1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/SSAUpdater.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 97 cl::init(false), 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> DupRet( 117 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 118 cl::desc("Duplicate return instructions into unconditional branches")); 119 120 static cl::opt<bool> 121 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 122 cl::desc("Hoist common instructions up to the parent block")); 123 124 static cl::opt<bool> 125 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 126 cl::desc("Sink common instructions down to the end block")); 127 128 static cl::opt<bool> HoistCondStores( 129 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 130 cl::desc("Hoist conditional stores if an unconditional store precedes")); 131 132 static cl::opt<bool> MergeCondStores( 133 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 134 cl::desc("Hoist conditional stores even if an unconditional store does not " 135 "precede - hoist multiple conditional stores into a single " 136 "predicated store")); 137 138 static cl::opt<bool> MergeCondStoresAggressively( 139 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 140 cl::desc("When merging conditional stores, do so even if the resultant " 141 "basic blocks are unlikely to be if-converted as a result")); 142 143 static cl::opt<bool> SpeculateOneExpensiveInst( 144 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 145 cl::desc("Allow exactly one expensive instruction to be speculatively " 146 "executed")); 147 148 static cl::opt<unsigned> MaxSpeculationDepth( 149 "max-speculation-depth", cl::Hidden, cl::init(10), 150 cl::desc("Limit maximum recursion depth when calculating costs of " 151 "speculatively executed instructions")); 152 153 static cl::opt<int> 154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 155 cl::init(10), 156 cl::desc("Max size of a block which is still considered " 157 "small enough to thread through")); 158 159 // Two is chosen to allow one negation and a logical combine. 160 static cl::opt<unsigned> 161 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 162 cl::init(2), 163 cl::desc("Maximum cost of combining conditions when " 164 "folding branches")); 165 166 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 167 STATISTIC(NumLinearMaps, 168 "Number of switch instructions turned into linear mapping"); 169 STATISTIC(NumLookupTables, 170 "Number of switch instructions turned into lookup tables"); 171 STATISTIC( 172 NumLookupTablesHoles, 173 "Number of switch instructions turned into lookup tables (holes checked)"); 174 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 175 STATISTIC(NumFoldValueComparisonIntoPredecessors, 176 "Number of value comparisons folded into predecessor basic blocks"); 177 STATISTIC(NumFoldBranchToCommonDest, 178 "Number of branches folded into predecessor basic block"); 179 STATISTIC( 180 NumHoistCommonCode, 181 "Number of common instruction 'blocks' hoisted up to the begin block"); 182 STATISTIC(NumHoistCommonInstrs, 183 "Number of common instructions hoisted up to the begin block"); 184 STATISTIC(NumSinkCommonCode, 185 "Number of common instruction 'blocks' sunk down to the end block"); 186 STATISTIC(NumSinkCommonInstrs, 187 "Number of common instructions sunk down to the end block"); 188 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 189 STATISTIC(NumInvokes, 190 "Number of invokes with empty resume blocks simplified into calls"); 191 192 namespace { 193 194 // The first field contains the value that the switch produces when a certain 195 // case group is selected, and the second field is a vector containing the 196 // cases composing the case group. 197 using SwitchCaseResultVectorTy = 198 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 199 200 // The first field contains the phi node that generates a result of the switch 201 // and the second field contains the value generated for a certain case in the 202 // switch for that PHI. 203 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 204 205 /// ValueEqualityComparisonCase - Represents a case of a switch. 206 struct ValueEqualityComparisonCase { 207 ConstantInt *Value; 208 BasicBlock *Dest; 209 210 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 211 : Value(Value), Dest(Dest) {} 212 213 bool operator<(ValueEqualityComparisonCase RHS) const { 214 // Comparing pointers is ok as we only rely on the order for uniquing. 215 return Value < RHS.Value; 216 } 217 218 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 219 }; 220 221 class SimplifyCFGOpt { 222 const TargetTransformInfo &TTI; 223 DomTreeUpdater *DTU; 224 const DataLayout &DL; 225 ArrayRef<WeakVH> LoopHeaders; 226 const SimplifyCFGOptions &Options; 227 bool Resimplify; 228 229 Value *isValueEqualityComparison(Instruction *TI); 230 BasicBlock *GetValueEqualityComparisonCases( 231 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 232 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 233 BasicBlock *Pred, 234 IRBuilder<> &Builder); 235 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 236 Instruction *PTI, 237 IRBuilder<> &Builder); 238 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 239 IRBuilder<> &Builder); 240 241 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 242 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 243 bool simplifySingleResume(ResumeInst *RI); 244 bool simplifyCommonResume(ResumeInst *RI); 245 bool simplifyCleanupReturn(CleanupReturnInst *RI); 246 bool simplifyUnreachable(UnreachableInst *UI); 247 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 248 bool simplifyIndirectBr(IndirectBrInst *IBI); 249 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 250 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 251 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 252 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 253 254 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 255 IRBuilder<> &Builder); 256 257 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 258 bool EqTermsOnly); 259 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 260 const TargetTransformInfo &TTI); 261 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 262 BasicBlock *TrueBB, BasicBlock *FalseBB, 263 uint32_t TrueWeight, uint32_t FalseWeight); 264 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 265 const DataLayout &DL); 266 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 267 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 268 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 269 270 public: 271 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 272 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 273 const SimplifyCFGOptions &Opts) 274 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 275 assert((!DTU || !DTU->hasPostDomTree()) && 276 "SimplifyCFG is not yet capable of maintaining validity of a " 277 "PostDomTree, so don't ask for it."); 278 } 279 280 bool simplifyOnce(BasicBlock *BB); 281 bool simplifyOnceImpl(BasicBlock *BB); 282 bool run(BasicBlock *BB); 283 284 // Helper to set Resimplify and return change indication. 285 bool requestResimplify() { 286 Resimplify = true; 287 return true; 288 } 289 }; 290 291 } // end anonymous namespace 292 293 /// Return true if it is safe to merge these two 294 /// terminator instructions together. 295 static bool 296 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 297 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 298 if (SI1 == SI2) 299 return false; // Can't merge with self! 300 301 // It is not safe to merge these two switch instructions if they have a common 302 // successor, and if that successor has a PHI node, and if *that* PHI node has 303 // conflicting incoming values from the two switch blocks. 304 BasicBlock *SI1BB = SI1->getParent(); 305 BasicBlock *SI2BB = SI2->getParent(); 306 307 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 308 bool Fail = false; 309 for (BasicBlock *Succ : successors(SI2BB)) 310 if (SI1Succs.count(Succ)) 311 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 312 PHINode *PN = cast<PHINode>(BBI); 313 if (PN->getIncomingValueForBlock(SI1BB) != 314 PN->getIncomingValueForBlock(SI2BB)) { 315 if (FailBlocks) 316 FailBlocks->insert(Succ); 317 Fail = true; 318 } 319 } 320 321 return !Fail; 322 } 323 324 /// Update PHI nodes in Succ to indicate that there will now be entries in it 325 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 326 /// will be the same as those coming in from ExistPred, an existing predecessor 327 /// of Succ. 328 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 329 BasicBlock *ExistPred, 330 MemorySSAUpdater *MSSAU = nullptr) { 331 for (PHINode &PN : Succ->phis()) 332 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 333 if (MSSAU) 334 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 335 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 336 } 337 338 /// Compute an abstract "cost" of speculating the given instruction, 339 /// which is assumed to be safe to speculate. TCC_Free means cheap, 340 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 341 /// expensive. 342 static InstructionCost computeSpeculationCost(const User *I, 343 const TargetTransformInfo &TTI) { 344 assert(isSafeToSpeculativelyExecute(I) && 345 "Instruction is not safe to speculatively execute!"); 346 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 347 } 348 349 /// If we have a merge point of an "if condition" as accepted above, 350 /// return true if the specified value dominates the block. We 351 /// don't handle the true generality of domination here, just a special case 352 /// which works well enough for us. 353 /// 354 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 355 /// see if V (which must be an instruction) and its recursive operands 356 /// that do not dominate BB have a combined cost lower than Budget and 357 /// are non-trapping. If both are true, the instruction is inserted into the 358 /// set and true is returned. 359 /// 360 /// The cost for most non-trapping instructions is defined as 1 except for 361 /// Select whose cost is 2. 362 /// 363 /// After this function returns, Cost is increased by the cost of 364 /// V plus its non-dominating operands. If that cost is greater than 365 /// Budget, false is returned and Cost is undefined. 366 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 367 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 368 InstructionCost &Cost, 369 InstructionCost Budget, 370 const TargetTransformInfo &TTI, 371 unsigned Depth = 0) { 372 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 373 // so limit the recursion depth. 374 // TODO: While this recursion limit does prevent pathological behavior, it 375 // would be better to track visited instructions to avoid cycles. 376 if (Depth == MaxSpeculationDepth) 377 return false; 378 379 Instruction *I = dyn_cast<Instruction>(V); 380 if (!I) { 381 // Non-instructions all dominate instructions, but not all constantexprs 382 // can be executed unconditionally. 383 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 384 if (C->canTrap()) 385 return false; 386 return true; 387 } 388 BasicBlock *PBB = I->getParent(); 389 390 // We don't want to allow weird loops that might have the "if condition" in 391 // the bottom of this block. 392 if (PBB == BB) 393 return false; 394 395 // If this instruction is defined in a block that contains an unconditional 396 // branch to BB, then it must be in the 'conditional' part of the "if 397 // statement". If not, it definitely dominates the region. 398 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 399 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 400 return true; 401 402 // If we have seen this instruction before, don't count it again. 403 if (AggressiveInsts.count(I)) 404 return true; 405 406 // Okay, it looks like the instruction IS in the "condition". Check to 407 // see if it's a cheap instruction to unconditionally compute, and if it 408 // only uses stuff defined outside of the condition. If so, hoist it out. 409 if (!isSafeToSpeculativelyExecute(I)) 410 return false; 411 412 Cost += computeSpeculationCost(I, TTI); 413 414 // Allow exactly one instruction to be speculated regardless of its cost 415 // (as long as it is safe to do so). 416 // This is intended to flatten the CFG even if the instruction is a division 417 // or other expensive operation. The speculation of an expensive instruction 418 // is expected to be undone in CodeGenPrepare if the speculation has not 419 // enabled further IR optimizations. 420 if (Cost > Budget && 421 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 422 !Cost.isValid())) 423 return false; 424 425 // Okay, we can only really hoist these out if their operands do 426 // not take us over the cost threshold. 427 for (Use &Op : I->operands()) 428 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 429 Depth + 1)) 430 return false; 431 // Okay, it's safe to do this! Remember this instruction. 432 AggressiveInsts.insert(I); 433 return true; 434 } 435 436 /// Extract ConstantInt from value, looking through IntToPtr 437 /// and PointerNullValue. Return NULL if value is not a constant int. 438 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 439 // Normal constant int. 440 ConstantInt *CI = dyn_cast<ConstantInt>(V); 441 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 442 return CI; 443 444 // This is some kind of pointer constant. Turn it into a pointer-sized 445 // ConstantInt if possible. 446 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 447 448 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 449 if (isa<ConstantPointerNull>(V)) 450 return ConstantInt::get(PtrTy, 0); 451 452 // IntToPtr const int. 453 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 454 if (CE->getOpcode() == Instruction::IntToPtr) 455 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 456 // The constant is very likely to have the right type already. 457 if (CI->getType() == PtrTy) 458 return CI; 459 else 460 return cast<ConstantInt>( 461 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 462 } 463 return nullptr; 464 } 465 466 namespace { 467 468 /// Given a chain of or (||) or and (&&) comparison of a value against a 469 /// constant, this will try to recover the information required for a switch 470 /// structure. 471 /// It will depth-first traverse the chain of comparison, seeking for patterns 472 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 473 /// representing the different cases for the switch. 474 /// Note that if the chain is composed of '||' it will build the set of elements 475 /// that matches the comparisons (i.e. any of this value validate the chain) 476 /// while for a chain of '&&' it will build the set elements that make the test 477 /// fail. 478 struct ConstantComparesGatherer { 479 const DataLayout &DL; 480 481 /// Value found for the switch comparison 482 Value *CompValue = nullptr; 483 484 /// Extra clause to be checked before the switch 485 Value *Extra = nullptr; 486 487 /// Set of integers to match in switch 488 SmallVector<ConstantInt *, 8> Vals; 489 490 /// Number of comparisons matched in the and/or chain 491 unsigned UsedICmps = 0; 492 493 /// Construct and compute the result for the comparison instruction Cond 494 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 495 gather(Cond); 496 } 497 498 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 499 ConstantComparesGatherer & 500 operator=(const ConstantComparesGatherer &) = delete; 501 502 private: 503 /// Try to set the current value used for the comparison, it succeeds only if 504 /// it wasn't set before or if the new value is the same as the old one 505 bool setValueOnce(Value *NewVal) { 506 if (CompValue && CompValue != NewVal) 507 return false; 508 CompValue = NewVal; 509 return (CompValue != nullptr); 510 } 511 512 /// Try to match Instruction "I" as a comparison against a constant and 513 /// populates the array Vals with the set of values that match (or do not 514 /// match depending on isEQ). 515 /// Return false on failure. On success, the Value the comparison matched 516 /// against is placed in CompValue. 517 /// If CompValue is already set, the function is expected to fail if a match 518 /// is found but the value compared to is different. 519 bool matchInstruction(Instruction *I, bool isEQ) { 520 // If this is an icmp against a constant, handle this as one of the cases. 521 ICmpInst *ICI; 522 ConstantInt *C; 523 if (!((ICI = dyn_cast<ICmpInst>(I)) && 524 (C = GetConstantInt(I->getOperand(1), DL)))) { 525 return false; 526 } 527 528 Value *RHSVal; 529 const APInt *RHSC; 530 531 // Pattern match a special case 532 // (x & ~2^z) == y --> x == y || x == y|2^z 533 // This undoes a transformation done by instcombine to fuse 2 compares. 534 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 535 // It's a little bit hard to see why the following transformations are 536 // correct. Here is a CVC3 program to verify them for 64-bit values: 537 538 /* 539 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 540 x : BITVECTOR(64); 541 y : BITVECTOR(64); 542 z : BITVECTOR(64); 543 mask : BITVECTOR(64) = BVSHL(ONE, z); 544 QUERY( (y & ~mask = y) => 545 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 546 ); 547 QUERY( (y | mask = y) => 548 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 549 ); 550 */ 551 552 // Please note that each pattern must be a dual implication (<--> or 553 // iff). One directional implication can create spurious matches. If the 554 // implication is only one-way, an unsatisfiable condition on the left 555 // side can imply a satisfiable condition on the right side. Dual 556 // implication ensures that satisfiable conditions are transformed to 557 // other satisfiable conditions and unsatisfiable conditions are 558 // transformed to other unsatisfiable conditions. 559 560 // Here is a concrete example of a unsatisfiable condition on the left 561 // implying a satisfiable condition on the right: 562 // 563 // mask = (1 << z) 564 // (x & ~mask) == y --> (x == y || x == (y | mask)) 565 // 566 // Substituting y = 3, z = 0 yields: 567 // (x & -2) == 3 --> (x == 3 || x == 2) 568 569 // Pattern match a special case: 570 /* 571 QUERY( (y & ~mask = y) => 572 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 573 ); 574 */ 575 if (match(ICI->getOperand(0), 576 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 577 APInt Mask = ~*RHSC; 578 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 579 // If we already have a value for the switch, it has to match! 580 if (!setValueOnce(RHSVal)) 581 return false; 582 583 Vals.push_back(C); 584 Vals.push_back( 585 ConstantInt::get(C->getContext(), 586 C->getValue() | Mask)); 587 UsedICmps++; 588 return true; 589 } 590 } 591 592 // Pattern match a special case: 593 /* 594 QUERY( (y | mask = y) => 595 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 596 ); 597 */ 598 if (match(ICI->getOperand(0), 599 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 600 APInt Mask = *RHSC; 601 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 602 // If we already have a value for the switch, it has to match! 603 if (!setValueOnce(RHSVal)) 604 return false; 605 606 Vals.push_back(C); 607 Vals.push_back(ConstantInt::get(C->getContext(), 608 C->getValue() & ~Mask)); 609 UsedICmps++; 610 return true; 611 } 612 } 613 614 // If we already have a value for the switch, it has to match! 615 if (!setValueOnce(ICI->getOperand(0))) 616 return false; 617 618 UsedICmps++; 619 Vals.push_back(C); 620 return ICI->getOperand(0); 621 } 622 623 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 624 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 625 ICI->getPredicate(), C->getValue()); 626 627 // Shift the range if the compare is fed by an add. This is the range 628 // compare idiom as emitted by instcombine. 629 Value *CandidateVal = I->getOperand(0); 630 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 631 Span = Span.subtract(*RHSC); 632 CandidateVal = RHSVal; 633 } 634 635 // If this is an and/!= check, then we are looking to build the set of 636 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 637 // x != 0 && x != 1. 638 if (!isEQ) 639 Span = Span.inverse(); 640 641 // If there are a ton of values, we don't want to make a ginormous switch. 642 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 643 return false; 644 } 645 646 // If we already have a value for the switch, it has to match! 647 if (!setValueOnce(CandidateVal)) 648 return false; 649 650 // Add all values from the range to the set 651 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 652 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 653 654 UsedICmps++; 655 return true; 656 } 657 658 /// Given a potentially 'or'd or 'and'd together collection of icmp 659 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 660 /// the value being compared, and stick the list constants into the Vals 661 /// vector. 662 /// One "Extra" case is allowed to differ from the other. 663 void gather(Value *V) { 664 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 665 666 // Keep a stack (SmallVector for efficiency) for depth-first traversal 667 SmallVector<Value *, 8> DFT; 668 SmallPtrSet<Value *, 8> Visited; 669 670 // Initialize 671 Visited.insert(V); 672 DFT.push_back(V); 673 674 while (!DFT.empty()) { 675 V = DFT.pop_back_val(); 676 677 if (Instruction *I = dyn_cast<Instruction>(V)) { 678 // If it is a || (or && depending on isEQ), process the operands. 679 Value *Op0, *Op1; 680 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 681 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 682 if (Visited.insert(Op1).second) 683 DFT.push_back(Op1); 684 if (Visited.insert(Op0).second) 685 DFT.push_back(Op0); 686 687 continue; 688 } 689 690 // Try to match the current instruction 691 if (matchInstruction(I, isEQ)) 692 // Match succeed, continue the loop 693 continue; 694 } 695 696 // One element of the sequence of || (or &&) could not be match as a 697 // comparison against the same value as the others. 698 // We allow only one "Extra" case to be checked before the switch 699 if (!Extra) { 700 Extra = V; 701 continue; 702 } 703 // Failed to parse a proper sequence, abort now 704 CompValue = nullptr; 705 break; 706 } 707 } 708 }; 709 710 } // end anonymous namespace 711 712 static void EraseTerminatorAndDCECond(Instruction *TI, 713 MemorySSAUpdater *MSSAU = nullptr) { 714 Instruction *Cond = nullptr; 715 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 716 Cond = dyn_cast<Instruction>(SI->getCondition()); 717 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 718 if (BI->isConditional()) 719 Cond = dyn_cast<Instruction>(BI->getCondition()); 720 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 721 Cond = dyn_cast<Instruction>(IBI->getAddress()); 722 } 723 724 TI->eraseFromParent(); 725 if (Cond) 726 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 727 } 728 729 /// Return true if the specified terminator checks 730 /// to see if a value is equal to constant integer value. 731 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 732 Value *CV = nullptr; 733 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 734 // Do not permit merging of large switch instructions into their 735 // predecessors unless there is only one predecessor. 736 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 737 CV = SI->getCondition(); 738 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 739 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 740 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 741 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 742 CV = ICI->getOperand(0); 743 } 744 745 // Unwrap any lossless ptrtoint cast. 746 if (CV) { 747 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 748 Value *Ptr = PTII->getPointerOperand(); 749 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 750 CV = Ptr; 751 } 752 } 753 return CV; 754 } 755 756 /// Given a value comparison instruction, 757 /// decode all of the 'cases' that it represents and return the 'default' block. 758 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 759 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 760 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 761 Cases.reserve(SI->getNumCases()); 762 for (auto Case : SI->cases()) 763 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 764 Case.getCaseSuccessor())); 765 return SI->getDefaultDest(); 766 } 767 768 BranchInst *BI = cast<BranchInst>(TI); 769 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 770 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 771 Cases.push_back(ValueEqualityComparisonCase( 772 GetConstantInt(ICI->getOperand(1), DL), Succ)); 773 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 774 } 775 776 /// Given a vector of bb/value pairs, remove any entries 777 /// in the list that match the specified block. 778 static void 779 EliminateBlockCases(BasicBlock *BB, 780 std::vector<ValueEqualityComparisonCase> &Cases) { 781 llvm::erase_value(Cases, BB); 782 } 783 784 /// Return true if there are any keys in C1 that exist in C2 as well. 785 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 786 std::vector<ValueEqualityComparisonCase> &C2) { 787 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 788 789 // Make V1 be smaller than V2. 790 if (V1->size() > V2->size()) 791 std::swap(V1, V2); 792 793 if (V1->empty()) 794 return false; 795 if (V1->size() == 1) { 796 // Just scan V2. 797 ConstantInt *TheVal = (*V1)[0].Value; 798 for (unsigned i = 0, e = V2->size(); i != e; ++i) 799 if (TheVal == (*V2)[i].Value) 800 return true; 801 } 802 803 // Otherwise, just sort both lists and compare element by element. 804 array_pod_sort(V1->begin(), V1->end()); 805 array_pod_sort(V2->begin(), V2->end()); 806 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 807 while (i1 != e1 && i2 != e2) { 808 if ((*V1)[i1].Value == (*V2)[i2].Value) 809 return true; 810 if ((*V1)[i1].Value < (*V2)[i2].Value) 811 ++i1; 812 else 813 ++i2; 814 } 815 return false; 816 } 817 818 // Set branch weights on SwitchInst. This sets the metadata if there is at 819 // least one non-zero weight. 820 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 821 // Check that there is at least one non-zero weight. Otherwise, pass 822 // nullptr to setMetadata which will erase the existing metadata. 823 MDNode *N = nullptr; 824 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 825 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 826 SI->setMetadata(LLVMContext::MD_prof, N); 827 } 828 829 // Similar to the above, but for branch and select instructions that take 830 // exactly 2 weights. 831 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 832 uint32_t FalseWeight) { 833 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 834 // Check that there is at least one non-zero weight. Otherwise, pass 835 // nullptr to setMetadata which will erase the existing metadata. 836 MDNode *N = nullptr; 837 if (TrueWeight || FalseWeight) 838 N = MDBuilder(I->getParent()->getContext()) 839 .createBranchWeights(TrueWeight, FalseWeight); 840 I->setMetadata(LLVMContext::MD_prof, N); 841 } 842 843 /// If TI is known to be a terminator instruction and its block is known to 844 /// only have a single predecessor block, check to see if that predecessor is 845 /// also a value comparison with the same value, and if that comparison 846 /// determines the outcome of this comparison. If so, simplify TI. This does a 847 /// very limited form of jump threading. 848 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 849 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 850 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 851 if (!PredVal) 852 return false; // Not a value comparison in predecessor. 853 854 Value *ThisVal = isValueEqualityComparison(TI); 855 assert(ThisVal && "This isn't a value comparison!!"); 856 if (ThisVal != PredVal) 857 return false; // Different predicates. 858 859 // TODO: Preserve branch weight metadata, similarly to how 860 // FoldValueComparisonIntoPredecessors preserves it. 861 862 // Find out information about when control will move from Pred to TI's block. 863 std::vector<ValueEqualityComparisonCase> PredCases; 864 BasicBlock *PredDef = 865 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 866 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 867 868 // Find information about how control leaves this block. 869 std::vector<ValueEqualityComparisonCase> ThisCases; 870 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 871 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 872 873 // If TI's block is the default block from Pred's comparison, potentially 874 // simplify TI based on this knowledge. 875 if (PredDef == TI->getParent()) { 876 // If we are here, we know that the value is none of those cases listed in 877 // PredCases. If there are any cases in ThisCases that are in PredCases, we 878 // can simplify TI. 879 if (!ValuesOverlap(PredCases, ThisCases)) 880 return false; 881 882 if (isa<BranchInst>(TI)) { 883 // Okay, one of the successors of this condbr is dead. Convert it to a 884 // uncond br. 885 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 886 // Insert the new branch. 887 Instruction *NI = Builder.CreateBr(ThisDef); 888 (void)NI; 889 890 // Remove PHI node entries for the dead edge. 891 ThisCases[0].Dest->removePredecessor(PredDef); 892 893 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 894 << "Through successor TI: " << *TI << "Leaving: " << *NI 895 << "\n"); 896 897 EraseTerminatorAndDCECond(TI); 898 899 if (DTU) 900 DTU->applyUpdates( 901 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 902 903 return true; 904 } 905 906 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 907 // Okay, TI has cases that are statically dead, prune them away. 908 SmallPtrSet<Constant *, 16> DeadCases; 909 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 910 DeadCases.insert(PredCases[i].Value); 911 912 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 913 << "Through successor TI: " << *TI); 914 915 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 916 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 917 --i; 918 auto *Successor = i->getCaseSuccessor(); 919 if (DTU) 920 ++NumPerSuccessorCases[Successor]; 921 if (DeadCases.count(i->getCaseValue())) { 922 Successor->removePredecessor(PredDef); 923 SI.removeCase(i); 924 if (DTU) 925 --NumPerSuccessorCases[Successor]; 926 } 927 } 928 929 if (DTU) { 930 std::vector<DominatorTree::UpdateType> Updates; 931 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 932 if (I.second == 0) 933 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 934 DTU->applyUpdates(Updates); 935 } 936 937 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 938 return true; 939 } 940 941 // Otherwise, TI's block must correspond to some matched value. Find out 942 // which value (or set of values) this is. 943 ConstantInt *TIV = nullptr; 944 BasicBlock *TIBB = TI->getParent(); 945 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 946 if (PredCases[i].Dest == TIBB) { 947 if (TIV) 948 return false; // Cannot handle multiple values coming to this block. 949 TIV = PredCases[i].Value; 950 } 951 assert(TIV && "No edge from pred to succ?"); 952 953 // Okay, we found the one constant that our value can be if we get into TI's 954 // BB. Find out which successor will unconditionally be branched to. 955 BasicBlock *TheRealDest = nullptr; 956 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 957 if (ThisCases[i].Value == TIV) { 958 TheRealDest = ThisCases[i].Dest; 959 break; 960 } 961 962 // If not handled by any explicit cases, it is handled by the default case. 963 if (!TheRealDest) 964 TheRealDest = ThisDef; 965 966 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 967 968 // Remove PHI node entries for dead edges. 969 BasicBlock *CheckEdge = TheRealDest; 970 for (BasicBlock *Succ : successors(TIBB)) 971 if (Succ != CheckEdge) { 972 if (Succ != TheRealDest) 973 RemovedSuccs.insert(Succ); 974 Succ->removePredecessor(TIBB); 975 } else 976 CheckEdge = nullptr; 977 978 // Insert the new branch. 979 Instruction *NI = Builder.CreateBr(TheRealDest); 980 (void)NI; 981 982 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 983 << "Through successor TI: " << *TI << "Leaving: " << *NI 984 << "\n"); 985 986 EraseTerminatorAndDCECond(TI); 987 if (DTU) { 988 SmallVector<DominatorTree::UpdateType, 2> Updates; 989 Updates.reserve(RemovedSuccs.size()); 990 for (auto *RemovedSucc : RemovedSuccs) 991 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 992 DTU->applyUpdates(Updates); 993 } 994 return true; 995 } 996 997 namespace { 998 999 /// This class implements a stable ordering of constant 1000 /// integers that does not depend on their address. This is important for 1001 /// applications that sort ConstantInt's to ensure uniqueness. 1002 struct ConstantIntOrdering { 1003 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1004 return LHS->getValue().ult(RHS->getValue()); 1005 } 1006 }; 1007 1008 } // end anonymous namespace 1009 1010 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1011 ConstantInt *const *P2) { 1012 const ConstantInt *LHS = *P1; 1013 const ConstantInt *RHS = *P2; 1014 if (LHS == RHS) 1015 return 0; 1016 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1017 } 1018 1019 static inline bool HasBranchWeights(const Instruction *I) { 1020 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1021 if (ProfMD && ProfMD->getOperand(0)) 1022 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1023 return MDS->getString().equals("branch_weights"); 1024 1025 return false; 1026 } 1027 1028 /// Get Weights of a given terminator, the default weight is at the front 1029 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1030 /// metadata. 1031 static void GetBranchWeights(Instruction *TI, 1032 SmallVectorImpl<uint64_t> &Weights) { 1033 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1034 assert(MD); 1035 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1036 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1037 Weights.push_back(CI->getValue().getZExtValue()); 1038 } 1039 1040 // If TI is a conditional eq, the default case is the false case, 1041 // and the corresponding branch-weight data is at index 2. We swap the 1042 // default weight to be the first entry. 1043 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1044 assert(Weights.size() == 2); 1045 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1046 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1047 std::swap(Weights.front(), Weights.back()); 1048 } 1049 } 1050 1051 /// Keep halving the weights until all can fit in uint32_t. 1052 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1053 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1054 if (Max > UINT_MAX) { 1055 unsigned Offset = 32 - countLeadingZeros(Max); 1056 for (uint64_t &I : Weights) 1057 I >>= Offset; 1058 } 1059 } 1060 1061 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1062 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1063 Instruction *PTI = PredBlock->getTerminator(); 1064 1065 // If we have bonus instructions, clone them into the predecessor block. 1066 // Note that there may be multiple predecessor blocks, so we cannot move 1067 // bonus instructions to a predecessor block. 1068 for (Instruction &BonusInst : *BB) { 1069 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1070 continue; 1071 1072 Instruction *NewBonusInst = BonusInst.clone(); 1073 1074 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1075 // Unless the instruction has the same !dbg location as the original 1076 // branch, drop it. When we fold the bonus instructions we want to make 1077 // sure we reset their debug locations in order to avoid stepping on 1078 // dead code caused by folding dead branches. 1079 NewBonusInst->setDebugLoc(DebugLoc()); 1080 } 1081 1082 RemapInstruction(NewBonusInst, VMap, 1083 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1084 VMap[&BonusInst] = NewBonusInst; 1085 1086 // If we moved a load, we cannot any longer claim any knowledge about 1087 // its potential value. The previous information might have been valid 1088 // only given the branch precondition. 1089 // For an analogous reason, we must also drop all the metadata whose 1090 // semantics we don't understand. We *can* preserve !annotation, because 1091 // it is tied to the instruction itself, not the value or position. 1092 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1093 1094 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1095 NewBonusInst->takeName(&BonusInst); 1096 BonusInst.setName(NewBonusInst->getName() + ".old"); 1097 1098 // Update (liveout) uses of bonus instructions, 1099 // now that the bonus instruction has been cloned into predecessor. 1100 SSAUpdater SSAUpdate; 1101 SSAUpdate.Initialize(BonusInst.getType(), 1102 (NewBonusInst->getName() + ".merge").str()); 1103 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1104 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1105 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1106 auto *UI = cast<Instruction>(U.getUser()); 1107 if (UI->getParent() != PredBlock) 1108 SSAUpdate.RewriteUseAfterInsertions(U); 1109 else // Use is in the same block as, and comes before, NewBonusInst. 1110 SSAUpdate.RewriteUse(U); 1111 } 1112 } 1113 } 1114 1115 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1116 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1117 BasicBlock *BB = TI->getParent(); 1118 BasicBlock *Pred = PTI->getParent(); 1119 1120 SmallVector<DominatorTree::UpdateType, 32> Updates; 1121 1122 // Figure out which 'cases' to copy from SI to PSI. 1123 std::vector<ValueEqualityComparisonCase> BBCases; 1124 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1125 1126 std::vector<ValueEqualityComparisonCase> PredCases; 1127 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1128 1129 // Based on whether the default edge from PTI goes to BB or not, fill in 1130 // PredCases and PredDefault with the new switch cases we would like to 1131 // build. 1132 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1133 1134 // Update the branch weight metadata along the way 1135 SmallVector<uint64_t, 8> Weights; 1136 bool PredHasWeights = HasBranchWeights(PTI); 1137 bool SuccHasWeights = HasBranchWeights(TI); 1138 1139 if (PredHasWeights) { 1140 GetBranchWeights(PTI, Weights); 1141 // branch-weight metadata is inconsistent here. 1142 if (Weights.size() != 1 + PredCases.size()) 1143 PredHasWeights = SuccHasWeights = false; 1144 } else if (SuccHasWeights) 1145 // If there are no predecessor weights but there are successor weights, 1146 // populate Weights with 1, which will later be scaled to the sum of 1147 // successor's weights 1148 Weights.assign(1 + PredCases.size(), 1); 1149 1150 SmallVector<uint64_t, 8> SuccWeights; 1151 if (SuccHasWeights) { 1152 GetBranchWeights(TI, SuccWeights); 1153 // branch-weight metadata is inconsistent here. 1154 if (SuccWeights.size() != 1 + BBCases.size()) 1155 PredHasWeights = SuccHasWeights = false; 1156 } else if (PredHasWeights) 1157 SuccWeights.assign(1 + BBCases.size(), 1); 1158 1159 if (PredDefault == BB) { 1160 // If this is the default destination from PTI, only the edges in TI 1161 // that don't occur in PTI, or that branch to BB will be activated. 1162 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1163 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1164 if (PredCases[i].Dest != BB) 1165 PTIHandled.insert(PredCases[i].Value); 1166 else { 1167 // The default destination is BB, we don't need explicit targets. 1168 std::swap(PredCases[i], PredCases.back()); 1169 1170 if (PredHasWeights || SuccHasWeights) { 1171 // Increase weight for the default case. 1172 Weights[0] += Weights[i + 1]; 1173 std::swap(Weights[i + 1], Weights.back()); 1174 Weights.pop_back(); 1175 } 1176 1177 PredCases.pop_back(); 1178 --i; 1179 --e; 1180 } 1181 1182 // Reconstruct the new switch statement we will be building. 1183 if (PredDefault != BBDefault) { 1184 PredDefault->removePredecessor(Pred); 1185 if (DTU && PredDefault != BB) 1186 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1187 PredDefault = BBDefault; 1188 ++NewSuccessors[BBDefault]; 1189 } 1190 1191 unsigned CasesFromPred = Weights.size(); 1192 uint64_t ValidTotalSuccWeight = 0; 1193 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1194 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1195 PredCases.push_back(BBCases[i]); 1196 ++NewSuccessors[BBCases[i].Dest]; 1197 if (SuccHasWeights || PredHasWeights) { 1198 // The default weight is at index 0, so weight for the ith case 1199 // should be at index i+1. Scale the cases from successor by 1200 // PredDefaultWeight (Weights[0]). 1201 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1202 ValidTotalSuccWeight += SuccWeights[i + 1]; 1203 } 1204 } 1205 1206 if (SuccHasWeights || PredHasWeights) { 1207 ValidTotalSuccWeight += SuccWeights[0]; 1208 // Scale the cases from predecessor by ValidTotalSuccWeight. 1209 for (unsigned i = 1; i < CasesFromPred; ++i) 1210 Weights[i] *= ValidTotalSuccWeight; 1211 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1212 Weights[0] *= SuccWeights[0]; 1213 } 1214 } else { 1215 // If this is not the default destination from PSI, only the edges 1216 // in SI that occur in PSI with a destination of BB will be 1217 // activated. 1218 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1219 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1220 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1221 if (PredCases[i].Dest == BB) { 1222 PTIHandled.insert(PredCases[i].Value); 1223 1224 if (PredHasWeights || SuccHasWeights) { 1225 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1226 std::swap(Weights[i + 1], Weights.back()); 1227 Weights.pop_back(); 1228 } 1229 1230 std::swap(PredCases[i], PredCases.back()); 1231 PredCases.pop_back(); 1232 --i; 1233 --e; 1234 } 1235 1236 // Okay, now we know which constants were sent to BB from the 1237 // predecessor. Figure out where they will all go now. 1238 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1239 if (PTIHandled.count(BBCases[i].Value)) { 1240 // If this is one we are capable of getting... 1241 if (PredHasWeights || SuccHasWeights) 1242 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1243 PredCases.push_back(BBCases[i]); 1244 ++NewSuccessors[BBCases[i].Dest]; 1245 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1246 } 1247 1248 // If there are any constants vectored to BB that TI doesn't handle, 1249 // they must go to the default destination of TI. 1250 for (ConstantInt *I : PTIHandled) { 1251 if (PredHasWeights || SuccHasWeights) 1252 Weights.push_back(WeightsForHandled[I]); 1253 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1254 ++NewSuccessors[BBDefault]; 1255 } 1256 } 1257 1258 // Okay, at this point, we know which new successor Pred will get. Make 1259 // sure we update the number of entries in the PHI nodes for these 1260 // successors. 1261 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1262 if (DTU) { 1263 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1264 Updates.reserve(Updates.size() + NewSuccessors.size()); 1265 } 1266 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1267 NewSuccessors) { 1268 for (auto I : seq(0, NewSuccessor.second)) { 1269 (void)I; 1270 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1271 } 1272 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1273 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1274 } 1275 1276 Builder.SetInsertPoint(PTI); 1277 // Convert pointer to int before we switch. 1278 if (CV->getType()->isPointerTy()) { 1279 CV = 1280 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1281 } 1282 1283 // Now that the successors are updated, create the new Switch instruction. 1284 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1285 NewSI->setDebugLoc(PTI->getDebugLoc()); 1286 for (ValueEqualityComparisonCase &V : PredCases) 1287 NewSI->addCase(V.Value, V.Dest); 1288 1289 if (PredHasWeights || SuccHasWeights) { 1290 // Halve the weights if any of them cannot fit in an uint32_t 1291 FitWeights(Weights); 1292 1293 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1294 1295 setBranchWeights(NewSI, MDWeights); 1296 } 1297 1298 EraseTerminatorAndDCECond(PTI); 1299 1300 // Okay, last check. If BB is still a successor of PSI, then we must 1301 // have an infinite loop case. If so, add an infinitely looping block 1302 // to handle the case to preserve the behavior of the code. 1303 BasicBlock *InfLoopBlock = nullptr; 1304 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1305 if (NewSI->getSuccessor(i) == BB) { 1306 if (!InfLoopBlock) { 1307 // Insert it at the end of the function, because it's either code, 1308 // or it won't matter if it's hot. :) 1309 InfLoopBlock = 1310 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1311 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1312 if (DTU) 1313 Updates.push_back( 1314 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1315 } 1316 NewSI->setSuccessor(i, InfLoopBlock); 1317 } 1318 1319 if (DTU) { 1320 if (InfLoopBlock) 1321 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1322 1323 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1324 1325 DTU->applyUpdates(Updates); 1326 } 1327 1328 ++NumFoldValueComparisonIntoPredecessors; 1329 return true; 1330 } 1331 1332 /// The specified terminator is a value equality comparison instruction 1333 /// (either a switch or a branch on "X == c"). 1334 /// See if any of the predecessors of the terminator block are value comparisons 1335 /// on the same value. If so, and if safe to do so, fold them together. 1336 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1337 IRBuilder<> &Builder) { 1338 BasicBlock *BB = TI->getParent(); 1339 Value *CV = isValueEqualityComparison(TI); // CondVal 1340 assert(CV && "Not a comparison?"); 1341 1342 bool Changed = false; 1343 1344 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1345 while (!Preds.empty()) { 1346 BasicBlock *Pred = Preds.pop_back_val(); 1347 Instruction *PTI = Pred->getTerminator(); 1348 1349 // Don't try to fold into itself. 1350 if (Pred == BB) 1351 continue; 1352 1353 // See if the predecessor is a comparison with the same value. 1354 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1355 if (PCV != CV) 1356 continue; 1357 1358 SmallSetVector<BasicBlock *, 4> FailBlocks; 1359 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1360 for (auto *Succ : FailBlocks) { 1361 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1362 return false; 1363 } 1364 } 1365 1366 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1367 Changed = true; 1368 } 1369 return Changed; 1370 } 1371 1372 // If we would need to insert a select that uses the value of this invoke 1373 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1374 // can't hoist the invoke, as there is nowhere to put the select in this case. 1375 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1376 Instruction *I1, Instruction *I2) { 1377 for (BasicBlock *Succ : successors(BB1)) { 1378 for (const PHINode &PN : Succ->phis()) { 1379 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1380 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1381 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1382 return false; 1383 } 1384 } 1385 } 1386 return true; 1387 } 1388 1389 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1390 1391 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1392 /// in the two blocks up into the branch block. The caller of this function 1393 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1394 /// only perform hoisting in case both blocks only contain a terminator. In that 1395 /// case, only the original BI will be replaced and selects for PHIs are added. 1396 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1397 const TargetTransformInfo &TTI, 1398 bool EqTermsOnly) { 1399 // This does very trivial matching, with limited scanning, to find identical 1400 // instructions in the two blocks. In particular, we don't want to get into 1401 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1402 // such, we currently just scan for obviously identical instructions in an 1403 // identical order. 1404 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1405 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1406 1407 // If either of the blocks has it's address taken, then we can't do this fold, 1408 // because the code we'd hoist would no longer run when we jump into the block 1409 // by it's address. 1410 if (BB1->hasAddressTaken() || BB2->hasAddressTaken()) 1411 return false; 1412 1413 BasicBlock::iterator BB1_Itr = BB1->begin(); 1414 BasicBlock::iterator BB2_Itr = BB2->begin(); 1415 1416 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1417 // Skip debug info if it is not identical. 1418 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1419 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1420 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1421 while (isa<DbgInfoIntrinsic>(I1)) 1422 I1 = &*BB1_Itr++; 1423 while (isa<DbgInfoIntrinsic>(I2)) 1424 I2 = &*BB2_Itr++; 1425 } 1426 // FIXME: Can we define a safety predicate for CallBr? 1427 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1428 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1429 isa<CallBrInst>(I1)) 1430 return false; 1431 1432 BasicBlock *BIParent = BI->getParent(); 1433 1434 bool Changed = false; 1435 1436 auto _ = make_scope_exit([&]() { 1437 if (Changed) 1438 ++NumHoistCommonCode; 1439 }); 1440 1441 // Check if only hoisting terminators is allowed. This does not add new 1442 // instructions to the hoist location. 1443 if (EqTermsOnly) { 1444 // Skip any debug intrinsics, as they are free to hoist. 1445 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1446 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1447 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1448 return false; 1449 if (!I1NonDbg->isTerminator()) 1450 return false; 1451 // Now we know that we only need to hoist debug instrinsics and the 1452 // terminator. Let the loop below handle those 2 cases. 1453 } 1454 1455 do { 1456 // If we are hoisting the terminator instruction, don't move one (making a 1457 // broken BB), instead clone it, and remove BI. 1458 if (I1->isTerminator()) 1459 goto HoistTerminator; 1460 1461 // If we're going to hoist a call, make sure that the two instructions we're 1462 // commoning/hoisting are both marked with musttail, or neither of them is 1463 // marked as such. Otherwise, we might end up in a situation where we hoist 1464 // from a block where the terminator is a `ret` to a block where the terminator 1465 // is a `br`, and `musttail` calls expect to be followed by a return. 1466 auto *C1 = dyn_cast<CallInst>(I1); 1467 auto *C2 = dyn_cast<CallInst>(I2); 1468 if (C1 && C2) 1469 if (C1->isMustTailCall() != C2->isMustTailCall()) 1470 return Changed; 1471 1472 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1473 return Changed; 1474 1475 // If any of the two call sites has nomerge attribute, stop hoisting. 1476 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1477 if (CB1->cannotMerge()) 1478 return Changed; 1479 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1480 if (CB2->cannotMerge()) 1481 return Changed; 1482 1483 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1484 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1485 // The debug location is an integral part of a debug info intrinsic 1486 // and can't be separated from it or replaced. Instead of attempting 1487 // to merge locations, simply hoist both copies of the intrinsic. 1488 BIParent->getInstList().splice(BI->getIterator(), 1489 BB1->getInstList(), I1); 1490 BIParent->getInstList().splice(BI->getIterator(), 1491 BB2->getInstList(), I2); 1492 Changed = true; 1493 } else { 1494 // For a normal instruction, we just move one to right before the branch, 1495 // then replace all uses of the other with the first. Finally, we remove 1496 // the now redundant second instruction. 1497 BIParent->getInstList().splice(BI->getIterator(), 1498 BB1->getInstList(), I1); 1499 if (!I2->use_empty()) 1500 I2->replaceAllUsesWith(I1); 1501 I1->andIRFlags(I2); 1502 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1503 LLVMContext::MD_range, 1504 LLVMContext::MD_fpmath, 1505 LLVMContext::MD_invariant_load, 1506 LLVMContext::MD_nonnull, 1507 LLVMContext::MD_invariant_group, 1508 LLVMContext::MD_align, 1509 LLVMContext::MD_dereferenceable, 1510 LLVMContext::MD_dereferenceable_or_null, 1511 LLVMContext::MD_mem_parallel_loop_access, 1512 LLVMContext::MD_access_group, 1513 LLVMContext::MD_preserve_access_index}; 1514 combineMetadata(I1, I2, KnownIDs, true); 1515 1516 // I1 and I2 are being combined into a single instruction. Its debug 1517 // location is the merged locations of the original instructions. 1518 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1519 1520 I2->eraseFromParent(); 1521 Changed = true; 1522 } 1523 ++NumHoistCommonInstrs; 1524 1525 I1 = &*BB1_Itr++; 1526 I2 = &*BB2_Itr++; 1527 // Skip debug info if it is not identical. 1528 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1529 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1530 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1531 while (isa<DbgInfoIntrinsic>(I1)) 1532 I1 = &*BB1_Itr++; 1533 while (isa<DbgInfoIntrinsic>(I2)) 1534 I2 = &*BB2_Itr++; 1535 } 1536 } while (I1->isIdenticalToWhenDefined(I2)); 1537 1538 return true; 1539 1540 HoistTerminator: 1541 // It may not be possible to hoist an invoke. 1542 // FIXME: Can we define a safety predicate for CallBr? 1543 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1544 return Changed; 1545 1546 // TODO: callbr hoisting currently disabled pending further study. 1547 if (isa<CallBrInst>(I1)) 1548 return Changed; 1549 1550 for (BasicBlock *Succ : successors(BB1)) { 1551 for (PHINode &PN : Succ->phis()) { 1552 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1553 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1554 if (BB1V == BB2V) 1555 continue; 1556 1557 // Check for passingValueIsAlwaysUndefined here because we would rather 1558 // eliminate undefined control flow then converting it to a select. 1559 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1560 passingValueIsAlwaysUndefined(BB2V, &PN)) 1561 return Changed; 1562 1563 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1564 return Changed; 1565 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1566 return Changed; 1567 } 1568 } 1569 1570 // Okay, it is safe to hoist the terminator. 1571 Instruction *NT = I1->clone(); 1572 BIParent->getInstList().insert(BI->getIterator(), NT); 1573 if (!NT->getType()->isVoidTy()) { 1574 I1->replaceAllUsesWith(NT); 1575 I2->replaceAllUsesWith(NT); 1576 NT->takeName(I1); 1577 } 1578 Changed = true; 1579 ++NumHoistCommonInstrs; 1580 1581 // Ensure terminator gets a debug location, even an unknown one, in case 1582 // it involves inlinable calls. 1583 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1584 1585 // PHIs created below will adopt NT's merged DebugLoc. 1586 IRBuilder<NoFolder> Builder(NT); 1587 1588 // Hoisting one of the terminators from our successor is a great thing. 1589 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1590 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1591 // nodes, so we insert select instruction to compute the final result. 1592 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1593 for (BasicBlock *Succ : successors(BB1)) { 1594 for (PHINode &PN : Succ->phis()) { 1595 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1596 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1597 if (BB1V == BB2V) 1598 continue; 1599 1600 // These values do not agree. Insert a select instruction before NT 1601 // that determines the right value. 1602 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1603 if (!SI) { 1604 // Propagate fast-math-flags from phi node to its replacement select. 1605 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1606 if (isa<FPMathOperator>(PN)) 1607 Builder.setFastMathFlags(PN.getFastMathFlags()); 1608 1609 SI = cast<SelectInst>( 1610 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1611 BB1V->getName() + "." + BB2V->getName(), BI)); 1612 } 1613 1614 // Make the PHI node use the select for all incoming values for BB1/BB2 1615 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1616 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1617 PN.setIncomingValue(i, SI); 1618 } 1619 } 1620 1621 SmallVector<DominatorTree::UpdateType, 4> Updates; 1622 1623 // Update any PHI nodes in our new successors. 1624 for (BasicBlock *Succ : successors(BB1)) { 1625 AddPredecessorToBlock(Succ, BIParent, BB1); 1626 if (DTU) 1627 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1628 } 1629 1630 if (DTU) 1631 for (BasicBlock *Succ : successors(BI)) 1632 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1633 1634 EraseTerminatorAndDCECond(BI); 1635 if (DTU) 1636 DTU->applyUpdates(Updates); 1637 return Changed; 1638 } 1639 1640 // Check lifetime markers. 1641 static bool isLifeTimeMarker(const Instruction *I) { 1642 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1643 switch (II->getIntrinsicID()) { 1644 default: 1645 break; 1646 case Intrinsic::lifetime_start: 1647 case Intrinsic::lifetime_end: 1648 return true; 1649 } 1650 } 1651 return false; 1652 } 1653 1654 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1655 // into variables. 1656 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1657 int OpIdx) { 1658 return !isa<IntrinsicInst>(I); 1659 } 1660 1661 // All instructions in Insts belong to different blocks that all unconditionally 1662 // branch to a common successor. Analyze each instruction and return true if it 1663 // would be possible to sink them into their successor, creating one common 1664 // instruction instead. For every value that would be required to be provided by 1665 // PHI node (because an operand varies in each input block), add to PHIOperands. 1666 static bool canSinkInstructions( 1667 ArrayRef<Instruction *> Insts, 1668 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1669 // Prune out obviously bad instructions to move. Each instruction must have 1670 // exactly zero or one use, and we check later that use is by a single, common 1671 // PHI instruction in the successor. 1672 bool HasUse = !Insts.front()->user_empty(); 1673 for (auto *I : Insts) { 1674 // These instructions may change or break semantics if moved. 1675 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1676 I->getType()->isTokenTy()) 1677 return false; 1678 1679 // Do not try to sink an instruction in an infinite loop - it can cause 1680 // this algorithm to infinite loop. 1681 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1682 return false; 1683 1684 // Conservatively return false if I is an inline-asm instruction. Sinking 1685 // and merging inline-asm instructions can potentially create arguments 1686 // that cannot satisfy the inline-asm constraints. 1687 // If the instruction has nomerge attribute, return false. 1688 if (const auto *C = dyn_cast<CallBase>(I)) 1689 if (C->isInlineAsm() || C->cannotMerge()) 1690 return false; 1691 1692 // Each instruction must have zero or one use. 1693 if (HasUse && !I->hasOneUse()) 1694 return false; 1695 if (!HasUse && !I->user_empty()) 1696 return false; 1697 } 1698 1699 const Instruction *I0 = Insts.front(); 1700 for (auto *I : Insts) 1701 if (!I->isSameOperationAs(I0)) 1702 return false; 1703 1704 // All instructions in Insts are known to be the same opcode. If they have a 1705 // use, check that the only user is a PHI or in the same block as the 1706 // instruction, because if a user is in the same block as an instruction we're 1707 // contemplating sinking, it must already be determined to be sinkable. 1708 if (HasUse) { 1709 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1710 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1711 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1712 auto *U = cast<Instruction>(*I->user_begin()); 1713 return (PNUse && 1714 PNUse->getParent() == Succ && 1715 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1716 U->getParent() == I->getParent(); 1717 })) 1718 return false; 1719 } 1720 1721 // Because SROA can't handle speculating stores of selects, try not to sink 1722 // loads, stores or lifetime markers of allocas when we'd have to create a 1723 // PHI for the address operand. Also, because it is likely that loads or 1724 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1725 // them. 1726 // This can cause code churn which can have unintended consequences down 1727 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1728 // FIXME: This is a workaround for a deficiency in SROA - see 1729 // https://llvm.org/bugs/show_bug.cgi?id=30188 1730 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1731 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1732 })) 1733 return false; 1734 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1735 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1736 })) 1737 return false; 1738 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1739 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1740 })) 1741 return false; 1742 1743 // For calls to be sinkable, they must all be indirect, or have same callee. 1744 // I.e. if we have two direct calls to different callees, we don't want to 1745 // turn that into an indirect call. Likewise, if we have an indirect call, 1746 // and a direct call, we don't actually want to have a single indirect call. 1747 if (isa<CallBase>(I0)) { 1748 auto IsIndirectCall = [](const Instruction *I) { 1749 return cast<CallBase>(I)->isIndirectCall(); 1750 }; 1751 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1752 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1753 if (HaveIndirectCalls) { 1754 if (!AllCallsAreIndirect) 1755 return false; 1756 } else { 1757 // All callees must be identical. 1758 Value *Callee = nullptr; 1759 for (const Instruction *I : Insts) { 1760 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1761 if (!Callee) 1762 Callee = CurrCallee; 1763 else if (Callee != CurrCallee) 1764 return false; 1765 } 1766 } 1767 } 1768 1769 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1770 Value *Op = I0->getOperand(OI); 1771 if (Op->getType()->isTokenTy()) 1772 // Don't touch any operand of token type. 1773 return false; 1774 1775 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1776 assert(I->getNumOperands() == I0->getNumOperands()); 1777 return I->getOperand(OI) == I0->getOperand(OI); 1778 }; 1779 if (!all_of(Insts, SameAsI0)) { 1780 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1781 !canReplaceOperandWithVariable(I0, OI)) 1782 // We can't create a PHI from this GEP. 1783 return false; 1784 for (auto *I : Insts) 1785 PHIOperands[I].push_back(I->getOperand(OI)); 1786 } 1787 } 1788 return true; 1789 } 1790 1791 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1792 // instruction of every block in Blocks to their common successor, commoning 1793 // into one instruction. 1794 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1795 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1796 1797 // canSinkInstructions returning true guarantees that every block has at 1798 // least one non-terminator instruction. 1799 SmallVector<Instruction*,4> Insts; 1800 for (auto *BB : Blocks) { 1801 Instruction *I = BB->getTerminator(); 1802 do { 1803 I = I->getPrevNode(); 1804 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1805 if (!isa<DbgInfoIntrinsic>(I)) 1806 Insts.push_back(I); 1807 } 1808 1809 // The only checking we need to do now is that all users of all instructions 1810 // are the same PHI node. canSinkInstructions should have checked this but 1811 // it is slightly over-aggressive - it gets confused by commutative 1812 // instructions so double-check it here. 1813 Instruction *I0 = Insts.front(); 1814 if (!I0->user_empty()) { 1815 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1816 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1817 auto *U = cast<Instruction>(*I->user_begin()); 1818 return U == PNUse; 1819 })) 1820 return false; 1821 } 1822 1823 // We don't need to do any more checking here; canSinkInstructions should 1824 // have done it all for us. 1825 SmallVector<Value*, 4> NewOperands; 1826 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1827 // This check is different to that in canSinkInstructions. There, we 1828 // cared about the global view once simplifycfg (and instcombine) have 1829 // completed - it takes into account PHIs that become trivially 1830 // simplifiable. However here we need a more local view; if an operand 1831 // differs we create a PHI and rely on instcombine to clean up the very 1832 // small mess we may make. 1833 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1834 return I->getOperand(O) != I0->getOperand(O); 1835 }); 1836 if (!NeedPHI) { 1837 NewOperands.push_back(I0->getOperand(O)); 1838 continue; 1839 } 1840 1841 // Create a new PHI in the successor block and populate it. 1842 auto *Op = I0->getOperand(O); 1843 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1844 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1845 Op->getName() + ".sink", &BBEnd->front()); 1846 for (auto *I : Insts) 1847 PN->addIncoming(I->getOperand(O), I->getParent()); 1848 NewOperands.push_back(PN); 1849 } 1850 1851 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1852 // and move it to the start of the successor block. 1853 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1854 I0->getOperandUse(O).set(NewOperands[O]); 1855 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1856 1857 // Update metadata and IR flags, and merge debug locations. 1858 for (auto *I : Insts) 1859 if (I != I0) { 1860 // The debug location for the "common" instruction is the merged locations 1861 // of all the commoned instructions. We start with the original location 1862 // of the "common" instruction and iteratively merge each location in the 1863 // loop below. 1864 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1865 // However, as N-way merge for CallInst is rare, so we use simplified API 1866 // instead of using complex API for N-way merge. 1867 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1868 combineMetadataForCSE(I0, I, true); 1869 I0->andIRFlags(I); 1870 } 1871 1872 if (!I0->user_empty()) { 1873 // canSinkLastInstruction checked that all instructions were used by 1874 // one and only one PHI node. Find that now, RAUW it to our common 1875 // instruction and nuke it. 1876 auto *PN = cast<PHINode>(*I0->user_begin()); 1877 PN->replaceAllUsesWith(I0); 1878 PN->eraseFromParent(); 1879 } 1880 1881 // Finally nuke all instructions apart from the common instruction. 1882 for (auto *I : Insts) 1883 if (I != I0) 1884 I->eraseFromParent(); 1885 1886 return true; 1887 } 1888 1889 namespace { 1890 1891 // LockstepReverseIterator - Iterates through instructions 1892 // in a set of blocks in reverse order from the first non-terminator. 1893 // For example (assume all blocks have size n): 1894 // LockstepReverseIterator I([B1, B2, B3]); 1895 // *I-- = [B1[n], B2[n], B3[n]]; 1896 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1897 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1898 // ... 1899 class LockstepReverseIterator { 1900 ArrayRef<BasicBlock*> Blocks; 1901 SmallVector<Instruction*,4> Insts; 1902 bool Fail; 1903 1904 public: 1905 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1906 reset(); 1907 } 1908 1909 void reset() { 1910 Fail = false; 1911 Insts.clear(); 1912 for (auto *BB : Blocks) { 1913 Instruction *Inst = BB->getTerminator(); 1914 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1915 Inst = Inst->getPrevNode(); 1916 if (!Inst) { 1917 // Block wasn't big enough. 1918 Fail = true; 1919 return; 1920 } 1921 Insts.push_back(Inst); 1922 } 1923 } 1924 1925 bool isValid() const { 1926 return !Fail; 1927 } 1928 1929 void operator--() { 1930 if (Fail) 1931 return; 1932 for (auto *&Inst : Insts) { 1933 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1934 Inst = Inst->getPrevNode(); 1935 // Already at beginning of block. 1936 if (!Inst) { 1937 Fail = true; 1938 return; 1939 } 1940 } 1941 } 1942 1943 void operator++() { 1944 if (Fail) 1945 return; 1946 for (auto *&Inst : Insts) { 1947 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1948 Inst = Inst->getNextNode(); 1949 // Already at end of block. 1950 if (!Inst) { 1951 Fail = true; 1952 return; 1953 } 1954 } 1955 } 1956 1957 ArrayRef<Instruction*> operator * () const { 1958 return Insts; 1959 } 1960 }; 1961 1962 } // end anonymous namespace 1963 1964 /// Check whether BB's predecessors end with unconditional branches. If it is 1965 /// true, sink any common code from the predecessors to BB. 1966 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1967 DomTreeUpdater *DTU) { 1968 // We support two situations: 1969 // (1) all incoming arcs are unconditional 1970 // (2) there are non-unconditional incoming arcs 1971 // 1972 // (2) is very common in switch defaults and 1973 // else-if patterns; 1974 // 1975 // if (a) f(1); 1976 // else if (b) f(2); 1977 // 1978 // produces: 1979 // 1980 // [if] 1981 // / \ 1982 // [f(1)] [if] 1983 // | | \ 1984 // | | | 1985 // | [f(2)]| 1986 // \ | / 1987 // [ end ] 1988 // 1989 // [end] has two unconditional predecessor arcs and one conditional. The 1990 // conditional refers to the implicit empty 'else' arc. This conditional 1991 // arc can also be caused by an empty default block in a switch. 1992 // 1993 // In this case, we attempt to sink code from all *unconditional* arcs. 1994 // If we can sink instructions from these arcs (determined during the scan 1995 // phase below) we insert a common successor for all unconditional arcs and 1996 // connect that to [end], to enable sinking: 1997 // 1998 // [if] 1999 // / \ 2000 // [x(1)] [if] 2001 // | | \ 2002 // | | \ 2003 // | [x(2)] | 2004 // \ / | 2005 // [sink.split] | 2006 // \ / 2007 // [ end ] 2008 // 2009 SmallVector<BasicBlock*,4> UnconditionalPreds; 2010 bool HaveNonUnconditionalPredecessors = false; 2011 for (auto *PredBB : predecessors(BB)) { 2012 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2013 if (PredBr && PredBr->isUnconditional()) 2014 UnconditionalPreds.push_back(PredBB); 2015 else 2016 HaveNonUnconditionalPredecessors = true; 2017 } 2018 if (UnconditionalPreds.size() < 2) 2019 return false; 2020 2021 // We take a two-step approach to tail sinking. First we scan from the end of 2022 // each block upwards in lockstep. If the n'th instruction from the end of each 2023 // block can be sunk, those instructions are added to ValuesToSink and we 2024 // carry on. If we can sink an instruction but need to PHI-merge some operands 2025 // (because they're not identical in each instruction) we add these to 2026 // PHIOperands. 2027 int ScanIdx = 0; 2028 SmallPtrSet<Value*,4> InstructionsToSink; 2029 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2030 LockstepReverseIterator LRI(UnconditionalPreds); 2031 while (LRI.isValid() && 2032 canSinkInstructions(*LRI, PHIOperands)) { 2033 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2034 << "\n"); 2035 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2036 ++ScanIdx; 2037 --LRI; 2038 } 2039 2040 // If no instructions can be sunk, early-return. 2041 if (ScanIdx == 0) 2042 return false; 2043 2044 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2045 // actually sink before encountering instruction that is unprofitable to sink? 2046 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2047 unsigned NumPHIdValues = 0; 2048 for (auto *I : *LRI) 2049 for (auto *V : PHIOperands[I]) { 2050 if (InstructionsToSink.count(V) == 0) 2051 ++NumPHIdValues; 2052 // FIXME: this check is overly optimistic. We may end up not sinking 2053 // said instruction, due to the very same profitability check. 2054 // See @creating_too_many_phis in sink-common-code.ll. 2055 } 2056 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2057 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2058 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2059 NumPHIInsts++; 2060 2061 return NumPHIInsts <= 1; 2062 }; 2063 2064 // We've determined that we are going to sink last ScanIdx instructions, 2065 // and recorded them in InstructionsToSink. Now, some instructions may be 2066 // unprofitable to sink. But that determination depends on the instructions 2067 // that we are going to sink. 2068 2069 // First, forward scan: find the first instruction unprofitable to sink, 2070 // recording all the ones that are profitable to sink. 2071 // FIXME: would it be better, after we detect that not all are profitable. 2072 // to either record the profitable ones, or erase the unprofitable ones? 2073 // Maybe we need to choose (at runtime) the one that will touch least instrs? 2074 LRI.reset(); 2075 int Idx = 0; 2076 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2077 while (Idx < ScanIdx) { 2078 if (!ProfitableToSinkInstruction(LRI)) { 2079 // Too many PHIs would be created. 2080 LLVM_DEBUG( 2081 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2082 break; 2083 } 2084 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2085 --LRI; 2086 ++Idx; 2087 } 2088 2089 // If no instructions can be sunk, early-return. 2090 if (Idx == 0) 2091 return false; 2092 2093 // Did we determine that (only) some instructions are unprofitable to sink? 2094 if (Idx < ScanIdx) { 2095 // Okay, some instructions are unprofitable. 2096 ScanIdx = Idx; 2097 InstructionsToSink = InstructionsProfitableToSink; 2098 2099 // But, that may make other instructions unprofitable, too. 2100 // So, do a backward scan, do any earlier instructions become unprofitable? 2101 assert(!ProfitableToSinkInstruction(LRI) && 2102 "We already know that the last instruction is unprofitable to sink"); 2103 ++LRI; 2104 --Idx; 2105 while (Idx >= 0) { 2106 // If we detect that an instruction becomes unprofitable to sink, 2107 // all earlier instructions won't be sunk either, 2108 // so preemptively keep InstructionsProfitableToSink in sync. 2109 // FIXME: is this the most performant approach? 2110 for (auto *I : *LRI) 2111 InstructionsProfitableToSink.erase(I); 2112 if (!ProfitableToSinkInstruction(LRI)) { 2113 // Everything starting with this instruction won't be sunk. 2114 ScanIdx = Idx; 2115 InstructionsToSink = InstructionsProfitableToSink; 2116 } 2117 ++LRI; 2118 --Idx; 2119 } 2120 } 2121 2122 // If no instructions can be sunk, early-return. 2123 if (ScanIdx == 0) 2124 return false; 2125 2126 bool Changed = false; 2127 2128 if (HaveNonUnconditionalPredecessors) { 2129 // It is always legal to sink common instructions from unconditional 2130 // predecessors. However, if not all predecessors are unconditional, 2131 // this transformation might be pessimizing. So as a rule of thumb, 2132 // don't do it unless we'd sink at least one non-speculatable instruction. 2133 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2134 LRI.reset(); 2135 int Idx = 0; 2136 bool Profitable = false; 2137 while (Idx < ScanIdx) { 2138 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2139 Profitable = true; 2140 break; 2141 } 2142 --LRI; 2143 ++Idx; 2144 } 2145 if (!Profitable) 2146 return false; 2147 2148 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2149 // We have a conditional edge and we're going to sink some instructions. 2150 // Insert a new block postdominating all blocks we're going to sink from. 2151 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2152 // Edges couldn't be split. 2153 return false; 2154 Changed = true; 2155 } 2156 2157 // Now that we've analyzed all potential sinking candidates, perform the 2158 // actual sink. We iteratively sink the last non-terminator of the source 2159 // blocks into their common successor unless doing so would require too 2160 // many PHI instructions to be generated (currently only one PHI is allowed 2161 // per sunk instruction). 2162 // 2163 // We can use InstructionsToSink to discount values needing PHI-merging that will 2164 // actually be sunk in a later iteration. This allows us to be more 2165 // aggressive in what we sink. This does allow a false positive where we 2166 // sink presuming a later value will also be sunk, but stop half way through 2167 // and never actually sink it which means we produce more PHIs than intended. 2168 // This is unlikely in practice though. 2169 int SinkIdx = 0; 2170 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2171 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2172 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2173 << "\n"); 2174 2175 // Because we've sunk every instruction in turn, the current instruction to 2176 // sink is always at index 0. 2177 LRI.reset(); 2178 2179 if (!sinkLastInstruction(UnconditionalPreds)) { 2180 LLVM_DEBUG( 2181 dbgs() 2182 << "SINK: stopping here, failed to actually sink instruction!\n"); 2183 break; 2184 } 2185 2186 NumSinkCommonInstrs++; 2187 Changed = true; 2188 } 2189 if (SinkIdx != 0) 2190 ++NumSinkCommonCode; 2191 return Changed; 2192 } 2193 2194 /// Determine if we can hoist sink a sole store instruction out of a 2195 /// conditional block. 2196 /// 2197 /// We are looking for code like the following: 2198 /// BrBB: 2199 /// store i32 %add, i32* %arrayidx2 2200 /// ... // No other stores or function calls (we could be calling a memory 2201 /// ... // function). 2202 /// %cmp = icmp ult %x, %y 2203 /// br i1 %cmp, label %EndBB, label %ThenBB 2204 /// ThenBB: 2205 /// store i32 %add5, i32* %arrayidx2 2206 /// br label EndBB 2207 /// EndBB: 2208 /// ... 2209 /// We are going to transform this into: 2210 /// BrBB: 2211 /// store i32 %add, i32* %arrayidx2 2212 /// ... // 2213 /// %cmp = icmp ult %x, %y 2214 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2215 /// store i32 %add.add5, i32* %arrayidx2 2216 /// ... 2217 /// 2218 /// \return The pointer to the value of the previous store if the store can be 2219 /// hoisted into the predecessor block. 0 otherwise. 2220 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2221 BasicBlock *StoreBB, BasicBlock *EndBB) { 2222 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2223 if (!StoreToHoist) 2224 return nullptr; 2225 2226 // Volatile or atomic. 2227 if (!StoreToHoist->isSimple()) 2228 return nullptr; 2229 2230 Value *StorePtr = StoreToHoist->getPointerOperand(); 2231 2232 // Look for a store to the same pointer in BrBB. 2233 unsigned MaxNumInstToLookAt = 9; 2234 // Skip pseudo probe intrinsic calls which are not really killing any memory 2235 // accesses. 2236 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2237 if (!MaxNumInstToLookAt) 2238 break; 2239 --MaxNumInstToLookAt; 2240 2241 // Could be calling an instruction that affects memory like free(). 2242 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2243 return nullptr; 2244 2245 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2246 // Found the previous store make sure it stores to the same location. 2247 if (SI->getPointerOperand() == StorePtr) 2248 // Found the previous store, return its value operand. 2249 return SI->getValueOperand(); 2250 return nullptr; // Unknown store. 2251 } 2252 } 2253 2254 return nullptr; 2255 } 2256 2257 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2258 /// converted to selects. 2259 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2260 BasicBlock *EndBB, 2261 unsigned &SpeculatedInstructions, 2262 InstructionCost &Cost, 2263 const TargetTransformInfo &TTI) { 2264 TargetTransformInfo::TargetCostKind CostKind = 2265 BB->getParent()->hasMinSize() 2266 ? TargetTransformInfo::TCK_CodeSize 2267 : TargetTransformInfo::TCK_SizeAndLatency; 2268 2269 bool HaveRewritablePHIs = false; 2270 for (PHINode &PN : EndBB->phis()) { 2271 Value *OrigV = PN.getIncomingValueForBlock(BB); 2272 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2273 2274 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2275 // Skip PHIs which are trivial. 2276 if (ThenV == OrigV) 2277 continue; 2278 2279 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2280 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2281 2282 // Don't convert to selects if we could remove undefined behavior instead. 2283 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2284 passingValueIsAlwaysUndefined(ThenV, &PN)) 2285 return false; 2286 2287 HaveRewritablePHIs = true; 2288 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2289 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2290 if (!OrigCE && !ThenCE) 2291 continue; // Known safe and cheap. 2292 2293 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2294 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2295 return false; 2296 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2297 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2298 InstructionCost MaxCost = 2299 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2300 if (OrigCost + ThenCost > MaxCost) 2301 return false; 2302 2303 // Account for the cost of an unfolded ConstantExpr which could end up 2304 // getting expanded into Instructions. 2305 // FIXME: This doesn't account for how many operations are combined in the 2306 // constant expression. 2307 ++SpeculatedInstructions; 2308 if (SpeculatedInstructions > 1) 2309 return false; 2310 } 2311 2312 return HaveRewritablePHIs; 2313 } 2314 2315 /// Speculate a conditional basic block flattening the CFG. 2316 /// 2317 /// Note that this is a very risky transform currently. Speculating 2318 /// instructions like this is most often not desirable. Instead, there is an MI 2319 /// pass which can do it with full awareness of the resource constraints. 2320 /// However, some cases are "obvious" and we should do directly. An example of 2321 /// this is speculating a single, reasonably cheap instruction. 2322 /// 2323 /// There is only one distinct advantage to flattening the CFG at the IR level: 2324 /// it makes very common but simplistic optimizations such as are common in 2325 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2326 /// modeling their effects with easier to reason about SSA value graphs. 2327 /// 2328 /// 2329 /// An illustration of this transform is turning this IR: 2330 /// \code 2331 /// BB: 2332 /// %cmp = icmp ult %x, %y 2333 /// br i1 %cmp, label %EndBB, label %ThenBB 2334 /// ThenBB: 2335 /// %sub = sub %x, %y 2336 /// br label BB2 2337 /// EndBB: 2338 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2339 /// ... 2340 /// \endcode 2341 /// 2342 /// Into this IR: 2343 /// \code 2344 /// BB: 2345 /// %cmp = icmp ult %x, %y 2346 /// %sub = sub %x, %y 2347 /// %cond = select i1 %cmp, 0, %sub 2348 /// ... 2349 /// \endcode 2350 /// 2351 /// \returns true if the conditional block is removed. 2352 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2353 const TargetTransformInfo &TTI) { 2354 // Be conservative for now. FP select instruction can often be expensive. 2355 Value *BrCond = BI->getCondition(); 2356 if (isa<FCmpInst>(BrCond)) 2357 return false; 2358 2359 BasicBlock *BB = BI->getParent(); 2360 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2361 InstructionCost Budget = 2362 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2363 2364 // If ThenBB is actually on the false edge of the conditional branch, remember 2365 // to swap the select operands later. 2366 bool Invert = false; 2367 if (ThenBB != BI->getSuccessor(0)) { 2368 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2369 Invert = true; 2370 } 2371 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2372 2373 // Keep a count of how many times instructions are used within ThenBB when 2374 // they are candidates for sinking into ThenBB. Specifically: 2375 // - They are defined in BB, and 2376 // - They have no side effects, and 2377 // - All of their uses are in ThenBB. 2378 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2379 2380 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2381 2382 unsigned SpeculatedInstructions = 0; 2383 Value *SpeculatedStoreValue = nullptr; 2384 StoreInst *SpeculatedStore = nullptr; 2385 for (BasicBlock::iterator BBI = ThenBB->begin(), 2386 BBE = std::prev(ThenBB->end()); 2387 BBI != BBE; ++BBI) { 2388 Instruction *I = &*BBI; 2389 // Skip debug info. 2390 if (isa<DbgInfoIntrinsic>(I)) { 2391 SpeculatedDbgIntrinsics.push_back(I); 2392 continue; 2393 } 2394 2395 // Skip pseudo probes. The consequence is we lose track of the branch 2396 // probability for ThenBB, which is fine since the optimization here takes 2397 // place regardless of the branch probability. 2398 if (isa<PseudoProbeInst>(I)) { 2399 // The probe should be deleted so that it will not be over-counted when 2400 // the samples collected on the non-conditional path are counted towards 2401 // the conditional path. We leave it for the counts inference algorithm to 2402 // figure out a proper count for an unknown probe. 2403 SpeculatedDbgIntrinsics.push_back(I); 2404 continue; 2405 } 2406 2407 // Only speculatively execute a single instruction (not counting the 2408 // terminator) for now. 2409 ++SpeculatedInstructions; 2410 if (SpeculatedInstructions > 1) 2411 return false; 2412 2413 // Don't hoist the instruction if it's unsafe or expensive. 2414 if (!isSafeToSpeculativelyExecute(I) && 2415 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2416 I, BB, ThenBB, EndBB)))) 2417 return false; 2418 if (!SpeculatedStoreValue && 2419 computeSpeculationCost(I, TTI) > 2420 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2421 return false; 2422 2423 // Store the store speculation candidate. 2424 if (SpeculatedStoreValue) 2425 SpeculatedStore = cast<StoreInst>(I); 2426 2427 // Do not hoist the instruction if any of its operands are defined but not 2428 // used in BB. The transformation will prevent the operand from 2429 // being sunk into the use block. 2430 for (Use &Op : I->operands()) { 2431 Instruction *OpI = dyn_cast<Instruction>(Op); 2432 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2433 continue; // Not a candidate for sinking. 2434 2435 ++SinkCandidateUseCounts[OpI]; 2436 } 2437 } 2438 2439 // Consider any sink candidates which are only used in ThenBB as costs for 2440 // speculation. Note, while we iterate over a DenseMap here, we are summing 2441 // and so iteration order isn't significant. 2442 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2443 I = SinkCandidateUseCounts.begin(), 2444 E = SinkCandidateUseCounts.end(); 2445 I != E; ++I) 2446 if (I->first->hasNUses(I->second)) { 2447 ++SpeculatedInstructions; 2448 if (SpeculatedInstructions > 1) 2449 return false; 2450 } 2451 2452 // Check that we can insert the selects and that it's not too expensive to do 2453 // so. 2454 bool Convert = SpeculatedStore != nullptr; 2455 InstructionCost Cost = 0; 2456 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2457 SpeculatedInstructions, 2458 Cost, TTI); 2459 if (!Convert || Cost > Budget) 2460 return false; 2461 2462 // If we get here, we can hoist the instruction and if-convert. 2463 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2464 2465 // Insert a select of the value of the speculated store. 2466 if (SpeculatedStoreValue) { 2467 IRBuilder<NoFolder> Builder(BI); 2468 Value *TrueV = SpeculatedStore->getValueOperand(); 2469 Value *FalseV = SpeculatedStoreValue; 2470 if (Invert) 2471 std::swap(TrueV, FalseV); 2472 Value *S = Builder.CreateSelect( 2473 BrCond, TrueV, FalseV, "spec.store.select", BI); 2474 SpeculatedStore->setOperand(0, S); 2475 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2476 SpeculatedStore->getDebugLoc()); 2477 } 2478 2479 // Metadata can be dependent on the condition we are hoisting above. 2480 // Conservatively strip all metadata on the instruction. Drop the debug loc 2481 // to avoid making it appear as if the condition is a constant, which would 2482 // be misleading while debugging. 2483 for (auto &I : *ThenBB) { 2484 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2485 I.setDebugLoc(DebugLoc()); 2486 I.dropUnknownNonDebugMetadata(); 2487 } 2488 2489 // Hoist the instructions. 2490 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2491 ThenBB->begin(), std::prev(ThenBB->end())); 2492 2493 // Insert selects and rewrite the PHI operands. 2494 IRBuilder<NoFolder> Builder(BI); 2495 for (PHINode &PN : EndBB->phis()) { 2496 unsigned OrigI = PN.getBasicBlockIndex(BB); 2497 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2498 Value *OrigV = PN.getIncomingValue(OrigI); 2499 Value *ThenV = PN.getIncomingValue(ThenI); 2500 2501 // Skip PHIs which are trivial. 2502 if (OrigV == ThenV) 2503 continue; 2504 2505 // Create a select whose true value is the speculatively executed value and 2506 // false value is the pre-existing value. Swap them if the branch 2507 // destinations were inverted. 2508 Value *TrueV = ThenV, *FalseV = OrigV; 2509 if (Invert) 2510 std::swap(TrueV, FalseV); 2511 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2512 PN.setIncomingValue(OrigI, V); 2513 PN.setIncomingValue(ThenI, V); 2514 } 2515 2516 // Remove speculated dbg intrinsics. 2517 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2518 // dbg value for the different flows and inserting it after the select. 2519 for (Instruction *I : SpeculatedDbgIntrinsics) 2520 I->eraseFromParent(); 2521 2522 ++NumSpeculations; 2523 return true; 2524 } 2525 2526 /// Return true if we can thread a branch across this block. 2527 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2528 int Size = 0; 2529 2530 SmallPtrSet<const Value *, 32> EphValues; 2531 auto IsEphemeral = [&](const Value *V) { 2532 if (isa<AssumeInst>(V)) 2533 return true; 2534 return isSafeToSpeculativelyExecute(V) && 2535 all_of(V->users(), 2536 [&](const User *U) { return EphValues.count(U); }); 2537 }; 2538 2539 // Walk the loop in reverse so that we can identify ephemeral values properly 2540 // (values only feeding assumes). 2541 for (Instruction &I : reverse(BB->instructionsWithoutDebug())) { 2542 // Can't fold blocks that contain noduplicate or convergent calls. 2543 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2544 if (CI->cannotDuplicate() || CI->isConvergent()) 2545 return false; 2546 2547 // Ignore ephemeral values which are deleted during codegen. 2548 if (IsEphemeral(&I)) 2549 EphValues.insert(&I); 2550 // We will delete Phis while threading, so Phis should not be accounted in 2551 // block's size. 2552 else if (!isa<PHINode>(I)) { 2553 if (Size++ > MaxSmallBlockSize) 2554 return false; // Don't clone large BB's. 2555 } 2556 2557 // We can only support instructions that do not define values that are 2558 // live outside of the current basic block. 2559 for (User *U : I.users()) { 2560 Instruction *UI = cast<Instruction>(U); 2561 if (UI->getParent() != BB || isa<PHINode>(UI)) 2562 return false; 2563 } 2564 2565 // Looks ok, continue checking. 2566 } 2567 2568 return true; 2569 } 2570 2571 /// If we have a conditional branch on a PHI node value that is defined in the 2572 /// same block as the branch and if any PHI entries are constants, thread edges 2573 /// corresponding to that entry to be branches to their ultimate destination. 2574 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2575 const DataLayout &DL, AssumptionCache *AC) { 2576 BasicBlock *BB = BI->getParent(); 2577 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2578 // NOTE: we currently cannot transform this case if the PHI node is used 2579 // outside of the block. 2580 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2581 return false; 2582 2583 // Degenerate case of a single entry PHI. 2584 if (PN->getNumIncomingValues() == 1) { 2585 FoldSingleEntryPHINodes(PN->getParent()); 2586 return true; 2587 } 2588 2589 // Now we know that this block has multiple preds and two succs. 2590 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2591 return false; 2592 2593 // Okay, this is a simple enough basic block. See if any phi values are 2594 // constants. 2595 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2596 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2597 if (!CB || !CB->getType()->isIntegerTy(1)) 2598 continue; 2599 2600 // Okay, we now know that all edges from PredBB should be revectored to 2601 // branch to RealDest. 2602 BasicBlock *PredBB = PN->getIncomingBlock(i); 2603 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2604 2605 if (RealDest == BB) 2606 continue; // Skip self loops. 2607 // Skip if the predecessor's terminator is an indirect branch. 2608 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2609 continue; 2610 2611 SmallVector<DominatorTree::UpdateType, 3> Updates; 2612 2613 // The dest block might have PHI nodes, other predecessors and other 2614 // difficult cases. Instead of being smart about this, just insert a new 2615 // block that jumps to the destination block, effectively splitting 2616 // the edge we are about to create. 2617 BasicBlock *EdgeBB = 2618 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2619 RealDest->getParent(), RealDest); 2620 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2621 if (DTU) 2622 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2623 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2624 2625 // Update PHI nodes. 2626 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2627 2628 // BB may have instructions that are being threaded over. Clone these 2629 // instructions into EdgeBB. We know that there will be no uses of the 2630 // cloned instructions outside of EdgeBB. 2631 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2632 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2633 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2634 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2635 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2636 continue; 2637 } 2638 // Clone the instruction. 2639 Instruction *N = BBI->clone(); 2640 if (BBI->hasName()) 2641 N->setName(BBI->getName() + ".c"); 2642 2643 // Update operands due to translation. 2644 for (Use &Op : N->operands()) { 2645 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2646 if (PI != TranslateMap.end()) 2647 Op = PI->second; 2648 } 2649 2650 // Check for trivial simplification. 2651 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2652 if (!BBI->use_empty()) 2653 TranslateMap[&*BBI] = V; 2654 if (!N->mayHaveSideEffects()) { 2655 N->deleteValue(); // Instruction folded away, don't need actual inst 2656 N = nullptr; 2657 } 2658 } else { 2659 if (!BBI->use_empty()) 2660 TranslateMap[&*BBI] = N; 2661 } 2662 if (N) { 2663 // Insert the new instruction into its new home. 2664 EdgeBB->getInstList().insert(InsertPt, N); 2665 2666 // Register the new instruction with the assumption cache if necessary. 2667 if (auto *Assume = dyn_cast<AssumeInst>(N)) 2668 if (AC) 2669 AC->registerAssumption(Assume); 2670 } 2671 } 2672 2673 // Loop over all of the edges from PredBB to BB, changing them to branch 2674 // to EdgeBB instead. 2675 Instruction *PredBBTI = PredBB->getTerminator(); 2676 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2677 if (PredBBTI->getSuccessor(i) == BB) { 2678 BB->removePredecessor(PredBB); 2679 PredBBTI->setSuccessor(i, EdgeBB); 2680 } 2681 2682 if (DTU) { 2683 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2684 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2685 2686 DTU->applyUpdates(Updates); 2687 } 2688 2689 // Recurse, simplifying any other constants. 2690 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2691 } 2692 2693 return false; 2694 } 2695 2696 /// Given a BB that starts with the specified two-entry PHI node, 2697 /// see if we can eliminate it. 2698 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2699 DomTreeUpdater *DTU, const DataLayout &DL) { 2700 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2701 // statement", which has a very simple dominance structure. Basically, we 2702 // are trying to find the condition that is being branched on, which 2703 // subsequently causes this merge to happen. We really want control 2704 // dependence information for this check, but simplifycfg can't keep it up 2705 // to date, and this catches most of the cases we care about anyway. 2706 BasicBlock *BB = PN->getParent(); 2707 2708 BasicBlock *IfTrue, *IfFalse; 2709 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2710 if (!IfCond || 2711 // Don't bother if the branch will be constant folded trivially. 2712 isa<ConstantInt>(IfCond)) 2713 return false; 2714 2715 // Don't try to fold an unreachable block. For example, the phi node itself 2716 // can't be the candidate if-condition for a select that we want to form. 2717 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 2718 if (IfCondPhiInst->getParent() == BB) 2719 return false; 2720 2721 // Okay, we found that we can merge this two-entry phi node into a select. 2722 // Doing so would require us to fold *all* two entry phi nodes in this block. 2723 // At some point this becomes non-profitable (particularly if the target 2724 // doesn't support cmov's). Only do this transformation if there are two or 2725 // fewer PHI nodes in this block. 2726 unsigned NumPhis = 0; 2727 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2728 if (NumPhis > 2) 2729 return false; 2730 2731 // Loop over the PHI's seeing if we can promote them all to select 2732 // instructions. While we are at it, keep track of the instructions 2733 // that need to be moved to the dominating block. 2734 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2735 InstructionCost Cost = 0; 2736 InstructionCost Budget = 2737 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2738 2739 bool Changed = false; 2740 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2741 PHINode *PN = cast<PHINode>(II++); 2742 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2743 PN->replaceAllUsesWith(V); 2744 PN->eraseFromParent(); 2745 Changed = true; 2746 continue; 2747 } 2748 2749 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2750 Cost, Budget, TTI) || 2751 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2752 Cost, Budget, TTI)) 2753 return Changed; 2754 } 2755 2756 // If we folded the first phi, PN dangles at this point. Refresh it. If 2757 // we ran out of PHIs then we simplified them all. 2758 PN = dyn_cast<PHINode>(BB->begin()); 2759 if (!PN) 2760 return true; 2761 2762 // Return true if at least one of these is a 'not', and another is either 2763 // a 'not' too, or a constant. 2764 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2765 if (!match(V0, m_Not(m_Value()))) 2766 std::swap(V0, V1); 2767 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2768 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2769 }; 2770 2771 // Don't fold i1 branches on PHIs which contain binary operators or 2772 // select form of or/ands, unless one of the incoming values is an 'not' and 2773 // another one is freely invertible. 2774 // These can often be turned into switches and other things. 2775 auto IsBinOpOrAnd = [](Value *V) { 2776 return match( 2777 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2778 }; 2779 if (PN->getType()->isIntegerTy(1) && 2780 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2781 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2782 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2783 PN->getIncomingValue(1))) 2784 return Changed; 2785 2786 // If all PHI nodes are promotable, check to make sure that all instructions 2787 // in the predecessor blocks can be promoted as well. If not, we won't be able 2788 // to get rid of the control flow, so it's not worth promoting to select 2789 // instructions. 2790 BasicBlock *DomBlock = nullptr; 2791 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2792 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2793 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2794 IfBlock1 = nullptr; 2795 } else { 2796 DomBlock = *pred_begin(IfBlock1); 2797 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2798 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2799 !isa<PseudoProbeInst>(I)) { 2800 // This is not an aggressive instruction that we can promote. 2801 // Because of this, we won't be able to get rid of the control flow, so 2802 // the xform is not worth it. 2803 return Changed; 2804 } 2805 } 2806 2807 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2808 IfBlock2 = nullptr; 2809 } else { 2810 DomBlock = *pred_begin(IfBlock2); 2811 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2812 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2813 !isa<PseudoProbeInst>(I)) { 2814 // This is not an aggressive instruction that we can promote. 2815 // Because of this, we won't be able to get rid of the control flow, so 2816 // the xform is not worth it. 2817 return Changed; 2818 } 2819 } 2820 assert(DomBlock && "Failed to find root DomBlock"); 2821 2822 // If either of the blocks has it's address taken, we can't do this fold. 2823 if ((IfBlock1 && IfBlock1->hasAddressTaken()) || 2824 (IfBlock2 && IfBlock2->hasAddressTaken())) 2825 return Changed; 2826 2827 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2828 << " T: " << IfTrue->getName() 2829 << " F: " << IfFalse->getName() << "\n"); 2830 2831 // If we can still promote the PHI nodes after this gauntlet of tests, 2832 // do all of the PHI's now. 2833 Instruction *InsertPt = DomBlock->getTerminator(); 2834 IRBuilder<NoFolder> Builder(InsertPt); 2835 2836 // Move all 'aggressive' instructions, which are defined in the 2837 // conditional parts of the if's up to the dominating block. 2838 if (IfBlock1) 2839 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2840 if (IfBlock2) 2841 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2842 2843 // Propagate fast-math-flags from phi nodes to replacement selects. 2844 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2845 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2846 if (isa<FPMathOperator>(PN)) 2847 Builder.setFastMathFlags(PN->getFastMathFlags()); 2848 2849 // Change the PHI node into a select instruction. 2850 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2851 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2852 2853 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2854 PN->replaceAllUsesWith(Sel); 2855 Sel->takeName(PN); 2856 PN->eraseFromParent(); 2857 } 2858 2859 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2860 // has been flattened. Change DomBlock to jump directly to our new block to 2861 // avoid other simplifycfg's kicking in on the diamond. 2862 Instruction *OldTI = DomBlock->getTerminator(); 2863 Builder.SetInsertPoint(OldTI); 2864 Builder.CreateBr(BB); 2865 2866 SmallVector<DominatorTree::UpdateType, 3> Updates; 2867 if (DTU) { 2868 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2869 for (auto *Successor : successors(DomBlock)) 2870 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2871 } 2872 2873 OldTI->eraseFromParent(); 2874 if (DTU) 2875 DTU->applyUpdates(Updates); 2876 2877 return true; 2878 } 2879 2880 /// If we found a conditional branch that goes to two returning blocks, 2881 /// try to merge them together into one return, 2882 /// introducing a select if the return values disagree. 2883 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2884 IRBuilder<> &Builder) { 2885 auto *BB = BI->getParent(); 2886 assert(BI->isConditional() && "Must be a conditional branch"); 2887 BasicBlock *TrueSucc = BI->getSuccessor(0); 2888 BasicBlock *FalseSucc = BI->getSuccessor(1); 2889 // NOTE: destinations may match, this could be degenerate uncond branch. 2890 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2891 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2892 2893 // Check to ensure both blocks are empty (just a return) or optionally empty 2894 // with PHI nodes. If there are other instructions, merging would cause extra 2895 // computation on one path or the other. 2896 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2897 return false; 2898 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2899 return false; 2900 2901 Builder.SetInsertPoint(BI); 2902 // Okay, we found a branch that is going to two return nodes. If 2903 // there is no return value for this function, just change the 2904 // branch into a return. 2905 if (FalseRet->getNumOperands() == 0) { 2906 TrueSucc->removePredecessor(BB); 2907 FalseSucc->removePredecessor(BB); 2908 Builder.CreateRetVoid(); 2909 EraseTerminatorAndDCECond(BI); 2910 if (DTU) { 2911 SmallVector<DominatorTree::UpdateType, 2> Updates; 2912 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2913 if (TrueSucc != FalseSucc) 2914 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2915 DTU->applyUpdates(Updates); 2916 } 2917 return true; 2918 } 2919 2920 // Otherwise, figure out what the true and false return values are 2921 // so we can insert a new select instruction. 2922 Value *TrueValue = TrueRet->getReturnValue(); 2923 Value *FalseValue = FalseRet->getReturnValue(); 2924 2925 // Unwrap any PHI nodes in the return blocks. 2926 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2927 if (TVPN->getParent() == TrueSucc) 2928 TrueValue = TVPN->getIncomingValueForBlock(BB); 2929 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2930 if (FVPN->getParent() == FalseSucc) 2931 FalseValue = FVPN->getIncomingValueForBlock(BB); 2932 2933 // In order for this transformation to be safe, we must be able to 2934 // unconditionally execute both operands to the return. This is 2935 // normally the case, but we could have a potentially-trapping 2936 // constant expression that prevents this transformation from being 2937 // safe. 2938 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2939 if (TCV->canTrap()) 2940 return false; 2941 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2942 if (FCV->canTrap()) 2943 return false; 2944 2945 // Okay, we collected all the mapped values and checked them for sanity, and 2946 // defined to really do this transformation. First, update the CFG. 2947 TrueSucc->removePredecessor(BB); 2948 FalseSucc->removePredecessor(BB); 2949 2950 // Insert select instructions where needed. 2951 Value *BrCond = BI->getCondition(); 2952 if (TrueValue) { 2953 // Insert a select if the results differ. 2954 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2955 } else if (isa<UndefValue>(TrueValue)) { 2956 TrueValue = FalseValue; 2957 } else { 2958 TrueValue = 2959 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2960 } 2961 } 2962 2963 Value *RI = 2964 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2965 2966 (void)RI; 2967 2968 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2969 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2970 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2971 2972 EraseTerminatorAndDCECond(BI); 2973 if (DTU) { 2974 SmallVector<DominatorTree::UpdateType, 2> Updates; 2975 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2976 if (TrueSucc != FalseSucc) 2977 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2978 DTU->applyUpdates(Updates); 2979 } 2980 2981 return true; 2982 } 2983 2984 static Value *createLogicalOp(IRBuilderBase &Builder, 2985 Instruction::BinaryOps Opc, Value *LHS, 2986 Value *RHS, const Twine &Name = "") { 2987 // Try to relax logical op to binary op. 2988 if (impliesPoison(RHS, LHS)) 2989 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 2990 if (Opc == Instruction::And) 2991 return Builder.CreateLogicalAnd(LHS, RHS, Name); 2992 if (Opc == Instruction::Or) 2993 return Builder.CreateLogicalOr(LHS, RHS, Name); 2994 llvm_unreachable("Invalid logical opcode"); 2995 } 2996 2997 /// Return true if either PBI or BI has branch weight available, and store 2998 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2999 /// not have branch weight, use 1:1 as its weight. 3000 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3001 uint64_t &PredTrueWeight, 3002 uint64_t &PredFalseWeight, 3003 uint64_t &SuccTrueWeight, 3004 uint64_t &SuccFalseWeight) { 3005 bool PredHasWeights = 3006 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 3007 bool SuccHasWeights = 3008 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 3009 if (PredHasWeights || SuccHasWeights) { 3010 if (!PredHasWeights) 3011 PredTrueWeight = PredFalseWeight = 1; 3012 if (!SuccHasWeights) 3013 SuccTrueWeight = SuccFalseWeight = 1; 3014 return true; 3015 } else { 3016 return false; 3017 } 3018 } 3019 3020 /// Determine if the two branches share a common destination and deduce a glue 3021 /// that joins the branches' conditions to arrive at the common destination if 3022 /// that would be profitable. 3023 static Optional<std::pair<Instruction::BinaryOps, bool>> 3024 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3025 const TargetTransformInfo *TTI) { 3026 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3027 "Both blocks must end with a conditional branches."); 3028 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3029 "PredBB must be a predecessor of BB."); 3030 3031 // We have the potential to fold the conditions together, but if the 3032 // predecessor branch is predictable, we may not want to merge them. 3033 uint64_t PTWeight, PFWeight; 3034 BranchProbability PBITrueProb, Likely; 3035 if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) && 3036 (PTWeight + PFWeight) != 0) { 3037 PBITrueProb = 3038 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3039 Likely = TTI->getPredictableBranchThreshold(); 3040 } 3041 3042 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3043 // Speculate the 2nd condition unless the 1st is probably true. 3044 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3045 return {{Instruction::Or, false}}; 3046 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3047 // Speculate the 2nd condition unless the 1st is probably false. 3048 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3049 return {{Instruction::And, false}}; 3050 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3051 // Speculate the 2nd condition unless the 1st is probably true. 3052 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3053 return {{Instruction::And, true}}; 3054 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3055 // Speculate the 2nd condition unless the 1st is probably false. 3056 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3057 return {{Instruction::Or, true}}; 3058 } 3059 return None; 3060 } 3061 3062 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3063 DomTreeUpdater *DTU, 3064 MemorySSAUpdater *MSSAU, 3065 const TargetTransformInfo *TTI) { 3066 BasicBlock *BB = BI->getParent(); 3067 BasicBlock *PredBlock = PBI->getParent(); 3068 3069 // Determine if the two branches share a common destination. 3070 Instruction::BinaryOps Opc; 3071 bool InvertPredCond; 3072 std::tie(Opc, InvertPredCond) = 3073 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3074 3075 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3076 3077 IRBuilder<> Builder(PBI); 3078 // The builder is used to create instructions to eliminate the branch in BB. 3079 // If BB's terminator has !annotation metadata, add it to the new 3080 // instructions. 3081 Builder.CollectMetadataToCopy(BB->getTerminator(), 3082 {LLVMContext::MD_annotation}); 3083 3084 // If we need to invert the condition in the pred block to match, do so now. 3085 if (InvertPredCond) { 3086 Value *NewCond = PBI->getCondition(); 3087 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3088 CmpInst *CI = cast<CmpInst>(NewCond); 3089 CI->setPredicate(CI->getInversePredicate()); 3090 } else { 3091 NewCond = 3092 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3093 } 3094 3095 PBI->setCondition(NewCond); 3096 PBI->swapSuccessors(); 3097 } 3098 3099 BasicBlock *UniqueSucc = 3100 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3101 3102 // Before cloning instructions, notify the successor basic block that it 3103 // is about to have a new predecessor. This will update PHI nodes, 3104 // which will allow us to update live-out uses of bonus instructions. 3105 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3106 3107 // Try to update branch weights. 3108 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3109 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3110 SuccTrueWeight, SuccFalseWeight)) { 3111 SmallVector<uint64_t, 8> NewWeights; 3112 3113 if (PBI->getSuccessor(0) == BB) { 3114 // PBI: br i1 %x, BB, FalseDest 3115 // BI: br i1 %y, UniqueSucc, FalseDest 3116 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3117 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3118 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3119 // TrueWeight for PBI * FalseWeight for BI. 3120 // We assume that total weights of a BranchInst can fit into 32 bits. 3121 // Therefore, we will not have overflow using 64-bit arithmetic. 3122 NewWeights.push_back(PredFalseWeight * 3123 (SuccFalseWeight + SuccTrueWeight) + 3124 PredTrueWeight * SuccFalseWeight); 3125 } else { 3126 // PBI: br i1 %x, TrueDest, BB 3127 // BI: br i1 %y, TrueDest, UniqueSucc 3128 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3129 // FalseWeight for PBI * TrueWeight for BI. 3130 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3131 PredFalseWeight * SuccTrueWeight); 3132 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3133 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3134 } 3135 3136 // Halve the weights if any of them cannot fit in an uint32_t 3137 FitWeights(NewWeights); 3138 3139 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3140 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3141 3142 // TODO: If BB is reachable from all paths through PredBlock, then we 3143 // could replace PBI's branch probabilities with BI's. 3144 } else 3145 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3146 3147 // Now, update the CFG. 3148 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3149 3150 if (DTU) 3151 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3152 {DominatorTree::Delete, PredBlock, BB}}); 3153 3154 // If BI was a loop latch, it may have had associated loop metadata. 3155 // We need to copy it to the new latch, that is, PBI. 3156 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3157 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3158 3159 ValueToValueMapTy VMap; // maps original values to cloned values 3160 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3161 3162 // Now that the Cond was cloned into the predecessor basic block, 3163 // or/and the two conditions together. 3164 Value *BICond = VMap[BI->getCondition()]; 3165 PBI->setCondition( 3166 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3167 3168 // Copy any debug value intrinsics into the end of PredBlock. 3169 for (Instruction &I : *BB) { 3170 if (isa<DbgInfoIntrinsic>(I)) { 3171 Instruction *NewI = I.clone(); 3172 RemapInstruction(NewI, VMap, 3173 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3174 NewI->insertBefore(PBI); 3175 } 3176 } 3177 3178 ++NumFoldBranchToCommonDest; 3179 return true; 3180 } 3181 3182 /// If this basic block is simple enough, and if a predecessor branches to us 3183 /// and one of our successors, fold the block into the predecessor and use 3184 /// logical operations to pick the right destination. 3185 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3186 MemorySSAUpdater *MSSAU, 3187 const TargetTransformInfo *TTI, 3188 unsigned BonusInstThreshold) { 3189 // If this block ends with an unconditional branch, 3190 // let SpeculativelyExecuteBB() deal with it. 3191 if (!BI->isConditional()) 3192 return false; 3193 3194 BasicBlock *BB = BI->getParent(); 3195 3196 bool Changed = false; 3197 3198 TargetTransformInfo::TargetCostKind CostKind = 3199 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3200 : TargetTransformInfo::TCK_SizeAndLatency; 3201 3202 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3203 3204 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3205 Cond->getParent() != BB || !Cond->hasOneUse()) 3206 return Changed; 3207 3208 // Cond is known to be a compare or binary operator. Check to make sure that 3209 // neither operand is a potentially-trapping constant expression. 3210 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3211 if (CE->canTrap()) 3212 return Changed; 3213 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3214 if (CE->canTrap()) 3215 return Changed; 3216 3217 // Finally, don't infinitely unroll conditional loops. 3218 if (is_contained(successors(BB), BB)) 3219 return Changed; 3220 3221 // With which predecessors will we want to deal with? 3222 SmallVector<BasicBlock *, 8> Preds; 3223 for (BasicBlock *PredBlock : predecessors(BB)) { 3224 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3225 3226 // Check that we have two conditional branches. If there is a PHI node in 3227 // the common successor, verify that the same value flows in from both 3228 // blocks. 3229 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3230 continue; 3231 3232 // Determine if the two branches share a common destination. 3233 Instruction::BinaryOps Opc; 3234 bool InvertPredCond; 3235 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3236 std::tie(Opc, InvertPredCond) = *Recipe; 3237 else 3238 continue; 3239 3240 // Check the cost of inserting the necessary logic before performing the 3241 // transformation. 3242 if (TTI) { 3243 Type *Ty = BI->getCondition()->getType(); 3244 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3245 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3246 !isa<CmpInst>(PBI->getCondition()))) 3247 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3248 3249 if (Cost > BranchFoldThreshold) 3250 continue; 3251 } 3252 3253 // Ok, we do want to deal with this predecessor. Record it. 3254 Preds.emplace_back(PredBlock); 3255 } 3256 3257 // If there aren't any predecessors into which we can fold, 3258 // don't bother checking the cost. 3259 if (Preds.empty()) 3260 return Changed; 3261 3262 // Only allow this transformation if computing the condition doesn't involve 3263 // too many instructions and these involved instructions can be executed 3264 // unconditionally. We denote all involved instructions except the condition 3265 // as "bonus instructions", and only allow this transformation when the 3266 // number of the bonus instructions we'll need to create when cloning into 3267 // each predecessor does not exceed a certain threshold. 3268 unsigned NumBonusInsts = 0; 3269 const unsigned PredCount = Preds.size(); 3270 for (Instruction &I : *BB) { 3271 // Don't check the branch condition comparison itself. 3272 if (&I == Cond) 3273 continue; 3274 // Ignore dbg intrinsics, and the terminator. 3275 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3276 continue; 3277 // I must be safe to execute unconditionally. 3278 if (!isSafeToSpeculativelyExecute(&I)) 3279 return Changed; 3280 3281 // Account for the cost of duplicating this instruction into each 3282 // predecessor. 3283 NumBonusInsts += PredCount; 3284 // Early exits once we reach the limit. 3285 if (NumBonusInsts > BonusInstThreshold) 3286 return Changed; 3287 } 3288 3289 // Ok, we have the budget. Perform the transformation. 3290 for (BasicBlock *PredBlock : Preds) { 3291 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3292 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3293 } 3294 return Changed; 3295 } 3296 3297 // If there is only one store in BB1 and BB2, return it, otherwise return 3298 // nullptr. 3299 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3300 StoreInst *S = nullptr; 3301 for (auto *BB : {BB1, BB2}) { 3302 if (!BB) 3303 continue; 3304 for (auto &I : *BB) 3305 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3306 if (S) 3307 // Multiple stores seen. 3308 return nullptr; 3309 else 3310 S = SI; 3311 } 3312 } 3313 return S; 3314 } 3315 3316 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3317 Value *AlternativeV = nullptr) { 3318 // PHI is going to be a PHI node that allows the value V that is defined in 3319 // BB to be referenced in BB's only successor. 3320 // 3321 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3322 // doesn't matter to us what the other operand is (it'll never get used). We 3323 // could just create a new PHI with an undef incoming value, but that could 3324 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3325 // other PHI. So here we directly look for some PHI in BB's successor with V 3326 // as an incoming operand. If we find one, we use it, else we create a new 3327 // one. 3328 // 3329 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3330 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3331 // where OtherBB is the single other predecessor of BB's only successor. 3332 PHINode *PHI = nullptr; 3333 BasicBlock *Succ = BB->getSingleSuccessor(); 3334 3335 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3336 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3337 PHI = cast<PHINode>(I); 3338 if (!AlternativeV) 3339 break; 3340 3341 assert(Succ->hasNPredecessors(2)); 3342 auto PredI = pred_begin(Succ); 3343 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3344 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3345 break; 3346 PHI = nullptr; 3347 } 3348 if (PHI) 3349 return PHI; 3350 3351 // If V is not an instruction defined in BB, just return it. 3352 if (!AlternativeV && 3353 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3354 return V; 3355 3356 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3357 PHI->addIncoming(V, BB); 3358 for (BasicBlock *PredBB : predecessors(Succ)) 3359 if (PredBB != BB) 3360 PHI->addIncoming( 3361 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3362 return PHI; 3363 } 3364 3365 static bool mergeConditionalStoreToAddress( 3366 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3367 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3368 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3369 // For every pointer, there must be exactly two stores, one coming from 3370 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3371 // store (to any address) in PTB,PFB or QTB,QFB. 3372 // FIXME: We could relax this restriction with a bit more work and performance 3373 // testing. 3374 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3375 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3376 if (!PStore || !QStore) 3377 return false; 3378 3379 // Now check the stores are compatible. 3380 if (!QStore->isUnordered() || !PStore->isUnordered()) 3381 return false; 3382 3383 // Check that sinking the store won't cause program behavior changes. Sinking 3384 // the store out of the Q blocks won't change any behavior as we're sinking 3385 // from a block to its unconditional successor. But we're moving a store from 3386 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3387 // So we need to check that there are no aliasing loads or stores in 3388 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3389 // operations between PStore and the end of its parent block. 3390 // 3391 // The ideal way to do this is to query AliasAnalysis, but we don't 3392 // preserve AA currently so that is dangerous. Be super safe and just 3393 // check there are no other memory operations at all. 3394 for (auto &I : *QFB->getSinglePredecessor()) 3395 if (I.mayReadOrWriteMemory()) 3396 return false; 3397 for (auto &I : *QFB) 3398 if (&I != QStore && I.mayReadOrWriteMemory()) 3399 return false; 3400 if (QTB) 3401 for (auto &I : *QTB) 3402 if (&I != QStore && I.mayReadOrWriteMemory()) 3403 return false; 3404 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3405 I != E; ++I) 3406 if (&*I != PStore && I->mayReadOrWriteMemory()) 3407 return false; 3408 3409 // If we're not in aggressive mode, we only optimize if we have some 3410 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3411 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3412 if (!BB) 3413 return true; 3414 // Heuristic: if the block can be if-converted/phi-folded and the 3415 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3416 // thread this store. 3417 InstructionCost Cost = 0; 3418 InstructionCost Budget = 3419 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3420 for (auto &I : BB->instructionsWithoutDebug()) { 3421 // Consider terminator instruction to be free. 3422 if (I.isTerminator()) 3423 continue; 3424 // If this is one the stores that we want to speculate out of this BB, 3425 // then don't count it's cost, consider it to be free. 3426 if (auto *S = dyn_cast<StoreInst>(&I)) 3427 if (llvm::find(FreeStores, S)) 3428 continue; 3429 // Else, we have a white-list of instructions that we are ak speculating. 3430 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3431 return false; // Not in white-list - not worthwhile folding. 3432 // And finally, if this is a non-free instruction that we are okay 3433 // speculating, ensure that we consider the speculation budget. 3434 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3435 if (Cost > Budget) 3436 return false; // Eagerly refuse to fold as soon as we're out of budget. 3437 } 3438 assert(Cost <= Budget && 3439 "When we run out of budget we will eagerly return from within the " 3440 "per-instruction loop."); 3441 return true; 3442 }; 3443 3444 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3445 if (!MergeCondStoresAggressively && 3446 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3447 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3448 return false; 3449 3450 // If PostBB has more than two predecessors, we need to split it so we can 3451 // sink the store. 3452 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3453 // We know that QFB's only successor is PostBB. And QFB has a single 3454 // predecessor. If QTB exists, then its only successor is also PostBB. 3455 // If QTB does not exist, then QFB's only predecessor has a conditional 3456 // branch to QFB and PostBB. 3457 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3458 BasicBlock *NewBB = 3459 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3460 if (!NewBB) 3461 return false; 3462 PostBB = NewBB; 3463 } 3464 3465 // OK, we're going to sink the stores to PostBB. The store has to be 3466 // conditional though, so first create the predicate. 3467 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3468 ->getCondition(); 3469 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3470 ->getCondition(); 3471 3472 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3473 PStore->getParent()); 3474 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3475 QStore->getParent(), PPHI); 3476 3477 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3478 3479 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3480 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3481 3482 if (InvertPCond) 3483 PPred = QB.CreateNot(PPred); 3484 if (InvertQCond) 3485 QPred = QB.CreateNot(QPred); 3486 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3487 3488 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3489 /*Unreachable=*/false, 3490 /*BranchWeights=*/nullptr, DTU); 3491 QB.SetInsertPoint(T); 3492 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3493 AAMDNodes AAMD; 3494 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3495 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3496 SI->setAAMetadata(AAMD); 3497 // Choose the minimum alignment. If we could prove both stores execute, we 3498 // could use biggest one. In this case, though, we only know that one of the 3499 // stores executes. And we don't know it's safe to take the alignment from a 3500 // store that doesn't execute. 3501 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3502 3503 QStore->eraseFromParent(); 3504 PStore->eraseFromParent(); 3505 3506 return true; 3507 } 3508 3509 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3510 DomTreeUpdater *DTU, const DataLayout &DL, 3511 const TargetTransformInfo &TTI) { 3512 // The intention here is to find diamonds or triangles (see below) where each 3513 // conditional block contains a store to the same address. Both of these 3514 // stores are conditional, so they can't be unconditionally sunk. But it may 3515 // be profitable to speculatively sink the stores into one merged store at the 3516 // end, and predicate the merged store on the union of the two conditions of 3517 // PBI and QBI. 3518 // 3519 // This can reduce the number of stores executed if both of the conditions are 3520 // true, and can allow the blocks to become small enough to be if-converted. 3521 // This optimization will also chain, so that ladders of test-and-set 3522 // sequences can be if-converted away. 3523 // 3524 // We only deal with simple diamonds or triangles: 3525 // 3526 // PBI or PBI or a combination of the two 3527 // / \ | \ 3528 // PTB PFB | PFB 3529 // \ / | / 3530 // QBI QBI 3531 // / \ | \ 3532 // QTB QFB | QFB 3533 // \ / | / 3534 // PostBB PostBB 3535 // 3536 // We model triangles as a type of diamond with a nullptr "true" block. 3537 // Triangles are canonicalized so that the fallthrough edge is represented by 3538 // a true condition, as in the diagram above. 3539 BasicBlock *PTB = PBI->getSuccessor(0); 3540 BasicBlock *PFB = PBI->getSuccessor(1); 3541 BasicBlock *QTB = QBI->getSuccessor(0); 3542 BasicBlock *QFB = QBI->getSuccessor(1); 3543 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3544 3545 // Make sure we have a good guess for PostBB. If QTB's only successor is 3546 // QFB, then QFB is a better PostBB. 3547 if (QTB->getSingleSuccessor() == QFB) 3548 PostBB = QFB; 3549 3550 // If we couldn't find a good PostBB, stop. 3551 if (!PostBB) 3552 return false; 3553 3554 bool InvertPCond = false, InvertQCond = false; 3555 // Canonicalize fallthroughs to the true branches. 3556 if (PFB == QBI->getParent()) { 3557 std::swap(PFB, PTB); 3558 InvertPCond = true; 3559 } 3560 if (QFB == PostBB) { 3561 std::swap(QFB, QTB); 3562 InvertQCond = true; 3563 } 3564 3565 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3566 // and QFB may not. Model fallthroughs as a nullptr block. 3567 if (PTB == QBI->getParent()) 3568 PTB = nullptr; 3569 if (QTB == PostBB) 3570 QTB = nullptr; 3571 3572 // Legality bailouts. We must have at least the non-fallthrough blocks and 3573 // the post-dominating block, and the non-fallthroughs must only have one 3574 // predecessor. 3575 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3576 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3577 }; 3578 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3579 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3580 return false; 3581 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3582 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3583 return false; 3584 if (!QBI->getParent()->hasNUses(2)) 3585 return false; 3586 3587 // OK, this is a sequence of two diamonds or triangles. 3588 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3589 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3590 for (auto *BB : {PTB, PFB}) { 3591 if (!BB) 3592 continue; 3593 for (auto &I : *BB) 3594 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3595 PStoreAddresses.insert(SI->getPointerOperand()); 3596 } 3597 for (auto *BB : {QTB, QFB}) { 3598 if (!BB) 3599 continue; 3600 for (auto &I : *BB) 3601 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3602 QStoreAddresses.insert(SI->getPointerOperand()); 3603 } 3604 3605 set_intersect(PStoreAddresses, QStoreAddresses); 3606 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3607 // clear what it contains. 3608 auto &CommonAddresses = PStoreAddresses; 3609 3610 bool Changed = false; 3611 for (auto *Address : CommonAddresses) 3612 Changed |= 3613 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3614 InvertPCond, InvertQCond, DTU, DL, TTI); 3615 return Changed; 3616 } 3617 3618 /// If the previous block ended with a widenable branch, determine if reusing 3619 /// the target block is profitable and legal. This will have the effect of 3620 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3621 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3622 DomTreeUpdater *DTU) { 3623 // TODO: This can be generalized in two important ways: 3624 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3625 // values from the PBI edge. 3626 // 2) We can sink side effecting instructions into BI's fallthrough 3627 // successor provided they doesn't contribute to computation of 3628 // BI's condition. 3629 Value *CondWB, *WC; 3630 BasicBlock *IfTrueBB, *IfFalseBB; 3631 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3632 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3633 return false; 3634 if (!IfFalseBB->phis().empty()) 3635 return false; // TODO 3636 // Use lambda to lazily compute expensive condition after cheap ones. 3637 auto NoSideEffects = [](BasicBlock &BB) { 3638 return !llvm::any_of(BB, [](const Instruction &I) { 3639 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3640 }); 3641 }; 3642 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3643 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3644 NoSideEffects(*BI->getParent())) { 3645 auto *OldSuccessor = BI->getSuccessor(1); 3646 OldSuccessor->removePredecessor(BI->getParent()); 3647 BI->setSuccessor(1, IfFalseBB); 3648 if (DTU) 3649 DTU->applyUpdates( 3650 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3651 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3652 return true; 3653 } 3654 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3655 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3656 NoSideEffects(*BI->getParent())) { 3657 auto *OldSuccessor = BI->getSuccessor(0); 3658 OldSuccessor->removePredecessor(BI->getParent()); 3659 BI->setSuccessor(0, IfFalseBB); 3660 if (DTU) 3661 DTU->applyUpdates( 3662 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3663 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3664 return true; 3665 } 3666 return false; 3667 } 3668 3669 /// If we have a conditional branch as a predecessor of another block, 3670 /// this function tries to simplify it. We know 3671 /// that PBI and BI are both conditional branches, and BI is in one of the 3672 /// successor blocks of PBI - PBI branches to BI. 3673 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3674 DomTreeUpdater *DTU, 3675 const DataLayout &DL, 3676 const TargetTransformInfo &TTI) { 3677 assert(PBI->isConditional() && BI->isConditional()); 3678 BasicBlock *BB = BI->getParent(); 3679 3680 // If this block ends with a branch instruction, and if there is a 3681 // predecessor that ends on a branch of the same condition, make 3682 // this conditional branch redundant. 3683 if (PBI->getCondition() == BI->getCondition() && 3684 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3685 // Okay, the outcome of this conditional branch is statically 3686 // knowable. If this block had a single pred, handle specially. 3687 if (BB->getSinglePredecessor()) { 3688 // Turn this into a branch on constant. 3689 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3690 BI->setCondition( 3691 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3692 return true; // Nuke the branch on constant. 3693 } 3694 3695 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3696 // in the constant and simplify the block result. Subsequent passes of 3697 // simplifycfg will thread the block. 3698 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3699 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3700 PHINode *NewPN = PHINode::Create( 3701 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3702 BI->getCondition()->getName() + ".pr", &BB->front()); 3703 // Okay, we're going to insert the PHI node. Since PBI is not the only 3704 // predecessor, compute the PHI'd conditional value for all of the preds. 3705 // Any predecessor where the condition is not computable we keep symbolic. 3706 for (pred_iterator PI = PB; PI != PE; ++PI) { 3707 BasicBlock *P = *PI; 3708 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3709 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3710 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3711 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3712 NewPN->addIncoming( 3713 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3714 P); 3715 } else { 3716 NewPN->addIncoming(BI->getCondition(), P); 3717 } 3718 } 3719 3720 BI->setCondition(NewPN); 3721 return true; 3722 } 3723 } 3724 3725 // If the previous block ended with a widenable branch, determine if reusing 3726 // the target block is profitable and legal. This will have the effect of 3727 // "widening" PBI, but doesn't require us to reason about hosting safety. 3728 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3729 return true; 3730 3731 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3732 if (CE->canTrap()) 3733 return false; 3734 3735 // If both branches are conditional and both contain stores to the same 3736 // address, remove the stores from the conditionals and create a conditional 3737 // merged store at the end. 3738 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3739 return true; 3740 3741 // If this is a conditional branch in an empty block, and if any 3742 // predecessors are a conditional branch to one of our destinations, 3743 // fold the conditions into logical ops and one cond br. 3744 3745 // Ignore dbg intrinsics. 3746 if (&*BB->instructionsWithoutDebug().begin() != BI) 3747 return false; 3748 3749 int PBIOp, BIOp; 3750 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3751 PBIOp = 0; 3752 BIOp = 0; 3753 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3754 PBIOp = 0; 3755 BIOp = 1; 3756 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3757 PBIOp = 1; 3758 BIOp = 0; 3759 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3760 PBIOp = 1; 3761 BIOp = 1; 3762 } else { 3763 return false; 3764 } 3765 3766 // Check to make sure that the other destination of this branch 3767 // isn't BB itself. If so, this is an infinite loop that will 3768 // keep getting unwound. 3769 if (PBI->getSuccessor(PBIOp) == BB) 3770 return false; 3771 3772 // Do not perform this transformation if it would require 3773 // insertion of a large number of select instructions. For targets 3774 // without predication/cmovs, this is a big pessimization. 3775 3776 // Also do not perform this transformation if any phi node in the common 3777 // destination block can trap when reached by BB or PBB (PR17073). In that 3778 // case, it would be unsafe to hoist the operation into a select instruction. 3779 3780 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3781 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3782 unsigned NumPhis = 0; 3783 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3784 ++II, ++NumPhis) { 3785 if (NumPhis > 2) // Disable this xform. 3786 return false; 3787 3788 PHINode *PN = cast<PHINode>(II); 3789 Value *BIV = PN->getIncomingValueForBlock(BB); 3790 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3791 if (CE->canTrap()) 3792 return false; 3793 3794 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3795 Value *PBIV = PN->getIncomingValue(PBBIdx); 3796 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3797 if (CE->canTrap()) 3798 return false; 3799 } 3800 3801 // Finally, if everything is ok, fold the branches to logical ops. 3802 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3803 3804 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3805 << "AND: " << *BI->getParent()); 3806 3807 SmallVector<DominatorTree::UpdateType, 5> Updates; 3808 3809 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3810 // branch in it, where one edge (OtherDest) goes back to itself but the other 3811 // exits. We don't *know* that the program avoids the infinite loop 3812 // (even though that seems likely). If we do this xform naively, we'll end up 3813 // recursively unpeeling the loop. Since we know that (after the xform is 3814 // done) that the block *is* infinite if reached, we just make it an obviously 3815 // infinite loop with no cond branch. 3816 if (OtherDest == BB) { 3817 // Insert it at the end of the function, because it's either code, 3818 // or it won't matter if it's hot. :) 3819 BasicBlock *InfLoopBlock = 3820 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3821 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3822 if (DTU) 3823 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3824 OtherDest = InfLoopBlock; 3825 } 3826 3827 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3828 3829 // BI may have other predecessors. Because of this, we leave 3830 // it alone, but modify PBI. 3831 3832 // Make sure we get to CommonDest on True&True directions. 3833 Value *PBICond = PBI->getCondition(); 3834 IRBuilder<NoFolder> Builder(PBI); 3835 if (PBIOp) 3836 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3837 3838 Value *BICond = BI->getCondition(); 3839 if (BIOp) 3840 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3841 3842 // Merge the conditions. 3843 Value *Cond = 3844 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 3845 3846 // Modify PBI to branch on the new condition to the new dests. 3847 PBI->setCondition(Cond); 3848 PBI->setSuccessor(0, CommonDest); 3849 PBI->setSuccessor(1, OtherDest); 3850 3851 if (DTU) { 3852 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3853 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3854 3855 DTU->applyUpdates(Updates); 3856 } 3857 3858 // Update branch weight for PBI. 3859 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3860 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3861 bool HasWeights = 3862 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3863 SuccTrueWeight, SuccFalseWeight); 3864 if (HasWeights) { 3865 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3866 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3867 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3868 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3869 // The weight to CommonDest should be PredCommon * SuccTotal + 3870 // PredOther * SuccCommon. 3871 // The weight to OtherDest should be PredOther * SuccOther. 3872 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3873 PredOther * SuccCommon, 3874 PredOther * SuccOther}; 3875 // Halve the weights if any of them cannot fit in an uint32_t 3876 FitWeights(NewWeights); 3877 3878 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3879 } 3880 3881 // OtherDest may have phi nodes. If so, add an entry from PBI's 3882 // block that are identical to the entries for BI's block. 3883 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3884 3885 // We know that the CommonDest already had an edge from PBI to 3886 // it. If it has PHIs though, the PHIs may have different 3887 // entries for BB and PBI's BB. If so, insert a select to make 3888 // them agree. 3889 for (PHINode &PN : CommonDest->phis()) { 3890 Value *BIV = PN.getIncomingValueForBlock(BB); 3891 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3892 Value *PBIV = PN.getIncomingValue(PBBIdx); 3893 if (BIV != PBIV) { 3894 // Insert a select in PBI to pick the right value. 3895 SelectInst *NV = cast<SelectInst>( 3896 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3897 PN.setIncomingValue(PBBIdx, NV); 3898 // Although the select has the same condition as PBI, the original branch 3899 // weights for PBI do not apply to the new select because the select's 3900 // 'logical' edges are incoming edges of the phi that is eliminated, not 3901 // the outgoing edges of PBI. 3902 if (HasWeights) { 3903 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3904 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3905 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3906 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3907 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3908 // The weight to PredOtherDest should be PredOther * SuccCommon. 3909 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3910 PredOther * SuccCommon}; 3911 3912 FitWeights(NewWeights); 3913 3914 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3915 } 3916 } 3917 } 3918 3919 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3920 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3921 3922 // This basic block is probably dead. We know it has at least 3923 // one fewer predecessor. 3924 return true; 3925 } 3926 3927 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3928 // true or to FalseBB if Cond is false. 3929 // Takes care of updating the successors and removing the old terminator. 3930 // Also makes sure not to introduce new successors by assuming that edges to 3931 // non-successor TrueBBs and FalseBBs aren't reachable. 3932 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3933 Value *Cond, BasicBlock *TrueBB, 3934 BasicBlock *FalseBB, 3935 uint32_t TrueWeight, 3936 uint32_t FalseWeight) { 3937 auto *BB = OldTerm->getParent(); 3938 // Remove any superfluous successor edges from the CFG. 3939 // First, figure out which successors to preserve. 3940 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3941 // successor. 3942 BasicBlock *KeepEdge1 = TrueBB; 3943 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3944 3945 SmallPtrSet<BasicBlock *, 2> RemovedSuccessors; 3946 3947 // Then remove the rest. 3948 for (BasicBlock *Succ : successors(OldTerm)) { 3949 // Make sure only to keep exactly one copy of each edge. 3950 if (Succ == KeepEdge1) 3951 KeepEdge1 = nullptr; 3952 else if (Succ == KeepEdge2) 3953 KeepEdge2 = nullptr; 3954 else { 3955 Succ->removePredecessor(BB, 3956 /*KeepOneInputPHIs=*/true); 3957 3958 if (Succ != TrueBB && Succ != FalseBB) 3959 RemovedSuccessors.insert(Succ); 3960 } 3961 } 3962 3963 IRBuilder<> Builder(OldTerm); 3964 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3965 3966 // Insert an appropriate new terminator. 3967 if (!KeepEdge1 && !KeepEdge2) { 3968 if (TrueBB == FalseBB) { 3969 // We were only looking for one successor, and it was present. 3970 // Create an unconditional branch to it. 3971 Builder.CreateBr(TrueBB); 3972 } else { 3973 // We found both of the successors we were looking for. 3974 // Create a conditional branch sharing the condition of the select. 3975 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3976 if (TrueWeight != FalseWeight) 3977 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3978 } 3979 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3980 // Neither of the selected blocks were successors, so this 3981 // terminator must be unreachable. 3982 new UnreachableInst(OldTerm->getContext(), OldTerm); 3983 } else { 3984 // One of the selected values was a successor, but the other wasn't. 3985 // Insert an unconditional branch to the one that was found; 3986 // the edge to the one that wasn't must be unreachable. 3987 if (!KeepEdge1) { 3988 // Only TrueBB was found. 3989 Builder.CreateBr(TrueBB); 3990 } else { 3991 // Only FalseBB was found. 3992 Builder.CreateBr(FalseBB); 3993 } 3994 } 3995 3996 EraseTerminatorAndDCECond(OldTerm); 3997 3998 if (DTU) { 3999 SmallVector<DominatorTree::UpdateType, 2> Updates; 4000 Updates.reserve(RemovedSuccessors.size()); 4001 for (auto *RemovedSuccessor : RemovedSuccessors) 4002 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4003 DTU->applyUpdates(Updates); 4004 } 4005 4006 return true; 4007 } 4008 4009 // Replaces 4010 // (switch (select cond, X, Y)) on constant X, Y 4011 // with a branch - conditional if X and Y lead to distinct BBs, 4012 // unconditional otherwise. 4013 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4014 SelectInst *Select) { 4015 // Check for constant integer values in the select. 4016 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4017 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4018 if (!TrueVal || !FalseVal) 4019 return false; 4020 4021 // Find the relevant condition and destinations. 4022 Value *Condition = Select->getCondition(); 4023 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4024 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4025 4026 // Get weight for TrueBB and FalseBB. 4027 uint32_t TrueWeight = 0, FalseWeight = 0; 4028 SmallVector<uint64_t, 8> Weights; 4029 bool HasWeights = HasBranchWeights(SI); 4030 if (HasWeights) { 4031 GetBranchWeights(SI, Weights); 4032 if (Weights.size() == 1 + SI->getNumCases()) { 4033 TrueWeight = 4034 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4035 FalseWeight = 4036 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4037 } 4038 } 4039 4040 // Perform the actual simplification. 4041 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4042 FalseWeight); 4043 } 4044 4045 // Replaces 4046 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4047 // blockaddress(@fn, BlockB))) 4048 // with 4049 // (br cond, BlockA, BlockB). 4050 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4051 SelectInst *SI) { 4052 // Check that both operands of the select are block addresses. 4053 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4054 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4055 if (!TBA || !FBA) 4056 return false; 4057 4058 // Extract the actual blocks. 4059 BasicBlock *TrueBB = TBA->getBasicBlock(); 4060 BasicBlock *FalseBB = FBA->getBasicBlock(); 4061 4062 // Perform the actual simplification. 4063 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4064 0); 4065 } 4066 4067 /// This is called when we find an icmp instruction 4068 /// (a seteq/setne with a constant) as the only instruction in a 4069 /// block that ends with an uncond branch. We are looking for a very specific 4070 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4071 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4072 /// default value goes to an uncond block with a seteq in it, we get something 4073 /// like: 4074 /// 4075 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4076 /// DEFAULT: 4077 /// %tmp = icmp eq i8 %A, 92 4078 /// br label %end 4079 /// end: 4080 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4081 /// 4082 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4083 /// the PHI, merging the third icmp into the switch. 4084 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4085 ICmpInst *ICI, IRBuilder<> &Builder) { 4086 BasicBlock *BB = ICI->getParent(); 4087 4088 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4089 // complex. 4090 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4091 return false; 4092 4093 Value *V = ICI->getOperand(0); 4094 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4095 4096 // The pattern we're looking for is where our only predecessor is a switch on 4097 // 'V' and this block is the default case for the switch. In this case we can 4098 // fold the compared value into the switch to simplify things. 4099 BasicBlock *Pred = BB->getSinglePredecessor(); 4100 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4101 return false; 4102 4103 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4104 if (SI->getCondition() != V) 4105 return false; 4106 4107 // If BB is reachable on a non-default case, then we simply know the value of 4108 // V in this block. Substitute it and constant fold the icmp instruction 4109 // away. 4110 if (SI->getDefaultDest() != BB) { 4111 ConstantInt *VVal = SI->findCaseDest(BB); 4112 assert(VVal && "Should have a unique destination value"); 4113 ICI->setOperand(0, VVal); 4114 4115 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 4116 ICI->replaceAllUsesWith(V); 4117 ICI->eraseFromParent(); 4118 } 4119 // BB is now empty, so it is likely to simplify away. 4120 return requestResimplify(); 4121 } 4122 4123 // Ok, the block is reachable from the default dest. If the constant we're 4124 // comparing exists in one of the other edges, then we can constant fold ICI 4125 // and zap it. 4126 if (SI->findCaseValue(Cst) != SI->case_default()) { 4127 Value *V; 4128 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4129 V = ConstantInt::getFalse(BB->getContext()); 4130 else 4131 V = ConstantInt::getTrue(BB->getContext()); 4132 4133 ICI->replaceAllUsesWith(V); 4134 ICI->eraseFromParent(); 4135 // BB is now empty, so it is likely to simplify away. 4136 return requestResimplify(); 4137 } 4138 4139 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4140 // the block. 4141 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4142 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4143 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4144 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4145 return false; 4146 4147 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4148 // true in the PHI. 4149 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4150 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4151 4152 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4153 std::swap(DefaultCst, NewCst); 4154 4155 // Replace ICI (which is used by the PHI for the default value) with true or 4156 // false depending on if it is EQ or NE. 4157 ICI->replaceAllUsesWith(DefaultCst); 4158 ICI->eraseFromParent(); 4159 4160 SmallVector<DominatorTree::UpdateType, 2> Updates; 4161 4162 // Okay, the switch goes to this block on a default value. Add an edge from 4163 // the switch to the merge point on the compared value. 4164 BasicBlock *NewBB = 4165 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4166 { 4167 SwitchInstProfUpdateWrapper SIW(*SI); 4168 auto W0 = SIW.getSuccessorWeight(0); 4169 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4170 if (W0) { 4171 NewW = ((uint64_t(*W0) + 1) >> 1); 4172 SIW.setSuccessorWeight(0, *NewW); 4173 } 4174 SIW.addCase(Cst, NewBB, NewW); 4175 if (DTU) 4176 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4177 } 4178 4179 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4180 Builder.SetInsertPoint(NewBB); 4181 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4182 Builder.CreateBr(SuccBlock); 4183 PHIUse->addIncoming(NewCst, NewBB); 4184 if (DTU) { 4185 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4186 DTU->applyUpdates(Updates); 4187 } 4188 return true; 4189 } 4190 4191 /// The specified branch is a conditional branch. 4192 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4193 /// fold it into a switch instruction if so. 4194 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4195 IRBuilder<> &Builder, 4196 const DataLayout &DL) { 4197 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4198 if (!Cond) 4199 return false; 4200 4201 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4202 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4203 // 'setne's and'ed together, collect them. 4204 4205 // Try to gather values from a chain of and/or to be turned into a switch 4206 ConstantComparesGatherer ConstantCompare(Cond, DL); 4207 // Unpack the result 4208 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4209 Value *CompVal = ConstantCompare.CompValue; 4210 unsigned UsedICmps = ConstantCompare.UsedICmps; 4211 Value *ExtraCase = ConstantCompare.Extra; 4212 4213 // If we didn't have a multiply compared value, fail. 4214 if (!CompVal) 4215 return false; 4216 4217 // Avoid turning single icmps into a switch. 4218 if (UsedICmps <= 1) 4219 return false; 4220 4221 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4222 4223 // There might be duplicate constants in the list, which the switch 4224 // instruction can't handle, remove them now. 4225 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4226 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4227 4228 // If Extra was used, we require at least two switch values to do the 4229 // transformation. A switch with one value is just a conditional branch. 4230 if (ExtraCase && Values.size() < 2) 4231 return false; 4232 4233 // TODO: Preserve branch weight metadata, similarly to how 4234 // FoldValueComparisonIntoPredecessors preserves it. 4235 4236 // Figure out which block is which destination. 4237 BasicBlock *DefaultBB = BI->getSuccessor(1); 4238 BasicBlock *EdgeBB = BI->getSuccessor(0); 4239 if (!TrueWhenEqual) 4240 std::swap(DefaultBB, EdgeBB); 4241 4242 BasicBlock *BB = BI->getParent(); 4243 4244 // MSAN does not like undefs as branch condition which can be introduced 4245 // with "explicit branch". 4246 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4247 return false; 4248 4249 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4250 << " cases into SWITCH. BB is:\n" 4251 << *BB); 4252 4253 SmallVector<DominatorTree::UpdateType, 2> Updates; 4254 4255 // If there are any extra values that couldn't be folded into the switch 4256 // then we evaluate them with an explicit branch first. Split the block 4257 // right before the condbr to handle it. 4258 if (ExtraCase) { 4259 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4260 /*MSSAU=*/nullptr, "switch.early.test"); 4261 4262 // Remove the uncond branch added to the old block. 4263 Instruction *OldTI = BB->getTerminator(); 4264 Builder.SetInsertPoint(OldTI); 4265 4266 if (TrueWhenEqual) 4267 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4268 else 4269 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4270 4271 OldTI->eraseFromParent(); 4272 4273 if (DTU) 4274 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4275 4276 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4277 // for the edge we just added. 4278 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4279 4280 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4281 << "\nEXTRABB = " << *BB); 4282 BB = NewBB; 4283 } 4284 4285 Builder.SetInsertPoint(BI); 4286 // Convert pointer to int before we switch. 4287 if (CompVal->getType()->isPointerTy()) { 4288 CompVal = Builder.CreatePtrToInt( 4289 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4290 } 4291 4292 // Create the new switch instruction now. 4293 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4294 4295 // Add all of the 'cases' to the switch instruction. 4296 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4297 New->addCase(Values[i], EdgeBB); 4298 4299 // We added edges from PI to the EdgeBB. As such, if there were any 4300 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4301 // the number of edges added. 4302 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4303 PHINode *PN = cast<PHINode>(BBI); 4304 Value *InVal = PN->getIncomingValueForBlock(BB); 4305 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4306 PN->addIncoming(InVal, BB); 4307 } 4308 4309 // Erase the old branch instruction. 4310 EraseTerminatorAndDCECond(BI); 4311 if (DTU) 4312 DTU->applyUpdates(Updates); 4313 4314 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4315 return true; 4316 } 4317 4318 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4319 if (isa<PHINode>(RI->getValue())) 4320 return simplifyCommonResume(RI); 4321 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4322 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4323 // The resume must unwind the exception that caused control to branch here. 4324 return simplifySingleResume(RI); 4325 4326 return false; 4327 } 4328 4329 // Check if cleanup block is empty 4330 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4331 for (Instruction &I : R) { 4332 auto *II = dyn_cast<IntrinsicInst>(&I); 4333 if (!II) 4334 return false; 4335 4336 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4337 switch (IntrinsicID) { 4338 case Intrinsic::dbg_declare: 4339 case Intrinsic::dbg_value: 4340 case Intrinsic::dbg_label: 4341 case Intrinsic::lifetime_end: 4342 break; 4343 default: 4344 return false; 4345 } 4346 } 4347 return true; 4348 } 4349 4350 // Simplify resume that is shared by several landing pads (phi of landing pad). 4351 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4352 BasicBlock *BB = RI->getParent(); 4353 4354 // Check that there are no other instructions except for debug and lifetime 4355 // intrinsics between the phi's and resume instruction. 4356 if (!isCleanupBlockEmpty( 4357 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4358 return false; 4359 4360 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4361 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4362 4363 // Check incoming blocks to see if any of them are trivial. 4364 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4365 Idx++) { 4366 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4367 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4368 4369 // If the block has other successors, we can not delete it because 4370 // it has other dependents. 4371 if (IncomingBB->getUniqueSuccessor() != BB) 4372 continue; 4373 4374 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4375 // Not the landing pad that caused the control to branch here. 4376 if (IncomingValue != LandingPad) 4377 continue; 4378 4379 if (isCleanupBlockEmpty( 4380 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4381 TrivialUnwindBlocks.insert(IncomingBB); 4382 } 4383 4384 // If no trivial unwind blocks, don't do any simplifications. 4385 if (TrivialUnwindBlocks.empty()) 4386 return false; 4387 4388 // Turn all invokes that unwind here into calls. 4389 for (auto *TrivialBB : TrivialUnwindBlocks) { 4390 // Blocks that will be simplified should be removed from the phi node. 4391 // Note there could be multiple edges to the resume block, and we need 4392 // to remove them all. 4393 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4394 BB->removePredecessor(TrivialBB, true); 4395 4396 for (BasicBlock *Pred : 4397 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4398 removeUnwindEdge(Pred, DTU); 4399 ++NumInvokes; 4400 } 4401 4402 // In each SimplifyCFG run, only the current processed block can be erased. 4403 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4404 // of erasing TrivialBB, we only remove the branch to the common resume 4405 // block so that we can later erase the resume block since it has no 4406 // predecessors. 4407 TrivialBB->getTerminator()->eraseFromParent(); 4408 new UnreachableInst(RI->getContext(), TrivialBB); 4409 if (DTU) 4410 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4411 } 4412 4413 // Delete the resume block if all its predecessors have been removed. 4414 if (pred_empty(BB)) 4415 DeleteDeadBlock(BB, DTU); 4416 4417 return !TrivialUnwindBlocks.empty(); 4418 } 4419 4420 // Simplify resume that is only used by a single (non-phi) landing pad. 4421 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4422 BasicBlock *BB = RI->getParent(); 4423 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4424 assert(RI->getValue() == LPInst && 4425 "Resume must unwind the exception that caused control to here"); 4426 4427 // Check that there are no other instructions except for debug intrinsics. 4428 if (!isCleanupBlockEmpty( 4429 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4430 return false; 4431 4432 // Turn all invokes that unwind here into calls and delete the basic block. 4433 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4434 removeUnwindEdge(Pred, DTU); 4435 ++NumInvokes; 4436 } 4437 4438 // The landingpad is now unreachable. Zap it. 4439 DeleteDeadBlock(BB, DTU); 4440 return true; 4441 } 4442 4443 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4444 // If this is a trivial cleanup pad that executes no instructions, it can be 4445 // eliminated. If the cleanup pad continues to the caller, any predecessor 4446 // that is an EH pad will be updated to continue to the caller and any 4447 // predecessor that terminates with an invoke instruction will have its invoke 4448 // instruction converted to a call instruction. If the cleanup pad being 4449 // simplified does not continue to the caller, each predecessor will be 4450 // updated to continue to the unwind destination of the cleanup pad being 4451 // simplified. 4452 BasicBlock *BB = RI->getParent(); 4453 CleanupPadInst *CPInst = RI->getCleanupPad(); 4454 if (CPInst->getParent() != BB) 4455 // This isn't an empty cleanup. 4456 return false; 4457 4458 // We cannot kill the pad if it has multiple uses. This typically arises 4459 // from unreachable basic blocks. 4460 if (!CPInst->hasOneUse()) 4461 return false; 4462 4463 // Check that there are no other instructions except for benign intrinsics. 4464 if (!isCleanupBlockEmpty( 4465 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4466 return false; 4467 4468 // If the cleanup return we are simplifying unwinds to the caller, this will 4469 // set UnwindDest to nullptr. 4470 BasicBlock *UnwindDest = RI->getUnwindDest(); 4471 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4472 4473 // We're about to remove BB from the control flow. Before we do, sink any 4474 // PHINodes into the unwind destination. Doing this before changing the 4475 // control flow avoids some potentially slow checks, since we can currently 4476 // be certain that UnwindDest and BB have no common predecessors (since they 4477 // are both EH pads). 4478 if (UnwindDest) { 4479 // First, go through the PHI nodes in UnwindDest and update any nodes that 4480 // reference the block we are removing 4481 for (PHINode &DestPN : UnwindDest->phis()) { 4482 int Idx = DestPN.getBasicBlockIndex(BB); 4483 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4484 assert(Idx != -1); 4485 // This PHI node has an incoming value that corresponds to a control 4486 // path through the cleanup pad we are removing. If the incoming 4487 // value is in the cleanup pad, it must be a PHINode (because we 4488 // verified above that the block is otherwise empty). Otherwise, the 4489 // value is either a constant or a value that dominates the cleanup 4490 // pad being removed. 4491 // 4492 // Because BB and UnwindDest are both EH pads, all of their 4493 // predecessors must unwind to these blocks, and since no instruction 4494 // can have multiple unwind destinations, there will be no overlap in 4495 // incoming blocks between SrcPN and DestPN. 4496 Value *SrcVal = DestPN.getIncomingValue(Idx); 4497 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4498 4499 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 4500 for (auto *Pred : predecessors(BB)) { 4501 Value *Incoming = 4502 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 4503 DestPN.addIncoming(Incoming, Pred); 4504 } 4505 } 4506 4507 // Sink any remaining PHI nodes directly into UnwindDest. 4508 Instruction *InsertPt = DestEHPad; 4509 for (PHINode &PN : make_early_inc_range(BB->phis())) { 4510 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 4511 // If the PHI node has no uses or all of its uses are in this basic 4512 // block (meaning they are debug or lifetime intrinsics), just leave 4513 // it. It will be erased when we erase BB below. 4514 continue; 4515 4516 // Otherwise, sink this PHI node into UnwindDest. 4517 // Any predecessors to UnwindDest which are not already represented 4518 // must be back edges which inherit the value from the path through 4519 // BB. In this case, the PHI value must reference itself. 4520 for (auto *pred : predecessors(UnwindDest)) 4521 if (pred != BB) 4522 PN.addIncoming(&PN, pred); 4523 PN.moveBefore(InsertPt); 4524 // Also, add a dummy incoming value for the original BB itself, 4525 // so that the PHI is well-formed until we drop said predecessor. 4526 PN.addIncoming(UndefValue::get(PN.getType()), BB); 4527 } 4528 } 4529 4530 std::vector<DominatorTree::UpdateType> Updates; 4531 4532 // We use make_early_inc_range here because we will remove all predecessors. 4533 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4534 if (UnwindDest == nullptr) { 4535 if (DTU) { 4536 DTU->applyUpdates(Updates); 4537 Updates.clear(); 4538 } 4539 removeUnwindEdge(PredBB, DTU); 4540 ++NumInvokes; 4541 } else { 4542 BB->removePredecessor(PredBB); 4543 Instruction *TI = PredBB->getTerminator(); 4544 TI->replaceUsesOfWith(BB, UnwindDest); 4545 if (DTU) { 4546 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4547 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4548 } 4549 } 4550 } 4551 4552 if (DTU) 4553 DTU->applyUpdates(Updates); 4554 4555 DeleteDeadBlock(BB, DTU); 4556 4557 return true; 4558 } 4559 4560 // Try to merge two cleanuppads together. 4561 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4562 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4563 // with. 4564 BasicBlock *UnwindDest = RI->getUnwindDest(); 4565 if (!UnwindDest) 4566 return false; 4567 4568 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4569 // be safe to merge without code duplication. 4570 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4571 return false; 4572 4573 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4574 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4575 if (!SuccessorCleanupPad) 4576 return false; 4577 4578 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4579 // Replace any uses of the successor cleanupad with the predecessor pad 4580 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4581 // funclet bundle operands. 4582 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4583 // Remove the old cleanuppad. 4584 SuccessorCleanupPad->eraseFromParent(); 4585 // Now, we simply replace the cleanupret with a branch to the unwind 4586 // destination. 4587 BranchInst::Create(UnwindDest, RI->getParent()); 4588 RI->eraseFromParent(); 4589 4590 return true; 4591 } 4592 4593 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4594 // It is possible to transiantly have an undef cleanuppad operand because we 4595 // have deleted some, but not all, dead blocks. 4596 // Eventually, this block will be deleted. 4597 if (isa<UndefValue>(RI->getOperand(0))) 4598 return false; 4599 4600 if (mergeCleanupPad(RI)) 4601 return true; 4602 4603 if (removeEmptyCleanup(RI, DTU)) 4604 return true; 4605 4606 return false; 4607 } 4608 4609 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4610 BasicBlock *BB = RI->getParent(); 4611 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4612 return false; 4613 4614 // Find predecessors that end with branches. 4615 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4616 SmallVector<BranchInst *, 8> CondBranchPreds; 4617 for (BasicBlock *P : predecessors(BB)) { 4618 Instruction *PTI = P->getTerminator(); 4619 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4620 if (BI->isUnconditional()) 4621 UncondBranchPreds.push_back(P); 4622 else 4623 CondBranchPreds.push_back(BI); 4624 } 4625 } 4626 4627 // If we found some, do the transformation! 4628 if (!UncondBranchPreds.empty() && DupRet) { 4629 while (!UncondBranchPreds.empty()) { 4630 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4631 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4632 << "INTO UNCOND BRANCH PRED: " << *Pred); 4633 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4634 } 4635 4636 // If we eliminated all predecessors of the block, delete the block now. 4637 if (pred_empty(BB)) 4638 DeleteDeadBlock(BB, DTU); 4639 4640 return true; 4641 } 4642 4643 // Check out all of the conditional branches going to this return 4644 // instruction. If any of them just select between returns, change the 4645 // branch itself into a select/return pair. 4646 while (!CondBranchPreds.empty()) { 4647 BranchInst *BI = CondBranchPreds.pop_back_val(); 4648 4649 // Check to see if the non-BB successor is also a return block. 4650 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4651 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4652 SimplifyCondBranchToTwoReturns(BI, Builder)) 4653 return true; 4654 } 4655 return false; 4656 } 4657 4658 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4659 BasicBlock *BB = UI->getParent(); 4660 4661 bool Changed = false; 4662 4663 // If there are any instructions immediately before the unreachable that can 4664 // be removed, do so. 4665 while (UI->getIterator() != BB->begin()) { 4666 BasicBlock::iterator BBI = UI->getIterator(); 4667 --BBI; 4668 // Do not delete instructions that can have side effects which might cause 4669 // the unreachable to not be reachable; specifically, calls and volatile 4670 // operations may have this effect. 4671 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4672 break; 4673 4674 if (BBI->mayHaveSideEffects()) { 4675 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4676 if (SI->isVolatile()) 4677 break; 4678 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4679 if (LI->isVolatile()) 4680 break; 4681 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4682 if (RMWI->isVolatile()) 4683 break; 4684 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4685 if (CXI->isVolatile()) 4686 break; 4687 } else if (isa<CatchPadInst>(BBI)) { 4688 // A catchpad may invoke exception object constructors and such, which 4689 // in some languages can be arbitrary code, so be conservative by 4690 // default. 4691 // For CoreCLR, it just involves a type test, so can be removed. 4692 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4693 EHPersonality::CoreCLR) 4694 break; 4695 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4696 !isa<LandingPadInst>(BBI)) { 4697 break; 4698 } 4699 // Note that deleting LandingPad's here is in fact okay, although it 4700 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4701 // all the predecessors of this block will be the unwind edges of Invokes, 4702 // and we can therefore guarantee this block will be erased. 4703 } 4704 4705 // Delete this instruction (any uses are guaranteed to be dead) 4706 if (!BBI->use_empty()) 4707 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4708 BBI->eraseFromParent(); 4709 Changed = true; 4710 } 4711 4712 // If the unreachable instruction is the first in the block, take a gander 4713 // at all of the predecessors of this instruction, and simplify them. 4714 if (&BB->front() != UI) 4715 return Changed; 4716 4717 std::vector<DominatorTree::UpdateType> Updates; 4718 4719 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4720 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4721 auto *Predecessor = Preds[i]; 4722 Instruction *TI = Predecessor->getTerminator(); 4723 IRBuilder<> Builder(TI); 4724 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4725 // We could either have a proper unconditional branch, 4726 // or a degenerate conditional branch with matching destinations. 4727 if (all_of(BI->successors(), 4728 [BB](auto *Successor) { return Successor == BB; })) { 4729 new UnreachableInst(TI->getContext(), TI); 4730 TI->eraseFromParent(); 4731 Changed = true; 4732 } else { 4733 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4734 Value* Cond = BI->getCondition(); 4735 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4736 "The destinations are guaranteed to be different here."); 4737 if (BI->getSuccessor(0) == BB) { 4738 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4739 Builder.CreateBr(BI->getSuccessor(1)); 4740 } else { 4741 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4742 Builder.CreateAssumption(Cond); 4743 Builder.CreateBr(BI->getSuccessor(0)); 4744 } 4745 EraseTerminatorAndDCECond(BI); 4746 Changed = true; 4747 } 4748 if (DTU) 4749 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4750 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4751 SwitchInstProfUpdateWrapper SU(*SI); 4752 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4753 if (i->getCaseSuccessor() != BB) { 4754 ++i; 4755 continue; 4756 } 4757 BB->removePredecessor(SU->getParent()); 4758 i = SU.removeCase(i); 4759 e = SU->case_end(); 4760 Changed = true; 4761 } 4762 // Note that the default destination can't be removed! 4763 if (DTU && SI->getDefaultDest() != BB) 4764 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4765 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4766 if (II->getUnwindDest() == BB) { 4767 if (DTU) { 4768 DTU->applyUpdates(Updates); 4769 Updates.clear(); 4770 } 4771 removeUnwindEdge(TI->getParent(), DTU); 4772 Changed = true; 4773 } 4774 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4775 if (CSI->getUnwindDest() == BB) { 4776 if (DTU) { 4777 DTU->applyUpdates(Updates); 4778 Updates.clear(); 4779 } 4780 removeUnwindEdge(TI->getParent(), DTU); 4781 Changed = true; 4782 continue; 4783 } 4784 4785 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4786 E = CSI->handler_end(); 4787 I != E; ++I) { 4788 if (*I == BB) { 4789 CSI->removeHandler(I); 4790 --I; 4791 --E; 4792 Changed = true; 4793 } 4794 } 4795 if (DTU) 4796 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4797 if (CSI->getNumHandlers() == 0) { 4798 if (CSI->hasUnwindDest()) { 4799 // Redirect all predecessors of the block containing CatchSwitchInst 4800 // to instead branch to the CatchSwitchInst's unwind destination. 4801 if (DTU) { 4802 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4803 Updates.push_back({DominatorTree::Insert, 4804 PredecessorOfPredecessor, 4805 CSI->getUnwindDest()}); 4806 Updates.push_back({DominatorTree::Delete, 4807 PredecessorOfPredecessor, Predecessor}); 4808 } 4809 } 4810 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4811 } else { 4812 // Rewrite all preds to unwind to caller (or from invoke to call). 4813 if (DTU) { 4814 DTU->applyUpdates(Updates); 4815 Updates.clear(); 4816 } 4817 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4818 for (BasicBlock *EHPred : EHPreds) 4819 removeUnwindEdge(EHPred, DTU); 4820 } 4821 // The catchswitch is no longer reachable. 4822 new UnreachableInst(CSI->getContext(), CSI); 4823 CSI->eraseFromParent(); 4824 Changed = true; 4825 } 4826 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4827 (void)CRI; 4828 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4829 "Expected to always have an unwind to BB."); 4830 if (DTU) 4831 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4832 new UnreachableInst(TI->getContext(), TI); 4833 TI->eraseFromParent(); 4834 Changed = true; 4835 } 4836 } 4837 4838 if (DTU) 4839 DTU->applyUpdates(Updates); 4840 4841 // If this block is now dead, remove it. 4842 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4843 DeleteDeadBlock(BB, DTU); 4844 return true; 4845 } 4846 4847 return Changed; 4848 } 4849 4850 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4851 assert(Cases.size() >= 1); 4852 4853 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4854 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4855 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4856 return false; 4857 } 4858 return true; 4859 } 4860 4861 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4862 DomTreeUpdater *DTU) { 4863 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4864 auto *BB = Switch->getParent(); 4865 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4866 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4867 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4868 Switch->setDefaultDest(&*NewDefaultBlock); 4869 if (DTU) 4870 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4871 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4872 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4873 SmallVector<DominatorTree::UpdateType, 2> Updates; 4874 if (DTU) 4875 for (auto *Successor : successors(NewDefaultBlock)) 4876 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4877 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4878 new UnreachableInst(Switch->getContext(), NewTerminator); 4879 EraseTerminatorAndDCECond(NewTerminator); 4880 if (DTU) 4881 DTU->applyUpdates(Updates); 4882 } 4883 4884 /// Turn a switch with two reachable destinations into an integer range 4885 /// comparison and branch. 4886 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4887 IRBuilder<> &Builder) { 4888 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4889 4890 bool HasDefault = 4891 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4892 4893 auto *BB = SI->getParent(); 4894 4895 // Partition the cases into two sets with different destinations. 4896 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4897 BasicBlock *DestB = nullptr; 4898 SmallVector<ConstantInt *, 16> CasesA; 4899 SmallVector<ConstantInt *, 16> CasesB; 4900 4901 for (auto Case : SI->cases()) { 4902 BasicBlock *Dest = Case.getCaseSuccessor(); 4903 if (!DestA) 4904 DestA = Dest; 4905 if (Dest == DestA) { 4906 CasesA.push_back(Case.getCaseValue()); 4907 continue; 4908 } 4909 if (!DestB) 4910 DestB = Dest; 4911 if (Dest == DestB) { 4912 CasesB.push_back(Case.getCaseValue()); 4913 continue; 4914 } 4915 return false; // More than two destinations. 4916 } 4917 4918 assert(DestA && DestB && 4919 "Single-destination switch should have been folded."); 4920 assert(DestA != DestB); 4921 assert(DestB != SI->getDefaultDest()); 4922 assert(!CasesB.empty() && "There must be non-default cases."); 4923 assert(!CasesA.empty() || HasDefault); 4924 4925 // Figure out if one of the sets of cases form a contiguous range. 4926 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4927 BasicBlock *ContiguousDest = nullptr; 4928 BasicBlock *OtherDest = nullptr; 4929 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4930 ContiguousCases = &CasesA; 4931 ContiguousDest = DestA; 4932 OtherDest = DestB; 4933 } else if (CasesAreContiguous(CasesB)) { 4934 ContiguousCases = &CasesB; 4935 ContiguousDest = DestB; 4936 OtherDest = DestA; 4937 } else 4938 return false; 4939 4940 // Start building the compare and branch. 4941 4942 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4943 Constant *NumCases = 4944 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4945 4946 Value *Sub = SI->getCondition(); 4947 if (!Offset->isNullValue()) 4948 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4949 4950 Value *Cmp; 4951 // If NumCases overflowed, then all possible values jump to the successor. 4952 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4953 Cmp = ConstantInt::getTrue(SI->getContext()); 4954 else 4955 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4956 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4957 4958 // Update weight for the newly-created conditional branch. 4959 if (HasBranchWeights(SI)) { 4960 SmallVector<uint64_t, 8> Weights; 4961 GetBranchWeights(SI, Weights); 4962 if (Weights.size() == 1 + SI->getNumCases()) { 4963 uint64_t TrueWeight = 0; 4964 uint64_t FalseWeight = 0; 4965 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4966 if (SI->getSuccessor(I) == ContiguousDest) 4967 TrueWeight += Weights[I]; 4968 else 4969 FalseWeight += Weights[I]; 4970 } 4971 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4972 TrueWeight /= 2; 4973 FalseWeight /= 2; 4974 } 4975 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4976 } 4977 } 4978 4979 // Prune obsolete incoming values off the successors' PHI nodes. 4980 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4981 unsigned PreviousEdges = ContiguousCases->size(); 4982 if (ContiguousDest == SI->getDefaultDest()) 4983 ++PreviousEdges; 4984 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4985 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4986 } 4987 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4988 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4989 if (OtherDest == SI->getDefaultDest()) 4990 ++PreviousEdges; 4991 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4992 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4993 } 4994 4995 // Clean up the default block - it may have phis or other instructions before 4996 // the unreachable terminator. 4997 if (!HasDefault) 4998 createUnreachableSwitchDefault(SI, DTU); 4999 5000 auto *UnreachableDefault = SI->getDefaultDest(); 5001 5002 // Drop the switch. 5003 SI->eraseFromParent(); 5004 5005 if (!HasDefault && DTU) 5006 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5007 5008 return true; 5009 } 5010 5011 /// Compute masked bits for the condition of a switch 5012 /// and use it to remove dead cases. 5013 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5014 AssumptionCache *AC, 5015 const DataLayout &DL) { 5016 Value *Cond = SI->getCondition(); 5017 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 5018 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5019 5020 // We can also eliminate cases by determining that their values are outside of 5021 // the limited range of the condition based on how many significant (non-sign) 5022 // bits are in the condition value. 5023 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 5024 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 5025 5026 // Gather dead cases. 5027 SmallVector<ConstantInt *, 8> DeadCases; 5028 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5029 for (auto &Case : SI->cases()) { 5030 auto *Successor = Case.getCaseSuccessor(); 5031 if (DTU) 5032 ++NumPerSuccessorCases[Successor]; 5033 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5034 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5035 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5036 DeadCases.push_back(Case.getCaseValue()); 5037 if (DTU) 5038 --NumPerSuccessorCases[Successor]; 5039 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5040 << " is dead.\n"); 5041 } 5042 } 5043 5044 // If we can prove that the cases must cover all possible values, the 5045 // default destination becomes dead and we can remove it. If we know some 5046 // of the bits in the value, we can use that to more precisely compute the 5047 // number of possible unique case values. 5048 bool HasDefault = 5049 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5050 const unsigned NumUnknownBits = 5051 Bits - (Known.Zero | Known.One).countPopulation(); 5052 assert(NumUnknownBits <= Bits); 5053 if (HasDefault && DeadCases.empty() && 5054 NumUnknownBits < 64 /* avoid overflow */ && 5055 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5056 createUnreachableSwitchDefault(SI, DTU); 5057 return true; 5058 } 5059 5060 if (DeadCases.empty()) 5061 return false; 5062 5063 SwitchInstProfUpdateWrapper SIW(*SI); 5064 for (ConstantInt *DeadCase : DeadCases) { 5065 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5066 assert(CaseI != SI->case_default() && 5067 "Case was not found. Probably mistake in DeadCases forming."); 5068 // Prune unused values from PHI nodes. 5069 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5070 SIW.removeCase(CaseI); 5071 } 5072 5073 if (DTU) { 5074 std::vector<DominatorTree::UpdateType> Updates; 5075 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 5076 if (I.second == 0) 5077 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 5078 DTU->applyUpdates(Updates); 5079 } 5080 5081 return true; 5082 } 5083 5084 /// If BB would be eligible for simplification by 5085 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5086 /// by an unconditional branch), look at the phi node for BB in the successor 5087 /// block and see if the incoming value is equal to CaseValue. If so, return 5088 /// the phi node, and set PhiIndex to BB's index in the phi node. 5089 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5090 BasicBlock *BB, int *PhiIndex) { 5091 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5092 return nullptr; // BB must be empty to be a candidate for simplification. 5093 if (!BB->getSinglePredecessor()) 5094 return nullptr; // BB must be dominated by the switch. 5095 5096 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5097 if (!Branch || !Branch->isUnconditional()) 5098 return nullptr; // Terminator must be unconditional branch. 5099 5100 BasicBlock *Succ = Branch->getSuccessor(0); 5101 5102 for (PHINode &PHI : Succ->phis()) { 5103 int Idx = PHI.getBasicBlockIndex(BB); 5104 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5105 5106 Value *InValue = PHI.getIncomingValue(Idx); 5107 if (InValue != CaseValue) 5108 continue; 5109 5110 *PhiIndex = Idx; 5111 return &PHI; 5112 } 5113 5114 return nullptr; 5115 } 5116 5117 /// Try to forward the condition of a switch instruction to a phi node 5118 /// dominated by the switch, if that would mean that some of the destination 5119 /// blocks of the switch can be folded away. Return true if a change is made. 5120 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5121 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5122 5123 ForwardingNodesMap ForwardingNodes; 5124 BasicBlock *SwitchBlock = SI->getParent(); 5125 bool Changed = false; 5126 for (auto &Case : SI->cases()) { 5127 ConstantInt *CaseValue = Case.getCaseValue(); 5128 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5129 5130 // Replace phi operands in successor blocks that are using the constant case 5131 // value rather than the switch condition variable: 5132 // switchbb: 5133 // switch i32 %x, label %default [ 5134 // i32 17, label %succ 5135 // ... 5136 // succ: 5137 // %r = phi i32 ... [ 17, %switchbb ] ... 5138 // --> 5139 // %r = phi i32 ... [ %x, %switchbb ] ... 5140 5141 for (PHINode &Phi : CaseDest->phis()) { 5142 // This only works if there is exactly 1 incoming edge from the switch to 5143 // a phi. If there is >1, that means multiple cases of the switch map to 1 5144 // value in the phi, and that phi value is not the switch condition. Thus, 5145 // this transform would not make sense (the phi would be invalid because 5146 // a phi can't have different incoming values from the same block). 5147 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5148 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5149 count(Phi.blocks(), SwitchBlock) == 1) { 5150 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5151 Changed = true; 5152 } 5153 } 5154 5155 // Collect phi nodes that are indirectly using this switch's case constants. 5156 int PhiIdx; 5157 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5158 ForwardingNodes[Phi].push_back(PhiIdx); 5159 } 5160 5161 for (auto &ForwardingNode : ForwardingNodes) { 5162 PHINode *Phi = ForwardingNode.first; 5163 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5164 if (Indexes.size() < 2) 5165 continue; 5166 5167 for (int Index : Indexes) 5168 Phi->setIncomingValue(Index, SI->getCondition()); 5169 Changed = true; 5170 } 5171 5172 return Changed; 5173 } 5174 5175 /// Return true if the backend will be able to handle 5176 /// initializing an array of constants like C. 5177 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5178 if (C->isThreadDependent()) 5179 return false; 5180 if (C->isDLLImportDependent()) 5181 return false; 5182 5183 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5184 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5185 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5186 return false; 5187 5188 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5189 if (!CE->isGEPWithNoNotionalOverIndexing()) 5190 return false; 5191 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5192 return false; 5193 } 5194 5195 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5196 return false; 5197 5198 return true; 5199 } 5200 5201 /// If V is a Constant, return it. Otherwise, try to look up 5202 /// its constant value in ConstantPool, returning 0 if it's not there. 5203 static Constant * 5204 LookupConstant(Value *V, 5205 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5206 if (Constant *C = dyn_cast<Constant>(V)) 5207 return C; 5208 return ConstantPool.lookup(V); 5209 } 5210 5211 /// Try to fold instruction I into a constant. This works for 5212 /// simple instructions such as binary operations where both operands are 5213 /// constant or can be replaced by constants from the ConstantPool. Returns the 5214 /// resulting constant on success, 0 otherwise. 5215 static Constant * 5216 ConstantFold(Instruction *I, const DataLayout &DL, 5217 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5218 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5219 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5220 if (!A) 5221 return nullptr; 5222 if (A->isAllOnesValue()) 5223 return LookupConstant(Select->getTrueValue(), ConstantPool); 5224 if (A->isNullValue()) 5225 return LookupConstant(Select->getFalseValue(), ConstantPool); 5226 return nullptr; 5227 } 5228 5229 SmallVector<Constant *, 4> COps; 5230 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5231 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5232 COps.push_back(A); 5233 else 5234 return nullptr; 5235 } 5236 5237 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5238 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5239 COps[1], DL); 5240 } 5241 5242 return ConstantFoldInstOperands(I, COps, DL); 5243 } 5244 5245 /// Try to determine the resulting constant values in phi nodes 5246 /// at the common destination basic block, *CommonDest, for one of the case 5247 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5248 /// case), of a switch instruction SI. 5249 static bool 5250 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5251 BasicBlock **CommonDest, 5252 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5253 const DataLayout &DL, const TargetTransformInfo &TTI) { 5254 // The block from which we enter the common destination. 5255 BasicBlock *Pred = SI->getParent(); 5256 5257 // If CaseDest is empty except for some side-effect free instructions through 5258 // which we can constant-propagate the CaseVal, continue to its successor. 5259 SmallDenseMap<Value *, Constant *> ConstantPool; 5260 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5261 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5262 if (I.isTerminator()) { 5263 // If the terminator is a simple branch, continue to the next block. 5264 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5265 return false; 5266 Pred = CaseDest; 5267 CaseDest = I.getSuccessor(0); 5268 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5269 // Instruction is side-effect free and constant. 5270 5271 // If the instruction has uses outside this block or a phi node slot for 5272 // the block, it is not safe to bypass the instruction since it would then 5273 // no longer dominate all its uses. 5274 for (auto &Use : I.uses()) { 5275 User *User = Use.getUser(); 5276 if (Instruction *I = dyn_cast<Instruction>(User)) 5277 if (I->getParent() == CaseDest) 5278 continue; 5279 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5280 if (Phi->getIncomingBlock(Use) == CaseDest) 5281 continue; 5282 return false; 5283 } 5284 5285 ConstantPool.insert(std::make_pair(&I, C)); 5286 } else { 5287 break; 5288 } 5289 } 5290 5291 // If we did not have a CommonDest before, use the current one. 5292 if (!*CommonDest) 5293 *CommonDest = CaseDest; 5294 // If the destination isn't the common one, abort. 5295 if (CaseDest != *CommonDest) 5296 return false; 5297 5298 // Get the values for this case from phi nodes in the destination block. 5299 for (PHINode &PHI : (*CommonDest)->phis()) { 5300 int Idx = PHI.getBasicBlockIndex(Pred); 5301 if (Idx == -1) 5302 continue; 5303 5304 Constant *ConstVal = 5305 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5306 if (!ConstVal) 5307 return false; 5308 5309 // Be conservative about which kinds of constants we support. 5310 if (!ValidLookupTableConstant(ConstVal, TTI)) 5311 return false; 5312 5313 Res.push_back(std::make_pair(&PHI, ConstVal)); 5314 } 5315 5316 return Res.size() > 0; 5317 } 5318 5319 // Helper function used to add CaseVal to the list of cases that generate 5320 // Result. Returns the updated number of cases that generate this result. 5321 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5322 SwitchCaseResultVectorTy &UniqueResults, 5323 Constant *Result) { 5324 for (auto &I : UniqueResults) { 5325 if (I.first == Result) { 5326 I.second.push_back(CaseVal); 5327 return I.second.size(); 5328 } 5329 } 5330 UniqueResults.push_back( 5331 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5332 return 1; 5333 } 5334 5335 // Helper function that initializes a map containing 5336 // results for the PHI node of the common destination block for a switch 5337 // instruction. Returns false if multiple PHI nodes have been found or if 5338 // there is not a common destination block for the switch. 5339 static bool 5340 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5341 SwitchCaseResultVectorTy &UniqueResults, 5342 Constant *&DefaultResult, const DataLayout &DL, 5343 const TargetTransformInfo &TTI, 5344 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5345 for (auto &I : SI->cases()) { 5346 ConstantInt *CaseVal = I.getCaseValue(); 5347 5348 // Resulting value at phi nodes for this case value. 5349 SwitchCaseResultsTy Results; 5350 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5351 DL, TTI)) 5352 return false; 5353 5354 // Only one value per case is permitted. 5355 if (Results.size() > 1) 5356 return false; 5357 5358 // Add the case->result mapping to UniqueResults. 5359 const uintptr_t NumCasesForResult = 5360 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5361 5362 // Early out if there are too many cases for this result. 5363 if (NumCasesForResult > MaxCasesPerResult) 5364 return false; 5365 5366 // Early out if there are too many unique results. 5367 if (UniqueResults.size() > MaxUniqueResults) 5368 return false; 5369 5370 // Check the PHI consistency. 5371 if (!PHI) 5372 PHI = Results[0].first; 5373 else if (PHI != Results[0].first) 5374 return false; 5375 } 5376 // Find the default result value. 5377 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5378 BasicBlock *DefaultDest = SI->getDefaultDest(); 5379 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5380 DL, TTI); 5381 // If the default value is not found abort unless the default destination 5382 // is unreachable. 5383 DefaultResult = 5384 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5385 if ((!DefaultResult && 5386 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5387 return false; 5388 5389 return true; 5390 } 5391 5392 // Helper function that checks if it is possible to transform a switch with only 5393 // two cases (or two cases + default) that produces a result into a select. 5394 // Example: 5395 // switch (a) { 5396 // case 10: %0 = icmp eq i32 %a, 10 5397 // return 10; %1 = select i1 %0, i32 10, i32 4 5398 // case 20: ----> %2 = icmp eq i32 %a, 20 5399 // return 2; %3 = select i1 %2, i32 2, i32 %1 5400 // default: 5401 // return 4; 5402 // } 5403 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5404 Constant *DefaultResult, Value *Condition, 5405 IRBuilder<> &Builder) { 5406 // If we are selecting between only two cases transform into a simple 5407 // select or a two-way select if default is possible. 5408 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5409 ResultVector[1].second.size() == 1) { 5410 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5411 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5412 5413 bool DefaultCanTrigger = DefaultResult; 5414 Value *SelectValue = ResultVector[1].first; 5415 if (DefaultCanTrigger) { 5416 Value *const ValueCompare = 5417 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5418 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5419 DefaultResult, "switch.select"); 5420 } 5421 Value *const ValueCompare = 5422 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5423 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5424 SelectValue, "switch.select"); 5425 } 5426 5427 // Handle the degenerate case where two cases have the same value. 5428 if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 && 5429 DefaultResult) { 5430 Value *Cmp1 = Builder.CreateICmpEQ( 5431 Condition, ResultVector[0].second[0], "switch.selectcmp.case1"); 5432 Value *Cmp2 = Builder.CreateICmpEQ( 5433 Condition, ResultVector[0].second[1], "switch.selectcmp.case2"); 5434 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5435 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5436 } 5437 5438 return nullptr; 5439 } 5440 5441 // Helper function to cleanup a switch instruction that has been converted into 5442 // a select, fixing up PHI nodes and basic blocks. 5443 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5444 Value *SelectValue, 5445 IRBuilder<> &Builder, 5446 DomTreeUpdater *DTU) { 5447 std::vector<DominatorTree::UpdateType> Updates; 5448 5449 BasicBlock *SelectBB = SI->getParent(); 5450 BasicBlock *DestBB = PHI->getParent(); 5451 5452 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5453 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5454 Builder.CreateBr(DestBB); 5455 5456 // Remove the switch. 5457 5458 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5459 PHI->removeIncomingValue(SelectBB); 5460 PHI->addIncoming(SelectValue, SelectBB); 5461 5462 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5463 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5464 BasicBlock *Succ = SI->getSuccessor(i); 5465 5466 if (Succ == DestBB) 5467 continue; 5468 Succ->removePredecessor(SelectBB); 5469 if (DTU && RemovedSuccessors.insert(Succ).second) 5470 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5471 } 5472 SI->eraseFromParent(); 5473 if (DTU) 5474 DTU->applyUpdates(Updates); 5475 } 5476 5477 /// If the switch is only used to initialize one or more 5478 /// phi nodes in a common successor block with only two different 5479 /// constant values, replace the switch with select. 5480 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5481 DomTreeUpdater *DTU, const DataLayout &DL, 5482 const TargetTransformInfo &TTI) { 5483 Value *const Cond = SI->getCondition(); 5484 PHINode *PHI = nullptr; 5485 BasicBlock *CommonDest = nullptr; 5486 Constant *DefaultResult; 5487 SwitchCaseResultVectorTy UniqueResults; 5488 // Collect all the cases that will deliver the same value from the switch. 5489 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5490 DL, TTI, /*MaxUniqueResults*/2, 5491 /*MaxCasesPerResult*/2)) 5492 return false; 5493 assert(PHI != nullptr && "PHI for value select not found"); 5494 5495 Builder.SetInsertPoint(SI); 5496 Value *SelectValue = 5497 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5498 if (SelectValue) { 5499 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5500 return true; 5501 } 5502 // The switch couldn't be converted into a select. 5503 return false; 5504 } 5505 5506 namespace { 5507 5508 /// This class represents a lookup table that can be used to replace a switch. 5509 class SwitchLookupTable { 5510 public: 5511 /// Create a lookup table to use as a switch replacement with the contents 5512 /// of Values, using DefaultValue to fill any holes in the table. 5513 SwitchLookupTable( 5514 Module &M, uint64_t TableSize, ConstantInt *Offset, 5515 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5516 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5517 5518 /// Build instructions with Builder to retrieve the value at 5519 /// the position given by Index in the lookup table. 5520 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5521 5522 /// Return true if a table with TableSize elements of 5523 /// type ElementType would fit in a target-legal register. 5524 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5525 Type *ElementType); 5526 5527 private: 5528 // Depending on the contents of the table, it can be represented in 5529 // different ways. 5530 enum { 5531 // For tables where each element contains the same value, we just have to 5532 // store that single value and return it for each lookup. 5533 SingleValueKind, 5534 5535 // For tables where there is a linear relationship between table index 5536 // and values. We calculate the result with a simple multiplication 5537 // and addition instead of a table lookup. 5538 LinearMapKind, 5539 5540 // For small tables with integer elements, we can pack them into a bitmap 5541 // that fits into a target-legal register. Values are retrieved by 5542 // shift and mask operations. 5543 BitMapKind, 5544 5545 // The table is stored as an array of values. Values are retrieved by load 5546 // instructions from the table. 5547 ArrayKind 5548 } Kind; 5549 5550 // For SingleValueKind, this is the single value. 5551 Constant *SingleValue = nullptr; 5552 5553 // For BitMapKind, this is the bitmap. 5554 ConstantInt *BitMap = nullptr; 5555 IntegerType *BitMapElementTy = nullptr; 5556 5557 // For LinearMapKind, these are the constants used to derive the value. 5558 ConstantInt *LinearOffset = nullptr; 5559 ConstantInt *LinearMultiplier = nullptr; 5560 5561 // For ArrayKind, this is the array. 5562 GlobalVariable *Array = nullptr; 5563 }; 5564 5565 } // end anonymous namespace 5566 5567 SwitchLookupTable::SwitchLookupTable( 5568 Module &M, uint64_t TableSize, ConstantInt *Offset, 5569 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5570 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5571 assert(Values.size() && "Can't build lookup table without values!"); 5572 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5573 5574 // If all values in the table are equal, this is that value. 5575 SingleValue = Values.begin()->second; 5576 5577 Type *ValueType = Values.begin()->second->getType(); 5578 5579 // Build up the table contents. 5580 SmallVector<Constant *, 64> TableContents(TableSize); 5581 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5582 ConstantInt *CaseVal = Values[I].first; 5583 Constant *CaseRes = Values[I].second; 5584 assert(CaseRes->getType() == ValueType); 5585 5586 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5587 TableContents[Idx] = CaseRes; 5588 5589 if (CaseRes != SingleValue) 5590 SingleValue = nullptr; 5591 } 5592 5593 // Fill in any holes in the table with the default result. 5594 if (Values.size() < TableSize) { 5595 assert(DefaultValue && 5596 "Need a default value to fill the lookup table holes."); 5597 assert(DefaultValue->getType() == ValueType); 5598 for (uint64_t I = 0; I < TableSize; ++I) { 5599 if (!TableContents[I]) 5600 TableContents[I] = DefaultValue; 5601 } 5602 5603 if (DefaultValue != SingleValue) 5604 SingleValue = nullptr; 5605 } 5606 5607 // If each element in the table contains the same value, we only need to store 5608 // that single value. 5609 if (SingleValue) { 5610 Kind = SingleValueKind; 5611 return; 5612 } 5613 5614 // Check if we can derive the value with a linear transformation from the 5615 // table index. 5616 if (isa<IntegerType>(ValueType)) { 5617 bool LinearMappingPossible = true; 5618 APInt PrevVal; 5619 APInt DistToPrev; 5620 assert(TableSize >= 2 && "Should be a SingleValue table."); 5621 // Check if there is the same distance between two consecutive values. 5622 for (uint64_t I = 0; I < TableSize; ++I) { 5623 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5624 if (!ConstVal) { 5625 // This is an undef. We could deal with it, but undefs in lookup tables 5626 // are very seldom. It's probably not worth the additional complexity. 5627 LinearMappingPossible = false; 5628 break; 5629 } 5630 const APInt &Val = ConstVal->getValue(); 5631 if (I != 0) { 5632 APInt Dist = Val - PrevVal; 5633 if (I == 1) { 5634 DistToPrev = Dist; 5635 } else if (Dist != DistToPrev) { 5636 LinearMappingPossible = false; 5637 break; 5638 } 5639 } 5640 PrevVal = Val; 5641 } 5642 if (LinearMappingPossible) { 5643 LinearOffset = cast<ConstantInt>(TableContents[0]); 5644 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5645 Kind = LinearMapKind; 5646 ++NumLinearMaps; 5647 return; 5648 } 5649 } 5650 5651 // If the type is integer and the table fits in a register, build a bitmap. 5652 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5653 IntegerType *IT = cast<IntegerType>(ValueType); 5654 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5655 for (uint64_t I = TableSize; I > 0; --I) { 5656 TableInt <<= IT->getBitWidth(); 5657 // Insert values into the bitmap. Undef values are set to zero. 5658 if (!isa<UndefValue>(TableContents[I - 1])) { 5659 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5660 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5661 } 5662 } 5663 BitMap = ConstantInt::get(M.getContext(), TableInt); 5664 BitMapElementTy = IT; 5665 Kind = BitMapKind; 5666 ++NumBitMaps; 5667 return; 5668 } 5669 5670 // Store the table in an array. 5671 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5672 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5673 5674 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5675 GlobalVariable::PrivateLinkage, Initializer, 5676 "switch.table." + FuncName); 5677 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5678 // Set the alignment to that of an array items. We will be only loading one 5679 // value out of it. 5680 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5681 Kind = ArrayKind; 5682 } 5683 5684 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5685 switch (Kind) { 5686 case SingleValueKind: 5687 return SingleValue; 5688 case LinearMapKind: { 5689 // Derive the result value from the input value. 5690 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5691 false, "switch.idx.cast"); 5692 if (!LinearMultiplier->isOne()) 5693 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5694 if (!LinearOffset->isZero()) 5695 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5696 return Result; 5697 } 5698 case BitMapKind: { 5699 // Type of the bitmap (e.g. i59). 5700 IntegerType *MapTy = BitMap->getType(); 5701 5702 // Cast Index to the same type as the bitmap. 5703 // Note: The Index is <= the number of elements in the table, so 5704 // truncating it to the width of the bitmask is safe. 5705 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5706 5707 // Multiply the shift amount by the element width. 5708 ShiftAmt = Builder.CreateMul( 5709 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5710 "switch.shiftamt"); 5711 5712 // Shift down. 5713 Value *DownShifted = 5714 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5715 // Mask off. 5716 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5717 } 5718 case ArrayKind: { 5719 // Make sure the table index will not overflow when treated as signed. 5720 IntegerType *IT = cast<IntegerType>(Index->getType()); 5721 uint64_t TableSize = 5722 Array->getInitializer()->getType()->getArrayNumElements(); 5723 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5724 Index = Builder.CreateZExt( 5725 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5726 "switch.tableidx.zext"); 5727 5728 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5729 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5730 GEPIndices, "switch.gep"); 5731 return Builder.CreateLoad( 5732 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5733 "switch.load"); 5734 } 5735 } 5736 llvm_unreachable("Unknown lookup table kind!"); 5737 } 5738 5739 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5740 uint64_t TableSize, 5741 Type *ElementType) { 5742 auto *IT = dyn_cast<IntegerType>(ElementType); 5743 if (!IT) 5744 return false; 5745 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5746 // are <= 15, we could try to narrow the type. 5747 5748 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5749 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5750 return false; 5751 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5752 } 5753 5754 /// Determine whether a lookup table should be built for this switch, based on 5755 /// the number of cases, size of the table, and the types of the results. 5756 static bool 5757 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5758 const TargetTransformInfo &TTI, const DataLayout &DL, 5759 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5760 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5761 return false; // TableSize overflowed, or mul below might overflow. 5762 5763 bool AllTablesFitInRegister = true; 5764 bool HasIllegalType = false; 5765 for (const auto &I : ResultTypes) { 5766 Type *Ty = I.second; 5767 5768 // Saturate this flag to true. 5769 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5770 5771 // Saturate this flag to false. 5772 AllTablesFitInRegister = 5773 AllTablesFitInRegister && 5774 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5775 5776 // If both flags saturate, we're done. NOTE: This *only* works with 5777 // saturating flags, and all flags have to saturate first due to the 5778 // non-deterministic behavior of iterating over a dense map. 5779 if (HasIllegalType && !AllTablesFitInRegister) 5780 break; 5781 } 5782 5783 // If each table would fit in a register, we should build it anyway. 5784 if (AllTablesFitInRegister) 5785 return true; 5786 5787 // Don't build a table that doesn't fit in-register if it has illegal types. 5788 if (HasIllegalType) 5789 return false; 5790 5791 // The table density should be at least 40%. This is the same criterion as for 5792 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5793 // FIXME: Find the best cut-off. 5794 return SI->getNumCases() * 10 >= TableSize * 4; 5795 } 5796 5797 /// Try to reuse the switch table index compare. Following pattern: 5798 /// \code 5799 /// if (idx < tablesize) 5800 /// r = table[idx]; // table does not contain default_value 5801 /// else 5802 /// r = default_value; 5803 /// if (r != default_value) 5804 /// ... 5805 /// \endcode 5806 /// Is optimized to: 5807 /// \code 5808 /// cond = idx < tablesize; 5809 /// if (cond) 5810 /// r = table[idx]; 5811 /// else 5812 /// r = default_value; 5813 /// if (cond) 5814 /// ... 5815 /// \endcode 5816 /// Jump threading will then eliminate the second if(cond). 5817 static void reuseTableCompare( 5818 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5819 Constant *DefaultValue, 5820 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5821 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5822 if (!CmpInst) 5823 return; 5824 5825 // We require that the compare is in the same block as the phi so that jump 5826 // threading can do its work afterwards. 5827 if (CmpInst->getParent() != PhiBlock) 5828 return; 5829 5830 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5831 if (!CmpOp1) 5832 return; 5833 5834 Value *RangeCmp = RangeCheckBranch->getCondition(); 5835 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5836 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5837 5838 // Check if the compare with the default value is constant true or false. 5839 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5840 DefaultValue, CmpOp1, true); 5841 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5842 return; 5843 5844 // Check if the compare with the case values is distinct from the default 5845 // compare result. 5846 for (auto ValuePair : Values) { 5847 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5848 ValuePair.second, CmpOp1, true); 5849 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5850 return; 5851 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5852 "Expect true or false as compare result."); 5853 } 5854 5855 // Check if the branch instruction dominates the phi node. It's a simple 5856 // dominance check, but sufficient for our needs. 5857 // Although this check is invariant in the calling loops, it's better to do it 5858 // at this late stage. Practically we do it at most once for a switch. 5859 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5860 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5861 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5862 return; 5863 } 5864 5865 if (DefaultConst == FalseConst) { 5866 // The compare yields the same result. We can replace it. 5867 CmpInst->replaceAllUsesWith(RangeCmp); 5868 ++NumTableCmpReuses; 5869 } else { 5870 // The compare yields the same result, just inverted. We can replace it. 5871 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5872 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5873 RangeCheckBranch); 5874 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5875 ++NumTableCmpReuses; 5876 } 5877 } 5878 5879 /// If the switch is only used to initialize one or more phi nodes in a common 5880 /// successor block with different constant values, replace the switch with 5881 /// lookup tables. 5882 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5883 DomTreeUpdater *DTU, const DataLayout &DL, 5884 const TargetTransformInfo &TTI) { 5885 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5886 5887 BasicBlock *BB = SI->getParent(); 5888 Function *Fn = BB->getParent(); 5889 // Only build lookup table when we have a target that supports it or the 5890 // attribute is not set. 5891 if (!TTI.shouldBuildLookupTables() || 5892 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 5893 return false; 5894 5895 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5896 // split off a dense part and build a lookup table for that. 5897 5898 // FIXME: This creates arrays of GEPs to constant strings, which means each 5899 // GEP needs a runtime relocation in PIC code. We should just build one big 5900 // string and lookup indices into that. 5901 5902 // Ignore switches with less than three cases. Lookup tables will not make 5903 // them faster, so we don't analyze them. 5904 if (SI->getNumCases() < 3) 5905 return false; 5906 5907 // Figure out the corresponding result for each case value and phi node in the 5908 // common destination, as well as the min and max case values. 5909 assert(!SI->cases().empty()); 5910 SwitchInst::CaseIt CI = SI->case_begin(); 5911 ConstantInt *MinCaseVal = CI->getCaseValue(); 5912 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5913 5914 BasicBlock *CommonDest = nullptr; 5915 5916 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5917 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5918 5919 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5920 SmallDenseMap<PHINode *, Type *> ResultTypes; 5921 SmallVector<PHINode *, 4> PHIs; 5922 5923 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5924 ConstantInt *CaseVal = CI->getCaseValue(); 5925 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5926 MinCaseVal = CaseVal; 5927 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5928 MaxCaseVal = CaseVal; 5929 5930 // Resulting value at phi nodes for this case value. 5931 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5932 ResultsTy Results; 5933 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5934 Results, DL, TTI)) 5935 return false; 5936 5937 // Append the result from this case to the list for each phi. 5938 for (const auto &I : Results) { 5939 PHINode *PHI = I.first; 5940 Constant *Value = I.second; 5941 if (!ResultLists.count(PHI)) 5942 PHIs.push_back(PHI); 5943 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5944 } 5945 } 5946 5947 // Keep track of the result types. 5948 for (PHINode *PHI : PHIs) { 5949 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5950 } 5951 5952 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5953 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5954 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5955 bool TableHasHoles = (NumResults < TableSize); 5956 5957 // If the table has holes, we need a constant result for the default case 5958 // or a bitmask that fits in a register. 5959 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5960 bool HasDefaultResults = 5961 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5962 DefaultResultsList, DL, TTI); 5963 5964 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5965 if (NeedMask) { 5966 // As an extra penalty for the validity test we require more cases. 5967 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5968 return false; 5969 if (!DL.fitsInLegalInteger(TableSize)) 5970 return false; 5971 } 5972 5973 for (const auto &I : DefaultResultsList) { 5974 PHINode *PHI = I.first; 5975 Constant *Result = I.second; 5976 DefaultResults[PHI] = Result; 5977 } 5978 5979 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5980 return false; 5981 5982 std::vector<DominatorTree::UpdateType> Updates; 5983 5984 // Create the BB that does the lookups. 5985 Module &Mod = *CommonDest->getParent()->getParent(); 5986 BasicBlock *LookupBB = BasicBlock::Create( 5987 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5988 5989 // Compute the table index value. 5990 Builder.SetInsertPoint(SI); 5991 Value *TableIndex; 5992 if (MinCaseVal->isNullValue()) 5993 TableIndex = SI->getCondition(); 5994 else 5995 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5996 "switch.tableidx"); 5997 5998 // Compute the maximum table size representable by the integer type we are 5999 // switching upon. 6000 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 6001 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 6002 assert(MaxTableSize >= TableSize && 6003 "It is impossible for a switch to have more entries than the max " 6004 "representable value of its input integer type's size."); 6005 6006 // If the default destination is unreachable, or if the lookup table covers 6007 // all values of the conditional variable, branch directly to the lookup table 6008 // BB. Otherwise, check that the condition is within the case range. 6009 const bool DefaultIsReachable = 6010 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6011 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6012 BranchInst *RangeCheckBranch = nullptr; 6013 6014 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6015 Builder.CreateBr(LookupBB); 6016 if (DTU) 6017 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6018 // Note: We call removeProdecessor later since we need to be able to get the 6019 // PHI value for the default case in case we're using a bit mask. 6020 } else { 6021 Value *Cmp = Builder.CreateICmpULT( 6022 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6023 RangeCheckBranch = 6024 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6025 if (DTU) 6026 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6027 } 6028 6029 // Populate the BB that does the lookups. 6030 Builder.SetInsertPoint(LookupBB); 6031 6032 if (NeedMask) { 6033 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6034 // re-purposed to do the hole check, and we create a new LookupBB. 6035 BasicBlock *MaskBB = LookupBB; 6036 MaskBB->setName("switch.hole_check"); 6037 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6038 CommonDest->getParent(), CommonDest); 6039 6040 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6041 // unnecessary illegal types. 6042 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6043 APInt MaskInt(TableSizePowOf2, 0); 6044 APInt One(TableSizePowOf2, 1); 6045 // Build bitmask; fill in a 1 bit for every case. 6046 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6047 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6048 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6049 .getLimitedValue(); 6050 MaskInt |= One << Idx; 6051 } 6052 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6053 6054 // Get the TableIndex'th bit of the bitmask. 6055 // If this bit is 0 (meaning hole) jump to the default destination, 6056 // else continue with table lookup. 6057 IntegerType *MapTy = TableMask->getType(); 6058 Value *MaskIndex = 6059 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6060 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6061 Value *LoBit = Builder.CreateTrunc( 6062 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6063 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6064 if (DTU) { 6065 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6066 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6067 } 6068 Builder.SetInsertPoint(LookupBB); 6069 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6070 } 6071 6072 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6073 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6074 // do not delete PHINodes here. 6075 SI->getDefaultDest()->removePredecessor(BB, 6076 /*KeepOneInputPHIs=*/true); 6077 if (DTU) 6078 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6079 } 6080 6081 bool ReturnedEarly = false; 6082 for (PHINode *PHI : PHIs) { 6083 const ResultListTy &ResultList = ResultLists[PHI]; 6084 6085 // If using a bitmask, use any value to fill the lookup table holes. 6086 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6087 StringRef FuncName = Fn->getName(); 6088 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6089 FuncName); 6090 6091 Value *Result = Table.BuildLookup(TableIndex, Builder); 6092 6093 // If the result is used to return immediately from the function, we want to 6094 // do that right here. 6095 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 6096 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 6097 Builder.CreateRet(Result); 6098 ReturnedEarly = true; 6099 break; 6100 } 6101 6102 // Do a small peephole optimization: re-use the switch table compare if 6103 // possible. 6104 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6105 BasicBlock *PhiBlock = PHI->getParent(); 6106 // Search for compare instructions which use the phi. 6107 for (auto *User : PHI->users()) { 6108 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6109 } 6110 } 6111 6112 PHI->addIncoming(Result, LookupBB); 6113 } 6114 6115 if (!ReturnedEarly) { 6116 Builder.CreateBr(CommonDest); 6117 if (DTU) 6118 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6119 } 6120 6121 // Remove the switch. 6122 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6123 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6124 BasicBlock *Succ = SI->getSuccessor(i); 6125 6126 if (Succ == SI->getDefaultDest()) 6127 continue; 6128 Succ->removePredecessor(BB); 6129 RemovedSuccessors.insert(Succ); 6130 } 6131 SI->eraseFromParent(); 6132 6133 if (DTU) { 6134 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 6135 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 6136 DTU->applyUpdates(Updates); 6137 } 6138 6139 ++NumLookupTables; 6140 if (NeedMask) 6141 ++NumLookupTablesHoles; 6142 return true; 6143 } 6144 6145 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6146 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6147 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6148 uint64_t Range = Diff + 1; 6149 uint64_t NumCases = Values.size(); 6150 // 40% is the default density for building a jump table in optsize/minsize mode. 6151 uint64_t MinDensity = 40; 6152 6153 return NumCases * 100 >= Range * MinDensity; 6154 } 6155 6156 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6157 /// of cases. 6158 /// 6159 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6160 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6161 /// 6162 /// This converts a sparse switch into a dense switch which allows better 6163 /// lowering and could also allow transforming into a lookup table. 6164 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6165 const DataLayout &DL, 6166 const TargetTransformInfo &TTI) { 6167 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6168 if (CondTy->getIntegerBitWidth() > 64 || 6169 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6170 return false; 6171 // Only bother with this optimization if there are more than 3 switch cases; 6172 // SDAG will only bother creating jump tables for 4 or more cases. 6173 if (SI->getNumCases() < 4) 6174 return false; 6175 6176 // This transform is agnostic to the signedness of the input or case values. We 6177 // can treat the case values as signed or unsigned. We can optimize more common 6178 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6179 // as signed. 6180 SmallVector<int64_t,4> Values; 6181 for (auto &C : SI->cases()) 6182 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6183 llvm::sort(Values); 6184 6185 // If the switch is already dense, there's nothing useful to do here. 6186 if (isSwitchDense(Values)) 6187 return false; 6188 6189 // First, transform the values such that they start at zero and ascend. 6190 int64_t Base = Values[0]; 6191 for (auto &V : Values) 6192 V -= (uint64_t)(Base); 6193 6194 // Now we have signed numbers that have been shifted so that, given enough 6195 // precision, there are no negative values. Since the rest of the transform 6196 // is bitwise only, we switch now to an unsigned representation. 6197 6198 // This transform can be done speculatively because it is so cheap - it 6199 // results in a single rotate operation being inserted. 6200 // FIXME: It's possible that optimizing a switch on powers of two might also 6201 // be beneficial - flag values are often powers of two and we could use a CLZ 6202 // as the key function. 6203 6204 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6205 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6206 // less than 64. 6207 unsigned Shift = 64; 6208 for (auto &V : Values) 6209 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6210 assert(Shift < 64); 6211 if (Shift > 0) 6212 for (auto &V : Values) 6213 V = (int64_t)((uint64_t)V >> Shift); 6214 6215 if (!isSwitchDense(Values)) 6216 // Transform didn't create a dense switch. 6217 return false; 6218 6219 // The obvious transform is to shift the switch condition right and emit a 6220 // check that the condition actually cleanly divided by GCD, i.e. 6221 // C & (1 << Shift - 1) == 0 6222 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6223 // 6224 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6225 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6226 // are nonzero then the switch condition will be very large and will hit the 6227 // default case. 6228 6229 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6230 Builder.SetInsertPoint(SI); 6231 auto *ShiftC = ConstantInt::get(Ty, Shift); 6232 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6233 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6234 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6235 auto *Rot = Builder.CreateOr(LShr, Shl); 6236 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6237 6238 for (auto Case : SI->cases()) { 6239 auto *Orig = Case.getCaseValue(); 6240 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6241 Case.setValue( 6242 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6243 } 6244 return true; 6245 } 6246 6247 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6248 BasicBlock *BB = SI->getParent(); 6249 6250 if (isValueEqualityComparison(SI)) { 6251 // If we only have one predecessor, and if it is a branch on this value, 6252 // see if that predecessor totally determines the outcome of this switch. 6253 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6254 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6255 return requestResimplify(); 6256 6257 Value *Cond = SI->getCondition(); 6258 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6259 if (SimplifySwitchOnSelect(SI, Select)) 6260 return requestResimplify(); 6261 6262 // If the block only contains the switch, see if we can fold the block 6263 // away into any preds. 6264 if (SI == &*BB->instructionsWithoutDebug().begin()) 6265 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6266 return requestResimplify(); 6267 } 6268 6269 // Try to transform the switch into an icmp and a branch. 6270 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6271 return requestResimplify(); 6272 6273 // Remove unreachable cases. 6274 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6275 return requestResimplify(); 6276 6277 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6278 return requestResimplify(); 6279 6280 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6281 return requestResimplify(); 6282 6283 // The conversion from switch to lookup tables results in difficult-to-analyze 6284 // code and makes pruning branches much harder. This is a problem if the 6285 // switch expression itself can still be restricted as a result of inlining or 6286 // CVP. Therefore, only apply this transformation during late stages of the 6287 // optimisation pipeline. 6288 if (Options.ConvertSwitchToLookupTable && 6289 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6290 return requestResimplify(); 6291 6292 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6293 return requestResimplify(); 6294 6295 return false; 6296 } 6297 6298 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6299 BasicBlock *BB = IBI->getParent(); 6300 bool Changed = false; 6301 6302 // Eliminate redundant destinations. 6303 SmallPtrSet<Value *, 8> Succs; 6304 SmallPtrSet<BasicBlock *, 8> RemovedSuccs; 6305 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6306 BasicBlock *Dest = IBI->getDestination(i); 6307 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6308 if (!Dest->hasAddressTaken()) 6309 RemovedSuccs.insert(Dest); 6310 Dest->removePredecessor(BB); 6311 IBI->removeDestination(i); 6312 --i; 6313 --e; 6314 Changed = true; 6315 } 6316 } 6317 6318 if (DTU) { 6319 std::vector<DominatorTree::UpdateType> Updates; 6320 Updates.reserve(RemovedSuccs.size()); 6321 for (auto *RemovedSucc : RemovedSuccs) 6322 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6323 DTU->applyUpdates(Updates); 6324 } 6325 6326 if (IBI->getNumDestinations() == 0) { 6327 // If the indirectbr has no successors, change it to unreachable. 6328 new UnreachableInst(IBI->getContext(), IBI); 6329 EraseTerminatorAndDCECond(IBI); 6330 return true; 6331 } 6332 6333 if (IBI->getNumDestinations() == 1) { 6334 // If the indirectbr has one successor, change it to a direct branch. 6335 BranchInst::Create(IBI->getDestination(0), IBI); 6336 EraseTerminatorAndDCECond(IBI); 6337 return true; 6338 } 6339 6340 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6341 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6342 return requestResimplify(); 6343 } 6344 return Changed; 6345 } 6346 6347 /// Given an block with only a single landing pad and a unconditional branch 6348 /// try to find another basic block which this one can be merged with. This 6349 /// handles cases where we have multiple invokes with unique landing pads, but 6350 /// a shared handler. 6351 /// 6352 /// We specifically choose to not worry about merging non-empty blocks 6353 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6354 /// practice, the optimizer produces empty landing pad blocks quite frequently 6355 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6356 /// sinking in this file) 6357 /// 6358 /// This is primarily a code size optimization. We need to avoid performing 6359 /// any transform which might inhibit optimization (such as our ability to 6360 /// specialize a particular handler via tail commoning). We do this by not 6361 /// merging any blocks which require us to introduce a phi. Since the same 6362 /// values are flowing through both blocks, we don't lose any ability to 6363 /// specialize. If anything, we make such specialization more likely. 6364 /// 6365 /// TODO - This transformation could remove entries from a phi in the target 6366 /// block when the inputs in the phi are the same for the two blocks being 6367 /// merged. In some cases, this could result in removal of the PHI entirely. 6368 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6369 BasicBlock *BB, DomTreeUpdater *DTU) { 6370 auto Succ = BB->getUniqueSuccessor(); 6371 assert(Succ); 6372 // If there's a phi in the successor block, we'd likely have to introduce 6373 // a phi into the merged landing pad block. 6374 if (isa<PHINode>(*Succ->begin())) 6375 return false; 6376 6377 for (BasicBlock *OtherPred : predecessors(Succ)) { 6378 if (BB == OtherPred) 6379 continue; 6380 BasicBlock::iterator I = OtherPred->begin(); 6381 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6382 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6383 continue; 6384 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6385 ; 6386 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6387 if (!BI2 || !BI2->isIdenticalTo(BI)) 6388 continue; 6389 6390 std::vector<DominatorTree::UpdateType> Updates; 6391 6392 // We've found an identical block. Update our predecessors to take that 6393 // path instead and make ourselves dead. 6394 SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 6395 for (BasicBlock *Pred : Preds) { 6396 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6397 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6398 "unexpected successor"); 6399 II->setUnwindDest(OtherPred); 6400 if (DTU) { 6401 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6402 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6403 } 6404 } 6405 6406 // The debug info in OtherPred doesn't cover the merged control flow that 6407 // used to go through BB. We need to delete it or update it. 6408 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6409 Instruction &Inst = *I; 6410 I++; 6411 if (isa<DbgInfoIntrinsic>(Inst)) 6412 Inst.eraseFromParent(); 6413 } 6414 6415 SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB)); 6416 for (BasicBlock *Succ : Succs) { 6417 Succ->removePredecessor(BB); 6418 if (DTU) 6419 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6420 } 6421 6422 IRBuilder<> Builder(BI); 6423 Builder.CreateUnreachable(); 6424 BI->eraseFromParent(); 6425 if (DTU) 6426 DTU->applyUpdates(Updates); 6427 return true; 6428 } 6429 return false; 6430 } 6431 6432 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6433 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6434 : simplifyCondBranch(Branch, Builder); 6435 } 6436 6437 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6438 IRBuilder<> &Builder) { 6439 BasicBlock *BB = BI->getParent(); 6440 BasicBlock *Succ = BI->getSuccessor(0); 6441 6442 // If the Terminator is the only non-phi instruction, simplify the block. 6443 // If LoopHeader is provided, check if the block or its successor is a loop 6444 // header. (This is for early invocations before loop simplify and 6445 // vectorization to keep canonical loop forms for nested loops. These blocks 6446 // can be eliminated when the pass is invoked later in the back-end.) 6447 // Note that if BB has only one predecessor then we do not introduce new 6448 // backedge, so we can eliminate BB. 6449 bool NeedCanonicalLoop = 6450 Options.NeedCanonicalLoop && 6451 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6452 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6453 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6454 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6455 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6456 return true; 6457 6458 // If the only instruction in the block is a seteq/setne comparison against a 6459 // constant, try to simplify the block. 6460 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6461 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6462 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6463 ; 6464 if (I->isTerminator() && 6465 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6466 return true; 6467 } 6468 6469 // See if we can merge an empty landing pad block with another which is 6470 // equivalent. 6471 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6472 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6473 ; 6474 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6475 return true; 6476 } 6477 6478 // If this basic block is ONLY a compare and a branch, and if a predecessor 6479 // branches to us and our successor, fold the comparison into the 6480 // predecessor and use logical operations to update the incoming value 6481 // for PHI nodes in common successor. 6482 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6483 Options.BonusInstThreshold)) 6484 return requestResimplify(); 6485 return false; 6486 } 6487 6488 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6489 BasicBlock *PredPred = nullptr; 6490 for (auto *P : predecessors(BB)) { 6491 BasicBlock *PPred = P->getSinglePredecessor(); 6492 if (!PPred || (PredPred && PredPred != PPred)) 6493 return nullptr; 6494 PredPred = PPred; 6495 } 6496 return PredPred; 6497 } 6498 6499 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6500 BasicBlock *BB = BI->getParent(); 6501 if (!Options.SimplifyCondBranch) 6502 return false; 6503 6504 // Conditional branch 6505 if (isValueEqualityComparison(BI)) { 6506 // If we only have one predecessor, and if it is a branch on this value, 6507 // see if that predecessor totally determines the outcome of this 6508 // switch. 6509 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6510 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6511 return requestResimplify(); 6512 6513 // This block must be empty, except for the setcond inst, if it exists. 6514 // Ignore dbg and pseudo intrinsics. 6515 auto I = BB->instructionsWithoutDebug(true).begin(); 6516 if (&*I == BI) { 6517 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6518 return requestResimplify(); 6519 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6520 ++I; 6521 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6522 return requestResimplify(); 6523 } 6524 } 6525 6526 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6527 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6528 return true; 6529 6530 // If this basic block has dominating predecessor blocks and the dominating 6531 // blocks' conditions imply BI's condition, we know the direction of BI. 6532 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6533 if (Imp) { 6534 // Turn this into a branch on constant. 6535 auto *OldCond = BI->getCondition(); 6536 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6537 : ConstantInt::getFalse(BB->getContext()); 6538 BI->setCondition(TorF); 6539 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6540 return requestResimplify(); 6541 } 6542 6543 // If this basic block is ONLY a compare and a branch, and if a predecessor 6544 // branches to us and one of our successors, fold the comparison into the 6545 // predecessor and use logical operations to pick the right destination. 6546 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6547 Options.BonusInstThreshold)) 6548 return requestResimplify(); 6549 6550 // We have a conditional branch to two blocks that are only reachable 6551 // from BI. We know that the condbr dominates the two blocks, so see if 6552 // there is any identical code in the "then" and "else" blocks. If so, we 6553 // can hoist it up to the branching block. 6554 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6555 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6556 if (HoistCommon && 6557 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6558 return requestResimplify(); 6559 } else { 6560 // If Successor #1 has multiple preds, we may be able to conditionally 6561 // execute Successor #0 if it branches to Successor #1. 6562 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6563 if (Succ0TI->getNumSuccessors() == 1 && 6564 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6565 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6566 return requestResimplify(); 6567 } 6568 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6569 // If Successor #0 has multiple preds, we may be able to conditionally 6570 // execute Successor #1 if it branches to Successor #0. 6571 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6572 if (Succ1TI->getNumSuccessors() == 1 && 6573 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6574 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6575 return requestResimplify(); 6576 } 6577 6578 // If this is a branch on a phi node in the current block, thread control 6579 // through this block if any PHI node entries are constants. 6580 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6581 if (PN->getParent() == BI->getParent()) 6582 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6583 return requestResimplify(); 6584 6585 // Scan predecessor blocks for conditional branches. 6586 for (BasicBlock *Pred : predecessors(BB)) 6587 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6588 if (PBI != BI && PBI->isConditional()) 6589 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6590 return requestResimplify(); 6591 6592 // Look for diamond patterns. 6593 if (MergeCondStores) 6594 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6595 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6596 if (PBI != BI && PBI->isConditional()) 6597 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6598 return requestResimplify(); 6599 6600 return false; 6601 } 6602 6603 /// Check if passing a value to an instruction will cause undefined behavior. 6604 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6605 Constant *C = dyn_cast<Constant>(V); 6606 if (!C) 6607 return false; 6608 6609 if (I->use_empty()) 6610 return false; 6611 6612 if (C->isNullValue() || isa<UndefValue>(C)) { 6613 // Only look at the first use, avoid hurting compile time with long uselists 6614 User *Use = *I->user_begin(); 6615 6616 // Now make sure that there are no instructions in between that can alter 6617 // control flow (eg. calls) 6618 for (BasicBlock::iterator 6619 i = ++BasicBlock::iterator(I), 6620 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6621 i != UI; ++i) { 6622 if (i == I->getParent()->end()) 6623 return false; 6624 if (!isGuaranteedToTransferExecutionToSuccessor(&*i)) 6625 return false; 6626 } 6627 6628 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6629 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6630 if (GEP->getPointerOperand() == I) { 6631 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6632 PtrValueMayBeModified = true; 6633 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6634 } 6635 6636 // Look through bitcasts. 6637 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6638 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6639 6640 // Load from null is undefined. 6641 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6642 if (!LI->isVolatile()) 6643 return !NullPointerIsDefined(LI->getFunction(), 6644 LI->getPointerAddressSpace()); 6645 6646 // Store to null is undefined. 6647 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6648 if (!SI->isVolatile()) 6649 return (!NullPointerIsDefined(SI->getFunction(), 6650 SI->getPointerAddressSpace())) && 6651 SI->getPointerOperand() == I; 6652 6653 if (auto *CB = dyn_cast<CallBase>(Use)) { 6654 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6655 return false; 6656 // A call to null is undefined. 6657 if (CB->getCalledOperand() == I) 6658 return true; 6659 6660 if (C->isNullValue()) { 6661 for (const llvm::Use &Arg : CB->args()) 6662 if (Arg == I) { 6663 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6664 if (CB->isPassingUndefUB(ArgIdx) && 6665 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6666 // Passing null to a nonnnull+noundef argument is undefined. 6667 return !PtrValueMayBeModified; 6668 } 6669 } 6670 } else if (isa<UndefValue>(C)) { 6671 // Passing undef to a noundef argument is undefined. 6672 for (const llvm::Use &Arg : CB->args()) 6673 if (Arg == I) { 6674 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6675 if (CB->isPassingUndefUB(ArgIdx)) { 6676 // Passing undef to a noundef argument is undefined. 6677 return true; 6678 } 6679 } 6680 } 6681 } 6682 } 6683 return false; 6684 } 6685 6686 /// If BB has an incoming value that will always trigger undefined behavior 6687 /// (eg. null pointer dereference), remove the branch leading here. 6688 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6689 DomTreeUpdater *DTU) { 6690 for (PHINode &PHI : BB->phis()) 6691 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6692 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6693 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6694 Instruction *T = Predecessor->getTerminator(); 6695 IRBuilder<> Builder(T); 6696 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6697 BB->removePredecessor(Predecessor); 6698 // Turn uncoditional branches into unreachables and remove the dead 6699 // destination from conditional branches. 6700 if (BI->isUnconditional()) 6701 Builder.CreateUnreachable(); 6702 else 6703 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6704 : BI->getSuccessor(0)); 6705 BI->eraseFromParent(); 6706 if (DTU) 6707 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6708 return true; 6709 } 6710 // TODO: SwitchInst. 6711 } 6712 6713 return false; 6714 } 6715 6716 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6717 bool Changed = false; 6718 6719 assert(BB && BB->getParent() && "Block not embedded in function!"); 6720 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6721 6722 // Remove basic blocks that have no predecessors (except the entry block)... 6723 // or that just have themself as a predecessor. These are unreachable. 6724 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6725 BB->getSinglePredecessor() == BB) { 6726 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6727 DeleteDeadBlock(BB, DTU); 6728 return true; 6729 } 6730 6731 // Check to see if we can constant propagate this terminator instruction 6732 // away... 6733 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6734 /*TLI=*/nullptr, DTU); 6735 6736 // Check for and eliminate duplicate PHI nodes in this block. 6737 Changed |= EliminateDuplicatePHINodes(BB); 6738 6739 // Check for and remove branches that will always cause undefined behavior. 6740 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6741 6742 // Merge basic blocks into their predecessor if there is only one distinct 6743 // pred, and if there is only one distinct successor of the predecessor, and 6744 // if there are no PHI nodes. 6745 if (MergeBlockIntoPredecessor(BB, DTU)) 6746 return true; 6747 6748 if (SinkCommon && Options.SinkCommonInsts) 6749 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6750 6751 IRBuilder<> Builder(BB); 6752 6753 if (Options.FoldTwoEntryPHINode) { 6754 // If there is a trivial two-entry PHI node in this basic block, and we can 6755 // eliminate it, do so now. 6756 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6757 if (PN->getNumIncomingValues() == 2) 6758 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6759 } 6760 6761 Instruction *Terminator = BB->getTerminator(); 6762 Builder.SetInsertPoint(Terminator); 6763 switch (Terminator->getOpcode()) { 6764 case Instruction::Br: 6765 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6766 break; 6767 case Instruction::Ret: 6768 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6769 break; 6770 case Instruction::Resume: 6771 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6772 break; 6773 case Instruction::CleanupRet: 6774 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6775 break; 6776 case Instruction::Switch: 6777 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6778 break; 6779 case Instruction::Unreachable: 6780 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6781 break; 6782 case Instruction::IndirectBr: 6783 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6784 break; 6785 } 6786 6787 return Changed; 6788 } 6789 6790 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6791 bool Changed = simplifyOnceImpl(BB); 6792 6793 return Changed; 6794 } 6795 6796 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6797 bool Changed = false; 6798 6799 // Repeated simplify BB as long as resimplification is requested. 6800 do { 6801 Resimplify = false; 6802 6803 // Perform one round of simplifcation. Resimplify flag will be set if 6804 // another iteration is requested. 6805 Changed |= simplifyOnce(BB); 6806 } while (Resimplify); 6807 6808 return Changed; 6809 } 6810 6811 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6812 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6813 ArrayRef<WeakVH> LoopHeaders) { 6814 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6815 Options) 6816 .run(BB); 6817 } 6818