1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "simplifycfg" 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/GlobalVariable.h" 19 #include "llvm/IRBuilder.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/MDBuilder.h" 24 #include "llvm/Metadata.h" 25 #include "llvm/Module.h" 26 #include "llvm/Operator.h" 27 #include "llvm/Type.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Analysis/InstructionSimplify.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Support/CFG.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ConstantRange.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/NoFolder.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/DataLayout.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include <algorithm> 45 #include <set> 46 #include <map> 47 using namespace llvm; 48 49 static cl::opt<unsigned> 50 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 51 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 52 53 static cl::opt<bool> 54 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 55 cl::desc("Duplicate return instructions into unconditional branches")); 56 57 static cl::opt<bool> 58 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 59 cl::desc("Sink common instructions down to the end block")); 60 61 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 62 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 63 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 64 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 65 66 namespace { 67 /// ValueEqualityComparisonCase - Represents a case of a switch. 68 struct ValueEqualityComparisonCase { 69 ConstantInt *Value; 70 BasicBlock *Dest; 71 72 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 73 : Value(Value), Dest(Dest) {} 74 75 bool operator<(ValueEqualityComparisonCase RHS) const { 76 // Comparing pointers is ok as we only rely on the order for uniquing. 77 return Value < RHS.Value; 78 } 79 80 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 81 }; 82 83 class SimplifyCFGOpt { 84 const DataLayout *const TD; 85 86 Value *isValueEqualityComparison(TerminatorInst *TI); 87 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 88 std::vector<ValueEqualityComparisonCase> &Cases); 89 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 90 BasicBlock *Pred, 91 IRBuilder<> &Builder); 92 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 93 IRBuilder<> &Builder); 94 95 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 96 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 97 bool SimplifyUnreachable(UnreachableInst *UI); 98 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 99 bool SimplifyIndirectBr(IndirectBrInst *IBI); 100 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 101 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 102 103 public: 104 explicit SimplifyCFGOpt(const DataLayout *td) : TD(td) {} 105 bool run(BasicBlock *BB); 106 }; 107 } 108 109 /// SafeToMergeTerminators - Return true if it is safe to merge these two 110 /// terminator instructions together. 111 /// 112 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 113 if (SI1 == SI2) return false; // Can't merge with self! 114 115 // It is not safe to merge these two switch instructions if they have a common 116 // successor, and if that successor has a PHI node, and if *that* PHI node has 117 // conflicting incoming values from the two switch blocks. 118 BasicBlock *SI1BB = SI1->getParent(); 119 BasicBlock *SI2BB = SI2->getParent(); 120 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 121 122 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 123 if (SI1Succs.count(*I)) 124 for (BasicBlock::iterator BBI = (*I)->begin(); 125 isa<PHINode>(BBI); ++BBI) { 126 PHINode *PN = cast<PHINode>(BBI); 127 if (PN->getIncomingValueForBlock(SI1BB) != 128 PN->getIncomingValueForBlock(SI2BB)) 129 return false; 130 } 131 132 return true; 133 } 134 135 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 136 /// to merge these two terminator instructions together, where SI1 is an 137 /// unconditional branch. PhiNodes will store all PHI nodes in common 138 /// successors. 139 /// 140 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 141 BranchInst *SI2, 142 Instruction *Cond, 143 SmallVectorImpl<PHINode*> &PhiNodes) { 144 if (SI1 == SI2) return false; // Can't merge with self! 145 assert(SI1->isUnconditional() && SI2->isConditional()); 146 147 // We fold the unconditional branch if we can easily update all PHI nodes in 148 // common successors: 149 // 1> We have a constant incoming value for the conditional branch; 150 // 2> We have "Cond" as the incoming value for the unconditional branch; 151 // 3> SI2->getCondition() and Cond have same operands. 152 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 153 if (!Ci2) return false; 154 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 155 Cond->getOperand(1) == Ci2->getOperand(1)) && 156 !(Cond->getOperand(0) == Ci2->getOperand(1) && 157 Cond->getOperand(1) == Ci2->getOperand(0))) 158 return false; 159 160 BasicBlock *SI1BB = SI1->getParent(); 161 BasicBlock *SI2BB = SI2->getParent(); 162 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 163 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 164 if (SI1Succs.count(*I)) 165 for (BasicBlock::iterator BBI = (*I)->begin(); 166 isa<PHINode>(BBI); ++BBI) { 167 PHINode *PN = cast<PHINode>(BBI); 168 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 169 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 170 return false; 171 PhiNodes.push_back(PN); 172 } 173 return true; 174 } 175 176 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 177 /// now be entries in it from the 'NewPred' block. The values that will be 178 /// flowing into the PHI nodes will be the same as those coming in from 179 /// ExistPred, an existing predecessor of Succ. 180 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 181 BasicBlock *ExistPred) { 182 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 183 184 PHINode *PN; 185 for (BasicBlock::iterator I = Succ->begin(); 186 (PN = dyn_cast<PHINode>(I)); ++I) 187 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 188 } 189 190 191 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at 192 /// least one PHI node in it), check to see if the merge at this block is due 193 /// to an "if condition". If so, return the boolean condition that determines 194 /// which entry into BB will be taken. Also, return by references the block 195 /// that will be entered from if the condition is true, and the block that will 196 /// be entered if the condition is false. 197 /// 198 /// This does no checking to see if the true/false blocks have large or unsavory 199 /// instructions in them. 200 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 201 BasicBlock *&IfFalse) { 202 PHINode *SomePHI = cast<PHINode>(BB->begin()); 203 assert(SomePHI->getNumIncomingValues() == 2 && 204 "Function can only handle blocks with 2 predecessors!"); 205 BasicBlock *Pred1 = SomePHI->getIncomingBlock(0); 206 BasicBlock *Pred2 = SomePHI->getIncomingBlock(1); 207 208 // We can only handle branches. Other control flow will be lowered to 209 // branches if possible anyway. 210 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 211 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 212 if (Pred1Br == 0 || Pred2Br == 0) 213 return 0; 214 215 // Eliminate code duplication by ensuring that Pred1Br is conditional if 216 // either are. 217 if (Pred2Br->isConditional()) { 218 // If both branches are conditional, we don't have an "if statement". In 219 // reality, we could transform this case, but since the condition will be 220 // required anyway, we stand no chance of eliminating it, so the xform is 221 // probably not profitable. 222 if (Pred1Br->isConditional()) 223 return 0; 224 225 std::swap(Pred1, Pred2); 226 std::swap(Pred1Br, Pred2Br); 227 } 228 229 if (Pred1Br->isConditional()) { 230 // The only thing we have to watch out for here is to make sure that Pred2 231 // doesn't have incoming edges from other blocks. If it does, the condition 232 // doesn't dominate BB. 233 if (Pred2->getSinglePredecessor() == 0) 234 return 0; 235 236 // If we found a conditional branch predecessor, make sure that it branches 237 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 238 if (Pred1Br->getSuccessor(0) == BB && 239 Pred1Br->getSuccessor(1) == Pred2) { 240 IfTrue = Pred1; 241 IfFalse = Pred2; 242 } else if (Pred1Br->getSuccessor(0) == Pred2 && 243 Pred1Br->getSuccessor(1) == BB) { 244 IfTrue = Pred2; 245 IfFalse = Pred1; 246 } else { 247 // We know that one arm of the conditional goes to BB, so the other must 248 // go somewhere unrelated, and this must not be an "if statement". 249 return 0; 250 } 251 252 return Pred1Br->getCondition(); 253 } 254 255 // Ok, if we got here, both predecessors end with an unconditional branch to 256 // BB. Don't panic! If both blocks only have a single (identical) 257 // predecessor, and THAT is a conditional branch, then we're all ok! 258 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 259 if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor()) 260 return 0; 261 262 // Otherwise, if this is a conditional branch, then we can use it! 263 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 264 if (BI == 0) return 0; 265 266 assert(BI->isConditional() && "Two successors but not conditional?"); 267 if (BI->getSuccessor(0) == Pred1) { 268 IfTrue = Pred1; 269 IfFalse = Pred2; 270 } else { 271 IfTrue = Pred2; 272 IfFalse = Pred1; 273 } 274 return BI->getCondition(); 275 } 276 277 /// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the 278 /// given instruction, which is assumed to be safe to speculate. 1 means 279 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 280 static unsigned ComputeSpeculationCost(const User *I) { 281 assert(isSafeToSpeculativelyExecute(I) && 282 "Instruction is not safe to speculatively execute!"); 283 switch (Operator::getOpcode(I)) { 284 default: 285 // In doubt, be conservative. 286 return UINT_MAX; 287 case Instruction::GetElementPtr: 288 // GEPs are cheap if all indices are constant. 289 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 290 return UINT_MAX; 291 return 1; 292 case Instruction::Load: 293 case Instruction::Add: 294 case Instruction::Sub: 295 case Instruction::And: 296 case Instruction::Or: 297 case Instruction::Xor: 298 case Instruction::Shl: 299 case Instruction::LShr: 300 case Instruction::AShr: 301 case Instruction::ICmp: 302 case Instruction::Trunc: 303 case Instruction::ZExt: 304 case Instruction::SExt: 305 return 1; // These are all cheap. 306 307 case Instruction::Call: 308 case Instruction::Select: 309 return 2; 310 } 311 } 312 313 /// DominatesMergePoint - If we have a merge point of an "if condition" as 314 /// accepted above, return true if the specified value dominates the block. We 315 /// don't handle the true generality of domination here, just a special case 316 /// which works well enough for us. 317 /// 318 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 319 /// see if V (which must be an instruction) and its recursive operands 320 /// that do not dominate BB have a combined cost lower than CostRemaining and 321 /// are non-trapping. If both are true, the instruction is inserted into the 322 /// set and true is returned. 323 /// 324 /// The cost for most non-trapping instructions is defined as 1 except for 325 /// Select whose cost is 2. 326 /// 327 /// After this function returns, CostRemaining is decreased by the cost of 328 /// V plus its non-dominating operands. If that cost is greater than 329 /// CostRemaining, false is returned and CostRemaining is undefined. 330 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 331 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 332 unsigned &CostRemaining) { 333 Instruction *I = dyn_cast<Instruction>(V); 334 if (!I) { 335 // Non-instructions all dominate instructions, but not all constantexprs 336 // can be executed unconditionally. 337 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 338 if (C->canTrap()) 339 return false; 340 return true; 341 } 342 BasicBlock *PBB = I->getParent(); 343 344 // We don't want to allow weird loops that might have the "if condition" in 345 // the bottom of this block. 346 if (PBB == BB) return false; 347 348 // If this instruction is defined in a block that contains an unconditional 349 // branch to BB, then it must be in the 'conditional' part of the "if 350 // statement". If not, it definitely dominates the region. 351 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 352 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB) 353 return true; 354 355 // If we aren't allowing aggressive promotion anymore, then don't consider 356 // instructions in the 'if region'. 357 if (AggressiveInsts == 0) return false; 358 359 // If we have seen this instruction before, don't count it again. 360 if (AggressiveInsts->count(I)) return true; 361 362 // Okay, it looks like the instruction IS in the "condition". Check to 363 // see if it's a cheap instruction to unconditionally compute, and if it 364 // only uses stuff defined outside of the condition. If so, hoist it out. 365 if (!isSafeToSpeculativelyExecute(I)) 366 return false; 367 368 unsigned Cost = ComputeSpeculationCost(I); 369 370 if (Cost > CostRemaining) 371 return false; 372 373 CostRemaining -= Cost; 374 375 // Okay, we can only really hoist these out if their operands do 376 // not take us over the cost threshold. 377 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 378 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 379 return false; 380 // Okay, it's safe to do this! Remember this instruction. 381 AggressiveInsts->insert(I); 382 return true; 383 } 384 385 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 386 /// and PointerNullValue. Return NULL if value is not a constant int. 387 static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) { 388 // Normal constant int. 389 ConstantInt *CI = dyn_cast<ConstantInt>(V); 390 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy()) 391 return CI; 392 393 // This is some kind of pointer constant. Turn it into a pointer-sized 394 // ConstantInt if possible. 395 IntegerType *PtrTy = TD->getIntPtrType(V->getContext()); 396 397 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 398 if (isa<ConstantPointerNull>(V)) 399 return ConstantInt::get(PtrTy, 0); 400 401 // IntToPtr const int. 402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 403 if (CE->getOpcode() == Instruction::IntToPtr) 404 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 405 // The constant is very likely to have the right type already. 406 if (CI->getType() == PtrTy) 407 return CI; 408 else 409 return cast<ConstantInt> 410 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 411 } 412 return 0; 413 } 414 415 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 416 /// collection of icmp eq/ne instructions that compare a value against a 417 /// constant, return the value being compared, and stick the constant into the 418 /// Values vector. 419 static Value * 420 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 421 const DataLayout *TD, bool isEQ, unsigned &UsedICmps) { 422 Instruction *I = dyn_cast<Instruction>(V); 423 if (I == 0) return 0; 424 425 // If this is an icmp against a constant, handle this as one of the cases. 426 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 427 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) { 428 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 429 UsedICmps++; 430 Vals.push_back(C); 431 return I->getOperand(0); 432 } 433 434 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 435 // the set. 436 ConstantRange Span = 437 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 438 439 // If this is an and/!= check then we want to optimize "x ugt 2" into 440 // x != 0 && x != 1. 441 if (!isEQ) 442 Span = Span.inverse(); 443 444 // If there are a ton of values, we don't want to make a ginormous switch. 445 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) 446 return 0; 447 448 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 449 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 450 UsedICmps++; 451 return I->getOperand(0); 452 } 453 return 0; 454 } 455 456 // Otherwise, we can only handle an | or &, depending on isEQ. 457 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 458 return 0; 459 460 unsigned NumValsBeforeLHS = Vals.size(); 461 unsigned UsedICmpsBeforeLHS = UsedICmps; 462 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD, 463 isEQ, UsedICmps)) { 464 unsigned NumVals = Vals.size(); 465 unsigned UsedICmpsBeforeRHS = UsedICmps; 466 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 467 isEQ, UsedICmps)) { 468 if (LHS == RHS) 469 return LHS; 470 Vals.resize(NumVals); 471 UsedICmps = UsedICmpsBeforeRHS; 472 } 473 474 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 475 // set it and return success. 476 if (Extra == 0 || Extra == I->getOperand(1)) { 477 Extra = I->getOperand(1); 478 return LHS; 479 } 480 481 Vals.resize(NumValsBeforeLHS); 482 UsedICmps = UsedICmpsBeforeLHS; 483 return 0; 484 } 485 486 // If the LHS can't be folded in, but Extra is available and RHS can, try to 487 // use LHS as Extra. 488 if (Extra == 0 || Extra == I->getOperand(0)) { 489 Value *OldExtra = Extra; 490 Extra = I->getOperand(0); 491 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 492 isEQ, UsedICmps)) 493 return RHS; 494 assert(Vals.size() == NumValsBeforeLHS); 495 Extra = OldExtra; 496 } 497 498 return 0; 499 } 500 501 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 502 Instruction *Cond = 0; 503 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 504 Cond = dyn_cast<Instruction>(SI->getCondition()); 505 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 506 if (BI->isConditional()) 507 Cond = dyn_cast<Instruction>(BI->getCondition()); 508 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 509 Cond = dyn_cast<Instruction>(IBI->getAddress()); 510 } 511 512 TI->eraseFromParent(); 513 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 514 } 515 516 /// isValueEqualityComparison - Return true if the specified terminator checks 517 /// to see if a value is equal to constant integer value. 518 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 519 Value *CV = 0; 520 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 521 // Do not permit merging of large switch instructions into their 522 // predecessors unless there is only one predecessor. 523 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 524 pred_end(SI->getParent())) <= 128) 525 CV = SI->getCondition(); 526 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 527 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 528 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 529 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ || 530 ICI->getPredicate() == ICmpInst::ICMP_NE) && 531 GetConstantInt(ICI->getOperand(1), TD)) 532 CV = ICI->getOperand(0); 533 534 // Unwrap any lossless ptrtoint cast. 535 if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext())) 536 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) 537 CV = PTII->getOperand(0); 538 return CV; 539 } 540 541 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 542 /// decode all of the 'cases' that it represents and return the 'default' block. 543 BasicBlock *SimplifyCFGOpt:: 544 GetValueEqualityComparisonCases(TerminatorInst *TI, 545 std::vector<ValueEqualityComparisonCase> 546 &Cases) { 547 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 548 Cases.reserve(SI->getNumCases()); 549 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 550 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 551 i.getCaseSuccessor())); 552 return SI->getDefaultDest(); 553 } 554 555 BranchInst *BI = cast<BranchInst>(TI); 556 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 557 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 558 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 559 TD), 560 Succ)); 561 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 562 } 563 564 565 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 566 /// in the list that match the specified block. 567 static void EliminateBlockCases(BasicBlock *BB, 568 std::vector<ValueEqualityComparisonCase> &Cases) { 569 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 570 } 571 572 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 573 /// well. 574 static bool 575 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 576 std::vector<ValueEqualityComparisonCase > &C2) { 577 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 578 579 // Make V1 be smaller than V2. 580 if (V1->size() > V2->size()) 581 std::swap(V1, V2); 582 583 if (V1->size() == 0) return false; 584 if (V1->size() == 1) { 585 // Just scan V2. 586 ConstantInt *TheVal = (*V1)[0].Value; 587 for (unsigned i = 0, e = V2->size(); i != e; ++i) 588 if (TheVal == (*V2)[i].Value) 589 return true; 590 } 591 592 // Otherwise, just sort both lists and compare element by element. 593 array_pod_sort(V1->begin(), V1->end()); 594 array_pod_sort(V2->begin(), V2->end()); 595 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 596 while (i1 != e1 && i2 != e2) { 597 if ((*V1)[i1].Value == (*V2)[i2].Value) 598 return true; 599 if ((*V1)[i1].Value < (*V2)[i2].Value) 600 ++i1; 601 else 602 ++i2; 603 } 604 return false; 605 } 606 607 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 608 /// terminator instruction and its block is known to only have a single 609 /// predecessor block, check to see if that predecessor is also a value 610 /// comparison with the same value, and if that comparison determines the 611 /// outcome of this comparison. If so, simplify TI. This does a very limited 612 /// form of jump threading. 613 bool SimplifyCFGOpt:: 614 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 615 BasicBlock *Pred, 616 IRBuilder<> &Builder) { 617 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 618 if (!PredVal) return false; // Not a value comparison in predecessor. 619 620 Value *ThisVal = isValueEqualityComparison(TI); 621 assert(ThisVal && "This isn't a value comparison!!"); 622 if (ThisVal != PredVal) return false; // Different predicates. 623 624 // TODO: Preserve branch weight metadata, similarly to how 625 // FoldValueComparisonIntoPredecessors preserves it. 626 627 // Find out information about when control will move from Pred to TI's block. 628 std::vector<ValueEqualityComparisonCase> PredCases; 629 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 630 PredCases); 631 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 632 633 // Find information about how control leaves this block. 634 std::vector<ValueEqualityComparisonCase> ThisCases; 635 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 636 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 637 638 // If TI's block is the default block from Pred's comparison, potentially 639 // simplify TI based on this knowledge. 640 if (PredDef == TI->getParent()) { 641 // If we are here, we know that the value is none of those cases listed in 642 // PredCases. If there are any cases in ThisCases that are in PredCases, we 643 // can simplify TI. 644 if (!ValuesOverlap(PredCases, ThisCases)) 645 return false; 646 647 if (isa<BranchInst>(TI)) { 648 // Okay, one of the successors of this condbr is dead. Convert it to a 649 // uncond br. 650 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 651 // Insert the new branch. 652 Instruction *NI = Builder.CreateBr(ThisDef); 653 (void) NI; 654 655 // Remove PHI node entries for the dead edge. 656 ThisCases[0].Dest->removePredecessor(TI->getParent()); 657 658 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 659 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 660 661 EraseTerminatorInstAndDCECond(TI); 662 return true; 663 } 664 665 SwitchInst *SI = cast<SwitchInst>(TI); 666 // Okay, TI has cases that are statically dead, prune them away. 667 SmallPtrSet<Constant*, 16> DeadCases; 668 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 669 DeadCases.insert(PredCases[i].Value); 670 671 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 672 << "Through successor TI: " << *TI); 673 674 // Collect branch weights into a vector. 675 SmallVector<uint32_t, 8> Weights; 676 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 677 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 678 if (HasWeight) 679 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 680 ++MD_i) { 681 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 682 assert(CI); 683 Weights.push_back(CI->getValue().getZExtValue()); 684 } 685 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 686 --i; 687 if (DeadCases.count(i.getCaseValue())) { 688 if (HasWeight) { 689 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 690 Weights.pop_back(); 691 } 692 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 693 SI->removeCase(i); 694 } 695 } 696 if (HasWeight && Weights.size() >= 2) 697 SI->setMetadata(LLVMContext::MD_prof, 698 MDBuilder(SI->getParent()->getContext()). 699 createBranchWeights(Weights)); 700 701 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 702 return true; 703 } 704 705 // Otherwise, TI's block must correspond to some matched value. Find out 706 // which value (or set of values) this is. 707 ConstantInt *TIV = 0; 708 BasicBlock *TIBB = TI->getParent(); 709 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 710 if (PredCases[i].Dest == TIBB) { 711 if (TIV != 0) 712 return false; // Cannot handle multiple values coming to this block. 713 TIV = PredCases[i].Value; 714 } 715 assert(TIV && "No edge from pred to succ?"); 716 717 // Okay, we found the one constant that our value can be if we get into TI's 718 // BB. Find out which successor will unconditionally be branched to. 719 BasicBlock *TheRealDest = 0; 720 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 721 if (ThisCases[i].Value == TIV) { 722 TheRealDest = ThisCases[i].Dest; 723 break; 724 } 725 726 // If not handled by any explicit cases, it is handled by the default case. 727 if (TheRealDest == 0) TheRealDest = ThisDef; 728 729 // Remove PHI node entries for dead edges. 730 BasicBlock *CheckEdge = TheRealDest; 731 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 732 if (*SI != CheckEdge) 733 (*SI)->removePredecessor(TIBB); 734 else 735 CheckEdge = 0; 736 737 // Insert the new branch. 738 Instruction *NI = Builder.CreateBr(TheRealDest); 739 (void) NI; 740 741 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 742 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 743 744 EraseTerminatorInstAndDCECond(TI); 745 return true; 746 } 747 748 namespace { 749 /// ConstantIntOrdering - This class implements a stable ordering of constant 750 /// integers that does not depend on their address. This is important for 751 /// applications that sort ConstantInt's to ensure uniqueness. 752 struct ConstantIntOrdering { 753 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 754 return LHS->getValue().ult(RHS->getValue()); 755 } 756 }; 757 } 758 759 static int ConstantIntSortPredicate(const void *P1, const void *P2) { 760 const ConstantInt *LHS = *(const ConstantInt*const*)P1; 761 const ConstantInt *RHS = *(const ConstantInt*const*)P2; 762 if (LHS->getValue().ult(RHS->getValue())) 763 return 1; 764 if (LHS->getValue() == RHS->getValue()) 765 return 0; 766 return -1; 767 } 768 769 static inline bool HasBranchWeights(const Instruction* I) { 770 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof); 771 if (ProfMD && ProfMD->getOperand(0)) 772 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 773 return MDS->getString().equals("branch_weights"); 774 775 return false; 776 } 777 778 /// Get Weights of a given TerminatorInst, the default weight is at the front 779 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 780 /// metadata. 781 static void GetBranchWeights(TerminatorInst *TI, 782 SmallVectorImpl<uint64_t> &Weights) { 783 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof); 784 assert(MD); 785 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 786 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i)); 787 assert(CI); 788 Weights.push_back(CI->getValue().getZExtValue()); 789 } 790 791 // If TI is a conditional eq, the default case is the false case, 792 // and the corresponding branch-weight data is at index 2. We swap the 793 // default weight to be the first entry. 794 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 795 assert(Weights.size() == 2); 796 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 797 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 798 std::swap(Weights.front(), Weights.back()); 799 } 800 } 801 802 /// Sees if any of the weights are too big for a uint32_t, and halves all the 803 /// weights if any are. 804 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 805 bool Halve = false; 806 for (unsigned i = 0; i < Weights.size(); ++i) 807 if (Weights[i] > UINT_MAX) { 808 Halve = true; 809 break; 810 } 811 812 if (! Halve) 813 return; 814 815 for (unsigned i = 0; i < Weights.size(); ++i) 816 Weights[i] /= 2; 817 } 818 819 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 820 /// equality comparison instruction (either a switch or a branch on "X == c"). 821 /// See if any of the predecessors of the terminator block are value comparisons 822 /// on the same value. If so, and if safe to do so, fold them together. 823 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 824 IRBuilder<> &Builder) { 825 BasicBlock *BB = TI->getParent(); 826 Value *CV = isValueEqualityComparison(TI); // CondVal 827 assert(CV && "Not a comparison?"); 828 bool Changed = false; 829 830 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 831 while (!Preds.empty()) { 832 BasicBlock *Pred = Preds.pop_back_val(); 833 834 // See if the predecessor is a comparison with the same value. 835 TerminatorInst *PTI = Pred->getTerminator(); 836 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 837 838 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 839 // Figure out which 'cases' to copy from SI to PSI. 840 std::vector<ValueEqualityComparisonCase> BBCases; 841 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 842 843 std::vector<ValueEqualityComparisonCase> PredCases; 844 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 845 846 // Based on whether the default edge from PTI goes to BB or not, fill in 847 // PredCases and PredDefault with the new switch cases we would like to 848 // build. 849 SmallVector<BasicBlock*, 8> NewSuccessors; 850 851 // Update the branch weight metadata along the way 852 SmallVector<uint64_t, 8> Weights; 853 bool PredHasWeights = HasBranchWeights(PTI); 854 bool SuccHasWeights = HasBranchWeights(TI); 855 856 if (PredHasWeights) { 857 GetBranchWeights(PTI, Weights); 858 // branch-weight metadata is inconsistant here. 859 if (Weights.size() != 1 + PredCases.size()) 860 PredHasWeights = SuccHasWeights = false; 861 } else if (SuccHasWeights) 862 // If there are no predecessor weights but there are successor weights, 863 // populate Weights with 1, which will later be scaled to the sum of 864 // successor's weights 865 Weights.assign(1 + PredCases.size(), 1); 866 867 SmallVector<uint64_t, 8> SuccWeights; 868 if (SuccHasWeights) { 869 GetBranchWeights(TI, SuccWeights); 870 // branch-weight metadata is inconsistant here. 871 if (SuccWeights.size() != 1 + BBCases.size()) 872 PredHasWeights = SuccHasWeights = false; 873 } else if (PredHasWeights) 874 SuccWeights.assign(1 + BBCases.size(), 1); 875 876 if (PredDefault == BB) { 877 // If this is the default destination from PTI, only the edges in TI 878 // that don't occur in PTI, or that branch to BB will be activated. 879 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 880 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 881 if (PredCases[i].Dest != BB) 882 PTIHandled.insert(PredCases[i].Value); 883 else { 884 // The default destination is BB, we don't need explicit targets. 885 std::swap(PredCases[i], PredCases.back()); 886 887 if (PredHasWeights || SuccHasWeights) { 888 // Increase weight for the default case. 889 Weights[0] += Weights[i+1]; 890 std::swap(Weights[i+1], Weights.back()); 891 Weights.pop_back(); 892 } 893 894 PredCases.pop_back(); 895 --i; --e; 896 } 897 898 // Reconstruct the new switch statement we will be building. 899 if (PredDefault != BBDefault) { 900 PredDefault->removePredecessor(Pred); 901 PredDefault = BBDefault; 902 NewSuccessors.push_back(BBDefault); 903 } 904 905 unsigned CasesFromPred = Weights.size(); 906 uint64_t ValidTotalSuccWeight = 0; 907 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 908 if (!PTIHandled.count(BBCases[i].Value) && 909 BBCases[i].Dest != BBDefault) { 910 PredCases.push_back(BBCases[i]); 911 NewSuccessors.push_back(BBCases[i].Dest); 912 if (SuccHasWeights || PredHasWeights) { 913 // The default weight is at index 0, so weight for the ith case 914 // should be at index i+1. Scale the cases from successor by 915 // PredDefaultWeight (Weights[0]). 916 Weights.push_back(Weights[0] * SuccWeights[i+1]); 917 ValidTotalSuccWeight += SuccWeights[i+1]; 918 } 919 } 920 921 if (SuccHasWeights || PredHasWeights) { 922 ValidTotalSuccWeight += SuccWeights[0]; 923 // Scale the cases from predecessor by ValidTotalSuccWeight. 924 for (unsigned i = 1; i < CasesFromPred; ++i) 925 Weights[i] *= ValidTotalSuccWeight; 926 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 927 Weights[0] *= SuccWeights[0]; 928 } 929 } else { 930 // If this is not the default destination from PSI, only the edges 931 // in SI that occur in PSI with a destination of BB will be 932 // activated. 933 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 934 std::map<ConstantInt*, uint64_t> WeightsForHandled; 935 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 936 if (PredCases[i].Dest == BB) { 937 PTIHandled.insert(PredCases[i].Value); 938 939 if (PredHasWeights || SuccHasWeights) { 940 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 941 std::swap(Weights[i+1], Weights.back()); 942 Weights.pop_back(); 943 } 944 945 std::swap(PredCases[i], PredCases.back()); 946 PredCases.pop_back(); 947 --i; --e; 948 } 949 950 // Okay, now we know which constants were sent to BB from the 951 // predecessor. Figure out where they will all go now. 952 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 953 if (PTIHandled.count(BBCases[i].Value)) { 954 // If this is one we are capable of getting... 955 if (PredHasWeights || SuccHasWeights) 956 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 957 PredCases.push_back(BBCases[i]); 958 NewSuccessors.push_back(BBCases[i].Dest); 959 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 960 } 961 962 // If there are any constants vectored to BB that TI doesn't handle, 963 // they must go to the default destination of TI. 964 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 965 PTIHandled.begin(), 966 E = PTIHandled.end(); I != E; ++I) { 967 if (PredHasWeights || SuccHasWeights) 968 Weights.push_back(WeightsForHandled[*I]); 969 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 970 NewSuccessors.push_back(BBDefault); 971 } 972 } 973 974 // Okay, at this point, we know which new successor Pred will get. Make 975 // sure we update the number of entries in the PHI nodes for these 976 // successors. 977 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 978 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 979 980 Builder.SetInsertPoint(PTI); 981 // Convert pointer to int before we switch. 982 if (CV->getType()->isPointerTy()) { 983 assert(TD && "Cannot switch on pointer without DataLayout"); 984 CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()), 985 "magicptr"); 986 } 987 988 // Now that the successors are updated, create the new Switch instruction. 989 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 990 PredCases.size()); 991 NewSI->setDebugLoc(PTI->getDebugLoc()); 992 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 993 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 994 995 if (PredHasWeights || SuccHasWeights) { 996 // Halve the weights if any of them cannot fit in an uint32_t 997 FitWeights(Weights); 998 999 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1000 1001 NewSI->setMetadata(LLVMContext::MD_prof, 1002 MDBuilder(BB->getContext()). 1003 createBranchWeights(MDWeights)); 1004 } 1005 1006 EraseTerminatorInstAndDCECond(PTI); 1007 1008 // Okay, last check. If BB is still a successor of PSI, then we must 1009 // have an infinite loop case. If so, add an infinitely looping block 1010 // to handle the case to preserve the behavior of the code. 1011 BasicBlock *InfLoopBlock = 0; 1012 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1013 if (NewSI->getSuccessor(i) == BB) { 1014 if (InfLoopBlock == 0) { 1015 // Insert it at the end of the function, because it's either code, 1016 // or it won't matter if it's hot. :) 1017 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1018 "infloop", BB->getParent()); 1019 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1020 } 1021 NewSI->setSuccessor(i, InfLoopBlock); 1022 } 1023 1024 Changed = true; 1025 } 1026 } 1027 return Changed; 1028 } 1029 1030 // isSafeToHoistInvoke - If we would need to insert a select that uses the 1031 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 1032 // would need to do this), we can't hoist the invoke, as there is nowhere 1033 // to put the select in this case. 1034 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1035 Instruction *I1, Instruction *I2) { 1036 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1037 PHINode *PN; 1038 for (BasicBlock::iterator BBI = SI->begin(); 1039 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1040 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1041 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1042 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1043 return false; 1044 } 1045 } 1046 } 1047 return true; 1048 } 1049 1050 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 1051 /// BB2, hoist any common code in the two blocks up into the branch block. The 1052 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 1053 static bool HoistThenElseCodeToIf(BranchInst *BI) { 1054 // This does very trivial matching, with limited scanning, to find identical 1055 // instructions in the two blocks. In particular, we don't want to get into 1056 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1057 // such, we currently just scan for obviously identical instructions in an 1058 // identical order. 1059 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1060 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1061 1062 BasicBlock::iterator BB1_Itr = BB1->begin(); 1063 BasicBlock::iterator BB2_Itr = BB2->begin(); 1064 1065 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1066 // Skip debug info if it is not identical. 1067 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1068 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1069 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1070 while (isa<DbgInfoIntrinsic>(I1)) 1071 I1 = BB1_Itr++; 1072 while (isa<DbgInfoIntrinsic>(I2)) 1073 I2 = BB2_Itr++; 1074 } 1075 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1076 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1077 return false; 1078 1079 // If we get here, we can hoist at least one instruction. 1080 BasicBlock *BIParent = BI->getParent(); 1081 1082 do { 1083 // If we are hoisting the terminator instruction, don't move one (making a 1084 // broken BB), instead clone it, and remove BI. 1085 if (isa<TerminatorInst>(I1)) 1086 goto HoistTerminator; 1087 1088 // For a normal instruction, we just move one to right before the branch, 1089 // then replace all uses of the other with the first. Finally, we remove 1090 // the now redundant second instruction. 1091 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1092 if (!I2->use_empty()) 1093 I2->replaceAllUsesWith(I1); 1094 I1->intersectOptionalDataWith(I2); 1095 I2->eraseFromParent(); 1096 1097 I1 = BB1_Itr++; 1098 I2 = BB2_Itr++; 1099 // Skip debug info if it is not identical. 1100 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1101 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1102 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1103 while (isa<DbgInfoIntrinsic>(I1)) 1104 I1 = BB1_Itr++; 1105 while (isa<DbgInfoIntrinsic>(I2)) 1106 I2 = BB2_Itr++; 1107 } 1108 } while (I1->isIdenticalToWhenDefined(I2)); 1109 1110 return true; 1111 1112 HoistTerminator: 1113 // It may not be possible to hoist an invoke. 1114 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1115 return true; 1116 1117 // Okay, it is safe to hoist the terminator. 1118 Instruction *NT = I1->clone(); 1119 BIParent->getInstList().insert(BI, NT); 1120 if (!NT->getType()->isVoidTy()) { 1121 I1->replaceAllUsesWith(NT); 1122 I2->replaceAllUsesWith(NT); 1123 NT->takeName(I1); 1124 } 1125 1126 IRBuilder<true, NoFolder> Builder(NT); 1127 // Hoisting one of the terminators from our successor is a great thing. 1128 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1129 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1130 // nodes, so we insert select instruction to compute the final result. 1131 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1132 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1133 PHINode *PN; 1134 for (BasicBlock::iterator BBI = SI->begin(); 1135 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1136 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1137 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1138 if (BB1V == BB2V) continue; 1139 1140 // These values do not agree. Insert a select instruction before NT 1141 // that determines the right value. 1142 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1143 if (SI == 0) 1144 SI = cast<SelectInst> 1145 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1146 BB1V->getName()+"."+BB2V->getName())); 1147 1148 // Make the PHI node use the select for all incoming values for BB1/BB2 1149 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1150 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1151 PN->setIncomingValue(i, SI); 1152 } 1153 } 1154 1155 // Update any PHI nodes in our new successors. 1156 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1157 AddPredecessorToBlock(*SI, BIParent, BB1); 1158 1159 EraseTerminatorInstAndDCECond(BI); 1160 return true; 1161 } 1162 1163 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1164 /// check whether BBEnd has only two predecessors and the other predecessor 1165 /// ends with an unconditional branch. If it is true, sink any common code 1166 /// in the two predecessors to BBEnd. 1167 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1168 assert(BI1->isUnconditional()); 1169 BasicBlock *BB1 = BI1->getParent(); 1170 BasicBlock *BBEnd = BI1->getSuccessor(0); 1171 1172 // Check that BBEnd has two predecessors and the other predecessor ends with 1173 // an unconditional branch. 1174 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1175 BasicBlock *Pred0 = *PI++; 1176 if (PI == PE) // Only one predecessor. 1177 return false; 1178 BasicBlock *Pred1 = *PI++; 1179 if (PI != PE) // More than two predecessors. 1180 return false; 1181 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1182 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1183 if (!BI2 || !BI2->isUnconditional()) 1184 return false; 1185 1186 // Gather the PHI nodes in BBEnd. 1187 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2; 1188 Instruction *FirstNonPhiInBBEnd = 0; 1189 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); 1190 I != E; ++I) { 1191 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1192 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1193 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1194 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN); 1195 } else { 1196 FirstNonPhiInBBEnd = &*I; 1197 break; 1198 } 1199 } 1200 if (!FirstNonPhiInBBEnd) 1201 return false; 1202 1203 1204 // This does very trivial matching, with limited scanning, to find identical 1205 // instructions in the two blocks. We scan backward for obviously identical 1206 // instructions in an identical order. 1207 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1208 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(), 1209 RE2 = BB2->getInstList().rend(); 1210 // Skip debug info. 1211 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1212 if (RI1 == RE1) 1213 return false; 1214 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1215 if (RI2 == RE2) 1216 return false; 1217 // Skip the unconditional branches. 1218 ++RI1; 1219 ++RI2; 1220 1221 bool Changed = false; 1222 while (RI1 != RE1 && RI2 != RE2) { 1223 // Skip debug info. 1224 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1225 if (RI1 == RE1) 1226 return Changed; 1227 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1228 if (RI2 == RE2) 1229 return Changed; 1230 1231 Instruction *I1 = &*RI1, *I2 = &*RI2; 1232 // I1 and I2 should have a single use in the same PHI node, and they 1233 // perform the same operation. 1234 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1235 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1236 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1237 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1238 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1239 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1240 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1241 !I1->hasOneUse() || !I2->hasOneUse() || 1242 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() || 1243 MapValueFromBB1ToBB2[I1].first != I2) 1244 return Changed; 1245 1246 // Check whether we should swap the operands of ICmpInst. 1247 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1248 bool SwapOpnds = false; 1249 if (ICmp1 && ICmp2 && 1250 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1251 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1252 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1253 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1254 ICmp2->swapOperands(); 1255 SwapOpnds = true; 1256 } 1257 if (!I1->isSameOperationAs(I2)) { 1258 if (SwapOpnds) 1259 ICmp2->swapOperands(); 1260 return Changed; 1261 } 1262 1263 // The operands should be either the same or they need to be generated 1264 // with a PHI node after sinking. We only handle the case where there is 1265 // a single pair of different operands. 1266 Value *DifferentOp1 = 0, *DifferentOp2 = 0; 1267 unsigned Op1Idx = 0; 1268 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1269 if (I1->getOperand(I) == I2->getOperand(I)) 1270 continue; 1271 // Early exit if we have more-than one pair of different operands or 1272 // the different operand is already in MapValueFromBB1ToBB2. 1273 // Early exit if we need a PHI node to replace a constant. 1274 if (DifferentOp1 || 1275 MapValueFromBB1ToBB2.find(I1->getOperand(I)) != 1276 MapValueFromBB1ToBB2.end() || 1277 isa<Constant>(I1->getOperand(I)) || 1278 isa<Constant>(I2->getOperand(I))) { 1279 // If we can't sink the instructions, undo the swapping. 1280 if (SwapOpnds) 1281 ICmp2->swapOperands(); 1282 return Changed; 1283 } 1284 DifferentOp1 = I1->getOperand(I); 1285 Op1Idx = I; 1286 DifferentOp2 = I2->getOperand(I); 1287 } 1288 1289 // We insert the pair of different operands to MapValueFromBB1ToBB2 and 1290 // remove (I1, I2) from MapValueFromBB1ToBB2. 1291 if (DifferentOp1) { 1292 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2, 1293 DifferentOp1->getName() + ".sink", 1294 BBEnd->begin()); 1295 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN); 1296 // I1 should use NewPN instead of DifferentOp1. 1297 I1->setOperand(Op1Idx, NewPN); 1298 NewPN->addIncoming(DifferentOp1, BB1); 1299 NewPN->addIncoming(DifferentOp2, BB2); 1300 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1301 } 1302 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second; 1303 MapValueFromBB1ToBB2.erase(I1); 1304 1305 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";); 1306 DEBUG(dbgs() << " " << *I2 << "\n";); 1307 // We need to update RE1 and RE2 if we are going to sink the first 1308 // instruction in the basic block down. 1309 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1310 // Sink the instruction. 1311 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1312 if (!OldPN->use_empty()) 1313 OldPN->replaceAllUsesWith(I1); 1314 OldPN->eraseFromParent(); 1315 1316 if (!I2->use_empty()) 1317 I2->replaceAllUsesWith(I1); 1318 I1->intersectOptionalDataWith(I2); 1319 I2->eraseFromParent(); 1320 1321 if (UpdateRE1) 1322 RE1 = BB1->getInstList().rend(); 1323 if (UpdateRE2) 1324 RE2 = BB2->getInstList().rend(); 1325 FirstNonPhiInBBEnd = I1; 1326 NumSinkCommons++; 1327 Changed = true; 1328 } 1329 return Changed; 1330 } 1331 1332 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1 1333 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code 1334 /// (for now, restricted to a single instruction that's side effect free) from 1335 /// the BB1 into the branch block to speculatively execute it. 1336 /// 1337 /// Turn 1338 /// BB: 1339 /// %t1 = icmp 1340 /// br i1 %t1, label %BB1, label %BB2 1341 /// BB1: 1342 /// %t3 = add %t2, c 1343 /// br label BB2 1344 /// BB2: 1345 /// => 1346 /// BB: 1347 /// %t1 = icmp 1348 /// %t4 = add %t2, c 1349 /// %t3 = select i1 %t1, %t2, %t3 1350 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) { 1351 // Only speculatively execution a single instruction (not counting the 1352 // terminator) for now. 1353 Instruction *HInst = NULL; 1354 Instruction *Term = BB1->getTerminator(); 1355 for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end(); 1356 BBI != BBE; ++BBI) { 1357 Instruction *I = BBI; 1358 // Skip debug info. 1359 if (isa<DbgInfoIntrinsic>(I)) continue; 1360 if (I == Term) break; 1361 1362 if (HInst) 1363 return false; 1364 HInst = I; 1365 } 1366 1367 BasicBlock *BIParent = BI->getParent(); 1368 1369 // Check the instruction to be hoisted, if there is one. 1370 if (HInst) { 1371 // Don't hoist the instruction if it's unsafe or expensive. 1372 if (!isSafeToSpeculativelyExecute(HInst)) 1373 return false; 1374 if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold) 1375 return false; 1376 1377 // Do not hoist the instruction if any of its operands are defined but not 1378 // used in this BB. The transformation will prevent the operand from 1379 // being sunk into the use block. 1380 for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end(); 1381 i != e; ++i) { 1382 Instruction *OpI = dyn_cast<Instruction>(*i); 1383 if (OpI && OpI->getParent() == BIParent && 1384 !OpI->mayHaveSideEffects() && 1385 !OpI->isUsedInBasicBlock(BIParent)) 1386 return false; 1387 } 1388 } 1389 1390 // Be conservative for now. FP select instruction can often be expensive. 1391 Value *BrCond = BI->getCondition(); 1392 if (isa<FCmpInst>(BrCond)) 1393 return false; 1394 1395 // If BB1 is actually on the false edge of the conditional branch, remember 1396 // to swap the select operands later. 1397 bool Invert = false; 1398 if (BB1 != BI->getSuccessor(0)) { 1399 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?"); 1400 Invert = true; 1401 } 1402 1403 // Collect interesting PHIs, and scan for hazards. 1404 SmallSetVector<std::pair<Value *, Value *>, 4> PHIs; 1405 BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0); 1406 for (BasicBlock::iterator I = BB2->begin(); 1407 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1408 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1409 Value *BIParentV = PN->getIncomingValueForBlock(BIParent); 1410 1411 // Skip PHIs which are trivial. 1412 if (BB1V == BIParentV) 1413 continue; 1414 1415 // Check for saftey. 1416 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) { 1417 // An unfolded ConstantExpr could end up getting expanded into 1418 // Instructions. Don't speculate this and another instruction at 1419 // the same time. 1420 if (HInst) 1421 return false; 1422 if (!isSafeToSpeculativelyExecute(CE)) 1423 return false; 1424 if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold) 1425 return false; 1426 } 1427 1428 // Ok, we may insert a select for this PHI. 1429 PHIs.insert(std::make_pair(BB1V, BIParentV)); 1430 } 1431 1432 // If there are no PHIs to process, bail early. This helps ensure idempotence 1433 // as well. 1434 if (PHIs.empty()) 1435 return false; 1436 1437 // If we get here, we can hoist the instruction and if-convert. 1438 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";); 1439 1440 // Hoist the instruction. 1441 if (HInst) 1442 BIParent->getInstList().splice(BI, BB1->getInstList(), HInst); 1443 1444 // Insert selects and rewrite the PHI operands. 1445 IRBuilder<true, NoFolder> Builder(BI); 1446 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 1447 Value *TrueV = PHIs[i].first; 1448 Value *FalseV = PHIs[i].second; 1449 1450 // Create a select whose true value is the speculatively executed value and 1451 // false value is the previously determined FalseV. 1452 SelectInst *SI; 1453 if (Invert) 1454 SI = cast<SelectInst> 1455 (Builder.CreateSelect(BrCond, FalseV, TrueV, 1456 FalseV->getName() + "." + TrueV->getName())); 1457 else 1458 SI = cast<SelectInst> 1459 (Builder.CreateSelect(BrCond, TrueV, FalseV, 1460 TrueV->getName() + "." + FalseV->getName())); 1461 1462 // Make the PHI node use the select for all incoming values for "then" and 1463 // "if" blocks. 1464 for (BasicBlock::iterator I = BB2->begin(); 1465 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1466 unsigned BB1I = PN->getBasicBlockIndex(BB1); 1467 unsigned BIParentI = PN->getBasicBlockIndex(BIParent); 1468 Value *BB1V = PN->getIncomingValue(BB1I); 1469 Value *BIParentV = PN->getIncomingValue(BIParentI); 1470 if (TrueV == BB1V && FalseV == BIParentV) { 1471 PN->setIncomingValue(BB1I, SI); 1472 PN->setIncomingValue(BIParentI, SI); 1473 } 1474 } 1475 } 1476 1477 ++NumSpeculations; 1478 return true; 1479 } 1480 1481 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1482 /// across this block. 1483 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1484 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1485 unsigned Size = 0; 1486 1487 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1488 if (isa<DbgInfoIntrinsic>(BBI)) 1489 continue; 1490 if (Size > 10) return false; // Don't clone large BB's. 1491 ++Size; 1492 1493 // We can only support instructions that do not define values that are 1494 // live outside of the current basic block. 1495 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 1496 UI != E; ++UI) { 1497 Instruction *U = cast<Instruction>(*UI); 1498 if (U->getParent() != BB || isa<PHINode>(U)) return false; 1499 } 1500 1501 // Looks ok, continue checking. 1502 } 1503 1504 return true; 1505 } 1506 1507 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1508 /// that is defined in the same block as the branch and if any PHI entries are 1509 /// constants, thread edges corresponding to that entry to be branches to their 1510 /// ultimate destination. 1511 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) { 1512 BasicBlock *BB = BI->getParent(); 1513 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1514 // NOTE: we currently cannot transform this case if the PHI node is used 1515 // outside of the block. 1516 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1517 return false; 1518 1519 // Degenerate case of a single entry PHI. 1520 if (PN->getNumIncomingValues() == 1) { 1521 FoldSingleEntryPHINodes(PN->getParent()); 1522 return true; 1523 } 1524 1525 // Now we know that this block has multiple preds and two succs. 1526 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1527 1528 // Okay, this is a simple enough basic block. See if any phi values are 1529 // constants. 1530 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1531 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1532 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue; 1533 1534 // Okay, we now know that all edges from PredBB should be revectored to 1535 // branch to RealDest. 1536 BasicBlock *PredBB = PN->getIncomingBlock(i); 1537 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1538 1539 if (RealDest == BB) continue; // Skip self loops. 1540 // Skip if the predecessor's terminator is an indirect branch. 1541 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1542 1543 // The dest block might have PHI nodes, other predecessors and other 1544 // difficult cases. Instead of being smart about this, just insert a new 1545 // block that jumps to the destination block, effectively splitting 1546 // the edge we are about to create. 1547 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1548 RealDest->getName()+".critedge", 1549 RealDest->getParent(), RealDest); 1550 BranchInst::Create(RealDest, EdgeBB); 1551 1552 // Update PHI nodes. 1553 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1554 1555 // BB may have instructions that are being threaded over. Clone these 1556 // instructions into EdgeBB. We know that there will be no uses of the 1557 // cloned instructions outside of EdgeBB. 1558 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1559 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1560 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1561 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1562 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1563 continue; 1564 } 1565 // Clone the instruction. 1566 Instruction *N = BBI->clone(); 1567 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1568 1569 // Update operands due to translation. 1570 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1571 i != e; ++i) { 1572 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1573 if (PI != TranslateMap.end()) 1574 *i = PI->second; 1575 } 1576 1577 // Check for trivial simplification. 1578 if (Value *V = SimplifyInstruction(N, TD)) { 1579 TranslateMap[BBI] = V; 1580 delete N; // Instruction folded away, don't need actual inst 1581 } else { 1582 // Insert the new instruction into its new home. 1583 EdgeBB->getInstList().insert(InsertPt, N); 1584 if (!BBI->use_empty()) 1585 TranslateMap[BBI] = N; 1586 } 1587 } 1588 1589 // Loop over all of the edges from PredBB to BB, changing them to branch 1590 // to EdgeBB instead. 1591 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1592 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1593 if (PredBBTI->getSuccessor(i) == BB) { 1594 BB->removePredecessor(PredBB); 1595 PredBBTI->setSuccessor(i, EdgeBB); 1596 } 1597 1598 // Recurse, simplifying any other constants. 1599 return FoldCondBranchOnPHI(BI, TD) | true; 1600 } 1601 1602 return false; 1603 } 1604 1605 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1606 /// PHI node, see if we can eliminate it. 1607 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) { 1608 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1609 // statement", which has a very simple dominance structure. Basically, we 1610 // are trying to find the condition that is being branched on, which 1611 // subsequently causes this merge to happen. We really want control 1612 // dependence information for this check, but simplifycfg can't keep it up 1613 // to date, and this catches most of the cases we care about anyway. 1614 BasicBlock *BB = PN->getParent(); 1615 BasicBlock *IfTrue, *IfFalse; 1616 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1617 if (!IfCond || 1618 // Don't bother if the branch will be constant folded trivially. 1619 isa<ConstantInt>(IfCond)) 1620 return false; 1621 1622 // Okay, we found that we can merge this two-entry phi node into a select. 1623 // Doing so would require us to fold *all* two entry phi nodes in this block. 1624 // At some point this becomes non-profitable (particularly if the target 1625 // doesn't support cmov's). Only do this transformation if there are two or 1626 // fewer PHI nodes in this block. 1627 unsigned NumPhis = 0; 1628 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1629 if (NumPhis > 2) 1630 return false; 1631 1632 // Loop over the PHI's seeing if we can promote them all to select 1633 // instructions. While we are at it, keep track of the instructions 1634 // that need to be moved to the dominating block. 1635 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1636 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1637 MaxCostVal1 = PHINodeFoldingThreshold; 1638 1639 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1640 PHINode *PN = cast<PHINode>(II++); 1641 if (Value *V = SimplifyInstruction(PN, TD)) { 1642 PN->replaceAllUsesWith(V); 1643 PN->eraseFromParent(); 1644 continue; 1645 } 1646 1647 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1648 MaxCostVal0) || 1649 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1650 MaxCostVal1)) 1651 return false; 1652 } 1653 1654 // If we folded the first phi, PN dangles at this point. Refresh it. If 1655 // we ran out of PHIs then we simplified them all. 1656 PN = dyn_cast<PHINode>(BB->begin()); 1657 if (PN == 0) return true; 1658 1659 // Don't fold i1 branches on PHIs which contain binary operators. These can 1660 // often be turned into switches and other things. 1661 if (PN->getType()->isIntegerTy(1) && 1662 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1663 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1664 isa<BinaryOperator>(IfCond))) 1665 return false; 1666 1667 // If we all PHI nodes are promotable, check to make sure that all 1668 // instructions in the predecessor blocks can be promoted as well. If 1669 // not, we won't be able to get rid of the control flow, so it's not 1670 // worth promoting to select instructions. 1671 BasicBlock *DomBlock = 0; 1672 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1673 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1674 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1675 IfBlock1 = 0; 1676 } else { 1677 DomBlock = *pred_begin(IfBlock1); 1678 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1679 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1680 // This is not an aggressive instruction that we can promote. 1681 // Because of this, we won't be able to get rid of the control 1682 // flow, so the xform is not worth it. 1683 return false; 1684 } 1685 } 1686 1687 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1688 IfBlock2 = 0; 1689 } else { 1690 DomBlock = *pred_begin(IfBlock2); 1691 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1692 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1693 // This is not an aggressive instruction that we can promote. 1694 // Because of this, we won't be able to get rid of the control 1695 // flow, so the xform is not worth it. 1696 return false; 1697 } 1698 } 1699 1700 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1701 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1702 1703 // If we can still promote the PHI nodes after this gauntlet of tests, 1704 // do all of the PHI's now. 1705 Instruction *InsertPt = DomBlock->getTerminator(); 1706 IRBuilder<true, NoFolder> Builder(InsertPt); 1707 1708 // Move all 'aggressive' instructions, which are defined in the 1709 // conditional parts of the if's up to the dominating block. 1710 if (IfBlock1) 1711 DomBlock->getInstList().splice(InsertPt, 1712 IfBlock1->getInstList(), IfBlock1->begin(), 1713 IfBlock1->getTerminator()); 1714 if (IfBlock2) 1715 DomBlock->getInstList().splice(InsertPt, 1716 IfBlock2->getInstList(), IfBlock2->begin(), 1717 IfBlock2->getTerminator()); 1718 1719 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1720 // Change the PHI node into a select instruction. 1721 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1722 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1723 1724 SelectInst *NV = 1725 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1726 PN->replaceAllUsesWith(NV); 1727 NV->takeName(PN); 1728 PN->eraseFromParent(); 1729 } 1730 1731 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1732 // has been flattened. Change DomBlock to jump directly to our new block to 1733 // avoid other simplifycfg's kicking in on the diamond. 1734 TerminatorInst *OldTI = DomBlock->getTerminator(); 1735 Builder.SetInsertPoint(OldTI); 1736 Builder.CreateBr(BB); 1737 OldTI->eraseFromParent(); 1738 return true; 1739 } 1740 1741 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1742 /// to two returning blocks, try to merge them together into one return, 1743 /// introducing a select if the return values disagree. 1744 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1745 IRBuilder<> &Builder) { 1746 assert(BI->isConditional() && "Must be a conditional branch"); 1747 BasicBlock *TrueSucc = BI->getSuccessor(0); 1748 BasicBlock *FalseSucc = BI->getSuccessor(1); 1749 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1750 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1751 1752 // Check to ensure both blocks are empty (just a return) or optionally empty 1753 // with PHI nodes. If there are other instructions, merging would cause extra 1754 // computation on one path or the other. 1755 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1756 return false; 1757 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1758 return false; 1759 1760 Builder.SetInsertPoint(BI); 1761 // Okay, we found a branch that is going to two return nodes. If 1762 // there is no return value for this function, just change the 1763 // branch into a return. 1764 if (FalseRet->getNumOperands() == 0) { 1765 TrueSucc->removePredecessor(BI->getParent()); 1766 FalseSucc->removePredecessor(BI->getParent()); 1767 Builder.CreateRetVoid(); 1768 EraseTerminatorInstAndDCECond(BI); 1769 return true; 1770 } 1771 1772 // Otherwise, figure out what the true and false return values are 1773 // so we can insert a new select instruction. 1774 Value *TrueValue = TrueRet->getReturnValue(); 1775 Value *FalseValue = FalseRet->getReturnValue(); 1776 1777 // Unwrap any PHI nodes in the return blocks. 1778 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1779 if (TVPN->getParent() == TrueSucc) 1780 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1781 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1782 if (FVPN->getParent() == FalseSucc) 1783 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1784 1785 // In order for this transformation to be safe, we must be able to 1786 // unconditionally execute both operands to the return. This is 1787 // normally the case, but we could have a potentially-trapping 1788 // constant expression that prevents this transformation from being 1789 // safe. 1790 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1791 if (TCV->canTrap()) 1792 return false; 1793 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1794 if (FCV->canTrap()) 1795 return false; 1796 1797 // Okay, we collected all the mapped values and checked them for sanity, and 1798 // defined to really do this transformation. First, update the CFG. 1799 TrueSucc->removePredecessor(BI->getParent()); 1800 FalseSucc->removePredecessor(BI->getParent()); 1801 1802 // Insert select instructions where needed. 1803 Value *BrCond = BI->getCondition(); 1804 if (TrueValue) { 1805 // Insert a select if the results differ. 1806 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1807 } else if (isa<UndefValue>(TrueValue)) { 1808 TrueValue = FalseValue; 1809 } else { 1810 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1811 FalseValue, "retval"); 1812 } 1813 } 1814 1815 Value *RI = !TrueValue ? 1816 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1817 1818 (void) RI; 1819 1820 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1821 << "\n " << *BI << "NewRet = " << *RI 1822 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1823 1824 EraseTerminatorInstAndDCECond(BI); 1825 1826 return true; 1827 } 1828 1829 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 1830 /// probabilities of the branch taking each edge. Fills in the two APInt 1831 /// parameters and return true, or returns false if no or invalid metadata was 1832 /// found. 1833 static bool ExtractBranchMetadata(BranchInst *BI, 1834 uint64_t &ProbTrue, uint64_t &ProbFalse) { 1835 assert(BI->isConditional() && 1836 "Looking for probabilities on unconditional branch?"); 1837 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 1838 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 1839 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1)); 1840 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2)); 1841 if (!CITrue || !CIFalse) return false; 1842 ProbTrue = CITrue->getValue().getZExtValue(); 1843 ProbFalse = CIFalse->getValue().getZExtValue(); 1844 return true; 1845 } 1846 1847 /// checkCSEInPredecessor - Return true if the given instruction is available 1848 /// in its predecessor block. If yes, the instruction will be removed. 1849 /// 1850 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 1851 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 1852 return false; 1853 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 1854 Instruction *PBI = &*I; 1855 // Check whether Inst and PBI generate the same value. 1856 if (Inst->isIdenticalTo(PBI)) { 1857 Inst->replaceAllUsesWith(PBI); 1858 Inst->eraseFromParent(); 1859 return true; 1860 } 1861 } 1862 return false; 1863 } 1864 1865 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1866 /// predecessor branches to us and one of our successors, fold the block into 1867 /// the predecessor and use logical operations to pick the right destination. 1868 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 1869 BasicBlock *BB = BI->getParent(); 1870 1871 Instruction *Cond = 0; 1872 if (BI->isConditional()) 1873 Cond = dyn_cast<Instruction>(BI->getCondition()); 1874 else { 1875 // For unconditional branch, check for a simple CFG pattern, where 1876 // BB has a single predecessor and BB's successor is also its predecessor's 1877 // successor. If such pattern exisits, check for CSE between BB and its 1878 // predecessor. 1879 if (BasicBlock *PB = BB->getSinglePredecessor()) 1880 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 1881 if (PBI->isConditional() && 1882 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 1883 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 1884 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 1885 I != E; ) { 1886 Instruction *Curr = I++; 1887 if (isa<CmpInst>(Curr)) { 1888 Cond = Curr; 1889 break; 1890 } 1891 // Quit if we can't remove this instruction. 1892 if (!checkCSEInPredecessor(Curr, PB)) 1893 return false; 1894 } 1895 } 1896 1897 if (Cond == 0) 1898 return false; 1899 } 1900 1901 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 1902 Cond->getParent() != BB || !Cond->hasOneUse()) 1903 return false; 1904 1905 // Only allow this if the condition is a simple instruction that can be 1906 // executed unconditionally. It must be in the same block as the branch, and 1907 // must be at the front of the block. 1908 BasicBlock::iterator FrontIt = BB->front(); 1909 1910 // Ignore dbg intrinsics. 1911 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1912 1913 // Allow a single instruction to be hoisted in addition to the compare 1914 // that feeds the branch. We later ensure that any values that _it_ uses 1915 // were also live in the predecessor, so that we don't unnecessarily create 1916 // register pressure or inhibit out-of-order execution. 1917 Instruction *BonusInst = 0; 1918 if (&*FrontIt != Cond && 1919 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond && 1920 isSafeToSpeculativelyExecute(FrontIt)) { 1921 BonusInst = &*FrontIt; 1922 ++FrontIt; 1923 1924 // Ignore dbg intrinsics. 1925 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1926 } 1927 1928 // Only a single bonus inst is allowed. 1929 if (&*FrontIt != Cond) 1930 return false; 1931 1932 // Make sure the instruction after the condition is the cond branch. 1933 BasicBlock::iterator CondIt = Cond; ++CondIt; 1934 1935 // Ingore dbg intrinsics. 1936 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 1937 1938 if (&*CondIt != BI) 1939 return false; 1940 1941 // Cond is known to be a compare or binary operator. Check to make sure that 1942 // neither operand is a potentially-trapping constant expression. 1943 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 1944 if (CE->canTrap()) 1945 return false; 1946 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 1947 if (CE->canTrap()) 1948 return false; 1949 1950 // Finally, don't infinitely unroll conditional loops. 1951 BasicBlock *TrueDest = BI->getSuccessor(0); 1952 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0; 1953 if (TrueDest == BB || FalseDest == BB) 1954 return false; 1955 1956 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1957 BasicBlock *PredBlock = *PI; 1958 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 1959 1960 // Check that we have two conditional branches. If there is a PHI node in 1961 // the common successor, verify that the same value flows in from both 1962 // blocks. 1963 SmallVector<PHINode*, 4> PHIs; 1964 if (PBI == 0 || PBI->isUnconditional() || 1965 (BI->isConditional() && 1966 !SafeToMergeTerminators(BI, PBI)) || 1967 (!BI->isConditional() && 1968 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 1969 continue; 1970 1971 // Determine if the two branches share a common destination. 1972 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 1973 bool InvertPredCond = false; 1974 1975 if (BI->isConditional()) { 1976 if (PBI->getSuccessor(0) == TrueDest) 1977 Opc = Instruction::Or; 1978 else if (PBI->getSuccessor(1) == FalseDest) 1979 Opc = Instruction::And; 1980 else if (PBI->getSuccessor(0) == FalseDest) 1981 Opc = Instruction::And, InvertPredCond = true; 1982 else if (PBI->getSuccessor(1) == TrueDest) 1983 Opc = Instruction::Or, InvertPredCond = true; 1984 else 1985 continue; 1986 } else { 1987 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 1988 continue; 1989 } 1990 1991 // Ensure that any values used in the bonus instruction are also used 1992 // by the terminator of the predecessor. This means that those values 1993 // must already have been resolved, so we won't be inhibiting the 1994 // out-of-order core by speculating them earlier. 1995 if (BonusInst) { 1996 // Collect the values used by the bonus inst 1997 SmallPtrSet<Value*, 4> UsedValues; 1998 for (Instruction::op_iterator OI = BonusInst->op_begin(), 1999 OE = BonusInst->op_end(); OI != OE; ++OI) { 2000 Value *V = *OI; 2001 if (!isa<Constant>(V)) 2002 UsedValues.insert(V); 2003 } 2004 2005 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 2006 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 2007 2008 // Walk up to four levels back up the use-def chain of the predecessor's 2009 // terminator to see if all those values were used. The choice of four 2010 // levels is arbitrary, to provide a compile-time-cost bound. 2011 while (!Worklist.empty()) { 2012 std::pair<Value*, unsigned> Pair = Worklist.back(); 2013 Worklist.pop_back(); 2014 2015 if (Pair.second >= 4) continue; 2016 UsedValues.erase(Pair.first); 2017 if (UsedValues.empty()) break; 2018 2019 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 2020 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 2021 OI != OE; ++OI) 2022 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 2023 } 2024 } 2025 2026 if (!UsedValues.empty()) return false; 2027 } 2028 2029 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2030 IRBuilder<> Builder(PBI); 2031 2032 // If we need to invert the condition in the pred block to match, do so now. 2033 if (InvertPredCond) { 2034 Value *NewCond = PBI->getCondition(); 2035 2036 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2037 CmpInst *CI = cast<CmpInst>(NewCond); 2038 CI->setPredicate(CI->getInversePredicate()); 2039 } else { 2040 NewCond = Builder.CreateNot(NewCond, 2041 PBI->getCondition()->getName()+".not"); 2042 } 2043 2044 PBI->setCondition(NewCond); 2045 PBI->swapSuccessors(); 2046 } 2047 2048 // If we have a bonus inst, clone it into the predecessor block. 2049 Instruction *NewBonus = 0; 2050 if (BonusInst) { 2051 NewBonus = BonusInst->clone(); 2052 PredBlock->getInstList().insert(PBI, NewBonus); 2053 NewBonus->takeName(BonusInst); 2054 BonusInst->setName(BonusInst->getName()+".old"); 2055 } 2056 2057 // Clone Cond into the predecessor basic block, and or/and the 2058 // two conditions together. 2059 Instruction *New = Cond->clone(); 2060 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 2061 PredBlock->getInstList().insert(PBI, New); 2062 New->takeName(Cond); 2063 Cond->setName(New->getName()+".old"); 2064 2065 if (BI->isConditional()) { 2066 Instruction *NewCond = 2067 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2068 New, "or.cond")); 2069 PBI->setCondition(NewCond); 2070 2071 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2072 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2073 PredFalseWeight); 2074 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2075 SuccFalseWeight); 2076 SmallVector<uint64_t, 8> NewWeights; 2077 2078 if (PBI->getSuccessor(0) == BB) { 2079 if (PredHasWeights && SuccHasWeights) { 2080 // PBI: br i1 %x, BB, FalseDest 2081 // BI: br i1 %y, TrueDest, FalseDest 2082 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2083 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2084 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2085 // TrueWeight for PBI * FalseWeight for BI. 2086 // We assume that total weights of a BranchInst can fit into 32 bits. 2087 // Therefore, we will not have overflow using 64-bit arithmetic. 2088 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2089 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2090 } 2091 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2092 PBI->setSuccessor(0, TrueDest); 2093 } 2094 if (PBI->getSuccessor(1) == BB) { 2095 if (PredHasWeights && SuccHasWeights) { 2096 // PBI: br i1 %x, TrueDest, BB 2097 // BI: br i1 %y, TrueDest, FalseDest 2098 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2099 // FalseWeight for PBI * TrueWeight for BI. 2100 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2101 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2102 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2103 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2104 } 2105 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2106 PBI->setSuccessor(1, FalseDest); 2107 } 2108 if (NewWeights.size() == 2) { 2109 // Halve the weights if any of them cannot fit in an uint32_t 2110 FitWeights(NewWeights); 2111 2112 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2113 PBI->setMetadata(LLVMContext::MD_prof, 2114 MDBuilder(BI->getContext()). 2115 createBranchWeights(MDWeights)); 2116 } else 2117 PBI->setMetadata(LLVMContext::MD_prof, NULL); 2118 } else { 2119 // Update PHI nodes in the common successors. 2120 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2121 ConstantInt *PBI_C = cast<ConstantInt>( 2122 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2123 assert(PBI_C->getType()->isIntegerTy(1)); 2124 Instruction *MergedCond = 0; 2125 if (PBI->getSuccessor(0) == TrueDest) { 2126 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2127 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2128 // is false: !PBI_Cond and BI_Value 2129 Instruction *NotCond = 2130 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2131 "not.cond")); 2132 MergedCond = 2133 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2134 NotCond, New, 2135 "and.cond")); 2136 if (PBI_C->isOne()) 2137 MergedCond = 2138 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2139 PBI->getCondition(), MergedCond, 2140 "or.cond")); 2141 } else { 2142 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2143 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2144 // is false: PBI_Cond and BI_Value 2145 MergedCond = 2146 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2147 PBI->getCondition(), New, 2148 "and.cond")); 2149 if (PBI_C->isOne()) { 2150 Instruction *NotCond = 2151 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2152 "not.cond")); 2153 MergedCond = 2154 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2155 NotCond, MergedCond, 2156 "or.cond")); 2157 } 2158 } 2159 // Update PHI Node. 2160 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2161 MergedCond); 2162 } 2163 // Change PBI from Conditional to Unconditional. 2164 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2165 EraseTerminatorInstAndDCECond(PBI); 2166 PBI = New_PBI; 2167 } 2168 2169 // TODO: If BB is reachable from all paths through PredBlock, then we 2170 // could replace PBI's branch probabilities with BI's. 2171 2172 // Copy any debug value intrinsics into the end of PredBlock. 2173 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2174 if (isa<DbgInfoIntrinsic>(*I)) 2175 I->clone()->insertBefore(PBI); 2176 2177 return true; 2178 } 2179 return false; 2180 } 2181 2182 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2183 /// predecessor of another block, this function tries to simplify it. We know 2184 /// that PBI and BI are both conditional branches, and BI is in one of the 2185 /// successor blocks of PBI - PBI branches to BI. 2186 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2187 assert(PBI->isConditional() && BI->isConditional()); 2188 BasicBlock *BB = BI->getParent(); 2189 2190 // If this block ends with a branch instruction, and if there is a 2191 // predecessor that ends on a branch of the same condition, make 2192 // this conditional branch redundant. 2193 if (PBI->getCondition() == BI->getCondition() && 2194 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2195 // Okay, the outcome of this conditional branch is statically 2196 // knowable. If this block had a single pred, handle specially. 2197 if (BB->getSinglePredecessor()) { 2198 // Turn this into a branch on constant. 2199 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2200 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2201 CondIsTrue)); 2202 return true; // Nuke the branch on constant. 2203 } 2204 2205 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2206 // in the constant and simplify the block result. Subsequent passes of 2207 // simplifycfg will thread the block. 2208 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2209 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2210 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2211 std::distance(PB, PE), 2212 BI->getCondition()->getName() + ".pr", 2213 BB->begin()); 2214 // Okay, we're going to insert the PHI node. Since PBI is not the only 2215 // predecessor, compute the PHI'd conditional value for all of the preds. 2216 // Any predecessor where the condition is not computable we keep symbolic. 2217 for (pred_iterator PI = PB; PI != PE; ++PI) { 2218 BasicBlock *P = *PI; 2219 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2220 PBI != BI && PBI->isConditional() && 2221 PBI->getCondition() == BI->getCondition() && 2222 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2223 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2224 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2225 CondIsTrue), P); 2226 } else { 2227 NewPN->addIncoming(BI->getCondition(), P); 2228 } 2229 } 2230 2231 BI->setCondition(NewPN); 2232 return true; 2233 } 2234 } 2235 2236 // If this is a conditional branch in an empty block, and if any 2237 // predecessors is a conditional branch to one of our destinations, 2238 // fold the conditions into logical ops and one cond br. 2239 BasicBlock::iterator BBI = BB->begin(); 2240 // Ignore dbg intrinsics. 2241 while (isa<DbgInfoIntrinsic>(BBI)) 2242 ++BBI; 2243 if (&*BBI != BI) 2244 return false; 2245 2246 2247 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2248 if (CE->canTrap()) 2249 return false; 2250 2251 int PBIOp, BIOp; 2252 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2253 PBIOp = BIOp = 0; 2254 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2255 PBIOp = 0, BIOp = 1; 2256 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2257 PBIOp = 1, BIOp = 0; 2258 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2259 PBIOp = BIOp = 1; 2260 else 2261 return false; 2262 2263 // Check to make sure that the other destination of this branch 2264 // isn't BB itself. If so, this is an infinite loop that will 2265 // keep getting unwound. 2266 if (PBI->getSuccessor(PBIOp) == BB) 2267 return false; 2268 2269 // Do not perform this transformation if it would require 2270 // insertion of a large number of select instructions. For targets 2271 // without predication/cmovs, this is a big pessimization. 2272 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2273 2274 unsigned NumPhis = 0; 2275 for (BasicBlock::iterator II = CommonDest->begin(); 2276 isa<PHINode>(II); ++II, ++NumPhis) 2277 if (NumPhis > 2) // Disable this xform. 2278 return false; 2279 2280 // Finally, if everything is ok, fold the branches to logical ops. 2281 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2282 2283 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2284 << "AND: " << *BI->getParent()); 2285 2286 2287 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2288 // branch in it, where one edge (OtherDest) goes back to itself but the other 2289 // exits. We don't *know* that the program avoids the infinite loop 2290 // (even though that seems likely). If we do this xform naively, we'll end up 2291 // recursively unpeeling the loop. Since we know that (after the xform is 2292 // done) that the block *is* infinite if reached, we just make it an obviously 2293 // infinite loop with no cond branch. 2294 if (OtherDest == BB) { 2295 // Insert it at the end of the function, because it's either code, 2296 // or it won't matter if it's hot. :) 2297 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2298 "infloop", BB->getParent()); 2299 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2300 OtherDest = InfLoopBlock; 2301 } 2302 2303 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2304 2305 // BI may have other predecessors. Because of this, we leave 2306 // it alone, but modify PBI. 2307 2308 // Make sure we get to CommonDest on True&True directions. 2309 Value *PBICond = PBI->getCondition(); 2310 IRBuilder<true, NoFolder> Builder(PBI); 2311 if (PBIOp) 2312 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2313 2314 Value *BICond = BI->getCondition(); 2315 if (BIOp) 2316 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2317 2318 // Merge the conditions. 2319 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2320 2321 // Modify PBI to branch on the new condition to the new dests. 2322 PBI->setCondition(Cond); 2323 PBI->setSuccessor(0, CommonDest); 2324 PBI->setSuccessor(1, OtherDest); 2325 2326 // Update branch weight for PBI. 2327 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2328 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2329 PredFalseWeight); 2330 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2331 SuccFalseWeight); 2332 if (PredHasWeights && SuccHasWeights) { 2333 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2334 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2335 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2336 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2337 // The weight to CommonDest should be PredCommon * SuccTotal + 2338 // PredOther * SuccCommon. 2339 // The weight to OtherDest should be PredOther * SuccOther. 2340 SmallVector<uint64_t, 2> NewWeights; 2341 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2342 PredOther * SuccCommon); 2343 NewWeights.push_back(PredOther * SuccOther); 2344 // Halve the weights if any of them cannot fit in an uint32_t 2345 FitWeights(NewWeights); 2346 2347 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2348 PBI->setMetadata(LLVMContext::MD_prof, 2349 MDBuilder(BI->getContext()). 2350 createBranchWeights(MDWeights)); 2351 } 2352 2353 // OtherDest may have phi nodes. If so, add an entry from PBI's 2354 // block that are identical to the entries for BI's block. 2355 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2356 2357 // We know that the CommonDest already had an edge from PBI to 2358 // it. If it has PHIs though, the PHIs may have different 2359 // entries for BB and PBI's BB. If so, insert a select to make 2360 // them agree. 2361 PHINode *PN; 2362 for (BasicBlock::iterator II = CommonDest->begin(); 2363 (PN = dyn_cast<PHINode>(II)); ++II) { 2364 Value *BIV = PN->getIncomingValueForBlock(BB); 2365 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2366 Value *PBIV = PN->getIncomingValue(PBBIdx); 2367 if (BIV != PBIV) { 2368 // Insert a select in PBI to pick the right value. 2369 Value *NV = cast<SelectInst> 2370 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2371 PN->setIncomingValue(PBBIdx, NV); 2372 } 2373 } 2374 2375 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2376 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2377 2378 // This basic block is probably dead. We know it has at least 2379 // one fewer predecessor. 2380 return true; 2381 } 2382 2383 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2384 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2385 // Takes care of updating the successors and removing the old terminator. 2386 // Also makes sure not to introduce new successors by assuming that edges to 2387 // non-successor TrueBBs and FalseBBs aren't reachable. 2388 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2389 BasicBlock *TrueBB, BasicBlock *FalseBB, 2390 uint32_t TrueWeight, 2391 uint32_t FalseWeight){ 2392 // Remove any superfluous successor edges from the CFG. 2393 // First, figure out which successors to preserve. 2394 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2395 // successor. 2396 BasicBlock *KeepEdge1 = TrueBB; 2397 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0; 2398 2399 // Then remove the rest. 2400 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2401 BasicBlock *Succ = OldTerm->getSuccessor(I); 2402 // Make sure only to keep exactly one copy of each edge. 2403 if (Succ == KeepEdge1) 2404 KeepEdge1 = 0; 2405 else if (Succ == KeepEdge2) 2406 KeepEdge2 = 0; 2407 else 2408 Succ->removePredecessor(OldTerm->getParent()); 2409 } 2410 2411 IRBuilder<> Builder(OldTerm); 2412 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2413 2414 // Insert an appropriate new terminator. 2415 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) { 2416 if (TrueBB == FalseBB) 2417 // We were only looking for one successor, and it was present. 2418 // Create an unconditional branch to it. 2419 Builder.CreateBr(TrueBB); 2420 else { 2421 // We found both of the successors we were looking for. 2422 // Create a conditional branch sharing the condition of the select. 2423 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2424 if (TrueWeight != FalseWeight) 2425 NewBI->setMetadata(LLVMContext::MD_prof, 2426 MDBuilder(OldTerm->getContext()). 2427 createBranchWeights(TrueWeight, FalseWeight)); 2428 } 2429 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2430 // Neither of the selected blocks were successors, so this 2431 // terminator must be unreachable. 2432 new UnreachableInst(OldTerm->getContext(), OldTerm); 2433 } else { 2434 // One of the selected values was a successor, but the other wasn't. 2435 // Insert an unconditional branch to the one that was found; 2436 // the edge to the one that wasn't must be unreachable. 2437 if (KeepEdge1 == 0) 2438 // Only TrueBB was found. 2439 Builder.CreateBr(TrueBB); 2440 else 2441 // Only FalseBB was found. 2442 Builder.CreateBr(FalseBB); 2443 } 2444 2445 EraseTerminatorInstAndDCECond(OldTerm); 2446 return true; 2447 } 2448 2449 // SimplifySwitchOnSelect - Replaces 2450 // (switch (select cond, X, Y)) on constant X, Y 2451 // with a branch - conditional if X and Y lead to distinct BBs, 2452 // unconditional otherwise. 2453 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2454 // Check for constant integer values in the select. 2455 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2456 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2457 if (!TrueVal || !FalseVal) 2458 return false; 2459 2460 // Find the relevant condition and destinations. 2461 Value *Condition = Select->getCondition(); 2462 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2463 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2464 2465 // Get weight for TrueBB and FalseBB. 2466 uint32_t TrueWeight = 0, FalseWeight = 0; 2467 SmallVector<uint64_t, 8> Weights; 2468 bool HasWeights = HasBranchWeights(SI); 2469 if (HasWeights) { 2470 GetBranchWeights(SI, Weights); 2471 if (Weights.size() == 1 + SI->getNumCases()) { 2472 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2473 getSuccessorIndex()]; 2474 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2475 getSuccessorIndex()]; 2476 } 2477 } 2478 2479 // Perform the actual simplification. 2480 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2481 TrueWeight, FalseWeight); 2482 } 2483 2484 // SimplifyIndirectBrOnSelect - Replaces 2485 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2486 // blockaddress(@fn, BlockB))) 2487 // with 2488 // (br cond, BlockA, BlockB). 2489 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2490 // Check that both operands of the select are block addresses. 2491 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2492 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2493 if (!TBA || !FBA) 2494 return false; 2495 2496 // Extract the actual blocks. 2497 BasicBlock *TrueBB = TBA->getBasicBlock(); 2498 BasicBlock *FalseBB = FBA->getBasicBlock(); 2499 2500 // Perform the actual simplification. 2501 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2502 0, 0); 2503 } 2504 2505 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2506 /// instruction (a seteq/setne with a constant) as the only instruction in a 2507 /// block that ends with an uncond branch. We are looking for a very specific 2508 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2509 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2510 /// default value goes to an uncond block with a seteq in it, we get something 2511 /// like: 2512 /// 2513 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2514 /// DEFAULT: 2515 /// %tmp = icmp eq i8 %A, 92 2516 /// br label %end 2517 /// end: 2518 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2519 /// 2520 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2521 /// the PHI, merging the third icmp into the switch. 2522 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 2523 const DataLayout *TD, 2524 IRBuilder<> &Builder) { 2525 BasicBlock *BB = ICI->getParent(); 2526 2527 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2528 // complex. 2529 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2530 2531 Value *V = ICI->getOperand(0); 2532 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2533 2534 // The pattern we're looking for is where our only predecessor is a switch on 2535 // 'V' and this block is the default case for the switch. In this case we can 2536 // fold the compared value into the switch to simplify things. 2537 BasicBlock *Pred = BB->getSinglePredecessor(); 2538 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false; 2539 2540 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2541 if (SI->getCondition() != V) 2542 return false; 2543 2544 // If BB is reachable on a non-default case, then we simply know the value of 2545 // V in this block. Substitute it and constant fold the icmp instruction 2546 // away. 2547 if (SI->getDefaultDest() != BB) { 2548 ConstantInt *VVal = SI->findCaseDest(BB); 2549 assert(VVal && "Should have a unique destination value"); 2550 ICI->setOperand(0, VVal); 2551 2552 if (Value *V = SimplifyInstruction(ICI, TD)) { 2553 ICI->replaceAllUsesWith(V); 2554 ICI->eraseFromParent(); 2555 } 2556 // BB is now empty, so it is likely to simplify away. 2557 return SimplifyCFG(BB) | true; 2558 } 2559 2560 // Ok, the block is reachable from the default dest. If the constant we're 2561 // comparing exists in one of the other edges, then we can constant fold ICI 2562 // and zap it. 2563 if (SI->findCaseValue(Cst) != SI->case_default()) { 2564 Value *V; 2565 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2566 V = ConstantInt::getFalse(BB->getContext()); 2567 else 2568 V = ConstantInt::getTrue(BB->getContext()); 2569 2570 ICI->replaceAllUsesWith(V); 2571 ICI->eraseFromParent(); 2572 // BB is now empty, so it is likely to simplify away. 2573 return SimplifyCFG(BB) | true; 2574 } 2575 2576 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2577 // the block. 2578 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2579 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back()); 2580 if (PHIUse == 0 || PHIUse != &SuccBlock->front() || 2581 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2582 return false; 2583 2584 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2585 // true in the PHI. 2586 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2587 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2588 2589 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2590 std::swap(DefaultCst, NewCst); 2591 2592 // Replace ICI (which is used by the PHI for the default value) with true or 2593 // false depending on if it is EQ or NE. 2594 ICI->replaceAllUsesWith(DefaultCst); 2595 ICI->eraseFromParent(); 2596 2597 // Okay, the switch goes to this block on a default value. Add an edge from 2598 // the switch to the merge point on the compared value. 2599 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2600 BB->getParent(), BB); 2601 SmallVector<uint64_t, 8> Weights; 2602 bool HasWeights = HasBranchWeights(SI); 2603 if (HasWeights) { 2604 GetBranchWeights(SI, Weights); 2605 if (Weights.size() == 1 + SI->getNumCases()) { 2606 // Split weight for default case to case for "Cst". 2607 Weights[0] = (Weights[0]+1) >> 1; 2608 Weights.push_back(Weights[0]); 2609 2610 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2611 SI->setMetadata(LLVMContext::MD_prof, 2612 MDBuilder(SI->getContext()). 2613 createBranchWeights(MDWeights)); 2614 } 2615 } 2616 SI->addCase(Cst, NewBB); 2617 2618 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2619 Builder.SetInsertPoint(NewBB); 2620 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2621 Builder.CreateBr(SuccBlock); 2622 PHIUse->addIncoming(NewCst, NewBB); 2623 return true; 2624 } 2625 2626 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2627 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2628 /// fold it into a switch instruction if so. 2629 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD, 2630 IRBuilder<> &Builder) { 2631 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2632 if (Cond == 0) return false; 2633 2634 2635 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2636 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2637 // 'setne's and'ed together, collect them. 2638 Value *CompVal = 0; 2639 std::vector<ConstantInt*> Values; 2640 bool TrueWhenEqual = true; 2641 Value *ExtraCase = 0; 2642 unsigned UsedICmps = 0; 2643 2644 if (Cond->getOpcode() == Instruction::Or) { 2645 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true, 2646 UsedICmps); 2647 } else if (Cond->getOpcode() == Instruction::And) { 2648 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false, 2649 UsedICmps); 2650 TrueWhenEqual = false; 2651 } 2652 2653 // If we didn't have a multiply compared value, fail. 2654 if (CompVal == 0) return false; 2655 2656 // Avoid turning single icmps into a switch. 2657 if (UsedICmps <= 1) 2658 return false; 2659 2660 // There might be duplicate constants in the list, which the switch 2661 // instruction can't handle, remove them now. 2662 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2663 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2664 2665 // If Extra was used, we require at least two switch values to do the 2666 // transformation. A switch with one value is just an cond branch. 2667 if (ExtraCase && Values.size() < 2) return false; 2668 2669 // TODO: Preserve branch weight metadata, similarly to how 2670 // FoldValueComparisonIntoPredecessors preserves it. 2671 2672 // Figure out which block is which destination. 2673 BasicBlock *DefaultBB = BI->getSuccessor(1); 2674 BasicBlock *EdgeBB = BI->getSuccessor(0); 2675 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2676 2677 BasicBlock *BB = BI->getParent(); 2678 2679 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2680 << " cases into SWITCH. BB is:\n" << *BB); 2681 2682 // If there are any extra values that couldn't be folded into the switch 2683 // then we evaluate them with an explicit branch first. Split the block 2684 // right before the condbr to handle it. 2685 if (ExtraCase) { 2686 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2687 // Remove the uncond branch added to the old block. 2688 TerminatorInst *OldTI = BB->getTerminator(); 2689 Builder.SetInsertPoint(OldTI); 2690 2691 if (TrueWhenEqual) 2692 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2693 else 2694 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2695 2696 OldTI->eraseFromParent(); 2697 2698 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2699 // for the edge we just added. 2700 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2701 2702 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2703 << "\nEXTRABB = " << *BB); 2704 BB = NewBB; 2705 } 2706 2707 Builder.SetInsertPoint(BI); 2708 // Convert pointer to int before we switch. 2709 if (CompVal->getType()->isPointerTy()) { 2710 assert(TD && "Cannot switch on pointer without DataLayout"); 2711 CompVal = Builder.CreatePtrToInt(CompVal, 2712 TD->getIntPtrType(CompVal->getContext()), 2713 "magicptr"); 2714 } 2715 2716 // Create the new switch instruction now. 2717 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2718 2719 // Add all of the 'cases' to the switch instruction. 2720 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2721 New->addCase(Values[i], EdgeBB); 2722 2723 // We added edges from PI to the EdgeBB. As such, if there were any 2724 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2725 // the number of edges added. 2726 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2727 isa<PHINode>(BBI); ++BBI) { 2728 PHINode *PN = cast<PHINode>(BBI); 2729 Value *InVal = PN->getIncomingValueForBlock(BB); 2730 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2731 PN->addIncoming(InVal, BB); 2732 } 2733 2734 // Erase the old branch instruction. 2735 EraseTerminatorInstAndDCECond(BI); 2736 2737 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2738 return true; 2739 } 2740 2741 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2742 // If this is a trivial landing pad that just continues unwinding the caught 2743 // exception then zap the landing pad, turning its invokes into calls. 2744 BasicBlock *BB = RI->getParent(); 2745 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2746 if (RI->getValue() != LPInst) 2747 // Not a landing pad, or the resume is not unwinding the exception that 2748 // caused control to branch here. 2749 return false; 2750 2751 // Check that there are no other instructions except for debug intrinsics. 2752 BasicBlock::iterator I = LPInst, E = RI; 2753 while (++I != E) 2754 if (!isa<DbgInfoIntrinsic>(I)) 2755 return false; 2756 2757 // Turn all invokes that unwind here into calls and delete the basic block. 2758 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2759 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2760 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2761 // Insert a call instruction before the invoke. 2762 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2763 Call->takeName(II); 2764 Call->setCallingConv(II->getCallingConv()); 2765 Call->setAttributes(II->getAttributes()); 2766 Call->setDebugLoc(II->getDebugLoc()); 2767 2768 // Anything that used the value produced by the invoke instruction now uses 2769 // the value produced by the call instruction. Note that we do this even 2770 // for void functions and calls with no uses so that the callgraph edge is 2771 // updated. 2772 II->replaceAllUsesWith(Call); 2773 BB->removePredecessor(II->getParent()); 2774 2775 // Insert a branch to the normal destination right before the invoke. 2776 BranchInst::Create(II->getNormalDest(), II); 2777 2778 // Finally, delete the invoke instruction! 2779 II->eraseFromParent(); 2780 } 2781 2782 // The landingpad is now unreachable. Zap it. 2783 BB->eraseFromParent(); 2784 return true; 2785 } 2786 2787 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2788 BasicBlock *BB = RI->getParent(); 2789 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2790 2791 // Find predecessors that end with branches. 2792 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2793 SmallVector<BranchInst*, 8> CondBranchPreds; 2794 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2795 BasicBlock *P = *PI; 2796 TerminatorInst *PTI = P->getTerminator(); 2797 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2798 if (BI->isUnconditional()) 2799 UncondBranchPreds.push_back(P); 2800 else 2801 CondBranchPreds.push_back(BI); 2802 } 2803 } 2804 2805 // If we found some, do the transformation! 2806 if (!UncondBranchPreds.empty() && DupRet) { 2807 while (!UncondBranchPreds.empty()) { 2808 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2809 DEBUG(dbgs() << "FOLDING: " << *BB 2810 << "INTO UNCOND BRANCH PRED: " << *Pred); 2811 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2812 } 2813 2814 // If we eliminated all predecessors of the block, delete the block now. 2815 if (pred_begin(BB) == pred_end(BB)) 2816 // We know there are no successors, so just nuke the block. 2817 BB->eraseFromParent(); 2818 2819 return true; 2820 } 2821 2822 // Check out all of the conditional branches going to this return 2823 // instruction. If any of them just select between returns, change the 2824 // branch itself into a select/return pair. 2825 while (!CondBranchPreds.empty()) { 2826 BranchInst *BI = CondBranchPreds.pop_back_val(); 2827 2828 // Check to see if the non-BB successor is also a return block. 2829 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2830 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2831 SimplifyCondBranchToTwoReturns(BI, Builder)) 2832 return true; 2833 } 2834 return false; 2835 } 2836 2837 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2838 BasicBlock *BB = UI->getParent(); 2839 2840 bool Changed = false; 2841 2842 // If there are any instructions immediately before the unreachable that can 2843 // be removed, do so. 2844 while (UI != BB->begin()) { 2845 BasicBlock::iterator BBI = UI; 2846 --BBI; 2847 // Do not delete instructions that can have side effects which might cause 2848 // the unreachable to not be reachable; specifically, calls and volatile 2849 // operations may have this effect. 2850 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2851 2852 if (BBI->mayHaveSideEffects()) { 2853 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 2854 if (SI->isVolatile()) 2855 break; 2856 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 2857 if (LI->isVolatile()) 2858 break; 2859 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 2860 if (RMWI->isVolatile()) 2861 break; 2862 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 2863 if (CXI->isVolatile()) 2864 break; 2865 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 2866 !isa<LandingPadInst>(BBI)) { 2867 break; 2868 } 2869 // Note that deleting LandingPad's here is in fact okay, although it 2870 // involves a bit of subtle reasoning. If this inst is a LandingPad, 2871 // all the predecessors of this block will be the unwind edges of Invokes, 2872 // and we can therefore guarantee this block will be erased. 2873 } 2874 2875 // Delete this instruction (any uses are guaranteed to be dead) 2876 if (!BBI->use_empty()) 2877 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2878 BBI->eraseFromParent(); 2879 Changed = true; 2880 } 2881 2882 // If the unreachable instruction is the first in the block, take a gander 2883 // at all of the predecessors of this instruction, and simplify them. 2884 if (&BB->front() != UI) return Changed; 2885 2886 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 2887 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 2888 TerminatorInst *TI = Preds[i]->getTerminator(); 2889 IRBuilder<> Builder(TI); 2890 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2891 if (BI->isUnconditional()) { 2892 if (BI->getSuccessor(0) == BB) { 2893 new UnreachableInst(TI->getContext(), TI); 2894 TI->eraseFromParent(); 2895 Changed = true; 2896 } 2897 } else { 2898 if (BI->getSuccessor(0) == BB) { 2899 Builder.CreateBr(BI->getSuccessor(1)); 2900 EraseTerminatorInstAndDCECond(BI); 2901 } else if (BI->getSuccessor(1) == BB) { 2902 Builder.CreateBr(BI->getSuccessor(0)); 2903 EraseTerminatorInstAndDCECond(BI); 2904 Changed = true; 2905 } 2906 } 2907 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2908 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2909 i != e; ++i) 2910 if (i.getCaseSuccessor() == BB) { 2911 BB->removePredecessor(SI->getParent()); 2912 SI->removeCase(i); 2913 --i; --e; 2914 Changed = true; 2915 } 2916 // If the default value is unreachable, figure out the most popular 2917 // destination and make it the default. 2918 if (SI->getDefaultDest() == BB) { 2919 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 2920 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2921 i != e; ++i) { 2922 std::pair<unsigned, unsigned> &entry = 2923 Popularity[i.getCaseSuccessor()]; 2924 if (entry.first == 0) { 2925 entry.first = 1; 2926 entry.second = i.getCaseIndex(); 2927 } else { 2928 entry.first++; 2929 } 2930 } 2931 2932 // Find the most popular block. 2933 unsigned MaxPop = 0; 2934 unsigned MaxIndex = 0; 2935 BasicBlock *MaxBlock = 0; 2936 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 2937 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 2938 if (I->second.first > MaxPop || 2939 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 2940 MaxPop = I->second.first; 2941 MaxIndex = I->second.second; 2942 MaxBlock = I->first; 2943 } 2944 } 2945 if (MaxBlock) { 2946 // Make this the new default, allowing us to delete any explicit 2947 // edges to it. 2948 SI->setDefaultDest(MaxBlock); 2949 Changed = true; 2950 2951 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 2952 // it. 2953 if (isa<PHINode>(MaxBlock->begin())) 2954 for (unsigned i = 0; i != MaxPop-1; ++i) 2955 MaxBlock->removePredecessor(SI->getParent()); 2956 2957 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2958 i != e; ++i) 2959 if (i.getCaseSuccessor() == MaxBlock) { 2960 SI->removeCase(i); 2961 --i; --e; 2962 } 2963 } 2964 } 2965 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 2966 if (II->getUnwindDest() == BB) { 2967 // Convert the invoke to a call instruction. This would be a good 2968 // place to note that the call does not throw though. 2969 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 2970 II->removeFromParent(); // Take out of symbol table 2971 2972 // Insert the call now... 2973 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 2974 Builder.SetInsertPoint(BI); 2975 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 2976 Args, II->getName()); 2977 CI->setCallingConv(II->getCallingConv()); 2978 CI->setAttributes(II->getAttributes()); 2979 // If the invoke produced a value, the call does now instead. 2980 II->replaceAllUsesWith(CI); 2981 delete II; 2982 Changed = true; 2983 } 2984 } 2985 } 2986 2987 // If this block is now dead, remove it. 2988 if (pred_begin(BB) == pred_end(BB) && 2989 BB != &BB->getParent()->getEntryBlock()) { 2990 // We know there are no successors, so just nuke the block. 2991 BB->eraseFromParent(); 2992 return true; 2993 } 2994 2995 return Changed; 2996 } 2997 2998 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 2999 /// integer range comparison into a sub, an icmp and a branch. 3000 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3001 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3002 3003 // Make sure all cases point to the same destination and gather the values. 3004 SmallVector<ConstantInt *, 16> Cases; 3005 SwitchInst::CaseIt I = SI->case_begin(); 3006 Cases.push_back(I.getCaseValue()); 3007 SwitchInst::CaseIt PrevI = I++; 3008 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) { 3009 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor()) 3010 return false; 3011 Cases.push_back(I.getCaseValue()); 3012 } 3013 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered"); 3014 3015 // Sort the case values, then check if they form a range we can transform. 3016 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3017 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 3018 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 3019 return false; 3020 } 3021 3022 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 3023 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()); 3024 3025 Value *Sub = SI->getCondition(); 3026 if (!Offset->isNullValue()) 3027 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 3028 Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3029 BranchInst *NewBI = Builder.CreateCondBr( 3030 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest()); 3031 3032 // Update weight for the newly-created conditional branch. 3033 SmallVector<uint64_t, 8> Weights; 3034 bool HasWeights = HasBranchWeights(SI); 3035 if (HasWeights) { 3036 GetBranchWeights(SI, Weights); 3037 if (Weights.size() == 1 + SI->getNumCases()) { 3038 // Combine all weights for the cases to be the true weight of NewBI. 3039 // We assume that the sum of all weights for a Terminator can fit into 32 3040 // bits. 3041 uint32_t NewTrueWeight = 0; 3042 for (unsigned I = 1, E = Weights.size(); I != E; ++I) 3043 NewTrueWeight += (uint32_t)Weights[I]; 3044 NewBI->setMetadata(LLVMContext::MD_prof, 3045 MDBuilder(SI->getContext()). 3046 createBranchWeights(NewTrueWeight, 3047 (uint32_t)Weights[0])); 3048 } 3049 } 3050 3051 // Prune obsolete incoming values off the successor's PHI nodes. 3052 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin(); 3053 isa<PHINode>(BBI); ++BBI) { 3054 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I) 3055 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3056 } 3057 SI->eraseFromParent(); 3058 3059 return true; 3060 } 3061 3062 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3063 /// and use it to remove dead cases. 3064 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 3065 Value *Cond = SI->getCondition(); 3066 unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth(); 3067 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3068 ComputeMaskedBits(Cond, KnownZero, KnownOne); 3069 3070 // Gather dead cases. 3071 SmallVector<ConstantInt*, 8> DeadCases; 3072 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3073 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3074 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3075 DeadCases.push_back(I.getCaseValue()); 3076 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3077 << I.getCaseValue() << "' is dead.\n"); 3078 } 3079 } 3080 3081 SmallVector<uint64_t, 8> Weights; 3082 bool HasWeight = HasBranchWeights(SI); 3083 if (HasWeight) { 3084 GetBranchWeights(SI, Weights); 3085 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3086 } 3087 3088 // Remove dead cases from the switch. 3089 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3090 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3091 assert(Case != SI->case_default() && 3092 "Case was not found. Probably mistake in DeadCases forming."); 3093 if (HasWeight) { 3094 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3095 Weights.pop_back(); 3096 } 3097 3098 // Prune unused values from PHI nodes. 3099 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3100 SI->removeCase(Case); 3101 } 3102 if (HasWeight) { 3103 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3104 SI->setMetadata(LLVMContext::MD_prof, 3105 MDBuilder(SI->getParent()->getContext()). 3106 createBranchWeights(MDWeights)); 3107 } 3108 3109 return !DeadCases.empty(); 3110 } 3111 3112 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3113 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3114 /// by an unconditional branch), look at the phi node for BB in the successor 3115 /// block and see if the incoming value is equal to CaseValue. If so, return 3116 /// the phi node, and set PhiIndex to BB's index in the phi node. 3117 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3118 BasicBlock *BB, 3119 int *PhiIndex) { 3120 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3121 return NULL; // BB must be empty to be a candidate for simplification. 3122 if (!BB->getSinglePredecessor()) 3123 return NULL; // BB must be dominated by the switch. 3124 3125 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3126 if (!Branch || !Branch->isUnconditional()) 3127 return NULL; // Terminator must be unconditional branch. 3128 3129 BasicBlock *Succ = Branch->getSuccessor(0); 3130 3131 BasicBlock::iterator I = Succ->begin(); 3132 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3133 int Idx = PHI->getBasicBlockIndex(BB); 3134 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3135 3136 Value *InValue = PHI->getIncomingValue(Idx); 3137 if (InValue != CaseValue) continue; 3138 3139 *PhiIndex = Idx; 3140 return PHI; 3141 } 3142 3143 return NULL; 3144 } 3145 3146 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3147 /// instruction to a phi node dominated by the switch, if that would mean that 3148 /// some of the destination blocks of the switch can be folded away. 3149 /// Returns true if a change is made. 3150 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3151 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3152 ForwardingNodesMap ForwardingNodes; 3153 3154 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3155 ConstantInt *CaseValue = I.getCaseValue(); 3156 BasicBlock *CaseDest = I.getCaseSuccessor(); 3157 3158 int PhiIndex; 3159 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3160 &PhiIndex); 3161 if (!PHI) continue; 3162 3163 ForwardingNodes[PHI].push_back(PhiIndex); 3164 } 3165 3166 bool Changed = false; 3167 3168 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3169 E = ForwardingNodes.end(); I != E; ++I) { 3170 PHINode *Phi = I->first; 3171 SmallVector<int,4> &Indexes = I->second; 3172 3173 if (Indexes.size() < 2) continue; 3174 3175 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3176 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3177 Changed = true; 3178 } 3179 3180 return Changed; 3181 } 3182 3183 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3184 /// initializing an array of constants like C. 3185 static bool ValidLookupTableConstant(Constant *C) { 3186 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3187 return CE->isGEPWithNoNotionalOverIndexing(); 3188 3189 return isa<ConstantFP>(C) || 3190 isa<ConstantInt>(C) || 3191 isa<ConstantPointerNull>(C) || 3192 isa<GlobalValue>(C) || 3193 isa<UndefValue>(C); 3194 } 3195 3196 /// GetCaseResulsts - Try to determine the resulting constant values in phi 3197 /// nodes at the common destination basic block for one of the case 3198 /// destinations of a switch instruction. 3199 static bool GetCaseResults(SwitchInst *SI, 3200 BasicBlock *CaseDest, 3201 BasicBlock **CommonDest, 3202 SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) { 3203 // The block from which we enter the common destination. 3204 BasicBlock *Pred = SI->getParent(); 3205 3206 // If CaseDest is empty, continue to its successor. 3207 if (CaseDest->getFirstNonPHIOrDbg() == CaseDest->getTerminator() && 3208 !isa<PHINode>(CaseDest->begin())) { 3209 3210 TerminatorInst *Terminator = CaseDest->getTerminator(); 3211 if (Terminator->getNumSuccessors() != 1) 3212 return false; 3213 3214 Pred = CaseDest; 3215 CaseDest = Terminator->getSuccessor(0); 3216 } 3217 3218 // If we did not have a CommonDest before, use the current one. 3219 if (!*CommonDest) 3220 *CommonDest = CaseDest; 3221 // If the destination isn't the common one, abort. 3222 if (CaseDest != *CommonDest) 3223 return false; 3224 3225 // Get the values for this case from phi nodes in the destination block. 3226 BasicBlock::iterator I = (*CommonDest)->begin(); 3227 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3228 int Idx = PHI->getBasicBlockIndex(Pred); 3229 if (Idx == -1) 3230 continue; 3231 3232 Constant *ConstVal = dyn_cast<Constant>(PHI->getIncomingValue(Idx)); 3233 if (!ConstVal) 3234 return false; 3235 3236 // Be conservative about which kinds of constants we support. 3237 if (!ValidLookupTableConstant(ConstVal)) 3238 return false; 3239 3240 Res.push_back(std::make_pair(PHI, ConstVal)); 3241 } 3242 3243 return true; 3244 } 3245 3246 namespace { 3247 /// SwitchLookupTable - This class represents a lookup table that can be used 3248 /// to replace a switch. 3249 class SwitchLookupTable { 3250 public: 3251 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3252 /// with the contents of Values, using DefaultValue to fill any holes in the 3253 /// table. 3254 SwitchLookupTable(Module &M, 3255 uint64_t TableSize, 3256 ConstantInt *Offset, 3257 const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values, 3258 Constant *DefaultValue, 3259 const DataLayout *TD); 3260 3261 /// BuildLookup - Build instructions with Builder to retrieve the value at 3262 /// the position given by Index in the lookup table. 3263 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3264 3265 /// WouldFitInRegister - Return true if a table with TableSize elements of 3266 /// type ElementType would fit in a target-legal register. 3267 static bool WouldFitInRegister(const DataLayout *TD, 3268 uint64_t TableSize, 3269 const Type *ElementType); 3270 3271 private: 3272 // Depending on the contents of the table, it can be represented in 3273 // different ways. 3274 enum { 3275 // For tables where each element contains the same value, we just have to 3276 // store that single value and return it for each lookup. 3277 SingleValueKind, 3278 3279 // For small tables with integer elements, we can pack them into a bitmap 3280 // that fits into a target-legal register. Values are retrieved by 3281 // shift and mask operations. 3282 BitMapKind, 3283 3284 // The table is stored as an array of values. Values are retrieved by load 3285 // instructions from the table. 3286 ArrayKind 3287 } Kind; 3288 3289 // For SingleValueKind, this is the single value. 3290 Constant *SingleValue; 3291 3292 // For BitMapKind, this is the bitmap. 3293 ConstantInt *BitMap; 3294 IntegerType *BitMapElementTy; 3295 3296 // For ArrayKind, this is the array. 3297 GlobalVariable *Array; 3298 }; 3299 } 3300 3301 SwitchLookupTable::SwitchLookupTable(Module &M, 3302 uint64_t TableSize, 3303 ConstantInt *Offset, 3304 const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values, 3305 Constant *DefaultValue, 3306 const DataLayout *TD) { 3307 assert(Values.size() && "Can't build lookup table without values!"); 3308 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3309 3310 // If all values in the table are equal, this is that value. 3311 SingleValue = Values.begin()->second; 3312 3313 // Build up the table contents. 3314 SmallVector<Constant*, 64> TableContents(TableSize); 3315 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3316 ConstantInt *CaseVal = Values[I].first; 3317 Constant *CaseRes = Values[I].second; 3318 assert(CaseRes->getType() == DefaultValue->getType()); 3319 3320 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3321 .getLimitedValue(); 3322 TableContents[Idx] = CaseRes; 3323 3324 if (CaseRes != SingleValue) 3325 SingleValue = NULL; 3326 } 3327 3328 // Fill in any holes in the table with the default result. 3329 if (Values.size() < TableSize) { 3330 for (uint64_t I = 0; I < TableSize; ++I) { 3331 if (!TableContents[I]) 3332 TableContents[I] = DefaultValue; 3333 } 3334 3335 if (DefaultValue != SingleValue) 3336 SingleValue = NULL; 3337 } 3338 3339 // If each element in the table contains the same value, we only need to store 3340 // that single value. 3341 if (SingleValue) { 3342 Kind = SingleValueKind; 3343 return; 3344 } 3345 3346 // If the type is integer and the table fits in a register, build a bitmap. 3347 if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) { 3348 IntegerType *IT = cast<IntegerType>(DefaultValue->getType()); 3349 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3350 for (uint64_t I = TableSize; I > 0; --I) { 3351 TableInt <<= IT->getBitWidth(); 3352 // Insert values into the bitmap. Undef values are set to zero. 3353 if (!isa<UndefValue>(TableContents[I - 1])) { 3354 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3355 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3356 } 3357 } 3358 BitMap = ConstantInt::get(M.getContext(), TableInt); 3359 BitMapElementTy = IT; 3360 Kind = BitMapKind; 3361 ++NumBitMaps; 3362 return; 3363 } 3364 3365 // Store the table in an array. 3366 ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize); 3367 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3368 3369 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3370 GlobalVariable::PrivateLinkage, 3371 Initializer, 3372 "switch.table"); 3373 Array->setUnnamedAddr(true); 3374 Kind = ArrayKind; 3375 } 3376 3377 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3378 switch (Kind) { 3379 case SingleValueKind: 3380 return SingleValue; 3381 case BitMapKind: { 3382 // Type of the bitmap (e.g. i59). 3383 IntegerType *MapTy = BitMap->getType(); 3384 3385 // Cast Index to the same type as the bitmap. 3386 // Note: The Index is <= the number of elements in the table, so 3387 // truncating it to the width of the bitmask is safe. 3388 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3389 3390 // Multiply the shift amount by the element width. 3391 ShiftAmt = Builder.CreateMul(ShiftAmt, 3392 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3393 "switch.shiftamt"); 3394 3395 // Shift down. 3396 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3397 "switch.downshift"); 3398 // Mask off. 3399 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3400 "switch.masked"); 3401 } 3402 case ArrayKind: { 3403 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3404 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3405 "switch.gep"); 3406 return Builder.CreateLoad(GEP, "switch.load"); 3407 } 3408 } 3409 llvm_unreachable("Unknown lookup table kind!"); 3410 } 3411 3412 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD, 3413 uint64_t TableSize, 3414 const Type *ElementType) { 3415 if (!TD) 3416 return false; 3417 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3418 if (!IT) 3419 return false; 3420 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3421 // are <= 15, we could try to narrow the type. 3422 3423 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3424 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3425 return false; 3426 return TD->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3427 } 3428 3429 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3430 /// for this switch, based on the number of caes, size of the table and the 3431 /// types of the results. 3432 static bool ShouldBuildLookupTable(SwitchInst *SI, 3433 uint64_t TableSize, 3434 const DataLayout *TD, 3435 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3436 // The table density should be at least 40%. This is the same criterion as for 3437 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3438 // FIXME: Find the best cut-off. 3439 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3440 return false; // TableSize overflowed, or mul below might overflow. 3441 if (SI->getNumCases() * 10 >= TableSize * 4) 3442 return true; 3443 3444 // If each table would fit in a register, we should build it anyway. 3445 for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(), 3446 E = ResultTypes.end(); I != E; ++I) { 3447 if (!SwitchLookupTable::WouldFitInRegister(TD, TableSize, I->second)) 3448 return false; 3449 } 3450 return true; 3451 } 3452 3453 /// SwitchToLookupTable - If the switch is only used to initialize one or more 3454 /// phi nodes in a common successor block with different constant values, 3455 /// replace the switch with lookup tables. 3456 static bool SwitchToLookupTable(SwitchInst *SI, 3457 IRBuilder<> &Builder, 3458 const DataLayout* TD) { 3459 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3460 // FIXME: Handle unreachable cases. 3461 3462 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 3463 // split off a dense part and build a lookup table for that. 3464 3465 // FIXME: This creates arrays of GEPs to constant strings, which means each 3466 // GEP needs a runtime relocation in PIC code. We should just build one big 3467 // string and lookup indices into that. 3468 3469 // Ignore the switch if the number of cases is too small. 3470 // This is similar to the check when building jump tables in 3471 // SelectionDAGBuilder::handleJTSwitchCase. 3472 // FIXME: Determine the best cut-off. 3473 if (SI->getNumCases() < 4) 3474 return false; 3475 3476 // Figure out the corresponding result for each case value and phi node in the 3477 // common destination, as well as the the min and max case values. 3478 assert(SI->case_begin() != SI->case_end()); 3479 SwitchInst::CaseIt CI = SI->case_begin(); 3480 ConstantInt *MinCaseVal = CI.getCaseValue(); 3481 ConstantInt *MaxCaseVal = CI.getCaseValue(); 3482 3483 BasicBlock *CommonDest = NULL; 3484 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 3485 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 3486 SmallDenseMap<PHINode*, Constant*> DefaultResults; 3487 SmallDenseMap<PHINode*, Type*> ResultTypes; 3488 SmallVector<PHINode*, 4> PHIs; 3489 3490 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 3491 ConstantInt *CaseVal = CI.getCaseValue(); 3492 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 3493 MinCaseVal = CaseVal; 3494 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 3495 MaxCaseVal = CaseVal; 3496 3497 // Resulting value at phi nodes for this case value. 3498 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 3499 ResultsTy Results; 3500 if (!GetCaseResults(SI, CI.getCaseSuccessor(), &CommonDest, Results)) 3501 return false; 3502 3503 // Append the result from this case to the list for each phi. 3504 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) { 3505 if (!ResultLists.count(I->first)) 3506 PHIs.push_back(I->first); 3507 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second)); 3508 } 3509 } 3510 3511 // Get the resulting values for the default case. 3512 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 3513 if (!GetCaseResults(SI, SI->getDefaultDest(), &CommonDest, DefaultResultsList)) 3514 return false; 3515 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) { 3516 PHINode *PHI = DefaultResultsList[I].first; 3517 Constant *Result = DefaultResultsList[I].second; 3518 DefaultResults[PHI] = Result; 3519 ResultTypes[PHI] = Result->getType(); 3520 } 3521 3522 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 3523 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 3524 if (!ShouldBuildLookupTable(SI, TableSize, TD, ResultTypes)) 3525 return false; 3526 3527 // Create the BB that does the lookups. 3528 Module &Mod = *CommonDest->getParent()->getParent(); 3529 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 3530 "switch.lookup", 3531 CommonDest->getParent(), 3532 CommonDest); 3533 3534 // Check whether the condition value is within the case range, and branch to 3535 // the new BB. 3536 Builder.SetInsertPoint(SI); 3537 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 3538 "switch.tableidx"); 3539 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 3540 MinCaseVal->getType(), TableSize)); 3541 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 3542 3543 // Populate the BB that does the lookups. 3544 Builder.SetInsertPoint(LookupBB); 3545 bool ReturnedEarly = false; 3546 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3547 PHINode *PHI = PHIs[I]; 3548 3549 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI], 3550 DefaultResults[PHI], TD); 3551 3552 Value *Result = Table.BuildLookup(TableIndex, Builder); 3553 3554 // If the result is used to return immediately from the function, we want to 3555 // do that right here. 3556 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) && 3557 *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) { 3558 Builder.CreateRet(Result); 3559 ReturnedEarly = true; 3560 break; 3561 } 3562 3563 PHI->addIncoming(Result, LookupBB); 3564 } 3565 3566 if (!ReturnedEarly) 3567 Builder.CreateBr(CommonDest); 3568 3569 // Remove the switch. 3570 for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) { 3571 BasicBlock *Succ = SI->getSuccessor(i); 3572 if (Succ == SI->getDefaultDest()) continue; 3573 Succ->removePredecessor(SI->getParent()); 3574 } 3575 SI->eraseFromParent(); 3576 3577 ++NumLookupTables; 3578 return true; 3579 } 3580 3581 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 3582 // If this switch is too complex to want to look at, ignore it. 3583 if (!isValueEqualityComparison(SI)) 3584 return false; 3585 3586 BasicBlock *BB = SI->getParent(); 3587 3588 // If we only have one predecessor, and if it is a branch on this value, 3589 // see if that predecessor totally determines the outcome of this switch. 3590 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3591 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 3592 return SimplifyCFG(BB) | true; 3593 3594 Value *Cond = SI->getCondition(); 3595 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 3596 if (SimplifySwitchOnSelect(SI, Select)) 3597 return SimplifyCFG(BB) | true; 3598 3599 // If the block only contains the switch, see if we can fold the block 3600 // away into any preds. 3601 BasicBlock::iterator BBI = BB->begin(); 3602 // Ignore dbg intrinsics. 3603 while (isa<DbgInfoIntrinsic>(BBI)) 3604 ++BBI; 3605 if (SI == &*BBI) 3606 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 3607 return SimplifyCFG(BB) | true; 3608 3609 // Try to transform the switch into an icmp and a branch. 3610 if (TurnSwitchRangeIntoICmp(SI, Builder)) 3611 return SimplifyCFG(BB) | true; 3612 3613 // Remove unreachable cases. 3614 if (EliminateDeadSwitchCases(SI)) 3615 return SimplifyCFG(BB) | true; 3616 3617 if (ForwardSwitchConditionToPHI(SI)) 3618 return SimplifyCFG(BB) | true; 3619 3620 if (SwitchToLookupTable(SI, Builder, TD)) 3621 return SimplifyCFG(BB) | true; 3622 3623 return false; 3624 } 3625 3626 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 3627 BasicBlock *BB = IBI->getParent(); 3628 bool Changed = false; 3629 3630 // Eliminate redundant destinations. 3631 SmallPtrSet<Value *, 8> Succs; 3632 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 3633 BasicBlock *Dest = IBI->getDestination(i); 3634 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 3635 Dest->removePredecessor(BB); 3636 IBI->removeDestination(i); 3637 --i; --e; 3638 Changed = true; 3639 } 3640 } 3641 3642 if (IBI->getNumDestinations() == 0) { 3643 // If the indirectbr has no successors, change it to unreachable. 3644 new UnreachableInst(IBI->getContext(), IBI); 3645 EraseTerminatorInstAndDCECond(IBI); 3646 return true; 3647 } 3648 3649 if (IBI->getNumDestinations() == 1) { 3650 // If the indirectbr has one successor, change it to a direct branch. 3651 BranchInst::Create(IBI->getDestination(0), IBI); 3652 EraseTerminatorInstAndDCECond(IBI); 3653 return true; 3654 } 3655 3656 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 3657 if (SimplifyIndirectBrOnSelect(IBI, SI)) 3658 return SimplifyCFG(BB) | true; 3659 } 3660 return Changed; 3661 } 3662 3663 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 3664 BasicBlock *BB = BI->getParent(); 3665 3666 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 3667 return true; 3668 3669 // If the Terminator is the only non-phi instruction, simplify the block. 3670 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 3671 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 3672 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 3673 return true; 3674 3675 // If the only instruction in the block is a seteq/setne comparison 3676 // against a constant, try to simplify the block. 3677 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 3678 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 3679 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 3680 ; 3681 if (I->isTerminator() && 3682 TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder)) 3683 return true; 3684 } 3685 3686 // If this basic block is ONLY a compare and a branch, and if a predecessor 3687 // branches to us and our successor, fold the comparison into the 3688 // predecessor and use logical operations to update the incoming value 3689 // for PHI nodes in common successor. 3690 if (FoldBranchToCommonDest(BI)) 3691 return SimplifyCFG(BB) | true; 3692 return false; 3693 } 3694 3695 3696 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 3697 BasicBlock *BB = BI->getParent(); 3698 3699 // Conditional branch 3700 if (isValueEqualityComparison(BI)) { 3701 // If we only have one predecessor, and if it is a branch on this value, 3702 // see if that predecessor totally determines the outcome of this 3703 // switch. 3704 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3705 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 3706 return SimplifyCFG(BB) | true; 3707 3708 // This block must be empty, except for the setcond inst, if it exists. 3709 // Ignore dbg intrinsics. 3710 BasicBlock::iterator I = BB->begin(); 3711 // Ignore dbg intrinsics. 3712 while (isa<DbgInfoIntrinsic>(I)) 3713 ++I; 3714 if (&*I == BI) { 3715 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 3716 return SimplifyCFG(BB) | true; 3717 } else if (&*I == cast<Instruction>(BI->getCondition())){ 3718 ++I; 3719 // Ignore dbg intrinsics. 3720 while (isa<DbgInfoIntrinsic>(I)) 3721 ++I; 3722 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 3723 return SimplifyCFG(BB) | true; 3724 } 3725 } 3726 3727 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 3728 if (SimplifyBranchOnICmpChain(BI, TD, Builder)) 3729 return true; 3730 3731 // If this basic block is ONLY a compare and a branch, and if a predecessor 3732 // branches to us and one of our successors, fold the comparison into the 3733 // predecessor and use logical operations to pick the right destination. 3734 if (FoldBranchToCommonDest(BI)) 3735 return SimplifyCFG(BB) | true; 3736 3737 // We have a conditional branch to two blocks that are only reachable 3738 // from BI. We know that the condbr dominates the two blocks, so see if 3739 // there is any identical code in the "then" and "else" blocks. If so, we 3740 // can hoist it up to the branching block. 3741 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) { 3742 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 3743 if (HoistThenElseCodeToIf(BI)) 3744 return SimplifyCFG(BB) | true; 3745 } else { 3746 // If Successor #1 has multiple preds, we may be able to conditionally 3747 // execute Successor #0 if it branches to successor #1. 3748 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 3749 if (Succ0TI->getNumSuccessors() == 1 && 3750 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 3751 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 3752 return SimplifyCFG(BB) | true; 3753 } 3754 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 3755 // If Successor #0 has multiple preds, we may be able to conditionally 3756 // execute Successor #1 if it branches to successor #0. 3757 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 3758 if (Succ1TI->getNumSuccessors() == 1 && 3759 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 3760 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 3761 return SimplifyCFG(BB) | true; 3762 } 3763 3764 // If this is a branch on a phi node in the current block, thread control 3765 // through this block if any PHI node entries are constants. 3766 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 3767 if (PN->getParent() == BI->getParent()) 3768 if (FoldCondBranchOnPHI(BI, TD)) 3769 return SimplifyCFG(BB) | true; 3770 3771 // Scan predecessor blocks for conditional branches. 3772 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 3773 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 3774 if (PBI != BI && PBI->isConditional()) 3775 if (SimplifyCondBranchToCondBranch(PBI, BI)) 3776 return SimplifyCFG(BB) | true; 3777 3778 return false; 3779 } 3780 3781 /// Check if passing a value to an instruction will cause undefined behavior. 3782 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 3783 Constant *C = dyn_cast<Constant>(V); 3784 if (!C) 3785 return false; 3786 3787 if (I->use_empty()) 3788 return false; 3789 3790 if (C->isNullValue()) { 3791 // Only look at the first use, avoid hurting compile time with long uselists 3792 User *Use = *I->use_begin(); 3793 3794 // Now make sure that there are no instructions in between that can alter 3795 // control flow (eg. calls) 3796 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 3797 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 3798 return false; 3799 3800 // Look through GEPs. A load from a GEP derived from NULL is still undefined 3801 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 3802 if (GEP->getPointerOperand() == I) 3803 return passingValueIsAlwaysUndefined(V, GEP); 3804 3805 // Look through bitcasts. 3806 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 3807 return passingValueIsAlwaysUndefined(V, BC); 3808 3809 // Load from null is undefined. 3810 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 3811 return LI->getPointerAddressSpace() == 0; 3812 3813 // Store to null is undefined. 3814 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 3815 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 3816 } 3817 return false; 3818 } 3819 3820 /// If BB has an incoming value that will always trigger undefined behavior 3821 /// (eg. null pointer dereference), remove the branch leading here. 3822 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 3823 for (BasicBlock::iterator i = BB->begin(); 3824 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 3825 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 3826 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 3827 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 3828 IRBuilder<> Builder(T); 3829 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 3830 BB->removePredecessor(PHI->getIncomingBlock(i)); 3831 // Turn uncoditional branches into unreachables and remove the dead 3832 // destination from conditional branches. 3833 if (BI->isUnconditional()) 3834 Builder.CreateUnreachable(); 3835 else 3836 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 3837 BI->getSuccessor(0)); 3838 BI->eraseFromParent(); 3839 return true; 3840 } 3841 // TODO: SwitchInst. 3842 } 3843 3844 return false; 3845 } 3846 3847 bool SimplifyCFGOpt::run(BasicBlock *BB) { 3848 bool Changed = false; 3849 3850 assert(BB && BB->getParent() && "Block not embedded in function!"); 3851 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 3852 3853 // Remove basic blocks that have no predecessors (except the entry block)... 3854 // or that just have themself as a predecessor. These are unreachable. 3855 if ((pred_begin(BB) == pred_end(BB) && 3856 BB != &BB->getParent()->getEntryBlock()) || 3857 BB->getSinglePredecessor() == BB) { 3858 DEBUG(dbgs() << "Removing BB: \n" << *BB); 3859 DeleteDeadBlock(BB); 3860 return true; 3861 } 3862 3863 // Check to see if we can constant propagate this terminator instruction 3864 // away... 3865 Changed |= ConstantFoldTerminator(BB, true); 3866 3867 // Check for and eliminate duplicate PHI nodes in this block. 3868 Changed |= EliminateDuplicatePHINodes(BB); 3869 3870 // Check for and remove branches that will always cause undefined behavior. 3871 Changed |= removeUndefIntroducingPredecessor(BB); 3872 3873 // Merge basic blocks into their predecessor if there is only one distinct 3874 // pred, and if there is only one distinct successor of the predecessor, and 3875 // if there are no PHI nodes. 3876 // 3877 if (MergeBlockIntoPredecessor(BB)) 3878 return true; 3879 3880 IRBuilder<> Builder(BB); 3881 3882 // If there is a trivial two-entry PHI node in this basic block, and we can 3883 // eliminate it, do so now. 3884 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 3885 if (PN->getNumIncomingValues() == 2) 3886 Changed |= FoldTwoEntryPHINode(PN, TD); 3887 3888 Builder.SetInsertPoint(BB->getTerminator()); 3889 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 3890 if (BI->isUnconditional()) { 3891 if (SimplifyUncondBranch(BI, Builder)) return true; 3892 } else { 3893 if (SimplifyCondBranch(BI, Builder)) return true; 3894 } 3895 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 3896 if (SimplifyReturn(RI, Builder)) return true; 3897 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 3898 if (SimplifyResume(RI, Builder)) return true; 3899 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 3900 if (SimplifySwitch(SI, Builder)) return true; 3901 } else if (UnreachableInst *UI = 3902 dyn_cast<UnreachableInst>(BB->getTerminator())) { 3903 if (SimplifyUnreachable(UI)) return true; 3904 } else if (IndirectBrInst *IBI = 3905 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 3906 if (SimplifyIndirectBr(IBI)) return true; 3907 } 3908 3909 return Changed; 3910 } 3911 3912 /// SimplifyCFG - This function is used to do simplification of a CFG. For 3913 /// example, it adjusts branches to branches to eliminate the extra hop, it 3914 /// eliminates unreachable basic blocks, and does other "peephole" optimization 3915 /// of the CFG. It returns true if a modification was made. 3916 /// 3917 bool llvm::SimplifyCFG(BasicBlock *BB, const DataLayout *TD) { 3918 return SimplifyCFGOpt(TD).run(BB); 3919 } 3920