1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/SSAUpdater.h" 76 #include "llvm/Transforms/Utils/ValueMapper.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <climits> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iterator> 83 #include <map> 84 #include <set> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 using namespace PatternMatch; 91 92 #define DEBUG_TYPE "simplifycfg" 93 94 cl::opt<bool> llvm::RequireAndPreserveDomTree( 95 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 96 cl::init(false), 97 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 98 "into preserving DomTree,")); 99 100 // Chosen as 2 so as to be cheap, but still to have enough power to fold 101 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 102 // To catch this, we need to fold a compare and a select, hence '2' being the 103 // minimum reasonable default. 104 static cl::opt<unsigned> PHINodeFoldingThreshold( 105 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 106 cl::desc( 107 "Control the amount of phi node folding to perform (default = 2)")); 108 109 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 110 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 111 cl::desc("Control the maximal total instruction cost that we are willing " 112 "to speculatively execute to fold a 2-entry PHI node into a " 113 "select (default = 4)")); 114 115 static cl::opt<bool> DupRet( 116 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 117 cl::desc("Duplicate return instructions into unconditional branches")); 118 119 static cl::opt<bool> 120 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 121 cl::desc("Hoist common instructions up to the parent block")); 122 123 static cl::opt<bool> 124 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 125 cl::desc("Sink common instructions down to the end block")); 126 127 static cl::opt<bool> HoistCondStores( 128 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 129 cl::desc("Hoist conditional stores if an unconditional store precedes")); 130 131 static cl::opt<bool> MergeCondStores( 132 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 133 cl::desc("Hoist conditional stores even if an unconditional store does not " 134 "precede - hoist multiple conditional stores into a single " 135 "predicated store")); 136 137 static cl::opt<bool> MergeCondStoresAggressively( 138 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 139 cl::desc("When merging conditional stores, do so even if the resultant " 140 "basic blocks are unlikely to be if-converted as a result")); 141 142 static cl::opt<bool> SpeculateOneExpensiveInst( 143 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 144 cl::desc("Allow exactly one expensive instruction to be speculatively " 145 "executed")); 146 147 static cl::opt<unsigned> MaxSpeculationDepth( 148 "max-speculation-depth", cl::Hidden, cl::init(10), 149 cl::desc("Limit maximum recursion depth when calculating costs of " 150 "speculatively executed instructions")); 151 152 static cl::opt<int> 153 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 154 cl::desc("Max size of a block which is still considered " 155 "small enough to thread through")); 156 157 // Two is chosen to allow one negation and a logical combine. 158 static cl::opt<unsigned> 159 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 160 cl::init(2), 161 cl::desc("Maximum cost of combining conditions when " 162 "folding branches")); 163 164 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 165 STATISTIC(NumLinearMaps, 166 "Number of switch instructions turned into linear mapping"); 167 STATISTIC(NumLookupTables, 168 "Number of switch instructions turned into lookup tables"); 169 STATISTIC( 170 NumLookupTablesHoles, 171 "Number of switch instructions turned into lookup tables (holes checked)"); 172 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 173 STATISTIC(NumFoldValueComparisonIntoPredecessors, 174 "Number of value comparisons folded into predecessor basic blocks"); 175 STATISTIC(NumFoldBranchToCommonDest, 176 "Number of branches folded into predecessor basic block"); 177 STATISTIC( 178 NumHoistCommonCode, 179 "Number of common instruction 'blocks' hoisted up to the begin block"); 180 STATISTIC(NumHoistCommonInstrs, 181 "Number of common instructions hoisted up to the begin block"); 182 STATISTIC(NumSinkCommonCode, 183 "Number of common instruction 'blocks' sunk down to the end block"); 184 STATISTIC(NumSinkCommonInstrs, 185 "Number of common instructions sunk down to the end block"); 186 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 187 STATISTIC(NumInvokes, 188 "Number of invokes with empty resume blocks simplified into calls"); 189 190 namespace { 191 192 // The first field contains the value that the switch produces when a certain 193 // case group is selected, and the second field is a vector containing the 194 // cases composing the case group. 195 using SwitchCaseResultVectorTy = 196 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 197 198 // The first field contains the phi node that generates a result of the switch 199 // and the second field contains the value generated for a certain case in the 200 // switch for that PHI. 201 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 202 203 /// ValueEqualityComparisonCase - Represents a case of a switch. 204 struct ValueEqualityComparisonCase { 205 ConstantInt *Value; 206 BasicBlock *Dest; 207 208 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 209 : Value(Value), Dest(Dest) {} 210 211 bool operator<(ValueEqualityComparisonCase RHS) const { 212 // Comparing pointers is ok as we only rely on the order for uniquing. 213 return Value < RHS.Value; 214 } 215 216 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 217 }; 218 219 class SimplifyCFGOpt { 220 const TargetTransformInfo &TTI; 221 DomTreeUpdater *DTU; 222 const DataLayout &DL; 223 ArrayRef<WeakVH> LoopHeaders; 224 const SimplifyCFGOptions &Options; 225 bool Resimplify; 226 227 Value *isValueEqualityComparison(Instruction *TI); 228 BasicBlock *GetValueEqualityComparisonCases( 229 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 230 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 231 BasicBlock *Pred, 232 IRBuilder<> &Builder); 233 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 234 Instruction *PTI, 235 IRBuilder<> &Builder); 236 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 237 IRBuilder<> &Builder); 238 239 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 240 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 241 bool simplifySingleResume(ResumeInst *RI); 242 bool simplifyCommonResume(ResumeInst *RI); 243 bool simplifyCleanupReturn(CleanupReturnInst *RI); 244 bool simplifyUnreachable(UnreachableInst *UI); 245 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 246 bool simplifyIndirectBr(IndirectBrInst *IBI); 247 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 248 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 249 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 250 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 251 252 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 253 IRBuilder<> &Builder); 254 255 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 256 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 257 const TargetTransformInfo &TTI); 258 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 259 BasicBlock *TrueBB, BasicBlock *FalseBB, 260 uint32_t TrueWeight, uint32_t FalseWeight); 261 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 262 const DataLayout &DL); 263 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 264 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 265 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 266 267 public: 268 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 269 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 270 const SimplifyCFGOptions &Opts) 271 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 272 assert((!DTU || !DTU->hasPostDomTree()) && 273 "SimplifyCFG is not yet capable of maintaining validity of a " 274 "PostDomTree, so don't ask for it."); 275 } 276 277 bool simplifyOnce(BasicBlock *BB); 278 bool simplifyOnceImpl(BasicBlock *BB); 279 bool run(BasicBlock *BB); 280 281 // Helper to set Resimplify and return change indication. 282 bool requestResimplify() { 283 Resimplify = true; 284 return true; 285 } 286 }; 287 288 } // end anonymous namespace 289 290 /// Return true if it is safe to merge these two 291 /// terminator instructions together. 292 static bool 293 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 294 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 295 if (SI1 == SI2) 296 return false; // Can't merge with self! 297 298 // It is not safe to merge these two switch instructions if they have a common 299 // successor, and if that successor has a PHI node, and if *that* PHI node has 300 // conflicting incoming values from the two switch blocks. 301 BasicBlock *SI1BB = SI1->getParent(); 302 BasicBlock *SI2BB = SI2->getParent(); 303 304 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 305 bool Fail = false; 306 for (BasicBlock *Succ : successors(SI2BB)) 307 if (SI1Succs.count(Succ)) 308 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 309 PHINode *PN = cast<PHINode>(BBI); 310 if (PN->getIncomingValueForBlock(SI1BB) != 311 PN->getIncomingValueForBlock(SI2BB)) { 312 if (FailBlocks) 313 FailBlocks->insert(Succ); 314 Fail = true; 315 } 316 } 317 318 return !Fail; 319 } 320 321 /// Update PHI nodes in Succ to indicate that there will now be entries in it 322 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 323 /// will be the same as those coming in from ExistPred, an existing predecessor 324 /// of Succ. 325 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 326 BasicBlock *ExistPred, 327 MemorySSAUpdater *MSSAU = nullptr) { 328 for (PHINode &PN : Succ->phis()) 329 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 330 if (MSSAU) 331 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 332 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 333 } 334 335 /// Compute an abstract "cost" of speculating the given instruction, 336 /// which is assumed to be safe to speculate. TCC_Free means cheap, 337 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 338 /// expensive. 339 static InstructionCost computeSpeculationCost(const User *I, 340 const TargetTransformInfo &TTI) { 341 assert(isSafeToSpeculativelyExecute(I) && 342 "Instruction is not safe to speculatively execute!"); 343 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 344 } 345 346 /// If we have a merge point of an "if condition" as accepted above, 347 /// return true if the specified value dominates the block. We 348 /// don't handle the true generality of domination here, just a special case 349 /// which works well enough for us. 350 /// 351 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 352 /// see if V (which must be an instruction) and its recursive operands 353 /// that do not dominate BB have a combined cost lower than Budget and 354 /// are non-trapping. If both are true, the instruction is inserted into the 355 /// set and true is returned. 356 /// 357 /// The cost for most non-trapping instructions is defined as 1 except for 358 /// Select whose cost is 2. 359 /// 360 /// After this function returns, Cost is increased by the cost of 361 /// V plus its non-dominating operands. If that cost is greater than 362 /// Budget, false is returned and Cost is undefined. 363 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 364 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 365 InstructionCost &Cost, 366 InstructionCost Budget, 367 const TargetTransformInfo &TTI, 368 unsigned Depth = 0) { 369 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 370 // so limit the recursion depth. 371 // TODO: While this recursion limit does prevent pathological behavior, it 372 // would be better to track visited instructions to avoid cycles. 373 if (Depth == MaxSpeculationDepth) 374 return false; 375 376 Instruction *I = dyn_cast<Instruction>(V); 377 if (!I) { 378 // Non-instructions all dominate instructions, but not all constantexprs 379 // can be executed unconditionally. 380 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 381 if (C->canTrap()) 382 return false; 383 return true; 384 } 385 BasicBlock *PBB = I->getParent(); 386 387 // We don't want to allow weird loops that might have the "if condition" in 388 // the bottom of this block. 389 if (PBB == BB) 390 return false; 391 392 // If this instruction is defined in a block that contains an unconditional 393 // branch to BB, then it must be in the 'conditional' part of the "if 394 // statement". If not, it definitely dominates the region. 395 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 396 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 397 return true; 398 399 // If we have seen this instruction before, don't count it again. 400 if (AggressiveInsts.count(I)) 401 return true; 402 403 // Okay, it looks like the instruction IS in the "condition". Check to 404 // see if it's a cheap instruction to unconditionally compute, and if it 405 // only uses stuff defined outside of the condition. If so, hoist it out. 406 if (!isSafeToSpeculativelyExecute(I)) 407 return false; 408 409 Cost += computeSpeculationCost(I, TTI); 410 411 // Allow exactly one instruction to be speculated regardless of its cost 412 // (as long as it is safe to do so). 413 // This is intended to flatten the CFG even if the instruction is a division 414 // or other expensive operation. The speculation of an expensive instruction 415 // is expected to be undone in CodeGenPrepare if the speculation has not 416 // enabled further IR optimizations. 417 if (Cost > Budget && 418 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 419 !Cost.isValid())) 420 return false; 421 422 // Okay, we can only really hoist these out if their operands do 423 // not take us over the cost threshold. 424 for (Use &Op : I->operands()) 425 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 426 Depth + 1)) 427 return false; 428 // Okay, it's safe to do this! Remember this instruction. 429 AggressiveInsts.insert(I); 430 return true; 431 } 432 433 /// Extract ConstantInt from value, looking through IntToPtr 434 /// and PointerNullValue. Return NULL if value is not a constant int. 435 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 436 // Normal constant int. 437 ConstantInt *CI = dyn_cast<ConstantInt>(V); 438 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 439 return CI; 440 441 // This is some kind of pointer constant. Turn it into a pointer-sized 442 // ConstantInt if possible. 443 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 444 445 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 446 if (isa<ConstantPointerNull>(V)) 447 return ConstantInt::get(PtrTy, 0); 448 449 // IntToPtr const int. 450 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 451 if (CE->getOpcode() == Instruction::IntToPtr) 452 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 453 // The constant is very likely to have the right type already. 454 if (CI->getType() == PtrTy) 455 return CI; 456 else 457 return cast<ConstantInt>( 458 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 459 } 460 return nullptr; 461 } 462 463 namespace { 464 465 /// Given a chain of or (||) or and (&&) comparison of a value against a 466 /// constant, this will try to recover the information required for a switch 467 /// structure. 468 /// It will depth-first traverse the chain of comparison, seeking for patterns 469 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 470 /// representing the different cases for the switch. 471 /// Note that if the chain is composed of '||' it will build the set of elements 472 /// that matches the comparisons (i.e. any of this value validate the chain) 473 /// while for a chain of '&&' it will build the set elements that make the test 474 /// fail. 475 struct ConstantComparesGatherer { 476 const DataLayout &DL; 477 478 /// Value found for the switch comparison 479 Value *CompValue = nullptr; 480 481 /// Extra clause to be checked before the switch 482 Value *Extra = nullptr; 483 484 /// Set of integers to match in switch 485 SmallVector<ConstantInt *, 8> Vals; 486 487 /// Number of comparisons matched in the and/or chain 488 unsigned UsedICmps = 0; 489 490 /// Construct and compute the result for the comparison instruction Cond 491 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 492 gather(Cond); 493 } 494 495 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 496 ConstantComparesGatherer & 497 operator=(const ConstantComparesGatherer &) = delete; 498 499 private: 500 /// Try to set the current value used for the comparison, it succeeds only if 501 /// it wasn't set before or if the new value is the same as the old one 502 bool setValueOnce(Value *NewVal) { 503 if (CompValue && CompValue != NewVal) 504 return false; 505 CompValue = NewVal; 506 return (CompValue != nullptr); 507 } 508 509 /// Try to match Instruction "I" as a comparison against a constant and 510 /// populates the array Vals with the set of values that match (or do not 511 /// match depending on isEQ). 512 /// Return false on failure. On success, the Value the comparison matched 513 /// against is placed in CompValue. 514 /// If CompValue is already set, the function is expected to fail if a match 515 /// is found but the value compared to is different. 516 bool matchInstruction(Instruction *I, bool isEQ) { 517 // If this is an icmp against a constant, handle this as one of the cases. 518 ICmpInst *ICI; 519 ConstantInt *C; 520 if (!((ICI = dyn_cast<ICmpInst>(I)) && 521 (C = GetConstantInt(I->getOperand(1), DL)))) { 522 return false; 523 } 524 525 Value *RHSVal; 526 const APInt *RHSC; 527 528 // Pattern match a special case 529 // (x & ~2^z) == y --> x == y || x == y|2^z 530 // This undoes a transformation done by instcombine to fuse 2 compares. 531 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 532 // It's a little bit hard to see why the following transformations are 533 // correct. Here is a CVC3 program to verify them for 64-bit values: 534 535 /* 536 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 537 x : BITVECTOR(64); 538 y : BITVECTOR(64); 539 z : BITVECTOR(64); 540 mask : BITVECTOR(64) = BVSHL(ONE, z); 541 QUERY( (y & ~mask = y) => 542 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 543 ); 544 QUERY( (y | mask = y) => 545 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 546 ); 547 */ 548 549 // Please note that each pattern must be a dual implication (<--> or 550 // iff). One directional implication can create spurious matches. If the 551 // implication is only one-way, an unsatisfiable condition on the left 552 // side can imply a satisfiable condition on the right side. Dual 553 // implication ensures that satisfiable conditions are transformed to 554 // other satisfiable conditions and unsatisfiable conditions are 555 // transformed to other unsatisfiable conditions. 556 557 // Here is a concrete example of a unsatisfiable condition on the left 558 // implying a satisfiable condition on the right: 559 // 560 // mask = (1 << z) 561 // (x & ~mask) == y --> (x == y || x == (y | mask)) 562 // 563 // Substituting y = 3, z = 0 yields: 564 // (x & -2) == 3 --> (x == 3 || x == 2) 565 566 // Pattern match a special case: 567 /* 568 QUERY( (y & ~mask = y) => 569 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 570 ); 571 */ 572 if (match(ICI->getOperand(0), 573 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 574 APInt Mask = ~*RHSC; 575 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 576 // If we already have a value for the switch, it has to match! 577 if (!setValueOnce(RHSVal)) 578 return false; 579 580 Vals.push_back(C); 581 Vals.push_back( 582 ConstantInt::get(C->getContext(), 583 C->getValue() | Mask)); 584 UsedICmps++; 585 return true; 586 } 587 } 588 589 // Pattern match a special case: 590 /* 591 QUERY( (y | mask = y) => 592 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 593 ); 594 */ 595 if (match(ICI->getOperand(0), 596 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 597 APInt Mask = *RHSC; 598 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 599 // If we already have a value for the switch, it has to match! 600 if (!setValueOnce(RHSVal)) 601 return false; 602 603 Vals.push_back(C); 604 Vals.push_back(ConstantInt::get(C->getContext(), 605 C->getValue() & ~Mask)); 606 UsedICmps++; 607 return true; 608 } 609 } 610 611 // If we already have a value for the switch, it has to match! 612 if (!setValueOnce(ICI->getOperand(0))) 613 return false; 614 615 UsedICmps++; 616 Vals.push_back(C); 617 return ICI->getOperand(0); 618 } 619 620 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 621 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 622 ICI->getPredicate(), C->getValue()); 623 624 // Shift the range if the compare is fed by an add. This is the range 625 // compare idiom as emitted by instcombine. 626 Value *CandidateVal = I->getOperand(0); 627 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 628 Span = Span.subtract(*RHSC); 629 CandidateVal = RHSVal; 630 } 631 632 // If this is an and/!= check, then we are looking to build the set of 633 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 634 // x != 0 && x != 1. 635 if (!isEQ) 636 Span = Span.inverse(); 637 638 // If there are a ton of values, we don't want to make a ginormous switch. 639 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 640 return false; 641 } 642 643 // If we already have a value for the switch, it has to match! 644 if (!setValueOnce(CandidateVal)) 645 return false; 646 647 // Add all values from the range to the set 648 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 649 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 650 651 UsedICmps++; 652 return true; 653 } 654 655 /// Given a potentially 'or'd or 'and'd together collection of icmp 656 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 657 /// the value being compared, and stick the list constants into the Vals 658 /// vector. 659 /// One "Extra" case is allowed to differ from the other. 660 void gather(Value *V) { 661 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 662 663 // Keep a stack (SmallVector for efficiency) for depth-first traversal 664 SmallVector<Value *, 8> DFT; 665 SmallPtrSet<Value *, 8> Visited; 666 667 // Initialize 668 Visited.insert(V); 669 DFT.push_back(V); 670 671 while (!DFT.empty()) { 672 V = DFT.pop_back_val(); 673 674 if (Instruction *I = dyn_cast<Instruction>(V)) { 675 // If it is a || (or && depending on isEQ), process the operands. 676 Value *Op0, *Op1; 677 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 678 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 679 if (Visited.insert(Op1).second) 680 DFT.push_back(Op1); 681 if (Visited.insert(Op0).second) 682 DFT.push_back(Op0); 683 684 continue; 685 } 686 687 // Try to match the current instruction 688 if (matchInstruction(I, isEQ)) 689 // Match succeed, continue the loop 690 continue; 691 } 692 693 // One element of the sequence of || (or &&) could not be match as a 694 // comparison against the same value as the others. 695 // We allow only one "Extra" case to be checked before the switch 696 if (!Extra) { 697 Extra = V; 698 continue; 699 } 700 // Failed to parse a proper sequence, abort now 701 CompValue = nullptr; 702 break; 703 } 704 } 705 }; 706 707 } // end anonymous namespace 708 709 static void EraseTerminatorAndDCECond(Instruction *TI, 710 MemorySSAUpdater *MSSAU = nullptr) { 711 Instruction *Cond = nullptr; 712 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 713 Cond = dyn_cast<Instruction>(SI->getCondition()); 714 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 715 if (BI->isConditional()) 716 Cond = dyn_cast<Instruction>(BI->getCondition()); 717 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 718 Cond = dyn_cast<Instruction>(IBI->getAddress()); 719 } 720 721 TI->eraseFromParent(); 722 if (Cond) 723 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 724 } 725 726 /// Return true if the specified terminator checks 727 /// to see if a value is equal to constant integer value. 728 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 729 Value *CV = nullptr; 730 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 731 // Do not permit merging of large switch instructions into their 732 // predecessors unless there is only one predecessor. 733 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 734 CV = SI->getCondition(); 735 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 736 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 737 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 738 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 739 CV = ICI->getOperand(0); 740 } 741 742 // Unwrap any lossless ptrtoint cast. 743 if (CV) { 744 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 745 Value *Ptr = PTII->getPointerOperand(); 746 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 747 CV = Ptr; 748 } 749 } 750 return CV; 751 } 752 753 /// Given a value comparison instruction, 754 /// decode all of the 'cases' that it represents and return the 'default' block. 755 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 756 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 757 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 758 Cases.reserve(SI->getNumCases()); 759 for (auto Case : SI->cases()) 760 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 761 Case.getCaseSuccessor())); 762 return SI->getDefaultDest(); 763 } 764 765 BranchInst *BI = cast<BranchInst>(TI); 766 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 767 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 768 Cases.push_back(ValueEqualityComparisonCase( 769 GetConstantInt(ICI->getOperand(1), DL), Succ)); 770 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 771 } 772 773 /// Given a vector of bb/value pairs, remove any entries 774 /// in the list that match the specified block. 775 static void 776 EliminateBlockCases(BasicBlock *BB, 777 std::vector<ValueEqualityComparisonCase> &Cases) { 778 llvm::erase_value(Cases, BB); 779 } 780 781 /// Return true if there are any keys in C1 that exist in C2 as well. 782 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 783 std::vector<ValueEqualityComparisonCase> &C2) { 784 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 785 786 // Make V1 be smaller than V2. 787 if (V1->size() > V2->size()) 788 std::swap(V1, V2); 789 790 if (V1->empty()) 791 return false; 792 if (V1->size() == 1) { 793 // Just scan V2. 794 ConstantInt *TheVal = (*V1)[0].Value; 795 for (unsigned i = 0, e = V2->size(); i != e; ++i) 796 if (TheVal == (*V2)[i].Value) 797 return true; 798 } 799 800 // Otherwise, just sort both lists and compare element by element. 801 array_pod_sort(V1->begin(), V1->end()); 802 array_pod_sort(V2->begin(), V2->end()); 803 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 804 while (i1 != e1 && i2 != e2) { 805 if ((*V1)[i1].Value == (*V2)[i2].Value) 806 return true; 807 if ((*V1)[i1].Value < (*V2)[i2].Value) 808 ++i1; 809 else 810 ++i2; 811 } 812 return false; 813 } 814 815 // Set branch weights on SwitchInst. This sets the metadata if there is at 816 // least one non-zero weight. 817 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 818 // Check that there is at least one non-zero weight. Otherwise, pass 819 // nullptr to setMetadata which will erase the existing metadata. 820 MDNode *N = nullptr; 821 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 822 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 823 SI->setMetadata(LLVMContext::MD_prof, N); 824 } 825 826 // Similar to the above, but for branch and select instructions that take 827 // exactly 2 weights. 828 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 829 uint32_t FalseWeight) { 830 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 831 // Check that there is at least one non-zero weight. Otherwise, pass 832 // nullptr to setMetadata which will erase the existing metadata. 833 MDNode *N = nullptr; 834 if (TrueWeight || FalseWeight) 835 N = MDBuilder(I->getParent()->getContext()) 836 .createBranchWeights(TrueWeight, FalseWeight); 837 I->setMetadata(LLVMContext::MD_prof, N); 838 } 839 840 /// If TI is known to be a terminator instruction and its block is known to 841 /// only have a single predecessor block, check to see if that predecessor is 842 /// also a value comparison with the same value, and if that comparison 843 /// determines the outcome of this comparison. If so, simplify TI. This does a 844 /// very limited form of jump threading. 845 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 846 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 847 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 848 if (!PredVal) 849 return false; // Not a value comparison in predecessor. 850 851 Value *ThisVal = isValueEqualityComparison(TI); 852 assert(ThisVal && "This isn't a value comparison!!"); 853 if (ThisVal != PredVal) 854 return false; // Different predicates. 855 856 // TODO: Preserve branch weight metadata, similarly to how 857 // FoldValueComparisonIntoPredecessors preserves it. 858 859 // Find out information about when control will move from Pred to TI's block. 860 std::vector<ValueEqualityComparisonCase> PredCases; 861 BasicBlock *PredDef = 862 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 863 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 864 865 // Find information about how control leaves this block. 866 std::vector<ValueEqualityComparisonCase> ThisCases; 867 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 868 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 869 870 // If TI's block is the default block from Pred's comparison, potentially 871 // simplify TI based on this knowledge. 872 if (PredDef == TI->getParent()) { 873 // If we are here, we know that the value is none of those cases listed in 874 // PredCases. If there are any cases in ThisCases that are in PredCases, we 875 // can simplify TI. 876 if (!ValuesOverlap(PredCases, ThisCases)) 877 return false; 878 879 if (isa<BranchInst>(TI)) { 880 // Okay, one of the successors of this condbr is dead. Convert it to a 881 // uncond br. 882 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 883 // Insert the new branch. 884 Instruction *NI = Builder.CreateBr(ThisDef); 885 (void)NI; 886 887 // Remove PHI node entries for the dead edge. 888 ThisCases[0].Dest->removePredecessor(PredDef); 889 890 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 891 << "Through successor TI: " << *TI << "Leaving: " << *NI 892 << "\n"); 893 894 EraseTerminatorAndDCECond(TI); 895 896 if (DTU) 897 DTU->applyUpdates( 898 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 899 900 return true; 901 } 902 903 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 904 // Okay, TI has cases that are statically dead, prune them away. 905 SmallPtrSet<Constant *, 16> DeadCases; 906 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 907 DeadCases.insert(PredCases[i].Value); 908 909 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 910 << "Through successor TI: " << *TI); 911 912 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 913 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 914 --i; 915 auto *Successor = i->getCaseSuccessor(); 916 ++NumPerSuccessorCases[Successor]; 917 if (DeadCases.count(i->getCaseValue())) { 918 Successor->removePredecessor(PredDef); 919 SI.removeCase(i); 920 --NumPerSuccessorCases[Successor]; 921 } 922 } 923 924 std::vector<DominatorTree::UpdateType> Updates; 925 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 926 if (I.second == 0) 927 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 928 if (DTU) 929 DTU->applyUpdates(Updates); 930 931 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 932 return true; 933 } 934 935 // Otherwise, TI's block must correspond to some matched value. Find out 936 // which value (or set of values) this is. 937 ConstantInt *TIV = nullptr; 938 BasicBlock *TIBB = TI->getParent(); 939 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 940 if (PredCases[i].Dest == TIBB) { 941 if (TIV) 942 return false; // Cannot handle multiple values coming to this block. 943 TIV = PredCases[i].Value; 944 } 945 assert(TIV && "No edge from pred to succ?"); 946 947 // Okay, we found the one constant that our value can be if we get into TI's 948 // BB. Find out which successor will unconditionally be branched to. 949 BasicBlock *TheRealDest = nullptr; 950 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 951 if (ThisCases[i].Value == TIV) { 952 TheRealDest = ThisCases[i].Dest; 953 break; 954 } 955 956 // If not handled by any explicit cases, it is handled by the default case. 957 if (!TheRealDest) 958 TheRealDest = ThisDef; 959 960 SmallSetVector<BasicBlock *, 2> RemovedSuccs; 961 962 // Remove PHI node entries for dead edges. 963 BasicBlock *CheckEdge = TheRealDest; 964 for (BasicBlock *Succ : successors(TIBB)) 965 if (Succ != CheckEdge) { 966 if (Succ != TheRealDest) 967 RemovedSuccs.insert(Succ); 968 Succ->removePredecessor(TIBB); 969 } else 970 CheckEdge = nullptr; 971 972 // Insert the new branch. 973 Instruction *NI = Builder.CreateBr(TheRealDest); 974 (void)NI; 975 976 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 977 << "Through successor TI: " << *TI << "Leaving: " << *NI 978 << "\n"); 979 980 EraseTerminatorAndDCECond(TI); 981 if (DTU) { 982 SmallVector<DominatorTree::UpdateType, 2> Updates; 983 Updates.reserve(RemovedSuccs.size()); 984 for (auto *RemovedSucc : RemovedSuccs) 985 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 986 DTU->applyUpdates(Updates); 987 } 988 return true; 989 } 990 991 namespace { 992 993 /// This class implements a stable ordering of constant 994 /// integers that does not depend on their address. This is important for 995 /// applications that sort ConstantInt's to ensure uniqueness. 996 struct ConstantIntOrdering { 997 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 998 return LHS->getValue().ult(RHS->getValue()); 999 } 1000 }; 1001 1002 } // end anonymous namespace 1003 1004 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1005 ConstantInt *const *P2) { 1006 const ConstantInt *LHS = *P1; 1007 const ConstantInt *RHS = *P2; 1008 if (LHS == RHS) 1009 return 0; 1010 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1011 } 1012 1013 static inline bool HasBranchWeights(const Instruction *I) { 1014 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1015 if (ProfMD && ProfMD->getOperand(0)) 1016 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1017 return MDS->getString().equals("branch_weights"); 1018 1019 return false; 1020 } 1021 1022 /// Get Weights of a given terminator, the default weight is at the front 1023 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1024 /// metadata. 1025 static void GetBranchWeights(Instruction *TI, 1026 SmallVectorImpl<uint64_t> &Weights) { 1027 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1028 assert(MD); 1029 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1030 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1031 Weights.push_back(CI->getValue().getZExtValue()); 1032 } 1033 1034 // If TI is a conditional eq, the default case is the false case, 1035 // and the corresponding branch-weight data is at index 2. We swap the 1036 // default weight to be the first entry. 1037 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1038 assert(Weights.size() == 2); 1039 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1040 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1041 std::swap(Weights.front(), Weights.back()); 1042 } 1043 } 1044 1045 /// Keep halving the weights until all can fit in uint32_t. 1046 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1047 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1048 if (Max > UINT_MAX) { 1049 unsigned Offset = 32 - countLeadingZeros(Max); 1050 for (uint64_t &I : Weights) 1051 I >>= Offset; 1052 } 1053 } 1054 1055 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1056 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1057 Instruction *PTI = PredBlock->getTerminator(); 1058 1059 // If we have bonus instructions, clone them into the predecessor block. 1060 // Note that there may be multiple predecessor blocks, so we cannot move 1061 // bonus instructions to a predecessor block. 1062 for (Instruction &BonusInst : *BB) { 1063 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1064 continue; 1065 1066 Instruction *NewBonusInst = BonusInst.clone(); 1067 1068 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1069 // Unless the instruction has the same !dbg location as the original 1070 // branch, drop it. When we fold the bonus instructions we want to make 1071 // sure we reset their debug locations in order to avoid stepping on 1072 // dead code caused by folding dead branches. 1073 NewBonusInst->setDebugLoc(DebugLoc()); 1074 } 1075 1076 RemapInstruction(NewBonusInst, VMap, 1077 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1078 VMap[&BonusInst] = NewBonusInst; 1079 1080 // If we moved a load, we cannot any longer claim any knowledge about 1081 // its potential value. The previous information might have been valid 1082 // only given the branch precondition. 1083 // For an analogous reason, we must also drop all the metadata whose 1084 // semantics we don't understand. We *can* preserve !annotation, because 1085 // it is tied to the instruction itself, not the value or position. 1086 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1087 1088 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1089 NewBonusInst->takeName(&BonusInst); 1090 BonusInst.setName(NewBonusInst->getName() + ".old"); 1091 1092 // Update (liveout) uses of bonus instructions, 1093 // now that the bonus instruction has been cloned into predecessor. 1094 SSAUpdater SSAUpdate; 1095 SSAUpdate.Initialize(BonusInst.getType(), 1096 (NewBonusInst->getName() + ".merge").str()); 1097 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1098 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1099 for (Use &U : make_early_inc_range(BonusInst.uses())) 1100 SSAUpdate.RewriteUseAfterInsertions(U); 1101 } 1102 } 1103 1104 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1105 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1106 BasicBlock *BB = TI->getParent(); 1107 BasicBlock *Pred = PTI->getParent(); 1108 1109 std::vector<DominatorTree::UpdateType> Updates; 1110 1111 // Figure out which 'cases' to copy from SI to PSI. 1112 std::vector<ValueEqualityComparisonCase> BBCases; 1113 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1114 1115 std::vector<ValueEqualityComparisonCase> PredCases; 1116 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1117 1118 // Based on whether the default edge from PTI goes to BB or not, fill in 1119 // PredCases and PredDefault with the new switch cases we would like to 1120 // build. 1121 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1122 1123 // Update the branch weight metadata along the way 1124 SmallVector<uint64_t, 8> Weights; 1125 bool PredHasWeights = HasBranchWeights(PTI); 1126 bool SuccHasWeights = HasBranchWeights(TI); 1127 1128 if (PredHasWeights) { 1129 GetBranchWeights(PTI, Weights); 1130 // branch-weight metadata is inconsistent here. 1131 if (Weights.size() != 1 + PredCases.size()) 1132 PredHasWeights = SuccHasWeights = false; 1133 } else if (SuccHasWeights) 1134 // If there are no predecessor weights but there are successor weights, 1135 // populate Weights with 1, which will later be scaled to the sum of 1136 // successor's weights 1137 Weights.assign(1 + PredCases.size(), 1); 1138 1139 SmallVector<uint64_t, 8> SuccWeights; 1140 if (SuccHasWeights) { 1141 GetBranchWeights(TI, SuccWeights); 1142 // branch-weight metadata is inconsistent here. 1143 if (SuccWeights.size() != 1 + BBCases.size()) 1144 PredHasWeights = SuccHasWeights = false; 1145 } else if (PredHasWeights) 1146 SuccWeights.assign(1 + BBCases.size(), 1); 1147 1148 if (PredDefault == BB) { 1149 // If this is the default destination from PTI, only the edges in TI 1150 // that don't occur in PTI, or that branch to BB will be activated. 1151 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1152 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1153 if (PredCases[i].Dest != BB) 1154 PTIHandled.insert(PredCases[i].Value); 1155 else { 1156 // The default destination is BB, we don't need explicit targets. 1157 std::swap(PredCases[i], PredCases.back()); 1158 1159 if (PredHasWeights || SuccHasWeights) { 1160 // Increase weight for the default case. 1161 Weights[0] += Weights[i + 1]; 1162 std::swap(Weights[i + 1], Weights.back()); 1163 Weights.pop_back(); 1164 } 1165 1166 PredCases.pop_back(); 1167 --i; 1168 --e; 1169 } 1170 1171 // Reconstruct the new switch statement we will be building. 1172 if (PredDefault != BBDefault) { 1173 PredDefault->removePredecessor(Pred); 1174 if (PredDefault != BB) 1175 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1176 PredDefault = BBDefault; 1177 ++NewSuccessors[BBDefault]; 1178 } 1179 1180 unsigned CasesFromPred = Weights.size(); 1181 uint64_t ValidTotalSuccWeight = 0; 1182 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1183 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1184 PredCases.push_back(BBCases[i]); 1185 ++NewSuccessors[BBCases[i].Dest]; 1186 if (SuccHasWeights || PredHasWeights) { 1187 // The default weight is at index 0, so weight for the ith case 1188 // should be at index i+1. Scale the cases from successor by 1189 // PredDefaultWeight (Weights[0]). 1190 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1191 ValidTotalSuccWeight += SuccWeights[i + 1]; 1192 } 1193 } 1194 1195 if (SuccHasWeights || PredHasWeights) { 1196 ValidTotalSuccWeight += SuccWeights[0]; 1197 // Scale the cases from predecessor by ValidTotalSuccWeight. 1198 for (unsigned i = 1; i < CasesFromPred; ++i) 1199 Weights[i] *= ValidTotalSuccWeight; 1200 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1201 Weights[0] *= SuccWeights[0]; 1202 } 1203 } else { 1204 // If this is not the default destination from PSI, only the edges 1205 // in SI that occur in PSI with a destination of BB will be 1206 // activated. 1207 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1208 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1209 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1210 if (PredCases[i].Dest == BB) { 1211 PTIHandled.insert(PredCases[i].Value); 1212 1213 if (PredHasWeights || SuccHasWeights) { 1214 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1215 std::swap(Weights[i + 1], Weights.back()); 1216 Weights.pop_back(); 1217 } 1218 1219 std::swap(PredCases[i], PredCases.back()); 1220 PredCases.pop_back(); 1221 --i; 1222 --e; 1223 } 1224 1225 // Okay, now we know which constants were sent to BB from the 1226 // predecessor. Figure out where they will all go now. 1227 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1228 if (PTIHandled.count(BBCases[i].Value)) { 1229 // If this is one we are capable of getting... 1230 if (PredHasWeights || SuccHasWeights) 1231 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1232 PredCases.push_back(BBCases[i]); 1233 ++NewSuccessors[BBCases[i].Dest]; 1234 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1235 } 1236 1237 // If there are any constants vectored to BB that TI doesn't handle, 1238 // they must go to the default destination of TI. 1239 for (ConstantInt *I : PTIHandled) { 1240 if (PredHasWeights || SuccHasWeights) 1241 Weights.push_back(WeightsForHandled[I]); 1242 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1243 ++NewSuccessors[BBDefault]; 1244 } 1245 } 1246 1247 // Okay, at this point, we know which new successor Pred will get. Make 1248 // sure we update the number of entries in the PHI nodes for these 1249 // successors. 1250 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1251 NewSuccessors) { 1252 for (auto I : seq(0, NewSuccessor.second)) { 1253 (void)I; 1254 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1255 } 1256 if (!is_contained(successors(Pred), NewSuccessor.first)) 1257 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1258 } 1259 1260 Builder.SetInsertPoint(PTI); 1261 // Convert pointer to int before we switch. 1262 if (CV->getType()->isPointerTy()) { 1263 CV = 1264 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1265 } 1266 1267 // Now that the successors are updated, create the new Switch instruction. 1268 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1269 NewSI->setDebugLoc(PTI->getDebugLoc()); 1270 for (ValueEqualityComparisonCase &V : PredCases) 1271 NewSI->addCase(V.Value, V.Dest); 1272 1273 if (PredHasWeights || SuccHasWeights) { 1274 // Halve the weights if any of them cannot fit in an uint32_t 1275 FitWeights(Weights); 1276 1277 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1278 1279 setBranchWeights(NewSI, MDWeights); 1280 } 1281 1282 EraseTerminatorAndDCECond(PTI); 1283 1284 // Okay, last check. If BB is still a successor of PSI, then we must 1285 // have an infinite loop case. If so, add an infinitely looping block 1286 // to handle the case to preserve the behavior of the code. 1287 BasicBlock *InfLoopBlock = nullptr; 1288 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1289 if (NewSI->getSuccessor(i) == BB) { 1290 if (!InfLoopBlock) { 1291 // Insert it at the end of the function, because it's either code, 1292 // or it won't matter if it's hot. :) 1293 InfLoopBlock = 1294 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1295 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1296 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1297 } 1298 NewSI->setSuccessor(i, InfLoopBlock); 1299 } 1300 1301 if (InfLoopBlock) 1302 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1303 1304 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1305 1306 if (DTU) 1307 DTU->applyUpdates(Updates); 1308 1309 ++NumFoldValueComparisonIntoPredecessors; 1310 return true; 1311 } 1312 1313 /// The specified terminator is a value equality comparison instruction 1314 /// (either a switch or a branch on "X == c"). 1315 /// See if any of the predecessors of the terminator block are value comparisons 1316 /// on the same value. If so, and if safe to do so, fold them together. 1317 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1318 IRBuilder<> &Builder) { 1319 BasicBlock *BB = TI->getParent(); 1320 Value *CV = isValueEqualityComparison(TI); // CondVal 1321 assert(CV && "Not a comparison?"); 1322 1323 bool Changed = false; 1324 1325 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1326 while (!Preds.empty()) { 1327 BasicBlock *Pred = Preds.pop_back_val(); 1328 Instruction *PTI = Pred->getTerminator(); 1329 1330 // Don't try to fold into itself. 1331 if (Pred == BB) 1332 continue; 1333 1334 // See if the predecessor is a comparison with the same value. 1335 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1336 if (PCV != CV) 1337 continue; 1338 1339 SmallSetVector<BasicBlock *, 4> FailBlocks; 1340 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1341 for (auto *Succ : FailBlocks) { 1342 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1343 return false; 1344 } 1345 } 1346 1347 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1348 Changed = true; 1349 } 1350 return Changed; 1351 } 1352 1353 // If we would need to insert a select that uses the value of this invoke 1354 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1355 // can't hoist the invoke, as there is nowhere to put the select in this case. 1356 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1357 Instruction *I1, Instruction *I2) { 1358 for (BasicBlock *Succ : successors(BB1)) { 1359 for (const PHINode &PN : Succ->phis()) { 1360 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1361 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1362 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1363 return false; 1364 } 1365 } 1366 } 1367 return true; 1368 } 1369 1370 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1371 1372 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1373 /// in the two blocks up into the branch block. The caller of this function 1374 /// guarantees that BI's block dominates BB1 and BB2. 1375 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1376 const TargetTransformInfo &TTI) { 1377 // This does very trivial matching, with limited scanning, to find identical 1378 // instructions in the two blocks. In particular, we don't want to get into 1379 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1380 // such, we currently just scan for obviously identical instructions in an 1381 // identical order. 1382 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1383 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1384 1385 BasicBlock::iterator BB1_Itr = BB1->begin(); 1386 BasicBlock::iterator BB2_Itr = BB2->begin(); 1387 1388 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1389 // Skip debug info if it is not identical. 1390 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1391 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1392 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1393 while (isa<DbgInfoIntrinsic>(I1)) 1394 I1 = &*BB1_Itr++; 1395 while (isa<DbgInfoIntrinsic>(I2)) 1396 I2 = &*BB2_Itr++; 1397 } 1398 // FIXME: Can we define a safety predicate for CallBr? 1399 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1400 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1401 isa<CallBrInst>(I1)) 1402 return false; 1403 1404 BasicBlock *BIParent = BI->getParent(); 1405 1406 bool Changed = false; 1407 1408 auto _ = make_scope_exit([&]() { 1409 if (Changed) 1410 ++NumHoistCommonCode; 1411 }); 1412 1413 do { 1414 // If we are hoisting the terminator instruction, don't move one (making a 1415 // broken BB), instead clone it, and remove BI. 1416 if (I1->isTerminator()) 1417 goto HoistTerminator; 1418 1419 // If we're going to hoist a call, make sure that the two instructions we're 1420 // commoning/hoisting are both marked with musttail, or neither of them is 1421 // marked as such. Otherwise, we might end up in a situation where we hoist 1422 // from a block where the terminator is a `ret` to a block where the terminator 1423 // is a `br`, and `musttail` calls expect to be followed by a return. 1424 auto *C1 = dyn_cast<CallInst>(I1); 1425 auto *C2 = dyn_cast<CallInst>(I2); 1426 if (C1 && C2) 1427 if (C1->isMustTailCall() != C2->isMustTailCall()) 1428 return Changed; 1429 1430 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1431 return Changed; 1432 1433 // If any of the two call sites has nomerge attribute, stop hoisting. 1434 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1435 if (CB1->cannotMerge()) 1436 return Changed; 1437 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1438 if (CB2->cannotMerge()) 1439 return Changed; 1440 1441 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1442 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1443 // The debug location is an integral part of a debug info intrinsic 1444 // and can't be separated from it or replaced. Instead of attempting 1445 // to merge locations, simply hoist both copies of the intrinsic. 1446 BIParent->getInstList().splice(BI->getIterator(), 1447 BB1->getInstList(), I1); 1448 BIParent->getInstList().splice(BI->getIterator(), 1449 BB2->getInstList(), I2); 1450 Changed = true; 1451 } else { 1452 // For a normal instruction, we just move one to right before the branch, 1453 // then replace all uses of the other with the first. Finally, we remove 1454 // the now redundant second instruction. 1455 BIParent->getInstList().splice(BI->getIterator(), 1456 BB1->getInstList(), I1); 1457 if (!I2->use_empty()) 1458 I2->replaceAllUsesWith(I1); 1459 I1->andIRFlags(I2); 1460 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1461 LLVMContext::MD_range, 1462 LLVMContext::MD_fpmath, 1463 LLVMContext::MD_invariant_load, 1464 LLVMContext::MD_nonnull, 1465 LLVMContext::MD_invariant_group, 1466 LLVMContext::MD_align, 1467 LLVMContext::MD_dereferenceable, 1468 LLVMContext::MD_dereferenceable_or_null, 1469 LLVMContext::MD_mem_parallel_loop_access, 1470 LLVMContext::MD_access_group, 1471 LLVMContext::MD_preserve_access_index}; 1472 combineMetadata(I1, I2, KnownIDs, true); 1473 1474 // I1 and I2 are being combined into a single instruction. Its debug 1475 // location is the merged locations of the original instructions. 1476 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1477 1478 I2->eraseFromParent(); 1479 Changed = true; 1480 } 1481 ++NumHoistCommonInstrs; 1482 1483 I1 = &*BB1_Itr++; 1484 I2 = &*BB2_Itr++; 1485 // Skip debug info if it is not identical. 1486 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1487 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1488 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1489 while (isa<DbgInfoIntrinsic>(I1)) 1490 I1 = &*BB1_Itr++; 1491 while (isa<DbgInfoIntrinsic>(I2)) 1492 I2 = &*BB2_Itr++; 1493 } 1494 } while (I1->isIdenticalToWhenDefined(I2)); 1495 1496 return true; 1497 1498 HoistTerminator: 1499 // It may not be possible to hoist an invoke. 1500 // FIXME: Can we define a safety predicate for CallBr? 1501 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1502 return Changed; 1503 1504 // TODO: callbr hoisting currently disabled pending further study. 1505 if (isa<CallBrInst>(I1)) 1506 return Changed; 1507 1508 for (BasicBlock *Succ : successors(BB1)) { 1509 for (PHINode &PN : Succ->phis()) { 1510 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1511 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1512 if (BB1V == BB2V) 1513 continue; 1514 1515 // Check for passingValueIsAlwaysUndefined here because we would rather 1516 // eliminate undefined control flow then converting it to a select. 1517 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1518 passingValueIsAlwaysUndefined(BB2V, &PN)) 1519 return Changed; 1520 1521 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1522 return Changed; 1523 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1524 return Changed; 1525 } 1526 } 1527 1528 // Okay, it is safe to hoist the terminator. 1529 Instruction *NT = I1->clone(); 1530 BIParent->getInstList().insert(BI->getIterator(), NT); 1531 if (!NT->getType()->isVoidTy()) { 1532 I1->replaceAllUsesWith(NT); 1533 I2->replaceAllUsesWith(NT); 1534 NT->takeName(I1); 1535 } 1536 Changed = true; 1537 ++NumHoistCommonInstrs; 1538 1539 // Ensure terminator gets a debug location, even an unknown one, in case 1540 // it involves inlinable calls. 1541 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1542 1543 // PHIs created below will adopt NT's merged DebugLoc. 1544 IRBuilder<NoFolder> Builder(NT); 1545 1546 // Hoisting one of the terminators from our successor is a great thing. 1547 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1548 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1549 // nodes, so we insert select instruction to compute the final result. 1550 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1551 for (BasicBlock *Succ : successors(BB1)) { 1552 for (PHINode &PN : Succ->phis()) { 1553 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1554 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1555 if (BB1V == BB2V) 1556 continue; 1557 1558 // These values do not agree. Insert a select instruction before NT 1559 // that determines the right value. 1560 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1561 if (!SI) { 1562 // Propagate fast-math-flags from phi node to its replacement select. 1563 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1564 if (isa<FPMathOperator>(PN)) 1565 Builder.setFastMathFlags(PN.getFastMathFlags()); 1566 1567 SI = cast<SelectInst>( 1568 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1569 BB1V->getName() + "." + BB2V->getName(), BI)); 1570 } 1571 1572 // Make the PHI node use the select for all incoming values for BB1/BB2 1573 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1574 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1575 PN.setIncomingValue(i, SI); 1576 } 1577 } 1578 1579 SmallVector<DominatorTree::UpdateType, 4> Updates; 1580 1581 // Update any PHI nodes in our new successors. 1582 for (BasicBlock *Succ : successors(BB1)) { 1583 AddPredecessorToBlock(Succ, BIParent, BB1); 1584 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1585 } 1586 for (BasicBlock *Succ : successors(BI)) 1587 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1588 1589 EraseTerminatorAndDCECond(BI); 1590 if (DTU) 1591 DTU->applyUpdates(Updates); 1592 return Changed; 1593 } 1594 1595 // Check lifetime markers. 1596 static bool isLifeTimeMarker(const Instruction *I) { 1597 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1598 switch (II->getIntrinsicID()) { 1599 default: 1600 break; 1601 case Intrinsic::lifetime_start: 1602 case Intrinsic::lifetime_end: 1603 return true; 1604 } 1605 } 1606 return false; 1607 } 1608 1609 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1610 // into variables. 1611 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1612 int OpIdx) { 1613 return !isa<IntrinsicInst>(I); 1614 } 1615 1616 // All instructions in Insts belong to different blocks that all unconditionally 1617 // branch to a common successor. Analyze each instruction and return true if it 1618 // would be possible to sink them into their successor, creating one common 1619 // instruction instead. For every value that would be required to be provided by 1620 // PHI node (because an operand varies in each input block), add to PHIOperands. 1621 static bool canSinkInstructions( 1622 ArrayRef<Instruction *> Insts, 1623 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1624 // Prune out obviously bad instructions to move. Each instruction must have 1625 // exactly zero or one use, and we check later that use is by a single, common 1626 // PHI instruction in the successor. 1627 bool HasUse = !Insts.front()->user_empty(); 1628 for (auto *I : Insts) { 1629 // These instructions may change or break semantics if moved. 1630 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1631 I->getType()->isTokenTy()) 1632 return false; 1633 1634 // Conservatively return false if I is an inline-asm instruction. Sinking 1635 // and merging inline-asm instructions can potentially create arguments 1636 // that cannot satisfy the inline-asm constraints. 1637 // If the instruction has nomerge attribute, return false. 1638 if (const auto *C = dyn_cast<CallBase>(I)) 1639 if (C->isInlineAsm() || C->cannotMerge()) 1640 return false; 1641 1642 // Each instruction must have zero or one use. 1643 if (HasUse && !I->hasOneUse()) 1644 return false; 1645 if (!HasUse && !I->user_empty()) 1646 return false; 1647 } 1648 1649 const Instruction *I0 = Insts.front(); 1650 for (auto *I : Insts) 1651 if (!I->isSameOperationAs(I0)) 1652 return false; 1653 1654 // All instructions in Insts are known to be the same opcode. If they have a 1655 // use, check that the only user is a PHI or in the same block as the 1656 // instruction, because if a user is in the same block as an instruction we're 1657 // contemplating sinking, it must already be determined to be sinkable. 1658 if (HasUse) { 1659 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1660 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1661 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1662 auto *U = cast<Instruction>(*I->user_begin()); 1663 return (PNUse && 1664 PNUse->getParent() == Succ && 1665 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1666 U->getParent() == I->getParent(); 1667 })) 1668 return false; 1669 } 1670 1671 // Because SROA can't handle speculating stores of selects, try not to sink 1672 // loads, stores or lifetime markers of allocas when we'd have to create a 1673 // PHI for the address operand. Also, because it is likely that loads or 1674 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1675 // them. 1676 // This can cause code churn which can have unintended consequences down 1677 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1678 // FIXME: This is a workaround for a deficiency in SROA - see 1679 // https://llvm.org/bugs/show_bug.cgi?id=30188 1680 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1681 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1682 })) 1683 return false; 1684 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1685 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1686 })) 1687 return false; 1688 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1689 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1690 })) 1691 return false; 1692 1693 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1694 Value *Op = I0->getOperand(OI); 1695 if (Op->getType()->isTokenTy()) 1696 // Don't touch any operand of token type. 1697 return false; 1698 1699 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1700 assert(I->getNumOperands() == I0->getNumOperands()); 1701 return I->getOperand(OI) == I0->getOperand(OI); 1702 }; 1703 if (!all_of(Insts, SameAsI0)) { 1704 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1705 !canReplaceOperandWithVariable(I0, OI)) 1706 // We can't create a PHI from this GEP. 1707 return false; 1708 // Don't create indirect calls! The called value is the final operand. 1709 if (isa<CallBase>(I0) && OI == OE - 1) { 1710 // FIXME: if the call was *already* indirect, we should do this. 1711 return false; 1712 } 1713 for (auto *I : Insts) 1714 PHIOperands[I].push_back(I->getOperand(OI)); 1715 } 1716 } 1717 return true; 1718 } 1719 1720 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1721 // instruction of every block in Blocks to their common successor, commoning 1722 // into one instruction. 1723 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1724 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1725 1726 // canSinkLastInstruction returning true guarantees that every block has at 1727 // least one non-terminator instruction. 1728 SmallVector<Instruction*,4> Insts; 1729 for (auto *BB : Blocks) { 1730 Instruction *I = BB->getTerminator(); 1731 do { 1732 I = I->getPrevNode(); 1733 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1734 if (!isa<DbgInfoIntrinsic>(I)) 1735 Insts.push_back(I); 1736 } 1737 1738 // The only checking we need to do now is that all users of all instructions 1739 // are the same PHI node. canSinkLastInstruction should have checked this but 1740 // it is slightly over-aggressive - it gets confused by commutative instructions 1741 // so double-check it here. 1742 Instruction *I0 = Insts.front(); 1743 if (!I0->user_empty()) { 1744 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1745 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1746 auto *U = cast<Instruction>(*I->user_begin()); 1747 return U == PNUse; 1748 })) 1749 return false; 1750 } 1751 1752 // We don't need to do any more checking here; canSinkLastInstruction should 1753 // have done it all for us. 1754 SmallVector<Value*, 4> NewOperands; 1755 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1756 // This check is different to that in canSinkLastInstruction. There, we 1757 // cared about the global view once simplifycfg (and instcombine) have 1758 // completed - it takes into account PHIs that become trivially 1759 // simplifiable. However here we need a more local view; if an operand 1760 // differs we create a PHI and rely on instcombine to clean up the very 1761 // small mess we may make. 1762 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1763 return I->getOperand(O) != I0->getOperand(O); 1764 }); 1765 if (!NeedPHI) { 1766 NewOperands.push_back(I0->getOperand(O)); 1767 continue; 1768 } 1769 1770 // Create a new PHI in the successor block and populate it. 1771 auto *Op = I0->getOperand(O); 1772 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1773 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1774 Op->getName() + ".sink", &BBEnd->front()); 1775 for (auto *I : Insts) 1776 PN->addIncoming(I->getOperand(O), I->getParent()); 1777 NewOperands.push_back(PN); 1778 } 1779 1780 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1781 // and move it to the start of the successor block. 1782 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1783 I0->getOperandUse(O).set(NewOperands[O]); 1784 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1785 1786 // Update metadata and IR flags, and merge debug locations. 1787 for (auto *I : Insts) 1788 if (I != I0) { 1789 // The debug location for the "common" instruction is the merged locations 1790 // of all the commoned instructions. We start with the original location 1791 // of the "common" instruction and iteratively merge each location in the 1792 // loop below. 1793 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1794 // However, as N-way merge for CallInst is rare, so we use simplified API 1795 // instead of using complex API for N-way merge. 1796 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1797 combineMetadataForCSE(I0, I, true); 1798 I0->andIRFlags(I); 1799 } 1800 1801 if (!I0->user_empty()) { 1802 // canSinkLastInstruction checked that all instructions were used by 1803 // one and only one PHI node. Find that now, RAUW it to our common 1804 // instruction and nuke it. 1805 auto *PN = cast<PHINode>(*I0->user_begin()); 1806 PN->replaceAllUsesWith(I0); 1807 PN->eraseFromParent(); 1808 } 1809 1810 // Finally nuke all instructions apart from the common instruction. 1811 for (auto *I : Insts) 1812 if (I != I0) 1813 I->eraseFromParent(); 1814 1815 return true; 1816 } 1817 1818 namespace { 1819 1820 // LockstepReverseIterator - Iterates through instructions 1821 // in a set of blocks in reverse order from the first non-terminator. 1822 // For example (assume all blocks have size n): 1823 // LockstepReverseIterator I([B1, B2, B3]); 1824 // *I-- = [B1[n], B2[n], B3[n]]; 1825 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1826 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1827 // ... 1828 class LockstepReverseIterator { 1829 ArrayRef<BasicBlock*> Blocks; 1830 SmallVector<Instruction*,4> Insts; 1831 bool Fail; 1832 1833 public: 1834 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1835 reset(); 1836 } 1837 1838 void reset() { 1839 Fail = false; 1840 Insts.clear(); 1841 for (auto *BB : Blocks) { 1842 Instruction *Inst = BB->getTerminator(); 1843 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1844 Inst = Inst->getPrevNode(); 1845 if (!Inst) { 1846 // Block wasn't big enough. 1847 Fail = true; 1848 return; 1849 } 1850 Insts.push_back(Inst); 1851 } 1852 } 1853 1854 bool isValid() const { 1855 return !Fail; 1856 } 1857 1858 void operator--() { 1859 if (Fail) 1860 return; 1861 for (auto *&Inst : Insts) { 1862 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1863 Inst = Inst->getPrevNode(); 1864 // Already at beginning of block. 1865 if (!Inst) { 1866 Fail = true; 1867 return; 1868 } 1869 } 1870 } 1871 1872 ArrayRef<Instruction*> operator * () const { 1873 return Insts; 1874 } 1875 }; 1876 1877 } // end anonymous namespace 1878 1879 /// Check whether BB's predecessors end with unconditional branches. If it is 1880 /// true, sink any common code from the predecessors to BB. 1881 /// We also allow one predecessor to end with conditional branch (but no more 1882 /// than one). 1883 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1884 DomTreeUpdater *DTU) { 1885 // We support two situations: 1886 // (1) all incoming arcs are unconditional 1887 // (2) one incoming arc is conditional 1888 // 1889 // (2) is very common in switch defaults and 1890 // else-if patterns; 1891 // 1892 // if (a) f(1); 1893 // else if (b) f(2); 1894 // 1895 // produces: 1896 // 1897 // [if] 1898 // / \ 1899 // [f(1)] [if] 1900 // | | \ 1901 // | | | 1902 // | [f(2)]| 1903 // \ | / 1904 // [ end ] 1905 // 1906 // [end] has two unconditional predecessor arcs and one conditional. The 1907 // conditional refers to the implicit empty 'else' arc. This conditional 1908 // arc can also be caused by an empty default block in a switch. 1909 // 1910 // In this case, we attempt to sink code from all *unconditional* arcs. 1911 // If we can sink instructions from these arcs (determined during the scan 1912 // phase below) we insert a common successor for all unconditional arcs and 1913 // connect that to [end], to enable sinking: 1914 // 1915 // [if] 1916 // / \ 1917 // [x(1)] [if] 1918 // | | \ 1919 // | | \ 1920 // | [x(2)] | 1921 // \ / | 1922 // [sink.split] | 1923 // \ / 1924 // [ end ] 1925 // 1926 SmallVector<BasicBlock*,4> UnconditionalPreds; 1927 Instruction *Cond = nullptr; 1928 for (auto *B : predecessors(BB)) { 1929 auto *T = B->getTerminator(); 1930 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1931 UnconditionalPreds.push_back(B); 1932 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1933 Cond = T; 1934 else 1935 return false; 1936 } 1937 if (UnconditionalPreds.size() < 2) 1938 return false; 1939 1940 // We take a two-step approach to tail sinking. First we scan from the end of 1941 // each block upwards in lockstep. If the n'th instruction from the end of each 1942 // block can be sunk, those instructions are added to ValuesToSink and we 1943 // carry on. If we can sink an instruction but need to PHI-merge some operands 1944 // (because they're not identical in each instruction) we add these to 1945 // PHIOperands. 1946 unsigned ScanIdx = 0; 1947 SmallPtrSet<Value*,4> InstructionsToSink; 1948 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1949 LockstepReverseIterator LRI(UnconditionalPreds); 1950 while (LRI.isValid() && 1951 canSinkInstructions(*LRI, PHIOperands)) { 1952 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1953 << "\n"); 1954 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1955 ++ScanIdx; 1956 --LRI; 1957 } 1958 1959 // If no instructions can be sunk, early-return. 1960 if (ScanIdx == 0) 1961 return false; 1962 1963 bool Changed = false; 1964 1965 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1966 unsigned NumPHIdValues = 0; 1967 for (auto *I : *LRI) 1968 for (auto *V : PHIOperands[I]) 1969 if (InstructionsToSink.count(V) == 0) 1970 ++NumPHIdValues; 1971 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1972 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1973 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1974 NumPHIInsts++; 1975 1976 return NumPHIInsts <= 1; 1977 }; 1978 1979 if (Cond) { 1980 // Check if we would actually sink anything first! This mutates the CFG and 1981 // adds an extra block. The goal in doing this is to allow instructions that 1982 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1983 // (such as trunc, add) can be sunk and predicated already. So we check that 1984 // we're going to sink at least one non-speculatable instruction. 1985 LRI.reset(); 1986 unsigned Idx = 0; 1987 bool Profitable = false; 1988 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1989 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1990 Profitable = true; 1991 break; 1992 } 1993 --LRI; 1994 ++Idx; 1995 } 1996 if (!Profitable) 1997 return false; 1998 1999 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2000 // We have a conditional edge and we're going to sink some instructions. 2001 // Insert a new block postdominating all blocks we're going to sink from. 2002 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2003 // Edges couldn't be split. 2004 return false; 2005 Changed = true; 2006 } 2007 2008 // Now that we've analyzed all potential sinking candidates, perform the 2009 // actual sink. We iteratively sink the last non-terminator of the source 2010 // blocks into their common successor unless doing so would require too 2011 // many PHI instructions to be generated (currently only one PHI is allowed 2012 // per sunk instruction). 2013 // 2014 // We can use InstructionsToSink to discount values needing PHI-merging that will 2015 // actually be sunk in a later iteration. This allows us to be more 2016 // aggressive in what we sink. This does allow a false positive where we 2017 // sink presuming a later value will also be sunk, but stop half way through 2018 // and never actually sink it which means we produce more PHIs than intended. 2019 // This is unlikely in practice though. 2020 unsigned SinkIdx = 0; 2021 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2022 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2023 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2024 << "\n"); 2025 2026 // Because we've sunk every instruction in turn, the current instruction to 2027 // sink is always at index 0. 2028 LRI.reset(); 2029 if (!ProfitableToSinkInstruction(LRI)) { 2030 // Too many PHIs would be created. 2031 LLVM_DEBUG( 2032 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2033 break; 2034 } 2035 2036 if (!sinkLastInstruction(UnconditionalPreds)) { 2037 LLVM_DEBUG( 2038 dbgs() 2039 << "SINK: stopping here, failed to actually sink instruction!\n"); 2040 break; 2041 } 2042 2043 NumSinkCommonInstrs++; 2044 Changed = true; 2045 } 2046 if (SinkIdx != 0) 2047 ++NumSinkCommonCode; 2048 return Changed; 2049 } 2050 2051 /// Determine if we can hoist sink a sole store instruction out of a 2052 /// conditional block. 2053 /// 2054 /// We are looking for code like the following: 2055 /// BrBB: 2056 /// store i32 %add, i32* %arrayidx2 2057 /// ... // No other stores or function calls (we could be calling a memory 2058 /// ... // function). 2059 /// %cmp = icmp ult %x, %y 2060 /// br i1 %cmp, label %EndBB, label %ThenBB 2061 /// ThenBB: 2062 /// store i32 %add5, i32* %arrayidx2 2063 /// br label EndBB 2064 /// EndBB: 2065 /// ... 2066 /// We are going to transform this into: 2067 /// BrBB: 2068 /// store i32 %add, i32* %arrayidx2 2069 /// ... // 2070 /// %cmp = icmp ult %x, %y 2071 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2072 /// store i32 %add.add5, i32* %arrayidx2 2073 /// ... 2074 /// 2075 /// \return The pointer to the value of the previous store if the store can be 2076 /// hoisted into the predecessor block. 0 otherwise. 2077 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2078 BasicBlock *StoreBB, BasicBlock *EndBB) { 2079 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2080 if (!StoreToHoist) 2081 return nullptr; 2082 2083 // Volatile or atomic. 2084 if (!StoreToHoist->isSimple()) 2085 return nullptr; 2086 2087 Value *StorePtr = StoreToHoist->getPointerOperand(); 2088 2089 // Look for a store to the same pointer in BrBB. 2090 unsigned MaxNumInstToLookAt = 9; 2091 // Skip pseudo probe intrinsic calls which are not really killing any memory 2092 // accesses. 2093 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2094 if (!MaxNumInstToLookAt) 2095 break; 2096 --MaxNumInstToLookAt; 2097 2098 // Could be calling an instruction that affects memory like free(). 2099 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2100 return nullptr; 2101 2102 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2103 // Found the previous store make sure it stores to the same location. 2104 if (SI->getPointerOperand() == StorePtr) 2105 // Found the previous store, return its value operand. 2106 return SI->getValueOperand(); 2107 return nullptr; // Unknown store. 2108 } 2109 } 2110 2111 return nullptr; 2112 } 2113 2114 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2115 /// converted to selects. 2116 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2117 BasicBlock *EndBB, 2118 unsigned &SpeculatedInstructions, 2119 InstructionCost &Cost, 2120 const TargetTransformInfo &TTI) { 2121 TargetTransformInfo::TargetCostKind CostKind = 2122 BB->getParent()->hasMinSize() 2123 ? TargetTransformInfo::TCK_CodeSize 2124 : TargetTransformInfo::TCK_SizeAndLatency; 2125 2126 bool HaveRewritablePHIs = false; 2127 for (PHINode &PN : EndBB->phis()) { 2128 Value *OrigV = PN.getIncomingValueForBlock(BB); 2129 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2130 2131 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2132 // Skip PHIs which are trivial. 2133 if (ThenV == OrigV) 2134 continue; 2135 2136 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2137 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2138 2139 // Don't convert to selects if we could remove undefined behavior instead. 2140 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2141 passingValueIsAlwaysUndefined(ThenV, &PN)) 2142 return false; 2143 2144 HaveRewritablePHIs = true; 2145 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2146 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2147 if (!OrigCE && !ThenCE) 2148 continue; // Known safe and cheap. 2149 2150 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2151 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2152 return false; 2153 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2154 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2155 InstructionCost MaxCost = 2156 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2157 if (OrigCost + ThenCost > MaxCost) 2158 return false; 2159 2160 // Account for the cost of an unfolded ConstantExpr which could end up 2161 // getting expanded into Instructions. 2162 // FIXME: This doesn't account for how many operations are combined in the 2163 // constant expression. 2164 ++SpeculatedInstructions; 2165 if (SpeculatedInstructions > 1) 2166 return false; 2167 } 2168 2169 return HaveRewritablePHIs; 2170 } 2171 2172 /// Speculate a conditional basic block flattening the CFG. 2173 /// 2174 /// Note that this is a very risky transform currently. Speculating 2175 /// instructions like this is most often not desirable. Instead, there is an MI 2176 /// pass which can do it with full awareness of the resource constraints. 2177 /// However, some cases are "obvious" and we should do directly. An example of 2178 /// this is speculating a single, reasonably cheap instruction. 2179 /// 2180 /// There is only one distinct advantage to flattening the CFG at the IR level: 2181 /// it makes very common but simplistic optimizations such as are common in 2182 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2183 /// modeling their effects with easier to reason about SSA value graphs. 2184 /// 2185 /// 2186 /// An illustration of this transform is turning this IR: 2187 /// \code 2188 /// BB: 2189 /// %cmp = icmp ult %x, %y 2190 /// br i1 %cmp, label %EndBB, label %ThenBB 2191 /// ThenBB: 2192 /// %sub = sub %x, %y 2193 /// br label BB2 2194 /// EndBB: 2195 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2196 /// ... 2197 /// \endcode 2198 /// 2199 /// Into this IR: 2200 /// \code 2201 /// BB: 2202 /// %cmp = icmp ult %x, %y 2203 /// %sub = sub %x, %y 2204 /// %cond = select i1 %cmp, 0, %sub 2205 /// ... 2206 /// \endcode 2207 /// 2208 /// \returns true if the conditional block is removed. 2209 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2210 const TargetTransformInfo &TTI) { 2211 // Be conservative for now. FP select instruction can often be expensive. 2212 Value *BrCond = BI->getCondition(); 2213 if (isa<FCmpInst>(BrCond)) 2214 return false; 2215 2216 BasicBlock *BB = BI->getParent(); 2217 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2218 InstructionCost Budget = 2219 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2220 2221 // If ThenBB is actually on the false edge of the conditional branch, remember 2222 // to swap the select operands later. 2223 bool Invert = false; 2224 if (ThenBB != BI->getSuccessor(0)) { 2225 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2226 Invert = true; 2227 } 2228 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2229 2230 // Keep a count of how many times instructions are used within ThenBB when 2231 // they are candidates for sinking into ThenBB. Specifically: 2232 // - They are defined in BB, and 2233 // - They have no side effects, and 2234 // - All of their uses are in ThenBB. 2235 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2236 2237 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2238 2239 unsigned SpeculatedInstructions = 0; 2240 Value *SpeculatedStoreValue = nullptr; 2241 StoreInst *SpeculatedStore = nullptr; 2242 for (BasicBlock::iterator BBI = ThenBB->begin(), 2243 BBE = std::prev(ThenBB->end()); 2244 BBI != BBE; ++BBI) { 2245 Instruction *I = &*BBI; 2246 // Skip debug info. 2247 if (isa<DbgInfoIntrinsic>(I)) { 2248 SpeculatedDbgIntrinsics.push_back(I); 2249 continue; 2250 } 2251 2252 // Skip pseudo probes. The consequence is we lose track of the branch 2253 // probability for ThenBB, which is fine since the optimization here takes 2254 // place regardless of the branch probability. 2255 if (isa<PseudoProbeInst>(I)) { 2256 continue; 2257 } 2258 2259 // Only speculatively execute a single instruction (not counting the 2260 // terminator) for now. 2261 ++SpeculatedInstructions; 2262 if (SpeculatedInstructions > 1) 2263 return false; 2264 2265 // Don't hoist the instruction if it's unsafe or expensive. 2266 if (!isSafeToSpeculativelyExecute(I) && 2267 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2268 I, BB, ThenBB, EndBB)))) 2269 return false; 2270 if (!SpeculatedStoreValue && 2271 computeSpeculationCost(I, TTI) > 2272 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2273 return false; 2274 2275 // Store the store speculation candidate. 2276 if (SpeculatedStoreValue) 2277 SpeculatedStore = cast<StoreInst>(I); 2278 2279 // Do not hoist the instruction if any of its operands are defined but not 2280 // used in BB. The transformation will prevent the operand from 2281 // being sunk into the use block. 2282 for (Use &Op : I->operands()) { 2283 Instruction *OpI = dyn_cast<Instruction>(Op); 2284 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2285 continue; // Not a candidate for sinking. 2286 2287 ++SinkCandidateUseCounts[OpI]; 2288 } 2289 } 2290 2291 // Consider any sink candidates which are only used in ThenBB as costs for 2292 // speculation. Note, while we iterate over a DenseMap here, we are summing 2293 // and so iteration order isn't significant. 2294 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2295 I = SinkCandidateUseCounts.begin(), 2296 E = SinkCandidateUseCounts.end(); 2297 I != E; ++I) 2298 if (I->first->hasNUses(I->second)) { 2299 ++SpeculatedInstructions; 2300 if (SpeculatedInstructions > 1) 2301 return false; 2302 } 2303 2304 // Check that we can insert the selects and that it's not too expensive to do 2305 // so. 2306 bool Convert = SpeculatedStore != nullptr; 2307 InstructionCost Cost = 0; 2308 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2309 SpeculatedInstructions, 2310 Cost, TTI); 2311 if (!Convert || Cost > Budget) 2312 return false; 2313 2314 // If we get here, we can hoist the instruction and if-convert. 2315 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2316 2317 // Insert a select of the value of the speculated store. 2318 if (SpeculatedStoreValue) { 2319 IRBuilder<NoFolder> Builder(BI); 2320 Value *TrueV = SpeculatedStore->getValueOperand(); 2321 Value *FalseV = SpeculatedStoreValue; 2322 if (Invert) 2323 std::swap(TrueV, FalseV); 2324 Value *S = Builder.CreateSelect( 2325 BrCond, TrueV, FalseV, "spec.store.select", BI); 2326 SpeculatedStore->setOperand(0, S); 2327 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2328 SpeculatedStore->getDebugLoc()); 2329 } 2330 2331 // Metadata can be dependent on the condition we are hoisting above. 2332 // Conservatively strip all metadata on the instruction. Drop the debug loc 2333 // to avoid making it appear as if the condition is a constant, which would 2334 // be misleading while debugging. 2335 for (auto &I : *ThenBB) { 2336 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2337 I.setDebugLoc(DebugLoc()); 2338 I.dropUnknownNonDebugMetadata(); 2339 } 2340 2341 // A hoisted conditional probe should be treated as dangling so that it will 2342 // not be over-counted when the samples collected on the non-conditional path 2343 // are counted towards the conditional path. We leave it for the counts 2344 // inference algorithm to figure out a proper count for a danglng probe. 2345 moveAndDanglePseudoProbes(ThenBB, BI); 2346 2347 // Hoist the instructions. 2348 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2349 ThenBB->begin(), std::prev(ThenBB->end())); 2350 2351 // Insert selects and rewrite the PHI operands. 2352 IRBuilder<NoFolder> Builder(BI); 2353 for (PHINode &PN : EndBB->phis()) { 2354 unsigned OrigI = PN.getBasicBlockIndex(BB); 2355 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2356 Value *OrigV = PN.getIncomingValue(OrigI); 2357 Value *ThenV = PN.getIncomingValue(ThenI); 2358 2359 // Skip PHIs which are trivial. 2360 if (OrigV == ThenV) 2361 continue; 2362 2363 // Create a select whose true value is the speculatively executed value and 2364 // false value is the pre-existing value. Swap them if the branch 2365 // destinations were inverted. 2366 Value *TrueV = ThenV, *FalseV = OrigV; 2367 if (Invert) 2368 std::swap(TrueV, FalseV); 2369 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2370 PN.setIncomingValue(OrigI, V); 2371 PN.setIncomingValue(ThenI, V); 2372 } 2373 2374 // Remove speculated dbg intrinsics. 2375 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2376 // dbg value for the different flows and inserting it after the select. 2377 for (Instruction *I : SpeculatedDbgIntrinsics) 2378 I->eraseFromParent(); 2379 2380 ++NumSpeculations; 2381 return true; 2382 } 2383 2384 /// Return true if we can thread a branch across this block. 2385 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2386 int Size = 0; 2387 2388 for (Instruction &I : BB->instructionsWithoutDebug()) { 2389 if (Size > MaxSmallBlockSize) 2390 return false; // Don't clone large BB's. 2391 2392 // Can't fold blocks that contain noduplicate or convergent calls. 2393 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2394 if (CI->cannotDuplicate() || CI->isConvergent()) 2395 return false; 2396 2397 // We will delete Phis while threading, so Phis should not be accounted in 2398 // block's size 2399 if (!isa<PHINode>(I)) 2400 ++Size; 2401 2402 // We can only support instructions that do not define values that are 2403 // live outside of the current basic block. 2404 for (User *U : I.users()) { 2405 Instruction *UI = cast<Instruction>(U); 2406 if (UI->getParent() != BB || isa<PHINode>(UI)) 2407 return false; 2408 } 2409 2410 // Looks ok, continue checking. 2411 } 2412 2413 return true; 2414 } 2415 2416 /// If we have a conditional branch on a PHI node value that is defined in the 2417 /// same block as the branch and if any PHI entries are constants, thread edges 2418 /// corresponding to that entry to be branches to their ultimate destination. 2419 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2420 const DataLayout &DL, AssumptionCache *AC) { 2421 BasicBlock *BB = BI->getParent(); 2422 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2423 // NOTE: we currently cannot transform this case if the PHI node is used 2424 // outside of the block. 2425 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2426 return false; 2427 2428 // Degenerate case of a single entry PHI. 2429 if (PN->getNumIncomingValues() == 1) { 2430 FoldSingleEntryPHINodes(PN->getParent()); 2431 return true; 2432 } 2433 2434 // Now we know that this block has multiple preds and two succs. 2435 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2436 return false; 2437 2438 // Okay, this is a simple enough basic block. See if any phi values are 2439 // constants. 2440 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2441 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2442 if (!CB || !CB->getType()->isIntegerTy(1)) 2443 continue; 2444 2445 // Okay, we now know that all edges from PredBB should be revectored to 2446 // branch to RealDest. 2447 BasicBlock *PredBB = PN->getIncomingBlock(i); 2448 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2449 2450 if (RealDest == BB) 2451 continue; // Skip self loops. 2452 // Skip if the predecessor's terminator is an indirect branch. 2453 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2454 continue; 2455 2456 SmallVector<DominatorTree::UpdateType, 3> Updates; 2457 2458 // The dest block might have PHI nodes, other predecessors and other 2459 // difficult cases. Instead of being smart about this, just insert a new 2460 // block that jumps to the destination block, effectively splitting 2461 // the edge we are about to create. 2462 BasicBlock *EdgeBB = 2463 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2464 RealDest->getParent(), RealDest); 2465 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2466 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2467 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2468 2469 // Update PHI nodes. 2470 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2471 2472 // BB may have instructions that are being threaded over. Clone these 2473 // instructions into EdgeBB. We know that there will be no uses of the 2474 // cloned instructions outside of EdgeBB. 2475 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2476 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2477 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2478 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2479 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2480 continue; 2481 } 2482 // Clone the instruction. 2483 Instruction *N = BBI->clone(); 2484 if (BBI->hasName()) 2485 N->setName(BBI->getName() + ".c"); 2486 2487 // Update operands due to translation. 2488 for (Use &Op : N->operands()) { 2489 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2490 if (PI != TranslateMap.end()) 2491 Op = PI->second; 2492 } 2493 2494 // Check for trivial simplification. 2495 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2496 if (!BBI->use_empty()) 2497 TranslateMap[&*BBI] = V; 2498 if (!N->mayHaveSideEffects()) { 2499 N->deleteValue(); // Instruction folded away, don't need actual inst 2500 N = nullptr; 2501 } 2502 } else { 2503 if (!BBI->use_empty()) 2504 TranslateMap[&*BBI] = N; 2505 } 2506 if (N) { 2507 // Insert the new instruction into its new home. 2508 EdgeBB->getInstList().insert(InsertPt, N); 2509 2510 // Register the new instruction with the assumption cache if necessary. 2511 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2512 AC->registerAssumption(cast<IntrinsicInst>(N)); 2513 } 2514 } 2515 2516 // Loop over all of the edges from PredBB to BB, changing them to branch 2517 // to EdgeBB instead. 2518 Instruction *PredBBTI = PredBB->getTerminator(); 2519 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2520 if (PredBBTI->getSuccessor(i) == BB) { 2521 BB->removePredecessor(PredBB); 2522 PredBBTI->setSuccessor(i, EdgeBB); 2523 } 2524 2525 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2526 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2527 2528 if (DTU) 2529 DTU->applyUpdates(Updates); 2530 2531 // Recurse, simplifying any other constants. 2532 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2533 } 2534 2535 return false; 2536 } 2537 2538 /// Given a BB that starts with the specified two-entry PHI node, 2539 /// see if we can eliminate it. 2540 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2541 DomTreeUpdater *DTU, const DataLayout &DL) { 2542 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2543 // statement", which has a very simple dominance structure. Basically, we 2544 // are trying to find the condition that is being branched on, which 2545 // subsequently causes this merge to happen. We really want control 2546 // dependence information for this check, but simplifycfg can't keep it up 2547 // to date, and this catches most of the cases we care about anyway. 2548 BasicBlock *BB = PN->getParent(); 2549 2550 BasicBlock *IfTrue, *IfFalse; 2551 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2552 if (!IfCond || 2553 // Don't bother if the branch will be constant folded trivially. 2554 isa<ConstantInt>(IfCond)) 2555 return false; 2556 2557 // Okay, we found that we can merge this two-entry phi node into a select. 2558 // Doing so would require us to fold *all* two entry phi nodes in this block. 2559 // At some point this becomes non-profitable (particularly if the target 2560 // doesn't support cmov's). Only do this transformation if there are two or 2561 // fewer PHI nodes in this block. 2562 unsigned NumPhis = 0; 2563 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2564 if (NumPhis > 2) 2565 return false; 2566 2567 // Loop over the PHI's seeing if we can promote them all to select 2568 // instructions. While we are at it, keep track of the instructions 2569 // that need to be moved to the dominating block. 2570 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2571 InstructionCost Cost = 0; 2572 InstructionCost Budget = 2573 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2574 2575 bool Changed = false; 2576 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2577 PHINode *PN = cast<PHINode>(II++); 2578 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2579 PN->replaceAllUsesWith(V); 2580 PN->eraseFromParent(); 2581 Changed = true; 2582 continue; 2583 } 2584 2585 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2586 Cost, Budget, TTI) || 2587 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2588 Cost, Budget, TTI)) 2589 return Changed; 2590 } 2591 2592 // If we folded the first phi, PN dangles at this point. Refresh it. If 2593 // we ran out of PHIs then we simplified them all. 2594 PN = dyn_cast<PHINode>(BB->begin()); 2595 if (!PN) 2596 return true; 2597 2598 // Return true if at least one of these is a 'not', and another is either 2599 // a 'not' too, or a constant. 2600 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2601 if (!match(V0, m_Not(m_Value()))) 2602 std::swap(V0, V1); 2603 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2604 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2605 }; 2606 2607 // Don't fold i1 branches on PHIs which contain binary operators or 2608 // select form of or/ands, unless one of the incoming values is an 'not' and 2609 // another one is freely invertible. 2610 // These can often be turned into switches and other things. 2611 auto IsBinOpOrAnd = [](Value *V) { 2612 return match( 2613 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2614 }; 2615 if (PN->getType()->isIntegerTy(1) && 2616 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2617 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2618 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2619 PN->getIncomingValue(1))) 2620 return Changed; 2621 2622 // If all PHI nodes are promotable, check to make sure that all instructions 2623 // in the predecessor blocks can be promoted as well. If not, we won't be able 2624 // to get rid of the control flow, so it's not worth promoting to select 2625 // instructions. 2626 BasicBlock *DomBlock = nullptr; 2627 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2628 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2629 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2630 IfBlock1 = nullptr; 2631 } else { 2632 DomBlock = *pred_begin(IfBlock1); 2633 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2634 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2635 !isa<PseudoProbeInst>(I)) { 2636 // This is not an aggressive instruction that we can promote. 2637 // Because of this, we won't be able to get rid of the control flow, so 2638 // the xform is not worth it. 2639 return Changed; 2640 } 2641 } 2642 2643 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2644 IfBlock2 = nullptr; 2645 } else { 2646 DomBlock = *pred_begin(IfBlock2); 2647 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2648 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2649 !isa<PseudoProbeInst>(I)) { 2650 // This is not an aggressive instruction that we can promote. 2651 // Because of this, we won't be able to get rid of the control flow, so 2652 // the xform is not worth it. 2653 return Changed; 2654 } 2655 } 2656 assert(DomBlock && "Failed to find root DomBlock"); 2657 2658 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2659 << " T: " << IfTrue->getName() 2660 << " F: " << IfFalse->getName() << "\n"); 2661 2662 // If we can still promote the PHI nodes after this gauntlet of tests, 2663 // do all of the PHI's now. 2664 Instruction *InsertPt = DomBlock->getTerminator(); 2665 IRBuilder<NoFolder> Builder(InsertPt); 2666 2667 // Move all 'aggressive' instructions, which are defined in the 2668 // conditional parts of the if's up to the dominating block. 2669 if (IfBlock1) 2670 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2671 if (IfBlock2) 2672 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2673 2674 // Propagate fast-math-flags from phi nodes to replacement selects. 2675 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2676 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2677 if (isa<FPMathOperator>(PN)) 2678 Builder.setFastMathFlags(PN->getFastMathFlags()); 2679 2680 // Change the PHI node into a select instruction. 2681 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2682 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2683 2684 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2685 PN->replaceAllUsesWith(Sel); 2686 Sel->takeName(PN); 2687 PN->eraseFromParent(); 2688 } 2689 2690 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2691 // has been flattened. Change DomBlock to jump directly to our new block to 2692 // avoid other simplifycfg's kicking in on the diamond. 2693 Instruction *OldTI = DomBlock->getTerminator(); 2694 Builder.SetInsertPoint(OldTI); 2695 Builder.CreateBr(BB); 2696 2697 SmallVector<DominatorTree::UpdateType, 3> Updates; 2698 if (DTU) { 2699 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2700 for (auto *Successor : successors(DomBlock)) 2701 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2702 } 2703 2704 OldTI->eraseFromParent(); 2705 if (DTU) 2706 DTU->applyUpdates(Updates); 2707 2708 return true; 2709 } 2710 2711 /// If we found a conditional branch that goes to two returning blocks, 2712 /// try to merge them together into one return, 2713 /// introducing a select if the return values disagree. 2714 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2715 IRBuilder<> &Builder) { 2716 auto *BB = BI->getParent(); 2717 assert(BI->isConditional() && "Must be a conditional branch"); 2718 BasicBlock *TrueSucc = BI->getSuccessor(0); 2719 BasicBlock *FalseSucc = BI->getSuccessor(1); 2720 // NOTE: destinations may match, this could be degenerate uncond branch. 2721 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2722 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2723 2724 // Check to ensure both blocks are empty (just a return) or optionally empty 2725 // with PHI nodes. If there are other instructions, merging would cause extra 2726 // computation on one path or the other. 2727 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2728 return false; 2729 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2730 return false; 2731 2732 Builder.SetInsertPoint(BI); 2733 // Okay, we found a branch that is going to two return nodes. If 2734 // there is no return value for this function, just change the 2735 // branch into a return. 2736 if (FalseRet->getNumOperands() == 0) { 2737 TrueSucc->removePredecessor(BB); 2738 FalseSucc->removePredecessor(BB); 2739 Builder.CreateRetVoid(); 2740 EraseTerminatorAndDCECond(BI); 2741 if (DTU) { 2742 SmallVector<DominatorTree::UpdateType, 2> Updates; 2743 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2744 if (TrueSucc != FalseSucc) 2745 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2746 DTU->applyUpdates(Updates); 2747 } 2748 return true; 2749 } 2750 2751 // Otherwise, figure out what the true and false return values are 2752 // so we can insert a new select instruction. 2753 Value *TrueValue = TrueRet->getReturnValue(); 2754 Value *FalseValue = FalseRet->getReturnValue(); 2755 2756 // Unwrap any PHI nodes in the return blocks. 2757 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2758 if (TVPN->getParent() == TrueSucc) 2759 TrueValue = TVPN->getIncomingValueForBlock(BB); 2760 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2761 if (FVPN->getParent() == FalseSucc) 2762 FalseValue = FVPN->getIncomingValueForBlock(BB); 2763 2764 // In order for this transformation to be safe, we must be able to 2765 // unconditionally execute both operands to the return. This is 2766 // normally the case, but we could have a potentially-trapping 2767 // constant expression that prevents this transformation from being 2768 // safe. 2769 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2770 if (TCV->canTrap()) 2771 return false; 2772 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2773 if (FCV->canTrap()) 2774 return false; 2775 2776 // Okay, we collected all the mapped values and checked them for sanity, and 2777 // defined to really do this transformation. First, update the CFG. 2778 TrueSucc->removePredecessor(BB); 2779 FalseSucc->removePredecessor(BB); 2780 2781 // Insert select instructions where needed. 2782 Value *BrCond = BI->getCondition(); 2783 if (TrueValue) { 2784 // Insert a select if the results differ. 2785 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2786 } else if (isa<UndefValue>(TrueValue)) { 2787 TrueValue = FalseValue; 2788 } else { 2789 TrueValue = 2790 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2791 } 2792 } 2793 2794 Value *RI = 2795 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2796 2797 (void)RI; 2798 2799 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2800 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2801 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2802 2803 EraseTerminatorAndDCECond(BI); 2804 if (DTU) { 2805 SmallVector<DominatorTree::UpdateType, 2> Updates; 2806 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2807 if (TrueSucc != FalseSucc) 2808 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2809 DTU->applyUpdates(Updates); 2810 } 2811 2812 return true; 2813 } 2814 2815 /// Return true if either PBI or BI has branch weight available, and store 2816 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2817 /// not have branch weight, use 1:1 as its weight. 2818 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2819 uint64_t &PredTrueWeight, 2820 uint64_t &PredFalseWeight, 2821 uint64_t &SuccTrueWeight, 2822 uint64_t &SuccFalseWeight) { 2823 bool PredHasWeights = 2824 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2825 bool SuccHasWeights = 2826 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2827 if (PredHasWeights || SuccHasWeights) { 2828 if (!PredHasWeights) 2829 PredTrueWeight = PredFalseWeight = 1; 2830 if (!SuccHasWeights) 2831 SuccTrueWeight = SuccFalseWeight = 1; 2832 return true; 2833 } else { 2834 return false; 2835 } 2836 } 2837 2838 // Determine if the two branches share a common destination, 2839 // and deduce a glue that we need to use to join branch's conditions 2840 // to arrive at the common destination. 2841 static Optional<std::pair<Instruction::BinaryOps, bool>> 2842 CheckIfCondBranchesShareCommonDestination(BranchInst *BI, BranchInst *PBI) { 2843 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 2844 "Both blocks must end with a conditional branches."); 2845 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 2846 "PredBB must be a predecessor of BB."); 2847 2848 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2849 return {{Instruction::Or, false}}; 2850 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2851 return {{Instruction::And, false}}; 2852 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2853 return {{Instruction::And, true}}; 2854 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2855 return {{Instruction::Or, true}}; 2856 return None; 2857 } 2858 2859 static bool PerformBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 2860 DomTreeUpdater *DTU, 2861 MemorySSAUpdater *MSSAU) { 2862 BasicBlock *BB = BI->getParent(); 2863 BasicBlock *PredBlock = PBI->getParent(); 2864 2865 // Determine if the two branches share a common destination. 2866 Instruction::BinaryOps Opc; 2867 bool InvertPredCond; 2868 std::tie(Opc, InvertPredCond) = 2869 *CheckIfCondBranchesShareCommonDestination(BI, PBI); 2870 2871 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2872 2873 IRBuilder<> Builder(PBI); 2874 // The builder is used to create instructions to eliminate the branch in BB. 2875 // If BB's terminator has !annotation metadata, add it to the new 2876 // instructions. 2877 Builder.CollectMetadataToCopy(BB->getTerminator(), 2878 {LLVMContext::MD_annotation}); 2879 2880 // If we need to invert the condition in the pred block to match, do so now. 2881 if (InvertPredCond) { 2882 Value *NewCond = PBI->getCondition(); 2883 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2884 CmpInst *CI = cast<CmpInst>(NewCond); 2885 CI->setPredicate(CI->getInversePredicate()); 2886 } else { 2887 NewCond = 2888 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2889 } 2890 2891 PBI->setCondition(NewCond); 2892 PBI->swapSuccessors(); 2893 } 2894 2895 BasicBlock *UniqueSucc = 2896 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 2897 2898 // Before cloning instructions, notify the successor basic block that it 2899 // is about to have a new predecessor. This will update PHI nodes, 2900 // which will allow us to update live-out uses of bonus instructions. 2901 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 2902 2903 // Try to update branch weights. 2904 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2905 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2906 SuccTrueWeight, SuccFalseWeight)) { 2907 SmallVector<uint64_t, 8> NewWeights; 2908 2909 if (PBI->getSuccessor(0) == BB) { 2910 // PBI: br i1 %x, BB, FalseDest 2911 // BI: br i1 %y, UniqueSucc, FalseDest 2912 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2913 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2914 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2915 // TrueWeight for PBI * FalseWeight for BI. 2916 // We assume that total weights of a BranchInst can fit into 32 bits. 2917 // Therefore, we will not have overflow using 64-bit arithmetic. 2918 NewWeights.push_back(PredFalseWeight * 2919 (SuccFalseWeight + SuccTrueWeight) + 2920 PredTrueWeight * SuccFalseWeight); 2921 } else { 2922 // PBI: br i1 %x, TrueDest, BB 2923 // BI: br i1 %y, TrueDest, UniqueSucc 2924 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2925 // FalseWeight for PBI * TrueWeight for BI. 2926 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 2927 PredFalseWeight * SuccTrueWeight); 2928 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2929 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2930 } 2931 2932 // Halve the weights if any of them cannot fit in an uint32_t 2933 FitWeights(NewWeights); 2934 2935 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 2936 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2937 2938 // TODO: If BB is reachable from all paths through PredBlock, then we 2939 // could replace PBI's branch probabilities with BI's. 2940 } else 2941 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2942 2943 // Now, update the CFG. 2944 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 2945 2946 if (DTU) 2947 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 2948 {DominatorTree::Delete, PredBlock, BB}}); 2949 2950 // If BI was a loop latch, it may have had associated loop metadata. 2951 // We need to copy it to the new latch, that is, PBI. 2952 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2953 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2954 2955 ValueToValueMapTy VMap; // maps original values to cloned values 2956 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 2957 2958 // Now that the Cond was cloned into the predecessor basic block, 2959 // or/and the two conditions together. 2960 Instruction *NewCond = cast<Instruction>(Builder.CreateBinOp( 2961 Opc, PBI->getCondition(), VMap[BI->getCondition()], "or.cond")); 2962 PBI->setCondition(NewCond); 2963 2964 // Copy any debug value intrinsics into the end of PredBlock. 2965 for (Instruction &I : *BB) { 2966 if (isa<DbgInfoIntrinsic>(I)) { 2967 Instruction *NewI = I.clone(); 2968 RemapInstruction(NewI, VMap, 2969 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2970 NewI->insertBefore(PBI); 2971 } 2972 } 2973 2974 ++NumFoldBranchToCommonDest; 2975 return true; 2976 } 2977 2978 /// If this basic block is simple enough, and if a predecessor branches to us 2979 /// and one of our successors, fold the block into the predecessor and use 2980 /// logical operations to pick the right destination. 2981 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 2982 MemorySSAUpdater *MSSAU, 2983 const TargetTransformInfo *TTI, 2984 unsigned BonusInstThreshold) { 2985 // If this block ends with an unconditional branch, 2986 // let SpeculativelyExecuteBB() deal with it. 2987 if (!BI->isConditional()) 2988 return false; 2989 2990 BasicBlock *BB = BI->getParent(); 2991 2992 const unsigned PredCount = pred_size(BB); 2993 2994 bool Changed = false; 2995 2996 TargetTransformInfo::TargetCostKind CostKind = 2997 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 2998 : TargetTransformInfo::TCK_SizeAndLatency; 2999 3000 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3001 3002 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3003 Cond->getParent() != BB || !Cond->hasOneUse()) 3004 return Changed; 3005 3006 // Only allow this transformation if computing the condition doesn't involve 3007 // too many instructions and these involved instructions can be executed 3008 // unconditionally. We denote all involved instructions except the condition 3009 // as "bonus instructions", and only allow this transformation when the 3010 // number of the bonus instructions we'll need to create when cloning into 3011 // each predecessor does not exceed a certain threshold. 3012 unsigned NumBonusInsts = 0; 3013 for (Instruction &I : *BB) { 3014 // Don't check the branch condition comparison itself. 3015 if (&I == Cond) 3016 continue; 3017 // Ignore dbg intrinsics, and the terminator. 3018 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3019 continue; 3020 // I must be safe to execute unconditionally. 3021 if (!isSafeToSpeculativelyExecute(&I)) 3022 return Changed; 3023 3024 // Account for the cost of duplicating this instruction into each 3025 // predecessor. 3026 NumBonusInsts += PredCount; 3027 // Early exits once we reach the limit. 3028 if (NumBonusInsts > BonusInstThreshold) 3029 return Changed; 3030 } 3031 3032 // Cond is known to be a compare or binary operator. Check to make sure that 3033 // neither operand is a potentially-trapping constant expression. 3034 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3035 if (CE->canTrap()) 3036 return Changed; 3037 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3038 if (CE->canTrap()) 3039 return Changed; 3040 3041 // Finally, don't infinitely unroll conditional loops. 3042 if (is_contained(successors(BB), BB)) 3043 return Changed; 3044 3045 for (BasicBlock *PredBlock : predecessors(BB)) { 3046 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3047 3048 // Check that we have two conditional branches. If there is a PHI node in 3049 // the common successor, verify that the same value flows in from both 3050 // blocks. 3051 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3052 continue; 3053 3054 // Determine if the two branches share a common destination. 3055 Instruction::BinaryOps Opc; 3056 bool InvertPredCond; 3057 if (auto Recepie = CheckIfCondBranchesShareCommonDestination(BI, PBI)) 3058 std::tie(Opc, InvertPredCond) = *Recepie; 3059 else 3060 continue; 3061 3062 // Check the cost of inserting the necessary logic before performing the 3063 // transformation. 3064 if (TTI) { 3065 Type *Ty = BI->getCondition()->getType(); 3066 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3067 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3068 !isa<CmpInst>(PBI->getCondition()))) 3069 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3070 3071 if (Cost > BranchFoldThreshold) 3072 continue; 3073 } 3074 3075 return PerformBranchToCommonDestFolding(BI, PBI, DTU, MSSAU); 3076 } 3077 return Changed; 3078 } 3079 3080 // If there is only one store in BB1 and BB2, return it, otherwise return 3081 // nullptr. 3082 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3083 StoreInst *S = nullptr; 3084 for (auto *BB : {BB1, BB2}) { 3085 if (!BB) 3086 continue; 3087 for (auto &I : *BB) 3088 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3089 if (S) 3090 // Multiple stores seen. 3091 return nullptr; 3092 else 3093 S = SI; 3094 } 3095 } 3096 return S; 3097 } 3098 3099 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3100 Value *AlternativeV = nullptr) { 3101 // PHI is going to be a PHI node that allows the value V that is defined in 3102 // BB to be referenced in BB's only successor. 3103 // 3104 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3105 // doesn't matter to us what the other operand is (it'll never get used). We 3106 // could just create a new PHI with an undef incoming value, but that could 3107 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3108 // other PHI. So here we directly look for some PHI in BB's successor with V 3109 // as an incoming operand. If we find one, we use it, else we create a new 3110 // one. 3111 // 3112 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3113 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3114 // where OtherBB is the single other predecessor of BB's only successor. 3115 PHINode *PHI = nullptr; 3116 BasicBlock *Succ = BB->getSingleSuccessor(); 3117 3118 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3119 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3120 PHI = cast<PHINode>(I); 3121 if (!AlternativeV) 3122 break; 3123 3124 assert(Succ->hasNPredecessors(2)); 3125 auto PredI = pred_begin(Succ); 3126 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3127 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3128 break; 3129 PHI = nullptr; 3130 } 3131 if (PHI) 3132 return PHI; 3133 3134 // If V is not an instruction defined in BB, just return it. 3135 if (!AlternativeV && 3136 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3137 return V; 3138 3139 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3140 PHI->addIncoming(V, BB); 3141 for (BasicBlock *PredBB : predecessors(Succ)) 3142 if (PredBB != BB) 3143 PHI->addIncoming( 3144 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3145 return PHI; 3146 } 3147 3148 static bool mergeConditionalStoreToAddress( 3149 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3150 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3151 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3152 // For every pointer, there must be exactly two stores, one coming from 3153 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3154 // store (to any address) in PTB,PFB or QTB,QFB. 3155 // FIXME: We could relax this restriction with a bit more work and performance 3156 // testing. 3157 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3158 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3159 if (!PStore || !QStore) 3160 return false; 3161 3162 // Now check the stores are compatible. 3163 if (!QStore->isUnordered() || !PStore->isUnordered()) 3164 return false; 3165 3166 // Check that sinking the store won't cause program behavior changes. Sinking 3167 // the store out of the Q blocks won't change any behavior as we're sinking 3168 // from a block to its unconditional successor. But we're moving a store from 3169 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3170 // So we need to check that there are no aliasing loads or stores in 3171 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3172 // operations between PStore and the end of its parent block. 3173 // 3174 // The ideal way to do this is to query AliasAnalysis, but we don't 3175 // preserve AA currently so that is dangerous. Be super safe and just 3176 // check there are no other memory operations at all. 3177 for (auto &I : *QFB->getSinglePredecessor()) 3178 if (I.mayReadOrWriteMemory()) 3179 return false; 3180 for (auto &I : *QFB) 3181 if (&I != QStore && I.mayReadOrWriteMemory()) 3182 return false; 3183 if (QTB) 3184 for (auto &I : *QTB) 3185 if (&I != QStore && I.mayReadOrWriteMemory()) 3186 return false; 3187 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3188 I != E; ++I) 3189 if (&*I != PStore && I->mayReadOrWriteMemory()) 3190 return false; 3191 3192 // If we're not in aggressive mode, we only optimize if we have some 3193 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3194 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3195 if (!BB) 3196 return true; 3197 // Heuristic: if the block can be if-converted/phi-folded and the 3198 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3199 // thread this store. 3200 InstructionCost Cost = 0; 3201 InstructionCost Budget = 3202 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3203 for (auto &I : BB->instructionsWithoutDebug()) { 3204 // Consider terminator instruction to be free. 3205 if (I.isTerminator()) 3206 continue; 3207 // If this is one the stores that we want to speculate out of this BB, 3208 // then don't count it's cost, consider it to be free. 3209 if (auto *S = dyn_cast<StoreInst>(&I)) 3210 if (llvm::find(FreeStores, S)) 3211 continue; 3212 // Else, we have a white-list of instructions that we are ak speculating. 3213 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3214 return false; // Not in white-list - not worthwhile folding. 3215 // And finally, if this is a non-free instruction that we are okay 3216 // speculating, ensure that we consider the speculation budget. 3217 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3218 if (Cost > Budget) 3219 return false; // Eagerly refuse to fold as soon as we're out of budget. 3220 } 3221 assert(Cost <= Budget && 3222 "When we run out of budget we will eagerly return from within the " 3223 "per-instruction loop."); 3224 return true; 3225 }; 3226 3227 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3228 if (!MergeCondStoresAggressively && 3229 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3230 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3231 return false; 3232 3233 // If PostBB has more than two predecessors, we need to split it so we can 3234 // sink the store. 3235 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3236 // We know that QFB's only successor is PostBB. And QFB has a single 3237 // predecessor. If QTB exists, then its only successor is also PostBB. 3238 // If QTB does not exist, then QFB's only predecessor has a conditional 3239 // branch to QFB and PostBB. 3240 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3241 BasicBlock *NewBB = 3242 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3243 if (!NewBB) 3244 return false; 3245 PostBB = NewBB; 3246 } 3247 3248 // OK, we're going to sink the stores to PostBB. The store has to be 3249 // conditional though, so first create the predicate. 3250 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3251 ->getCondition(); 3252 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3253 ->getCondition(); 3254 3255 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3256 PStore->getParent()); 3257 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3258 QStore->getParent(), PPHI); 3259 3260 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3261 3262 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3263 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3264 3265 if (InvertPCond) 3266 PPred = QB.CreateNot(PPred); 3267 if (InvertQCond) 3268 QPred = QB.CreateNot(QPred); 3269 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3270 3271 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3272 /*Unreachable=*/false, 3273 /*BranchWeights=*/nullptr, DTU); 3274 QB.SetInsertPoint(T); 3275 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3276 AAMDNodes AAMD; 3277 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3278 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3279 SI->setAAMetadata(AAMD); 3280 // Choose the minimum alignment. If we could prove both stores execute, we 3281 // could use biggest one. In this case, though, we only know that one of the 3282 // stores executes. And we don't know it's safe to take the alignment from a 3283 // store that doesn't execute. 3284 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3285 3286 QStore->eraseFromParent(); 3287 PStore->eraseFromParent(); 3288 3289 return true; 3290 } 3291 3292 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3293 DomTreeUpdater *DTU, const DataLayout &DL, 3294 const TargetTransformInfo &TTI) { 3295 // The intention here is to find diamonds or triangles (see below) where each 3296 // conditional block contains a store to the same address. Both of these 3297 // stores are conditional, so they can't be unconditionally sunk. But it may 3298 // be profitable to speculatively sink the stores into one merged store at the 3299 // end, and predicate the merged store on the union of the two conditions of 3300 // PBI and QBI. 3301 // 3302 // This can reduce the number of stores executed if both of the conditions are 3303 // true, and can allow the blocks to become small enough to be if-converted. 3304 // This optimization will also chain, so that ladders of test-and-set 3305 // sequences can be if-converted away. 3306 // 3307 // We only deal with simple diamonds or triangles: 3308 // 3309 // PBI or PBI or a combination of the two 3310 // / \ | \ 3311 // PTB PFB | PFB 3312 // \ / | / 3313 // QBI QBI 3314 // / \ | \ 3315 // QTB QFB | QFB 3316 // \ / | / 3317 // PostBB PostBB 3318 // 3319 // We model triangles as a type of diamond with a nullptr "true" block. 3320 // Triangles are canonicalized so that the fallthrough edge is represented by 3321 // a true condition, as in the diagram above. 3322 BasicBlock *PTB = PBI->getSuccessor(0); 3323 BasicBlock *PFB = PBI->getSuccessor(1); 3324 BasicBlock *QTB = QBI->getSuccessor(0); 3325 BasicBlock *QFB = QBI->getSuccessor(1); 3326 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3327 3328 // Make sure we have a good guess for PostBB. If QTB's only successor is 3329 // QFB, then QFB is a better PostBB. 3330 if (QTB->getSingleSuccessor() == QFB) 3331 PostBB = QFB; 3332 3333 // If we couldn't find a good PostBB, stop. 3334 if (!PostBB) 3335 return false; 3336 3337 bool InvertPCond = false, InvertQCond = false; 3338 // Canonicalize fallthroughs to the true branches. 3339 if (PFB == QBI->getParent()) { 3340 std::swap(PFB, PTB); 3341 InvertPCond = true; 3342 } 3343 if (QFB == PostBB) { 3344 std::swap(QFB, QTB); 3345 InvertQCond = true; 3346 } 3347 3348 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3349 // and QFB may not. Model fallthroughs as a nullptr block. 3350 if (PTB == QBI->getParent()) 3351 PTB = nullptr; 3352 if (QTB == PostBB) 3353 QTB = nullptr; 3354 3355 // Legality bailouts. We must have at least the non-fallthrough blocks and 3356 // the post-dominating block, and the non-fallthroughs must only have one 3357 // predecessor. 3358 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3359 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3360 }; 3361 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3362 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3363 return false; 3364 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3365 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3366 return false; 3367 if (!QBI->getParent()->hasNUses(2)) 3368 return false; 3369 3370 // OK, this is a sequence of two diamonds or triangles. 3371 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3372 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3373 for (auto *BB : {PTB, PFB}) { 3374 if (!BB) 3375 continue; 3376 for (auto &I : *BB) 3377 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3378 PStoreAddresses.insert(SI->getPointerOperand()); 3379 } 3380 for (auto *BB : {QTB, QFB}) { 3381 if (!BB) 3382 continue; 3383 for (auto &I : *BB) 3384 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3385 QStoreAddresses.insert(SI->getPointerOperand()); 3386 } 3387 3388 set_intersect(PStoreAddresses, QStoreAddresses); 3389 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3390 // clear what it contains. 3391 auto &CommonAddresses = PStoreAddresses; 3392 3393 bool Changed = false; 3394 for (auto *Address : CommonAddresses) 3395 Changed |= 3396 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3397 InvertPCond, InvertQCond, DTU, DL, TTI); 3398 return Changed; 3399 } 3400 3401 /// If the previous block ended with a widenable branch, determine if reusing 3402 /// the target block is profitable and legal. This will have the effect of 3403 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3404 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3405 DomTreeUpdater *DTU) { 3406 // TODO: This can be generalized in two important ways: 3407 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3408 // values from the PBI edge. 3409 // 2) We can sink side effecting instructions into BI's fallthrough 3410 // successor provided they doesn't contribute to computation of 3411 // BI's condition. 3412 Value *CondWB, *WC; 3413 BasicBlock *IfTrueBB, *IfFalseBB; 3414 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3415 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3416 return false; 3417 if (!IfFalseBB->phis().empty()) 3418 return false; // TODO 3419 // Use lambda to lazily compute expensive condition after cheap ones. 3420 auto NoSideEffects = [](BasicBlock &BB) { 3421 return !llvm::any_of(BB, [](const Instruction &I) { 3422 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3423 }); 3424 }; 3425 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3426 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3427 NoSideEffects(*BI->getParent())) { 3428 auto *OldSuccessor = BI->getSuccessor(1); 3429 OldSuccessor->removePredecessor(BI->getParent()); 3430 BI->setSuccessor(1, IfFalseBB); 3431 if (DTU) 3432 DTU->applyUpdates( 3433 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3434 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3435 return true; 3436 } 3437 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3438 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3439 NoSideEffects(*BI->getParent())) { 3440 auto *OldSuccessor = BI->getSuccessor(0); 3441 OldSuccessor->removePredecessor(BI->getParent()); 3442 BI->setSuccessor(0, IfFalseBB); 3443 if (DTU) 3444 DTU->applyUpdates( 3445 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3446 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3447 return true; 3448 } 3449 return false; 3450 } 3451 3452 /// If we have a conditional branch as a predecessor of another block, 3453 /// this function tries to simplify it. We know 3454 /// that PBI and BI are both conditional branches, and BI is in one of the 3455 /// successor blocks of PBI - PBI branches to BI. 3456 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3457 DomTreeUpdater *DTU, 3458 const DataLayout &DL, 3459 const TargetTransformInfo &TTI) { 3460 assert(PBI->isConditional() && BI->isConditional()); 3461 BasicBlock *BB = BI->getParent(); 3462 3463 // If this block ends with a branch instruction, and if there is a 3464 // predecessor that ends on a branch of the same condition, make 3465 // this conditional branch redundant. 3466 if (PBI->getCondition() == BI->getCondition() && 3467 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3468 // Okay, the outcome of this conditional branch is statically 3469 // knowable. If this block had a single pred, handle specially. 3470 if (BB->getSinglePredecessor()) { 3471 // Turn this into a branch on constant. 3472 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3473 BI->setCondition( 3474 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3475 return true; // Nuke the branch on constant. 3476 } 3477 3478 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3479 // in the constant and simplify the block result. Subsequent passes of 3480 // simplifycfg will thread the block. 3481 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3482 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3483 PHINode *NewPN = PHINode::Create( 3484 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3485 BI->getCondition()->getName() + ".pr", &BB->front()); 3486 // Okay, we're going to insert the PHI node. Since PBI is not the only 3487 // predecessor, compute the PHI'd conditional value for all of the preds. 3488 // Any predecessor where the condition is not computable we keep symbolic. 3489 for (pred_iterator PI = PB; PI != PE; ++PI) { 3490 BasicBlock *P = *PI; 3491 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3492 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3493 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3494 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3495 NewPN->addIncoming( 3496 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3497 P); 3498 } else { 3499 NewPN->addIncoming(BI->getCondition(), P); 3500 } 3501 } 3502 3503 BI->setCondition(NewPN); 3504 return true; 3505 } 3506 } 3507 3508 // If the previous block ended with a widenable branch, determine if reusing 3509 // the target block is profitable and legal. This will have the effect of 3510 // "widening" PBI, but doesn't require us to reason about hosting safety. 3511 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3512 return true; 3513 3514 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3515 if (CE->canTrap()) 3516 return false; 3517 3518 // If both branches are conditional and both contain stores to the same 3519 // address, remove the stores from the conditionals and create a conditional 3520 // merged store at the end. 3521 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3522 return true; 3523 3524 // If this is a conditional branch in an empty block, and if any 3525 // predecessors are a conditional branch to one of our destinations, 3526 // fold the conditions into logical ops and one cond br. 3527 3528 // Ignore dbg intrinsics. 3529 if (&*BB->instructionsWithoutDebug().begin() != BI) 3530 return false; 3531 3532 int PBIOp, BIOp; 3533 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3534 PBIOp = 0; 3535 BIOp = 0; 3536 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3537 PBIOp = 0; 3538 BIOp = 1; 3539 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3540 PBIOp = 1; 3541 BIOp = 0; 3542 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3543 PBIOp = 1; 3544 BIOp = 1; 3545 } else { 3546 return false; 3547 } 3548 3549 // Check to make sure that the other destination of this branch 3550 // isn't BB itself. If so, this is an infinite loop that will 3551 // keep getting unwound. 3552 if (PBI->getSuccessor(PBIOp) == BB) 3553 return false; 3554 3555 // Do not perform this transformation if it would require 3556 // insertion of a large number of select instructions. For targets 3557 // without predication/cmovs, this is a big pessimization. 3558 3559 // Also do not perform this transformation if any phi node in the common 3560 // destination block can trap when reached by BB or PBB (PR17073). In that 3561 // case, it would be unsafe to hoist the operation into a select instruction. 3562 3563 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3564 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3565 unsigned NumPhis = 0; 3566 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3567 ++II, ++NumPhis) { 3568 if (NumPhis > 2) // Disable this xform. 3569 return false; 3570 3571 PHINode *PN = cast<PHINode>(II); 3572 Value *BIV = PN->getIncomingValueForBlock(BB); 3573 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3574 if (CE->canTrap()) 3575 return false; 3576 3577 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3578 Value *PBIV = PN->getIncomingValue(PBBIdx); 3579 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3580 if (CE->canTrap()) 3581 return false; 3582 } 3583 3584 // Finally, if everything is ok, fold the branches to logical ops. 3585 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3586 3587 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3588 << "AND: " << *BI->getParent()); 3589 3590 SmallVector<DominatorTree::UpdateType, 5> Updates; 3591 3592 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3593 // branch in it, where one edge (OtherDest) goes back to itself but the other 3594 // exits. We don't *know* that the program avoids the infinite loop 3595 // (even though that seems likely). If we do this xform naively, we'll end up 3596 // recursively unpeeling the loop. Since we know that (after the xform is 3597 // done) that the block *is* infinite if reached, we just make it an obviously 3598 // infinite loop with no cond branch. 3599 if (OtherDest == BB) { 3600 // Insert it at the end of the function, because it's either code, 3601 // or it won't matter if it's hot. :) 3602 BasicBlock *InfLoopBlock = 3603 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3604 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3605 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3606 OtherDest = InfLoopBlock; 3607 } 3608 3609 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3610 3611 // BI may have other predecessors. Because of this, we leave 3612 // it alone, but modify PBI. 3613 3614 // Make sure we get to CommonDest on True&True directions. 3615 Value *PBICond = PBI->getCondition(); 3616 IRBuilder<NoFolder> Builder(PBI); 3617 if (PBIOp) 3618 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3619 3620 Value *BICond = BI->getCondition(); 3621 if (BIOp) 3622 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3623 3624 // Merge the conditions. 3625 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3626 3627 // Modify PBI to branch on the new condition to the new dests. 3628 PBI->setCondition(Cond); 3629 PBI->setSuccessor(0, CommonDest); 3630 PBI->setSuccessor(1, OtherDest); 3631 3632 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3633 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3634 3635 if (DTU) 3636 DTU->applyUpdates(Updates); 3637 3638 // Update branch weight for PBI. 3639 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3640 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3641 bool HasWeights = 3642 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3643 SuccTrueWeight, SuccFalseWeight); 3644 if (HasWeights) { 3645 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3646 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3647 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3648 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3649 // The weight to CommonDest should be PredCommon * SuccTotal + 3650 // PredOther * SuccCommon. 3651 // The weight to OtherDest should be PredOther * SuccOther. 3652 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3653 PredOther * SuccCommon, 3654 PredOther * SuccOther}; 3655 // Halve the weights if any of them cannot fit in an uint32_t 3656 FitWeights(NewWeights); 3657 3658 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3659 } 3660 3661 // OtherDest may have phi nodes. If so, add an entry from PBI's 3662 // block that are identical to the entries for BI's block. 3663 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3664 3665 // We know that the CommonDest already had an edge from PBI to 3666 // it. If it has PHIs though, the PHIs may have different 3667 // entries for BB and PBI's BB. If so, insert a select to make 3668 // them agree. 3669 for (PHINode &PN : CommonDest->phis()) { 3670 Value *BIV = PN.getIncomingValueForBlock(BB); 3671 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3672 Value *PBIV = PN.getIncomingValue(PBBIdx); 3673 if (BIV != PBIV) { 3674 // Insert a select in PBI to pick the right value. 3675 SelectInst *NV = cast<SelectInst>( 3676 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3677 PN.setIncomingValue(PBBIdx, NV); 3678 // Although the select has the same condition as PBI, the original branch 3679 // weights for PBI do not apply to the new select because the select's 3680 // 'logical' edges are incoming edges of the phi that is eliminated, not 3681 // the outgoing edges of PBI. 3682 if (HasWeights) { 3683 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3684 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3685 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3686 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3687 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3688 // The weight to PredOtherDest should be PredOther * SuccCommon. 3689 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3690 PredOther * SuccCommon}; 3691 3692 FitWeights(NewWeights); 3693 3694 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3695 } 3696 } 3697 } 3698 3699 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3700 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3701 3702 // This basic block is probably dead. We know it has at least 3703 // one fewer predecessor. 3704 return true; 3705 } 3706 3707 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3708 // true or to FalseBB if Cond is false. 3709 // Takes care of updating the successors and removing the old terminator. 3710 // Also makes sure not to introduce new successors by assuming that edges to 3711 // non-successor TrueBBs and FalseBBs aren't reachable. 3712 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3713 Value *Cond, BasicBlock *TrueBB, 3714 BasicBlock *FalseBB, 3715 uint32_t TrueWeight, 3716 uint32_t FalseWeight) { 3717 auto *BB = OldTerm->getParent(); 3718 // Remove any superfluous successor edges from the CFG. 3719 // First, figure out which successors to preserve. 3720 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3721 // successor. 3722 BasicBlock *KeepEdge1 = TrueBB; 3723 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3724 3725 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 3726 3727 // Then remove the rest. 3728 for (BasicBlock *Succ : successors(OldTerm)) { 3729 // Make sure only to keep exactly one copy of each edge. 3730 if (Succ == KeepEdge1) 3731 KeepEdge1 = nullptr; 3732 else if (Succ == KeepEdge2) 3733 KeepEdge2 = nullptr; 3734 else { 3735 Succ->removePredecessor(BB, 3736 /*KeepOneInputPHIs=*/true); 3737 3738 if (Succ != TrueBB && Succ != FalseBB) 3739 RemovedSuccessors.insert(Succ); 3740 } 3741 } 3742 3743 IRBuilder<> Builder(OldTerm); 3744 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3745 3746 // Insert an appropriate new terminator. 3747 if (!KeepEdge1 && !KeepEdge2) { 3748 if (TrueBB == FalseBB) { 3749 // We were only looking for one successor, and it was present. 3750 // Create an unconditional branch to it. 3751 Builder.CreateBr(TrueBB); 3752 } else { 3753 // We found both of the successors we were looking for. 3754 // Create a conditional branch sharing the condition of the select. 3755 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3756 if (TrueWeight != FalseWeight) 3757 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3758 } 3759 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3760 // Neither of the selected blocks were successors, so this 3761 // terminator must be unreachable. 3762 new UnreachableInst(OldTerm->getContext(), OldTerm); 3763 } else { 3764 // One of the selected values was a successor, but the other wasn't. 3765 // Insert an unconditional branch to the one that was found; 3766 // the edge to the one that wasn't must be unreachable. 3767 if (!KeepEdge1) { 3768 // Only TrueBB was found. 3769 Builder.CreateBr(TrueBB); 3770 } else { 3771 // Only FalseBB was found. 3772 Builder.CreateBr(FalseBB); 3773 } 3774 } 3775 3776 EraseTerminatorAndDCECond(OldTerm); 3777 3778 if (DTU) { 3779 SmallVector<DominatorTree::UpdateType, 2> Updates; 3780 Updates.reserve(RemovedSuccessors.size()); 3781 for (auto *RemovedSuccessor : RemovedSuccessors) 3782 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3783 DTU->applyUpdates(Updates); 3784 } 3785 3786 return true; 3787 } 3788 3789 // Replaces 3790 // (switch (select cond, X, Y)) on constant X, Y 3791 // with a branch - conditional if X and Y lead to distinct BBs, 3792 // unconditional otherwise. 3793 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3794 SelectInst *Select) { 3795 // Check for constant integer values in the select. 3796 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3797 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3798 if (!TrueVal || !FalseVal) 3799 return false; 3800 3801 // Find the relevant condition and destinations. 3802 Value *Condition = Select->getCondition(); 3803 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3804 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3805 3806 // Get weight for TrueBB and FalseBB. 3807 uint32_t TrueWeight = 0, FalseWeight = 0; 3808 SmallVector<uint64_t, 8> Weights; 3809 bool HasWeights = HasBranchWeights(SI); 3810 if (HasWeights) { 3811 GetBranchWeights(SI, Weights); 3812 if (Weights.size() == 1 + SI->getNumCases()) { 3813 TrueWeight = 3814 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3815 FalseWeight = 3816 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3817 } 3818 } 3819 3820 // Perform the actual simplification. 3821 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3822 FalseWeight); 3823 } 3824 3825 // Replaces 3826 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3827 // blockaddress(@fn, BlockB))) 3828 // with 3829 // (br cond, BlockA, BlockB). 3830 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3831 SelectInst *SI) { 3832 // Check that both operands of the select are block addresses. 3833 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3834 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3835 if (!TBA || !FBA) 3836 return false; 3837 3838 // Extract the actual blocks. 3839 BasicBlock *TrueBB = TBA->getBasicBlock(); 3840 BasicBlock *FalseBB = FBA->getBasicBlock(); 3841 3842 // Perform the actual simplification. 3843 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3844 0); 3845 } 3846 3847 /// This is called when we find an icmp instruction 3848 /// (a seteq/setne with a constant) as the only instruction in a 3849 /// block that ends with an uncond branch. We are looking for a very specific 3850 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3851 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3852 /// default value goes to an uncond block with a seteq in it, we get something 3853 /// like: 3854 /// 3855 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3856 /// DEFAULT: 3857 /// %tmp = icmp eq i8 %A, 92 3858 /// br label %end 3859 /// end: 3860 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3861 /// 3862 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3863 /// the PHI, merging the third icmp into the switch. 3864 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3865 ICmpInst *ICI, IRBuilder<> &Builder) { 3866 BasicBlock *BB = ICI->getParent(); 3867 3868 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3869 // complex. 3870 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3871 return false; 3872 3873 Value *V = ICI->getOperand(0); 3874 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3875 3876 // The pattern we're looking for is where our only predecessor is a switch on 3877 // 'V' and this block is the default case for the switch. In this case we can 3878 // fold the compared value into the switch to simplify things. 3879 BasicBlock *Pred = BB->getSinglePredecessor(); 3880 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3881 return false; 3882 3883 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3884 if (SI->getCondition() != V) 3885 return false; 3886 3887 // If BB is reachable on a non-default case, then we simply know the value of 3888 // V in this block. Substitute it and constant fold the icmp instruction 3889 // away. 3890 if (SI->getDefaultDest() != BB) { 3891 ConstantInt *VVal = SI->findCaseDest(BB); 3892 assert(VVal && "Should have a unique destination value"); 3893 ICI->setOperand(0, VVal); 3894 3895 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3896 ICI->replaceAllUsesWith(V); 3897 ICI->eraseFromParent(); 3898 } 3899 // BB is now empty, so it is likely to simplify away. 3900 return requestResimplify(); 3901 } 3902 3903 // Ok, the block is reachable from the default dest. If the constant we're 3904 // comparing exists in one of the other edges, then we can constant fold ICI 3905 // and zap it. 3906 if (SI->findCaseValue(Cst) != SI->case_default()) { 3907 Value *V; 3908 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3909 V = ConstantInt::getFalse(BB->getContext()); 3910 else 3911 V = ConstantInt::getTrue(BB->getContext()); 3912 3913 ICI->replaceAllUsesWith(V); 3914 ICI->eraseFromParent(); 3915 // BB is now empty, so it is likely to simplify away. 3916 return requestResimplify(); 3917 } 3918 3919 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3920 // the block. 3921 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3922 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3923 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3924 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3925 return false; 3926 3927 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3928 // true in the PHI. 3929 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3930 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3931 3932 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3933 std::swap(DefaultCst, NewCst); 3934 3935 // Replace ICI (which is used by the PHI for the default value) with true or 3936 // false depending on if it is EQ or NE. 3937 ICI->replaceAllUsesWith(DefaultCst); 3938 ICI->eraseFromParent(); 3939 3940 SmallVector<DominatorTree::UpdateType, 2> Updates; 3941 3942 // Okay, the switch goes to this block on a default value. Add an edge from 3943 // the switch to the merge point on the compared value. 3944 BasicBlock *NewBB = 3945 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3946 { 3947 SwitchInstProfUpdateWrapper SIW(*SI); 3948 auto W0 = SIW.getSuccessorWeight(0); 3949 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3950 if (W0) { 3951 NewW = ((uint64_t(*W0) + 1) >> 1); 3952 SIW.setSuccessorWeight(0, *NewW); 3953 } 3954 SIW.addCase(Cst, NewBB, NewW); 3955 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 3956 } 3957 3958 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3959 Builder.SetInsertPoint(NewBB); 3960 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3961 Builder.CreateBr(SuccBlock); 3962 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 3963 PHIUse->addIncoming(NewCst, NewBB); 3964 if (DTU) 3965 DTU->applyUpdates(Updates); 3966 return true; 3967 } 3968 3969 /// The specified branch is a conditional branch. 3970 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3971 /// fold it into a switch instruction if so. 3972 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3973 IRBuilder<> &Builder, 3974 const DataLayout &DL) { 3975 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3976 if (!Cond) 3977 return false; 3978 3979 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3980 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3981 // 'setne's and'ed together, collect them. 3982 3983 // Try to gather values from a chain of and/or to be turned into a switch 3984 ConstantComparesGatherer ConstantCompare(Cond, DL); 3985 // Unpack the result 3986 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3987 Value *CompVal = ConstantCompare.CompValue; 3988 unsigned UsedICmps = ConstantCompare.UsedICmps; 3989 Value *ExtraCase = ConstantCompare.Extra; 3990 3991 // If we didn't have a multiply compared value, fail. 3992 if (!CompVal) 3993 return false; 3994 3995 // Avoid turning single icmps into a switch. 3996 if (UsedICmps <= 1) 3997 return false; 3998 3999 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4000 4001 // There might be duplicate constants in the list, which the switch 4002 // instruction can't handle, remove them now. 4003 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4004 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4005 4006 // If Extra was used, we require at least two switch values to do the 4007 // transformation. A switch with one value is just a conditional branch. 4008 if (ExtraCase && Values.size() < 2) 4009 return false; 4010 4011 // TODO: Preserve branch weight metadata, similarly to how 4012 // FoldValueComparisonIntoPredecessors preserves it. 4013 4014 // Figure out which block is which destination. 4015 BasicBlock *DefaultBB = BI->getSuccessor(1); 4016 BasicBlock *EdgeBB = BI->getSuccessor(0); 4017 if (!TrueWhenEqual) 4018 std::swap(DefaultBB, EdgeBB); 4019 4020 BasicBlock *BB = BI->getParent(); 4021 4022 // MSAN does not like undefs as branch condition which can be introduced 4023 // with "explicit branch". 4024 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4025 return false; 4026 4027 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4028 << " cases into SWITCH. BB is:\n" 4029 << *BB); 4030 4031 SmallVector<DominatorTree::UpdateType, 2> Updates; 4032 4033 // If there are any extra values that couldn't be folded into the switch 4034 // then we evaluate them with an explicit branch first. Split the block 4035 // right before the condbr to handle it. 4036 if (ExtraCase) { 4037 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4038 /*MSSAU=*/nullptr, "switch.early.test"); 4039 4040 // Remove the uncond branch added to the old block. 4041 Instruction *OldTI = BB->getTerminator(); 4042 Builder.SetInsertPoint(OldTI); 4043 4044 if (TrueWhenEqual) 4045 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4046 else 4047 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4048 4049 OldTI->eraseFromParent(); 4050 4051 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4052 4053 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4054 // for the edge we just added. 4055 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4056 4057 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4058 << "\nEXTRABB = " << *BB); 4059 BB = NewBB; 4060 } 4061 4062 Builder.SetInsertPoint(BI); 4063 // Convert pointer to int before we switch. 4064 if (CompVal->getType()->isPointerTy()) { 4065 CompVal = Builder.CreatePtrToInt( 4066 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4067 } 4068 4069 // Create the new switch instruction now. 4070 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4071 4072 // Add all of the 'cases' to the switch instruction. 4073 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4074 New->addCase(Values[i], EdgeBB); 4075 4076 // We added edges from PI to the EdgeBB. As such, if there were any 4077 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4078 // the number of edges added. 4079 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4080 PHINode *PN = cast<PHINode>(BBI); 4081 Value *InVal = PN->getIncomingValueForBlock(BB); 4082 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4083 PN->addIncoming(InVal, BB); 4084 } 4085 4086 // Erase the old branch instruction. 4087 EraseTerminatorAndDCECond(BI); 4088 if (DTU) 4089 DTU->applyUpdates(Updates); 4090 4091 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4092 return true; 4093 } 4094 4095 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4096 if (isa<PHINode>(RI->getValue())) 4097 return simplifyCommonResume(RI); 4098 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4099 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4100 // The resume must unwind the exception that caused control to branch here. 4101 return simplifySingleResume(RI); 4102 4103 return false; 4104 } 4105 4106 // Check if cleanup block is empty 4107 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4108 for (Instruction &I : R) { 4109 auto *II = dyn_cast<IntrinsicInst>(&I); 4110 if (!II) 4111 return false; 4112 4113 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4114 switch (IntrinsicID) { 4115 case Intrinsic::dbg_declare: 4116 case Intrinsic::dbg_value: 4117 case Intrinsic::dbg_label: 4118 case Intrinsic::lifetime_end: 4119 break; 4120 default: 4121 return false; 4122 } 4123 } 4124 return true; 4125 } 4126 4127 // Simplify resume that is shared by several landing pads (phi of landing pad). 4128 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4129 BasicBlock *BB = RI->getParent(); 4130 4131 // Check that there are no other instructions except for debug and lifetime 4132 // intrinsics between the phi's and resume instruction. 4133 if (!isCleanupBlockEmpty( 4134 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4135 return false; 4136 4137 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4138 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4139 4140 // Check incoming blocks to see if any of them are trivial. 4141 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4142 Idx++) { 4143 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4144 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4145 4146 // If the block has other successors, we can not delete it because 4147 // it has other dependents. 4148 if (IncomingBB->getUniqueSuccessor() != BB) 4149 continue; 4150 4151 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4152 // Not the landing pad that caused the control to branch here. 4153 if (IncomingValue != LandingPad) 4154 continue; 4155 4156 if (isCleanupBlockEmpty( 4157 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4158 TrivialUnwindBlocks.insert(IncomingBB); 4159 } 4160 4161 // If no trivial unwind blocks, don't do any simplifications. 4162 if (TrivialUnwindBlocks.empty()) 4163 return false; 4164 4165 // Turn all invokes that unwind here into calls. 4166 for (auto *TrivialBB : TrivialUnwindBlocks) { 4167 // Blocks that will be simplified should be removed from the phi node. 4168 // Note there could be multiple edges to the resume block, and we need 4169 // to remove them all. 4170 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4171 BB->removePredecessor(TrivialBB, true); 4172 4173 for (BasicBlock *Pred : 4174 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4175 removeUnwindEdge(Pred, DTU); 4176 ++NumInvokes; 4177 } 4178 4179 // In each SimplifyCFG run, only the current processed block can be erased. 4180 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4181 // of erasing TrivialBB, we only remove the branch to the common resume 4182 // block so that we can later erase the resume block since it has no 4183 // predecessors. 4184 TrivialBB->getTerminator()->eraseFromParent(); 4185 new UnreachableInst(RI->getContext(), TrivialBB); 4186 if (DTU) 4187 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4188 } 4189 4190 // Delete the resume block if all its predecessors have been removed. 4191 if (pred_empty(BB)) { 4192 if (DTU) 4193 DTU->deleteBB(BB); 4194 else 4195 BB->eraseFromParent(); 4196 } 4197 4198 return !TrivialUnwindBlocks.empty(); 4199 } 4200 4201 // Simplify resume that is only used by a single (non-phi) landing pad. 4202 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4203 BasicBlock *BB = RI->getParent(); 4204 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4205 assert(RI->getValue() == LPInst && 4206 "Resume must unwind the exception that caused control to here"); 4207 4208 // Check that there are no other instructions except for debug intrinsics. 4209 if (!isCleanupBlockEmpty( 4210 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4211 return false; 4212 4213 // Turn all invokes that unwind here into calls and delete the basic block. 4214 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4215 removeUnwindEdge(Pred, DTU); 4216 ++NumInvokes; 4217 } 4218 4219 // The landingpad is now unreachable. Zap it. 4220 if (DTU) 4221 DTU->deleteBB(BB); 4222 else 4223 BB->eraseFromParent(); 4224 return true; 4225 } 4226 4227 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4228 // If this is a trivial cleanup pad that executes no instructions, it can be 4229 // eliminated. If the cleanup pad continues to the caller, any predecessor 4230 // that is an EH pad will be updated to continue to the caller and any 4231 // predecessor that terminates with an invoke instruction will have its invoke 4232 // instruction converted to a call instruction. If the cleanup pad being 4233 // simplified does not continue to the caller, each predecessor will be 4234 // updated to continue to the unwind destination of the cleanup pad being 4235 // simplified. 4236 BasicBlock *BB = RI->getParent(); 4237 CleanupPadInst *CPInst = RI->getCleanupPad(); 4238 if (CPInst->getParent() != BB) 4239 // This isn't an empty cleanup. 4240 return false; 4241 4242 // We cannot kill the pad if it has multiple uses. This typically arises 4243 // from unreachable basic blocks. 4244 if (!CPInst->hasOneUse()) 4245 return false; 4246 4247 // Check that there are no other instructions except for benign intrinsics. 4248 if (!isCleanupBlockEmpty( 4249 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4250 return false; 4251 4252 // If the cleanup return we are simplifying unwinds to the caller, this will 4253 // set UnwindDest to nullptr. 4254 BasicBlock *UnwindDest = RI->getUnwindDest(); 4255 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4256 4257 // We're about to remove BB from the control flow. Before we do, sink any 4258 // PHINodes into the unwind destination. Doing this before changing the 4259 // control flow avoids some potentially slow checks, since we can currently 4260 // be certain that UnwindDest and BB have no common predecessors (since they 4261 // are both EH pads). 4262 if (UnwindDest) { 4263 // First, go through the PHI nodes in UnwindDest and update any nodes that 4264 // reference the block we are removing 4265 for (BasicBlock::iterator I = UnwindDest->begin(), 4266 IE = DestEHPad->getIterator(); 4267 I != IE; ++I) { 4268 PHINode *DestPN = cast<PHINode>(I); 4269 4270 int Idx = DestPN->getBasicBlockIndex(BB); 4271 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4272 assert(Idx != -1); 4273 // This PHI node has an incoming value that corresponds to a control 4274 // path through the cleanup pad we are removing. If the incoming 4275 // value is in the cleanup pad, it must be a PHINode (because we 4276 // verified above that the block is otherwise empty). Otherwise, the 4277 // value is either a constant or a value that dominates the cleanup 4278 // pad being removed. 4279 // 4280 // Because BB and UnwindDest are both EH pads, all of their 4281 // predecessors must unwind to these blocks, and since no instruction 4282 // can have multiple unwind destinations, there will be no overlap in 4283 // incoming blocks between SrcPN and DestPN. 4284 Value *SrcVal = DestPN->getIncomingValue(Idx); 4285 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4286 4287 // Remove the entry for the block we are deleting. 4288 DestPN->removeIncomingValue(Idx, false); 4289 4290 if (SrcPN && SrcPN->getParent() == BB) { 4291 // If the incoming value was a PHI node in the cleanup pad we are 4292 // removing, we need to merge that PHI node's incoming values into 4293 // DestPN. 4294 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4295 SrcIdx != SrcE; ++SrcIdx) { 4296 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4297 SrcPN->getIncomingBlock(SrcIdx)); 4298 } 4299 } else { 4300 // Otherwise, the incoming value came from above BB and 4301 // so we can just reuse it. We must associate all of BB's 4302 // predecessors with this value. 4303 for (auto *pred : predecessors(BB)) { 4304 DestPN->addIncoming(SrcVal, pred); 4305 } 4306 } 4307 } 4308 4309 // Sink any remaining PHI nodes directly into UnwindDest. 4310 Instruction *InsertPt = DestEHPad; 4311 for (BasicBlock::iterator I = BB->begin(), 4312 IE = BB->getFirstNonPHI()->getIterator(); 4313 I != IE;) { 4314 // The iterator must be incremented here because the instructions are 4315 // being moved to another block. 4316 PHINode *PN = cast<PHINode>(I++); 4317 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4318 // If the PHI node has no uses or all of its uses are in this basic 4319 // block (meaning they are debug or lifetime intrinsics), just leave 4320 // it. It will be erased when we erase BB below. 4321 continue; 4322 4323 // Otherwise, sink this PHI node into UnwindDest. 4324 // Any predecessors to UnwindDest which are not already represented 4325 // must be back edges which inherit the value from the path through 4326 // BB. In this case, the PHI value must reference itself. 4327 for (auto *pred : predecessors(UnwindDest)) 4328 if (pred != BB) 4329 PN->addIncoming(PN, pred); 4330 PN->moveBefore(InsertPt); 4331 } 4332 } 4333 4334 std::vector<DominatorTree::UpdateType> Updates; 4335 4336 // We use make_early_inc_range here because we may remove some predecessors. 4337 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4338 if (UnwindDest == nullptr) { 4339 if (DTU) 4340 DTU->applyUpdates(Updates); 4341 Updates.clear(); 4342 removeUnwindEdge(PredBB, DTU); 4343 ++NumInvokes; 4344 } else { 4345 Instruction *TI = PredBB->getTerminator(); 4346 TI->replaceUsesOfWith(BB, UnwindDest); 4347 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4348 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4349 } 4350 } 4351 4352 if (DTU) { 4353 DTU->applyUpdates(Updates); 4354 DTU->deleteBB(BB); 4355 } else 4356 // The cleanup pad is now unreachable. Zap it. 4357 BB->eraseFromParent(); 4358 4359 return true; 4360 } 4361 4362 // Try to merge two cleanuppads together. 4363 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4364 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4365 // with. 4366 BasicBlock *UnwindDest = RI->getUnwindDest(); 4367 if (!UnwindDest) 4368 return false; 4369 4370 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4371 // be safe to merge without code duplication. 4372 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4373 return false; 4374 4375 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4376 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4377 if (!SuccessorCleanupPad) 4378 return false; 4379 4380 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4381 // Replace any uses of the successor cleanupad with the predecessor pad 4382 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4383 // funclet bundle operands. 4384 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4385 // Remove the old cleanuppad. 4386 SuccessorCleanupPad->eraseFromParent(); 4387 // Now, we simply replace the cleanupret with a branch to the unwind 4388 // destination. 4389 BranchInst::Create(UnwindDest, RI->getParent()); 4390 RI->eraseFromParent(); 4391 4392 return true; 4393 } 4394 4395 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4396 // It is possible to transiantly have an undef cleanuppad operand because we 4397 // have deleted some, but not all, dead blocks. 4398 // Eventually, this block will be deleted. 4399 if (isa<UndefValue>(RI->getOperand(0))) 4400 return false; 4401 4402 if (mergeCleanupPad(RI)) 4403 return true; 4404 4405 if (removeEmptyCleanup(RI, DTU)) 4406 return true; 4407 4408 return false; 4409 } 4410 4411 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4412 BasicBlock *BB = RI->getParent(); 4413 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4414 return false; 4415 4416 // Find predecessors that end with branches. 4417 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4418 SmallVector<BranchInst *, 8> CondBranchPreds; 4419 for (BasicBlock *P : predecessors(BB)) { 4420 Instruction *PTI = P->getTerminator(); 4421 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4422 if (BI->isUnconditional()) 4423 UncondBranchPreds.push_back(P); 4424 else 4425 CondBranchPreds.push_back(BI); 4426 } 4427 } 4428 4429 // If we found some, do the transformation! 4430 if (!UncondBranchPreds.empty() && DupRet) { 4431 while (!UncondBranchPreds.empty()) { 4432 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4433 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4434 << "INTO UNCOND BRANCH PRED: " << *Pred); 4435 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4436 } 4437 4438 // If we eliminated all predecessors of the block, delete the block now. 4439 if (pred_empty(BB)) { 4440 // We know there are no successors, so just nuke the block. 4441 if (DTU) 4442 DTU->deleteBB(BB); 4443 else 4444 BB->eraseFromParent(); 4445 } 4446 4447 return true; 4448 } 4449 4450 // Check out all of the conditional branches going to this return 4451 // instruction. If any of them just select between returns, change the 4452 // branch itself into a select/return pair. 4453 while (!CondBranchPreds.empty()) { 4454 BranchInst *BI = CondBranchPreds.pop_back_val(); 4455 4456 // Check to see if the non-BB successor is also a return block. 4457 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4458 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4459 SimplifyCondBranchToTwoReturns(BI, Builder)) 4460 return true; 4461 } 4462 return false; 4463 } 4464 4465 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4466 BasicBlock *BB = UI->getParent(); 4467 4468 bool Changed = false; 4469 4470 // If there are any instructions immediately before the unreachable that can 4471 // be removed, do so. 4472 while (UI->getIterator() != BB->begin()) { 4473 BasicBlock::iterator BBI = UI->getIterator(); 4474 --BBI; 4475 // Do not delete instructions that can have side effects which might cause 4476 // the unreachable to not be reachable; specifically, calls and volatile 4477 // operations may have this effect. 4478 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4479 break; 4480 4481 if (BBI->mayHaveSideEffects()) { 4482 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4483 if (SI->isVolatile()) 4484 break; 4485 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4486 if (LI->isVolatile()) 4487 break; 4488 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4489 if (RMWI->isVolatile()) 4490 break; 4491 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4492 if (CXI->isVolatile()) 4493 break; 4494 } else if (isa<CatchPadInst>(BBI)) { 4495 // A catchpad may invoke exception object constructors and such, which 4496 // in some languages can be arbitrary code, so be conservative by 4497 // default. 4498 // For CoreCLR, it just involves a type test, so can be removed. 4499 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4500 EHPersonality::CoreCLR) 4501 break; 4502 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4503 !isa<LandingPadInst>(BBI)) { 4504 break; 4505 } 4506 // Note that deleting LandingPad's here is in fact okay, although it 4507 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4508 // all the predecessors of this block will be the unwind edges of Invokes, 4509 // and we can therefore guarantee this block will be erased. 4510 } 4511 4512 // Delete this instruction (any uses are guaranteed to be dead) 4513 if (!BBI->use_empty()) 4514 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4515 BBI->eraseFromParent(); 4516 Changed = true; 4517 } 4518 4519 // If the unreachable instruction is the first in the block, take a gander 4520 // at all of the predecessors of this instruction, and simplify them. 4521 if (&BB->front() != UI) 4522 return Changed; 4523 4524 std::vector<DominatorTree::UpdateType> Updates; 4525 4526 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4527 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4528 auto *Predecessor = Preds[i]; 4529 Instruction *TI = Predecessor->getTerminator(); 4530 IRBuilder<> Builder(TI); 4531 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4532 // We could either have a proper unconditional branch, 4533 // or a degenerate conditional branch with matching destinations. 4534 if (all_of(BI->successors(), 4535 [BB](auto *Successor) { return Successor == BB; })) { 4536 new UnreachableInst(TI->getContext(), TI); 4537 TI->eraseFromParent(); 4538 Changed = true; 4539 } else { 4540 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4541 Value* Cond = BI->getCondition(); 4542 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4543 "The destinations are guaranteed to be different here."); 4544 if (BI->getSuccessor(0) == BB) { 4545 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4546 Builder.CreateBr(BI->getSuccessor(1)); 4547 } else { 4548 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4549 Builder.CreateAssumption(Cond); 4550 Builder.CreateBr(BI->getSuccessor(0)); 4551 } 4552 EraseTerminatorAndDCECond(BI); 4553 Changed = true; 4554 } 4555 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4556 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4557 SwitchInstProfUpdateWrapper SU(*SI); 4558 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4559 if (i->getCaseSuccessor() != BB) { 4560 ++i; 4561 continue; 4562 } 4563 BB->removePredecessor(SU->getParent()); 4564 i = SU.removeCase(i); 4565 e = SU->case_end(); 4566 Changed = true; 4567 } 4568 // Note that the default destination can't be removed! 4569 if (SI->getDefaultDest() != BB) 4570 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4571 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4572 if (II->getUnwindDest() == BB) { 4573 if (DTU) 4574 DTU->applyUpdates(Updates); 4575 Updates.clear(); 4576 removeUnwindEdge(TI->getParent(), DTU); 4577 Changed = true; 4578 } 4579 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4580 if (CSI->getUnwindDest() == BB) { 4581 if (DTU) 4582 DTU->applyUpdates(Updates); 4583 Updates.clear(); 4584 removeUnwindEdge(TI->getParent(), DTU); 4585 Changed = true; 4586 continue; 4587 } 4588 4589 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4590 E = CSI->handler_end(); 4591 I != E; ++I) { 4592 if (*I == BB) { 4593 CSI->removeHandler(I); 4594 --I; 4595 --E; 4596 Changed = true; 4597 } 4598 } 4599 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4600 if (CSI->getNumHandlers() == 0) { 4601 if (CSI->hasUnwindDest()) { 4602 // Redirect all predecessors of the block containing CatchSwitchInst 4603 // to instead branch to the CatchSwitchInst's unwind destination. 4604 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4605 Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor, 4606 CSI->getUnwindDest()}); 4607 Updates.push_back( 4608 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor}); 4609 } 4610 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4611 } else { 4612 // Rewrite all preds to unwind to caller (or from invoke to call). 4613 if (DTU) 4614 DTU->applyUpdates(Updates); 4615 Updates.clear(); 4616 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4617 for (BasicBlock *EHPred : EHPreds) 4618 removeUnwindEdge(EHPred, DTU); 4619 } 4620 // The catchswitch is no longer reachable. 4621 new UnreachableInst(CSI->getContext(), CSI); 4622 CSI->eraseFromParent(); 4623 Changed = true; 4624 } 4625 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4626 (void)CRI; 4627 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4628 "Expected to always have an unwind to BB."); 4629 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4630 new UnreachableInst(TI->getContext(), TI); 4631 TI->eraseFromParent(); 4632 Changed = true; 4633 } 4634 } 4635 4636 if (DTU) 4637 DTU->applyUpdates(Updates); 4638 4639 // If this block is now dead, remove it. 4640 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4641 // We know there are no successors, so just nuke the block. 4642 if (DTU) 4643 DTU->deleteBB(BB); 4644 else 4645 BB->eraseFromParent(); 4646 return true; 4647 } 4648 4649 return Changed; 4650 } 4651 4652 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4653 assert(Cases.size() >= 1); 4654 4655 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4656 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4657 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4658 return false; 4659 } 4660 return true; 4661 } 4662 4663 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4664 DomTreeUpdater *DTU) { 4665 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4666 auto *BB = Switch->getParent(); 4667 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4668 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4669 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4670 Switch->setDefaultDest(&*NewDefaultBlock); 4671 if (DTU) 4672 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4673 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4674 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4675 SmallVector<DominatorTree::UpdateType, 2> Updates; 4676 for (auto *Successor : successors(NewDefaultBlock)) 4677 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4678 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4679 new UnreachableInst(Switch->getContext(), NewTerminator); 4680 EraseTerminatorAndDCECond(NewTerminator); 4681 if (DTU) 4682 DTU->applyUpdates(Updates); 4683 } 4684 4685 /// Turn a switch with two reachable destinations into an integer range 4686 /// comparison and branch. 4687 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4688 IRBuilder<> &Builder) { 4689 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4690 4691 bool HasDefault = 4692 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4693 4694 auto *BB = SI->getParent(); 4695 4696 // Partition the cases into two sets with different destinations. 4697 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4698 BasicBlock *DestB = nullptr; 4699 SmallVector<ConstantInt *, 16> CasesA; 4700 SmallVector<ConstantInt *, 16> CasesB; 4701 4702 for (auto Case : SI->cases()) { 4703 BasicBlock *Dest = Case.getCaseSuccessor(); 4704 if (!DestA) 4705 DestA = Dest; 4706 if (Dest == DestA) { 4707 CasesA.push_back(Case.getCaseValue()); 4708 continue; 4709 } 4710 if (!DestB) 4711 DestB = Dest; 4712 if (Dest == DestB) { 4713 CasesB.push_back(Case.getCaseValue()); 4714 continue; 4715 } 4716 return false; // More than two destinations. 4717 } 4718 4719 assert(DestA && DestB && 4720 "Single-destination switch should have been folded."); 4721 assert(DestA != DestB); 4722 assert(DestB != SI->getDefaultDest()); 4723 assert(!CasesB.empty() && "There must be non-default cases."); 4724 assert(!CasesA.empty() || HasDefault); 4725 4726 // Figure out if one of the sets of cases form a contiguous range. 4727 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4728 BasicBlock *ContiguousDest = nullptr; 4729 BasicBlock *OtherDest = nullptr; 4730 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4731 ContiguousCases = &CasesA; 4732 ContiguousDest = DestA; 4733 OtherDest = DestB; 4734 } else if (CasesAreContiguous(CasesB)) { 4735 ContiguousCases = &CasesB; 4736 ContiguousDest = DestB; 4737 OtherDest = DestA; 4738 } else 4739 return false; 4740 4741 // Start building the compare and branch. 4742 4743 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4744 Constant *NumCases = 4745 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4746 4747 Value *Sub = SI->getCondition(); 4748 if (!Offset->isNullValue()) 4749 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4750 4751 Value *Cmp; 4752 // If NumCases overflowed, then all possible values jump to the successor. 4753 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4754 Cmp = ConstantInt::getTrue(SI->getContext()); 4755 else 4756 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4757 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4758 4759 // Update weight for the newly-created conditional branch. 4760 if (HasBranchWeights(SI)) { 4761 SmallVector<uint64_t, 8> Weights; 4762 GetBranchWeights(SI, Weights); 4763 if (Weights.size() == 1 + SI->getNumCases()) { 4764 uint64_t TrueWeight = 0; 4765 uint64_t FalseWeight = 0; 4766 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4767 if (SI->getSuccessor(I) == ContiguousDest) 4768 TrueWeight += Weights[I]; 4769 else 4770 FalseWeight += Weights[I]; 4771 } 4772 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4773 TrueWeight /= 2; 4774 FalseWeight /= 2; 4775 } 4776 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4777 } 4778 } 4779 4780 // Prune obsolete incoming values off the successors' PHI nodes. 4781 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4782 unsigned PreviousEdges = ContiguousCases->size(); 4783 if (ContiguousDest == SI->getDefaultDest()) 4784 ++PreviousEdges; 4785 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4786 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4787 } 4788 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4789 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4790 if (OtherDest == SI->getDefaultDest()) 4791 ++PreviousEdges; 4792 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4793 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4794 } 4795 4796 // Clean up the default block - it may have phis or other instructions before 4797 // the unreachable terminator. 4798 if (!HasDefault) 4799 createUnreachableSwitchDefault(SI, DTU); 4800 4801 auto *UnreachableDefault = SI->getDefaultDest(); 4802 4803 // Drop the switch. 4804 SI->eraseFromParent(); 4805 4806 if (!HasDefault && DTU) 4807 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4808 4809 return true; 4810 } 4811 4812 /// Compute masked bits for the condition of a switch 4813 /// and use it to remove dead cases. 4814 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 4815 AssumptionCache *AC, 4816 const DataLayout &DL) { 4817 Value *Cond = SI->getCondition(); 4818 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4819 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4820 4821 // We can also eliminate cases by determining that their values are outside of 4822 // the limited range of the condition based on how many significant (non-sign) 4823 // bits are in the condition value. 4824 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4825 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4826 4827 // Gather dead cases. 4828 SmallVector<ConstantInt *, 8> DeadCases; 4829 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 4830 for (auto &Case : SI->cases()) { 4831 auto *Successor = Case.getCaseSuccessor(); 4832 ++NumPerSuccessorCases[Successor]; 4833 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4834 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4835 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4836 DeadCases.push_back(Case.getCaseValue()); 4837 --NumPerSuccessorCases[Successor]; 4838 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4839 << " is dead.\n"); 4840 } 4841 } 4842 4843 // If we can prove that the cases must cover all possible values, the 4844 // default destination becomes dead and we can remove it. If we know some 4845 // of the bits in the value, we can use that to more precisely compute the 4846 // number of possible unique case values. 4847 bool HasDefault = 4848 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4849 const unsigned NumUnknownBits = 4850 Bits - (Known.Zero | Known.One).countPopulation(); 4851 assert(NumUnknownBits <= Bits); 4852 if (HasDefault && DeadCases.empty() && 4853 NumUnknownBits < 64 /* avoid overflow */ && 4854 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4855 createUnreachableSwitchDefault(SI, DTU); 4856 return true; 4857 } 4858 4859 if (DeadCases.empty()) 4860 return false; 4861 4862 SwitchInstProfUpdateWrapper SIW(*SI); 4863 for (ConstantInt *DeadCase : DeadCases) { 4864 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4865 assert(CaseI != SI->case_default() && 4866 "Case was not found. Probably mistake in DeadCases forming."); 4867 // Prune unused values from PHI nodes. 4868 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4869 SIW.removeCase(CaseI); 4870 } 4871 4872 std::vector<DominatorTree::UpdateType> Updates; 4873 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 4874 if (I.second == 0) 4875 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 4876 if (DTU) 4877 DTU->applyUpdates(Updates); 4878 4879 return true; 4880 } 4881 4882 /// If BB would be eligible for simplification by 4883 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4884 /// by an unconditional branch), look at the phi node for BB in the successor 4885 /// block and see if the incoming value is equal to CaseValue. If so, return 4886 /// the phi node, and set PhiIndex to BB's index in the phi node. 4887 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4888 BasicBlock *BB, int *PhiIndex) { 4889 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4890 return nullptr; // BB must be empty to be a candidate for simplification. 4891 if (!BB->getSinglePredecessor()) 4892 return nullptr; // BB must be dominated by the switch. 4893 4894 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4895 if (!Branch || !Branch->isUnconditional()) 4896 return nullptr; // Terminator must be unconditional branch. 4897 4898 BasicBlock *Succ = Branch->getSuccessor(0); 4899 4900 for (PHINode &PHI : Succ->phis()) { 4901 int Idx = PHI.getBasicBlockIndex(BB); 4902 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4903 4904 Value *InValue = PHI.getIncomingValue(Idx); 4905 if (InValue != CaseValue) 4906 continue; 4907 4908 *PhiIndex = Idx; 4909 return &PHI; 4910 } 4911 4912 return nullptr; 4913 } 4914 4915 /// Try to forward the condition of a switch instruction to a phi node 4916 /// dominated by the switch, if that would mean that some of the destination 4917 /// blocks of the switch can be folded away. Return true if a change is made. 4918 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4919 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4920 4921 ForwardingNodesMap ForwardingNodes; 4922 BasicBlock *SwitchBlock = SI->getParent(); 4923 bool Changed = false; 4924 for (auto &Case : SI->cases()) { 4925 ConstantInt *CaseValue = Case.getCaseValue(); 4926 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4927 4928 // Replace phi operands in successor blocks that are using the constant case 4929 // value rather than the switch condition variable: 4930 // switchbb: 4931 // switch i32 %x, label %default [ 4932 // i32 17, label %succ 4933 // ... 4934 // succ: 4935 // %r = phi i32 ... [ 17, %switchbb ] ... 4936 // --> 4937 // %r = phi i32 ... [ %x, %switchbb ] ... 4938 4939 for (PHINode &Phi : CaseDest->phis()) { 4940 // This only works if there is exactly 1 incoming edge from the switch to 4941 // a phi. If there is >1, that means multiple cases of the switch map to 1 4942 // value in the phi, and that phi value is not the switch condition. Thus, 4943 // this transform would not make sense (the phi would be invalid because 4944 // a phi can't have different incoming values from the same block). 4945 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4946 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4947 count(Phi.blocks(), SwitchBlock) == 1) { 4948 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4949 Changed = true; 4950 } 4951 } 4952 4953 // Collect phi nodes that are indirectly using this switch's case constants. 4954 int PhiIdx; 4955 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4956 ForwardingNodes[Phi].push_back(PhiIdx); 4957 } 4958 4959 for (auto &ForwardingNode : ForwardingNodes) { 4960 PHINode *Phi = ForwardingNode.first; 4961 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4962 if (Indexes.size() < 2) 4963 continue; 4964 4965 for (int Index : Indexes) 4966 Phi->setIncomingValue(Index, SI->getCondition()); 4967 Changed = true; 4968 } 4969 4970 return Changed; 4971 } 4972 4973 /// Return true if the backend will be able to handle 4974 /// initializing an array of constants like C. 4975 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4976 if (C->isThreadDependent()) 4977 return false; 4978 if (C->isDLLImportDependent()) 4979 return false; 4980 4981 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4982 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4983 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4984 return false; 4985 4986 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4987 if (!CE->isGEPWithNoNotionalOverIndexing()) 4988 return false; 4989 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4990 return false; 4991 } 4992 4993 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4994 return false; 4995 4996 return true; 4997 } 4998 4999 /// If V is a Constant, return it. Otherwise, try to look up 5000 /// its constant value in ConstantPool, returning 0 if it's not there. 5001 static Constant * 5002 LookupConstant(Value *V, 5003 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5004 if (Constant *C = dyn_cast<Constant>(V)) 5005 return C; 5006 return ConstantPool.lookup(V); 5007 } 5008 5009 /// Try to fold instruction I into a constant. This works for 5010 /// simple instructions such as binary operations where both operands are 5011 /// constant or can be replaced by constants from the ConstantPool. Returns the 5012 /// resulting constant on success, 0 otherwise. 5013 static Constant * 5014 ConstantFold(Instruction *I, const DataLayout &DL, 5015 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5016 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5017 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5018 if (!A) 5019 return nullptr; 5020 if (A->isAllOnesValue()) 5021 return LookupConstant(Select->getTrueValue(), ConstantPool); 5022 if (A->isNullValue()) 5023 return LookupConstant(Select->getFalseValue(), ConstantPool); 5024 return nullptr; 5025 } 5026 5027 SmallVector<Constant *, 4> COps; 5028 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5029 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5030 COps.push_back(A); 5031 else 5032 return nullptr; 5033 } 5034 5035 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5036 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5037 COps[1], DL); 5038 } 5039 5040 return ConstantFoldInstOperands(I, COps, DL); 5041 } 5042 5043 /// Try to determine the resulting constant values in phi nodes 5044 /// at the common destination basic block, *CommonDest, for one of the case 5045 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5046 /// case), of a switch instruction SI. 5047 static bool 5048 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5049 BasicBlock **CommonDest, 5050 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5051 const DataLayout &DL, const TargetTransformInfo &TTI) { 5052 // The block from which we enter the common destination. 5053 BasicBlock *Pred = SI->getParent(); 5054 5055 // If CaseDest is empty except for some side-effect free instructions through 5056 // which we can constant-propagate the CaseVal, continue to its successor. 5057 SmallDenseMap<Value *, Constant *> ConstantPool; 5058 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5059 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5060 if (I.isTerminator()) { 5061 // If the terminator is a simple branch, continue to the next block. 5062 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5063 return false; 5064 Pred = CaseDest; 5065 CaseDest = I.getSuccessor(0); 5066 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5067 // Instruction is side-effect free and constant. 5068 5069 // If the instruction has uses outside this block or a phi node slot for 5070 // the block, it is not safe to bypass the instruction since it would then 5071 // no longer dominate all its uses. 5072 for (auto &Use : I.uses()) { 5073 User *User = Use.getUser(); 5074 if (Instruction *I = dyn_cast<Instruction>(User)) 5075 if (I->getParent() == CaseDest) 5076 continue; 5077 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5078 if (Phi->getIncomingBlock(Use) == CaseDest) 5079 continue; 5080 return false; 5081 } 5082 5083 ConstantPool.insert(std::make_pair(&I, C)); 5084 } else { 5085 break; 5086 } 5087 } 5088 5089 // If we did not have a CommonDest before, use the current one. 5090 if (!*CommonDest) 5091 *CommonDest = CaseDest; 5092 // If the destination isn't the common one, abort. 5093 if (CaseDest != *CommonDest) 5094 return false; 5095 5096 // Get the values for this case from phi nodes in the destination block. 5097 for (PHINode &PHI : (*CommonDest)->phis()) { 5098 int Idx = PHI.getBasicBlockIndex(Pred); 5099 if (Idx == -1) 5100 continue; 5101 5102 Constant *ConstVal = 5103 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5104 if (!ConstVal) 5105 return false; 5106 5107 // Be conservative about which kinds of constants we support. 5108 if (!ValidLookupTableConstant(ConstVal, TTI)) 5109 return false; 5110 5111 Res.push_back(std::make_pair(&PHI, ConstVal)); 5112 } 5113 5114 return Res.size() > 0; 5115 } 5116 5117 // Helper function used to add CaseVal to the list of cases that generate 5118 // Result. Returns the updated number of cases that generate this result. 5119 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5120 SwitchCaseResultVectorTy &UniqueResults, 5121 Constant *Result) { 5122 for (auto &I : UniqueResults) { 5123 if (I.first == Result) { 5124 I.second.push_back(CaseVal); 5125 return I.second.size(); 5126 } 5127 } 5128 UniqueResults.push_back( 5129 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5130 return 1; 5131 } 5132 5133 // Helper function that initializes a map containing 5134 // results for the PHI node of the common destination block for a switch 5135 // instruction. Returns false if multiple PHI nodes have been found or if 5136 // there is not a common destination block for the switch. 5137 static bool 5138 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5139 SwitchCaseResultVectorTy &UniqueResults, 5140 Constant *&DefaultResult, const DataLayout &DL, 5141 const TargetTransformInfo &TTI, 5142 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5143 for (auto &I : SI->cases()) { 5144 ConstantInt *CaseVal = I.getCaseValue(); 5145 5146 // Resulting value at phi nodes for this case value. 5147 SwitchCaseResultsTy Results; 5148 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5149 DL, TTI)) 5150 return false; 5151 5152 // Only one value per case is permitted. 5153 if (Results.size() > 1) 5154 return false; 5155 5156 // Add the case->result mapping to UniqueResults. 5157 const uintptr_t NumCasesForResult = 5158 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5159 5160 // Early out if there are too many cases for this result. 5161 if (NumCasesForResult > MaxCasesPerResult) 5162 return false; 5163 5164 // Early out if there are too many unique results. 5165 if (UniqueResults.size() > MaxUniqueResults) 5166 return false; 5167 5168 // Check the PHI consistency. 5169 if (!PHI) 5170 PHI = Results[0].first; 5171 else if (PHI != Results[0].first) 5172 return false; 5173 } 5174 // Find the default result value. 5175 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5176 BasicBlock *DefaultDest = SI->getDefaultDest(); 5177 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5178 DL, TTI); 5179 // If the default value is not found abort unless the default destination 5180 // is unreachable. 5181 DefaultResult = 5182 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5183 if ((!DefaultResult && 5184 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5185 return false; 5186 5187 return true; 5188 } 5189 5190 // Helper function that checks if it is possible to transform a switch with only 5191 // two cases (or two cases + default) that produces a result into a select. 5192 // Example: 5193 // switch (a) { 5194 // case 10: %0 = icmp eq i32 %a, 10 5195 // return 10; %1 = select i1 %0, i32 10, i32 4 5196 // case 20: ----> %2 = icmp eq i32 %a, 20 5197 // return 2; %3 = select i1 %2, i32 2, i32 %1 5198 // default: 5199 // return 4; 5200 // } 5201 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5202 Constant *DefaultResult, Value *Condition, 5203 IRBuilder<> &Builder) { 5204 assert(ResultVector.size() == 2 && 5205 "We should have exactly two unique results at this point"); 5206 // If we are selecting between only two cases transform into a simple 5207 // select or a two-way select if default is possible. 5208 if (ResultVector[0].second.size() == 1 && 5209 ResultVector[1].second.size() == 1) { 5210 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5211 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5212 5213 bool DefaultCanTrigger = DefaultResult; 5214 Value *SelectValue = ResultVector[1].first; 5215 if (DefaultCanTrigger) { 5216 Value *const ValueCompare = 5217 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5218 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5219 DefaultResult, "switch.select"); 5220 } 5221 Value *const ValueCompare = 5222 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5223 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5224 SelectValue, "switch.select"); 5225 } 5226 5227 return nullptr; 5228 } 5229 5230 // Helper function to cleanup a switch instruction that has been converted into 5231 // a select, fixing up PHI nodes and basic blocks. 5232 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5233 Value *SelectValue, 5234 IRBuilder<> &Builder, 5235 DomTreeUpdater *DTU) { 5236 std::vector<DominatorTree::UpdateType> Updates; 5237 5238 BasicBlock *SelectBB = SI->getParent(); 5239 BasicBlock *DestBB = PHI->getParent(); 5240 5241 if (!is_contained(predecessors(DestBB), SelectBB)) 5242 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5243 Builder.CreateBr(DestBB); 5244 5245 // Remove the switch. 5246 5247 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5248 PHI->removeIncomingValue(SelectBB); 5249 PHI->addIncoming(SelectValue, SelectBB); 5250 5251 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5252 BasicBlock *Succ = SI->getSuccessor(i); 5253 5254 if (Succ == DestBB) 5255 continue; 5256 Succ->removePredecessor(SelectBB); 5257 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5258 } 5259 SI->eraseFromParent(); 5260 if (DTU) 5261 DTU->applyUpdates(Updates); 5262 } 5263 5264 /// If the switch is only used to initialize one or more 5265 /// phi nodes in a common successor block with only two different 5266 /// constant values, replace the switch with select. 5267 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5268 DomTreeUpdater *DTU, const DataLayout &DL, 5269 const TargetTransformInfo &TTI) { 5270 Value *const Cond = SI->getCondition(); 5271 PHINode *PHI = nullptr; 5272 BasicBlock *CommonDest = nullptr; 5273 Constant *DefaultResult; 5274 SwitchCaseResultVectorTy UniqueResults; 5275 // Collect all the cases that will deliver the same value from the switch. 5276 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5277 DL, TTI, 2, 1)) 5278 return false; 5279 // Selects choose between maximum two values. 5280 if (UniqueResults.size() != 2) 5281 return false; 5282 assert(PHI != nullptr && "PHI for value select not found"); 5283 5284 Builder.SetInsertPoint(SI); 5285 Value *SelectValue = 5286 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5287 if (SelectValue) { 5288 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5289 return true; 5290 } 5291 // The switch couldn't be converted into a select. 5292 return false; 5293 } 5294 5295 namespace { 5296 5297 /// This class represents a lookup table that can be used to replace a switch. 5298 class SwitchLookupTable { 5299 public: 5300 /// Create a lookup table to use as a switch replacement with the contents 5301 /// of Values, using DefaultValue to fill any holes in the table. 5302 SwitchLookupTable( 5303 Module &M, uint64_t TableSize, ConstantInt *Offset, 5304 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5305 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5306 5307 /// Build instructions with Builder to retrieve the value at 5308 /// the position given by Index in the lookup table. 5309 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5310 5311 /// Return true if a table with TableSize elements of 5312 /// type ElementType would fit in a target-legal register. 5313 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5314 Type *ElementType); 5315 5316 private: 5317 // Depending on the contents of the table, it can be represented in 5318 // different ways. 5319 enum { 5320 // For tables where each element contains the same value, we just have to 5321 // store that single value and return it for each lookup. 5322 SingleValueKind, 5323 5324 // For tables where there is a linear relationship between table index 5325 // and values. We calculate the result with a simple multiplication 5326 // and addition instead of a table lookup. 5327 LinearMapKind, 5328 5329 // For small tables with integer elements, we can pack them into a bitmap 5330 // that fits into a target-legal register. Values are retrieved by 5331 // shift and mask operations. 5332 BitMapKind, 5333 5334 // The table is stored as an array of values. Values are retrieved by load 5335 // instructions from the table. 5336 ArrayKind 5337 } Kind; 5338 5339 // For SingleValueKind, this is the single value. 5340 Constant *SingleValue = nullptr; 5341 5342 // For BitMapKind, this is the bitmap. 5343 ConstantInt *BitMap = nullptr; 5344 IntegerType *BitMapElementTy = nullptr; 5345 5346 // For LinearMapKind, these are the constants used to derive the value. 5347 ConstantInt *LinearOffset = nullptr; 5348 ConstantInt *LinearMultiplier = nullptr; 5349 5350 // For ArrayKind, this is the array. 5351 GlobalVariable *Array = nullptr; 5352 }; 5353 5354 } // end anonymous namespace 5355 5356 SwitchLookupTable::SwitchLookupTable( 5357 Module &M, uint64_t TableSize, ConstantInt *Offset, 5358 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5359 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5360 assert(Values.size() && "Can't build lookup table without values!"); 5361 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5362 5363 // If all values in the table are equal, this is that value. 5364 SingleValue = Values.begin()->second; 5365 5366 Type *ValueType = Values.begin()->second->getType(); 5367 5368 // Build up the table contents. 5369 SmallVector<Constant *, 64> TableContents(TableSize); 5370 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5371 ConstantInt *CaseVal = Values[I].first; 5372 Constant *CaseRes = Values[I].second; 5373 assert(CaseRes->getType() == ValueType); 5374 5375 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5376 TableContents[Idx] = CaseRes; 5377 5378 if (CaseRes != SingleValue) 5379 SingleValue = nullptr; 5380 } 5381 5382 // Fill in any holes in the table with the default result. 5383 if (Values.size() < TableSize) { 5384 assert(DefaultValue && 5385 "Need a default value to fill the lookup table holes."); 5386 assert(DefaultValue->getType() == ValueType); 5387 for (uint64_t I = 0; I < TableSize; ++I) { 5388 if (!TableContents[I]) 5389 TableContents[I] = DefaultValue; 5390 } 5391 5392 if (DefaultValue != SingleValue) 5393 SingleValue = nullptr; 5394 } 5395 5396 // If each element in the table contains the same value, we only need to store 5397 // that single value. 5398 if (SingleValue) { 5399 Kind = SingleValueKind; 5400 return; 5401 } 5402 5403 // Check if we can derive the value with a linear transformation from the 5404 // table index. 5405 if (isa<IntegerType>(ValueType)) { 5406 bool LinearMappingPossible = true; 5407 APInt PrevVal; 5408 APInt DistToPrev; 5409 assert(TableSize >= 2 && "Should be a SingleValue table."); 5410 // Check if there is the same distance between two consecutive values. 5411 for (uint64_t I = 0; I < TableSize; ++I) { 5412 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5413 if (!ConstVal) { 5414 // This is an undef. We could deal with it, but undefs in lookup tables 5415 // are very seldom. It's probably not worth the additional complexity. 5416 LinearMappingPossible = false; 5417 break; 5418 } 5419 const APInt &Val = ConstVal->getValue(); 5420 if (I != 0) { 5421 APInt Dist = Val - PrevVal; 5422 if (I == 1) { 5423 DistToPrev = Dist; 5424 } else if (Dist != DistToPrev) { 5425 LinearMappingPossible = false; 5426 break; 5427 } 5428 } 5429 PrevVal = Val; 5430 } 5431 if (LinearMappingPossible) { 5432 LinearOffset = cast<ConstantInt>(TableContents[0]); 5433 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5434 Kind = LinearMapKind; 5435 ++NumLinearMaps; 5436 return; 5437 } 5438 } 5439 5440 // If the type is integer and the table fits in a register, build a bitmap. 5441 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5442 IntegerType *IT = cast<IntegerType>(ValueType); 5443 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5444 for (uint64_t I = TableSize; I > 0; --I) { 5445 TableInt <<= IT->getBitWidth(); 5446 // Insert values into the bitmap. Undef values are set to zero. 5447 if (!isa<UndefValue>(TableContents[I - 1])) { 5448 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5449 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5450 } 5451 } 5452 BitMap = ConstantInt::get(M.getContext(), TableInt); 5453 BitMapElementTy = IT; 5454 Kind = BitMapKind; 5455 ++NumBitMaps; 5456 return; 5457 } 5458 5459 // Store the table in an array. 5460 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5461 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5462 5463 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5464 GlobalVariable::PrivateLinkage, Initializer, 5465 "switch.table." + FuncName); 5466 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5467 // Set the alignment to that of an array items. We will be only loading one 5468 // value out of it. 5469 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5470 Kind = ArrayKind; 5471 } 5472 5473 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5474 switch (Kind) { 5475 case SingleValueKind: 5476 return SingleValue; 5477 case LinearMapKind: { 5478 // Derive the result value from the input value. 5479 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5480 false, "switch.idx.cast"); 5481 if (!LinearMultiplier->isOne()) 5482 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5483 if (!LinearOffset->isZero()) 5484 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5485 return Result; 5486 } 5487 case BitMapKind: { 5488 // Type of the bitmap (e.g. i59). 5489 IntegerType *MapTy = BitMap->getType(); 5490 5491 // Cast Index to the same type as the bitmap. 5492 // Note: The Index is <= the number of elements in the table, so 5493 // truncating it to the width of the bitmask is safe. 5494 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5495 5496 // Multiply the shift amount by the element width. 5497 ShiftAmt = Builder.CreateMul( 5498 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5499 "switch.shiftamt"); 5500 5501 // Shift down. 5502 Value *DownShifted = 5503 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5504 // Mask off. 5505 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5506 } 5507 case ArrayKind: { 5508 // Make sure the table index will not overflow when treated as signed. 5509 IntegerType *IT = cast<IntegerType>(Index->getType()); 5510 uint64_t TableSize = 5511 Array->getInitializer()->getType()->getArrayNumElements(); 5512 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5513 Index = Builder.CreateZExt( 5514 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5515 "switch.tableidx.zext"); 5516 5517 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5518 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5519 GEPIndices, "switch.gep"); 5520 return Builder.CreateLoad( 5521 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5522 "switch.load"); 5523 } 5524 } 5525 llvm_unreachable("Unknown lookup table kind!"); 5526 } 5527 5528 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5529 uint64_t TableSize, 5530 Type *ElementType) { 5531 auto *IT = dyn_cast<IntegerType>(ElementType); 5532 if (!IT) 5533 return false; 5534 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5535 // are <= 15, we could try to narrow the type. 5536 5537 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5538 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5539 return false; 5540 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5541 } 5542 5543 /// Determine whether a lookup table should be built for this switch, based on 5544 /// the number of cases, size of the table, and the types of the results. 5545 static bool 5546 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5547 const TargetTransformInfo &TTI, const DataLayout &DL, 5548 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5549 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5550 return false; // TableSize overflowed, or mul below might overflow. 5551 5552 bool AllTablesFitInRegister = true; 5553 bool HasIllegalType = false; 5554 for (const auto &I : ResultTypes) { 5555 Type *Ty = I.second; 5556 5557 // Saturate this flag to true. 5558 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5559 5560 // Saturate this flag to false. 5561 AllTablesFitInRegister = 5562 AllTablesFitInRegister && 5563 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5564 5565 // If both flags saturate, we're done. NOTE: This *only* works with 5566 // saturating flags, and all flags have to saturate first due to the 5567 // non-deterministic behavior of iterating over a dense map. 5568 if (HasIllegalType && !AllTablesFitInRegister) 5569 break; 5570 } 5571 5572 // If each table would fit in a register, we should build it anyway. 5573 if (AllTablesFitInRegister) 5574 return true; 5575 5576 // Don't build a table that doesn't fit in-register if it has illegal types. 5577 if (HasIllegalType) 5578 return false; 5579 5580 // The table density should be at least 40%. This is the same criterion as for 5581 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5582 // FIXME: Find the best cut-off. 5583 return SI->getNumCases() * 10 >= TableSize * 4; 5584 } 5585 5586 /// Try to reuse the switch table index compare. Following pattern: 5587 /// \code 5588 /// if (idx < tablesize) 5589 /// r = table[idx]; // table does not contain default_value 5590 /// else 5591 /// r = default_value; 5592 /// if (r != default_value) 5593 /// ... 5594 /// \endcode 5595 /// Is optimized to: 5596 /// \code 5597 /// cond = idx < tablesize; 5598 /// if (cond) 5599 /// r = table[idx]; 5600 /// else 5601 /// r = default_value; 5602 /// if (cond) 5603 /// ... 5604 /// \endcode 5605 /// Jump threading will then eliminate the second if(cond). 5606 static void reuseTableCompare( 5607 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5608 Constant *DefaultValue, 5609 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5610 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5611 if (!CmpInst) 5612 return; 5613 5614 // We require that the compare is in the same block as the phi so that jump 5615 // threading can do its work afterwards. 5616 if (CmpInst->getParent() != PhiBlock) 5617 return; 5618 5619 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5620 if (!CmpOp1) 5621 return; 5622 5623 Value *RangeCmp = RangeCheckBranch->getCondition(); 5624 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5625 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5626 5627 // Check if the compare with the default value is constant true or false. 5628 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5629 DefaultValue, CmpOp1, true); 5630 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5631 return; 5632 5633 // Check if the compare with the case values is distinct from the default 5634 // compare result. 5635 for (auto ValuePair : Values) { 5636 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5637 ValuePair.second, CmpOp1, true); 5638 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5639 return; 5640 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5641 "Expect true or false as compare result."); 5642 } 5643 5644 // Check if the branch instruction dominates the phi node. It's a simple 5645 // dominance check, but sufficient for our needs. 5646 // Although this check is invariant in the calling loops, it's better to do it 5647 // at this late stage. Practically we do it at most once for a switch. 5648 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5649 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5650 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5651 return; 5652 } 5653 5654 if (DefaultConst == FalseConst) { 5655 // The compare yields the same result. We can replace it. 5656 CmpInst->replaceAllUsesWith(RangeCmp); 5657 ++NumTableCmpReuses; 5658 } else { 5659 // The compare yields the same result, just inverted. We can replace it. 5660 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5661 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5662 RangeCheckBranch); 5663 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5664 ++NumTableCmpReuses; 5665 } 5666 } 5667 5668 /// If the switch is only used to initialize one or more phi nodes in a common 5669 /// successor block with different constant values, replace the switch with 5670 /// lookup tables. 5671 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5672 DomTreeUpdater *DTU, const DataLayout &DL, 5673 const TargetTransformInfo &TTI) { 5674 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5675 5676 BasicBlock *BB = SI->getParent(); 5677 Function *Fn = BB->getParent(); 5678 // Only build lookup table when we have a target that supports it or the 5679 // attribute is not set. 5680 if (!TTI.shouldBuildLookupTables() || 5681 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5682 return false; 5683 5684 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5685 // split off a dense part and build a lookup table for that. 5686 5687 // FIXME: This creates arrays of GEPs to constant strings, which means each 5688 // GEP needs a runtime relocation in PIC code. We should just build one big 5689 // string and lookup indices into that. 5690 5691 // Ignore switches with less than three cases. Lookup tables will not make 5692 // them faster, so we don't analyze them. 5693 if (SI->getNumCases() < 3) 5694 return false; 5695 5696 // Figure out the corresponding result for each case value and phi node in the 5697 // common destination, as well as the min and max case values. 5698 assert(!SI->cases().empty()); 5699 SwitchInst::CaseIt CI = SI->case_begin(); 5700 ConstantInt *MinCaseVal = CI->getCaseValue(); 5701 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5702 5703 BasicBlock *CommonDest = nullptr; 5704 5705 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5706 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5707 5708 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5709 SmallDenseMap<PHINode *, Type *> ResultTypes; 5710 SmallVector<PHINode *, 4> PHIs; 5711 5712 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5713 ConstantInt *CaseVal = CI->getCaseValue(); 5714 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5715 MinCaseVal = CaseVal; 5716 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5717 MaxCaseVal = CaseVal; 5718 5719 // Resulting value at phi nodes for this case value. 5720 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5721 ResultsTy Results; 5722 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5723 Results, DL, TTI)) 5724 return false; 5725 5726 // Append the result from this case to the list for each phi. 5727 for (const auto &I : Results) { 5728 PHINode *PHI = I.first; 5729 Constant *Value = I.second; 5730 if (!ResultLists.count(PHI)) 5731 PHIs.push_back(PHI); 5732 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5733 } 5734 } 5735 5736 // Keep track of the result types. 5737 for (PHINode *PHI : PHIs) { 5738 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5739 } 5740 5741 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5742 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5743 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5744 bool TableHasHoles = (NumResults < TableSize); 5745 5746 // If the table has holes, we need a constant result for the default case 5747 // or a bitmask that fits in a register. 5748 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5749 bool HasDefaultResults = 5750 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5751 DefaultResultsList, DL, TTI); 5752 5753 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5754 if (NeedMask) { 5755 // As an extra penalty for the validity test we require more cases. 5756 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5757 return false; 5758 if (!DL.fitsInLegalInteger(TableSize)) 5759 return false; 5760 } 5761 5762 for (const auto &I : DefaultResultsList) { 5763 PHINode *PHI = I.first; 5764 Constant *Result = I.second; 5765 DefaultResults[PHI] = Result; 5766 } 5767 5768 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5769 return false; 5770 5771 std::vector<DominatorTree::UpdateType> Updates; 5772 5773 // Create the BB that does the lookups. 5774 Module &Mod = *CommonDest->getParent()->getParent(); 5775 BasicBlock *LookupBB = BasicBlock::Create( 5776 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5777 5778 // Compute the table index value. 5779 Builder.SetInsertPoint(SI); 5780 Value *TableIndex; 5781 if (MinCaseVal->isNullValue()) 5782 TableIndex = SI->getCondition(); 5783 else 5784 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5785 "switch.tableidx"); 5786 5787 // Compute the maximum table size representable by the integer type we are 5788 // switching upon. 5789 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5790 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5791 assert(MaxTableSize >= TableSize && 5792 "It is impossible for a switch to have more entries than the max " 5793 "representable value of its input integer type's size."); 5794 5795 // If the default destination is unreachable, or if the lookup table covers 5796 // all values of the conditional variable, branch directly to the lookup table 5797 // BB. Otherwise, check that the condition is within the case range. 5798 const bool DefaultIsReachable = 5799 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5800 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5801 BranchInst *RangeCheckBranch = nullptr; 5802 5803 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5804 Builder.CreateBr(LookupBB); 5805 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5806 // Note: We call removeProdecessor later since we need to be able to get the 5807 // PHI value for the default case in case we're using a bit mask. 5808 } else { 5809 Value *Cmp = Builder.CreateICmpULT( 5810 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5811 RangeCheckBranch = 5812 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5813 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5814 } 5815 5816 // Populate the BB that does the lookups. 5817 Builder.SetInsertPoint(LookupBB); 5818 5819 if (NeedMask) { 5820 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5821 // re-purposed to do the hole check, and we create a new LookupBB. 5822 BasicBlock *MaskBB = LookupBB; 5823 MaskBB->setName("switch.hole_check"); 5824 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5825 CommonDest->getParent(), CommonDest); 5826 5827 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5828 // unnecessary illegal types. 5829 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5830 APInt MaskInt(TableSizePowOf2, 0); 5831 APInt One(TableSizePowOf2, 1); 5832 // Build bitmask; fill in a 1 bit for every case. 5833 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5834 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5835 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5836 .getLimitedValue(); 5837 MaskInt |= One << Idx; 5838 } 5839 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5840 5841 // Get the TableIndex'th bit of the bitmask. 5842 // If this bit is 0 (meaning hole) jump to the default destination, 5843 // else continue with table lookup. 5844 IntegerType *MapTy = TableMask->getType(); 5845 Value *MaskIndex = 5846 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5847 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5848 Value *LoBit = Builder.CreateTrunc( 5849 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5850 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5851 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 5852 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 5853 Builder.SetInsertPoint(LookupBB); 5854 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 5855 } 5856 5857 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5858 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5859 // do not delete PHINodes here. 5860 SI->getDefaultDest()->removePredecessor(BB, 5861 /*KeepOneInputPHIs=*/true); 5862 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 5863 } 5864 5865 bool ReturnedEarly = false; 5866 for (PHINode *PHI : PHIs) { 5867 const ResultListTy &ResultList = ResultLists[PHI]; 5868 5869 // If using a bitmask, use any value to fill the lookup table holes. 5870 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5871 StringRef FuncName = Fn->getName(); 5872 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5873 FuncName); 5874 5875 Value *Result = Table.BuildLookup(TableIndex, Builder); 5876 5877 // If the result is used to return immediately from the function, we want to 5878 // do that right here. 5879 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5880 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5881 Builder.CreateRet(Result); 5882 ReturnedEarly = true; 5883 break; 5884 } 5885 5886 // Do a small peephole optimization: re-use the switch table compare if 5887 // possible. 5888 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5889 BasicBlock *PhiBlock = PHI->getParent(); 5890 // Search for compare instructions which use the phi. 5891 for (auto *User : PHI->users()) { 5892 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5893 } 5894 } 5895 5896 PHI->addIncoming(Result, LookupBB); 5897 } 5898 5899 if (!ReturnedEarly) { 5900 Builder.CreateBr(CommonDest); 5901 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 5902 } 5903 5904 // Remove the switch. 5905 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 5906 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5907 BasicBlock *Succ = SI->getSuccessor(i); 5908 5909 if (Succ == SI->getDefaultDest()) 5910 continue; 5911 Succ->removePredecessor(BB); 5912 RemovedSuccessors.insert(Succ); 5913 } 5914 SI->eraseFromParent(); 5915 5916 if (DTU) { 5917 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 5918 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 5919 DTU->applyUpdates(Updates); 5920 } 5921 5922 ++NumLookupTables; 5923 if (NeedMask) 5924 ++NumLookupTablesHoles; 5925 return true; 5926 } 5927 5928 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5929 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5930 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5931 uint64_t Range = Diff + 1; 5932 uint64_t NumCases = Values.size(); 5933 // 40% is the default density for building a jump table in optsize/minsize mode. 5934 uint64_t MinDensity = 40; 5935 5936 return NumCases * 100 >= Range * MinDensity; 5937 } 5938 5939 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5940 /// of cases. 5941 /// 5942 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5943 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5944 /// 5945 /// This converts a sparse switch into a dense switch which allows better 5946 /// lowering and could also allow transforming into a lookup table. 5947 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5948 const DataLayout &DL, 5949 const TargetTransformInfo &TTI) { 5950 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5951 if (CondTy->getIntegerBitWidth() > 64 || 5952 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5953 return false; 5954 // Only bother with this optimization if there are more than 3 switch cases; 5955 // SDAG will only bother creating jump tables for 4 or more cases. 5956 if (SI->getNumCases() < 4) 5957 return false; 5958 5959 // This transform is agnostic to the signedness of the input or case values. We 5960 // can treat the case values as signed or unsigned. We can optimize more common 5961 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5962 // as signed. 5963 SmallVector<int64_t,4> Values; 5964 for (auto &C : SI->cases()) 5965 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5966 llvm::sort(Values); 5967 5968 // If the switch is already dense, there's nothing useful to do here. 5969 if (isSwitchDense(Values)) 5970 return false; 5971 5972 // First, transform the values such that they start at zero and ascend. 5973 int64_t Base = Values[0]; 5974 for (auto &V : Values) 5975 V -= (uint64_t)(Base); 5976 5977 // Now we have signed numbers that have been shifted so that, given enough 5978 // precision, there are no negative values. Since the rest of the transform 5979 // is bitwise only, we switch now to an unsigned representation. 5980 5981 // This transform can be done speculatively because it is so cheap - it 5982 // results in a single rotate operation being inserted. 5983 // FIXME: It's possible that optimizing a switch on powers of two might also 5984 // be beneficial - flag values are often powers of two and we could use a CLZ 5985 // as the key function. 5986 5987 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5988 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5989 // less than 64. 5990 unsigned Shift = 64; 5991 for (auto &V : Values) 5992 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5993 assert(Shift < 64); 5994 if (Shift > 0) 5995 for (auto &V : Values) 5996 V = (int64_t)((uint64_t)V >> Shift); 5997 5998 if (!isSwitchDense(Values)) 5999 // Transform didn't create a dense switch. 6000 return false; 6001 6002 // The obvious transform is to shift the switch condition right and emit a 6003 // check that the condition actually cleanly divided by GCD, i.e. 6004 // C & (1 << Shift - 1) == 0 6005 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6006 // 6007 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6008 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6009 // are nonzero then the switch condition will be very large and will hit the 6010 // default case. 6011 6012 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6013 Builder.SetInsertPoint(SI); 6014 auto *ShiftC = ConstantInt::get(Ty, Shift); 6015 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6016 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6017 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6018 auto *Rot = Builder.CreateOr(LShr, Shl); 6019 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6020 6021 for (auto Case : SI->cases()) { 6022 auto *Orig = Case.getCaseValue(); 6023 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6024 Case.setValue( 6025 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6026 } 6027 return true; 6028 } 6029 6030 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6031 BasicBlock *BB = SI->getParent(); 6032 6033 if (isValueEqualityComparison(SI)) { 6034 // If we only have one predecessor, and if it is a branch on this value, 6035 // see if that predecessor totally determines the outcome of this switch. 6036 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6037 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6038 return requestResimplify(); 6039 6040 Value *Cond = SI->getCondition(); 6041 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6042 if (SimplifySwitchOnSelect(SI, Select)) 6043 return requestResimplify(); 6044 6045 // If the block only contains the switch, see if we can fold the block 6046 // away into any preds. 6047 if (SI == &*BB->instructionsWithoutDebug().begin()) 6048 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6049 return requestResimplify(); 6050 } 6051 6052 // Try to transform the switch into an icmp and a branch. 6053 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6054 return requestResimplify(); 6055 6056 // Remove unreachable cases. 6057 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6058 return requestResimplify(); 6059 6060 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6061 return requestResimplify(); 6062 6063 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6064 return requestResimplify(); 6065 6066 // The conversion from switch to lookup tables results in difficult-to-analyze 6067 // code and makes pruning branches much harder. This is a problem if the 6068 // switch expression itself can still be restricted as a result of inlining or 6069 // CVP. Therefore, only apply this transformation during late stages of the 6070 // optimisation pipeline. 6071 if (Options.ConvertSwitchToLookupTable && 6072 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6073 return requestResimplify(); 6074 6075 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6076 return requestResimplify(); 6077 6078 return false; 6079 } 6080 6081 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6082 BasicBlock *BB = IBI->getParent(); 6083 bool Changed = false; 6084 6085 // Eliminate redundant destinations. 6086 SmallPtrSet<Value *, 8> Succs; 6087 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6088 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6089 BasicBlock *Dest = IBI->getDestination(i); 6090 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6091 if (!Dest->hasAddressTaken()) 6092 RemovedSuccs.insert(Dest); 6093 Dest->removePredecessor(BB); 6094 IBI->removeDestination(i); 6095 --i; 6096 --e; 6097 Changed = true; 6098 } 6099 } 6100 6101 if (DTU) { 6102 std::vector<DominatorTree::UpdateType> Updates; 6103 Updates.reserve(RemovedSuccs.size()); 6104 for (auto *RemovedSucc : RemovedSuccs) 6105 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6106 DTU->applyUpdates(Updates); 6107 } 6108 6109 if (IBI->getNumDestinations() == 0) { 6110 // If the indirectbr has no successors, change it to unreachable. 6111 new UnreachableInst(IBI->getContext(), IBI); 6112 EraseTerminatorAndDCECond(IBI); 6113 return true; 6114 } 6115 6116 if (IBI->getNumDestinations() == 1) { 6117 // If the indirectbr has one successor, change it to a direct branch. 6118 BranchInst::Create(IBI->getDestination(0), IBI); 6119 EraseTerminatorAndDCECond(IBI); 6120 return true; 6121 } 6122 6123 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6124 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6125 return requestResimplify(); 6126 } 6127 return Changed; 6128 } 6129 6130 /// Given an block with only a single landing pad and a unconditional branch 6131 /// try to find another basic block which this one can be merged with. This 6132 /// handles cases where we have multiple invokes with unique landing pads, but 6133 /// a shared handler. 6134 /// 6135 /// We specifically choose to not worry about merging non-empty blocks 6136 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6137 /// practice, the optimizer produces empty landing pad blocks quite frequently 6138 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6139 /// sinking in this file) 6140 /// 6141 /// This is primarily a code size optimization. We need to avoid performing 6142 /// any transform which might inhibit optimization (such as our ability to 6143 /// specialize a particular handler via tail commoning). We do this by not 6144 /// merging any blocks which require us to introduce a phi. Since the same 6145 /// values are flowing through both blocks, we don't lose any ability to 6146 /// specialize. If anything, we make such specialization more likely. 6147 /// 6148 /// TODO - This transformation could remove entries from a phi in the target 6149 /// block when the inputs in the phi are the same for the two blocks being 6150 /// merged. In some cases, this could result in removal of the PHI entirely. 6151 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6152 BasicBlock *BB, DomTreeUpdater *DTU) { 6153 auto Succ = BB->getUniqueSuccessor(); 6154 assert(Succ); 6155 // If there's a phi in the successor block, we'd likely have to introduce 6156 // a phi into the merged landing pad block. 6157 if (isa<PHINode>(*Succ->begin())) 6158 return false; 6159 6160 for (BasicBlock *OtherPred : predecessors(Succ)) { 6161 if (BB == OtherPred) 6162 continue; 6163 BasicBlock::iterator I = OtherPred->begin(); 6164 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6165 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6166 continue; 6167 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6168 ; 6169 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6170 if (!BI2 || !BI2->isIdenticalTo(BI)) 6171 continue; 6172 6173 std::vector<DominatorTree::UpdateType> Updates; 6174 6175 // We've found an identical block. Update our predecessors to take that 6176 // path instead and make ourselves dead. 6177 SmallPtrSet<BasicBlock *, 16> Preds; 6178 Preds.insert(pred_begin(BB), pred_end(BB)); 6179 for (BasicBlock *Pred : Preds) { 6180 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6181 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6182 "unexpected successor"); 6183 II->setUnwindDest(OtherPred); 6184 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6185 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6186 } 6187 6188 // The debug info in OtherPred doesn't cover the merged control flow that 6189 // used to go through BB. We need to delete it or update it. 6190 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6191 Instruction &Inst = *I; 6192 I++; 6193 if (isa<DbgInfoIntrinsic>(Inst)) 6194 Inst.eraseFromParent(); 6195 } 6196 6197 SmallPtrSet<BasicBlock *, 16> Succs; 6198 Succs.insert(succ_begin(BB), succ_end(BB)); 6199 for (BasicBlock *Succ : Succs) { 6200 Succ->removePredecessor(BB); 6201 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6202 } 6203 6204 IRBuilder<> Builder(BI); 6205 Builder.CreateUnreachable(); 6206 BI->eraseFromParent(); 6207 if (DTU) 6208 DTU->applyUpdates(Updates); 6209 return true; 6210 } 6211 return false; 6212 } 6213 6214 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6215 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6216 : simplifyCondBranch(Branch, Builder); 6217 } 6218 6219 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6220 IRBuilder<> &Builder) { 6221 BasicBlock *BB = BI->getParent(); 6222 BasicBlock *Succ = BI->getSuccessor(0); 6223 6224 // If the Terminator is the only non-phi instruction, simplify the block. 6225 // If LoopHeader is provided, check if the block or its successor is a loop 6226 // header. (This is for early invocations before loop simplify and 6227 // vectorization to keep canonical loop forms for nested loops. These blocks 6228 // can be eliminated when the pass is invoked later in the back-end.) 6229 // Note that if BB has only one predecessor then we do not introduce new 6230 // backedge, so we can eliminate BB. 6231 bool NeedCanonicalLoop = 6232 Options.NeedCanonicalLoop && 6233 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6234 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6235 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6236 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6237 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6238 return true; 6239 6240 // If the only instruction in the block is a seteq/setne comparison against a 6241 // constant, try to simplify the block. 6242 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6243 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6244 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6245 ; 6246 if (I->isTerminator() && 6247 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6248 return true; 6249 } 6250 6251 // See if we can merge an empty landing pad block with another which is 6252 // equivalent. 6253 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6254 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6255 ; 6256 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6257 return true; 6258 } 6259 6260 // If this basic block is ONLY a compare and a branch, and if a predecessor 6261 // branches to us and our successor, fold the comparison into the 6262 // predecessor and use logical operations to update the incoming value 6263 // for PHI nodes in common successor. 6264 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6265 Options.BonusInstThreshold)) 6266 return requestResimplify(); 6267 return false; 6268 } 6269 6270 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6271 BasicBlock *PredPred = nullptr; 6272 for (auto *P : predecessors(BB)) { 6273 BasicBlock *PPred = P->getSinglePredecessor(); 6274 if (!PPred || (PredPred && PredPred != PPred)) 6275 return nullptr; 6276 PredPred = PPred; 6277 } 6278 return PredPred; 6279 } 6280 6281 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6282 BasicBlock *BB = BI->getParent(); 6283 if (!Options.SimplifyCondBranch) 6284 return false; 6285 6286 // Conditional branch 6287 if (isValueEqualityComparison(BI)) { 6288 // If we only have one predecessor, and if it is a branch on this value, 6289 // see if that predecessor totally determines the outcome of this 6290 // switch. 6291 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6292 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6293 return requestResimplify(); 6294 6295 // This block must be empty, except for the setcond inst, if it exists. 6296 // Ignore dbg and pseudo intrinsics. 6297 auto I = BB->instructionsWithoutDebug(true).begin(); 6298 if (&*I == BI) { 6299 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6300 return requestResimplify(); 6301 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6302 ++I; 6303 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6304 return requestResimplify(); 6305 } 6306 } 6307 6308 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6309 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6310 return true; 6311 6312 // If this basic block has dominating predecessor blocks and the dominating 6313 // blocks' conditions imply BI's condition, we know the direction of BI. 6314 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6315 if (Imp) { 6316 // Turn this into a branch on constant. 6317 auto *OldCond = BI->getCondition(); 6318 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6319 : ConstantInt::getFalse(BB->getContext()); 6320 BI->setCondition(TorF); 6321 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6322 return requestResimplify(); 6323 } 6324 6325 // If this basic block is ONLY a compare and a branch, and if a predecessor 6326 // branches to us and one of our successors, fold the comparison into the 6327 // predecessor and use logical operations to pick the right destination. 6328 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6329 Options.BonusInstThreshold)) 6330 return requestResimplify(); 6331 6332 // We have a conditional branch to two blocks that are only reachable 6333 // from BI. We know that the condbr dominates the two blocks, so see if 6334 // there is any identical code in the "then" and "else" blocks. If so, we 6335 // can hoist it up to the branching block. 6336 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6337 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6338 if (HoistCommon && Options.HoistCommonInsts) 6339 if (HoistThenElseCodeToIf(BI, TTI)) 6340 return requestResimplify(); 6341 } else { 6342 // If Successor #1 has multiple preds, we may be able to conditionally 6343 // execute Successor #0 if it branches to Successor #1. 6344 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6345 if (Succ0TI->getNumSuccessors() == 1 && 6346 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6347 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6348 return requestResimplify(); 6349 } 6350 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6351 // If Successor #0 has multiple preds, we may be able to conditionally 6352 // execute Successor #1 if it branches to Successor #0. 6353 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6354 if (Succ1TI->getNumSuccessors() == 1 && 6355 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6356 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6357 return requestResimplify(); 6358 } 6359 6360 // If this is a branch on a phi node in the current block, thread control 6361 // through this block if any PHI node entries are constants. 6362 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6363 if (PN->getParent() == BI->getParent()) 6364 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6365 return requestResimplify(); 6366 6367 // Scan predecessor blocks for conditional branches. 6368 for (BasicBlock *Pred : predecessors(BB)) 6369 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6370 if (PBI != BI && PBI->isConditional()) 6371 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6372 return requestResimplify(); 6373 6374 // Look for diamond patterns. 6375 if (MergeCondStores) 6376 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6377 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6378 if (PBI != BI && PBI->isConditional()) 6379 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6380 return requestResimplify(); 6381 6382 return false; 6383 } 6384 6385 /// Check if passing a value to an instruction will cause undefined behavior. 6386 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6387 Constant *C = dyn_cast<Constant>(V); 6388 if (!C) 6389 return false; 6390 6391 if (I->use_empty()) 6392 return false; 6393 6394 if (C->isNullValue() || isa<UndefValue>(C)) { 6395 // Only look at the first use, avoid hurting compile time with long uselists 6396 User *Use = *I->user_begin(); 6397 6398 // Now make sure that there are no instructions in between that can alter 6399 // control flow (eg. calls) 6400 for (BasicBlock::iterator 6401 i = ++BasicBlock::iterator(I), 6402 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6403 i != UI; ++i) 6404 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6405 return false; 6406 6407 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6408 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6409 if (GEP->getPointerOperand() == I) { 6410 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6411 PtrValueMayBeModified = true; 6412 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6413 } 6414 6415 // Look through bitcasts. 6416 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6417 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6418 6419 // Load from null is undefined. 6420 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6421 if (!LI->isVolatile()) 6422 return !NullPointerIsDefined(LI->getFunction(), 6423 LI->getPointerAddressSpace()); 6424 6425 // Store to null is undefined. 6426 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6427 if (!SI->isVolatile()) 6428 return (!NullPointerIsDefined(SI->getFunction(), 6429 SI->getPointerAddressSpace())) && 6430 SI->getPointerOperand() == I; 6431 6432 if (auto *CB = dyn_cast<CallBase>(Use)) { 6433 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6434 return false; 6435 // A call to null is undefined. 6436 if (CB->getCalledOperand() == I) 6437 return true; 6438 6439 if (C->isNullValue()) { 6440 for (const llvm::Use &Arg : CB->args()) 6441 if (Arg == I) { 6442 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6443 if (CB->isPassingUndefUB(ArgIdx) && 6444 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6445 // Passing null to a nonnnull+noundef argument is undefined. 6446 return !PtrValueMayBeModified; 6447 } 6448 } 6449 } else if (isa<UndefValue>(C)) { 6450 // Passing undef to a noundef argument is undefined. 6451 for (const llvm::Use &Arg : CB->args()) 6452 if (Arg == I) { 6453 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6454 if (CB->isPassingUndefUB(ArgIdx)) { 6455 // Passing undef to a noundef argument is undefined. 6456 return true; 6457 } 6458 } 6459 } 6460 } 6461 } 6462 return false; 6463 } 6464 6465 /// If BB has an incoming value that will always trigger undefined behavior 6466 /// (eg. null pointer dereference), remove the branch leading here. 6467 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6468 DomTreeUpdater *DTU) { 6469 for (PHINode &PHI : BB->phis()) 6470 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6471 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6472 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6473 Instruction *T = Predecessor->getTerminator(); 6474 IRBuilder<> Builder(T); 6475 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6476 BB->removePredecessor(Predecessor); 6477 // Turn uncoditional branches into unreachables and remove the dead 6478 // destination from conditional branches. 6479 if (BI->isUnconditional()) 6480 Builder.CreateUnreachable(); 6481 else 6482 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6483 : BI->getSuccessor(0)); 6484 BI->eraseFromParent(); 6485 if (DTU) 6486 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6487 return true; 6488 } 6489 // TODO: SwitchInst. 6490 } 6491 6492 return false; 6493 } 6494 6495 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6496 bool Changed = false; 6497 6498 assert(BB && BB->getParent() && "Block not embedded in function!"); 6499 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6500 6501 // Remove basic blocks that have no predecessors (except the entry block)... 6502 // or that just have themself as a predecessor. These are unreachable. 6503 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6504 BB->getSinglePredecessor() == BB) { 6505 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6506 DeleteDeadBlock(BB, DTU); 6507 return true; 6508 } 6509 6510 // Check to see if we can constant propagate this terminator instruction 6511 // away... 6512 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6513 /*TLI=*/nullptr, DTU); 6514 6515 // Check for and eliminate duplicate PHI nodes in this block. 6516 Changed |= EliminateDuplicatePHINodes(BB); 6517 6518 // Check for and remove branches that will always cause undefined behavior. 6519 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6520 6521 // Merge basic blocks into their predecessor if there is only one distinct 6522 // pred, and if there is only one distinct successor of the predecessor, and 6523 // if there are no PHI nodes. 6524 if (MergeBlockIntoPredecessor(BB, DTU)) 6525 return true; 6526 6527 if (SinkCommon && Options.SinkCommonInsts) 6528 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6529 6530 IRBuilder<> Builder(BB); 6531 6532 if (Options.FoldTwoEntryPHINode) { 6533 // If there is a trivial two-entry PHI node in this basic block, and we can 6534 // eliminate it, do so now. 6535 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6536 if (PN->getNumIncomingValues() == 2) 6537 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6538 } 6539 6540 Instruction *Terminator = BB->getTerminator(); 6541 Builder.SetInsertPoint(Terminator); 6542 switch (Terminator->getOpcode()) { 6543 case Instruction::Br: 6544 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6545 break; 6546 case Instruction::Ret: 6547 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6548 break; 6549 case Instruction::Resume: 6550 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6551 break; 6552 case Instruction::CleanupRet: 6553 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6554 break; 6555 case Instruction::Switch: 6556 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6557 break; 6558 case Instruction::Unreachable: 6559 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6560 break; 6561 case Instruction::IndirectBr: 6562 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6563 break; 6564 } 6565 6566 return Changed; 6567 } 6568 6569 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6570 bool Changed = simplifyOnceImpl(BB); 6571 6572 return Changed; 6573 } 6574 6575 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6576 bool Changed = false; 6577 6578 // Repeated simplify BB as long as resimplification is requested. 6579 do { 6580 Resimplify = false; 6581 6582 // Perform one round of simplifcation. Resimplify flag will be set if 6583 // another iteration is requested. 6584 Changed |= simplifyOnce(BB); 6585 } while (Resimplify); 6586 6587 return Changed; 6588 } 6589 6590 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6591 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6592 ArrayRef<WeakVH> LoopHeaders) { 6593 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6594 Options) 6595 .run(BB); 6596 } 6597