *CommonDest)
5603     return false;
5604 
5605   // Get the values for this case from phi nodes in the destination block.
5606   for (PHINode &PHI : (*CommonDest)->phis()) {
5607     int Idx = PHI.getBasicBlockIndex(Pred);
5608     if (Idx == -1)
5609       continue;
5610 
5611     Constant *ConstVal =
5612         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5613     if (!ConstVal)
5614       return false;
5615 
5616     // Be conservative about which kinds of constants we support.
5617     if (!ValidLookupTableConstant(ConstVal, TTI))
5618       return false;
5619 
5620     Res.push_back(std::make_pair(&PHI, ConstVal));
5621   }
5622 
5623   return Res.size() > 0;
5624 }
5625 
5626 // Helper function used to add CaseVal to the list of cases that generate
5627 // Result. Returns the updated number of cases that generate this result.
5628 static size_t mapCaseToResult(ConstantInt *CaseVal,
5629                               SwitchCaseResultVectorTy &UniqueResults,
5630                               Constant *Result) {
5631   for (auto &I : UniqueResults) {
5632     if (I.first == Result) {
5633       I.second.push_back(CaseVal);
5634       return I.second.size();
5635     }
5636   }
5637   UniqueResults.push_back(
5638       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5639   return 1;
5640 }
5641 
5642 // Helper function that initializes a map containing
5643 // results for the PHI node of the common destination block for a switch
5644 // instruction. Returns false if multiple PHI nodes have been found or if
5645 // there is not a common destination block for the switch.
5646 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
5647                                   BasicBlock *&CommonDest,
5648                                   SwitchCaseResultVectorTy &UniqueResults,
5649                                   Constant *&DefaultResult,
5650                                   const DataLayout &DL,
5651                                   const TargetTransformInfo &TTI,
5652                                   uintptr_t MaxUniqueResults) {
5653   for (auto &I : SI->cases()) {
5654     ConstantInt *CaseVal = I.getCaseValue();
5655 
5656     // Resulting value at phi nodes for this case value.
5657     SwitchCaseResultsTy Results;
5658     if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5659                         DL, TTI))
5660       return false;
5661 
5662     // Only one value per case is permitted.
5663     if (Results.size() > 1)
5664       return false;
5665 
5666     // Add the case->result mapping to UniqueResults.
5667     const size_t NumCasesForResult =
5668         mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5669 
5670     // Early out if there are too many cases for this result.
5671     if (NumCasesForResult > MaxSwitchCasesPerResult)
5672       return false;
5673 
5674     // Early out if there are too many unique results.
5675     if (UniqueResults.size() > MaxUniqueResults)
5676       return false;
5677 
5678     // Check the PHI consistency.
5679     if (!PHI)
5680       PHI = Results[0].first;
5681     else if (PHI != Results[0].first)
5682       return false;
5683   }
5684   // Find the default result value.
5685   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5686   BasicBlock *DefaultDest = SI->getDefaultDest();
5687   getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5688                  DL, TTI);
5689   // If the default value is not found abort unless the default destination
5690   // is unreachable.
5691   DefaultResult =
5692       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5693   if ((!DefaultResult &&
5694        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5695     return false;
5696 
5697   return true;
5698 }
5699 
5700 // Helper function that checks if it is possible to transform a switch with only
5701 // two cases (or two cases + default) that produces a result into a select.
5702 // TODO: Handle switches with more than 2 cases that map to the same result.
5703 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
5704                                  Constant *DefaultResult, Value *Condition,
5705                                  IRBuilder<> &Builder) {
5706   // If we are selecting between only two cases transform into a simple
5707   // select or a two-way select if default is possible.
5708   // Example:
5709   // switch (a) {                  %0 = icmp eq i32 %a, 10
5710   //   case 10: return 42;         %1 = select i1 %0, i32 42, i32 4
5711   //   case 20: return 2;   ---->  %2 = icmp eq i32 %a, 20
5712   //   default: return 4;          %3 = select i1 %2, i32 2, i32 %1
5713   // }
5714   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5715       ResultVector[1].second.size() == 1) {
5716     ConstantInt *FirstCase = ResultVector[0].second[0];
5717     ConstantInt *SecondCase = ResultVector[1].second[0];
5718     Value *SelectValue = ResultVector[1].first;
5719     if (DefaultResult) {
5720       Value *ValueCompare =
5721           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5722       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5723                                          DefaultResult, "switch.select");
5724     }
5725     Value *ValueCompare =
5726         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5727     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5728                                 SelectValue, "switch.select");
5729   }
5730 
5731   // Handle the degenerate case where two cases have the same result value.
5732   if (ResultVector.size() == 1 && DefaultResult) {
5733     ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
5734     unsigned CaseCount = CaseValues.size();
5735     // n bits group cases map to the same result:
5736     // case 0,4      -> Cond & 0b1..1011 == 0 ? result : default
5737     // case 0,2,4,6  -> Cond & 0b1..1001 == 0 ? result : default
5738     // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
5739     if (isPowerOf2_32(CaseCount)) {
5740       ConstantInt *MinCaseVal = CaseValues[0];
5741       // Find mininal value.
5742       for (auto Case : CaseValues)
5743         if (Case->getValue().slt(MinCaseVal->getValue()))
5744           MinCaseVal = Case;
5745 
5746       // Mark the bits case number touched.
5747       APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
5748       for (auto Case : CaseValues)
5749         BitMask |= (Case->getValue() - MinCaseVal->getValue());
5750 
5751       // Check if cases with the same result can cover all number
5752       // in touched bits.
5753       if (BitMask.countPopulation() == Log2_32(CaseCount)) {
5754         if (!MinCaseVal->isNullValue())
5755           Condition = Builder.CreateSub(Condition, MinCaseVal);
5756         Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
5757         Value *Cmp = Builder.CreateICmpEQ(
5758             And, Constant::getNullValue(And->getType()), "switch.selectcmp");
5759         return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5760       }
5761     }
5762 
5763     // Handle the degenerate case where two cases have the same value.
5764     if (CaseValues.size() == 2) {
5765       Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
5766                                          "switch.selectcmp.case1");
5767       Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
5768                                          "switch.selectcmp.case2");
5769       Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5770       return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5771     }
5772   }
5773 
5774   return nullptr;
5775 }
5776 
5777 // Helper function to cleanup a switch instruction that has been converted into
5778 // a select, fixing up PHI nodes and basic blocks.
5779 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
5780                                         Value *SelectValue,
5781                                         IRBuilder<> &Builder,
5782                                         DomTreeUpdater *DTU) {
5783   std::vector<DominatorTree::UpdateType> Updates;
5784 
5785   BasicBlock *SelectBB = SI->getParent();
5786   BasicBlock *DestBB = PHI->getParent();
5787 
5788   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5789     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5790   Builder.CreateBr(DestBB);
5791 
5792   // Remove the switch.
5793 
5794   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5795     PHI->removeIncomingValue(SelectBB);
5796   PHI->addIncoming(SelectValue, SelectBB);
5797 
5798   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5799   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5800     BasicBlock *Succ = SI->getSuccessor(i);
5801 
5802     if (Succ == DestBB)
5803       continue;
5804     Succ->removePredecessor(SelectBB);
5805     if (DTU && RemovedSuccessors.insert(Succ).second)
5806       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5807   }
5808   SI->eraseFromParent();
5809   if (DTU)
5810     DTU->applyUpdates(Updates);
5811 }
5812 
5813 /// If a switch is only used to initialize one or more phi nodes in a common
5814 /// successor block with only two different constant values, try to replace the
5815 /// switch with a select. Returns true if the fold was made.
5816 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5817                               DomTreeUpdater *DTU, const DataLayout &DL,
5818                               const TargetTransformInfo &TTI) {
5819   Value *const Cond = SI->getCondition();
5820   PHINode *PHI = nullptr;
5821   BasicBlock *CommonDest = nullptr;
5822   Constant *DefaultResult;
5823   SwitchCaseResultVectorTy UniqueResults;
5824   // Collect all the cases that will deliver the same value from the switch.
5825   if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5826                              DL, TTI, /*MaxUniqueResults*/ 2))
5827     return false;
5828 
5829   assert(PHI != nullptr && "PHI for value select not found");
5830   Builder.SetInsertPoint(SI);
5831   Value *SelectValue =
5832       foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
5833   if (!SelectValue)
5834     return false;
5835 
5836   removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
5837   return true;
5838 }
5839 
5840 namespace {
5841 
5842 /// This class represents a lookup table that can be used to replace a switch.
5843 class SwitchLookupTable {
5844 public:
5845   /// Create a lookup table to use as a switch replacement with the contents
5846   /// of Values, using DefaultValue to fill any holes in the table.
5847   SwitchLookupTable(
5848       Module &M, uint64_t TableSize, ConstantInt *Offset,
5849       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5850       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5851 
5852   /// Build instructions with Builder to retrieve the value at
5853   /// the position given by Index in the lookup table.
5854   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5855 
5856   /// Return true if a table with TableSize elements of
5857   /// type ElementType would fit in a target-legal register.
5858   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5859                                  Type *ElementType);
5860 
5861 private:
5862   // Depending on the contents of the table, it can be represented in
5863   // different ways.
5864   enum {
5865     // For tables where each element contains the same value, we just have to
5866     // store that single value and return it for each lookup.
5867     SingleValueKind,
5868 
5869     // For tables where there is a linear relationship between table index
5870     // and values. We calculate the result with a simple multiplication
5871     // and addition instead of a table lookup.
5872     LinearMapKind,
5873 
5874     // For small tables with integer elements, we can pack them into a bitmap
5875     // that fits into a target-legal register. Values are retrieved by
5876     // shift and mask operations.
5877     BitMapKind,
5878 
5879     // The table is stored as an array of values. Values are retrieved by load
5880     // instructions from the table.
5881     ArrayKind
5882   } Kind;
5883 
5884   // For SingleValueKind, this is the single value.
5885   Constant *SingleValue = nullptr;
5886 
5887   // For BitMapKind, this is the bitmap.
5888   ConstantInt *BitMap = nullptr;
5889   IntegerType *BitMapElementTy = nullptr;
5890 
5891   // For LinearMapKind, these are the constants used to derive the value.
5892   ConstantInt *LinearOffset = nullptr;
5893   ConstantInt *LinearMultiplier = nullptr;
5894 
5895   // For ArrayKind, this is the array.
5896   GlobalVariable *Array = nullptr;
5897 };
5898 
5899 } // end anonymous namespace
5900 
5901 SwitchLookupTable::SwitchLookupTable(
5902     Module &M, uint64_t TableSize, ConstantInt *Offset,
5903     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5904     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5905   assert(Values.size() && "Can't build lookup table without values!");
5906   assert(TableSize >= Values.size() && "Can't fit values in table!");
5907 
5908   // If all values in the table are equal, this is that value.
5909   SingleValue = Values.begin()->second;
5910 
5911   Type *ValueType = Values.begin()->second->getType();
5912 
5913   // Build up the table contents.
5914   SmallVector<Constant *, 64> TableContents(TableSize);
5915   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5916     ConstantInt *CaseVal = Values[I].first;
5917     Constant *CaseRes = Values[I].second;
5918     assert(CaseRes->getType() == ValueType);
5919 
5920     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5921     TableContents[Idx] = CaseRes;
5922 
5923     if (CaseRes != SingleValue)
5924       SingleValue = nullptr;
5925   }
5926 
5927   // Fill in any holes in the table with the default result.
5928   if (Values.size() < TableSize) {
5929     assert(DefaultValue &&
5930            "Need a default value to fill the lookup table holes.");
5931     assert(DefaultValue->getType() == ValueType);
5932     for (uint64_t I = 0; I < TableSize; ++I) {
5933       if (!TableContents[I])
5934         TableContents[I] = DefaultValue;
5935     }
5936 
5937     if (DefaultValue != SingleValue)
5938       SingleValue = nullptr;
5939   }
5940 
5941   // If each element in the table contains the same value, we only need to store
5942   // that single value.
5943   if (SingleValue) {
5944     Kind = SingleValueKind;
5945     return;
5946   }
5947 
5948   // Check if we can derive the value with a linear transformation from the
5949   // table index.
5950   if (isa<IntegerType>(ValueType)) {
5951     bool LinearMappingPossible = true;
5952     APInt PrevVal;
5953     APInt DistToPrev;
5954     assert(TableSize >= 2 && "Should be a SingleValue table.");
5955     // Check if there is the same distance between two consecutive values.
5956     for (uint64_t I = 0; I < TableSize; ++I) {
5957       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5958       if (!ConstVal) {
5959         // This is an undef. We could deal with it, but undefs in lookup tables
5960         // are very seldom. It's probably not worth the additional complexity.
5961         LinearMappingPossible = false;
5962         break;
5963       }
5964       const APInt &Val = ConstVal->getValue();
5965       if (I != 0) {
5966         APInt Dist = Val - PrevVal;
5967         if (I == 1) {
5968           DistToPrev = Dist;
5969         } else if (Dist != DistToPrev) {
5970           LinearMappingPossible = false;
5971           break;
5972         }
5973       }
5974       PrevVal = Val;
5975     }
5976     if (LinearMappingPossible) {
5977       LinearOffset = cast<ConstantInt>(TableContents[0]);
5978       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5979       Kind = LinearMapKind;
5980       ++NumLinearMaps;
5981       return;
5982     }
5983   }
5984 
5985   // If the type is integer and the table fits in a register, build a bitmap.
5986   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5987     IntegerType *IT = cast<IntegerType>(ValueType);
5988     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5989     for (uint64_t I = TableSize; I > 0; --I) {
5990       TableInt <<= IT->getBitWidth();
5991       // Insert values into the bitmap. Undef values are set to zero.
5992       if (!isa<UndefValue>(TableContents[I - 1])) {
5993         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5994         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5995       }
5996     }
5997     BitMap = ConstantInt::get(M.getContext(), TableInt);
5998     BitMapElementTy = IT;
5999     Kind = BitMapKind;
6000     ++NumBitMaps;
6001     return;
6002   }
6003 
6004   // Store the table in an array.
6005   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
6006   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
6007 
6008   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
6009                              GlobalVariable::PrivateLinkage, Initializer,
6010                              "switch.table." + FuncName);
6011   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
6012   // Set the alignment to that of an array items. We will be only loading one
6013   // value out of it.
6014   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
6015   Kind = ArrayKind;
6016 }
6017 
6018 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
6019   switch (Kind) {
6020   case SingleValueKind:
6021     return SingleValue;
6022   case LinearMapKind: {
6023     // Derive the result value from the input value.
6024     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
6025                                           false, "switch.idx.cast");
6026     if (!LinearMultiplier->isOne())
6027       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
6028     if (!LinearOffset->isZero())
6029       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
6030     return Result;
6031   }
6032   case BitMapKind: {
6033     // Type of the bitmap (e.g. i59).
6034     IntegerType *MapTy = BitMap->getType();
6035 
6036     // Cast Index to the same type as the bitmap.
6037     // Note: The Index is <= the number of elements in the table, so
6038     // truncating it to the width of the bitmask is safe.
6039     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
6040 
6041     // Multiply the shift amount by the element width.
6042     ShiftAmt = Builder.CreateMul(
6043         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
6044         "switch.shiftamt");
6045 
6046     // Shift down.
6047     Value *DownShifted =
6048         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
6049     // Mask off.
6050     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
6051   }
6052   case ArrayKind: {
6053     // Make sure the table index will not overflow when treated as signed.
6054     IntegerType *IT = cast<IntegerType>(Index->getType());
6055     uint64_t TableSize =
6056         Array->getInitializer()->getType()->getArrayNumElements();
6057     if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6058       Index = Builder.CreateZExt(
6059           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6060           "switch.tableidx.zext");
6061 
6062     Value *GEPIndices[] = {Builder.getInt32(0), Index};
6063     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6064                                            GEPIndices, "switch.gep");
6065     return Builder.CreateLoad(
6066         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6067         "switch.load");
6068   }
6069   }
6070   llvm_unreachable("Unknown lookup table kind!");
6071 }
6072 
6073 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
6074                                            uint64_t TableSize,
6075                                            Type *ElementType) {
6076   auto *IT = dyn_cast<IntegerType>(ElementType);
6077   if (!IT)
6078     return false;
6079   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6080   // are <= 15, we could try to narrow the type.
6081 
6082   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6083   if (TableSize >= UINT_MAX / IT->getBitWidth())
6084     return false;
6085   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6086 }
6087 
6088 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6089                                       const DataLayout &DL) {
6090   // Allow any legal type.
6091   if (TTI.isTypeLegal(Ty))
6092     return true;
6093 
6094   auto *IT = dyn_cast<IntegerType>(Ty);
6095   if (!IT)
6096     return false;
6097 
6098   // Also allow power of 2 integer types that have at least 8 bits and fit in
6099   // a register. These types are common in frontend languages and targets
6100   // usually support loads of these types.
6101   // TODO: We could relax this to any integer that fits in a register and rely
6102   // on ABI alignment and padding in the table to allow the load to be widened.
6103   // Or we could widen the constants and truncate the load.
6104   unsigned BitWidth = IT->getBitWidth();
6105   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6106          DL.fitsInLegalInteger(IT->getBitWidth());
6107 }
6108 
6109 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6110   // 40% is the default density for building a jump table in optsize/minsize
6111   // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6112   // function was based on.
6113   const uint64_t MinDensity = 40;
6114 
6115   if (CaseRange >= UINT64_MAX / 100)
6116     return false; // Avoid multiplication overflows below.
6117 
6118   return NumCases * 100 >= CaseRange * MinDensity;
6119 }
6120 
6121 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6122   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6123   uint64_t Range = Diff + 1;
6124   if (Range < Diff)
6125     return false; // Overflow.
6126 
6127   return isSwitchDense(Values.size(), Range);
6128 }
6129 
6130 /// Determine whether a lookup table should be built for this switch, based on
6131 /// the number of cases, size of the table, and the types of the results.
6132 // TODO: We could support larger than legal types by limiting based on the
6133 // number of loads required and/or table size. If the constants are small we
6134 // could use smaller table entries and extend after the load.
6135 static bool
6136 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6137                        const TargetTransformInfo &TTI, const DataLayout &DL,
6138                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6139   if (SI->getNumCases() > TableSize)
6140     return false; // TableSize overflowed.
6141 
6142   bool AllTablesFitInRegister = true;
6143   bool HasIllegalType = false;
6144   for (const auto &I : ResultTypes) {
6145     Type *Ty = I.second;
6146 
6147     // Saturate this flag to true.
6148     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6149 
6150     // Saturate this flag to false.
6151     AllTablesFitInRegister =
6152         AllTablesFitInRegister &&
6153         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
6154 
6155     // If both flags saturate, we're done. NOTE: This *only* works with
6156     // saturating flags, and all flags have to saturate first due to the
6157     // non-deterministic behavior of iterating over a dense map.
6158     if (HasIllegalType && !AllTablesFitInRegister)
6159       break;
6160   }
6161 
6162   // If each table would fit in a register, we should build it anyway.
6163   if (AllTablesFitInRegister)
6164     return true;
6165 
6166   // Don't build a table that doesn't fit in-register if it has illegal types.
6167   if (HasIllegalType)
6168     return false;
6169 
6170   return isSwitchDense(SI->getNumCases(), TableSize);
6171 }
6172 
6173 /// Try to reuse the switch table index compare. Following pattern:
6174 /// \code
6175 ///     if (idx < tablesize)
6176 ///        r = table[idx]; // table does not contain default_value
6177 ///     else
6178 ///        r = default_value;
6179 ///     if (r != default_value)
6180 ///        ...
6181 /// \endcode
6182 /// Is optimized to:
6183 /// \code
6184 ///     cond = idx < tablesize;
6185 ///     if (cond)
6186 ///        r = table[idx];
6187 ///     else
6188 ///        r = default_value;
6189 ///     if (cond)
6190 ///        ...
6191 /// \endcode
6192 /// Jump threading will then eliminate the second if(cond).
6193 static void reuseTableCompare(
6194     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6195     Constant *DefaultValue,
6196     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6197   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6198   if (!CmpInst)
6199     return;
6200 
6201   // We require that the compare is in the same block as the phi so that jump
6202   // threading can do its work afterwards.
6203   if (CmpInst->getParent() != PhiBlock)
6204     return;
6205 
6206   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6207   if (!CmpOp1)
6208     return;
6209 
6210   Value *RangeCmp = RangeCheckBranch->getCondition();
6211   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6212   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6213 
6214   // Check if the compare with the default value is constant true or false.
6215   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6216                                                  DefaultValue, CmpOp1, true);
6217   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6218     return;
6219 
6220   // Check if the compare with the case values is distinct from the default
6221   // compare result.
6222   for (auto ValuePair : Values) {
6223     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6224                                                 ValuePair.second, CmpOp1, true);
6225     if (!CaseConst || CaseConst == DefaultConst ||
6226         (CaseConst != TrueConst && CaseConst != FalseConst))
6227       return;
6228   }
6229 
6230   // Check if the branch instruction dominates the phi node. It's a simple
6231   // dominance check, but sufficient for our needs.
6232   // Although this check is invariant in the calling loops, it's better to do it
6233   // at this late stage. Practically we do it at most once for a switch.
6234   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6235   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6236     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6237       return;
6238   }
6239 
6240   if (DefaultConst == FalseConst) {
6241     // The compare yields the same result. We can replace it.
6242     CmpInst->replaceAllUsesWith(RangeCmp);
6243     ++NumTableCmpReuses;
6244   } else {
6245     // The compare yields the same result, just inverted. We can replace it.
6246     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6247         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6248         RangeCheckBranch);
6249     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6250     ++NumTableCmpReuses;
6251   }
6252 }
6253 
6254 /// If the switch is only used to initialize one or more phi nodes in a common
6255 /// successor block with different constant values, replace the switch with
6256 /// lookup tables.
6257 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6258                                 DomTreeUpdater *DTU, const DataLayout &DL,
6259                                 const TargetTransformInfo &TTI) {
6260   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6261 
6262   BasicBlock *BB = SI->getParent();
6263   Function *Fn = BB->getParent();
6264   // Only build lookup table when we have a target that supports it or the
6265   // attribute is not set.
6266   if (!TTI.shouldBuildLookupTables() ||
6267       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6268     return false;
6269 
6270   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6271   // split off a dense part and build a lookup table for that.
6272 
6273   // FIXME: This creates arrays of GEPs to constant strings, which means each
6274   // GEP needs a runtime relocation in PIC code. We should just build one big
6275   // string and lookup indices into that.
6276 
6277   // Ignore switches with less than three cases. Lookup tables will not make
6278   // them faster, so we don't analyze them.
6279   if (SI->getNumCases() < 3)
6280     return false;
6281 
6282   // Figure out the corresponding result for each case value and phi node in the
6283   // common destination, as well as the min and max case values.
6284   assert(!SI->cases().empty());
6285   SwitchInst::CaseIt CI = SI->case_begin();
6286   ConstantInt *MinCaseVal = CI->getCaseValue();
6287   ConstantInt *MaxCaseVal = CI->getCaseValue();
6288 
6289   BasicBlock *CommonDest = nullptr;
6290 
6291   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6292   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6293 
6294   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6295   SmallDenseMap<PHINode *, Type *> ResultTypes;
6296   SmallVector<PHINode *, 4> PHIs;
6297 
6298   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6299     ConstantInt *CaseVal = CI->getCaseValue();
6300     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6301       MinCaseVal = CaseVal;
6302     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6303       MaxCaseVal = CaseVal;
6304 
6305     // Resulting value at phi nodes for this case value.
6306     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6307     ResultsTy Results;
6308     if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6309                         Results, DL, TTI))
6310       return false;
6311 
6312     // Append the result from this case to the list for each phi.
6313     for (const auto &I : Results) {
6314       PHINode *PHI = I.first;
6315       Constant *Value = I.second;
6316       if (!ResultLists.count(PHI))
6317         PHIs.push_back(PHI);
6318       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6319     }
6320   }
6321 
6322   // Keep track of the result types.
6323   for (PHINode *PHI : PHIs) {
6324     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6325   }
6326 
6327   uint64_t NumResults = ResultLists[PHIs[0]].size();
6328   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
6329   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
6330   bool TableHasHoles = (NumResults < TableSize);
6331 
6332   // If the table has holes, we need a constant result for the default case
6333   // or a bitmask that fits in a register.
6334   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6335   bool HasDefaultResults =
6336       getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6337                      DefaultResultsList, DL, TTI);
6338 
6339   bool NeedMask = (TableHasHoles && !HasDefaultResults);
6340   if (NeedMask) {
6341     // As an extra penalty for the validity test we require more cases.
6342     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6343       return false;
6344     if (!DL.fitsInLegalInteger(TableSize))
6345       return false;
6346   }
6347 
6348   for (const auto &I : DefaultResultsList) {
6349     PHINode *PHI = I.first;
6350     Constant *Result = I.second;
6351     DefaultResults[PHI] = Result;
6352   }
6353 
6354   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6355     return false;
6356 
6357   std::vector<DominatorTree::UpdateType> Updates;
6358 
6359   // Create the BB that does the lookups.
6360   Module &Mod = *CommonDest->getParent()->getParent();
6361   BasicBlock *LookupBB = BasicBlock::Create(
6362       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6363 
6364   // Compute the table index value.
6365   Builder.SetInsertPoint(SI);
6366   Value *TableIndex;
6367   if (MinCaseVal->isNullValue())
6368     TableIndex = SI->getCondition();
6369   else
6370     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
6371                                    "switch.tableidx");
6372 
6373   // Compute the maximum table size representable by the integer type we are
6374   // switching upon.
6375   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6376   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6377   assert(MaxTableSize >= TableSize &&
6378          "It is impossible for a switch to have more entries than the max "
6379          "representable value of its input integer type's size.");
6380 
6381   // If the default destination is unreachable, or if the lookup table covers
6382   // all values of the conditional variable, branch directly to the lookup table
6383   // BB. Otherwise, check that the condition is within the case range.
6384   const bool DefaultIsReachable =
6385       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6386   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6387   BranchInst *RangeCheckBranch = nullptr;
6388 
6389   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6390     Builder.CreateBr(LookupBB);
6391     if (DTU)
6392       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6393     // Note: We call removeProdecessor later since we need to be able to get the
6394     // PHI value for the default case in case we're using a bit mask.
6395   } else {
6396     Value *Cmp = Builder.CreateICmpULT(
6397         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6398     RangeCheckBranch =
6399         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6400     if (DTU)
6401       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6402   }
6403 
6404   // Populate the BB that does the lookups.
6405   Builder.SetInsertPoint(LookupBB);
6406 
6407   if (NeedMask) {
6408     // Before doing the lookup, we do the hole check. The LookupBB is therefore
6409     // re-purposed to do the hole check, and we create a new LookupBB.
6410     BasicBlock *MaskBB = LookupBB;
6411     MaskBB->setName("switch.hole_check");
6412     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6413                                   CommonDest->getParent(), CommonDest);
6414 
6415     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6416     // unnecessary illegal types.
6417     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6418     APInt MaskInt(TableSizePowOf2, 0);
6419     APInt One(TableSizePowOf2, 1);
6420     // Build bitmask; fill in a 1 bit for every case.
6421     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6422     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6423       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
6424                          .getLimitedValue();
6425       MaskInt |= One << Idx;
6426     }
6427     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6428 
6429     // Get the TableIndex'th bit of the bitmask.
6430     // If this bit is 0 (meaning hole) jump to the default destination,
6431     // else continue with table lookup.
6432     IntegerType *MapTy = TableMask->getType();
6433     Value *MaskIndex =
6434         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6435     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6436     Value *LoBit = Builder.CreateTrunc(
6437         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6438     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6439     if (DTU) {
6440       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6441       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6442     }
6443     Builder.SetInsertPoint(LookupBB);
6444     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6445   }
6446 
6447   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6448     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6449     // do not delete PHINodes here.
6450     SI->getDefaultDest()->removePredecessor(BB,
6451                                             /*KeepOneInputPHIs=*/true);
6452     if (DTU)
6453       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6454   }
6455 
6456   for (PHINode *PHI : PHIs) {
6457     const ResultListTy &ResultList = ResultLists[PHI];
6458 
6459     // If using a bitmask, use any value to fill the lookup table holes.
6460     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6461     StringRef FuncName = Fn->getName();
6462     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6463                             FuncName);
6464 
6465     Value *Result = Table.BuildLookup(TableIndex, Builder);
6466 
6467     // Do a small peephole optimization: re-use the switch table compare if
6468     // possible.
6469     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6470       BasicBlock *PhiBlock = PHI->getParent();
6471       // Search for compare instructions which use the phi.
6472       for (auto *User : PHI->users()) {
6473         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6474       }
6475     }
6476 
6477     PHI->addIncoming(Result, LookupBB);
6478   }
6479 
6480   Builder.CreateBr(CommonDest);
6481   if (DTU)
6482     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6483 
6484   // Remove the switch.
6485   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6486   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6487     BasicBlock *Succ = SI->getSuccessor(i);
6488 
6489     if (Succ == SI->getDefaultDest())
6490       continue;
6491     Succ->removePredecessor(BB);
6492     if (DTU && RemovedSuccessors.insert(Succ).second)
6493       Updates.push_back({DominatorTree::Delete, BB, Succ});
6494   }
6495   SI->eraseFromParent();
6496 
6497   if (DTU)
6498     DTU->applyUpdates(Updates);
6499 
6500   ++NumLookupTables;
6501   if (NeedMask)
6502     ++NumLookupTablesHoles;
6503   return true;
6504 }
6505 
6506 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6507 /// of cases.
6508 ///
6509 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6510 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6511 ///
6512 /// This converts a sparse switch into a dense switch which allows better
6513 /// lowering and could also allow transforming into a lookup table.
6514 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6515                               const DataLayout &DL,
6516                               const TargetTransformInfo &TTI) {
6517   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6518   if (CondTy->getIntegerBitWidth() > 64 ||
6519       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6520     return false;
6521   // Only bother with this optimization if there are more than 3 switch cases;
6522   // SDAG will only bother creating jump tables for 4 or more cases.
6523   if (SI->getNumCases() < 4)
6524     return false;
6525 
6526   // This transform is agnostic to the signedness of the input or case values. We
6527   // can treat the case values as signed or unsigned. We can optimize more common
6528   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6529   // as signed.
6530   SmallVector<int64_t,4> Values;
6531   for (auto &C : SI->cases())
6532     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6533   llvm::sort(Values);
6534 
6535   // If the switch is already dense, there's nothing useful to do here.
6536   if (isSwitchDense(Values))
6537     return false;
6538 
6539   // First, transform the values such that they start at zero and ascend.
6540   int64_t Base = Values[0];
6541   for (auto &V : Values)
6542     V -= (uint64_t)(Base);
6543 
6544   // Now we have signed numbers that have been shifted so that, given enough
6545   // precision, there are no negative values. Since the rest of the transform
6546   // is bitwise only, we switch now to an unsigned representation.
6547 
6548   // This transform can be done speculatively because it is so cheap - it
6549   // results in a single rotate operation being inserted.
6550   // FIXME: It's possible that optimizing a switch on powers of two might also
6551   // be beneficial - flag values are often powers of two and we could use a CLZ
6552   // as the key function.
6553 
6554   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6555   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6556   // less than 64.
6557   unsigned Shift = 64;
6558   for (auto &V : Values)
6559     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6560   assert(Shift < 64);
6561   if (Shift > 0)
6562     for (auto &V : Values)
6563       V = (int64_t)((uint64_t)V >> Shift);
6564 
6565   if (!isSwitchDense(Values))
6566     // Transform didn't create a dense switch.
6567     return false;
6568 
6569   // The obvious transform is to shift the switch condition right and emit a
6570   // check that the condition actually cleanly divided by GCD, i.e.
6571   //   C & (1 << Shift - 1) == 0
6572   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6573   //
6574   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6575   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6576   // are nonzero then the switch condition will be very large and will hit the
6577   // default case.
6578 
6579   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6580   Builder.SetInsertPoint(SI);
6581   auto *ShiftC = ConstantInt::get(Ty, Shift);
6582   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6583   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6584   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6585   auto *Rot = Builder.CreateOr(LShr, Shl);
6586   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6587 
6588   for (auto Case : SI->cases()) {
6589     auto *Orig = Case.getCaseValue();
6590     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6591     Case.setValue(
6592         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6593   }
6594   return true;
6595 }
6596 
6597 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6598   BasicBlock *BB = SI->getParent();
6599 
6600   if (isValueEqualityComparison(SI)) {
6601     // If we only have one predecessor, and if it is a branch on this value,
6602     // see if that predecessor totally determines the outcome of this switch.
6603     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6604       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6605         return requestResimplify();
6606 
6607     Value *Cond = SI->getCondition();
6608     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6609       if (SimplifySwitchOnSelect(SI, Select))
6610         return requestResimplify();
6611 
6612     // If the block only contains the switch, see if we can fold the block
6613     // away into any preds.
6614     if (SI == &*BB->instructionsWithoutDebug(false).begin())
6615       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6616         return requestResimplify();
6617   }
6618 
6619   // Try to transform the switch into an icmp and a branch.
6620   // The conversion from switch to comparison may lose information on
6621   // impossible switch values, so disable it early in the pipeline.
6622   if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder))
6623     return requestResimplify();
6624 
6625   // Remove unreachable cases.
6626   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6627     return requestResimplify();
6628 
6629   if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
6630     return requestResimplify();
6631 
6632   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6633     return requestResimplify();
6634 
6635   // The conversion from switch to lookup tables results in difficult-to-analyze
6636   // code and makes pruning branches much harder. This is a problem if the
6637   // switch expression itself can still be restricted as a result of inlining or
6638   // CVP. Therefore, only apply this transformation during late stages of the
6639   // optimisation pipeline.
6640   if (Options.ConvertSwitchToLookupTable &&
6641       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6642     return requestResimplify();
6643 
6644   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6645     return requestResimplify();
6646 
6647   return false;
6648 }
6649 
6650 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6651   BasicBlock *BB = IBI->getParent();
6652   bool Changed = false;
6653 
6654   // Eliminate redundant destinations.
6655   SmallPtrSet<Value *, 8> Succs;
6656   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6657   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6658     BasicBlock *Dest = IBI->getDestination(i);
6659     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6660       if (!Dest->hasAddressTaken())
6661         RemovedSuccs.insert(Dest);
6662       Dest->removePredecessor(BB);
6663       IBI->removeDestination(i);
6664       --i;
6665       --e;
6666       Changed = true;
6667     }
6668   }
6669 
6670   if (DTU) {
6671     std::vector<DominatorTree::UpdateType> Updates;
6672     Updates.reserve(RemovedSuccs.size());
6673     for (auto *RemovedSucc : RemovedSuccs)
6674       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6675     DTU->applyUpdates(Updates);
6676   }
6677 
6678   if (IBI->getNumDestinations() == 0) {
6679     // If the indirectbr has no successors, change it to unreachable.
6680     new UnreachableInst(IBI->getContext(), IBI);
6681     EraseTerminatorAndDCECond(IBI);
6682     return true;
6683   }
6684 
6685   if (IBI->getNumDestinations() == 1) {
6686     // If the indirectbr has one successor, change it to a direct branch.
6687     BranchInst::Create(IBI->getDestination(0), IBI);
6688     EraseTerminatorAndDCECond(IBI);
6689     return true;
6690   }
6691 
6692   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6693     if (SimplifyIndirectBrOnSelect(IBI, SI))
6694       return requestResimplify();
6695   }
6696   return Changed;
6697 }
6698 
6699 /// Given an block with only a single landing pad and a unconditional branch
6700 /// try to find another basic block which this one can be merged with.  This
6701 /// handles cases where we have multiple invokes with unique landing pads, but
6702 /// a shared handler.
6703 ///
6704 /// We specifically choose to not worry about merging non-empty blocks
6705 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6706 /// practice, the optimizer produces empty landing pad blocks quite frequently
6707 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6708 /// sinking in this file)
6709 ///
6710 /// This is primarily a code size optimization.  We need to avoid performing
6711 /// any transform which might inhibit optimization (such as our ability to
6712 /// specialize a particular handler via tail commoning).  We do this by not
6713 /// merging any blocks which require us to introduce a phi.  Since the same
6714 /// values are flowing through both blocks, we don't lose any ability to
6715 /// specialize.  If anything, we make such specialization more likely.
6716 ///
6717 /// TODO - This transformation could remove entries from a phi in the target
6718 /// block when the inputs in the phi are the same for the two blocks being
6719 /// merged.  In some cases, this could result in removal of the PHI entirely.
6720 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6721                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6722   auto Succ = BB->getUniqueSuccessor();
6723   assert(Succ);
6724   // If there's a phi in the successor block, we'd likely have to introduce
6725   // a phi into the merged landing pad block.
6726   if (isa<PHINode>(*Succ->begin()))
6727     return false;
6728 
6729   for (BasicBlock *OtherPred : predecessors(Succ)) {
6730     if (BB == OtherPred)
6731       continue;
6732     BasicBlock::iterator I = OtherPred->begin();
6733     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6734     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6735       continue;
6736     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6737       ;
6738     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6739     if (!BI2 || !BI2->isIdenticalTo(BI))
6740       continue;
6741 
6742     std::vector<DominatorTree::UpdateType> Updates;
6743 
6744     // We've found an identical block.  Update our predecessors to take that
6745     // path instead and make ourselves dead.
6746     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
6747     for (BasicBlock *Pred : UniquePreds) {
6748       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6749       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6750              "unexpected successor");
6751       II->setUnwindDest(OtherPred);
6752       if (DTU) {
6753         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6754         Updates.push_back({DominatorTree::Delete, Pred, BB});
6755       }
6756     }
6757 
6758     // The debug info in OtherPred doesn't cover the merged control flow that
6759     // used to go through BB.  We need to delete it or update it.
6760     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
6761       if (isa<DbgInfoIntrinsic>(Inst))
6762         Inst.eraseFromParent();
6763 
6764     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
6765     for (BasicBlock *Succ : UniqueSuccs) {
6766       Succ->removePredecessor(BB);
6767       if (DTU)
6768         Updates.push_back({DominatorTree::Delete, BB, Succ});
6769     }
6770 
6771     IRBuilder<> Builder(BI);
6772     Builder.CreateUnreachable();
6773     BI->eraseFromParent();
6774     if (DTU)
6775       DTU->applyUpdates(Updates);
6776     return true;
6777   }
6778   return false;
6779 }
6780 
6781 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6782   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6783                                    : simplifyCondBranch(Branch, Builder);
6784 }
6785 
6786 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6787                                           IRBuilder<> &Builder) {
6788   BasicBlock *BB = BI->getParent();
6789   BasicBlock *Succ = BI->getSuccessor(0);
6790 
6791   // If the Terminator is the only non-phi instruction, simplify the block.
6792   // If LoopHeader is provided, check if the block or its successor is a loop
6793   // header. (This is for early invocations before loop simplify and
6794   // vectorization to keep canonical loop forms for nested loops. These blocks
6795   // can be eliminated when the pass is invoked later in the back-end.)
6796   // Note that if BB has only one predecessor then we do not introduce new
6797   // backedge, so we can eliminate BB.
6798   bool NeedCanonicalLoop =
6799       Options.NeedCanonicalLoop &&
6800       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6801        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6802   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6803   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6804       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6805     return true;
6806 
6807   // If the only instruction in the block is a seteq/setne comparison against a
6808   // constant, try to simplify the block.
6809   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6810     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6811       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6812         ;
6813       if (I->isTerminator() &&
6814           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6815         return true;
6816     }
6817 
6818   // See if we can merge an empty landing pad block with another which is
6819   // equivalent.
6820   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6821     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6822       ;
6823     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6824       return true;
6825   }
6826 
6827   // If this basic block is ONLY a compare and a branch, and if a predecessor
6828   // branches to us and our successor, fold the comparison into the
6829   // predecessor and use logical operations to update the incoming value
6830   // for PHI nodes in common successor.
6831   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6832                              Options.BonusInstThreshold))
6833     return requestResimplify();
6834   return false;
6835 }
6836 
6837 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6838   BasicBlock *PredPred = nullptr;
6839   for (auto *P : predecessors(BB)) {
6840     BasicBlock *PPred = P->getSinglePredecessor();
6841     if (!PPred || (PredPred && PredPred != PPred))
6842       return nullptr;
6843     PredPred = PPred;
6844   }
6845   return PredPred;
6846 }
6847 
6848 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6849   assert(
6850       !isa<ConstantInt>(BI->getCondition()) &&
6851       BI->getSuccessor(0) != BI->getSuccessor(1) &&
6852       "Tautological conditional branch should have been eliminated already.");
6853 
6854   BasicBlock *BB = BI->getParent();
6855   if (!Options.SimplifyCondBranch)
6856     return false;
6857 
6858   // Conditional branch
6859   if (isValueEqualityComparison(BI)) {
6860     // If we only have one predecessor, and if it is a branch on this value,
6861     // see if that predecessor totally determines the outcome of this
6862     // switch.
6863     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6864       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6865         return requestResimplify();
6866 
6867     // This block must be empty, except for the setcond inst, if it exists.
6868     // Ignore dbg and pseudo intrinsics.
6869     auto I = BB->instructionsWithoutDebug(true).begin();
6870     if (&*I == BI) {
6871       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6872         return requestResimplify();
6873     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6874       ++I;
6875       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6876         return requestResimplify();
6877     }
6878   }
6879 
6880   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6881   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6882     return true;
6883 
6884   // If this basic block has dominating predecessor blocks and the dominating
6885   // blocks' conditions imply BI's condition, we know the direction of BI.
6886   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6887   if (Imp) {
6888     // Turn this into a branch on constant.
6889     auto *OldCond = BI->getCondition();
6890     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6891                              : ConstantInt::getFalse(BB->getContext());
6892     BI->setCondition(TorF);
6893     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6894     return requestResimplify();
6895   }
6896 
6897   // If this basic block is ONLY a compare and a branch, and if a predecessor
6898   // branches to us and one of our successors, fold the comparison into the
6899   // predecessor and use logical operations to pick the right destination.
6900   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6901                              Options.BonusInstThreshold))
6902     return requestResimplify();
6903 
6904   // We have a conditional branch to two blocks that are only reachable
6905   // from BI.  We know that the condbr dominates the two blocks, so see if
6906   // there is any identical code in the "then" and "else" blocks.  If so, we
6907   // can hoist it up to the branching block.
6908   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6909     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6910       if (HoistCommon &&
6911           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6912         return requestResimplify();
6913     } else {
6914       // If Successor #1 has multiple preds, we may be able to conditionally
6915       // execute Successor #0 if it branches to Successor #1.
6916       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6917       if (Succ0TI->getNumSuccessors() == 1 &&
6918           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6919         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6920           return requestResimplify();
6921     }
6922   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6923     // If Successor #0 has multiple preds, we may be able to conditionally
6924     // execute Successor #1 if it branches to Successor #0.
6925     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6926     if (Succ1TI->getNumSuccessors() == 1 &&
6927         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6928       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6929         return requestResimplify();
6930   }
6931 
6932   // If this is a branch on something for which we know the constant value in
6933   // predecessors (e.g. a phi node in the current block), thread control
6934   // through this block.
6935   if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
6936     return requestResimplify();
6937 
6938   // Scan predecessor blocks for conditional branches.
6939   for (BasicBlock *Pred : predecessors(BB))
6940     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6941       if (PBI != BI && PBI->isConditional())
6942         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6943           return requestResimplify();
6944 
6945   // Look for diamond patterns.
6946   if (MergeCondStores)
6947     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6948       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6949         if (PBI != BI && PBI->isConditional())
6950           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6951             return requestResimplify();
6952 
6953   return false;
6954 }
6955 
6956 /// Check if passing a value to an instruction will cause undefined behavior.
6957 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6958   Constant *C = dyn_cast<Constant>(V);
6959   if (!C)
6960     return false;
6961 
6962   if (I->use_empty())
6963     return false;
6964 
6965   if (C->isNullValue() || isa<UndefValue>(C)) {
6966     // Only look at the first use, avoid hurting compile time with long uselists
6967     auto *Use = cast<Instruction>(*I->user_begin());
6968     // Bail out if Use is not in the same BB as I or Use == I or Use comes
6969     // before I in the block. The latter two can be the case if Use is a PHI
6970     // node.
6971     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
6972       return false;
6973 
6974     // Now make sure that there are no instructions in between that can alter
6975     // control flow (eg. calls)
6976     auto InstrRange =
6977         make_range(std::next(I->getIterator()), Use->getIterator());
6978     if (any_of(InstrRange, [](Instruction &I) {
6979           return !isGuaranteedToTransferExecutionToSuccessor(&I);
6980         }))
6981       return false;
6982 
6983     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6984     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6985       if (GEP->getPointerOperand() == I) {
6986         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6987           PtrValueMayBeModified = true;
6988         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6989       }
6990 
6991     // Look through bitcasts.
6992     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6993       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6994 
6995     // Load from null is undefined.
6996     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6997       if (!LI->isVolatile())
6998         return !NullPointerIsDefined(LI->getFunction(),
6999                                      LI->getPointerAddressSpace());
7000 
7001     // Store to null is undefined.
7002     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
7003       if (!SI->isVolatile())
7004         return (!NullPointerIsDefined(SI->getFunction(),
7005                                       SI->getPointerAddressSpace())) &&
7006                SI->getPointerOperand() == I;
7007 
7008     if (auto *CB = dyn_cast<CallBase>(Use)) {
7009       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
7010         return false;
7011       // A call to null is undefined.
7012       if (CB->getCalledOperand() == I)
7013         return true;
7014 
7015       if (C->isNullValue()) {
7016         for (const llvm::Use &Arg : CB->args())
7017           if (Arg == I) {
7018             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7019             if (CB->isPassingUndefUB(ArgIdx) &&
7020                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
7021               // Passing null to a nonnnull+noundef argument is undefined.
7022               return !PtrValueMayBeModified;
7023             }
7024           }
7025       } else if (isa<UndefValue>(C)) {
7026         // Passing undef to a noundef argument is undefined.
7027         for (const llvm::Use &Arg : CB->args())
7028           if (Arg == I) {
7029             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7030             if (CB->isPassingUndefUB(ArgIdx)) {
7031               // Passing undef to a noundef argument is undefined.
7032               return true;
7033             }
7034           }
7035       }
7036     }
7037   }
7038   return false;
7039 }
7040 
7041 /// If BB has an incoming value that will always trigger undefined behavior
7042 /// (eg. null pointer dereference), remove the branch leading here.
7043 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
7044                                               DomTreeUpdater *DTU) {
7045   for (PHINode &PHI : BB->phis())
7046     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
7047       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
7048         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
7049         Instruction *T = Predecessor->getTerminator();
7050         IRBuilder<> Builder(T);
7051         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
7052           BB->removePredecessor(Predecessor);
7053           // Turn uncoditional branches into unreachables and remove the dead
7054           // destination from conditional branches.
7055           if (BI->isUnconditional())
7056             Builder.CreateUnreachable();
7057           else {
7058             // Preserve guarding condition in assume, because it might not be
7059             // inferrable from any dominating condition.
7060             Value *Cond = BI->getCondition();
7061             if (BI->getSuccessor(0) == BB)
7062               Builder.CreateAssumption(Builder.CreateNot(Cond));
7063             else
7064               Builder.CreateAssumption(Cond);
7065             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
7066                                                        : BI->getSuccessor(0));
7067           }
7068           BI->eraseFromParent();
7069           if (DTU)
7070             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
7071           return true;
7072         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
7073           // Redirect all branches leading to UB into
7074           // a newly created unreachable block.
7075           BasicBlock *Unreachable = BasicBlock::Create(
7076               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
7077           Builder.SetInsertPoint(Unreachable);
7078           // The new block contains only one instruction: Unreachable
7079           Builder.CreateUnreachable();
7080           for (auto &Case : SI->cases())
7081             if (Case.getCaseSuccessor() == BB) {
7082               BB->removePredecessor(Predecessor);
7083               Case.setSuccessor(Unreachable);
7084             }
7085           if (SI->getDefaultDest() == BB) {
7086             BB->removePredecessor(Predecessor);
7087             SI->setDefaultDest(Unreachable);
7088           }
7089 
7090           if (DTU)
7091             DTU->applyUpdates(
7092                 { { DominatorTree::Insert, Predecessor, Unreachable },
7093                   { DominatorTree::Delete, Predecessor, BB } });
7094           return true;
7095         }
7096       }
7097 
7098   return false;
7099 }
7100 
7101 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
7102   bool Changed = false;
7103 
7104   assert(BB && BB->getParent() && "Block not embedded in function!");
7105   assert(BB->getTerminator() && "Degenerate basic block encountered!");
7106 
7107   // Remove basic blocks that have no predecessors (except the entry block)...
7108   // or that just have themself as a predecessor.  These are unreachable.
7109   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
7110       BB->getSinglePredecessor() == BB) {
7111     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
7112     DeleteDeadBlock(BB, DTU);
7113     return true;
7114   }
7115 
7116   // Check to see if we can constant propagate this terminator instruction
7117   // away...
7118   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
7119                                     /*TLI=*/nullptr, DTU);
7120 
7121   // Check for and eliminate duplicate PHI nodes in this block.
7122   Changed |= EliminateDuplicatePHINodes(BB);
7123 
7124   // Check for and remove branches that will always cause undefined behavior.
7125   if (removeUndefIntroducingPredecessor(BB, DTU))
7126     return requestResimplify();
7127 
7128   // Merge basic blocks into their predecessor if there is only one distinct
7129   // pred, and if there is only one distinct successor of the predecessor, and
7130   // if there are no PHI nodes.
7131   if (MergeBlockIntoPredecessor(BB, DTU))
7132     return true;
7133 
7134   if (SinkCommon && Options.SinkCommonInsts)
7135     if (SinkCommonCodeFromPredecessors(BB, DTU) ||
7136         MergeCompatibleInvokes(BB, DTU)) {
7137       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
7138       // so we may now how duplicate PHI's.
7139       // Let's rerun EliminateDuplicatePHINodes() first,
7140       // before FoldTwoEntryPHINode() potentially converts them into select's,
7141       // after which we'd need a whole EarlyCSE pass run to cleanup them.
7142       return true;
7143     }
7144 
7145   IRBuilder<> Builder(BB);
7146 
7147   if (Options.FoldTwoEntryPHINode) {
7148     // If there is a trivial two-entry PHI node in this basic block, and we can
7149     // eliminate it, do so now.
7150     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
7151       if (PN->getNumIncomingValues() == 2)
7152         if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
7153           return true;
7154   }
7155 
7156   Instruction *Terminator = BB->getTerminator();
7157   Builder.SetInsertPoint(Terminator);
7158   switch (Terminator->getOpcode()) {
7159   case Instruction::Br:
7160     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
7161     break;
7162   case Instruction::Resume:
7163     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
7164     break;
7165   case Instruction::CleanupRet:
7166     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
7167     break;
7168   case Instruction::Switch:
7169     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
7170     break;
7171   case Instruction::Unreachable:
7172     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
7173     break;
7174   case Instruction::IndirectBr:
7175     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
7176     break;
7177   }
7178 
7179   return Changed;
7180 }
7181 
7182 bool SimplifyCFGOpt::run(BasicBlock *BB) {
7183   bool Changed = false;
7184 
7185   // Repeated simplify BB as long as resimplification is requested.
7186   do {
7187     Resimplify = false;
7188 
7189     // Perform one round of simplifcation. Resimplify flag will be set if
7190     // another iteration is requested.
7191     Changed |= simplifyOnce(BB);
7192   } while (Resimplify);
7193 
7194   return Changed;
7195 }
7196 
7197 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
7198                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
7199                        ArrayRef<WeakVH> LoopHeaders) {
7200   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
7201                         Options)
7202       .run(BB);
7203 }
7204