1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/GuardUtils.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/MemorySSA.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/ConstantRange.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/MDBuilder.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/NoFolder.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/PseudoProbe.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Use.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/IR/ValueHandle.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/KnownBits.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 76 #include "llvm/Transforms/Utils/Local.h" 77 #include "llvm/Transforms/Utils/SSAUpdater.h" 78 #include "llvm/Transforms/Utils/ValueMapper.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstddef> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <set> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 using namespace PatternMatch; 93 94 #define DEBUG_TYPE "simplifycfg" 95 96 cl::opt<bool> llvm::RequireAndPreserveDomTree( 97 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 98 cl::init(false), 99 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 100 "into preserving DomTree,")); 101 102 // Chosen as 2 so as to be cheap, but still to have enough power to fold 103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 104 // To catch this, we need to fold a compare and a select, hence '2' being the 105 // minimum reasonable default. 106 static cl::opt<unsigned> PHINodeFoldingThreshold( 107 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 108 cl::desc( 109 "Control the amount of phi node folding to perform (default = 2)")); 110 111 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 112 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 113 cl::desc("Control the maximal total instruction cost that we are willing " 114 "to speculatively execute to fold a 2-entry PHI node into a " 115 "select (default = 4)")); 116 117 static cl::opt<bool> 118 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 119 cl::desc("Hoist common instructions up to the parent block")); 120 121 static cl::opt<bool> 122 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 123 cl::desc("Sink common instructions down to the end block")); 124 125 static cl::opt<bool> HoistCondStores( 126 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 127 cl::desc("Hoist conditional stores if an unconditional store precedes")); 128 129 static cl::opt<bool> MergeCondStores( 130 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 131 cl::desc("Hoist conditional stores even if an unconditional store does not " 132 "precede - hoist multiple conditional stores into a single " 133 "predicated store")); 134 135 static cl::opt<bool> MergeCondStoresAggressively( 136 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 137 cl::desc("When merging conditional stores, do so even if the resultant " 138 "basic blocks are unlikely to be if-converted as a result")); 139 140 static cl::opt<bool> SpeculateOneExpensiveInst( 141 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 142 cl::desc("Allow exactly one expensive instruction to be speculatively " 143 "executed")); 144 145 static cl::opt<unsigned> MaxSpeculationDepth( 146 "max-speculation-depth", cl::Hidden, cl::init(10), 147 cl::desc("Limit maximum recursion depth when calculating costs of " 148 "speculatively executed instructions")); 149 150 static cl::opt<int> 151 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 152 cl::init(10), 153 cl::desc("Max size of a block which is still considered " 154 "small enough to thread through")); 155 156 // Two is chosen to allow one negation and a logical combine. 157 static cl::opt<unsigned> 158 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 159 cl::init(2), 160 cl::desc("Maximum cost of combining conditions when " 161 "folding branches")); 162 163 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( 164 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, 165 cl::init(2), 166 cl::desc("Multiplier to apply to threshold when determining whether or not " 167 "to fold branch to common destination when vector operations are " 168 "present")); 169 170 static cl::opt<bool> EnableMergeCompatibleInvokes( 171 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true), 172 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate")); 173 174 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 175 STATISTIC(NumLinearMaps, 176 "Number of switch instructions turned into linear mapping"); 177 STATISTIC(NumLookupTables, 178 "Number of switch instructions turned into lookup tables"); 179 STATISTIC( 180 NumLookupTablesHoles, 181 "Number of switch instructions turned into lookup tables (holes checked)"); 182 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 183 STATISTIC(NumFoldValueComparisonIntoPredecessors, 184 "Number of value comparisons folded into predecessor basic blocks"); 185 STATISTIC(NumFoldBranchToCommonDest, 186 "Number of branches folded into predecessor basic block"); 187 STATISTIC( 188 NumHoistCommonCode, 189 "Number of common instruction 'blocks' hoisted up to the begin block"); 190 STATISTIC(NumHoistCommonInstrs, 191 "Number of common instructions hoisted up to the begin block"); 192 STATISTIC(NumSinkCommonCode, 193 "Number of common instruction 'blocks' sunk down to the end block"); 194 STATISTIC(NumSinkCommonInstrs, 195 "Number of common instructions sunk down to the end block"); 196 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 197 STATISTIC(NumInvokes, 198 "Number of invokes with empty resume blocks simplified into calls"); 199 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); 200 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); 201 202 namespace { 203 204 // The first field contains the value that the switch produces when a certain 205 // case group is selected, and the second field is a vector containing the 206 // cases composing the case group. 207 using SwitchCaseResultVectorTy = 208 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 209 210 // The first field contains the phi node that generates a result of the switch 211 // and the second field contains the value generated for a certain case in the 212 // switch for that PHI. 213 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 214 215 /// ValueEqualityComparisonCase - Represents a case of a switch. 216 struct ValueEqualityComparisonCase { 217 ConstantInt *Value; 218 BasicBlock *Dest; 219 220 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 221 : Value(Value), Dest(Dest) {} 222 223 bool operator<(ValueEqualityComparisonCase RHS) const { 224 // Comparing pointers is ok as we only rely on the order for uniquing. 225 return Value < RHS.Value; 226 } 227 228 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 229 }; 230 231 class SimplifyCFGOpt { 232 const TargetTransformInfo &TTI; 233 DomTreeUpdater *DTU; 234 const DataLayout &DL; 235 ArrayRef<WeakVH> LoopHeaders; 236 const SimplifyCFGOptions &Options; 237 bool Resimplify; 238 239 Value *isValueEqualityComparison(Instruction *TI); 240 BasicBlock *GetValueEqualityComparisonCases( 241 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 242 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 243 BasicBlock *Pred, 244 IRBuilder<> &Builder); 245 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 246 Instruction *PTI, 247 IRBuilder<> &Builder); 248 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 249 IRBuilder<> &Builder); 250 251 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 252 bool simplifySingleResume(ResumeInst *RI); 253 bool simplifyCommonResume(ResumeInst *RI); 254 bool simplifyCleanupReturn(CleanupReturnInst *RI); 255 bool simplifyUnreachable(UnreachableInst *UI); 256 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 257 bool simplifyIndirectBr(IndirectBrInst *IBI); 258 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 259 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 260 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 261 262 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 263 IRBuilder<> &Builder); 264 265 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 266 bool EqTermsOnly); 267 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 268 const TargetTransformInfo &TTI); 269 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 270 BasicBlock *TrueBB, BasicBlock *FalseBB, 271 uint32_t TrueWeight, uint32_t FalseWeight); 272 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 273 const DataLayout &DL); 274 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 275 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 276 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 277 278 public: 279 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 280 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 281 const SimplifyCFGOptions &Opts) 282 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 283 assert((!DTU || !DTU->hasPostDomTree()) && 284 "SimplifyCFG is not yet capable of maintaining validity of a " 285 "PostDomTree, so don't ask for it."); 286 } 287 288 bool simplifyOnce(BasicBlock *BB); 289 bool run(BasicBlock *BB); 290 291 // Helper to set Resimplify and return change indication. 292 bool requestResimplify() { 293 Resimplify = true; 294 return true; 295 } 296 }; 297 298 } // end anonymous namespace 299 300 /// Return true if all the PHI nodes in the basic block \p BB 301 /// receive compatible (identical) incoming values when coming from 302 /// all of the predecessor blocks that are specified in \p IncomingBlocks. 303 /// 304 /// Note that if the values aren't exactly identical, but \p EquivalenceSet 305 /// is provided, and *both* of the values are present in the set, 306 /// then they are considered equal. 307 static bool IncomingValuesAreCompatible( 308 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, 309 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { 310 assert(IncomingBlocks.size() == 2 && 311 "Only for a pair of incoming blocks at the time!"); 312 313 // FIXME: it is okay if one of the incoming values is an `undef` value, 314 // iff the other incoming value is guaranteed to be a non-poison value. 315 // FIXME: it is okay if one of the incoming values is a `poison` value. 316 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { 317 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); 318 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); 319 if (IV0 == IV1) 320 return true; 321 if (EquivalenceSet && EquivalenceSet->contains(IV0) && 322 EquivalenceSet->contains(IV1)) 323 return true; 324 return false; 325 }); 326 } 327 328 /// Return true if it is safe to merge these two 329 /// terminator instructions together. 330 static bool 331 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 332 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 333 if (SI1 == SI2) 334 return false; // Can't merge with self! 335 336 // It is not safe to merge these two switch instructions if they have a common 337 // successor, and if that successor has a PHI node, and if *that* PHI node has 338 // conflicting incoming values from the two switch blocks. 339 BasicBlock *SI1BB = SI1->getParent(); 340 BasicBlock *SI2BB = SI2->getParent(); 341 342 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 343 bool Fail = false; 344 for (BasicBlock *Succ : successors(SI2BB)) { 345 if (!SI1Succs.count(Succ)) 346 continue; 347 if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) 348 continue; 349 Fail = true; 350 if (FailBlocks) 351 FailBlocks->insert(Succ); 352 else 353 break; 354 } 355 356 return !Fail; 357 } 358 359 /// Update PHI nodes in Succ to indicate that there will now be entries in it 360 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 361 /// will be the same as those coming in from ExistPred, an existing predecessor 362 /// of Succ. 363 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 364 BasicBlock *ExistPred, 365 MemorySSAUpdater *MSSAU = nullptr) { 366 for (PHINode &PN : Succ->phis()) 367 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 368 if (MSSAU) 369 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 370 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 371 } 372 373 /// Compute an abstract "cost" of speculating the given instruction, 374 /// which is assumed to be safe to speculate. TCC_Free means cheap, 375 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 376 /// expensive. 377 static InstructionCost computeSpeculationCost(const User *I, 378 const TargetTransformInfo &TTI) { 379 assert(isSafeToSpeculativelyExecute(I) && 380 "Instruction is not safe to speculatively execute!"); 381 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 382 } 383 384 /// If we have a merge point of an "if condition" as accepted above, 385 /// return true if the specified value dominates the block. We 386 /// don't handle the true generality of domination here, just a special case 387 /// which works well enough for us. 388 /// 389 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 390 /// see if V (which must be an instruction) and its recursive operands 391 /// that do not dominate BB have a combined cost lower than Budget and 392 /// are non-trapping. If both are true, the instruction is inserted into the 393 /// set and true is returned. 394 /// 395 /// The cost for most non-trapping instructions is defined as 1 except for 396 /// Select whose cost is 2. 397 /// 398 /// After this function returns, Cost is increased by the cost of 399 /// V plus its non-dominating operands. If that cost is greater than 400 /// Budget, false is returned and Cost is undefined. 401 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 402 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 403 InstructionCost &Cost, 404 InstructionCost Budget, 405 const TargetTransformInfo &TTI, 406 unsigned Depth = 0) { 407 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 408 // so limit the recursion depth. 409 // TODO: While this recursion limit does prevent pathological behavior, it 410 // would be better to track visited instructions to avoid cycles. 411 if (Depth == MaxSpeculationDepth) 412 return false; 413 414 Instruction *I = dyn_cast<Instruction>(V); 415 if (!I) { 416 // Non-instructions all dominate instructions, but not all constantexprs 417 // can be executed unconditionally. 418 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 419 if (C->canTrap()) 420 return false; 421 return true; 422 } 423 BasicBlock *PBB = I->getParent(); 424 425 // We don't want to allow weird loops that might have the "if condition" in 426 // the bottom of this block. 427 if (PBB == BB) 428 return false; 429 430 // If this instruction is defined in a block that contains an unconditional 431 // branch to BB, then it must be in the 'conditional' part of the "if 432 // statement". If not, it definitely dominates the region. 433 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 434 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 435 return true; 436 437 // If we have seen this instruction before, don't count it again. 438 if (AggressiveInsts.count(I)) 439 return true; 440 441 // Okay, it looks like the instruction IS in the "condition". Check to 442 // see if it's a cheap instruction to unconditionally compute, and if it 443 // only uses stuff defined outside of the condition. If so, hoist it out. 444 if (!isSafeToSpeculativelyExecute(I)) 445 return false; 446 447 Cost += computeSpeculationCost(I, TTI); 448 449 // Allow exactly one instruction to be speculated regardless of its cost 450 // (as long as it is safe to do so). 451 // This is intended to flatten the CFG even if the instruction is a division 452 // or other expensive operation. The speculation of an expensive instruction 453 // is expected to be undone in CodeGenPrepare if the speculation has not 454 // enabled further IR optimizations. 455 if (Cost > Budget && 456 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 457 !Cost.isValid())) 458 return false; 459 460 // Okay, we can only really hoist these out if their operands do 461 // not take us over the cost threshold. 462 for (Use &Op : I->operands()) 463 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 464 Depth + 1)) 465 return false; 466 // Okay, it's safe to do this! Remember this instruction. 467 AggressiveInsts.insert(I); 468 return true; 469 } 470 471 /// Extract ConstantInt from value, looking through IntToPtr 472 /// and PointerNullValue. Return NULL if value is not a constant int. 473 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 474 // Normal constant int. 475 ConstantInt *CI = dyn_cast<ConstantInt>(V); 476 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 477 return CI; 478 479 // This is some kind of pointer constant. Turn it into a pointer-sized 480 // ConstantInt if possible. 481 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 482 483 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 484 if (isa<ConstantPointerNull>(V)) 485 return ConstantInt::get(PtrTy, 0); 486 487 // IntToPtr const int. 488 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 489 if (CE->getOpcode() == Instruction::IntToPtr) 490 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 491 // The constant is very likely to have the right type already. 492 if (CI->getType() == PtrTy) 493 return CI; 494 else 495 return cast<ConstantInt>( 496 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 497 } 498 return nullptr; 499 } 500 501 namespace { 502 503 /// Given a chain of or (||) or and (&&) comparison of a value against a 504 /// constant, this will try to recover the information required for a switch 505 /// structure. 506 /// It will depth-first traverse the chain of comparison, seeking for patterns 507 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 508 /// representing the different cases for the switch. 509 /// Note that if the chain is composed of '||' it will build the set of elements 510 /// that matches the comparisons (i.e. any of this value validate the chain) 511 /// while for a chain of '&&' it will build the set elements that make the test 512 /// fail. 513 struct ConstantComparesGatherer { 514 const DataLayout &DL; 515 516 /// Value found for the switch comparison 517 Value *CompValue = nullptr; 518 519 /// Extra clause to be checked before the switch 520 Value *Extra = nullptr; 521 522 /// Set of integers to match in switch 523 SmallVector<ConstantInt *, 8> Vals; 524 525 /// Number of comparisons matched in the and/or chain 526 unsigned UsedICmps = 0; 527 528 /// Construct and compute the result for the comparison instruction Cond 529 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 530 gather(Cond); 531 } 532 533 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 534 ConstantComparesGatherer & 535 operator=(const ConstantComparesGatherer &) = delete; 536 537 private: 538 /// Try to set the current value used for the comparison, it succeeds only if 539 /// it wasn't set before or if the new value is the same as the old one 540 bool setValueOnce(Value *NewVal) { 541 if (CompValue && CompValue != NewVal) 542 return false; 543 CompValue = NewVal; 544 return (CompValue != nullptr); 545 } 546 547 /// Try to match Instruction "I" as a comparison against a constant and 548 /// populates the array Vals with the set of values that match (or do not 549 /// match depending on isEQ). 550 /// Return false on failure. On success, the Value the comparison matched 551 /// against is placed in CompValue. 552 /// If CompValue is already set, the function is expected to fail if a match 553 /// is found but the value compared to is different. 554 bool matchInstruction(Instruction *I, bool isEQ) { 555 // If this is an icmp against a constant, handle this as one of the cases. 556 ICmpInst *ICI; 557 ConstantInt *C; 558 if (!((ICI = dyn_cast<ICmpInst>(I)) && 559 (C = GetConstantInt(I->getOperand(1), DL)))) { 560 return false; 561 } 562 563 Value *RHSVal; 564 const APInt *RHSC; 565 566 // Pattern match a special case 567 // (x & ~2^z) == y --> x == y || x == y|2^z 568 // This undoes a transformation done by instcombine to fuse 2 compares. 569 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 570 // It's a little bit hard to see why the following transformations are 571 // correct. Here is a CVC3 program to verify them for 64-bit values: 572 573 /* 574 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 575 x : BITVECTOR(64); 576 y : BITVECTOR(64); 577 z : BITVECTOR(64); 578 mask : BITVECTOR(64) = BVSHL(ONE, z); 579 QUERY( (y & ~mask = y) => 580 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 581 ); 582 QUERY( (y | mask = y) => 583 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 584 ); 585 */ 586 587 // Please note that each pattern must be a dual implication (<--> or 588 // iff). One directional implication can create spurious matches. If the 589 // implication is only one-way, an unsatisfiable condition on the left 590 // side can imply a satisfiable condition on the right side. Dual 591 // implication ensures that satisfiable conditions are transformed to 592 // other satisfiable conditions and unsatisfiable conditions are 593 // transformed to other unsatisfiable conditions. 594 595 // Here is a concrete example of a unsatisfiable condition on the left 596 // implying a satisfiable condition on the right: 597 // 598 // mask = (1 << z) 599 // (x & ~mask) == y --> (x == y || x == (y | mask)) 600 // 601 // Substituting y = 3, z = 0 yields: 602 // (x & -2) == 3 --> (x == 3 || x == 2) 603 604 // Pattern match a special case: 605 /* 606 QUERY( (y & ~mask = y) => 607 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 608 ); 609 */ 610 if (match(ICI->getOperand(0), 611 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 612 APInt Mask = ~*RHSC; 613 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 614 // If we already have a value for the switch, it has to match! 615 if (!setValueOnce(RHSVal)) 616 return false; 617 618 Vals.push_back(C); 619 Vals.push_back( 620 ConstantInt::get(C->getContext(), 621 C->getValue() | Mask)); 622 UsedICmps++; 623 return true; 624 } 625 } 626 627 // Pattern match a special case: 628 /* 629 QUERY( (y | mask = y) => 630 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 631 ); 632 */ 633 if (match(ICI->getOperand(0), 634 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 635 APInt Mask = *RHSC; 636 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 637 // If we already have a value for the switch, it has to match! 638 if (!setValueOnce(RHSVal)) 639 return false; 640 641 Vals.push_back(C); 642 Vals.push_back(ConstantInt::get(C->getContext(), 643 C->getValue() & ~Mask)); 644 UsedICmps++; 645 return true; 646 } 647 } 648 649 // If we already have a value for the switch, it has to match! 650 if (!setValueOnce(ICI->getOperand(0))) 651 return false; 652 653 UsedICmps++; 654 Vals.push_back(C); 655 return ICI->getOperand(0); 656 } 657 658 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 659 ConstantRange Span = 660 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 661 662 // Shift the range if the compare is fed by an add. This is the range 663 // compare idiom as emitted by instcombine. 664 Value *CandidateVal = I->getOperand(0); 665 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 666 Span = Span.subtract(*RHSC); 667 CandidateVal = RHSVal; 668 } 669 670 // If this is an and/!= check, then we are looking to build the set of 671 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 672 // x != 0 && x != 1. 673 if (!isEQ) 674 Span = Span.inverse(); 675 676 // If there are a ton of values, we don't want to make a ginormous switch. 677 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 678 return false; 679 } 680 681 // If we already have a value for the switch, it has to match! 682 if (!setValueOnce(CandidateVal)) 683 return false; 684 685 // Add all values from the range to the set 686 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 687 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 688 689 UsedICmps++; 690 return true; 691 } 692 693 /// Given a potentially 'or'd or 'and'd together collection of icmp 694 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 695 /// the value being compared, and stick the list constants into the Vals 696 /// vector. 697 /// One "Extra" case is allowed to differ from the other. 698 void gather(Value *V) { 699 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 700 701 // Keep a stack (SmallVector for efficiency) for depth-first traversal 702 SmallVector<Value *, 8> DFT; 703 SmallPtrSet<Value *, 8> Visited; 704 705 // Initialize 706 Visited.insert(V); 707 DFT.push_back(V); 708 709 while (!DFT.empty()) { 710 V = DFT.pop_back_val(); 711 712 if (Instruction *I = dyn_cast<Instruction>(V)) { 713 // If it is a || (or && depending on isEQ), process the operands. 714 Value *Op0, *Op1; 715 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 716 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 717 if (Visited.insert(Op1).second) 718 DFT.push_back(Op1); 719 if (Visited.insert(Op0).second) 720 DFT.push_back(Op0); 721 722 continue; 723 } 724 725 // Try to match the current instruction 726 if (matchInstruction(I, isEQ)) 727 // Match succeed, continue the loop 728 continue; 729 } 730 731 // One element of the sequence of || (or &&) could not be match as a 732 // comparison against the same value as the others. 733 // We allow only one "Extra" case to be checked before the switch 734 if (!Extra) { 735 Extra = V; 736 continue; 737 } 738 // Failed to parse a proper sequence, abort now 739 CompValue = nullptr; 740 break; 741 } 742 } 743 }; 744 745 } // end anonymous namespace 746 747 static void EraseTerminatorAndDCECond(Instruction *TI, 748 MemorySSAUpdater *MSSAU = nullptr) { 749 Instruction *Cond = nullptr; 750 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 751 Cond = dyn_cast<Instruction>(SI->getCondition()); 752 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 753 if (BI->isConditional()) 754 Cond = dyn_cast<Instruction>(BI->getCondition()); 755 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 756 Cond = dyn_cast<Instruction>(IBI->getAddress()); 757 } 758 759 TI->eraseFromParent(); 760 if (Cond) 761 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 762 } 763 764 /// Return true if the specified terminator checks 765 /// to see if a value is equal to constant integer value. 766 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 767 Value *CV = nullptr; 768 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 769 // Do not permit merging of large switch instructions into their 770 // predecessors unless there is only one predecessor. 771 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 772 CV = SI->getCondition(); 773 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 774 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 775 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 776 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 777 CV = ICI->getOperand(0); 778 } 779 780 // Unwrap any lossless ptrtoint cast. 781 if (CV) { 782 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 783 Value *Ptr = PTII->getPointerOperand(); 784 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 785 CV = Ptr; 786 } 787 } 788 return CV; 789 } 790 791 /// Given a value comparison instruction, 792 /// decode all of the 'cases' that it represents and return the 'default' block. 793 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 794 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 795 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 796 Cases.reserve(SI->getNumCases()); 797 for (auto Case : SI->cases()) 798 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 799 Case.getCaseSuccessor())); 800 return SI->getDefaultDest(); 801 } 802 803 BranchInst *BI = cast<BranchInst>(TI); 804 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 805 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 806 Cases.push_back(ValueEqualityComparisonCase( 807 GetConstantInt(ICI->getOperand(1), DL), Succ)); 808 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 809 } 810 811 /// Given a vector of bb/value pairs, remove any entries 812 /// in the list that match the specified block. 813 static void 814 EliminateBlockCases(BasicBlock *BB, 815 std::vector<ValueEqualityComparisonCase> &Cases) { 816 llvm::erase_value(Cases, BB); 817 } 818 819 /// Return true if there are any keys in C1 that exist in C2 as well. 820 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 821 std::vector<ValueEqualityComparisonCase> &C2) { 822 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 823 824 // Make V1 be smaller than V2. 825 if (V1->size() > V2->size()) 826 std::swap(V1, V2); 827 828 if (V1->empty()) 829 return false; 830 if (V1->size() == 1) { 831 // Just scan V2. 832 ConstantInt *TheVal = (*V1)[0].Value; 833 for (unsigned i = 0, e = V2->size(); i != e; ++i) 834 if (TheVal == (*V2)[i].Value) 835 return true; 836 } 837 838 // Otherwise, just sort both lists and compare element by element. 839 array_pod_sort(V1->begin(), V1->end()); 840 array_pod_sort(V2->begin(), V2->end()); 841 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 842 while (i1 != e1 && i2 != e2) { 843 if ((*V1)[i1].Value == (*V2)[i2].Value) 844 return true; 845 if ((*V1)[i1].Value < (*V2)[i2].Value) 846 ++i1; 847 else 848 ++i2; 849 } 850 return false; 851 } 852 853 // Set branch weights on SwitchInst. This sets the metadata if there is at 854 // least one non-zero weight. 855 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 856 // Check that there is at least one non-zero weight. Otherwise, pass 857 // nullptr to setMetadata which will erase the existing metadata. 858 MDNode *N = nullptr; 859 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 860 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 861 SI->setMetadata(LLVMContext::MD_prof, N); 862 } 863 864 // Similar to the above, but for branch and select instructions that take 865 // exactly 2 weights. 866 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 867 uint32_t FalseWeight) { 868 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 869 // Check that there is at least one non-zero weight. Otherwise, pass 870 // nullptr to setMetadata which will erase the existing metadata. 871 MDNode *N = nullptr; 872 if (TrueWeight || FalseWeight) 873 N = MDBuilder(I->getParent()->getContext()) 874 .createBranchWeights(TrueWeight, FalseWeight); 875 I->setMetadata(LLVMContext::MD_prof, N); 876 } 877 878 /// If TI is known to be a terminator instruction and its block is known to 879 /// only have a single predecessor block, check to see if that predecessor is 880 /// also a value comparison with the same value, and if that comparison 881 /// determines the outcome of this comparison. If so, simplify TI. This does a 882 /// very limited form of jump threading. 883 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 884 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 885 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 886 if (!PredVal) 887 return false; // Not a value comparison in predecessor. 888 889 Value *ThisVal = isValueEqualityComparison(TI); 890 assert(ThisVal && "This isn't a value comparison!!"); 891 if (ThisVal != PredVal) 892 return false; // Different predicates. 893 894 // TODO: Preserve branch weight metadata, similarly to how 895 // FoldValueComparisonIntoPredecessors preserves it. 896 897 // Find out information about when control will move from Pred to TI's block. 898 std::vector<ValueEqualityComparisonCase> PredCases; 899 BasicBlock *PredDef = 900 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 901 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 902 903 // Find information about how control leaves this block. 904 std::vector<ValueEqualityComparisonCase> ThisCases; 905 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 906 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 907 908 // If TI's block is the default block from Pred's comparison, potentially 909 // simplify TI based on this knowledge. 910 if (PredDef == TI->getParent()) { 911 // If we are here, we know that the value is none of those cases listed in 912 // PredCases. If there are any cases in ThisCases that are in PredCases, we 913 // can simplify TI. 914 if (!ValuesOverlap(PredCases, ThisCases)) 915 return false; 916 917 if (isa<BranchInst>(TI)) { 918 // Okay, one of the successors of this condbr is dead. Convert it to a 919 // uncond br. 920 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 921 // Insert the new branch. 922 Instruction *NI = Builder.CreateBr(ThisDef); 923 (void)NI; 924 925 // Remove PHI node entries for the dead edge. 926 ThisCases[0].Dest->removePredecessor(PredDef); 927 928 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 929 << "Through successor TI: " << *TI << "Leaving: " << *NI 930 << "\n"); 931 932 EraseTerminatorAndDCECond(TI); 933 934 if (DTU) 935 DTU->applyUpdates( 936 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 937 938 return true; 939 } 940 941 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 942 // Okay, TI has cases that are statically dead, prune them away. 943 SmallPtrSet<Constant *, 16> DeadCases; 944 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 945 DeadCases.insert(PredCases[i].Value); 946 947 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 948 << "Through successor TI: " << *TI); 949 950 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 951 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 952 --i; 953 auto *Successor = i->getCaseSuccessor(); 954 if (DTU) 955 ++NumPerSuccessorCases[Successor]; 956 if (DeadCases.count(i->getCaseValue())) { 957 Successor->removePredecessor(PredDef); 958 SI.removeCase(i); 959 if (DTU) 960 --NumPerSuccessorCases[Successor]; 961 } 962 } 963 964 if (DTU) { 965 std::vector<DominatorTree::UpdateType> Updates; 966 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 967 if (I.second == 0) 968 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 969 DTU->applyUpdates(Updates); 970 } 971 972 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 973 return true; 974 } 975 976 // Otherwise, TI's block must correspond to some matched value. Find out 977 // which value (or set of values) this is. 978 ConstantInt *TIV = nullptr; 979 BasicBlock *TIBB = TI->getParent(); 980 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 981 if (PredCases[i].Dest == TIBB) { 982 if (TIV) 983 return false; // Cannot handle multiple values coming to this block. 984 TIV = PredCases[i].Value; 985 } 986 assert(TIV && "No edge from pred to succ?"); 987 988 // Okay, we found the one constant that our value can be if we get into TI's 989 // BB. Find out which successor will unconditionally be branched to. 990 BasicBlock *TheRealDest = nullptr; 991 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 992 if (ThisCases[i].Value == TIV) { 993 TheRealDest = ThisCases[i].Dest; 994 break; 995 } 996 997 // If not handled by any explicit cases, it is handled by the default case. 998 if (!TheRealDest) 999 TheRealDest = ThisDef; 1000 1001 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 1002 1003 // Remove PHI node entries for dead edges. 1004 BasicBlock *CheckEdge = TheRealDest; 1005 for (BasicBlock *Succ : successors(TIBB)) 1006 if (Succ != CheckEdge) { 1007 if (Succ != TheRealDest) 1008 RemovedSuccs.insert(Succ); 1009 Succ->removePredecessor(TIBB); 1010 } else 1011 CheckEdge = nullptr; 1012 1013 // Insert the new branch. 1014 Instruction *NI = Builder.CreateBr(TheRealDest); 1015 (void)NI; 1016 1017 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1018 << "Through successor TI: " << *TI << "Leaving: " << *NI 1019 << "\n"); 1020 1021 EraseTerminatorAndDCECond(TI); 1022 if (DTU) { 1023 SmallVector<DominatorTree::UpdateType, 2> Updates; 1024 Updates.reserve(RemovedSuccs.size()); 1025 for (auto *RemovedSucc : RemovedSuccs) 1026 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1027 DTU->applyUpdates(Updates); 1028 } 1029 return true; 1030 } 1031 1032 namespace { 1033 1034 /// This class implements a stable ordering of constant 1035 /// integers that does not depend on their address. This is important for 1036 /// applications that sort ConstantInt's to ensure uniqueness. 1037 struct ConstantIntOrdering { 1038 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1039 return LHS->getValue().ult(RHS->getValue()); 1040 } 1041 }; 1042 1043 } // end anonymous namespace 1044 1045 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1046 ConstantInt *const *P2) { 1047 const ConstantInt *LHS = *P1; 1048 const ConstantInt *RHS = *P2; 1049 if (LHS == RHS) 1050 return 0; 1051 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1052 } 1053 1054 static inline bool HasBranchWeights(const Instruction *I) { 1055 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1056 if (ProfMD && ProfMD->getOperand(0)) 1057 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1058 return MDS->getString().equals("branch_weights"); 1059 1060 return false; 1061 } 1062 1063 /// Get Weights of a given terminator, the default weight is at the front 1064 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1065 /// metadata. 1066 static void GetBranchWeights(Instruction *TI, 1067 SmallVectorImpl<uint64_t> &Weights) { 1068 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1069 assert(MD); 1070 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1071 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1072 Weights.push_back(CI->getValue().getZExtValue()); 1073 } 1074 1075 // If TI is a conditional eq, the default case is the false case, 1076 // and the corresponding branch-weight data is at index 2. We swap the 1077 // default weight to be the first entry. 1078 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1079 assert(Weights.size() == 2); 1080 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1081 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1082 std::swap(Weights.front(), Weights.back()); 1083 } 1084 } 1085 1086 /// Keep halving the weights until all can fit in uint32_t. 1087 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1088 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1089 if (Max > UINT_MAX) { 1090 unsigned Offset = 32 - countLeadingZeros(Max); 1091 for (uint64_t &I : Weights) 1092 I >>= Offset; 1093 } 1094 } 1095 1096 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1097 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1098 Instruction *PTI = PredBlock->getTerminator(); 1099 1100 // If we have bonus instructions, clone them into the predecessor block. 1101 // Note that there may be multiple predecessor blocks, so we cannot move 1102 // bonus instructions to a predecessor block. 1103 for (Instruction &BonusInst : *BB) { 1104 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1105 continue; 1106 1107 Instruction *NewBonusInst = BonusInst.clone(); 1108 1109 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1110 // Unless the instruction has the same !dbg location as the original 1111 // branch, drop it. When we fold the bonus instructions we want to make 1112 // sure we reset their debug locations in order to avoid stepping on 1113 // dead code caused by folding dead branches. 1114 NewBonusInst->setDebugLoc(DebugLoc()); 1115 } 1116 1117 RemapInstruction(NewBonusInst, VMap, 1118 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1119 VMap[&BonusInst] = NewBonusInst; 1120 1121 // If we moved a load, we cannot any longer claim any knowledge about 1122 // its potential value. The previous information might have been valid 1123 // only given the branch precondition. 1124 // For an analogous reason, we must also drop all the metadata whose 1125 // semantics we don't understand. We *can* preserve !annotation, because 1126 // it is tied to the instruction itself, not the value or position. 1127 // Similarly strip attributes on call parameters that may cause UB in 1128 // location the call is moved to. 1129 NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata( 1130 LLVMContext::MD_annotation); 1131 1132 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1133 NewBonusInst->takeName(&BonusInst); 1134 BonusInst.setName(NewBonusInst->getName() + ".old"); 1135 1136 // Update (liveout) uses of bonus instructions, 1137 // now that the bonus instruction has been cloned into predecessor. 1138 // Note that we expect to be in a block-closed SSA form for this to work! 1139 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1140 auto *UI = cast<Instruction>(U.getUser()); 1141 auto *PN = dyn_cast<PHINode>(UI); 1142 if (!PN) { 1143 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && 1144 "If the user is not a PHI node, then it should be in the same " 1145 "block as, and come after, the original bonus instruction."); 1146 continue; // Keep using the original bonus instruction. 1147 } 1148 // Is this the block-closed SSA form PHI node? 1149 if (PN->getIncomingBlock(U) == BB) 1150 continue; // Great, keep using the original bonus instruction. 1151 // The only other alternative is an "use" when coming from 1152 // the predecessor block - here we should refer to the cloned bonus instr. 1153 assert(PN->getIncomingBlock(U) == PredBlock && 1154 "Not in block-closed SSA form?"); 1155 U.set(NewBonusInst); 1156 } 1157 } 1158 } 1159 1160 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1161 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1162 BasicBlock *BB = TI->getParent(); 1163 BasicBlock *Pred = PTI->getParent(); 1164 1165 SmallVector<DominatorTree::UpdateType, 32> Updates; 1166 1167 // Figure out which 'cases' to copy from SI to PSI. 1168 std::vector<ValueEqualityComparisonCase> BBCases; 1169 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1170 1171 std::vector<ValueEqualityComparisonCase> PredCases; 1172 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1173 1174 // Based on whether the default edge from PTI goes to BB or not, fill in 1175 // PredCases and PredDefault with the new switch cases we would like to 1176 // build. 1177 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1178 1179 // Update the branch weight metadata along the way 1180 SmallVector<uint64_t, 8> Weights; 1181 bool PredHasWeights = HasBranchWeights(PTI); 1182 bool SuccHasWeights = HasBranchWeights(TI); 1183 1184 if (PredHasWeights) { 1185 GetBranchWeights(PTI, Weights); 1186 // branch-weight metadata is inconsistent here. 1187 if (Weights.size() != 1 + PredCases.size()) 1188 PredHasWeights = SuccHasWeights = false; 1189 } else if (SuccHasWeights) 1190 // If there are no predecessor weights but there are successor weights, 1191 // populate Weights with 1, which will later be scaled to the sum of 1192 // successor's weights 1193 Weights.assign(1 + PredCases.size(), 1); 1194 1195 SmallVector<uint64_t, 8> SuccWeights; 1196 if (SuccHasWeights) { 1197 GetBranchWeights(TI, SuccWeights); 1198 // branch-weight metadata is inconsistent here. 1199 if (SuccWeights.size() != 1 + BBCases.size()) 1200 PredHasWeights = SuccHasWeights = false; 1201 } else if (PredHasWeights) 1202 SuccWeights.assign(1 + BBCases.size(), 1); 1203 1204 if (PredDefault == BB) { 1205 // If this is the default destination from PTI, only the edges in TI 1206 // that don't occur in PTI, or that branch to BB will be activated. 1207 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1208 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1209 if (PredCases[i].Dest != BB) 1210 PTIHandled.insert(PredCases[i].Value); 1211 else { 1212 // The default destination is BB, we don't need explicit targets. 1213 std::swap(PredCases[i], PredCases.back()); 1214 1215 if (PredHasWeights || SuccHasWeights) { 1216 // Increase weight for the default case. 1217 Weights[0] += Weights[i + 1]; 1218 std::swap(Weights[i + 1], Weights.back()); 1219 Weights.pop_back(); 1220 } 1221 1222 PredCases.pop_back(); 1223 --i; 1224 --e; 1225 } 1226 1227 // Reconstruct the new switch statement we will be building. 1228 if (PredDefault != BBDefault) { 1229 PredDefault->removePredecessor(Pred); 1230 if (DTU && PredDefault != BB) 1231 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1232 PredDefault = BBDefault; 1233 ++NewSuccessors[BBDefault]; 1234 } 1235 1236 unsigned CasesFromPred = Weights.size(); 1237 uint64_t ValidTotalSuccWeight = 0; 1238 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1239 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1240 PredCases.push_back(BBCases[i]); 1241 ++NewSuccessors[BBCases[i].Dest]; 1242 if (SuccHasWeights || PredHasWeights) { 1243 // The default weight is at index 0, so weight for the ith case 1244 // should be at index i+1. Scale the cases from successor by 1245 // PredDefaultWeight (Weights[0]). 1246 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1247 ValidTotalSuccWeight += SuccWeights[i + 1]; 1248 } 1249 } 1250 1251 if (SuccHasWeights || PredHasWeights) { 1252 ValidTotalSuccWeight += SuccWeights[0]; 1253 // Scale the cases from predecessor by ValidTotalSuccWeight. 1254 for (unsigned i = 1; i < CasesFromPred; ++i) 1255 Weights[i] *= ValidTotalSuccWeight; 1256 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1257 Weights[0] *= SuccWeights[0]; 1258 } 1259 } else { 1260 // If this is not the default destination from PSI, only the edges 1261 // in SI that occur in PSI with a destination of BB will be 1262 // activated. 1263 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1264 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1265 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1266 if (PredCases[i].Dest == BB) { 1267 PTIHandled.insert(PredCases[i].Value); 1268 1269 if (PredHasWeights || SuccHasWeights) { 1270 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1271 std::swap(Weights[i + 1], Weights.back()); 1272 Weights.pop_back(); 1273 } 1274 1275 std::swap(PredCases[i], PredCases.back()); 1276 PredCases.pop_back(); 1277 --i; 1278 --e; 1279 } 1280 1281 // Okay, now we know which constants were sent to BB from the 1282 // predecessor. Figure out where they will all go now. 1283 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1284 if (PTIHandled.count(BBCases[i].Value)) { 1285 // If this is one we are capable of getting... 1286 if (PredHasWeights || SuccHasWeights) 1287 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1288 PredCases.push_back(BBCases[i]); 1289 ++NewSuccessors[BBCases[i].Dest]; 1290 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1291 } 1292 1293 // If there are any constants vectored to BB that TI doesn't handle, 1294 // they must go to the default destination of TI. 1295 for (ConstantInt *I : PTIHandled) { 1296 if (PredHasWeights || SuccHasWeights) 1297 Weights.push_back(WeightsForHandled[I]); 1298 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1299 ++NewSuccessors[BBDefault]; 1300 } 1301 } 1302 1303 // Okay, at this point, we know which new successor Pred will get. Make 1304 // sure we update the number of entries in the PHI nodes for these 1305 // successors. 1306 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1307 if (DTU) { 1308 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1309 Updates.reserve(Updates.size() + NewSuccessors.size()); 1310 } 1311 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1312 NewSuccessors) { 1313 for (auto I : seq(0, NewSuccessor.second)) { 1314 (void)I; 1315 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1316 } 1317 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1318 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1319 } 1320 1321 Builder.SetInsertPoint(PTI); 1322 // Convert pointer to int before we switch. 1323 if (CV->getType()->isPointerTy()) { 1324 CV = 1325 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1326 } 1327 1328 // Now that the successors are updated, create the new Switch instruction. 1329 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1330 NewSI->setDebugLoc(PTI->getDebugLoc()); 1331 for (ValueEqualityComparisonCase &V : PredCases) 1332 NewSI->addCase(V.Value, V.Dest); 1333 1334 if (PredHasWeights || SuccHasWeights) { 1335 // Halve the weights if any of them cannot fit in an uint32_t 1336 FitWeights(Weights); 1337 1338 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1339 1340 setBranchWeights(NewSI, MDWeights); 1341 } 1342 1343 EraseTerminatorAndDCECond(PTI); 1344 1345 // Okay, last check. If BB is still a successor of PSI, then we must 1346 // have an infinite loop case. If so, add an infinitely looping block 1347 // to handle the case to preserve the behavior of the code. 1348 BasicBlock *InfLoopBlock = nullptr; 1349 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1350 if (NewSI->getSuccessor(i) == BB) { 1351 if (!InfLoopBlock) { 1352 // Insert it at the end of the function, because it's either code, 1353 // or it won't matter if it's hot. :) 1354 InfLoopBlock = 1355 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1356 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1357 if (DTU) 1358 Updates.push_back( 1359 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1360 } 1361 NewSI->setSuccessor(i, InfLoopBlock); 1362 } 1363 1364 if (DTU) { 1365 if (InfLoopBlock) 1366 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1367 1368 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1369 1370 DTU->applyUpdates(Updates); 1371 } 1372 1373 ++NumFoldValueComparisonIntoPredecessors; 1374 return true; 1375 } 1376 1377 /// The specified terminator is a value equality comparison instruction 1378 /// (either a switch or a branch on "X == c"). 1379 /// See if any of the predecessors of the terminator block are value comparisons 1380 /// on the same value. If so, and if safe to do so, fold them together. 1381 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1382 IRBuilder<> &Builder) { 1383 BasicBlock *BB = TI->getParent(); 1384 Value *CV = isValueEqualityComparison(TI); // CondVal 1385 assert(CV && "Not a comparison?"); 1386 1387 bool Changed = false; 1388 1389 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1390 while (!Preds.empty()) { 1391 BasicBlock *Pred = Preds.pop_back_val(); 1392 Instruction *PTI = Pred->getTerminator(); 1393 1394 // Don't try to fold into itself. 1395 if (Pred == BB) 1396 continue; 1397 1398 // See if the predecessor is a comparison with the same value. 1399 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1400 if (PCV != CV) 1401 continue; 1402 1403 SmallSetVector<BasicBlock *, 4> FailBlocks; 1404 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1405 for (auto *Succ : FailBlocks) { 1406 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1407 return false; 1408 } 1409 } 1410 1411 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1412 Changed = true; 1413 } 1414 return Changed; 1415 } 1416 1417 // If we would need to insert a select that uses the value of this invoke 1418 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1419 // can't hoist the invoke, as there is nowhere to put the select in this case. 1420 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1421 Instruction *I1, Instruction *I2) { 1422 for (BasicBlock *Succ : successors(BB1)) { 1423 for (const PHINode &PN : Succ->phis()) { 1424 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1425 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1426 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1427 return false; 1428 } 1429 } 1430 } 1431 return true; 1432 } 1433 1434 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1435 1436 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1437 /// in the two blocks up into the branch block. The caller of this function 1438 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1439 /// only perform hoisting in case both blocks only contain a terminator. In that 1440 /// case, only the original BI will be replaced and selects for PHIs are added. 1441 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1442 const TargetTransformInfo &TTI, 1443 bool EqTermsOnly) { 1444 // This does very trivial matching, with limited scanning, to find identical 1445 // instructions in the two blocks. In particular, we don't want to get into 1446 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1447 // such, we currently just scan for obviously identical instructions in an 1448 // identical order. 1449 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1450 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1451 1452 // If either of the blocks has it's address taken, then we can't do this fold, 1453 // because the code we'd hoist would no longer run when we jump into the block 1454 // by it's address. 1455 if (BB1->hasAddressTaken() || BB2->hasAddressTaken()) 1456 return false; 1457 1458 BasicBlock::iterator BB1_Itr = BB1->begin(); 1459 BasicBlock::iterator BB2_Itr = BB2->begin(); 1460 1461 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1462 // Skip debug info if it is not identical. 1463 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1464 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1465 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1466 while (isa<DbgInfoIntrinsic>(I1)) 1467 I1 = &*BB1_Itr++; 1468 while (isa<DbgInfoIntrinsic>(I2)) 1469 I2 = &*BB2_Itr++; 1470 } 1471 // FIXME: Can we define a safety predicate for CallBr? 1472 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1473 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1474 isa<CallBrInst>(I1)) 1475 return false; 1476 1477 BasicBlock *BIParent = BI->getParent(); 1478 1479 bool Changed = false; 1480 1481 auto _ = make_scope_exit([&]() { 1482 if (Changed) 1483 ++NumHoistCommonCode; 1484 }); 1485 1486 // Check if only hoisting terminators is allowed. This does not add new 1487 // instructions to the hoist location. 1488 if (EqTermsOnly) { 1489 // Skip any debug intrinsics, as they are free to hoist. 1490 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1491 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1492 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1493 return false; 1494 if (!I1NonDbg->isTerminator()) 1495 return false; 1496 // Now we know that we only need to hoist debug instrinsics and the 1497 // terminator. Let the loop below handle those 2 cases. 1498 } 1499 1500 do { 1501 // If we are hoisting the terminator instruction, don't move one (making a 1502 // broken BB), instead clone it, and remove BI. 1503 if (I1->isTerminator()) 1504 goto HoistTerminator; 1505 1506 // If we're going to hoist a call, make sure that the two instructions we're 1507 // commoning/hoisting are both marked with musttail, or neither of them is 1508 // marked as such. Otherwise, we might end up in a situation where we hoist 1509 // from a block where the terminator is a `ret` to a block where the terminator 1510 // is a `br`, and `musttail` calls expect to be followed by a return. 1511 auto *C1 = dyn_cast<CallInst>(I1); 1512 auto *C2 = dyn_cast<CallInst>(I2); 1513 if (C1 && C2) 1514 if (C1->isMustTailCall() != C2->isMustTailCall()) 1515 return Changed; 1516 1517 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1518 return Changed; 1519 1520 // If any of the two call sites has nomerge attribute, stop hoisting. 1521 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1522 if (CB1->cannotMerge()) 1523 return Changed; 1524 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1525 if (CB2->cannotMerge()) 1526 return Changed; 1527 1528 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1529 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1530 // The debug location is an integral part of a debug info intrinsic 1531 // and can't be separated from it or replaced. Instead of attempting 1532 // to merge locations, simply hoist both copies of the intrinsic. 1533 BIParent->getInstList().splice(BI->getIterator(), 1534 BB1->getInstList(), I1); 1535 BIParent->getInstList().splice(BI->getIterator(), 1536 BB2->getInstList(), I2); 1537 Changed = true; 1538 } else { 1539 // For a normal instruction, we just move one to right before the branch, 1540 // then replace all uses of the other with the first. Finally, we remove 1541 // the now redundant second instruction. 1542 BIParent->getInstList().splice(BI->getIterator(), 1543 BB1->getInstList(), I1); 1544 if (!I2->use_empty()) 1545 I2->replaceAllUsesWith(I1); 1546 I1->andIRFlags(I2); 1547 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1548 LLVMContext::MD_range, 1549 LLVMContext::MD_fpmath, 1550 LLVMContext::MD_invariant_load, 1551 LLVMContext::MD_nonnull, 1552 LLVMContext::MD_invariant_group, 1553 LLVMContext::MD_align, 1554 LLVMContext::MD_dereferenceable, 1555 LLVMContext::MD_dereferenceable_or_null, 1556 LLVMContext::MD_mem_parallel_loop_access, 1557 LLVMContext::MD_access_group, 1558 LLVMContext::MD_preserve_access_index}; 1559 combineMetadata(I1, I2, KnownIDs, true); 1560 1561 // I1 and I2 are being combined into a single instruction. Its debug 1562 // location is the merged locations of the original instructions. 1563 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1564 1565 I2->eraseFromParent(); 1566 Changed = true; 1567 } 1568 ++NumHoistCommonInstrs; 1569 1570 I1 = &*BB1_Itr++; 1571 I2 = &*BB2_Itr++; 1572 // Skip debug info if it is not identical. 1573 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1574 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1575 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1576 while (isa<DbgInfoIntrinsic>(I1)) 1577 I1 = &*BB1_Itr++; 1578 while (isa<DbgInfoIntrinsic>(I2)) 1579 I2 = &*BB2_Itr++; 1580 } 1581 } while (I1->isIdenticalToWhenDefined(I2)); 1582 1583 return true; 1584 1585 HoistTerminator: 1586 // It may not be possible to hoist an invoke. 1587 // FIXME: Can we define a safety predicate for CallBr? 1588 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1589 return Changed; 1590 1591 // TODO: callbr hoisting currently disabled pending further study. 1592 if (isa<CallBrInst>(I1)) 1593 return Changed; 1594 1595 for (BasicBlock *Succ : successors(BB1)) { 1596 for (PHINode &PN : Succ->phis()) { 1597 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1598 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1599 if (BB1V == BB2V) 1600 continue; 1601 1602 // Check for passingValueIsAlwaysUndefined here because we would rather 1603 // eliminate undefined control flow then converting it to a select. 1604 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1605 passingValueIsAlwaysUndefined(BB2V, &PN)) 1606 return Changed; 1607 1608 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1609 return Changed; 1610 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1611 return Changed; 1612 } 1613 } 1614 1615 // Okay, it is safe to hoist the terminator. 1616 Instruction *NT = I1->clone(); 1617 BIParent->getInstList().insert(BI->getIterator(), NT); 1618 if (!NT->getType()->isVoidTy()) { 1619 I1->replaceAllUsesWith(NT); 1620 I2->replaceAllUsesWith(NT); 1621 NT->takeName(I1); 1622 } 1623 Changed = true; 1624 ++NumHoistCommonInstrs; 1625 1626 // Ensure terminator gets a debug location, even an unknown one, in case 1627 // it involves inlinable calls. 1628 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1629 1630 // PHIs created below will adopt NT's merged DebugLoc. 1631 IRBuilder<NoFolder> Builder(NT); 1632 1633 // Hoisting one of the terminators from our successor is a great thing. 1634 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1635 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1636 // nodes, so we insert select instruction to compute the final result. 1637 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1638 for (BasicBlock *Succ : successors(BB1)) { 1639 for (PHINode &PN : Succ->phis()) { 1640 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1641 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1642 if (BB1V == BB2V) 1643 continue; 1644 1645 // These values do not agree. Insert a select instruction before NT 1646 // that determines the right value. 1647 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1648 if (!SI) { 1649 // Propagate fast-math-flags from phi node to its replacement select. 1650 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1651 if (isa<FPMathOperator>(PN)) 1652 Builder.setFastMathFlags(PN.getFastMathFlags()); 1653 1654 SI = cast<SelectInst>( 1655 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1656 BB1V->getName() + "." + BB2V->getName(), BI)); 1657 } 1658 1659 // Make the PHI node use the select for all incoming values for BB1/BB2 1660 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1661 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1662 PN.setIncomingValue(i, SI); 1663 } 1664 } 1665 1666 SmallVector<DominatorTree::UpdateType, 4> Updates; 1667 1668 // Update any PHI nodes in our new successors. 1669 for (BasicBlock *Succ : successors(BB1)) { 1670 AddPredecessorToBlock(Succ, BIParent, BB1); 1671 if (DTU) 1672 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1673 } 1674 1675 if (DTU) 1676 for (BasicBlock *Succ : successors(BI)) 1677 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1678 1679 EraseTerminatorAndDCECond(BI); 1680 if (DTU) 1681 DTU->applyUpdates(Updates); 1682 return Changed; 1683 } 1684 1685 // Check lifetime markers. 1686 static bool isLifeTimeMarker(const Instruction *I) { 1687 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1688 switch (II->getIntrinsicID()) { 1689 default: 1690 break; 1691 case Intrinsic::lifetime_start: 1692 case Intrinsic::lifetime_end: 1693 return true; 1694 } 1695 } 1696 return false; 1697 } 1698 1699 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1700 // into variables. 1701 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1702 int OpIdx) { 1703 return !isa<IntrinsicInst>(I); 1704 } 1705 1706 // All instructions in Insts belong to different blocks that all unconditionally 1707 // branch to a common successor. Analyze each instruction and return true if it 1708 // would be possible to sink them into their successor, creating one common 1709 // instruction instead. For every value that would be required to be provided by 1710 // PHI node (because an operand varies in each input block), add to PHIOperands. 1711 static bool canSinkInstructions( 1712 ArrayRef<Instruction *> Insts, 1713 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1714 // Prune out obviously bad instructions to move. Each instruction must have 1715 // exactly zero or one use, and we check later that use is by a single, common 1716 // PHI instruction in the successor. 1717 bool HasUse = !Insts.front()->user_empty(); 1718 for (auto *I : Insts) { 1719 // These instructions may change or break semantics if moved. 1720 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1721 I->getType()->isTokenTy()) 1722 return false; 1723 1724 // Do not try to sink an instruction in an infinite loop - it can cause 1725 // this algorithm to infinite loop. 1726 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1727 return false; 1728 1729 // Conservatively return false if I is an inline-asm instruction. Sinking 1730 // and merging inline-asm instructions can potentially create arguments 1731 // that cannot satisfy the inline-asm constraints. 1732 // If the instruction has nomerge attribute, return false. 1733 if (const auto *C = dyn_cast<CallBase>(I)) 1734 if (C->isInlineAsm() || C->cannotMerge()) 1735 return false; 1736 1737 // Each instruction must have zero or one use. 1738 if (HasUse && !I->hasOneUse()) 1739 return false; 1740 if (!HasUse && !I->user_empty()) 1741 return false; 1742 } 1743 1744 const Instruction *I0 = Insts.front(); 1745 for (auto *I : Insts) 1746 if (!I->isSameOperationAs(I0)) 1747 return false; 1748 1749 // All instructions in Insts are known to be the same opcode. If they have a 1750 // use, check that the only user is a PHI or in the same block as the 1751 // instruction, because if a user is in the same block as an instruction we're 1752 // contemplating sinking, it must already be determined to be sinkable. 1753 if (HasUse) { 1754 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1755 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1756 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1757 auto *U = cast<Instruction>(*I->user_begin()); 1758 return (PNUse && 1759 PNUse->getParent() == Succ && 1760 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1761 U->getParent() == I->getParent(); 1762 })) 1763 return false; 1764 } 1765 1766 // Because SROA can't handle speculating stores of selects, try not to sink 1767 // loads, stores or lifetime markers of allocas when we'd have to create a 1768 // PHI for the address operand. Also, because it is likely that loads or 1769 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1770 // them. 1771 // This can cause code churn which can have unintended consequences down 1772 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1773 // FIXME: This is a workaround for a deficiency in SROA - see 1774 // https://llvm.org/bugs/show_bug.cgi?id=30188 1775 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1776 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1777 })) 1778 return false; 1779 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1780 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1781 })) 1782 return false; 1783 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1784 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1785 })) 1786 return false; 1787 1788 // For calls to be sinkable, they must all be indirect, or have same callee. 1789 // I.e. if we have two direct calls to different callees, we don't want to 1790 // turn that into an indirect call. Likewise, if we have an indirect call, 1791 // and a direct call, we don't actually want to have a single indirect call. 1792 if (isa<CallBase>(I0)) { 1793 auto IsIndirectCall = [](const Instruction *I) { 1794 return cast<CallBase>(I)->isIndirectCall(); 1795 }; 1796 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1797 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1798 if (HaveIndirectCalls) { 1799 if (!AllCallsAreIndirect) 1800 return false; 1801 } else { 1802 // All callees must be identical. 1803 Value *Callee = nullptr; 1804 for (const Instruction *I : Insts) { 1805 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1806 if (!Callee) 1807 Callee = CurrCallee; 1808 else if (Callee != CurrCallee) 1809 return false; 1810 } 1811 } 1812 } 1813 1814 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1815 Value *Op = I0->getOperand(OI); 1816 if (Op->getType()->isTokenTy()) 1817 // Don't touch any operand of token type. 1818 return false; 1819 1820 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1821 assert(I->getNumOperands() == I0->getNumOperands()); 1822 return I->getOperand(OI) == I0->getOperand(OI); 1823 }; 1824 if (!all_of(Insts, SameAsI0)) { 1825 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1826 !canReplaceOperandWithVariable(I0, OI)) 1827 // We can't create a PHI from this GEP. 1828 return false; 1829 for (auto *I : Insts) 1830 PHIOperands[I].push_back(I->getOperand(OI)); 1831 } 1832 } 1833 return true; 1834 } 1835 1836 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1837 // instruction of every block in Blocks to their common successor, commoning 1838 // into one instruction. 1839 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1840 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1841 1842 // canSinkInstructions returning true guarantees that every block has at 1843 // least one non-terminator instruction. 1844 SmallVector<Instruction*,4> Insts; 1845 for (auto *BB : Blocks) { 1846 Instruction *I = BB->getTerminator(); 1847 do { 1848 I = I->getPrevNode(); 1849 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1850 if (!isa<DbgInfoIntrinsic>(I)) 1851 Insts.push_back(I); 1852 } 1853 1854 // The only checking we need to do now is that all users of all instructions 1855 // are the same PHI node. canSinkInstructions should have checked this but 1856 // it is slightly over-aggressive - it gets confused by commutative 1857 // instructions so double-check it here. 1858 Instruction *I0 = Insts.front(); 1859 if (!I0->user_empty()) { 1860 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1861 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1862 auto *U = cast<Instruction>(*I->user_begin()); 1863 return U == PNUse; 1864 })) 1865 return false; 1866 } 1867 1868 // We don't need to do any more checking here; canSinkInstructions should 1869 // have done it all for us. 1870 SmallVector<Value*, 4> NewOperands; 1871 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1872 // This check is different to that in canSinkInstructions. There, we 1873 // cared about the global view once simplifycfg (and instcombine) have 1874 // completed - it takes into account PHIs that become trivially 1875 // simplifiable. However here we need a more local view; if an operand 1876 // differs we create a PHI and rely on instcombine to clean up the very 1877 // small mess we may make. 1878 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1879 return I->getOperand(O) != I0->getOperand(O); 1880 }); 1881 if (!NeedPHI) { 1882 NewOperands.push_back(I0->getOperand(O)); 1883 continue; 1884 } 1885 1886 // Create a new PHI in the successor block and populate it. 1887 auto *Op = I0->getOperand(O); 1888 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1889 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1890 Op->getName() + ".sink", &BBEnd->front()); 1891 for (auto *I : Insts) 1892 PN->addIncoming(I->getOperand(O), I->getParent()); 1893 NewOperands.push_back(PN); 1894 } 1895 1896 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1897 // and move it to the start of the successor block. 1898 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1899 I0->getOperandUse(O).set(NewOperands[O]); 1900 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1901 1902 // Update metadata and IR flags, and merge debug locations. 1903 for (auto *I : Insts) 1904 if (I != I0) { 1905 // The debug location for the "common" instruction is the merged locations 1906 // of all the commoned instructions. We start with the original location 1907 // of the "common" instruction and iteratively merge each location in the 1908 // loop below. 1909 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1910 // However, as N-way merge for CallInst is rare, so we use simplified API 1911 // instead of using complex API for N-way merge. 1912 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1913 combineMetadataForCSE(I0, I, true); 1914 I0->andIRFlags(I); 1915 } 1916 1917 if (!I0->user_empty()) { 1918 // canSinkLastInstruction checked that all instructions were used by 1919 // one and only one PHI node. Find that now, RAUW it to our common 1920 // instruction and nuke it. 1921 auto *PN = cast<PHINode>(*I0->user_begin()); 1922 PN->replaceAllUsesWith(I0); 1923 PN->eraseFromParent(); 1924 } 1925 1926 // Finally nuke all instructions apart from the common instruction. 1927 for (auto *I : Insts) 1928 if (I != I0) 1929 I->eraseFromParent(); 1930 1931 return true; 1932 } 1933 1934 namespace { 1935 1936 // LockstepReverseIterator - Iterates through instructions 1937 // in a set of blocks in reverse order from the first non-terminator. 1938 // For example (assume all blocks have size n): 1939 // LockstepReverseIterator I([B1, B2, B3]); 1940 // *I-- = [B1[n], B2[n], B3[n]]; 1941 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1942 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1943 // ... 1944 class LockstepReverseIterator { 1945 ArrayRef<BasicBlock*> Blocks; 1946 SmallVector<Instruction*,4> Insts; 1947 bool Fail; 1948 1949 public: 1950 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1951 reset(); 1952 } 1953 1954 void reset() { 1955 Fail = false; 1956 Insts.clear(); 1957 for (auto *BB : Blocks) { 1958 Instruction *Inst = BB->getTerminator(); 1959 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1960 Inst = Inst->getPrevNode(); 1961 if (!Inst) { 1962 // Block wasn't big enough. 1963 Fail = true; 1964 return; 1965 } 1966 Insts.push_back(Inst); 1967 } 1968 } 1969 1970 bool isValid() const { 1971 return !Fail; 1972 } 1973 1974 void operator--() { 1975 if (Fail) 1976 return; 1977 for (auto *&Inst : Insts) { 1978 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1979 Inst = Inst->getPrevNode(); 1980 // Already at beginning of block. 1981 if (!Inst) { 1982 Fail = true; 1983 return; 1984 } 1985 } 1986 } 1987 1988 void operator++() { 1989 if (Fail) 1990 return; 1991 for (auto *&Inst : Insts) { 1992 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1993 Inst = Inst->getNextNode(); 1994 // Already at end of block. 1995 if (!Inst) { 1996 Fail = true; 1997 return; 1998 } 1999 } 2000 } 2001 2002 ArrayRef<Instruction*> operator * () const { 2003 return Insts; 2004 } 2005 }; 2006 2007 } // end anonymous namespace 2008 2009 /// Check whether BB's predecessors end with unconditional branches. If it is 2010 /// true, sink any common code from the predecessors to BB. 2011 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 2012 DomTreeUpdater *DTU) { 2013 // We support two situations: 2014 // (1) all incoming arcs are unconditional 2015 // (2) there are non-unconditional incoming arcs 2016 // 2017 // (2) is very common in switch defaults and 2018 // else-if patterns; 2019 // 2020 // if (a) f(1); 2021 // else if (b) f(2); 2022 // 2023 // produces: 2024 // 2025 // [if] 2026 // / \ 2027 // [f(1)] [if] 2028 // | | \ 2029 // | | | 2030 // | [f(2)]| 2031 // \ | / 2032 // [ end ] 2033 // 2034 // [end] has two unconditional predecessor arcs and one conditional. The 2035 // conditional refers to the implicit empty 'else' arc. This conditional 2036 // arc can also be caused by an empty default block in a switch. 2037 // 2038 // In this case, we attempt to sink code from all *unconditional* arcs. 2039 // If we can sink instructions from these arcs (determined during the scan 2040 // phase below) we insert a common successor for all unconditional arcs and 2041 // connect that to [end], to enable sinking: 2042 // 2043 // [if] 2044 // / \ 2045 // [x(1)] [if] 2046 // | | \ 2047 // | | \ 2048 // | [x(2)] | 2049 // \ / | 2050 // [sink.split] | 2051 // \ / 2052 // [ end ] 2053 // 2054 SmallVector<BasicBlock*,4> UnconditionalPreds; 2055 bool HaveNonUnconditionalPredecessors = false; 2056 for (auto *PredBB : predecessors(BB)) { 2057 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2058 if (PredBr && PredBr->isUnconditional()) 2059 UnconditionalPreds.push_back(PredBB); 2060 else 2061 HaveNonUnconditionalPredecessors = true; 2062 } 2063 if (UnconditionalPreds.size() < 2) 2064 return false; 2065 2066 // We take a two-step approach to tail sinking. First we scan from the end of 2067 // each block upwards in lockstep. If the n'th instruction from the end of each 2068 // block can be sunk, those instructions are added to ValuesToSink and we 2069 // carry on. If we can sink an instruction but need to PHI-merge some operands 2070 // (because they're not identical in each instruction) we add these to 2071 // PHIOperands. 2072 int ScanIdx = 0; 2073 SmallPtrSet<Value*,4> InstructionsToSink; 2074 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2075 LockstepReverseIterator LRI(UnconditionalPreds); 2076 while (LRI.isValid() && 2077 canSinkInstructions(*LRI, PHIOperands)) { 2078 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2079 << "\n"); 2080 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2081 ++ScanIdx; 2082 --LRI; 2083 } 2084 2085 // If no instructions can be sunk, early-return. 2086 if (ScanIdx == 0) 2087 return false; 2088 2089 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); 2090 2091 if (!followedByDeoptOrUnreachable) { 2092 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2093 // actually sink before encountering instruction that is unprofitable to 2094 // sink? 2095 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2096 unsigned NumPHIdValues = 0; 2097 for (auto *I : *LRI) 2098 for (auto *V : PHIOperands[I]) { 2099 if (!InstructionsToSink.contains(V)) 2100 ++NumPHIdValues; 2101 // FIXME: this check is overly optimistic. We may end up not sinking 2102 // said instruction, due to the very same profitability check. 2103 // See @creating_too_many_phis in sink-common-code.ll. 2104 } 2105 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2106 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2107 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2108 NumPHIInsts++; 2109 2110 return NumPHIInsts <= 1; 2111 }; 2112 2113 // We've determined that we are going to sink last ScanIdx instructions, 2114 // and recorded them in InstructionsToSink. Now, some instructions may be 2115 // unprofitable to sink. But that determination depends on the instructions 2116 // that we are going to sink. 2117 2118 // First, forward scan: find the first instruction unprofitable to sink, 2119 // recording all the ones that are profitable to sink. 2120 // FIXME: would it be better, after we detect that not all are profitable. 2121 // to either record the profitable ones, or erase the unprofitable ones? 2122 // Maybe we need to choose (at runtime) the one that will touch least 2123 // instrs? 2124 LRI.reset(); 2125 int Idx = 0; 2126 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2127 while (Idx < ScanIdx) { 2128 if (!ProfitableToSinkInstruction(LRI)) { 2129 // Too many PHIs would be created. 2130 LLVM_DEBUG( 2131 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2132 break; 2133 } 2134 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2135 --LRI; 2136 ++Idx; 2137 } 2138 2139 // If no instructions can be sunk, early-return. 2140 if (Idx == 0) 2141 return false; 2142 2143 // Did we determine that (only) some instructions are unprofitable to sink? 2144 if (Idx < ScanIdx) { 2145 // Okay, some instructions are unprofitable. 2146 ScanIdx = Idx; 2147 InstructionsToSink = InstructionsProfitableToSink; 2148 2149 // But, that may make other instructions unprofitable, too. 2150 // So, do a backward scan, do any earlier instructions become 2151 // unprofitable? 2152 assert( 2153 !ProfitableToSinkInstruction(LRI) && 2154 "We already know that the last instruction is unprofitable to sink"); 2155 ++LRI; 2156 --Idx; 2157 while (Idx >= 0) { 2158 // If we detect that an instruction becomes unprofitable to sink, 2159 // all earlier instructions won't be sunk either, 2160 // so preemptively keep InstructionsProfitableToSink in sync. 2161 // FIXME: is this the most performant approach? 2162 for (auto *I : *LRI) 2163 InstructionsProfitableToSink.erase(I); 2164 if (!ProfitableToSinkInstruction(LRI)) { 2165 // Everything starting with this instruction won't be sunk. 2166 ScanIdx = Idx; 2167 InstructionsToSink = InstructionsProfitableToSink; 2168 } 2169 ++LRI; 2170 --Idx; 2171 } 2172 } 2173 2174 // If no instructions can be sunk, early-return. 2175 if (ScanIdx == 0) 2176 return false; 2177 } 2178 2179 bool Changed = false; 2180 2181 if (HaveNonUnconditionalPredecessors) { 2182 if (!followedByDeoptOrUnreachable) { 2183 // It is always legal to sink common instructions from unconditional 2184 // predecessors. However, if not all predecessors are unconditional, 2185 // this transformation might be pessimizing. So as a rule of thumb, 2186 // don't do it unless we'd sink at least one non-speculatable instruction. 2187 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2188 LRI.reset(); 2189 int Idx = 0; 2190 bool Profitable = false; 2191 while (Idx < ScanIdx) { 2192 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2193 Profitable = true; 2194 break; 2195 } 2196 --LRI; 2197 ++Idx; 2198 } 2199 if (!Profitable) 2200 return false; 2201 } 2202 2203 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2204 // We have a conditional edge and we're going to sink some instructions. 2205 // Insert a new block postdominating all blocks we're going to sink from. 2206 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2207 // Edges couldn't be split. 2208 return false; 2209 Changed = true; 2210 } 2211 2212 // Now that we've analyzed all potential sinking candidates, perform the 2213 // actual sink. We iteratively sink the last non-terminator of the source 2214 // blocks into their common successor unless doing so would require too 2215 // many PHI instructions to be generated (currently only one PHI is allowed 2216 // per sunk instruction). 2217 // 2218 // We can use InstructionsToSink to discount values needing PHI-merging that will 2219 // actually be sunk in a later iteration. This allows us to be more 2220 // aggressive in what we sink. This does allow a false positive where we 2221 // sink presuming a later value will also be sunk, but stop half way through 2222 // and never actually sink it which means we produce more PHIs than intended. 2223 // This is unlikely in practice though. 2224 int SinkIdx = 0; 2225 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2226 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2227 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2228 << "\n"); 2229 2230 // Because we've sunk every instruction in turn, the current instruction to 2231 // sink is always at index 0. 2232 LRI.reset(); 2233 2234 if (!sinkLastInstruction(UnconditionalPreds)) { 2235 LLVM_DEBUG( 2236 dbgs() 2237 << "SINK: stopping here, failed to actually sink instruction!\n"); 2238 break; 2239 } 2240 2241 NumSinkCommonInstrs++; 2242 Changed = true; 2243 } 2244 if (SinkIdx != 0) 2245 ++NumSinkCommonCode; 2246 return Changed; 2247 } 2248 2249 namespace { 2250 2251 struct CompatibleSets { 2252 using SetTy = SmallVector<InvokeInst *, 2>; 2253 2254 SmallVector<SetTy, 1> Sets; 2255 2256 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); 2257 2258 SetTy &getCompatibleSet(InvokeInst *II); 2259 2260 void insert(InvokeInst *II); 2261 }; 2262 2263 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { 2264 // Perform a linear scan over all the existing sets, see if the new `invoke` 2265 // is compatible with any particular set. Since we know that all the `invokes` 2266 // within a set are compatible, only check the first `invoke` in each set. 2267 // WARNING: at worst, this has quadratic complexity. 2268 for (CompatibleSets::SetTy &Set : Sets) { 2269 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) 2270 return Set; 2271 } 2272 2273 // Otherwise, we either had no sets yet, or this invoke forms a new set. 2274 return Sets.emplace_back(); 2275 } 2276 2277 void CompatibleSets::insert(InvokeInst *II) { 2278 getCompatibleSet(II).emplace_back(II); 2279 } 2280 2281 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { 2282 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2283 2284 // Can we theoretically merge these `invoke`s? 2285 auto IsIllegalToMerge = [](InvokeInst *II) { 2286 return II->cannotMerge() || II->isInlineAsm(); 2287 }; 2288 if (any_of(Invokes, IsIllegalToMerge)) 2289 return false; 2290 2291 // Either both `invoke`s must be direct, 2292 // or both `invoke`s must be indirect. 2293 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; 2294 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); 2295 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); 2296 if (HaveIndirectCalls) { 2297 if (!AllCallsAreIndirect) 2298 return false; 2299 } else { 2300 // All callees must be identical. 2301 Value *Callee = nullptr; 2302 for (InvokeInst *II : Invokes) { 2303 Value *CurrCallee = II->getCalledOperand(); 2304 assert(CurrCallee && "There is always a called operand."); 2305 if (!Callee) 2306 Callee = CurrCallee; 2307 else if (Callee != CurrCallee) 2308 return false; 2309 } 2310 } 2311 2312 // Either both `invoke`s must not have a normal destination, 2313 // or both `invoke`s must have a normal destination, 2314 auto HasNormalDest = [](InvokeInst *II) { 2315 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); 2316 }; 2317 if (any_of(Invokes, HasNormalDest)) { 2318 // Do not merge `invoke` that does not have a normal destination with one 2319 // that does have a normal destination, even though doing so would be legal. 2320 if (!all_of(Invokes, HasNormalDest)) 2321 return false; 2322 2323 // All normal destinations must be identical. 2324 BasicBlock *NormalBB = nullptr; 2325 for (InvokeInst *II : Invokes) { 2326 BasicBlock *CurrNormalBB = II->getNormalDest(); 2327 assert(CurrNormalBB && "There is always a 'continue to' basic block."); 2328 if (!NormalBB) 2329 NormalBB = CurrNormalBB; 2330 else if (NormalBB != CurrNormalBB) 2331 return false; 2332 } 2333 2334 // In the normal destination, the incoming values for these two `invoke`s 2335 // must be compatible. 2336 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); 2337 if (!IncomingValuesAreCompatible( 2338 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, 2339 &EquivalenceSet)) 2340 return false; 2341 } 2342 2343 #ifndef NDEBUG 2344 // All unwind destinations must be identical. 2345 // We know that because we have started from said unwind destination. 2346 BasicBlock *UnwindBB = nullptr; 2347 for (InvokeInst *II : Invokes) { 2348 BasicBlock *CurrUnwindBB = II->getUnwindDest(); 2349 assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); 2350 if (!UnwindBB) 2351 UnwindBB = CurrUnwindBB; 2352 else 2353 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); 2354 } 2355 #endif 2356 2357 // In the unwind destination, the incoming values for these two `invoke`s 2358 // must be compatible. 2359 if (!IncomingValuesAreCompatible( 2360 Invokes.front()->getUnwindDest(), 2361 {Invokes[0]->getParent(), Invokes[1]->getParent()})) 2362 return false; 2363 2364 // Ignoring arguments, these `invoke`s must be identical, 2365 // including operand bundles. 2366 const InvokeInst *II0 = Invokes.front(); 2367 for (auto *II : Invokes.drop_front()) 2368 if (!II->isSameOperationAs(II0)) 2369 return false; 2370 2371 // Can we theoretically form the data operands for the merged `invoke`? 2372 auto IsIllegalToMergeArguments = [](auto Ops) { 2373 Type *Ty = std::get<0>(Ops)->getType(); 2374 assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?"); 2375 return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops); 2376 }; 2377 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2378 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), 2379 IsIllegalToMergeArguments)) 2380 return false; 2381 2382 return true; 2383 } 2384 2385 } // namespace 2386 2387 // Merge all invokes in the provided set, all of which are compatible 2388 // as per the `CompatibleSets::shouldBelongToSameSet()`. 2389 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, 2390 DomTreeUpdater *DTU) { 2391 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); 2392 2393 SmallVector<DominatorTree::UpdateType, 8> Updates; 2394 if (DTU) 2395 Updates.reserve(2 + 3 * Invokes.size()); 2396 2397 bool HasNormalDest = 2398 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); 2399 2400 // Clone one of the invokes into a new basic block. 2401 // Since they are all compatible, it doesn't matter which invoke is cloned. 2402 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { 2403 InvokeInst *II0 = Invokes.front(); 2404 BasicBlock *II0BB = II0->getParent(); 2405 BasicBlock *InsertBeforeBlock = 2406 II0->getParent()->getIterator()->getNextNode(); 2407 Function *Func = II0BB->getParent(); 2408 LLVMContext &Ctx = II0->getContext(); 2409 2410 BasicBlock *MergedInvokeBB = BasicBlock::Create( 2411 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); 2412 2413 auto *MergedInvoke = cast<InvokeInst>(II0->clone()); 2414 // NOTE: all invokes have the same attributes, so no handling needed. 2415 MergedInvokeBB->getInstList().push_back(MergedInvoke); 2416 2417 if (!HasNormalDest) { 2418 // This set does not have a normal destination, 2419 // so just form a new block with unreachable terminator. 2420 BasicBlock *MergedNormalDest = BasicBlock::Create( 2421 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); 2422 new UnreachableInst(Ctx, MergedNormalDest); 2423 MergedInvoke->setNormalDest(MergedNormalDest); 2424 } 2425 2426 // The unwind destination, however, remainds identical for all invokes here. 2427 2428 return MergedInvoke; 2429 }(); 2430 2431 if (DTU) { 2432 // Predecessor blocks that contained these invokes will now branch to 2433 // the new block that contains the merged invoke, ... 2434 for (InvokeInst *II : Invokes) 2435 Updates.push_back( 2436 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); 2437 2438 // ... which has the new `unreachable` block as normal destination, 2439 // or unwinds to the (same for all `invoke`s in this set) `landingpad`, 2440 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) 2441 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), 2442 SuccBBOfMergedInvoke}); 2443 2444 // Since predecessor blocks now unconditionally branch to a new block, 2445 // they no longer branch to their original successors. 2446 for (InvokeInst *II : Invokes) 2447 for (BasicBlock *SuccOfPredBB : successors(II->getParent())) 2448 Updates.push_back( 2449 {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); 2450 } 2451 2452 bool IsIndirectCall = Invokes[0]->isIndirectCall(); 2453 2454 // Form the merged operands for the merged invoke. 2455 for (Use &U : MergedInvoke->operands()) { 2456 // Only PHI together the indirect callees and data operands. 2457 if (MergedInvoke->isCallee(&U)) { 2458 if (!IsIndirectCall) 2459 continue; 2460 } else if (!MergedInvoke->isDataOperand(&U)) 2461 continue; 2462 2463 // Don't create trivial PHI's with all-identical incoming values. 2464 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { 2465 return II->getOperand(U.getOperandNo()) != U.get(); 2466 }); 2467 if (!NeedPHI) 2468 continue; 2469 2470 // Form a PHI out of all the data ops under this index. 2471 PHINode *PN = PHINode::Create( 2472 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke); 2473 for (InvokeInst *II : Invokes) 2474 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); 2475 2476 U.set(PN); 2477 } 2478 2479 // We've ensured that each PHI node has compatible (identical) incoming values 2480 // when coming from each of the `invoke`s in the current merge set, 2481 // so update the PHI nodes accordingly. 2482 for (BasicBlock *Succ : successors(MergedInvoke)) 2483 AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), 2484 /*ExistPred=*/Invokes.front()->getParent()); 2485 2486 // And finally, replace the original `invoke`s with an unconditional branch 2487 // to the block with the merged `invoke`. Also, give that merged `invoke` 2488 // the merged debugloc of all the original `invoke`s. 2489 const DILocation *MergedDebugLoc = nullptr; 2490 for (InvokeInst *II : Invokes) { 2491 // Compute the debug location common to all the original `invoke`s. 2492 if (!MergedDebugLoc) 2493 MergedDebugLoc = II->getDebugLoc(); 2494 else 2495 MergedDebugLoc = 2496 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); 2497 2498 // And replace the old `invoke` with an unconditionally branch 2499 // to the block with the merged `invoke`. 2500 for (BasicBlock *OrigSuccBB : successors(II->getParent())) 2501 OrigSuccBB->removePredecessor(II->getParent()); 2502 BranchInst::Create(MergedInvoke->getParent(), II->getParent()); 2503 II->replaceAllUsesWith(MergedInvoke); 2504 II->eraseFromParent(); 2505 ++NumInvokesMerged; 2506 } 2507 MergedInvoke->setDebugLoc(MergedDebugLoc); 2508 ++NumInvokeSetsFormed; 2509 2510 if (DTU) 2511 DTU->applyUpdates(Updates); 2512 } 2513 2514 /// If this block is a `landingpad` exception handling block, categorize all 2515 /// the predecessor `invoke`s into sets, with all `invoke`s in each set 2516 /// being "mergeable" together, and then merge invokes in each set together. 2517 /// 2518 /// This is a weird mix of hoisting and sinking. Visually, it goes from: 2519 /// [...] [...] 2520 /// | | 2521 /// [invoke0] [invoke1] 2522 /// / \ / \ 2523 /// [cont0] [landingpad] [cont1] 2524 /// to: 2525 /// [...] [...] 2526 /// \ / 2527 /// [invoke] 2528 /// / \ 2529 /// [cont] [landingpad] 2530 /// 2531 /// But of course we can only do that if the invokes share the `landingpad`, 2532 /// edges invoke0->cont0 and invoke1->cont1 are "compatible", 2533 /// and the invoked functions are "compatible". 2534 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { 2535 if (!EnableMergeCompatibleInvokes) 2536 return false; 2537 2538 bool Changed = false; 2539 2540 // FIXME: generalize to all exception handling blocks? 2541 if (!BB->isLandingPad()) 2542 return Changed; 2543 2544 CompatibleSets Grouper; 2545 2546 // Record all the predecessors of this `landingpad`. As per verifier, 2547 // the only allowed predecessor is the unwind edge of an `invoke`. 2548 // We want to group "compatible" `invokes` into the same set to be merged. 2549 for (BasicBlock *PredBB : predecessors(BB)) 2550 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); 2551 2552 // And now, merge `invoke`s that were grouped togeter. 2553 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { 2554 if (Invokes.size() < 2) 2555 continue; 2556 Changed = true; 2557 MergeCompatibleInvokesImpl(Invokes, DTU); 2558 } 2559 2560 return Changed; 2561 } 2562 2563 /// Determine if we can hoist sink a sole store instruction out of a 2564 /// conditional block. 2565 /// 2566 /// We are looking for code like the following: 2567 /// BrBB: 2568 /// store i32 %add, i32* %arrayidx2 2569 /// ... // No other stores or function calls (we could be calling a memory 2570 /// ... // function). 2571 /// %cmp = icmp ult %x, %y 2572 /// br i1 %cmp, label %EndBB, label %ThenBB 2573 /// ThenBB: 2574 /// store i32 %add5, i32* %arrayidx2 2575 /// br label EndBB 2576 /// EndBB: 2577 /// ... 2578 /// We are going to transform this into: 2579 /// BrBB: 2580 /// store i32 %add, i32* %arrayidx2 2581 /// ... // 2582 /// %cmp = icmp ult %x, %y 2583 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2584 /// store i32 %add.add5, i32* %arrayidx2 2585 /// ... 2586 /// 2587 /// \return The pointer to the value of the previous store if the store can be 2588 /// hoisted into the predecessor block. 0 otherwise. 2589 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2590 BasicBlock *StoreBB, BasicBlock *EndBB) { 2591 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2592 if (!StoreToHoist) 2593 return nullptr; 2594 2595 // Volatile or atomic. 2596 if (!StoreToHoist->isSimple()) 2597 return nullptr; 2598 2599 Value *StorePtr = StoreToHoist->getPointerOperand(); 2600 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 2601 2602 // Look for a store to the same pointer in BrBB. 2603 unsigned MaxNumInstToLookAt = 9; 2604 // Skip pseudo probe intrinsic calls which are not really killing any memory 2605 // accesses. 2606 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2607 if (!MaxNumInstToLookAt) 2608 break; 2609 --MaxNumInstToLookAt; 2610 2611 // Could be calling an instruction that affects memory like free(). 2612 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 2613 return nullptr; 2614 2615 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2616 // Found the previous store to same location and type. Make sure it is 2617 // simple, to avoid introducing a spurious non-atomic write after an 2618 // atomic write. 2619 if (SI->getPointerOperand() == StorePtr && 2620 SI->getValueOperand()->getType() == StoreTy && SI->isSimple()) 2621 // Found the previous store, return its value operand. 2622 return SI->getValueOperand(); 2623 return nullptr; // Unknown store. 2624 } 2625 2626 if (auto *LI = dyn_cast<LoadInst>(&CurI)) { 2627 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && 2628 LI->isSimple()) { 2629 // Local objects (created by an `alloca` instruction) are always 2630 // writable, so once we are past a read from a location it is valid to 2631 // also write to that same location. 2632 // If the address of the local object never escapes the function, that 2633 // means it's never concurrently read or written, hence moving the store 2634 // from under the condition will not introduce a data race. 2635 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr)); 2636 if (AI && !PointerMayBeCaptured(AI, false, true)) 2637 // Found a previous load, return it. 2638 return LI; 2639 } 2640 // The load didn't work out, but we may still find a store. 2641 } 2642 } 2643 2644 return nullptr; 2645 } 2646 2647 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2648 /// converted to selects. 2649 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2650 BasicBlock *EndBB, 2651 unsigned &SpeculatedInstructions, 2652 InstructionCost &Cost, 2653 const TargetTransformInfo &TTI) { 2654 TargetTransformInfo::TargetCostKind CostKind = 2655 BB->getParent()->hasMinSize() 2656 ? TargetTransformInfo::TCK_CodeSize 2657 : TargetTransformInfo::TCK_SizeAndLatency; 2658 2659 bool HaveRewritablePHIs = false; 2660 for (PHINode &PN : EndBB->phis()) { 2661 Value *OrigV = PN.getIncomingValueForBlock(BB); 2662 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2663 2664 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2665 // Skip PHIs which are trivial. 2666 if (ThenV == OrigV) 2667 continue; 2668 2669 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2670 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2671 2672 // Don't convert to selects if we could remove undefined behavior instead. 2673 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2674 passingValueIsAlwaysUndefined(ThenV, &PN)) 2675 return false; 2676 2677 HaveRewritablePHIs = true; 2678 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2679 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2680 if (!OrigCE && !ThenCE) 2681 continue; // Known safe and cheap. 2682 2683 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2684 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2685 return false; 2686 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2687 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2688 InstructionCost MaxCost = 2689 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2690 if (OrigCost + ThenCost > MaxCost) 2691 return false; 2692 2693 // Account for the cost of an unfolded ConstantExpr which could end up 2694 // getting expanded into Instructions. 2695 // FIXME: This doesn't account for how many operations are combined in the 2696 // constant expression. 2697 ++SpeculatedInstructions; 2698 if (SpeculatedInstructions > 1) 2699 return false; 2700 } 2701 2702 return HaveRewritablePHIs; 2703 } 2704 2705 /// Speculate a conditional basic block flattening the CFG. 2706 /// 2707 /// Note that this is a very risky transform currently. Speculating 2708 /// instructions like this is most often not desirable. Instead, there is an MI 2709 /// pass which can do it with full awareness of the resource constraints. 2710 /// However, some cases are "obvious" and we should do directly. An example of 2711 /// this is speculating a single, reasonably cheap instruction. 2712 /// 2713 /// There is only one distinct advantage to flattening the CFG at the IR level: 2714 /// it makes very common but simplistic optimizations such as are common in 2715 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2716 /// modeling their effects with easier to reason about SSA value graphs. 2717 /// 2718 /// 2719 /// An illustration of this transform is turning this IR: 2720 /// \code 2721 /// BB: 2722 /// %cmp = icmp ult %x, %y 2723 /// br i1 %cmp, label %EndBB, label %ThenBB 2724 /// ThenBB: 2725 /// %sub = sub %x, %y 2726 /// br label BB2 2727 /// EndBB: 2728 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2729 /// ... 2730 /// \endcode 2731 /// 2732 /// Into this IR: 2733 /// \code 2734 /// BB: 2735 /// %cmp = icmp ult %x, %y 2736 /// %sub = sub %x, %y 2737 /// %cond = select i1 %cmp, 0, %sub 2738 /// ... 2739 /// \endcode 2740 /// 2741 /// \returns true if the conditional block is removed. 2742 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2743 const TargetTransformInfo &TTI) { 2744 // Be conservative for now. FP select instruction can often be expensive. 2745 Value *BrCond = BI->getCondition(); 2746 if (isa<FCmpInst>(BrCond)) 2747 return false; 2748 2749 BasicBlock *BB = BI->getParent(); 2750 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2751 InstructionCost Budget = 2752 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2753 2754 // If ThenBB is actually on the false edge of the conditional branch, remember 2755 // to swap the select operands later. 2756 bool Invert = false; 2757 if (ThenBB != BI->getSuccessor(0)) { 2758 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2759 Invert = true; 2760 } 2761 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2762 2763 // If the branch is non-unpredictable, and is predicted to *not* branch to 2764 // the `then` block, then avoid speculating it. 2765 if (!BI->getMetadata(LLVMContext::MD_unpredictable)) { 2766 uint64_t TWeight, FWeight; 2767 if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) { 2768 uint64_t EndWeight = Invert ? TWeight : FWeight; 2769 BranchProbability BIEndProb = 2770 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 2771 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 2772 if (BIEndProb >= Likely) 2773 return false; 2774 } 2775 } 2776 2777 // Keep a count of how many times instructions are used within ThenBB when 2778 // they are candidates for sinking into ThenBB. Specifically: 2779 // - They are defined in BB, and 2780 // - They have no side effects, and 2781 // - All of their uses are in ThenBB. 2782 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2783 2784 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2785 2786 unsigned SpeculatedInstructions = 0; 2787 Value *SpeculatedStoreValue = nullptr; 2788 StoreInst *SpeculatedStore = nullptr; 2789 for (BasicBlock::iterator BBI = ThenBB->begin(), 2790 BBE = std::prev(ThenBB->end()); 2791 BBI != BBE; ++BBI) { 2792 Instruction *I = &*BBI; 2793 // Skip debug info. 2794 if (isa<DbgInfoIntrinsic>(I)) { 2795 SpeculatedDbgIntrinsics.push_back(I); 2796 continue; 2797 } 2798 2799 // Skip pseudo probes. The consequence is we lose track of the branch 2800 // probability for ThenBB, which is fine since the optimization here takes 2801 // place regardless of the branch probability. 2802 if (isa<PseudoProbeInst>(I)) { 2803 // The probe should be deleted so that it will not be over-counted when 2804 // the samples collected on the non-conditional path are counted towards 2805 // the conditional path. We leave it for the counts inference algorithm to 2806 // figure out a proper count for an unknown probe. 2807 SpeculatedDbgIntrinsics.push_back(I); 2808 continue; 2809 } 2810 2811 // Only speculatively execute a single instruction (not counting the 2812 // terminator) for now. 2813 ++SpeculatedInstructions; 2814 if (SpeculatedInstructions > 1) 2815 return false; 2816 2817 // Don't hoist the instruction if it's unsafe or expensive. 2818 if (!isSafeToSpeculativelyExecute(I) && 2819 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2820 I, BB, ThenBB, EndBB)))) 2821 return false; 2822 if (!SpeculatedStoreValue && 2823 computeSpeculationCost(I, TTI) > 2824 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2825 return false; 2826 2827 // Store the store speculation candidate. 2828 if (SpeculatedStoreValue) 2829 SpeculatedStore = cast<StoreInst>(I); 2830 2831 // Do not hoist the instruction if any of its operands are defined but not 2832 // used in BB. The transformation will prevent the operand from 2833 // being sunk into the use block. 2834 for (Use &Op : I->operands()) { 2835 Instruction *OpI = dyn_cast<Instruction>(Op); 2836 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2837 continue; // Not a candidate for sinking. 2838 2839 ++SinkCandidateUseCounts[OpI]; 2840 } 2841 } 2842 2843 // Consider any sink candidates which are only used in ThenBB as costs for 2844 // speculation. Note, while we iterate over a DenseMap here, we are summing 2845 // and so iteration order isn't significant. 2846 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2847 I = SinkCandidateUseCounts.begin(), 2848 E = SinkCandidateUseCounts.end(); 2849 I != E; ++I) 2850 if (I->first->hasNUses(I->second)) { 2851 ++SpeculatedInstructions; 2852 if (SpeculatedInstructions > 1) 2853 return false; 2854 } 2855 2856 // Check that we can insert the selects and that it's not too expensive to do 2857 // so. 2858 bool Convert = SpeculatedStore != nullptr; 2859 InstructionCost Cost = 0; 2860 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2861 SpeculatedInstructions, 2862 Cost, TTI); 2863 if (!Convert || Cost > Budget) 2864 return false; 2865 2866 // If we get here, we can hoist the instruction and if-convert. 2867 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2868 2869 // Insert a select of the value of the speculated store. 2870 if (SpeculatedStoreValue) { 2871 IRBuilder<NoFolder> Builder(BI); 2872 Value *TrueV = SpeculatedStore->getValueOperand(); 2873 Value *FalseV = SpeculatedStoreValue; 2874 if (Invert) 2875 std::swap(TrueV, FalseV); 2876 Value *S = Builder.CreateSelect( 2877 BrCond, TrueV, FalseV, "spec.store.select", BI); 2878 SpeculatedStore->setOperand(0, S); 2879 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2880 SpeculatedStore->getDebugLoc()); 2881 } 2882 2883 // Metadata can be dependent on the condition we are hoisting above. 2884 // Conservatively strip all metadata on the instruction. Drop the debug loc 2885 // to avoid making it appear as if the condition is a constant, which would 2886 // be misleading while debugging. 2887 // Similarly strip attributes that maybe dependent on condition we are 2888 // hoisting above. 2889 for (auto &I : *ThenBB) { 2890 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2891 I.setDebugLoc(DebugLoc()); 2892 I.dropUndefImplyingAttrsAndUnknownMetadata(); 2893 } 2894 2895 // Hoist the instructions. 2896 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2897 ThenBB->begin(), std::prev(ThenBB->end())); 2898 2899 // Insert selects and rewrite the PHI operands. 2900 IRBuilder<NoFolder> Builder(BI); 2901 for (PHINode &PN : EndBB->phis()) { 2902 unsigned OrigI = PN.getBasicBlockIndex(BB); 2903 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2904 Value *OrigV = PN.getIncomingValue(OrigI); 2905 Value *ThenV = PN.getIncomingValue(ThenI); 2906 2907 // Skip PHIs which are trivial. 2908 if (OrigV == ThenV) 2909 continue; 2910 2911 // Create a select whose true value is the speculatively executed value and 2912 // false value is the pre-existing value. Swap them if the branch 2913 // destinations were inverted. 2914 Value *TrueV = ThenV, *FalseV = OrigV; 2915 if (Invert) 2916 std::swap(TrueV, FalseV); 2917 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2918 PN.setIncomingValue(OrigI, V); 2919 PN.setIncomingValue(ThenI, V); 2920 } 2921 2922 // Remove speculated dbg intrinsics. 2923 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2924 // dbg value for the different flows and inserting it after the select. 2925 for (Instruction *I : SpeculatedDbgIntrinsics) 2926 I->eraseFromParent(); 2927 2928 ++NumSpeculations; 2929 return true; 2930 } 2931 2932 /// Return true if we can thread a branch across this block. 2933 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2934 int Size = 0; 2935 2936 SmallPtrSet<const Value *, 32> EphValues; 2937 auto IsEphemeral = [&](const Instruction *I) { 2938 if (isa<AssumeInst>(I)) 2939 return true; 2940 return !I->mayHaveSideEffects() && !I->isTerminator() && 2941 all_of(I->users(), 2942 [&](const User *U) { return EphValues.count(U); }); 2943 }; 2944 2945 // Walk the loop in reverse so that we can identify ephemeral values properly 2946 // (values only feeding assumes). 2947 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { 2948 // Can't fold blocks that contain noduplicate or convergent calls. 2949 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2950 if (CI->cannotDuplicate() || CI->isConvergent()) 2951 return false; 2952 2953 // Ignore ephemeral values which are deleted during codegen. 2954 if (IsEphemeral(&I)) 2955 EphValues.insert(&I); 2956 // We will delete Phis while threading, so Phis should not be accounted in 2957 // block's size. 2958 else if (!isa<PHINode>(I)) { 2959 if (Size++ > MaxSmallBlockSize) 2960 return false; // Don't clone large BB's. 2961 } 2962 2963 // We can only support instructions that do not define values that are 2964 // live outside of the current basic block. 2965 for (User *U : I.users()) { 2966 Instruction *UI = cast<Instruction>(U); 2967 if (UI->getParent() != BB || isa<PHINode>(UI)) 2968 return false; 2969 } 2970 2971 // Looks ok, continue checking. 2972 } 2973 2974 return true; 2975 } 2976 2977 /// If we have a conditional branch on a PHI node value that is defined in the 2978 /// same block as the branch and if any PHI entries are constants, thread edges 2979 /// corresponding to that entry to be branches to their ultimate destination. 2980 static Optional<bool> FoldCondBranchOnPHIImpl(BranchInst *BI, 2981 DomTreeUpdater *DTU, 2982 const DataLayout &DL, 2983 AssumptionCache *AC) { 2984 BasicBlock *BB = BI->getParent(); 2985 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2986 // NOTE: we currently cannot transform this case if the PHI node is used 2987 // outside of the block. 2988 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2989 return false; 2990 2991 // Degenerate case of a single entry PHI. 2992 if (PN->getNumIncomingValues() == 1) { 2993 FoldSingleEntryPHINodes(PN->getParent()); 2994 return true; 2995 } 2996 2997 // Now we know that this block has multiple preds and two succs. 2998 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2999 return false; 3000 3001 // Okay, this is a simple enough basic block. See if any phi values are 3002 // constants. 3003 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3004 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 3005 if (!CB || !CB->getType()->isIntegerTy(1)) 3006 continue; 3007 3008 // Okay, we now know that all edges from PredBB should be revectored to 3009 // branch to RealDest. 3010 BasicBlock *PredBB = PN->getIncomingBlock(i); 3011 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 3012 3013 if (RealDest == BB) 3014 continue; // Skip self loops. 3015 // Skip if the predecessor's terminator is an indirect branch. 3016 if (isa<IndirectBrInst>(PredBB->getTerminator())) 3017 continue; 3018 3019 SmallVector<DominatorTree::UpdateType, 3> Updates; 3020 3021 // The dest block might have PHI nodes, other predecessors and other 3022 // difficult cases. Instead of being smart about this, just insert a new 3023 // block that jumps to the destination block, effectively splitting 3024 // the edge we are about to create. 3025 BasicBlock *EdgeBB = 3026 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 3027 RealDest->getParent(), RealDest); 3028 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 3029 if (DTU) 3030 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 3031 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 3032 3033 // Update PHI nodes. 3034 AddPredecessorToBlock(RealDest, EdgeBB, BB); 3035 3036 // BB may have instructions that are being threaded over. Clone these 3037 // instructions into EdgeBB. We know that there will be no uses of the 3038 // cloned instructions outside of EdgeBB. 3039 BasicBlock::iterator InsertPt = EdgeBB->begin(); 3040 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 3041 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 3042 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 3043 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 3044 continue; 3045 } 3046 // Clone the instruction. 3047 Instruction *N = BBI->clone(); 3048 if (BBI->hasName()) 3049 N->setName(BBI->getName() + ".c"); 3050 3051 // Update operands due to translation. 3052 for (Use &Op : N->operands()) { 3053 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 3054 if (PI != TranslateMap.end()) 3055 Op = PI->second; 3056 } 3057 3058 // Check for trivial simplification. 3059 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 3060 if (!BBI->use_empty()) 3061 TranslateMap[&*BBI] = V; 3062 if (!N->mayHaveSideEffects()) { 3063 N->deleteValue(); // Instruction folded away, don't need actual inst 3064 N = nullptr; 3065 } 3066 } else { 3067 if (!BBI->use_empty()) 3068 TranslateMap[&*BBI] = N; 3069 } 3070 if (N) { 3071 // Insert the new instruction into its new home. 3072 EdgeBB->getInstList().insert(InsertPt, N); 3073 3074 // Register the new instruction with the assumption cache if necessary. 3075 if (auto *Assume = dyn_cast<AssumeInst>(N)) 3076 if (AC) 3077 AC->registerAssumption(Assume); 3078 } 3079 } 3080 3081 // Loop over all of the edges from PredBB to BB, changing them to branch 3082 // to EdgeBB instead. 3083 Instruction *PredBBTI = PredBB->getTerminator(); 3084 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 3085 if (PredBBTI->getSuccessor(i) == BB) { 3086 BB->removePredecessor(PredBB); 3087 PredBBTI->setSuccessor(i, EdgeBB); 3088 } 3089 3090 if (DTU) { 3091 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 3092 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 3093 3094 DTU->applyUpdates(Updates); 3095 } 3096 3097 // Signal repeat, simplifying any other constants. 3098 return None; 3099 } 3100 3101 return false; 3102 } 3103 3104 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 3105 const DataLayout &DL, AssumptionCache *AC) { 3106 Optional<bool> Result; 3107 bool EverChanged = false; 3108 do { 3109 // Note that None means "we changed things, but recurse further." 3110 Result = FoldCondBranchOnPHIImpl(BI, DTU, DL, AC); 3111 EverChanged |= Result == None || *Result; 3112 } while (Result == None); 3113 return EverChanged; 3114 } 3115 3116 /// Given a BB that starts with the specified two-entry PHI node, 3117 /// see if we can eliminate it. 3118 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 3119 DomTreeUpdater *DTU, const DataLayout &DL) { 3120 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 3121 // statement", which has a very simple dominance structure. Basically, we 3122 // are trying to find the condition that is being branched on, which 3123 // subsequently causes this merge to happen. We really want control 3124 // dependence information for this check, but simplifycfg can't keep it up 3125 // to date, and this catches most of the cases we care about anyway. 3126 BasicBlock *BB = PN->getParent(); 3127 3128 BasicBlock *IfTrue, *IfFalse; 3129 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 3130 if (!DomBI) 3131 return false; 3132 Value *IfCond = DomBI->getCondition(); 3133 // Don't bother if the branch will be constant folded trivially. 3134 if (isa<ConstantInt>(IfCond)) 3135 return false; 3136 3137 BasicBlock *DomBlock = DomBI->getParent(); 3138 SmallVector<BasicBlock *, 2> IfBlocks; 3139 llvm::copy_if( 3140 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 3141 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 3142 }); 3143 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 3144 "Will have either one or two blocks to speculate."); 3145 3146 // If the branch is non-unpredictable, see if we either predictably jump to 3147 // the merge bb (if we have only a single 'then' block), or if we predictably 3148 // jump to one specific 'then' block (if we have two of them). 3149 // It isn't beneficial to speculatively execute the code 3150 // from the block that we know is predictably not entered. 3151 if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) { 3152 uint64_t TWeight, FWeight; 3153 if (DomBI->extractProfMetadata(TWeight, FWeight) && 3154 (TWeight + FWeight) != 0) { 3155 BranchProbability BITrueProb = 3156 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 3157 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3158 BranchProbability BIFalseProb = BITrueProb.getCompl(); 3159 if (IfBlocks.size() == 1) { 3160 BranchProbability BIBBProb = 3161 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 3162 if (BIBBProb >= Likely) 3163 return false; 3164 } else { 3165 if (BITrueProb >= Likely || BIFalseProb >= Likely) 3166 return false; 3167 } 3168 } 3169 } 3170 3171 // Don't try to fold an unreachable block. For example, the phi node itself 3172 // can't be the candidate if-condition for a select that we want to form. 3173 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 3174 if (IfCondPhiInst->getParent() == BB) 3175 return false; 3176 3177 // Okay, we found that we can merge this two-entry phi node into a select. 3178 // Doing so would require us to fold *all* two entry phi nodes in this block. 3179 // At some point this becomes non-profitable (particularly if the target 3180 // doesn't support cmov's). Only do this transformation if there are two or 3181 // fewer PHI nodes in this block. 3182 unsigned NumPhis = 0; 3183 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 3184 if (NumPhis > 2) 3185 return false; 3186 3187 // Loop over the PHI's seeing if we can promote them all to select 3188 // instructions. While we are at it, keep track of the instructions 3189 // that need to be moved to the dominating block. 3190 SmallPtrSet<Instruction *, 4> AggressiveInsts; 3191 InstructionCost Cost = 0; 3192 InstructionCost Budget = 3193 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3194 3195 bool Changed = false; 3196 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 3197 PHINode *PN = cast<PHINode>(II++); 3198 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 3199 PN->replaceAllUsesWith(V); 3200 PN->eraseFromParent(); 3201 Changed = true; 3202 continue; 3203 } 3204 3205 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 3206 Cost, Budget, TTI) || 3207 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 3208 Cost, Budget, TTI)) 3209 return Changed; 3210 } 3211 3212 // If we folded the first phi, PN dangles at this point. Refresh it. If 3213 // we ran out of PHIs then we simplified them all. 3214 PN = dyn_cast<PHINode>(BB->begin()); 3215 if (!PN) 3216 return true; 3217 3218 // Return true if at least one of these is a 'not', and another is either 3219 // a 'not' too, or a constant. 3220 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 3221 if (!match(V0, m_Not(m_Value()))) 3222 std::swap(V0, V1); 3223 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 3224 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 3225 }; 3226 3227 // Don't fold i1 branches on PHIs which contain binary operators or 3228 // (possibly inverted) select form of or/ands, unless one of 3229 // the incoming values is an 'not' and another one is freely invertible. 3230 // These can often be turned into switches and other things. 3231 auto IsBinOpOrAnd = [](Value *V) { 3232 return match( 3233 V, m_CombineOr( 3234 m_BinOp(), 3235 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()), 3236 m_Select(m_Value(), m_Value(), m_ImmConstant())))); 3237 }; 3238 if (PN->getType()->isIntegerTy(1) && 3239 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 3240 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 3241 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 3242 PN->getIncomingValue(1))) 3243 return Changed; 3244 3245 // If all PHI nodes are promotable, check to make sure that all instructions 3246 // in the predecessor blocks can be promoted as well. If not, we won't be able 3247 // to get rid of the control flow, so it's not worth promoting to select 3248 // instructions. 3249 for (BasicBlock *IfBlock : IfBlocks) 3250 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 3251 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { 3252 // This is not an aggressive instruction that we can promote. 3253 // Because of this, we won't be able to get rid of the control flow, so 3254 // the xform is not worth it. 3255 return Changed; 3256 } 3257 3258 // If either of the blocks has it's address taken, we can't do this fold. 3259 if (any_of(IfBlocks, 3260 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 3261 return Changed; 3262 3263 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 3264 << " T: " << IfTrue->getName() 3265 << " F: " << IfFalse->getName() << "\n"); 3266 3267 // If we can still promote the PHI nodes after this gauntlet of tests, 3268 // do all of the PHI's now. 3269 3270 // Move all 'aggressive' instructions, which are defined in the 3271 // conditional parts of the if's up to the dominating block. 3272 for (BasicBlock *IfBlock : IfBlocks) 3273 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 3274 3275 IRBuilder<NoFolder> Builder(DomBI); 3276 // Propagate fast-math-flags from phi nodes to replacement selects. 3277 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 3278 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 3279 if (isa<FPMathOperator>(PN)) 3280 Builder.setFastMathFlags(PN->getFastMathFlags()); 3281 3282 // Change the PHI node into a select instruction. 3283 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 3284 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 3285 3286 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI); 3287 PN->replaceAllUsesWith(Sel); 3288 Sel->takeName(PN); 3289 PN->eraseFromParent(); 3290 } 3291 3292 // At this point, all IfBlocks are empty, so our if statement 3293 // has been flattened. Change DomBlock to jump directly to our new block to 3294 // avoid other simplifycfg's kicking in on the diamond. 3295 Builder.CreateBr(BB); 3296 3297 SmallVector<DominatorTree::UpdateType, 3> Updates; 3298 if (DTU) { 3299 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 3300 for (auto *Successor : successors(DomBlock)) 3301 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 3302 } 3303 3304 DomBI->eraseFromParent(); 3305 if (DTU) 3306 DTU->applyUpdates(Updates); 3307 3308 return true; 3309 } 3310 3311 static Value *createLogicalOp(IRBuilderBase &Builder, 3312 Instruction::BinaryOps Opc, Value *LHS, 3313 Value *RHS, const Twine &Name = "") { 3314 // Try to relax logical op to binary op. 3315 if (impliesPoison(RHS, LHS)) 3316 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 3317 if (Opc == Instruction::And) 3318 return Builder.CreateLogicalAnd(LHS, RHS, Name); 3319 if (Opc == Instruction::Or) 3320 return Builder.CreateLogicalOr(LHS, RHS, Name); 3321 llvm_unreachable("Invalid logical opcode"); 3322 } 3323 3324 /// Return true if either PBI or BI has branch weight available, and store 3325 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3326 /// not have branch weight, use 1:1 as its weight. 3327 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3328 uint64_t &PredTrueWeight, 3329 uint64_t &PredFalseWeight, 3330 uint64_t &SuccTrueWeight, 3331 uint64_t &SuccFalseWeight) { 3332 bool PredHasWeights = 3333 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 3334 bool SuccHasWeights = 3335 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 3336 if (PredHasWeights || SuccHasWeights) { 3337 if (!PredHasWeights) 3338 PredTrueWeight = PredFalseWeight = 1; 3339 if (!SuccHasWeights) 3340 SuccTrueWeight = SuccFalseWeight = 1; 3341 return true; 3342 } else { 3343 return false; 3344 } 3345 } 3346 3347 /// Determine if the two branches share a common destination and deduce a glue 3348 /// that joins the branches' conditions to arrive at the common destination if 3349 /// that would be profitable. 3350 static Optional<std::pair<Instruction::BinaryOps, bool>> 3351 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3352 const TargetTransformInfo *TTI) { 3353 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3354 "Both blocks must end with a conditional branches."); 3355 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3356 "PredBB must be a predecessor of BB."); 3357 3358 // We have the potential to fold the conditions together, but if the 3359 // predecessor branch is predictable, we may not want to merge them. 3360 uint64_t PTWeight, PFWeight; 3361 BranchProbability PBITrueProb, Likely; 3362 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 3363 PBI->extractProfMetadata(PTWeight, PFWeight) && 3364 (PTWeight + PFWeight) != 0) { 3365 PBITrueProb = 3366 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3367 Likely = TTI->getPredictableBranchThreshold(); 3368 } 3369 3370 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3371 // Speculate the 2nd condition unless the 1st is probably true. 3372 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3373 return {{Instruction::Or, false}}; 3374 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3375 // Speculate the 2nd condition unless the 1st is probably false. 3376 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3377 return {{Instruction::And, false}}; 3378 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3379 // Speculate the 2nd condition unless the 1st is probably true. 3380 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3381 return {{Instruction::And, true}}; 3382 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3383 // Speculate the 2nd condition unless the 1st is probably false. 3384 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3385 return {{Instruction::Or, true}}; 3386 } 3387 return None; 3388 } 3389 3390 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3391 DomTreeUpdater *DTU, 3392 MemorySSAUpdater *MSSAU, 3393 const TargetTransformInfo *TTI) { 3394 BasicBlock *BB = BI->getParent(); 3395 BasicBlock *PredBlock = PBI->getParent(); 3396 3397 // Determine if the two branches share a common destination. 3398 Instruction::BinaryOps Opc; 3399 bool InvertPredCond; 3400 std::tie(Opc, InvertPredCond) = 3401 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3402 3403 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3404 3405 IRBuilder<> Builder(PBI); 3406 // The builder is used to create instructions to eliminate the branch in BB. 3407 // If BB's terminator has !annotation metadata, add it to the new 3408 // instructions. 3409 Builder.CollectMetadataToCopy(BB->getTerminator(), 3410 {LLVMContext::MD_annotation}); 3411 3412 // If we need to invert the condition in the pred block to match, do so now. 3413 if (InvertPredCond) { 3414 Value *NewCond = PBI->getCondition(); 3415 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3416 CmpInst *CI = cast<CmpInst>(NewCond); 3417 CI->setPredicate(CI->getInversePredicate()); 3418 } else { 3419 NewCond = 3420 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3421 } 3422 3423 PBI->setCondition(NewCond); 3424 PBI->swapSuccessors(); 3425 } 3426 3427 BasicBlock *UniqueSucc = 3428 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3429 3430 // Before cloning instructions, notify the successor basic block that it 3431 // is about to have a new predecessor. This will update PHI nodes, 3432 // which will allow us to update live-out uses of bonus instructions. 3433 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3434 3435 // Try to update branch weights. 3436 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3437 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3438 SuccTrueWeight, SuccFalseWeight)) { 3439 SmallVector<uint64_t, 8> NewWeights; 3440 3441 if (PBI->getSuccessor(0) == BB) { 3442 // PBI: br i1 %x, BB, FalseDest 3443 // BI: br i1 %y, UniqueSucc, FalseDest 3444 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3445 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3446 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3447 // TrueWeight for PBI * FalseWeight for BI. 3448 // We assume that total weights of a BranchInst can fit into 32 bits. 3449 // Therefore, we will not have overflow using 64-bit arithmetic. 3450 NewWeights.push_back(PredFalseWeight * 3451 (SuccFalseWeight + SuccTrueWeight) + 3452 PredTrueWeight * SuccFalseWeight); 3453 } else { 3454 // PBI: br i1 %x, TrueDest, BB 3455 // BI: br i1 %y, TrueDest, UniqueSucc 3456 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3457 // FalseWeight for PBI * TrueWeight for BI. 3458 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3459 PredFalseWeight * SuccTrueWeight); 3460 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3461 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3462 } 3463 3464 // Halve the weights if any of them cannot fit in an uint32_t 3465 FitWeights(NewWeights); 3466 3467 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3468 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3469 3470 // TODO: If BB is reachable from all paths through PredBlock, then we 3471 // could replace PBI's branch probabilities with BI's. 3472 } else 3473 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3474 3475 // Now, update the CFG. 3476 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3477 3478 if (DTU) 3479 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3480 {DominatorTree::Delete, PredBlock, BB}}); 3481 3482 // If BI was a loop latch, it may have had associated loop metadata. 3483 // We need to copy it to the new latch, that is, PBI. 3484 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3485 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3486 3487 ValueToValueMapTy VMap; // maps original values to cloned values 3488 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3489 3490 // Now that the Cond was cloned into the predecessor basic block, 3491 // or/and the two conditions together. 3492 Value *BICond = VMap[BI->getCondition()]; 3493 PBI->setCondition( 3494 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3495 3496 // Copy any debug value intrinsics into the end of PredBlock. 3497 for (Instruction &I : *BB) { 3498 if (isa<DbgInfoIntrinsic>(I)) { 3499 Instruction *NewI = I.clone(); 3500 RemapInstruction(NewI, VMap, 3501 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3502 NewI->insertBefore(PBI); 3503 } 3504 } 3505 3506 ++NumFoldBranchToCommonDest; 3507 return true; 3508 } 3509 3510 /// Return if an instruction's type or any of its operands' types are a vector 3511 /// type. 3512 static bool isVectorOp(Instruction &I) { 3513 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { 3514 return U->getType()->isVectorTy(); 3515 }); 3516 } 3517 3518 /// If this basic block is simple enough, and if a predecessor branches to us 3519 /// and one of our successors, fold the block into the predecessor and use 3520 /// logical operations to pick the right destination. 3521 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3522 MemorySSAUpdater *MSSAU, 3523 const TargetTransformInfo *TTI, 3524 unsigned BonusInstThreshold) { 3525 // If this block ends with an unconditional branch, 3526 // let SpeculativelyExecuteBB() deal with it. 3527 if (!BI->isConditional()) 3528 return false; 3529 3530 BasicBlock *BB = BI->getParent(); 3531 TargetTransformInfo::TargetCostKind CostKind = 3532 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3533 : TargetTransformInfo::TCK_SizeAndLatency; 3534 3535 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3536 3537 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3538 Cond->getParent() != BB || !Cond->hasOneUse()) 3539 return false; 3540 3541 // Cond is known to be a compare or binary operator. Check to make sure that 3542 // neither operand is a potentially-trapping constant expression. 3543 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3544 if (CE->canTrap()) 3545 return false; 3546 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3547 if (CE->canTrap()) 3548 return false; 3549 3550 // Finally, don't infinitely unroll conditional loops. 3551 if (is_contained(successors(BB), BB)) 3552 return false; 3553 3554 // With which predecessors will we want to deal with? 3555 SmallVector<BasicBlock *, 8> Preds; 3556 for (BasicBlock *PredBlock : predecessors(BB)) { 3557 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3558 3559 // Check that we have two conditional branches. If there is a PHI node in 3560 // the common successor, verify that the same value flows in from both 3561 // blocks. 3562 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3563 continue; 3564 3565 // Determine if the two branches share a common destination. 3566 Instruction::BinaryOps Opc; 3567 bool InvertPredCond; 3568 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3569 std::tie(Opc, InvertPredCond) = *Recipe; 3570 else 3571 continue; 3572 3573 // Check the cost of inserting the necessary logic before performing the 3574 // transformation. 3575 if (TTI) { 3576 Type *Ty = BI->getCondition()->getType(); 3577 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3578 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3579 !isa<CmpInst>(PBI->getCondition()))) 3580 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3581 3582 if (Cost > BranchFoldThreshold) 3583 continue; 3584 } 3585 3586 // Ok, we do want to deal with this predecessor. Record it. 3587 Preds.emplace_back(PredBlock); 3588 } 3589 3590 // If there aren't any predecessors into which we can fold, 3591 // don't bother checking the cost. 3592 if (Preds.empty()) 3593 return false; 3594 3595 // Only allow this transformation if computing the condition doesn't involve 3596 // too many instructions and these involved instructions can be executed 3597 // unconditionally. We denote all involved instructions except the condition 3598 // as "bonus instructions", and only allow this transformation when the 3599 // number of the bonus instructions we'll need to create when cloning into 3600 // each predecessor does not exceed a certain threshold. 3601 unsigned NumBonusInsts = 0; 3602 bool SawVectorOp = false; 3603 const unsigned PredCount = Preds.size(); 3604 for (Instruction &I : *BB) { 3605 // Don't check the branch condition comparison itself. 3606 if (&I == Cond) 3607 continue; 3608 // Ignore dbg intrinsics, and the terminator. 3609 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3610 continue; 3611 // I must be safe to execute unconditionally. 3612 if (!isSafeToSpeculativelyExecute(&I)) 3613 return false; 3614 SawVectorOp |= isVectorOp(I); 3615 3616 // Account for the cost of duplicating this instruction into each 3617 // predecessor. Ignore free instructions. 3618 if (!TTI || 3619 TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) { 3620 NumBonusInsts += PredCount; 3621 3622 // Early exits once we reach the limit. 3623 if (NumBonusInsts > 3624 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) 3625 return false; 3626 } 3627 3628 auto IsBCSSAUse = [BB, &I](Use &U) { 3629 auto *UI = cast<Instruction>(U.getUser()); 3630 if (auto *PN = dyn_cast<PHINode>(UI)) 3631 return PN->getIncomingBlock(U) == BB; 3632 return UI->getParent() == BB && I.comesBefore(UI); 3633 }; 3634 3635 // Does this instruction require rewriting of uses? 3636 if (!all_of(I.uses(), IsBCSSAUse)) 3637 return false; 3638 } 3639 if (NumBonusInsts > 3640 BonusInstThreshold * 3641 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) 3642 return false; 3643 3644 // Ok, we have the budget. Perform the transformation. 3645 for (BasicBlock *PredBlock : Preds) { 3646 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3647 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3648 } 3649 return false; 3650 } 3651 3652 // If there is only one store in BB1 and BB2, return it, otherwise return 3653 // nullptr. 3654 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3655 StoreInst *S = nullptr; 3656 for (auto *BB : {BB1, BB2}) { 3657 if (!BB) 3658 continue; 3659 for (auto &I : *BB) 3660 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3661 if (S) 3662 // Multiple stores seen. 3663 return nullptr; 3664 else 3665 S = SI; 3666 } 3667 } 3668 return S; 3669 } 3670 3671 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3672 Value *AlternativeV = nullptr) { 3673 // PHI is going to be a PHI node that allows the value V that is defined in 3674 // BB to be referenced in BB's only successor. 3675 // 3676 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3677 // doesn't matter to us what the other operand is (it'll never get used). We 3678 // could just create a new PHI with an undef incoming value, but that could 3679 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3680 // other PHI. So here we directly look for some PHI in BB's successor with V 3681 // as an incoming operand. If we find one, we use it, else we create a new 3682 // one. 3683 // 3684 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3685 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3686 // where OtherBB is the single other predecessor of BB's only successor. 3687 PHINode *PHI = nullptr; 3688 BasicBlock *Succ = BB->getSingleSuccessor(); 3689 3690 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3691 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3692 PHI = cast<PHINode>(I); 3693 if (!AlternativeV) 3694 break; 3695 3696 assert(Succ->hasNPredecessors(2)); 3697 auto PredI = pred_begin(Succ); 3698 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3699 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3700 break; 3701 PHI = nullptr; 3702 } 3703 if (PHI) 3704 return PHI; 3705 3706 // If V is not an instruction defined in BB, just return it. 3707 if (!AlternativeV && 3708 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3709 return V; 3710 3711 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3712 PHI->addIncoming(V, BB); 3713 for (BasicBlock *PredBB : predecessors(Succ)) 3714 if (PredBB != BB) 3715 PHI->addIncoming( 3716 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3717 return PHI; 3718 } 3719 3720 static bool mergeConditionalStoreToAddress( 3721 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3722 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3723 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3724 // For every pointer, there must be exactly two stores, one coming from 3725 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3726 // store (to any address) in PTB,PFB or QTB,QFB. 3727 // FIXME: We could relax this restriction with a bit more work and performance 3728 // testing. 3729 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3730 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3731 if (!PStore || !QStore) 3732 return false; 3733 3734 // Now check the stores are compatible. 3735 if (!QStore->isUnordered() || !PStore->isUnordered()) 3736 return false; 3737 3738 // Check that sinking the store won't cause program behavior changes. Sinking 3739 // the store out of the Q blocks won't change any behavior as we're sinking 3740 // from a block to its unconditional successor. But we're moving a store from 3741 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3742 // So we need to check that there are no aliasing loads or stores in 3743 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3744 // operations between PStore and the end of its parent block. 3745 // 3746 // The ideal way to do this is to query AliasAnalysis, but we don't 3747 // preserve AA currently so that is dangerous. Be super safe and just 3748 // check there are no other memory operations at all. 3749 for (auto &I : *QFB->getSinglePredecessor()) 3750 if (I.mayReadOrWriteMemory()) 3751 return false; 3752 for (auto &I : *QFB) 3753 if (&I != QStore && I.mayReadOrWriteMemory()) 3754 return false; 3755 if (QTB) 3756 for (auto &I : *QTB) 3757 if (&I != QStore && I.mayReadOrWriteMemory()) 3758 return false; 3759 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3760 I != E; ++I) 3761 if (&*I != PStore && I->mayReadOrWriteMemory()) 3762 return false; 3763 3764 // If we're not in aggressive mode, we only optimize if we have some 3765 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3766 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3767 if (!BB) 3768 return true; 3769 // Heuristic: if the block can be if-converted/phi-folded and the 3770 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3771 // thread this store. 3772 InstructionCost Cost = 0; 3773 InstructionCost Budget = 3774 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3775 for (auto &I : BB->instructionsWithoutDebug(false)) { 3776 // Consider terminator instruction to be free. 3777 if (I.isTerminator()) 3778 continue; 3779 // If this is one the stores that we want to speculate out of this BB, 3780 // then don't count it's cost, consider it to be free. 3781 if (auto *S = dyn_cast<StoreInst>(&I)) 3782 if (llvm::find(FreeStores, S)) 3783 continue; 3784 // Else, we have a white-list of instructions that we are ak speculating. 3785 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3786 return false; // Not in white-list - not worthwhile folding. 3787 // And finally, if this is a non-free instruction that we are okay 3788 // speculating, ensure that we consider the speculation budget. 3789 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3790 if (Cost > Budget) 3791 return false; // Eagerly refuse to fold as soon as we're out of budget. 3792 } 3793 assert(Cost <= Budget && 3794 "When we run out of budget we will eagerly return from within the " 3795 "per-instruction loop."); 3796 return true; 3797 }; 3798 3799 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3800 if (!MergeCondStoresAggressively && 3801 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3802 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3803 return false; 3804 3805 // If PostBB has more than two predecessors, we need to split it so we can 3806 // sink the store. 3807 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3808 // We know that QFB's only successor is PostBB. And QFB has a single 3809 // predecessor. If QTB exists, then its only successor is also PostBB. 3810 // If QTB does not exist, then QFB's only predecessor has a conditional 3811 // branch to QFB and PostBB. 3812 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3813 BasicBlock *NewBB = 3814 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3815 if (!NewBB) 3816 return false; 3817 PostBB = NewBB; 3818 } 3819 3820 // OK, we're going to sink the stores to PostBB. The store has to be 3821 // conditional though, so first create the predicate. 3822 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3823 ->getCondition(); 3824 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3825 ->getCondition(); 3826 3827 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3828 PStore->getParent()); 3829 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3830 QStore->getParent(), PPHI); 3831 3832 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3833 3834 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3835 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3836 3837 if (InvertPCond) 3838 PPred = QB.CreateNot(PPred); 3839 if (InvertQCond) 3840 QPred = QB.CreateNot(QPred); 3841 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3842 3843 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3844 /*Unreachable=*/false, 3845 /*BranchWeights=*/nullptr, DTU); 3846 QB.SetInsertPoint(T); 3847 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3848 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); 3849 // Choose the minimum alignment. If we could prove both stores execute, we 3850 // could use biggest one. In this case, though, we only know that one of the 3851 // stores executes. And we don't know it's safe to take the alignment from a 3852 // store that doesn't execute. 3853 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3854 3855 QStore->eraseFromParent(); 3856 PStore->eraseFromParent(); 3857 3858 return true; 3859 } 3860 3861 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3862 DomTreeUpdater *DTU, const DataLayout &DL, 3863 const TargetTransformInfo &TTI) { 3864 // The intention here is to find diamonds or triangles (see below) where each 3865 // conditional block contains a store to the same address. Both of these 3866 // stores are conditional, so they can't be unconditionally sunk. But it may 3867 // be profitable to speculatively sink the stores into one merged store at the 3868 // end, and predicate the merged store on the union of the two conditions of 3869 // PBI and QBI. 3870 // 3871 // This can reduce the number of stores executed if both of the conditions are 3872 // true, and can allow the blocks to become small enough to be if-converted. 3873 // This optimization will also chain, so that ladders of test-and-set 3874 // sequences can be if-converted away. 3875 // 3876 // We only deal with simple diamonds or triangles: 3877 // 3878 // PBI or PBI or a combination of the two 3879 // / \ | \ 3880 // PTB PFB | PFB 3881 // \ / | / 3882 // QBI QBI 3883 // / \ | \ 3884 // QTB QFB | QFB 3885 // \ / | / 3886 // PostBB PostBB 3887 // 3888 // We model triangles as a type of diamond with a nullptr "true" block. 3889 // Triangles are canonicalized so that the fallthrough edge is represented by 3890 // a true condition, as in the diagram above. 3891 BasicBlock *PTB = PBI->getSuccessor(0); 3892 BasicBlock *PFB = PBI->getSuccessor(1); 3893 BasicBlock *QTB = QBI->getSuccessor(0); 3894 BasicBlock *QFB = QBI->getSuccessor(1); 3895 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3896 3897 // Make sure we have a good guess for PostBB. If QTB's only successor is 3898 // QFB, then QFB is a better PostBB. 3899 if (QTB->getSingleSuccessor() == QFB) 3900 PostBB = QFB; 3901 3902 // If we couldn't find a good PostBB, stop. 3903 if (!PostBB) 3904 return false; 3905 3906 bool InvertPCond = false, InvertQCond = false; 3907 // Canonicalize fallthroughs to the true branches. 3908 if (PFB == QBI->getParent()) { 3909 std::swap(PFB, PTB); 3910 InvertPCond = true; 3911 } 3912 if (QFB == PostBB) { 3913 std::swap(QFB, QTB); 3914 InvertQCond = true; 3915 } 3916 3917 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3918 // and QFB may not. Model fallthroughs as a nullptr block. 3919 if (PTB == QBI->getParent()) 3920 PTB = nullptr; 3921 if (QTB == PostBB) 3922 QTB = nullptr; 3923 3924 // Legality bailouts. We must have at least the non-fallthrough blocks and 3925 // the post-dominating block, and the non-fallthroughs must only have one 3926 // predecessor. 3927 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3928 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3929 }; 3930 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3931 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3932 return false; 3933 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3934 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3935 return false; 3936 if (!QBI->getParent()->hasNUses(2)) 3937 return false; 3938 3939 // OK, this is a sequence of two diamonds or triangles. 3940 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3941 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3942 for (auto *BB : {PTB, PFB}) { 3943 if (!BB) 3944 continue; 3945 for (auto &I : *BB) 3946 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3947 PStoreAddresses.insert(SI->getPointerOperand()); 3948 } 3949 for (auto *BB : {QTB, QFB}) { 3950 if (!BB) 3951 continue; 3952 for (auto &I : *BB) 3953 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3954 QStoreAddresses.insert(SI->getPointerOperand()); 3955 } 3956 3957 set_intersect(PStoreAddresses, QStoreAddresses); 3958 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3959 // clear what it contains. 3960 auto &CommonAddresses = PStoreAddresses; 3961 3962 bool Changed = false; 3963 for (auto *Address : CommonAddresses) 3964 Changed |= 3965 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3966 InvertPCond, InvertQCond, DTU, DL, TTI); 3967 return Changed; 3968 } 3969 3970 /// If the previous block ended with a widenable branch, determine if reusing 3971 /// the target block is profitable and legal. This will have the effect of 3972 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3973 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3974 DomTreeUpdater *DTU) { 3975 // TODO: This can be generalized in two important ways: 3976 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3977 // values from the PBI edge. 3978 // 2) We can sink side effecting instructions into BI's fallthrough 3979 // successor provided they doesn't contribute to computation of 3980 // BI's condition. 3981 Value *CondWB, *WC; 3982 BasicBlock *IfTrueBB, *IfFalseBB; 3983 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3984 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3985 return false; 3986 if (!IfFalseBB->phis().empty()) 3987 return false; // TODO 3988 // Use lambda to lazily compute expensive condition after cheap ones. 3989 auto NoSideEffects = [](BasicBlock &BB) { 3990 return llvm::none_of(BB, [](const Instruction &I) { 3991 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3992 }); 3993 }; 3994 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3995 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3996 NoSideEffects(*BI->getParent())) { 3997 auto *OldSuccessor = BI->getSuccessor(1); 3998 OldSuccessor->removePredecessor(BI->getParent()); 3999 BI->setSuccessor(1, IfFalseBB); 4000 if (DTU) 4001 DTU->applyUpdates( 4002 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4003 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4004 return true; 4005 } 4006 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 4007 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 4008 NoSideEffects(*BI->getParent())) { 4009 auto *OldSuccessor = BI->getSuccessor(0); 4010 OldSuccessor->removePredecessor(BI->getParent()); 4011 BI->setSuccessor(0, IfFalseBB); 4012 if (DTU) 4013 DTU->applyUpdates( 4014 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4015 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4016 return true; 4017 } 4018 return false; 4019 } 4020 4021 /// If we have a conditional branch as a predecessor of another block, 4022 /// this function tries to simplify it. We know 4023 /// that PBI and BI are both conditional branches, and BI is in one of the 4024 /// successor blocks of PBI - PBI branches to BI. 4025 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4026 DomTreeUpdater *DTU, 4027 const DataLayout &DL, 4028 const TargetTransformInfo &TTI) { 4029 assert(PBI->isConditional() && BI->isConditional()); 4030 BasicBlock *BB = BI->getParent(); 4031 4032 // If this block ends with a branch instruction, and if there is a 4033 // predecessor that ends on a branch of the same condition, make 4034 // this conditional branch redundant. 4035 if (PBI->getCondition() == BI->getCondition() && 4036 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4037 // Okay, the outcome of this conditional branch is statically 4038 // knowable. If this block had a single pred, handle specially. 4039 if (BB->getSinglePredecessor()) { 4040 // Turn this into a branch on constant. 4041 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4042 BI->setCondition( 4043 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 4044 return true; // Nuke the branch on constant. 4045 } 4046 4047 // Otherwise, if there are multiple predecessors, insert a PHI that merges 4048 // in the constant and simplify the block result. Subsequent passes of 4049 // simplifycfg will thread the block. 4050 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 4051 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 4052 PHINode *NewPN = PHINode::Create( 4053 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 4054 BI->getCondition()->getName() + ".pr", &BB->front()); 4055 // Okay, we're going to insert the PHI node. Since PBI is not the only 4056 // predecessor, compute the PHI'd conditional value for all of the preds. 4057 // Any predecessor where the condition is not computable we keep symbolic. 4058 for (pred_iterator PI = PB; PI != PE; ++PI) { 4059 BasicBlock *P = *PI; 4060 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 4061 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 4062 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4063 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4064 NewPN->addIncoming( 4065 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 4066 P); 4067 } else { 4068 NewPN->addIncoming(BI->getCondition(), P); 4069 } 4070 } 4071 4072 BI->setCondition(NewPN); 4073 return true; 4074 } 4075 } 4076 4077 // If the previous block ended with a widenable branch, determine if reusing 4078 // the target block is profitable and legal. This will have the effect of 4079 // "widening" PBI, but doesn't require us to reason about hosting safety. 4080 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 4081 return true; 4082 4083 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 4084 if (CE->canTrap()) 4085 return false; 4086 4087 // If both branches are conditional and both contain stores to the same 4088 // address, remove the stores from the conditionals and create a conditional 4089 // merged store at the end. 4090 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 4091 return true; 4092 4093 // If this is a conditional branch in an empty block, and if any 4094 // predecessors are a conditional branch to one of our destinations, 4095 // fold the conditions into logical ops and one cond br. 4096 4097 // Ignore dbg intrinsics. 4098 if (&*BB->instructionsWithoutDebug(false).begin() != BI) 4099 return false; 4100 4101 int PBIOp, BIOp; 4102 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 4103 PBIOp = 0; 4104 BIOp = 0; 4105 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 4106 PBIOp = 0; 4107 BIOp = 1; 4108 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4109 PBIOp = 1; 4110 BIOp = 0; 4111 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 4112 PBIOp = 1; 4113 BIOp = 1; 4114 } else { 4115 return false; 4116 } 4117 4118 // Check to make sure that the other destination of this branch 4119 // isn't BB itself. If so, this is an infinite loop that will 4120 // keep getting unwound. 4121 if (PBI->getSuccessor(PBIOp) == BB) 4122 return false; 4123 4124 // Do not perform this transformation if it would require 4125 // insertion of a large number of select instructions. For targets 4126 // without predication/cmovs, this is a big pessimization. 4127 4128 // Also do not perform this transformation if any phi node in the common 4129 // destination block can trap when reached by BB or PBB (PR17073). In that 4130 // case, it would be unsafe to hoist the operation into a select instruction. 4131 4132 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 4133 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 4134 unsigned NumPhis = 0; 4135 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 4136 ++II, ++NumPhis) { 4137 if (NumPhis > 2) // Disable this xform. 4138 return false; 4139 4140 PHINode *PN = cast<PHINode>(II); 4141 Value *BIV = PN->getIncomingValueForBlock(BB); 4142 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 4143 if (CE->canTrap()) 4144 return false; 4145 4146 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 4147 Value *PBIV = PN->getIncomingValue(PBBIdx); 4148 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 4149 if (CE->canTrap()) 4150 return false; 4151 } 4152 4153 // Finally, if everything is ok, fold the branches to logical ops. 4154 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 4155 4156 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 4157 << "AND: " << *BI->getParent()); 4158 4159 SmallVector<DominatorTree::UpdateType, 5> Updates; 4160 4161 // If OtherDest *is* BB, then BB is a basic block with a single conditional 4162 // branch in it, where one edge (OtherDest) goes back to itself but the other 4163 // exits. We don't *know* that the program avoids the infinite loop 4164 // (even though that seems likely). If we do this xform naively, we'll end up 4165 // recursively unpeeling the loop. Since we know that (after the xform is 4166 // done) that the block *is* infinite if reached, we just make it an obviously 4167 // infinite loop with no cond branch. 4168 if (OtherDest == BB) { 4169 // Insert it at the end of the function, because it's either code, 4170 // or it won't matter if it's hot. :) 4171 BasicBlock *InfLoopBlock = 4172 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 4173 BranchInst::Create(InfLoopBlock, InfLoopBlock); 4174 if (DTU) 4175 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 4176 OtherDest = InfLoopBlock; 4177 } 4178 4179 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4180 4181 // BI may have other predecessors. Because of this, we leave 4182 // it alone, but modify PBI. 4183 4184 // Make sure we get to CommonDest on True&True directions. 4185 Value *PBICond = PBI->getCondition(); 4186 IRBuilder<NoFolder> Builder(PBI); 4187 if (PBIOp) 4188 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 4189 4190 Value *BICond = BI->getCondition(); 4191 if (BIOp) 4192 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 4193 4194 // Merge the conditions. 4195 Value *Cond = 4196 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 4197 4198 // Modify PBI to branch on the new condition to the new dests. 4199 PBI->setCondition(Cond); 4200 PBI->setSuccessor(0, CommonDest); 4201 PBI->setSuccessor(1, OtherDest); 4202 4203 if (DTU) { 4204 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 4205 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 4206 4207 DTU->applyUpdates(Updates); 4208 } 4209 4210 // Update branch weight for PBI. 4211 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4212 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 4213 bool HasWeights = 4214 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4215 SuccTrueWeight, SuccFalseWeight); 4216 if (HasWeights) { 4217 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4218 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4219 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4220 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4221 // The weight to CommonDest should be PredCommon * SuccTotal + 4222 // PredOther * SuccCommon. 4223 // The weight to OtherDest should be PredOther * SuccOther. 4224 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 4225 PredOther * SuccCommon, 4226 PredOther * SuccOther}; 4227 // Halve the weights if any of them cannot fit in an uint32_t 4228 FitWeights(NewWeights); 4229 4230 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 4231 } 4232 4233 // OtherDest may have phi nodes. If so, add an entry from PBI's 4234 // block that are identical to the entries for BI's block. 4235 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 4236 4237 // We know that the CommonDest already had an edge from PBI to 4238 // it. If it has PHIs though, the PHIs may have different 4239 // entries for BB and PBI's BB. If so, insert a select to make 4240 // them agree. 4241 for (PHINode &PN : CommonDest->phis()) { 4242 Value *BIV = PN.getIncomingValueForBlock(BB); 4243 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 4244 Value *PBIV = PN.getIncomingValue(PBBIdx); 4245 if (BIV != PBIV) { 4246 // Insert a select in PBI to pick the right value. 4247 SelectInst *NV = cast<SelectInst>( 4248 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 4249 PN.setIncomingValue(PBBIdx, NV); 4250 // Although the select has the same condition as PBI, the original branch 4251 // weights for PBI do not apply to the new select because the select's 4252 // 'logical' edges are incoming edges of the phi that is eliminated, not 4253 // the outgoing edges of PBI. 4254 if (HasWeights) { 4255 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4256 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4257 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4258 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4259 // The weight to PredCommonDest should be PredCommon * SuccTotal. 4260 // The weight to PredOtherDest should be PredOther * SuccCommon. 4261 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 4262 PredOther * SuccCommon}; 4263 4264 FitWeights(NewWeights); 4265 4266 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 4267 } 4268 } 4269 } 4270 4271 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 4272 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4273 4274 // This basic block is probably dead. We know it has at least 4275 // one fewer predecessor. 4276 return true; 4277 } 4278 4279 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 4280 // true or to FalseBB if Cond is false. 4281 // Takes care of updating the successors and removing the old terminator. 4282 // Also makes sure not to introduce new successors by assuming that edges to 4283 // non-successor TrueBBs and FalseBBs aren't reachable. 4284 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 4285 Value *Cond, BasicBlock *TrueBB, 4286 BasicBlock *FalseBB, 4287 uint32_t TrueWeight, 4288 uint32_t FalseWeight) { 4289 auto *BB = OldTerm->getParent(); 4290 // Remove any superfluous successor edges from the CFG. 4291 // First, figure out which successors to preserve. 4292 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 4293 // successor. 4294 BasicBlock *KeepEdge1 = TrueBB; 4295 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 4296 4297 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 4298 4299 // Then remove the rest. 4300 for (BasicBlock *Succ : successors(OldTerm)) { 4301 // Make sure only to keep exactly one copy of each edge. 4302 if (Succ == KeepEdge1) 4303 KeepEdge1 = nullptr; 4304 else if (Succ == KeepEdge2) 4305 KeepEdge2 = nullptr; 4306 else { 4307 Succ->removePredecessor(BB, 4308 /*KeepOneInputPHIs=*/true); 4309 4310 if (Succ != TrueBB && Succ != FalseBB) 4311 RemovedSuccessors.insert(Succ); 4312 } 4313 } 4314 4315 IRBuilder<> Builder(OldTerm); 4316 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 4317 4318 // Insert an appropriate new terminator. 4319 if (!KeepEdge1 && !KeepEdge2) { 4320 if (TrueBB == FalseBB) { 4321 // We were only looking for one successor, and it was present. 4322 // Create an unconditional branch to it. 4323 Builder.CreateBr(TrueBB); 4324 } else { 4325 // We found both of the successors we were looking for. 4326 // Create a conditional branch sharing the condition of the select. 4327 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 4328 if (TrueWeight != FalseWeight) 4329 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4330 } 4331 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 4332 // Neither of the selected blocks were successors, so this 4333 // terminator must be unreachable. 4334 new UnreachableInst(OldTerm->getContext(), OldTerm); 4335 } else { 4336 // One of the selected values was a successor, but the other wasn't. 4337 // Insert an unconditional branch to the one that was found; 4338 // the edge to the one that wasn't must be unreachable. 4339 if (!KeepEdge1) { 4340 // Only TrueBB was found. 4341 Builder.CreateBr(TrueBB); 4342 } else { 4343 // Only FalseBB was found. 4344 Builder.CreateBr(FalseBB); 4345 } 4346 } 4347 4348 EraseTerminatorAndDCECond(OldTerm); 4349 4350 if (DTU) { 4351 SmallVector<DominatorTree::UpdateType, 2> Updates; 4352 Updates.reserve(RemovedSuccessors.size()); 4353 for (auto *RemovedSuccessor : RemovedSuccessors) 4354 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4355 DTU->applyUpdates(Updates); 4356 } 4357 4358 return true; 4359 } 4360 4361 // Replaces 4362 // (switch (select cond, X, Y)) on constant X, Y 4363 // with a branch - conditional if X and Y lead to distinct BBs, 4364 // unconditional otherwise. 4365 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4366 SelectInst *Select) { 4367 // Check for constant integer values in the select. 4368 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4369 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4370 if (!TrueVal || !FalseVal) 4371 return false; 4372 4373 // Find the relevant condition and destinations. 4374 Value *Condition = Select->getCondition(); 4375 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4376 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4377 4378 // Get weight for TrueBB and FalseBB. 4379 uint32_t TrueWeight = 0, FalseWeight = 0; 4380 SmallVector<uint64_t, 8> Weights; 4381 bool HasWeights = HasBranchWeights(SI); 4382 if (HasWeights) { 4383 GetBranchWeights(SI, Weights); 4384 if (Weights.size() == 1 + SI->getNumCases()) { 4385 TrueWeight = 4386 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4387 FalseWeight = 4388 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4389 } 4390 } 4391 4392 // Perform the actual simplification. 4393 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4394 FalseWeight); 4395 } 4396 4397 // Replaces 4398 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4399 // blockaddress(@fn, BlockB))) 4400 // with 4401 // (br cond, BlockA, BlockB). 4402 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4403 SelectInst *SI) { 4404 // Check that both operands of the select are block addresses. 4405 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4406 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4407 if (!TBA || !FBA) 4408 return false; 4409 4410 // Extract the actual blocks. 4411 BasicBlock *TrueBB = TBA->getBasicBlock(); 4412 BasicBlock *FalseBB = FBA->getBasicBlock(); 4413 4414 // Perform the actual simplification. 4415 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4416 0); 4417 } 4418 4419 /// This is called when we find an icmp instruction 4420 /// (a seteq/setne with a constant) as the only instruction in a 4421 /// block that ends with an uncond branch. We are looking for a very specific 4422 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4423 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4424 /// default value goes to an uncond block with a seteq in it, we get something 4425 /// like: 4426 /// 4427 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4428 /// DEFAULT: 4429 /// %tmp = icmp eq i8 %A, 92 4430 /// br label %end 4431 /// end: 4432 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4433 /// 4434 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4435 /// the PHI, merging the third icmp into the switch. 4436 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4437 ICmpInst *ICI, IRBuilder<> &Builder) { 4438 BasicBlock *BB = ICI->getParent(); 4439 4440 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4441 // complex. 4442 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4443 return false; 4444 4445 Value *V = ICI->getOperand(0); 4446 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4447 4448 // The pattern we're looking for is where our only predecessor is a switch on 4449 // 'V' and this block is the default case for the switch. In this case we can 4450 // fold the compared value into the switch to simplify things. 4451 BasicBlock *Pred = BB->getSinglePredecessor(); 4452 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4453 return false; 4454 4455 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4456 if (SI->getCondition() != V) 4457 return false; 4458 4459 // If BB is reachable on a non-default case, then we simply know the value of 4460 // V in this block. Substitute it and constant fold the icmp instruction 4461 // away. 4462 if (SI->getDefaultDest() != BB) { 4463 ConstantInt *VVal = SI->findCaseDest(BB); 4464 assert(VVal && "Should have a unique destination value"); 4465 ICI->setOperand(0, VVal); 4466 4467 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 4468 ICI->replaceAllUsesWith(V); 4469 ICI->eraseFromParent(); 4470 } 4471 // BB is now empty, so it is likely to simplify away. 4472 return requestResimplify(); 4473 } 4474 4475 // Ok, the block is reachable from the default dest. If the constant we're 4476 // comparing exists in one of the other edges, then we can constant fold ICI 4477 // and zap it. 4478 if (SI->findCaseValue(Cst) != SI->case_default()) { 4479 Value *V; 4480 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4481 V = ConstantInt::getFalse(BB->getContext()); 4482 else 4483 V = ConstantInt::getTrue(BB->getContext()); 4484 4485 ICI->replaceAllUsesWith(V); 4486 ICI->eraseFromParent(); 4487 // BB is now empty, so it is likely to simplify away. 4488 return requestResimplify(); 4489 } 4490 4491 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4492 // the block. 4493 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4494 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4495 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4496 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4497 return false; 4498 4499 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4500 // true in the PHI. 4501 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4502 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4503 4504 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4505 std::swap(DefaultCst, NewCst); 4506 4507 // Replace ICI (which is used by the PHI for the default value) with true or 4508 // false depending on if it is EQ or NE. 4509 ICI->replaceAllUsesWith(DefaultCst); 4510 ICI->eraseFromParent(); 4511 4512 SmallVector<DominatorTree::UpdateType, 2> Updates; 4513 4514 // Okay, the switch goes to this block on a default value. Add an edge from 4515 // the switch to the merge point on the compared value. 4516 BasicBlock *NewBB = 4517 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4518 { 4519 SwitchInstProfUpdateWrapper SIW(*SI); 4520 auto W0 = SIW.getSuccessorWeight(0); 4521 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4522 if (W0) { 4523 NewW = ((uint64_t(*W0) + 1) >> 1); 4524 SIW.setSuccessorWeight(0, *NewW); 4525 } 4526 SIW.addCase(Cst, NewBB, NewW); 4527 if (DTU) 4528 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4529 } 4530 4531 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4532 Builder.SetInsertPoint(NewBB); 4533 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4534 Builder.CreateBr(SuccBlock); 4535 PHIUse->addIncoming(NewCst, NewBB); 4536 if (DTU) { 4537 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4538 DTU->applyUpdates(Updates); 4539 } 4540 return true; 4541 } 4542 4543 /// The specified branch is a conditional branch. 4544 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4545 /// fold it into a switch instruction if so. 4546 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4547 IRBuilder<> &Builder, 4548 const DataLayout &DL) { 4549 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4550 if (!Cond) 4551 return false; 4552 4553 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4554 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4555 // 'setne's and'ed together, collect them. 4556 4557 // Try to gather values from a chain of and/or to be turned into a switch 4558 ConstantComparesGatherer ConstantCompare(Cond, DL); 4559 // Unpack the result 4560 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4561 Value *CompVal = ConstantCompare.CompValue; 4562 unsigned UsedICmps = ConstantCompare.UsedICmps; 4563 Value *ExtraCase = ConstantCompare.Extra; 4564 4565 // If we didn't have a multiply compared value, fail. 4566 if (!CompVal) 4567 return false; 4568 4569 // Avoid turning single icmps into a switch. 4570 if (UsedICmps <= 1) 4571 return false; 4572 4573 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4574 4575 // There might be duplicate constants in the list, which the switch 4576 // instruction can't handle, remove them now. 4577 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4578 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4579 4580 // If Extra was used, we require at least two switch values to do the 4581 // transformation. A switch with one value is just a conditional branch. 4582 if (ExtraCase && Values.size() < 2) 4583 return false; 4584 4585 // TODO: Preserve branch weight metadata, similarly to how 4586 // FoldValueComparisonIntoPredecessors preserves it. 4587 4588 // Figure out which block is which destination. 4589 BasicBlock *DefaultBB = BI->getSuccessor(1); 4590 BasicBlock *EdgeBB = BI->getSuccessor(0); 4591 if (!TrueWhenEqual) 4592 std::swap(DefaultBB, EdgeBB); 4593 4594 BasicBlock *BB = BI->getParent(); 4595 4596 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4597 << " cases into SWITCH. BB is:\n" 4598 << *BB); 4599 4600 SmallVector<DominatorTree::UpdateType, 2> Updates; 4601 4602 // If there are any extra values that couldn't be folded into the switch 4603 // then we evaluate them with an explicit branch first. Split the block 4604 // right before the condbr to handle it. 4605 if (ExtraCase) { 4606 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4607 /*MSSAU=*/nullptr, "switch.early.test"); 4608 4609 // Remove the uncond branch added to the old block. 4610 Instruction *OldTI = BB->getTerminator(); 4611 Builder.SetInsertPoint(OldTI); 4612 4613 // There can be an unintended UB if extra values are Poison. Before the 4614 // transformation, extra values may not be evaluated according to the 4615 // condition, and it will not raise UB. But after transformation, we are 4616 // evaluating extra values before checking the condition, and it will raise 4617 // UB. It can be solved by adding freeze instruction to extra values. 4618 AssumptionCache *AC = Options.AC; 4619 4620 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 4621 ExtraCase = Builder.CreateFreeze(ExtraCase); 4622 4623 if (TrueWhenEqual) 4624 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4625 else 4626 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4627 4628 OldTI->eraseFromParent(); 4629 4630 if (DTU) 4631 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4632 4633 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4634 // for the edge we just added. 4635 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4636 4637 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4638 << "\nEXTRABB = " << *BB); 4639 BB = NewBB; 4640 } 4641 4642 Builder.SetInsertPoint(BI); 4643 // Convert pointer to int before we switch. 4644 if (CompVal->getType()->isPointerTy()) { 4645 CompVal = Builder.CreatePtrToInt( 4646 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4647 } 4648 4649 // Create the new switch instruction now. 4650 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4651 4652 // Add all of the 'cases' to the switch instruction. 4653 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4654 New->addCase(Values[i], EdgeBB); 4655 4656 // We added edges from PI to the EdgeBB. As such, if there were any 4657 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4658 // the number of edges added. 4659 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4660 PHINode *PN = cast<PHINode>(BBI); 4661 Value *InVal = PN->getIncomingValueForBlock(BB); 4662 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4663 PN->addIncoming(InVal, BB); 4664 } 4665 4666 // Erase the old branch instruction. 4667 EraseTerminatorAndDCECond(BI); 4668 if (DTU) 4669 DTU->applyUpdates(Updates); 4670 4671 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4672 return true; 4673 } 4674 4675 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4676 if (isa<PHINode>(RI->getValue())) 4677 return simplifyCommonResume(RI); 4678 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4679 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4680 // The resume must unwind the exception that caused control to branch here. 4681 return simplifySingleResume(RI); 4682 4683 return false; 4684 } 4685 4686 // Check if cleanup block is empty 4687 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4688 for (Instruction &I : R) { 4689 auto *II = dyn_cast<IntrinsicInst>(&I); 4690 if (!II) 4691 return false; 4692 4693 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4694 switch (IntrinsicID) { 4695 case Intrinsic::dbg_declare: 4696 case Intrinsic::dbg_value: 4697 case Intrinsic::dbg_label: 4698 case Intrinsic::lifetime_end: 4699 break; 4700 default: 4701 return false; 4702 } 4703 } 4704 return true; 4705 } 4706 4707 // Simplify resume that is shared by several landing pads (phi of landing pad). 4708 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4709 BasicBlock *BB = RI->getParent(); 4710 4711 // Check that there are no other instructions except for debug and lifetime 4712 // intrinsics between the phi's and resume instruction. 4713 if (!isCleanupBlockEmpty( 4714 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4715 return false; 4716 4717 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4718 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4719 4720 // Check incoming blocks to see if any of them are trivial. 4721 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4722 Idx++) { 4723 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4724 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4725 4726 // If the block has other successors, we can not delete it because 4727 // it has other dependents. 4728 if (IncomingBB->getUniqueSuccessor() != BB) 4729 continue; 4730 4731 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4732 // Not the landing pad that caused the control to branch here. 4733 if (IncomingValue != LandingPad) 4734 continue; 4735 4736 if (isCleanupBlockEmpty( 4737 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4738 TrivialUnwindBlocks.insert(IncomingBB); 4739 } 4740 4741 // If no trivial unwind blocks, don't do any simplifications. 4742 if (TrivialUnwindBlocks.empty()) 4743 return false; 4744 4745 // Turn all invokes that unwind here into calls. 4746 for (auto *TrivialBB : TrivialUnwindBlocks) { 4747 // Blocks that will be simplified should be removed from the phi node. 4748 // Note there could be multiple edges to the resume block, and we need 4749 // to remove them all. 4750 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4751 BB->removePredecessor(TrivialBB, true); 4752 4753 for (BasicBlock *Pred : 4754 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4755 removeUnwindEdge(Pred, DTU); 4756 ++NumInvokes; 4757 } 4758 4759 // In each SimplifyCFG run, only the current processed block can be erased. 4760 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4761 // of erasing TrivialBB, we only remove the branch to the common resume 4762 // block so that we can later erase the resume block since it has no 4763 // predecessors. 4764 TrivialBB->getTerminator()->eraseFromParent(); 4765 new UnreachableInst(RI->getContext(), TrivialBB); 4766 if (DTU) 4767 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4768 } 4769 4770 // Delete the resume block if all its predecessors have been removed. 4771 if (pred_empty(BB)) 4772 DeleteDeadBlock(BB, DTU); 4773 4774 return !TrivialUnwindBlocks.empty(); 4775 } 4776 4777 // Simplify resume that is only used by a single (non-phi) landing pad. 4778 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4779 BasicBlock *BB = RI->getParent(); 4780 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4781 assert(RI->getValue() == LPInst && 4782 "Resume must unwind the exception that caused control to here"); 4783 4784 // Check that there are no other instructions except for debug intrinsics. 4785 if (!isCleanupBlockEmpty( 4786 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4787 return false; 4788 4789 // Turn all invokes that unwind here into calls and delete the basic block. 4790 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4791 removeUnwindEdge(Pred, DTU); 4792 ++NumInvokes; 4793 } 4794 4795 // The landingpad is now unreachable. Zap it. 4796 DeleteDeadBlock(BB, DTU); 4797 return true; 4798 } 4799 4800 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4801 // If this is a trivial cleanup pad that executes no instructions, it can be 4802 // eliminated. If the cleanup pad continues to the caller, any predecessor 4803 // that is an EH pad will be updated to continue to the caller and any 4804 // predecessor that terminates with an invoke instruction will have its invoke 4805 // instruction converted to a call instruction. If the cleanup pad being 4806 // simplified does not continue to the caller, each predecessor will be 4807 // updated to continue to the unwind destination of the cleanup pad being 4808 // simplified. 4809 BasicBlock *BB = RI->getParent(); 4810 CleanupPadInst *CPInst = RI->getCleanupPad(); 4811 if (CPInst->getParent() != BB) 4812 // This isn't an empty cleanup. 4813 return false; 4814 4815 // We cannot kill the pad if it has multiple uses. This typically arises 4816 // from unreachable basic blocks. 4817 if (!CPInst->hasOneUse()) 4818 return false; 4819 4820 // Check that there are no other instructions except for benign intrinsics. 4821 if (!isCleanupBlockEmpty( 4822 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4823 return false; 4824 4825 // If the cleanup return we are simplifying unwinds to the caller, this will 4826 // set UnwindDest to nullptr. 4827 BasicBlock *UnwindDest = RI->getUnwindDest(); 4828 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4829 4830 // We're about to remove BB from the control flow. Before we do, sink any 4831 // PHINodes into the unwind destination. Doing this before changing the 4832 // control flow avoids some potentially slow checks, since we can currently 4833 // be certain that UnwindDest and BB have no common predecessors (since they 4834 // are both EH pads). 4835 if (UnwindDest) { 4836 // First, go through the PHI nodes in UnwindDest and update any nodes that 4837 // reference the block we are removing 4838 for (PHINode &DestPN : UnwindDest->phis()) { 4839 int Idx = DestPN.getBasicBlockIndex(BB); 4840 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4841 assert(Idx != -1); 4842 // This PHI node has an incoming value that corresponds to a control 4843 // path through the cleanup pad we are removing. If the incoming 4844 // value is in the cleanup pad, it must be a PHINode (because we 4845 // verified above that the block is otherwise empty). Otherwise, the 4846 // value is either a constant or a value that dominates the cleanup 4847 // pad being removed. 4848 // 4849 // Because BB and UnwindDest are both EH pads, all of their 4850 // predecessors must unwind to these blocks, and since no instruction 4851 // can have multiple unwind destinations, there will be no overlap in 4852 // incoming blocks between SrcPN and DestPN. 4853 Value *SrcVal = DestPN.getIncomingValue(Idx); 4854 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4855 4856 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 4857 for (auto *Pred : predecessors(BB)) { 4858 Value *Incoming = 4859 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 4860 DestPN.addIncoming(Incoming, Pred); 4861 } 4862 } 4863 4864 // Sink any remaining PHI nodes directly into UnwindDest. 4865 Instruction *InsertPt = DestEHPad; 4866 for (PHINode &PN : make_early_inc_range(BB->phis())) { 4867 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 4868 // If the PHI node has no uses or all of its uses are in this basic 4869 // block (meaning they are debug or lifetime intrinsics), just leave 4870 // it. It will be erased when we erase BB below. 4871 continue; 4872 4873 // Otherwise, sink this PHI node into UnwindDest. 4874 // Any predecessors to UnwindDest which are not already represented 4875 // must be back edges which inherit the value from the path through 4876 // BB. In this case, the PHI value must reference itself. 4877 for (auto *pred : predecessors(UnwindDest)) 4878 if (pred != BB) 4879 PN.addIncoming(&PN, pred); 4880 PN.moveBefore(InsertPt); 4881 // Also, add a dummy incoming value for the original BB itself, 4882 // so that the PHI is well-formed until we drop said predecessor. 4883 PN.addIncoming(UndefValue::get(PN.getType()), BB); 4884 } 4885 } 4886 4887 std::vector<DominatorTree::UpdateType> Updates; 4888 4889 // We use make_early_inc_range here because we will remove all predecessors. 4890 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4891 if (UnwindDest == nullptr) { 4892 if (DTU) { 4893 DTU->applyUpdates(Updates); 4894 Updates.clear(); 4895 } 4896 removeUnwindEdge(PredBB, DTU); 4897 ++NumInvokes; 4898 } else { 4899 BB->removePredecessor(PredBB); 4900 Instruction *TI = PredBB->getTerminator(); 4901 TI->replaceUsesOfWith(BB, UnwindDest); 4902 if (DTU) { 4903 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4904 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4905 } 4906 } 4907 } 4908 4909 if (DTU) 4910 DTU->applyUpdates(Updates); 4911 4912 DeleteDeadBlock(BB, DTU); 4913 4914 return true; 4915 } 4916 4917 // Try to merge two cleanuppads together. 4918 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4919 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4920 // with. 4921 BasicBlock *UnwindDest = RI->getUnwindDest(); 4922 if (!UnwindDest) 4923 return false; 4924 4925 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4926 // be safe to merge without code duplication. 4927 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4928 return false; 4929 4930 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4931 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4932 if (!SuccessorCleanupPad) 4933 return false; 4934 4935 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4936 // Replace any uses of the successor cleanupad with the predecessor pad 4937 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4938 // funclet bundle operands. 4939 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4940 // Remove the old cleanuppad. 4941 SuccessorCleanupPad->eraseFromParent(); 4942 // Now, we simply replace the cleanupret with a branch to the unwind 4943 // destination. 4944 BranchInst::Create(UnwindDest, RI->getParent()); 4945 RI->eraseFromParent(); 4946 4947 return true; 4948 } 4949 4950 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4951 // It is possible to transiantly have an undef cleanuppad operand because we 4952 // have deleted some, but not all, dead blocks. 4953 // Eventually, this block will be deleted. 4954 if (isa<UndefValue>(RI->getOperand(0))) 4955 return false; 4956 4957 if (mergeCleanupPad(RI)) 4958 return true; 4959 4960 if (removeEmptyCleanup(RI, DTU)) 4961 return true; 4962 4963 return false; 4964 } 4965 4966 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 4967 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4968 BasicBlock *BB = UI->getParent(); 4969 4970 bool Changed = false; 4971 4972 // If there are any instructions immediately before the unreachable that can 4973 // be removed, do so. 4974 while (UI->getIterator() != BB->begin()) { 4975 BasicBlock::iterator BBI = UI->getIterator(); 4976 --BBI; 4977 4978 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 4979 break; // Can not drop any more instructions. We're done here. 4980 // Otherwise, this instruction can be freely erased, 4981 // even if it is not side-effect free. 4982 4983 // Note that deleting EH's here is in fact okay, although it involves a bit 4984 // of subtle reasoning. If this inst is an EH, all the predecessors of this 4985 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 4986 // and we can therefore guarantee this block will be erased. 4987 4988 // Delete this instruction (any uses are guaranteed to be dead) 4989 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 4990 BBI->eraseFromParent(); 4991 Changed = true; 4992 } 4993 4994 // If the unreachable instruction is the first in the block, take a gander 4995 // at all of the predecessors of this instruction, and simplify them. 4996 if (&BB->front() != UI) 4997 return Changed; 4998 4999 std::vector<DominatorTree::UpdateType> Updates; 5000 5001 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 5002 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 5003 auto *Predecessor = Preds[i]; 5004 Instruction *TI = Predecessor->getTerminator(); 5005 IRBuilder<> Builder(TI); 5006 if (auto *BI = dyn_cast<BranchInst>(TI)) { 5007 // We could either have a proper unconditional branch, 5008 // or a degenerate conditional branch with matching destinations. 5009 if (all_of(BI->successors(), 5010 [BB](auto *Successor) { return Successor == BB; })) { 5011 new UnreachableInst(TI->getContext(), TI); 5012 TI->eraseFromParent(); 5013 Changed = true; 5014 } else { 5015 assert(BI->isConditional() && "Can't get here with an uncond branch."); 5016 Value* Cond = BI->getCondition(); 5017 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 5018 "The destinations are guaranteed to be different here."); 5019 if (BI->getSuccessor(0) == BB) { 5020 Builder.CreateAssumption(Builder.CreateNot(Cond)); 5021 Builder.CreateBr(BI->getSuccessor(1)); 5022 } else { 5023 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 5024 Builder.CreateAssumption(Cond); 5025 Builder.CreateBr(BI->getSuccessor(0)); 5026 } 5027 EraseTerminatorAndDCECond(BI); 5028 Changed = true; 5029 } 5030 if (DTU) 5031 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5032 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 5033 SwitchInstProfUpdateWrapper SU(*SI); 5034 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 5035 if (i->getCaseSuccessor() != BB) { 5036 ++i; 5037 continue; 5038 } 5039 BB->removePredecessor(SU->getParent()); 5040 i = SU.removeCase(i); 5041 e = SU->case_end(); 5042 Changed = true; 5043 } 5044 // Note that the default destination can't be removed! 5045 if (DTU && SI->getDefaultDest() != BB) 5046 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5047 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 5048 if (II->getUnwindDest() == BB) { 5049 if (DTU) { 5050 DTU->applyUpdates(Updates); 5051 Updates.clear(); 5052 } 5053 removeUnwindEdge(TI->getParent(), DTU); 5054 Changed = true; 5055 } 5056 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 5057 if (CSI->getUnwindDest() == BB) { 5058 if (DTU) { 5059 DTU->applyUpdates(Updates); 5060 Updates.clear(); 5061 } 5062 removeUnwindEdge(TI->getParent(), DTU); 5063 Changed = true; 5064 continue; 5065 } 5066 5067 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 5068 E = CSI->handler_end(); 5069 I != E; ++I) { 5070 if (*I == BB) { 5071 CSI->removeHandler(I); 5072 --I; 5073 --E; 5074 Changed = true; 5075 } 5076 } 5077 if (DTU) 5078 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5079 if (CSI->getNumHandlers() == 0) { 5080 if (CSI->hasUnwindDest()) { 5081 // Redirect all predecessors of the block containing CatchSwitchInst 5082 // to instead branch to the CatchSwitchInst's unwind destination. 5083 if (DTU) { 5084 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 5085 Updates.push_back({DominatorTree::Insert, 5086 PredecessorOfPredecessor, 5087 CSI->getUnwindDest()}); 5088 Updates.push_back({DominatorTree::Delete, 5089 PredecessorOfPredecessor, Predecessor}); 5090 } 5091 } 5092 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 5093 } else { 5094 // Rewrite all preds to unwind to caller (or from invoke to call). 5095 if (DTU) { 5096 DTU->applyUpdates(Updates); 5097 Updates.clear(); 5098 } 5099 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 5100 for (BasicBlock *EHPred : EHPreds) 5101 removeUnwindEdge(EHPred, DTU); 5102 } 5103 // The catchswitch is no longer reachable. 5104 new UnreachableInst(CSI->getContext(), CSI); 5105 CSI->eraseFromParent(); 5106 Changed = true; 5107 } 5108 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 5109 (void)CRI; 5110 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 5111 "Expected to always have an unwind to BB."); 5112 if (DTU) 5113 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5114 new UnreachableInst(TI->getContext(), TI); 5115 TI->eraseFromParent(); 5116 Changed = true; 5117 } 5118 } 5119 5120 if (DTU) 5121 DTU->applyUpdates(Updates); 5122 5123 // If this block is now dead, remove it. 5124 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 5125 DeleteDeadBlock(BB, DTU); 5126 return true; 5127 } 5128 5129 return Changed; 5130 } 5131 5132 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 5133 assert(Cases.size() >= 1); 5134 5135 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 5136 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 5137 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 5138 return false; 5139 } 5140 return true; 5141 } 5142 5143 static void createUnreachableSwitchDefault(SwitchInst *Switch, 5144 DomTreeUpdater *DTU) { 5145 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 5146 auto *BB = Switch->getParent(); 5147 auto *OrigDefaultBlock = Switch->getDefaultDest(); 5148 OrigDefaultBlock->removePredecessor(BB); 5149 BasicBlock *NewDefaultBlock = BasicBlock::Create( 5150 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), 5151 OrigDefaultBlock); 5152 new UnreachableInst(Switch->getContext(), NewDefaultBlock); 5153 Switch->setDefaultDest(&*NewDefaultBlock); 5154 if (DTU) { 5155 SmallVector<DominatorTree::UpdateType, 2> Updates; 5156 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); 5157 if (!is_contained(successors(BB), OrigDefaultBlock)) 5158 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); 5159 DTU->applyUpdates(Updates); 5160 } 5161 } 5162 5163 /// Turn a switch with two reachable destinations into an integer range 5164 /// comparison and branch. 5165 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 5166 IRBuilder<> &Builder) { 5167 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5168 5169 bool HasDefault = 5170 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5171 5172 auto *BB = SI->getParent(); 5173 5174 // Partition the cases into two sets with different destinations. 5175 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 5176 BasicBlock *DestB = nullptr; 5177 SmallVector<ConstantInt *, 16> CasesA; 5178 SmallVector<ConstantInt *, 16> CasesB; 5179 5180 for (auto Case : SI->cases()) { 5181 BasicBlock *Dest = Case.getCaseSuccessor(); 5182 if (!DestA) 5183 DestA = Dest; 5184 if (Dest == DestA) { 5185 CasesA.push_back(Case.getCaseValue()); 5186 continue; 5187 } 5188 if (!DestB) 5189 DestB = Dest; 5190 if (Dest == DestB) { 5191 CasesB.push_back(Case.getCaseValue()); 5192 continue; 5193 } 5194 return false; // More than two destinations. 5195 } 5196 5197 assert(DestA && DestB && 5198 "Single-destination switch should have been folded."); 5199 assert(DestA != DestB); 5200 assert(DestB != SI->getDefaultDest()); 5201 assert(!CasesB.empty() && "There must be non-default cases."); 5202 assert(!CasesA.empty() || HasDefault); 5203 5204 // Figure out if one of the sets of cases form a contiguous range. 5205 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 5206 BasicBlock *ContiguousDest = nullptr; 5207 BasicBlock *OtherDest = nullptr; 5208 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 5209 ContiguousCases = &CasesA; 5210 ContiguousDest = DestA; 5211 OtherDest = DestB; 5212 } else if (CasesAreContiguous(CasesB)) { 5213 ContiguousCases = &CasesB; 5214 ContiguousDest = DestB; 5215 OtherDest = DestA; 5216 } else 5217 return false; 5218 5219 // Start building the compare and branch. 5220 5221 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 5222 Constant *NumCases = 5223 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 5224 5225 Value *Sub = SI->getCondition(); 5226 if (!Offset->isNullValue()) 5227 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 5228 5229 Value *Cmp; 5230 // If NumCases overflowed, then all possible values jump to the successor. 5231 if (NumCases->isNullValue() && !ContiguousCases->empty()) 5232 Cmp = ConstantInt::getTrue(SI->getContext()); 5233 else 5234 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 5235 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 5236 5237 // Update weight for the newly-created conditional branch. 5238 if (HasBranchWeights(SI)) { 5239 SmallVector<uint64_t, 8> Weights; 5240 GetBranchWeights(SI, Weights); 5241 if (Weights.size() == 1 + SI->getNumCases()) { 5242 uint64_t TrueWeight = 0; 5243 uint64_t FalseWeight = 0; 5244 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 5245 if (SI->getSuccessor(I) == ContiguousDest) 5246 TrueWeight += Weights[I]; 5247 else 5248 FalseWeight += Weights[I]; 5249 } 5250 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 5251 TrueWeight /= 2; 5252 FalseWeight /= 2; 5253 } 5254 setBranchWeights(NewBI, TrueWeight, FalseWeight); 5255 } 5256 } 5257 5258 // Prune obsolete incoming values off the successors' PHI nodes. 5259 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 5260 unsigned PreviousEdges = ContiguousCases->size(); 5261 if (ContiguousDest == SI->getDefaultDest()) 5262 ++PreviousEdges; 5263 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5264 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5265 } 5266 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5267 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5268 if (OtherDest == SI->getDefaultDest()) 5269 ++PreviousEdges; 5270 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5271 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5272 } 5273 5274 // Clean up the default block - it may have phis or other instructions before 5275 // the unreachable terminator. 5276 if (!HasDefault) 5277 createUnreachableSwitchDefault(SI, DTU); 5278 5279 auto *UnreachableDefault = SI->getDefaultDest(); 5280 5281 // Drop the switch. 5282 SI->eraseFromParent(); 5283 5284 if (!HasDefault && DTU) 5285 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5286 5287 return true; 5288 } 5289 5290 /// Compute masked bits for the condition of a switch 5291 /// and use it to remove dead cases. 5292 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5293 AssumptionCache *AC, 5294 const DataLayout &DL) { 5295 Value *Cond = SI->getCondition(); 5296 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5297 5298 // We can also eliminate cases by determining that their values are outside of 5299 // the limited range of the condition based on how many significant (non-sign) 5300 // bits are in the condition value. 5301 unsigned MaxSignificantBitsInCond = 5302 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); 5303 5304 // Gather dead cases. 5305 SmallVector<ConstantInt *, 8> DeadCases; 5306 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5307 SmallVector<BasicBlock *, 8> UniqueSuccessors; 5308 for (auto &Case : SI->cases()) { 5309 auto *Successor = Case.getCaseSuccessor(); 5310 if (DTU) { 5311 if (!NumPerSuccessorCases.count(Successor)) 5312 UniqueSuccessors.push_back(Successor); 5313 ++NumPerSuccessorCases[Successor]; 5314 } 5315 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5316 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5317 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5318 DeadCases.push_back(Case.getCaseValue()); 5319 if (DTU) 5320 --NumPerSuccessorCases[Successor]; 5321 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5322 << " is dead.\n"); 5323 } 5324 } 5325 5326 // If we can prove that the cases must cover all possible values, the 5327 // default destination becomes dead and we can remove it. If we know some 5328 // of the bits in the value, we can use that to more precisely compute the 5329 // number of possible unique case values. 5330 bool HasDefault = 5331 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5332 const unsigned NumUnknownBits = 5333 Known.getBitWidth() - (Known.Zero | Known.One).countPopulation(); 5334 assert(NumUnknownBits <= Known.getBitWidth()); 5335 if (HasDefault && DeadCases.empty() && 5336 NumUnknownBits < 64 /* avoid overflow */ && 5337 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5338 createUnreachableSwitchDefault(SI, DTU); 5339 return true; 5340 } 5341 5342 if (DeadCases.empty()) 5343 return false; 5344 5345 SwitchInstProfUpdateWrapper SIW(*SI); 5346 for (ConstantInt *DeadCase : DeadCases) { 5347 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5348 assert(CaseI != SI->case_default() && 5349 "Case was not found. Probably mistake in DeadCases forming."); 5350 // Prune unused values from PHI nodes. 5351 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5352 SIW.removeCase(CaseI); 5353 } 5354 5355 if (DTU) { 5356 std::vector<DominatorTree::UpdateType> Updates; 5357 for (auto *Successor : UniqueSuccessors) 5358 if (NumPerSuccessorCases[Successor] == 0) 5359 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); 5360 DTU->applyUpdates(Updates); 5361 } 5362 5363 return true; 5364 } 5365 5366 /// If BB would be eligible for simplification by 5367 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5368 /// by an unconditional branch), look at the phi node for BB in the successor 5369 /// block and see if the incoming value is equal to CaseValue. If so, return 5370 /// the phi node, and set PhiIndex to BB's index in the phi node. 5371 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5372 BasicBlock *BB, int *PhiIndex) { 5373 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5374 return nullptr; // BB must be empty to be a candidate for simplification. 5375 if (!BB->getSinglePredecessor()) 5376 return nullptr; // BB must be dominated by the switch. 5377 5378 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5379 if (!Branch || !Branch->isUnconditional()) 5380 return nullptr; // Terminator must be unconditional branch. 5381 5382 BasicBlock *Succ = Branch->getSuccessor(0); 5383 5384 for (PHINode &PHI : Succ->phis()) { 5385 int Idx = PHI.getBasicBlockIndex(BB); 5386 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5387 5388 Value *InValue = PHI.getIncomingValue(Idx); 5389 if (InValue != CaseValue) 5390 continue; 5391 5392 *PhiIndex = Idx; 5393 return &PHI; 5394 } 5395 5396 return nullptr; 5397 } 5398 5399 /// Try to forward the condition of a switch instruction to a phi node 5400 /// dominated by the switch, if that would mean that some of the destination 5401 /// blocks of the switch can be folded away. Return true if a change is made. 5402 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5403 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5404 5405 ForwardingNodesMap ForwardingNodes; 5406 BasicBlock *SwitchBlock = SI->getParent(); 5407 bool Changed = false; 5408 for (auto &Case : SI->cases()) { 5409 ConstantInt *CaseValue = Case.getCaseValue(); 5410 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5411 5412 // Replace phi operands in successor blocks that are using the constant case 5413 // value rather than the switch condition variable: 5414 // switchbb: 5415 // switch i32 %x, label %default [ 5416 // i32 17, label %succ 5417 // ... 5418 // succ: 5419 // %r = phi i32 ... [ 17, %switchbb ] ... 5420 // --> 5421 // %r = phi i32 ... [ %x, %switchbb ] ... 5422 5423 for (PHINode &Phi : CaseDest->phis()) { 5424 // This only works if there is exactly 1 incoming edge from the switch to 5425 // a phi. If there is >1, that means multiple cases of the switch map to 1 5426 // value in the phi, and that phi value is not the switch condition. Thus, 5427 // this transform would not make sense (the phi would be invalid because 5428 // a phi can't have different incoming values from the same block). 5429 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5430 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5431 count(Phi.blocks(), SwitchBlock) == 1) { 5432 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5433 Changed = true; 5434 } 5435 } 5436 5437 // Collect phi nodes that are indirectly using this switch's case constants. 5438 int PhiIdx; 5439 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5440 ForwardingNodes[Phi].push_back(PhiIdx); 5441 } 5442 5443 for (auto &ForwardingNode : ForwardingNodes) { 5444 PHINode *Phi = ForwardingNode.first; 5445 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5446 if (Indexes.size() < 2) 5447 continue; 5448 5449 for (int Index : Indexes) 5450 Phi->setIncomingValue(Index, SI->getCondition()); 5451 Changed = true; 5452 } 5453 5454 return Changed; 5455 } 5456 5457 /// Return true if the backend will be able to handle 5458 /// initializing an array of constants like C. 5459 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5460 if (C->isThreadDependent()) 5461 return false; 5462 if (C->isDLLImportDependent()) 5463 return false; 5464 5465 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5466 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5467 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5468 return false; 5469 5470 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5471 // Pointer casts and in-bounds GEPs will not prohibit the backend from 5472 // materializing the array of constants. 5473 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); 5474 if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI)) 5475 return false; 5476 } 5477 5478 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5479 return false; 5480 5481 return true; 5482 } 5483 5484 /// If V is a Constant, return it. Otherwise, try to look up 5485 /// its constant value in ConstantPool, returning 0 if it's not there. 5486 static Constant * 5487 LookupConstant(Value *V, 5488 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5489 if (Constant *C = dyn_cast<Constant>(V)) 5490 return C; 5491 return ConstantPool.lookup(V); 5492 } 5493 5494 /// Try to fold instruction I into a constant. This works for 5495 /// simple instructions such as binary operations where both operands are 5496 /// constant or can be replaced by constants from the ConstantPool. Returns the 5497 /// resulting constant on success, 0 otherwise. 5498 static Constant * 5499 ConstantFold(Instruction *I, const DataLayout &DL, 5500 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5501 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5502 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5503 if (!A) 5504 return nullptr; 5505 if (A->isAllOnesValue()) 5506 return LookupConstant(Select->getTrueValue(), ConstantPool); 5507 if (A->isNullValue()) 5508 return LookupConstant(Select->getFalseValue(), ConstantPool); 5509 return nullptr; 5510 } 5511 5512 SmallVector<Constant *, 4> COps; 5513 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5514 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5515 COps.push_back(A); 5516 else 5517 return nullptr; 5518 } 5519 5520 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5521 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5522 COps[1], DL); 5523 } 5524 5525 return ConstantFoldInstOperands(I, COps, DL); 5526 } 5527 5528 /// Try to determine the resulting constant values in phi nodes 5529 /// at the common destination basic block, *CommonDest, for one of the case 5530 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5531 /// case), of a switch instruction SI. 5532 static bool 5533 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5534 BasicBlock **CommonDest, 5535 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5536 const DataLayout &DL, const TargetTransformInfo &TTI) { 5537 // The block from which we enter the common destination. 5538 BasicBlock *Pred = SI->getParent(); 5539 5540 // If CaseDest is empty except for some side-effect free instructions through 5541 // which we can constant-propagate the CaseVal, continue to its successor. 5542 SmallDenseMap<Value *, Constant *> ConstantPool; 5543 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5544 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { 5545 if (I.isTerminator()) { 5546 // If the terminator is a simple branch, continue to the next block. 5547 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5548 return false; 5549 Pred = CaseDest; 5550 CaseDest = I.getSuccessor(0); 5551 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5552 // Instruction is side-effect free and constant. 5553 5554 // If the instruction has uses outside this block or a phi node slot for 5555 // the block, it is not safe to bypass the instruction since it would then 5556 // no longer dominate all its uses. 5557 for (auto &Use : I.uses()) { 5558 User *User = Use.getUser(); 5559 if (Instruction *I = dyn_cast<Instruction>(User)) 5560 if (I->getParent() == CaseDest) 5561 continue; 5562 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5563 if (Phi->getIncomingBlock(Use) == CaseDest) 5564 continue; 5565 return false; 5566 } 5567 5568 ConstantPool.insert(std::make_pair(&I, C)); 5569 } else { 5570 break; 5571 } 5572 } 5573 5574 // If we did not have a CommonDest before, use the current one. 5575 if (!*CommonDest) 5576 *CommonDest = CaseDest; 5577 // If the destination isn't the common one, abort. 5578 if (CaseDest != *CommonDest) 5579 return false; 5580 5581 // Get the values for this case from phi nodes in the destination block. 5582 for (PHINode &PHI : (*CommonDest)->phis()) { 5583 int Idx = PHI.getBasicBlockIndex(Pred); 5584 if (Idx == -1) 5585 continue; 5586 5587 Constant *ConstVal = 5588 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5589 if (!ConstVal) 5590 return false; 5591 5592 // Be conservative about which kinds of constants we support. 5593 if (!ValidLookupTableConstant(ConstVal, TTI)) 5594 return false; 5595 5596 Res.push_back(std::make_pair(&PHI, ConstVal)); 5597 } 5598 5599 return Res.size() > 0; 5600 } 5601 5602 // Helper function used to add CaseVal to the list of cases that generate 5603 // Result. Returns the updated number of cases that generate this result. 5604 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5605 SwitchCaseResultVectorTy &UniqueResults, 5606 Constant *Result) { 5607 for (auto &I : UniqueResults) { 5608 if (I.first == Result) { 5609 I.second.push_back(CaseVal); 5610 return I.second.size(); 5611 } 5612 } 5613 UniqueResults.push_back( 5614 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5615 return 1; 5616 } 5617 5618 // Helper function that initializes a map containing 5619 // results for the PHI node of the common destination block for a switch 5620 // instruction. Returns false if multiple PHI nodes have been found or if 5621 // there is not a common destination block for the switch. 5622 static bool 5623 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5624 SwitchCaseResultVectorTy &UniqueResults, 5625 Constant *&DefaultResult, const DataLayout &DL, 5626 const TargetTransformInfo &TTI, 5627 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5628 for (auto &I : SI->cases()) { 5629 ConstantInt *CaseVal = I.getCaseValue(); 5630 5631 // Resulting value at phi nodes for this case value. 5632 SwitchCaseResultsTy Results; 5633 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5634 DL, TTI)) 5635 return false; 5636 5637 // Only one value per case is permitted. 5638 if (Results.size() > 1) 5639 return false; 5640 5641 // Add the case->result mapping to UniqueResults. 5642 const uintptr_t NumCasesForResult = 5643 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5644 5645 // Early out if there are too many cases for this result. 5646 if (NumCasesForResult > MaxCasesPerResult) 5647 return false; 5648 5649 // Early out if there are too many unique results. 5650 if (UniqueResults.size() > MaxUniqueResults) 5651 return false; 5652 5653 // Check the PHI consistency. 5654 if (!PHI) 5655 PHI = Results[0].first; 5656 else if (PHI != Results[0].first) 5657 return false; 5658 } 5659 // Find the default result value. 5660 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5661 BasicBlock *DefaultDest = SI->getDefaultDest(); 5662 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5663 DL, TTI); 5664 // If the default value is not found abort unless the default destination 5665 // is unreachable. 5666 DefaultResult = 5667 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5668 if ((!DefaultResult && 5669 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5670 return false; 5671 5672 return true; 5673 } 5674 5675 // Helper function that checks if it is possible to transform a switch with only 5676 // two cases (or two cases + default) that produces a result into a select. 5677 // Example: 5678 // switch (a) { 5679 // case 10: %0 = icmp eq i32 %a, 10 5680 // return 10; %1 = select i1 %0, i32 10, i32 4 5681 // case 20: ----> %2 = icmp eq i32 %a, 20 5682 // return 2; %3 = select i1 %2, i32 2, i32 %1 5683 // default: 5684 // return 4; 5685 // } 5686 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5687 Constant *DefaultResult, Value *Condition, 5688 IRBuilder<> &Builder) { 5689 // If we are selecting between only two cases transform into a simple 5690 // select or a two-way select if default is possible. 5691 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5692 ResultVector[1].second.size() == 1) { 5693 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5694 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5695 5696 bool DefaultCanTrigger = DefaultResult; 5697 Value *SelectValue = ResultVector[1].first; 5698 if (DefaultCanTrigger) { 5699 Value *const ValueCompare = 5700 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5701 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5702 DefaultResult, "switch.select"); 5703 } 5704 Value *const ValueCompare = 5705 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5706 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5707 SelectValue, "switch.select"); 5708 } 5709 5710 // Handle the degenerate case where two cases have the same value. 5711 if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 && 5712 DefaultResult) { 5713 Value *Cmp1 = Builder.CreateICmpEQ( 5714 Condition, ResultVector[0].second[0], "switch.selectcmp.case1"); 5715 Value *Cmp2 = Builder.CreateICmpEQ( 5716 Condition, ResultVector[0].second[1], "switch.selectcmp.case2"); 5717 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5718 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5719 } 5720 5721 return nullptr; 5722 } 5723 5724 // Helper function to cleanup a switch instruction that has been converted into 5725 // a select, fixing up PHI nodes and basic blocks. 5726 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5727 Value *SelectValue, 5728 IRBuilder<> &Builder, 5729 DomTreeUpdater *DTU) { 5730 std::vector<DominatorTree::UpdateType> Updates; 5731 5732 BasicBlock *SelectBB = SI->getParent(); 5733 BasicBlock *DestBB = PHI->getParent(); 5734 5735 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5736 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5737 Builder.CreateBr(DestBB); 5738 5739 // Remove the switch. 5740 5741 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5742 PHI->removeIncomingValue(SelectBB); 5743 PHI->addIncoming(SelectValue, SelectBB); 5744 5745 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5746 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5747 BasicBlock *Succ = SI->getSuccessor(i); 5748 5749 if (Succ == DestBB) 5750 continue; 5751 Succ->removePredecessor(SelectBB); 5752 if (DTU && RemovedSuccessors.insert(Succ).second) 5753 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5754 } 5755 SI->eraseFromParent(); 5756 if (DTU) 5757 DTU->applyUpdates(Updates); 5758 } 5759 5760 /// If the switch is only used to initialize one or more 5761 /// phi nodes in a common successor block with only two different 5762 /// constant values, replace the switch with select. 5763 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5764 DomTreeUpdater *DTU, const DataLayout &DL, 5765 const TargetTransformInfo &TTI) { 5766 Value *const Cond = SI->getCondition(); 5767 PHINode *PHI = nullptr; 5768 BasicBlock *CommonDest = nullptr; 5769 Constant *DefaultResult; 5770 SwitchCaseResultVectorTy UniqueResults; 5771 // Collect all the cases that will deliver the same value from the switch. 5772 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5773 DL, TTI, /*MaxUniqueResults*/2, 5774 /*MaxCasesPerResult*/2)) 5775 return false; 5776 assert(PHI != nullptr && "PHI for value select not found"); 5777 5778 Builder.SetInsertPoint(SI); 5779 Value *SelectValue = 5780 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5781 if (SelectValue) { 5782 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5783 return true; 5784 } 5785 // The switch couldn't be converted into a select. 5786 return false; 5787 } 5788 5789 namespace { 5790 5791 /// This class represents a lookup table that can be used to replace a switch. 5792 class SwitchLookupTable { 5793 public: 5794 /// Create a lookup table to use as a switch replacement with the contents 5795 /// of Values, using DefaultValue to fill any holes in the table. 5796 SwitchLookupTable( 5797 Module &M, uint64_t TableSize, ConstantInt *Offset, 5798 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5799 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5800 5801 /// Build instructions with Builder to retrieve the value at 5802 /// the position given by Index in the lookup table. 5803 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5804 5805 /// Return true if a table with TableSize elements of 5806 /// type ElementType would fit in a target-legal register. 5807 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5808 Type *ElementType); 5809 5810 private: 5811 // Depending on the contents of the table, it can be represented in 5812 // different ways. 5813 enum { 5814 // For tables where each element contains the same value, we just have to 5815 // store that single value and return it for each lookup. 5816 SingleValueKind, 5817 5818 // For tables where there is a linear relationship between table index 5819 // and values. We calculate the result with a simple multiplication 5820 // and addition instead of a table lookup. 5821 LinearMapKind, 5822 5823 // For small tables with integer elements, we can pack them into a bitmap 5824 // that fits into a target-legal register. Values are retrieved by 5825 // shift and mask operations. 5826 BitMapKind, 5827 5828 // The table is stored as an array of values. Values are retrieved by load 5829 // instructions from the table. 5830 ArrayKind 5831 } Kind; 5832 5833 // For SingleValueKind, this is the single value. 5834 Constant *SingleValue = nullptr; 5835 5836 // For BitMapKind, this is the bitmap. 5837 ConstantInt *BitMap = nullptr; 5838 IntegerType *BitMapElementTy = nullptr; 5839 5840 // For LinearMapKind, these are the constants used to derive the value. 5841 ConstantInt *LinearOffset = nullptr; 5842 ConstantInt *LinearMultiplier = nullptr; 5843 5844 // For ArrayKind, this is the array. 5845 GlobalVariable *Array = nullptr; 5846 }; 5847 5848 } // end anonymous namespace 5849 5850 SwitchLookupTable::SwitchLookupTable( 5851 Module &M, uint64_t TableSize, ConstantInt *Offset, 5852 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5853 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5854 assert(Values.size() && "Can't build lookup table without values!"); 5855 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5856 5857 // If all values in the table are equal, this is that value. 5858 SingleValue = Values.begin()->second; 5859 5860 Type *ValueType = Values.begin()->second->getType(); 5861 5862 // Build up the table contents. 5863 SmallVector<Constant *, 64> TableContents(TableSize); 5864 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5865 ConstantInt *CaseVal = Values[I].first; 5866 Constant *CaseRes = Values[I].second; 5867 assert(CaseRes->getType() == ValueType); 5868 5869 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5870 TableContents[Idx] = CaseRes; 5871 5872 if (CaseRes != SingleValue) 5873 SingleValue = nullptr; 5874 } 5875 5876 // Fill in any holes in the table with the default result. 5877 if (Values.size() < TableSize) { 5878 assert(DefaultValue && 5879 "Need a default value to fill the lookup table holes."); 5880 assert(DefaultValue->getType() == ValueType); 5881 for (uint64_t I = 0; I < TableSize; ++I) { 5882 if (!TableContents[I]) 5883 TableContents[I] = DefaultValue; 5884 } 5885 5886 if (DefaultValue != SingleValue) 5887 SingleValue = nullptr; 5888 } 5889 5890 // If each element in the table contains the same value, we only need to store 5891 // that single value. 5892 if (SingleValue) { 5893 Kind = SingleValueKind; 5894 return; 5895 } 5896 5897 // Check if we can derive the value with a linear transformation from the 5898 // table index. 5899 if (isa<IntegerType>(ValueType)) { 5900 bool LinearMappingPossible = true; 5901 APInt PrevVal; 5902 APInt DistToPrev; 5903 assert(TableSize >= 2 && "Should be a SingleValue table."); 5904 // Check if there is the same distance between two consecutive values. 5905 for (uint64_t I = 0; I < TableSize; ++I) { 5906 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5907 if (!ConstVal) { 5908 // This is an undef. We could deal with it, but undefs in lookup tables 5909 // are very seldom. It's probably not worth the additional complexity. 5910 LinearMappingPossible = false; 5911 break; 5912 } 5913 const APInt &Val = ConstVal->getValue(); 5914 if (I != 0) { 5915 APInt Dist = Val - PrevVal; 5916 if (I == 1) { 5917 DistToPrev = Dist; 5918 } else if (Dist != DistToPrev) { 5919 LinearMappingPossible = false; 5920 break; 5921 } 5922 } 5923 PrevVal = Val; 5924 } 5925 if (LinearMappingPossible) { 5926 LinearOffset = cast<ConstantInt>(TableContents[0]); 5927 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5928 Kind = LinearMapKind; 5929 ++NumLinearMaps; 5930 return; 5931 } 5932 } 5933 5934 // If the type is integer and the table fits in a register, build a bitmap. 5935 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5936 IntegerType *IT = cast<IntegerType>(ValueType); 5937 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5938 for (uint64_t I = TableSize; I > 0; --I) { 5939 TableInt <<= IT->getBitWidth(); 5940 // Insert values into the bitmap. Undef values are set to zero. 5941 if (!isa<UndefValue>(TableContents[I - 1])) { 5942 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5943 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5944 } 5945 } 5946 BitMap = ConstantInt::get(M.getContext(), TableInt); 5947 BitMapElementTy = IT; 5948 Kind = BitMapKind; 5949 ++NumBitMaps; 5950 return; 5951 } 5952 5953 // Store the table in an array. 5954 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5955 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5956 5957 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5958 GlobalVariable::PrivateLinkage, Initializer, 5959 "switch.table." + FuncName); 5960 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5961 // Set the alignment to that of an array items. We will be only loading one 5962 // value out of it. 5963 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5964 Kind = ArrayKind; 5965 } 5966 5967 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5968 switch (Kind) { 5969 case SingleValueKind: 5970 return SingleValue; 5971 case LinearMapKind: { 5972 // Derive the result value from the input value. 5973 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5974 false, "switch.idx.cast"); 5975 if (!LinearMultiplier->isOne()) 5976 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5977 if (!LinearOffset->isZero()) 5978 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5979 return Result; 5980 } 5981 case BitMapKind: { 5982 // Type of the bitmap (e.g. i59). 5983 IntegerType *MapTy = BitMap->getType(); 5984 5985 // Cast Index to the same type as the bitmap. 5986 // Note: The Index is <= the number of elements in the table, so 5987 // truncating it to the width of the bitmask is safe. 5988 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5989 5990 // Multiply the shift amount by the element width. 5991 ShiftAmt = Builder.CreateMul( 5992 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5993 "switch.shiftamt"); 5994 5995 // Shift down. 5996 Value *DownShifted = 5997 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5998 // Mask off. 5999 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 6000 } 6001 case ArrayKind: { 6002 // Make sure the table index will not overflow when treated as signed. 6003 IntegerType *IT = cast<IntegerType>(Index->getType()); 6004 uint64_t TableSize = 6005 Array->getInitializer()->getType()->getArrayNumElements(); 6006 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 6007 Index = Builder.CreateZExt( 6008 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 6009 "switch.tableidx.zext"); 6010 6011 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 6012 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 6013 GEPIndices, "switch.gep"); 6014 return Builder.CreateLoad( 6015 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 6016 "switch.load"); 6017 } 6018 } 6019 llvm_unreachable("Unknown lookup table kind!"); 6020 } 6021 6022 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 6023 uint64_t TableSize, 6024 Type *ElementType) { 6025 auto *IT = dyn_cast<IntegerType>(ElementType); 6026 if (!IT) 6027 return false; 6028 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 6029 // are <= 15, we could try to narrow the type. 6030 6031 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 6032 if (TableSize >= UINT_MAX / IT->getBitWidth()) 6033 return false; 6034 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 6035 } 6036 6037 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, 6038 const DataLayout &DL) { 6039 // Allow any legal type. 6040 if (TTI.isTypeLegal(Ty)) 6041 return true; 6042 6043 auto *IT = dyn_cast<IntegerType>(Ty); 6044 if (!IT) 6045 return false; 6046 6047 // Also allow power of 2 integer types that have at least 8 bits and fit in 6048 // a register. These types are common in frontend languages and targets 6049 // usually support loads of these types. 6050 // TODO: We could relax this to any integer that fits in a register and rely 6051 // on ABI alignment and padding in the table to allow the load to be widened. 6052 // Or we could widen the constants and truncate the load. 6053 unsigned BitWidth = IT->getBitWidth(); 6054 return BitWidth >= 8 && isPowerOf2_32(BitWidth) && 6055 DL.fitsInLegalInteger(IT->getBitWidth()); 6056 } 6057 6058 /// Determine whether a lookup table should be built for this switch, based on 6059 /// the number of cases, size of the table, and the types of the results. 6060 // TODO: We could support larger than legal types by limiting based on the 6061 // number of loads required and/or table size. If the constants are small we 6062 // could use smaller table entries and extend after the load. 6063 static bool 6064 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 6065 const TargetTransformInfo &TTI, const DataLayout &DL, 6066 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 6067 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 6068 return false; // TableSize overflowed, or mul below might overflow. 6069 6070 bool AllTablesFitInRegister = true; 6071 bool HasIllegalType = false; 6072 for (const auto &I : ResultTypes) { 6073 Type *Ty = I.second; 6074 6075 // Saturate this flag to true. 6076 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); 6077 6078 // Saturate this flag to false. 6079 AllTablesFitInRegister = 6080 AllTablesFitInRegister && 6081 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 6082 6083 // If both flags saturate, we're done. NOTE: This *only* works with 6084 // saturating flags, and all flags have to saturate first due to the 6085 // non-deterministic behavior of iterating over a dense map. 6086 if (HasIllegalType && !AllTablesFitInRegister) 6087 break; 6088 } 6089 6090 // If each table would fit in a register, we should build it anyway. 6091 if (AllTablesFitInRegister) 6092 return true; 6093 6094 // Don't build a table that doesn't fit in-register if it has illegal types. 6095 if (HasIllegalType) 6096 return false; 6097 6098 // The table density should be at least 40%. This is the same criterion as for 6099 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 6100 // FIXME: Find the best cut-off. 6101 return SI->getNumCases() * 10 >= TableSize * 4; 6102 } 6103 6104 /// Try to reuse the switch table index compare. Following pattern: 6105 /// \code 6106 /// if (idx < tablesize) 6107 /// r = table[idx]; // table does not contain default_value 6108 /// else 6109 /// r = default_value; 6110 /// if (r != default_value) 6111 /// ... 6112 /// \endcode 6113 /// Is optimized to: 6114 /// \code 6115 /// cond = idx < tablesize; 6116 /// if (cond) 6117 /// r = table[idx]; 6118 /// else 6119 /// r = default_value; 6120 /// if (cond) 6121 /// ... 6122 /// \endcode 6123 /// Jump threading will then eliminate the second if(cond). 6124 static void reuseTableCompare( 6125 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 6126 Constant *DefaultValue, 6127 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 6128 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 6129 if (!CmpInst) 6130 return; 6131 6132 // We require that the compare is in the same block as the phi so that jump 6133 // threading can do its work afterwards. 6134 if (CmpInst->getParent() != PhiBlock) 6135 return; 6136 6137 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 6138 if (!CmpOp1) 6139 return; 6140 6141 Value *RangeCmp = RangeCheckBranch->getCondition(); 6142 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 6143 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 6144 6145 // Check if the compare with the default value is constant true or false. 6146 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6147 DefaultValue, CmpOp1, true); 6148 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 6149 return; 6150 6151 // Check if the compare with the case values is distinct from the default 6152 // compare result. 6153 for (auto ValuePair : Values) { 6154 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6155 ValuePair.second, CmpOp1, true); 6156 if (!CaseConst || CaseConst == DefaultConst || 6157 (CaseConst != TrueConst && CaseConst != FalseConst)) 6158 return; 6159 } 6160 6161 // Check if the branch instruction dominates the phi node. It's a simple 6162 // dominance check, but sufficient for our needs. 6163 // Although this check is invariant in the calling loops, it's better to do it 6164 // at this late stage. Practically we do it at most once for a switch. 6165 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 6166 for (BasicBlock *Pred : predecessors(PhiBlock)) { 6167 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 6168 return; 6169 } 6170 6171 if (DefaultConst == FalseConst) { 6172 // The compare yields the same result. We can replace it. 6173 CmpInst->replaceAllUsesWith(RangeCmp); 6174 ++NumTableCmpReuses; 6175 } else { 6176 // The compare yields the same result, just inverted. We can replace it. 6177 Value *InvertedTableCmp = BinaryOperator::CreateXor( 6178 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 6179 RangeCheckBranch); 6180 CmpInst->replaceAllUsesWith(InvertedTableCmp); 6181 ++NumTableCmpReuses; 6182 } 6183 } 6184 6185 /// If the switch is only used to initialize one or more phi nodes in a common 6186 /// successor block with different constant values, replace the switch with 6187 /// lookup tables. 6188 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 6189 DomTreeUpdater *DTU, const DataLayout &DL, 6190 const TargetTransformInfo &TTI) { 6191 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 6192 6193 BasicBlock *BB = SI->getParent(); 6194 Function *Fn = BB->getParent(); 6195 // Only build lookup table when we have a target that supports it or the 6196 // attribute is not set. 6197 if (!TTI.shouldBuildLookupTables() || 6198 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 6199 return false; 6200 6201 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 6202 // split off a dense part and build a lookup table for that. 6203 6204 // FIXME: This creates arrays of GEPs to constant strings, which means each 6205 // GEP needs a runtime relocation in PIC code. We should just build one big 6206 // string and lookup indices into that. 6207 6208 // Ignore switches with less than three cases. Lookup tables will not make 6209 // them faster, so we don't analyze them. 6210 if (SI->getNumCases() < 3) 6211 return false; 6212 6213 // Figure out the corresponding result for each case value and phi node in the 6214 // common destination, as well as the min and max case values. 6215 assert(!SI->cases().empty()); 6216 SwitchInst::CaseIt CI = SI->case_begin(); 6217 ConstantInt *MinCaseVal = CI->getCaseValue(); 6218 ConstantInt *MaxCaseVal = CI->getCaseValue(); 6219 6220 BasicBlock *CommonDest = nullptr; 6221 6222 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 6223 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 6224 6225 SmallDenseMap<PHINode *, Constant *> DefaultResults; 6226 SmallDenseMap<PHINode *, Type *> ResultTypes; 6227 SmallVector<PHINode *, 4> PHIs; 6228 6229 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 6230 ConstantInt *CaseVal = CI->getCaseValue(); 6231 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 6232 MinCaseVal = CaseVal; 6233 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 6234 MaxCaseVal = CaseVal; 6235 6236 // Resulting value at phi nodes for this case value. 6237 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 6238 ResultsTy Results; 6239 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 6240 Results, DL, TTI)) 6241 return false; 6242 6243 // Append the result from this case to the list for each phi. 6244 for (const auto &I : Results) { 6245 PHINode *PHI = I.first; 6246 Constant *Value = I.second; 6247 if (!ResultLists.count(PHI)) 6248 PHIs.push_back(PHI); 6249 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 6250 } 6251 } 6252 6253 // Keep track of the result types. 6254 for (PHINode *PHI : PHIs) { 6255 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 6256 } 6257 6258 uint64_t NumResults = ResultLists[PHIs[0]].size(); 6259 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 6260 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 6261 bool TableHasHoles = (NumResults < TableSize); 6262 6263 // If the table has holes, we need a constant result for the default case 6264 // or a bitmask that fits in a register. 6265 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 6266 bool HasDefaultResults = 6267 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 6268 DefaultResultsList, DL, TTI); 6269 6270 bool NeedMask = (TableHasHoles && !HasDefaultResults); 6271 if (NeedMask) { 6272 // As an extra penalty for the validity test we require more cases. 6273 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 6274 return false; 6275 if (!DL.fitsInLegalInteger(TableSize)) 6276 return false; 6277 } 6278 6279 for (const auto &I : DefaultResultsList) { 6280 PHINode *PHI = I.first; 6281 Constant *Result = I.second; 6282 DefaultResults[PHI] = Result; 6283 } 6284 6285 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 6286 return false; 6287 6288 std::vector<DominatorTree::UpdateType> Updates; 6289 6290 // Create the BB that does the lookups. 6291 Module &Mod = *CommonDest->getParent()->getParent(); 6292 BasicBlock *LookupBB = BasicBlock::Create( 6293 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 6294 6295 // Compute the table index value. 6296 Builder.SetInsertPoint(SI); 6297 Value *TableIndex; 6298 if (MinCaseVal->isNullValue()) 6299 TableIndex = SI->getCondition(); 6300 else 6301 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 6302 "switch.tableidx"); 6303 6304 // Compute the maximum table size representable by the integer type we are 6305 // switching upon. 6306 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 6307 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 6308 assert(MaxTableSize >= TableSize && 6309 "It is impossible for a switch to have more entries than the max " 6310 "representable value of its input integer type's size."); 6311 6312 // If the default destination is unreachable, or if the lookup table covers 6313 // all values of the conditional variable, branch directly to the lookup table 6314 // BB. Otherwise, check that the condition is within the case range. 6315 const bool DefaultIsReachable = 6316 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6317 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6318 BranchInst *RangeCheckBranch = nullptr; 6319 6320 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6321 Builder.CreateBr(LookupBB); 6322 if (DTU) 6323 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6324 // Note: We call removeProdecessor later since we need to be able to get the 6325 // PHI value for the default case in case we're using a bit mask. 6326 } else { 6327 Value *Cmp = Builder.CreateICmpULT( 6328 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6329 RangeCheckBranch = 6330 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6331 if (DTU) 6332 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6333 } 6334 6335 // Populate the BB that does the lookups. 6336 Builder.SetInsertPoint(LookupBB); 6337 6338 if (NeedMask) { 6339 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6340 // re-purposed to do the hole check, and we create a new LookupBB. 6341 BasicBlock *MaskBB = LookupBB; 6342 MaskBB->setName("switch.hole_check"); 6343 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6344 CommonDest->getParent(), CommonDest); 6345 6346 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6347 // unnecessary illegal types. 6348 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6349 APInt MaskInt(TableSizePowOf2, 0); 6350 APInt One(TableSizePowOf2, 1); 6351 // Build bitmask; fill in a 1 bit for every case. 6352 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6353 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6354 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6355 .getLimitedValue(); 6356 MaskInt |= One << Idx; 6357 } 6358 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6359 6360 // Get the TableIndex'th bit of the bitmask. 6361 // If this bit is 0 (meaning hole) jump to the default destination, 6362 // else continue with table lookup. 6363 IntegerType *MapTy = TableMask->getType(); 6364 Value *MaskIndex = 6365 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6366 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6367 Value *LoBit = Builder.CreateTrunc( 6368 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6369 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6370 if (DTU) { 6371 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6372 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6373 } 6374 Builder.SetInsertPoint(LookupBB); 6375 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6376 } 6377 6378 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6379 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6380 // do not delete PHINodes here. 6381 SI->getDefaultDest()->removePredecessor(BB, 6382 /*KeepOneInputPHIs=*/true); 6383 if (DTU) 6384 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6385 } 6386 6387 for (PHINode *PHI : PHIs) { 6388 const ResultListTy &ResultList = ResultLists[PHI]; 6389 6390 // If using a bitmask, use any value to fill the lookup table holes. 6391 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6392 StringRef FuncName = Fn->getName(); 6393 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6394 FuncName); 6395 6396 Value *Result = Table.BuildLookup(TableIndex, Builder); 6397 6398 // Do a small peephole optimization: re-use the switch table compare if 6399 // possible. 6400 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6401 BasicBlock *PhiBlock = PHI->getParent(); 6402 // Search for compare instructions which use the phi. 6403 for (auto *User : PHI->users()) { 6404 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6405 } 6406 } 6407 6408 PHI->addIncoming(Result, LookupBB); 6409 } 6410 6411 Builder.CreateBr(CommonDest); 6412 if (DTU) 6413 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6414 6415 // Remove the switch. 6416 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6417 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6418 BasicBlock *Succ = SI->getSuccessor(i); 6419 6420 if (Succ == SI->getDefaultDest()) 6421 continue; 6422 Succ->removePredecessor(BB); 6423 if (DTU && RemovedSuccessors.insert(Succ).second) 6424 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6425 } 6426 SI->eraseFromParent(); 6427 6428 if (DTU) 6429 DTU->applyUpdates(Updates); 6430 6431 ++NumLookupTables; 6432 if (NeedMask) 6433 ++NumLookupTablesHoles; 6434 return true; 6435 } 6436 6437 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6438 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6439 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6440 uint64_t Range = Diff + 1; 6441 uint64_t NumCases = Values.size(); 6442 // 40% is the default density for building a jump table in optsize/minsize mode. 6443 uint64_t MinDensity = 40; 6444 6445 return NumCases * 100 >= Range * MinDensity; 6446 } 6447 6448 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6449 /// of cases. 6450 /// 6451 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6452 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6453 /// 6454 /// This converts a sparse switch into a dense switch which allows better 6455 /// lowering and could also allow transforming into a lookup table. 6456 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6457 const DataLayout &DL, 6458 const TargetTransformInfo &TTI) { 6459 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6460 if (CondTy->getIntegerBitWidth() > 64 || 6461 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6462 return false; 6463 // Only bother with this optimization if there are more than 3 switch cases; 6464 // SDAG will only bother creating jump tables for 4 or more cases. 6465 if (SI->getNumCases() < 4) 6466 return false; 6467 6468 // This transform is agnostic to the signedness of the input or case values. We 6469 // can treat the case values as signed or unsigned. We can optimize more common 6470 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6471 // as signed. 6472 SmallVector<int64_t,4> Values; 6473 for (auto &C : SI->cases()) 6474 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6475 llvm::sort(Values); 6476 6477 // If the switch is already dense, there's nothing useful to do here. 6478 if (isSwitchDense(Values)) 6479 return false; 6480 6481 // First, transform the values such that they start at zero and ascend. 6482 int64_t Base = Values[0]; 6483 for (auto &V : Values) 6484 V -= (uint64_t)(Base); 6485 6486 // Now we have signed numbers that have been shifted so that, given enough 6487 // precision, there are no negative values. Since the rest of the transform 6488 // is bitwise only, we switch now to an unsigned representation. 6489 6490 // This transform can be done speculatively because it is so cheap - it 6491 // results in a single rotate operation being inserted. 6492 // FIXME: It's possible that optimizing a switch on powers of two might also 6493 // be beneficial - flag values are often powers of two and we could use a CLZ 6494 // as the key function. 6495 6496 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6497 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6498 // less than 64. 6499 unsigned Shift = 64; 6500 for (auto &V : Values) 6501 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6502 assert(Shift < 64); 6503 if (Shift > 0) 6504 for (auto &V : Values) 6505 V = (int64_t)((uint64_t)V >> Shift); 6506 6507 if (!isSwitchDense(Values)) 6508 // Transform didn't create a dense switch. 6509 return false; 6510 6511 // The obvious transform is to shift the switch condition right and emit a 6512 // check that the condition actually cleanly divided by GCD, i.e. 6513 // C & (1 << Shift - 1) == 0 6514 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6515 // 6516 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6517 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6518 // are nonzero then the switch condition will be very large and will hit the 6519 // default case. 6520 6521 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6522 Builder.SetInsertPoint(SI); 6523 auto *ShiftC = ConstantInt::get(Ty, Shift); 6524 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6525 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6526 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6527 auto *Rot = Builder.CreateOr(LShr, Shl); 6528 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6529 6530 for (auto Case : SI->cases()) { 6531 auto *Orig = Case.getCaseValue(); 6532 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6533 Case.setValue( 6534 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6535 } 6536 return true; 6537 } 6538 6539 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6540 BasicBlock *BB = SI->getParent(); 6541 6542 if (isValueEqualityComparison(SI)) { 6543 // If we only have one predecessor, and if it is a branch on this value, 6544 // see if that predecessor totally determines the outcome of this switch. 6545 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6546 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6547 return requestResimplify(); 6548 6549 Value *Cond = SI->getCondition(); 6550 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6551 if (SimplifySwitchOnSelect(SI, Select)) 6552 return requestResimplify(); 6553 6554 // If the block only contains the switch, see if we can fold the block 6555 // away into any preds. 6556 if (SI == &*BB->instructionsWithoutDebug(false).begin()) 6557 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6558 return requestResimplify(); 6559 } 6560 6561 // Try to transform the switch into an icmp and a branch. 6562 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6563 return requestResimplify(); 6564 6565 // Remove unreachable cases. 6566 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6567 return requestResimplify(); 6568 6569 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6570 return requestResimplify(); 6571 6572 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6573 return requestResimplify(); 6574 6575 // The conversion from switch to lookup tables results in difficult-to-analyze 6576 // code and makes pruning branches much harder. This is a problem if the 6577 // switch expression itself can still be restricted as a result of inlining or 6578 // CVP. Therefore, only apply this transformation during late stages of the 6579 // optimisation pipeline. 6580 if (Options.ConvertSwitchToLookupTable && 6581 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6582 return requestResimplify(); 6583 6584 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6585 return requestResimplify(); 6586 6587 return false; 6588 } 6589 6590 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6591 BasicBlock *BB = IBI->getParent(); 6592 bool Changed = false; 6593 6594 // Eliminate redundant destinations. 6595 SmallPtrSet<Value *, 8> Succs; 6596 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6597 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6598 BasicBlock *Dest = IBI->getDestination(i); 6599 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6600 if (!Dest->hasAddressTaken()) 6601 RemovedSuccs.insert(Dest); 6602 Dest->removePredecessor(BB); 6603 IBI->removeDestination(i); 6604 --i; 6605 --e; 6606 Changed = true; 6607 } 6608 } 6609 6610 if (DTU) { 6611 std::vector<DominatorTree::UpdateType> Updates; 6612 Updates.reserve(RemovedSuccs.size()); 6613 for (auto *RemovedSucc : RemovedSuccs) 6614 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6615 DTU->applyUpdates(Updates); 6616 } 6617 6618 if (IBI->getNumDestinations() == 0) { 6619 // If the indirectbr has no successors, change it to unreachable. 6620 new UnreachableInst(IBI->getContext(), IBI); 6621 EraseTerminatorAndDCECond(IBI); 6622 return true; 6623 } 6624 6625 if (IBI->getNumDestinations() == 1) { 6626 // If the indirectbr has one successor, change it to a direct branch. 6627 BranchInst::Create(IBI->getDestination(0), IBI); 6628 EraseTerminatorAndDCECond(IBI); 6629 return true; 6630 } 6631 6632 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6633 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6634 return requestResimplify(); 6635 } 6636 return Changed; 6637 } 6638 6639 /// Given an block with only a single landing pad and a unconditional branch 6640 /// try to find another basic block which this one can be merged with. This 6641 /// handles cases where we have multiple invokes with unique landing pads, but 6642 /// a shared handler. 6643 /// 6644 /// We specifically choose to not worry about merging non-empty blocks 6645 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6646 /// practice, the optimizer produces empty landing pad blocks quite frequently 6647 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6648 /// sinking in this file) 6649 /// 6650 /// This is primarily a code size optimization. We need to avoid performing 6651 /// any transform which might inhibit optimization (such as our ability to 6652 /// specialize a particular handler via tail commoning). We do this by not 6653 /// merging any blocks which require us to introduce a phi. Since the same 6654 /// values are flowing through both blocks, we don't lose any ability to 6655 /// specialize. If anything, we make such specialization more likely. 6656 /// 6657 /// TODO - This transformation could remove entries from a phi in the target 6658 /// block when the inputs in the phi are the same for the two blocks being 6659 /// merged. In some cases, this could result in removal of the PHI entirely. 6660 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6661 BasicBlock *BB, DomTreeUpdater *DTU) { 6662 auto Succ = BB->getUniqueSuccessor(); 6663 assert(Succ); 6664 // If there's a phi in the successor block, we'd likely have to introduce 6665 // a phi into the merged landing pad block. 6666 if (isa<PHINode>(*Succ->begin())) 6667 return false; 6668 6669 for (BasicBlock *OtherPred : predecessors(Succ)) { 6670 if (BB == OtherPred) 6671 continue; 6672 BasicBlock::iterator I = OtherPred->begin(); 6673 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6674 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6675 continue; 6676 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6677 ; 6678 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6679 if (!BI2 || !BI2->isIdenticalTo(BI)) 6680 continue; 6681 6682 std::vector<DominatorTree::UpdateType> Updates; 6683 6684 // We've found an identical block. Update our predecessors to take that 6685 // path instead and make ourselves dead. 6686 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); 6687 for (BasicBlock *Pred : UniquePreds) { 6688 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6689 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6690 "unexpected successor"); 6691 II->setUnwindDest(OtherPred); 6692 if (DTU) { 6693 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6694 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6695 } 6696 } 6697 6698 // The debug info in OtherPred doesn't cover the merged control flow that 6699 // used to go through BB. We need to delete it or update it. 6700 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) 6701 if (isa<DbgInfoIntrinsic>(Inst)) 6702 Inst.eraseFromParent(); 6703 6704 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); 6705 for (BasicBlock *Succ : UniqueSuccs) { 6706 Succ->removePredecessor(BB); 6707 if (DTU) 6708 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6709 } 6710 6711 IRBuilder<> Builder(BI); 6712 Builder.CreateUnreachable(); 6713 BI->eraseFromParent(); 6714 if (DTU) 6715 DTU->applyUpdates(Updates); 6716 return true; 6717 } 6718 return false; 6719 } 6720 6721 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6722 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6723 : simplifyCondBranch(Branch, Builder); 6724 } 6725 6726 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6727 IRBuilder<> &Builder) { 6728 BasicBlock *BB = BI->getParent(); 6729 BasicBlock *Succ = BI->getSuccessor(0); 6730 6731 // If the Terminator is the only non-phi instruction, simplify the block. 6732 // If LoopHeader is provided, check if the block or its successor is a loop 6733 // header. (This is for early invocations before loop simplify and 6734 // vectorization to keep canonical loop forms for nested loops. These blocks 6735 // can be eliminated when the pass is invoked later in the back-end.) 6736 // Note that if BB has only one predecessor then we do not introduce new 6737 // backedge, so we can eliminate BB. 6738 bool NeedCanonicalLoop = 6739 Options.NeedCanonicalLoop && 6740 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6741 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6742 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6743 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6744 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6745 return true; 6746 6747 // If the only instruction in the block is a seteq/setne comparison against a 6748 // constant, try to simplify the block. 6749 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6750 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6751 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6752 ; 6753 if (I->isTerminator() && 6754 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6755 return true; 6756 } 6757 6758 // See if we can merge an empty landing pad block with another which is 6759 // equivalent. 6760 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6761 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6762 ; 6763 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6764 return true; 6765 } 6766 6767 // If this basic block is ONLY a compare and a branch, and if a predecessor 6768 // branches to us and our successor, fold the comparison into the 6769 // predecessor and use logical operations to update the incoming value 6770 // for PHI nodes in common successor. 6771 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6772 Options.BonusInstThreshold)) 6773 return requestResimplify(); 6774 return false; 6775 } 6776 6777 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6778 BasicBlock *PredPred = nullptr; 6779 for (auto *P : predecessors(BB)) { 6780 BasicBlock *PPred = P->getSinglePredecessor(); 6781 if (!PPred || (PredPred && PredPred != PPred)) 6782 return nullptr; 6783 PredPred = PPred; 6784 } 6785 return PredPred; 6786 } 6787 6788 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6789 assert( 6790 !isa<ConstantInt>(BI->getCondition()) && 6791 BI->getSuccessor(0) != BI->getSuccessor(1) && 6792 "Tautological conditional branch should have been eliminated already."); 6793 6794 BasicBlock *BB = BI->getParent(); 6795 if (!Options.SimplifyCondBranch) 6796 return false; 6797 6798 // Conditional branch 6799 if (isValueEqualityComparison(BI)) { 6800 // If we only have one predecessor, and if it is a branch on this value, 6801 // see if that predecessor totally determines the outcome of this 6802 // switch. 6803 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6804 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6805 return requestResimplify(); 6806 6807 // This block must be empty, except for the setcond inst, if it exists. 6808 // Ignore dbg and pseudo intrinsics. 6809 auto I = BB->instructionsWithoutDebug(true).begin(); 6810 if (&*I == BI) { 6811 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6812 return requestResimplify(); 6813 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6814 ++I; 6815 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6816 return requestResimplify(); 6817 } 6818 } 6819 6820 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6821 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6822 return true; 6823 6824 // If this basic block has dominating predecessor blocks and the dominating 6825 // blocks' conditions imply BI's condition, we know the direction of BI. 6826 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6827 if (Imp) { 6828 // Turn this into a branch on constant. 6829 auto *OldCond = BI->getCondition(); 6830 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6831 : ConstantInt::getFalse(BB->getContext()); 6832 BI->setCondition(TorF); 6833 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6834 return requestResimplify(); 6835 } 6836 6837 // If this basic block is ONLY a compare and a branch, and if a predecessor 6838 // branches to us and one of our successors, fold the comparison into the 6839 // predecessor and use logical operations to pick the right destination. 6840 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6841 Options.BonusInstThreshold)) 6842 return requestResimplify(); 6843 6844 // We have a conditional branch to two blocks that are only reachable 6845 // from BI. We know that the condbr dominates the two blocks, so see if 6846 // there is any identical code in the "then" and "else" blocks. If so, we 6847 // can hoist it up to the branching block. 6848 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6849 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6850 if (HoistCommon && 6851 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6852 return requestResimplify(); 6853 } else { 6854 // If Successor #1 has multiple preds, we may be able to conditionally 6855 // execute Successor #0 if it branches to Successor #1. 6856 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6857 if (Succ0TI->getNumSuccessors() == 1 && 6858 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6859 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6860 return requestResimplify(); 6861 } 6862 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6863 // If Successor #0 has multiple preds, we may be able to conditionally 6864 // execute Successor #1 if it branches to Successor #0. 6865 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6866 if (Succ1TI->getNumSuccessors() == 1 && 6867 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6868 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6869 return requestResimplify(); 6870 } 6871 6872 // If this is a branch on a phi node in the current block, thread control 6873 // through this block if any PHI node entries are constants. 6874 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6875 if (PN->getParent() == BI->getParent()) 6876 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6877 return requestResimplify(); 6878 6879 // Scan predecessor blocks for conditional branches. 6880 for (BasicBlock *Pred : predecessors(BB)) 6881 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6882 if (PBI != BI && PBI->isConditional()) 6883 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6884 return requestResimplify(); 6885 6886 // Look for diamond patterns. 6887 if (MergeCondStores) 6888 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6889 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6890 if (PBI != BI && PBI->isConditional()) 6891 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6892 return requestResimplify(); 6893 6894 return false; 6895 } 6896 6897 /// Check if passing a value to an instruction will cause undefined behavior. 6898 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6899 Constant *C = dyn_cast<Constant>(V); 6900 if (!C) 6901 return false; 6902 6903 if (I->use_empty()) 6904 return false; 6905 6906 if (C->isNullValue() || isa<UndefValue>(C)) { 6907 // Only look at the first use, avoid hurting compile time with long uselists 6908 auto *Use = cast<Instruction>(*I->user_begin()); 6909 // Bail out if Use is not in the same BB as I or Use == I or Use comes 6910 // before I in the block. The latter two can be the case if Use is a PHI 6911 // node. 6912 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) 6913 return false; 6914 6915 // Now make sure that there are no instructions in between that can alter 6916 // control flow (eg. calls) 6917 auto InstrRange = 6918 make_range(std::next(I->getIterator()), Use->getIterator()); 6919 if (any_of(InstrRange, [](Instruction &I) { 6920 return !isGuaranteedToTransferExecutionToSuccessor(&I); 6921 })) 6922 return false; 6923 6924 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6925 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6926 if (GEP->getPointerOperand() == I) { 6927 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6928 PtrValueMayBeModified = true; 6929 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6930 } 6931 6932 // Look through bitcasts. 6933 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6934 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6935 6936 // Load from null is undefined. 6937 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6938 if (!LI->isVolatile()) 6939 return !NullPointerIsDefined(LI->getFunction(), 6940 LI->getPointerAddressSpace()); 6941 6942 // Store to null is undefined. 6943 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6944 if (!SI->isVolatile()) 6945 return (!NullPointerIsDefined(SI->getFunction(), 6946 SI->getPointerAddressSpace())) && 6947 SI->getPointerOperand() == I; 6948 6949 if (auto *CB = dyn_cast<CallBase>(Use)) { 6950 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6951 return false; 6952 // A call to null is undefined. 6953 if (CB->getCalledOperand() == I) 6954 return true; 6955 6956 if (C->isNullValue()) { 6957 for (const llvm::Use &Arg : CB->args()) 6958 if (Arg == I) { 6959 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6960 if (CB->isPassingUndefUB(ArgIdx) && 6961 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6962 // Passing null to a nonnnull+noundef argument is undefined. 6963 return !PtrValueMayBeModified; 6964 } 6965 } 6966 } else if (isa<UndefValue>(C)) { 6967 // Passing undef to a noundef argument is undefined. 6968 for (const llvm::Use &Arg : CB->args()) 6969 if (Arg == I) { 6970 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6971 if (CB->isPassingUndefUB(ArgIdx)) { 6972 // Passing undef to a noundef argument is undefined. 6973 return true; 6974 } 6975 } 6976 } 6977 } 6978 } 6979 return false; 6980 } 6981 6982 /// If BB has an incoming value that will always trigger undefined behavior 6983 /// (eg. null pointer dereference), remove the branch leading here. 6984 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6985 DomTreeUpdater *DTU) { 6986 for (PHINode &PHI : BB->phis()) 6987 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6988 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6989 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6990 Instruction *T = Predecessor->getTerminator(); 6991 IRBuilder<> Builder(T); 6992 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6993 BB->removePredecessor(Predecessor); 6994 // Turn uncoditional branches into unreachables and remove the dead 6995 // destination from conditional branches. 6996 if (BI->isUnconditional()) 6997 Builder.CreateUnreachable(); 6998 else { 6999 // Preserve guarding condition in assume, because it might not be 7000 // inferrable from any dominating condition. 7001 Value *Cond = BI->getCondition(); 7002 if (BI->getSuccessor(0) == BB) 7003 Builder.CreateAssumption(Builder.CreateNot(Cond)); 7004 else 7005 Builder.CreateAssumption(Cond); 7006 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 7007 : BI->getSuccessor(0)); 7008 } 7009 BI->eraseFromParent(); 7010 if (DTU) 7011 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 7012 return true; 7013 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 7014 // Redirect all branches leading to UB into 7015 // a newly created unreachable block. 7016 BasicBlock *Unreachable = BasicBlock::Create( 7017 Predecessor->getContext(), "unreachable", BB->getParent(), BB); 7018 Builder.SetInsertPoint(Unreachable); 7019 // The new block contains only one instruction: Unreachable 7020 Builder.CreateUnreachable(); 7021 for (auto &Case : SI->cases()) 7022 if (Case.getCaseSuccessor() == BB) { 7023 BB->removePredecessor(Predecessor); 7024 Case.setSuccessor(Unreachable); 7025 } 7026 if (SI->getDefaultDest() == BB) { 7027 BB->removePredecessor(Predecessor); 7028 SI->setDefaultDest(Unreachable); 7029 } 7030 7031 if (DTU) 7032 DTU->applyUpdates( 7033 { { DominatorTree::Insert, Predecessor, Unreachable }, 7034 { DominatorTree::Delete, Predecessor, BB } }); 7035 return true; 7036 } 7037 } 7038 7039 return false; 7040 } 7041 7042 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 7043 bool Changed = false; 7044 7045 assert(BB && BB->getParent() && "Block not embedded in function!"); 7046 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 7047 7048 // Remove basic blocks that have no predecessors (except the entry block)... 7049 // or that just have themself as a predecessor. These are unreachable. 7050 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 7051 BB->getSinglePredecessor() == BB) { 7052 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 7053 DeleteDeadBlock(BB, DTU); 7054 return true; 7055 } 7056 7057 // Check to see if we can constant propagate this terminator instruction 7058 // away... 7059 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 7060 /*TLI=*/nullptr, DTU); 7061 7062 // Check for and eliminate duplicate PHI nodes in this block. 7063 Changed |= EliminateDuplicatePHINodes(BB); 7064 7065 // Check for and remove branches that will always cause undefined behavior. 7066 if (removeUndefIntroducingPredecessor(BB, DTU)) 7067 return requestResimplify(); 7068 7069 // Merge basic blocks into their predecessor if there is only one distinct 7070 // pred, and if there is only one distinct successor of the predecessor, and 7071 // if there are no PHI nodes. 7072 if (MergeBlockIntoPredecessor(BB, DTU)) 7073 return true; 7074 7075 if (SinkCommon && Options.SinkCommonInsts) 7076 if (SinkCommonCodeFromPredecessors(BB, DTU) || 7077 MergeCompatibleInvokes(BB, DTU)) { 7078 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 7079 // so we may now how duplicate PHI's. 7080 // Let's rerun EliminateDuplicatePHINodes() first, 7081 // before FoldTwoEntryPHINode() potentially converts them into select's, 7082 // after which we'd need a whole EarlyCSE pass run to cleanup them. 7083 return true; 7084 } 7085 7086 IRBuilder<> Builder(BB); 7087 7088 if (Options.FoldTwoEntryPHINode) { 7089 // If there is a trivial two-entry PHI node in this basic block, and we can 7090 // eliminate it, do so now. 7091 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 7092 if (PN->getNumIncomingValues() == 2) 7093 if (FoldTwoEntryPHINode(PN, TTI, DTU, DL)) 7094 return true; 7095 } 7096 7097 Instruction *Terminator = BB->getTerminator(); 7098 Builder.SetInsertPoint(Terminator); 7099 switch (Terminator->getOpcode()) { 7100 case Instruction::Br: 7101 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 7102 break; 7103 case Instruction::Resume: 7104 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 7105 break; 7106 case Instruction::CleanupRet: 7107 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 7108 break; 7109 case Instruction::Switch: 7110 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 7111 break; 7112 case Instruction::Unreachable: 7113 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 7114 break; 7115 case Instruction::IndirectBr: 7116 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 7117 break; 7118 } 7119 7120 return Changed; 7121 } 7122 7123 bool SimplifyCFGOpt::run(BasicBlock *BB) { 7124 bool Changed = false; 7125 7126 // Repeated simplify BB as long as resimplification is requested. 7127 do { 7128 Resimplify = false; 7129 7130 // Perform one round of simplifcation. Resimplify flag will be set if 7131 // another iteration is requested. 7132 Changed |= simplifyOnce(BB); 7133 } while (Resimplify); 7134 7135 return Changed; 7136 } 7137 7138 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 7139 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 7140 ArrayRef<WeakVH> LoopHeaders) { 7141 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 7142 Options) 7143 .run(BB); 7144 } 7145