1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DebugInfo.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/NoFolder.h" 53 #include "llvm/IR/Operator.h" 54 #include "llvm/IR/PatternMatch.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/KnownBits.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Local.h" 67 #include "llvm/Transforms/Utils/ValueMapper.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <climits> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <map> 75 #include <set> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 using namespace PatternMatch; 81 82 #define DEBUG_TYPE "simplifycfg" 83 84 // Chosen as 2 so as to be cheap, but still to have enough power to fold 85 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 86 // To catch this, we need to fold a compare and a select, hence '2' being the 87 // minimum reasonable default. 88 static cl::opt<unsigned> PHINodeFoldingThreshold( 89 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 90 cl::desc( 91 "Control the amount of phi node folding to perform (default = 2)")); 92 93 static cl::opt<bool> DupRet( 94 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 95 cl::desc("Duplicate return instructions into unconditional branches")); 96 97 static cl::opt<bool> 98 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 99 cl::desc("Sink common instructions down to the end block")); 100 101 static cl::opt<bool> HoistCondStores( 102 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 103 cl::desc("Hoist conditional stores if an unconditional store precedes")); 104 105 static cl::opt<bool> MergeCondStores( 106 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 107 cl::desc("Hoist conditional stores even if an unconditional store does not " 108 "precede - hoist multiple conditional stores into a single " 109 "predicated store")); 110 111 static cl::opt<bool> MergeCondStoresAggressively( 112 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 113 cl::desc("When merging conditional stores, do so even if the resultant " 114 "basic blocks are unlikely to be if-converted as a result")); 115 116 static cl::opt<bool> SpeculateOneExpensiveInst( 117 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 118 cl::desc("Allow exactly one expensive instruction to be speculatively " 119 "executed")); 120 121 static cl::opt<unsigned> MaxSpeculationDepth( 122 "max-speculation-depth", cl::Hidden, cl::init(10), 123 cl::desc("Limit maximum recursion depth when calculating costs of " 124 "speculatively executed instructions")); 125 126 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 127 STATISTIC(NumLinearMaps, 128 "Number of switch instructions turned into linear mapping"); 129 STATISTIC(NumLookupTables, 130 "Number of switch instructions turned into lookup tables"); 131 STATISTIC( 132 NumLookupTablesHoles, 133 "Number of switch instructions turned into lookup tables (holes checked)"); 134 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 135 STATISTIC(NumSinkCommons, 136 "Number of common instructions sunk down to the end block"); 137 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 138 139 namespace { 140 141 // The first field contains the value that the switch produces when a certain 142 // case group is selected, and the second field is a vector containing the 143 // cases composing the case group. 144 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 145 SwitchCaseResultVectorTy; 146 // The first field contains the phi node that generates a result of the switch 147 // and the second field contains the value generated for a certain case in the 148 // switch for that PHI. 149 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 150 151 /// ValueEqualityComparisonCase - Represents a case of a switch. 152 struct ValueEqualityComparisonCase { 153 ConstantInt *Value; 154 BasicBlock *Dest; 155 156 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 157 : Value(Value), Dest(Dest) {} 158 159 bool operator<(ValueEqualityComparisonCase RHS) const { 160 // Comparing pointers is ok as we only rely on the order for uniquing. 161 return Value < RHS.Value; 162 } 163 164 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 165 }; 166 167 class SimplifyCFGOpt { 168 const TargetTransformInfo &TTI; 169 const DataLayout &DL; 170 AssumptionCache *AC; 171 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 172 const SimplifyCFGOptions &Options; 173 174 Value *isValueEqualityComparison(TerminatorInst *TI); 175 BasicBlock *GetValueEqualityComparisonCases( 176 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 177 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 178 BasicBlock *Pred, 179 IRBuilder<> &Builder); 180 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 181 IRBuilder<> &Builder); 182 183 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 184 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 185 bool SimplifySingleResume(ResumeInst *RI); 186 bool SimplifyCommonResume(ResumeInst *RI); 187 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 188 bool SimplifyUnreachable(UnreachableInst *UI); 189 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 190 bool SimplifyIndirectBr(IndirectBrInst *IBI); 191 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 192 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 193 194 public: 195 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 196 AssumptionCache *AC, 197 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 198 const SimplifyCFGOptions &Opts) 199 : TTI(TTI), DL(DL), AC(AC), LoopHeaders(LoopHeaders), Options(Opts) {} 200 201 bool run(BasicBlock *BB); 202 }; 203 204 } // end anonymous namespace 205 206 /// Return true if it is safe to merge these two 207 /// terminator instructions together. 208 static bool 209 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 210 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 211 if (SI1 == SI2) 212 return false; // Can't merge with self! 213 214 // It is not safe to merge these two switch instructions if they have a common 215 // successor, and if that successor has a PHI node, and if *that* PHI node has 216 // conflicting incoming values from the two switch blocks. 217 BasicBlock *SI1BB = SI1->getParent(); 218 BasicBlock *SI2BB = SI2->getParent(); 219 220 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 221 bool Fail = false; 222 for (BasicBlock *Succ : successors(SI2BB)) 223 if (SI1Succs.count(Succ)) 224 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 225 PHINode *PN = cast<PHINode>(BBI); 226 if (PN->getIncomingValueForBlock(SI1BB) != 227 PN->getIncomingValueForBlock(SI2BB)) { 228 if (FailBlocks) 229 FailBlocks->insert(Succ); 230 Fail = true; 231 } 232 } 233 234 return !Fail; 235 } 236 237 /// Return true if it is safe and profitable to merge these two terminator 238 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 239 /// store all PHI nodes in common successors. 240 static bool 241 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 242 Instruction *Cond, 243 SmallVectorImpl<PHINode *> &PhiNodes) { 244 if (SI1 == SI2) 245 return false; // Can't merge with self! 246 assert(SI1->isUnconditional() && SI2->isConditional()); 247 248 // We fold the unconditional branch if we can easily update all PHI nodes in 249 // common successors: 250 // 1> We have a constant incoming value for the conditional branch; 251 // 2> We have "Cond" as the incoming value for the unconditional branch; 252 // 3> SI2->getCondition() and Cond have same operands. 253 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 254 if (!Ci2) 255 return false; 256 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 257 Cond->getOperand(1) == Ci2->getOperand(1)) && 258 !(Cond->getOperand(0) == Ci2->getOperand(1) && 259 Cond->getOperand(1) == Ci2->getOperand(0))) 260 return false; 261 262 BasicBlock *SI1BB = SI1->getParent(); 263 BasicBlock *SI2BB = SI2->getParent(); 264 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 265 for (BasicBlock *Succ : successors(SI2BB)) 266 if (SI1Succs.count(Succ)) 267 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 268 PHINode *PN = cast<PHINode>(BBI); 269 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 270 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 271 return false; 272 PhiNodes.push_back(PN); 273 } 274 return true; 275 } 276 277 /// Update PHI nodes in Succ to indicate that there will now be entries in it 278 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 279 /// will be the same as those coming in from ExistPred, an existing predecessor 280 /// of Succ. 281 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 282 BasicBlock *ExistPred) { 283 if (!isa<PHINode>(Succ->begin())) 284 return; // Quick exit if nothing to do 285 286 PHINode *PN; 287 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 288 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 289 } 290 291 /// Compute an abstract "cost" of speculating the given instruction, 292 /// which is assumed to be safe to speculate. TCC_Free means cheap, 293 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 294 /// expensive. 295 static unsigned ComputeSpeculationCost(const User *I, 296 const TargetTransformInfo &TTI) { 297 assert(isSafeToSpeculativelyExecute(I) && 298 "Instruction is not safe to speculatively execute!"); 299 return TTI.getUserCost(I); 300 } 301 302 /// If we have a merge point of an "if condition" as accepted above, 303 /// return true if the specified value dominates the block. We 304 /// don't handle the true generality of domination here, just a special case 305 /// which works well enough for us. 306 /// 307 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 308 /// see if V (which must be an instruction) and its recursive operands 309 /// that do not dominate BB have a combined cost lower than CostRemaining and 310 /// are non-trapping. If both are true, the instruction is inserted into the 311 /// set and true is returned. 312 /// 313 /// The cost for most non-trapping instructions is defined as 1 except for 314 /// Select whose cost is 2. 315 /// 316 /// After this function returns, CostRemaining is decreased by the cost of 317 /// V plus its non-dominating operands. If that cost is greater than 318 /// CostRemaining, false is returned and CostRemaining is undefined. 319 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 320 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 321 unsigned &CostRemaining, 322 const TargetTransformInfo &TTI, 323 unsigned Depth = 0) { 324 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 325 // so limit the recursion depth. 326 // TODO: While this recursion limit does prevent pathological behavior, it 327 // would be better to track visited instructions to avoid cycles. 328 if (Depth == MaxSpeculationDepth) 329 return false; 330 331 Instruction *I = dyn_cast<Instruction>(V); 332 if (!I) { 333 // Non-instructions all dominate instructions, but not all constantexprs 334 // can be executed unconditionally. 335 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 336 if (C->canTrap()) 337 return false; 338 return true; 339 } 340 BasicBlock *PBB = I->getParent(); 341 342 // We don't want to allow weird loops that might have the "if condition" in 343 // the bottom of this block. 344 if (PBB == BB) 345 return false; 346 347 // If this instruction is defined in a block that contains an unconditional 348 // branch to BB, then it must be in the 'conditional' part of the "if 349 // statement". If not, it definitely dominates the region. 350 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 351 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 352 return true; 353 354 // If we aren't allowing aggressive promotion anymore, then don't consider 355 // instructions in the 'if region'. 356 if (!AggressiveInsts) 357 return false; 358 359 // If we have seen this instruction before, don't count it again. 360 if (AggressiveInsts->count(I)) 361 return true; 362 363 // Okay, it looks like the instruction IS in the "condition". Check to 364 // see if it's a cheap instruction to unconditionally compute, and if it 365 // only uses stuff defined outside of the condition. If so, hoist it out. 366 if (!isSafeToSpeculativelyExecute(I)) 367 return false; 368 369 unsigned Cost = ComputeSpeculationCost(I, TTI); 370 371 // Allow exactly one instruction to be speculated regardless of its cost 372 // (as long as it is safe to do so). 373 // This is intended to flatten the CFG even if the instruction is a division 374 // or other expensive operation. The speculation of an expensive instruction 375 // is expected to be undone in CodeGenPrepare if the speculation has not 376 // enabled further IR optimizations. 377 if (Cost > CostRemaining && 378 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 379 return false; 380 381 // Avoid unsigned wrap. 382 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 383 384 // Okay, we can only really hoist these out if their operands do 385 // not take us over the cost threshold. 386 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 387 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 388 Depth + 1)) 389 return false; 390 // Okay, it's safe to do this! Remember this instruction. 391 AggressiveInsts->insert(I); 392 return true; 393 } 394 395 /// Extract ConstantInt from value, looking through IntToPtr 396 /// and PointerNullValue. Return NULL if value is not a constant int. 397 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 398 // Normal constant int. 399 ConstantInt *CI = dyn_cast<ConstantInt>(V); 400 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 401 return CI; 402 403 // This is some kind of pointer constant. Turn it into a pointer-sized 404 // ConstantInt if possible. 405 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 406 407 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 408 if (isa<ConstantPointerNull>(V)) 409 return ConstantInt::get(PtrTy, 0); 410 411 // IntToPtr const int. 412 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 413 if (CE->getOpcode() == Instruction::IntToPtr) 414 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 415 // The constant is very likely to have the right type already. 416 if (CI->getType() == PtrTy) 417 return CI; 418 else 419 return cast<ConstantInt>( 420 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 421 } 422 return nullptr; 423 } 424 425 namespace { 426 427 /// Given a chain of or (||) or and (&&) comparison of a value against a 428 /// constant, this will try to recover the information required for a switch 429 /// structure. 430 /// It will depth-first traverse the chain of comparison, seeking for patterns 431 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 432 /// representing the different cases for the switch. 433 /// Note that if the chain is composed of '||' it will build the set of elements 434 /// that matches the comparisons (i.e. any of this value validate the chain) 435 /// while for a chain of '&&' it will build the set elements that make the test 436 /// fail. 437 struct ConstantComparesGatherer { 438 const DataLayout &DL; 439 Value *CompValue; /// Value found for the switch comparison 440 Value *Extra; /// Extra clause to be checked before the switch 441 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 442 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 443 444 /// Construct and compute the result for the comparison instruction Cond 445 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 446 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 447 gather(Cond); 448 } 449 450 /// Prevent copy 451 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 452 ConstantComparesGatherer & 453 operator=(const ConstantComparesGatherer &) = delete; 454 455 private: 456 /// Try to set the current value used for the comparison, it succeeds only if 457 /// it wasn't set before or if the new value is the same as the old one 458 bool setValueOnce(Value *NewVal) { 459 if (CompValue && CompValue != NewVal) 460 return false; 461 CompValue = NewVal; 462 return (CompValue != nullptr); 463 } 464 465 /// Try to match Instruction "I" as a comparison against a constant and 466 /// populates the array Vals with the set of values that match (or do not 467 /// match depending on isEQ). 468 /// Return false on failure. On success, the Value the comparison matched 469 /// against is placed in CompValue. 470 /// If CompValue is already set, the function is expected to fail if a match 471 /// is found but the value compared to is different. 472 bool matchInstruction(Instruction *I, bool isEQ) { 473 // If this is an icmp against a constant, handle this as one of the cases. 474 ICmpInst *ICI; 475 ConstantInt *C; 476 if (!((ICI = dyn_cast<ICmpInst>(I)) && 477 (C = GetConstantInt(I->getOperand(1), DL)))) { 478 return false; 479 } 480 481 Value *RHSVal; 482 const APInt *RHSC; 483 484 // Pattern match a special case 485 // (x & ~2^z) == y --> x == y || x == y|2^z 486 // This undoes a transformation done by instcombine to fuse 2 compares. 487 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 488 489 // It's a little bit hard to see why the following transformations are 490 // correct. Here is a CVC3 program to verify them for 64-bit values: 491 492 /* 493 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 494 x : BITVECTOR(64); 495 y : BITVECTOR(64); 496 z : BITVECTOR(64); 497 mask : BITVECTOR(64) = BVSHL(ONE, z); 498 QUERY( (y & ~mask = y) => 499 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 500 ); 501 QUERY( (y | mask = y) => 502 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 503 ); 504 */ 505 506 // Please note that each pattern must be a dual implication (<--> or 507 // iff). One directional implication can create spurious matches. If the 508 // implication is only one-way, an unsatisfiable condition on the left 509 // side can imply a satisfiable condition on the right side. Dual 510 // implication ensures that satisfiable conditions are transformed to 511 // other satisfiable conditions and unsatisfiable conditions are 512 // transformed to other unsatisfiable conditions. 513 514 // Here is a concrete example of a unsatisfiable condition on the left 515 // implying a satisfiable condition on the right: 516 // 517 // mask = (1 << z) 518 // (x & ~mask) == y --> (x == y || x == (y | mask)) 519 // 520 // Substituting y = 3, z = 0 yields: 521 // (x & -2) == 3 --> (x == 3 || x == 2) 522 523 // Pattern match a special case: 524 /* 525 QUERY( (y & ~mask = y) => 526 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 527 ); 528 */ 529 if (match(ICI->getOperand(0), 530 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 531 APInt Mask = ~*RHSC; 532 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 533 // If we already have a value for the switch, it has to match! 534 if (!setValueOnce(RHSVal)) 535 return false; 536 537 Vals.push_back(C); 538 Vals.push_back( 539 ConstantInt::get(C->getContext(), 540 C->getValue() | Mask)); 541 UsedICmps++; 542 return true; 543 } 544 } 545 546 // Pattern match a special case: 547 /* 548 QUERY( (y | mask = y) => 549 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 550 ); 551 */ 552 if (match(ICI->getOperand(0), 553 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 554 APInt Mask = *RHSC; 555 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 556 // If we already have a value for the switch, it has to match! 557 if (!setValueOnce(RHSVal)) 558 return false; 559 560 Vals.push_back(C); 561 Vals.push_back(ConstantInt::get(C->getContext(), 562 C->getValue() & ~Mask)); 563 UsedICmps++; 564 return true; 565 } 566 } 567 568 // If we already have a value for the switch, it has to match! 569 if (!setValueOnce(ICI->getOperand(0))) 570 return false; 571 572 UsedICmps++; 573 Vals.push_back(C); 574 return ICI->getOperand(0); 575 } 576 577 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 578 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 579 ICI->getPredicate(), C->getValue()); 580 581 // Shift the range if the compare is fed by an add. This is the range 582 // compare idiom as emitted by instcombine. 583 Value *CandidateVal = I->getOperand(0); 584 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 585 Span = Span.subtract(*RHSC); 586 CandidateVal = RHSVal; 587 } 588 589 // If this is an and/!= check, then we are looking to build the set of 590 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 591 // x != 0 && x != 1. 592 if (!isEQ) 593 Span = Span.inverse(); 594 595 // If there are a ton of values, we don't want to make a ginormous switch. 596 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 597 return false; 598 } 599 600 // If we already have a value for the switch, it has to match! 601 if (!setValueOnce(CandidateVal)) 602 return false; 603 604 // Add all values from the range to the set 605 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 606 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 607 608 UsedICmps++; 609 return true; 610 } 611 612 /// Given a potentially 'or'd or 'and'd together collection of icmp 613 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 614 /// the value being compared, and stick the list constants into the Vals 615 /// vector. 616 /// One "Extra" case is allowed to differ from the other. 617 void gather(Value *V) { 618 Instruction *I = dyn_cast<Instruction>(V); 619 bool isEQ = (I->getOpcode() == Instruction::Or); 620 621 // Keep a stack (SmallVector for efficiency) for depth-first traversal 622 SmallVector<Value *, 8> DFT; 623 SmallPtrSet<Value *, 8> Visited; 624 625 // Initialize 626 Visited.insert(V); 627 DFT.push_back(V); 628 629 while (!DFT.empty()) { 630 V = DFT.pop_back_val(); 631 632 if (Instruction *I = dyn_cast<Instruction>(V)) { 633 // If it is a || (or && depending on isEQ), process the operands. 634 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 635 if (Visited.insert(I->getOperand(1)).second) 636 DFT.push_back(I->getOperand(1)); 637 if (Visited.insert(I->getOperand(0)).second) 638 DFT.push_back(I->getOperand(0)); 639 continue; 640 } 641 642 // Try to match the current instruction 643 if (matchInstruction(I, isEQ)) 644 // Match succeed, continue the loop 645 continue; 646 } 647 648 // One element of the sequence of || (or &&) could not be match as a 649 // comparison against the same value as the others. 650 // We allow only one "Extra" case to be checked before the switch 651 if (!Extra) { 652 Extra = V; 653 continue; 654 } 655 // Failed to parse a proper sequence, abort now 656 CompValue = nullptr; 657 break; 658 } 659 } 660 }; 661 662 } // end anonymous namespace 663 664 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 665 Instruction *Cond = nullptr; 666 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 667 Cond = dyn_cast<Instruction>(SI->getCondition()); 668 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 669 if (BI->isConditional()) 670 Cond = dyn_cast<Instruction>(BI->getCondition()); 671 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 672 Cond = dyn_cast<Instruction>(IBI->getAddress()); 673 } 674 675 TI->eraseFromParent(); 676 if (Cond) 677 RecursivelyDeleteTriviallyDeadInstructions(Cond); 678 } 679 680 /// Return true if the specified terminator checks 681 /// to see if a value is equal to constant integer value. 682 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 683 Value *CV = nullptr; 684 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 685 // Do not permit merging of large switch instructions into their 686 // predecessors unless there is only one predecessor. 687 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 688 pred_end(SI->getParent())) <= 689 128) 690 CV = SI->getCondition(); 691 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 692 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 693 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 694 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 695 CV = ICI->getOperand(0); 696 } 697 698 // Unwrap any lossless ptrtoint cast. 699 if (CV) { 700 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 701 Value *Ptr = PTII->getPointerOperand(); 702 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 703 CV = Ptr; 704 } 705 } 706 return CV; 707 } 708 709 /// Given a value comparison instruction, 710 /// decode all of the 'cases' that it represents and return the 'default' block. 711 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 712 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 713 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 714 Cases.reserve(SI->getNumCases()); 715 for (auto Case : SI->cases()) 716 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 717 Case.getCaseSuccessor())); 718 return SI->getDefaultDest(); 719 } 720 721 BranchInst *BI = cast<BranchInst>(TI); 722 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 723 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 724 Cases.push_back(ValueEqualityComparisonCase( 725 GetConstantInt(ICI->getOperand(1), DL), Succ)); 726 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 727 } 728 729 /// Given a vector of bb/value pairs, remove any entries 730 /// in the list that match the specified block. 731 static void 732 EliminateBlockCases(BasicBlock *BB, 733 std::vector<ValueEqualityComparisonCase> &Cases) { 734 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 735 } 736 737 /// Return true if there are any keys in C1 that exist in C2 as well. 738 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 739 std::vector<ValueEqualityComparisonCase> &C2) { 740 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 741 742 // Make V1 be smaller than V2. 743 if (V1->size() > V2->size()) 744 std::swap(V1, V2); 745 746 if (V1->empty()) 747 return false; 748 if (V1->size() == 1) { 749 // Just scan V2. 750 ConstantInt *TheVal = (*V1)[0].Value; 751 for (unsigned i = 0, e = V2->size(); i != e; ++i) 752 if (TheVal == (*V2)[i].Value) 753 return true; 754 } 755 756 // Otherwise, just sort both lists and compare element by element. 757 array_pod_sort(V1->begin(), V1->end()); 758 array_pod_sort(V2->begin(), V2->end()); 759 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 760 while (i1 != e1 && i2 != e2) { 761 if ((*V1)[i1].Value == (*V2)[i2].Value) 762 return true; 763 if ((*V1)[i1].Value < (*V2)[i2].Value) 764 ++i1; 765 else 766 ++i2; 767 } 768 return false; 769 } 770 771 /// If TI is known to be a terminator instruction and its block is known to 772 /// only have a single predecessor block, check to see if that predecessor is 773 /// also a value comparison with the same value, and if that comparison 774 /// determines the outcome of this comparison. If so, simplify TI. This does a 775 /// very limited form of jump threading. 776 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 777 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 778 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 779 if (!PredVal) 780 return false; // Not a value comparison in predecessor. 781 782 Value *ThisVal = isValueEqualityComparison(TI); 783 assert(ThisVal && "This isn't a value comparison!!"); 784 if (ThisVal != PredVal) 785 return false; // Different predicates. 786 787 // TODO: Preserve branch weight metadata, similarly to how 788 // FoldValueComparisonIntoPredecessors preserves it. 789 790 // Find out information about when control will move from Pred to TI's block. 791 std::vector<ValueEqualityComparisonCase> PredCases; 792 BasicBlock *PredDef = 793 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 794 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 795 796 // Find information about how control leaves this block. 797 std::vector<ValueEqualityComparisonCase> ThisCases; 798 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 799 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 800 801 // If TI's block is the default block from Pred's comparison, potentially 802 // simplify TI based on this knowledge. 803 if (PredDef == TI->getParent()) { 804 // If we are here, we know that the value is none of those cases listed in 805 // PredCases. If there are any cases in ThisCases that are in PredCases, we 806 // can simplify TI. 807 if (!ValuesOverlap(PredCases, ThisCases)) 808 return false; 809 810 if (isa<BranchInst>(TI)) { 811 // Okay, one of the successors of this condbr is dead. Convert it to a 812 // uncond br. 813 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 814 // Insert the new branch. 815 Instruction *NI = Builder.CreateBr(ThisDef); 816 (void)NI; 817 818 // Remove PHI node entries for the dead edge. 819 ThisCases[0].Dest->removePredecessor(TI->getParent()); 820 821 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 822 << "Through successor TI: " << *TI << "Leaving: " << *NI 823 << "\n"); 824 825 EraseTerminatorInstAndDCECond(TI); 826 return true; 827 } 828 829 SwitchInst *SI = cast<SwitchInst>(TI); 830 // Okay, TI has cases that are statically dead, prune them away. 831 SmallPtrSet<Constant *, 16> DeadCases; 832 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 833 DeadCases.insert(PredCases[i].Value); 834 835 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 836 << "Through successor TI: " << *TI); 837 838 // Collect branch weights into a vector. 839 SmallVector<uint32_t, 8> Weights; 840 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 841 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 842 if (HasWeight) 843 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 844 ++MD_i) { 845 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 846 Weights.push_back(CI->getValue().getZExtValue()); 847 } 848 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 849 --i; 850 if (DeadCases.count(i->getCaseValue())) { 851 if (HasWeight) { 852 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 853 Weights.pop_back(); 854 } 855 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 856 SI->removeCase(i); 857 } 858 } 859 if (HasWeight && Weights.size() >= 2) 860 SI->setMetadata(LLVMContext::MD_prof, 861 MDBuilder(SI->getParent()->getContext()) 862 .createBranchWeights(Weights)); 863 864 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 865 return true; 866 } 867 868 // Otherwise, TI's block must correspond to some matched value. Find out 869 // which value (or set of values) this is. 870 ConstantInt *TIV = nullptr; 871 BasicBlock *TIBB = TI->getParent(); 872 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 873 if (PredCases[i].Dest == TIBB) { 874 if (TIV) 875 return false; // Cannot handle multiple values coming to this block. 876 TIV = PredCases[i].Value; 877 } 878 assert(TIV && "No edge from pred to succ?"); 879 880 // Okay, we found the one constant that our value can be if we get into TI's 881 // BB. Find out which successor will unconditionally be branched to. 882 BasicBlock *TheRealDest = nullptr; 883 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 884 if (ThisCases[i].Value == TIV) { 885 TheRealDest = ThisCases[i].Dest; 886 break; 887 } 888 889 // If not handled by any explicit cases, it is handled by the default case. 890 if (!TheRealDest) 891 TheRealDest = ThisDef; 892 893 // Remove PHI node entries for dead edges. 894 BasicBlock *CheckEdge = TheRealDest; 895 for (BasicBlock *Succ : successors(TIBB)) 896 if (Succ != CheckEdge) 897 Succ->removePredecessor(TIBB); 898 else 899 CheckEdge = nullptr; 900 901 // Insert the new branch. 902 Instruction *NI = Builder.CreateBr(TheRealDest); 903 (void)NI; 904 905 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 906 << "Through successor TI: " << *TI << "Leaving: " << *NI 907 << "\n"); 908 909 EraseTerminatorInstAndDCECond(TI); 910 return true; 911 } 912 913 namespace { 914 915 /// This class implements a stable ordering of constant 916 /// integers that does not depend on their address. This is important for 917 /// applications that sort ConstantInt's to ensure uniqueness. 918 struct ConstantIntOrdering { 919 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 920 return LHS->getValue().ult(RHS->getValue()); 921 } 922 }; 923 924 } // end anonymous namespace 925 926 static int ConstantIntSortPredicate(ConstantInt *const *P1, 927 ConstantInt *const *P2) { 928 const ConstantInt *LHS = *P1; 929 const ConstantInt *RHS = *P2; 930 if (LHS == RHS) 931 return 0; 932 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 933 } 934 935 static inline bool HasBranchWeights(const Instruction *I) { 936 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 937 if (ProfMD && ProfMD->getOperand(0)) 938 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 939 return MDS->getString().equals("branch_weights"); 940 941 return false; 942 } 943 944 /// Get Weights of a given TerminatorInst, the default weight is at the front 945 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 946 /// metadata. 947 static void GetBranchWeights(TerminatorInst *TI, 948 SmallVectorImpl<uint64_t> &Weights) { 949 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 950 assert(MD); 951 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 952 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 953 Weights.push_back(CI->getValue().getZExtValue()); 954 } 955 956 // If TI is a conditional eq, the default case is the false case, 957 // and the corresponding branch-weight data is at index 2. We swap the 958 // default weight to be the first entry. 959 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 960 assert(Weights.size() == 2); 961 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 962 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 963 std::swap(Weights.front(), Weights.back()); 964 } 965 } 966 967 /// Keep halving the weights until all can fit in uint32_t. 968 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 969 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 970 if (Max > UINT_MAX) { 971 unsigned Offset = 32 - countLeadingZeros(Max); 972 for (uint64_t &I : Weights) 973 I >>= Offset; 974 } 975 } 976 977 /// The specified terminator is a value equality comparison instruction 978 /// (either a switch or a branch on "X == c"). 979 /// See if any of the predecessors of the terminator block are value comparisons 980 /// on the same value. If so, and if safe to do so, fold them together. 981 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 982 IRBuilder<> &Builder) { 983 BasicBlock *BB = TI->getParent(); 984 Value *CV = isValueEqualityComparison(TI); // CondVal 985 assert(CV && "Not a comparison?"); 986 bool Changed = false; 987 988 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 989 while (!Preds.empty()) { 990 BasicBlock *Pred = Preds.pop_back_val(); 991 992 // See if the predecessor is a comparison with the same value. 993 TerminatorInst *PTI = Pred->getTerminator(); 994 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 995 996 if (PCV == CV && TI != PTI) { 997 SmallSetVector<BasicBlock*, 4> FailBlocks; 998 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 999 for (auto *Succ : FailBlocks) { 1000 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1001 return false; 1002 } 1003 } 1004 1005 // Figure out which 'cases' to copy from SI to PSI. 1006 std::vector<ValueEqualityComparisonCase> BBCases; 1007 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1008 1009 std::vector<ValueEqualityComparisonCase> PredCases; 1010 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1011 1012 // Based on whether the default edge from PTI goes to BB or not, fill in 1013 // PredCases and PredDefault with the new switch cases we would like to 1014 // build. 1015 SmallVector<BasicBlock *, 8> NewSuccessors; 1016 1017 // Update the branch weight metadata along the way 1018 SmallVector<uint64_t, 8> Weights; 1019 bool PredHasWeights = HasBranchWeights(PTI); 1020 bool SuccHasWeights = HasBranchWeights(TI); 1021 1022 if (PredHasWeights) { 1023 GetBranchWeights(PTI, Weights); 1024 // branch-weight metadata is inconsistent here. 1025 if (Weights.size() != 1 + PredCases.size()) 1026 PredHasWeights = SuccHasWeights = false; 1027 } else if (SuccHasWeights) 1028 // If there are no predecessor weights but there are successor weights, 1029 // populate Weights with 1, which will later be scaled to the sum of 1030 // successor's weights 1031 Weights.assign(1 + PredCases.size(), 1); 1032 1033 SmallVector<uint64_t, 8> SuccWeights; 1034 if (SuccHasWeights) { 1035 GetBranchWeights(TI, SuccWeights); 1036 // branch-weight metadata is inconsistent here. 1037 if (SuccWeights.size() != 1 + BBCases.size()) 1038 PredHasWeights = SuccHasWeights = false; 1039 } else if (PredHasWeights) 1040 SuccWeights.assign(1 + BBCases.size(), 1); 1041 1042 if (PredDefault == BB) { 1043 // If this is the default destination from PTI, only the edges in TI 1044 // that don't occur in PTI, or that branch to BB will be activated. 1045 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1046 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1047 if (PredCases[i].Dest != BB) 1048 PTIHandled.insert(PredCases[i].Value); 1049 else { 1050 // The default destination is BB, we don't need explicit targets. 1051 std::swap(PredCases[i], PredCases.back()); 1052 1053 if (PredHasWeights || SuccHasWeights) { 1054 // Increase weight for the default case. 1055 Weights[0] += Weights[i + 1]; 1056 std::swap(Weights[i + 1], Weights.back()); 1057 Weights.pop_back(); 1058 } 1059 1060 PredCases.pop_back(); 1061 --i; 1062 --e; 1063 } 1064 1065 // Reconstruct the new switch statement we will be building. 1066 if (PredDefault != BBDefault) { 1067 PredDefault->removePredecessor(Pred); 1068 PredDefault = BBDefault; 1069 NewSuccessors.push_back(BBDefault); 1070 } 1071 1072 unsigned CasesFromPred = Weights.size(); 1073 uint64_t ValidTotalSuccWeight = 0; 1074 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1075 if (!PTIHandled.count(BBCases[i].Value) && 1076 BBCases[i].Dest != BBDefault) { 1077 PredCases.push_back(BBCases[i]); 1078 NewSuccessors.push_back(BBCases[i].Dest); 1079 if (SuccHasWeights || PredHasWeights) { 1080 // The default weight is at index 0, so weight for the ith case 1081 // should be at index i+1. Scale the cases from successor by 1082 // PredDefaultWeight (Weights[0]). 1083 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1084 ValidTotalSuccWeight += SuccWeights[i + 1]; 1085 } 1086 } 1087 1088 if (SuccHasWeights || PredHasWeights) { 1089 ValidTotalSuccWeight += SuccWeights[0]; 1090 // Scale the cases from predecessor by ValidTotalSuccWeight. 1091 for (unsigned i = 1; i < CasesFromPred; ++i) 1092 Weights[i] *= ValidTotalSuccWeight; 1093 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1094 Weights[0] *= SuccWeights[0]; 1095 } 1096 } else { 1097 // If this is not the default destination from PSI, only the edges 1098 // in SI that occur in PSI with a destination of BB will be 1099 // activated. 1100 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1101 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1102 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1103 if (PredCases[i].Dest == BB) { 1104 PTIHandled.insert(PredCases[i].Value); 1105 1106 if (PredHasWeights || SuccHasWeights) { 1107 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1108 std::swap(Weights[i + 1], Weights.back()); 1109 Weights.pop_back(); 1110 } 1111 1112 std::swap(PredCases[i], PredCases.back()); 1113 PredCases.pop_back(); 1114 --i; 1115 --e; 1116 } 1117 1118 // Okay, now we know which constants were sent to BB from the 1119 // predecessor. Figure out where they will all go now. 1120 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1121 if (PTIHandled.count(BBCases[i].Value)) { 1122 // If this is one we are capable of getting... 1123 if (PredHasWeights || SuccHasWeights) 1124 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1125 PredCases.push_back(BBCases[i]); 1126 NewSuccessors.push_back(BBCases[i].Dest); 1127 PTIHandled.erase( 1128 BBCases[i].Value); // This constant is taken care of 1129 } 1130 1131 // If there are any constants vectored to BB that TI doesn't handle, 1132 // they must go to the default destination of TI. 1133 for (ConstantInt *I : PTIHandled) { 1134 if (PredHasWeights || SuccHasWeights) 1135 Weights.push_back(WeightsForHandled[I]); 1136 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1137 NewSuccessors.push_back(BBDefault); 1138 } 1139 } 1140 1141 // Okay, at this point, we know which new successor Pred will get. Make 1142 // sure we update the number of entries in the PHI nodes for these 1143 // successors. 1144 for (BasicBlock *NewSuccessor : NewSuccessors) 1145 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1146 1147 Builder.SetInsertPoint(PTI); 1148 // Convert pointer to int before we switch. 1149 if (CV->getType()->isPointerTy()) { 1150 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1151 "magicptr"); 1152 } 1153 1154 // Now that the successors are updated, create the new Switch instruction. 1155 SwitchInst *NewSI = 1156 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1157 NewSI->setDebugLoc(PTI->getDebugLoc()); 1158 for (ValueEqualityComparisonCase &V : PredCases) 1159 NewSI->addCase(V.Value, V.Dest); 1160 1161 if (PredHasWeights || SuccHasWeights) { 1162 // Halve the weights if any of them cannot fit in an uint32_t 1163 FitWeights(Weights); 1164 1165 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1166 1167 NewSI->setMetadata( 1168 LLVMContext::MD_prof, 1169 MDBuilder(BB->getContext()).createBranchWeights(MDWeights)); 1170 } 1171 1172 EraseTerminatorInstAndDCECond(PTI); 1173 1174 // Okay, last check. If BB is still a successor of PSI, then we must 1175 // have an infinite loop case. If so, add an infinitely looping block 1176 // to handle the case to preserve the behavior of the code. 1177 BasicBlock *InfLoopBlock = nullptr; 1178 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1179 if (NewSI->getSuccessor(i) == BB) { 1180 if (!InfLoopBlock) { 1181 // Insert it at the end of the function, because it's either code, 1182 // or it won't matter if it's hot. :) 1183 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1184 BB->getParent()); 1185 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1186 } 1187 NewSI->setSuccessor(i, InfLoopBlock); 1188 } 1189 1190 Changed = true; 1191 } 1192 } 1193 return Changed; 1194 } 1195 1196 // If we would need to insert a select that uses the value of this invoke 1197 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1198 // can't hoist the invoke, as there is nowhere to put the select in this case. 1199 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1200 Instruction *I1, Instruction *I2) { 1201 for (BasicBlock *Succ : successors(BB1)) { 1202 PHINode *PN; 1203 for (BasicBlock::iterator BBI = Succ->begin(); 1204 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1205 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1206 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1207 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1208 return false; 1209 } 1210 } 1211 } 1212 return true; 1213 } 1214 1215 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1216 1217 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1218 /// in the two blocks up into the branch block. The caller of this function 1219 /// guarantees that BI's block dominates BB1 and BB2. 1220 static bool HoistThenElseCodeToIf(BranchInst *BI, 1221 const TargetTransformInfo &TTI) { 1222 // This does very trivial matching, with limited scanning, to find identical 1223 // instructions in the two blocks. In particular, we don't want to get into 1224 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1225 // such, we currently just scan for obviously identical instructions in an 1226 // identical order. 1227 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1228 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1229 1230 BasicBlock::iterator BB1_Itr = BB1->begin(); 1231 BasicBlock::iterator BB2_Itr = BB2->begin(); 1232 1233 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1234 // Skip debug info if it is not identical. 1235 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1236 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1237 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1238 while (isa<DbgInfoIntrinsic>(I1)) 1239 I1 = &*BB1_Itr++; 1240 while (isa<DbgInfoIntrinsic>(I2)) 1241 I2 = &*BB2_Itr++; 1242 } 1243 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1244 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1245 return false; 1246 1247 BasicBlock *BIParent = BI->getParent(); 1248 1249 bool Changed = false; 1250 do { 1251 // If we are hoisting the terminator instruction, don't move one (making a 1252 // broken BB), instead clone it, and remove BI. 1253 if (isa<TerminatorInst>(I1)) 1254 goto HoistTerminator; 1255 1256 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1257 return Changed; 1258 1259 // For a normal instruction, we just move one to right before the branch, 1260 // then replace all uses of the other with the first. Finally, we remove 1261 // the now redundant second instruction. 1262 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1263 if (!I2->use_empty()) 1264 I2->replaceAllUsesWith(I1); 1265 I1->andIRFlags(I2); 1266 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1267 LLVMContext::MD_range, 1268 LLVMContext::MD_fpmath, 1269 LLVMContext::MD_invariant_load, 1270 LLVMContext::MD_nonnull, 1271 LLVMContext::MD_invariant_group, 1272 LLVMContext::MD_align, 1273 LLVMContext::MD_dereferenceable, 1274 LLVMContext::MD_dereferenceable_or_null, 1275 LLVMContext::MD_mem_parallel_loop_access}; 1276 combineMetadata(I1, I2, KnownIDs); 1277 1278 // I1 and I2 are being combined into a single instruction. Its debug 1279 // location is the merged locations of the original instructions. 1280 if (!isa<CallInst>(I1)) 1281 I1->setDebugLoc( 1282 DILocation::getMergedLocation(I1->getDebugLoc(), I2->getDebugLoc())); 1283 1284 I2->eraseFromParent(); 1285 Changed = true; 1286 1287 I1 = &*BB1_Itr++; 1288 I2 = &*BB2_Itr++; 1289 // Skip debug info if it is not identical. 1290 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1291 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1292 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1293 while (isa<DbgInfoIntrinsic>(I1)) 1294 I1 = &*BB1_Itr++; 1295 while (isa<DbgInfoIntrinsic>(I2)) 1296 I2 = &*BB2_Itr++; 1297 } 1298 } while (I1->isIdenticalToWhenDefined(I2)); 1299 1300 return true; 1301 1302 HoistTerminator: 1303 // It may not be possible to hoist an invoke. 1304 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1305 return Changed; 1306 1307 for (BasicBlock *Succ : successors(BB1)) { 1308 PHINode *PN; 1309 for (BasicBlock::iterator BBI = Succ->begin(); 1310 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1311 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1312 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1313 if (BB1V == BB2V) 1314 continue; 1315 1316 // Check for passingValueIsAlwaysUndefined here because we would rather 1317 // eliminate undefined control flow then converting it to a select. 1318 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1319 passingValueIsAlwaysUndefined(BB2V, PN)) 1320 return Changed; 1321 1322 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1323 return Changed; 1324 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1325 return Changed; 1326 } 1327 } 1328 1329 // Okay, it is safe to hoist the terminator. 1330 Instruction *NT = I1->clone(); 1331 BIParent->getInstList().insert(BI->getIterator(), NT); 1332 if (!NT->getType()->isVoidTy()) { 1333 I1->replaceAllUsesWith(NT); 1334 I2->replaceAllUsesWith(NT); 1335 NT->takeName(I1); 1336 } 1337 1338 IRBuilder<NoFolder> Builder(NT); 1339 // Hoisting one of the terminators from our successor is a great thing. 1340 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1341 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1342 // nodes, so we insert select instruction to compute the final result. 1343 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1344 for (BasicBlock *Succ : successors(BB1)) { 1345 PHINode *PN; 1346 for (BasicBlock::iterator BBI = Succ->begin(); 1347 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1348 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1349 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1350 if (BB1V == BB2V) 1351 continue; 1352 1353 // These values do not agree. Insert a select instruction before NT 1354 // that determines the right value. 1355 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1356 if (!SI) 1357 SI = cast<SelectInst>( 1358 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1359 BB1V->getName() + "." + BB2V->getName(), BI)); 1360 1361 // Make the PHI node use the select for all incoming values for BB1/BB2 1362 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1363 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1364 PN->setIncomingValue(i, SI); 1365 } 1366 } 1367 1368 // Update any PHI nodes in our new successors. 1369 for (BasicBlock *Succ : successors(BB1)) 1370 AddPredecessorToBlock(Succ, BIParent, BB1); 1371 1372 EraseTerminatorInstAndDCECond(BI); 1373 return true; 1374 } 1375 1376 // All instructions in Insts belong to different blocks that all unconditionally 1377 // branch to a common successor. Analyze each instruction and return true if it 1378 // would be possible to sink them into their successor, creating one common 1379 // instruction instead. For every value that would be required to be provided by 1380 // PHI node (because an operand varies in each input block), add to PHIOperands. 1381 static bool canSinkInstructions( 1382 ArrayRef<Instruction *> Insts, 1383 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1384 // Prune out obviously bad instructions to move. Any non-store instruction 1385 // must have exactly one use, and we check later that use is by a single, 1386 // common PHI instruction in the successor. 1387 for (auto *I : Insts) { 1388 // These instructions may change or break semantics if moved. 1389 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1390 I->getType()->isTokenTy()) 1391 return false; 1392 1393 // Conservatively return false if I is an inline-asm instruction. Sinking 1394 // and merging inline-asm instructions can potentially create arguments 1395 // that cannot satisfy the inline-asm constraints. 1396 if (const auto *C = dyn_cast<CallInst>(I)) 1397 if (C->isInlineAsm()) 1398 return false; 1399 1400 // Everything must have only one use too, apart from stores which 1401 // have no uses. 1402 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1403 return false; 1404 } 1405 1406 const Instruction *I0 = Insts.front(); 1407 for (auto *I : Insts) 1408 if (!I->isSameOperationAs(I0)) 1409 return false; 1410 1411 // All instructions in Insts are known to be the same opcode. If they aren't 1412 // stores, check the only user of each is a PHI or in the same block as the 1413 // instruction, because if a user is in the same block as an instruction 1414 // we're contemplating sinking, it must already be determined to be sinkable. 1415 if (!isa<StoreInst>(I0)) { 1416 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1417 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1418 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1419 auto *U = cast<Instruction>(*I->user_begin()); 1420 return (PNUse && 1421 PNUse->getParent() == Succ && 1422 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1423 U->getParent() == I->getParent(); 1424 })) 1425 return false; 1426 } 1427 1428 // Because SROA can't handle speculating stores of selects, try not 1429 // to sink loads or stores of allocas when we'd have to create a PHI for 1430 // the address operand. Also, because it is likely that loads or stores 1431 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1432 // This can cause code churn which can have unintended consequences down 1433 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1434 // FIXME: This is a workaround for a deficiency in SROA - see 1435 // https://llvm.org/bugs/show_bug.cgi?id=30188 1436 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1437 return isa<AllocaInst>(I->getOperand(1)); 1438 })) 1439 return false; 1440 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1441 return isa<AllocaInst>(I->getOperand(0)); 1442 })) 1443 return false; 1444 1445 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1446 if (I0->getOperand(OI)->getType()->isTokenTy()) 1447 // Don't touch any operand of token type. 1448 return false; 1449 1450 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1451 assert(I->getNumOperands() == I0->getNumOperands()); 1452 return I->getOperand(OI) == I0->getOperand(OI); 1453 }; 1454 if (!all_of(Insts, SameAsI0)) { 1455 if (!canReplaceOperandWithVariable(I0, OI)) 1456 // We can't create a PHI from this GEP. 1457 return false; 1458 // Don't create indirect calls! The called value is the final operand. 1459 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1460 // FIXME: if the call was *already* indirect, we should do this. 1461 return false; 1462 } 1463 for (auto *I : Insts) 1464 PHIOperands[I].push_back(I->getOperand(OI)); 1465 } 1466 } 1467 return true; 1468 } 1469 1470 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1471 // instruction of every block in Blocks to their common successor, commoning 1472 // into one instruction. 1473 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1474 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1475 1476 // canSinkLastInstruction returning true guarantees that every block has at 1477 // least one non-terminator instruction. 1478 SmallVector<Instruction*,4> Insts; 1479 for (auto *BB : Blocks) { 1480 Instruction *I = BB->getTerminator(); 1481 do { 1482 I = I->getPrevNode(); 1483 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1484 if (!isa<DbgInfoIntrinsic>(I)) 1485 Insts.push_back(I); 1486 } 1487 1488 // The only checking we need to do now is that all users of all instructions 1489 // are the same PHI node. canSinkLastInstruction should have checked this but 1490 // it is slightly over-aggressive - it gets confused by commutative instructions 1491 // so double-check it here. 1492 Instruction *I0 = Insts.front(); 1493 if (!isa<StoreInst>(I0)) { 1494 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1495 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1496 auto *U = cast<Instruction>(*I->user_begin()); 1497 return U == PNUse; 1498 })) 1499 return false; 1500 } 1501 1502 // We don't need to do any more checking here; canSinkLastInstruction should 1503 // have done it all for us. 1504 SmallVector<Value*, 4> NewOperands; 1505 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1506 // This check is different to that in canSinkLastInstruction. There, we 1507 // cared about the global view once simplifycfg (and instcombine) have 1508 // completed - it takes into account PHIs that become trivially 1509 // simplifiable. However here we need a more local view; if an operand 1510 // differs we create a PHI and rely on instcombine to clean up the very 1511 // small mess we may make. 1512 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1513 return I->getOperand(O) != I0->getOperand(O); 1514 }); 1515 if (!NeedPHI) { 1516 NewOperands.push_back(I0->getOperand(O)); 1517 continue; 1518 } 1519 1520 // Create a new PHI in the successor block and populate it. 1521 auto *Op = I0->getOperand(O); 1522 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1523 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1524 Op->getName() + ".sink", &BBEnd->front()); 1525 for (auto *I : Insts) 1526 PN->addIncoming(I->getOperand(O), I->getParent()); 1527 NewOperands.push_back(PN); 1528 } 1529 1530 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1531 // and move it to the start of the successor block. 1532 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1533 I0->getOperandUse(O).set(NewOperands[O]); 1534 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1535 1536 // The debug location for the "common" instruction is the merged locations of 1537 // all the commoned instructions. We start with the original location of the 1538 // "common" instruction and iteratively merge each location in the loop below. 1539 const DILocation *Loc = I0->getDebugLoc(); 1540 1541 // Update metadata and IR flags, and merge debug locations. 1542 for (auto *I : Insts) 1543 if (I != I0) { 1544 Loc = DILocation::getMergedLocation(Loc, I->getDebugLoc()); 1545 combineMetadataForCSE(I0, I); 1546 I0->andIRFlags(I); 1547 } 1548 if (!isa<CallInst>(I0)) 1549 I0->setDebugLoc(Loc); 1550 1551 if (!isa<StoreInst>(I0)) { 1552 // canSinkLastInstruction checked that all instructions were used by 1553 // one and only one PHI node. Find that now, RAUW it to our common 1554 // instruction and nuke it. 1555 assert(I0->hasOneUse()); 1556 auto *PN = cast<PHINode>(*I0->user_begin()); 1557 PN->replaceAllUsesWith(I0); 1558 PN->eraseFromParent(); 1559 } 1560 1561 // Finally nuke all instructions apart from the common instruction. 1562 for (auto *I : Insts) 1563 if (I != I0) 1564 I->eraseFromParent(); 1565 1566 return true; 1567 } 1568 1569 namespace { 1570 1571 // LockstepReverseIterator - Iterates through instructions 1572 // in a set of blocks in reverse order from the first non-terminator. 1573 // For example (assume all blocks have size n): 1574 // LockstepReverseIterator I([B1, B2, B3]); 1575 // *I-- = [B1[n], B2[n], B3[n]]; 1576 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1577 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1578 // ... 1579 class LockstepReverseIterator { 1580 ArrayRef<BasicBlock*> Blocks; 1581 SmallVector<Instruction*,4> Insts; 1582 bool Fail; 1583 public: 1584 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : 1585 Blocks(Blocks) { 1586 reset(); 1587 } 1588 1589 void reset() { 1590 Fail = false; 1591 Insts.clear(); 1592 for (auto *BB : Blocks) { 1593 Instruction *Inst = BB->getTerminator(); 1594 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1595 Inst = Inst->getPrevNode(); 1596 if (!Inst) { 1597 // Block wasn't big enough. 1598 Fail = true; 1599 return; 1600 } 1601 Insts.push_back(Inst); 1602 } 1603 } 1604 1605 bool isValid() const { 1606 return !Fail; 1607 } 1608 1609 void operator -- () { 1610 if (Fail) 1611 return; 1612 for (auto *&Inst : Insts) { 1613 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1614 Inst = Inst->getPrevNode(); 1615 // Already at beginning of block. 1616 if (!Inst) { 1617 Fail = true; 1618 return; 1619 } 1620 } 1621 } 1622 1623 ArrayRef<Instruction*> operator * () const { 1624 return Insts; 1625 } 1626 }; 1627 1628 } // end anonymous namespace 1629 1630 /// Given an unconditional branch that goes to BBEnd, 1631 /// check whether BBEnd has only two predecessors and the other predecessor 1632 /// ends with an unconditional branch. If it is true, sink any common code 1633 /// in the two predecessors to BBEnd. 1634 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1635 assert(BI1->isUnconditional()); 1636 BasicBlock *BBEnd = BI1->getSuccessor(0); 1637 1638 // We support two situations: 1639 // (1) all incoming arcs are unconditional 1640 // (2) one incoming arc is conditional 1641 // 1642 // (2) is very common in switch defaults and 1643 // else-if patterns; 1644 // 1645 // if (a) f(1); 1646 // else if (b) f(2); 1647 // 1648 // produces: 1649 // 1650 // [if] 1651 // / \ 1652 // [f(1)] [if] 1653 // | | \ 1654 // | | | 1655 // | [f(2)]| 1656 // \ | / 1657 // [ end ] 1658 // 1659 // [end] has two unconditional predecessor arcs and one conditional. The 1660 // conditional refers to the implicit empty 'else' arc. This conditional 1661 // arc can also be caused by an empty default block in a switch. 1662 // 1663 // In this case, we attempt to sink code from all *unconditional* arcs. 1664 // If we can sink instructions from these arcs (determined during the scan 1665 // phase below) we insert a common successor for all unconditional arcs and 1666 // connect that to [end], to enable sinking: 1667 // 1668 // [if] 1669 // / \ 1670 // [x(1)] [if] 1671 // | | \ 1672 // | | \ 1673 // | [x(2)] | 1674 // \ / | 1675 // [sink.split] | 1676 // \ / 1677 // [ end ] 1678 // 1679 SmallVector<BasicBlock*,4> UnconditionalPreds; 1680 Instruction *Cond = nullptr; 1681 for (auto *B : predecessors(BBEnd)) { 1682 auto *T = B->getTerminator(); 1683 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1684 UnconditionalPreds.push_back(B); 1685 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1686 Cond = T; 1687 else 1688 return false; 1689 } 1690 if (UnconditionalPreds.size() < 2) 1691 return false; 1692 1693 bool Changed = false; 1694 // We take a two-step approach to tail sinking. First we scan from the end of 1695 // each block upwards in lockstep. If the n'th instruction from the end of each 1696 // block can be sunk, those instructions are added to ValuesToSink and we 1697 // carry on. If we can sink an instruction but need to PHI-merge some operands 1698 // (because they're not identical in each instruction) we add these to 1699 // PHIOperands. 1700 unsigned ScanIdx = 0; 1701 SmallPtrSet<Value*,4> InstructionsToSink; 1702 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1703 LockstepReverseIterator LRI(UnconditionalPreds); 1704 while (LRI.isValid() && 1705 canSinkInstructions(*LRI, PHIOperands)) { 1706 DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n"); 1707 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1708 ++ScanIdx; 1709 --LRI; 1710 } 1711 1712 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1713 unsigned NumPHIdValues = 0; 1714 for (auto *I : *LRI) 1715 for (auto *V : PHIOperands[I]) 1716 if (InstructionsToSink.count(V) == 0) 1717 ++NumPHIdValues; 1718 DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1719 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1720 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1721 NumPHIInsts++; 1722 1723 return NumPHIInsts <= 1; 1724 }; 1725 1726 if (ScanIdx > 0 && Cond) { 1727 // Check if we would actually sink anything first! This mutates the CFG and 1728 // adds an extra block. The goal in doing this is to allow instructions that 1729 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1730 // (such as trunc, add) can be sunk and predicated already. So we check that 1731 // we're going to sink at least one non-speculatable instruction. 1732 LRI.reset(); 1733 unsigned Idx = 0; 1734 bool Profitable = false; 1735 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1736 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1737 Profitable = true; 1738 break; 1739 } 1740 --LRI; 1741 ++Idx; 1742 } 1743 if (!Profitable) 1744 return false; 1745 1746 DEBUG(dbgs() << "SINK: Splitting edge\n"); 1747 // We have a conditional edge and we're going to sink some instructions. 1748 // Insert a new block postdominating all blocks we're going to sink from. 1749 if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds, 1750 ".sink.split")) 1751 // Edges couldn't be split. 1752 return false; 1753 Changed = true; 1754 } 1755 1756 // Now that we've analyzed all potential sinking candidates, perform the 1757 // actual sink. We iteratively sink the last non-terminator of the source 1758 // blocks into their common successor unless doing so would require too 1759 // many PHI instructions to be generated (currently only one PHI is allowed 1760 // per sunk instruction). 1761 // 1762 // We can use InstructionsToSink to discount values needing PHI-merging that will 1763 // actually be sunk in a later iteration. This allows us to be more 1764 // aggressive in what we sink. This does allow a false positive where we 1765 // sink presuming a later value will also be sunk, but stop half way through 1766 // and never actually sink it which means we produce more PHIs than intended. 1767 // This is unlikely in practice though. 1768 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1769 DEBUG(dbgs() << "SINK: Sink: " 1770 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1771 << "\n"); 1772 1773 // Because we've sunk every instruction in turn, the current instruction to 1774 // sink is always at index 0. 1775 LRI.reset(); 1776 if (!ProfitableToSinkInstruction(LRI)) { 1777 // Too many PHIs would be created. 1778 DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1779 break; 1780 } 1781 1782 if (!sinkLastInstruction(UnconditionalPreds)) 1783 return Changed; 1784 NumSinkCommons++; 1785 Changed = true; 1786 } 1787 return Changed; 1788 } 1789 1790 /// \brief Determine if we can hoist sink a sole store instruction out of a 1791 /// conditional block. 1792 /// 1793 /// We are looking for code like the following: 1794 /// BrBB: 1795 /// store i32 %add, i32* %arrayidx2 1796 /// ... // No other stores or function calls (we could be calling a memory 1797 /// ... // function). 1798 /// %cmp = icmp ult %x, %y 1799 /// br i1 %cmp, label %EndBB, label %ThenBB 1800 /// ThenBB: 1801 /// store i32 %add5, i32* %arrayidx2 1802 /// br label EndBB 1803 /// EndBB: 1804 /// ... 1805 /// We are going to transform this into: 1806 /// BrBB: 1807 /// store i32 %add, i32* %arrayidx2 1808 /// ... // 1809 /// %cmp = icmp ult %x, %y 1810 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1811 /// store i32 %add.add5, i32* %arrayidx2 1812 /// ... 1813 /// 1814 /// \return The pointer to the value of the previous store if the store can be 1815 /// hoisted into the predecessor block. 0 otherwise. 1816 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1817 BasicBlock *StoreBB, BasicBlock *EndBB) { 1818 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1819 if (!StoreToHoist) 1820 return nullptr; 1821 1822 // Volatile or atomic. 1823 if (!StoreToHoist->isSimple()) 1824 return nullptr; 1825 1826 Value *StorePtr = StoreToHoist->getPointerOperand(); 1827 1828 // Look for a store to the same pointer in BrBB. 1829 unsigned MaxNumInstToLookAt = 9; 1830 for (Instruction &CurI : reverse(*BrBB)) { 1831 if (!MaxNumInstToLookAt) 1832 break; 1833 // Skip debug info. 1834 if (isa<DbgInfoIntrinsic>(CurI)) 1835 continue; 1836 --MaxNumInstToLookAt; 1837 1838 // Could be calling an instruction that affects memory like free(). 1839 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1840 return nullptr; 1841 1842 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1843 // Found the previous store make sure it stores to the same location. 1844 if (SI->getPointerOperand() == StorePtr) 1845 // Found the previous store, return its value operand. 1846 return SI->getValueOperand(); 1847 return nullptr; // Unknown store. 1848 } 1849 } 1850 1851 return nullptr; 1852 } 1853 1854 /// \brief Speculate a conditional basic block flattening the CFG. 1855 /// 1856 /// Note that this is a very risky transform currently. Speculating 1857 /// instructions like this is most often not desirable. Instead, there is an MI 1858 /// pass which can do it with full awareness of the resource constraints. 1859 /// However, some cases are "obvious" and we should do directly. An example of 1860 /// this is speculating a single, reasonably cheap instruction. 1861 /// 1862 /// There is only one distinct advantage to flattening the CFG at the IR level: 1863 /// it makes very common but simplistic optimizations such as are common in 1864 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1865 /// modeling their effects with easier to reason about SSA value graphs. 1866 /// 1867 /// 1868 /// An illustration of this transform is turning this IR: 1869 /// \code 1870 /// BB: 1871 /// %cmp = icmp ult %x, %y 1872 /// br i1 %cmp, label %EndBB, label %ThenBB 1873 /// ThenBB: 1874 /// %sub = sub %x, %y 1875 /// br label BB2 1876 /// EndBB: 1877 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1878 /// ... 1879 /// \endcode 1880 /// 1881 /// Into this IR: 1882 /// \code 1883 /// BB: 1884 /// %cmp = icmp ult %x, %y 1885 /// %sub = sub %x, %y 1886 /// %cond = select i1 %cmp, 0, %sub 1887 /// ... 1888 /// \endcode 1889 /// 1890 /// \returns true if the conditional block is removed. 1891 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1892 const TargetTransformInfo &TTI) { 1893 // Be conservative for now. FP select instruction can often be expensive. 1894 Value *BrCond = BI->getCondition(); 1895 if (isa<FCmpInst>(BrCond)) 1896 return false; 1897 1898 BasicBlock *BB = BI->getParent(); 1899 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1900 1901 // If ThenBB is actually on the false edge of the conditional branch, remember 1902 // to swap the select operands later. 1903 bool Invert = false; 1904 if (ThenBB != BI->getSuccessor(0)) { 1905 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1906 Invert = true; 1907 } 1908 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1909 1910 // Keep a count of how many times instructions are used within CondBB when 1911 // they are candidates for sinking into CondBB. Specifically: 1912 // - They are defined in BB, and 1913 // - They have no side effects, and 1914 // - All of their uses are in CondBB. 1915 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1916 1917 unsigned SpeculationCost = 0; 1918 Value *SpeculatedStoreValue = nullptr; 1919 StoreInst *SpeculatedStore = nullptr; 1920 for (BasicBlock::iterator BBI = ThenBB->begin(), 1921 BBE = std::prev(ThenBB->end()); 1922 BBI != BBE; ++BBI) { 1923 Instruction *I = &*BBI; 1924 // Skip debug info. 1925 if (isa<DbgInfoIntrinsic>(I)) 1926 continue; 1927 1928 // Only speculatively execute a single instruction (not counting the 1929 // terminator) for now. 1930 ++SpeculationCost; 1931 if (SpeculationCost > 1) 1932 return false; 1933 1934 // Don't hoist the instruction if it's unsafe or expensive. 1935 if (!isSafeToSpeculativelyExecute(I) && 1936 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1937 I, BB, ThenBB, EndBB)))) 1938 return false; 1939 if (!SpeculatedStoreValue && 1940 ComputeSpeculationCost(I, TTI) > 1941 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1942 return false; 1943 1944 // Store the store speculation candidate. 1945 if (SpeculatedStoreValue) 1946 SpeculatedStore = cast<StoreInst>(I); 1947 1948 // Do not hoist the instruction if any of its operands are defined but not 1949 // used in BB. The transformation will prevent the operand from 1950 // being sunk into the use block. 1951 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1952 Instruction *OpI = dyn_cast<Instruction>(*i); 1953 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1954 continue; // Not a candidate for sinking. 1955 1956 ++SinkCandidateUseCounts[OpI]; 1957 } 1958 } 1959 1960 // Consider any sink candidates which are only used in CondBB as costs for 1961 // speculation. Note, while we iterate over a DenseMap here, we are summing 1962 // and so iteration order isn't significant. 1963 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 1964 I = SinkCandidateUseCounts.begin(), 1965 E = SinkCandidateUseCounts.end(); 1966 I != E; ++I) 1967 if (I->first->getNumUses() == I->second) { 1968 ++SpeculationCost; 1969 if (SpeculationCost > 1) 1970 return false; 1971 } 1972 1973 // Check that the PHI nodes can be converted to selects. 1974 bool HaveRewritablePHIs = false; 1975 for (BasicBlock::iterator I = EndBB->begin(); 1976 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1977 Value *OrigV = PN->getIncomingValueForBlock(BB); 1978 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1979 1980 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1981 // Skip PHIs which are trivial. 1982 if (ThenV == OrigV) 1983 continue; 1984 1985 // Don't convert to selects if we could remove undefined behavior instead. 1986 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1987 passingValueIsAlwaysUndefined(ThenV, PN)) 1988 return false; 1989 1990 HaveRewritablePHIs = true; 1991 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1992 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1993 if (!OrigCE && !ThenCE) 1994 continue; // Known safe and cheap. 1995 1996 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1997 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1998 return false; 1999 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2000 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2001 unsigned MaxCost = 2002 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2003 if (OrigCost + ThenCost > MaxCost) 2004 return false; 2005 2006 // Account for the cost of an unfolded ConstantExpr which could end up 2007 // getting expanded into Instructions. 2008 // FIXME: This doesn't account for how many operations are combined in the 2009 // constant expression. 2010 ++SpeculationCost; 2011 if (SpeculationCost > 1) 2012 return false; 2013 } 2014 2015 // If there are no PHIs to process, bail early. This helps ensure idempotence 2016 // as well. 2017 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2018 return false; 2019 2020 // If we get here, we can hoist the instruction and if-convert. 2021 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2022 2023 // Insert a select of the value of the speculated store. 2024 if (SpeculatedStoreValue) { 2025 IRBuilder<NoFolder> Builder(BI); 2026 Value *TrueV = SpeculatedStore->getValueOperand(); 2027 Value *FalseV = SpeculatedStoreValue; 2028 if (Invert) 2029 std::swap(TrueV, FalseV); 2030 Value *S = Builder.CreateSelect( 2031 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2032 SpeculatedStore->setOperand(0, S); 2033 SpeculatedStore->setDebugLoc( 2034 DILocation::getMergedLocation( 2035 BI->getDebugLoc(), SpeculatedStore->getDebugLoc())); 2036 } 2037 2038 // Metadata can be dependent on the condition we are hoisting above. 2039 // Conservatively strip all metadata on the instruction. 2040 for (auto &I : *ThenBB) 2041 I.dropUnknownNonDebugMetadata(); 2042 2043 // Hoist the instructions. 2044 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2045 ThenBB->begin(), std::prev(ThenBB->end())); 2046 2047 // Insert selects and rewrite the PHI operands. 2048 IRBuilder<NoFolder> Builder(BI); 2049 for (BasicBlock::iterator I = EndBB->begin(); 2050 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2051 unsigned OrigI = PN->getBasicBlockIndex(BB); 2052 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 2053 Value *OrigV = PN->getIncomingValue(OrigI); 2054 Value *ThenV = PN->getIncomingValue(ThenI); 2055 2056 // Skip PHIs which are trivial. 2057 if (OrigV == ThenV) 2058 continue; 2059 2060 // Create a select whose true value is the speculatively executed value and 2061 // false value is the preexisting value. Swap them if the branch 2062 // destinations were inverted. 2063 Value *TrueV = ThenV, *FalseV = OrigV; 2064 if (Invert) 2065 std::swap(TrueV, FalseV); 2066 Value *V = Builder.CreateSelect( 2067 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2068 PN->setIncomingValue(OrigI, V); 2069 PN->setIncomingValue(ThenI, V); 2070 } 2071 2072 ++NumSpeculations; 2073 return true; 2074 } 2075 2076 /// Return true if we can thread a branch across this block. 2077 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2078 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 2079 unsigned Size = 0; 2080 2081 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2082 if (isa<DbgInfoIntrinsic>(BBI)) 2083 continue; 2084 if (Size > 10) 2085 return false; // Don't clone large BB's. 2086 ++Size; 2087 2088 // We can only support instructions that do not define values that are 2089 // live outside of the current basic block. 2090 for (User *U : BBI->users()) { 2091 Instruction *UI = cast<Instruction>(U); 2092 if (UI->getParent() != BB || isa<PHINode>(UI)) 2093 return false; 2094 } 2095 2096 // Looks ok, continue checking. 2097 } 2098 2099 return true; 2100 } 2101 2102 /// If we have a conditional branch on a PHI node value that is defined in the 2103 /// same block as the branch and if any PHI entries are constants, thread edges 2104 /// corresponding to that entry to be branches to their ultimate destination. 2105 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2106 AssumptionCache *AC) { 2107 BasicBlock *BB = BI->getParent(); 2108 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2109 // NOTE: we currently cannot transform this case if the PHI node is used 2110 // outside of the block. 2111 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2112 return false; 2113 2114 // Degenerate case of a single entry PHI. 2115 if (PN->getNumIncomingValues() == 1) { 2116 FoldSingleEntryPHINodes(PN->getParent()); 2117 return true; 2118 } 2119 2120 // Now we know that this block has multiple preds and two succs. 2121 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2122 return false; 2123 2124 // Can't fold blocks that contain noduplicate or convergent calls. 2125 if (any_of(*BB, [](const Instruction &I) { 2126 const CallInst *CI = dyn_cast<CallInst>(&I); 2127 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2128 })) 2129 return false; 2130 2131 // Okay, this is a simple enough basic block. See if any phi values are 2132 // constants. 2133 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2134 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2135 if (!CB || !CB->getType()->isIntegerTy(1)) 2136 continue; 2137 2138 // Okay, we now know that all edges from PredBB should be revectored to 2139 // branch to RealDest. 2140 BasicBlock *PredBB = PN->getIncomingBlock(i); 2141 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2142 2143 if (RealDest == BB) 2144 continue; // Skip self loops. 2145 // Skip if the predecessor's terminator is an indirect branch. 2146 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2147 continue; 2148 2149 // The dest block might have PHI nodes, other predecessors and other 2150 // difficult cases. Instead of being smart about this, just insert a new 2151 // block that jumps to the destination block, effectively splitting 2152 // the edge we are about to create. 2153 BasicBlock *EdgeBB = 2154 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2155 RealDest->getParent(), RealDest); 2156 BranchInst::Create(RealDest, EdgeBB); 2157 2158 // Update PHI nodes. 2159 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2160 2161 // BB may have instructions that are being threaded over. Clone these 2162 // instructions into EdgeBB. We know that there will be no uses of the 2163 // cloned instructions outside of EdgeBB. 2164 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2165 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2166 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2167 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2168 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2169 continue; 2170 } 2171 // Clone the instruction. 2172 Instruction *N = BBI->clone(); 2173 if (BBI->hasName()) 2174 N->setName(BBI->getName() + ".c"); 2175 2176 // Update operands due to translation. 2177 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2178 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2179 if (PI != TranslateMap.end()) 2180 *i = PI->second; 2181 } 2182 2183 // Check for trivial simplification. 2184 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2185 if (!BBI->use_empty()) 2186 TranslateMap[&*BBI] = V; 2187 if (!N->mayHaveSideEffects()) { 2188 N->deleteValue(); // Instruction folded away, don't need actual inst 2189 N = nullptr; 2190 } 2191 } else { 2192 if (!BBI->use_empty()) 2193 TranslateMap[&*BBI] = N; 2194 } 2195 // Insert the new instruction into its new home. 2196 if (N) 2197 EdgeBB->getInstList().insert(InsertPt, N); 2198 2199 // Register the new instruction with the assumption cache if necessary. 2200 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2201 if (II->getIntrinsicID() == Intrinsic::assume) 2202 AC->registerAssumption(II); 2203 } 2204 2205 // Loop over all of the edges from PredBB to BB, changing them to branch 2206 // to EdgeBB instead. 2207 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2208 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2209 if (PredBBTI->getSuccessor(i) == BB) { 2210 BB->removePredecessor(PredBB); 2211 PredBBTI->setSuccessor(i, EdgeBB); 2212 } 2213 2214 // Recurse, simplifying any other constants. 2215 return FoldCondBranchOnPHI(BI, DL, AC) | true; 2216 } 2217 2218 return false; 2219 } 2220 2221 /// Given a BB that starts with the specified two-entry PHI node, 2222 /// see if we can eliminate it. 2223 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2224 const DataLayout &DL) { 2225 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2226 // statement", which has a very simple dominance structure. Basically, we 2227 // are trying to find the condition that is being branched on, which 2228 // subsequently causes this merge to happen. We really want control 2229 // dependence information for this check, but simplifycfg can't keep it up 2230 // to date, and this catches most of the cases we care about anyway. 2231 BasicBlock *BB = PN->getParent(); 2232 BasicBlock *IfTrue, *IfFalse; 2233 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2234 if (!IfCond || 2235 // Don't bother if the branch will be constant folded trivially. 2236 isa<ConstantInt>(IfCond)) 2237 return false; 2238 2239 // Okay, we found that we can merge this two-entry phi node into a select. 2240 // Doing so would require us to fold *all* two entry phi nodes in this block. 2241 // At some point this becomes non-profitable (particularly if the target 2242 // doesn't support cmov's). Only do this transformation if there are two or 2243 // fewer PHI nodes in this block. 2244 unsigned NumPhis = 0; 2245 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2246 if (NumPhis > 2) 2247 return false; 2248 2249 // Loop over the PHI's seeing if we can promote them all to select 2250 // instructions. While we are at it, keep track of the instructions 2251 // that need to be moved to the dominating block. 2252 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2253 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2254 MaxCostVal1 = PHINodeFoldingThreshold; 2255 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2256 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2257 2258 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2259 PHINode *PN = cast<PHINode>(II++); 2260 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2261 PN->replaceAllUsesWith(V); 2262 PN->eraseFromParent(); 2263 continue; 2264 } 2265 2266 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2267 MaxCostVal0, TTI) || 2268 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2269 MaxCostVal1, TTI)) 2270 return false; 2271 } 2272 2273 // If we folded the first phi, PN dangles at this point. Refresh it. If 2274 // we ran out of PHIs then we simplified them all. 2275 PN = dyn_cast<PHINode>(BB->begin()); 2276 if (!PN) 2277 return true; 2278 2279 // Don't fold i1 branches on PHIs which contain binary operators. These can 2280 // often be turned into switches and other things. 2281 if (PN->getType()->isIntegerTy(1) && 2282 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2283 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2284 isa<BinaryOperator>(IfCond))) 2285 return false; 2286 2287 // If all PHI nodes are promotable, check to make sure that all instructions 2288 // in the predecessor blocks can be promoted as well. If not, we won't be able 2289 // to get rid of the control flow, so it's not worth promoting to select 2290 // instructions. 2291 BasicBlock *DomBlock = nullptr; 2292 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2293 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2294 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2295 IfBlock1 = nullptr; 2296 } else { 2297 DomBlock = *pred_begin(IfBlock1); 2298 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2299 ++I) 2300 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2301 // This is not an aggressive instruction that we can promote. 2302 // Because of this, we won't be able to get rid of the control flow, so 2303 // the xform is not worth it. 2304 return false; 2305 } 2306 } 2307 2308 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2309 IfBlock2 = nullptr; 2310 } else { 2311 DomBlock = *pred_begin(IfBlock2); 2312 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2313 ++I) 2314 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2315 // This is not an aggressive instruction that we can promote. 2316 // Because of this, we won't be able to get rid of the control flow, so 2317 // the xform is not worth it. 2318 return false; 2319 } 2320 } 2321 2322 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2323 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2324 2325 // If we can still promote the PHI nodes after this gauntlet of tests, 2326 // do all of the PHI's now. 2327 Instruction *InsertPt = DomBlock->getTerminator(); 2328 IRBuilder<NoFolder> Builder(InsertPt); 2329 2330 // Move all 'aggressive' instructions, which are defined in the 2331 // conditional parts of the if's up to the dominating block. 2332 if (IfBlock1) { 2333 for (auto &I : *IfBlock1) 2334 I.dropUnknownNonDebugMetadata(); 2335 DomBlock->getInstList().splice(InsertPt->getIterator(), 2336 IfBlock1->getInstList(), IfBlock1->begin(), 2337 IfBlock1->getTerminator()->getIterator()); 2338 } 2339 if (IfBlock2) { 2340 for (auto &I : *IfBlock2) 2341 I.dropUnknownNonDebugMetadata(); 2342 DomBlock->getInstList().splice(InsertPt->getIterator(), 2343 IfBlock2->getInstList(), IfBlock2->begin(), 2344 IfBlock2->getTerminator()->getIterator()); 2345 } 2346 2347 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2348 // Change the PHI node into a select instruction. 2349 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2350 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2351 2352 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2353 PN->replaceAllUsesWith(Sel); 2354 Sel->takeName(PN); 2355 PN->eraseFromParent(); 2356 } 2357 2358 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2359 // has been flattened. Change DomBlock to jump directly to our new block to 2360 // avoid other simplifycfg's kicking in on the diamond. 2361 TerminatorInst *OldTI = DomBlock->getTerminator(); 2362 Builder.SetInsertPoint(OldTI); 2363 Builder.CreateBr(BB); 2364 OldTI->eraseFromParent(); 2365 return true; 2366 } 2367 2368 /// If we found a conditional branch that goes to two returning blocks, 2369 /// try to merge them together into one return, 2370 /// introducing a select if the return values disagree. 2371 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2372 IRBuilder<> &Builder) { 2373 assert(BI->isConditional() && "Must be a conditional branch"); 2374 BasicBlock *TrueSucc = BI->getSuccessor(0); 2375 BasicBlock *FalseSucc = BI->getSuccessor(1); 2376 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2377 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2378 2379 // Check to ensure both blocks are empty (just a return) or optionally empty 2380 // with PHI nodes. If there are other instructions, merging would cause extra 2381 // computation on one path or the other. 2382 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2383 return false; 2384 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2385 return false; 2386 2387 Builder.SetInsertPoint(BI); 2388 // Okay, we found a branch that is going to two return nodes. If 2389 // there is no return value for this function, just change the 2390 // branch into a return. 2391 if (FalseRet->getNumOperands() == 0) { 2392 TrueSucc->removePredecessor(BI->getParent()); 2393 FalseSucc->removePredecessor(BI->getParent()); 2394 Builder.CreateRetVoid(); 2395 EraseTerminatorInstAndDCECond(BI); 2396 return true; 2397 } 2398 2399 // Otherwise, figure out what the true and false return values are 2400 // so we can insert a new select instruction. 2401 Value *TrueValue = TrueRet->getReturnValue(); 2402 Value *FalseValue = FalseRet->getReturnValue(); 2403 2404 // Unwrap any PHI nodes in the return blocks. 2405 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2406 if (TVPN->getParent() == TrueSucc) 2407 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2408 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2409 if (FVPN->getParent() == FalseSucc) 2410 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2411 2412 // In order for this transformation to be safe, we must be able to 2413 // unconditionally execute both operands to the return. This is 2414 // normally the case, but we could have a potentially-trapping 2415 // constant expression that prevents this transformation from being 2416 // safe. 2417 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2418 if (TCV->canTrap()) 2419 return false; 2420 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2421 if (FCV->canTrap()) 2422 return false; 2423 2424 // Okay, we collected all the mapped values and checked them for sanity, and 2425 // defined to really do this transformation. First, update the CFG. 2426 TrueSucc->removePredecessor(BI->getParent()); 2427 FalseSucc->removePredecessor(BI->getParent()); 2428 2429 // Insert select instructions where needed. 2430 Value *BrCond = BI->getCondition(); 2431 if (TrueValue) { 2432 // Insert a select if the results differ. 2433 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2434 } else if (isa<UndefValue>(TrueValue)) { 2435 TrueValue = FalseValue; 2436 } else { 2437 TrueValue = 2438 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2439 } 2440 } 2441 2442 Value *RI = 2443 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2444 2445 (void)RI; 2446 2447 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2448 << "\n " << *BI << "NewRet = " << *RI 2449 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2450 2451 EraseTerminatorInstAndDCECond(BI); 2452 2453 return true; 2454 } 2455 2456 /// Return true if the given instruction is available 2457 /// in its predecessor block. If yes, the instruction will be removed. 2458 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2459 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2460 return false; 2461 for (Instruction &I : *PB) { 2462 Instruction *PBI = &I; 2463 // Check whether Inst and PBI generate the same value. 2464 if (Inst->isIdenticalTo(PBI)) { 2465 Inst->replaceAllUsesWith(PBI); 2466 Inst->eraseFromParent(); 2467 return true; 2468 } 2469 } 2470 return false; 2471 } 2472 2473 /// Return true if either PBI or BI has branch weight available, and store 2474 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2475 /// not have branch weight, use 1:1 as its weight. 2476 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2477 uint64_t &PredTrueWeight, 2478 uint64_t &PredFalseWeight, 2479 uint64_t &SuccTrueWeight, 2480 uint64_t &SuccFalseWeight) { 2481 bool PredHasWeights = 2482 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2483 bool SuccHasWeights = 2484 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2485 if (PredHasWeights || SuccHasWeights) { 2486 if (!PredHasWeights) 2487 PredTrueWeight = PredFalseWeight = 1; 2488 if (!SuccHasWeights) 2489 SuccTrueWeight = SuccFalseWeight = 1; 2490 return true; 2491 } else { 2492 return false; 2493 } 2494 } 2495 2496 /// If this basic block is simple enough, and if a predecessor branches to us 2497 /// and one of our successors, fold the block into the predecessor and use 2498 /// logical operations to pick the right destination. 2499 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2500 BasicBlock *BB = BI->getParent(); 2501 2502 Instruction *Cond = nullptr; 2503 if (BI->isConditional()) 2504 Cond = dyn_cast<Instruction>(BI->getCondition()); 2505 else { 2506 // For unconditional branch, check for a simple CFG pattern, where 2507 // BB has a single predecessor and BB's successor is also its predecessor's 2508 // successor. If such pattern exists, check for CSE between BB and its 2509 // predecessor. 2510 if (BasicBlock *PB = BB->getSinglePredecessor()) 2511 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2512 if (PBI->isConditional() && 2513 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2514 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2515 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2516 Instruction *Curr = &*I++; 2517 if (isa<CmpInst>(Curr)) { 2518 Cond = Curr; 2519 break; 2520 } 2521 // Quit if we can't remove this instruction. 2522 if (!checkCSEInPredecessor(Curr, PB)) 2523 return false; 2524 } 2525 } 2526 2527 if (!Cond) 2528 return false; 2529 } 2530 2531 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2532 Cond->getParent() != BB || !Cond->hasOneUse()) 2533 return false; 2534 2535 // Make sure the instruction after the condition is the cond branch. 2536 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2537 2538 // Ignore dbg intrinsics. 2539 while (isa<DbgInfoIntrinsic>(CondIt)) 2540 ++CondIt; 2541 2542 if (&*CondIt != BI) 2543 return false; 2544 2545 // Only allow this transformation if computing the condition doesn't involve 2546 // too many instructions and these involved instructions can be executed 2547 // unconditionally. We denote all involved instructions except the condition 2548 // as "bonus instructions", and only allow this transformation when the 2549 // number of the bonus instructions does not exceed a certain threshold. 2550 unsigned NumBonusInsts = 0; 2551 for (auto I = BB->begin(); Cond != &*I; ++I) { 2552 // Ignore dbg intrinsics. 2553 if (isa<DbgInfoIntrinsic>(I)) 2554 continue; 2555 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2556 return false; 2557 // I has only one use and can be executed unconditionally. 2558 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2559 if (User == nullptr || User->getParent() != BB) 2560 return false; 2561 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2562 // to use any other instruction, User must be an instruction between next(I) 2563 // and Cond. 2564 ++NumBonusInsts; 2565 // Early exits once we reach the limit. 2566 if (NumBonusInsts > BonusInstThreshold) 2567 return false; 2568 } 2569 2570 // Cond is known to be a compare or binary operator. Check to make sure that 2571 // neither operand is a potentially-trapping constant expression. 2572 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2573 if (CE->canTrap()) 2574 return false; 2575 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2576 if (CE->canTrap()) 2577 return false; 2578 2579 // Finally, don't infinitely unroll conditional loops. 2580 BasicBlock *TrueDest = BI->getSuccessor(0); 2581 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2582 if (TrueDest == BB || FalseDest == BB) 2583 return false; 2584 2585 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2586 BasicBlock *PredBlock = *PI; 2587 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2588 2589 // Check that we have two conditional branches. If there is a PHI node in 2590 // the common successor, verify that the same value flows in from both 2591 // blocks. 2592 SmallVector<PHINode *, 4> PHIs; 2593 if (!PBI || PBI->isUnconditional() || 2594 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2595 (!BI->isConditional() && 2596 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2597 continue; 2598 2599 // Determine if the two branches share a common destination. 2600 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2601 bool InvertPredCond = false; 2602 2603 if (BI->isConditional()) { 2604 if (PBI->getSuccessor(0) == TrueDest) { 2605 Opc = Instruction::Or; 2606 } else if (PBI->getSuccessor(1) == FalseDest) { 2607 Opc = Instruction::And; 2608 } else if (PBI->getSuccessor(0) == FalseDest) { 2609 Opc = Instruction::And; 2610 InvertPredCond = true; 2611 } else if (PBI->getSuccessor(1) == TrueDest) { 2612 Opc = Instruction::Or; 2613 InvertPredCond = true; 2614 } else { 2615 continue; 2616 } 2617 } else { 2618 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2619 continue; 2620 } 2621 2622 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2623 IRBuilder<> Builder(PBI); 2624 2625 // If we need to invert the condition in the pred block to match, do so now. 2626 if (InvertPredCond) { 2627 Value *NewCond = PBI->getCondition(); 2628 2629 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2630 CmpInst *CI = cast<CmpInst>(NewCond); 2631 CI->setPredicate(CI->getInversePredicate()); 2632 } else { 2633 NewCond = 2634 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2635 } 2636 2637 PBI->setCondition(NewCond); 2638 PBI->swapSuccessors(); 2639 } 2640 2641 // If we have bonus instructions, clone them into the predecessor block. 2642 // Note that there may be multiple predecessor blocks, so we cannot move 2643 // bonus instructions to a predecessor block. 2644 ValueToValueMapTy VMap; // maps original values to cloned values 2645 // We already make sure Cond is the last instruction before BI. Therefore, 2646 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2647 // instructions. 2648 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2649 if (isa<DbgInfoIntrinsic>(BonusInst)) 2650 continue; 2651 Instruction *NewBonusInst = BonusInst->clone(); 2652 RemapInstruction(NewBonusInst, VMap, 2653 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2654 VMap[&*BonusInst] = NewBonusInst; 2655 2656 // If we moved a load, we cannot any longer claim any knowledge about 2657 // its potential value. The previous information might have been valid 2658 // only given the branch precondition. 2659 // For an analogous reason, we must also drop all the metadata whose 2660 // semantics we don't understand. 2661 NewBonusInst->dropUnknownNonDebugMetadata(); 2662 2663 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2664 NewBonusInst->takeName(&*BonusInst); 2665 BonusInst->setName(BonusInst->getName() + ".old"); 2666 } 2667 2668 // Clone Cond into the predecessor basic block, and or/and the 2669 // two conditions together. 2670 Instruction *New = Cond->clone(); 2671 RemapInstruction(New, VMap, 2672 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2673 PredBlock->getInstList().insert(PBI->getIterator(), New); 2674 New->takeName(Cond); 2675 Cond->setName(New->getName() + ".old"); 2676 2677 if (BI->isConditional()) { 2678 Instruction *NewCond = cast<Instruction>( 2679 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2680 PBI->setCondition(NewCond); 2681 2682 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2683 bool HasWeights = 2684 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2685 SuccTrueWeight, SuccFalseWeight); 2686 SmallVector<uint64_t, 8> NewWeights; 2687 2688 if (PBI->getSuccessor(0) == BB) { 2689 if (HasWeights) { 2690 // PBI: br i1 %x, BB, FalseDest 2691 // BI: br i1 %y, TrueDest, FalseDest 2692 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2693 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2694 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2695 // TrueWeight for PBI * FalseWeight for BI. 2696 // We assume that total weights of a BranchInst can fit into 32 bits. 2697 // Therefore, we will not have overflow using 64-bit arithmetic. 2698 NewWeights.push_back(PredFalseWeight * 2699 (SuccFalseWeight + SuccTrueWeight) + 2700 PredTrueWeight * SuccFalseWeight); 2701 } 2702 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2703 PBI->setSuccessor(0, TrueDest); 2704 } 2705 if (PBI->getSuccessor(1) == BB) { 2706 if (HasWeights) { 2707 // PBI: br i1 %x, TrueDest, BB 2708 // BI: br i1 %y, TrueDest, FalseDest 2709 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2710 // FalseWeight for PBI * TrueWeight for BI. 2711 NewWeights.push_back(PredTrueWeight * 2712 (SuccFalseWeight + SuccTrueWeight) + 2713 PredFalseWeight * SuccTrueWeight); 2714 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2715 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2716 } 2717 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2718 PBI->setSuccessor(1, FalseDest); 2719 } 2720 if (NewWeights.size() == 2) { 2721 // Halve the weights if any of them cannot fit in an uint32_t 2722 FitWeights(NewWeights); 2723 2724 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2725 NewWeights.end()); 2726 PBI->setMetadata( 2727 LLVMContext::MD_prof, 2728 MDBuilder(BI->getContext()).createBranchWeights(MDWeights)); 2729 } else 2730 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2731 } else { 2732 // Update PHI nodes in the common successors. 2733 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2734 ConstantInt *PBI_C = cast<ConstantInt>( 2735 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2736 assert(PBI_C->getType()->isIntegerTy(1)); 2737 Instruction *MergedCond = nullptr; 2738 if (PBI->getSuccessor(0) == TrueDest) { 2739 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2740 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2741 // is false: !PBI_Cond and BI_Value 2742 Instruction *NotCond = cast<Instruction>( 2743 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2744 MergedCond = cast<Instruction>( 2745 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2746 if (PBI_C->isOne()) 2747 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2748 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2749 } else { 2750 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2751 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2752 // is false: PBI_Cond and BI_Value 2753 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2754 Instruction::And, PBI->getCondition(), New, "and.cond")); 2755 if (PBI_C->isOne()) { 2756 Instruction *NotCond = cast<Instruction>( 2757 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2758 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2759 Instruction::Or, NotCond, MergedCond, "or.cond")); 2760 } 2761 } 2762 // Update PHI Node. 2763 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2764 MergedCond); 2765 } 2766 // Change PBI from Conditional to Unconditional. 2767 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2768 EraseTerminatorInstAndDCECond(PBI); 2769 PBI = New_PBI; 2770 } 2771 2772 // If BI was a loop latch, it may have had associated loop metadata. 2773 // We need to copy it to the new latch, that is, PBI. 2774 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2775 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2776 2777 // TODO: If BB is reachable from all paths through PredBlock, then we 2778 // could replace PBI's branch probabilities with BI's. 2779 2780 // Copy any debug value intrinsics into the end of PredBlock. 2781 for (Instruction &I : *BB) 2782 if (isa<DbgInfoIntrinsic>(I)) 2783 I.clone()->insertBefore(PBI); 2784 2785 return true; 2786 } 2787 return false; 2788 } 2789 2790 // If there is only one store in BB1 and BB2, return it, otherwise return 2791 // nullptr. 2792 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2793 StoreInst *S = nullptr; 2794 for (auto *BB : {BB1, BB2}) { 2795 if (!BB) 2796 continue; 2797 for (auto &I : *BB) 2798 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2799 if (S) 2800 // Multiple stores seen. 2801 return nullptr; 2802 else 2803 S = SI; 2804 } 2805 } 2806 return S; 2807 } 2808 2809 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2810 Value *AlternativeV = nullptr) { 2811 // PHI is going to be a PHI node that allows the value V that is defined in 2812 // BB to be referenced in BB's only successor. 2813 // 2814 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2815 // doesn't matter to us what the other operand is (it'll never get used). We 2816 // could just create a new PHI with an undef incoming value, but that could 2817 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2818 // other PHI. So here we directly look for some PHI in BB's successor with V 2819 // as an incoming operand. If we find one, we use it, else we create a new 2820 // one. 2821 // 2822 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2823 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2824 // where OtherBB is the single other predecessor of BB's only successor. 2825 PHINode *PHI = nullptr; 2826 BasicBlock *Succ = BB->getSingleSuccessor(); 2827 2828 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2829 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2830 PHI = cast<PHINode>(I); 2831 if (!AlternativeV) 2832 break; 2833 2834 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2835 auto PredI = pred_begin(Succ); 2836 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2837 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2838 break; 2839 PHI = nullptr; 2840 } 2841 if (PHI) 2842 return PHI; 2843 2844 // If V is not an instruction defined in BB, just return it. 2845 if (!AlternativeV && 2846 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2847 return V; 2848 2849 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2850 PHI->addIncoming(V, BB); 2851 for (BasicBlock *PredBB : predecessors(Succ)) 2852 if (PredBB != BB) 2853 PHI->addIncoming( 2854 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2855 return PHI; 2856 } 2857 2858 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2859 BasicBlock *QTB, BasicBlock *QFB, 2860 BasicBlock *PostBB, Value *Address, 2861 bool InvertPCond, bool InvertQCond, 2862 const DataLayout &DL) { 2863 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2864 return Operator::getOpcode(&I) == Instruction::BitCast && 2865 I.getType()->isPointerTy(); 2866 }; 2867 2868 // If we're not in aggressive mode, we only optimize if we have some 2869 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2870 auto IsWorthwhile = [&](BasicBlock *BB) { 2871 if (!BB) 2872 return true; 2873 // Heuristic: if the block can be if-converted/phi-folded and the 2874 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2875 // thread this store. 2876 unsigned N = 0; 2877 for (auto &I : *BB) { 2878 // Cheap instructions viable for folding. 2879 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2880 isa<StoreInst>(I)) 2881 ++N; 2882 // Free instructions. 2883 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2884 IsaBitcastOfPointerType(I)) 2885 continue; 2886 else 2887 return false; 2888 } 2889 return N <= PHINodeFoldingThreshold; 2890 }; 2891 2892 if (!MergeCondStoresAggressively && 2893 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2894 !IsWorthwhile(QFB))) 2895 return false; 2896 2897 // For every pointer, there must be exactly two stores, one coming from 2898 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2899 // store (to any address) in PTB,PFB or QTB,QFB. 2900 // FIXME: We could relax this restriction with a bit more work and performance 2901 // testing. 2902 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2903 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2904 if (!PStore || !QStore) 2905 return false; 2906 2907 // Now check the stores are compatible. 2908 if (!QStore->isUnordered() || !PStore->isUnordered()) 2909 return false; 2910 2911 // Check that sinking the store won't cause program behavior changes. Sinking 2912 // the store out of the Q blocks won't change any behavior as we're sinking 2913 // from a block to its unconditional successor. But we're moving a store from 2914 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2915 // So we need to check that there are no aliasing loads or stores in 2916 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2917 // operations between PStore and the end of its parent block. 2918 // 2919 // The ideal way to do this is to query AliasAnalysis, but we don't 2920 // preserve AA currently so that is dangerous. Be super safe and just 2921 // check there are no other memory operations at all. 2922 for (auto &I : *QFB->getSinglePredecessor()) 2923 if (I.mayReadOrWriteMemory()) 2924 return false; 2925 for (auto &I : *QFB) 2926 if (&I != QStore && I.mayReadOrWriteMemory()) 2927 return false; 2928 if (QTB) 2929 for (auto &I : *QTB) 2930 if (&I != QStore && I.mayReadOrWriteMemory()) 2931 return false; 2932 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2933 I != E; ++I) 2934 if (&*I != PStore && I->mayReadOrWriteMemory()) 2935 return false; 2936 2937 // OK, we're going to sink the stores to PostBB. The store has to be 2938 // conditional though, so first create the predicate. 2939 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2940 ->getCondition(); 2941 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2942 ->getCondition(); 2943 2944 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2945 PStore->getParent()); 2946 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2947 QStore->getParent(), PPHI); 2948 2949 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2950 2951 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2952 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2953 2954 if (InvertPCond) 2955 PPred = QB.CreateNot(PPred); 2956 if (InvertQCond) 2957 QPred = QB.CreateNot(QPred); 2958 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2959 2960 auto *T = 2961 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2962 QB.SetInsertPoint(T); 2963 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2964 AAMDNodes AAMD; 2965 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2966 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2967 SI->setAAMetadata(AAMD); 2968 unsigned PAlignment = PStore->getAlignment(); 2969 unsigned QAlignment = QStore->getAlignment(); 2970 unsigned TypeAlignment = 2971 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 2972 unsigned MinAlignment; 2973 unsigned MaxAlignment; 2974 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 2975 // Choose the minimum alignment. If we could prove both stores execute, we 2976 // could use biggest one. In this case, though, we only know that one of the 2977 // stores executes. And we don't know it's safe to take the alignment from a 2978 // store that doesn't execute. 2979 if (MinAlignment != 0) { 2980 // Choose the minimum of all non-zero alignments. 2981 SI->setAlignment(MinAlignment); 2982 } else if (MaxAlignment != 0) { 2983 // Choose the minimal alignment between the non-zero alignment and the ABI 2984 // default alignment for the type of the stored value. 2985 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 2986 } else { 2987 // If both alignments are zero, use ABI default alignment for the type of 2988 // the stored value. 2989 SI->setAlignment(TypeAlignment); 2990 } 2991 2992 QStore->eraseFromParent(); 2993 PStore->eraseFromParent(); 2994 2995 return true; 2996 } 2997 2998 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 2999 const DataLayout &DL) { 3000 // The intention here is to find diamonds or triangles (see below) where each 3001 // conditional block contains a store to the same address. Both of these 3002 // stores are conditional, so they can't be unconditionally sunk. But it may 3003 // be profitable to speculatively sink the stores into one merged store at the 3004 // end, and predicate the merged store on the union of the two conditions of 3005 // PBI and QBI. 3006 // 3007 // This can reduce the number of stores executed if both of the conditions are 3008 // true, and can allow the blocks to become small enough to be if-converted. 3009 // This optimization will also chain, so that ladders of test-and-set 3010 // sequences can be if-converted away. 3011 // 3012 // We only deal with simple diamonds or triangles: 3013 // 3014 // PBI or PBI or a combination of the two 3015 // / \ | \ 3016 // PTB PFB | PFB 3017 // \ / | / 3018 // QBI QBI 3019 // / \ | \ 3020 // QTB QFB | QFB 3021 // \ / | / 3022 // PostBB PostBB 3023 // 3024 // We model triangles as a type of diamond with a nullptr "true" block. 3025 // Triangles are canonicalized so that the fallthrough edge is represented by 3026 // a true condition, as in the diagram above. 3027 // 3028 BasicBlock *PTB = PBI->getSuccessor(0); 3029 BasicBlock *PFB = PBI->getSuccessor(1); 3030 BasicBlock *QTB = QBI->getSuccessor(0); 3031 BasicBlock *QFB = QBI->getSuccessor(1); 3032 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3033 3034 // Make sure we have a good guess for PostBB. If QTB's only successor is 3035 // QFB, then QFB is a better PostBB. 3036 if (QTB->getSingleSuccessor() == QFB) 3037 PostBB = QFB; 3038 3039 // If we couldn't find a good PostBB, stop. 3040 if (!PostBB) 3041 return false; 3042 3043 bool InvertPCond = false, InvertQCond = false; 3044 // Canonicalize fallthroughs to the true branches. 3045 if (PFB == QBI->getParent()) { 3046 std::swap(PFB, PTB); 3047 InvertPCond = true; 3048 } 3049 if (QFB == PostBB) { 3050 std::swap(QFB, QTB); 3051 InvertQCond = true; 3052 } 3053 3054 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3055 // and QFB may not. Model fallthroughs as a nullptr block. 3056 if (PTB == QBI->getParent()) 3057 PTB = nullptr; 3058 if (QTB == PostBB) 3059 QTB = nullptr; 3060 3061 // Legality bailouts. We must have at least the non-fallthrough blocks and 3062 // the post-dominating block, and the non-fallthroughs must only have one 3063 // predecessor. 3064 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3065 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3066 }; 3067 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3068 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3069 return false; 3070 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3071 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3072 return false; 3073 if (!PostBB->hasNUses(2) || !QBI->getParent()->hasNUses(2)) 3074 return false; 3075 3076 // OK, this is a sequence of two diamonds or triangles. 3077 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3078 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3079 for (auto *BB : {PTB, PFB}) { 3080 if (!BB) 3081 continue; 3082 for (auto &I : *BB) 3083 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3084 PStoreAddresses.insert(SI->getPointerOperand()); 3085 } 3086 for (auto *BB : {QTB, QFB}) { 3087 if (!BB) 3088 continue; 3089 for (auto &I : *BB) 3090 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3091 QStoreAddresses.insert(SI->getPointerOperand()); 3092 } 3093 3094 set_intersect(PStoreAddresses, QStoreAddresses); 3095 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3096 // clear what it contains. 3097 auto &CommonAddresses = PStoreAddresses; 3098 3099 bool Changed = false; 3100 for (auto *Address : CommonAddresses) 3101 Changed |= mergeConditionalStoreToAddress( 3102 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3103 return Changed; 3104 } 3105 3106 /// If we have a conditional branch as a predecessor of another block, 3107 /// this function tries to simplify it. We know 3108 /// that PBI and BI are both conditional branches, and BI is in one of the 3109 /// successor blocks of PBI - PBI branches to BI. 3110 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3111 const DataLayout &DL) { 3112 assert(PBI->isConditional() && BI->isConditional()); 3113 BasicBlock *BB = BI->getParent(); 3114 3115 // If this block ends with a branch instruction, and if there is a 3116 // predecessor that ends on a branch of the same condition, make 3117 // this conditional branch redundant. 3118 if (PBI->getCondition() == BI->getCondition() && 3119 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3120 // Okay, the outcome of this conditional branch is statically 3121 // knowable. If this block had a single pred, handle specially. 3122 if (BB->getSinglePredecessor()) { 3123 // Turn this into a branch on constant. 3124 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3125 BI->setCondition( 3126 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3127 return true; // Nuke the branch on constant. 3128 } 3129 3130 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3131 // in the constant and simplify the block result. Subsequent passes of 3132 // simplifycfg will thread the block. 3133 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3134 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3135 PHINode *NewPN = PHINode::Create( 3136 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3137 BI->getCondition()->getName() + ".pr", &BB->front()); 3138 // Okay, we're going to insert the PHI node. Since PBI is not the only 3139 // predecessor, compute the PHI'd conditional value for all of the preds. 3140 // Any predecessor where the condition is not computable we keep symbolic. 3141 for (pred_iterator PI = PB; PI != PE; ++PI) { 3142 BasicBlock *P = *PI; 3143 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3144 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3145 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3146 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3147 NewPN->addIncoming( 3148 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3149 P); 3150 } else { 3151 NewPN->addIncoming(BI->getCondition(), P); 3152 } 3153 } 3154 3155 BI->setCondition(NewPN); 3156 return true; 3157 } 3158 } 3159 3160 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3161 if (CE->canTrap()) 3162 return false; 3163 3164 // If both branches are conditional and both contain stores to the same 3165 // address, remove the stores from the conditionals and create a conditional 3166 // merged store at the end. 3167 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3168 return true; 3169 3170 // If this is a conditional branch in an empty block, and if any 3171 // predecessors are a conditional branch to one of our destinations, 3172 // fold the conditions into logical ops and one cond br. 3173 BasicBlock::iterator BBI = BB->begin(); 3174 // Ignore dbg intrinsics. 3175 while (isa<DbgInfoIntrinsic>(BBI)) 3176 ++BBI; 3177 if (&*BBI != BI) 3178 return false; 3179 3180 int PBIOp, BIOp; 3181 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3182 PBIOp = 0; 3183 BIOp = 0; 3184 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3185 PBIOp = 0; 3186 BIOp = 1; 3187 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3188 PBIOp = 1; 3189 BIOp = 0; 3190 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3191 PBIOp = 1; 3192 BIOp = 1; 3193 } else { 3194 return false; 3195 } 3196 3197 // Check to make sure that the other destination of this branch 3198 // isn't BB itself. If so, this is an infinite loop that will 3199 // keep getting unwound. 3200 if (PBI->getSuccessor(PBIOp) == BB) 3201 return false; 3202 3203 // Do not perform this transformation if it would require 3204 // insertion of a large number of select instructions. For targets 3205 // without predication/cmovs, this is a big pessimization. 3206 3207 // Also do not perform this transformation if any phi node in the common 3208 // destination block can trap when reached by BB or PBB (PR17073). In that 3209 // case, it would be unsafe to hoist the operation into a select instruction. 3210 3211 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3212 unsigned NumPhis = 0; 3213 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3214 ++II, ++NumPhis) { 3215 if (NumPhis > 2) // Disable this xform. 3216 return false; 3217 3218 PHINode *PN = cast<PHINode>(II); 3219 Value *BIV = PN->getIncomingValueForBlock(BB); 3220 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3221 if (CE->canTrap()) 3222 return false; 3223 3224 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3225 Value *PBIV = PN->getIncomingValue(PBBIdx); 3226 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3227 if (CE->canTrap()) 3228 return false; 3229 } 3230 3231 // Finally, if everything is ok, fold the branches to logical ops. 3232 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3233 3234 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3235 << "AND: " << *BI->getParent()); 3236 3237 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3238 // branch in it, where one edge (OtherDest) goes back to itself but the other 3239 // exits. We don't *know* that the program avoids the infinite loop 3240 // (even though that seems likely). If we do this xform naively, we'll end up 3241 // recursively unpeeling the loop. Since we know that (after the xform is 3242 // done) that the block *is* infinite if reached, we just make it an obviously 3243 // infinite loop with no cond branch. 3244 if (OtherDest == BB) { 3245 // Insert it at the end of the function, because it's either code, 3246 // or it won't matter if it's hot. :) 3247 BasicBlock *InfLoopBlock = 3248 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3249 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3250 OtherDest = InfLoopBlock; 3251 } 3252 3253 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3254 3255 // BI may have other predecessors. Because of this, we leave 3256 // it alone, but modify PBI. 3257 3258 // Make sure we get to CommonDest on True&True directions. 3259 Value *PBICond = PBI->getCondition(); 3260 IRBuilder<NoFolder> Builder(PBI); 3261 if (PBIOp) 3262 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3263 3264 Value *BICond = BI->getCondition(); 3265 if (BIOp) 3266 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3267 3268 // Merge the conditions. 3269 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3270 3271 // Modify PBI to branch on the new condition to the new dests. 3272 PBI->setCondition(Cond); 3273 PBI->setSuccessor(0, CommonDest); 3274 PBI->setSuccessor(1, OtherDest); 3275 3276 // Update branch weight for PBI. 3277 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3278 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3279 bool HasWeights = 3280 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3281 SuccTrueWeight, SuccFalseWeight); 3282 if (HasWeights) { 3283 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3284 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3285 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3286 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3287 // The weight to CommonDest should be PredCommon * SuccTotal + 3288 // PredOther * SuccCommon. 3289 // The weight to OtherDest should be PredOther * SuccOther. 3290 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3291 PredOther * SuccCommon, 3292 PredOther * SuccOther}; 3293 // Halve the weights if any of them cannot fit in an uint32_t 3294 FitWeights(NewWeights); 3295 3296 PBI->setMetadata(LLVMContext::MD_prof, 3297 MDBuilder(BI->getContext()) 3298 .createBranchWeights(NewWeights[0], NewWeights[1])); 3299 } 3300 3301 // OtherDest may have phi nodes. If so, add an entry from PBI's 3302 // block that are identical to the entries for BI's block. 3303 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3304 3305 // We know that the CommonDest already had an edge from PBI to 3306 // it. If it has PHIs though, the PHIs may have different 3307 // entries for BB and PBI's BB. If so, insert a select to make 3308 // them agree. 3309 PHINode *PN; 3310 for (BasicBlock::iterator II = CommonDest->begin(); 3311 (PN = dyn_cast<PHINode>(II)); ++II) { 3312 Value *BIV = PN->getIncomingValueForBlock(BB); 3313 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3314 Value *PBIV = PN->getIncomingValue(PBBIdx); 3315 if (BIV != PBIV) { 3316 // Insert a select in PBI to pick the right value. 3317 SelectInst *NV = cast<SelectInst>( 3318 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3319 PN->setIncomingValue(PBBIdx, NV); 3320 // Although the select has the same condition as PBI, the original branch 3321 // weights for PBI do not apply to the new select because the select's 3322 // 'logical' edges are incoming edges of the phi that is eliminated, not 3323 // the outgoing edges of PBI. 3324 if (HasWeights) { 3325 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3326 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3327 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3328 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3329 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3330 // The weight to PredOtherDest should be PredOther * SuccCommon. 3331 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3332 PredOther * SuccCommon}; 3333 3334 FitWeights(NewWeights); 3335 3336 NV->setMetadata(LLVMContext::MD_prof, 3337 MDBuilder(BI->getContext()) 3338 .createBranchWeights(NewWeights[0], NewWeights[1])); 3339 } 3340 } 3341 } 3342 3343 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3344 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3345 3346 // This basic block is probably dead. We know it has at least 3347 // one fewer predecessor. 3348 return true; 3349 } 3350 3351 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3352 // true or to FalseBB if Cond is false. 3353 // Takes care of updating the successors and removing the old terminator. 3354 // Also makes sure not to introduce new successors by assuming that edges to 3355 // non-successor TrueBBs and FalseBBs aren't reachable. 3356 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3357 BasicBlock *TrueBB, BasicBlock *FalseBB, 3358 uint32_t TrueWeight, 3359 uint32_t FalseWeight) { 3360 // Remove any superfluous successor edges from the CFG. 3361 // First, figure out which successors to preserve. 3362 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3363 // successor. 3364 BasicBlock *KeepEdge1 = TrueBB; 3365 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3366 3367 // Then remove the rest. 3368 for (BasicBlock *Succ : OldTerm->successors()) { 3369 // Make sure only to keep exactly one copy of each edge. 3370 if (Succ == KeepEdge1) 3371 KeepEdge1 = nullptr; 3372 else if (Succ == KeepEdge2) 3373 KeepEdge2 = nullptr; 3374 else 3375 Succ->removePredecessor(OldTerm->getParent(), 3376 /*DontDeleteUselessPHIs=*/true); 3377 } 3378 3379 IRBuilder<> Builder(OldTerm); 3380 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3381 3382 // Insert an appropriate new terminator. 3383 if (!KeepEdge1 && !KeepEdge2) { 3384 if (TrueBB == FalseBB) 3385 // We were only looking for one successor, and it was present. 3386 // Create an unconditional branch to it. 3387 Builder.CreateBr(TrueBB); 3388 else { 3389 // We found both of the successors we were looking for. 3390 // Create a conditional branch sharing the condition of the select. 3391 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3392 if (TrueWeight != FalseWeight) 3393 NewBI->setMetadata(LLVMContext::MD_prof, 3394 MDBuilder(OldTerm->getContext()) 3395 .createBranchWeights(TrueWeight, FalseWeight)); 3396 } 3397 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3398 // Neither of the selected blocks were successors, so this 3399 // terminator must be unreachable. 3400 new UnreachableInst(OldTerm->getContext(), OldTerm); 3401 } else { 3402 // One of the selected values was a successor, but the other wasn't. 3403 // Insert an unconditional branch to the one that was found; 3404 // the edge to the one that wasn't must be unreachable. 3405 if (!KeepEdge1) 3406 // Only TrueBB was found. 3407 Builder.CreateBr(TrueBB); 3408 else 3409 // Only FalseBB was found. 3410 Builder.CreateBr(FalseBB); 3411 } 3412 3413 EraseTerminatorInstAndDCECond(OldTerm); 3414 return true; 3415 } 3416 3417 // Replaces 3418 // (switch (select cond, X, Y)) on constant X, Y 3419 // with a branch - conditional if X and Y lead to distinct BBs, 3420 // unconditional otherwise. 3421 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3422 // Check for constant integer values in the select. 3423 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3424 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3425 if (!TrueVal || !FalseVal) 3426 return false; 3427 3428 // Find the relevant condition and destinations. 3429 Value *Condition = Select->getCondition(); 3430 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3431 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3432 3433 // Get weight for TrueBB and FalseBB. 3434 uint32_t TrueWeight = 0, FalseWeight = 0; 3435 SmallVector<uint64_t, 8> Weights; 3436 bool HasWeights = HasBranchWeights(SI); 3437 if (HasWeights) { 3438 GetBranchWeights(SI, Weights); 3439 if (Weights.size() == 1 + SI->getNumCases()) { 3440 TrueWeight = 3441 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3442 FalseWeight = 3443 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3444 } 3445 } 3446 3447 // Perform the actual simplification. 3448 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3449 FalseWeight); 3450 } 3451 3452 // Replaces 3453 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3454 // blockaddress(@fn, BlockB))) 3455 // with 3456 // (br cond, BlockA, BlockB). 3457 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3458 // Check that both operands of the select are block addresses. 3459 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3460 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3461 if (!TBA || !FBA) 3462 return false; 3463 3464 // Extract the actual blocks. 3465 BasicBlock *TrueBB = TBA->getBasicBlock(); 3466 BasicBlock *FalseBB = FBA->getBasicBlock(); 3467 3468 // Perform the actual simplification. 3469 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3470 0); 3471 } 3472 3473 /// This is called when we find an icmp instruction 3474 /// (a seteq/setne with a constant) as the only instruction in a 3475 /// block that ends with an uncond branch. We are looking for a very specific 3476 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3477 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3478 /// default value goes to an uncond block with a seteq in it, we get something 3479 /// like: 3480 /// 3481 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3482 /// DEFAULT: 3483 /// %tmp = icmp eq i8 %A, 92 3484 /// br label %end 3485 /// end: 3486 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3487 /// 3488 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3489 /// the PHI, merging the third icmp into the switch. 3490 static bool TryToSimplifyUncondBranchWithICmpInIt( 3491 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3492 const TargetTransformInfo &TTI, AssumptionCache *AC, 3493 const SimplifyCFGOptions &Options) { 3494 BasicBlock *BB = ICI->getParent(); 3495 3496 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3497 // complex. 3498 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3499 return false; 3500 3501 Value *V = ICI->getOperand(0); 3502 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3503 3504 // The pattern we're looking for is where our only predecessor is a switch on 3505 // 'V' and this block is the default case for the switch. In this case we can 3506 // fold the compared value into the switch to simplify things. 3507 BasicBlock *Pred = BB->getSinglePredecessor(); 3508 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3509 return false; 3510 3511 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3512 if (SI->getCondition() != V) 3513 return false; 3514 3515 // If BB is reachable on a non-default case, then we simply know the value of 3516 // V in this block. Substitute it and constant fold the icmp instruction 3517 // away. 3518 if (SI->getDefaultDest() != BB) { 3519 ConstantInt *VVal = SI->findCaseDest(BB); 3520 assert(VVal && "Should have a unique destination value"); 3521 ICI->setOperand(0, VVal); 3522 3523 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3524 ICI->replaceAllUsesWith(V); 3525 ICI->eraseFromParent(); 3526 } 3527 // BB is now empty, so it is likely to simplify away. 3528 return SimplifyCFG(BB, TTI, AC, Options) | true; 3529 } 3530 3531 // Ok, the block is reachable from the default dest. If the constant we're 3532 // comparing exists in one of the other edges, then we can constant fold ICI 3533 // and zap it. 3534 if (SI->findCaseValue(Cst) != SI->case_default()) { 3535 Value *V; 3536 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3537 V = ConstantInt::getFalse(BB->getContext()); 3538 else 3539 V = ConstantInt::getTrue(BB->getContext()); 3540 3541 ICI->replaceAllUsesWith(V); 3542 ICI->eraseFromParent(); 3543 // BB is now empty, so it is likely to simplify away. 3544 return SimplifyCFG(BB, TTI, AC, Options) | true; 3545 } 3546 3547 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3548 // the block. 3549 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3550 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3551 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3552 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3553 return false; 3554 3555 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3556 // true in the PHI. 3557 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3558 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3559 3560 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3561 std::swap(DefaultCst, NewCst); 3562 3563 // Replace ICI (which is used by the PHI for the default value) with true or 3564 // false depending on if it is EQ or NE. 3565 ICI->replaceAllUsesWith(DefaultCst); 3566 ICI->eraseFromParent(); 3567 3568 // Okay, the switch goes to this block on a default value. Add an edge from 3569 // the switch to the merge point on the compared value. 3570 BasicBlock *NewBB = 3571 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3572 SmallVector<uint64_t, 8> Weights; 3573 bool HasWeights = HasBranchWeights(SI); 3574 if (HasWeights) { 3575 GetBranchWeights(SI, Weights); 3576 if (Weights.size() == 1 + SI->getNumCases()) { 3577 // Split weight for default case to case for "Cst". 3578 Weights[0] = (Weights[0] + 1) >> 1; 3579 Weights.push_back(Weights[0]); 3580 3581 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3582 SI->setMetadata( 3583 LLVMContext::MD_prof, 3584 MDBuilder(SI->getContext()).createBranchWeights(MDWeights)); 3585 } 3586 } 3587 SI->addCase(Cst, NewBB); 3588 3589 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3590 Builder.SetInsertPoint(NewBB); 3591 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3592 Builder.CreateBr(SuccBlock); 3593 PHIUse->addIncoming(NewCst, NewBB); 3594 return true; 3595 } 3596 3597 /// The specified branch is a conditional branch. 3598 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3599 /// fold it into a switch instruction if so. 3600 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3601 const DataLayout &DL) { 3602 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3603 if (!Cond) 3604 return false; 3605 3606 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3607 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3608 // 'setne's and'ed together, collect them. 3609 3610 // Try to gather values from a chain of and/or to be turned into a switch 3611 ConstantComparesGatherer ConstantCompare(Cond, DL); 3612 // Unpack the result 3613 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3614 Value *CompVal = ConstantCompare.CompValue; 3615 unsigned UsedICmps = ConstantCompare.UsedICmps; 3616 Value *ExtraCase = ConstantCompare.Extra; 3617 3618 // If we didn't have a multiply compared value, fail. 3619 if (!CompVal) 3620 return false; 3621 3622 // Avoid turning single icmps into a switch. 3623 if (UsedICmps <= 1) 3624 return false; 3625 3626 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3627 3628 // There might be duplicate constants in the list, which the switch 3629 // instruction can't handle, remove them now. 3630 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3631 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3632 3633 // If Extra was used, we require at least two switch values to do the 3634 // transformation. A switch with one value is just a conditional branch. 3635 if (ExtraCase && Values.size() < 2) 3636 return false; 3637 3638 // TODO: Preserve branch weight metadata, similarly to how 3639 // FoldValueComparisonIntoPredecessors preserves it. 3640 3641 // Figure out which block is which destination. 3642 BasicBlock *DefaultBB = BI->getSuccessor(1); 3643 BasicBlock *EdgeBB = BI->getSuccessor(0); 3644 if (!TrueWhenEqual) 3645 std::swap(DefaultBB, EdgeBB); 3646 3647 BasicBlock *BB = BI->getParent(); 3648 3649 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3650 << " cases into SWITCH. BB is:\n" 3651 << *BB); 3652 3653 // If there are any extra values that couldn't be folded into the switch 3654 // then we evaluate them with an explicit branch first. Split the block 3655 // right before the condbr to handle it. 3656 if (ExtraCase) { 3657 BasicBlock *NewBB = 3658 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3659 // Remove the uncond branch added to the old block. 3660 TerminatorInst *OldTI = BB->getTerminator(); 3661 Builder.SetInsertPoint(OldTI); 3662 3663 if (TrueWhenEqual) 3664 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3665 else 3666 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3667 3668 OldTI->eraseFromParent(); 3669 3670 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3671 // for the edge we just added. 3672 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3673 3674 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3675 << "\nEXTRABB = " << *BB); 3676 BB = NewBB; 3677 } 3678 3679 Builder.SetInsertPoint(BI); 3680 // Convert pointer to int before we switch. 3681 if (CompVal->getType()->isPointerTy()) { 3682 CompVal = Builder.CreatePtrToInt( 3683 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3684 } 3685 3686 // Create the new switch instruction now. 3687 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3688 3689 // Add all of the 'cases' to the switch instruction. 3690 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3691 New->addCase(Values[i], EdgeBB); 3692 3693 // We added edges from PI to the EdgeBB. As such, if there were any 3694 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3695 // the number of edges added. 3696 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3697 PHINode *PN = cast<PHINode>(BBI); 3698 Value *InVal = PN->getIncomingValueForBlock(BB); 3699 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3700 PN->addIncoming(InVal, BB); 3701 } 3702 3703 // Erase the old branch instruction. 3704 EraseTerminatorInstAndDCECond(BI); 3705 3706 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3707 return true; 3708 } 3709 3710 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3711 if (isa<PHINode>(RI->getValue())) 3712 return SimplifyCommonResume(RI); 3713 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3714 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3715 // The resume must unwind the exception that caused control to branch here. 3716 return SimplifySingleResume(RI); 3717 3718 return false; 3719 } 3720 3721 // Simplify resume that is shared by several landing pads (phi of landing pad). 3722 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3723 BasicBlock *BB = RI->getParent(); 3724 3725 // Check that there are no other instructions except for debug intrinsics 3726 // between the phi of landing pads (RI->getValue()) and resume instruction. 3727 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3728 E = RI->getIterator(); 3729 while (++I != E) 3730 if (!isa<DbgInfoIntrinsic>(I)) 3731 return false; 3732 3733 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3734 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3735 3736 // Check incoming blocks to see if any of them are trivial. 3737 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3738 Idx++) { 3739 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3740 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3741 3742 // If the block has other successors, we can not delete it because 3743 // it has other dependents. 3744 if (IncomingBB->getUniqueSuccessor() != BB) 3745 continue; 3746 3747 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3748 // Not the landing pad that caused the control to branch here. 3749 if (IncomingValue != LandingPad) 3750 continue; 3751 3752 bool isTrivial = true; 3753 3754 I = IncomingBB->getFirstNonPHI()->getIterator(); 3755 E = IncomingBB->getTerminator()->getIterator(); 3756 while (++I != E) 3757 if (!isa<DbgInfoIntrinsic>(I)) { 3758 isTrivial = false; 3759 break; 3760 } 3761 3762 if (isTrivial) 3763 TrivialUnwindBlocks.insert(IncomingBB); 3764 } 3765 3766 // If no trivial unwind blocks, don't do any simplifications. 3767 if (TrivialUnwindBlocks.empty()) 3768 return false; 3769 3770 // Turn all invokes that unwind here into calls. 3771 for (auto *TrivialBB : TrivialUnwindBlocks) { 3772 // Blocks that will be simplified should be removed from the phi node. 3773 // Note there could be multiple edges to the resume block, and we need 3774 // to remove them all. 3775 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3776 BB->removePredecessor(TrivialBB, true); 3777 3778 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3779 PI != PE;) { 3780 BasicBlock *Pred = *PI++; 3781 removeUnwindEdge(Pred); 3782 } 3783 3784 // In each SimplifyCFG run, only the current processed block can be erased. 3785 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3786 // of erasing TrivialBB, we only remove the branch to the common resume 3787 // block so that we can later erase the resume block since it has no 3788 // predecessors. 3789 TrivialBB->getTerminator()->eraseFromParent(); 3790 new UnreachableInst(RI->getContext(), TrivialBB); 3791 } 3792 3793 // Delete the resume block if all its predecessors have been removed. 3794 if (pred_empty(BB)) 3795 BB->eraseFromParent(); 3796 3797 return !TrivialUnwindBlocks.empty(); 3798 } 3799 3800 // Simplify resume that is only used by a single (non-phi) landing pad. 3801 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3802 BasicBlock *BB = RI->getParent(); 3803 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3804 assert(RI->getValue() == LPInst && 3805 "Resume must unwind the exception that caused control to here"); 3806 3807 // Check that there are no other instructions except for debug intrinsics. 3808 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3809 while (++I != E) 3810 if (!isa<DbgInfoIntrinsic>(I)) 3811 return false; 3812 3813 // Turn all invokes that unwind here into calls and delete the basic block. 3814 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3815 BasicBlock *Pred = *PI++; 3816 removeUnwindEdge(Pred); 3817 } 3818 3819 // The landingpad is now unreachable. Zap it. 3820 BB->eraseFromParent(); 3821 if (LoopHeaders) 3822 LoopHeaders->erase(BB); 3823 return true; 3824 } 3825 3826 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3827 // If this is a trivial cleanup pad that executes no instructions, it can be 3828 // eliminated. If the cleanup pad continues to the caller, any predecessor 3829 // that is an EH pad will be updated to continue to the caller and any 3830 // predecessor that terminates with an invoke instruction will have its invoke 3831 // instruction converted to a call instruction. If the cleanup pad being 3832 // simplified does not continue to the caller, each predecessor will be 3833 // updated to continue to the unwind destination of the cleanup pad being 3834 // simplified. 3835 BasicBlock *BB = RI->getParent(); 3836 CleanupPadInst *CPInst = RI->getCleanupPad(); 3837 if (CPInst->getParent() != BB) 3838 // This isn't an empty cleanup. 3839 return false; 3840 3841 // We cannot kill the pad if it has multiple uses. This typically arises 3842 // from unreachable basic blocks. 3843 if (!CPInst->hasOneUse()) 3844 return false; 3845 3846 // Check that there are no other instructions except for benign intrinsics. 3847 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3848 while (++I != E) { 3849 auto *II = dyn_cast<IntrinsicInst>(I); 3850 if (!II) 3851 return false; 3852 3853 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3854 switch (IntrinsicID) { 3855 case Intrinsic::dbg_declare: 3856 case Intrinsic::dbg_value: 3857 case Intrinsic::lifetime_end: 3858 break; 3859 default: 3860 return false; 3861 } 3862 } 3863 3864 // If the cleanup return we are simplifying unwinds to the caller, this will 3865 // set UnwindDest to nullptr. 3866 BasicBlock *UnwindDest = RI->getUnwindDest(); 3867 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3868 3869 // We're about to remove BB from the control flow. Before we do, sink any 3870 // PHINodes into the unwind destination. Doing this before changing the 3871 // control flow avoids some potentially slow checks, since we can currently 3872 // be certain that UnwindDest and BB have no common predecessors (since they 3873 // are both EH pads). 3874 if (UnwindDest) { 3875 // First, go through the PHI nodes in UnwindDest and update any nodes that 3876 // reference the block we are removing 3877 for (BasicBlock::iterator I = UnwindDest->begin(), 3878 IE = DestEHPad->getIterator(); 3879 I != IE; ++I) { 3880 PHINode *DestPN = cast<PHINode>(I); 3881 3882 int Idx = DestPN->getBasicBlockIndex(BB); 3883 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3884 assert(Idx != -1); 3885 // This PHI node has an incoming value that corresponds to a control 3886 // path through the cleanup pad we are removing. If the incoming 3887 // value is in the cleanup pad, it must be a PHINode (because we 3888 // verified above that the block is otherwise empty). Otherwise, the 3889 // value is either a constant or a value that dominates the cleanup 3890 // pad being removed. 3891 // 3892 // Because BB and UnwindDest are both EH pads, all of their 3893 // predecessors must unwind to these blocks, and since no instruction 3894 // can have multiple unwind destinations, there will be no overlap in 3895 // incoming blocks between SrcPN and DestPN. 3896 Value *SrcVal = DestPN->getIncomingValue(Idx); 3897 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3898 3899 // Remove the entry for the block we are deleting. 3900 DestPN->removeIncomingValue(Idx, false); 3901 3902 if (SrcPN && SrcPN->getParent() == BB) { 3903 // If the incoming value was a PHI node in the cleanup pad we are 3904 // removing, we need to merge that PHI node's incoming values into 3905 // DestPN. 3906 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3907 SrcIdx != SrcE; ++SrcIdx) { 3908 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3909 SrcPN->getIncomingBlock(SrcIdx)); 3910 } 3911 } else { 3912 // Otherwise, the incoming value came from above BB and 3913 // so we can just reuse it. We must associate all of BB's 3914 // predecessors with this value. 3915 for (auto *pred : predecessors(BB)) { 3916 DestPN->addIncoming(SrcVal, pred); 3917 } 3918 } 3919 } 3920 3921 // Sink any remaining PHI nodes directly into UnwindDest. 3922 Instruction *InsertPt = DestEHPad; 3923 for (BasicBlock::iterator I = BB->begin(), 3924 IE = BB->getFirstNonPHI()->getIterator(); 3925 I != IE;) { 3926 // The iterator must be incremented here because the instructions are 3927 // being moved to another block. 3928 PHINode *PN = cast<PHINode>(I++); 3929 if (PN->use_empty()) 3930 // If the PHI node has no uses, just leave it. It will be erased 3931 // when we erase BB below. 3932 continue; 3933 3934 // Otherwise, sink this PHI node into UnwindDest. 3935 // Any predecessors to UnwindDest which are not already represented 3936 // must be back edges which inherit the value from the path through 3937 // BB. In this case, the PHI value must reference itself. 3938 for (auto *pred : predecessors(UnwindDest)) 3939 if (pred != BB) 3940 PN->addIncoming(PN, pred); 3941 PN->moveBefore(InsertPt); 3942 } 3943 } 3944 3945 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3946 // The iterator must be updated here because we are removing this pred. 3947 BasicBlock *PredBB = *PI++; 3948 if (UnwindDest == nullptr) { 3949 removeUnwindEdge(PredBB); 3950 } else { 3951 TerminatorInst *TI = PredBB->getTerminator(); 3952 TI->replaceUsesOfWith(BB, UnwindDest); 3953 } 3954 } 3955 3956 // The cleanup pad is now unreachable. Zap it. 3957 BB->eraseFromParent(); 3958 return true; 3959 } 3960 3961 // Try to merge two cleanuppads together. 3962 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3963 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3964 // with. 3965 BasicBlock *UnwindDest = RI->getUnwindDest(); 3966 if (!UnwindDest) 3967 return false; 3968 3969 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3970 // be safe to merge without code duplication. 3971 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3972 return false; 3973 3974 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3975 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3976 if (!SuccessorCleanupPad) 3977 return false; 3978 3979 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3980 // Replace any uses of the successor cleanupad with the predecessor pad 3981 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3982 // funclet bundle operands. 3983 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 3984 // Remove the old cleanuppad. 3985 SuccessorCleanupPad->eraseFromParent(); 3986 // Now, we simply replace the cleanupret with a branch to the unwind 3987 // destination. 3988 BranchInst::Create(UnwindDest, RI->getParent()); 3989 RI->eraseFromParent(); 3990 3991 return true; 3992 } 3993 3994 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3995 // It is possible to transiantly have an undef cleanuppad operand because we 3996 // have deleted some, but not all, dead blocks. 3997 // Eventually, this block will be deleted. 3998 if (isa<UndefValue>(RI->getOperand(0))) 3999 return false; 4000 4001 if (mergeCleanupPad(RI)) 4002 return true; 4003 4004 if (removeEmptyCleanup(RI)) 4005 return true; 4006 4007 return false; 4008 } 4009 4010 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4011 BasicBlock *BB = RI->getParent(); 4012 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4013 return false; 4014 4015 // Find predecessors that end with branches. 4016 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4017 SmallVector<BranchInst *, 8> CondBranchPreds; 4018 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4019 BasicBlock *P = *PI; 4020 TerminatorInst *PTI = P->getTerminator(); 4021 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4022 if (BI->isUnconditional()) 4023 UncondBranchPreds.push_back(P); 4024 else 4025 CondBranchPreds.push_back(BI); 4026 } 4027 } 4028 4029 // If we found some, do the transformation! 4030 if (!UncondBranchPreds.empty() && DupRet) { 4031 while (!UncondBranchPreds.empty()) { 4032 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4033 DEBUG(dbgs() << "FOLDING: " << *BB 4034 << "INTO UNCOND BRANCH PRED: " << *Pred); 4035 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4036 } 4037 4038 // If we eliminated all predecessors of the block, delete the block now. 4039 if (pred_empty(BB)) { 4040 // We know there are no successors, so just nuke the block. 4041 BB->eraseFromParent(); 4042 if (LoopHeaders) 4043 LoopHeaders->erase(BB); 4044 } 4045 4046 return true; 4047 } 4048 4049 // Check out all of the conditional branches going to this return 4050 // instruction. If any of them just select between returns, change the 4051 // branch itself into a select/return pair. 4052 while (!CondBranchPreds.empty()) { 4053 BranchInst *BI = CondBranchPreds.pop_back_val(); 4054 4055 // Check to see if the non-BB successor is also a return block. 4056 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4057 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4058 SimplifyCondBranchToTwoReturns(BI, Builder)) 4059 return true; 4060 } 4061 return false; 4062 } 4063 4064 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4065 BasicBlock *BB = UI->getParent(); 4066 4067 bool Changed = false; 4068 4069 // If there are any instructions immediately before the unreachable that can 4070 // be removed, do so. 4071 while (UI->getIterator() != BB->begin()) { 4072 BasicBlock::iterator BBI = UI->getIterator(); 4073 --BBI; 4074 // Do not delete instructions that can have side effects which might cause 4075 // the unreachable to not be reachable; specifically, calls and volatile 4076 // operations may have this effect. 4077 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4078 break; 4079 4080 if (BBI->mayHaveSideEffects()) { 4081 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4082 if (SI->isVolatile()) 4083 break; 4084 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4085 if (LI->isVolatile()) 4086 break; 4087 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4088 if (RMWI->isVolatile()) 4089 break; 4090 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4091 if (CXI->isVolatile()) 4092 break; 4093 } else if (isa<CatchPadInst>(BBI)) { 4094 // A catchpad may invoke exception object constructors and such, which 4095 // in some languages can be arbitrary code, so be conservative by 4096 // default. 4097 // For CoreCLR, it just involves a type test, so can be removed. 4098 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4099 EHPersonality::CoreCLR) 4100 break; 4101 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4102 !isa<LandingPadInst>(BBI)) { 4103 break; 4104 } 4105 // Note that deleting LandingPad's here is in fact okay, although it 4106 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4107 // all the predecessors of this block will be the unwind edges of Invokes, 4108 // and we can therefore guarantee this block will be erased. 4109 } 4110 4111 // Delete this instruction (any uses are guaranteed to be dead) 4112 if (!BBI->use_empty()) 4113 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4114 BBI->eraseFromParent(); 4115 Changed = true; 4116 } 4117 4118 // If the unreachable instruction is the first in the block, take a gander 4119 // at all of the predecessors of this instruction, and simplify them. 4120 if (&BB->front() != UI) 4121 return Changed; 4122 4123 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4124 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4125 TerminatorInst *TI = Preds[i]->getTerminator(); 4126 IRBuilder<> Builder(TI); 4127 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4128 if (BI->isUnconditional()) { 4129 if (BI->getSuccessor(0) == BB) { 4130 new UnreachableInst(TI->getContext(), TI); 4131 TI->eraseFromParent(); 4132 Changed = true; 4133 } 4134 } else { 4135 if (BI->getSuccessor(0) == BB) { 4136 Builder.CreateBr(BI->getSuccessor(1)); 4137 EraseTerminatorInstAndDCECond(BI); 4138 } else if (BI->getSuccessor(1) == BB) { 4139 Builder.CreateBr(BI->getSuccessor(0)); 4140 EraseTerminatorInstAndDCECond(BI); 4141 Changed = true; 4142 } 4143 } 4144 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4145 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4146 if (i->getCaseSuccessor() != BB) { 4147 ++i; 4148 continue; 4149 } 4150 BB->removePredecessor(SI->getParent()); 4151 i = SI->removeCase(i); 4152 e = SI->case_end(); 4153 Changed = true; 4154 } 4155 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4156 if (II->getUnwindDest() == BB) { 4157 removeUnwindEdge(TI->getParent()); 4158 Changed = true; 4159 } 4160 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4161 if (CSI->getUnwindDest() == BB) { 4162 removeUnwindEdge(TI->getParent()); 4163 Changed = true; 4164 continue; 4165 } 4166 4167 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4168 E = CSI->handler_end(); 4169 I != E; ++I) { 4170 if (*I == BB) { 4171 CSI->removeHandler(I); 4172 --I; 4173 --E; 4174 Changed = true; 4175 } 4176 } 4177 if (CSI->getNumHandlers() == 0) { 4178 BasicBlock *CatchSwitchBB = CSI->getParent(); 4179 if (CSI->hasUnwindDest()) { 4180 // Redirect preds to the unwind dest 4181 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4182 } else { 4183 // Rewrite all preds to unwind to caller (or from invoke to call). 4184 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4185 for (BasicBlock *EHPred : EHPreds) 4186 removeUnwindEdge(EHPred); 4187 } 4188 // The catchswitch is no longer reachable. 4189 new UnreachableInst(CSI->getContext(), CSI); 4190 CSI->eraseFromParent(); 4191 Changed = true; 4192 } 4193 } else if (isa<CleanupReturnInst>(TI)) { 4194 new UnreachableInst(TI->getContext(), TI); 4195 TI->eraseFromParent(); 4196 Changed = true; 4197 } 4198 } 4199 4200 // If this block is now dead, remove it. 4201 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4202 // We know there are no successors, so just nuke the block. 4203 BB->eraseFromParent(); 4204 if (LoopHeaders) 4205 LoopHeaders->erase(BB); 4206 return true; 4207 } 4208 4209 return Changed; 4210 } 4211 4212 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4213 assert(Cases.size() >= 1); 4214 4215 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4216 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4217 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4218 return false; 4219 } 4220 return true; 4221 } 4222 4223 /// Turn a switch with two reachable destinations into an integer range 4224 /// comparison and branch. 4225 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4226 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4227 4228 bool HasDefault = 4229 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4230 4231 // Partition the cases into two sets with different destinations. 4232 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4233 BasicBlock *DestB = nullptr; 4234 SmallVector<ConstantInt *, 16> CasesA; 4235 SmallVector<ConstantInt *, 16> CasesB; 4236 4237 for (auto Case : SI->cases()) { 4238 BasicBlock *Dest = Case.getCaseSuccessor(); 4239 if (!DestA) 4240 DestA = Dest; 4241 if (Dest == DestA) { 4242 CasesA.push_back(Case.getCaseValue()); 4243 continue; 4244 } 4245 if (!DestB) 4246 DestB = Dest; 4247 if (Dest == DestB) { 4248 CasesB.push_back(Case.getCaseValue()); 4249 continue; 4250 } 4251 return false; // More than two destinations. 4252 } 4253 4254 assert(DestA && DestB && 4255 "Single-destination switch should have been folded."); 4256 assert(DestA != DestB); 4257 assert(DestB != SI->getDefaultDest()); 4258 assert(!CasesB.empty() && "There must be non-default cases."); 4259 assert(!CasesA.empty() || HasDefault); 4260 4261 // Figure out if one of the sets of cases form a contiguous range. 4262 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4263 BasicBlock *ContiguousDest = nullptr; 4264 BasicBlock *OtherDest = nullptr; 4265 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4266 ContiguousCases = &CasesA; 4267 ContiguousDest = DestA; 4268 OtherDest = DestB; 4269 } else if (CasesAreContiguous(CasesB)) { 4270 ContiguousCases = &CasesB; 4271 ContiguousDest = DestB; 4272 OtherDest = DestA; 4273 } else 4274 return false; 4275 4276 // Start building the compare and branch. 4277 4278 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4279 Constant *NumCases = 4280 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4281 4282 Value *Sub = SI->getCondition(); 4283 if (!Offset->isNullValue()) 4284 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4285 4286 Value *Cmp; 4287 // If NumCases overflowed, then all possible values jump to the successor. 4288 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4289 Cmp = ConstantInt::getTrue(SI->getContext()); 4290 else 4291 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4292 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4293 4294 // Update weight for the newly-created conditional branch. 4295 if (HasBranchWeights(SI)) { 4296 SmallVector<uint64_t, 8> Weights; 4297 GetBranchWeights(SI, Weights); 4298 if (Weights.size() == 1 + SI->getNumCases()) { 4299 uint64_t TrueWeight = 0; 4300 uint64_t FalseWeight = 0; 4301 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4302 if (SI->getSuccessor(I) == ContiguousDest) 4303 TrueWeight += Weights[I]; 4304 else 4305 FalseWeight += Weights[I]; 4306 } 4307 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4308 TrueWeight /= 2; 4309 FalseWeight /= 2; 4310 } 4311 NewBI->setMetadata(LLVMContext::MD_prof, 4312 MDBuilder(SI->getContext()) 4313 .createBranchWeights((uint32_t)TrueWeight, 4314 (uint32_t)FalseWeight)); 4315 } 4316 } 4317 4318 // Prune obsolete incoming values off the successors' PHI nodes. 4319 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4320 unsigned PreviousEdges = ContiguousCases->size(); 4321 if (ContiguousDest == SI->getDefaultDest()) 4322 ++PreviousEdges; 4323 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4324 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4325 } 4326 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4327 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4328 if (OtherDest == SI->getDefaultDest()) 4329 ++PreviousEdges; 4330 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4331 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4332 } 4333 4334 // Drop the switch. 4335 SI->eraseFromParent(); 4336 4337 return true; 4338 } 4339 4340 /// Compute masked bits for the condition of a switch 4341 /// and use it to remove dead cases. 4342 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4343 const DataLayout &DL) { 4344 Value *Cond = SI->getCondition(); 4345 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4346 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4347 4348 // We can also eliminate cases by determining that their values are outside of 4349 // the limited range of the condition based on how many significant (non-sign) 4350 // bits are in the condition value. 4351 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4352 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4353 4354 // Gather dead cases. 4355 SmallVector<ConstantInt *, 8> DeadCases; 4356 for (auto &Case : SI->cases()) { 4357 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4358 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4359 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4360 DeadCases.push_back(Case.getCaseValue()); 4361 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4362 } 4363 } 4364 4365 // If we can prove that the cases must cover all possible values, the 4366 // default destination becomes dead and we can remove it. If we know some 4367 // of the bits in the value, we can use that to more precisely compute the 4368 // number of possible unique case values. 4369 bool HasDefault = 4370 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4371 const unsigned NumUnknownBits = 4372 Bits - (Known.Zero | Known.One).countPopulation(); 4373 assert(NumUnknownBits <= Bits); 4374 if (HasDefault && DeadCases.empty() && 4375 NumUnknownBits < 64 /* avoid overflow */ && 4376 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4377 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4378 BasicBlock *NewDefault = 4379 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4380 SI->setDefaultDest(&*NewDefault); 4381 SplitBlock(&*NewDefault, &NewDefault->front()); 4382 auto *OldTI = NewDefault->getTerminator(); 4383 new UnreachableInst(SI->getContext(), OldTI); 4384 EraseTerminatorInstAndDCECond(OldTI); 4385 return true; 4386 } 4387 4388 SmallVector<uint64_t, 8> Weights; 4389 bool HasWeight = HasBranchWeights(SI); 4390 if (HasWeight) { 4391 GetBranchWeights(SI, Weights); 4392 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4393 } 4394 4395 // Remove dead cases from the switch. 4396 for (ConstantInt *DeadCase : DeadCases) { 4397 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4398 assert(CaseI != SI->case_default() && 4399 "Case was not found. Probably mistake in DeadCases forming."); 4400 if (HasWeight) { 4401 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4402 Weights.pop_back(); 4403 } 4404 4405 // Prune unused values from PHI nodes. 4406 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4407 SI->removeCase(CaseI); 4408 } 4409 if (HasWeight && Weights.size() >= 2) { 4410 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4411 SI->setMetadata(LLVMContext::MD_prof, 4412 MDBuilder(SI->getParent()->getContext()) 4413 .createBranchWeights(MDWeights)); 4414 } 4415 4416 return !DeadCases.empty(); 4417 } 4418 4419 /// If BB would be eligible for simplification by 4420 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4421 /// by an unconditional branch), look at the phi node for BB in the successor 4422 /// block and see if the incoming value is equal to CaseValue. If so, return 4423 /// the phi node, and set PhiIndex to BB's index in the phi node. 4424 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4425 BasicBlock *BB, int *PhiIndex) { 4426 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4427 return nullptr; // BB must be empty to be a candidate for simplification. 4428 if (!BB->getSinglePredecessor()) 4429 return nullptr; // BB must be dominated by the switch. 4430 4431 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4432 if (!Branch || !Branch->isUnconditional()) 4433 return nullptr; // Terminator must be unconditional branch. 4434 4435 BasicBlock *Succ = Branch->getSuccessor(0); 4436 4437 BasicBlock::iterator I = Succ->begin(); 4438 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4439 int Idx = PHI->getBasicBlockIndex(BB); 4440 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4441 4442 Value *InValue = PHI->getIncomingValue(Idx); 4443 if (InValue != CaseValue) 4444 continue; 4445 4446 *PhiIndex = Idx; 4447 return PHI; 4448 } 4449 4450 return nullptr; 4451 } 4452 4453 /// Try to forward the condition of a switch instruction to a phi node 4454 /// dominated by the switch, if that would mean that some of the destination 4455 /// blocks of the switch can be folded away. 4456 /// Returns true if a change is made. 4457 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4458 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap; 4459 ForwardingNodesMap ForwardingNodes; 4460 4461 for (auto Case : SI->cases()) { 4462 ConstantInt *CaseValue = Case.getCaseValue(); 4463 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4464 4465 int PhiIndex; 4466 PHINode *PHI = 4467 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex); 4468 if (!PHI) 4469 continue; 4470 4471 ForwardingNodes[PHI].push_back(PhiIndex); 4472 } 4473 4474 bool Changed = false; 4475 4476 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 4477 E = ForwardingNodes.end(); 4478 I != E; ++I) { 4479 PHINode *Phi = I->first; 4480 SmallVectorImpl<int> &Indexes = I->second; 4481 4482 if (Indexes.size() < 2) 4483 continue; 4484 4485 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 4486 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 4487 Changed = true; 4488 } 4489 4490 return Changed; 4491 } 4492 4493 /// Return true if the backend will be able to handle 4494 /// initializing an array of constants like C. 4495 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4496 if (C->isThreadDependent()) 4497 return false; 4498 if (C->isDLLImportDependent()) 4499 return false; 4500 4501 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4502 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4503 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4504 return false; 4505 4506 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4507 if (!CE->isGEPWithNoNotionalOverIndexing()) 4508 return false; 4509 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4510 return false; 4511 } 4512 4513 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4514 return false; 4515 4516 return true; 4517 } 4518 4519 /// If V is a Constant, return it. Otherwise, try to look up 4520 /// its constant value in ConstantPool, returning 0 if it's not there. 4521 static Constant * 4522 LookupConstant(Value *V, 4523 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4524 if (Constant *C = dyn_cast<Constant>(V)) 4525 return C; 4526 return ConstantPool.lookup(V); 4527 } 4528 4529 /// Try to fold instruction I into a constant. This works for 4530 /// simple instructions such as binary operations where both operands are 4531 /// constant or can be replaced by constants from the ConstantPool. Returns the 4532 /// resulting constant on success, 0 otherwise. 4533 static Constant * 4534 ConstantFold(Instruction *I, const DataLayout &DL, 4535 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4536 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4537 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4538 if (!A) 4539 return nullptr; 4540 if (A->isAllOnesValue()) 4541 return LookupConstant(Select->getTrueValue(), ConstantPool); 4542 if (A->isNullValue()) 4543 return LookupConstant(Select->getFalseValue(), ConstantPool); 4544 return nullptr; 4545 } 4546 4547 SmallVector<Constant *, 4> COps; 4548 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4549 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4550 COps.push_back(A); 4551 else 4552 return nullptr; 4553 } 4554 4555 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4556 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4557 COps[1], DL); 4558 } 4559 4560 return ConstantFoldInstOperands(I, COps, DL); 4561 } 4562 4563 /// Try to determine the resulting constant values in phi nodes 4564 /// at the common destination basic block, *CommonDest, for one of the case 4565 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4566 /// case), of a switch instruction SI. 4567 static bool 4568 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4569 BasicBlock **CommonDest, 4570 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4571 const DataLayout &DL, const TargetTransformInfo &TTI) { 4572 // The block from which we enter the common destination. 4573 BasicBlock *Pred = SI->getParent(); 4574 4575 // If CaseDest is empty except for some side-effect free instructions through 4576 // which we can constant-propagate the CaseVal, continue to its successor. 4577 SmallDenseMap<Value *, Constant *> ConstantPool; 4578 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4579 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4580 ++I) { 4581 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4582 // If the terminator is a simple branch, continue to the next block. 4583 if (T->getNumSuccessors() != 1 || T->isExceptional()) 4584 return false; 4585 Pred = CaseDest; 4586 CaseDest = T->getSuccessor(0); 4587 } else if (isa<DbgInfoIntrinsic>(I)) { 4588 // Skip debug intrinsic. 4589 continue; 4590 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4591 // Instruction is side-effect free and constant. 4592 4593 // If the instruction has uses outside this block or a phi node slot for 4594 // the block, it is not safe to bypass the instruction since it would then 4595 // no longer dominate all its uses. 4596 for (auto &Use : I->uses()) { 4597 User *User = Use.getUser(); 4598 if (Instruction *I = dyn_cast<Instruction>(User)) 4599 if (I->getParent() == CaseDest) 4600 continue; 4601 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4602 if (Phi->getIncomingBlock(Use) == CaseDest) 4603 continue; 4604 return false; 4605 } 4606 4607 ConstantPool.insert(std::make_pair(&*I, C)); 4608 } else { 4609 break; 4610 } 4611 } 4612 4613 // If we did not have a CommonDest before, use the current one. 4614 if (!*CommonDest) 4615 *CommonDest = CaseDest; 4616 // If the destination isn't the common one, abort. 4617 if (CaseDest != *CommonDest) 4618 return false; 4619 4620 // Get the values for this case from phi nodes in the destination block. 4621 BasicBlock::iterator I = (*CommonDest)->begin(); 4622 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4623 int Idx = PHI->getBasicBlockIndex(Pred); 4624 if (Idx == -1) 4625 continue; 4626 4627 Constant *ConstVal = 4628 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4629 if (!ConstVal) 4630 return false; 4631 4632 // Be conservative about which kinds of constants we support. 4633 if (!ValidLookupTableConstant(ConstVal, TTI)) 4634 return false; 4635 4636 Res.push_back(std::make_pair(PHI, ConstVal)); 4637 } 4638 4639 return Res.size() > 0; 4640 } 4641 4642 // Helper function used to add CaseVal to the list of cases that generate 4643 // Result. 4644 static void MapCaseToResult(ConstantInt *CaseVal, 4645 SwitchCaseResultVectorTy &UniqueResults, 4646 Constant *Result) { 4647 for (auto &I : UniqueResults) { 4648 if (I.first == Result) { 4649 I.second.push_back(CaseVal); 4650 return; 4651 } 4652 } 4653 UniqueResults.push_back( 4654 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4655 } 4656 4657 // Helper function that initializes a map containing 4658 // results for the PHI node of the common destination block for a switch 4659 // instruction. Returns false if multiple PHI nodes have been found or if 4660 // there is not a common destination block for the switch. 4661 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4662 BasicBlock *&CommonDest, 4663 SwitchCaseResultVectorTy &UniqueResults, 4664 Constant *&DefaultResult, 4665 const DataLayout &DL, 4666 const TargetTransformInfo &TTI) { 4667 for (auto &I : SI->cases()) { 4668 ConstantInt *CaseVal = I.getCaseValue(); 4669 4670 // Resulting value at phi nodes for this case value. 4671 SwitchCaseResultsTy Results; 4672 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4673 DL, TTI)) 4674 return false; 4675 4676 // Only one value per case is permitted 4677 if (Results.size() > 1) 4678 return false; 4679 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4680 4681 // Check the PHI consistency. 4682 if (!PHI) 4683 PHI = Results[0].first; 4684 else if (PHI != Results[0].first) 4685 return false; 4686 } 4687 // Find the default result value. 4688 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4689 BasicBlock *DefaultDest = SI->getDefaultDest(); 4690 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4691 DL, TTI); 4692 // If the default value is not found abort unless the default destination 4693 // is unreachable. 4694 DefaultResult = 4695 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4696 if ((!DefaultResult && 4697 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4698 return false; 4699 4700 return true; 4701 } 4702 4703 // Helper function that checks if it is possible to transform a switch with only 4704 // two cases (or two cases + default) that produces a result into a select. 4705 // Example: 4706 // switch (a) { 4707 // case 10: %0 = icmp eq i32 %a, 10 4708 // return 10; %1 = select i1 %0, i32 10, i32 4 4709 // case 20: ----> %2 = icmp eq i32 %a, 20 4710 // return 2; %3 = select i1 %2, i32 2, i32 %1 4711 // default: 4712 // return 4; 4713 // } 4714 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4715 Constant *DefaultResult, Value *Condition, 4716 IRBuilder<> &Builder) { 4717 assert(ResultVector.size() == 2 && 4718 "We should have exactly two unique results at this point"); 4719 // If we are selecting between only two cases transform into a simple 4720 // select or a two-way select if default is possible. 4721 if (ResultVector[0].second.size() == 1 && 4722 ResultVector[1].second.size() == 1) { 4723 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4724 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4725 4726 bool DefaultCanTrigger = DefaultResult; 4727 Value *SelectValue = ResultVector[1].first; 4728 if (DefaultCanTrigger) { 4729 Value *const ValueCompare = 4730 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4731 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4732 DefaultResult, "switch.select"); 4733 } 4734 Value *const ValueCompare = 4735 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4736 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4737 SelectValue, "switch.select"); 4738 } 4739 4740 return nullptr; 4741 } 4742 4743 // Helper function to cleanup a switch instruction that has been converted into 4744 // a select, fixing up PHI nodes and basic blocks. 4745 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4746 Value *SelectValue, 4747 IRBuilder<> &Builder) { 4748 BasicBlock *SelectBB = SI->getParent(); 4749 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4750 PHI->removeIncomingValue(SelectBB); 4751 PHI->addIncoming(SelectValue, SelectBB); 4752 4753 Builder.CreateBr(PHI->getParent()); 4754 4755 // Remove the switch. 4756 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4757 BasicBlock *Succ = SI->getSuccessor(i); 4758 4759 if (Succ == PHI->getParent()) 4760 continue; 4761 Succ->removePredecessor(SelectBB); 4762 } 4763 SI->eraseFromParent(); 4764 } 4765 4766 /// If the switch is only used to initialize one or more 4767 /// phi nodes in a common successor block with only two different 4768 /// constant values, replace the switch with select. 4769 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4770 AssumptionCache *AC, const DataLayout &DL, 4771 const TargetTransformInfo &TTI) { 4772 Value *const Cond = SI->getCondition(); 4773 PHINode *PHI = nullptr; 4774 BasicBlock *CommonDest = nullptr; 4775 Constant *DefaultResult; 4776 SwitchCaseResultVectorTy UniqueResults; 4777 // Collect all the cases that will deliver the same value from the switch. 4778 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4779 DL, TTI)) 4780 return false; 4781 // Selects choose between maximum two values. 4782 if (UniqueResults.size() != 2) 4783 return false; 4784 assert(PHI != nullptr && "PHI for value select not found"); 4785 4786 Builder.SetInsertPoint(SI); 4787 Value *SelectValue = 4788 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4789 if (SelectValue) { 4790 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4791 return true; 4792 } 4793 // The switch couldn't be converted into a select. 4794 return false; 4795 } 4796 4797 namespace { 4798 4799 /// This class represents a lookup table that can be used to replace a switch. 4800 class SwitchLookupTable { 4801 public: 4802 /// Create a lookup table to use as a switch replacement with the contents 4803 /// of Values, using DefaultValue to fill any holes in the table. 4804 SwitchLookupTable( 4805 Module &M, uint64_t TableSize, ConstantInt *Offset, 4806 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4807 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4808 4809 /// Build instructions with Builder to retrieve the value at 4810 /// the position given by Index in the lookup table. 4811 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4812 4813 /// Return true if a table with TableSize elements of 4814 /// type ElementType would fit in a target-legal register. 4815 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4816 Type *ElementType); 4817 4818 private: 4819 // Depending on the contents of the table, it can be represented in 4820 // different ways. 4821 enum { 4822 // For tables where each element contains the same value, we just have to 4823 // store that single value and return it for each lookup. 4824 SingleValueKind, 4825 4826 // For tables where there is a linear relationship between table index 4827 // and values. We calculate the result with a simple multiplication 4828 // and addition instead of a table lookup. 4829 LinearMapKind, 4830 4831 // For small tables with integer elements, we can pack them into a bitmap 4832 // that fits into a target-legal register. Values are retrieved by 4833 // shift and mask operations. 4834 BitMapKind, 4835 4836 // The table is stored as an array of values. Values are retrieved by load 4837 // instructions from the table. 4838 ArrayKind 4839 } Kind; 4840 4841 // For SingleValueKind, this is the single value. 4842 Constant *SingleValue; 4843 4844 // For BitMapKind, this is the bitmap. 4845 ConstantInt *BitMap; 4846 IntegerType *BitMapElementTy; 4847 4848 // For LinearMapKind, these are the constants used to derive the value. 4849 ConstantInt *LinearOffset; 4850 ConstantInt *LinearMultiplier; 4851 4852 // For ArrayKind, this is the array. 4853 GlobalVariable *Array; 4854 }; 4855 4856 } // end anonymous namespace 4857 4858 SwitchLookupTable::SwitchLookupTable( 4859 Module &M, uint64_t TableSize, ConstantInt *Offset, 4860 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4861 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) 4862 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4863 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4864 assert(Values.size() && "Can't build lookup table without values!"); 4865 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4866 4867 // If all values in the table are equal, this is that value. 4868 SingleValue = Values.begin()->second; 4869 4870 Type *ValueType = Values.begin()->second->getType(); 4871 4872 // Build up the table contents. 4873 SmallVector<Constant *, 64> TableContents(TableSize); 4874 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4875 ConstantInt *CaseVal = Values[I].first; 4876 Constant *CaseRes = Values[I].second; 4877 assert(CaseRes->getType() == ValueType); 4878 4879 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4880 TableContents[Idx] = CaseRes; 4881 4882 if (CaseRes != SingleValue) 4883 SingleValue = nullptr; 4884 } 4885 4886 // Fill in any holes in the table with the default result. 4887 if (Values.size() < TableSize) { 4888 assert(DefaultValue && 4889 "Need a default value to fill the lookup table holes."); 4890 assert(DefaultValue->getType() == ValueType); 4891 for (uint64_t I = 0; I < TableSize; ++I) { 4892 if (!TableContents[I]) 4893 TableContents[I] = DefaultValue; 4894 } 4895 4896 if (DefaultValue != SingleValue) 4897 SingleValue = nullptr; 4898 } 4899 4900 // If each element in the table contains the same value, we only need to store 4901 // that single value. 4902 if (SingleValue) { 4903 Kind = SingleValueKind; 4904 return; 4905 } 4906 4907 // Check if we can derive the value with a linear transformation from the 4908 // table index. 4909 if (isa<IntegerType>(ValueType)) { 4910 bool LinearMappingPossible = true; 4911 APInt PrevVal; 4912 APInt DistToPrev; 4913 assert(TableSize >= 2 && "Should be a SingleValue table."); 4914 // Check if there is the same distance between two consecutive values. 4915 for (uint64_t I = 0; I < TableSize; ++I) { 4916 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4917 if (!ConstVal) { 4918 // This is an undef. We could deal with it, but undefs in lookup tables 4919 // are very seldom. It's probably not worth the additional complexity. 4920 LinearMappingPossible = false; 4921 break; 4922 } 4923 const APInt &Val = ConstVal->getValue(); 4924 if (I != 0) { 4925 APInt Dist = Val - PrevVal; 4926 if (I == 1) { 4927 DistToPrev = Dist; 4928 } else if (Dist != DistToPrev) { 4929 LinearMappingPossible = false; 4930 break; 4931 } 4932 } 4933 PrevVal = Val; 4934 } 4935 if (LinearMappingPossible) { 4936 LinearOffset = cast<ConstantInt>(TableContents[0]); 4937 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4938 Kind = LinearMapKind; 4939 ++NumLinearMaps; 4940 return; 4941 } 4942 } 4943 4944 // If the type is integer and the table fits in a register, build a bitmap. 4945 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4946 IntegerType *IT = cast<IntegerType>(ValueType); 4947 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4948 for (uint64_t I = TableSize; I > 0; --I) { 4949 TableInt <<= IT->getBitWidth(); 4950 // Insert values into the bitmap. Undef values are set to zero. 4951 if (!isa<UndefValue>(TableContents[I - 1])) { 4952 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4953 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4954 } 4955 } 4956 BitMap = ConstantInt::get(M.getContext(), TableInt); 4957 BitMapElementTy = IT; 4958 Kind = BitMapKind; 4959 ++NumBitMaps; 4960 return; 4961 } 4962 4963 // Store the table in an array. 4964 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4965 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4966 4967 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 4968 GlobalVariable::PrivateLinkage, Initializer, 4969 "switch.table." + FuncName); 4970 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 4971 Kind = ArrayKind; 4972 } 4973 4974 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4975 switch (Kind) { 4976 case SingleValueKind: 4977 return SingleValue; 4978 case LinearMapKind: { 4979 // Derive the result value from the input value. 4980 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4981 false, "switch.idx.cast"); 4982 if (!LinearMultiplier->isOne()) 4983 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4984 if (!LinearOffset->isZero()) 4985 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4986 return Result; 4987 } 4988 case BitMapKind: { 4989 // Type of the bitmap (e.g. i59). 4990 IntegerType *MapTy = BitMap->getType(); 4991 4992 // Cast Index to the same type as the bitmap. 4993 // Note: The Index is <= the number of elements in the table, so 4994 // truncating it to the width of the bitmask is safe. 4995 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4996 4997 // Multiply the shift amount by the element width. 4998 ShiftAmt = Builder.CreateMul( 4999 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5000 "switch.shiftamt"); 5001 5002 // Shift down. 5003 Value *DownShifted = 5004 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5005 // Mask off. 5006 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5007 } 5008 case ArrayKind: { 5009 // Make sure the table index will not overflow when treated as signed. 5010 IntegerType *IT = cast<IntegerType>(Index->getType()); 5011 uint64_t TableSize = 5012 Array->getInitializer()->getType()->getArrayNumElements(); 5013 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5014 Index = Builder.CreateZExt( 5015 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5016 "switch.tableidx.zext"); 5017 5018 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5019 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5020 GEPIndices, "switch.gep"); 5021 return Builder.CreateLoad(GEP, "switch.load"); 5022 } 5023 } 5024 llvm_unreachable("Unknown lookup table kind!"); 5025 } 5026 5027 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5028 uint64_t TableSize, 5029 Type *ElementType) { 5030 auto *IT = dyn_cast<IntegerType>(ElementType); 5031 if (!IT) 5032 return false; 5033 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5034 // are <= 15, we could try to narrow the type. 5035 5036 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5037 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5038 return false; 5039 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5040 } 5041 5042 /// Determine whether a lookup table should be built for this switch, based on 5043 /// the number of cases, size of the table, and the types of the results. 5044 static bool 5045 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5046 const TargetTransformInfo &TTI, const DataLayout &DL, 5047 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5048 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5049 return false; // TableSize overflowed, or mul below might overflow. 5050 5051 bool AllTablesFitInRegister = true; 5052 bool HasIllegalType = false; 5053 for (const auto &I : ResultTypes) { 5054 Type *Ty = I.second; 5055 5056 // Saturate this flag to true. 5057 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5058 5059 // Saturate this flag to false. 5060 AllTablesFitInRegister = 5061 AllTablesFitInRegister && 5062 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5063 5064 // If both flags saturate, we're done. NOTE: This *only* works with 5065 // saturating flags, and all flags have to saturate first due to the 5066 // non-deterministic behavior of iterating over a dense map. 5067 if (HasIllegalType && !AllTablesFitInRegister) 5068 break; 5069 } 5070 5071 // If each table would fit in a register, we should build it anyway. 5072 if (AllTablesFitInRegister) 5073 return true; 5074 5075 // Don't build a table that doesn't fit in-register if it has illegal types. 5076 if (HasIllegalType) 5077 return false; 5078 5079 // The table density should be at least 40%. This is the same criterion as for 5080 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5081 // FIXME: Find the best cut-off. 5082 return SI->getNumCases() * 10 >= TableSize * 4; 5083 } 5084 5085 /// Try to reuse the switch table index compare. Following pattern: 5086 /// \code 5087 /// if (idx < tablesize) 5088 /// r = table[idx]; // table does not contain default_value 5089 /// else 5090 /// r = default_value; 5091 /// if (r != default_value) 5092 /// ... 5093 /// \endcode 5094 /// Is optimized to: 5095 /// \code 5096 /// cond = idx < tablesize; 5097 /// if (cond) 5098 /// r = table[idx]; 5099 /// else 5100 /// r = default_value; 5101 /// if (cond) 5102 /// ... 5103 /// \endcode 5104 /// Jump threading will then eliminate the second if(cond). 5105 static void reuseTableCompare( 5106 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5107 Constant *DefaultValue, 5108 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5109 5110 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5111 if (!CmpInst) 5112 return; 5113 5114 // We require that the compare is in the same block as the phi so that jump 5115 // threading can do its work afterwards. 5116 if (CmpInst->getParent() != PhiBlock) 5117 return; 5118 5119 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5120 if (!CmpOp1) 5121 return; 5122 5123 Value *RangeCmp = RangeCheckBranch->getCondition(); 5124 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5125 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5126 5127 // Check if the compare with the default value is constant true or false. 5128 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5129 DefaultValue, CmpOp1, true); 5130 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5131 return; 5132 5133 // Check if the compare with the case values is distinct from the default 5134 // compare result. 5135 for (auto ValuePair : Values) { 5136 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5137 ValuePair.second, CmpOp1, true); 5138 if (!CaseConst || CaseConst == DefaultConst) 5139 return; 5140 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5141 "Expect true or false as compare result."); 5142 } 5143 5144 // Check if the branch instruction dominates the phi node. It's a simple 5145 // dominance check, but sufficient for our needs. 5146 // Although this check is invariant in the calling loops, it's better to do it 5147 // at this late stage. Practically we do it at most once for a switch. 5148 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5149 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5150 BasicBlock *Pred = *PI; 5151 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5152 return; 5153 } 5154 5155 if (DefaultConst == FalseConst) { 5156 // The compare yields the same result. We can replace it. 5157 CmpInst->replaceAllUsesWith(RangeCmp); 5158 ++NumTableCmpReuses; 5159 } else { 5160 // The compare yields the same result, just inverted. We can replace it. 5161 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5162 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5163 RangeCheckBranch); 5164 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5165 ++NumTableCmpReuses; 5166 } 5167 } 5168 5169 /// If the switch is only used to initialize one or more phi nodes in a common 5170 /// successor block with different constant values, replace the switch with 5171 /// lookup tables. 5172 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5173 const DataLayout &DL, 5174 const TargetTransformInfo &TTI) { 5175 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5176 5177 Function *Fn = SI->getParent()->getParent(); 5178 // Only build lookup table when we have a target that supports it or the 5179 // attribute is not set. 5180 if (!TTI.shouldBuildLookupTables() || 5181 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5182 return false; 5183 5184 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5185 // split off a dense part and build a lookup table for that. 5186 5187 // FIXME: This creates arrays of GEPs to constant strings, which means each 5188 // GEP needs a runtime relocation in PIC code. We should just build one big 5189 // string and lookup indices into that. 5190 5191 // Ignore switches with less than three cases. Lookup tables will not make 5192 // them faster, so we don't analyze them. 5193 if (SI->getNumCases() < 3) 5194 return false; 5195 5196 // Figure out the corresponding result for each case value and phi node in the 5197 // common destination, as well as the min and max case values. 5198 assert(SI->case_begin() != SI->case_end()); 5199 SwitchInst::CaseIt CI = SI->case_begin(); 5200 ConstantInt *MinCaseVal = CI->getCaseValue(); 5201 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5202 5203 BasicBlock *CommonDest = nullptr; 5204 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy; 5205 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5206 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5207 SmallDenseMap<PHINode *, Type *> ResultTypes; 5208 SmallVector<PHINode *, 4> PHIs; 5209 5210 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5211 ConstantInt *CaseVal = CI->getCaseValue(); 5212 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5213 MinCaseVal = CaseVal; 5214 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5215 MaxCaseVal = CaseVal; 5216 5217 // Resulting value at phi nodes for this case value. 5218 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy; 5219 ResultsTy Results; 5220 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5221 Results, DL, TTI)) 5222 return false; 5223 5224 // Append the result from this case to the list for each phi. 5225 for (const auto &I : Results) { 5226 PHINode *PHI = I.first; 5227 Constant *Value = I.second; 5228 if (!ResultLists.count(PHI)) 5229 PHIs.push_back(PHI); 5230 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5231 } 5232 } 5233 5234 // Keep track of the result types. 5235 for (PHINode *PHI : PHIs) { 5236 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5237 } 5238 5239 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5240 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5241 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5242 bool TableHasHoles = (NumResults < TableSize); 5243 5244 // If the table has holes, we need a constant result for the default case 5245 // or a bitmask that fits in a register. 5246 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5247 bool HasDefaultResults = 5248 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5249 DefaultResultsList, DL, TTI); 5250 5251 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5252 if (NeedMask) { 5253 // As an extra penalty for the validity test we require more cases. 5254 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5255 return false; 5256 if (!DL.fitsInLegalInteger(TableSize)) 5257 return false; 5258 } 5259 5260 for (const auto &I : DefaultResultsList) { 5261 PHINode *PHI = I.first; 5262 Constant *Result = I.second; 5263 DefaultResults[PHI] = Result; 5264 } 5265 5266 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5267 return false; 5268 5269 // Create the BB that does the lookups. 5270 Module &Mod = *CommonDest->getParent()->getParent(); 5271 BasicBlock *LookupBB = BasicBlock::Create( 5272 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5273 5274 // Compute the table index value. 5275 Builder.SetInsertPoint(SI); 5276 Value *TableIndex; 5277 if (MinCaseVal->isNullValue()) 5278 TableIndex = SI->getCondition(); 5279 else 5280 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5281 "switch.tableidx"); 5282 5283 // Compute the maximum table size representable by the integer type we are 5284 // switching upon. 5285 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5286 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5287 assert(MaxTableSize >= TableSize && 5288 "It is impossible for a switch to have more entries than the max " 5289 "representable value of its input integer type's size."); 5290 5291 // If the default destination is unreachable, or if the lookup table covers 5292 // all values of the conditional variable, branch directly to the lookup table 5293 // BB. Otherwise, check that the condition is within the case range. 5294 const bool DefaultIsReachable = 5295 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5296 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5297 BranchInst *RangeCheckBranch = nullptr; 5298 5299 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5300 Builder.CreateBr(LookupBB); 5301 // Note: We call removeProdecessor later since we need to be able to get the 5302 // PHI value for the default case in case we're using a bit mask. 5303 } else { 5304 Value *Cmp = Builder.CreateICmpULT( 5305 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5306 RangeCheckBranch = 5307 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5308 } 5309 5310 // Populate the BB that does the lookups. 5311 Builder.SetInsertPoint(LookupBB); 5312 5313 if (NeedMask) { 5314 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5315 // re-purposed to do the hole check, and we create a new LookupBB. 5316 BasicBlock *MaskBB = LookupBB; 5317 MaskBB->setName("switch.hole_check"); 5318 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5319 CommonDest->getParent(), CommonDest); 5320 5321 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5322 // unnecessary illegal types. 5323 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5324 APInt MaskInt(TableSizePowOf2, 0); 5325 APInt One(TableSizePowOf2, 1); 5326 // Build bitmask; fill in a 1 bit for every case. 5327 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5328 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5329 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5330 .getLimitedValue(); 5331 MaskInt |= One << Idx; 5332 } 5333 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5334 5335 // Get the TableIndex'th bit of the bitmask. 5336 // If this bit is 0 (meaning hole) jump to the default destination, 5337 // else continue with table lookup. 5338 IntegerType *MapTy = TableMask->getType(); 5339 Value *MaskIndex = 5340 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5341 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5342 Value *LoBit = Builder.CreateTrunc( 5343 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5344 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5345 5346 Builder.SetInsertPoint(LookupBB); 5347 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5348 } 5349 5350 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5351 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5352 // do not delete PHINodes here. 5353 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5354 /*DontDeleteUselessPHIs=*/true); 5355 } 5356 5357 bool ReturnedEarly = false; 5358 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 5359 PHINode *PHI = PHIs[I]; 5360 const ResultListTy &ResultList = ResultLists[PHI]; 5361 5362 // If using a bitmask, use any value to fill the lookup table holes. 5363 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5364 StringRef FuncName = Fn->getName(); 5365 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5366 FuncName); 5367 5368 Value *Result = Table.BuildLookup(TableIndex, Builder); 5369 5370 // If the result is used to return immediately from the function, we want to 5371 // do that right here. 5372 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5373 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5374 Builder.CreateRet(Result); 5375 ReturnedEarly = true; 5376 break; 5377 } 5378 5379 // Do a small peephole optimization: re-use the switch table compare if 5380 // possible. 5381 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5382 BasicBlock *PhiBlock = PHI->getParent(); 5383 // Search for compare instructions which use the phi. 5384 for (auto *User : PHI->users()) { 5385 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5386 } 5387 } 5388 5389 PHI->addIncoming(Result, LookupBB); 5390 } 5391 5392 if (!ReturnedEarly) 5393 Builder.CreateBr(CommonDest); 5394 5395 // Remove the switch. 5396 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5397 BasicBlock *Succ = SI->getSuccessor(i); 5398 5399 if (Succ == SI->getDefaultDest()) 5400 continue; 5401 Succ->removePredecessor(SI->getParent()); 5402 } 5403 SI->eraseFromParent(); 5404 5405 ++NumLookupTables; 5406 if (NeedMask) 5407 ++NumLookupTablesHoles; 5408 return true; 5409 } 5410 5411 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5412 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5413 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5414 uint64_t Range = Diff + 1; 5415 uint64_t NumCases = Values.size(); 5416 // 40% is the default density for building a jump table in optsize/minsize mode. 5417 uint64_t MinDensity = 40; 5418 5419 return NumCases * 100 >= Range * MinDensity; 5420 } 5421 5422 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5423 /// of cases. 5424 /// 5425 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5426 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5427 /// 5428 /// This converts a sparse switch into a dense switch which allows better 5429 /// lowering and could also allow transforming into a lookup table. 5430 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5431 const DataLayout &DL, 5432 const TargetTransformInfo &TTI) { 5433 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5434 if (CondTy->getIntegerBitWidth() > 64 || 5435 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5436 return false; 5437 // Only bother with this optimization if there are more than 3 switch cases; 5438 // SDAG will only bother creating jump tables for 4 or more cases. 5439 if (SI->getNumCases() < 4) 5440 return false; 5441 5442 // This transform is agnostic to the signedness of the input or case values. We 5443 // can treat the case values as signed or unsigned. We can optimize more common 5444 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5445 // as signed. 5446 SmallVector<int64_t,4> Values; 5447 for (auto &C : SI->cases()) 5448 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5449 std::sort(Values.begin(), Values.end()); 5450 5451 // If the switch is already dense, there's nothing useful to do here. 5452 if (isSwitchDense(Values)) 5453 return false; 5454 5455 // First, transform the values such that they start at zero and ascend. 5456 int64_t Base = Values[0]; 5457 for (auto &V : Values) 5458 V -= Base; 5459 5460 // Now we have signed numbers that have been shifted so that, given enough 5461 // precision, there are no negative values. Since the rest of the transform 5462 // is bitwise only, we switch now to an unsigned representation. 5463 uint64_t GCD = 0; 5464 for (auto &V : Values) 5465 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5466 5467 // This transform can be done speculatively because it is so cheap - it results 5468 // in a single rotate operation being inserted. This can only happen if the 5469 // factor extracted is a power of 2. 5470 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5471 // inverse of GCD and then perform this transform. 5472 // FIXME: It's possible that optimizing a switch on powers of two might also 5473 // be beneficial - flag values are often powers of two and we could use a CLZ 5474 // as the key function. 5475 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5476 // No common divisor found or too expensive to compute key function. 5477 return false; 5478 5479 unsigned Shift = Log2_64(GCD); 5480 for (auto &V : Values) 5481 V = (int64_t)((uint64_t)V >> Shift); 5482 5483 if (!isSwitchDense(Values)) 5484 // Transform didn't create a dense switch. 5485 return false; 5486 5487 // The obvious transform is to shift the switch condition right and emit a 5488 // check that the condition actually cleanly divided by GCD, i.e. 5489 // C & (1 << Shift - 1) == 0 5490 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5491 // 5492 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5493 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5494 // are nonzero then the switch condition will be very large and will hit the 5495 // default case. 5496 5497 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5498 Builder.SetInsertPoint(SI); 5499 auto *ShiftC = ConstantInt::get(Ty, Shift); 5500 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5501 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5502 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5503 auto *Rot = Builder.CreateOr(LShr, Shl); 5504 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5505 5506 for (auto Case : SI->cases()) { 5507 auto *Orig = Case.getCaseValue(); 5508 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5509 Case.setValue( 5510 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5511 } 5512 return true; 5513 } 5514 5515 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5516 BasicBlock *BB = SI->getParent(); 5517 5518 if (isValueEqualityComparison(SI)) { 5519 // If we only have one predecessor, and if it is a branch on this value, 5520 // see if that predecessor totally determines the outcome of this switch. 5521 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5522 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5523 return SimplifyCFG(BB, TTI, AC, Options) | true; 5524 5525 Value *Cond = SI->getCondition(); 5526 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5527 if (SimplifySwitchOnSelect(SI, Select)) 5528 return SimplifyCFG(BB, TTI, AC, Options) | true; 5529 5530 // If the block only contains the switch, see if we can fold the block 5531 // away into any preds. 5532 BasicBlock::iterator BBI = BB->begin(); 5533 // Ignore dbg intrinsics. 5534 while (isa<DbgInfoIntrinsic>(BBI)) 5535 ++BBI; 5536 if (SI == &*BBI) 5537 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5538 return SimplifyCFG(BB, TTI, AC, Options) | true; 5539 } 5540 5541 // Try to transform the switch into an icmp and a branch. 5542 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5543 return SimplifyCFG(BB, TTI, AC, Options) | true; 5544 5545 // Remove unreachable cases. 5546 if (EliminateDeadSwitchCases(SI, AC, DL)) 5547 return SimplifyCFG(BB, TTI, AC, Options) | true; 5548 5549 if (SwitchToSelect(SI, Builder, AC, DL, TTI)) 5550 return SimplifyCFG(BB, TTI, AC, Options) | true; 5551 5552 if (ForwardSwitchConditionToPHI(SI)) 5553 return SimplifyCFG(BB, TTI, AC, Options) | true; 5554 5555 // The conversion from switch to lookup tables results in difficult-to-analyze 5556 // code and makes pruning branches much harder. This is a problem if the 5557 // switch expression itself can still be restricted as a result of inlining or 5558 // CVP. Therefore, only apply this transformation during late stages of the 5559 // optimisation pipeline. 5560 if (Options.ConvertSwitchToLookupTable && 5561 SwitchToLookupTable(SI, Builder, DL, TTI)) 5562 return SimplifyCFG(BB, TTI, AC, Options) | true; 5563 5564 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5565 return SimplifyCFG(BB, TTI, AC, Options) | true; 5566 5567 return false; 5568 } 5569 5570 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5571 BasicBlock *BB = IBI->getParent(); 5572 bool Changed = false; 5573 5574 // Eliminate redundant destinations. 5575 SmallPtrSet<Value *, 8> Succs; 5576 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5577 BasicBlock *Dest = IBI->getDestination(i); 5578 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5579 Dest->removePredecessor(BB); 5580 IBI->removeDestination(i); 5581 --i; 5582 --e; 5583 Changed = true; 5584 } 5585 } 5586 5587 if (IBI->getNumDestinations() == 0) { 5588 // If the indirectbr has no successors, change it to unreachable. 5589 new UnreachableInst(IBI->getContext(), IBI); 5590 EraseTerminatorInstAndDCECond(IBI); 5591 return true; 5592 } 5593 5594 if (IBI->getNumDestinations() == 1) { 5595 // If the indirectbr has one successor, change it to a direct branch. 5596 BranchInst::Create(IBI->getDestination(0), IBI); 5597 EraseTerminatorInstAndDCECond(IBI); 5598 return true; 5599 } 5600 5601 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5602 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5603 return SimplifyCFG(BB, TTI, AC, Options) | true; 5604 } 5605 return Changed; 5606 } 5607 5608 /// Given an block with only a single landing pad and a unconditional branch 5609 /// try to find another basic block which this one can be merged with. This 5610 /// handles cases where we have multiple invokes with unique landing pads, but 5611 /// a shared handler. 5612 /// 5613 /// We specifically choose to not worry about merging non-empty blocks 5614 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5615 /// practice, the optimizer produces empty landing pad blocks quite frequently 5616 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5617 /// sinking in this file) 5618 /// 5619 /// This is primarily a code size optimization. We need to avoid performing 5620 /// any transform which might inhibit optimization (such as our ability to 5621 /// specialize a particular handler via tail commoning). We do this by not 5622 /// merging any blocks which require us to introduce a phi. Since the same 5623 /// values are flowing through both blocks, we don't loose any ability to 5624 /// specialize. If anything, we make such specialization more likely. 5625 /// 5626 /// TODO - This transformation could remove entries from a phi in the target 5627 /// block when the inputs in the phi are the same for the two blocks being 5628 /// merged. In some cases, this could result in removal of the PHI entirely. 5629 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5630 BasicBlock *BB) { 5631 auto Succ = BB->getUniqueSuccessor(); 5632 assert(Succ); 5633 // If there's a phi in the successor block, we'd likely have to introduce 5634 // a phi into the merged landing pad block. 5635 if (isa<PHINode>(*Succ->begin())) 5636 return false; 5637 5638 for (BasicBlock *OtherPred : predecessors(Succ)) { 5639 if (BB == OtherPred) 5640 continue; 5641 BasicBlock::iterator I = OtherPred->begin(); 5642 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5643 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5644 continue; 5645 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5646 } 5647 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5648 if (!BI2 || !BI2->isIdenticalTo(BI)) 5649 continue; 5650 5651 // We've found an identical block. Update our predecessors to take that 5652 // path instead and make ourselves dead. 5653 SmallSet<BasicBlock *, 16> Preds; 5654 Preds.insert(pred_begin(BB), pred_end(BB)); 5655 for (BasicBlock *Pred : Preds) { 5656 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5657 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5658 "unexpected successor"); 5659 II->setUnwindDest(OtherPred); 5660 } 5661 5662 // The debug info in OtherPred doesn't cover the merged control flow that 5663 // used to go through BB. We need to delete it or update it. 5664 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5665 Instruction &Inst = *I; 5666 I++; 5667 if (isa<DbgInfoIntrinsic>(Inst)) 5668 Inst.eraseFromParent(); 5669 } 5670 5671 SmallSet<BasicBlock *, 16> Succs; 5672 Succs.insert(succ_begin(BB), succ_end(BB)); 5673 for (BasicBlock *Succ : Succs) { 5674 Succ->removePredecessor(BB); 5675 } 5676 5677 IRBuilder<> Builder(BI); 5678 Builder.CreateUnreachable(); 5679 BI->eraseFromParent(); 5680 return true; 5681 } 5682 return false; 5683 } 5684 5685 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5686 IRBuilder<> &Builder) { 5687 BasicBlock *BB = BI->getParent(); 5688 BasicBlock *Succ = BI->getSuccessor(0); 5689 5690 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5691 return true; 5692 5693 // If the Terminator is the only non-phi instruction, simplify the block. 5694 // If LoopHeader is provided, check if the block or its successor is a loop 5695 // header. (This is for early invocations before loop simplify and 5696 // vectorization to keep canonical loop forms for nested loops. These blocks 5697 // can be eliminated when the pass is invoked later in the back-end.) 5698 bool NeedCanonicalLoop = 5699 Options.NeedCanonicalLoop && 5700 (LoopHeaders && (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5701 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5702 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5703 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5704 return true; 5705 5706 // If the only instruction in the block is a seteq/setne comparison against a 5707 // constant, try to simplify the block. 5708 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5709 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5710 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5711 ; 5712 if (I->isTerminator() && 5713 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, AC, 5714 Options)) 5715 return true; 5716 } 5717 5718 // See if we can merge an empty landing pad block with another which is 5719 // equivalent. 5720 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5721 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5722 } 5723 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5724 return true; 5725 } 5726 5727 // If this basic block is ONLY a compare and a branch, and if a predecessor 5728 // branches to us and our successor, fold the comparison into the 5729 // predecessor and use logical operations to update the incoming value 5730 // for PHI nodes in common successor. 5731 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5732 return SimplifyCFG(BB, TTI, AC, Options) | true; 5733 return false; 5734 } 5735 5736 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5737 BasicBlock *PredPred = nullptr; 5738 for (auto *P : predecessors(BB)) { 5739 BasicBlock *PPred = P->getSinglePredecessor(); 5740 if (!PPred || (PredPred && PredPred != PPred)) 5741 return nullptr; 5742 PredPred = PPred; 5743 } 5744 return PredPred; 5745 } 5746 5747 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5748 BasicBlock *BB = BI->getParent(); 5749 5750 // Conditional branch 5751 if (isValueEqualityComparison(BI)) { 5752 // If we only have one predecessor, and if it is a branch on this value, 5753 // see if that predecessor totally determines the outcome of this 5754 // switch. 5755 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5756 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5757 return SimplifyCFG(BB, TTI, AC, Options) | true; 5758 5759 // This block must be empty, except for the setcond inst, if it exists. 5760 // Ignore dbg intrinsics. 5761 BasicBlock::iterator I = BB->begin(); 5762 // Ignore dbg intrinsics. 5763 while (isa<DbgInfoIntrinsic>(I)) 5764 ++I; 5765 if (&*I == BI) { 5766 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5767 return SimplifyCFG(BB, TTI, AC, Options) | true; 5768 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5769 ++I; 5770 // Ignore dbg intrinsics. 5771 while (isa<DbgInfoIntrinsic>(I)) 5772 ++I; 5773 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5774 return SimplifyCFG(BB, TTI, AC, Options) | true; 5775 } 5776 } 5777 5778 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5779 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5780 return true; 5781 5782 // If this basic block has a single dominating predecessor block and the 5783 // dominating block's condition implies BI's condition, we know the direction 5784 // of the BI branch. 5785 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5786 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5787 if (PBI && PBI->isConditional() && 5788 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 5789 assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB); 5790 bool CondIsTrue = PBI->getSuccessor(0) == BB; 5791 Optional<bool> Implication = isImpliedCondition( 5792 PBI->getCondition(), BI->getCondition(), DL, CondIsTrue); 5793 if (Implication) { 5794 // Turn this into a branch on constant. 5795 auto *OldCond = BI->getCondition(); 5796 ConstantInt *CI = *Implication 5797 ? ConstantInt::getTrue(BB->getContext()) 5798 : ConstantInt::getFalse(BB->getContext()); 5799 BI->setCondition(CI); 5800 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5801 return SimplifyCFG(BB, TTI, AC, Options) | true; 5802 } 5803 } 5804 } 5805 5806 // If this basic block is ONLY a compare and a branch, and if a predecessor 5807 // branches to us and one of our successors, fold the comparison into the 5808 // predecessor and use logical operations to pick the right destination. 5809 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5810 return SimplifyCFG(BB, TTI, AC, Options) | true; 5811 5812 // We have a conditional branch to two blocks that are only reachable 5813 // from BI. We know that the condbr dominates the two blocks, so see if 5814 // there is any identical code in the "then" and "else" blocks. If so, we 5815 // can hoist it up to the branching block. 5816 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5817 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5818 if (HoistThenElseCodeToIf(BI, TTI)) 5819 return SimplifyCFG(BB, TTI, AC, Options) | true; 5820 } else { 5821 // If Successor #1 has multiple preds, we may be able to conditionally 5822 // execute Successor #0 if it branches to Successor #1. 5823 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5824 if (Succ0TI->getNumSuccessors() == 1 && 5825 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5826 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5827 return SimplifyCFG(BB, TTI, AC, Options) | true; 5828 } 5829 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5830 // If Successor #0 has multiple preds, we may be able to conditionally 5831 // execute Successor #1 if it branches to Successor #0. 5832 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5833 if (Succ1TI->getNumSuccessors() == 1 && 5834 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5835 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5836 return SimplifyCFG(BB, TTI, AC, Options) | true; 5837 } 5838 5839 // If this is a branch on a phi node in the current block, thread control 5840 // through this block if any PHI node entries are constants. 5841 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5842 if (PN->getParent() == BI->getParent()) 5843 if (FoldCondBranchOnPHI(BI, DL, AC)) 5844 return SimplifyCFG(BB, TTI, AC, Options) | true; 5845 5846 // Scan predecessor blocks for conditional branches. 5847 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5848 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5849 if (PBI != BI && PBI->isConditional()) 5850 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5851 return SimplifyCFG(BB, TTI, AC, Options) | true; 5852 5853 // Look for diamond patterns. 5854 if (MergeCondStores) 5855 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5856 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5857 if (PBI != BI && PBI->isConditional()) 5858 if (mergeConditionalStores(PBI, BI, DL)) 5859 return SimplifyCFG(BB, TTI, AC, Options) | true; 5860 5861 return false; 5862 } 5863 5864 /// Check if passing a value to an instruction will cause undefined behavior. 5865 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5866 Constant *C = dyn_cast<Constant>(V); 5867 if (!C) 5868 return false; 5869 5870 if (I->use_empty()) 5871 return false; 5872 5873 if (C->isNullValue() || isa<UndefValue>(C)) { 5874 // Only look at the first use, avoid hurting compile time with long uselists 5875 User *Use = *I->user_begin(); 5876 5877 // Now make sure that there are no instructions in between that can alter 5878 // control flow (eg. calls) 5879 for (BasicBlock::iterator 5880 i = ++BasicBlock::iterator(I), 5881 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5882 i != UI; ++i) 5883 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5884 return false; 5885 5886 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5887 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5888 if (GEP->getPointerOperand() == I) 5889 return passingValueIsAlwaysUndefined(V, GEP); 5890 5891 // Look through bitcasts. 5892 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5893 return passingValueIsAlwaysUndefined(V, BC); 5894 5895 // Load from null is undefined. 5896 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5897 if (!LI->isVolatile()) 5898 return LI->getPointerAddressSpace() == 0; 5899 5900 // Store to null is undefined. 5901 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5902 if (!SI->isVolatile()) 5903 return SI->getPointerAddressSpace() == 0 && 5904 SI->getPointerOperand() == I; 5905 5906 // A call to null is undefined. 5907 if (auto CS = CallSite(Use)) 5908 return CS.getCalledValue() == I; 5909 } 5910 return false; 5911 } 5912 5913 /// If BB has an incoming value that will always trigger undefined behavior 5914 /// (eg. null pointer dereference), remove the branch leading here. 5915 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5916 for (BasicBlock::iterator i = BB->begin(); 5917 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5918 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5919 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5920 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5921 IRBuilder<> Builder(T); 5922 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5923 BB->removePredecessor(PHI->getIncomingBlock(i)); 5924 // Turn uncoditional branches into unreachables and remove the dead 5925 // destination from conditional branches. 5926 if (BI->isUnconditional()) 5927 Builder.CreateUnreachable(); 5928 else 5929 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5930 : BI->getSuccessor(0)); 5931 BI->eraseFromParent(); 5932 return true; 5933 } 5934 // TODO: SwitchInst. 5935 } 5936 5937 return false; 5938 } 5939 5940 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5941 bool Changed = false; 5942 5943 assert(BB && BB->getParent() && "Block not embedded in function!"); 5944 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5945 5946 // Remove basic blocks that have no predecessors (except the entry block)... 5947 // or that just have themself as a predecessor. These are unreachable. 5948 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5949 BB->getSinglePredecessor() == BB) { 5950 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5951 DeleteDeadBlock(BB); 5952 return true; 5953 } 5954 5955 // Check to see if we can constant propagate this terminator instruction 5956 // away... 5957 Changed |= ConstantFoldTerminator(BB, true); 5958 5959 // Check for and eliminate duplicate PHI nodes in this block. 5960 Changed |= EliminateDuplicatePHINodes(BB); 5961 5962 // Check for and remove branches that will always cause undefined behavior. 5963 Changed |= removeUndefIntroducingPredecessor(BB); 5964 5965 // Merge basic blocks into their predecessor if there is only one distinct 5966 // pred, and if there is only one distinct successor of the predecessor, and 5967 // if there are no PHI nodes. 5968 // 5969 if (MergeBlockIntoPredecessor(BB)) 5970 return true; 5971 5972 IRBuilder<> Builder(BB); 5973 5974 // If there is a trivial two-entry PHI node in this basic block, and we can 5975 // eliminate it, do so now. 5976 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5977 if (PN->getNumIncomingValues() == 2) 5978 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5979 5980 Builder.SetInsertPoint(BB->getTerminator()); 5981 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5982 if (BI->isUnconditional()) { 5983 if (SimplifyUncondBranch(BI, Builder)) 5984 return true; 5985 } else { 5986 if (SimplifyCondBranch(BI, Builder)) 5987 return true; 5988 } 5989 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5990 if (SimplifyReturn(RI, Builder)) 5991 return true; 5992 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5993 if (SimplifyResume(RI, Builder)) 5994 return true; 5995 } else if (CleanupReturnInst *RI = 5996 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5997 if (SimplifyCleanupReturn(RI)) 5998 return true; 5999 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6000 if (SimplifySwitch(SI, Builder)) 6001 return true; 6002 } else if (UnreachableInst *UI = 6003 dyn_cast<UnreachableInst>(BB->getTerminator())) { 6004 if (SimplifyUnreachable(UI)) 6005 return true; 6006 } else if (IndirectBrInst *IBI = 6007 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6008 if (SimplifyIndirectBr(IBI)) 6009 return true; 6010 } 6011 6012 return Changed; 6013 } 6014 6015 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6016 AssumptionCache *AC, const SimplifyCFGOptions &Options, 6017 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6018 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), AC, LoopHeaders, 6019 Options) 6020 .run(BB); 6021 } 6022