1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/GuardUtils.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <climits>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <set>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 using namespace PatternMatch;
85 
86 #define DEBUG_TYPE "simplifycfg"
87 
88 // Chosen as 2 so as to be cheap, but still to have enough power to fold
89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
90 // To catch this, we need to fold a compare and a select, hence '2' being the
91 // minimum reasonable default.
92 static cl::opt<unsigned> PHINodeFoldingThreshold(
93     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
94     cl::desc(
95         "Control the amount of phi node folding to perform (default = 2)"));
96 
97 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
98     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
99     cl::desc("Control the maximal total instruction cost that we are willing "
100              "to speculatively execute to fold a 2-entry PHI node into a "
101              "select (default = 4)"));
102 
103 static cl::opt<bool> DupRet(
104     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
105     cl::desc("Duplicate return instructions into unconditional branches"));
106 
107 static cl::opt<bool>
108     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
109                cl::desc("Sink common instructions down to the end block"));
110 
111 static cl::opt<bool> HoistCondStores(
112     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
113     cl::desc("Hoist conditional stores if an unconditional store precedes"));
114 
115 static cl::opt<bool> MergeCondStores(
116     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
117     cl::desc("Hoist conditional stores even if an unconditional store does not "
118              "precede - hoist multiple conditional stores into a single "
119              "predicated store"));
120 
121 static cl::opt<bool> MergeCondStoresAggressively(
122     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
123     cl::desc("When merging conditional stores, do so even if the resultant "
124              "basic blocks are unlikely to be if-converted as a result"));
125 
126 static cl::opt<bool> SpeculateOneExpensiveInst(
127     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
128     cl::desc("Allow exactly one expensive instruction to be speculatively "
129              "executed"));
130 
131 static cl::opt<unsigned> MaxSpeculationDepth(
132     "max-speculation-depth", cl::Hidden, cl::init(10),
133     cl::desc("Limit maximum recursion depth when calculating costs of "
134              "speculatively executed instructions"));
135 
136 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
137 STATISTIC(NumLinearMaps,
138           "Number of switch instructions turned into linear mapping");
139 STATISTIC(NumLookupTables,
140           "Number of switch instructions turned into lookup tables");
141 STATISTIC(
142     NumLookupTablesHoles,
143     "Number of switch instructions turned into lookup tables (holes checked)");
144 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
145 STATISTIC(NumSinkCommons,
146           "Number of common instructions sunk down to the end block");
147 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
148 
149 namespace {
150 
151 // The first field contains the value that the switch produces when a certain
152 // case group is selected, and the second field is a vector containing the
153 // cases composing the case group.
154 using SwitchCaseResultVectorTy =
155     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
156 
157 // The first field contains the phi node that generates a result of the switch
158 // and the second field contains the value generated for a certain case in the
159 // switch for that PHI.
160 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
161 
162 /// ValueEqualityComparisonCase - Represents a case of a switch.
163 struct ValueEqualityComparisonCase {
164   ConstantInt *Value;
165   BasicBlock *Dest;
166 
167   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
168       : Value(Value), Dest(Dest) {}
169 
170   bool operator<(ValueEqualityComparisonCase RHS) const {
171     // Comparing pointers is ok as we only rely on the order for uniquing.
172     return Value < RHS.Value;
173   }
174 
175   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
176 };
177 
178 class SimplifyCFGOpt {
179   const TargetTransformInfo &TTI;
180   const DataLayout &DL;
181   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
182   const SimplifyCFGOptions &Options;
183   bool Resimplify;
184 
185   Value *isValueEqualityComparison(Instruction *TI);
186   BasicBlock *GetValueEqualityComparisonCases(
187       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
188   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
189                                                      BasicBlock *Pred,
190                                                      IRBuilder<> &Builder);
191   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
192                                            IRBuilder<> &Builder);
193 
194   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
195   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
196   bool simplifySingleResume(ResumeInst *RI);
197   bool simplifyCommonResume(ResumeInst *RI);
198   bool simplifyCleanupReturn(CleanupReturnInst *RI);
199   bool simplifyUnreachable(UnreachableInst *UI);
200   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
201   bool simplifyIndirectBr(IndirectBrInst *IBI);
202   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
203   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
204   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
205   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
206 
207   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
208                                              IRBuilder<> &Builder);
209 
210   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
211   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
212                               const TargetTransformInfo &TTI);
213   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
214                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
215                                   uint32_t TrueWeight, uint32_t FalseWeight);
216   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
217                                  const DataLayout &DL);
218   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
219   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
220   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
221 
222 public:
223   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
224                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
225                  const SimplifyCFGOptions &Opts)
226       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
227 
228   bool run(BasicBlock *BB);
229   bool simplifyOnce(BasicBlock *BB);
230 
231   // Helper to set Resimplify and return change indication.
232   bool requestResimplify() {
233     Resimplify = true;
234     return true;
235   }
236 };
237 
238 } // end anonymous namespace
239 
240 /// Return true if it is safe to merge these two
241 /// terminator instructions together.
242 static bool
243 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
244                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
245   if (SI1 == SI2)
246     return false; // Can't merge with self!
247 
248   // It is not safe to merge these two switch instructions if they have a common
249   // successor, and if that successor has a PHI node, and if *that* PHI node has
250   // conflicting incoming values from the two switch blocks.
251   BasicBlock *SI1BB = SI1->getParent();
252   BasicBlock *SI2BB = SI2->getParent();
253 
254   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
255   bool Fail = false;
256   for (BasicBlock *Succ : successors(SI2BB))
257     if (SI1Succs.count(Succ))
258       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
259         PHINode *PN = cast<PHINode>(BBI);
260         if (PN->getIncomingValueForBlock(SI1BB) !=
261             PN->getIncomingValueForBlock(SI2BB)) {
262           if (FailBlocks)
263             FailBlocks->insert(Succ);
264           Fail = true;
265         }
266       }
267 
268   return !Fail;
269 }
270 
271 /// Return true if it is safe and profitable to merge these two terminator
272 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
273 /// store all PHI nodes in common successors.
274 static bool
275 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
276                                 Instruction *Cond,
277                                 SmallVectorImpl<PHINode *> &PhiNodes) {
278   if (SI1 == SI2)
279     return false; // Can't merge with self!
280   assert(SI1->isUnconditional() && SI2->isConditional());
281 
282   // We fold the unconditional branch if we can easily update all PHI nodes in
283   // common successors:
284   // 1> We have a constant incoming value for the conditional branch;
285   // 2> We have "Cond" as the incoming value for the unconditional branch;
286   // 3> SI2->getCondition() and Cond have same operands.
287   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
288   if (!Ci2)
289     return false;
290   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
291         Cond->getOperand(1) == Ci2->getOperand(1)) &&
292       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
293         Cond->getOperand(1) == Ci2->getOperand(0)))
294     return false;
295 
296   BasicBlock *SI1BB = SI1->getParent();
297   BasicBlock *SI2BB = SI2->getParent();
298   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
299   for (BasicBlock *Succ : successors(SI2BB))
300     if (SI1Succs.count(Succ))
301       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
302         PHINode *PN = cast<PHINode>(BBI);
303         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
304             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
305           return false;
306         PhiNodes.push_back(PN);
307       }
308   return true;
309 }
310 
311 /// Update PHI nodes in Succ to indicate that there will now be entries in it
312 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
313 /// will be the same as those coming in from ExistPred, an existing predecessor
314 /// of Succ.
315 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
316                                   BasicBlock *ExistPred,
317                                   MemorySSAUpdater *MSSAU = nullptr) {
318   for (PHINode &PN : Succ->phis())
319     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
320   if (MSSAU)
321     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
322       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
323 }
324 
325 /// Compute an abstract "cost" of speculating the given instruction,
326 /// which is assumed to be safe to speculate. TCC_Free means cheap,
327 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
328 /// expensive.
329 static unsigned ComputeSpeculationCost(const User *I,
330                                        const TargetTransformInfo &TTI) {
331   assert(isSafeToSpeculativelyExecute(I) &&
332          "Instruction is not safe to speculatively execute!");
333   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
334 }
335 
336 /// If we have a merge point of an "if condition" as accepted above,
337 /// return true if the specified value dominates the block.  We
338 /// don't handle the true generality of domination here, just a special case
339 /// which works well enough for us.
340 ///
341 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
342 /// see if V (which must be an instruction) and its recursive operands
343 /// that do not dominate BB have a combined cost lower than CostRemaining and
344 /// are non-trapping.  If both are true, the instruction is inserted into the
345 /// set and true is returned.
346 ///
347 /// The cost for most non-trapping instructions is defined as 1 except for
348 /// Select whose cost is 2.
349 ///
350 /// After this function returns, CostRemaining is decreased by the cost of
351 /// V plus its non-dominating operands.  If that cost is greater than
352 /// CostRemaining, false is returned and CostRemaining is undefined.
353 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
354                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
355                                 int &BudgetRemaining,
356                                 const TargetTransformInfo &TTI,
357                                 unsigned Depth = 0) {
358   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
359   // so limit the recursion depth.
360   // TODO: While this recursion limit does prevent pathological behavior, it
361   // would be better to track visited instructions to avoid cycles.
362   if (Depth == MaxSpeculationDepth)
363     return false;
364 
365   Instruction *I = dyn_cast<Instruction>(V);
366   if (!I) {
367     // Non-instructions all dominate instructions, but not all constantexprs
368     // can be executed unconditionally.
369     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
370       if (C->canTrap())
371         return false;
372     return true;
373   }
374   BasicBlock *PBB = I->getParent();
375 
376   // We don't want to allow weird loops that might have the "if condition" in
377   // the bottom of this block.
378   if (PBB == BB)
379     return false;
380 
381   // If this instruction is defined in a block that contains an unconditional
382   // branch to BB, then it must be in the 'conditional' part of the "if
383   // statement".  If not, it definitely dominates the region.
384   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
385   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
386     return true;
387 
388   // If we have seen this instruction before, don't count it again.
389   if (AggressiveInsts.count(I))
390     return true;
391 
392   // Okay, it looks like the instruction IS in the "condition".  Check to
393   // see if it's a cheap instruction to unconditionally compute, and if it
394   // only uses stuff defined outside of the condition.  If so, hoist it out.
395   if (!isSafeToSpeculativelyExecute(I))
396     return false;
397 
398   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
399 
400   // Allow exactly one instruction to be speculated regardless of its cost
401   // (as long as it is safe to do so).
402   // This is intended to flatten the CFG even if the instruction is a division
403   // or other expensive operation. The speculation of an expensive instruction
404   // is expected to be undone in CodeGenPrepare if the speculation has not
405   // enabled further IR optimizations.
406   if (BudgetRemaining < 0 &&
407       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
408     return false;
409 
410   // Okay, we can only really hoist these out if their operands do
411   // not take us over the cost threshold.
412   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
413     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
414                              Depth + 1))
415       return false;
416   // Okay, it's safe to do this!  Remember this instruction.
417   AggressiveInsts.insert(I);
418   return true;
419 }
420 
421 /// Extract ConstantInt from value, looking through IntToPtr
422 /// and PointerNullValue. Return NULL if value is not a constant int.
423 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
424   // Normal constant int.
425   ConstantInt *CI = dyn_cast<ConstantInt>(V);
426   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
427     return CI;
428 
429   // This is some kind of pointer constant. Turn it into a pointer-sized
430   // ConstantInt if possible.
431   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
432 
433   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
434   if (isa<ConstantPointerNull>(V))
435     return ConstantInt::get(PtrTy, 0);
436 
437   // IntToPtr const int.
438   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
439     if (CE->getOpcode() == Instruction::IntToPtr)
440       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
441         // The constant is very likely to have the right type already.
442         if (CI->getType() == PtrTy)
443           return CI;
444         else
445           return cast<ConstantInt>(
446               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
447       }
448   return nullptr;
449 }
450 
451 namespace {
452 
453 /// Given a chain of or (||) or and (&&) comparison of a value against a
454 /// constant, this will try to recover the information required for a switch
455 /// structure.
456 /// It will depth-first traverse the chain of comparison, seeking for patterns
457 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
458 /// representing the different cases for the switch.
459 /// Note that if the chain is composed of '||' it will build the set of elements
460 /// that matches the comparisons (i.e. any of this value validate the chain)
461 /// while for a chain of '&&' it will build the set elements that make the test
462 /// fail.
463 struct ConstantComparesGatherer {
464   const DataLayout &DL;
465 
466   /// Value found for the switch comparison
467   Value *CompValue = nullptr;
468 
469   /// Extra clause to be checked before the switch
470   Value *Extra = nullptr;
471 
472   /// Set of integers to match in switch
473   SmallVector<ConstantInt *, 8> Vals;
474 
475   /// Number of comparisons matched in the and/or chain
476   unsigned UsedICmps = 0;
477 
478   /// Construct and compute the result for the comparison instruction Cond
479   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
480     gather(Cond);
481   }
482 
483   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
484   ConstantComparesGatherer &
485   operator=(const ConstantComparesGatherer &) = delete;
486 
487 private:
488   /// Try to set the current value used for the comparison, it succeeds only if
489   /// it wasn't set before or if the new value is the same as the old one
490   bool setValueOnce(Value *NewVal) {
491     if (CompValue && CompValue != NewVal)
492       return false;
493     CompValue = NewVal;
494     return (CompValue != nullptr);
495   }
496 
497   /// Try to match Instruction "I" as a comparison against a constant and
498   /// populates the array Vals with the set of values that match (or do not
499   /// match depending on isEQ).
500   /// Return false on failure. On success, the Value the comparison matched
501   /// against is placed in CompValue.
502   /// If CompValue is already set, the function is expected to fail if a match
503   /// is found but the value compared to is different.
504   bool matchInstruction(Instruction *I, bool isEQ) {
505     // If this is an icmp against a constant, handle this as one of the cases.
506     ICmpInst *ICI;
507     ConstantInt *C;
508     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
509           (C = GetConstantInt(I->getOperand(1), DL)))) {
510       return false;
511     }
512 
513     Value *RHSVal;
514     const APInt *RHSC;
515 
516     // Pattern match a special case
517     // (x & ~2^z) == y --> x == y || x == y|2^z
518     // This undoes a transformation done by instcombine to fuse 2 compares.
519     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
520       // It's a little bit hard to see why the following transformations are
521       // correct. Here is a CVC3 program to verify them for 64-bit values:
522 
523       /*
524          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
525          x    : BITVECTOR(64);
526          y    : BITVECTOR(64);
527          z    : BITVECTOR(64);
528          mask : BITVECTOR(64) = BVSHL(ONE, z);
529          QUERY( (y & ~mask = y) =>
530                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
531          );
532          QUERY( (y |  mask = y) =>
533                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
534          );
535       */
536 
537       // Please note that each pattern must be a dual implication (<--> or
538       // iff). One directional implication can create spurious matches. If the
539       // implication is only one-way, an unsatisfiable condition on the left
540       // side can imply a satisfiable condition on the right side. Dual
541       // implication ensures that satisfiable conditions are transformed to
542       // other satisfiable conditions and unsatisfiable conditions are
543       // transformed to other unsatisfiable conditions.
544 
545       // Here is a concrete example of a unsatisfiable condition on the left
546       // implying a satisfiable condition on the right:
547       //
548       // mask = (1 << z)
549       // (x & ~mask) == y  --> (x == y || x == (y | mask))
550       //
551       // Substituting y = 3, z = 0 yields:
552       // (x & -2) == 3 --> (x == 3 || x == 2)
553 
554       // Pattern match a special case:
555       /*
556         QUERY( (y & ~mask = y) =>
557                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
558         );
559       */
560       if (match(ICI->getOperand(0),
561                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
562         APInt Mask = ~*RHSC;
563         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
564           // If we already have a value for the switch, it has to match!
565           if (!setValueOnce(RHSVal))
566             return false;
567 
568           Vals.push_back(C);
569           Vals.push_back(
570               ConstantInt::get(C->getContext(),
571                                C->getValue() | Mask));
572           UsedICmps++;
573           return true;
574         }
575       }
576 
577       // Pattern match a special case:
578       /*
579         QUERY( (y |  mask = y) =>
580                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
581         );
582       */
583       if (match(ICI->getOperand(0),
584                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
585         APInt Mask = *RHSC;
586         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
587           // If we already have a value for the switch, it has to match!
588           if (!setValueOnce(RHSVal))
589             return false;
590 
591           Vals.push_back(C);
592           Vals.push_back(ConstantInt::get(C->getContext(),
593                                           C->getValue() & ~Mask));
594           UsedICmps++;
595           return true;
596         }
597       }
598 
599       // If we already have a value for the switch, it has to match!
600       if (!setValueOnce(ICI->getOperand(0)))
601         return false;
602 
603       UsedICmps++;
604       Vals.push_back(C);
605       return ICI->getOperand(0);
606     }
607 
608     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
609     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
610         ICI->getPredicate(), C->getValue());
611 
612     // Shift the range if the compare is fed by an add. This is the range
613     // compare idiom as emitted by instcombine.
614     Value *CandidateVal = I->getOperand(0);
615     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
616       Span = Span.subtract(*RHSC);
617       CandidateVal = RHSVal;
618     }
619 
620     // If this is an and/!= check, then we are looking to build the set of
621     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
622     // x != 0 && x != 1.
623     if (!isEQ)
624       Span = Span.inverse();
625 
626     // If there are a ton of values, we don't want to make a ginormous switch.
627     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
628       return false;
629     }
630 
631     // If we already have a value for the switch, it has to match!
632     if (!setValueOnce(CandidateVal))
633       return false;
634 
635     // Add all values from the range to the set
636     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
637       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
638 
639     UsedICmps++;
640     return true;
641   }
642 
643   /// Given a potentially 'or'd or 'and'd together collection of icmp
644   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
645   /// the value being compared, and stick the list constants into the Vals
646   /// vector.
647   /// One "Extra" case is allowed to differ from the other.
648   void gather(Value *V) {
649     bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
650 
651     // Keep a stack (SmallVector for efficiency) for depth-first traversal
652     SmallVector<Value *, 8> DFT;
653     SmallPtrSet<Value *, 8> Visited;
654 
655     // Initialize
656     Visited.insert(V);
657     DFT.push_back(V);
658 
659     while (!DFT.empty()) {
660       V = DFT.pop_back_val();
661 
662       if (Instruction *I = dyn_cast<Instruction>(V)) {
663         // If it is a || (or && depending on isEQ), process the operands.
664         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
665           if (Visited.insert(I->getOperand(1)).second)
666             DFT.push_back(I->getOperand(1));
667           if (Visited.insert(I->getOperand(0)).second)
668             DFT.push_back(I->getOperand(0));
669           continue;
670         }
671 
672         // Try to match the current instruction
673         if (matchInstruction(I, isEQ))
674           // Match succeed, continue the loop
675           continue;
676       }
677 
678       // One element of the sequence of || (or &&) could not be match as a
679       // comparison against the same value as the others.
680       // We allow only one "Extra" case to be checked before the switch
681       if (!Extra) {
682         Extra = V;
683         continue;
684       }
685       // Failed to parse a proper sequence, abort now
686       CompValue = nullptr;
687       break;
688     }
689   }
690 };
691 
692 } // end anonymous namespace
693 
694 static void EraseTerminatorAndDCECond(Instruction *TI,
695                                       MemorySSAUpdater *MSSAU = nullptr) {
696   Instruction *Cond = nullptr;
697   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
698     Cond = dyn_cast<Instruction>(SI->getCondition());
699   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
700     if (BI->isConditional())
701       Cond = dyn_cast<Instruction>(BI->getCondition());
702   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
703     Cond = dyn_cast<Instruction>(IBI->getAddress());
704   }
705 
706   TI->eraseFromParent();
707   if (Cond)
708     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
709 }
710 
711 /// Return true if the specified terminator checks
712 /// to see if a value is equal to constant integer value.
713 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
714   Value *CV = nullptr;
715   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
716     // Do not permit merging of large switch instructions into their
717     // predecessors unless there is only one predecessor.
718     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
719       CV = SI->getCondition();
720   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
721     if (BI->isConditional() && BI->getCondition()->hasOneUse())
722       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
723         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
724           CV = ICI->getOperand(0);
725       }
726 
727   // Unwrap any lossless ptrtoint cast.
728   if (CV) {
729     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
730       Value *Ptr = PTII->getPointerOperand();
731       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
732         CV = Ptr;
733     }
734   }
735   return CV;
736 }
737 
738 /// Given a value comparison instruction,
739 /// decode all of the 'cases' that it represents and return the 'default' block.
740 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
741     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
742   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
743     Cases.reserve(SI->getNumCases());
744     for (auto Case : SI->cases())
745       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
746                                                   Case.getCaseSuccessor()));
747     return SI->getDefaultDest();
748   }
749 
750   BranchInst *BI = cast<BranchInst>(TI);
751   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
752   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
753   Cases.push_back(ValueEqualityComparisonCase(
754       GetConstantInt(ICI->getOperand(1), DL), Succ));
755   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
756 }
757 
758 /// Given a vector of bb/value pairs, remove any entries
759 /// in the list that match the specified block.
760 static void
761 EliminateBlockCases(BasicBlock *BB,
762                     std::vector<ValueEqualityComparisonCase> &Cases) {
763   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
764 }
765 
766 /// Return true if there are any keys in C1 that exist in C2 as well.
767 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
768                           std::vector<ValueEqualityComparisonCase> &C2) {
769   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
770 
771   // Make V1 be smaller than V2.
772   if (V1->size() > V2->size())
773     std::swap(V1, V2);
774 
775   if (V1->empty())
776     return false;
777   if (V1->size() == 1) {
778     // Just scan V2.
779     ConstantInt *TheVal = (*V1)[0].Value;
780     for (unsigned i = 0, e = V2->size(); i != e; ++i)
781       if (TheVal == (*V2)[i].Value)
782         return true;
783   }
784 
785   // Otherwise, just sort both lists and compare element by element.
786   array_pod_sort(V1->begin(), V1->end());
787   array_pod_sort(V2->begin(), V2->end());
788   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
789   while (i1 != e1 && i2 != e2) {
790     if ((*V1)[i1].Value == (*V2)[i2].Value)
791       return true;
792     if ((*V1)[i1].Value < (*V2)[i2].Value)
793       ++i1;
794     else
795       ++i2;
796   }
797   return false;
798 }
799 
800 // Set branch weights on SwitchInst. This sets the metadata if there is at
801 // least one non-zero weight.
802 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
803   // Check that there is at least one non-zero weight. Otherwise, pass
804   // nullptr to setMetadata which will erase the existing metadata.
805   MDNode *N = nullptr;
806   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
807     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
808   SI->setMetadata(LLVMContext::MD_prof, N);
809 }
810 
811 // Similar to the above, but for branch and select instructions that take
812 // exactly 2 weights.
813 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
814                              uint32_t FalseWeight) {
815   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
816   // Check that there is at least one non-zero weight. Otherwise, pass
817   // nullptr to setMetadata which will erase the existing metadata.
818   MDNode *N = nullptr;
819   if (TrueWeight || FalseWeight)
820     N = MDBuilder(I->getParent()->getContext())
821             .createBranchWeights(TrueWeight, FalseWeight);
822   I->setMetadata(LLVMContext::MD_prof, N);
823 }
824 
825 /// If TI is known to be a terminator instruction and its block is known to
826 /// only have a single predecessor block, check to see if that predecessor is
827 /// also a value comparison with the same value, and if that comparison
828 /// determines the outcome of this comparison. If so, simplify TI. This does a
829 /// very limited form of jump threading.
830 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
831     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
832   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
833   if (!PredVal)
834     return false; // Not a value comparison in predecessor.
835 
836   Value *ThisVal = isValueEqualityComparison(TI);
837   assert(ThisVal && "This isn't a value comparison!!");
838   if (ThisVal != PredVal)
839     return false; // Different predicates.
840 
841   // TODO: Preserve branch weight metadata, similarly to how
842   // FoldValueComparisonIntoPredecessors preserves it.
843 
844   // Find out information about when control will move from Pred to TI's block.
845   std::vector<ValueEqualityComparisonCase> PredCases;
846   BasicBlock *PredDef =
847       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
848   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
849 
850   // Find information about how control leaves this block.
851   std::vector<ValueEqualityComparisonCase> ThisCases;
852   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
853   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
854 
855   // If TI's block is the default block from Pred's comparison, potentially
856   // simplify TI based on this knowledge.
857   if (PredDef == TI->getParent()) {
858     // If we are here, we know that the value is none of those cases listed in
859     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
860     // can simplify TI.
861     if (!ValuesOverlap(PredCases, ThisCases))
862       return false;
863 
864     if (isa<BranchInst>(TI)) {
865       // Okay, one of the successors of this condbr is dead.  Convert it to a
866       // uncond br.
867       assert(ThisCases.size() == 1 && "Branch can only have one case!");
868       // Insert the new branch.
869       Instruction *NI = Builder.CreateBr(ThisDef);
870       (void)NI;
871 
872       // Remove PHI node entries for the dead edge.
873       ThisCases[0].Dest->removePredecessor(TI->getParent());
874 
875       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
876                         << "Through successor TI: " << *TI << "Leaving: " << *NI
877                         << "\n");
878 
879       EraseTerminatorAndDCECond(TI);
880       return true;
881     }
882 
883     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
884     // Okay, TI has cases that are statically dead, prune them away.
885     SmallPtrSet<Constant *, 16> DeadCases;
886     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
887       DeadCases.insert(PredCases[i].Value);
888 
889     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
890                       << "Through successor TI: " << *TI);
891 
892     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
893       --i;
894       if (DeadCases.count(i->getCaseValue())) {
895         i->getCaseSuccessor()->removePredecessor(TI->getParent());
896         SI.removeCase(i);
897       }
898     }
899     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
900     return true;
901   }
902 
903   // Otherwise, TI's block must correspond to some matched value.  Find out
904   // which value (or set of values) this is.
905   ConstantInt *TIV = nullptr;
906   BasicBlock *TIBB = TI->getParent();
907   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
908     if (PredCases[i].Dest == TIBB) {
909       if (TIV)
910         return false; // Cannot handle multiple values coming to this block.
911       TIV = PredCases[i].Value;
912     }
913   assert(TIV && "No edge from pred to succ?");
914 
915   // Okay, we found the one constant that our value can be if we get into TI's
916   // BB.  Find out which successor will unconditionally be branched to.
917   BasicBlock *TheRealDest = nullptr;
918   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
919     if (ThisCases[i].Value == TIV) {
920       TheRealDest = ThisCases[i].Dest;
921       break;
922     }
923 
924   // If not handled by any explicit cases, it is handled by the default case.
925   if (!TheRealDest)
926     TheRealDest = ThisDef;
927 
928   // Remove PHI node entries for dead edges.
929   BasicBlock *CheckEdge = TheRealDest;
930   for (BasicBlock *Succ : successors(TIBB))
931     if (Succ != CheckEdge)
932       Succ->removePredecessor(TIBB);
933     else
934       CheckEdge = nullptr;
935 
936   // Insert the new branch.
937   Instruction *NI = Builder.CreateBr(TheRealDest);
938   (void)NI;
939 
940   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
941                     << "Through successor TI: " << *TI << "Leaving: " << *NI
942                     << "\n");
943 
944   EraseTerminatorAndDCECond(TI);
945   return true;
946 }
947 
948 namespace {
949 
950 /// This class implements a stable ordering of constant
951 /// integers that does not depend on their address.  This is important for
952 /// applications that sort ConstantInt's to ensure uniqueness.
953 struct ConstantIntOrdering {
954   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
955     return LHS->getValue().ult(RHS->getValue());
956   }
957 };
958 
959 } // end anonymous namespace
960 
961 static int ConstantIntSortPredicate(ConstantInt *const *P1,
962                                     ConstantInt *const *P2) {
963   const ConstantInt *LHS = *P1;
964   const ConstantInt *RHS = *P2;
965   if (LHS == RHS)
966     return 0;
967   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
968 }
969 
970 static inline bool HasBranchWeights(const Instruction *I) {
971   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
972   if (ProfMD && ProfMD->getOperand(0))
973     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
974       return MDS->getString().equals("branch_weights");
975 
976   return false;
977 }
978 
979 /// Get Weights of a given terminator, the default weight is at the front
980 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
981 /// metadata.
982 static void GetBranchWeights(Instruction *TI,
983                              SmallVectorImpl<uint64_t> &Weights) {
984   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
985   assert(MD);
986   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
987     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
988     Weights.push_back(CI->getValue().getZExtValue());
989   }
990 
991   // If TI is a conditional eq, the default case is the false case,
992   // and the corresponding branch-weight data is at index 2. We swap the
993   // default weight to be the first entry.
994   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
995     assert(Weights.size() == 2);
996     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
997     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
998       std::swap(Weights.front(), Weights.back());
999   }
1000 }
1001 
1002 /// Keep halving the weights until all can fit in uint32_t.
1003 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1004   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1005   if (Max > UINT_MAX) {
1006     unsigned Offset = 32 - countLeadingZeros(Max);
1007     for (uint64_t &I : Weights)
1008       I >>= Offset;
1009   }
1010 }
1011 
1012 /// The specified terminator is a value equality comparison instruction
1013 /// (either a switch or a branch on "X == c").
1014 /// See if any of the predecessors of the terminator block are value comparisons
1015 /// on the same value.  If so, and if safe to do so, fold them together.
1016 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1017                                                          IRBuilder<> &Builder) {
1018   BasicBlock *BB = TI->getParent();
1019   Value *CV = isValueEqualityComparison(TI); // CondVal
1020   assert(CV && "Not a comparison?");
1021   bool Changed = false;
1022 
1023   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1024   while (!Preds.empty()) {
1025     BasicBlock *Pred = Preds.pop_back_val();
1026 
1027     // See if the predecessor is a comparison with the same value.
1028     Instruction *PTI = Pred->getTerminator();
1029     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1030 
1031     if (PCV == CV && TI != PTI) {
1032       SmallSetVector<BasicBlock*, 4> FailBlocks;
1033       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1034         for (auto *Succ : FailBlocks) {
1035           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1036             return false;
1037         }
1038       }
1039 
1040       // Figure out which 'cases' to copy from SI to PSI.
1041       std::vector<ValueEqualityComparisonCase> BBCases;
1042       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1043 
1044       std::vector<ValueEqualityComparisonCase> PredCases;
1045       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1046 
1047       // Based on whether the default edge from PTI goes to BB or not, fill in
1048       // PredCases and PredDefault with the new switch cases we would like to
1049       // build.
1050       SmallVector<BasicBlock *, 8> NewSuccessors;
1051 
1052       // Update the branch weight metadata along the way
1053       SmallVector<uint64_t, 8> Weights;
1054       bool PredHasWeights = HasBranchWeights(PTI);
1055       bool SuccHasWeights = HasBranchWeights(TI);
1056 
1057       if (PredHasWeights) {
1058         GetBranchWeights(PTI, Weights);
1059         // branch-weight metadata is inconsistent here.
1060         if (Weights.size() != 1 + PredCases.size())
1061           PredHasWeights = SuccHasWeights = false;
1062       } else if (SuccHasWeights)
1063         // If there are no predecessor weights but there are successor weights,
1064         // populate Weights with 1, which will later be scaled to the sum of
1065         // successor's weights
1066         Weights.assign(1 + PredCases.size(), 1);
1067 
1068       SmallVector<uint64_t, 8> SuccWeights;
1069       if (SuccHasWeights) {
1070         GetBranchWeights(TI, SuccWeights);
1071         // branch-weight metadata is inconsistent here.
1072         if (SuccWeights.size() != 1 + BBCases.size())
1073           PredHasWeights = SuccHasWeights = false;
1074       } else if (PredHasWeights)
1075         SuccWeights.assign(1 + BBCases.size(), 1);
1076 
1077       if (PredDefault == BB) {
1078         // If this is the default destination from PTI, only the edges in TI
1079         // that don't occur in PTI, or that branch to BB will be activated.
1080         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1081         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1082           if (PredCases[i].Dest != BB)
1083             PTIHandled.insert(PredCases[i].Value);
1084           else {
1085             // The default destination is BB, we don't need explicit targets.
1086             std::swap(PredCases[i], PredCases.back());
1087 
1088             if (PredHasWeights || SuccHasWeights) {
1089               // Increase weight for the default case.
1090               Weights[0] += Weights[i + 1];
1091               std::swap(Weights[i + 1], Weights.back());
1092               Weights.pop_back();
1093             }
1094 
1095             PredCases.pop_back();
1096             --i;
1097             --e;
1098           }
1099 
1100         // Reconstruct the new switch statement we will be building.
1101         if (PredDefault != BBDefault) {
1102           PredDefault->removePredecessor(Pred);
1103           PredDefault = BBDefault;
1104           NewSuccessors.push_back(BBDefault);
1105         }
1106 
1107         unsigned CasesFromPred = Weights.size();
1108         uint64_t ValidTotalSuccWeight = 0;
1109         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1110           if (!PTIHandled.count(BBCases[i].Value) &&
1111               BBCases[i].Dest != BBDefault) {
1112             PredCases.push_back(BBCases[i]);
1113             NewSuccessors.push_back(BBCases[i].Dest);
1114             if (SuccHasWeights || PredHasWeights) {
1115               // The default weight is at index 0, so weight for the ith case
1116               // should be at index i+1. Scale the cases from successor by
1117               // PredDefaultWeight (Weights[0]).
1118               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1119               ValidTotalSuccWeight += SuccWeights[i + 1];
1120             }
1121           }
1122 
1123         if (SuccHasWeights || PredHasWeights) {
1124           ValidTotalSuccWeight += SuccWeights[0];
1125           // Scale the cases from predecessor by ValidTotalSuccWeight.
1126           for (unsigned i = 1; i < CasesFromPred; ++i)
1127             Weights[i] *= ValidTotalSuccWeight;
1128           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1129           Weights[0] *= SuccWeights[0];
1130         }
1131       } else {
1132         // If this is not the default destination from PSI, only the edges
1133         // in SI that occur in PSI with a destination of BB will be
1134         // activated.
1135         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1136         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1137         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1138           if (PredCases[i].Dest == BB) {
1139             PTIHandled.insert(PredCases[i].Value);
1140 
1141             if (PredHasWeights || SuccHasWeights) {
1142               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1143               std::swap(Weights[i + 1], Weights.back());
1144               Weights.pop_back();
1145             }
1146 
1147             std::swap(PredCases[i], PredCases.back());
1148             PredCases.pop_back();
1149             --i;
1150             --e;
1151           }
1152 
1153         // Okay, now we know which constants were sent to BB from the
1154         // predecessor.  Figure out where they will all go now.
1155         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1156           if (PTIHandled.count(BBCases[i].Value)) {
1157             // If this is one we are capable of getting...
1158             if (PredHasWeights || SuccHasWeights)
1159               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1160             PredCases.push_back(BBCases[i]);
1161             NewSuccessors.push_back(BBCases[i].Dest);
1162             PTIHandled.erase(
1163                 BBCases[i].Value); // This constant is taken care of
1164           }
1165 
1166         // If there are any constants vectored to BB that TI doesn't handle,
1167         // they must go to the default destination of TI.
1168         for (ConstantInt *I : PTIHandled) {
1169           if (PredHasWeights || SuccHasWeights)
1170             Weights.push_back(WeightsForHandled[I]);
1171           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1172           NewSuccessors.push_back(BBDefault);
1173         }
1174       }
1175 
1176       // Okay, at this point, we know which new successor Pred will get.  Make
1177       // sure we update the number of entries in the PHI nodes for these
1178       // successors.
1179       for (BasicBlock *NewSuccessor : NewSuccessors)
1180         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1181 
1182       Builder.SetInsertPoint(PTI);
1183       // Convert pointer to int before we switch.
1184       if (CV->getType()->isPointerTy()) {
1185         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1186                                     "magicptr");
1187       }
1188 
1189       // Now that the successors are updated, create the new Switch instruction.
1190       SwitchInst *NewSI =
1191           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1192       NewSI->setDebugLoc(PTI->getDebugLoc());
1193       for (ValueEqualityComparisonCase &V : PredCases)
1194         NewSI->addCase(V.Value, V.Dest);
1195 
1196       if (PredHasWeights || SuccHasWeights) {
1197         // Halve the weights if any of them cannot fit in an uint32_t
1198         FitWeights(Weights);
1199 
1200         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1201 
1202         setBranchWeights(NewSI, MDWeights);
1203       }
1204 
1205       EraseTerminatorAndDCECond(PTI);
1206 
1207       // Okay, last check.  If BB is still a successor of PSI, then we must
1208       // have an infinite loop case.  If so, add an infinitely looping block
1209       // to handle the case to preserve the behavior of the code.
1210       BasicBlock *InfLoopBlock = nullptr;
1211       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1212         if (NewSI->getSuccessor(i) == BB) {
1213           if (!InfLoopBlock) {
1214             // Insert it at the end of the function, because it's either code,
1215             // or it won't matter if it's hot. :)
1216             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1217                                               BB->getParent());
1218             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1219           }
1220           NewSI->setSuccessor(i, InfLoopBlock);
1221         }
1222 
1223       Changed = true;
1224     }
1225   }
1226   return Changed;
1227 }
1228 
1229 // If we would need to insert a select that uses the value of this invoke
1230 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1231 // can't hoist the invoke, as there is nowhere to put the select in this case.
1232 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1233                                 Instruction *I1, Instruction *I2) {
1234   for (BasicBlock *Succ : successors(BB1)) {
1235     for (const PHINode &PN : Succ->phis()) {
1236       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1237       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1238       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1239         return false;
1240       }
1241     }
1242   }
1243   return true;
1244 }
1245 
1246 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1247 
1248 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1249 /// in the two blocks up into the branch block. The caller of this function
1250 /// guarantees that BI's block dominates BB1 and BB2.
1251 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1252                                            const TargetTransformInfo &TTI) {
1253   // This does very trivial matching, with limited scanning, to find identical
1254   // instructions in the two blocks.  In particular, we don't want to get into
1255   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1256   // such, we currently just scan for obviously identical instructions in an
1257   // identical order.
1258   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1259   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1260 
1261   BasicBlock::iterator BB1_Itr = BB1->begin();
1262   BasicBlock::iterator BB2_Itr = BB2->begin();
1263 
1264   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1265   // Skip debug info if it is not identical.
1266   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1267   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1268   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1269     while (isa<DbgInfoIntrinsic>(I1))
1270       I1 = &*BB1_Itr++;
1271     while (isa<DbgInfoIntrinsic>(I2))
1272       I2 = &*BB2_Itr++;
1273   }
1274   // FIXME: Can we define a safety predicate for CallBr?
1275   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1276       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1277       isa<CallBrInst>(I1))
1278     return false;
1279 
1280   BasicBlock *BIParent = BI->getParent();
1281 
1282   bool Changed = false;
1283   do {
1284     // If we are hoisting the terminator instruction, don't move one (making a
1285     // broken BB), instead clone it, and remove BI.
1286     if (I1->isTerminator())
1287       goto HoistTerminator;
1288 
1289     // If we're going to hoist a call, make sure that the two instructions we're
1290     // commoning/hoisting are both marked with musttail, or neither of them is
1291     // marked as such. Otherwise, we might end up in a situation where we hoist
1292     // from a block where the terminator is a `ret` to a block where the terminator
1293     // is a `br`, and `musttail` calls expect to be followed by a return.
1294     auto *C1 = dyn_cast<CallInst>(I1);
1295     auto *C2 = dyn_cast<CallInst>(I2);
1296     if (C1 && C2)
1297       if (C1->isMustTailCall() != C2->isMustTailCall())
1298         return Changed;
1299 
1300     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1301       return Changed;
1302 
1303     // If any of the two call sites has nomerge attribute, stop hoisting.
1304     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1305       if (CB1->cannotMerge())
1306         return Changed;
1307     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1308       if (CB2->cannotMerge())
1309         return Changed;
1310 
1311     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1312       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1313       // The debug location is an integral part of a debug info intrinsic
1314       // and can't be separated from it or replaced.  Instead of attempting
1315       // to merge locations, simply hoist both copies of the intrinsic.
1316       BIParent->getInstList().splice(BI->getIterator(),
1317                                      BB1->getInstList(), I1);
1318       BIParent->getInstList().splice(BI->getIterator(),
1319                                      BB2->getInstList(), I2);
1320       Changed = true;
1321     } else {
1322       // For a normal instruction, we just move one to right before the branch,
1323       // then replace all uses of the other with the first.  Finally, we remove
1324       // the now redundant second instruction.
1325       BIParent->getInstList().splice(BI->getIterator(),
1326                                      BB1->getInstList(), I1);
1327       if (!I2->use_empty())
1328         I2->replaceAllUsesWith(I1);
1329       I1->andIRFlags(I2);
1330       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1331                              LLVMContext::MD_range,
1332                              LLVMContext::MD_fpmath,
1333                              LLVMContext::MD_invariant_load,
1334                              LLVMContext::MD_nonnull,
1335                              LLVMContext::MD_invariant_group,
1336                              LLVMContext::MD_align,
1337                              LLVMContext::MD_dereferenceable,
1338                              LLVMContext::MD_dereferenceable_or_null,
1339                              LLVMContext::MD_mem_parallel_loop_access,
1340                              LLVMContext::MD_access_group,
1341                              LLVMContext::MD_preserve_access_index};
1342       combineMetadata(I1, I2, KnownIDs, true);
1343 
1344       // I1 and I2 are being combined into a single instruction.  Its debug
1345       // location is the merged locations of the original instructions.
1346       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1347 
1348       I2->eraseFromParent();
1349       Changed = true;
1350     }
1351 
1352     I1 = &*BB1_Itr++;
1353     I2 = &*BB2_Itr++;
1354     // Skip debug info if it is not identical.
1355     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1356     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1357     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1358       while (isa<DbgInfoIntrinsic>(I1))
1359         I1 = &*BB1_Itr++;
1360       while (isa<DbgInfoIntrinsic>(I2))
1361         I2 = &*BB2_Itr++;
1362     }
1363   } while (I1->isIdenticalToWhenDefined(I2));
1364 
1365   return true;
1366 
1367 HoistTerminator:
1368   // It may not be possible to hoist an invoke.
1369   // FIXME: Can we define a safety predicate for CallBr?
1370   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1371     return Changed;
1372 
1373   // TODO: callbr hoisting currently disabled pending further study.
1374   if (isa<CallBrInst>(I1))
1375     return Changed;
1376 
1377   for (BasicBlock *Succ : successors(BB1)) {
1378     for (PHINode &PN : Succ->phis()) {
1379       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1380       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1381       if (BB1V == BB2V)
1382         continue;
1383 
1384       // Check for passingValueIsAlwaysUndefined here because we would rather
1385       // eliminate undefined control flow then converting it to a select.
1386       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1387           passingValueIsAlwaysUndefined(BB2V, &PN))
1388         return Changed;
1389 
1390       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1391         return Changed;
1392       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1393         return Changed;
1394     }
1395   }
1396 
1397   // Okay, it is safe to hoist the terminator.
1398   Instruction *NT = I1->clone();
1399   BIParent->getInstList().insert(BI->getIterator(), NT);
1400   if (!NT->getType()->isVoidTy()) {
1401     I1->replaceAllUsesWith(NT);
1402     I2->replaceAllUsesWith(NT);
1403     NT->takeName(I1);
1404   }
1405 
1406   // Ensure terminator gets a debug location, even an unknown one, in case
1407   // it involves inlinable calls.
1408   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1409 
1410   // PHIs created below will adopt NT's merged DebugLoc.
1411   IRBuilder<NoFolder> Builder(NT);
1412 
1413   // Hoisting one of the terminators from our successor is a great thing.
1414   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1415   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1416   // nodes, so we insert select instruction to compute the final result.
1417   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1418   for (BasicBlock *Succ : successors(BB1)) {
1419     for (PHINode &PN : Succ->phis()) {
1420       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1421       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1422       if (BB1V == BB2V)
1423         continue;
1424 
1425       // These values do not agree.  Insert a select instruction before NT
1426       // that determines the right value.
1427       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1428       if (!SI) {
1429         // Propagate fast-math-flags from phi node to its replacement select.
1430         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1431         if (isa<FPMathOperator>(PN))
1432           Builder.setFastMathFlags(PN.getFastMathFlags());
1433 
1434         SI = cast<SelectInst>(
1435             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1436                                  BB1V->getName() + "." + BB2V->getName(), BI));
1437       }
1438 
1439       // Make the PHI node use the select for all incoming values for BB1/BB2
1440       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1441         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1442           PN.setIncomingValue(i, SI);
1443     }
1444   }
1445 
1446   // Update any PHI nodes in our new successors.
1447   for (BasicBlock *Succ : successors(BB1))
1448     AddPredecessorToBlock(Succ, BIParent, BB1);
1449 
1450   EraseTerminatorAndDCECond(BI);
1451   return true;
1452 }
1453 
1454 // Check lifetime markers.
1455 static bool isLifeTimeMarker(const Instruction *I) {
1456   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1457     switch (II->getIntrinsicID()) {
1458     default:
1459       break;
1460     case Intrinsic::lifetime_start:
1461     case Intrinsic::lifetime_end:
1462       return true;
1463     }
1464   }
1465   return false;
1466 }
1467 
1468 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1469 // into variables.
1470 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1471                                                 int OpIdx) {
1472   return !isa<IntrinsicInst>(I);
1473 }
1474 
1475 // All instructions in Insts belong to different blocks that all unconditionally
1476 // branch to a common successor. Analyze each instruction and return true if it
1477 // would be possible to sink them into their successor, creating one common
1478 // instruction instead. For every value that would be required to be provided by
1479 // PHI node (because an operand varies in each input block), add to PHIOperands.
1480 static bool canSinkInstructions(
1481     ArrayRef<Instruction *> Insts,
1482     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1483   // Prune out obviously bad instructions to move. Each instruction must have
1484   // exactly zero or one use, and we check later that use is by a single, common
1485   // PHI instruction in the successor.
1486   bool HasUse = !Insts.front()->user_empty();
1487   for (auto *I : Insts) {
1488     // These instructions may change or break semantics if moved.
1489     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1490         I->getType()->isTokenTy())
1491       return false;
1492 
1493     // Conservatively return false if I is an inline-asm instruction. Sinking
1494     // and merging inline-asm instructions can potentially create arguments
1495     // that cannot satisfy the inline-asm constraints.
1496     // If the instruction has nomerge attribute, return false.
1497     if (const auto *C = dyn_cast<CallBase>(I))
1498       if (C->isInlineAsm() || C->cannotMerge())
1499         return false;
1500 
1501     // Each instruction must have zero or one use.
1502     if (HasUse && !I->hasOneUse())
1503       return false;
1504     if (!HasUse && !I->user_empty())
1505       return false;
1506   }
1507 
1508   const Instruction *I0 = Insts.front();
1509   for (auto *I : Insts)
1510     if (!I->isSameOperationAs(I0))
1511       return false;
1512 
1513   // All instructions in Insts are known to be the same opcode. If they have a
1514   // use, check that the only user is a PHI or in the same block as the
1515   // instruction, because if a user is in the same block as an instruction we're
1516   // contemplating sinking, it must already be determined to be sinkable.
1517   if (HasUse) {
1518     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1519     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1520     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1521           auto *U = cast<Instruction>(*I->user_begin());
1522           return (PNUse &&
1523                   PNUse->getParent() == Succ &&
1524                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1525                  U->getParent() == I->getParent();
1526         }))
1527       return false;
1528   }
1529 
1530   // Because SROA can't handle speculating stores of selects, try not to sink
1531   // loads, stores or lifetime markers of allocas when we'd have to create a
1532   // PHI for the address operand. Also, because it is likely that loads or
1533   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1534   // them.
1535   // This can cause code churn which can have unintended consequences down
1536   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1537   // FIXME: This is a workaround for a deficiency in SROA - see
1538   // https://llvm.org/bugs/show_bug.cgi?id=30188
1539   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1540         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1541       }))
1542     return false;
1543   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1544         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1545       }))
1546     return false;
1547   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1548         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1549       }))
1550     return false;
1551 
1552   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1553     Value *Op = I0->getOperand(OI);
1554     if (Op->getType()->isTokenTy())
1555       // Don't touch any operand of token type.
1556       return false;
1557 
1558     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1559       assert(I->getNumOperands() == I0->getNumOperands());
1560       return I->getOperand(OI) == I0->getOperand(OI);
1561     };
1562     if (!all_of(Insts, SameAsI0)) {
1563       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1564           !canReplaceOperandWithVariable(I0, OI))
1565         // We can't create a PHI from this GEP.
1566         return false;
1567       // Don't create indirect calls! The called value is the final operand.
1568       if (isa<CallBase>(I0) && OI == OE - 1) {
1569         // FIXME: if the call was *already* indirect, we should do this.
1570         return false;
1571       }
1572       for (auto *I : Insts)
1573         PHIOperands[I].push_back(I->getOperand(OI));
1574     }
1575   }
1576   return true;
1577 }
1578 
1579 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1580 // instruction of every block in Blocks to their common successor, commoning
1581 // into one instruction.
1582 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1583   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1584 
1585   // canSinkLastInstruction returning true guarantees that every block has at
1586   // least one non-terminator instruction.
1587   SmallVector<Instruction*,4> Insts;
1588   for (auto *BB : Blocks) {
1589     Instruction *I = BB->getTerminator();
1590     do {
1591       I = I->getPrevNode();
1592     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1593     if (!isa<DbgInfoIntrinsic>(I))
1594       Insts.push_back(I);
1595   }
1596 
1597   // The only checking we need to do now is that all users of all instructions
1598   // are the same PHI node. canSinkLastInstruction should have checked this but
1599   // it is slightly over-aggressive - it gets confused by commutative instructions
1600   // so double-check it here.
1601   Instruction *I0 = Insts.front();
1602   if (!I0->user_empty()) {
1603     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1604     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1605           auto *U = cast<Instruction>(*I->user_begin());
1606           return U == PNUse;
1607         }))
1608       return false;
1609   }
1610 
1611   // We don't need to do any more checking here; canSinkLastInstruction should
1612   // have done it all for us.
1613   SmallVector<Value*, 4> NewOperands;
1614   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1615     // This check is different to that in canSinkLastInstruction. There, we
1616     // cared about the global view once simplifycfg (and instcombine) have
1617     // completed - it takes into account PHIs that become trivially
1618     // simplifiable.  However here we need a more local view; if an operand
1619     // differs we create a PHI and rely on instcombine to clean up the very
1620     // small mess we may make.
1621     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1622       return I->getOperand(O) != I0->getOperand(O);
1623     });
1624     if (!NeedPHI) {
1625       NewOperands.push_back(I0->getOperand(O));
1626       continue;
1627     }
1628 
1629     // Create a new PHI in the successor block and populate it.
1630     auto *Op = I0->getOperand(O);
1631     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1632     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1633                                Op->getName() + ".sink", &BBEnd->front());
1634     for (auto *I : Insts)
1635       PN->addIncoming(I->getOperand(O), I->getParent());
1636     NewOperands.push_back(PN);
1637   }
1638 
1639   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1640   // and move it to the start of the successor block.
1641   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1642     I0->getOperandUse(O).set(NewOperands[O]);
1643   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1644 
1645   // Update metadata and IR flags, and merge debug locations.
1646   for (auto *I : Insts)
1647     if (I != I0) {
1648       // The debug location for the "common" instruction is the merged locations
1649       // of all the commoned instructions.  We start with the original location
1650       // of the "common" instruction and iteratively merge each location in the
1651       // loop below.
1652       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1653       // However, as N-way merge for CallInst is rare, so we use simplified API
1654       // instead of using complex API for N-way merge.
1655       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1656       combineMetadataForCSE(I0, I, true);
1657       I0->andIRFlags(I);
1658     }
1659 
1660   if (!I0->user_empty()) {
1661     // canSinkLastInstruction checked that all instructions were used by
1662     // one and only one PHI node. Find that now, RAUW it to our common
1663     // instruction and nuke it.
1664     auto *PN = cast<PHINode>(*I0->user_begin());
1665     PN->replaceAllUsesWith(I0);
1666     PN->eraseFromParent();
1667   }
1668 
1669   // Finally nuke all instructions apart from the common instruction.
1670   for (auto *I : Insts)
1671     if (I != I0)
1672       I->eraseFromParent();
1673 
1674   return true;
1675 }
1676 
1677 namespace {
1678 
1679   // LockstepReverseIterator - Iterates through instructions
1680   // in a set of blocks in reverse order from the first non-terminator.
1681   // For example (assume all blocks have size n):
1682   //   LockstepReverseIterator I([B1, B2, B3]);
1683   //   *I-- = [B1[n], B2[n], B3[n]];
1684   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1685   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1686   //   ...
1687   class LockstepReverseIterator {
1688     ArrayRef<BasicBlock*> Blocks;
1689     SmallVector<Instruction*,4> Insts;
1690     bool Fail;
1691 
1692   public:
1693     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1694       reset();
1695     }
1696 
1697     void reset() {
1698       Fail = false;
1699       Insts.clear();
1700       for (auto *BB : Blocks) {
1701         Instruction *Inst = BB->getTerminator();
1702         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1703           Inst = Inst->getPrevNode();
1704         if (!Inst) {
1705           // Block wasn't big enough.
1706           Fail = true;
1707           return;
1708         }
1709         Insts.push_back(Inst);
1710       }
1711     }
1712 
1713     bool isValid() const {
1714       return !Fail;
1715     }
1716 
1717     void operator--() {
1718       if (Fail)
1719         return;
1720       for (auto *&Inst : Insts) {
1721         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1722           Inst = Inst->getPrevNode();
1723         // Already at beginning of block.
1724         if (!Inst) {
1725           Fail = true;
1726           return;
1727         }
1728       }
1729     }
1730 
1731     ArrayRef<Instruction*> operator * () const {
1732       return Insts;
1733     }
1734   };
1735 
1736 } // end anonymous namespace
1737 
1738 /// Check whether BB's predecessors end with unconditional branches. If it is
1739 /// true, sink any common code from the predecessors to BB.
1740 /// We also allow one predecessor to end with conditional branch (but no more
1741 /// than one).
1742 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1743   // We support two situations:
1744   //   (1) all incoming arcs are unconditional
1745   //   (2) one incoming arc is conditional
1746   //
1747   // (2) is very common in switch defaults and
1748   // else-if patterns;
1749   //
1750   //   if (a) f(1);
1751   //   else if (b) f(2);
1752   //
1753   // produces:
1754   //
1755   //       [if]
1756   //      /    \
1757   //    [f(1)] [if]
1758   //      |     | \
1759   //      |     |  |
1760   //      |  [f(2)]|
1761   //       \    | /
1762   //        [ end ]
1763   //
1764   // [end] has two unconditional predecessor arcs and one conditional. The
1765   // conditional refers to the implicit empty 'else' arc. This conditional
1766   // arc can also be caused by an empty default block in a switch.
1767   //
1768   // In this case, we attempt to sink code from all *unconditional* arcs.
1769   // If we can sink instructions from these arcs (determined during the scan
1770   // phase below) we insert a common successor for all unconditional arcs and
1771   // connect that to [end], to enable sinking:
1772   //
1773   //       [if]
1774   //      /    \
1775   //    [x(1)] [if]
1776   //      |     | \
1777   //      |     |  \
1778   //      |  [x(2)] |
1779   //       \   /    |
1780   //   [sink.split] |
1781   //         \     /
1782   //         [ end ]
1783   //
1784   SmallVector<BasicBlock*,4> UnconditionalPreds;
1785   Instruction *Cond = nullptr;
1786   for (auto *B : predecessors(BB)) {
1787     auto *T = B->getTerminator();
1788     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1789       UnconditionalPreds.push_back(B);
1790     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1791       Cond = T;
1792     else
1793       return false;
1794   }
1795   if (UnconditionalPreds.size() < 2)
1796     return false;
1797 
1798   bool Changed = false;
1799   // We take a two-step approach to tail sinking. First we scan from the end of
1800   // each block upwards in lockstep. If the n'th instruction from the end of each
1801   // block can be sunk, those instructions are added to ValuesToSink and we
1802   // carry on. If we can sink an instruction but need to PHI-merge some operands
1803   // (because they're not identical in each instruction) we add these to
1804   // PHIOperands.
1805   unsigned ScanIdx = 0;
1806   SmallPtrSet<Value*,4> InstructionsToSink;
1807   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1808   LockstepReverseIterator LRI(UnconditionalPreds);
1809   while (LRI.isValid() &&
1810          canSinkInstructions(*LRI, PHIOperands)) {
1811     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1812                       << "\n");
1813     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1814     ++ScanIdx;
1815     --LRI;
1816   }
1817 
1818   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1819     unsigned NumPHIdValues = 0;
1820     for (auto *I : *LRI)
1821       for (auto *V : PHIOperands[I])
1822         if (InstructionsToSink.count(V) == 0)
1823           ++NumPHIdValues;
1824     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1825     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1826     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1827         NumPHIInsts++;
1828 
1829     return NumPHIInsts <= 1;
1830   };
1831 
1832   if (ScanIdx > 0 && Cond) {
1833     // Check if we would actually sink anything first! This mutates the CFG and
1834     // adds an extra block. The goal in doing this is to allow instructions that
1835     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1836     // (such as trunc, add) can be sunk and predicated already. So we check that
1837     // we're going to sink at least one non-speculatable instruction.
1838     LRI.reset();
1839     unsigned Idx = 0;
1840     bool Profitable = false;
1841     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1842       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1843         Profitable = true;
1844         break;
1845       }
1846       --LRI;
1847       ++Idx;
1848     }
1849     if (!Profitable)
1850       return false;
1851 
1852     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1853     // We have a conditional edge and we're going to sink some instructions.
1854     // Insert a new block postdominating all blocks we're going to sink from.
1855     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1856       // Edges couldn't be split.
1857       return false;
1858     Changed = true;
1859   }
1860 
1861   // Now that we've analyzed all potential sinking candidates, perform the
1862   // actual sink. We iteratively sink the last non-terminator of the source
1863   // blocks into their common successor unless doing so would require too
1864   // many PHI instructions to be generated (currently only one PHI is allowed
1865   // per sunk instruction).
1866   //
1867   // We can use InstructionsToSink to discount values needing PHI-merging that will
1868   // actually be sunk in a later iteration. This allows us to be more
1869   // aggressive in what we sink. This does allow a false positive where we
1870   // sink presuming a later value will also be sunk, but stop half way through
1871   // and never actually sink it which means we produce more PHIs than intended.
1872   // This is unlikely in practice though.
1873   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1874     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1875                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1876                       << "\n");
1877 
1878     // Because we've sunk every instruction in turn, the current instruction to
1879     // sink is always at index 0.
1880     LRI.reset();
1881     if (!ProfitableToSinkInstruction(LRI)) {
1882       // Too many PHIs would be created.
1883       LLVM_DEBUG(
1884           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1885       break;
1886     }
1887 
1888     if (!sinkLastInstruction(UnconditionalPreds))
1889       return Changed;
1890     NumSinkCommons++;
1891     Changed = true;
1892   }
1893   return Changed;
1894 }
1895 
1896 /// Determine if we can hoist sink a sole store instruction out of a
1897 /// conditional block.
1898 ///
1899 /// We are looking for code like the following:
1900 ///   BrBB:
1901 ///     store i32 %add, i32* %arrayidx2
1902 ///     ... // No other stores or function calls (we could be calling a memory
1903 ///     ... // function).
1904 ///     %cmp = icmp ult %x, %y
1905 ///     br i1 %cmp, label %EndBB, label %ThenBB
1906 ///   ThenBB:
1907 ///     store i32 %add5, i32* %arrayidx2
1908 ///     br label EndBB
1909 ///   EndBB:
1910 ///     ...
1911 ///   We are going to transform this into:
1912 ///   BrBB:
1913 ///     store i32 %add, i32* %arrayidx2
1914 ///     ... //
1915 ///     %cmp = icmp ult %x, %y
1916 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1917 ///     store i32 %add.add5, i32* %arrayidx2
1918 ///     ...
1919 ///
1920 /// \return The pointer to the value of the previous store if the store can be
1921 ///         hoisted into the predecessor block. 0 otherwise.
1922 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1923                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1924   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1925   if (!StoreToHoist)
1926     return nullptr;
1927 
1928   // Volatile or atomic.
1929   if (!StoreToHoist->isSimple())
1930     return nullptr;
1931 
1932   Value *StorePtr = StoreToHoist->getPointerOperand();
1933 
1934   // Look for a store to the same pointer in BrBB.
1935   unsigned MaxNumInstToLookAt = 9;
1936   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1937     if (!MaxNumInstToLookAt)
1938       break;
1939     --MaxNumInstToLookAt;
1940 
1941     // Could be calling an instruction that affects memory like free().
1942     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1943       return nullptr;
1944 
1945     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1946       // Found the previous store make sure it stores to the same location.
1947       if (SI->getPointerOperand() == StorePtr)
1948         // Found the previous store, return its value operand.
1949         return SI->getValueOperand();
1950       return nullptr; // Unknown store.
1951     }
1952   }
1953 
1954   return nullptr;
1955 }
1956 
1957 /// Speculate a conditional basic block flattening the CFG.
1958 ///
1959 /// Note that this is a very risky transform currently. Speculating
1960 /// instructions like this is most often not desirable. Instead, there is an MI
1961 /// pass which can do it with full awareness of the resource constraints.
1962 /// However, some cases are "obvious" and we should do directly. An example of
1963 /// this is speculating a single, reasonably cheap instruction.
1964 ///
1965 /// There is only one distinct advantage to flattening the CFG at the IR level:
1966 /// it makes very common but simplistic optimizations such as are common in
1967 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1968 /// modeling their effects with easier to reason about SSA value graphs.
1969 ///
1970 ///
1971 /// An illustration of this transform is turning this IR:
1972 /// \code
1973 ///   BB:
1974 ///     %cmp = icmp ult %x, %y
1975 ///     br i1 %cmp, label %EndBB, label %ThenBB
1976 ///   ThenBB:
1977 ///     %sub = sub %x, %y
1978 ///     br label BB2
1979 ///   EndBB:
1980 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1981 ///     ...
1982 /// \endcode
1983 ///
1984 /// Into this IR:
1985 /// \code
1986 ///   BB:
1987 ///     %cmp = icmp ult %x, %y
1988 ///     %sub = sub %x, %y
1989 ///     %cond = select i1 %cmp, 0, %sub
1990 ///     ...
1991 /// \endcode
1992 ///
1993 /// \returns true if the conditional block is removed.
1994 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1995                                             const TargetTransformInfo &TTI) {
1996   // Be conservative for now. FP select instruction can often be expensive.
1997   Value *BrCond = BI->getCondition();
1998   if (isa<FCmpInst>(BrCond))
1999     return false;
2000 
2001   BasicBlock *BB = BI->getParent();
2002   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2003 
2004   // If ThenBB is actually on the false edge of the conditional branch, remember
2005   // to swap the select operands later.
2006   bool Invert = false;
2007   if (ThenBB != BI->getSuccessor(0)) {
2008     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2009     Invert = true;
2010   }
2011   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2012 
2013   // Keep a count of how many times instructions are used within ThenBB when
2014   // they are candidates for sinking into ThenBB. Specifically:
2015   // - They are defined in BB, and
2016   // - They have no side effects, and
2017   // - All of their uses are in ThenBB.
2018   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2019 
2020   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2021 
2022   unsigned SpeculatedInstructions = 0;
2023   Value *SpeculatedStoreValue = nullptr;
2024   StoreInst *SpeculatedStore = nullptr;
2025   for (BasicBlock::iterator BBI = ThenBB->begin(),
2026                             BBE = std::prev(ThenBB->end());
2027        BBI != BBE; ++BBI) {
2028     Instruction *I = &*BBI;
2029     // Skip debug info.
2030     if (isa<DbgInfoIntrinsic>(I)) {
2031       SpeculatedDbgIntrinsics.push_back(I);
2032       continue;
2033     }
2034 
2035     // Only speculatively execute a single instruction (not counting the
2036     // terminator) for now.
2037     ++SpeculatedInstructions;
2038     if (SpeculatedInstructions > 1)
2039       return false;
2040 
2041     // Don't hoist the instruction if it's unsafe or expensive.
2042     if (!isSafeToSpeculativelyExecute(I) &&
2043         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2044                                   I, BB, ThenBB, EndBB))))
2045       return false;
2046     if (!SpeculatedStoreValue &&
2047         ComputeSpeculationCost(I, TTI) >
2048             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2049       return false;
2050 
2051     // Store the store speculation candidate.
2052     if (SpeculatedStoreValue)
2053       SpeculatedStore = cast<StoreInst>(I);
2054 
2055     // Do not hoist the instruction if any of its operands are defined but not
2056     // used in BB. The transformation will prevent the operand from
2057     // being sunk into the use block.
2058     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2059       Instruction *OpI = dyn_cast<Instruction>(*i);
2060       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2061         continue; // Not a candidate for sinking.
2062 
2063       ++SinkCandidateUseCounts[OpI];
2064     }
2065   }
2066 
2067   // Consider any sink candidates which are only used in ThenBB as costs for
2068   // speculation. Note, while we iterate over a DenseMap here, we are summing
2069   // and so iteration order isn't significant.
2070   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2071            I = SinkCandidateUseCounts.begin(),
2072            E = SinkCandidateUseCounts.end();
2073        I != E; ++I)
2074     if (I->first->hasNUses(I->second)) {
2075       ++SpeculatedInstructions;
2076       if (SpeculatedInstructions > 1)
2077         return false;
2078     }
2079 
2080   // Check that the PHI nodes can be converted to selects.
2081   bool HaveRewritablePHIs = false;
2082   for (PHINode &PN : EndBB->phis()) {
2083     Value *OrigV = PN.getIncomingValueForBlock(BB);
2084     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2085 
2086     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2087     // Skip PHIs which are trivial.
2088     if (ThenV == OrigV)
2089       continue;
2090 
2091     // Don't convert to selects if we could remove undefined behavior instead.
2092     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2093         passingValueIsAlwaysUndefined(ThenV, &PN))
2094       return false;
2095 
2096     HaveRewritablePHIs = true;
2097     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2098     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2099     if (!OrigCE && !ThenCE)
2100       continue; // Known safe and cheap.
2101 
2102     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2103         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2104       return false;
2105     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2106     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2107     unsigned MaxCost =
2108         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2109     if (OrigCost + ThenCost > MaxCost)
2110       return false;
2111 
2112     // Account for the cost of an unfolded ConstantExpr which could end up
2113     // getting expanded into Instructions.
2114     // FIXME: This doesn't account for how many operations are combined in the
2115     // constant expression.
2116     ++SpeculatedInstructions;
2117     if (SpeculatedInstructions > 1)
2118       return false;
2119   }
2120 
2121   // If there are no PHIs to process, bail early. This helps ensure idempotence
2122   // as well.
2123   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2124     return false;
2125 
2126   // If we get here, we can hoist the instruction and if-convert.
2127   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2128 
2129   // Insert a select of the value of the speculated store.
2130   if (SpeculatedStoreValue) {
2131     IRBuilder<NoFolder> Builder(BI);
2132     Value *TrueV = SpeculatedStore->getValueOperand();
2133     Value *FalseV = SpeculatedStoreValue;
2134     if (Invert)
2135       std::swap(TrueV, FalseV);
2136     Value *S = Builder.CreateSelect(
2137         BrCond, TrueV, FalseV, "spec.store.select", BI);
2138     SpeculatedStore->setOperand(0, S);
2139     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2140                                          SpeculatedStore->getDebugLoc());
2141   }
2142 
2143   // Metadata can be dependent on the condition we are hoisting above.
2144   // Conservatively strip all metadata on the instruction.
2145   for (auto &I : *ThenBB)
2146     I.dropUnknownNonDebugMetadata();
2147 
2148   // Hoist the instructions.
2149   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2150                            ThenBB->begin(), std::prev(ThenBB->end()));
2151 
2152   // Insert selects and rewrite the PHI operands.
2153   IRBuilder<NoFolder> Builder(BI);
2154   for (PHINode &PN : EndBB->phis()) {
2155     unsigned OrigI = PN.getBasicBlockIndex(BB);
2156     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2157     Value *OrigV = PN.getIncomingValue(OrigI);
2158     Value *ThenV = PN.getIncomingValue(ThenI);
2159 
2160     // Skip PHIs which are trivial.
2161     if (OrigV == ThenV)
2162       continue;
2163 
2164     // Create a select whose true value is the speculatively executed value and
2165     // false value is the pre-existing value. Swap them if the branch
2166     // destinations were inverted.
2167     Value *TrueV = ThenV, *FalseV = OrigV;
2168     if (Invert)
2169       std::swap(TrueV, FalseV);
2170     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2171     PN.setIncomingValue(OrigI, V);
2172     PN.setIncomingValue(ThenI, V);
2173   }
2174 
2175   // Remove speculated dbg intrinsics.
2176   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2177   // dbg value for the different flows and inserting it after the select.
2178   for (Instruction *I : SpeculatedDbgIntrinsics)
2179     I->eraseFromParent();
2180 
2181   ++NumSpeculations;
2182   return true;
2183 }
2184 
2185 /// Return true if we can thread a branch across this block.
2186 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2187   unsigned Size = 0;
2188 
2189   for (Instruction &I : BB->instructionsWithoutDebug()) {
2190     if (Size > 10)
2191       return false; // Don't clone large BB's.
2192     ++Size;
2193 
2194     // We can only support instructions that do not define values that are
2195     // live outside of the current basic block.
2196     for (User *U : I.users()) {
2197       Instruction *UI = cast<Instruction>(U);
2198       if (UI->getParent() != BB || isa<PHINode>(UI))
2199         return false;
2200     }
2201 
2202     // Looks ok, continue checking.
2203   }
2204 
2205   return true;
2206 }
2207 
2208 /// If we have a conditional branch on a PHI node value that is defined in the
2209 /// same block as the branch and if any PHI entries are constants, thread edges
2210 /// corresponding to that entry to be branches to their ultimate destination.
2211 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2212                                 AssumptionCache *AC) {
2213   BasicBlock *BB = BI->getParent();
2214   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2215   // NOTE: we currently cannot transform this case if the PHI node is used
2216   // outside of the block.
2217   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2218     return false;
2219 
2220   // Degenerate case of a single entry PHI.
2221   if (PN->getNumIncomingValues() == 1) {
2222     FoldSingleEntryPHINodes(PN->getParent());
2223     return true;
2224   }
2225 
2226   // Now we know that this block has multiple preds and two succs.
2227   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2228     return false;
2229 
2230   // Can't fold blocks that contain noduplicate or convergent calls.
2231   if (any_of(*BB, [](const Instruction &I) {
2232         const CallInst *CI = dyn_cast<CallInst>(&I);
2233         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2234       }))
2235     return false;
2236 
2237   // Okay, this is a simple enough basic block.  See if any phi values are
2238   // constants.
2239   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2240     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2241     if (!CB || !CB->getType()->isIntegerTy(1))
2242       continue;
2243 
2244     // Okay, we now know that all edges from PredBB should be revectored to
2245     // branch to RealDest.
2246     BasicBlock *PredBB = PN->getIncomingBlock(i);
2247     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2248 
2249     if (RealDest == BB)
2250       continue; // Skip self loops.
2251     // Skip if the predecessor's terminator is an indirect branch.
2252     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2253       continue;
2254 
2255     // The dest block might have PHI nodes, other predecessors and other
2256     // difficult cases.  Instead of being smart about this, just insert a new
2257     // block that jumps to the destination block, effectively splitting
2258     // the edge we are about to create.
2259     BasicBlock *EdgeBB =
2260         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2261                            RealDest->getParent(), RealDest);
2262     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2263     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2264 
2265     // Update PHI nodes.
2266     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2267 
2268     // BB may have instructions that are being threaded over.  Clone these
2269     // instructions into EdgeBB.  We know that there will be no uses of the
2270     // cloned instructions outside of EdgeBB.
2271     BasicBlock::iterator InsertPt = EdgeBB->begin();
2272     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2273     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2274       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2275         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2276         continue;
2277       }
2278       // Clone the instruction.
2279       Instruction *N = BBI->clone();
2280       if (BBI->hasName())
2281         N->setName(BBI->getName() + ".c");
2282 
2283       // Update operands due to translation.
2284       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2285         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2286         if (PI != TranslateMap.end())
2287           *i = PI->second;
2288       }
2289 
2290       // Check for trivial simplification.
2291       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2292         if (!BBI->use_empty())
2293           TranslateMap[&*BBI] = V;
2294         if (!N->mayHaveSideEffects()) {
2295           N->deleteValue(); // Instruction folded away, don't need actual inst
2296           N = nullptr;
2297         }
2298       } else {
2299         if (!BBI->use_empty())
2300           TranslateMap[&*BBI] = N;
2301       }
2302       if (N) {
2303         // Insert the new instruction into its new home.
2304         EdgeBB->getInstList().insert(InsertPt, N);
2305 
2306         // Register the new instruction with the assumption cache if necessary.
2307         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2308           AC->registerAssumption(cast<IntrinsicInst>(N));
2309       }
2310     }
2311 
2312     // Loop over all of the edges from PredBB to BB, changing them to branch
2313     // to EdgeBB instead.
2314     Instruction *PredBBTI = PredBB->getTerminator();
2315     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2316       if (PredBBTI->getSuccessor(i) == BB) {
2317         BB->removePredecessor(PredBB);
2318         PredBBTI->setSuccessor(i, EdgeBB);
2319       }
2320 
2321     // Recurse, simplifying any other constants.
2322     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2323   }
2324 
2325   return false;
2326 }
2327 
2328 /// Given a BB that starts with the specified two-entry PHI node,
2329 /// see if we can eliminate it.
2330 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2331                                 const DataLayout &DL) {
2332   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2333   // statement", which has a very simple dominance structure.  Basically, we
2334   // are trying to find the condition that is being branched on, which
2335   // subsequently causes this merge to happen.  We really want control
2336   // dependence information for this check, but simplifycfg can't keep it up
2337   // to date, and this catches most of the cases we care about anyway.
2338   BasicBlock *BB = PN->getParent();
2339 
2340   BasicBlock *IfTrue, *IfFalse;
2341   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2342   if (!IfCond ||
2343       // Don't bother if the branch will be constant folded trivially.
2344       isa<ConstantInt>(IfCond))
2345     return false;
2346 
2347   // Okay, we found that we can merge this two-entry phi node into a select.
2348   // Doing so would require us to fold *all* two entry phi nodes in this block.
2349   // At some point this becomes non-profitable (particularly if the target
2350   // doesn't support cmov's).  Only do this transformation if there are two or
2351   // fewer PHI nodes in this block.
2352   unsigned NumPhis = 0;
2353   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2354     if (NumPhis > 2)
2355       return false;
2356 
2357   // Loop over the PHI's seeing if we can promote them all to select
2358   // instructions.  While we are at it, keep track of the instructions
2359   // that need to be moved to the dominating block.
2360   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2361   int BudgetRemaining =
2362       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2363 
2364   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2365     PHINode *PN = cast<PHINode>(II++);
2366     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2367       PN->replaceAllUsesWith(V);
2368       PN->eraseFromParent();
2369       continue;
2370     }
2371 
2372     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2373                              BudgetRemaining, TTI) ||
2374         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2375                              BudgetRemaining, TTI))
2376       return false;
2377   }
2378 
2379   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2380   // we ran out of PHIs then we simplified them all.
2381   PN = dyn_cast<PHINode>(BB->begin());
2382   if (!PN)
2383     return true;
2384 
2385   // Return true if at least one of these is a 'not', and another is either
2386   // a 'not' too, or a constant.
2387   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2388     if (!match(V0, m_Not(m_Value())))
2389       std::swap(V0, V1);
2390     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2391     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2392   };
2393 
2394   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2395   // of the incoming values is an 'not' and another one is freely invertible.
2396   // These can often be turned into switches and other things.
2397   if (PN->getType()->isIntegerTy(1) &&
2398       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2399        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2400        isa<BinaryOperator>(IfCond)) &&
2401       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2402                                  PN->getIncomingValue(1)))
2403     return false;
2404 
2405   // If all PHI nodes are promotable, check to make sure that all instructions
2406   // in the predecessor blocks can be promoted as well. If not, we won't be able
2407   // to get rid of the control flow, so it's not worth promoting to select
2408   // instructions.
2409   BasicBlock *DomBlock = nullptr;
2410   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2411   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2412   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2413     IfBlock1 = nullptr;
2414   } else {
2415     DomBlock = *pred_begin(IfBlock1);
2416     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2417       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2418         // This is not an aggressive instruction that we can promote.
2419         // Because of this, we won't be able to get rid of the control flow, so
2420         // the xform is not worth it.
2421         return false;
2422       }
2423   }
2424 
2425   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2426     IfBlock2 = nullptr;
2427   } else {
2428     DomBlock = *pred_begin(IfBlock2);
2429     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2430       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2431         // This is not an aggressive instruction that we can promote.
2432         // Because of this, we won't be able to get rid of the control flow, so
2433         // the xform is not worth it.
2434         return false;
2435       }
2436   }
2437   assert(DomBlock && "Failed to find root DomBlock");
2438 
2439   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2440                     << "  T: " << IfTrue->getName()
2441                     << "  F: " << IfFalse->getName() << "\n");
2442 
2443   // If we can still promote the PHI nodes after this gauntlet of tests,
2444   // do all of the PHI's now.
2445   Instruction *InsertPt = DomBlock->getTerminator();
2446   IRBuilder<NoFolder> Builder(InsertPt);
2447 
2448   // Move all 'aggressive' instructions, which are defined in the
2449   // conditional parts of the if's up to the dominating block.
2450   if (IfBlock1)
2451     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2452   if (IfBlock2)
2453     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2454 
2455   // Propagate fast-math-flags from phi nodes to replacement selects.
2456   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2457   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2458     if (isa<FPMathOperator>(PN))
2459       Builder.setFastMathFlags(PN->getFastMathFlags());
2460 
2461     // Change the PHI node into a select instruction.
2462     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2463     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2464 
2465     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2466     PN->replaceAllUsesWith(Sel);
2467     Sel->takeName(PN);
2468     PN->eraseFromParent();
2469   }
2470 
2471   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2472   // has been flattened.  Change DomBlock to jump directly to our new block to
2473   // avoid other simplifycfg's kicking in on the diamond.
2474   Instruction *OldTI = DomBlock->getTerminator();
2475   Builder.SetInsertPoint(OldTI);
2476   Builder.CreateBr(BB);
2477   OldTI->eraseFromParent();
2478   return true;
2479 }
2480 
2481 /// If we found a conditional branch that goes to two returning blocks,
2482 /// try to merge them together into one return,
2483 /// introducing a select if the return values disagree.
2484 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2485                                                     IRBuilder<> &Builder) {
2486   assert(BI->isConditional() && "Must be a conditional branch");
2487   BasicBlock *TrueSucc = BI->getSuccessor(0);
2488   BasicBlock *FalseSucc = BI->getSuccessor(1);
2489   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2490   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2491 
2492   // Check to ensure both blocks are empty (just a return) or optionally empty
2493   // with PHI nodes.  If there are other instructions, merging would cause extra
2494   // computation on one path or the other.
2495   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2496     return false;
2497   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2498     return false;
2499 
2500   Builder.SetInsertPoint(BI);
2501   // Okay, we found a branch that is going to two return nodes.  If
2502   // there is no return value for this function, just change the
2503   // branch into a return.
2504   if (FalseRet->getNumOperands() == 0) {
2505     TrueSucc->removePredecessor(BI->getParent());
2506     FalseSucc->removePredecessor(BI->getParent());
2507     Builder.CreateRetVoid();
2508     EraseTerminatorAndDCECond(BI);
2509     return true;
2510   }
2511 
2512   // Otherwise, figure out what the true and false return values are
2513   // so we can insert a new select instruction.
2514   Value *TrueValue = TrueRet->getReturnValue();
2515   Value *FalseValue = FalseRet->getReturnValue();
2516 
2517   // Unwrap any PHI nodes in the return blocks.
2518   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2519     if (TVPN->getParent() == TrueSucc)
2520       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2521   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2522     if (FVPN->getParent() == FalseSucc)
2523       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2524 
2525   // In order for this transformation to be safe, we must be able to
2526   // unconditionally execute both operands to the return.  This is
2527   // normally the case, but we could have a potentially-trapping
2528   // constant expression that prevents this transformation from being
2529   // safe.
2530   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2531     if (TCV->canTrap())
2532       return false;
2533   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2534     if (FCV->canTrap())
2535       return false;
2536 
2537   // Okay, we collected all the mapped values and checked them for sanity, and
2538   // defined to really do this transformation.  First, update the CFG.
2539   TrueSucc->removePredecessor(BI->getParent());
2540   FalseSucc->removePredecessor(BI->getParent());
2541 
2542   // Insert select instructions where needed.
2543   Value *BrCond = BI->getCondition();
2544   if (TrueValue) {
2545     // Insert a select if the results differ.
2546     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2547     } else if (isa<UndefValue>(TrueValue)) {
2548       TrueValue = FalseValue;
2549     } else {
2550       TrueValue =
2551           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2552     }
2553   }
2554 
2555   Value *RI =
2556       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2557 
2558   (void)RI;
2559 
2560   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2561                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2562                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2563 
2564   EraseTerminatorAndDCECond(BI);
2565 
2566   return true;
2567 }
2568 
2569 /// Return true if the given instruction is available
2570 /// in its predecessor block. If yes, the instruction will be removed.
2571 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2572   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2573     return false;
2574   for (Instruction &I : *PB) {
2575     Instruction *PBI = &I;
2576     // Check whether Inst and PBI generate the same value.
2577     if (Inst->isIdenticalTo(PBI)) {
2578       Inst->replaceAllUsesWith(PBI);
2579       Inst->eraseFromParent();
2580       return true;
2581     }
2582   }
2583   return false;
2584 }
2585 
2586 /// Return true if either PBI or BI has branch weight available, and store
2587 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2588 /// not have branch weight, use 1:1 as its weight.
2589 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2590                                    uint64_t &PredTrueWeight,
2591                                    uint64_t &PredFalseWeight,
2592                                    uint64_t &SuccTrueWeight,
2593                                    uint64_t &SuccFalseWeight) {
2594   bool PredHasWeights =
2595       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2596   bool SuccHasWeights =
2597       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2598   if (PredHasWeights || SuccHasWeights) {
2599     if (!PredHasWeights)
2600       PredTrueWeight = PredFalseWeight = 1;
2601     if (!SuccHasWeights)
2602       SuccTrueWeight = SuccFalseWeight = 1;
2603     return true;
2604   } else {
2605     return false;
2606   }
2607 }
2608 
2609 /// If this basic block is simple enough, and if a predecessor branches to us
2610 /// and one of our successors, fold the block into the predecessor and use
2611 /// logical operations to pick the right destination.
2612 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU,
2613                                   unsigned BonusInstThreshold) {
2614   BasicBlock *BB = BI->getParent();
2615 
2616   const unsigned PredCount = pred_size(BB);
2617 
2618   Instruction *Cond = nullptr;
2619   if (BI->isConditional())
2620     Cond = dyn_cast<Instruction>(BI->getCondition());
2621   else {
2622     // For unconditional branch, check for a simple CFG pattern, where
2623     // BB has a single predecessor and BB's successor is also its predecessor's
2624     // successor. If such pattern exists, check for CSE between BB and its
2625     // predecessor.
2626     if (BasicBlock *PB = BB->getSinglePredecessor())
2627       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2628         if (PBI->isConditional() &&
2629             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2630              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2631           for (auto I = BB->instructionsWithoutDebug().begin(),
2632                     E = BB->instructionsWithoutDebug().end();
2633                I != E;) {
2634             Instruction *Curr = &*I++;
2635             if (isa<CmpInst>(Curr)) {
2636               Cond = Curr;
2637               break;
2638             }
2639             // Quit if we can't remove this instruction.
2640             if (!tryCSEWithPredecessor(Curr, PB))
2641               return false;
2642           }
2643         }
2644 
2645     if (!Cond)
2646       return false;
2647   }
2648 
2649   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2650       Cond->getParent() != BB || !Cond->hasOneUse())
2651     return false;
2652 
2653   // Make sure the instruction after the condition is the cond branch.
2654   BasicBlock::iterator CondIt = ++Cond->getIterator();
2655 
2656   // Ignore dbg intrinsics.
2657   while (isa<DbgInfoIntrinsic>(CondIt))
2658     ++CondIt;
2659 
2660   if (&*CondIt != BI)
2661     return false;
2662 
2663   // Only allow this transformation if computing the condition doesn't involve
2664   // too many instructions and these involved instructions can be executed
2665   // unconditionally. We denote all involved instructions except the condition
2666   // as "bonus instructions", and only allow this transformation when the
2667   // number of the bonus instructions we'll need to create when cloning into
2668   // each predecessor does not exceed a certain threshold.
2669   unsigned NumBonusInsts = 0;
2670   for (auto I = BB->begin(); Cond != &*I; ++I) {
2671     // Ignore dbg intrinsics.
2672     if (isa<DbgInfoIntrinsic>(I))
2673       continue;
2674     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2675       return false;
2676     // I has only one use and can be executed unconditionally.
2677     Instruction *User = dyn_cast<Instruction>(I->user_back());
2678     if (User == nullptr || User->getParent() != BB)
2679       return false;
2680     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2681     // to use any other instruction, User must be an instruction between next(I)
2682     // and Cond.
2683 
2684     // Account for the cost of duplicating this instruction into each
2685     // predecessor.
2686     NumBonusInsts += PredCount;
2687     // Early exits once we reach the limit.
2688     if (NumBonusInsts > BonusInstThreshold)
2689       return false;
2690   }
2691 
2692   // Cond is known to be a compare or binary operator.  Check to make sure that
2693   // neither operand is a potentially-trapping constant expression.
2694   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2695     if (CE->canTrap())
2696       return false;
2697   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2698     if (CE->canTrap())
2699       return false;
2700 
2701   // Finally, don't infinitely unroll conditional loops.
2702   BasicBlock *TrueDest = BI->getSuccessor(0);
2703   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2704   if (TrueDest == BB || FalseDest == BB)
2705     return false;
2706 
2707   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2708     BasicBlock *PredBlock = *PI;
2709     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2710 
2711     // Check that we have two conditional branches.  If there is a PHI node in
2712     // the common successor, verify that the same value flows in from both
2713     // blocks.
2714     SmallVector<PHINode *, 4> PHIs;
2715     if (!PBI || PBI->isUnconditional() ||
2716         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2717         (!BI->isConditional() &&
2718          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2719       continue;
2720 
2721     // Determine if the two branches share a common destination.
2722     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2723     bool InvertPredCond = false;
2724 
2725     if (BI->isConditional()) {
2726       if (PBI->getSuccessor(0) == TrueDest) {
2727         Opc = Instruction::Or;
2728       } else if (PBI->getSuccessor(1) == FalseDest) {
2729         Opc = Instruction::And;
2730       } else if (PBI->getSuccessor(0) == FalseDest) {
2731         Opc = Instruction::And;
2732         InvertPredCond = true;
2733       } else if (PBI->getSuccessor(1) == TrueDest) {
2734         Opc = Instruction::Or;
2735         InvertPredCond = true;
2736       } else {
2737         continue;
2738       }
2739     } else {
2740       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2741         continue;
2742     }
2743 
2744     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2745     IRBuilder<> Builder(PBI);
2746 
2747     // If we need to invert the condition in the pred block to match, do so now.
2748     if (InvertPredCond) {
2749       Value *NewCond = PBI->getCondition();
2750 
2751       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2752         CmpInst *CI = cast<CmpInst>(NewCond);
2753         CI->setPredicate(CI->getInversePredicate());
2754       } else {
2755         NewCond =
2756             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2757       }
2758 
2759       PBI->setCondition(NewCond);
2760       PBI->swapSuccessors();
2761     }
2762 
2763     // If we have bonus instructions, clone them into the predecessor block.
2764     // Note that there may be multiple predecessor blocks, so we cannot move
2765     // bonus instructions to a predecessor block.
2766     ValueToValueMapTy VMap; // maps original values to cloned values
2767     // We already make sure Cond is the last instruction before BI. Therefore,
2768     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2769     // instructions.
2770     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2771       if (isa<DbgInfoIntrinsic>(BonusInst))
2772         continue;
2773       Instruction *NewBonusInst = BonusInst->clone();
2774       RemapInstruction(NewBonusInst, VMap,
2775                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2776       VMap[&*BonusInst] = NewBonusInst;
2777 
2778       // If we moved a load, we cannot any longer claim any knowledge about
2779       // its potential value. The previous information might have been valid
2780       // only given the branch precondition.
2781       // For an analogous reason, we must also drop all the metadata whose
2782       // semantics we don't understand.
2783       NewBonusInst->dropUnknownNonDebugMetadata();
2784 
2785       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2786       NewBonusInst->takeName(&*BonusInst);
2787       BonusInst->setName(BonusInst->getName() + ".old");
2788     }
2789 
2790     // Clone Cond into the predecessor basic block, and or/and the
2791     // two conditions together.
2792     Instruction *CondInPred = Cond->clone();
2793     RemapInstruction(CondInPred, VMap,
2794                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2795     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2796     CondInPred->takeName(Cond);
2797     Cond->setName(CondInPred->getName() + ".old");
2798 
2799     if (BI->isConditional()) {
2800       Instruction *NewCond = cast<Instruction>(
2801           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2802       PBI->setCondition(NewCond);
2803 
2804       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2805       bool HasWeights =
2806           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2807                                  SuccTrueWeight, SuccFalseWeight);
2808       SmallVector<uint64_t, 8> NewWeights;
2809 
2810       if (PBI->getSuccessor(0) == BB) {
2811         if (HasWeights) {
2812           // PBI: br i1 %x, BB, FalseDest
2813           // BI:  br i1 %y, TrueDest, FalseDest
2814           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2815           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2816           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2817           //               TrueWeight for PBI * FalseWeight for BI.
2818           // We assume that total weights of a BranchInst can fit into 32 bits.
2819           // Therefore, we will not have overflow using 64-bit arithmetic.
2820           NewWeights.push_back(PredFalseWeight *
2821                                    (SuccFalseWeight + SuccTrueWeight) +
2822                                PredTrueWeight * SuccFalseWeight);
2823         }
2824         AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU);
2825         PBI->setSuccessor(0, TrueDest);
2826       }
2827       if (PBI->getSuccessor(1) == BB) {
2828         if (HasWeights) {
2829           // PBI: br i1 %x, TrueDest, BB
2830           // BI:  br i1 %y, TrueDest, FalseDest
2831           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2832           //              FalseWeight for PBI * TrueWeight for BI.
2833           NewWeights.push_back(PredTrueWeight *
2834                                    (SuccFalseWeight + SuccTrueWeight) +
2835                                PredFalseWeight * SuccTrueWeight);
2836           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2837           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2838         }
2839         AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU);
2840         PBI->setSuccessor(1, FalseDest);
2841       }
2842       if (NewWeights.size() == 2) {
2843         // Halve the weights if any of them cannot fit in an uint32_t
2844         FitWeights(NewWeights);
2845 
2846         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2847                                            NewWeights.end());
2848         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2849       } else
2850         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2851     } else {
2852       // Update PHI nodes in the common successors.
2853       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2854         ConstantInt *PBI_C = cast<ConstantInt>(
2855             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2856         assert(PBI_C->getType()->isIntegerTy(1));
2857         Instruction *MergedCond = nullptr;
2858         if (PBI->getSuccessor(0) == TrueDest) {
2859           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2860           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2861           //       is false: !PBI_Cond and BI_Value
2862           Instruction *NotCond = cast<Instruction>(
2863               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2864           MergedCond = cast<Instruction>(
2865                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2866                                    "and.cond"));
2867           if (PBI_C->isOne())
2868             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2869                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2870         } else {
2871           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2872           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2873           //       is false: PBI_Cond and BI_Value
2874           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2875               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2876           if (PBI_C->isOne()) {
2877             Instruction *NotCond = cast<Instruction>(
2878                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2879             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2880                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2881           }
2882         }
2883         // Update PHI Node.
2884 	PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
2885       }
2886 
2887       // PBI is changed to branch to TrueDest below. Remove itself from
2888       // potential phis from all other successors.
2889       if (MSSAU)
2890         MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest);
2891 
2892       // Change PBI from Conditional to Unconditional.
2893       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2894       EraseTerminatorAndDCECond(PBI, MSSAU);
2895       PBI = New_PBI;
2896     }
2897 
2898     // If BI was a loop latch, it may have had associated loop metadata.
2899     // We need to copy it to the new latch, that is, PBI.
2900     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2901       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2902 
2903     // TODO: If BB is reachable from all paths through PredBlock, then we
2904     // could replace PBI's branch probabilities with BI's.
2905 
2906     // Copy any debug value intrinsics into the end of PredBlock.
2907     for (Instruction &I : *BB) {
2908       if (isa<DbgInfoIntrinsic>(I)) {
2909         Instruction *NewI = I.clone();
2910         RemapInstruction(NewI, VMap,
2911                          RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2912         NewI->insertBefore(PBI);
2913       }
2914     }
2915 
2916     return true;
2917   }
2918   return false;
2919 }
2920 
2921 // If there is only one store in BB1 and BB2, return it, otherwise return
2922 // nullptr.
2923 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2924   StoreInst *S = nullptr;
2925   for (auto *BB : {BB1, BB2}) {
2926     if (!BB)
2927       continue;
2928     for (auto &I : *BB)
2929       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2930         if (S)
2931           // Multiple stores seen.
2932           return nullptr;
2933         else
2934           S = SI;
2935       }
2936   }
2937   return S;
2938 }
2939 
2940 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2941                                               Value *AlternativeV = nullptr) {
2942   // PHI is going to be a PHI node that allows the value V that is defined in
2943   // BB to be referenced in BB's only successor.
2944   //
2945   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2946   // doesn't matter to us what the other operand is (it'll never get used). We
2947   // could just create a new PHI with an undef incoming value, but that could
2948   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2949   // other PHI. So here we directly look for some PHI in BB's successor with V
2950   // as an incoming operand. If we find one, we use it, else we create a new
2951   // one.
2952   //
2953   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2954   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2955   // where OtherBB is the single other predecessor of BB's only successor.
2956   PHINode *PHI = nullptr;
2957   BasicBlock *Succ = BB->getSingleSuccessor();
2958 
2959   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2960     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2961       PHI = cast<PHINode>(I);
2962       if (!AlternativeV)
2963         break;
2964 
2965       assert(Succ->hasNPredecessors(2));
2966       auto PredI = pred_begin(Succ);
2967       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2968       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2969         break;
2970       PHI = nullptr;
2971     }
2972   if (PHI)
2973     return PHI;
2974 
2975   // If V is not an instruction defined in BB, just return it.
2976   if (!AlternativeV &&
2977       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2978     return V;
2979 
2980   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2981   PHI->addIncoming(V, BB);
2982   for (BasicBlock *PredBB : predecessors(Succ))
2983     if (PredBB != BB)
2984       PHI->addIncoming(
2985           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2986   return PHI;
2987 }
2988 
2989 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2990                                            BasicBlock *QTB, BasicBlock *QFB,
2991                                            BasicBlock *PostBB, Value *Address,
2992                                            bool InvertPCond, bool InvertQCond,
2993                                            const DataLayout &DL,
2994                                            const TargetTransformInfo &TTI) {
2995   // For every pointer, there must be exactly two stores, one coming from
2996   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2997   // store (to any address) in PTB,PFB or QTB,QFB.
2998   // FIXME: We could relax this restriction with a bit more work and performance
2999   // testing.
3000   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3001   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3002   if (!PStore || !QStore)
3003     return false;
3004 
3005   // Now check the stores are compatible.
3006   if (!QStore->isUnordered() || !PStore->isUnordered())
3007     return false;
3008 
3009   // Check that sinking the store won't cause program behavior changes. Sinking
3010   // the store out of the Q blocks won't change any behavior as we're sinking
3011   // from a block to its unconditional successor. But we're moving a store from
3012   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3013   // So we need to check that there are no aliasing loads or stores in
3014   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3015   // operations between PStore and the end of its parent block.
3016   //
3017   // The ideal way to do this is to query AliasAnalysis, but we don't
3018   // preserve AA currently so that is dangerous. Be super safe and just
3019   // check there are no other memory operations at all.
3020   for (auto &I : *QFB->getSinglePredecessor())
3021     if (I.mayReadOrWriteMemory())
3022       return false;
3023   for (auto &I : *QFB)
3024     if (&I != QStore && I.mayReadOrWriteMemory())
3025       return false;
3026   if (QTB)
3027     for (auto &I : *QTB)
3028       if (&I != QStore && I.mayReadOrWriteMemory())
3029         return false;
3030   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3031        I != E; ++I)
3032     if (&*I != PStore && I->mayReadOrWriteMemory())
3033       return false;
3034 
3035   // If we're not in aggressive mode, we only optimize if we have some
3036   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3037   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3038     if (!BB)
3039       return true;
3040     // Heuristic: if the block can be if-converted/phi-folded and the
3041     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3042     // thread this store.
3043     int BudgetRemaining =
3044         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3045     for (auto &I : BB->instructionsWithoutDebug()) {
3046       // Consider terminator instruction to be free.
3047       if (I.isTerminator())
3048         continue;
3049       // If this is one the stores that we want to speculate out of this BB,
3050       // then don't count it's cost, consider it to be free.
3051       if (auto *S = dyn_cast<StoreInst>(&I))
3052         if (llvm::find(FreeStores, S))
3053           continue;
3054       // Else, we have a white-list of instructions that we are ak speculating.
3055       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3056         return false; // Not in white-list - not worthwhile folding.
3057       // And finally, if this is a non-free instruction that we are okay
3058       // speculating, ensure that we consider the speculation budget.
3059       BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3060       if (BudgetRemaining < 0)
3061         return false; // Eagerly refuse to fold as soon as we're out of budget.
3062     }
3063     assert(BudgetRemaining >= 0 &&
3064            "When we run out of budget we will eagerly return from within the "
3065            "per-instruction loop.");
3066     return true;
3067   };
3068 
3069   const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore};
3070   if (!MergeCondStoresAggressively &&
3071       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3072        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3073     return false;
3074 
3075   // If PostBB has more than two predecessors, we need to split it so we can
3076   // sink the store.
3077   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3078     // We know that QFB's only successor is PostBB. And QFB has a single
3079     // predecessor. If QTB exists, then its only successor is also PostBB.
3080     // If QTB does not exist, then QFB's only predecessor has a conditional
3081     // branch to QFB and PostBB.
3082     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3083     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3084                                                "condstore.split");
3085     if (!NewBB)
3086       return false;
3087     PostBB = NewBB;
3088   }
3089 
3090   // OK, we're going to sink the stores to PostBB. The store has to be
3091   // conditional though, so first create the predicate.
3092   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3093                      ->getCondition();
3094   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3095                      ->getCondition();
3096 
3097   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3098                                                 PStore->getParent());
3099   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3100                                                 QStore->getParent(), PPHI);
3101 
3102   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3103 
3104   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3105   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3106 
3107   if (InvertPCond)
3108     PPred = QB.CreateNot(PPred);
3109   if (InvertQCond)
3110     QPred = QB.CreateNot(QPred);
3111   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3112 
3113   auto *T =
3114       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3115   QB.SetInsertPoint(T);
3116   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3117   AAMDNodes AAMD;
3118   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3119   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3120   SI->setAAMetadata(AAMD);
3121   unsigned PAlignment = PStore->getAlignment();
3122   unsigned QAlignment = QStore->getAlignment();
3123   unsigned TypeAlignment =
3124       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3125   unsigned MinAlignment;
3126   unsigned MaxAlignment;
3127   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3128   // Choose the minimum alignment. If we could prove both stores execute, we
3129   // could use biggest one.  In this case, though, we only know that one of the
3130   // stores executes.  And we don't know it's safe to take the alignment from a
3131   // store that doesn't execute.
3132   if (MinAlignment != 0) {
3133     // Choose the minimum of all non-zero alignments.
3134     SI->setAlignment(Align(MinAlignment));
3135   } else if (MaxAlignment != 0) {
3136     // Choose the minimal alignment between the non-zero alignment and the ABI
3137     // default alignment for the type of the stored value.
3138     SI->setAlignment(Align(std::min(MaxAlignment, TypeAlignment)));
3139   } else {
3140     // If both alignments are zero, use ABI default alignment for the type of
3141     // the stored value.
3142     SI->setAlignment(Align(TypeAlignment));
3143   }
3144 
3145   QStore->eraseFromParent();
3146   PStore->eraseFromParent();
3147 
3148   return true;
3149 }
3150 
3151 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3152                                    const DataLayout &DL,
3153                                    const TargetTransformInfo &TTI) {
3154   // The intention here is to find diamonds or triangles (see below) where each
3155   // conditional block contains a store to the same address. Both of these
3156   // stores are conditional, so they can't be unconditionally sunk. But it may
3157   // be profitable to speculatively sink the stores into one merged store at the
3158   // end, and predicate the merged store on the union of the two conditions of
3159   // PBI and QBI.
3160   //
3161   // This can reduce the number of stores executed if both of the conditions are
3162   // true, and can allow the blocks to become small enough to be if-converted.
3163   // This optimization will also chain, so that ladders of test-and-set
3164   // sequences can be if-converted away.
3165   //
3166   // We only deal with simple diamonds or triangles:
3167   //
3168   //     PBI       or      PBI        or a combination of the two
3169   //    /   \               | \
3170   //   PTB  PFB             |  PFB
3171   //    \   /               | /
3172   //     QBI                QBI
3173   //    /  \                | \
3174   //   QTB  QFB             |  QFB
3175   //    \  /                | /
3176   //    PostBB            PostBB
3177   //
3178   // We model triangles as a type of diamond with a nullptr "true" block.
3179   // Triangles are canonicalized so that the fallthrough edge is represented by
3180   // a true condition, as in the diagram above.
3181   BasicBlock *PTB = PBI->getSuccessor(0);
3182   BasicBlock *PFB = PBI->getSuccessor(1);
3183   BasicBlock *QTB = QBI->getSuccessor(0);
3184   BasicBlock *QFB = QBI->getSuccessor(1);
3185   BasicBlock *PostBB = QFB->getSingleSuccessor();
3186 
3187   // Make sure we have a good guess for PostBB. If QTB's only successor is
3188   // QFB, then QFB is a better PostBB.
3189   if (QTB->getSingleSuccessor() == QFB)
3190     PostBB = QFB;
3191 
3192   // If we couldn't find a good PostBB, stop.
3193   if (!PostBB)
3194     return false;
3195 
3196   bool InvertPCond = false, InvertQCond = false;
3197   // Canonicalize fallthroughs to the true branches.
3198   if (PFB == QBI->getParent()) {
3199     std::swap(PFB, PTB);
3200     InvertPCond = true;
3201   }
3202   if (QFB == PostBB) {
3203     std::swap(QFB, QTB);
3204     InvertQCond = true;
3205   }
3206 
3207   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3208   // and QFB may not. Model fallthroughs as a nullptr block.
3209   if (PTB == QBI->getParent())
3210     PTB = nullptr;
3211   if (QTB == PostBB)
3212     QTB = nullptr;
3213 
3214   // Legality bailouts. We must have at least the non-fallthrough blocks and
3215   // the post-dominating block, and the non-fallthroughs must only have one
3216   // predecessor.
3217   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3218     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3219   };
3220   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3221       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3222     return false;
3223   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3224       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3225     return false;
3226   if (!QBI->getParent()->hasNUses(2))
3227     return false;
3228 
3229   // OK, this is a sequence of two diamonds or triangles.
3230   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3231   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3232   for (auto *BB : {PTB, PFB}) {
3233     if (!BB)
3234       continue;
3235     for (auto &I : *BB)
3236       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3237         PStoreAddresses.insert(SI->getPointerOperand());
3238   }
3239   for (auto *BB : {QTB, QFB}) {
3240     if (!BB)
3241       continue;
3242     for (auto &I : *BB)
3243       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3244         QStoreAddresses.insert(SI->getPointerOperand());
3245   }
3246 
3247   set_intersect(PStoreAddresses, QStoreAddresses);
3248   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3249   // clear what it contains.
3250   auto &CommonAddresses = PStoreAddresses;
3251 
3252   bool Changed = false;
3253   for (auto *Address : CommonAddresses)
3254     Changed |= mergeConditionalStoreToAddress(
3255         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI);
3256   return Changed;
3257 }
3258 
3259 
3260 /// If the previous block ended with a widenable branch, determine if reusing
3261 /// the target block is profitable and legal.  This will have the effect of
3262 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3263 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
3264   // TODO: This can be generalized in two important ways:
3265   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3266   //    values from the PBI edge.
3267   // 2) We can sink side effecting instructions into BI's fallthrough
3268   //    successor provided they doesn't contribute to computation of
3269   //    BI's condition.
3270   Value *CondWB, *WC;
3271   BasicBlock *IfTrueBB, *IfFalseBB;
3272   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3273       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3274     return false;
3275   if (!IfFalseBB->phis().empty())
3276     return false; // TODO
3277   // Use lambda to lazily compute expensive condition after cheap ones.
3278   auto NoSideEffects = [](BasicBlock &BB) {
3279     return !llvm::any_of(BB, [](const Instruction &I) {
3280         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3281       });
3282   };
3283   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3284       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3285       NoSideEffects(*BI->getParent())) {
3286     BI->getSuccessor(1)->removePredecessor(BI->getParent());
3287     BI->setSuccessor(1, IfFalseBB);
3288     return true;
3289   }
3290   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3291       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3292       NoSideEffects(*BI->getParent())) {
3293     BI->getSuccessor(0)->removePredecessor(BI->getParent());
3294     BI->setSuccessor(0, IfFalseBB);
3295     return true;
3296   }
3297   return false;
3298 }
3299 
3300 /// If we have a conditional branch as a predecessor of another block,
3301 /// this function tries to simplify it.  We know
3302 /// that PBI and BI are both conditional branches, and BI is in one of the
3303 /// successor blocks of PBI - PBI branches to BI.
3304 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3305                                            const DataLayout &DL,
3306                                            const TargetTransformInfo &TTI) {
3307   assert(PBI->isConditional() && BI->isConditional());
3308   BasicBlock *BB = BI->getParent();
3309 
3310   // If this block ends with a branch instruction, and if there is a
3311   // predecessor that ends on a branch of the same condition, make
3312   // this conditional branch redundant.
3313   if (PBI->getCondition() == BI->getCondition() &&
3314       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3315     // Okay, the outcome of this conditional branch is statically
3316     // knowable.  If this block had a single pred, handle specially.
3317     if (BB->getSinglePredecessor()) {
3318       // Turn this into a branch on constant.
3319       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3320       BI->setCondition(
3321           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3322       return true; // Nuke the branch on constant.
3323     }
3324 
3325     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3326     // in the constant and simplify the block result.  Subsequent passes of
3327     // simplifycfg will thread the block.
3328     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3329       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3330       PHINode *NewPN = PHINode::Create(
3331           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3332           BI->getCondition()->getName() + ".pr", &BB->front());
3333       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3334       // predecessor, compute the PHI'd conditional value for all of the preds.
3335       // Any predecessor where the condition is not computable we keep symbolic.
3336       for (pred_iterator PI = PB; PI != PE; ++PI) {
3337         BasicBlock *P = *PI;
3338         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3339             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3340             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3341           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3342           NewPN->addIncoming(
3343               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3344               P);
3345         } else {
3346           NewPN->addIncoming(BI->getCondition(), P);
3347         }
3348       }
3349 
3350       BI->setCondition(NewPN);
3351       return true;
3352     }
3353   }
3354 
3355   // If the previous block ended with a widenable branch, determine if reusing
3356   // the target block is profitable and legal.  This will have the effect of
3357   // "widening" PBI, but doesn't require us to reason about hosting safety.
3358   if (tryWidenCondBranchToCondBranch(PBI, BI))
3359     return true;
3360 
3361   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3362     if (CE->canTrap())
3363       return false;
3364 
3365   // If both branches are conditional and both contain stores to the same
3366   // address, remove the stores from the conditionals and create a conditional
3367   // merged store at the end.
3368   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI))
3369     return true;
3370 
3371   // If this is a conditional branch in an empty block, and if any
3372   // predecessors are a conditional branch to one of our destinations,
3373   // fold the conditions into logical ops and one cond br.
3374 
3375   // Ignore dbg intrinsics.
3376   if (&*BB->instructionsWithoutDebug().begin() != BI)
3377     return false;
3378 
3379   int PBIOp, BIOp;
3380   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3381     PBIOp = 0;
3382     BIOp = 0;
3383   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3384     PBIOp = 0;
3385     BIOp = 1;
3386   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3387     PBIOp = 1;
3388     BIOp = 0;
3389   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3390     PBIOp = 1;
3391     BIOp = 1;
3392   } else {
3393     return false;
3394   }
3395 
3396   // Check to make sure that the other destination of this branch
3397   // isn't BB itself.  If so, this is an infinite loop that will
3398   // keep getting unwound.
3399   if (PBI->getSuccessor(PBIOp) == BB)
3400     return false;
3401 
3402   // Do not perform this transformation if it would require
3403   // insertion of a large number of select instructions. For targets
3404   // without predication/cmovs, this is a big pessimization.
3405 
3406   // Also do not perform this transformation if any phi node in the common
3407   // destination block can trap when reached by BB or PBB (PR17073). In that
3408   // case, it would be unsafe to hoist the operation into a select instruction.
3409 
3410   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3411   unsigned NumPhis = 0;
3412   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3413        ++II, ++NumPhis) {
3414     if (NumPhis > 2) // Disable this xform.
3415       return false;
3416 
3417     PHINode *PN = cast<PHINode>(II);
3418     Value *BIV = PN->getIncomingValueForBlock(BB);
3419     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3420       if (CE->canTrap())
3421         return false;
3422 
3423     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3424     Value *PBIV = PN->getIncomingValue(PBBIdx);
3425     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3426       if (CE->canTrap())
3427         return false;
3428   }
3429 
3430   // Finally, if everything is ok, fold the branches to logical ops.
3431   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3432 
3433   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3434                     << "AND: " << *BI->getParent());
3435 
3436   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3437   // branch in it, where one edge (OtherDest) goes back to itself but the other
3438   // exits.  We don't *know* that the program avoids the infinite loop
3439   // (even though that seems likely).  If we do this xform naively, we'll end up
3440   // recursively unpeeling the loop.  Since we know that (after the xform is
3441   // done) that the block *is* infinite if reached, we just make it an obviously
3442   // infinite loop with no cond branch.
3443   if (OtherDest == BB) {
3444     // Insert it at the end of the function, because it's either code,
3445     // or it won't matter if it's hot. :)
3446     BasicBlock *InfLoopBlock =
3447         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3448     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3449     OtherDest = InfLoopBlock;
3450   }
3451 
3452   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3453 
3454   // BI may have other predecessors.  Because of this, we leave
3455   // it alone, but modify PBI.
3456 
3457   // Make sure we get to CommonDest on True&True directions.
3458   Value *PBICond = PBI->getCondition();
3459   IRBuilder<NoFolder> Builder(PBI);
3460   if (PBIOp)
3461     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3462 
3463   Value *BICond = BI->getCondition();
3464   if (BIOp)
3465     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3466 
3467   // Merge the conditions.
3468   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3469 
3470   // Modify PBI to branch on the new condition to the new dests.
3471   PBI->setCondition(Cond);
3472   PBI->setSuccessor(0, CommonDest);
3473   PBI->setSuccessor(1, OtherDest);
3474 
3475   // Update branch weight for PBI.
3476   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3477   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3478   bool HasWeights =
3479       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3480                              SuccTrueWeight, SuccFalseWeight);
3481   if (HasWeights) {
3482     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3483     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3484     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3485     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3486     // The weight to CommonDest should be PredCommon * SuccTotal +
3487     //                                    PredOther * SuccCommon.
3488     // The weight to OtherDest should be PredOther * SuccOther.
3489     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3490                                   PredOther * SuccCommon,
3491                               PredOther * SuccOther};
3492     // Halve the weights if any of them cannot fit in an uint32_t
3493     FitWeights(NewWeights);
3494 
3495     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3496   }
3497 
3498   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3499   // block that are identical to the entries for BI's block.
3500   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3501 
3502   // We know that the CommonDest already had an edge from PBI to
3503   // it.  If it has PHIs though, the PHIs may have different
3504   // entries for BB and PBI's BB.  If so, insert a select to make
3505   // them agree.
3506   for (PHINode &PN : CommonDest->phis()) {
3507     Value *BIV = PN.getIncomingValueForBlock(BB);
3508     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3509     Value *PBIV = PN.getIncomingValue(PBBIdx);
3510     if (BIV != PBIV) {
3511       // Insert a select in PBI to pick the right value.
3512       SelectInst *NV = cast<SelectInst>(
3513           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3514       PN.setIncomingValue(PBBIdx, NV);
3515       // Although the select has the same condition as PBI, the original branch
3516       // weights for PBI do not apply to the new select because the select's
3517       // 'logical' edges are incoming edges of the phi that is eliminated, not
3518       // the outgoing edges of PBI.
3519       if (HasWeights) {
3520         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3521         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3522         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3523         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3524         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3525         // The weight to PredOtherDest should be PredOther * SuccCommon.
3526         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3527                                   PredOther * SuccCommon};
3528 
3529         FitWeights(NewWeights);
3530 
3531         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3532       }
3533     }
3534   }
3535 
3536   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3537   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3538 
3539   // This basic block is probably dead.  We know it has at least
3540   // one fewer predecessor.
3541   return true;
3542 }
3543 
3544 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3545 // true or to FalseBB if Cond is false.
3546 // Takes care of updating the successors and removing the old terminator.
3547 // Also makes sure not to introduce new successors by assuming that edges to
3548 // non-successor TrueBBs and FalseBBs aren't reachable.
3549 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3550                                                 Value *Cond, BasicBlock *TrueBB,
3551                                                 BasicBlock *FalseBB,
3552                                                 uint32_t TrueWeight,
3553                                                 uint32_t FalseWeight) {
3554   // Remove any superfluous successor edges from the CFG.
3555   // First, figure out which successors to preserve.
3556   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3557   // successor.
3558   BasicBlock *KeepEdge1 = TrueBB;
3559   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3560 
3561   // Then remove the rest.
3562   for (BasicBlock *Succ : successors(OldTerm)) {
3563     // Make sure only to keep exactly one copy of each edge.
3564     if (Succ == KeepEdge1)
3565       KeepEdge1 = nullptr;
3566     else if (Succ == KeepEdge2)
3567       KeepEdge2 = nullptr;
3568     else
3569       Succ->removePredecessor(OldTerm->getParent(),
3570                               /*KeepOneInputPHIs=*/true);
3571   }
3572 
3573   IRBuilder<> Builder(OldTerm);
3574   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3575 
3576   // Insert an appropriate new terminator.
3577   if (!KeepEdge1 && !KeepEdge2) {
3578     if (TrueBB == FalseBB)
3579       // We were only looking for one successor, and it was present.
3580       // Create an unconditional branch to it.
3581       Builder.CreateBr(TrueBB);
3582     else {
3583       // We found both of the successors we were looking for.
3584       // Create a conditional branch sharing the condition of the select.
3585       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3586       if (TrueWeight != FalseWeight)
3587         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3588     }
3589   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3590     // Neither of the selected blocks were successors, so this
3591     // terminator must be unreachable.
3592     new UnreachableInst(OldTerm->getContext(), OldTerm);
3593   } else {
3594     // One of the selected values was a successor, but the other wasn't.
3595     // Insert an unconditional branch to the one that was found;
3596     // the edge to the one that wasn't must be unreachable.
3597     if (!KeepEdge1)
3598       // Only TrueBB was found.
3599       Builder.CreateBr(TrueBB);
3600     else
3601       // Only FalseBB was found.
3602       Builder.CreateBr(FalseBB);
3603   }
3604 
3605   EraseTerminatorAndDCECond(OldTerm);
3606   return true;
3607 }
3608 
3609 // Replaces
3610 //   (switch (select cond, X, Y)) on constant X, Y
3611 // with a branch - conditional if X and Y lead to distinct BBs,
3612 // unconditional otherwise.
3613 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3614                                             SelectInst *Select) {
3615   // Check for constant integer values in the select.
3616   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3617   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3618   if (!TrueVal || !FalseVal)
3619     return false;
3620 
3621   // Find the relevant condition and destinations.
3622   Value *Condition = Select->getCondition();
3623   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3624   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3625 
3626   // Get weight for TrueBB and FalseBB.
3627   uint32_t TrueWeight = 0, FalseWeight = 0;
3628   SmallVector<uint64_t, 8> Weights;
3629   bool HasWeights = HasBranchWeights(SI);
3630   if (HasWeights) {
3631     GetBranchWeights(SI, Weights);
3632     if (Weights.size() == 1 + SI->getNumCases()) {
3633       TrueWeight =
3634           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3635       FalseWeight =
3636           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3637     }
3638   }
3639 
3640   // Perform the actual simplification.
3641   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3642                                     FalseWeight);
3643 }
3644 
3645 // Replaces
3646 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3647 //                             blockaddress(@fn, BlockB)))
3648 // with
3649 //   (br cond, BlockA, BlockB).
3650 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3651                                                 SelectInst *SI) {
3652   // Check that both operands of the select are block addresses.
3653   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3654   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3655   if (!TBA || !FBA)
3656     return false;
3657 
3658   // Extract the actual blocks.
3659   BasicBlock *TrueBB = TBA->getBasicBlock();
3660   BasicBlock *FalseBB = FBA->getBasicBlock();
3661 
3662   // Perform the actual simplification.
3663   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3664                                     0);
3665 }
3666 
3667 /// This is called when we find an icmp instruction
3668 /// (a seteq/setne with a constant) as the only instruction in a
3669 /// block that ends with an uncond branch.  We are looking for a very specific
3670 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3671 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3672 /// default value goes to an uncond block with a seteq in it, we get something
3673 /// like:
3674 ///
3675 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3676 /// DEFAULT:
3677 ///   %tmp = icmp eq i8 %A, 92
3678 ///   br label %end
3679 /// end:
3680 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3681 ///
3682 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3683 /// the PHI, merging the third icmp into the switch.
3684 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3685     ICmpInst *ICI, IRBuilder<> &Builder) {
3686   BasicBlock *BB = ICI->getParent();
3687 
3688   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3689   // complex.
3690   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3691     return false;
3692 
3693   Value *V = ICI->getOperand(0);
3694   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3695 
3696   // The pattern we're looking for is where our only predecessor is a switch on
3697   // 'V' and this block is the default case for the switch.  In this case we can
3698   // fold the compared value into the switch to simplify things.
3699   BasicBlock *Pred = BB->getSinglePredecessor();
3700   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3701     return false;
3702 
3703   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3704   if (SI->getCondition() != V)
3705     return false;
3706 
3707   // If BB is reachable on a non-default case, then we simply know the value of
3708   // V in this block.  Substitute it and constant fold the icmp instruction
3709   // away.
3710   if (SI->getDefaultDest() != BB) {
3711     ConstantInt *VVal = SI->findCaseDest(BB);
3712     assert(VVal && "Should have a unique destination value");
3713     ICI->setOperand(0, VVal);
3714 
3715     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3716       ICI->replaceAllUsesWith(V);
3717       ICI->eraseFromParent();
3718     }
3719     // BB is now empty, so it is likely to simplify away.
3720     return requestResimplify();
3721   }
3722 
3723   // Ok, the block is reachable from the default dest.  If the constant we're
3724   // comparing exists in one of the other edges, then we can constant fold ICI
3725   // and zap it.
3726   if (SI->findCaseValue(Cst) != SI->case_default()) {
3727     Value *V;
3728     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3729       V = ConstantInt::getFalse(BB->getContext());
3730     else
3731       V = ConstantInt::getTrue(BB->getContext());
3732 
3733     ICI->replaceAllUsesWith(V);
3734     ICI->eraseFromParent();
3735     // BB is now empty, so it is likely to simplify away.
3736     return requestResimplify();
3737   }
3738 
3739   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3740   // the block.
3741   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3742   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3743   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3744       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3745     return false;
3746 
3747   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3748   // true in the PHI.
3749   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3750   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3751 
3752   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3753     std::swap(DefaultCst, NewCst);
3754 
3755   // Replace ICI (which is used by the PHI for the default value) with true or
3756   // false depending on if it is EQ or NE.
3757   ICI->replaceAllUsesWith(DefaultCst);
3758   ICI->eraseFromParent();
3759 
3760   // Okay, the switch goes to this block on a default value.  Add an edge from
3761   // the switch to the merge point on the compared value.
3762   BasicBlock *NewBB =
3763       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3764   {
3765     SwitchInstProfUpdateWrapper SIW(*SI);
3766     auto W0 = SIW.getSuccessorWeight(0);
3767     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3768     if (W0) {
3769       NewW = ((uint64_t(*W0) + 1) >> 1);
3770       SIW.setSuccessorWeight(0, *NewW);
3771     }
3772     SIW.addCase(Cst, NewBB, NewW);
3773   }
3774 
3775   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3776   Builder.SetInsertPoint(NewBB);
3777   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3778   Builder.CreateBr(SuccBlock);
3779   PHIUse->addIncoming(NewCst, NewBB);
3780   return true;
3781 }
3782 
3783 /// The specified branch is a conditional branch.
3784 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3785 /// fold it into a switch instruction if so.
3786 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
3787                                                IRBuilder<> &Builder,
3788                                                const DataLayout &DL) {
3789   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3790   if (!Cond)
3791     return false;
3792 
3793   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3794   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3795   // 'setne's and'ed together, collect them.
3796 
3797   // Try to gather values from a chain of and/or to be turned into a switch
3798   ConstantComparesGatherer ConstantCompare(Cond, DL);
3799   // Unpack the result
3800   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3801   Value *CompVal = ConstantCompare.CompValue;
3802   unsigned UsedICmps = ConstantCompare.UsedICmps;
3803   Value *ExtraCase = ConstantCompare.Extra;
3804 
3805   // If we didn't have a multiply compared value, fail.
3806   if (!CompVal)
3807     return false;
3808 
3809   // Avoid turning single icmps into a switch.
3810   if (UsedICmps <= 1)
3811     return false;
3812 
3813   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3814 
3815   // There might be duplicate constants in the list, which the switch
3816   // instruction can't handle, remove them now.
3817   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3818   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3819 
3820   // If Extra was used, we require at least two switch values to do the
3821   // transformation.  A switch with one value is just a conditional branch.
3822   if (ExtraCase && Values.size() < 2)
3823     return false;
3824 
3825   // TODO: Preserve branch weight metadata, similarly to how
3826   // FoldValueComparisonIntoPredecessors preserves it.
3827 
3828   // Figure out which block is which destination.
3829   BasicBlock *DefaultBB = BI->getSuccessor(1);
3830   BasicBlock *EdgeBB = BI->getSuccessor(0);
3831   if (!TrueWhenEqual)
3832     std::swap(DefaultBB, EdgeBB);
3833 
3834   BasicBlock *BB = BI->getParent();
3835 
3836   // MSAN does not like undefs as branch condition which can be introduced
3837   // with "explicit branch".
3838   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
3839     return false;
3840 
3841   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3842                     << " cases into SWITCH.  BB is:\n"
3843                     << *BB);
3844 
3845   // If there are any extra values that couldn't be folded into the switch
3846   // then we evaluate them with an explicit branch first. Split the block
3847   // right before the condbr to handle it.
3848   if (ExtraCase) {
3849     BasicBlock *NewBB =
3850         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3851     // Remove the uncond branch added to the old block.
3852     Instruction *OldTI = BB->getTerminator();
3853     Builder.SetInsertPoint(OldTI);
3854 
3855     if (TrueWhenEqual)
3856       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3857     else
3858       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3859 
3860     OldTI->eraseFromParent();
3861 
3862     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3863     // for the edge we just added.
3864     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3865 
3866     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3867                       << "\nEXTRABB = " << *BB);
3868     BB = NewBB;
3869   }
3870 
3871   Builder.SetInsertPoint(BI);
3872   // Convert pointer to int before we switch.
3873   if (CompVal->getType()->isPointerTy()) {
3874     CompVal = Builder.CreatePtrToInt(
3875         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3876   }
3877 
3878   // Create the new switch instruction now.
3879   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3880 
3881   // Add all of the 'cases' to the switch instruction.
3882   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3883     New->addCase(Values[i], EdgeBB);
3884 
3885   // We added edges from PI to the EdgeBB.  As such, if there were any
3886   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3887   // the number of edges added.
3888   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3889     PHINode *PN = cast<PHINode>(BBI);
3890     Value *InVal = PN->getIncomingValueForBlock(BB);
3891     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3892       PN->addIncoming(InVal, BB);
3893   }
3894 
3895   // Erase the old branch instruction.
3896   EraseTerminatorAndDCECond(BI);
3897 
3898   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3899   return true;
3900 }
3901 
3902 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3903   if (isa<PHINode>(RI->getValue()))
3904     return simplifyCommonResume(RI);
3905   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3906            RI->getValue() == RI->getParent()->getFirstNonPHI())
3907     // The resume must unwind the exception that caused control to branch here.
3908     return simplifySingleResume(RI);
3909 
3910   return false;
3911 }
3912 
3913 // Simplify resume that is shared by several landing pads (phi of landing pad).
3914 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
3915   BasicBlock *BB = RI->getParent();
3916 
3917   // Check that there are no other instructions except for debug intrinsics
3918   // between the phi of landing pads (RI->getValue()) and resume instruction.
3919   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3920                        E = RI->getIterator();
3921   while (++I != E)
3922     if (!isa<DbgInfoIntrinsic>(I))
3923       return false;
3924 
3925   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3926   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3927 
3928   // Check incoming blocks to see if any of them are trivial.
3929   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3930        Idx++) {
3931     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3932     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3933 
3934     // If the block has other successors, we can not delete it because
3935     // it has other dependents.
3936     if (IncomingBB->getUniqueSuccessor() != BB)
3937       continue;
3938 
3939     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3940     // Not the landing pad that caused the control to branch here.
3941     if (IncomingValue != LandingPad)
3942       continue;
3943 
3944     bool isTrivial = true;
3945 
3946     I = IncomingBB->getFirstNonPHI()->getIterator();
3947     E = IncomingBB->getTerminator()->getIterator();
3948     while (++I != E)
3949       if (!isa<DbgInfoIntrinsic>(I)) {
3950         isTrivial = false;
3951         break;
3952       }
3953 
3954     if (isTrivial)
3955       TrivialUnwindBlocks.insert(IncomingBB);
3956   }
3957 
3958   // If no trivial unwind blocks, don't do any simplifications.
3959   if (TrivialUnwindBlocks.empty())
3960     return false;
3961 
3962   // Turn all invokes that unwind here into calls.
3963   for (auto *TrivialBB : TrivialUnwindBlocks) {
3964     // Blocks that will be simplified should be removed from the phi node.
3965     // Note there could be multiple edges to the resume block, and we need
3966     // to remove them all.
3967     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3968       BB->removePredecessor(TrivialBB, true);
3969 
3970     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3971          PI != PE;) {
3972       BasicBlock *Pred = *PI++;
3973       removeUnwindEdge(Pred);
3974     }
3975 
3976     // In each SimplifyCFG run, only the current processed block can be erased.
3977     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3978     // of erasing TrivialBB, we only remove the branch to the common resume
3979     // block so that we can later erase the resume block since it has no
3980     // predecessors.
3981     TrivialBB->getTerminator()->eraseFromParent();
3982     new UnreachableInst(RI->getContext(), TrivialBB);
3983   }
3984 
3985   // Delete the resume block if all its predecessors have been removed.
3986   if (pred_empty(BB))
3987     BB->eraseFromParent();
3988 
3989   return !TrivialUnwindBlocks.empty();
3990 }
3991 
3992 // Check if cleanup block is empty
3993 static bool isCleanupBlockEmpty(Instruction *Inst, Instruction *RI) {
3994   BasicBlock::iterator I = Inst->getIterator(), E = RI->getIterator();
3995   while (++I != E) {
3996     auto *II = dyn_cast<IntrinsicInst>(I);
3997     if (!II)
3998       return false;
3999 
4000     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4001     switch (IntrinsicID) {
4002     case Intrinsic::dbg_declare:
4003     case Intrinsic::dbg_value:
4004     case Intrinsic::dbg_label:
4005     case Intrinsic::lifetime_end:
4006       break;
4007     default:
4008       return false;
4009     }
4010   }
4011   return true;
4012 }
4013 
4014 // Simplify resume that is only used by a single (non-phi) landing pad.
4015 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4016   BasicBlock *BB = RI->getParent();
4017   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4018   assert(RI->getValue() == LPInst &&
4019          "Resume must unwind the exception that caused control to here");
4020 
4021   // Check that there are no other instructions except for debug intrinsics.
4022   if (!isCleanupBlockEmpty(LPInst, RI))
4023     return false;
4024 
4025   // Turn all invokes that unwind here into calls and delete the basic block.
4026   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4027     BasicBlock *Pred = *PI++;
4028     removeUnwindEdge(Pred);
4029   }
4030 
4031   // The landingpad is now unreachable.  Zap it.
4032   if (LoopHeaders)
4033     LoopHeaders->erase(BB);
4034   BB->eraseFromParent();
4035   return true;
4036 }
4037 
4038 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
4039   // If this is a trivial cleanup pad that executes no instructions, it can be
4040   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4041   // that is an EH pad will be updated to continue to the caller and any
4042   // predecessor that terminates with an invoke instruction will have its invoke
4043   // instruction converted to a call instruction.  If the cleanup pad being
4044   // simplified does not continue to the caller, each predecessor will be
4045   // updated to continue to the unwind destination of the cleanup pad being
4046   // simplified.
4047   BasicBlock *BB = RI->getParent();
4048   CleanupPadInst *CPInst = RI->getCleanupPad();
4049   if (CPInst->getParent() != BB)
4050     // This isn't an empty cleanup.
4051     return false;
4052 
4053   // We cannot kill the pad if it has multiple uses.  This typically arises
4054   // from unreachable basic blocks.
4055   if (!CPInst->hasOneUse())
4056     return false;
4057 
4058   // Check that there are no other instructions except for benign intrinsics.
4059   if (!isCleanupBlockEmpty(CPInst, RI))
4060     return false;
4061 
4062   // If the cleanup return we are simplifying unwinds to the caller, this will
4063   // set UnwindDest to nullptr.
4064   BasicBlock *UnwindDest = RI->getUnwindDest();
4065   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4066 
4067   // We're about to remove BB from the control flow.  Before we do, sink any
4068   // PHINodes into the unwind destination.  Doing this before changing the
4069   // control flow avoids some potentially slow checks, since we can currently
4070   // be certain that UnwindDest and BB have no common predecessors (since they
4071   // are both EH pads).
4072   if (UnwindDest) {
4073     // First, go through the PHI nodes in UnwindDest and update any nodes that
4074     // reference the block we are removing
4075     for (BasicBlock::iterator I = UnwindDest->begin(),
4076                               IE = DestEHPad->getIterator();
4077          I != IE; ++I) {
4078       PHINode *DestPN = cast<PHINode>(I);
4079 
4080       int Idx = DestPN->getBasicBlockIndex(BB);
4081       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4082       assert(Idx != -1);
4083       // This PHI node has an incoming value that corresponds to a control
4084       // path through the cleanup pad we are removing.  If the incoming
4085       // value is in the cleanup pad, it must be a PHINode (because we
4086       // verified above that the block is otherwise empty).  Otherwise, the
4087       // value is either a constant or a value that dominates the cleanup
4088       // pad being removed.
4089       //
4090       // Because BB and UnwindDest are both EH pads, all of their
4091       // predecessors must unwind to these blocks, and since no instruction
4092       // can have multiple unwind destinations, there will be no overlap in
4093       // incoming blocks between SrcPN and DestPN.
4094       Value *SrcVal = DestPN->getIncomingValue(Idx);
4095       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4096 
4097       // Remove the entry for the block we are deleting.
4098       DestPN->removeIncomingValue(Idx, false);
4099 
4100       if (SrcPN && SrcPN->getParent() == BB) {
4101         // If the incoming value was a PHI node in the cleanup pad we are
4102         // removing, we need to merge that PHI node's incoming values into
4103         // DestPN.
4104         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4105              SrcIdx != SrcE; ++SrcIdx) {
4106           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4107                               SrcPN->getIncomingBlock(SrcIdx));
4108         }
4109       } else {
4110         // Otherwise, the incoming value came from above BB and
4111         // so we can just reuse it.  We must associate all of BB's
4112         // predecessors with this value.
4113         for (auto *pred : predecessors(BB)) {
4114           DestPN->addIncoming(SrcVal, pred);
4115         }
4116       }
4117     }
4118 
4119     // Sink any remaining PHI nodes directly into UnwindDest.
4120     Instruction *InsertPt = DestEHPad;
4121     for (BasicBlock::iterator I = BB->begin(),
4122                               IE = BB->getFirstNonPHI()->getIterator();
4123          I != IE;) {
4124       // The iterator must be incremented here because the instructions are
4125       // being moved to another block.
4126       PHINode *PN = cast<PHINode>(I++);
4127       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4128         // If the PHI node has no uses or all of its uses are in this basic
4129         // block (meaning they are debug or lifetime intrinsics), just leave
4130         // it.  It will be erased when we erase BB below.
4131         continue;
4132 
4133       // Otherwise, sink this PHI node into UnwindDest.
4134       // Any predecessors to UnwindDest which are not already represented
4135       // must be back edges which inherit the value from the path through
4136       // BB.  In this case, the PHI value must reference itself.
4137       for (auto *pred : predecessors(UnwindDest))
4138         if (pred != BB)
4139           PN->addIncoming(PN, pred);
4140       PN->moveBefore(InsertPt);
4141     }
4142   }
4143 
4144   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4145     // The iterator must be updated here because we are removing this pred.
4146     BasicBlock *PredBB = *PI++;
4147     if (UnwindDest == nullptr) {
4148       removeUnwindEdge(PredBB);
4149     } else {
4150       Instruction *TI = PredBB->getTerminator();
4151       TI->replaceUsesOfWith(BB, UnwindDest);
4152     }
4153   }
4154 
4155   // The cleanup pad is now unreachable.  Zap it.
4156   BB->eraseFromParent();
4157   return true;
4158 }
4159 
4160 // Try to merge two cleanuppads together.
4161 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4162   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4163   // with.
4164   BasicBlock *UnwindDest = RI->getUnwindDest();
4165   if (!UnwindDest)
4166     return false;
4167 
4168   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4169   // be safe to merge without code duplication.
4170   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4171     return false;
4172 
4173   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4174   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4175   if (!SuccessorCleanupPad)
4176     return false;
4177 
4178   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4179   // Replace any uses of the successor cleanupad with the predecessor pad
4180   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4181   // funclet bundle operands.
4182   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4183   // Remove the old cleanuppad.
4184   SuccessorCleanupPad->eraseFromParent();
4185   // Now, we simply replace the cleanupret with a branch to the unwind
4186   // destination.
4187   BranchInst::Create(UnwindDest, RI->getParent());
4188   RI->eraseFromParent();
4189 
4190   return true;
4191 }
4192 
4193 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4194   // It is possible to transiantly have an undef cleanuppad operand because we
4195   // have deleted some, but not all, dead blocks.
4196   // Eventually, this block will be deleted.
4197   if (isa<UndefValue>(RI->getOperand(0)))
4198     return false;
4199 
4200   if (mergeCleanupPad(RI))
4201     return true;
4202 
4203   if (removeEmptyCleanup(RI))
4204     return true;
4205 
4206   return false;
4207 }
4208 
4209 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4210   BasicBlock *BB = RI->getParent();
4211   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4212     return false;
4213 
4214   // Find predecessors that end with branches.
4215   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4216   SmallVector<BranchInst *, 8> CondBranchPreds;
4217   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4218     BasicBlock *P = *PI;
4219     Instruction *PTI = P->getTerminator();
4220     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4221       if (BI->isUnconditional())
4222         UncondBranchPreds.push_back(P);
4223       else
4224         CondBranchPreds.push_back(BI);
4225     }
4226   }
4227 
4228   // If we found some, do the transformation!
4229   if (!UncondBranchPreds.empty() && DupRet) {
4230     while (!UncondBranchPreds.empty()) {
4231       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4232       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4233                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4234       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4235     }
4236 
4237     // If we eliminated all predecessors of the block, delete the block now.
4238     if (pred_empty(BB)) {
4239       // We know there are no successors, so just nuke the block.
4240       if (LoopHeaders)
4241         LoopHeaders->erase(BB);
4242       BB->eraseFromParent();
4243     }
4244 
4245     return true;
4246   }
4247 
4248   // Check out all of the conditional branches going to this return
4249   // instruction.  If any of them just select between returns, change the
4250   // branch itself into a select/return pair.
4251   while (!CondBranchPreds.empty()) {
4252     BranchInst *BI = CondBranchPreds.pop_back_val();
4253 
4254     // Check to see if the non-BB successor is also a return block.
4255     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4256         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4257         SimplifyCondBranchToTwoReturns(BI, Builder))
4258       return true;
4259   }
4260   return false;
4261 }
4262 
4263 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4264   BasicBlock *BB = UI->getParent();
4265 
4266   bool Changed = false;
4267 
4268   // If there are any instructions immediately before the unreachable that can
4269   // be removed, do so.
4270   while (UI->getIterator() != BB->begin()) {
4271     BasicBlock::iterator BBI = UI->getIterator();
4272     --BBI;
4273     // Do not delete instructions that can have side effects which might cause
4274     // the unreachable to not be reachable; specifically, calls and volatile
4275     // operations may have this effect.
4276     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4277       break;
4278 
4279     if (BBI->mayHaveSideEffects()) {
4280       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4281         if (SI->isVolatile())
4282           break;
4283       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4284         if (LI->isVolatile())
4285           break;
4286       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4287         if (RMWI->isVolatile())
4288           break;
4289       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4290         if (CXI->isVolatile())
4291           break;
4292       } else if (isa<CatchPadInst>(BBI)) {
4293         // A catchpad may invoke exception object constructors and such, which
4294         // in some languages can be arbitrary code, so be conservative by
4295         // default.
4296         // For CoreCLR, it just involves a type test, so can be removed.
4297         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4298             EHPersonality::CoreCLR)
4299           break;
4300       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4301                  !isa<LandingPadInst>(BBI)) {
4302         break;
4303       }
4304       // Note that deleting LandingPad's here is in fact okay, although it
4305       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4306       // all the predecessors of this block will be the unwind edges of Invokes,
4307       // and we can therefore guarantee this block will be erased.
4308     }
4309 
4310     // Delete this instruction (any uses are guaranteed to be dead)
4311     if (!BBI->use_empty())
4312       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4313     BBI->eraseFromParent();
4314     Changed = true;
4315   }
4316 
4317   // If the unreachable instruction is the first in the block, take a gander
4318   // at all of the predecessors of this instruction, and simplify them.
4319   if (&BB->front() != UI)
4320     return Changed;
4321 
4322   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4323   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4324     Instruction *TI = Preds[i]->getTerminator();
4325     IRBuilder<> Builder(TI);
4326     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4327       if (BI->isUnconditional()) {
4328         assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4329         new UnreachableInst(TI->getContext(), TI);
4330         TI->eraseFromParent();
4331         Changed = true;
4332       } else {
4333         Value* Cond = BI->getCondition();
4334         if (BI->getSuccessor(0) == BB) {
4335           Builder.CreateAssumption(Builder.CreateNot(Cond));
4336           Builder.CreateBr(BI->getSuccessor(1));
4337         } else {
4338           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4339           Builder.CreateAssumption(Cond);
4340           Builder.CreateBr(BI->getSuccessor(0));
4341         }
4342         EraseTerminatorAndDCECond(BI);
4343         Changed = true;
4344       }
4345     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4346       SwitchInstProfUpdateWrapper SU(*SI);
4347       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4348         if (i->getCaseSuccessor() != BB) {
4349           ++i;
4350           continue;
4351         }
4352         BB->removePredecessor(SU->getParent());
4353         i = SU.removeCase(i);
4354         e = SU->case_end();
4355         Changed = true;
4356       }
4357     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4358       if (II->getUnwindDest() == BB) {
4359         removeUnwindEdge(TI->getParent());
4360         Changed = true;
4361       }
4362     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4363       if (CSI->getUnwindDest() == BB) {
4364         removeUnwindEdge(TI->getParent());
4365         Changed = true;
4366         continue;
4367       }
4368 
4369       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4370                                              E = CSI->handler_end();
4371            I != E; ++I) {
4372         if (*I == BB) {
4373           CSI->removeHandler(I);
4374           --I;
4375           --E;
4376           Changed = true;
4377         }
4378       }
4379       if (CSI->getNumHandlers() == 0) {
4380         BasicBlock *CatchSwitchBB = CSI->getParent();
4381         if (CSI->hasUnwindDest()) {
4382           // Redirect preds to the unwind dest
4383           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4384         } else {
4385           // Rewrite all preds to unwind to caller (or from invoke to call).
4386           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4387           for (BasicBlock *EHPred : EHPreds)
4388             removeUnwindEdge(EHPred);
4389         }
4390         // The catchswitch is no longer reachable.
4391         new UnreachableInst(CSI->getContext(), CSI);
4392         CSI->eraseFromParent();
4393         Changed = true;
4394       }
4395     } else if (isa<CleanupReturnInst>(TI)) {
4396       new UnreachableInst(TI->getContext(), TI);
4397       TI->eraseFromParent();
4398       Changed = true;
4399     }
4400   }
4401 
4402   // If this block is now dead, remove it.
4403   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4404     // We know there are no successors, so just nuke the block.
4405     if (LoopHeaders)
4406       LoopHeaders->erase(BB);
4407     BB->eraseFromParent();
4408     return true;
4409   }
4410 
4411   return Changed;
4412 }
4413 
4414 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4415   assert(Cases.size() >= 1);
4416 
4417   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4418   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4419     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4420       return false;
4421   }
4422   return true;
4423 }
4424 
4425 static void createUnreachableSwitchDefault(SwitchInst *Switch) {
4426   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4427   BasicBlock *NewDefaultBlock =
4428      SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
4429   Switch->setDefaultDest(&*NewDefaultBlock);
4430   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
4431   auto *NewTerminator = NewDefaultBlock->getTerminator();
4432   new UnreachableInst(Switch->getContext(), NewTerminator);
4433   EraseTerminatorAndDCECond(NewTerminator);
4434 }
4435 
4436 /// Turn a switch with two reachable destinations into an integer range
4437 /// comparison and branch.
4438 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4439                                              IRBuilder<> &Builder) {
4440   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4441 
4442   bool HasDefault =
4443       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4444 
4445   // Partition the cases into two sets with different destinations.
4446   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4447   BasicBlock *DestB = nullptr;
4448   SmallVector<ConstantInt *, 16> CasesA;
4449   SmallVector<ConstantInt *, 16> CasesB;
4450 
4451   for (auto Case : SI->cases()) {
4452     BasicBlock *Dest = Case.getCaseSuccessor();
4453     if (!DestA)
4454       DestA = Dest;
4455     if (Dest == DestA) {
4456       CasesA.push_back(Case.getCaseValue());
4457       continue;
4458     }
4459     if (!DestB)
4460       DestB = Dest;
4461     if (Dest == DestB) {
4462       CasesB.push_back(Case.getCaseValue());
4463       continue;
4464     }
4465     return false; // More than two destinations.
4466   }
4467 
4468   assert(DestA && DestB &&
4469          "Single-destination switch should have been folded.");
4470   assert(DestA != DestB);
4471   assert(DestB != SI->getDefaultDest());
4472   assert(!CasesB.empty() && "There must be non-default cases.");
4473   assert(!CasesA.empty() || HasDefault);
4474 
4475   // Figure out if one of the sets of cases form a contiguous range.
4476   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4477   BasicBlock *ContiguousDest = nullptr;
4478   BasicBlock *OtherDest = nullptr;
4479   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4480     ContiguousCases = &CasesA;
4481     ContiguousDest = DestA;
4482     OtherDest = DestB;
4483   } else if (CasesAreContiguous(CasesB)) {
4484     ContiguousCases = &CasesB;
4485     ContiguousDest = DestB;
4486     OtherDest = DestA;
4487   } else
4488     return false;
4489 
4490   // Start building the compare and branch.
4491 
4492   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4493   Constant *NumCases =
4494       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4495 
4496   Value *Sub = SI->getCondition();
4497   if (!Offset->isNullValue())
4498     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4499 
4500   Value *Cmp;
4501   // If NumCases overflowed, then all possible values jump to the successor.
4502   if (NumCases->isNullValue() && !ContiguousCases->empty())
4503     Cmp = ConstantInt::getTrue(SI->getContext());
4504   else
4505     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4506   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4507 
4508   // Update weight for the newly-created conditional branch.
4509   if (HasBranchWeights(SI)) {
4510     SmallVector<uint64_t, 8> Weights;
4511     GetBranchWeights(SI, Weights);
4512     if (Weights.size() == 1 + SI->getNumCases()) {
4513       uint64_t TrueWeight = 0;
4514       uint64_t FalseWeight = 0;
4515       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4516         if (SI->getSuccessor(I) == ContiguousDest)
4517           TrueWeight += Weights[I];
4518         else
4519           FalseWeight += Weights[I];
4520       }
4521       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4522         TrueWeight /= 2;
4523         FalseWeight /= 2;
4524       }
4525       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4526     }
4527   }
4528 
4529   // Prune obsolete incoming values off the successors' PHI nodes.
4530   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4531     unsigned PreviousEdges = ContiguousCases->size();
4532     if (ContiguousDest == SI->getDefaultDest())
4533       ++PreviousEdges;
4534     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4535       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4536   }
4537   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4538     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4539     if (OtherDest == SI->getDefaultDest())
4540       ++PreviousEdges;
4541     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4542       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4543   }
4544 
4545   // Clean up the default block - it may have phis or other instructions before
4546   // the unreachable terminator.
4547   if (!HasDefault)
4548     createUnreachableSwitchDefault(SI);
4549 
4550   // Drop the switch.
4551   SI->eraseFromParent();
4552 
4553   return true;
4554 }
4555 
4556 /// Compute masked bits for the condition of a switch
4557 /// and use it to remove dead cases.
4558 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4559                                      const DataLayout &DL) {
4560   Value *Cond = SI->getCondition();
4561   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4562   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4563 
4564   // We can also eliminate cases by determining that their values are outside of
4565   // the limited range of the condition based on how many significant (non-sign)
4566   // bits are in the condition value.
4567   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4568   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4569 
4570   // Gather dead cases.
4571   SmallVector<ConstantInt *, 8> DeadCases;
4572   for (auto &Case : SI->cases()) {
4573     const APInt &CaseVal = Case.getCaseValue()->getValue();
4574     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4575         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4576       DeadCases.push_back(Case.getCaseValue());
4577       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4578                         << " is dead.\n");
4579     }
4580   }
4581 
4582   // If we can prove that the cases must cover all possible values, the
4583   // default destination becomes dead and we can remove it.  If we know some
4584   // of the bits in the value, we can use that to more precisely compute the
4585   // number of possible unique case values.
4586   bool HasDefault =
4587       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4588   const unsigned NumUnknownBits =
4589       Bits - (Known.Zero | Known.One).countPopulation();
4590   assert(NumUnknownBits <= Bits);
4591   if (HasDefault && DeadCases.empty() &&
4592       NumUnknownBits < 64 /* avoid overflow */ &&
4593       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4594     createUnreachableSwitchDefault(SI);
4595     return true;
4596   }
4597 
4598   if (DeadCases.empty())
4599     return false;
4600 
4601   SwitchInstProfUpdateWrapper SIW(*SI);
4602   for (ConstantInt *DeadCase : DeadCases) {
4603     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4604     assert(CaseI != SI->case_default() &&
4605            "Case was not found. Probably mistake in DeadCases forming.");
4606     // Prune unused values from PHI nodes.
4607     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4608     SIW.removeCase(CaseI);
4609   }
4610 
4611   return true;
4612 }
4613 
4614 /// If BB would be eligible for simplification by
4615 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4616 /// by an unconditional branch), look at the phi node for BB in the successor
4617 /// block and see if the incoming value is equal to CaseValue. If so, return
4618 /// the phi node, and set PhiIndex to BB's index in the phi node.
4619 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4620                                               BasicBlock *BB, int *PhiIndex) {
4621   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4622     return nullptr; // BB must be empty to be a candidate for simplification.
4623   if (!BB->getSinglePredecessor())
4624     return nullptr; // BB must be dominated by the switch.
4625 
4626   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4627   if (!Branch || !Branch->isUnconditional())
4628     return nullptr; // Terminator must be unconditional branch.
4629 
4630   BasicBlock *Succ = Branch->getSuccessor(0);
4631 
4632   for (PHINode &PHI : Succ->phis()) {
4633     int Idx = PHI.getBasicBlockIndex(BB);
4634     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4635 
4636     Value *InValue = PHI.getIncomingValue(Idx);
4637     if (InValue != CaseValue)
4638       continue;
4639 
4640     *PhiIndex = Idx;
4641     return &PHI;
4642   }
4643 
4644   return nullptr;
4645 }
4646 
4647 /// Try to forward the condition of a switch instruction to a phi node
4648 /// dominated by the switch, if that would mean that some of the destination
4649 /// blocks of the switch can be folded away. Return true if a change is made.
4650 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4651   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4652 
4653   ForwardingNodesMap ForwardingNodes;
4654   BasicBlock *SwitchBlock = SI->getParent();
4655   bool Changed = false;
4656   for (auto &Case : SI->cases()) {
4657     ConstantInt *CaseValue = Case.getCaseValue();
4658     BasicBlock *CaseDest = Case.getCaseSuccessor();
4659 
4660     // Replace phi operands in successor blocks that are using the constant case
4661     // value rather than the switch condition variable:
4662     //   switchbb:
4663     //   switch i32 %x, label %default [
4664     //     i32 17, label %succ
4665     //   ...
4666     //   succ:
4667     //     %r = phi i32 ... [ 17, %switchbb ] ...
4668     // -->
4669     //     %r = phi i32 ... [ %x, %switchbb ] ...
4670 
4671     for (PHINode &Phi : CaseDest->phis()) {
4672       // This only works if there is exactly 1 incoming edge from the switch to
4673       // a phi. If there is >1, that means multiple cases of the switch map to 1
4674       // value in the phi, and that phi value is not the switch condition. Thus,
4675       // this transform would not make sense (the phi would be invalid because
4676       // a phi can't have different incoming values from the same block).
4677       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4678       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4679           count(Phi.blocks(), SwitchBlock) == 1) {
4680         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4681         Changed = true;
4682       }
4683     }
4684 
4685     // Collect phi nodes that are indirectly using this switch's case constants.
4686     int PhiIdx;
4687     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4688       ForwardingNodes[Phi].push_back(PhiIdx);
4689   }
4690 
4691   for (auto &ForwardingNode : ForwardingNodes) {
4692     PHINode *Phi = ForwardingNode.first;
4693     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4694     if (Indexes.size() < 2)
4695       continue;
4696 
4697     for (int Index : Indexes)
4698       Phi->setIncomingValue(Index, SI->getCondition());
4699     Changed = true;
4700   }
4701 
4702   return Changed;
4703 }
4704 
4705 /// Return true if the backend will be able to handle
4706 /// initializing an array of constants like C.
4707 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4708   if (C->isThreadDependent())
4709     return false;
4710   if (C->isDLLImportDependent())
4711     return false;
4712 
4713   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4714       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4715       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4716     return false;
4717 
4718   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4719     if (!CE->isGEPWithNoNotionalOverIndexing())
4720       return false;
4721     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4722       return false;
4723   }
4724 
4725   if (!TTI.shouldBuildLookupTablesForConstant(C))
4726     return false;
4727 
4728   return true;
4729 }
4730 
4731 /// If V is a Constant, return it. Otherwise, try to look up
4732 /// its constant value in ConstantPool, returning 0 if it's not there.
4733 static Constant *
4734 LookupConstant(Value *V,
4735                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4736   if (Constant *C = dyn_cast<Constant>(V))
4737     return C;
4738   return ConstantPool.lookup(V);
4739 }
4740 
4741 /// Try to fold instruction I into a constant. This works for
4742 /// simple instructions such as binary operations where both operands are
4743 /// constant or can be replaced by constants from the ConstantPool. Returns the
4744 /// resulting constant on success, 0 otherwise.
4745 static Constant *
4746 ConstantFold(Instruction *I, const DataLayout &DL,
4747              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4748   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4749     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4750     if (!A)
4751       return nullptr;
4752     if (A->isAllOnesValue())
4753       return LookupConstant(Select->getTrueValue(), ConstantPool);
4754     if (A->isNullValue())
4755       return LookupConstant(Select->getFalseValue(), ConstantPool);
4756     return nullptr;
4757   }
4758 
4759   SmallVector<Constant *, 4> COps;
4760   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4761     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4762       COps.push_back(A);
4763     else
4764       return nullptr;
4765   }
4766 
4767   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4768     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4769                                            COps[1], DL);
4770   }
4771 
4772   return ConstantFoldInstOperands(I, COps, DL);
4773 }
4774 
4775 /// Try to determine the resulting constant values in phi nodes
4776 /// at the common destination basic block, *CommonDest, for one of the case
4777 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4778 /// case), of a switch instruction SI.
4779 static bool
4780 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4781                BasicBlock **CommonDest,
4782                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4783                const DataLayout &DL, const TargetTransformInfo &TTI) {
4784   // The block from which we enter the common destination.
4785   BasicBlock *Pred = SI->getParent();
4786 
4787   // If CaseDest is empty except for some side-effect free instructions through
4788   // which we can constant-propagate the CaseVal, continue to its successor.
4789   SmallDenseMap<Value *, Constant *> ConstantPool;
4790   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4791   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4792     if (I.isTerminator()) {
4793       // If the terminator is a simple branch, continue to the next block.
4794       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4795         return false;
4796       Pred = CaseDest;
4797       CaseDest = I.getSuccessor(0);
4798     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4799       // Instruction is side-effect free and constant.
4800 
4801       // If the instruction has uses outside this block or a phi node slot for
4802       // the block, it is not safe to bypass the instruction since it would then
4803       // no longer dominate all its uses.
4804       for (auto &Use : I.uses()) {
4805         User *User = Use.getUser();
4806         if (Instruction *I = dyn_cast<Instruction>(User))
4807           if (I->getParent() == CaseDest)
4808             continue;
4809         if (PHINode *Phi = dyn_cast<PHINode>(User))
4810           if (Phi->getIncomingBlock(Use) == CaseDest)
4811             continue;
4812         return false;
4813       }
4814 
4815       ConstantPool.insert(std::make_pair(&I, C));
4816     } else {
4817       break;
4818     }
4819   }
4820 
4821   // If we did not have a CommonDest before, use the current one.
4822   if (!*CommonDest)
4823     *CommonDest = CaseDest;
4824   // If the destination isn't the common one, abort.
4825   if (CaseDest != *CommonDest)
4826     return false;
4827 
4828   // Get the values for this case from phi nodes in the destination block.
4829   for (PHINode &PHI : (*CommonDest)->phis()) {
4830     int Idx = PHI.getBasicBlockIndex(Pred);
4831     if (Idx == -1)
4832       continue;
4833 
4834     Constant *ConstVal =
4835         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4836     if (!ConstVal)
4837       return false;
4838 
4839     // Be conservative about which kinds of constants we support.
4840     if (!ValidLookupTableConstant(ConstVal, TTI))
4841       return false;
4842 
4843     Res.push_back(std::make_pair(&PHI, ConstVal));
4844   }
4845 
4846   return Res.size() > 0;
4847 }
4848 
4849 // Helper function used to add CaseVal to the list of cases that generate
4850 // Result. Returns the updated number of cases that generate this result.
4851 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4852                                  SwitchCaseResultVectorTy &UniqueResults,
4853                                  Constant *Result) {
4854   for (auto &I : UniqueResults) {
4855     if (I.first == Result) {
4856       I.second.push_back(CaseVal);
4857       return I.second.size();
4858     }
4859   }
4860   UniqueResults.push_back(
4861       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4862   return 1;
4863 }
4864 
4865 // Helper function that initializes a map containing
4866 // results for the PHI node of the common destination block for a switch
4867 // instruction. Returns false if multiple PHI nodes have been found or if
4868 // there is not a common destination block for the switch.
4869 static bool
4870 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4871                       SwitchCaseResultVectorTy &UniqueResults,
4872                       Constant *&DefaultResult, const DataLayout &DL,
4873                       const TargetTransformInfo &TTI,
4874                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4875   for (auto &I : SI->cases()) {
4876     ConstantInt *CaseVal = I.getCaseValue();
4877 
4878     // Resulting value at phi nodes for this case value.
4879     SwitchCaseResultsTy Results;
4880     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4881                         DL, TTI))
4882       return false;
4883 
4884     // Only one value per case is permitted.
4885     if (Results.size() > 1)
4886       return false;
4887 
4888     // Add the case->result mapping to UniqueResults.
4889     const uintptr_t NumCasesForResult =
4890         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4891 
4892     // Early out if there are too many cases for this result.
4893     if (NumCasesForResult > MaxCasesPerResult)
4894       return false;
4895 
4896     // Early out if there are too many unique results.
4897     if (UniqueResults.size() > MaxUniqueResults)
4898       return false;
4899 
4900     // Check the PHI consistency.
4901     if (!PHI)
4902       PHI = Results[0].first;
4903     else if (PHI != Results[0].first)
4904       return false;
4905   }
4906   // Find the default result value.
4907   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4908   BasicBlock *DefaultDest = SI->getDefaultDest();
4909   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4910                  DL, TTI);
4911   // If the default value is not found abort unless the default destination
4912   // is unreachable.
4913   DefaultResult =
4914       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4915   if ((!DefaultResult &&
4916        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4917     return false;
4918 
4919   return true;
4920 }
4921 
4922 // Helper function that checks if it is possible to transform a switch with only
4923 // two cases (or two cases + default) that produces a result into a select.
4924 // Example:
4925 // switch (a) {
4926 //   case 10:                %0 = icmp eq i32 %a, 10
4927 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4928 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4929 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4930 //   default:
4931 //     return 4;
4932 // }
4933 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4934                                    Constant *DefaultResult, Value *Condition,
4935                                    IRBuilder<> &Builder) {
4936   assert(ResultVector.size() == 2 &&
4937          "We should have exactly two unique results at this point");
4938   // If we are selecting between only two cases transform into a simple
4939   // select or a two-way select if default is possible.
4940   if (ResultVector[0].second.size() == 1 &&
4941       ResultVector[1].second.size() == 1) {
4942     ConstantInt *const FirstCase = ResultVector[0].second[0];
4943     ConstantInt *const SecondCase = ResultVector[1].second[0];
4944 
4945     bool DefaultCanTrigger = DefaultResult;
4946     Value *SelectValue = ResultVector[1].first;
4947     if (DefaultCanTrigger) {
4948       Value *const ValueCompare =
4949           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4950       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4951                                          DefaultResult, "switch.select");
4952     }
4953     Value *const ValueCompare =
4954         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4955     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4956                                 SelectValue, "switch.select");
4957   }
4958 
4959   return nullptr;
4960 }
4961 
4962 // Helper function to cleanup a switch instruction that has been converted into
4963 // a select, fixing up PHI nodes and basic blocks.
4964 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4965                                               Value *SelectValue,
4966                                               IRBuilder<> &Builder) {
4967   BasicBlock *SelectBB = SI->getParent();
4968   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4969     PHI->removeIncomingValue(SelectBB);
4970   PHI->addIncoming(SelectValue, SelectBB);
4971 
4972   Builder.CreateBr(PHI->getParent());
4973 
4974   // Remove the switch.
4975   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4976     BasicBlock *Succ = SI->getSuccessor(i);
4977 
4978     if (Succ == PHI->getParent())
4979       continue;
4980     Succ->removePredecessor(SelectBB);
4981   }
4982   SI->eraseFromParent();
4983 }
4984 
4985 /// If the switch is only used to initialize one or more
4986 /// phi nodes in a common successor block with only two different
4987 /// constant values, replace the switch with select.
4988 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4989                            const DataLayout &DL,
4990                            const TargetTransformInfo &TTI) {
4991   Value *const Cond = SI->getCondition();
4992   PHINode *PHI = nullptr;
4993   BasicBlock *CommonDest = nullptr;
4994   Constant *DefaultResult;
4995   SwitchCaseResultVectorTy UniqueResults;
4996   // Collect all the cases that will deliver the same value from the switch.
4997   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4998                              DL, TTI, 2, 1))
4999     return false;
5000   // Selects choose between maximum two values.
5001   if (UniqueResults.size() != 2)
5002     return false;
5003   assert(PHI != nullptr && "PHI for value select not found");
5004 
5005   Builder.SetInsertPoint(SI);
5006   Value *SelectValue =
5007       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5008   if (SelectValue) {
5009     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
5010     return true;
5011   }
5012   // The switch couldn't be converted into a select.
5013   return false;
5014 }
5015 
5016 namespace {
5017 
5018 /// This class represents a lookup table that can be used to replace a switch.
5019 class SwitchLookupTable {
5020 public:
5021   /// Create a lookup table to use as a switch replacement with the contents
5022   /// of Values, using DefaultValue to fill any holes in the table.
5023   SwitchLookupTable(
5024       Module &M, uint64_t TableSize, ConstantInt *Offset,
5025       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5026       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5027 
5028   /// Build instructions with Builder to retrieve the value at
5029   /// the position given by Index in the lookup table.
5030   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5031 
5032   /// Return true if a table with TableSize elements of
5033   /// type ElementType would fit in a target-legal register.
5034   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5035                                  Type *ElementType);
5036 
5037 private:
5038   // Depending on the contents of the table, it can be represented in
5039   // different ways.
5040   enum {
5041     // For tables where each element contains the same value, we just have to
5042     // store that single value and return it for each lookup.
5043     SingleValueKind,
5044 
5045     // For tables where there is a linear relationship between table index
5046     // and values. We calculate the result with a simple multiplication
5047     // and addition instead of a table lookup.
5048     LinearMapKind,
5049 
5050     // For small tables with integer elements, we can pack them into a bitmap
5051     // that fits into a target-legal register. Values are retrieved by
5052     // shift and mask operations.
5053     BitMapKind,
5054 
5055     // The table is stored as an array of values. Values are retrieved by load
5056     // instructions from the table.
5057     ArrayKind
5058   } Kind;
5059 
5060   // For SingleValueKind, this is the single value.
5061   Constant *SingleValue = nullptr;
5062 
5063   // For BitMapKind, this is the bitmap.
5064   ConstantInt *BitMap = nullptr;
5065   IntegerType *BitMapElementTy = nullptr;
5066 
5067   // For LinearMapKind, these are the constants used to derive the value.
5068   ConstantInt *LinearOffset = nullptr;
5069   ConstantInt *LinearMultiplier = nullptr;
5070 
5071   // For ArrayKind, this is the array.
5072   GlobalVariable *Array = nullptr;
5073 };
5074 
5075 } // end anonymous namespace
5076 
5077 SwitchLookupTable::SwitchLookupTable(
5078     Module &M, uint64_t TableSize, ConstantInt *Offset,
5079     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5080     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5081   assert(Values.size() && "Can't build lookup table without values!");
5082   assert(TableSize >= Values.size() && "Can't fit values in table!");
5083 
5084   // If all values in the table are equal, this is that value.
5085   SingleValue = Values.begin()->second;
5086 
5087   Type *ValueType = Values.begin()->second->getType();
5088 
5089   // Build up the table contents.
5090   SmallVector<Constant *, 64> TableContents(TableSize);
5091   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5092     ConstantInt *CaseVal = Values[I].first;
5093     Constant *CaseRes = Values[I].second;
5094     assert(CaseRes->getType() == ValueType);
5095 
5096     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5097     TableContents[Idx] = CaseRes;
5098 
5099     if (CaseRes != SingleValue)
5100       SingleValue = nullptr;
5101   }
5102 
5103   // Fill in any holes in the table with the default result.
5104   if (Values.size() < TableSize) {
5105     assert(DefaultValue &&
5106            "Need a default value to fill the lookup table holes.");
5107     assert(DefaultValue->getType() == ValueType);
5108     for (uint64_t I = 0; I < TableSize; ++I) {
5109       if (!TableContents[I])
5110         TableContents[I] = DefaultValue;
5111     }
5112 
5113     if (DefaultValue != SingleValue)
5114       SingleValue = nullptr;
5115   }
5116 
5117   // If each element in the table contains the same value, we only need to store
5118   // that single value.
5119   if (SingleValue) {
5120     Kind = SingleValueKind;
5121     return;
5122   }
5123 
5124   // Check if we can derive the value with a linear transformation from the
5125   // table index.
5126   if (isa<IntegerType>(ValueType)) {
5127     bool LinearMappingPossible = true;
5128     APInt PrevVal;
5129     APInt DistToPrev;
5130     assert(TableSize >= 2 && "Should be a SingleValue table.");
5131     // Check if there is the same distance between two consecutive values.
5132     for (uint64_t I = 0; I < TableSize; ++I) {
5133       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5134       if (!ConstVal) {
5135         // This is an undef. We could deal with it, but undefs in lookup tables
5136         // are very seldom. It's probably not worth the additional complexity.
5137         LinearMappingPossible = false;
5138         break;
5139       }
5140       const APInt &Val = ConstVal->getValue();
5141       if (I != 0) {
5142         APInt Dist = Val - PrevVal;
5143         if (I == 1) {
5144           DistToPrev = Dist;
5145         } else if (Dist != DistToPrev) {
5146           LinearMappingPossible = false;
5147           break;
5148         }
5149       }
5150       PrevVal = Val;
5151     }
5152     if (LinearMappingPossible) {
5153       LinearOffset = cast<ConstantInt>(TableContents[0]);
5154       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5155       Kind = LinearMapKind;
5156       ++NumLinearMaps;
5157       return;
5158     }
5159   }
5160 
5161   // If the type is integer and the table fits in a register, build a bitmap.
5162   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5163     IntegerType *IT = cast<IntegerType>(ValueType);
5164     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5165     for (uint64_t I = TableSize; I > 0; --I) {
5166       TableInt <<= IT->getBitWidth();
5167       // Insert values into the bitmap. Undef values are set to zero.
5168       if (!isa<UndefValue>(TableContents[I - 1])) {
5169         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5170         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5171       }
5172     }
5173     BitMap = ConstantInt::get(M.getContext(), TableInt);
5174     BitMapElementTy = IT;
5175     Kind = BitMapKind;
5176     ++NumBitMaps;
5177     return;
5178   }
5179 
5180   // Store the table in an array.
5181   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5182   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5183 
5184   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5185                              GlobalVariable::PrivateLinkage, Initializer,
5186                              "switch.table." + FuncName);
5187   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5188   // Set the alignment to that of an array items. We will be only loading one
5189   // value out of it.
5190   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5191   Kind = ArrayKind;
5192 }
5193 
5194 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5195   switch (Kind) {
5196   case SingleValueKind:
5197     return SingleValue;
5198   case LinearMapKind: {
5199     // Derive the result value from the input value.
5200     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5201                                           false, "switch.idx.cast");
5202     if (!LinearMultiplier->isOne())
5203       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5204     if (!LinearOffset->isZero())
5205       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5206     return Result;
5207   }
5208   case BitMapKind: {
5209     // Type of the bitmap (e.g. i59).
5210     IntegerType *MapTy = BitMap->getType();
5211 
5212     // Cast Index to the same type as the bitmap.
5213     // Note: The Index is <= the number of elements in the table, so
5214     // truncating it to the width of the bitmask is safe.
5215     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5216 
5217     // Multiply the shift amount by the element width.
5218     ShiftAmt = Builder.CreateMul(
5219         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5220         "switch.shiftamt");
5221 
5222     // Shift down.
5223     Value *DownShifted =
5224         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5225     // Mask off.
5226     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5227   }
5228   case ArrayKind: {
5229     // Make sure the table index will not overflow when treated as signed.
5230     IntegerType *IT = cast<IntegerType>(Index->getType());
5231     uint64_t TableSize =
5232         Array->getInitializer()->getType()->getArrayNumElements();
5233     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5234       Index = Builder.CreateZExt(
5235           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5236           "switch.tableidx.zext");
5237 
5238     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5239     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5240                                            GEPIndices, "switch.gep");
5241     return Builder.CreateLoad(
5242         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5243         "switch.load");
5244   }
5245   }
5246   llvm_unreachable("Unknown lookup table kind!");
5247 }
5248 
5249 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5250                                            uint64_t TableSize,
5251                                            Type *ElementType) {
5252   auto *IT = dyn_cast<IntegerType>(ElementType);
5253   if (!IT)
5254     return false;
5255   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5256   // are <= 15, we could try to narrow the type.
5257 
5258   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5259   if (TableSize >= UINT_MAX / IT->getBitWidth())
5260     return false;
5261   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5262 }
5263 
5264 /// Determine whether a lookup table should be built for this switch, based on
5265 /// the number of cases, size of the table, and the types of the results.
5266 static bool
5267 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5268                        const TargetTransformInfo &TTI, const DataLayout &DL,
5269                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5270   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5271     return false; // TableSize overflowed, or mul below might overflow.
5272 
5273   bool AllTablesFitInRegister = true;
5274   bool HasIllegalType = false;
5275   for (const auto &I : ResultTypes) {
5276     Type *Ty = I.second;
5277 
5278     // Saturate this flag to true.
5279     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5280 
5281     // Saturate this flag to false.
5282     AllTablesFitInRegister =
5283         AllTablesFitInRegister &&
5284         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5285 
5286     // If both flags saturate, we're done. NOTE: This *only* works with
5287     // saturating flags, and all flags have to saturate first due to the
5288     // non-deterministic behavior of iterating over a dense map.
5289     if (HasIllegalType && !AllTablesFitInRegister)
5290       break;
5291   }
5292 
5293   // If each table would fit in a register, we should build it anyway.
5294   if (AllTablesFitInRegister)
5295     return true;
5296 
5297   // Don't build a table that doesn't fit in-register if it has illegal types.
5298   if (HasIllegalType)
5299     return false;
5300 
5301   // The table density should be at least 40%. This is the same criterion as for
5302   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5303   // FIXME: Find the best cut-off.
5304   return SI->getNumCases() * 10 >= TableSize * 4;
5305 }
5306 
5307 /// Try to reuse the switch table index compare. Following pattern:
5308 /// \code
5309 ///     if (idx < tablesize)
5310 ///        r = table[idx]; // table does not contain default_value
5311 ///     else
5312 ///        r = default_value;
5313 ///     if (r != default_value)
5314 ///        ...
5315 /// \endcode
5316 /// Is optimized to:
5317 /// \code
5318 ///     cond = idx < tablesize;
5319 ///     if (cond)
5320 ///        r = table[idx];
5321 ///     else
5322 ///        r = default_value;
5323 ///     if (cond)
5324 ///        ...
5325 /// \endcode
5326 /// Jump threading will then eliminate the second if(cond).
5327 static void reuseTableCompare(
5328     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5329     Constant *DefaultValue,
5330     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5331   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5332   if (!CmpInst)
5333     return;
5334 
5335   // We require that the compare is in the same block as the phi so that jump
5336   // threading can do its work afterwards.
5337   if (CmpInst->getParent() != PhiBlock)
5338     return;
5339 
5340   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5341   if (!CmpOp1)
5342     return;
5343 
5344   Value *RangeCmp = RangeCheckBranch->getCondition();
5345   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5346   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5347 
5348   // Check if the compare with the default value is constant true or false.
5349   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5350                                                  DefaultValue, CmpOp1, true);
5351   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5352     return;
5353 
5354   // Check if the compare with the case values is distinct from the default
5355   // compare result.
5356   for (auto ValuePair : Values) {
5357     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5358                                                 ValuePair.second, CmpOp1, true);
5359     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5360       return;
5361     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5362            "Expect true or false as compare result.");
5363   }
5364 
5365   // Check if the branch instruction dominates the phi node. It's a simple
5366   // dominance check, but sufficient for our needs.
5367   // Although this check is invariant in the calling loops, it's better to do it
5368   // at this late stage. Practically we do it at most once for a switch.
5369   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5370   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5371     BasicBlock *Pred = *PI;
5372     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5373       return;
5374   }
5375 
5376   if (DefaultConst == FalseConst) {
5377     // The compare yields the same result. We can replace it.
5378     CmpInst->replaceAllUsesWith(RangeCmp);
5379     ++NumTableCmpReuses;
5380   } else {
5381     // The compare yields the same result, just inverted. We can replace it.
5382     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5383         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5384         RangeCheckBranch);
5385     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5386     ++NumTableCmpReuses;
5387   }
5388 }
5389 
5390 /// If the switch is only used to initialize one or more phi nodes in a common
5391 /// successor block with different constant values, replace the switch with
5392 /// lookup tables.
5393 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5394                                 const DataLayout &DL,
5395                                 const TargetTransformInfo &TTI) {
5396   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5397 
5398   Function *Fn = SI->getParent()->getParent();
5399   // Only build lookup table when we have a target that supports it or the
5400   // attribute is not set.
5401   if (!TTI.shouldBuildLookupTables() ||
5402       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5403     return false;
5404 
5405   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5406   // split off a dense part and build a lookup table for that.
5407 
5408   // FIXME: This creates arrays of GEPs to constant strings, which means each
5409   // GEP needs a runtime relocation in PIC code. We should just build one big
5410   // string and lookup indices into that.
5411 
5412   // Ignore switches with less than three cases. Lookup tables will not make
5413   // them faster, so we don't analyze them.
5414   if (SI->getNumCases() < 3)
5415     return false;
5416 
5417   // Figure out the corresponding result for each case value and phi node in the
5418   // common destination, as well as the min and max case values.
5419   assert(!SI->cases().empty());
5420   SwitchInst::CaseIt CI = SI->case_begin();
5421   ConstantInt *MinCaseVal = CI->getCaseValue();
5422   ConstantInt *MaxCaseVal = CI->getCaseValue();
5423 
5424   BasicBlock *CommonDest = nullptr;
5425 
5426   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5427   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5428 
5429   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5430   SmallDenseMap<PHINode *, Type *> ResultTypes;
5431   SmallVector<PHINode *, 4> PHIs;
5432 
5433   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5434     ConstantInt *CaseVal = CI->getCaseValue();
5435     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5436       MinCaseVal = CaseVal;
5437     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5438       MaxCaseVal = CaseVal;
5439 
5440     // Resulting value at phi nodes for this case value.
5441     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5442     ResultsTy Results;
5443     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5444                         Results, DL, TTI))
5445       return false;
5446 
5447     // Append the result from this case to the list for each phi.
5448     for (const auto &I : Results) {
5449       PHINode *PHI = I.first;
5450       Constant *Value = I.second;
5451       if (!ResultLists.count(PHI))
5452         PHIs.push_back(PHI);
5453       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5454     }
5455   }
5456 
5457   // Keep track of the result types.
5458   for (PHINode *PHI : PHIs) {
5459     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5460   }
5461 
5462   uint64_t NumResults = ResultLists[PHIs[0]].size();
5463   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5464   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5465   bool TableHasHoles = (NumResults < TableSize);
5466 
5467   // If the table has holes, we need a constant result for the default case
5468   // or a bitmask that fits in a register.
5469   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5470   bool HasDefaultResults =
5471       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5472                      DefaultResultsList, DL, TTI);
5473 
5474   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5475   if (NeedMask) {
5476     // As an extra penalty for the validity test we require more cases.
5477     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5478       return false;
5479     if (!DL.fitsInLegalInteger(TableSize))
5480       return false;
5481   }
5482 
5483   for (const auto &I : DefaultResultsList) {
5484     PHINode *PHI = I.first;
5485     Constant *Result = I.second;
5486     DefaultResults[PHI] = Result;
5487   }
5488 
5489   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5490     return false;
5491 
5492   // Create the BB that does the lookups.
5493   Module &Mod = *CommonDest->getParent()->getParent();
5494   BasicBlock *LookupBB = BasicBlock::Create(
5495       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5496 
5497   // Compute the table index value.
5498   Builder.SetInsertPoint(SI);
5499   Value *TableIndex;
5500   if (MinCaseVal->isNullValue())
5501     TableIndex = SI->getCondition();
5502   else
5503     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5504                                    "switch.tableidx");
5505 
5506   // Compute the maximum table size representable by the integer type we are
5507   // switching upon.
5508   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5509   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5510   assert(MaxTableSize >= TableSize &&
5511          "It is impossible for a switch to have more entries than the max "
5512          "representable value of its input integer type's size.");
5513 
5514   // If the default destination is unreachable, or if the lookup table covers
5515   // all values of the conditional variable, branch directly to the lookup table
5516   // BB. Otherwise, check that the condition is within the case range.
5517   const bool DefaultIsReachable =
5518       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5519   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5520   BranchInst *RangeCheckBranch = nullptr;
5521 
5522   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5523     Builder.CreateBr(LookupBB);
5524     // Note: We call removeProdecessor later since we need to be able to get the
5525     // PHI value for the default case in case we're using a bit mask.
5526   } else {
5527     Value *Cmp = Builder.CreateICmpULT(
5528         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5529     RangeCheckBranch =
5530         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5531   }
5532 
5533   // Populate the BB that does the lookups.
5534   Builder.SetInsertPoint(LookupBB);
5535 
5536   if (NeedMask) {
5537     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5538     // re-purposed to do the hole check, and we create a new LookupBB.
5539     BasicBlock *MaskBB = LookupBB;
5540     MaskBB->setName("switch.hole_check");
5541     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5542                                   CommonDest->getParent(), CommonDest);
5543 
5544     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5545     // unnecessary illegal types.
5546     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5547     APInt MaskInt(TableSizePowOf2, 0);
5548     APInt One(TableSizePowOf2, 1);
5549     // Build bitmask; fill in a 1 bit for every case.
5550     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5551     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5552       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5553                          .getLimitedValue();
5554       MaskInt |= One << Idx;
5555     }
5556     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5557 
5558     // Get the TableIndex'th bit of the bitmask.
5559     // If this bit is 0 (meaning hole) jump to the default destination,
5560     // else continue with table lookup.
5561     IntegerType *MapTy = TableMask->getType();
5562     Value *MaskIndex =
5563         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5564     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5565     Value *LoBit = Builder.CreateTrunc(
5566         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5567     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5568 
5569     Builder.SetInsertPoint(LookupBB);
5570     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5571   }
5572 
5573   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5574     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5575     // do not delete PHINodes here.
5576     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5577                                             /*KeepOneInputPHIs=*/true);
5578   }
5579 
5580   bool ReturnedEarly = false;
5581   for (PHINode *PHI : PHIs) {
5582     const ResultListTy &ResultList = ResultLists[PHI];
5583 
5584     // If using a bitmask, use any value to fill the lookup table holes.
5585     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5586     StringRef FuncName = Fn->getName();
5587     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5588                             FuncName);
5589 
5590     Value *Result = Table.BuildLookup(TableIndex, Builder);
5591 
5592     // If the result is used to return immediately from the function, we want to
5593     // do that right here.
5594     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5595         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5596       Builder.CreateRet(Result);
5597       ReturnedEarly = true;
5598       break;
5599     }
5600 
5601     // Do a small peephole optimization: re-use the switch table compare if
5602     // possible.
5603     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5604       BasicBlock *PhiBlock = PHI->getParent();
5605       // Search for compare instructions which use the phi.
5606       for (auto *User : PHI->users()) {
5607         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5608       }
5609     }
5610 
5611     PHI->addIncoming(Result, LookupBB);
5612   }
5613 
5614   if (!ReturnedEarly)
5615     Builder.CreateBr(CommonDest);
5616 
5617   // Remove the switch.
5618   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5619     BasicBlock *Succ = SI->getSuccessor(i);
5620 
5621     if (Succ == SI->getDefaultDest())
5622       continue;
5623     Succ->removePredecessor(SI->getParent());
5624   }
5625   SI->eraseFromParent();
5626 
5627   ++NumLookupTables;
5628   if (NeedMask)
5629     ++NumLookupTablesHoles;
5630   return true;
5631 }
5632 
5633 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5634   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5635   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5636   uint64_t Range = Diff + 1;
5637   uint64_t NumCases = Values.size();
5638   // 40% is the default density for building a jump table in optsize/minsize mode.
5639   uint64_t MinDensity = 40;
5640 
5641   return NumCases * 100 >= Range * MinDensity;
5642 }
5643 
5644 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5645 /// of cases.
5646 ///
5647 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5648 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5649 ///
5650 /// This converts a sparse switch into a dense switch which allows better
5651 /// lowering and could also allow transforming into a lookup table.
5652 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5653                               const DataLayout &DL,
5654                               const TargetTransformInfo &TTI) {
5655   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5656   if (CondTy->getIntegerBitWidth() > 64 ||
5657       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5658     return false;
5659   // Only bother with this optimization if there are more than 3 switch cases;
5660   // SDAG will only bother creating jump tables for 4 or more cases.
5661   if (SI->getNumCases() < 4)
5662     return false;
5663 
5664   // This transform is agnostic to the signedness of the input or case values. We
5665   // can treat the case values as signed or unsigned. We can optimize more common
5666   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5667   // as signed.
5668   SmallVector<int64_t,4> Values;
5669   for (auto &C : SI->cases())
5670     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5671   llvm::sort(Values);
5672 
5673   // If the switch is already dense, there's nothing useful to do here.
5674   if (isSwitchDense(Values))
5675     return false;
5676 
5677   // First, transform the values such that they start at zero and ascend.
5678   int64_t Base = Values[0];
5679   for (auto &V : Values)
5680     V -= (uint64_t)(Base);
5681 
5682   // Now we have signed numbers that have been shifted so that, given enough
5683   // precision, there are no negative values. Since the rest of the transform
5684   // is bitwise only, we switch now to an unsigned representation.
5685 
5686   // This transform can be done speculatively because it is so cheap - it
5687   // results in a single rotate operation being inserted.
5688   // FIXME: It's possible that optimizing a switch on powers of two might also
5689   // be beneficial - flag values are often powers of two and we could use a CLZ
5690   // as the key function.
5691 
5692   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5693   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5694   // less than 64.
5695   unsigned Shift = 64;
5696   for (auto &V : Values)
5697     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5698   assert(Shift < 64);
5699   if (Shift > 0)
5700     for (auto &V : Values)
5701       V = (int64_t)((uint64_t)V >> Shift);
5702 
5703   if (!isSwitchDense(Values))
5704     // Transform didn't create a dense switch.
5705     return false;
5706 
5707   // The obvious transform is to shift the switch condition right and emit a
5708   // check that the condition actually cleanly divided by GCD, i.e.
5709   //   C & (1 << Shift - 1) == 0
5710   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5711   //
5712   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5713   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5714   // are nonzero then the switch condition will be very large and will hit the
5715   // default case.
5716 
5717   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5718   Builder.SetInsertPoint(SI);
5719   auto *ShiftC = ConstantInt::get(Ty, Shift);
5720   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5721   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5722   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5723   auto *Rot = Builder.CreateOr(LShr, Shl);
5724   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5725 
5726   for (auto Case : SI->cases()) {
5727     auto *Orig = Case.getCaseValue();
5728     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5729     Case.setValue(
5730         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5731   }
5732   return true;
5733 }
5734 
5735 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5736   BasicBlock *BB = SI->getParent();
5737 
5738   if (isValueEqualityComparison(SI)) {
5739     // If we only have one predecessor, and if it is a branch on this value,
5740     // see if that predecessor totally determines the outcome of this switch.
5741     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5742       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5743         return requestResimplify();
5744 
5745     Value *Cond = SI->getCondition();
5746     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5747       if (SimplifySwitchOnSelect(SI, Select))
5748         return requestResimplify();
5749 
5750     // If the block only contains the switch, see if we can fold the block
5751     // away into any preds.
5752     if (SI == &*BB->instructionsWithoutDebug().begin())
5753       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5754         return requestResimplify();
5755   }
5756 
5757   // Try to transform the switch into an icmp and a branch.
5758   if (TurnSwitchRangeIntoICmp(SI, Builder))
5759     return requestResimplify();
5760 
5761   // Remove unreachable cases.
5762   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5763     return requestResimplify();
5764 
5765   if (switchToSelect(SI, Builder, DL, TTI))
5766     return requestResimplify();
5767 
5768   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5769     return requestResimplify();
5770 
5771   // The conversion from switch to lookup tables results in difficult-to-analyze
5772   // code and makes pruning branches much harder. This is a problem if the
5773   // switch expression itself can still be restricted as a result of inlining or
5774   // CVP. Therefore, only apply this transformation during late stages of the
5775   // optimisation pipeline.
5776   if (Options.ConvertSwitchToLookupTable &&
5777       SwitchToLookupTable(SI, Builder, DL, TTI))
5778     return requestResimplify();
5779 
5780   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5781     return requestResimplify();
5782 
5783   return false;
5784 }
5785 
5786 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
5787   BasicBlock *BB = IBI->getParent();
5788   bool Changed = false;
5789 
5790   // Eliminate redundant destinations.
5791   SmallPtrSet<Value *, 8> Succs;
5792   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5793     BasicBlock *Dest = IBI->getDestination(i);
5794     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5795       Dest->removePredecessor(BB);
5796       IBI->removeDestination(i);
5797       --i;
5798       --e;
5799       Changed = true;
5800     }
5801   }
5802 
5803   if (IBI->getNumDestinations() == 0) {
5804     // If the indirectbr has no successors, change it to unreachable.
5805     new UnreachableInst(IBI->getContext(), IBI);
5806     EraseTerminatorAndDCECond(IBI);
5807     return true;
5808   }
5809 
5810   if (IBI->getNumDestinations() == 1) {
5811     // If the indirectbr has one successor, change it to a direct branch.
5812     BranchInst::Create(IBI->getDestination(0), IBI);
5813     EraseTerminatorAndDCECond(IBI);
5814     return true;
5815   }
5816 
5817   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5818     if (SimplifyIndirectBrOnSelect(IBI, SI))
5819       return requestResimplify();
5820   }
5821   return Changed;
5822 }
5823 
5824 /// Given an block with only a single landing pad and a unconditional branch
5825 /// try to find another basic block which this one can be merged with.  This
5826 /// handles cases where we have multiple invokes with unique landing pads, but
5827 /// a shared handler.
5828 ///
5829 /// We specifically choose to not worry about merging non-empty blocks
5830 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5831 /// practice, the optimizer produces empty landing pad blocks quite frequently
5832 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5833 /// sinking in this file)
5834 ///
5835 /// This is primarily a code size optimization.  We need to avoid performing
5836 /// any transform which might inhibit optimization (such as our ability to
5837 /// specialize a particular handler via tail commoning).  We do this by not
5838 /// merging any blocks which require us to introduce a phi.  Since the same
5839 /// values are flowing through both blocks, we don't lose any ability to
5840 /// specialize.  If anything, we make such specialization more likely.
5841 ///
5842 /// TODO - This transformation could remove entries from a phi in the target
5843 /// block when the inputs in the phi are the same for the two blocks being
5844 /// merged.  In some cases, this could result in removal of the PHI entirely.
5845 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5846                                  BasicBlock *BB) {
5847   auto Succ = BB->getUniqueSuccessor();
5848   assert(Succ);
5849   // If there's a phi in the successor block, we'd likely have to introduce
5850   // a phi into the merged landing pad block.
5851   if (isa<PHINode>(*Succ->begin()))
5852     return false;
5853 
5854   for (BasicBlock *OtherPred : predecessors(Succ)) {
5855     if (BB == OtherPred)
5856       continue;
5857     BasicBlock::iterator I = OtherPred->begin();
5858     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5859     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5860       continue;
5861     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5862       ;
5863     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5864     if (!BI2 || !BI2->isIdenticalTo(BI))
5865       continue;
5866 
5867     // We've found an identical block.  Update our predecessors to take that
5868     // path instead and make ourselves dead.
5869     SmallPtrSet<BasicBlock *, 16> Preds;
5870     Preds.insert(pred_begin(BB), pred_end(BB));
5871     for (BasicBlock *Pred : Preds) {
5872       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5873       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5874              "unexpected successor");
5875       II->setUnwindDest(OtherPred);
5876     }
5877 
5878     // The debug info in OtherPred doesn't cover the merged control flow that
5879     // used to go through BB.  We need to delete it or update it.
5880     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5881       Instruction &Inst = *I;
5882       I++;
5883       if (isa<DbgInfoIntrinsic>(Inst))
5884         Inst.eraseFromParent();
5885     }
5886 
5887     SmallPtrSet<BasicBlock *, 16> Succs;
5888     Succs.insert(succ_begin(BB), succ_end(BB));
5889     for (BasicBlock *Succ : Succs) {
5890       Succ->removePredecessor(BB);
5891     }
5892 
5893     IRBuilder<> Builder(BI);
5894     Builder.CreateUnreachable();
5895     BI->eraseFromParent();
5896     return true;
5897   }
5898   return false;
5899 }
5900 
5901 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
5902   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
5903                                    : simplifyCondBranch(Branch, Builder);
5904 }
5905 
5906 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
5907                                           IRBuilder<> &Builder) {
5908   BasicBlock *BB = BI->getParent();
5909   BasicBlock *Succ = BI->getSuccessor(0);
5910 
5911   // If the Terminator is the only non-phi instruction, simplify the block.
5912   // If LoopHeader is provided, check if the block or its successor is a loop
5913   // header. (This is for early invocations before loop simplify and
5914   // vectorization to keep canonical loop forms for nested loops. These blocks
5915   // can be eliminated when the pass is invoked later in the back-end.)
5916   // Note that if BB has only one predecessor then we do not introduce new
5917   // backedge, so we can eliminate BB.
5918   bool NeedCanonicalLoop =
5919       Options.NeedCanonicalLoop &&
5920       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5921        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5922   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5923   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5924       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5925     return true;
5926 
5927   // If the only instruction in the block is a seteq/setne comparison against a
5928   // constant, try to simplify the block.
5929   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5930     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5931       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5932         ;
5933       if (I->isTerminator() &&
5934           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5935         return true;
5936     }
5937 
5938   // See if we can merge an empty landing pad block with another which is
5939   // equivalent.
5940   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5941     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5942       ;
5943     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5944       return true;
5945   }
5946 
5947   // If this basic block is ONLY a compare and a branch, and if a predecessor
5948   // branches to us and our successor, fold the comparison into the
5949   // predecessor and use logical operations to update the incoming value
5950   // for PHI nodes in common successor.
5951   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5952     return requestResimplify();
5953   return false;
5954 }
5955 
5956 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5957   BasicBlock *PredPred = nullptr;
5958   for (auto *P : predecessors(BB)) {
5959     BasicBlock *PPred = P->getSinglePredecessor();
5960     if (!PPred || (PredPred && PredPred != PPred))
5961       return nullptr;
5962     PredPred = PPred;
5963   }
5964   return PredPred;
5965 }
5966 
5967 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5968   BasicBlock *BB = BI->getParent();
5969   if (!Options.SimplifyCondBranch)
5970     return false;
5971 
5972   // Conditional branch
5973   if (isValueEqualityComparison(BI)) {
5974     // If we only have one predecessor, and if it is a branch on this value,
5975     // see if that predecessor totally determines the outcome of this
5976     // switch.
5977     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5978       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5979         return requestResimplify();
5980 
5981     // This block must be empty, except for the setcond inst, if it exists.
5982     // Ignore dbg intrinsics.
5983     auto I = BB->instructionsWithoutDebug().begin();
5984     if (&*I == BI) {
5985       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5986         return requestResimplify();
5987     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5988       ++I;
5989       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5990         return requestResimplify();
5991     }
5992   }
5993 
5994   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5995   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5996     return true;
5997 
5998   // If this basic block has dominating predecessor blocks and the dominating
5999   // blocks' conditions imply BI's condition, we know the direction of BI.
6000   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6001   if (Imp) {
6002     // Turn this into a branch on constant.
6003     auto *OldCond = BI->getCondition();
6004     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6005                              : ConstantInt::getFalse(BB->getContext());
6006     BI->setCondition(TorF);
6007     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6008     return requestResimplify();
6009   }
6010 
6011   // If this basic block is ONLY a compare and a branch, and if a predecessor
6012   // branches to us and one of our successors, fold the comparison into the
6013   // predecessor and use logical operations to pick the right destination.
6014   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
6015     return requestResimplify();
6016 
6017   // We have a conditional branch to two blocks that are only reachable
6018   // from BI.  We know that the condbr dominates the two blocks, so see if
6019   // there is any identical code in the "then" and "else" blocks.  If so, we
6020   // can hoist it up to the branching block.
6021   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6022     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6023       if (HoistThenElseCodeToIf(BI, TTI))
6024         return requestResimplify();
6025     } else {
6026       // If Successor #1 has multiple preds, we may be able to conditionally
6027       // execute Successor #0 if it branches to Successor #1.
6028       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6029       if (Succ0TI->getNumSuccessors() == 1 &&
6030           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6031         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6032           return requestResimplify();
6033     }
6034   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6035     // If Successor #0 has multiple preds, we may be able to conditionally
6036     // execute Successor #1 if it branches to Successor #0.
6037     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6038     if (Succ1TI->getNumSuccessors() == 1 &&
6039         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6040       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6041         return requestResimplify();
6042   }
6043 
6044   // If this is a branch on a phi node in the current block, thread control
6045   // through this block if any PHI node entries are constants.
6046   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6047     if (PN->getParent() == BI->getParent())
6048       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
6049         return requestResimplify();
6050 
6051   // Scan predecessor blocks for conditional branches.
6052   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6053     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6054       if (PBI != BI && PBI->isConditional())
6055         if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI))
6056           return requestResimplify();
6057 
6058   // Look for diamond patterns.
6059   if (MergeCondStores)
6060     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6061       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6062         if (PBI != BI && PBI->isConditional())
6063           if (mergeConditionalStores(PBI, BI, DL, TTI))
6064             return requestResimplify();
6065 
6066   return false;
6067 }
6068 
6069 /// Check if passing a value to an instruction will cause undefined behavior.
6070 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
6071   Constant *C = dyn_cast<Constant>(V);
6072   if (!C)
6073     return false;
6074 
6075   if (I->use_empty())
6076     return false;
6077 
6078   if (C->isNullValue() || isa<UndefValue>(C)) {
6079     // Only look at the first use, avoid hurting compile time with long uselists
6080     User *Use = *I->user_begin();
6081 
6082     // Now make sure that there are no instructions in between that can alter
6083     // control flow (eg. calls)
6084     for (BasicBlock::iterator
6085              i = ++BasicBlock::iterator(I),
6086              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6087          i != UI; ++i)
6088       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6089         return false;
6090 
6091     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6092     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6093       if (GEP->getPointerOperand() == I)
6094         return passingValueIsAlwaysUndefined(V, GEP);
6095 
6096     // Look through bitcasts.
6097     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6098       return passingValueIsAlwaysUndefined(V, BC);
6099 
6100     // Load from null is undefined.
6101     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6102       if (!LI->isVolatile())
6103         return !NullPointerIsDefined(LI->getFunction(),
6104                                      LI->getPointerAddressSpace());
6105 
6106     // Store to null is undefined.
6107     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6108       if (!SI->isVolatile())
6109         return (!NullPointerIsDefined(SI->getFunction(),
6110                                       SI->getPointerAddressSpace())) &&
6111                SI->getPointerOperand() == I;
6112 
6113     // A call to null is undefined.
6114     if (auto *CB = dyn_cast<CallBase>(Use))
6115       return !NullPointerIsDefined(CB->getFunction()) &&
6116              CB->getCalledOperand() == I;
6117   }
6118   return false;
6119 }
6120 
6121 /// If BB has an incoming value that will always trigger undefined behavior
6122 /// (eg. null pointer dereference), remove the branch leading here.
6123 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
6124   for (PHINode &PHI : BB->phis())
6125     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6126       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6127         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
6128         IRBuilder<> Builder(T);
6129         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6130           BB->removePredecessor(PHI.getIncomingBlock(i));
6131           // Turn uncoditional branches into unreachables and remove the dead
6132           // destination from conditional branches.
6133           if (BI->isUnconditional())
6134             Builder.CreateUnreachable();
6135           else
6136             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6137                                                        : BI->getSuccessor(0));
6138           BI->eraseFromParent();
6139           return true;
6140         }
6141         // TODO: SwitchInst.
6142       }
6143 
6144   return false;
6145 }
6146 
6147 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6148   bool Changed = false;
6149 
6150   assert(BB && BB->getParent() && "Block not embedded in function!");
6151   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6152 
6153   // Remove basic blocks that have no predecessors (except the entry block)...
6154   // or that just have themself as a predecessor.  These are unreachable.
6155   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6156       BB->getSinglePredecessor() == BB) {
6157     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6158     DeleteDeadBlock(BB);
6159     return true;
6160   }
6161 
6162   // Check to see if we can constant propagate this terminator instruction
6163   // away...
6164   Changed |= ConstantFoldTerminator(BB, true);
6165 
6166   // Check for and eliminate duplicate PHI nodes in this block.
6167   Changed |= EliminateDuplicatePHINodes(BB);
6168 
6169   // Check for and remove branches that will always cause undefined behavior.
6170   Changed |= removeUndefIntroducingPredecessor(BB);
6171 
6172   // Merge basic blocks into their predecessor if there is only one distinct
6173   // pred, and if there is only one distinct successor of the predecessor, and
6174   // if there are no PHI nodes.
6175   if (MergeBlockIntoPredecessor(BB))
6176     return true;
6177 
6178   if (SinkCommon && Options.SinkCommonInsts)
6179     Changed |= SinkCommonCodeFromPredecessors(BB);
6180 
6181   IRBuilder<> Builder(BB);
6182 
6183   if (Options.FoldTwoEntryPHINode) {
6184     // If there is a trivial two-entry PHI node in this basic block, and we can
6185     // eliminate it, do so now.
6186     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6187       if (PN->getNumIncomingValues() == 2)
6188         Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6189   }
6190 
6191   Instruction *Terminator = BB->getTerminator();
6192   Builder.SetInsertPoint(Terminator);
6193   switch (Terminator->getOpcode()) {
6194   case Instruction::Br:
6195     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6196     break;
6197   case Instruction::Ret:
6198     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6199     break;
6200   case Instruction::Resume:
6201     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6202     break;
6203   case Instruction::CleanupRet:
6204     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6205     break;
6206   case Instruction::Switch:
6207     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6208     break;
6209   case Instruction::Unreachable:
6210     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6211     break;
6212   case Instruction::IndirectBr:
6213     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6214     break;
6215   }
6216 
6217   return Changed;
6218 }
6219 
6220 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6221   bool Changed = false;
6222 
6223   // Repeated simplify BB as long as resimplification is requested.
6224   do {
6225     Resimplify = false;
6226 
6227     // Perform one round of simplifcation. Resimplify flag will be set if
6228     // another iteration is requested.
6229     Changed |= simplifyOnce(BB);
6230   } while (Resimplify);
6231 
6232   return Changed;
6233 }
6234 
6235 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6236                        const SimplifyCFGOptions &Options,
6237                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6238   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6239                         Options)
6240       .run(BB);
6241 }
6242