1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetOperations.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/NoFolder.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> PHINodeFoldingThreshold( 62 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc( 64 "Control the amount of phi node folding to perform (default = 2)")); 65 66 static cl::opt<bool> DupRet( 67 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 68 cl::desc("Duplicate return instructions into unconditional branches")); 69 70 static cl::opt<bool> 71 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 72 cl::desc("Sink common instructions down to the end block")); 73 74 static cl::opt<bool> HoistCondStores( 75 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 76 cl::desc("Hoist conditional stores if an unconditional store precedes")); 77 78 static cl::opt<bool> MergeCondStores( 79 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 80 cl::desc("Hoist conditional stores even if an unconditional store does not " 81 "precede - hoist multiple conditional stores into a single " 82 "predicated store")); 83 84 static cl::opt<bool> MergeCondStoresAggressively( 85 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 86 cl::desc("When merging conditional stores, do so even if the resultant " 87 "basic blocks are unlikely to be if-converted as a result")); 88 89 static cl::opt<bool> SpeculateOneExpensiveInst( 90 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 91 cl::desc("Allow exactly one expensive instruction to be speculatively " 92 "executed")); 93 94 static cl::opt<unsigned> MaxSpeculationDepth( 95 "max-speculation-depth", cl::Hidden, cl::init(10), 96 cl::desc("Limit maximum recursion depth when calculating costs of " 97 "speculatively executed instructions")); 98 99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 100 STATISTIC(NumLinearMaps, 101 "Number of switch instructions turned into linear mapping"); 102 STATISTIC(NumLookupTables, 103 "Number of switch instructions turned into lookup tables"); 104 STATISTIC( 105 NumLookupTablesHoles, 106 "Number of switch instructions turned into lookup tables (holes checked)"); 107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 108 STATISTIC(NumSinkCommons, 109 "Number of common instructions sunk down to the end block"); 110 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 111 112 namespace { 113 // The first field contains the value that the switch produces when a certain 114 // case group is selected, and the second field is a vector containing the 115 // cases composing the case group. 116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 117 SwitchCaseResultVectorTy; 118 // The first field contains the phi node that generates a result of the switch 119 // and the second field contains the value generated for a certain case in the 120 // switch for that PHI. 121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 122 123 /// ValueEqualityComparisonCase - Represents a case of a switch. 124 struct ValueEqualityComparisonCase { 125 ConstantInt *Value; 126 BasicBlock *Dest; 127 128 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 129 : Value(Value), Dest(Dest) {} 130 131 bool operator<(ValueEqualityComparisonCase RHS) const { 132 // Comparing pointers is ok as we only rely on the order for uniquing. 133 return Value < RHS.Value; 134 } 135 136 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 137 }; 138 139 class SimplifyCFGOpt { 140 const TargetTransformInfo &TTI; 141 const DataLayout &DL; 142 unsigned BonusInstThreshold; 143 AssumptionCache *AC; 144 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 145 Value *isValueEqualityComparison(TerminatorInst *TI); 146 BasicBlock *GetValueEqualityComparisonCases( 147 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 148 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 149 BasicBlock *Pred, 150 IRBuilder<> &Builder); 151 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 152 IRBuilder<> &Builder); 153 154 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 155 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 156 bool SimplifySingleResume(ResumeInst *RI); 157 bool SimplifyCommonResume(ResumeInst *RI); 158 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 159 bool SimplifyUnreachable(UnreachableInst *UI); 160 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 161 bool SimplifyIndirectBr(IndirectBrInst *IBI); 162 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 163 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 164 165 public: 166 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 167 unsigned BonusInstThreshold, AssumptionCache *AC, 168 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) 169 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC), 170 LoopHeaders(LoopHeaders) {} 171 bool run(BasicBlock *BB); 172 }; 173 } 174 175 /// Return true if it is safe to merge these two 176 /// terminator instructions together. 177 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 178 if (SI1 == SI2) 179 return false; // Can't merge with self! 180 181 // It is not safe to merge these two switch instructions if they have a common 182 // successor, and if that successor has a PHI node, and if *that* PHI node has 183 // conflicting incoming values from the two switch blocks. 184 BasicBlock *SI1BB = SI1->getParent(); 185 BasicBlock *SI2BB = SI2->getParent(); 186 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 187 188 for (BasicBlock *Succ : successors(SI2BB)) 189 if (SI1Succs.count(Succ)) 190 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 191 PHINode *PN = cast<PHINode>(BBI); 192 if (PN->getIncomingValueForBlock(SI1BB) != 193 PN->getIncomingValueForBlock(SI2BB)) 194 return false; 195 } 196 197 return true; 198 } 199 200 /// Return true if it is safe and profitable to merge these two terminator 201 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 202 /// store all PHI nodes in common successors. 203 static bool 204 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 205 Instruction *Cond, 206 SmallVectorImpl<PHINode *> &PhiNodes) { 207 if (SI1 == SI2) 208 return false; // Can't merge with self! 209 assert(SI1->isUnconditional() && SI2->isConditional()); 210 211 // We fold the unconditional branch if we can easily update all PHI nodes in 212 // common successors: 213 // 1> We have a constant incoming value for the conditional branch; 214 // 2> We have "Cond" as the incoming value for the unconditional branch; 215 // 3> SI2->getCondition() and Cond have same operands. 216 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 217 if (!Ci2) 218 return false; 219 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 220 Cond->getOperand(1) == Ci2->getOperand(1)) && 221 !(Cond->getOperand(0) == Ci2->getOperand(1) && 222 Cond->getOperand(1) == Ci2->getOperand(0))) 223 return false; 224 225 BasicBlock *SI1BB = SI1->getParent(); 226 BasicBlock *SI2BB = SI2->getParent(); 227 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 228 for (BasicBlock *Succ : successors(SI2BB)) 229 if (SI1Succs.count(Succ)) 230 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 231 PHINode *PN = cast<PHINode>(BBI); 232 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 233 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 234 return false; 235 PhiNodes.push_back(PN); 236 } 237 return true; 238 } 239 240 /// Update PHI nodes in Succ to indicate that there will now be entries in it 241 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 242 /// will be the same as those coming in from ExistPred, an existing predecessor 243 /// of Succ. 244 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 245 BasicBlock *ExistPred) { 246 if (!isa<PHINode>(Succ->begin())) 247 return; // Quick exit if nothing to do 248 249 PHINode *PN; 250 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 251 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 252 } 253 254 /// Compute an abstract "cost" of speculating the given instruction, 255 /// which is assumed to be safe to speculate. TCC_Free means cheap, 256 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 257 /// expensive. 258 static unsigned ComputeSpeculationCost(const User *I, 259 const TargetTransformInfo &TTI) { 260 assert(isSafeToSpeculativelyExecute(I) && 261 "Instruction is not safe to speculatively execute!"); 262 return TTI.getUserCost(I); 263 } 264 265 /// If we have a merge point of an "if condition" as accepted above, 266 /// return true if the specified value dominates the block. We 267 /// don't handle the true generality of domination here, just a special case 268 /// which works well enough for us. 269 /// 270 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 271 /// see if V (which must be an instruction) and its recursive operands 272 /// that do not dominate BB have a combined cost lower than CostRemaining and 273 /// are non-trapping. If both are true, the instruction is inserted into the 274 /// set and true is returned. 275 /// 276 /// The cost for most non-trapping instructions is defined as 1 except for 277 /// Select whose cost is 2. 278 /// 279 /// After this function returns, CostRemaining is decreased by the cost of 280 /// V plus its non-dominating operands. If that cost is greater than 281 /// CostRemaining, false is returned and CostRemaining is undefined. 282 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 283 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 284 unsigned &CostRemaining, 285 const TargetTransformInfo &TTI, 286 unsigned Depth = 0) { 287 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 288 // so limit the recursion depth. 289 // TODO: While this recursion limit does prevent pathological behavior, it 290 // would be better to track visited instructions to avoid cycles. 291 if (Depth == MaxSpeculationDepth) 292 return false; 293 294 Instruction *I = dyn_cast<Instruction>(V); 295 if (!I) { 296 // Non-instructions all dominate instructions, but not all constantexprs 297 // can be executed unconditionally. 298 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 299 if (C->canTrap()) 300 return false; 301 return true; 302 } 303 BasicBlock *PBB = I->getParent(); 304 305 // We don't want to allow weird loops that might have the "if condition" in 306 // the bottom of this block. 307 if (PBB == BB) 308 return false; 309 310 // If this instruction is defined in a block that contains an unconditional 311 // branch to BB, then it must be in the 'conditional' part of the "if 312 // statement". If not, it definitely dominates the region. 313 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 314 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 315 return true; 316 317 // If we aren't allowing aggressive promotion anymore, then don't consider 318 // instructions in the 'if region'. 319 if (!AggressiveInsts) 320 return false; 321 322 // If we have seen this instruction before, don't count it again. 323 if (AggressiveInsts->count(I)) 324 return true; 325 326 // Okay, it looks like the instruction IS in the "condition". Check to 327 // see if it's a cheap instruction to unconditionally compute, and if it 328 // only uses stuff defined outside of the condition. If so, hoist it out. 329 if (!isSafeToSpeculativelyExecute(I)) 330 return false; 331 332 unsigned Cost = ComputeSpeculationCost(I, TTI); 333 334 // Allow exactly one instruction to be speculated regardless of its cost 335 // (as long as it is safe to do so). 336 // This is intended to flatten the CFG even if the instruction is a division 337 // or other expensive operation. The speculation of an expensive instruction 338 // is expected to be undone in CodeGenPrepare if the speculation has not 339 // enabled further IR optimizations. 340 if (Cost > CostRemaining && 341 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 342 return false; 343 344 // Avoid unsigned wrap. 345 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 346 347 // Okay, we can only really hoist these out if their operands do 348 // not take us over the cost threshold. 349 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 350 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 351 Depth + 1)) 352 return false; 353 // Okay, it's safe to do this! Remember this instruction. 354 AggressiveInsts->insert(I); 355 return true; 356 } 357 358 /// Extract ConstantInt from value, looking through IntToPtr 359 /// and PointerNullValue. Return NULL if value is not a constant int. 360 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 361 // Normal constant int. 362 ConstantInt *CI = dyn_cast<ConstantInt>(V); 363 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 364 return CI; 365 366 // This is some kind of pointer constant. Turn it into a pointer-sized 367 // ConstantInt if possible. 368 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 369 370 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 371 if (isa<ConstantPointerNull>(V)) 372 return ConstantInt::get(PtrTy, 0); 373 374 // IntToPtr const int. 375 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 376 if (CE->getOpcode() == Instruction::IntToPtr) 377 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 378 // The constant is very likely to have the right type already. 379 if (CI->getType() == PtrTy) 380 return CI; 381 else 382 return cast<ConstantInt>( 383 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 384 } 385 return nullptr; 386 } 387 388 namespace { 389 390 /// Given a chain of or (||) or and (&&) comparison of a value against a 391 /// constant, this will try to recover the information required for a switch 392 /// structure. 393 /// It will depth-first traverse the chain of comparison, seeking for patterns 394 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 395 /// representing the different cases for the switch. 396 /// Note that if the chain is composed of '||' it will build the set of elements 397 /// that matches the comparisons (i.e. any of this value validate the chain) 398 /// while for a chain of '&&' it will build the set elements that make the test 399 /// fail. 400 struct ConstantComparesGatherer { 401 const DataLayout &DL; 402 Value *CompValue; /// Value found for the switch comparison 403 Value *Extra; /// Extra clause to be checked before the switch 404 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 405 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 406 407 /// Construct and compute the result for the comparison instruction Cond 408 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 409 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 410 gather(Cond); 411 } 412 413 /// Prevent copy 414 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 415 ConstantComparesGatherer & 416 operator=(const ConstantComparesGatherer &) = delete; 417 418 private: 419 /// Try to set the current value used for the comparison, it succeeds only if 420 /// it wasn't set before or if the new value is the same as the old one 421 bool setValueOnce(Value *NewVal) { 422 if (CompValue && CompValue != NewVal) 423 return false; 424 CompValue = NewVal; 425 return (CompValue != nullptr); 426 } 427 428 /// Try to match Instruction "I" as a comparison against a constant and 429 /// populates the array Vals with the set of values that match (or do not 430 /// match depending on isEQ). 431 /// Return false on failure. On success, the Value the comparison matched 432 /// against is placed in CompValue. 433 /// If CompValue is already set, the function is expected to fail if a match 434 /// is found but the value compared to is different. 435 bool matchInstruction(Instruction *I, bool isEQ) { 436 // If this is an icmp against a constant, handle this as one of the cases. 437 ICmpInst *ICI; 438 ConstantInt *C; 439 if (!((ICI = dyn_cast<ICmpInst>(I)) && 440 (C = GetConstantInt(I->getOperand(1), DL)))) { 441 return false; 442 } 443 444 Value *RHSVal; 445 const APInt *RHSC; 446 447 // Pattern match a special case 448 // (x & ~2^z) == y --> x == y || x == y|2^z 449 // This undoes a transformation done by instcombine to fuse 2 compares. 450 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 451 452 // It's a little bit hard to see why the following transformations are 453 // correct. Here is a CVC3 program to verify them for 64-bit values: 454 455 /* 456 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 457 x : BITVECTOR(64); 458 y : BITVECTOR(64); 459 z : BITVECTOR(64); 460 mask : BITVECTOR(64) = BVSHL(ONE, z); 461 QUERY( (y & ~mask = y) => 462 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 463 ); 464 */ 465 466 // Please note that each pattern must be a dual implication (<--> or 467 // iff). One directional implication can create spurious matches. If the 468 // implication is only one-way, an unsatisfiable condition on the left 469 // side can imply a satisfiable condition on the right side. Dual 470 // implication ensures that satisfiable conditions are transformed to 471 // other satisfiable conditions and unsatisfiable conditions are 472 // transformed to other unsatisfiable conditions. 473 474 // Here is a concrete example of a unsatisfiable condition on the left 475 // implying a satisfiable condition on the right: 476 // 477 // mask = (1 << z) 478 // (x & ~mask) == y --> (x == y || x == (y | mask)) 479 // 480 // Substituting y = 3, z = 0 yields: 481 // (x & -2) == 3 --> (x == 3 || x == 2) 482 483 // Pattern match a special case: 484 /* 485 QUERY( (y & ~mask = y) => 486 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 487 ); 488 */ 489 if (match(ICI->getOperand(0), 490 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 491 APInt Mask = ~*RHSC; 492 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 493 // If we already have a value for the switch, it has to match! 494 if (!setValueOnce(RHSVal)) 495 return false; 496 497 Vals.push_back(C); 498 Vals.push_back( 499 ConstantInt::get(C->getContext(), 500 C->getValue() | Mask)); 501 UsedICmps++; 502 return true; 503 } 504 } 505 506 // If we already have a value for the switch, it has to match! 507 if (!setValueOnce(ICI->getOperand(0))) 508 return false; 509 510 UsedICmps++; 511 Vals.push_back(C); 512 return ICI->getOperand(0); 513 } 514 515 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 516 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 517 ICI->getPredicate(), C->getValue()); 518 519 // Shift the range if the compare is fed by an add. This is the range 520 // compare idiom as emitted by instcombine. 521 Value *CandidateVal = I->getOperand(0); 522 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 523 Span = Span.subtract(*RHSC); 524 CandidateVal = RHSVal; 525 } 526 527 // If this is an and/!= check, then we are looking to build the set of 528 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 529 // x != 0 && x != 1. 530 if (!isEQ) 531 Span = Span.inverse(); 532 533 // If there are a ton of values, we don't want to make a ginormous switch. 534 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 535 return false; 536 } 537 538 // If we already have a value for the switch, it has to match! 539 if (!setValueOnce(CandidateVal)) 540 return false; 541 542 // Add all values from the range to the set 543 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 544 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 545 546 UsedICmps++; 547 return true; 548 } 549 550 /// Given a potentially 'or'd or 'and'd together collection of icmp 551 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 552 /// the value being compared, and stick the list constants into the Vals 553 /// vector. 554 /// One "Extra" case is allowed to differ from the other. 555 void gather(Value *V) { 556 Instruction *I = dyn_cast<Instruction>(V); 557 bool isEQ = (I->getOpcode() == Instruction::Or); 558 559 // Keep a stack (SmallVector for efficiency) for depth-first traversal 560 SmallVector<Value *, 8> DFT; 561 SmallPtrSet<Value *, 8> Visited; 562 563 // Initialize 564 Visited.insert(V); 565 DFT.push_back(V); 566 567 while (!DFT.empty()) { 568 V = DFT.pop_back_val(); 569 570 if (Instruction *I = dyn_cast<Instruction>(V)) { 571 // If it is a || (or && depending on isEQ), process the operands. 572 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 573 if (Visited.insert(I->getOperand(1)).second) 574 DFT.push_back(I->getOperand(1)); 575 if (Visited.insert(I->getOperand(0)).second) 576 DFT.push_back(I->getOperand(0)); 577 continue; 578 } 579 580 // Try to match the current instruction 581 if (matchInstruction(I, isEQ)) 582 // Match succeed, continue the loop 583 continue; 584 } 585 586 // One element of the sequence of || (or &&) could not be match as a 587 // comparison against the same value as the others. 588 // We allow only one "Extra" case to be checked before the switch 589 if (!Extra) { 590 Extra = V; 591 continue; 592 } 593 // Failed to parse a proper sequence, abort now 594 CompValue = nullptr; 595 break; 596 } 597 } 598 }; 599 } 600 601 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 602 Instruction *Cond = nullptr; 603 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 604 Cond = dyn_cast<Instruction>(SI->getCondition()); 605 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 606 if (BI->isConditional()) 607 Cond = dyn_cast<Instruction>(BI->getCondition()); 608 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 609 Cond = dyn_cast<Instruction>(IBI->getAddress()); 610 } 611 612 TI->eraseFromParent(); 613 if (Cond) 614 RecursivelyDeleteTriviallyDeadInstructions(Cond); 615 } 616 617 /// Return true if the specified terminator checks 618 /// to see if a value is equal to constant integer value. 619 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 620 Value *CV = nullptr; 621 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 622 // Do not permit merging of large switch instructions into their 623 // predecessors unless there is only one predecessor. 624 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 625 pred_end(SI->getParent())) <= 626 128) 627 CV = SI->getCondition(); 628 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 629 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 630 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 631 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 632 CV = ICI->getOperand(0); 633 } 634 635 // Unwrap any lossless ptrtoint cast. 636 if (CV) { 637 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 638 Value *Ptr = PTII->getPointerOperand(); 639 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 640 CV = Ptr; 641 } 642 } 643 return CV; 644 } 645 646 /// Given a value comparison instruction, 647 /// decode all of the 'cases' that it represents and return the 'default' block. 648 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 649 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 650 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 651 Cases.reserve(SI->getNumCases()); 652 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 653 ++i) 654 Cases.push_back( 655 ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor())); 656 return SI->getDefaultDest(); 657 } 658 659 BranchInst *BI = cast<BranchInst>(TI); 660 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 661 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 662 Cases.push_back(ValueEqualityComparisonCase( 663 GetConstantInt(ICI->getOperand(1), DL), Succ)); 664 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 665 } 666 667 /// Given a vector of bb/value pairs, remove any entries 668 /// in the list that match the specified block. 669 static void 670 EliminateBlockCases(BasicBlock *BB, 671 std::vector<ValueEqualityComparisonCase> &Cases) { 672 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 673 } 674 675 /// Return true if there are any keys in C1 that exist in C2 as well. 676 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 677 std::vector<ValueEqualityComparisonCase> &C2) { 678 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 679 680 // Make V1 be smaller than V2. 681 if (V1->size() > V2->size()) 682 std::swap(V1, V2); 683 684 if (V1->size() == 0) 685 return false; 686 if (V1->size() == 1) { 687 // Just scan V2. 688 ConstantInt *TheVal = (*V1)[0].Value; 689 for (unsigned i = 0, e = V2->size(); i != e; ++i) 690 if (TheVal == (*V2)[i].Value) 691 return true; 692 } 693 694 // Otherwise, just sort both lists and compare element by element. 695 array_pod_sort(V1->begin(), V1->end()); 696 array_pod_sort(V2->begin(), V2->end()); 697 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 698 while (i1 != e1 && i2 != e2) { 699 if ((*V1)[i1].Value == (*V2)[i2].Value) 700 return true; 701 if ((*V1)[i1].Value < (*V2)[i2].Value) 702 ++i1; 703 else 704 ++i2; 705 } 706 return false; 707 } 708 709 /// If TI is known to be a terminator instruction and its block is known to 710 /// only have a single predecessor block, check to see if that predecessor is 711 /// also a value comparison with the same value, and if that comparison 712 /// determines the outcome of this comparison. If so, simplify TI. This does a 713 /// very limited form of jump threading. 714 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 715 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 716 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 717 if (!PredVal) 718 return false; // Not a value comparison in predecessor. 719 720 Value *ThisVal = isValueEqualityComparison(TI); 721 assert(ThisVal && "This isn't a value comparison!!"); 722 if (ThisVal != PredVal) 723 return false; // Different predicates. 724 725 // TODO: Preserve branch weight metadata, similarly to how 726 // FoldValueComparisonIntoPredecessors preserves it. 727 728 // Find out information about when control will move from Pred to TI's block. 729 std::vector<ValueEqualityComparisonCase> PredCases; 730 BasicBlock *PredDef = 731 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 732 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 733 734 // Find information about how control leaves this block. 735 std::vector<ValueEqualityComparisonCase> ThisCases; 736 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 737 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 738 739 // If TI's block is the default block from Pred's comparison, potentially 740 // simplify TI based on this knowledge. 741 if (PredDef == TI->getParent()) { 742 // If we are here, we know that the value is none of those cases listed in 743 // PredCases. If there are any cases in ThisCases that are in PredCases, we 744 // can simplify TI. 745 if (!ValuesOverlap(PredCases, ThisCases)) 746 return false; 747 748 if (isa<BranchInst>(TI)) { 749 // Okay, one of the successors of this condbr is dead. Convert it to a 750 // uncond br. 751 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 752 // Insert the new branch. 753 Instruction *NI = Builder.CreateBr(ThisDef); 754 (void)NI; 755 756 // Remove PHI node entries for the dead edge. 757 ThisCases[0].Dest->removePredecessor(TI->getParent()); 758 759 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 760 << "Through successor TI: " << *TI << "Leaving: " << *NI 761 << "\n"); 762 763 EraseTerminatorInstAndDCECond(TI); 764 return true; 765 } 766 767 SwitchInst *SI = cast<SwitchInst>(TI); 768 // Okay, TI has cases that are statically dead, prune them away. 769 SmallPtrSet<Constant *, 16> DeadCases; 770 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 771 DeadCases.insert(PredCases[i].Value); 772 773 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 774 << "Through successor TI: " << *TI); 775 776 // Collect branch weights into a vector. 777 SmallVector<uint32_t, 8> Weights; 778 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 779 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 780 if (HasWeight) 781 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 782 ++MD_i) { 783 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 784 Weights.push_back(CI->getValue().getZExtValue()); 785 } 786 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 787 --i; 788 if (DeadCases.count(i.getCaseValue())) { 789 if (HasWeight) { 790 std::swap(Weights[i.getCaseIndex() + 1], Weights.back()); 791 Weights.pop_back(); 792 } 793 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 794 SI->removeCase(i); 795 } 796 } 797 if (HasWeight && Weights.size() >= 2) 798 SI->setMetadata(LLVMContext::MD_prof, 799 MDBuilder(SI->getParent()->getContext()) 800 .createBranchWeights(Weights)); 801 802 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 803 return true; 804 } 805 806 // Otherwise, TI's block must correspond to some matched value. Find out 807 // which value (or set of values) this is. 808 ConstantInt *TIV = nullptr; 809 BasicBlock *TIBB = TI->getParent(); 810 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 811 if (PredCases[i].Dest == TIBB) { 812 if (TIV) 813 return false; // Cannot handle multiple values coming to this block. 814 TIV = PredCases[i].Value; 815 } 816 assert(TIV && "No edge from pred to succ?"); 817 818 // Okay, we found the one constant that our value can be if we get into TI's 819 // BB. Find out which successor will unconditionally be branched to. 820 BasicBlock *TheRealDest = nullptr; 821 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 822 if (ThisCases[i].Value == TIV) { 823 TheRealDest = ThisCases[i].Dest; 824 break; 825 } 826 827 // If not handled by any explicit cases, it is handled by the default case. 828 if (!TheRealDest) 829 TheRealDest = ThisDef; 830 831 // Remove PHI node entries for dead edges. 832 BasicBlock *CheckEdge = TheRealDest; 833 for (BasicBlock *Succ : successors(TIBB)) 834 if (Succ != CheckEdge) 835 Succ->removePredecessor(TIBB); 836 else 837 CheckEdge = nullptr; 838 839 // Insert the new branch. 840 Instruction *NI = Builder.CreateBr(TheRealDest); 841 (void)NI; 842 843 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 844 << "Through successor TI: " << *TI << "Leaving: " << *NI 845 << "\n"); 846 847 EraseTerminatorInstAndDCECond(TI); 848 return true; 849 } 850 851 namespace { 852 /// This class implements a stable ordering of constant 853 /// integers that does not depend on their address. This is important for 854 /// applications that sort ConstantInt's to ensure uniqueness. 855 struct ConstantIntOrdering { 856 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 857 return LHS->getValue().ult(RHS->getValue()); 858 } 859 }; 860 } 861 862 static int ConstantIntSortPredicate(ConstantInt *const *P1, 863 ConstantInt *const *P2) { 864 const ConstantInt *LHS = *P1; 865 const ConstantInt *RHS = *P2; 866 if (LHS == RHS) 867 return 0; 868 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 869 } 870 871 static inline bool HasBranchWeights(const Instruction *I) { 872 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 873 if (ProfMD && ProfMD->getOperand(0)) 874 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 875 return MDS->getString().equals("branch_weights"); 876 877 return false; 878 } 879 880 /// Get Weights of a given TerminatorInst, the default weight is at the front 881 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 882 /// metadata. 883 static void GetBranchWeights(TerminatorInst *TI, 884 SmallVectorImpl<uint64_t> &Weights) { 885 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 886 assert(MD); 887 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 888 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 889 Weights.push_back(CI->getValue().getZExtValue()); 890 } 891 892 // If TI is a conditional eq, the default case is the false case, 893 // and the corresponding branch-weight data is at index 2. We swap the 894 // default weight to be the first entry. 895 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 896 assert(Weights.size() == 2); 897 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 898 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 899 std::swap(Weights.front(), Weights.back()); 900 } 901 } 902 903 /// Keep halving the weights until all can fit in uint32_t. 904 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 905 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 906 if (Max > UINT_MAX) { 907 unsigned Offset = 32 - countLeadingZeros(Max); 908 for (uint64_t &I : Weights) 909 I >>= Offset; 910 } 911 } 912 913 /// The specified terminator is a value equality comparison instruction 914 /// (either a switch or a branch on "X == c"). 915 /// See if any of the predecessors of the terminator block are value comparisons 916 /// on the same value. If so, and if safe to do so, fold them together. 917 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 918 IRBuilder<> &Builder) { 919 BasicBlock *BB = TI->getParent(); 920 Value *CV = isValueEqualityComparison(TI); // CondVal 921 assert(CV && "Not a comparison?"); 922 bool Changed = false; 923 924 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 925 while (!Preds.empty()) { 926 BasicBlock *Pred = Preds.pop_back_val(); 927 928 // See if the predecessor is a comparison with the same value. 929 TerminatorInst *PTI = Pred->getTerminator(); 930 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 931 932 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 933 // Figure out which 'cases' to copy from SI to PSI. 934 std::vector<ValueEqualityComparisonCase> BBCases; 935 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 936 937 std::vector<ValueEqualityComparisonCase> PredCases; 938 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 939 940 // Based on whether the default edge from PTI goes to BB or not, fill in 941 // PredCases and PredDefault with the new switch cases we would like to 942 // build. 943 SmallVector<BasicBlock *, 8> NewSuccessors; 944 945 // Update the branch weight metadata along the way 946 SmallVector<uint64_t, 8> Weights; 947 bool PredHasWeights = HasBranchWeights(PTI); 948 bool SuccHasWeights = HasBranchWeights(TI); 949 950 if (PredHasWeights) { 951 GetBranchWeights(PTI, Weights); 952 // branch-weight metadata is inconsistent here. 953 if (Weights.size() != 1 + PredCases.size()) 954 PredHasWeights = SuccHasWeights = false; 955 } else if (SuccHasWeights) 956 // If there are no predecessor weights but there are successor weights, 957 // populate Weights with 1, which will later be scaled to the sum of 958 // successor's weights 959 Weights.assign(1 + PredCases.size(), 1); 960 961 SmallVector<uint64_t, 8> SuccWeights; 962 if (SuccHasWeights) { 963 GetBranchWeights(TI, SuccWeights); 964 // branch-weight metadata is inconsistent here. 965 if (SuccWeights.size() != 1 + BBCases.size()) 966 PredHasWeights = SuccHasWeights = false; 967 } else if (PredHasWeights) 968 SuccWeights.assign(1 + BBCases.size(), 1); 969 970 if (PredDefault == BB) { 971 // If this is the default destination from PTI, only the edges in TI 972 // that don't occur in PTI, or that branch to BB will be activated. 973 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 974 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 975 if (PredCases[i].Dest != BB) 976 PTIHandled.insert(PredCases[i].Value); 977 else { 978 // The default destination is BB, we don't need explicit targets. 979 std::swap(PredCases[i], PredCases.back()); 980 981 if (PredHasWeights || SuccHasWeights) { 982 // Increase weight for the default case. 983 Weights[0] += Weights[i + 1]; 984 std::swap(Weights[i + 1], Weights.back()); 985 Weights.pop_back(); 986 } 987 988 PredCases.pop_back(); 989 --i; 990 --e; 991 } 992 993 // Reconstruct the new switch statement we will be building. 994 if (PredDefault != BBDefault) { 995 PredDefault->removePredecessor(Pred); 996 PredDefault = BBDefault; 997 NewSuccessors.push_back(BBDefault); 998 } 999 1000 unsigned CasesFromPred = Weights.size(); 1001 uint64_t ValidTotalSuccWeight = 0; 1002 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1003 if (!PTIHandled.count(BBCases[i].Value) && 1004 BBCases[i].Dest != BBDefault) { 1005 PredCases.push_back(BBCases[i]); 1006 NewSuccessors.push_back(BBCases[i].Dest); 1007 if (SuccHasWeights || PredHasWeights) { 1008 // The default weight is at index 0, so weight for the ith case 1009 // should be at index i+1. Scale the cases from successor by 1010 // PredDefaultWeight (Weights[0]). 1011 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1012 ValidTotalSuccWeight += SuccWeights[i + 1]; 1013 } 1014 } 1015 1016 if (SuccHasWeights || PredHasWeights) { 1017 ValidTotalSuccWeight += SuccWeights[0]; 1018 // Scale the cases from predecessor by ValidTotalSuccWeight. 1019 for (unsigned i = 1; i < CasesFromPred; ++i) 1020 Weights[i] *= ValidTotalSuccWeight; 1021 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1022 Weights[0] *= SuccWeights[0]; 1023 } 1024 } else { 1025 // If this is not the default destination from PSI, only the edges 1026 // in SI that occur in PSI with a destination of BB will be 1027 // activated. 1028 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1029 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1030 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1031 if (PredCases[i].Dest == BB) { 1032 PTIHandled.insert(PredCases[i].Value); 1033 1034 if (PredHasWeights || SuccHasWeights) { 1035 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1036 std::swap(Weights[i + 1], Weights.back()); 1037 Weights.pop_back(); 1038 } 1039 1040 std::swap(PredCases[i], PredCases.back()); 1041 PredCases.pop_back(); 1042 --i; 1043 --e; 1044 } 1045 1046 // Okay, now we know which constants were sent to BB from the 1047 // predecessor. Figure out where they will all go now. 1048 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1049 if (PTIHandled.count(BBCases[i].Value)) { 1050 // If this is one we are capable of getting... 1051 if (PredHasWeights || SuccHasWeights) 1052 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1053 PredCases.push_back(BBCases[i]); 1054 NewSuccessors.push_back(BBCases[i].Dest); 1055 PTIHandled.erase( 1056 BBCases[i].Value); // This constant is taken care of 1057 } 1058 1059 // If there are any constants vectored to BB that TI doesn't handle, 1060 // they must go to the default destination of TI. 1061 for (std::set<ConstantInt *, ConstantIntOrdering>::iterator 1062 I = PTIHandled.begin(), 1063 E = PTIHandled.end(); 1064 I != E; ++I) { 1065 if (PredHasWeights || SuccHasWeights) 1066 Weights.push_back(WeightsForHandled[*I]); 1067 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 1068 NewSuccessors.push_back(BBDefault); 1069 } 1070 } 1071 1072 // Okay, at this point, we know which new successor Pred will get. Make 1073 // sure we update the number of entries in the PHI nodes for these 1074 // successors. 1075 for (BasicBlock *NewSuccessor : NewSuccessors) 1076 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1077 1078 Builder.SetInsertPoint(PTI); 1079 // Convert pointer to int before we switch. 1080 if (CV->getType()->isPointerTy()) { 1081 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1082 "magicptr"); 1083 } 1084 1085 // Now that the successors are updated, create the new Switch instruction. 1086 SwitchInst *NewSI = 1087 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1088 NewSI->setDebugLoc(PTI->getDebugLoc()); 1089 for (ValueEqualityComparisonCase &V : PredCases) 1090 NewSI->addCase(V.Value, V.Dest); 1091 1092 if (PredHasWeights || SuccHasWeights) { 1093 // Halve the weights if any of them cannot fit in an uint32_t 1094 FitWeights(Weights); 1095 1096 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1097 1098 NewSI->setMetadata( 1099 LLVMContext::MD_prof, 1100 MDBuilder(BB->getContext()).createBranchWeights(MDWeights)); 1101 } 1102 1103 EraseTerminatorInstAndDCECond(PTI); 1104 1105 // Okay, last check. If BB is still a successor of PSI, then we must 1106 // have an infinite loop case. If so, add an infinitely looping block 1107 // to handle the case to preserve the behavior of the code. 1108 BasicBlock *InfLoopBlock = nullptr; 1109 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1110 if (NewSI->getSuccessor(i) == BB) { 1111 if (!InfLoopBlock) { 1112 // Insert it at the end of the function, because it's either code, 1113 // or it won't matter if it's hot. :) 1114 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1115 BB->getParent()); 1116 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1117 } 1118 NewSI->setSuccessor(i, InfLoopBlock); 1119 } 1120 1121 Changed = true; 1122 } 1123 } 1124 return Changed; 1125 } 1126 1127 // If we would need to insert a select that uses the value of this invoke 1128 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1129 // can't hoist the invoke, as there is nowhere to put the select in this case. 1130 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1131 Instruction *I1, Instruction *I2) { 1132 for (BasicBlock *Succ : successors(BB1)) { 1133 PHINode *PN; 1134 for (BasicBlock::iterator BBI = Succ->begin(); 1135 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1136 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1137 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1138 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1139 return false; 1140 } 1141 } 1142 } 1143 return true; 1144 } 1145 1146 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1147 1148 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1149 /// in the two blocks up into the branch block. The caller of this function 1150 /// guarantees that BI's block dominates BB1 and BB2. 1151 static bool HoistThenElseCodeToIf(BranchInst *BI, 1152 const TargetTransformInfo &TTI) { 1153 // This does very trivial matching, with limited scanning, to find identical 1154 // instructions in the two blocks. In particular, we don't want to get into 1155 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1156 // such, we currently just scan for obviously identical instructions in an 1157 // identical order. 1158 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1159 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1160 1161 BasicBlock::iterator BB1_Itr = BB1->begin(); 1162 BasicBlock::iterator BB2_Itr = BB2->begin(); 1163 1164 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1165 // Skip debug info if it is not identical. 1166 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1167 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1168 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1169 while (isa<DbgInfoIntrinsic>(I1)) 1170 I1 = &*BB1_Itr++; 1171 while (isa<DbgInfoIntrinsic>(I2)) 1172 I2 = &*BB2_Itr++; 1173 } 1174 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1175 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1176 return false; 1177 1178 BasicBlock *BIParent = BI->getParent(); 1179 1180 bool Changed = false; 1181 do { 1182 // If we are hoisting the terminator instruction, don't move one (making a 1183 // broken BB), instead clone it, and remove BI. 1184 if (isa<TerminatorInst>(I1)) 1185 goto HoistTerminator; 1186 1187 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1188 return Changed; 1189 1190 // For a normal instruction, we just move one to right before the branch, 1191 // then replace all uses of the other with the first. Finally, we remove 1192 // the now redundant second instruction. 1193 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1194 if (!I2->use_empty()) 1195 I2->replaceAllUsesWith(I1); 1196 I1->intersectOptionalDataWith(I2); 1197 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1198 LLVMContext::MD_range, 1199 LLVMContext::MD_fpmath, 1200 LLVMContext::MD_invariant_load, 1201 LLVMContext::MD_nonnull, 1202 LLVMContext::MD_invariant_group, 1203 LLVMContext::MD_align, 1204 LLVMContext::MD_dereferenceable, 1205 LLVMContext::MD_dereferenceable_or_null, 1206 LLVMContext::MD_mem_parallel_loop_access}; 1207 combineMetadata(I1, I2, KnownIDs); 1208 I2->eraseFromParent(); 1209 Changed = true; 1210 1211 I1 = &*BB1_Itr++; 1212 I2 = &*BB2_Itr++; 1213 // Skip debug info if it is not identical. 1214 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1215 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1216 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1217 while (isa<DbgInfoIntrinsic>(I1)) 1218 I1 = &*BB1_Itr++; 1219 while (isa<DbgInfoIntrinsic>(I2)) 1220 I2 = &*BB2_Itr++; 1221 } 1222 } while (I1->isIdenticalToWhenDefined(I2)); 1223 1224 return true; 1225 1226 HoistTerminator: 1227 // It may not be possible to hoist an invoke. 1228 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1229 return Changed; 1230 1231 for (BasicBlock *Succ : successors(BB1)) { 1232 PHINode *PN; 1233 for (BasicBlock::iterator BBI = Succ->begin(); 1234 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1235 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1236 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1237 if (BB1V == BB2V) 1238 continue; 1239 1240 // Check for passingValueIsAlwaysUndefined here because we would rather 1241 // eliminate undefined control flow then converting it to a select. 1242 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1243 passingValueIsAlwaysUndefined(BB2V, PN)) 1244 return Changed; 1245 1246 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1247 return Changed; 1248 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1249 return Changed; 1250 } 1251 } 1252 1253 // Okay, it is safe to hoist the terminator. 1254 Instruction *NT = I1->clone(); 1255 BIParent->getInstList().insert(BI->getIterator(), NT); 1256 if (!NT->getType()->isVoidTy()) { 1257 I1->replaceAllUsesWith(NT); 1258 I2->replaceAllUsesWith(NT); 1259 NT->takeName(I1); 1260 } 1261 1262 IRBuilder<NoFolder> Builder(NT); 1263 // Hoisting one of the terminators from our successor is a great thing. 1264 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1265 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1266 // nodes, so we insert select instruction to compute the final result. 1267 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1268 for (BasicBlock *Succ : successors(BB1)) { 1269 PHINode *PN; 1270 for (BasicBlock::iterator BBI = Succ->begin(); 1271 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1272 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1273 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1274 if (BB1V == BB2V) 1275 continue; 1276 1277 // These values do not agree. Insert a select instruction before NT 1278 // that determines the right value. 1279 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1280 if (!SI) 1281 SI = cast<SelectInst>( 1282 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1283 BB1V->getName() + "." + BB2V->getName(), BI)); 1284 1285 // Make the PHI node use the select for all incoming values for BB1/BB2 1286 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1287 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1288 PN->setIncomingValue(i, SI); 1289 } 1290 } 1291 1292 // Update any PHI nodes in our new successors. 1293 for (BasicBlock *Succ : successors(BB1)) 1294 AddPredecessorToBlock(Succ, BIParent, BB1); 1295 1296 EraseTerminatorInstAndDCECond(BI); 1297 return true; 1298 } 1299 1300 /// Given an unconditional branch that goes to BBEnd, 1301 /// check whether BBEnd has only two predecessors and the other predecessor 1302 /// ends with an unconditional branch. If it is true, sink any common code 1303 /// in the two predecessors to BBEnd. 1304 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1305 assert(BI1->isUnconditional()); 1306 BasicBlock *BB1 = BI1->getParent(); 1307 BasicBlock *BBEnd = BI1->getSuccessor(0); 1308 1309 // Check that BBEnd has two predecessors and the other predecessor ends with 1310 // an unconditional branch. 1311 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1312 BasicBlock *Pred0 = *PI++; 1313 if (PI == PE) // Only one predecessor. 1314 return false; 1315 BasicBlock *Pred1 = *PI++; 1316 if (PI != PE) // More than two predecessors. 1317 return false; 1318 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1319 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1320 if (!BI2 || !BI2->isUnconditional()) 1321 return false; 1322 1323 // Gather the PHI nodes in BBEnd. 1324 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap; 1325 Instruction *FirstNonPhiInBBEnd = nullptr; 1326 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) { 1327 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1328 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1329 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1330 JointValueMap[std::make_pair(BB1V, BB2V)] = PN; 1331 } else { 1332 FirstNonPhiInBBEnd = &*I; 1333 break; 1334 } 1335 } 1336 if (!FirstNonPhiInBBEnd) 1337 return false; 1338 1339 // This does very trivial matching, with limited scanning, to find identical 1340 // instructions in the two blocks. We scan backward for obviously identical 1341 // instructions in an identical order. 1342 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1343 RE1 = BB1->getInstList().rend(), 1344 RI2 = BB2->getInstList().rbegin(), 1345 RE2 = BB2->getInstList().rend(); 1346 // Skip debug info. 1347 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) 1348 ++RI1; 1349 if (RI1 == RE1) 1350 return false; 1351 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) 1352 ++RI2; 1353 if (RI2 == RE2) 1354 return false; 1355 // Skip the unconditional branches. 1356 ++RI1; 1357 ++RI2; 1358 1359 bool Changed = false; 1360 while (RI1 != RE1 && RI2 != RE2) { 1361 // Skip debug info. 1362 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) 1363 ++RI1; 1364 if (RI1 == RE1) 1365 return Changed; 1366 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) 1367 ++RI2; 1368 if (RI2 == RE2) 1369 return Changed; 1370 1371 Instruction *I1 = &*RI1, *I2 = &*RI2; 1372 auto InstPair = std::make_pair(I1, I2); 1373 // I1 and I2 should have a single use in the same PHI node, and they 1374 // perform the same operation. 1375 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1376 if (isa<PHINode>(I1) || isa<PHINode>(I2) || isa<TerminatorInst>(I1) || 1377 isa<TerminatorInst>(I2) || I1->isEHPad() || I2->isEHPad() || 1378 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1379 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1380 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1381 !I1->hasOneUse() || !I2->hasOneUse() || !JointValueMap.count(InstPair)) 1382 return Changed; 1383 1384 // Check whether we should swap the operands of ICmpInst. 1385 // TODO: Add support of communativity. 1386 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1387 bool SwapOpnds = false; 1388 if (ICmp1 && ICmp2 && ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1389 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1390 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1391 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1392 ICmp2->swapOperands(); 1393 SwapOpnds = true; 1394 } 1395 if (!I1->isSameOperationAs(I2)) { 1396 if (SwapOpnds) 1397 ICmp2->swapOperands(); 1398 return Changed; 1399 } 1400 1401 // The operands should be either the same or they need to be generated 1402 // with a PHI node after sinking. We only handle the case where there is 1403 // a single pair of different operands. 1404 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1405 unsigned Op1Idx = ~0U; 1406 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1407 if (I1->getOperand(I) == I2->getOperand(I)) 1408 continue; 1409 // Early exit if we have more-than one pair of different operands or if 1410 // we need a PHI node to replace a constant. 1411 if (Op1Idx != ~0U || isa<Constant>(I1->getOperand(I)) || 1412 isa<Constant>(I2->getOperand(I))) { 1413 // If we can't sink the instructions, undo the swapping. 1414 if (SwapOpnds) 1415 ICmp2->swapOperands(); 1416 return Changed; 1417 } 1418 DifferentOp1 = I1->getOperand(I); 1419 Op1Idx = I; 1420 DifferentOp2 = I2->getOperand(I); 1421 } 1422 1423 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n"); 1424 DEBUG(dbgs() << " " << *I2 << "\n"); 1425 1426 // We insert the pair of different operands to JointValueMap and 1427 // remove (I1, I2) from JointValueMap. 1428 if (Op1Idx != ~0U) { 1429 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)]; 1430 if (!NewPN) { 1431 NewPN = 1432 PHINode::Create(DifferentOp1->getType(), 2, 1433 DifferentOp1->getName() + ".sink", &BBEnd->front()); 1434 NewPN->addIncoming(DifferentOp1, BB1); 1435 NewPN->addIncoming(DifferentOp2, BB2); 1436 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1437 } 1438 // I1 should use NewPN instead of DifferentOp1. 1439 I1->setOperand(Op1Idx, NewPN); 1440 } 1441 PHINode *OldPN = JointValueMap[InstPair]; 1442 JointValueMap.erase(InstPair); 1443 1444 // We need to update RE1 and RE2 if we are going to sink the first 1445 // instruction in the basic block down. 1446 bool UpdateRE1 = (I1 == &BB1->front()), UpdateRE2 = (I2 == &BB2->front()); 1447 // Sink the instruction. 1448 BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(), 1449 BB1->getInstList(), I1); 1450 if (!OldPN->use_empty()) 1451 OldPN->replaceAllUsesWith(I1); 1452 OldPN->eraseFromParent(); 1453 1454 if (!I2->use_empty()) 1455 I2->replaceAllUsesWith(I1); 1456 I1->intersectOptionalDataWith(I2); 1457 // TODO: Use combineMetadata here to preserve what metadata we can 1458 // (analogous to the hoisting case above). 1459 I2->eraseFromParent(); 1460 1461 if (UpdateRE1) 1462 RE1 = BB1->getInstList().rend(); 1463 if (UpdateRE2) 1464 RE2 = BB2->getInstList().rend(); 1465 FirstNonPhiInBBEnd = &*I1; 1466 NumSinkCommons++; 1467 Changed = true; 1468 } 1469 return Changed; 1470 } 1471 1472 /// \brief Determine if we can hoist sink a sole store instruction out of a 1473 /// conditional block. 1474 /// 1475 /// We are looking for code like the following: 1476 /// BrBB: 1477 /// store i32 %add, i32* %arrayidx2 1478 /// ... // No other stores or function calls (we could be calling a memory 1479 /// ... // function). 1480 /// %cmp = icmp ult %x, %y 1481 /// br i1 %cmp, label %EndBB, label %ThenBB 1482 /// ThenBB: 1483 /// store i32 %add5, i32* %arrayidx2 1484 /// br label EndBB 1485 /// EndBB: 1486 /// ... 1487 /// We are going to transform this into: 1488 /// BrBB: 1489 /// store i32 %add, i32* %arrayidx2 1490 /// ... // 1491 /// %cmp = icmp ult %x, %y 1492 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1493 /// store i32 %add.add5, i32* %arrayidx2 1494 /// ... 1495 /// 1496 /// \return The pointer to the value of the previous store if the store can be 1497 /// hoisted into the predecessor block. 0 otherwise. 1498 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1499 BasicBlock *StoreBB, BasicBlock *EndBB) { 1500 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1501 if (!StoreToHoist) 1502 return nullptr; 1503 1504 // Volatile or atomic. 1505 if (!StoreToHoist->isSimple()) 1506 return nullptr; 1507 1508 Value *StorePtr = StoreToHoist->getPointerOperand(); 1509 1510 // Look for a store to the same pointer in BrBB. 1511 unsigned MaxNumInstToLookAt = 9; 1512 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), RE = BrBB->rend(); 1513 RI != RE && MaxNumInstToLookAt; ++RI) { 1514 Instruction *CurI = &*RI; 1515 // Skip debug info. 1516 if (isa<DbgInfoIntrinsic>(CurI)) 1517 continue; 1518 --MaxNumInstToLookAt; 1519 1520 // Could be calling an instruction that effects memory like free(). 1521 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1522 return nullptr; 1523 1524 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1525 // Found the previous store make sure it stores to the same location. 1526 if (SI && SI->getPointerOperand() == StorePtr) 1527 // Found the previous store, return its value operand. 1528 return SI->getValueOperand(); 1529 else if (SI) 1530 return nullptr; // Unknown store. 1531 } 1532 1533 return nullptr; 1534 } 1535 1536 /// \brief Speculate a conditional basic block flattening the CFG. 1537 /// 1538 /// Note that this is a very risky transform currently. Speculating 1539 /// instructions like this is most often not desirable. Instead, there is an MI 1540 /// pass which can do it with full awareness of the resource constraints. 1541 /// However, some cases are "obvious" and we should do directly. An example of 1542 /// this is speculating a single, reasonably cheap instruction. 1543 /// 1544 /// There is only one distinct advantage to flattening the CFG at the IR level: 1545 /// it makes very common but simplistic optimizations such as are common in 1546 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1547 /// modeling their effects with easier to reason about SSA value graphs. 1548 /// 1549 /// 1550 /// An illustration of this transform is turning this IR: 1551 /// \code 1552 /// BB: 1553 /// %cmp = icmp ult %x, %y 1554 /// br i1 %cmp, label %EndBB, label %ThenBB 1555 /// ThenBB: 1556 /// %sub = sub %x, %y 1557 /// br label BB2 1558 /// EndBB: 1559 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1560 /// ... 1561 /// \endcode 1562 /// 1563 /// Into this IR: 1564 /// \code 1565 /// BB: 1566 /// %cmp = icmp ult %x, %y 1567 /// %sub = sub %x, %y 1568 /// %cond = select i1 %cmp, 0, %sub 1569 /// ... 1570 /// \endcode 1571 /// 1572 /// \returns true if the conditional block is removed. 1573 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1574 const TargetTransformInfo &TTI) { 1575 // Be conservative for now. FP select instruction can often be expensive. 1576 Value *BrCond = BI->getCondition(); 1577 if (isa<FCmpInst>(BrCond)) 1578 return false; 1579 1580 BasicBlock *BB = BI->getParent(); 1581 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1582 1583 // If ThenBB is actually on the false edge of the conditional branch, remember 1584 // to swap the select operands later. 1585 bool Invert = false; 1586 if (ThenBB != BI->getSuccessor(0)) { 1587 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1588 Invert = true; 1589 } 1590 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1591 1592 // Keep a count of how many times instructions are used within CondBB when 1593 // they are candidates for sinking into CondBB. Specifically: 1594 // - They are defined in BB, and 1595 // - They have no side effects, and 1596 // - All of their uses are in CondBB. 1597 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1598 1599 unsigned SpeculationCost = 0; 1600 Value *SpeculatedStoreValue = nullptr; 1601 StoreInst *SpeculatedStore = nullptr; 1602 for (BasicBlock::iterator BBI = ThenBB->begin(), 1603 BBE = std::prev(ThenBB->end()); 1604 BBI != BBE; ++BBI) { 1605 Instruction *I = &*BBI; 1606 // Skip debug info. 1607 if (isa<DbgInfoIntrinsic>(I)) 1608 continue; 1609 1610 // Only speculatively execute a single instruction (not counting the 1611 // terminator) for now. 1612 ++SpeculationCost; 1613 if (SpeculationCost > 1) 1614 return false; 1615 1616 // Don't hoist the instruction if it's unsafe or expensive. 1617 if (!isSafeToSpeculativelyExecute(I) && 1618 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1619 I, BB, ThenBB, EndBB)))) 1620 return false; 1621 if (!SpeculatedStoreValue && 1622 ComputeSpeculationCost(I, TTI) > 1623 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1624 return false; 1625 1626 // Store the store speculation candidate. 1627 if (SpeculatedStoreValue) 1628 SpeculatedStore = cast<StoreInst>(I); 1629 1630 // Do not hoist the instruction if any of its operands are defined but not 1631 // used in BB. The transformation will prevent the operand from 1632 // being sunk into the use block. 1633 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1634 Instruction *OpI = dyn_cast<Instruction>(*i); 1635 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1636 continue; // Not a candidate for sinking. 1637 1638 ++SinkCandidateUseCounts[OpI]; 1639 } 1640 } 1641 1642 // Consider any sink candidates which are only used in CondBB as costs for 1643 // speculation. Note, while we iterate over a DenseMap here, we are summing 1644 // and so iteration order isn't significant. 1645 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 1646 I = SinkCandidateUseCounts.begin(), 1647 E = SinkCandidateUseCounts.end(); 1648 I != E; ++I) 1649 if (I->first->getNumUses() == I->second) { 1650 ++SpeculationCost; 1651 if (SpeculationCost > 1) 1652 return false; 1653 } 1654 1655 // Check that the PHI nodes can be converted to selects. 1656 bool HaveRewritablePHIs = false; 1657 for (BasicBlock::iterator I = EndBB->begin(); 1658 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1659 Value *OrigV = PN->getIncomingValueForBlock(BB); 1660 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1661 1662 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1663 // Skip PHIs which are trivial. 1664 if (ThenV == OrigV) 1665 continue; 1666 1667 // Don't convert to selects if we could remove undefined behavior instead. 1668 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1669 passingValueIsAlwaysUndefined(ThenV, PN)) 1670 return false; 1671 1672 HaveRewritablePHIs = true; 1673 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1674 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1675 if (!OrigCE && !ThenCE) 1676 continue; // Known safe and cheap. 1677 1678 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1679 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1680 return false; 1681 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1682 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1683 unsigned MaxCost = 1684 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 1685 if (OrigCost + ThenCost > MaxCost) 1686 return false; 1687 1688 // Account for the cost of an unfolded ConstantExpr which could end up 1689 // getting expanded into Instructions. 1690 // FIXME: This doesn't account for how many operations are combined in the 1691 // constant expression. 1692 ++SpeculationCost; 1693 if (SpeculationCost > 1) 1694 return false; 1695 } 1696 1697 // If there are no PHIs to process, bail early. This helps ensure idempotence 1698 // as well. 1699 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1700 return false; 1701 1702 // If we get here, we can hoist the instruction and if-convert. 1703 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1704 1705 // Insert a select of the value of the speculated store. 1706 if (SpeculatedStoreValue) { 1707 IRBuilder<NoFolder> Builder(BI); 1708 Value *TrueV = SpeculatedStore->getValueOperand(); 1709 Value *FalseV = SpeculatedStoreValue; 1710 if (Invert) 1711 std::swap(TrueV, FalseV); 1712 Value *S = Builder.CreateSelect( 1713 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 1714 SpeculatedStore->setOperand(0, S); 1715 } 1716 1717 // Metadata can be dependent on the condition we are hoisting above. 1718 // Conservatively strip all metadata on the instruction. 1719 for (auto &I : *ThenBB) 1720 I.dropUnknownNonDebugMetadata(); 1721 1722 // Hoist the instructions. 1723 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 1724 ThenBB->begin(), std::prev(ThenBB->end())); 1725 1726 // Insert selects and rewrite the PHI operands. 1727 IRBuilder<NoFolder> Builder(BI); 1728 for (BasicBlock::iterator I = EndBB->begin(); 1729 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1730 unsigned OrigI = PN->getBasicBlockIndex(BB); 1731 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1732 Value *OrigV = PN->getIncomingValue(OrigI); 1733 Value *ThenV = PN->getIncomingValue(ThenI); 1734 1735 // Skip PHIs which are trivial. 1736 if (OrigV == ThenV) 1737 continue; 1738 1739 // Create a select whose true value is the speculatively executed value and 1740 // false value is the preexisting value. Swap them if the branch 1741 // destinations were inverted. 1742 Value *TrueV = ThenV, *FalseV = OrigV; 1743 if (Invert) 1744 std::swap(TrueV, FalseV); 1745 Value *V = Builder.CreateSelect( 1746 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 1747 PN->setIncomingValue(OrigI, V); 1748 PN->setIncomingValue(ThenI, V); 1749 } 1750 1751 ++NumSpeculations; 1752 return true; 1753 } 1754 1755 /// Return true if we can thread a branch across this block. 1756 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1757 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1758 unsigned Size = 0; 1759 1760 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1761 if (isa<DbgInfoIntrinsic>(BBI)) 1762 continue; 1763 if (Size > 10) 1764 return false; // Don't clone large BB's. 1765 ++Size; 1766 1767 // We can only support instructions that do not define values that are 1768 // live outside of the current basic block. 1769 for (User *U : BBI->users()) { 1770 Instruction *UI = cast<Instruction>(U); 1771 if (UI->getParent() != BB || isa<PHINode>(UI)) 1772 return false; 1773 } 1774 1775 // Looks ok, continue checking. 1776 } 1777 1778 return true; 1779 } 1780 1781 /// If we have a conditional branch on a PHI node value that is defined in the 1782 /// same block as the branch and if any PHI entries are constants, thread edges 1783 /// corresponding to that entry to be branches to their ultimate destination. 1784 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 1785 BasicBlock *BB = BI->getParent(); 1786 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1787 // NOTE: we currently cannot transform this case if the PHI node is used 1788 // outside of the block. 1789 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1790 return false; 1791 1792 // Degenerate case of a single entry PHI. 1793 if (PN->getNumIncomingValues() == 1) { 1794 FoldSingleEntryPHINodes(PN->getParent()); 1795 return true; 1796 } 1797 1798 // Now we know that this block has multiple preds and two succs. 1799 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 1800 return false; 1801 1802 // Can't fold blocks that contain noduplicate or convergent calls. 1803 if (llvm::any_of(*BB, [](const Instruction &I) { 1804 const CallInst *CI = dyn_cast<CallInst>(&I); 1805 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 1806 })) 1807 return false; 1808 1809 // Okay, this is a simple enough basic block. See if any phi values are 1810 // constants. 1811 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1812 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1813 if (!CB || !CB->getType()->isIntegerTy(1)) 1814 continue; 1815 1816 // Okay, we now know that all edges from PredBB should be revectored to 1817 // branch to RealDest. 1818 BasicBlock *PredBB = PN->getIncomingBlock(i); 1819 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1820 1821 if (RealDest == BB) 1822 continue; // Skip self loops. 1823 // Skip if the predecessor's terminator is an indirect branch. 1824 if (isa<IndirectBrInst>(PredBB->getTerminator())) 1825 continue; 1826 1827 // The dest block might have PHI nodes, other predecessors and other 1828 // difficult cases. Instead of being smart about this, just insert a new 1829 // block that jumps to the destination block, effectively splitting 1830 // the edge we are about to create. 1831 BasicBlock *EdgeBB = 1832 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 1833 RealDest->getParent(), RealDest); 1834 BranchInst::Create(RealDest, EdgeBB); 1835 1836 // Update PHI nodes. 1837 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1838 1839 // BB may have instructions that are being threaded over. Clone these 1840 // instructions into EdgeBB. We know that there will be no uses of the 1841 // cloned instructions outside of EdgeBB. 1842 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1843 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 1844 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1845 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1846 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1847 continue; 1848 } 1849 // Clone the instruction. 1850 Instruction *N = BBI->clone(); 1851 if (BBI->hasName()) 1852 N->setName(BBI->getName() + ".c"); 1853 1854 // Update operands due to translation. 1855 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 1856 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 1857 if (PI != TranslateMap.end()) 1858 *i = PI->second; 1859 } 1860 1861 // Check for trivial simplification. 1862 if (Value *V = SimplifyInstruction(N, DL)) { 1863 TranslateMap[&*BBI] = V; 1864 delete N; // Instruction folded away, don't need actual inst 1865 } else { 1866 // Insert the new instruction into its new home. 1867 EdgeBB->getInstList().insert(InsertPt, N); 1868 if (!BBI->use_empty()) 1869 TranslateMap[&*BBI] = N; 1870 } 1871 } 1872 1873 // Loop over all of the edges from PredBB to BB, changing them to branch 1874 // to EdgeBB instead. 1875 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1876 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1877 if (PredBBTI->getSuccessor(i) == BB) { 1878 BB->removePredecessor(PredBB); 1879 PredBBTI->setSuccessor(i, EdgeBB); 1880 } 1881 1882 // Recurse, simplifying any other constants. 1883 return FoldCondBranchOnPHI(BI, DL) | true; 1884 } 1885 1886 return false; 1887 } 1888 1889 /// Given a BB that starts with the specified two-entry PHI node, 1890 /// see if we can eliminate it. 1891 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 1892 const DataLayout &DL) { 1893 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1894 // statement", which has a very simple dominance structure. Basically, we 1895 // are trying to find the condition that is being branched on, which 1896 // subsequently causes this merge to happen. We really want control 1897 // dependence information for this check, but simplifycfg can't keep it up 1898 // to date, and this catches most of the cases we care about anyway. 1899 BasicBlock *BB = PN->getParent(); 1900 BasicBlock *IfTrue, *IfFalse; 1901 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1902 if (!IfCond || 1903 // Don't bother if the branch will be constant folded trivially. 1904 isa<ConstantInt>(IfCond)) 1905 return false; 1906 1907 // Okay, we found that we can merge this two-entry phi node into a select. 1908 // Doing so would require us to fold *all* two entry phi nodes in this block. 1909 // At some point this becomes non-profitable (particularly if the target 1910 // doesn't support cmov's). Only do this transformation if there are two or 1911 // fewer PHI nodes in this block. 1912 unsigned NumPhis = 0; 1913 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1914 if (NumPhis > 2) 1915 return false; 1916 1917 // Loop over the PHI's seeing if we can promote them all to select 1918 // instructions. While we are at it, keep track of the instructions 1919 // that need to be moved to the dominating block. 1920 SmallPtrSet<Instruction *, 4> AggressiveInsts; 1921 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1922 MaxCostVal1 = PHINodeFoldingThreshold; 1923 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 1924 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 1925 1926 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1927 PHINode *PN = cast<PHINode>(II++); 1928 if (Value *V = SimplifyInstruction(PN, DL)) { 1929 PN->replaceAllUsesWith(V); 1930 PN->eraseFromParent(); 1931 continue; 1932 } 1933 1934 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1935 MaxCostVal0, TTI) || 1936 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1937 MaxCostVal1, TTI)) 1938 return false; 1939 } 1940 1941 // If we folded the first phi, PN dangles at this point. Refresh it. If 1942 // we ran out of PHIs then we simplified them all. 1943 PN = dyn_cast<PHINode>(BB->begin()); 1944 if (!PN) 1945 return true; 1946 1947 // Don't fold i1 branches on PHIs which contain binary operators. These can 1948 // often be turned into switches and other things. 1949 if (PN->getType()->isIntegerTy(1) && 1950 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1951 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1952 isa<BinaryOperator>(IfCond))) 1953 return false; 1954 1955 // If all PHI nodes are promotable, check to make sure that all instructions 1956 // in the predecessor blocks can be promoted as well. If not, we won't be able 1957 // to get rid of the control flow, so it's not worth promoting to select 1958 // instructions. 1959 BasicBlock *DomBlock = nullptr; 1960 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1961 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1962 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1963 IfBlock1 = nullptr; 1964 } else { 1965 DomBlock = *pred_begin(IfBlock1); 1966 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 1967 ++I) 1968 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1969 // This is not an aggressive instruction that we can promote. 1970 // Because of this, we won't be able to get rid of the control flow, so 1971 // the xform is not worth it. 1972 return false; 1973 } 1974 } 1975 1976 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1977 IfBlock2 = nullptr; 1978 } else { 1979 DomBlock = *pred_begin(IfBlock2); 1980 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 1981 ++I) 1982 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1983 // This is not an aggressive instruction that we can promote. 1984 // Because of this, we won't be able to get rid of the control flow, so 1985 // the xform is not worth it. 1986 return false; 1987 } 1988 } 1989 1990 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1991 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1992 1993 // If we can still promote the PHI nodes after this gauntlet of tests, 1994 // do all of the PHI's now. 1995 Instruction *InsertPt = DomBlock->getTerminator(); 1996 IRBuilder<NoFolder> Builder(InsertPt); 1997 1998 // Move all 'aggressive' instructions, which are defined in the 1999 // conditional parts of the if's up to the dominating block. 2000 if (IfBlock1) 2001 DomBlock->getInstList().splice(InsertPt->getIterator(), 2002 IfBlock1->getInstList(), IfBlock1->begin(), 2003 IfBlock1->getTerminator()->getIterator()); 2004 if (IfBlock2) 2005 DomBlock->getInstList().splice(InsertPt->getIterator(), 2006 IfBlock2->getInstList(), IfBlock2->begin(), 2007 IfBlock2->getTerminator()->getIterator()); 2008 2009 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2010 // Change the PHI node into a select instruction. 2011 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2012 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2013 2014 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2015 PN->replaceAllUsesWith(Sel); 2016 Sel->takeName(PN); 2017 PN->eraseFromParent(); 2018 } 2019 2020 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2021 // has been flattened. Change DomBlock to jump directly to our new block to 2022 // avoid other simplifycfg's kicking in on the diamond. 2023 TerminatorInst *OldTI = DomBlock->getTerminator(); 2024 Builder.SetInsertPoint(OldTI); 2025 Builder.CreateBr(BB); 2026 OldTI->eraseFromParent(); 2027 return true; 2028 } 2029 2030 /// If we found a conditional branch that goes to two returning blocks, 2031 /// try to merge them together into one return, 2032 /// introducing a select if the return values disagree. 2033 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2034 IRBuilder<> &Builder) { 2035 assert(BI->isConditional() && "Must be a conditional branch"); 2036 BasicBlock *TrueSucc = BI->getSuccessor(0); 2037 BasicBlock *FalseSucc = BI->getSuccessor(1); 2038 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2039 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2040 2041 // Check to ensure both blocks are empty (just a return) or optionally empty 2042 // with PHI nodes. If there are other instructions, merging would cause extra 2043 // computation on one path or the other. 2044 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2045 return false; 2046 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2047 return false; 2048 2049 Builder.SetInsertPoint(BI); 2050 // Okay, we found a branch that is going to two return nodes. If 2051 // there is no return value for this function, just change the 2052 // branch into a return. 2053 if (FalseRet->getNumOperands() == 0) { 2054 TrueSucc->removePredecessor(BI->getParent()); 2055 FalseSucc->removePredecessor(BI->getParent()); 2056 Builder.CreateRetVoid(); 2057 EraseTerminatorInstAndDCECond(BI); 2058 return true; 2059 } 2060 2061 // Otherwise, figure out what the true and false return values are 2062 // so we can insert a new select instruction. 2063 Value *TrueValue = TrueRet->getReturnValue(); 2064 Value *FalseValue = FalseRet->getReturnValue(); 2065 2066 // Unwrap any PHI nodes in the return blocks. 2067 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2068 if (TVPN->getParent() == TrueSucc) 2069 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2070 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2071 if (FVPN->getParent() == FalseSucc) 2072 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2073 2074 // In order for this transformation to be safe, we must be able to 2075 // unconditionally execute both operands to the return. This is 2076 // normally the case, but we could have a potentially-trapping 2077 // constant expression that prevents this transformation from being 2078 // safe. 2079 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2080 if (TCV->canTrap()) 2081 return false; 2082 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2083 if (FCV->canTrap()) 2084 return false; 2085 2086 // Okay, we collected all the mapped values and checked them for sanity, and 2087 // defined to really do this transformation. First, update the CFG. 2088 TrueSucc->removePredecessor(BI->getParent()); 2089 FalseSucc->removePredecessor(BI->getParent()); 2090 2091 // Insert select instructions where needed. 2092 Value *BrCond = BI->getCondition(); 2093 if (TrueValue) { 2094 // Insert a select if the results differ. 2095 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2096 } else if (isa<UndefValue>(TrueValue)) { 2097 TrueValue = FalseValue; 2098 } else { 2099 TrueValue = 2100 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2101 } 2102 } 2103 2104 Value *RI = 2105 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2106 2107 (void)RI; 2108 2109 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2110 << "\n " << *BI << "NewRet = " << *RI 2111 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2112 2113 EraseTerminatorInstAndDCECond(BI); 2114 2115 return true; 2116 } 2117 2118 /// Return true if the given instruction is available 2119 /// in its predecessor block. If yes, the instruction will be removed. 2120 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2121 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2122 return false; 2123 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 2124 Instruction *PBI = &*I; 2125 // Check whether Inst and PBI generate the same value. 2126 if (Inst->isIdenticalTo(PBI)) { 2127 Inst->replaceAllUsesWith(PBI); 2128 Inst->eraseFromParent(); 2129 return true; 2130 } 2131 } 2132 return false; 2133 } 2134 2135 /// Return true if either PBI or BI has branch weight available, and store 2136 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2137 /// not have branch weight, use 1:1 as its weight. 2138 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2139 uint64_t &PredTrueWeight, 2140 uint64_t &PredFalseWeight, 2141 uint64_t &SuccTrueWeight, 2142 uint64_t &SuccFalseWeight) { 2143 bool PredHasWeights = 2144 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2145 bool SuccHasWeights = 2146 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2147 if (PredHasWeights || SuccHasWeights) { 2148 if (!PredHasWeights) 2149 PredTrueWeight = PredFalseWeight = 1; 2150 if (!SuccHasWeights) 2151 SuccTrueWeight = SuccFalseWeight = 1; 2152 return true; 2153 } else { 2154 return false; 2155 } 2156 } 2157 2158 /// If this basic block is simple enough, and if a predecessor branches to us 2159 /// and one of our successors, fold the block into the predecessor and use 2160 /// logical operations to pick the right destination. 2161 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2162 BasicBlock *BB = BI->getParent(); 2163 2164 Instruction *Cond = nullptr; 2165 if (BI->isConditional()) 2166 Cond = dyn_cast<Instruction>(BI->getCondition()); 2167 else { 2168 // For unconditional branch, check for a simple CFG pattern, where 2169 // BB has a single predecessor and BB's successor is also its predecessor's 2170 // successor. If such pattern exisits, check for CSE between BB and its 2171 // predecessor. 2172 if (BasicBlock *PB = BB->getSinglePredecessor()) 2173 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2174 if (PBI->isConditional() && 2175 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2176 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2177 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2178 Instruction *Curr = &*I++; 2179 if (isa<CmpInst>(Curr)) { 2180 Cond = Curr; 2181 break; 2182 } 2183 // Quit if we can't remove this instruction. 2184 if (!checkCSEInPredecessor(Curr, PB)) 2185 return false; 2186 } 2187 } 2188 2189 if (!Cond) 2190 return false; 2191 } 2192 2193 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2194 Cond->getParent() != BB || !Cond->hasOneUse()) 2195 return false; 2196 2197 // Make sure the instruction after the condition is the cond branch. 2198 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2199 2200 // Ignore dbg intrinsics. 2201 while (isa<DbgInfoIntrinsic>(CondIt)) 2202 ++CondIt; 2203 2204 if (&*CondIt != BI) 2205 return false; 2206 2207 // Only allow this transformation if computing the condition doesn't involve 2208 // too many instructions and these involved instructions can be executed 2209 // unconditionally. We denote all involved instructions except the condition 2210 // as "bonus instructions", and only allow this transformation when the 2211 // number of the bonus instructions does not exceed a certain threshold. 2212 unsigned NumBonusInsts = 0; 2213 for (auto I = BB->begin(); Cond != &*I; ++I) { 2214 // Ignore dbg intrinsics. 2215 if (isa<DbgInfoIntrinsic>(I)) 2216 continue; 2217 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2218 return false; 2219 // I has only one use and can be executed unconditionally. 2220 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2221 if (User == nullptr || User->getParent() != BB) 2222 return false; 2223 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2224 // to use any other instruction, User must be an instruction between next(I) 2225 // and Cond. 2226 ++NumBonusInsts; 2227 // Early exits once we reach the limit. 2228 if (NumBonusInsts > BonusInstThreshold) 2229 return false; 2230 } 2231 2232 // Cond is known to be a compare or binary operator. Check to make sure that 2233 // neither operand is a potentially-trapping constant expression. 2234 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2235 if (CE->canTrap()) 2236 return false; 2237 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2238 if (CE->canTrap()) 2239 return false; 2240 2241 // Finally, don't infinitely unroll conditional loops. 2242 BasicBlock *TrueDest = BI->getSuccessor(0); 2243 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2244 if (TrueDest == BB || FalseDest == BB) 2245 return false; 2246 2247 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2248 BasicBlock *PredBlock = *PI; 2249 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2250 2251 // Check that we have two conditional branches. If there is a PHI node in 2252 // the common successor, verify that the same value flows in from both 2253 // blocks. 2254 SmallVector<PHINode *, 4> PHIs; 2255 if (!PBI || PBI->isUnconditional() || 2256 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2257 (!BI->isConditional() && 2258 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2259 continue; 2260 2261 // Determine if the two branches share a common destination. 2262 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2263 bool InvertPredCond = false; 2264 2265 if (BI->isConditional()) { 2266 if (PBI->getSuccessor(0) == TrueDest) { 2267 Opc = Instruction::Or; 2268 } else if (PBI->getSuccessor(1) == FalseDest) { 2269 Opc = Instruction::And; 2270 } else if (PBI->getSuccessor(0) == FalseDest) { 2271 Opc = Instruction::And; 2272 InvertPredCond = true; 2273 } else if (PBI->getSuccessor(1) == TrueDest) { 2274 Opc = Instruction::Or; 2275 InvertPredCond = true; 2276 } else { 2277 continue; 2278 } 2279 } else { 2280 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2281 continue; 2282 } 2283 2284 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2285 IRBuilder<> Builder(PBI); 2286 2287 // If we need to invert the condition in the pred block to match, do so now. 2288 if (InvertPredCond) { 2289 Value *NewCond = PBI->getCondition(); 2290 2291 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2292 CmpInst *CI = cast<CmpInst>(NewCond); 2293 CI->setPredicate(CI->getInversePredicate()); 2294 } else { 2295 NewCond = 2296 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2297 } 2298 2299 PBI->setCondition(NewCond); 2300 PBI->swapSuccessors(); 2301 } 2302 2303 // If we have bonus instructions, clone them into the predecessor block. 2304 // Note that there may be multiple predecessor blocks, so we cannot move 2305 // bonus instructions to a predecessor block. 2306 ValueToValueMapTy VMap; // maps original values to cloned values 2307 // We already make sure Cond is the last instruction before BI. Therefore, 2308 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2309 // instructions. 2310 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2311 if (isa<DbgInfoIntrinsic>(BonusInst)) 2312 continue; 2313 Instruction *NewBonusInst = BonusInst->clone(); 2314 RemapInstruction(NewBonusInst, VMap, 2315 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2316 VMap[&*BonusInst] = NewBonusInst; 2317 2318 // If we moved a load, we cannot any longer claim any knowledge about 2319 // its potential value. The previous information might have been valid 2320 // only given the branch precondition. 2321 // For an analogous reason, we must also drop all the metadata whose 2322 // semantics we don't understand. 2323 NewBonusInst->dropUnknownNonDebugMetadata(); 2324 2325 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2326 NewBonusInst->takeName(&*BonusInst); 2327 BonusInst->setName(BonusInst->getName() + ".old"); 2328 } 2329 2330 // Clone Cond into the predecessor basic block, and or/and the 2331 // two conditions together. 2332 Instruction *New = Cond->clone(); 2333 RemapInstruction(New, VMap, 2334 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2335 PredBlock->getInstList().insert(PBI->getIterator(), New); 2336 New->takeName(Cond); 2337 Cond->setName(New->getName() + ".old"); 2338 2339 if (BI->isConditional()) { 2340 Instruction *NewCond = cast<Instruction>( 2341 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2342 PBI->setCondition(NewCond); 2343 2344 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2345 bool HasWeights = 2346 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2347 SuccTrueWeight, SuccFalseWeight); 2348 SmallVector<uint64_t, 8> NewWeights; 2349 2350 if (PBI->getSuccessor(0) == BB) { 2351 if (HasWeights) { 2352 // PBI: br i1 %x, BB, FalseDest 2353 // BI: br i1 %y, TrueDest, FalseDest 2354 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2355 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2356 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2357 // TrueWeight for PBI * FalseWeight for BI. 2358 // We assume that total weights of a BranchInst can fit into 32 bits. 2359 // Therefore, we will not have overflow using 64-bit arithmetic. 2360 NewWeights.push_back(PredFalseWeight * 2361 (SuccFalseWeight + SuccTrueWeight) + 2362 PredTrueWeight * SuccFalseWeight); 2363 } 2364 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2365 PBI->setSuccessor(0, TrueDest); 2366 } 2367 if (PBI->getSuccessor(1) == BB) { 2368 if (HasWeights) { 2369 // PBI: br i1 %x, TrueDest, BB 2370 // BI: br i1 %y, TrueDest, FalseDest 2371 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2372 // FalseWeight for PBI * TrueWeight for BI. 2373 NewWeights.push_back(PredTrueWeight * 2374 (SuccFalseWeight + SuccTrueWeight) + 2375 PredFalseWeight * SuccTrueWeight); 2376 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2377 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2378 } 2379 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2380 PBI->setSuccessor(1, FalseDest); 2381 } 2382 if (NewWeights.size() == 2) { 2383 // Halve the weights if any of them cannot fit in an uint32_t 2384 FitWeights(NewWeights); 2385 2386 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2387 NewWeights.end()); 2388 PBI->setMetadata( 2389 LLVMContext::MD_prof, 2390 MDBuilder(BI->getContext()).createBranchWeights(MDWeights)); 2391 } else 2392 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2393 } else { 2394 // Update PHI nodes in the common successors. 2395 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2396 ConstantInt *PBI_C = cast<ConstantInt>( 2397 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2398 assert(PBI_C->getType()->isIntegerTy(1)); 2399 Instruction *MergedCond = nullptr; 2400 if (PBI->getSuccessor(0) == TrueDest) { 2401 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2402 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2403 // is false: !PBI_Cond and BI_Value 2404 Instruction *NotCond = cast<Instruction>( 2405 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2406 MergedCond = cast<Instruction>( 2407 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2408 if (PBI_C->isOne()) 2409 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2410 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2411 } else { 2412 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2413 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2414 // is false: PBI_Cond and BI_Value 2415 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2416 Instruction::And, PBI->getCondition(), New, "and.cond")); 2417 if (PBI_C->isOne()) { 2418 Instruction *NotCond = cast<Instruction>( 2419 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2420 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2421 Instruction::Or, NotCond, MergedCond, "or.cond")); 2422 } 2423 } 2424 // Update PHI Node. 2425 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2426 MergedCond); 2427 } 2428 // Change PBI from Conditional to Unconditional. 2429 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2430 EraseTerminatorInstAndDCECond(PBI); 2431 PBI = New_PBI; 2432 } 2433 2434 // TODO: If BB is reachable from all paths through PredBlock, then we 2435 // could replace PBI's branch probabilities with BI's. 2436 2437 // Copy any debug value intrinsics into the end of PredBlock. 2438 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2439 if (isa<DbgInfoIntrinsic>(*I)) 2440 I->clone()->insertBefore(PBI); 2441 2442 return true; 2443 } 2444 return false; 2445 } 2446 2447 // If there is only one store in BB1 and BB2, return it, otherwise return 2448 // nullptr. 2449 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2450 StoreInst *S = nullptr; 2451 for (auto *BB : {BB1, BB2}) { 2452 if (!BB) 2453 continue; 2454 for (auto &I : *BB) 2455 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2456 if (S) 2457 // Multiple stores seen. 2458 return nullptr; 2459 else 2460 S = SI; 2461 } 2462 } 2463 return S; 2464 } 2465 2466 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2467 Value *AlternativeV = nullptr) { 2468 // PHI is going to be a PHI node that allows the value V that is defined in 2469 // BB to be referenced in BB's only successor. 2470 // 2471 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2472 // doesn't matter to us what the other operand is (it'll never get used). We 2473 // could just create a new PHI with an undef incoming value, but that could 2474 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2475 // other PHI. So here we directly look for some PHI in BB's successor with V 2476 // as an incoming operand. If we find one, we use it, else we create a new 2477 // one. 2478 // 2479 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2480 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2481 // where OtherBB is the single other predecessor of BB's only successor. 2482 PHINode *PHI = nullptr; 2483 BasicBlock *Succ = BB->getSingleSuccessor(); 2484 2485 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2486 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2487 PHI = cast<PHINode>(I); 2488 if (!AlternativeV) 2489 break; 2490 2491 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2492 auto PredI = pred_begin(Succ); 2493 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2494 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2495 break; 2496 PHI = nullptr; 2497 } 2498 if (PHI) 2499 return PHI; 2500 2501 // If V is not an instruction defined in BB, just return it. 2502 if (!AlternativeV && 2503 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2504 return V; 2505 2506 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2507 PHI->addIncoming(V, BB); 2508 for (BasicBlock *PredBB : predecessors(Succ)) 2509 if (PredBB != BB) 2510 PHI->addIncoming( 2511 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2512 return PHI; 2513 } 2514 2515 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2516 BasicBlock *QTB, BasicBlock *QFB, 2517 BasicBlock *PostBB, Value *Address, 2518 bool InvertPCond, bool InvertQCond) { 2519 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2520 return Operator::getOpcode(&I) == Instruction::BitCast && 2521 I.getType()->isPointerTy(); 2522 }; 2523 2524 // If we're not in aggressive mode, we only optimize if we have some 2525 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2526 auto IsWorthwhile = [&](BasicBlock *BB) { 2527 if (!BB) 2528 return true; 2529 // Heuristic: if the block can be if-converted/phi-folded and the 2530 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2531 // thread this store. 2532 unsigned N = 0; 2533 for (auto &I : *BB) { 2534 // Cheap instructions viable for folding. 2535 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2536 isa<StoreInst>(I)) 2537 ++N; 2538 // Free instructions. 2539 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2540 IsaBitcastOfPointerType(I)) 2541 continue; 2542 else 2543 return false; 2544 } 2545 return N <= PHINodeFoldingThreshold; 2546 }; 2547 2548 if (!MergeCondStoresAggressively && 2549 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2550 !IsWorthwhile(QFB))) 2551 return false; 2552 2553 // For every pointer, there must be exactly two stores, one coming from 2554 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2555 // store (to any address) in PTB,PFB or QTB,QFB. 2556 // FIXME: We could relax this restriction with a bit more work and performance 2557 // testing. 2558 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2559 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2560 if (!PStore || !QStore) 2561 return false; 2562 2563 // Now check the stores are compatible. 2564 if (!QStore->isUnordered() || !PStore->isUnordered()) 2565 return false; 2566 2567 // Check that sinking the store won't cause program behavior changes. Sinking 2568 // the store out of the Q blocks won't change any behavior as we're sinking 2569 // from a block to its unconditional successor. But we're moving a store from 2570 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2571 // So we need to check that there are no aliasing loads or stores in 2572 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2573 // operations between PStore and the end of its parent block. 2574 // 2575 // The ideal way to do this is to query AliasAnalysis, but we don't 2576 // preserve AA currently so that is dangerous. Be super safe and just 2577 // check there are no other memory operations at all. 2578 for (auto &I : *QFB->getSinglePredecessor()) 2579 if (I.mayReadOrWriteMemory()) 2580 return false; 2581 for (auto &I : *QFB) 2582 if (&I != QStore && I.mayReadOrWriteMemory()) 2583 return false; 2584 if (QTB) 2585 for (auto &I : *QTB) 2586 if (&I != QStore && I.mayReadOrWriteMemory()) 2587 return false; 2588 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2589 I != E; ++I) 2590 if (&*I != PStore && I->mayReadOrWriteMemory()) 2591 return false; 2592 2593 // OK, we're going to sink the stores to PostBB. The store has to be 2594 // conditional though, so first create the predicate. 2595 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2596 ->getCondition(); 2597 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2598 ->getCondition(); 2599 2600 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2601 PStore->getParent()); 2602 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2603 QStore->getParent(), PPHI); 2604 2605 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2606 2607 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2608 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2609 2610 if (InvertPCond) 2611 PPred = QB.CreateNot(PPred); 2612 if (InvertQCond) 2613 QPred = QB.CreateNot(QPred); 2614 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2615 2616 auto *T = 2617 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2618 QB.SetInsertPoint(T); 2619 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2620 AAMDNodes AAMD; 2621 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2622 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2623 SI->setAAMetadata(AAMD); 2624 2625 QStore->eraseFromParent(); 2626 PStore->eraseFromParent(); 2627 2628 return true; 2629 } 2630 2631 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2632 // The intention here is to find diamonds or triangles (see below) where each 2633 // conditional block contains a store to the same address. Both of these 2634 // stores are conditional, so they can't be unconditionally sunk. But it may 2635 // be profitable to speculatively sink the stores into one merged store at the 2636 // end, and predicate the merged store on the union of the two conditions of 2637 // PBI and QBI. 2638 // 2639 // This can reduce the number of stores executed if both of the conditions are 2640 // true, and can allow the blocks to become small enough to be if-converted. 2641 // This optimization will also chain, so that ladders of test-and-set 2642 // sequences can be if-converted away. 2643 // 2644 // We only deal with simple diamonds or triangles: 2645 // 2646 // PBI or PBI or a combination of the two 2647 // / \ | \ 2648 // PTB PFB | PFB 2649 // \ / | / 2650 // QBI QBI 2651 // / \ | \ 2652 // QTB QFB | QFB 2653 // \ / | / 2654 // PostBB PostBB 2655 // 2656 // We model triangles as a type of diamond with a nullptr "true" block. 2657 // Triangles are canonicalized so that the fallthrough edge is represented by 2658 // a true condition, as in the diagram above. 2659 // 2660 BasicBlock *PTB = PBI->getSuccessor(0); 2661 BasicBlock *PFB = PBI->getSuccessor(1); 2662 BasicBlock *QTB = QBI->getSuccessor(0); 2663 BasicBlock *QFB = QBI->getSuccessor(1); 2664 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2665 2666 bool InvertPCond = false, InvertQCond = false; 2667 // Canonicalize fallthroughs to the true branches. 2668 if (PFB == QBI->getParent()) { 2669 std::swap(PFB, PTB); 2670 InvertPCond = true; 2671 } 2672 if (QFB == PostBB) { 2673 std::swap(QFB, QTB); 2674 InvertQCond = true; 2675 } 2676 2677 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2678 // and QFB may not. Model fallthroughs as a nullptr block. 2679 if (PTB == QBI->getParent()) 2680 PTB = nullptr; 2681 if (QTB == PostBB) 2682 QTB = nullptr; 2683 2684 // Legality bailouts. We must have at least the non-fallthrough blocks and 2685 // the post-dominating block, and the non-fallthroughs must only have one 2686 // predecessor. 2687 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 2688 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 2689 }; 2690 if (!PostBB || 2691 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 2692 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 2693 return false; 2694 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 2695 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 2696 return false; 2697 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 2698 return false; 2699 2700 // OK, this is a sequence of two diamonds or triangles. 2701 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 2702 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 2703 for (auto *BB : {PTB, PFB}) { 2704 if (!BB) 2705 continue; 2706 for (auto &I : *BB) 2707 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2708 PStoreAddresses.insert(SI->getPointerOperand()); 2709 } 2710 for (auto *BB : {QTB, QFB}) { 2711 if (!BB) 2712 continue; 2713 for (auto &I : *BB) 2714 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2715 QStoreAddresses.insert(SI->getPointerOperand()); 2716 } 2717 2718 set_intersect(PStoreAddresses, QStoreAddresses); 2719 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 2720 // clear what it contains. 2721 auto &CommonAddresses = PStoreAddresses; 2722 2723 bool Changed = false; 2724 for (auto *Address : CommonAddresses) 2725 Changed |= mergeConditionalStoreToAddress( 2726 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 2727 return Changed; 2728 } 2729 2730 /// If we have a conditional branch as a predecessor of another block, 2731 /// this function tries to simplify it. We know 2732 /// that PBI and BI are both conditional branches, and BI is in one of the 2733 /// successor blocks of PBI - PBI branches to BI. 2734 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 2735 const DataLayout &DL) { 2736 assert(PBI->isConditional() && BI->isConditional()); 2737 BasicBlock *BB = BI->getParent(); 2738 2739 // If this block ends with a branch instruction, and if there is a 2740 // predecessor that ends on a branch of the same condition, make 2741 // this conditional branch redundant. 2742 if (PBI->getCondition() == BI->getCondition() && 2743 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2744 // Okay, the outcome of this conditional branch is statically 2745 // knowable. If this block had a single pred, handle specially. 2746 if (BB->getSinglePredecessor()) { 2747 // Turn this into a branch on constant. 2748 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2749 BI->setCondition( 2750 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 2751 return true; // Nuke the branch on constant. 2752 } 2753 2754 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2755 // in the constant and simplify the block result. Subsequent passes of 2756 // simplifycfg will thread the block. 2757 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2758 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2759 PHINode *NewPN = PHINode::Create( 2760 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 2761 BI->getCondition()->getName() + ".pr", &BB->front()); 2762 // Okay, we're going to insert the PHI node. Since PBI is not the only 2763 // predecessor, compute the PHI'd conditional value for all of the preds. 2764 // Any predecessor where the condition is not computable we keep symbolic. 2765 for (pred_iterator PI = PB; PI != PE; ++PI) { 2766 BasicBlock *P = *PI; 2767 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 2768 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 2769 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2770 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2771 NewPN->addIncoming( 2772 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 2773 P); 2774 } else { 2775 NewPN->addIncoming(BI->getCondition(), P); 2776 } 2777 } 2778 2779 BI->setCondition(NewPN); 2780 return true; 2781 } 2782 } 2783 2784 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2785 if (CE->canTrap()) 2786 return false; 2787 2788 // If both branches are conditional and both contain stores to the same 2789 // address, remove the stores from the conditionals and create a conditional 2790 // merged store at the end. 2791 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 2792 return true; 2793 2794 // If this is a conditional branch in an empty block, and if any 2795 // predecessors are a conditional branch to one of our destinations, 2796 // fold the conditions into logical ops and one cond br. 2797 BasicBlock::iterator BBI = BB->begin(); 2798 // Ignore dbg intrinsics. 2799 while (isa<DbgInfoIntrinsic>(BBI)) 2800 ++BBI; 2801 if (&*BBI != BI) 2802 return false; 2803 2804 int PBIOp, BIOp; 2805 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 2806 PBIOp = 0; 2807 BIOp = 0; 2808 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 2809 PBIOp = 0; 2810 BIOp = 1; 2811 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 2812 PBIOp = 1; 2813 BIOp = 0; 2814 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 2815 PBIOp = 1; 2816 BIOp = 1; 2817 } else { 2818 return false; 2819 } 2820 2821 // Check to make sure that the other destination of this branch 2822 // isn't BB itself. If so, this is an infinite loop that will 2823 // keep getting unwound. 2824 if (PBI->getSuccessor(PBIOp) == BB) 2825 return false; 2826 2827 // Do not perform this transformation if it would require 2828 // insertion of a large number of select instructions. For targets 2829 // without predication/cmovs, this is a big pessimization. 2830 2831 // Also do not perform this transformation if any phi node in the common 2832 // destination block can trap when reached by BB or PBB (PR17073). In that 2833 // case, it would be unsafe to hoist the operation into a select instruction. 2834 2835 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2836 unsigned NumPhis = 0; 2837 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 2838 ++II, ++NumPhis) { 2839 if (NumPhis > 2) // Disable this xform. 2840 return false; 2841 2842 PHINode *PN = cast<PHINode>(II); 2843 Value *BIV = PN->getIncomingValueForBlock(BB); 2844 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2845 if (CE->canTrap()) 2846 return false; 2847 2848 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2849 Value *PBIV = PN->getIncomingValue(PBBIdx); 2850 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2851 if (CE->canTrap()) 2852 return false; 2853 } 2854 2855 // Finally, if everything is ok, fold the branches to logical ops. 2856 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2857 2858 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2859 << "AND: " << *BI->getParent()); 2860 2861 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2862 // branch in it, where one edge (OtherDest) goes back to itself but the other 2863 // exits. We don't *know* that the program avoids the infinite loop 2864 // (even though that seems likely). If we do this xform naively, we'll end up 2865 // recursively unpeeling the loop. Since we know that (after the xform is 2866 // done) that the block *is* infinite if reached, we just make it an obviously 2867 // infinite loop with no cond branch. 2868 if (OtherDest == BB) { 2869 // Insert it at the end of the function, because it's either code, 2870 // or it won't matter if it's hot. :) 2871 BasicBlock *InfLoopBlock = 2872 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 2873 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2874 OtherDest = InfLoopBlock; 2875 } 2876 2877 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2878 2879 // BI may have other predecessors. Because of this, we leave 2880 // it alone, but modify PBI. 2881 2882 // Make sure we get to CommonDest on True&True directions. 2883 Value *PBICond = PBI->getCondition(); 2884 IRBuilder<NoFolder> Builder(PBI); 2885 if (PBIOp) 2886 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 2887 2888 Value *BICond = BI->getCondition(); 2889 if (BIOp) 2890 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 2891 2892 // Merge the conditions. 2893 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2894 2895 // Modify PBI to branch on the new condition to the new dests. 2896 PBI->setCondition(Cond); 2897 PBI->setSuccessor(0, CommonDest); 2898 PBI->setSuccessor(1, OtherDest); 2899 2900 // Update branch weight for PBI. 2901 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2902 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 2903 bool HasWeights = 2904 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2905 SuccTrueWeight, SuccFalseWeight); 2906 if (HasWeights) { 2907 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2908 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 2909 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2910 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2911 // The weight to CommonDest should be PredCommon * SuccTotal + 2912 // PredOther * SuccCommon. 2913 // The weight to OtherDest should be PredOther * SuccOther. 2914 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 2915 PredOther * SuccCommon, 2916 PredOther * SuccOther}; 2917 // Halve the weights if any of them cannot fit in an uint32_t 2918 FitWeights(NewWeights); 2919 2920 PBI->setMetadata(LLVMContext::MD_prof, 2921 MDBuilder(BI->getContext()) 2922 .createBranchWeights(NewWeights[0], NewWeights[1])); 2923 } 2924 2925 // OtherDest may have phi nodes. If so, add an entry from PBI's 2926 // block that are identical to the entries for BI's block. 2927 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2928 2929 // We know that the CommonDest already had an edge from PBI to 2930 // it. If it has PHIs though, the PHIs may have different 2931 // entries for BB and PBI's BB. If so, insert a select to make 2932 // them agree. 2933 PHINode *PN; 2934 for (BasicBlock::iterator II = CommonDest->begin(); 2935 (PN = dyn_cast<PHINode>(II)); ++II) { 2936 Value *BIV = PN->getIncomingValueForBlock(BB); 2937 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2938 Value *PBIV = PN->getIncomingValue(PBBIdx); 2939 if (BIV != PBIV) { 2940 // Insert a select in PBI to pick the right value. 2941 SelectInst *NV = cast<SelectInst>( 2942 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 2943 PN->setIncomingValue(PBBIdx, NV); 2944 // Although the select has the same condition as PBI, the original branch 2945 // weights for PBI do not apply to the new select because the select's 2946 // 'logical' edges are incoming edges of the phi that is eliminated, not 2947 // the outgoing edges of PBI. 2948 if (HasWeights) { 2949 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2950 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 2951 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2952 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2953 // The weight to PredCommonDest should be PredCommon * SuccTotal. 2954 // The weight to PredOtherDest should be PredOther * SuccCommon. 2955 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 2956 PredOther * SuccCommon}; 2957 2958 FitWeights(NewWeights); 2959 2960 NV->setMetadata(LLVMContext::MD_prof, 2961 MDBuilder(BI->getContext()) 2962 .createBranchWeights(NewWeights[0], NewWeights[1])); 2963 } 2964 } 2965 } 2966 2967 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2968 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2969 2970 // This basic block is probably dead. We know it has at least 2971 // one fewer predecessor. 2972 return true; 2973 } 2974 2975 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 2976 // true or to FalseBB if Cond is false. 2977 // Takes care of updating the successors and removing the old terminator. 2978 // Also makes sure not to introduce new successors by assuming that edges to 2979 // non-successor TrueBBs and FalseBBs aren't reachable. 2980 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2981 BasicBlock *TrueBB, BasicBlock *FalseBB, 2982 uint32_t TrueWeight, 2983 uint32_t FalseWeight) { 2984 // Remove any superfluous successor edges from the CFG. 2985 // First, figure out which successors to preserve. 2986 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2987 // successor. 2988 BasicBlock *KeepEdge1 = TrueBB; 2989 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2990 2991 // Then remove the rest. 2992 for (BasicBlock *Succ : OldTerm->successors()) { 2993 // Make sure only to keep exactly one copy of each edge. 2994 if (Succ == KeepEdge1) 2995 KeepEdge1 = nullptr; 2996 else if (Succ == KeepEdge2) 2997 KeepEdge2 = nullptr; 2998 else 2999 Succ->removePredecessor(OldTerm->getParent(), 3000 /*DontDeleteUselessPHIs=*/true); 3001 } 3002 3003 IRBuilder<> Builder(OldTerm); 3004 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3005 3006 // Insert an appropriate new terminator. 3007 if (!KeepEdge1 && !KeepEdge2) { 3008 if (TrueBB == FalseBB) 3009 // We were only looking for one successor, and it was present. 3010 // Create an unconditional branch to it. 3011 Builder.CreateBr(TrueBB); 3012 else { 3013 // We found both of the successors we were looking for. 3014 // Create a conditional branch sharing the condition of the select. 3015 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3016 if (TrueWeight != FalseWeight) 3017 NewBI->setMetadata(LLVMContext::MD_prof, 3018 MDBuilder(OldTerm->getContext()) 3019 .createBranchWeights(TrueWeight, FalseWeight)); 3020 } 3021 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3022 // Neither of the selected blocks were successors, so this 3023 // terminator must be unreachable. 3024 new UnreachableInst(OldTerm->getContext(), OldTerm); 3025 } else { 3026 // One of the selected values was a successor, but the other wasn't. 3027 // Insert an unconditional branch to the one that was found; 3028 // the edge to the one that wasn't must be unreachable. 3029 if (!KeepEdge1) 3030 // Only TrueBB was found. 3031 Builder.CreateBr(TrueBB); 3032 else 3033 // Only FalseBB was found. 3034 Builder.CreateBr(FalseBB); 3035 } 3036 3037 EraseTerminatorInstAndDCECond(OldTerm); 3038 return true; 3039 } 3040 3041 // Replaces 3042 // (switch (select cond, X, Y)) on constant X, Y 3043 // with a branch - conditional if X and Y lead to distinct BBs, 3044 // unconditional otherwise. 3045 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3046 // Check for constant integer values in the select. 3047 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3048 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3049 if (!TrueVal || !FalseVal) 3050 return false; 3051 3052 // Find the relevant condition and destinations. 3053 Value *Condition = Select->getCondition(); 3054 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 3055 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 3056 3057 // Get weight for TrueBB and FalseBB. 3058 uint32_t TrueWeight = 0, FalseWeight = 0; 3059 SmallVector<uint64_t, 8> Weights; 3060 bool HasWeights = HasBranchWeights(SI); 3061 if (HasWeights) { 3062 GetBranchWeights(SI, Weights); 3063 if (Weights.size() == 1 + SI->getNumCases()) { 3064 TrueWeight = 3065 (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()]; 3066 FalseWeight = 3067 (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()]; 3068 } 3069 } 3070 3071 // Perform the actual simplification. 3072 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3073 FalseWeight); 3074 } 3075 3076 // Replaces 3077 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3078 // blockaddress(@fn, BlockB))) 3079 // with 3080 // (br cond, BlockA, BlockB). 3081 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3082 // Check that both operands of the select are block addresses. 3083 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3084 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3085 if (!TBA || !FBA) 3086 return false; 3087 3088 // Extract the actual blocks. 3089 BasicBlock *TrueBB = TBA->getBasicBlock(); 3090 BasicBlock *FalseBB = FBA->getBasicBlock(); 3091 3092 // Perform the actual simplification. 3093 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3094 0); 3095 } 3096 3097 /// This is called when we find an icmp instruction 3098 /// (a seteq/setne with a constant) as the only instruction in a 3099 /// block that ends with an uncond branch. We are looking for a very specific 3100 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3101 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3102 /// default value goes to an uncond block with a seteq in it, we get something 3103 /// like: 3104 /// 3105 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3106 /// DEFAULT: 3107 /// %tmp = icmp eq i8 %A, 92 3108 /// br label %end 3109 /// end: 3110 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3111 /// 3112 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3113 /// the PHI, merging the third icmp into the switch. 3114 static bool TryToSimplifyUncondBranchWithICmpInIt( 3115 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3116 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3117 AssumptionCache *AC) { 3118 BasicBlock *BB = ICI->getParent(); 3119 3120 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3121 // complex. 3122 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3123 return false; 3124 3125 Value *V = ICI->getOperand(0); 3126 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3127 3128 // The pattern we're looking for is where our only predecessor is a switch on 3129 // 'V' and this block is the default case for the switch. In this case we can 3130 // fold the compared value into the switch to simplify things. 3131 BasicBlock *Pred = BB->getSinglePredecessor(); 3132 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3133 return false; 3134 3135 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3136 if (SI->getCondition() != V) 3137 return false; 3138 3139 // If BB is reachable on a non-default case, then we simply know the value of 3140 // V in this block. Substitute it and constant fold the icmp instruction 3141 // away. 3142 if (SI->getDefaultDest() != BB) { 3143 ConstantInt *VVal = SI->findCaseDest(BB); 3144 assert(VVal && "Should have a unique destination value"); 3145 ICI->setOperand(0, VVal); 3146 3147 if (Value *V = SimplifyInstruction(ICI, DL)) { 3148 ICI->replaceAllUsesWith(V); 3149 ICI->eraseFromParent(); 3150 } 3151 // BB is now empty, so it is likely to simplify away. 3152 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3153 } 3154 3155 // Ok, the block is reachable from the default dest. If the constant we're 3156 // comparing exists in one of the other edges, then we can constant fold ICI 3157 // and zap it. 3158 if (SI->findCaseValue(Cst) != SI->case_default()) { 3159 Value *V; 3160 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3161 V = ConstantInt::getFalse(BB->getContext()); 3162 else 3163 V = ConstantInt::getTrue(BB->getContext()); 3164 3165 ICI->replaceAllUsesWith(V); 3166 ICI->eraseFromParent(); 3167 // BB is now empty, so it is likely to simplify away. 3168 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3169 } 3170 3171 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3172 // the block. 3173 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3174 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3175 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3176 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3177 return false; 3178 3179 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3180 // true in the PHI. 3181 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3182 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3183 3184 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3185 std::swap(DefaultCst, NewCst); 3186 3187 // Replace ICI (which is used by the PHI for the default value) with true or 3188 // false depending on if it is EQ or NE. 3189 ICI->replaceAllUsesWith(DefaultCst); 3190 ICI->eraseFromParent(); 3191 3192 // Okay, the switch goes to this block on a default value. Add an edge from 3193 // the switch to the merge point on the compared value. 3194 BasicBlock *NewBB = 3195 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3196 SmallVector<uint64_t, 8> Weights; 3197 bool HasWeights = HasBranchWeights(SI); 3198 if (HasWeights) { 3199 GetBranchWeights(SI, Weights); 3200 if (Weights.size() == 1 + SI->getNumCases()) { 3201 // Split weight for default case to case for "Cst". 3202 Weights[0] = (Weights[0] + 1) >> 1; 3203 Weights.push_back(Weights[0]); 3204 3205 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3206 SI->setMetadata( 3207 LLVMContext::MD_prof, 3208 MDBuilder(SI->getContext()).createBranchWeights(MDWeights)); 3209 } 3210 } 3211 SI->addCase(Cst, NewBB); 3212 3213 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3214 Builder.SetInsertPoint(NewBB); 3215 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3216 Builder.CreateBr(SuccBlock); 3217 PHIUse->addIncoming(NewCst, NewBB); 3218 return true; 3219 } 3220 3221 /// The specified branch is a conditional branch. 3222 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3223 /// fold it into a switch instruction if so. 3224 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3225 const DataLayout &DL) { 3226 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3227 if (!Cond) 3228 return false; 3229 3230 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3231 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3232 // 'setne's and'ed together, collect them. 3233 3234 // Try to gather values from a chain of and/or to be turned into a switch 3235 ConstantComparesGatherer ConstantCompare(Cond, DL); 3236 // Unpack the result 3237 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3238 Value *CompVal = ConstantCompare.CompValue; 3239 unsigned UsedICmps = ConstantCompare.UsedICmps; 3240 Value *ExtraCase = ConstantCompare.Extra; 3241 3242 // If we didn't have a multiply compared value, fail. 3243 if (!CompVal) 3244 return false; 3245 3246 // Avoid turning single icmps into a switch. 3247 if (UsedICmps <= 1) 3248 return false; 3249 3250 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3251 3252 // There might be duplicate constants in the list, which the switch 3253 // instruction can't handle, remove them now. 3254 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3255 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3256 3257 // If Extra was used, we require at least two switch values to do the 3258 // transformation. A switch with one value is just a conditional branch. 3259 if (ExtraCase && Values.size() < 2) 3260 return false; 3261 3262 // TODO: Preserve branch weight metadata, similarly to how 3263 // FoldValueComparisonIntoPredecessors preserves it. 3264 3265 // Figure out which block is which destination. 3266 BasicBlock *DefaultBB = BI->getSuccessor(1); 3267 BasicBlock *EdgeBB = BI->getSuccessor(0); 3268 if (!TrueWhenEqual) 3269 std::swap(DefaultBB, EdgeBB); 3270 3271 BasicBlock *BB = BI->getParent(); 3272 3273 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3274 << " cases into SWITCH. BB is:\n" 3275 << *BB); 3276 3277 // If there are any extra values that couldn't be folded into the switch 3278 // then we evaluate them with an explicit branch first. Split the block 3279 // right before the condbr to handle it. 3280 if (ExtraCase) { 3281 BasicBlock *NewBB = 3282 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3283 // Remove the uncond branch added to the old block. 3284 TerminatorInst *OldTI = BB->getTerminator(); 3285 Builder.SetInsertPoint(OldTI); 3286 3287 if (TrueWhenEqual) 3288 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3289 else 3290 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3291 3292 OldTI->eraseFromParent(); 3293 3294 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3295 // for the edge we just added. 3296 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3297 3298 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3299 << "\nEXTRABB = " << *BB); 3300 BB = NewBB; 3301 } 3302 3303 Builder.SetInsertPoint(BI); 3304 // Convert pointer to int before we switch. 3305 if (CompVal->getType()->isPointerTy()) { 3306 CompVal = Builder.CreatePtrToInt( 3307 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3308 } 3309 3310 // Create the new switch instruction now. 3311 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3312 3313 // Add all of the 'cases' to the switch instruction. 3314 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3315 New->addCase(Values[i], EdgeBB); 3316 3317 // We added edges from PI to the EdgeBB. As such, if there were any 3318 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3319 // the number of edges added. 3320 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3321 PHINode *PN = cast<PHINode>(BBI); 3322 Value *InVal = PN->getIncomingValueForBlock(BB); 3323 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3324 PN->addIncoming(InVal, BB); 3325 } 3326 3327 // Erase the old branch instruction. 3328 EraseTerminatorInstAndDCECond(BI); 3329 3330 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3331 return true; 3332 } 3333 3334 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3335 if (isa<PHINode>(RI->getValue())) 3336 return SimplifyCommonResume(RI); 3337 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3338 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3339 // The resume must unwind the exception that caused control to branch here. 3340 return SimplifySingleResume(RI); 3341 3342 return false; 3343 } 3344 3345 // Simplify resume that is shared by several landing pads (phi of landing pad). 3346 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3347 BasicBlock *BB = RI->getParent(); 3348 3349 // Check that there are no other instructions except for debug intrinsics 3350 // between the phi of landing pads (RI->getValue()) and resume instruction. 3351 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3352 E = RI->getIterator(); 3353 while (++I != E) 3354 if (!isa<DbgInfoIntrinsic>(I)) 3355 return false; 3356 3357 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3358 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3359 3360 // Check incoming blocks to see if any of them are trivial. 3361 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3362 Idx++) { 3363 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3364 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3365 3366 // If the block has other successors, we can not delete it because 3367 // it has other dependents. 3368 if (IncomingBB->getUniqueSuccessor() != BB) 3369 continue; 3370 3371 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3372 // Not the landing pad that caused the control to branch here. 3373 if (IncomingValue != LandingPad) 3374 continue; 3375 3376 bool isTrivial = true; 3377 3378 I = IncomingBB->getFirstNonPHI()->getIterator(); 3379 E = IncomingBB->getTerminator()->getIterator(); 3380 while (++I != E) 3381 if (!isa<DbgInfoIntrinsic>(I)) { 3382 isTrivial = false; 3383 break; 3384 } 3385 3386 if (isTrivial) 3387 TrivialUnwindBlocks.insert(IncomingBB); 3388 } 3389 3390 // If no trivial unwind blocks, don't do any simplifications. 3391 if (TrivialUnwindBlocks.empty()) 3392 return false; 3393 3394 // Turn all invokes that unwind here into calls. 3395 for (auto *TrivialBB : TrivialUnwindBlocks) { 3396 // Blocks that will be simplified should be removed from the phi node. 3397 // Note there could be multiple edges to the resume block, and we need 3398 // to remove them all. 3399 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3400 BB->removePredecessor(TrivialBB, true); 3401 3402 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3403 PI != PE;) { 3404 BasicBlock *Pred = *PI++; 3405 removeUnwindEdge(Pred); 3406 } 3407 3408 // In each SimplifyCFG run, only the current processed block can be erased. 3409 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3410 // of erasing TrivialBB, we only remove the branch to the common resume 3411 // block so that we can later erase the resume block since it has no 3412 // predecessors. 3413 TrivialBB->getTerminator()->eraseFromParent(); 3414 new UnreachableInst(RI->getContext(), TrivialBB); 3415 } 3416 3417 // Delete the resume block if all its predecessors have been removed. 3418 if (pred_empty(BB)) 3419 BB->eraseFromParent(); 3420 3421 return !TrivialUnwindBlocks.empty(); 3422 } 3423 3424 // Simplify resume that is only used by a single (non-phi) landing pad. 3425 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3426 BasicBlock *BB = RI->getParent(); 3427 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3428 assert(RI->getValue() == LPInst && 3429 "Resume must unwind the exception that caused control to here"); 3430 3431 // Check that there are no other instructions except for debug intrinsics. 3432 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3433 while (++I != E) 3434 if (!isa<DbgInfoIntrinsic>(I)) 3435 return false; 3436 3437 // Turn all invokes that unwind here into calls and delete the basic block. 3438 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3439 BasicBlock *Pred = *PI++; 3440 removeUnwindEdge(Pred); 3441 } 3442 3443 // The landingpad is now unreachable. Zap it. 3444 BB->eraseFromParent(); 3445 if (LoopHeaders) 3446 LoopHeaders->erase(BB); 3447 return true; 3448 } 3449 3450 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3451 // If this is a trivial cleanup pad that executes no instructions, it can be 3452 // eliminated. If the cleanup pad continues to the caller, any predecessor 3453 // that is an EH pad will be updated to continue to the caller and any 3454 // predecessor that terminates with an invoke instruction will have its invoke 3455 // instruction converted to a call instruction. If the cleanup pad being 3456 // simplified does not continue to the caller, each predecessor will be 3457 // updated to continue to the unwind destination of the cleanup pad being 3458 // simplified. 3459 BasicBlock *BB = RI->getParent(); 3460 CleanupPadInst *CPInst = RI->getCleanupPad(); 3461 if (CPInst->getParent() != BB) 3462 // This isn't an empty cleanup. 3463 return false; 3464 3465 // We cannot kill the pad if it has multiple uses. This typically arises 3466 // from unreachable basic blocks. 3467 if (!CPInst->hasOneUse()) 3468 return false; 3469 3470 // Check that there are no other instructions except for benign intrinsics. 3471 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3472 while (++I != E) { 3473 auto *II = dyn_cast<IntrinsicInst>(I); 3474 if (!II) 3475 return false; 3476 3477 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3478 switch (IntrinsicID) { 3479 case Intrinsic::dbg_declare: 3480 case Intrinsic::dbg_value: 3481 case Intrinsic::lifetime_end: 3482 break; 3483 default: 3484 return false; 3485 } 3486 } 3487 3488 // If the cleanup return we are simplifying unwinds to the caller, this will 3489 // set UnwindDest to nullptr. 3490 BasicBlock *UnwindDest = RI->getUnwindDest(); 3491 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3492 3493 // We're about to remove BB from the control flow. Before we do, sink any 3494 // PHINodes into the unwind destination. Doing this before changing the 3495 // control flow avoids some potentially slow checks, since we can currently 3496 // be certain that UnwindDest and BB have no common predecessors (since they 3497 // are both EH pads). 3498 if (UnwindDest) { 3499 // First, go through the PHI nodes in UnwindDest and update any nodes that 3500 // reference the block we are removing 3501 for (BasicBlock::iterator I = UnwindDest->begin(), 3502 IE = DestEHPad->getIterator(); 3503 I != IE; ++I) { 3504 PHINode *DestPN = cast<PHINode>(I); 3505 3506 int Idx = DestPN->getBasicBlockIndex(BB); 3507 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3508 assert(Idx != -1); 3509 // This PHI node has an incoming value that corresponds to a control 3510 // path through the cleanup pad we are removing. If the incoming 3511 // value is in the cleanup pad, it must be a PHINode (because we 3512 // verified above that the block is otherwise empty). Otherwise, the 3513 // value is either a constant or a value that dominates the cleanup 3514 // pad being removed. 3515 // 3516 // Because BB and UnwindDest are both EH pads, all of their 3517 // predecessors must unwind to these blocks, and since no instruction 3518 // can have multiple unwind destinations, there will be no overlap in 3519 // incoming blocks between SrcPN and DestPN. 3520 Value *SrcVal = DestPN->getIncomingValue(Idx); 3521 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3522 3523 // Remove the entry for the block we are deleting. 3524 DestPN->removeIncomingValue(Idx, false); 3525 3526 if (SrcPN && SrcPN->getParent() == BB) { 3527 // If the incoming value was a PHI node in the cleanup pad we are 3528 // removing, we need to merge that PHI node's incoming values into 3529 // DestPN. 3530 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3531 SrcIdx != SrcE; ++SrcIdx) { 3532 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3533 SrcPN->getIncomingBlock(SrcIdx)); 3534 } 3535 } else { 3536 // Otherwise, the incoming value came from above BB and 3537 // so we can just reuse it. We must associate all of BB's 3538 // predecessors with this value. 3539 for (auto *pred : predecessors(BB)) { 3540 DestPN->addIncoming(SrcVal, pred); 3541 } 3542 } 3543 } 3544 3545 // Sink any remaining PHI nodes directly into UnwindDest. 3546 Instruction *InsertPt = DestEHPad; 3547 for (BasicBlock::iterator I = BB->begin(), 3548 IE = BB->getFirstNonPHI()->getIterator(); 3549 I != IE;) { 3550 // The iterator must be incremented here because the instructions are 3551 // being moved to another block. 3552 PHINode *PN = cast<PHINode>(I++); 3553 if (PN->use_empty()) 3554 // If the PHI node has no uses, just leave it. It will be erased 3555 // when we erase BB below. 3556 continue; 3557 3558 // Otherwise, sink this PHI node into UnwindDest. 3559 // Any predecessors to UnwindDest which are not already represented 3560 // must be back edges which inherit the value from the path through 3561 // BB. In this case, the PHI value must reference itself. 3562 for (auto *pred : predecessors(UnwindDest)) 3563 if (pred != BB) 3564 PN->addIncoming(PN, pred); 3565 PN->moveBefore(InsertPt); 3566 } 3567 } 3568 3569 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3570 // The iterator must be updated here because we are removing this pred. 3571 BasicBlock *PredBB = *PI++; 3572 if (UnwindDest == nullptr) { 3573 removeUnwindEdge(PredBB); 3574 } else { 3575 TerminatorInst *TI = PredBB->getTerminator(); 3576 TI->replaceUsesOfWith(BB, UnwindDest); 3577 } 3578 } 3579 3580 // The cleanup pad is now unreachable. Zap it. 3581 BB->eraseFromParent(); 3582 return true; 3583 } 3584 3585 // Try to merge two cleanuppads together. 3586 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3587 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3588 // with. 3589 BasicBlock *UnwindDest = RI->getUnwindDest(); 3590 if (!UnwindDest) 3591 return false; 3592 3593 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3594 // be safe to merge without code duplication. 3595 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3596 return false; 3597 3598 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3599 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3600 if (!SuccessorCleanupPad) 3601 return false; 3602 3603 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3604 // Replace any uses of the successor cleanupad with the predecessor pad 3605 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3606 // funclet bundle operands. 3607 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 3608 // Remove the old cleanuppad. 3609 SuccessorCleanupPad->eraseFromParent(); 3610 // Now, we simply replace the cleanupret with a branch to the unwind 3611 // destination. 3612 BranchInst::Create(UnwindDest, RI->getParent()); 3613 RI->eraseFromParent(); 3614 3615 return true; 3616 } 3617 3618 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3619 // It is possible to transiantly have an undef cleanuppad operand because we 3620 // have deleted some, but not all, dead blocks. 3621 // Eventually, this block will be deleted. 3622 if (isa<UndefValue>(RI->getOperand(0))) 3623 return false; 3624 3625 if (mergeCleanupPad(RI)) 3626 return true; 3627 3628 if (removeEmptyCleanup(RI)) 3629 return true; 3630 3631 return false; 3632 } 3633 3634 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3635 BasicBlock *BB = RI->getParent(); 3636 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 3637 return false; 3638 3639 // Find predecessors that end with branches. 3640 SmallVector<BasicBlock *, 8> UncondBranchPreds; 3641 SmallVector<BranchInst *, 8> CondBranchPreds; 3642 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3643 BasicBlock *P = *PI; 3644 TerminatorInst *PTI = P->getTerminator(); 3645 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3646 if (BI->isUnconditional()) 3647 UncondBranchPreds.push_back(P); 3648 else 3649 CondBranchPreds.push_back(BI); 3650 } 3651 } 3652 3653 // If we found some, do the transformation! 3654 if (!UncondBranchPreds.empty() && DupRet) { 3655 while (!UncondBranchPreds.empty()) { 3656 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3657 DEBUG(dbgs() << "FOLDING: " << *BB 3658 << "INTO UNCOND BRANCH PRED: " << *Pred); 3659 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3660 } 3661 3662 // If we eliminated all predecessors of the block, delete the block now. 3663 if (pred_empty(BB)) { 3664 // We know there are no successors, so just nuke the block. 3665 BB->eraseFromParent(); 3666 if (LoopHeaders) 3667 LoopHeaders->erase(BB); 3668 } 3669 3670 return true; 3671 } 3672 3673 // Check out all of the conditional branches going to this return 3674 // instruction. If any of them just select between returns, change the 3675 // branch itself into a select/return pair. 3676 while (!CondBranchPreds.empty()) { 3677 BranchInst *BI = CondBranchPreds.pop_back_val(); 3678 3679 // Check to see if the non-BB successor is also a return block. 3680 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3681 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3682 SimplifyCondBranchToTwoReturns(BI, Builder)) 3683 return true; 3684 } 3685 return false; 3686 } 3687 3688 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3689 BasicBlock *BB = UI->getParent(); 3690 3691 bool Changed = false; 3692 3693 // If there are any instructions immediately before the unreachable that can 3694 // be removed, do so. 3695 while (UI->getIterator() != BB->begin()) { 3696 BasicBlock::iterator BBI = UI->getIterator(); 3697 --BBI; 3698 // Do not delete instructions that can have side effects which might cause 3699 // the unreachable to not be reachable; specifically, calls and volatile 3700 // operations may have this effect. 3701 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 3702 break; 3703 3704 if (BBI->mayHaveSideEffects()) { 3705 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 3706 if (SI->isVolatile()) 3707 break; 3708 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 3709 if (LI->isVolatile()) 3710 break; 3711 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3712 if (RMWI->isVolatile()) 3713 break; 3714 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3715 if (CXI->isVolatile()) 3716 break; 3717 } else if (isa<CatchPadInst>(BBI)) { 3718 // A catchpad may invoke exception object constructors and such, which 3719 // in some languages can be arbitrary code, so be conservative by 3720 // default. 3721 // For CoreCLR, it just involves a type test, so can be removed. 3722 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 3723 EHPersonality::CoreCLR) 3724 break; 3725 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3726 !isa<LandingPadInst>(BBI)) { 3727 break; 3728 } 3729 // Note that deleting LandingPad's here is in fact okay, although it 3730 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3731 // all the predecessors of this block will be the unwind edges of Invokes, 3732 // and we can therefore guarantee this block will be erased. 3733 } 3734 3735 // Delete this instruction (any uses are guaranteed to be dead) 3736 if (!BBI->use_empty()) 3737 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3738 BBI->eraseFromParent(); 3739 Changed = true; 3740 } 3741 3742 // If the unreachable instruction is the first in the block, take a gander 3743 // at all of the predecessors of this instruction, and simplify them. 3744 if (&BB->front() != UI) 3745 return Changed; 3746 3747 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 3748 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3749 TerminatorInst *TI = Preds[i]->getTerminator(); 3750 IRBuilder<> Builder(TI); 3751 if (auto *BI = dyn_cast<BranchInst>(TI)) { 3752 if (BI->isUnconditional()) { 3753 if (BI->getSuccessor(0) == BB) { 3754 new UnreachableInst(TI->getContext(), TI); 3755 TI->eraseFromParent(); 3756 Changed = true; 3757 } 3758 } else { 3759 if (BI->getSuccessor(0) == BB) { 3760 Builder.CreateBr(BI->getSuccessor(1)); 3761 EraseTerminatorInstAndDCECond(BI); 3762 } else if (BI->getSuccessor(1) == BB) { 3763 Builder.CreateBr(BI->getSuccessor(0)); 3764 EraseTerminatorInstAndDCECond(BI); 3765 Changed = true; 3766 } 3767 } 3768 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 3769 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 3770 ++i) 3771 if (i.getCaseSuccessor() == BB) { 3772 BB->removePredecessor(SI->getParent()); 3773 SI->removeCase(i); 3774 --i; 3775 --e; 3776 Changed = true; 3777 } 3778 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 3779 if (II->getUnwindDest() == BB) { 3780 removeUnwindEdge(TI->getParent()); 3781 Changed = true; 3782 } 3783 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3784 if (CSI->getUnwindDest() == BB) { 3785 removeUnwindEdge(TI->getParent()); 3786 Changed = true; 3787 continue; 3788 } 3789 3790 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 3791 E = CSI->handler_end(); 3792 I != E; ++I) { 3793 if (*I == BB) { 3794 CSI->removeHandler(I); 3795 --I; 3796 --E; 3797 Changed = true; 3798 } 3799 } 3800 if (CSI->getNumHandlers() == 0) { 3801 BasicBlock *CatchSwitchBB = CSI->getParent(); 3802 if (CSI->hasUnwindDest()) { 3803 // Redirect preds to the unwind dest 3804 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 3805 } else { 3806 // Rewrite all preds to unwind to caller (or from invoke to call). 3807 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 3808 for (BasicBlock *EHPred : EHPreds) 3809 removeUnwindEdge(EHPred); 3810 } 3811 // The catchswitch is no longer reachable. 3812 new UnreachableInst(CSI->getContext(), CSI); 3813 CSI->eraseFromParent(); 3814 Changed = true; 3815 } 3816 } else if (isa<CleanupReturnInst>(TI)) { 3817 new UnreachableInst(TI->getContext(), TI); 3818 TI->eraseFromParent(); 3819 Changed = true; 3820 } 3821 } 3822 3823 // If this block is now dead, remove it. 3824 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 3825 // We know there are no successors, so just nuke the block. 3826 BB->eraseFromParent(); 3827 if (LoopHeaders) 3828 LoopHeaders->erase(BB); 3829 return true; 3830 } 3831 3832 return Changed; 3833 } 3834 3835 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3836 assert(Cases.size() >= 1); 3837 3838 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3839 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3840 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3841 return false; 3842 } 3843 return true; 3844 } 3845 3846 /// Turn a switch with two reachable destinations into an integer range 3847 /// comparison and branch. 3848 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3849 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3850 3851 bool HasDefault = 3852 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3853 3854 // Partition the cases into two sets with different destinations. 3855 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3856 BasicBlock *DestB = nullptr; 3857 SmallVector<ConstantInt *, 16> CasesA; 3858 SmallVector<ConstantInt *, 16> CasesB; 3859 3860 for (SwitchInst::CaseIt I : SI->cases()) { 3861 BasicBlock *Dest = I.getCaseSuccessor(); 3862 if (!DestA) 3863 DestA = Dest; 3864 if (Dest == DestA) { 3865 CasesA.push_back(I.getCaseValue()); 3866 continue; 3867 } 3868 if (!DestB) 3869 DestB = Dest; 3870 if (Dest == DestB) { 3871 CasesB.push_back(I.getCaseValue()); 3872 continue; 3873 } 3874 return false; // More than two destinations. 3875 } 3876 3877 assert(DestA && DestB && 3878 "Single-destination switch should have been folded."); 3879 assert(DestA != DestB); 3880 assert(DestB != SI->getDefaultDest()); 3881 assert(!CasesB.empty() && "There must be non-default cases."); 3882 assert(!CasesA.empty() || HasDefault); 3883 3884 // Figure out if one of the sets of cases form a contiguous range. 3885 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3886 BasicBlock *ContiguousDest = nullptr; 3887 BasicBlock *OtherDest = nullptr; 3888 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 3889 ContiguousCases = &CasesA; 3890 ContiguousDest = DestA; 3891 OtherDest = DestB; 3892 } else if (CasesAreContiguous(CasesB)) { 3893 ContiguousCases = &CasesB; 3894 ContiguousDest = DestB; 3895 OtherDest = DestA; 3896 } else 3897 return false; 3898 3899 // Start building the compare and branch. 3900 3901 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 3902 Constant *NumCases = 3903 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 3904 3905 Value *Sub = SI->getCondition(); 3906 if (!Offset->isNullValue()) 3907 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 3908 3909 Value *Cmp; 3910 // If NumCases overflowed, then all possible values jump to the successor. 3911 if (NumCases->isNullValue() && !ContiguousCases->empty()) 3912 Cmp = ConstantInt::getTrue(SI->getContext()); 3913 else 3914 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3915 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 3916 3917 // Update weight for the newly-created conditional branch. 3918 if (HasBranchWeights(SI)) { 3919 SmallVector<uint64_t, 8> Weights; 3920 GetBranchWeights(SI, Weights); 3921 if (Weights.size() == 1 + SI->getNumCases()) { 3922 uint64_t TrueWeight = 0; 3923 uint64_t FalseWeight = 0; 3924 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 3925 if (SI->getSuccessor(I) == ContiguousDest) 3926 TrueWeight += Weights[I]; 3927 else 3928 FalseWeight += Weights[I]; 3929 } 3930 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 3931 TrueWeight /= 2; 3932 FalseWeight /= 2; 3933 } 3934 NewBI->setMetadata(LLVMContext::MD_prof, 3935 MDBuilder(SI->getContext()) 3936 .createBranchWeights((uint32_t)TrueWeight, 3937 (uint32_t)FalseWeight)); 3938 } 3939 } 3940 3941 // Prune obsolete incoming values off the successors' PHI nodes. 3942 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 3943 unsigned PreviousEdges = ContiguousCases->size(); 3944 if (ContiguousDest == SI->getDefaultDest()) 3945 ++PreviousEdges; 3946 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3947 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3948 } 3949 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 3950 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 3951 if (OtherDest == SI->getDefaultDest()) 3952 ++PreviousEdges; 3953 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3954 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3955 } 3956 3957 // Drop the switch. 3958 SI->eraseFromParent(); 3959 3960 return true; 3961 } 3962 3963 /// Compute masked bits for the condition of a switch 3964 /// and use it to remove dead cases. 3965 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 3966 const DataLayout &DL) { 3967 Value *Cond = SI->getCondition(); 3968 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3969 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3970 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 3971 3972 // We can also eliminate cases by determining that their values are outside of 3973 // the limited range of the condition based on how many significant (non-sign) 3974 // bits are in the condition value. 3975 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 3976 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 3977 3978 // Gather dead cases. 3979 SmallVector<ConstantInt *, 8> DeadCases; 3980 for (auto &Case : SI->cases()) { 3981 APInt CaseVal = Case.getCaseValue()->getValue(); 3982 if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne || 3983 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 3984 DeadCases.push_back(Case.getCaseValue()); 3985 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 3986 } 3987 } 3988 3989 // If we can prove that the cases must cover all possible values, the 3990 // default destination becomes dead and we can remove it. If we know some 3991 // of the bits in the value, we can use that to more precisely compute the 3992 // number of possible unique case values. 3993 bool HasDefault = 3994 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3995 const unsigned NumUnknownBits = 3996 Bits - (KnownZero.Or(KnownOne)).countPopulation(); 3997 assert(NumUnknownBits <= Bits); 3998 if (HasDefault && DeadCases.empty() && 3999 NumUnknownBits < 64 /* avoid overflow */ && 4000 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4001 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4002 BasicBlock *NewDefault = 4003 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4004 SI->setDefaultDest(&*NewDefault); 4005 SplitBlock(&*NewDefault, &NewDefault->front()); 4006 auto *OldTI = NewDefault->getTerminator(); 4007 new UnreachableInst(SI->getContext(), OldTI); 4008 EraseTerminatorInstAndDCECond(OldTI); 4009 return true; 4010 } 4011 4012 SmallVector<uint64_t, 8> Weights; 4013 bool HasWeight = HasBranchWeights(SI); 4014 if (HasWeight) { 4015 GetBranchWeights(SI, Weights); 4016 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4017 } 4018 4019 // Remove dead cases from the switch. 4020 for (ConstantInt *DeadCase : DeadCases) { 4021 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase); 4022 assert(Case != SI->case_default() && 4023 "Case was not found. Probably mistake in DeadCases forming."); 4024 if (HasWeight) { 4025 std::swap(Weights[Case.getCaseIndex() + 1], Weights.back()); 4026 Weights.pop_back(); 4027 } 4028 4029 // Prune unused values from PHI nodes. 4030 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 4031 SI->removeCase(Case); 4032 } 4033 if (HasWeight && Weights.size() >= 2) { 4034 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4035 SI->setMetadata(LLVMContext::MD_prof, 4036 MDBuilder(SI->getParent()->getContext()) 4037 .createBranchWeights(MDWeights)); 4038 } 4039 4040 return !DeadCases.empty(); 4041 } 4042 4043 /// If BB would be eligible for simplification by 4044 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4045 /// by an unconditional branch), look at the phi node for BB in the successor 4046 /// block and see if the incoming value is equal to CaseValue. If so, return 4047 /// the phi node, and set PhiIndex to BB's index in the phi node. 4048 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4049 BasicBlock *BB, int *PhiIndex) { 4050 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4051 return nullptr; // BB must be empty to be a candidate for simplification. 4052 if (!BB->getSinglePredecessor()) 4053 return nullptr; // BB must be dominated by the switch. 4054 4055 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4056 if (!Branch || !Branch->isUnconditional()) 4057 return nullptr; // Terminator must be unconditional branch. 4058 4059 BasicBlock *Succ = Branch->getSuccessor(0); 4060 4061 BasicBlock::iterator I = Succ->begin(); 4062 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4063 int Idx = PHI->getBasicBlockIndex(BB); 4064 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4065 4066 Value *InValue = PHI->getIncomingValue(Idx); 4067 if (InValue != CaseValue) 4068 continue; 4069 4070 *PhiIndex = Idx; 4071 return PHI; 4072 } 4073 4074 return nullptr; 4075 } 4076 4077 /// Try to forward the condition of a switch instruction to a phi node 4078 /// dominated by the switch, if that would mean that some of the destination 4079 /// blocks of the switch can be folded away. 4080 /// Returns true if a change is made. 4081 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4082 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap; 4083 ForwardingNodesMap ForwardingNodes; 4084 4085 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; 4086 ++I) { 4087 ConstantInt *CaseValue = I.getCaseValue(); 4088 BasicBlock *CaseDest = I.getCaseSuccessor(); 4089 4090 int PhiIndex; 4091 PHINode *PHI = 4092 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex); 4093 if (!PHI) 4094 continue; 4095 4096 ForwardingNodes[PHI].push_back(PhiIndex); 4097 } 4098 4099 bool Changed = false; 4100 4101 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 4102 E = ForwardingNodes.end(); 4103 I != E; ++I) { 4104 PHINode *Phi = I->first; 4105 SmallVectorImpl<int> &Indexes = I->second; 4106 4107 if (Indexes.size() < 2) 4108 continue; 4109 4110 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 4111 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 4112 Changed = true; 4113 } 4114 4115 return Changed; 4116 } 4117 4118 /// Return true if the backend will be able to handle 4119 /// initializing an array of constants like C. 4120 static bool ValidLookupTableConstant(Constant *C) { 4121 if (C->isThreadDependent()) 4122 return false; 4123 if (C->isDLLImportDependent()) 4124 return false; 4125 4126 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 4127 return CE->isGEPWithNoNotionalOverIndexing(); 4128 4129 return isa<ConstantFP>(C) || isa<ConstantInt>(C) || 4130 isa<ConstantPointerNull>(C) || isa<GlobalValue>(C) || 4131 isa<UndefValue>(C); 4132 } 4133 4134 /// If V is a Constant, return it. Otherwise, try to look up 4135 /// its constant value in ConstantPool, returning 0 if it's not there. 4136 static Constant * 4137 LookupConstant(Value *V, 4138 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4139 if (Constant *C = dyn_cast<Constant>(V)) 4140 return C; 4141 return ConstantPool.lookup(V); 4142 } 4143 4144 /// Try to fold instruction I into a constant. This works for 4145 /// simple instructions such as binary operations where both operands are 4146 /// constant or can be replaced by constants from the ConstantPool. Returns the 4147 /// resulting constant on success, 0 otherwise. 4148 static Constant * 4149 ConstantFold(Instruction *I, const DataLayout &DL, 4150 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4151 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4152 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4153 if (!A) 4154 return nullptr; 4155 if (A->isAllOnesValue()) 4156 return LookupConstant(Select->getTrueValue(), ConstantPool); 4157 if (A->isNullValue()) 4158 return LookupConstant(Select->getFalseValue(), ConstantPool); 4159 return nullptr; 4160 } 4161 4162 SmallVector<Constant *, 4> COps; 4163 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4164 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4165 COps.push_back(A); 4166 else 4167 return nullptr; 4168 } 4169 4170 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4171 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4172 COps[1], DL); 4173 } 4174 4175 return ConstantFoldInstOperands(I, COps, DL); 4176 } 4177 4178 /// Try to determine the resulting constant values in phi nodes 4179 /// at the common destination basic block, *CommonDest, for one of the case 4180 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4181 /// case), of a switch instruction SI. 4182 static bool 4183 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4184 BasicBlock **CommonDest, 4185 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4186 const DataLayout &DL) { 4187 // The block from which we enter the common destination. 4188 BasicBlock *Pred = SI->getParent(); 4189 4190 // If CaseDest is empty except for some side-effect free instructions through 4191 // which we can constant-propagate the CaseVal, continue to its successor. 4192 SmallDenseMap<Value *, Constant *> ConstantPool; 4193 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4194 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4195 ++I) { 4196 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4197 // If the terminator is a simple branch, continue to the next block. 4198 if (T->getNumSuccessors() != 1) 4199 return false; 4200 Pred = CaseDest; 4201 CaseDest = T->getSuccessor(0); 4202 } else if (isa<DbgInfoIntrinsic>(I)) { 4203 // Skip debug intrinsic. 4204 continue; 4205 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4206 // Instruction is side-effect free and constant. 4207 4208 // If the instruction has uses outside this block or a phi node slot for 4209 // the block, it is not safe to bypass the instruction since it would then 4210 // no longer dominate all its uses. 4211 for (auto &Use : I->uses()) { 4212 User *User = Use.getUser(); 4213 if (Instruction *I = dyn_cast<Instruction>(User)) 4214 if (I->getParent() == CaseDest) 4215 continue; 4216 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4217 if (Phi->getIncomingBlock(Use) == CaseDest) 4218 continue; 4219 return false; 4220 } 4221 4222 ConstantPool.insert(std::make_pair(&*I, C)); 4223 } else { 4224 break; 4225 } 4226 } 4227 4228 // If we did not have a CommonDest before, use the current one. 4229 if (!*CommonDest) 4230 *CommonDest = CaseDest; 4231 // If the destination isn't the common one, abort. 4232 if (CaseDest != *CommonDest) 4233 return false; 4234 4235 // Get the values for this case from phi nodes in the destination block. 4236 BasicBlock::iterator I = (*CommonDest)->begin(); 4237 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4238 int Idx = PHI->getBasicBlockIndex(Pred); 4239 if (Idx == -1) 4240 continue; 4241 4242 Constant *ConstVal = 4243 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4244 if (!ConstVal) 4245 return false; 4246 4247 // Be conservative about which kinds of constants we support. 4248 if (!ValidLookupTableConstant(ConstVal)) 4249 return false; 4250 4251 Res.push_back(std::make_pair(PHI, ConstVal)); 4252 } 4253 4254 return Res.size() > 0; 4255 } 4256 4257 // Helper function used to add CaseVal to the list of cases that generate 4258 // Result. 4259 static void MapCaseToResult(ConstantInt *CaseVal, 4260 SwitchCaseResultVectorTy &UniqueResults, 4261 Constant *Result) { 4262 for (auto &I : UniqueResults) { 4263 if (I.first == Result) { 4264 I.second.push_back(CaseVal); 4265 return; 4266 } 4267 } 4268 UniqueResults.push_back( 4269 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4270 } 4271 4272 // Helper function that initializes a map containing 4273 // results for the PHI node of the common destination block for a switch 4274 // instruction. Returns false if multiple PHI nodes have been found or if 4275 // there is not a common destination block for the switch. 4276 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4277 BasicBlock *&CommonDest, 4278 SwitchCaseResultVectorTy &UniqueResults, 4279 Constant *&DefaultResult, 4280 const DataLayout &DL) { 4281 for (auto &I : SI->cases()) { 4282 ConstantInt *CaseVal = I.getCaseValue(); 4283 4284 // Resulting value at phi nodes for this case value. 4285 SwitchCaseResultsTy Results; 4286 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4287 DL)) 4288 return false; 4289 4290 // Only one value per case is permitted 4291 if (Results.size() > 1) 4292 return false; 4293 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4294 4295 // Check the PHI consistency. 4296 if (!PHI) 4297 PHI = Results[0].first; 4298 else if (PHI != Results[0].first) 4299 return false; 4300 } 4301 // Find the default result value. 4302 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4303 BasicBlock *DefaultDest = SI->getDefaultDest(); 4304 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4305 DL); 4306 // If the default value is not found abort unless the default destination 4307 // is unreachable. 4308 DefaultResult = 4309 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4310 if ((!DefaultResult && 4311 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4312 return false; 4313 4314 return true; 4315 } 4316 4317 // Helper function that checks if it is possible to transform a switch with only 4318 // two cases (or two cases + default) that produces a result into a select. 4319 // Example: 4320 // switch (a) { 4321 // case 10: %0 = icmp eq i32 %a, 10 4322 // return 10; %1 = select i1 %0, i32 10, i32 4 4323 // case 20: ----> %2 = icmp eq i32 %a, 20 4324 // return 2; %3 = select i1 %2, i32 2, i32 %1 4325 // default: 4326 // return 4; 4327 // } 4328 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4329 Constant *DefaultResult, Value *Condition, 4330 IRBuilder<> &Builder) { 4331 assert(ResultVector.size() == 2 && 4332 "We should have exactly two unique results at this point"); 4333 // If we are selecting between only two cases transform into a simple 4334 // select or a two-way select if default is possible. 4335 if (ResultVector[0].second.size() == 1 && 4336 ResultVector[1].second.size() == 1) { 4337 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4338 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4339 4340 bool DefaultCanTrigger = DefaultResult; 4341 Value *SelectValue = ResultVector[1].first; 4342 if (DefaultCanTrigger) { 4343 Value *const ValueCompare = 4344 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4345 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4346 DefaultResult, "switch.select"); 4347 } 4348 Value *const ValueCompare = 4349 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4350 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4351 SelectValue, "switch.select"); 4352 } 4353 4354 return nullptr; 4355 } 4356 4357 // Helper function to cleanup a switch instruction that has been converted into 4358 // a select, fixing up PHI nodes and basic blocks. 4359 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4360 Value *SelectValue, 4361 IRBuilder<> &Builder) { 4362 BasicBlock *SelectBB = SI->getParent(); 4363 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4364 PHI->removeIncomingValue(SelectBB); 4365 PHI->addIncoming(SelectValue, SelectBB); 4366 4367 Builder.CreateBr(PHI->getParent()); 4368 4369 // Remove the switch. 4370 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4371 BasicBlock *Succ = SI->getSuccessor(i); 4372 4373 if (Succ == PHI->getParent()) 4374 continue; 4375 Succ->removePredecessor(SelectBB); 4376 } 4377 SI->eraseFromParent(); 4378 } 4379 4380 /// If the switch is only used to initialize one or more 4381 /// phi nodes in a common successor block with only two different 4382 /// constant values, replace the switch with select. 4383 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4384 AssumptionCache *AC, const DataLayout &DL) { 4385 Value *const Cond = SI->getCondition(); 4386 PHINode *PHI = nullptr; 4387 BasicBlock *CommonDest = nullptr; 4388 Constant *DefaultResult; 4389 SwitchCaseResultVectorTy UniqueResults; 4390 // Collect all the cases that will deliver the same value from the switch. 4391 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4392 DL)) 4393 return false; 4394 // Selects choose between maximum two values. 4395 if (UniqueResults.size() != 2) 4396 return false; 4397 assert(PHI != nullptr && "PHI for value select not found"); 4398 4399 Builder.SetInsertPoint(SI); 4400 Value *SelectValue = 4401 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4402 if (SelectValue) { 4403 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4404 return true; 4405 } 4406 // The switch couldn't be converted into a select. 4407 return false; 4408 } 4409 4410 namespace { 4411 /// This class represents a lookup table that can be used to replace a switch. 4412 class SwitchLookupTable { 4413 public: 4414 /// Create a lookup table to use as a switch replacement with the contents 4415 /// of Values, using DefaultValue to fill any holes in the table. 4416 SwitchLookupTable( 4417 Module &M, uint64_t TableSize, ConstantInt *Offset, 4418 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4419 Constant *DefaultValue, const DataLayout &DL); 4420 4421 /// Build instructions with Builder to retrieve the value at 4422 /// the position given by Index in the lookup table. 4423 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4424 4425 /// Return true if a table with TableSize elements of 4426 /// type ElementType would fit in a target-legal register. 4427 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4428 Type *ElementType); 4429 4430 private: 4431 // Depending on the contents of the table, it can be represented in 4432 // different ways. 4433 enum { 4434 // For tables where each element contains the same value, we just have to 4435 // store that single value and return it for each lookup. 4436 SingleValueKind, 4437 4438 // For tables where there is a linear relationship between table index 4439 // and values. We calculate the result with a simple multiplication 4440 // and addition instead of a table lookup. 4441 LinearMapKind, 4442 4443 // For small tables with integer elements, we can pack them into a bitmap 4444 // that fits into a target-legal register. Values are retrieved by 4445 // shift and mask operations. 4446 BitMapKind, 4447 4448 // The table is stored as an array of values. Values are retrieved by load 4449 // instructions from the table. 4450 ArrayKind 4451 } Kind; 4452 4453 // For SingleValueKind, this is the single value. 4454 Constant *SingleValue; 4455 4456 // For BitMapKind, this is the bitmap. 4457 ConstantInt *BitMap; 4458 IntegerType *BitMapElementTy; 4459 4460 // For LinearMapKind, these are the constants used to derive the value. 4461 ConstantInt *LinearOffset; 4462 ConstantInt *LinearMultiplier; 4463 4464 // For ArrayKind, this is the array. 4465 GlobalVariable *Array; 4466 }; 4467 } 4468 4469 SwitchLookupTable::SwitchLookupTable( 4470 Module &M, uint64_t TableSize, ConstantInt *Offset, 4471 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4472 Constant *DefaultValue, const DataLayout &DL) 4473 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4474 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4475 assert(Values.size() && "Can't build lookup table without values!"); 4476 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4477 4478 // If all values in the table are equal, this is that value. 4479 SingleValue = Values.begin()->second; 4480 4481 Type *ValueType = Values.begin()->second->getType(); 4482 4483 // Build up the table contents. 4484 SmallVector<Constant *, 64> TableContents(TableSize); 4485 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4486 ConstantInt *CaseVal = Values[I].first; 4487 Constant *CaseRes = Values[I].second; 4488 assert(CaseRes->getType() == ValueType); 4489 4490 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4491 TableContents[Idx] = CaseRes; 4492 4493 if (CaseRes != SingleValue) 4494 SingleValue = nullptr; 4495 } 4496 4497 // Fill in any holes in the table with the default result. 4498 if (Values.size() < TableSize) { 4499 assert(DefaultValue && 4500 "Need a default value to fill the lookup table holes."); 4501 assert(DefaultValue->getType() == ValueType); 4502 for (uint64_t I = 0; I < TableSize; ++I) { 4503 if (!TableContents[I]) 4504 TableContents[I] = DefaultValue; 4505 } 4506 4507 if (DefaultValue != SingleValue) 4508 SingleValue = nullptr; 4509 } 4510 4511 // If each element in the table contains the same value, we only need to store 4512 // that single value. 4513 if (SingleValue) { 4514 Kind = SingleValueKind; 4515 return; 4516 } 4517 4518 // Check if we can derive the value with a linear transformation from the 4519 // table index. 4520 if (isa<IntegerType>(ValueType)) { 4521 bool LinearMappingPossible = true; 4522 APInt PrevVal; 4523 APInt DistToPrev; 4524 assert(TableSize >= 2 && "Should be a SingleValue table."); 4525 // Check if there is the same distance between two consecutive values. 4526 for (uint64_t I = 0; I < TableSize; ++I) { 4527 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4528 if (!ConstVal) { 4529 // This is an undef. We could deal with it, but undefs in lookup tables 4530 // are very seldom. It's probably not worth the additional complexity. 4531 LinearMappingPossible = false; 4532 break; 4533 } 4534 APInt Val = ConstVal->getValue(); 4535 if (I != 0) { 4536 APInt Dist = Val - PrevVal; 4537 if (I == 1) { 4538 DistToPrev = Dist; 4539 } else if (Dist != DistToPrev) { 4540 LinearMappingPossible = false; 4541 break; 4542 } 4543 } 4544 PrevVal = Val; 4545 } 4546 if (LinearMappingPossible) { 4547 LinearOffset = cast<ConstantInt>(TableContents[0]); 4548 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4549 Kind = LinearMapKind; 4550 ++NumLinearMaps; 4551 return; 4552 } 4553 } 4554 4555 // If the type is integer and the table fits in a register, build a bitmap. 4556 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4557 IntegerType *IT = cast<IntegerType>(ValueType); 4558 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4559 for (uint64_t I = TableSize; I > 0; --I) { 4560 TableInt <<= IT->getBitWidth(); 4561 // Insert values into the bitmap. Undef values are set to zero. 4562 if (!isa<UndefValue>(TableContents[I - 1])) { 4563 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4564 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4565 } 4566 } 4567 BitMap = ConstantInt::get(M.getContext(), TableInt); 4568 BitMapElementTy = IT; 4569 Kind = BitMapKind; 4570 ++NumBitMaps; 4571 return; 4572 } 4573 4574 // Store the table in an array. 4575 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4576 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4577 4578 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 4579 GlobalVariable::PrivateLinkage, Initializer, 4580 "switch.table"); 4581 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 4582 Kind = ArrayKind; 4583 } 4584 4585 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4586 switch (Kind) { 4587 case SingleValueKind: 4588 return SingleValue; 4589 case LinearMapKind: { 4590 // Derive the result value from the input value. 4591 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4592 false, "switch.idx.cast"); 4593 if (!LinearMultiplier->isOne()) 4594 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4595 if (!LinearOffset->isZero()) 4596 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4597 return Result; 4598 } 4599 case BitMapKind: { 4600 // Type of the bitmap (e.g. i59). 4601 IntegerType *MapTy = BitMap->getType(); 4602 4603 // Cast Index to the same type as the bitmap. 4604 // Note: The Index is <= the number of elements in the table, so 4605 // truncating it to the width of the bitmask is safe. 4606 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4607 4608 // Multiply the shift amount by the element width. 4609 ShiftAmt = Builder.CreateMul( 4610 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4611 "switch.shiftamt"); 4612 4613 // Shift down. 4614 Value *DownShifted = 4615 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 4616 // Mask off. 4617 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 4618 } 4619 case ArrayKind: { 4620 // Make sure the table index will not overflow when treated as signed. 4621 IntegerType *IT = cast<IntegerType>(Index->getType()); 4622 uint64_t TableSize = 4623 Array->getInitializer()->getType()->getArrayNumElements(); 4624 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4625 Index = Builder.CreateZExt( 4626 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 4627 "switch.tableidx.zext"); 4628 4629 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 4630 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4631 GEPIndices, "switch.gep"); 4632 return Builder.CreateLoad(GEP, "switch.load"); 4633 } 4634 } 4635 llvm_unreachable("Unknown lookup table kind!"); 4636 } 4637 4638 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4639 uint64_t TableSize, 4640 Type *ElementType) { 4641 auto *IT = dyn_cast<IntegerType>(ElementType); 4642 if (!IT) 4643 return false; 4644 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4645 // are <= 15, we could try to narrow the type. 4646 4647 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4648 if (TableSize >= UINT_MAX / IT->getBitWidth()) 4649 return false; 4650 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4651 } 4652 4653 /// Determine whether a lookup table should be built for this switch, based on 4654 /// the number of cases, size of the table, and the types of the results. 4655 static bool 4656 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4657 const TargetTransformInfo &TTI, const DataLayout &DL, 4658 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4659 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4660 return false; // TableSize overflowed, or mul below might overflow. 4661 4662 bool AllTablesFitInRegister = true; 4663 bool HasIllegalType = false; 4664 for (const auto &I : ResultTypes) { 4665 Type *Ty = I.second; 4666 4667 // Saturate this flag to true. 4668 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4669 4670 // Saturate this flag to false. 4671 AllTablesFitInRegister = 4672 AllTablesFitInRegister && 4673 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4674 4675 // If both flags saturate, we're done. NOTE: This *only* works with 4676 // saturating flags, and all flags have to saturate first due to the 4677 // non-deterministic behavior of iterating over a dense map. 4678 if (HasIllegalType && !AllTablesFitInRegister) 4679 break; 4680 } 4681 4682 // If each table would fit in a register, we should build it anyway. 4683 if (AllTablesFitInRegister) 4684 return true; 4685 4686 // Don't build a table that doesn't fit in-register if it has illegal types. 4687 if (HasIllegalType) 4688 return false; 4689 4690 // The table density should be at least 40%. This is the same criterion as for 4691 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4692 // FIXME: Find the best cut-off. 4693 return SI->getNumCases() * 10 >= TableSize * 4; 4694 } 4695 4696 /// Try to reuse the switch table index compare. Following pattern: 4697 /// \code 4698 /// if (idx < tablesize) 4699 /// r = table[idx]; // table does not contain default_value 4700 /// else 4701 /// r = default_value; 4702 /// if (r != default_value) 4703 /// ... 4704 /// \endcode 4705 /// Is optimized to: 4706 /// \code 4707 /// cond = idx < tablesize; 4708 /// if (cond) 4709 /// r = table[idx]; 4710 /// else 4711 /// r = default_value; 4712 /// if (cond) 4713 /// ... 4714 /// \endcode 4715 /// Jump threading will then eliminate the second if(cond). 4716 static void reuseTableCompare( 4717 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 4718 Constant *DefaultValue, 4719 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 4720 4721 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4722 if (!CmpInst) 4723 return; 4724 4725 // We require that the compare is in the same block as the phi so that jump 4726 // threading can do its work afterwards. 4727 if (CmpInst->getParent() != PhiBlock) 4728 return; 4729 4730 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4731 if (!CmpOp1) 4732 return; 4733 4734 Value *RangeCmp = RangeCheckBranch->getCondition(); 4735 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4736 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4737 4738 // Check if the compare with the default value is constant true or false. 4739 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4740 DefaultValue, CmpOp1, true); 4741 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4742 return; 4743 4744 // Check if the compare with the case values is distinct from the default 4745 // compare result. 4746 for (auto ValuePair : Values) { 4747 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4748 ValuePair.second, CmpOp1, true); 4749 if (!CaseConst || CaseConst == DefaultConst) 4750 return; 4751 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4752 "Expect true or false as compare result."); 4753 } 4754 4755 // Check if the branch instruction dominates the phi node. It's a simple 4756 // dominance check, but sufficient for our needs. 4757 // Although this check is invariant in the calling loops, it's better to do it 4758 // at this late stage. Practically we do it at most once for a switch. 4759 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4760 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4761 BasicBlock *Pred = *PI; 4762 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4763 return; 4764 } 4765 4766 if (DefaultConst == FalseConst) { 4767 // The compare yields the same result. We can replace it. 4768 CmpInst->replaceAllUsesWith(RangeCmp); 4769 ++NumTableCmpReuses; 4770 } else { 4771 // The compare yields the same result, just inverted. We can replace it. 4772 Value *InvertedTableCmp = BinaryOperator::CreateXor( 4773 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4774 RangeCheckBranch); 4775 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4776 ++NumTableCmpReuses; 4777 } 4778 } 4779 4780 /// If the switch is only used to initialize one or more phi nodes in a common 4781 /// successor block with different constant values, replace the switch with 4782 /// lookup tables. 4783 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 4784 const DataLayout &DL, 4785 const TargetTransformInfo &TTI) { 4786 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4787 4788 // Only build lookup table when we have a target that supports it. 4789 if (!TTI.shouldBuildLookupTables()) 4790 return false; 4791 4792 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4793 // split off a dense part and build a lookup table for that. 4794 4795 // FIXME: This creates arrays of GEPs to constant strings, which means each 4796 // GEP needs a runtime relocation in PIC code. We should just build one big 4797 // string and lookup indices into that. 4798 4799 // Ignore switches with less than three cases. Lookup tables will not make 4800 // them 4801 // faster, so we don't analyze them. 4802 if (SI->getNumCases() < 3) 4803 return false; 4804 4805 // Figure out the corresponding result for each case value and phi node in the 4806 // common destination, as well as the min and max case values. 4807 assert(SI->case_begin() != SI->case_end()); 4808 SwitchInst::CaseIt CI = SI->case_begin(); 4809 ConstantInt *MinCaseVal = CI.getCaseValue(); 4810 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4811 4812 BasicBlock *CommonDest = nullptr; 4813 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy; 4814 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 4815 SmallDenseMap<PHINode *, Constant *> DefaultResults; 4816 SmallDenseMap<PHINode *, Type *> ResultTypes; 4817 SmallVector<PHINode *, 4> PHIs; 4818 4819 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4820 ConstantInt *CaseVal = CI.getCaseValue(); 4821 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4822 MinCaseVal = CaseVal; 4823 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4824 MaxCaseVal = CaseVal; 4825 4826 // Resulting value at phi nodes for this case value. 4827 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy; 4828 ResultsTy Results; 4829 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4830 Results, DL)) 4831 return false; 4832 4833 // Append the result from this case to the list for each phi. 4834 for (const auto &I : Results) { 4835 PHINode *PHI = I.first; 4836 Constant *Value = I.second; 4837 if (!ResultLists.count(PHI)) 4838 PHIs.push_back(PHI); 4839 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4840 } 4841 } 4842 4843 // Keep track of the result types. 4844 for (PHINode *PHI : PHIs) { 4845 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4846 } 4847 4848 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4849 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4850 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4851 bool TableHasHoles = (NumResults < TableSize); 4852 4853 // If the table has holes, we need a constant result for the default case 4854 // or a bitmask that fits in a register. 4855 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 4856 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4857 &CommonDest, DefaultResultsList, DL); 4858 4859 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4860 if (NeedMask) { 4861 // As an extra penalty for the validity test we require more cases. 4862 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4863 return false; 4864 if (!DL.fitsInLegalInteger(TableSize)) 4865 return false; 4866 } 4867 4868 for (const auto &I : DefaultResultsList) { 4869 PHINode *PHI = I.first; 4870 Constant *Result = I.second; 4871 DefaultResults[PHI] = Result; 4872 } 4873 4874 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4875 return false; 4876 4877 // Create the BB that does the lookups. 4878 Module &Mod = *CommonDest->getParent()->getParent(); 4879 BasicBlock *LookupBB = BasicBlock::Create( 4880 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 4881 4882 // Compute the table index value. 4883 Builder.SetInsertPoint(SI); 4884 Value *TableIndex = 4885 Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx"); 4886 4887 // Compute the maximum table size representable by the integer type we are 4888 // switching upon. 4889 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 4890 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 4891 assert(MaxTableSize >= TableSize && 4892 "It is impossible for a switch to have more entries than the max " 4893 "representable value of its input integer type's size."); 4894 4895 // If the default destination is unreachable, or if the lookup table covers 4896 // all values of the conditional variable, branch directly to the lookup table 4897 // BB. Otherwise, check that the condition is within the case range. 4898 const bool DefaultIsReachable = 4899 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4900 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 4901 BranchInst *RangeCheckBranch = nullptr; 4902 4903 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4904 Builder.CreateBr(LookupBB); 4905 // Note: We call removeProdecessor later since we need to be able to get the 4906 // PHI value for the default case in case we're using a bit mask. 4907 } else { 4908 Value *Cmp = Builder.CreateICmpULT( 4909 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 4910 RangeCheckBranch = 4911 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4912 } 4913 4914 // Populate the BB that does the lookups. 4915 Builder.SetInsertPoint(LookupBB); 4916 4917 if (NeedMask) { 4918 // Before doing the lookup we do the hole check. 4919 // The LookupBB is therefore re-purposed to do the hole check 4920 // and we create a new LookupBB. 4921 BasicBlock *MaskBB = LookupBB; 4922 MaskBB->setName("switch.hole_check"); 4923 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 4924 CommonDest->getParent(), CommonDest); 4925 4926 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 4927 // unnecessary illegal types. 4928 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 4929 APInt MaskInt(TableSizePowOf2, 0); 4930 APInt One(TableSizePowOf2, 1); 4931 // Build bitmask; fill in a 1 bit for every case. 4932 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4933 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4934 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 4935 .getLimitedValue(); 4936 MaskInt |= One << Idx; 4937 } 4938 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4939 4940 // Get the TableIndex'th bit of the bitmask. 4941 // If this bit is 0 (meaning hole) jump to the default destination, 4942 // else continue with table lookup. 4943 IntegerType *MapTy = TableMask->getType(); 4944 Value *MaskIndex = 4945 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 4946 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 4947 Value *LoBit = Builder.CreateTrunc( 4948 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 4949 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4950 4951 Builder.SetInsertPoint(LookupBB); 4952 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4953 } 4954 4955 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4956 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 4957 // do not delete PHINodes here. 4958 SI->getDefaultDest()->removePredecessor(SI->getParent(), 4959 /*DontDeleteUselessPHIs=*/true); 4960 } 4961 4962 bool ReturnedEarly = false; 4963 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4964 PHINode *PHI = PHIs[I]; 4965 const ResultListTy &ResultList = ResultLists[PHI]; 4966 4967 // If using a bitmask, use any value to fill the lookup table holes. 4968 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 4969 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 4970 4971 Value *Result = Table.BuildLookup(TableIndex, Builder); 4972 4973 // If the result is used to return immediately from the function, we want to 4974 // do that right here. 4975 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 4976 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 4977 Builder.CreateRet(Result); 4978 ReturnedEarly = true; 4979 break; 4980 } 4981 4982 // Do a small peephole optimization: re-use the switch table compare if 4983 // possible. 4984 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 4985 BasicBlock *PhiBlock = PHI->getParent(); 4986 // Search for compare instructions which use the phi. 4987 for (auto *User : PHI->users()) { 4988 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 4989 } 4990 } 4991 4992 PHI->addIncoming(Result, LookupBB); 4993 } 4994 4995 if (!ReturnedEarly) 4996 Builder.CreateBr(CommonDest); 4997 4998 // Remove the switch. 4999 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5000 BasicBlock *Succ = SI->getSuccessor(i); 5001 5002 if (Succ == SI->getDefaultDest()) 5003 continue; 5004 Succ->removePredecessor(SI->getParent()); 5005 } 5006 SI->eraseFromParent(); 5007 5008 ++NumLookupTables; 5009 if (NeedMask) 5010 ++NumLookupTablesHoles; 5011 return true; 5012 } 5013 5014 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5015 BasicBlock *BB = SI->getParent(); 5016 5017 if (isValueEqualityComparison(SI)) { 5018 // If we only have one predecessor, and if it is a branch on this value, 5019 // see if that predecessor totally determines the outcome of this switch. 5020 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5021 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5022 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5023 5024 Value *Cond = SI->getCondition(); 5025 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5026 if (SimplifySwitchOnSelect(SI, Select)) 5027 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5028 5029 // If the block only contains the switch, see if we can fold the block 5030 // away into any preds. 5031 BasicBlock::iterator BBI = BB->begin(); 5032 // Ignore dbg intrinsics. 5033 while (isa<DbgInfoIntrinsic>(BBI)) 5034 ++BBI; 5035 if (SI == &*BBI) 5036 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5037 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5038 } 5039 5040 // Try to transform the switch into an icmp and a branch. 5041 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5042 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5043 5044 // Remove unreachable cases. 5045 if (EliminateDeadSwitchCases(SI, AC, DL)) 5046 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5047 5048 if (SwitchToSelect(SI, Builder, AC, DL)) 5049 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5050 5051 if (ForwardSwitchConditionToPHI(SI)) 5052 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5053 5054 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 5055 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5056 5057 return false; 5058 } 5059 5060 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5061 BasicBlock *BB = IBI->getParent(); 5062 bool Changed = false; 5063 5064 // Eliminate redundant destinations. 5065 SmallPtrSet<Value *, 8> Succs; 5066 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5067 BasicBlock *Dest = IBI->getDestination(i); 5068 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5069 Dest->removePredecessor(BB); 5070 IBI->removeDestination(i); 5071 --i; 5072 --e; 5073 Changed = true; 5074 } 5075 } 5076 5077 if (IBI->getNumDestinations() == 0) { 5078 // If the indirectbr has no successors, change it to unreachable. 5079 new UnreachableInst(IBI->getContext(), IBI); 5080 EraseTerminatorInstAndDCECond(IBI); 5081 return true; 5082 } 5083 5084 if (IBI->getNumDestinations() == 1) { 5085 // If the indirectbr has one successor, change it to a direct branch. 5086 BranchInst::Create(IBI->getDestination(0), IBI); 5087 EraseTerminatorInstAndDCECond(IBI); 5088 return true; 5089 } 5090 5091 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5092 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5093 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5094 } 5095 return Changed; 5096 } 5097 5098 /// Given an block with only a single landing pad and a unconditional branch 5099 /// try to find another basic block which this one can be merged with. This 5100 /// handles cases where we have multiple invokes with unique landing pads, but 5101 /// a shared handler. 5102 /// 5103 /// We specifically choose to not worry about merging non-empty blocks 5104 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5105 /// practice, the optimizer produces empty landing pad blocks quite frequently 5106 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5107 /// sinking in this file) 5108 /// 5109 /// This is primarily a code size optimization. We need to avoid performing 5110 /// any transform which might inhibit optimization (such as our ability to 5111 /// specialize a particular handler via tail commoning). We do this by not 5112 /// merging any blocks which require us to introduce a phi. Since the same 5113 /// values are flowing through both blocks, we don't loose any ability to 5114 /// specialize. If anything, we make such specialization more likely. 5115 /// 5116 /// TODO - This transformation could remove entries from a phi in the target 5117 /// block when the inputs in the phi are the same for the two blocks being 5118 /// merged. In some cases, this could result in removal of the PHI entirely. 5119 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5120 BasicBlock *BB) { 5121 auto Succ = BB->getUniqueSuccessor(); 5122 assert(Succ); 5123 // If there's a phi in the successor block, we'd likely have to introduce 5124 // a phi into the merged landing pad block. 5125 if (isa<PHINode>(*Succ->begin())) 5126 return false; 5127 5128 for (BasicBlock *OtherPred : predecessors(Succ)) { 5129 if (BB == OtherPred) 5130 continue; 5131 BasicBlock::iterator I = OtherPred->begin(); 5132 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5133 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5134 continue; 5135 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5136 } 5137 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5138 if (!BI2 || !BI2->isIdenticalTo(BI)) 5139 continue; 5140 5141 // We've found an identical block. Update our predecessors to take that 5142 // path instead and make ourselves dead. 5143 SmallSet<BasicBlock *, 16> Preds; 5144 Preds.insert(pred_begin(BB), pred_end(BB)); 5145 for (BasicBlock *Pred : Preds) { 5146 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5147 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5148 "unexpected successor"); 5149 II->setUnwindDest(OtherPred); 5150 } 5151 5152 // The debug info in OtherPred doesn't cover the merged control flow that 5153 // used to go through BB. We need to delete it or update it. 5154 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5155 Instruction &Inst = *I; 5156 I++; 5157 if (isa<DbgInfoIntrinsic>(Inst)) 5158 Inst.eraseFromParent(); 5159 } 5160 5161 SmallSet<BasicBlock *, 16> Succs; 5162 Succs.insert(succ_begin(BB), succ_end(BB)); 5163 for (BasicBlock *Succ : Succs) { 5164 Succ->removePredecessor(BB); 5165 } 5166 5167 IRBuilder<> Builder(BI); 5168 Builder.CreateUnreachable(); 5169 BI->eraseFromParent(); 5170 return true; 5171 } 5172 return false; 5173 } 5174 5175 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5176 IRBuilder<> &Builder) { 5177 BasicBlock *BB = BI->getParent(); 5178 5179 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5180 return true; 5181 5182 // If the Terminator is the only non-phi instruction, simplify the block. 5183 // if LoopHeader is provided, check if the block is a loop header 5184 // (This is for early invocations before loop simplify and vectorization 5185 // to keep canonical loop forms for nested loops. 5186 // These blocks can be eliminated when the pass is invoked later 5187 // in the back-end.) 5188 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5189 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5190 (!LoopHeaders || !LoopHeaders->count(BB)) && 5191 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5192 return true; 5193 5194 // If the only instruction in the block is a seteq/setne comparison 5195 // against a constant, try to simplify the block. 5196 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5197 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5198 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5199 ; 5200 if (I->isTerminator() && 5201 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5202 BonusInstThreshold, AC)) 5203 return true; 5204 } 5205 5206 // See if we can merge an empty landing pad block with another which is 5207 // equivalent. 5208 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5209 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5210 } 5211 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5212 return true; 5213 } 5214 5215 // If this basic block is ONLY a compare and a branch, and if a predecessor 5216 // branches to us and our successor, fold the comparison into the 5217 // predecessor and use logical operations to update the incoming value 5218 // for PHI nodes in common successor. 5219 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5220 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5221 return false; 5222 } 5223 5224 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5225 BasicBlock *PredPred = nullptr; 5226 for (auto *P : predecessors(BB)) { 5227 BasicBlock *PPred = P->getSinglePredecessor(); 5228 if (!PPred || (PredPred && PredPred != PPred)) 5229 return nullptr; 5230 PredPred = PPred; 5231 } 5232 return PredPred; 5233 } 5234 5235 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5236 BasicBlock *BB = BI->getParent(); 5237 5238 // Conditional branch 5239 if (isValueEqualityComparison(BI)) { 5240 // If we only have one predecessor, and if it is a branch on this value, 5241 // see if that predecessor totally determines the outcome of this 5242 // switch. 5243 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5244 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5245 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5246 5247 // This block must be empty, except for the setcond inst, if it exists. 5248 // Ignore dbg intrinsics. 5249 BasicBlock::iterator I = BB->begin(); 5250 // Ignore dbg intrinsics. 5251 while (isa<DbgInfoIntrinsic>(I)) 5252 ++I; 5253 if (&*I == BI) { 5254 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5255 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5256 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5257 ++I; 5258 // Ignore dbg intrinsics. 5259 while (isa<DbgInfoIntrinsic>(I)) 5260 ++I; 5261 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5262 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5263 } 5264 } 5265 5266 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5267 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5268 return true; 5269 5270 // If this basic block has a single dominating predecessor block and the 5271 // dominating block's condition implies BI's condition, we know the direction 5272 // of the BI branch. 5273 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5274 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5275 if (PBI && PBI->isConditional() && 5276 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 5277 (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) { 5278 bool CondIsFalse = PBI->getSuccessor(1) == BB; 5279 Optional<bool> Implication = isImpliedCondition( 5280 PBI->getCondition(), BI->getCondition(), DL, CondIsFalse); 5281 if (Implication) { 5282 // Turn this into a branch on constant. 5283 auto *OldCond = BI->getCondition(); 5284 ConstantInt *CI = *Implication 5285 ? ConstantInt::getTrue(BB->getContext()) 5286 : ConstantInt::getFalse(BB->getContext()); 5287 BI->setCondition(CI); 5288 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5289 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5290 } 5291 } 5292 } 5293 5294 // If this basic block is ONLY a compare and a branch, and if a predecessor 5295 // branches to us and one of our successors, fold the comparison into the 5296 // predecessor and use logical operations to pick the right destination. 5297 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5298 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5299 5300 // We have a conditional branch to two blocks that are only reachable 5301 // from BI. We know that the condbr dominates the two blocks, so see if 5302 // there is any identical code in the "then" and "else" blocks. If so, we 5303 // can hoist it up to the branching block. 5304 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5305 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5306 if (HoistThenElseCodeToIf(BI, TTI)) 5307 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5308 } else { 5309 // If Successor #1 has multiple preds, we may be able to conditionally 5310 // execute Successor #0 if it branches to Successor #1. 5311 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5312 if (Succ0TI->getNumSuccessors() == 1 && 5313 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5314 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5315 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5316 } 5317 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5318 // If Successor #0 has multiple preds, we may be able to conditionally 5319 // execute Successor #1 if it branches to Successor #0. 5320 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5321 if (Succ1TI->getNumSuccessors() == 1 && 5322 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5323 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5324 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5325 } 5326 5327 // If this is a branch on a phi node in the current block, thread control 5328 // through this block if any PHI node entries are constants. 5329 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5330 if (PN->getParent() == BI->getParent()) 5331 if (FoldCondBranchOnPHI(BI, DL)) 5332 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5333 5334 // Scan predecessor blocks for conditional branches. 5335 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5336 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5337 if (PBI != BI && PBI->isConditional()) 5338 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5339 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5340 5341 // Look for diamond patterns. 5342 if (MergeCondStores) 5343 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5344 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5345 if (PBI != BI && PBI->isConditional()) 5346 if (mergeConditionalStores(PBI, BI)) 5347 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5348 5349 return false; 5350 } 5351 5352 /// Check if passing a value to an instruction will cause undefined behavior. 5353 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5354 Constant *C = dyn_cast<Constant>(V); 5355 if (!C) 5356 return false; 5357 5358 if (I->use_empty()) 5359 return false; 5360 5361 if (C->isNullValue()) { 5362 // Only look at the first use, avoid hurting compile time with long uselists 5363 User *Use = *I->user_begin(); 5364 5365 // Now make sure that there are no instructions in between that can alter 5366 // control flow (eg. calls) 5367 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 5368 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5369 return false; 5370 5371 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5372 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5373 if (GEP->getPointerOperand() == I) 5374 return passingValueIsAlwaysUndefined(V, GEP); 5375 5376 // Look through bitcasts. 5377 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5378 return passingValueIsAlwaysUndefined(V, BC); 5379 5380 // Load from null is undefined. 5381 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5382 if (!LI->isVolatile()) 5383 return LI->getPointerAddressSpace() == 0; 5384 5385 // Store to null is undefined. 5386 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5387 if (!SI->isVolatile()) 5388 return SI->getPointerAddressSpace() == 0 && 5389 SI->getPointerOperand() == I; 5390 } 5391 return false; 5392 } 5393 5394 /// If BB has an incoming value that will always trigger undefined behavior 5395 /// (eg. null pointer dereference), remove the branch leading here. 5396 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5397 for (BasicBlock::iterator i = BB->begin(); 5398 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5399 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5400 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5401 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5402 IRBuilder<> Builder(T); 5403 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5404 BB->removePredecessor(PHI->getIncomingBlock(i)); 5405 // Turn uncoditional branches into unreachables and remove the dead 5406 // destination from conditional branches. 5407 if (BI->isUnconditional()) 5408 Builder.CreateUnreachable(); 5409 else 5410 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5411 : BI->getSuccessor(0)); 5412 BI->eraseFromParent(); 5413 return true; 5414 } 5415 // TODO: SwitchInst. 5416 } 5417 5418 return false; 5419 } 5420 5421 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5422 bool Changed = false; 5423 5424 assert(BB && BB->getParent() && "Block not embedded in function!"); 5425 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5426 5427 // Remove basic blocks that have no predecessors (except the entry block)... 5428 // or that just have themself as a predecessor. These are unreachable. 5429 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5430 BB->getSinglePredecessor() == BB) { 5431 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5432 DeleteDeadBlock(BB); 5433 return true; 5434 } 5435 5436 // Check to see if we can constant propagate this terminator instruction 5437 // away... 5438 Changed |= ConstantFoldTerminator(BB, true); 5439 5440 // Check for and eliminate duplicate PHI nodes in this block. 5441 Changed |= EliminateDuplicatePHINodes(BB); 5442 5443 // Check for and remove branches that will always cause undefined behavior. 5444 Changed |= removeUndefIntroducingPredecessor(BB); 5445 5446 // Merge basic blocks into their predecessor if there is only one distinct 5447 // pred, and if there is only one distinct successor of the predecessor, and 5448 // if there are no PHI nodes. 5449 // 5450 if (MergeBlockIntoPredecessor(BB)) 5451 return true; 5452 5453 IRBuilder<> Builder(BB); 5454 5455 // If there is a trivial two-entry PHI node in this basic block, and we can 5456 // eliminate it, do so now. 5457 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5458 if (PN->getNumIncomingValues() == 2) 5459 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5460 5461 Builder.SetInsertPoint(BB->getTerminator()); 5462 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5463 if (BI->isUnconditional()) { 5464 if (SimplifyUncondBranch(BI, Builder)) 5465 return true; 5466 } else { 5467 if (SimplifyCondBranch(BI, Builder)) 5468 return true; 5469 } 5470 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5471 if (SimplifyReturn(RI, Builder)) 5472 return true; 5473 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5474 if (SimplifyResume(RI, Builder)) 5475 return true; 5476 } else if (CleanupReturnInst *RI = 5477 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5478 if (SimplifyCleanupReturn(RI)) 5479 return true; 5480 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5481 if (SimplifySwitch(SI, Builder)) 5482 return true; 5483 } else if (UnreachableInst *UI = 5484 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5485 if (SimplifyUnreachable(UI)) 5486 return true; 5487 } else if (IndirectBrInst *IBI = 5488 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5489 if (SimplifyIndirectBr(IBI)) 5490 return true; 5491 } 5492 5493 return Changed; 5494 } 5495 5496 /// This function is used to do simplification of a CFG. 5497 /// For example, it adjusts branches to branches to eliminate the extra hop, 5498 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5499 /// of the CFG. It returns true if a modification was made. 5500 /// 5501 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5502 unsigned BonusInstThreshold, AssumptionCache *AC, 5503 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 5504 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5505 BonusInstThreshold, AC, LoopHeaders) 5506 .run(BB); 5507 } 5508