1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/MemorySSA.h"
31 #include "llvm/Analysis/MemorySSAUpdater.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/NoFolder.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/PatternMatch.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/SSAUpdater.h"
72 #include "llvm/Transforms/Utils/ValueMapper.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <climits>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <map>
80 #include <set>
81 #include <tuple>
82 #include <utility>
83 #include <vector>
84 
85 using namespace llvm;
86 using namespace PatternMatch;
87 
88 #define DEBUG_TYPE "simplifycfg"
89 
90 cl::opt<bool> llvm::RequireAndPreserveDomTree(
91     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
92     cl::init(false),
93     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
94              "into preserving DomTree,"));
95 
96 // Chosen as 2 so as to be cheap, but still to have enough power to fold
97 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
98 // To catch this, we need to fold a compare and a select, hence '2' being the
99 // minimum reasonable default.
100 static cl::opt<unsigned> PHINodeFoldingThreshold(
101     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
102     cl::desc(
103         "Control the amount of phi node folding to perform (default = 2)"));
104 
105 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
106     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
107     cl::desc("Control the maximal total instruction cost that we are willing "
108              "to speculatively execute to fold a 2-entry PHI node into a "
109              "select (default = 4)"));
110 
111 static cl::opt<bool> DupRet(
112     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
113     cl::desc("Duplicate return instructions into unconditional branches"));
114 
115 static cl::opt<bool>
116     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
117                 cl::desc("Hoist common instructions up to the parent block"));
118 
119 static cl::opt<bool>
120     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
121                cl::desc("Sink common instructions down to the end block"));
122 
123 static cl::opt<bool> HoistCondStores(
124     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
125     cl::desc("Hoist conditional stores if an unconditional store precedes"));
126 
127 static cl::opt<bool> MergeCondStores(
128     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
129     cl::desc("Hoist conditional stores even if an unconditional store does not "
130              "precede - hoist multiple conditional stores into a single "
131              "predicated store"));
132 
133 static cl::opt<bool> MergeCondStoresAggressively(
134     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
135     cl::desc("When merging conditional stores, do so even if the resultant "
136              "basic blocks are unlikely to be if-converted as a result"));
137 
138 static cl::opt<bool> SpeculateOneExpensiveInst(
139     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
140     cl::desc("Allow exactly one expensive instruction to be speculatively "
141              "executed"));
142 
143 static cl::opt<unsigned> MaxSpeculationDepth(
144     "max-speculation-depth", cl::Hidden, cl::init(10),
145     cl::desc("Limit maximum recursion depth when calculating costs of "
146              "speculatively executed instructions"));
147 
148 static cl::opt<int>
149 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
150                   cl::desc("Max size of a block which is still considered "
151                            "small enough to thread through"));
152 
153 // Two is chosen to allow one negation and a logical combine.
154 static cl::opt<unsigned>
155     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
156                         cl::init(2),
157                         cl::desc("Maximum cost of combining conditions when "
158                                  "folding branches"));
159 
160 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
161 STATISTIC(NumLinearMaps,
162           "Number of switch instructions turned into linear mapping");
163 STATISTIC(NumLookupTables,
164           "Number of switch instructions turned into lookup tables");
165 STATISTIC(
166     NumLookupTablesHoles,
167     "Number of switch instructions turned into lookup tables (holes checked)");
168 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
169 STATISTIC(NumFoldValueComparisonIntoPredecessors,
170           "Number of value comparisons folded into predecessor basic blocks");
171 STATISTIC(NumFoldBranchToCommonDest,
172           "Number of branches folded into predecessor basic block");
173 STATISTIC(
174     NumHoistCommonCode,
175     "Number of common instruction 'blocks' hoisted up to the begin block");
176 STATISTIC(NumHoistCommonInstrs,
177           "Number of common instructions hoisted up to the begin block");
178 STATISTIC(NumSinkCommonCode,
179           "Number of common instruction 'blocks' sunk down to the end block");
180 STATISTIC(NumSinkCommonInstrs,
181           "Number of common instructions sunk down to the end block");
182 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
183 STATISTIC(NumInvokes,
184           "Number of invokes with empty resume blocks simplified into calls");
185 
186 namespace {
187 
188 // The first field contains the value that the switch produces when a certain
189 // case group is selected, and the second field is a vector containing the
190 // cases composing the case group.
191 using SwitchCaseResultVectorTy =
192     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
193 
194 // The first field contains the phi node that generates a result of the switch
195 // and the second field contains the value generated for a certain case in the
196 // switch for that PHI.
197 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
198 
199 /// ValueEqualityComparisonCase - Represents a case of a switch.
200 struct ValueEqualityComparisonCase {
201   ConstantInt *Value;
202   BasicBlock *Dest;
203 
204   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
205       : Value(Value), Dest(Dest) {}
206 
207   bool operator<(ValueEqualityComparisonCase RHS) const {
208     // Comparing pointers is ok as we only rely on the order for uniquing.
209     return Value < RHS.Value;
210   }
211 
212   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
213 };
214 
215 class SimplifyCFGOpt {
216   const TargetTransformInfo &TTI;
217   DomTreeUpdater *DTU;
218   const DataLayout &DL;
219   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
220   const SimplifyCFGOptions &Options;
221   bool Resimplify;
222 
223   Value *isValueEqualityComparison(Instruction *TI);
224   BasicBlock *GetValueEqualityComparisonCases(
225       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
226   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
227                                                      BasicBlock *Pred,
228                                                      IRBuilder<> &Builder);
229   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
230                                            IRBuilder<> &Builder);
231 
232   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
233   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
234   bool simplifySingleResume(ResumeInst *RI);
235   bool simplifyCommonResume(ResumeInst *RI);
236   bool simplifyCleanupReturn(CleanupReturnInst *RI);
237   bool simplifyUnreachable(UnreachableInst *UI);
238   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
239   bool simplifyIndirectBr(IndirectBrInst *IBI);
240   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
241   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
242   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
243   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
244 
245   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
246                                              IRBuilder<> &Builder);
247 
248   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
249   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
250                               const TargetTransformInfo &TTI);
251   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
252                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
253                                   uint32_t TrueWeight, uint32_t FalseWeight);
254   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
255                                  const DataLayout &DL);
256   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
257   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
258   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
259 
260 public:
261   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
262                  const DataLayout &DL,
263                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
264                  const SimplifyCFGOptions &Opts)
265       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
266 
267   bool simplifyOnce(BasicBlock *BB);
268   bool simplifyOnceImpl(BasicBlock *BB);
269   bool run(BasicBlock *BB);
270 
271   // Helper to set Resimplify and return change indication.
272   bool requestResimplify() {
273     Resimplify = true;
274     return true;
275   }
276 };
277 
278 } // end anonymous namespace
279 
280 /// Return true if it is safe to merge these two
281 /// terminator instructions together.
282 static bool
283 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
284                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
285   if (SI1 == SI2)
286     return false; // Can't merge with self!
287 
288   // It is not safe to merge these two switch instructions if they have a common
289   // successor, and if that successor has a PHI node, and if *that* PHI node has
290   // conflicting incoming values from the two switch blocks.
291   BasicBlock *SI1BB = SI1->getParent();
292   BasicBlock *SI2BB = SI2->getParent();
293 
294   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
295   bool Fail = false;
296   for (BasicBlock *Succ : successors(SI2BB))
297     if (SI1Succs.count(Succ))
298       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
299         PHINode *PN = cast<PHINode>(BBI);
300         if (PN->getIncomingValueForBlock(SI1BB) !=
301             PN->getIncomingValueForBlock(SI2BB)) {
302           if (FailBlocks)
303             FailBlocks->insert(Succ);
304           Fail = true;
305         }
306       }
307 
308   return !Fail;
309 }
310 
311 /// Return true if it is safe and profitable to merge these two terminator
312 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
313 /// store all PHI nodes in common successors.
314 static bool
315 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
316                                 Instruction *Cond,
317                                 SmallVectorImpl<PHINode *> &PhiNodes) {
318   if (SI1 == SI2)
319     return false; // Can't merge with self!
320   assert(SI1->isUnconditional() && SI2->isConditional());
321 
322   // We fold the unconditional branch if we can easily update all PHI nodes in
323   // common successors:
324   // 1> We have a constant incoming value for the conditional branch;
325   // 2> We have "Cond" as the incoming value for the unconditional branch;
326   // 3> SI2->getCondition() and Cond have same operands.
327   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
328   if (!Ci2)
329     return false;
330   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
331         Cond->getOperand(1) == Ci2->getOperand(1)) &&
332       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
333         Cond->getOperand(1) == Ci2->getOperand(0)))
334     return false;
335 
336   BasicBlock *SI1BB = SI1->getParent();
337   BasicBlock *SI2BB = SI2->getParent();
338   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
339   for (BasicBlock *Succ : successors(SI2BB))
340     if (SI1Succs.count(Succ))
341       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
342         PHINode *PN = cast<PHINode>(BBI);
343         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
344             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
345           return false;
346         PhiNodes.push_back(PN);
347       }
348   return true;
349 }
350 
351 /// Update PHI nodes in Succ to indicate that there will now be entries in it
352 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
353 /// will be the same as those coming in from ExistPred, an existing predecessor
354 /// of Succ.
355 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
356                                   BasicBlock *ExistPred,
357                                   MemorySSAUpdater *MSSAU = nullptr) {
358   for (PHINode &PN : Succ->phis())
359     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
360   if (MSSAU)
361     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
362       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
363 }
364 
365 /// Compute an abstract "cost" of speculating the given instruction,
366 /// which is assumed to be safe to speculate. TCC_Free means cheap,
367 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
368 /// expensive.
369 static unsigned ComputeSpeculationCost(const User *I,
370                                        const TargetTransformInfo &TTI) {
371   assert(isSafeToSpeculativelyExecute(I) &&
372          "Instruction is not safe to speculatively execute!");
373   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
374 }
375 
376 /// If we have a merge point of an "if condition" as accepted above,
377 /// return true if the specified value dominates the block.  We
378 /// don't handle the true generality of domination here, just a special case
379 /// which works well enough for us.
380 ///
381 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
382 /// see if V (which must be an instruction) and its recursive operands
383 /// that do not dominate BB have a combined cost lower than CostRemaining and
384 /// are non-trapping.  If both are true, the instruction is inserted into the
385 /// set and true is returned.
386 ///
387 /// The cost for most non-trapping instructions is defined as 1 except for
388 /// Select whose cost is 2.
389 ///
390 /// After this function returns, CostRemaining is decreased by the cost of
391 /// V plus its non-dominating operands.  If that cost is greater than
392 /// CostRemaining, false is returned and CostRemaining is undefined.
393 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
394                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
395                                 int &BudgetRemaining,
396                                 const TargetTransformInfo &TTI,
397                                 unsigned Depth = 0) {
398   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
399   // so limit the recursion depth.
400   // TODO: While this recursion limit does prevent pathological behavior, it
401   // would be better to track visited instructions to avoid cycles.
402   if (Depth == MaxSpeculationDepth)
403     return false;
404 
405   Instruction *I = dyn_cast<Instruction>(V);
406   if (!I) {
407     // Non-instructions all dominate instructions, but not all constantexprs
408     // can be executed unconditionally.
409     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
410       if (C->canTrap())
411         return false;
412     return true;
413   }
414   BasicBlock *PBB = I->getParent();
415 
416   // We don't want to allow weird loops that might have the "if condition" in
417   // the bottom of this block.
418   if (PBB == BB)
419     return false;
420 
421   // If this instruction is defined in a block that contains an unconditional
422   // branch to BB, then it must be in the 'conditional' part of the "if
423   // statement".  If not, it definitely dominates the region.
424   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
425   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
426     return true;
427 
428   // If we have seen this instruction before, don't count it again.
429   if (AggressiveInsts.count(I))
430     return true;
431 
432   // Okay, it looks like the instruction IS in the "condition".  Check to
433   // see if it's a cheap instruction to unconditionally compute, and if it
434   // only uses stuff defined outside of the condition.  If so, hoist it out.
435   if (!isSafeToSpeculativelyExecute(I))
436     return false;
437 
438   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
439 
440   // Allow exactly one instruction to be speculated regardless of its cost
441   // (as long as it is safe to do so).
442   // This is intended to flatten the CFG even if the instruction is a division
443   // or other expensive operation. The speculation of an expensive instruction
444   // is expected to be undone in CodeGenPrepare if the speculation has not
445   // enabled further IR optimizations.
446   if (BudgetRemaining < 0 &&
447       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
448     return false;
449 
450   // Okay, we can only really hoist these out if their operands do
451   // not take us over the cost threshold.
452   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
453     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
454                              Depth + 1))
455       return false;
456   // Okay, it's safe to do this!  Remember this instruction.
457   AggressiveInsts.insert(I);
458   return true;
459 }
460 
461 /// Extract ConstantInt from value, looking through IntToPtr
462 /// and PointerNullValue. Return NULL if value is not a constant int.
463 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
464   // Normal constant int.
465   ConstantInt *CI = dyn_cast<ConstantInt>(V);
466   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
467     return CI;
468 
469   // This is some kind of pointer constant. Turn it into a pointer-sized
470   // ConstantInt if possible.
471   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
472 
473   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
474   if (isa<ConstantPointerNull>(V))
475     return ConstantInt::get(PtrTy, 0);
476 
477   // IntToPtr const int.
478   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
479     if (CE->getOpcode() == Instruction::IntToPtr)
480       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
481         // The constant is very likely to have the right type already.
482         if (CI->getType() == PtrTy)
483           return CI;
484         else
485           return cast<ConstantInt>(
486               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
487       }
488   return nullptr;
489 }
490 
491 namespace {
492 
493 /// Given a chain of or (||) or and (&&) comparison of a value against a
494 /// constant, this will try to recover the information required for a switch
495 /// structure.
496 /// It will depth-first traverse the chain of comparison, seeking for patterns
497 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
498 /// representing the different cases for the switch.
499 /// Note that if the chain is composed of '||' it will build the set of elements
500 /// that matches the comparisons (i.e. any of this value validate the chain)
501 /// while for a chain of '&&' it will build the set elements that make the test
502 /// fail.
503 struct ConstantComparesGatherer {
504   const DataLayout &DL;
505 
506   /// Value found for the switch comparison
507   Value *CompValue = nullptr;
508 
509   /// Extra clause to be checked before the switch
510   Value *Extra = nullptr;
511 
512   /// Set of integers to match in switch
513   SmallVector<ConstantInt *, 8> Vals;
514 
515   /// Number of comparisons matched in the and/or chain
516   unsigned UsedICmps = 0;
517 
518   /// Construct and compute the result for the comparison instruction Cond
519   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
520     gather(Cond);
521   }
522 
523   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
524   ConstantComparesGatherer &
525   operator=(const ConstantComparesGatherer &) = delete;
526 
527 private:
528   /// Try to set the current value used for the comparison, it succeeds only if
529   /// it wasn't set before or if the new value is the same as the old one
530   bool setValueOnce(Value *NewVal) {
531     if (CompValue && CompValue != NewVal)
532       return false;
533     CompValue = NewVal;
534     return (CompValue != nullptr);
535   }
536 
537   /// Try to match Instruction "I" as a comparison against a constant and
538   /// populates the array Vals with the set of values that match (or do not
539   /// match depending on isEQ).
540   /// Return false on failure. On success, the Value the comparison matched
541   /// against is placed in CompValue.
542   /// If CompValue is already set, the function is expected to fail if a match
543   /// is found but the value compared to is different.
544   bool matchInstruction(Instruction *I, bool isEQ) {
545     // If this is an icmp against a constant, handle this as one of the cases.
546     ICmpInst *ICI;
547     ConstantInt *C;
548     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
549           (C = GetConstantInt(I->getOperand(1), DL)))) {
550       return false;
551     }
552 
553     Value *RHSVal;
554     const APInt *RHSC;
555 
556     // Pattern match a special case
557     // (x & ~2^z) == y --> x == y || x == y|2^z
558     // This undoes a transformation done by instcombine to fuse 2 compares.
559     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
560       // It's a little bit hard to see why the following transformations are
561       // correct. Here is a CVC3 program to verify them for 64-bit values:
562 
563       /*
564          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
565          x    : BITVECTOR(64);
566          y    : BITVECTOR(64);
567          z    : BITVECTOR(64);
568          mask : BITVECTOR(64) = BVSHL(ONE, z);
569          QUERY( (y & ~mask = y) =>
570                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
571          );
572          QUERY( (y |  mask = y) =>
573                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
574          );
575       */
576 
577       // Please note that each pattern must be a dual implication (<--> or
578       // iff). One directional implication can create spurious matches. If the
579       // implication is only one-way, an unsatisfiable condition on the left
580       // side can imply a satisfiable condition on the right side. Dual
581       // implication ensures that satisfiable conditions are transformed to
582       // other satisfiable conditions and unsatisfiable conditions are
583       // transformed to other unsatisfiable conditions.
584 
585       // Here is a concrete example of a unsatisfiable condition on the left
586       // implying a satisfiable condition on the right:
587       //
588       // mask = (1 << z)
589       // (x & ~mask) == y  --> (x == y || x == (y | mask))
590       //
591       // Substituting y = 3, z = 0 yields:
592       // (x & -2) == 3 --> (x == 3 || x == 2)
593 
594       // Pattern match a special case:
595       /*
596         QUERY( (y & ~mask = y) =>
597                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
598         );
599       */
600       if (match(ICI->getOperand(0),
601                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
602         APInt Mask = ~*RHSC;
603         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
604           // If we already have a value for the switch, it has to match!
605           if (!setValueOnce(RHSVal))
606             return false;
607 
608           Vals.push_back(C);
609           Vals.push_back(
610               ConstantInt::get(C->getContext(),
611                                C->getValue() | Mask));
612           UsedICmps++;
613           return true;
614         }
615       }
616 
617       // Pattern match a special case:
618       /*
619         QUERY( (y |  mask = y) =>
620                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
621         );
622       */
623       if (match(ICI->getOperand(0),
624                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
625         APInt Mask = *RHSC;
626         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
627           // If we already have a value for the switch, it has to match!
628           if (!setValueOnce(RHSVal))
629             return false;
630 
631           Vals.push_back(C);
632           Vals.push_back(ConstantInt::get(C->getContext(),
633                                           C->getValue() & ~Mask));
634           UsedICmps++;
635           return true;
636         }
637       }
638 
639       // If we already have a value for the switch, it has to match!
640       if (!setValueOnce(ICI->getOperand(0)))
641         return false;
642 
643       UsedICmps++;
644       Vals.push_back(C);
645       return ICI->getOperand(0);
646     }
647 
648     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
649     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
650         ICI->getPredicate(), C->getValue());
651 
652     // Shift the range if the compare is fed by an add. This is the range
653     // compare idiom as emitted by instcombine.
654     Value *CandidateVal = I->getOperand(0);
655     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
656       Span = Span.subtract(*RHSC);
657       CandidateVal = RHSVal;
658     }
659 
660     // If this is an and/!= check, then we are looking to build the set of
661     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
662     // x != 0 && x != 1.
663     if (!isEQ)
664       Span = Span.inverse();
665 
666     // If there are a ton of values, we don't want to make a ginormous switch.
667     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
668       return false;
669     }
670 
671     // If we already have a value for the switch, it has to match!
672     if (!setValueOnce(CandidateVal))
673       return false;
674 
675     // Add all values from the range to the set
676     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
677       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
678 
679     UsedICmps++;
680     return true;
681   }
682 
683   /// Given a potentially 'or'd or 'and'd together collection of icmp
684   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
685   /// the value being compared, and stick the list constants into the Vals
686   /// vector.
687   /// One "Extra" case is allowed to differ from the other.
688   void gather(Value *V) {
689     bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
690 
691     // Keep a stack (SmallVector for efficiency) for depth-first traversal
692     SmallVector<Value *, 8> DFT;
693     SmallPtrSet<Value *, 8> Visited;
694 
695     // Initialize
696     Visited.insert(V);
697     DFT.push_back(V);
698 
699     while (!DFT.empty()) {
700       V = DFT.pop_back_val();
701 
702       if (Instruction *I = dyn_cast<Instruction>(V)) {
703         // If it is a || (or && depending on isEQ), process the operands.
704         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
705           if (Visited.insert(I->getOperand(1)).second)
706             DFT.push_back(I->getOperand(1));
707           if (Visited.insert(I->getOperand(0)).second)
708             DFT.push_back(I->getOperand(0));
709           continue;
710         }
711 
712         // Try to match the current instruction
713         if (matchInstruction(I, isEQ))
714           // Match succeed, continue the loop
715           continue;
716       }
717 
718       // One element of the sequence of || (or &&) could not be match as a
719       // comparison against the same value as the others.
720       // We allow only one "Extra" case to be checked before the switch
721       if (!Extra) {
722         Extra = V;
723         continue;
724       }
725       // Failed to parse a proper sequence, abort now
726       CompValue = nullptr;
727       break;
728     }
729   }
730 };
731 
732 } // end anonymous namespace
733 
734 static void EraseTerminatorAndDCECond(Instruction *TI,
735                                       MemorySSAUpdater *MSSAU = nullptr) {
736   Instruction *Cond = nullptr;
737   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
738     Cond = dyn_cast<Instruction>(SI->getCondition());
739   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
740     if (BI->isConditional())
741       Cond = dyn_cast<Instruction>(BI->getCondition());
742   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
743     Cond = dyn_cast<Instruction>(IBI->getAddress());
744   }
745 
746   TI->eraseFromParent();
747   if (Cond)
748     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
749 }
750 
751 /// Return true if the specified terminator checks
752 /// to see if a value is equal to constant integer value.
753 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
754   Value *CV = nullptr;
755   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
756     // Do not permit merging of large switch instructions into their
757     // predecessors unless there is only one predecessor.
758     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
759       CV = SI->getCondition();
760   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
761     if (BI->isConditional() && BI->getCondition()->hasOneUse())
762       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
763         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
764           CV = ICI->getOperand(0);
765       }
766 
767   // Unwrap any lossless ptrtoint cast.
768   if (CV) {
769     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
770       Value *Ptr = PTII->getPointerOperand();
771       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
772         CV = Ptr;
773     }
774   }
775   return CV;
776 }
777 
778 /// Given a value comparison instruction,
779 /// decode all of the 'cases' that it represents and return the 'default' block.
780 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
781     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
782   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
783     Cases.reserve(SI->getNumCases());
784     for (auto Case : SI->cases())
785       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
786                                                   Case.getCaseSuccessor()));
787     return SI->getDefaultDest();
788   }
789 
790   BranchInst *BI = cast<BranchInst>(TI);
791   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
792   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
793   Cases.push_back(ValueEqualityComparisonCase(
794       GetConstantInt(ICI->getOperand(1), DL), Succ));
795   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
796 }
797 
798 /// Given a vector of bb/value pairs, remove any entries
799 /// in the list that match the specified block.
800 static void
801 EliminateBlockCases(BasicBlock *BB,
802                     std::vector<ValueEqualityComparisonCase> &Cases) {
803   llvm::erase_value(Cases, BB);
804 }
805 
806 /// Return true if there are any keys in C1 that exist in C2 as well.
807 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
808                           std::vector<ValueEqualityComparisonCase> &C2) {
809   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
810 
811   // Make V1 be smaller than V2.
812   if (V1->size() > V2->size())
813     std::swap(V1, V2);
814 
815   if (V1->empty())
816     return false;
817   if (V1->size() == 1) {
818     // Just scan V2.
819     ConstantInt *TheVal = (*V1)[0].Value;
820     for (unsigned i = 0, e = V2->size(); i != e; ++i)
821       if (TheVal == (*V2)[i].Value)
822         return true;
823   }
824 
825   // Otherwise, just sort both lists and compare element by element.
826   array_pod_sort(V1->begin(), V1->end());
827   array_pod_sort(V2->begin(), V2->end());
828   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
829   while (i1 != e1 && i2 != e2) {
830     if ((*V1)[i1].Value == (*V2)[i2].Value)
831       return true;
832     if ((*V1)[i1].Value < (*V2)[i2].Value)
833       ++i1;
834     else
835       ++i2;
836   }
837   return false;
838 }
839 
840 // Set branch weights on SwitchInst. This sets the metadata if there is at
841 // least one non-zero weight.
842 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
843   // Check that there is at least one non-zero weight. Otherwise, pass
844   // nullptr to setMetadata which will erase the existing metadata.
845   MDNode *N = nullptr;
846   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
847     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
848   SI->setMetadata(LLVMContext::MD_prof, N);
849 }
850 
851 // Similar to the above, but for branch and select instructions that take
852 // exactly 2 weights.
853 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
854                              uint32_t FalseWeight) {
855   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
856   // Check that there is at least one non-zero weight. Otherwise, pass
857   // nullptr to setMetadata which will erase the existing metadata.
858   MDNode *N = nullptr;
859   if (TrueWeight || FalseWeight)
860     N = MDBuilder(I->getParent()->getContext())
861             .createBranchWeights(TrueWeight, FalseWeight);
862   I->setMetadata(LLVMContext::MD_prof, N);
863 }
864 
865 /// If TI is known to be a terminator instruction and its block is known to
866 /// only have a single predecessor block, check to see if that predecessor is
867 /// also a value comparison with the same value, and if that comparison
868 /// determines the outcome of this comparison. If so, simplify TI. This does a
869 /// very limited form of jump threading.
870 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
871     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
872   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
873   if (!PredVal)
874     return false; // Not a value comparison in predecessor.
875 
876   Value *ThisVal = isValueEqualityComparison(TI);
877   assert(ThisVal && "This isn't a value comparison!!");
878   if (ThisVal != PredVal)
879     return false; // Different predicates.
880 
881   // TODO: Preserve branch weight metadata, similarly to how
882   // FoldValueComparisonIntoPredecessors preserves it.
883 
884   // Find out information about when control will move from Pred to TI's block.
885   std::vector<ValueEqualityComparisonCase> PredCases;
886   BasicBlock *PredDef =
887       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
888   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
889 
890   // Find information about how control leaves this block.
891   std::vector<ValueEqualityComparisonCase> ThisCases;
892   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
893   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
894 
895   // If TI's block is the default block from Pred's comparison, potentially
896   // simplify TI based on this knowledge.
897   if (PredDef == TI->getParent()) {
898     // If we are here, we know that the value is none of those cases listed in
899     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
900     // can simplify TI.
901     if (!ValuesOverlap(PredCases, ThisCases))
902       return false;
903 
904     if (isa<BranchInst>(TI)) {
905       // Okay, one of the successors of this condbr is dead.  Convert it to a
906       // uncond br.
907       assert(ThisCases.size() == 1 && "Branch can only have one case!");
908       // Insert the new branch.
909       Instruction *NI = Builder.CreateBr(ThisDef);
910       (void)NI;
911 
912       // Remove PHI node entries for the dead edge.
913       ThisCases[0].Dest->removePredecessor(TI->getParent());
914 
915       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
916                         << "Through successor TI: " << *TI << "Leaving: " << *NI
917                         << "\n");
918 
919       EraseTerminatorAndDCECond(TI);
920       return true;
921     }
922 
923     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
924     // Okay, TI has cases that are statically dead, prune them away.
925     SmallPtrSet<Constant *, 16> DeadCases;
926     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
927       DeadCases.insert(PredCases[i].Value);
928 
929     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
930                       << "Through successor TI: " << *TI);
931 
932     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
933       --i;
934       if (DeadCases.count(i->getCaseValue())) {
935         i->getCaseSuccessor()->removePredecessor(TI->getParent());
936         SI.removeCase(i);
937       }
938     }
939     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
940     return true;
941   }
942 
943   // Otherwise, TI's block must correspond to some matched value.  Find out
944   // which value (or set of values) this is.
945   ConstantInt *TIV = nullptr;
946   BasicBlock *TIBB = TI->getParent();
947   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
948     if (PredCases[i].Dest == TIBB) {
949       if (TIV)
950         return false; // Cannot handle multiple values coming to this block.
951       TIV = PredCases[i].Value;
952     }
953   assert(TIV && "No edge from pred to succ?");
954 
955   // Okay, we found the one constant that our value can be if we get into TI's
956   // BB.  Find out which successor will unconditionally be branched to.
957   BasicBlock *TheRealDest = nullptr;
958   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
959     if (ThisCases[i].Value == TIV) {
960       TheRealDest = ThisCases[i].Dest;
961       break;
962     }
963 
964   // If not handled by any explicit cases, it is handled by the default case.
965   if (!TheRealDest)
966     TheRealDest = ThisDef;
967 
968   // Remove PHI node entries for dead edges.
969   BasicBlock *CheckEdge = TheRealDest;
970   for (BasicBlock *Succ : successors(TIBB))
971     if (Succ != CheckEdge)
972       Succ->removePredecessor(TIBB);
973     else
974       CheckEdge = nullptr;
975 
976   // Insert the new branch.
977   Instruction *NI = Builder.CreateBr(TheRealDest);
978   (void)NI;
979 
980   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
981                     << "Through successor TI: " << *TI << "Leaving: " << *NI
982                     << "\n");
983 
984   EraseTerminatorAndDCECond(TI);
985   return true;
986 }
987 
988 namespace {
989 
990 /// This class implements a stable ordering of constant
991 /// integers that does not depend on their address.  This is important for
992 /// applications that sort ConstantInt's to ensure uniqueness.
993 struct ConstantIntOrdering {
994   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
995     return LHS->getValue().ult(RHS->getValue());
996   }
997 };
998 
999 } // end anonymous namespace
1000 
1001 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1002                                     ConstantInt *const *P2) {
1003   const ConstantInt *LHS = *P1;
1004   const ConstantInt *RHS = *P2;
1005   if (LHS == RHS)
1006     return 0;
1007   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1008 }
1009 
1010 static inline bool HasBranchWeights(const Instruction *I) {
1011   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1012   if (ProfMD && ProfMD->getOperand(0))
1013     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1014       return MDS->getString().equals("branch_weights");
1015 
1016   return false;
1017 }
1018 
1019 /// Get Weights of a given terminator, the default weight is at the front
1020 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1021 /// metadata.
1022 static void GetBranchWeights(Instruction *TI,
1023                              SmallVectorImpl<uint64_t> &Weights) {
1024   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1025   assert(MD);
1026   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1027     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1028     Weights.push_back(CI->getValue().getZExtValue());
1029   }
1030 
1031   // If TI is a conditional eq, the default case is the false case,
1032   // and the corresponding branch-weight data is at index 2. We swap the
1033   // default weight to be the first entry.
1034   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1035     assert(Weights.size() == 2);
1036     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1037     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1038       std::swap(Weights.front(), Weights.back());
1039   }
1040 }
1041 
1042 /// Keep halving the weights until all can fit in uint32_t.
1043 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1044   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1045   if (Max > UINT_MAX) {
1046     unsigned Offset = 32 - countLeadingZeros(Max);
1047     for (uint64_t &I : Weights)
1048       I >>= Offset;
1049   }
1050 }
1051 
1052 /// The specified terminator is a value equality comparison instruction
1053 /// (either a switch or a branch on "X == c").
1054 /// See if any of the predecessors of the terminator block are value comparisons
1055 /// on the same value.  If so, and if safe to do so, fold them together.
1056 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1057                                                          IRBuilder<> &Builder) {
1058   BasicBlock *BB = TI->getParent();
1059   Value *CV = isValueEqualityComparison(TI); // CondVal
1060   assert(CV && "Not a comparison?");
1061 
1062   bool Changed = false;
1063 
1064   auto _ = make_scope_exit([&]() {
1065     if (Changed)
1066       ++NumFoldValueComparisonIntoPredecessors;
1067   });
1068 
1069   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1070   while (!Preds.empty()) {
1071     BasicBlock *Pred = Preds.pop_back_val();
1072 
1073     // See if the predecessor is a comparison with the same value.
1074     Instruction *PTI = Pred->getTerminator();
1075     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1076 
1077     if (PCV == CV && TI != PTI) {
1078       SmallSetVector<BasicBlock*, 4> FailBlocks;
1079       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1080         for (auto *Succ : FailBlocks) {
1081           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1082             return false;
1083         }
1084       }
1085 
1086       // Figure out which 'cases' to copy from SI to PSI.
1087       std::vector<ValueEqualityComparisonCase> BBCases;
1088       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1089 
1090       std::vector<ValueEqualityComparisonCase> PredCases;
1091       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1092 
1093       // Based on whether the default edge from PTI goes to BB or not, fill in
1094       // PredCases and PredDefault with the new switch cases we would like to
1095       // build.
1096       SmallVector<BasicBlock *, 8> NewSuccessors;
1097 
1098       // Update the branch weight metadata along the way
1099       SmallVector<uint64_t, 8> Weights;
1100       bool PredHasWeights = HasBranchWeights(PTI);
1101       bool SuccHasWeights = HasBranchWeights(TI);
1102 
1103       if (PredHasWeights) {
1104         GetBranchWeights(PTI, Weights);
1105         // branch-weight metadata is inconsistent here.
1106         if (Weights.size() != 1 + PredCases.size())
1107           PredHasWeights = SuccHasWeights = false;
1108       } else if (SuccHasWeights)
1109         // If there are no predecessor weights but there are successor weights,
1110         // populate Weights with 1, which will later be scaled to the sum of
1111         // successor's weights
1112         Weights.assign(1 + PredCases.size(), 1);
1113 
1114       SmallVector<uint64_t, 8> SuccWeights;
1115       if (SuccHasWeights) {
1116         GetBranchWeights(TI, SuccWeights);
1117         // branch-weight metadata is inconsistent here.
1118         if (SuccWeights.size() != 1 + BBCases.size())
1119           PredHasWeights = SuccHasWeights = false;
1120       } else if (PredHasWeights)
1121         SuccWeights.assign(1 + BBCases.size(), 1);
1122 
1123       if (PredDefault == BB) {
1124         // If this is the default destination from PTI, only the edges in TI
1125         // that don't occur in PTI, or that branch to BB will be activated.
1126         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1127         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1128           if (PredCases[i].Dest != BB)
1129             PTIHandled.insert(PredCases[i].Value);
1130           else {
1131             // The default destination is BB, we don't need explicit targets.
1132             std::swap(PredCases[i], PredCases.back());
1133 
1134             if (PredHasWeights || SuccHasWeights) {
1135               // Increase weight for the default case.
1136               Weights[0] += Weights[i + 1];
1137               std::swap(Weights[i + 1], Weights.back());
1138               Weights.pop_back();
1139             }
1140 
1141             PredCases.pop_back();
1142             --i;
1143             --e;
1144           }
1145 
1146         // Reconstruct the new switch statement we will be building.
1147         if (PredDefault != BBDefault) {
1148           PredDefault->removePredecessor(Pred);
1149           PredDefault = BBDefault;
1150           NewSuccessors.push_back(BBDefault);
1151         }
1152 
1153         unsigned CasesFromPred = Weights.size();
1154         uint64_t ValidTotalSuccWeight = 0;
1155         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1156           if (!PTIHandled.count(BBCases[i].Value) &&
1157               BBCases[i].Dest != BBDefault) {
1158             PredCases.push_back(BBCases[i]);
1159             NewSuccessors.push_back(BBCases[i].Dest);
1160             if (SuccHasWeights || PredHasWeights) {
1161               // The default weight is at index 0, so weight for the ith case
1162               // should be at index i+1. Scale the cases from successor by
1163               // PredDefaultWeight (Weights[0]).
1164               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1165               ValidTotalSuccWeight += SuccWeights[i + 1];
1166             }
1167           }
1168 
1169         if (SuccHasWeights || PredHasWeights) {
1170           ValidTotalSuccWeight += SuccWeights[0];
1171           // Scale the cases from predecessor by ValidTotalSuccWeight.
1172           for (unsigned i = 1; i < CasesFromPred; ++i)
1173             Weights[i] *= ValidTotalSuccWeight;
1174           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1175           Weights[0] *= SuccWeights[0];
1176         }
1177       } else {
1178         // If this is not the default destination from PSI, only the edges
1179         // in SI that occur in PSI with a destination of BB will be
1180         // activated.
1181         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1182         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1183         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1184           if (PredCases[i].Dest == BB) {
1185             PTIHandled.insert(PredCases[i].Value);
1186 
1187             if (PredHasWeights || SuccHasWeights) {
1188               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1189               std::swap(Weights[i + 1], Weights.back());
1190               Weights.pop_back();
1191             }
1192 
1193             std::swap(PredCases[i], PredCases.back());
1194             PredCases.pop_back();
1195             --i;
1196             --e;
1197           }
1198 
1199         // Okay, now we know which constants were sent to BB from the
1200         // predecessor.  Figure out where they will all go now.
1201         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1202           if (PTIHandled.count(BBCases[i].Value)) {
1203             // If this is one we are capable of getting...
1204             if (PredHasWeights || SuccHasWeights)
1205               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1206             PredCases.push_back(BBCases[i]);
1207             NewSuccessors.push_back(BBCases[i].Dest);
1208             PTIHandled.erase(
1209                 BBCases[i].Value); // This constant is taken care of
1210           }
1211 
1212         // If there are any constants vectored to BB that TI doesn't handle,
1213         // they must go to the default destination of TI.
1214         for (ConstantInt *I : PTIHandled) {
1215           if (PredHasWeights || SuccHasWeights)
1216             Weights.push_back(WeightsForHandled[I]);
1217           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1218           NewSuccessors.push_back(BBDefault);
1219         }
1220       }
1221 
1222       // Okay, at this point, we know which new successor Pred will get.  Make
1223       // sure we update the number of entries in the PHI nodes for these
1224       // successors.
1225       for (BasicBlock *NewSuccessor : NewSuccessors)
1226         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1227 
1228       Builder.SetInsertPoint(PTI);
1229       // Convert pointer to int before we switch.
1230       if (CV->getType()->isPointerTy()) {
1231         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1232                                     "magicptr");
1233       }
1234 
1235       // Now that the successors are updated, create the new Switch instruction.
1236       SwitchInst *NewSI =
1237           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1238       NewSI->setDebugLoc(PTI->getDebugLoc());
1239       for (ValueEqualityComparisonCase &V : PredCases)
1240         NewSI->addCase(V.Value, V.Dest);
1241 
1242       if (PredHasWeights || SuccHasWeights) {
1243         // Halve the weights if any of them cannot fit in an uint32_t
1244         FitWeights(Weights);
1245 
1246         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1247 
1248         setBranchWeights(NewSI, MDWeights);
1249       }
1250 
1251       EraseTerminatorAndDCECond(PTI);
1252 
1253       // Okay, last check.  If BB is still a successor of PSI, then we must
1254       // have an infinite loop case.  If so, add an infinitely looping block
1255       // to handle the case to preserve the behavior of the code.
1256       BasicBlock *InfLoopBlock = nullptr;
1257       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1258         if (NewSI->getSuccessor(i) == BB) {
1259           if (!InfLoopBlock) {
1260             // Insert it at the end of the function, because it's either code,
1261             // or it won't matter if it's hot. :)
1262             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1263                                               BB->getParent());
1264             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1265           }
1266           NewSI->setSuccessor(i, InfLoopBlock);
1267         }
1268 
1269       Changed = true;
1270     }
1271   }
1272   return Changed;
1273 }
1274 
1275 // If we would need to insert a select that uses the value of this invoke
1276 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1277 // can't hoist the invoke, as there is nowhere to put the select in this case.
1278 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1279                                 Instruction *I1, Instruction *I2) {
1280   for (BasicBlock *Succ : successors(BB1)) {
1281     for (const PHINode &PN : Succ->phis()) {
1282       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1283       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1284       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1285         return false;
1286       }
1287     }
1288   }
1289   return true;
1290 }
1291 
1292 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1293 
1294 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1295 /// in the two blocks up into the branch block. The caller of this function
1296 /// guarantees that BI's block dominates BB1 and BB2.
1297 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1298                                            const TargetTransformInfo &TTI) {
1299   // This does very trivial matching, with limited scanning, to find identical
1300   // instructions in the two blocks.  In particular, we don't want to get into
1301   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1302   // such, we currently just scan for obviously identical instructions in an
1303   // identical order.
1304   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1305   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1306 
1307   BasicBlock::iterator BB1_Itr = BB1->begin();
1308   BasicBlock::iterator BB2_Itr = BB2->begin();
1309 
1310   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1311   // Skip debug info if it is not identical.
1312   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1313   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1314   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1315     while (isa<DbgInfoIntrinsic>(I1))
1316       I1 = &*BB1_Itr++;
1317     while (isa<DbgInfoIntrinsic>(I2))
1318       I2 = &*BB2_Itr++;
1319   }
1320   // FIXME: Can we define a safety predicate for CallBr?
1321   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1322       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1323       isa<CallBrInst>(I1))
1324     return false;
1325 
1326   BasicBlock *BIParent = BI->getParent();
1327 
1328   bool Changed = false;
1329 
1330   auto _ = make_scope_exit([&]() {
1331     if (Changed)
1332       ++NumHoistCommonCode;
1333   });
1334 
1335   do {
1336     // If we are hoisting the terminator instruction, don't move one (making a
1337     // broken BB), instead clone it, and remove BI.
1338     if (I1->isTerminator())
1339       goto HoistTerminator;
1340 
1341     // If we're going to hoist a call, make sure that the two instructions we're
1342     // commoning/hoisting are both marked with musttail, or neither of them is
1343     // marked as such. Otherwise, we might end up in a situation where we hoist
1344     // from a block where the terminator is a `ret` to a block where the terminator
1345     // is a `br`, and `musttail` calls expect to be followed by a return.
1346     auto *C1 = dyn_cast<CallInst>(I1);
1347     auto *C2 = dyn_cast<CallInst>(I2);
1348     if (C1 && C2)
1349       if (C1->isMustTailCall() != C2->isMustTailCall())
1350         return Changed;
1351 
1352     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1353       return Changed;
1354 
1355     // If any of the two call sites has nomerge attribute, stop hoisting.
1356     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1357       if (CB1->cannotMerge())
1358         return Changed;
1359     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1360       if (CB2->cannotMerge())
1361         return Changed;
1362 
1363     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1364       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1365       // The debug location is an integral part of a debug info intrinsic
1366       // and can't be separated from it or replaced.  Instead of attempting
1367       // to merge locations, simply hoist both copies of the intrinsic.
1368       BIParent->getInstList().splice(BI->getIterator(),
1369                                      BB1->getInstList(), I1);
1370       BIParent->getInstList().splice(BI->getIterator(),
1371                                      BB2->getInstList(), I2);
1372       Changed = true;
1373     } else {
1374       // For a normal instruction, we just move one to right before the branch,
1375       // then replace all uses of the other with the first.  Finally, we remove
1376       // the now redundant second instruction.
1377       BIParent->getInstList().splice(BI->getIterator(),
1378                                      BB1->getInstList(), I1);
1379       if (!I2->use_empty())
1380         I2->replaceAllUsesWith(I1);
1381       I1->andIRFlags(I2);
1382       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1383                              LLVMContext::MD_range,
1384                              LLVMContext::MD_fpmath,
1385                              LLVMContext::MD_invariant_load,
1386                              LLVMContext::MD_nonnull,
1387                              LLVMContext::MD_invariant_group,
1388                              LLVMContext::MD_align,
1389                              LLVMContext::MD_dereferenceable,
1390                              LLVMContext::MD_dereferenceable_or_null,
1391                              LLVMContext::MD_mem_parallel_loop_access,
1392                              LLVMContext::MD_access_group,
1393                              LLVMContext::MD_preserve_access_index};
1394       combineMetadata(I1, I2, KnownIDs, true);
1395 
1396       // I1 and I2 are being combined into a single instruction.  Its debug
1397       // location is the merged locations of the original instructions.
1398       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1399 
1400       I2->eraseFromParent();
1401       Changed = true;
1402     }
1403     ++NumHoistCommonInstrs;
1404 
1405     I1 = &*BB1_Itr++;
1406     I2 = &*BB2_Itr++;
1407     // Skip debug info if it is not identical.
1408     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1409     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1410     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1411       while (isa<DbgInfoIntrinsic>(I1))
1412         I1 = &*BB1_Itr++;
1413       while (isa<DbgInfoIntrinsic>(I2))
1414         I2 = &*BB2_Itr++;
1415     }
1416   } while (I1->isIdenticalToWhenDefined(I2));
1417 
1418   return true;
1419 
1420 HoistTerminator:
1421   // It may not be possible to hoist an invoke.
1422   // FIXME: Can we define a safety predicate for CallBr?
1423   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1424     return Changed;
1425 
1426   // TODO: callbr hoisting currently disabled pending further study.
1427   if (isa<CallBrInst>(I1))
1428     return Changed;
1429 
1430   for (BasicBlock *Succ : successors(BB1)) {
1431     for (PHINode &PN : Succ->phis()) {
1432       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1433       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1434       if (BB1V == BB2V)
1435         continue;
1436 
1437       // Check for passingValueIsAlwaysUndefined here because we would rather
1438       // eliminate undefined control flow then converting it to a select.
1439       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1440           passingValueIsAlwaysUndefined(BB2V, &PN))
1441         return Changed;
1442 
1443       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1444         return Changed;
1445       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1446         return Changed;
1447     }
1448   }
1449 
1450   // Okay, it is safe to hoist the terminator.
1451   Instruction *NT = I1->clone();
1452   BIParent->getInstList().insert(BI->getIterator(), NT);
1453   if (!NT->getType()->isVoidTy()) {
1454     I1->replaceAllUsesWith(NT);
1455     I2->replaceAllUsesWith(NT);
1456     NT->takeName(I1);
1457   }
1458   Changed = true;
1459   ++NumHoistCommonInstrs;
1460 
1461   // Ensure terminator gets a debug location, even an unknown one, in case
1462   // it involves inlinable calls.
1463   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1464 
1465   // PHIs created below will adopt NT's merged DebugLoc.
1466   IRBuilder<NoFolder> Builder(NT);
1467 
1468   // Hoisting one of the terminators from our successor is a great thing.
1469   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1470   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1471   // nodes, so we insert select instruction to compute the final result.
1472   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1473   for (BasicBlock *Succ : successors(BB1)) {
1474     for (PHINode &PN : Succ->phis()) {
1475       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1476       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1477       if (BB1V == BB2V)
1478         continue;
1479 
1480       // These values do not agree.  Insert a select instruction before NT
1481       // that determines the right value.
1482       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1483       if (!SI) {
1484         // Propagate fast-math-flags from phi node to its replacement select.
1485         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1486         if (isa<FPMathOperator>(PN))
1487           Builder.setFastMathFlags(PN.getFastMathFlags());
1488 
1489         SI = cast<SelectInst>(
1490             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1491                                  BB1V->getName() + "." + BB2V->getName(), BI));
1492       }
1493 
1494       // Make the PHI node use the select for all incoming values for BB1/BB2
1495       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1496         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1497           PN.setIncomingValue(i, SI);
1498     }
1499   }
1500 
1501   // Update any PHI nodes in our new successors.
1502   for (BasicBlock *Succ : successors(BB1))
1503     AddPredecessorToBlock(Succ, BIParent, BB1);
1504 
1505   EraseTerminatorAndDCECond(BI);
1506   return Changed;
1507 }
1508 
1509 // Check lifetime markers.
1510 static bool isLifeTimeMarker(const Instruction *I) {
1511   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1512     switch (II->getIntrinsicID()) {
1513     default:
1514       break;
1515     case Intrinsic::lifetime_start:
1516     case Intrinsic::lifetime_end:
1517       return true;
1518     }
1519   }
1520   return false;
1521 }
1522 
1523 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1524 // into variables.
1525 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1526                                                 int OpIdx) {
1527   return !isa<IntrinsicInst>(I);
1528 }
1529 
1530 // All instructions in Insts belong to different blocks that all unconditionally
1531 // branch to a common successor. Analyze each instruction and return true if it
1532 // would be possible to sink them into their successor, creating one common
1533 // instruction instead. For every value that would be required to be provided by
1534 // PHI node (because an operand varies in each input block), add to PHIOperands.
1535 static bool canSinkInstructions(
1536     ArrayRef<Instruction *> Insts,
1537     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1538   // Prune out obviously bad instructions to move. Each instruction must have
1539   // exactly zero or one use, and we check later that use is by a single, common
1540   // PHI instruction in the successor.
1541   bool HasUse = !Insts.front()->user_empty();
1542   for (auto *I : Insts) {
1543     // These instructions may change or break semantics if moved.
1544     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1545         I->getType()->isTokenTy())
1546       return false;
1547 
1548     // Conservatively return false if I is an inline-asm instruction. Sinking
1549     // and merging inline-asm instructions can potentially create arguments
1550     // that cannot satisfy the inline-asm constraints.
1551     // If the instruction has nomerge attribute, return false.
1552     if (const auto *C = dyn_cast<CallBase>(I))
1553       if (C->isInlineAsm() || C->cannotMerge())
1554         return false;
1555 
1556     // Each instruction must have zero or one use.
1557     if (HasUse && !I->hasOneUse())
1558       return false;
1559     if (!HasUse && !I->user_empty())
1560       return false;
1561   }
1562 
1563   const Instruction *I0 = Insts.front();
1564   for (auto *I : Insts)
1565     if (!I->isSameOperationAs(I0))
1566       return false;
1567 
1568   // All instructions in Insts are known to be the same opcode. If they have a
1569   // use, check that the only user is a PHI or in the same block as the
1570   // instruction, because if a user is in the same block as an instruction we're
1571   // contemplating sinking, it must already be determined to be sinkable.
1572   if (HasUse) {
1573     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1574     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1575     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1576           auto *U = cast<Instruction>(*I->user_begin());
1577           return (PNUse &&
1578                   PNUse->getParent() == Succ &&
1579                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1580                  U->getParent() == I->getParent();
1581         }))
1582       return false;
1583   }
1584 
1585   // Because SROA can't handle speculating stores of selects, try not to sink
1586   // loads, stores or lifetime markers of allocas when we'd have to create a
1587   // PHI for the address operand. Also, because it is likely that loads or
1588   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1589   // them.
1590   // This can cause code churn which can have unintended consequences down
1591   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1592   // FIXME: This is a workaround for a deficiency in SROA - see
1593   // https://llvm.org/bugs/show_bug.cgi?id=30188
1594   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1595         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1596       }))
1597     return false;
1598   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1599         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1600       }))
1601     return false;
1602   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1603         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1604       }))
1605     return false;
1606 
1607   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1608     Value *Op = I0->getOperand(OI);
1609     if (Op->getType()->isTokenTy())
1610       // Don't touch any operand of token type.
1611       return false;
1612 
1613     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1614       assert(I->getNumOperands() == I0->getNumOperands());
1615       return I->getOperand(OI) == I0->getOperand(OI);
1616     };
1617     if (!all_of(Insts, SameAsI0)) {
1618       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1619           !canReplaceOperandWithVariable(I0, OI))
1620         // We can't create a PHI from this GEP.
1621         return false;
1622       // Don't create indirect calls! The called value is the final operand.
1623       if (isa<CallBase>(I0) && OI == OE - 1) {
1624         // FIXME: if the call was *already* indirect, we should do this.
1625         return false;
1626       }
1627       for (auto *I : Insts)
1628         PHIOperands[I].push_back(I->getOperand(OI));
1629     }
1630   }
1631   return true;
1632 }
1633 
1634 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1635 // instruction of every block in Blocks to their common successor, commoning
1636 // into one instruction.
1637 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1638   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1639 
1640   // canSinkLastInstruction returning true guarantees that every block has at
1641   // least one non-terminator instruction.
1642   SmallVector<Instruction*,4> Insts;
1643   for (auto *BB : Blocks) {
1644     Instruction *I = BB->getTerminator();
1645     do {
1646       I = I->getPrevNode();
1647     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1648     if (!isa<DbgInfoIntrinsic>(I))
1649       Insts.push_back(I);
1650   }
1651 
1652   // The only checking we need to do now is that all users of all instructions
1653   // are the same PHI node. canSinkLastInstruction should have checked this but
1654   // it is slightly over-aggressive - it gets confused by commutative instructions
1655   // so double-check it here.
1656   Instruction *I0 = Insts.front();
1657   if (!I0->user_empty()) {
1658     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1659     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1660           auto *U = cast<Instruction>(*I->user_begin());
1661           return U == PNUse;
1662         }))
1663       return false;
1664   }
1665 
1666   // We don't need to do any more checking here; canSinkLastInstruction should
1667   // have done it all for us.
1668   SmallVector<Value*, 4> NewOperands;
1669   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1670     // This check is different to that in canSinkLastInstruction. There, we
1671     // cared about the global view once simplifycfg (and instcombine) have
1672     // completed - it takes into account PHIs that become trivially
1673     // simplifiable.  However here we need a more local view; if an operand
1674     // differs we create a PHI and rely on instcombine to clean up the very
1675     // small mess we may make.
1676     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1677       return I->getOperand(O) != I0->getOperand(O);
1678     });
1679     if (!NeedPHI) {
1680       NewOperands.push_back(I0->getOperand(O));
1681       continue;
1682     }
1683 
1684     // Create a new PHI in the successor block and populate it.
1685     auto *Op = I0->getOperand(O);
1686     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1687     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1688                                Op->getName() + ".sink", &BBEnd->front());
1689     for (auto *I : Insts)
1690       PN->addIncoming(I->getOperand(O), I->getParent());
1691     NewOperands.push_back(PN);
1692   }
1693 
1694   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1695   // and move it to the start of the successor block.
1696   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1697     I0->getOperandUse(O).set(NewOperands[O]);
1698   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1699 
1700   // Update metadata and IR flags, and merge debug locations.
1701   for (auto *I : Insts)
1702     if (I != I0) {
1703       // The debug location for the "common" instruction is the merged locations
1704       // of all the commoned instructions.  We start with the original location
1705       // of the "common" instruction and iteratively merge each location in the
1706       // loop below.
1707       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1708       // However, as N-way merge for CallInst is rare, so we use simplified API
1709       // instead of using complex API for N-way merge.
1710       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1711       combineMetadataForCSE(I0, I, true);
1712       I0->andIRFlags(I);
1713     }
1714 
1715   if (!I0->user_empty()) {
1716     // canSinkLastInstruction checked that all instructions were used by
1717     // one and only one PHI node. Find that now, RAUW it to our common
1718     // instruction and nuke it.
1719     auto *PN = cast<PHINode>(*I0->user_begin());
1720     PN->replaceAllUsesWith(I0);
1721     PN->eraseFromParent();
1722   }
1723 
1724   // Finally nuke all instructions apart from the common instruction.
1725   for (auto *I : Insts)
1726     if (I != I0)
1727       I->eraseFromParent();
1728 
1729   return true;
1730 }
1731 
1732 namespace {
1733 
1734   // LockstepReverseIterator - Iterates through instructions
1735   // in a set of blocks in reverse order from the first non-terminator.
1736   // For example (assume all blocks have size n):
1737   //   LockstepReverseIterator I([B1, B2, B3]);
1738   //   *I-- = [B1[n], B2[n], B3[n]];
1739   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1740   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1741   //   ...
1742   class LockstepReverseIterator {
1743     ArrayRef<BasicBlock*> Blocks;
1744     SmallVector<Instruction*,4> Insts;
1745     bool Fail;
1746 
1747   public:
1748     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1749       reset();
1750     }
1751 
1752     void reset() {
1753       Fail = false;
1754       Insts.clear();
1755       for (auto *BB : Blocks) {
1756         Instruction *Inst = BB->getTerminator();
1757         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1758           Inst = Inst->getPrevNode();
1759         if (!Inst) {
1760           // Block wasn't big enough.
1761           Fail = true;
1762           return;
1763         }
1764         Insts.push_back(Inst);
1765       }
1766     }
1767 
1768     bool isValid() const {
1769       return !Fail;
1770     }
1771 
1772     void operator--() {
1773       if (Fail)
1774         return;
1775       for (auto *&Inst : Insts) {
1776         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1777           Inst = Inst->getPrevNode();
1778         // Already at beginning of block.
1779         if (!Inst) {
1780           Fail = true;
1781           return;
1782         }
1783       }
1784     }
1785 
1786     ArrayRef<Instruction*> operator * () const {
1787       return Insts;
1788     }
1789   };
1790 
1791 } // end anonymous namespace
1792 
1793 /// Check whether BB's predecessors end with unconditional branches. If it is
1794 /// true, sink any common code from the predecessors to BB.
1795 /// We also allow one predecessor to end with conditional branch (but no more
1796 /// than one).
1797 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1798   // We support two situations:
1799   //   (1) all incoming arcs are unconditional
1800   //   (2) one incoming arc is conditional
1801   //
1802   // (2) is very common in switch defaults and
1803   // else-if patterns;
1804   //
1805   //   if (a) f(1);
1806   //   else if (b) f(2);
1807   //
1808   // produces:
1809   //
1810   //       [if]
1811   //      /    \
1812   //    [f(1)] [if]
1813   //      |     | \
1814   //      |     |  |
1815   //      |  [f(2)]|
1816   //       \    | /
1817   //        [ end ]
1818   //
1819   // [end] has two unconditional predecessor arcs and one conditional. The
1820   // conditional refers to the implicit empty 'else' arc. This conditional
1821   // arc can also be caused by an empty default block in a switch.
1822   //
1823   // In this case, we attempt to sink code from all *unconditional* arcs.
1824   // If we can sink instructions from these arcs (determined during the scan
1825   // phase below) we insert a common successor for all unconditional arcs and
1826   // connect that to [end], to enable sinking:
1827   //
1828   //       [if]
1829   //      /    \
1830   //    [x(1)] [if]
1831   //      |     | \
1832   //      |     |  \
1833   //      |  [x(2)] |
1834   //       \   /    |
1835   //   [sink.split] |
1836   //         \     /
1837   //         [ end ]
1838   //
1839   SmallVector<BasicBlock*,4> UnconditionalPreds;
1840   Instruction *Cond = nullptr;
1841   for (auto *B : predecessors(BB)) {
1842     auto *T = B->getTerminator();
1843     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1844       UnconditionalPreds.push_back(B);
1845     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1846       Cond = T;
1847     else
1848       return false;
1849   }
1850   if (UnconditionalPreds.size() < 2)
1851     return false;
1852 
1853   // We take a two-step approach to tail sinking. First we scan from the end of
1854   // each block upwards in lockstep. If the n'th instruction from the end of each
1855   // block can be sunk, those instructions are added to ValuesToSink and we
1856   // carry on. If we can sink an instruction but need to PHI-merge some operands
1857   // (because they're not identical in each instruction) we add these to
1858   // PHIOperands.
1859   unsigned ScanIdx = 0;
1860   SmallPtrSet<Value*,4> InstructionsToSink;
1861   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1862   LockstepReverseIterator LRI(UnconditionalPreds);
1863   while (LRI.isValid() &&
1864          canSinkInstructions(*LRI, PHIOperands)) {
1865     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1866                       << "\n");
1867     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1868     ++ScanIdx;
1869     --LRI;
1870   }
1871 
1872   // If no instructions can be sunk, early-return.
1873   if (ScanIdx == 0)
1874     return false;
1875 
1876   bool Changed = false;
1877 
1878   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1879     unsigned NumPHIdValues = 0;
1880     for (auto *I : *LRI)
1881       for (auto *V : PHIOperands[I])
1882         if (InstructionsToSink.count(V) == 0)
1883           ++NumPHIdValues;
1884     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1885     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1886     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1887         NumPHIInsts++;
1888 
1889     return NumPHIInsts <= 1;
1890   };
1891 
1892   if (Cond) {
1893     // Check if we would actually sink anything first! This mutates the CFG and
1894     // adds an extra block. The goal in doing this is to allow instructions that
1895     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1896     // (such as trunc, add) can be sunk and predicated already. So we check that
1897     // we're going to sink at least one non-speculatable instruction.
1898     LRI.reset();
1899     unsigned Idx = 0;
1900     bool Profitable = false;
1901     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1902       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1903         Profitable = true;
1904         break;
1905       }
1906       --LRI;
1907       ++Idx;
1908     }
1909     if (!Profitable)
1910       return false;
1911 
1912     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1913     // We have a conditional edge and we're going to sink some instructions.
1914     // Insert a new block postdominating all blocks we're going to sink from.
1915     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1916       // Edges couldn't be split.
1917       return false;
1918     Changed = true;
1919   }
1920 
1921   // Now that we've analyzed all potential sinking candidates, perform the
1922   // actual sink. We iteratively sink the last non-terminator of the source
1923   // blocks into their common successor unless doing so would require too
1924   // many PHI instructions to be generated (currently only one PHI is allowed
1925   // per sunk instruction).
1926   //
1927   // We can use InstructionsToSink to discount values needing PHI-merging that will
1928   // actually be sunk in a later iteration. This allows us to be more
1929   // aggressive in what we sink. This does allow a false positive where we
1930   // sink presuming a later value will also be sunk, but stop half way through
1931   // and never actually sink it which means we produce more PHIs than intended.
1932   // This is unlikely in practice though.
1933   unsigned SinkIdx = 0;
1934   for (; SinkIdx != ScanIdx; ++SinkIdx) {
1935     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1936                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1937                       << "\n");
1938 
1939     // Because we've sunk every instruction in turn, the current instruction to
1940     // sink is always at index 0.
1941     LRI.reset();
1942     if (!ProfitableToSinkInstruction(LRI)) {
1943       // Too many PHIs would be created.
1944       LLVM_DEBUG(
1945           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1946       break;
1947     }
1948 
1949     if (!sinkLastInstruction(UnconditionalPreds)) {
1950       LLVM_DEBUG(
1951           dbgs()
1952           << "SINK: stopping here, failed to actually sink instruction!\n");
1953       break;
1954     }
1955 
1956     NumSinkCommonInstrs++;
1957     Changed = true;
1958   }
1959   if (SinkIdx != 0)
1960     ++NumSinkCommonCode;
1961   return Changed;
1962 }
1963 
1964 /// Determine if we can hoist sink a sole store instruction out of a
1965 /// conditional block.
1966 ///
1967 /// We are looking for code like the following:
1968 ///   BrBB:
1969 ///     store i32 %add, i32* %arrayidx2
1970 ///     ... // No other stores or function calls (we could be calling a memory
1971 ///     ... // function).
1972 ///     %cmp = icmp ult %x, %y
1973 ///     br i1 %cmp, label %EndBB, label %ThenBB
1974 ///   ThenBB:
1975 ///     store i32 %add5, i32* %arrayidx2
1976 ///     br label EndBB
1977 ///   EndBB:
1978 ///     ...
1979 ///   We are going to transform this into:
1980 ///   BrBB:
1981 ///     store i32 %add, i32* %arrayidx2
1982 ///     ... //
1983 ///     %cmp = icmp ult %x, %y
1984 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1985 ///     store i32 %add.add5, i32* %arrayidx2
1986 ///     ...
1987 ///
1988 /// \return The pointer to the value of the previous store if the store can be
1989 ///         hoisted into the predecessor block. 0 otherwise.
1990 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1991                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1992   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1993   if (!StoreToHoist)
1994     return nullptr;
1995 
1996   // Volatile or atomic.
1997   if (!StoreToHoist->isSimple())
1998     return nullptr;
1999 
2000   Value *StorePtr = StoreToHoist->getPointerOperand();
2001 
2002   // Look for a store to the same pointer in BrBB.
2003   unsigned MaxNumInstToLookAt = 9;
2004   // Skip pseudo probe intrinsic calls which are not really killing any memory
2005   // accesses.
2006   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2007     if (!MaxNumInstToLookAt)
2008       break;
2009     --MaxNumInstToLookAt;
2010 
2011     // Could be calling an instruction that affects memory like free().
2012     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2013       return nullptr;
2014 
2015     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2016       // Found the previous store make sure it stores to the same location.
2017       if (SI->getPointerOperand() == StorePtr)
2018         // Found the previous store, return its value operand.
2019         return SI->getValueOperand();
2020       return nullptr; // Unknown store.
2021     }
2022   }
2023 
2024   return nullptr;
2025 }
2026 
2027 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2028 /// converted to selects.
2029 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2030                                            BasicBlock *EndBB,
2031                                            unsigned &SpeculatedInstructions,
2032                                            int &BudgetRemaining,
2033                                            const TargetTransformInfo &TTI) {
2034   TargetTransformInfo::TargetCostKind CostKind =
2035     BB->getParent()->hasMinSize()
2036     ? TargetTransformInfo::TCK_CodeSize
2037     : TargetTransformInfo::TCK_SizeAndLatency;
2038 
2039   bool HaveRewritablePHIs = false;
2040   for (PHINode &PN : EndBB->phis()) {
2041     Value *OrigV = PN.getIncomingValueForBlock(BB);
2042     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2043 
2044     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2045     // Skip PHIs which are trivial.
2046     if (ThenV == OrigV)
2047       continue;
2048 
2049     BudgetRemaining -=
2050         TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2051                                CmpInst::BAD_ICMP_PREDICATE, CostKind);
2052 
2053     // Don't convert to selects if we could remove undefined behavior instead.
2054     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2055         passingValueIsAlwaysUndefined(ThenV, &PN))
2056       return false;
2057 
2058     HaveRewritablePHIs = true;
2059     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2060     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2061     if (!OrigCE && !ThenCE)
2062       continue; // Known safe and cheap.
2063 
2064     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2065         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2066       return false;
2067     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2068     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2069     unsigned MaxCost =
2070         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2071     if (OrigCost + ThenCost > MaxCost)
2072       return false;
2073 
2074     // Account for the cost of an unfolded ConstantExpr which could end up
2075     // getting expanded into Instructions.
2076     // FIXME: This doesn't account for how many operations are combined in the
2077     // constant expression.
2078     ++SpeculatedInstructions;
2079     if (SpeculatedInstructions > 1)
2080       return false;
2081   }
2082 
2083   return HaveRewritablePHIs;
2084 }
2085 
2086 /// Speculate a conditional basic block flattening the CFG.
2087 ///
2088 /// Note that this is a very risky transform currently. Speculating
2089 /// instructions like this is most often not desirable. Instead, there is an MI
2090 /// pass which can do it with full awareness of the resource constraints.
2091 /// However, some cases are "obvious" and we should do directly. An example of
2092 /// this is speculating a single, reasonably cheap instruction.
2093 ///
2094 /// There is only one distinct advantage to flattening the CFG at the IR level:
2095 /// it makes very common but simplistic optimizations such as are common in
2096 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2097 /// modeling their effects with easier to reason about SSA value graphs.
2098 ///
2099 ///
2100 /// An illustration of this transform is turning this IR:
2101 /// \code
2102 ///   BB:
2103 ///     %cmp = icmp ult %x, %y
2104 ///     br i1 %cmp, label %EndBB, label %ThenBB
2105 ///   ThenBB:
2106 ///     %sub = sub %x, %y
2107 ///     br label BB2
2108 ///   EndBB:
2109 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2110 ///     ...
2111 /// \endcode
2112 ///
2113 /// Into this IR:
2114 /// \code
2115 ///   BB:
2116 ///     %cmp = icmp ult %x, %y
2117 ///     %sub = sub %x, %y
2118 ///     %cond = select i1 %cmp, 0, %sub
2119 ///     ...
2120 /// \endcode
2121 ///
2122 /// \returns true if the conditional block is removed.
2123 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2124                                             const TargetTransformInfo &TTI) {
2125   // Be conservative for now. FP select instruction can often be expensive.
2126   Value *BrCond = BI->getCondition();
2127   if (isa<FCmpInst>(BrCond))
2128     return false;
2129 
2130   BasicBlock *BB = BI->getParent();
2131   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2132   int BudgetRemaining =
2133     PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2134 
2135   // If ThenBB is actually on the false edge of the conditional branch, remember
2136   // to swap the select operands later.
2137   bool Invert = false;
2138   if (ThenBB != BI->getSuccessor(0)) {
2139     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2140     Invert = true;
2141   }
2142   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2143 
2144   // Keep a count of how many times instructions are used within ThenBB when
2145   // they are candidates for sinking into ThenBB. Specifically:
2146   // - They are defined in BB, and
2147   // - They have no side effects, and
2148   // - All of their uses are in ThenBB.
2149   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2150 
2151   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2152 
2153   unsigned SpeculatedInstructions = 0;
2154   Value *SpeculatedStoreValue = nullptr;
2155   StoreInst *SpeculatedStore = nullptr;
2156   for (BasicBlock::iterator BBI = ThenBB->begin(),
2157                             BBE = std::prev(ThenBB->end());
2158        BBI != BBE; ++BBI) {
2159     Instruction *I = &*BBI;
2160     // Skip debug info.
2161     if (isa<DbgInfoIntrinsic>(I)) {
2162       SpeculatedDbgIntrinsics.push_back(I);
2163       continue;
2164     }
2165 
2166     // Skip pseudo probes. The consequence is we lose track of the branch
2167     // probability for ThenBB, which is fine since the optimization here takes
2168     // place regardless of the branch probability.
2169     if (isa<PseudoProbeInst>(I)) {
2170       SpeculatedDbgIntrinsics.push_back(I);
2171       continue;
2172     }
2173 
2174     // Only speculatively execute a single instruction (not counting the
2175     // terminator) for now.
2176     ++SpeculatedInstructions;
2177     if (SpeculatedInstructions > 1)
2178       return false;
2179 
2180     // Don't hoist the instruction if it's unsafe or expensive.
2181     if (!isSafeToSpeculativelyExecute(I) &&
2182         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2183                                   I, BB, ThenBB, EndBB))))
2184       return false;
2185     if (!SpeculatedStoreValue &&
2186         ComputeSpeculationCost(I, TTI) >
2187             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2188       return false;
2189 
2190     // Store the store speculation candidate.
2191     if (SpeculatedStoreValue)
2192       SpeculatedStore = cast<StoreInst>(I);
2193 
2194     // Do not hoist the instruction if any of its operands are defined but not
2195     // used in BB. The transformation will prevent the operand from
2196     // being sunk into the use block.
2197     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2198       Instruction *OpI = dyn_cast<Instruction>(*i);
2199       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2200         continue; // Not a candidate for sinking.
2201 
2202       ++SinkCandidateUseCounts[OpI];
2203     }
2204   }
2205 
2206   // Consider any sink candidates which are only used in ThenBB as costs for
2207   // speculation. Note, while we iterate over a DenseMap here, we are summing
2208   // and so iteration order isn't significant.
2209   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2210            I = SinkCandidateUseCounts.begin(),
2211            E = SinkCandidateUseCounts.end();
2212        I != E; ++I)
2213     if (I->first->hasNUses(I->second)) {
2214       ++SpeculatedInstructions;
2215       if (SpeculatedInstructions > 1)
2216         return false;
2217     }
2218 
2219   // Check that we can insert the selects and that it's not too expensive to do
2220   // so.
2221   bool Convert = SpeculatedStore != nullptr;
2222   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2223                                             SpeculatedInstructions,
2224                                             BudgetRemaining, TTI);
2225   if (!Convert || BudgetRemaining < 0)
2226     return false;
2227 
2228   // If we get here, we can hoist the instruction and if-convert.
2229   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2230 
2231   // Insert a select of the value of the speculated store.
2232   if (SpeculatedStoreValue) {
2233     IRBuilder<NoFolder> Builder(BI);
2234     Value *TrueV = SpeculatedStore->getValueOperand();
2235     Value *FalseV = SpeculatedStoreValue;
2236     if (Invert)
2237       std::swap(TrueV, FalseV);
2238     Value *S = Builder.CreateSelect(
2239         BrCond, TrueV, FalseV, "spec.store.select", BI);
2240     SpeculatedStore->setOperand(0, S);
2241     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2242                                          SpeculatedStore->getDebugLoc());
2243   }
2244 
2245   // Metadata can be dependent on the condition we are hoisting above.
2246   // Conservatively strip all metadata on the instruction. Drop the debug loc
2247   // to avoid making it appear as if the condition is a constant, which would
2248   // be misleading while debugging.
2249   for (auto &I : *ThenBB) {
2250     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2251       I.setDebugLoc(DebugLoc());
2252     I.dropUnknownNonDebugMetadata();
2253   }
2254 
2255   // Hoist the instructions.
2256   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2257                            ThenBB->begin(), std::prev(ThenBB->end()));
2258 
2259   // Insert selects and rewrite the PHI operands.
2260   IRBuilder<NoFolder> Builder(BI);
2261   for (PHINode &PN : EndBB->phis()) {
2262     unsigned OrigI = PN.getBasicBlockIndex(BB);
2263     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2264     Value *OrigV = PN.getIncomingValue(OrigI);
2265     Value *ThenV = PN.getIncomingValue(ThenI);
2266 
2267     // Skip PHIs which are trivial.
2268     if (OrigV == ThenV)
2269       continue;
2270 
2271     // Create a select whose true value is the speculatively executed value and
2272     // false value is the pre-existing value. Swap them if the branch
2273     // destinations were inverted.
2274     Value *TrueV = ThenV, *FalseV = OrigV;
2275     if (Invert)
2276       std::swap(TrueV, FalseV);
2277     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2278     PN.setIncomingValue(OrigI, V);
2279     PN.setIncomingValue(ThenI, V);
2280   }
2281 
2282   // Remove speculated dbg intrinsics.
2283   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2284   // dbg value for the different flows and inserting it after the select.
2285   for (Instruction *I : SpeculatedDbgIntrinsics)
2286     I->eraseFromParent();
2287 
2288   ++NumSpeculations;
2289   return true;
2290 }
2291 
2292 /// Return true if we can thread a branch across this block.
2293 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2294   int Size = 0;
2295 
2296   for (Instruction &I : BB->instructionsWithoutDebug()) {
2297     if (Size > MaxSmallBlockSize)
2298       return false; // Don't clone large BB's.
2299 
2300     // Can't fold blocks that contain noduplicate or convergent calls.
2301     if (CallInst *CI = dyn_cast<CallInst>(&I))
2302       if (CI->cannotDuplicate() || CI->isConvergent())
2303         return false;
2304 
2305     // We will delete Phis while threading, so Phis should not be accounted in
2306     // block's size
2307     if (!isa<PHINode>(I))
2308       ++Size;
2309 
2310     // We can only support instructions that do not define values that are
2311     // live outside of the current basic block.
2312     for (User *U : I.users()) {
2313       Instruction *UI = cast<Instruction>(U);
2314       if (UI->getParent() != BB || isa<PHINode>(UI))
2315         return false;
2316     }
2317 
2318     // Looks ok, continue checking.
2319   }
2320 
2321   return true;
2322 }
2323 
2324 /// If we have a conditional branch on a PHI node value that is defined in the
2325 /// same block as the branch and if any PHI entries are constants, thread edges
2326 /// corresponding to that entry to be branches to their ultimate destination.
2327 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2328                                 AssumptionCache *AC) {
2329   BasicBlock *BB = BI->getParent();
2330   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2331   // NOTE: we currently cannot transform this case if the PHI node is used
2332   // outside of the block.
2333   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2334     return false;
2335 
2336   // Degenerate case of a single entry PHI.
2337   if (PN->getNumIncomingValues() == 1) {
2338     FoldSingleEntryPHINodes(PN->getParent());
2339     return true;
2340   }
2341 
2342   // Now we know that this block has multiple preds and two succs.
2343   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2344     return false;
2345 
2346   // Okay, this is a simple enough basic block.  See if any phi values are
2347   // constants.
2348   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2349     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2350     if (!CB || !CB->getType()->isIntegerTy(1))
2351       continue;
2352 
2353     // Okay, we now know that all edges from PredBB should be revectored to
2354     // branch to RealDest.
2355     BasicBlock *PredBB = PN->getIncomingBlock(i);
2356     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2357 
2358     if (RealDest == BB)
2359       continue; // Skip self loops.
2360     // Skip if the predecessor's terminator is an indirect branch.
2361     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2362       continue;
2363 
2364     // The dest block might have PHI nodes, other predecessors and other
2365     // difficult cases.  Instead of being smart about this, just insert a new
2366     // block that jumps to the destination block, effectively splitting
2367     // the edge we are about to create.
2368     BasicBlock *EdgeBB =
2369         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2370                            RealDest->getParent(), RealDest);
2371     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2372     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2373 
2374     // Update PHI nodes.
2375     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2376 
2377     // BB may have instructions that are being threaded over.  Clone these
2378     // instructions into EdgeBB.  We know that there will be no uses of the
2379     // cloned instructions outside of EdgeBB.
2380     BasicBlock::iterator InsertPt = EdgeBB->begin();
2381     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2382     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2383       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2384         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2385         continue;
2386       }
2387       // Clone the instruction.
2388       Instruction *N = BBI->clone();
2389       if (BBI->hasName())
2390         N->setName(BBI->getName() + ".c");
2391 
2392       // Update operands due to translation.
2393       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2394         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2395         if (PI != TranslateMap.end())
2396           *i = PI->second;
2397       }
2398 
2399       // Check for trivial simplification.
2400       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2401         if (!BBI->use_empty())
2402           TranslateMap[&*BBI] = V;
2403         if (!N->mayHaveSideEffects()) {
2404           N->deleteValue(); // Instruction folded away, don't need actual inst
2405           N = nullptr;
2406         }
2407       } else {
2408         if (!BBI->use_empty())
2409           TranslateMap[&*BBI] = N;
2410       }
2411       if (N) {
2412         // Insert the new instruction into its new home.
2413         EdgeBB->getInstList().insert(InsertPt, N);
2414 
2415         // Register the new instruction with the assumption cache if necessary.
2416         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2417           AC->registerAssumption(cast<IntrinsicInst>(N));
2418       }
2419     }
2420 
2421     // Loop over all of the edges from PredBB to BB, changing them to branch
2422     // to EdgeBB instead.
2423     Instruction *PredBBTI = PredBB->getTerminator();
2424     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2425       if (PredBBTI->getSuccessor(i) == BB) {
2426         BB->removePredecessor(PredBB);
2427         PredBBTI->setSuccessor(i, EdgeBB);
2428       }
2429 
2430     // Recurse, simplifying any other constants.
2431     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2432   }
2433 
2434   return false;
2435 }
2436 
2437 /// Given a BB that starts with the specified two-entry PHI node,
2438 /// see if we can eliminate it.
2439 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2440                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2441   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2442   // statement", which has a very simple dominance structure.  Basically, we
2443   // are trying to find the condition that is being branched on, which
2444   // subsequently causes this merge to happen.  We really want control
2445   // dependence information for this check, but simplifycfg can't keep it up
2446   // to date, and this catches most of the cases we care about anyway.
2447   BasicBlock *BB = PN->getParent();
2448 
2449   BasicBlock *IfTrue, *IfFalse;
2450   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2451   if (!IfCond ||
2452       // Don't bother if the branch will be constant folded trivially.
2453       isa<ConstantInt>(IfCond))
2454     return false;
2455 
2456   // Okay, we found that we can merge this two-entry phi node into a select.
2457   // Doing so would require us to fold *all* two entry phi nodes in this block.
2458   // At some point this becomes non-profitable (particularly if the target
2459   // doesn't support cmov's).  Only do this transformation if there are two or
2460   // fewer PHI nodes in this block.
2461   unsigned NumPhis = 0;
2462   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2463     if (NumPhis > 2)
2464       return false;
2465 
2466   // Loop over the PHI's seeing if we can promote them all to select
2467   // instructions.  While we are at it, keep track of the instructions
2468   // that need to be moved to the dominating block.
2469   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2470   int BudgetRemaining =
2471       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2472 
2473   bool Changed = false;
2474   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2475     PHINode *PN = cast<PHINode>(II++);
2476     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2477       PN->replaceAllUsesWith(V);
2478       PN->eraseFromParent();
2479       Changed = true;
2480       continue;
2481     }
2482 
2483     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2484                              BudgetRemaining, TTI) ||
2485         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2486                              BudgetRemaining, TTI))
2487       return Changed;
2488   }
2489 
2490   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2491   // we ran out of PHIs then we simplified them all.
2492   PN = dyn_cast<PHINode>(BB->begin());
2493   if (!PN)
2494     return true;
2495 
2496   // Return true if at least one of these is a 'not', and another is either
2497   // a 'not' too, or a constant.
2498   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2499     if (!match(V0, m_Not(m_Value())))
2500       std::swap(V0, V1);
2501     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2502     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2503   };
2504 
2505   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2506   // of the incoming values is an 'not' and another one is freely invertible.
2507   // These can often be turned into switches and other things.
2508   if (PN->getType()->isIntegerTy(1) &&
2509       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2510        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2511        isa<BinaryOperator>(IfCond)) &&
2512       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2513                                  PN->getIncomingValue(1)))
2514     return Changed;
2515 
2516   // If all PHI nodes are promotable, check to make sure that all instructions
2517   // in the predecessor blocks can be promoted as well. If not, we won't be able
2518   // to get rid of the control flow, so it's not worth promoting to select
2519   // instructions.
2520   BasicBlock *DomBlock = nullptr;
2521   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2522   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2523   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2524     IfBlock1 = nullptr;
2525   } else {
2526     DomBlock = *pred_begin(IfBlock1);
2527     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2528       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2529           !isa<PseudoProbeInst>(I)) {
2530         // This is not an aggressive instruction that we can promote.
2531         // Because of this, we won't be able to get rid of the control flow, so
2532         // the xform is not worth it.
2533         return Changed;
2534       }
2535   }
2536 
2537   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2538     IfBlock2 = nullptr;
2539   } else {
2540     DomBlock = *pred_begin(IfBlock2);
2541     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2542       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2543           !isa<PseudoProbeInst>(I)) {
2544         // This is not an aggressive instruction that we can promote.
2545         // Because of this, we won't be able to get rid of the control flow, so
2546         // the xform is not worth it.
2547         return Changed;
2548       }
2549   }
2550   assert(DomBlock && "Failed to find root DomBlock");
2551 
2552   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2553                     << "  T: " << IfTrue->getName()
2554                     << "  F: " << IfFalse->getName() << "\n");
2555 
2556   // If we can still promote the PHI nodes after this gauntlet of tests,
2557   // do all of the PHI's now.
2558   Instruction *InsertPt = DomBlock->getTerminator();
2559   IRBuilder<NoFolder> Builder(InsertPt);
2560 
2561   // Move all 'aggressive' instructions, which are defined in the
2562   // conditional parts of the if's up to the dominating block.
2563   if (IfBlock1)
2564     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2565   if (IfBlock2)
2566     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2567 
2568   // Propagate fast-math-flags from phi nodes to replacement selects.
2569   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2570   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2571     if (isa<FPMathOperator>(PN))
2572       Builder.setFastMathFlags(PN->getFastMathFlags());
2573 
2574     // Change the PHI node into a select instruction.
2575     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2576     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2577 
2578     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2579     PN->replaceAllUsesWith(Sel);
2580     Sel->takeName(PN);
2581     PN->eraseFromParent();
2582   }
2583 
2584   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2585   // has been flattened.  Change DomBlock to jump directly to our new block to
2586   // avoid other simplifycfg's kicking in on the diamond.
2587   Instruction *OldTI = DomBlock->getTerminator();
2588   Builder.SetInsertPoint(OldTI);
2589   Builder.CreateBr(BB);
2590 
2591   SmallVector<DominatorTree::UpdateType, 3> Updates;
2592   if (DTU) {
2593     for (auto *Successor : successors(DomBlock))
2594       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2595     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2596   }
2597 
2598   OldTI->eraseFromParent();
2599   if (DTU)
2600     DTU->applyUpdatesPermissive(Updates);
2601 
2602   return true;
2603 }
2604 
2605 /// If we found a conditional branch that goes to two returning blocks,
2606 /// try to merge them together into one return,
2607 /// introducing a select if the return values disagree.
2608 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2609                                                     IRBuilder<> &Builder) {
2610   auto *BB = BI->getParent();
2611   assert(BI->isConditional() && "Must be a conditional branch");
2612   BasicBlock *TrueSucc = BI->getSuccessor(0);
2613   BasicBlock *FalseSucc = BI->getSuccessor(1);
2614   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2615   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2616 
2617   // Check to ensure both blocks are empty (just a return) or optionally empty
2618   // with PHI nodes.  If there are other instructions, merging would cause extra
2619   // computation on one path or the other.
2620   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2621     return false;
2622   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2623     return false;
2624 
2625   Builder.SetInsertPoint(BI);
2626   // Okay, we found a branch that is going to two return nodes.  If
2627   // there is no return value for this function, just change the
2628   // branch into a return.
2629   if (FalseRet->getNumOperands() == 0) {
2630     TrueSucc->removePredecessor(BB);
2631     FalseSucc->removePredecessor(BB);
2632     Builder.CreateRetVoid();
2633     EraseTerminatorAndDCECond(BI);
2634     if (DTU) {
2635       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, TrueSucc},
2636                                    {DominatorTree::Delete, BB, FalseSucc}});
2637     }
2638     return true;
2639   }
2640 
2641   // Otherwise, figure out what the true and false return values are
2642   // so we can insert a new select instruction.
2643   Value *TrueValue = TrueRet->getReturnValue();
2644   Value *FalseValue = FalseRet->getReturnValue();
2645 
2646   // Unwrap any PHI nodes in the return blocks.
2647   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2648     if (TVPN->getParent() == TrueSucc)
2649       TrueValue = TVPN->getIncomingValueForBlock(BB);
2650   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2651     if (FVPN->getParent() == FalseSucc)
2652       FalseValue = FVPN->getIncomingValueForBlock(BB);
2653 
2654   // In order for this transformation to be safe, we must be able to
2655   // unconditionally execute both operands to the return.  This is
2656   // normally the case, but we could have a potentially-trapping
2657   // constant expression that prevents this transformation from being
2658   // safe.
2659   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2660     if (TCV->canTrap())
2661       return false;
2662   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2663     if (FCV->canTrap())
2664       return false;
2665 
2666   // Okay, we collected all the mapped values and checked them for sanity, and
2667   // defined to really do this transformation.  First, update the CFG.
2668   TrueSucc->removePredecessor(BB);
2669   FalseSucc->removePredecessor(BB);
2670 
2671   // Insert select instructions where needed.
2672   Value *BrCond = BI->getCondition();
2673   if (TrueValue) {
2674     // Insert a select if the results differ.
2675     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2676     } else if (isa<UndefValue>(TrueValue)) {
2677       TrueValue = FalseValue;
2678     } else {
2679       TrueValue =
2680           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2681     }
2682   }
2683 
2684   Value *RI =
2685       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2686 
2687   (void)RI;
2688 
2689   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2690                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2691                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2692 
2693   EraseTerminatorAndDCECond(BI);
2694 
2695   if (DTU) {
2696     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, TrueSucc},
2697                                  {DominatorTree::Delete, BB, FalseSucc}});
2698   }
2699 
2700   return true;
2701 }
2702 
2703 /// Return true if the given instruction is available
2704 /// in its predecessor block. If yes, the instruction will be removed.
2705 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2706   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2707     return false;
2708   for (Instruction &I : *PB) {
2709     Instruction *PBI = &I;
2710     // Check whether Inst and PBI generate the same value.
2711     if (Inst->isIdenticalTo(PBI)) {
2712       Inst->replaceAllUsesWith(PBI);
2713       Inst->eraseFromParent();
2714       return true;
2715     }
2716   }
2717   return false;
2718 }
2719 
2720 /// Return true if either PBI or BI has branch weight available, and store
2721 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2722 /// not have branch weight, use 1:1 as its weight.
2723 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2724                                    uint64_t &PredTrueWeight,
2725                                    uint64_t &PredFalseWeight,
2726                                    uint64_t &SuccTrueWeight,
2727                                    uint64_t &SuccFalseWeight) {
2728   bool PredHasWeights =
2729       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2730   bool SuccHasWeights =
2731       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2732   if (PredHasWeights || SuccHasWeights) {
2733     if (!PredHasWeights)
2734       PredTrueWeight = PredFalseWeight = 1;
2735     if (!SuccHasWeights)
2736       SuccTrueWeight = SuccFalseWeight = 1;
2737     return true;
2738   } else {
2739     return false;
2740   }
2741 }
2742 
2743 /// If this basic block is simple enough, and if a predecessor branches to us
2744 /// and one of our successors, fold the block into the predecessor and use
2745 /// logical operations to pick the right destination.
2746 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
2747                                   MemorySSAUpdater *MSSAU,
2748                                   const TargetTransformInfo *TTI,
2749                                   unsigned BonusInstThreshold) {
2750   BasicBlock *BB = BI->getParent();
2751 
2752   const unsigned PredCount = pred_size(BB);
2753 
2754   bool Changed = false;
2755 
2756   auto _ = make_scope_exit([&]() {
2757     if (Changed)
2758       ++NumFoldBranchToCommonDest;
2759   });
2760 
2761   TargetTransformInfo::TargetCostKind CostKind =
2762     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
2763                                   : TargetTransformInfo::TCK_SizeAndLatency;
2764 
2765   Instruction *Cond = nullptr;
2766   if (BI->isConditional())
2767     Cond = dyn_cast<Instruction>(BI->getCondition());
2768   else {
2769     // For unconditional branch, check for a simple CFG pattern, where
2770     // BB has a single predecessor and BB's successor is also its predecessor's
2771     // successor. If such pattern exists, check for CSE between BB and its
2772     // predecessor.
2773     if (BasicBlock *PB = BB->getSinglePredecessor())
2774       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2775         if (PBI->isConditional() &&
2776             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2777              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2778           for (auto I = BB->instructionsWithoutDebug().begin(),
2779                     E = BB->instructionsWithoutDebug().end();
2780                I != E;) {
2781             Instruction *Curr = &*I++;
2782             if (isa<CmpInst>(Curr)) {
2783               Cond = Curr;
2784               break;
2785             }
2786             // Quit if we can't remove this instruction.
2787             if (!tryCSEWithPredecessor(Curr, PB))
2788               return Changed;
2789             Changed = true;
2790           }
2791         }
2792 
2793     if (!Cond)
2794       return Changed;
2795   }
2796 
2797   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2798       Cond->getParent() != BB || !Cond->hasOneUse())
2799     return Changed;
2800 
2801   // Only allow this transformation if computing the condition doesn't involve
2802   // too many instructions and these involved instructions can be executed
2803   // unconditionally. We denote all involved instructions except the condition
2804   // as "bonus instructions", and only allow this transformation when the
2805   // number of the bonus instructions we'll need to create when cloning into
2806   // each predecessor does not exceed a certain threshold.
2807   unsigned NumBonusInsts = 0;
2808   for (Instruction &I : *BB) {
2809     // Don't check the branch condition comparison itself.
2810     if (&I == Cond)
2811       continue;
2812     // Ignore dbg intrinsics, and the terminator.
2813     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
2814       continue;
2815     // I must be safe to execute unconditionally.
2816     if (!isSafeToSpeculativelyExecute(&I))
2817       return Changed;
2818 
2819     // Account for the cost of duplicating this instruction into each
2820     // predecessor.
2821     NumBonusInsts += PredCount;
2822     // Early exits once we reach the limit.
2823     if (NumBonusInsts > BonusInstThreshold)
2824       return Changed;
2825   }
2826 
2827   // Also, for now, all liveout uses of bonus instructions must be in PHI nodes
2828   // in successor blocks as incoming values from the bonus instructions's block,
2829   // otherwise we'll fail to update them.
2830   // FIXME: We could lift this restriction, but we need to form PHI nodes and
2831   // rewrite offending uses, but we can't do that without having a domtree.
2832   if (any_of(*BB, [BB](Instruction &I) {
2833         return any_of(I.uses(), [BB](Use &U) {
2834           auto *User = cast<Instruction>(U.getUser());
2835           if (User->getParent() == BB)
2836             return false; // Not an external use.
2837           auto *PN = dyn_cast<PHINode>(User);
2838           return !PN || PN->getIncomingBlock(U) != BB;
2839         });
2840       }))
2841     return Changed;
2842 
2843   // Cond is known to be a compare or binary operator.  Check to make sure that
2844   // neither operand is a potentially-trapping constant expression.
2845   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2846     if (CE->canTrap())
2847       return Changed;
2848   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2849     if (CE->canTrap())
2850       return Changed;
2851 
2852   // Finally, don't infinitely unroll conditional loops.
2853   BasicBlock *TrueDest = BI->getSuccessor(0);
2854   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2855   if (TrueDest == BB || FalseDest == BB)
2856     return Changed;
2857 
2858   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2859     BasicBlock *PredBlock = *PI;
2860     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2861 
2862     // Check that we have two conditional branches.  If there is a PHI node in
2863     // the common successor, verify that the same value flows in from both
2864     // blocks.
2865     SmallVector<PHINode *, 4> PHIs;
2866     if (!PBI || PBI->isUnconditional() ||
2867         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2868         (!BI->isConditional() &&
2869          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2870       continue;
2871 
2872     // Determine if the two branches share a common destination.
2873     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2874     bool InvertPredCond = false;
2875 
2876     if (BI->isConditional()) {
2877       if (PBI->getSuccessor(0) == TrueDest) {
2878         Opc = Instruction::Or;
2879       } else if (PBI->getSuccessor(1) == FalseDest) {
2880         Opc = Instruction::And;
2881       } else if (PBI->getSuccessor(0) == FalseDest) {
2882         Opc = Instruction::And;
2883         InvertPredCond = true;
2884       } else if (PBI->getSuccessor(1) == TrueDest) {
2885         Opc = Instruction::Or;
2886         InvertPredCond = true;
2887       } else {
2888         continue;
2889       }
2890     } else {
2891       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2892         continue;
2893     }
2894 
2895     // Check the cost of inserting the necessary logic before performing the
2896     // transformation.
2897     if (TTI && Opc != Instruction::BinaryOpsEnd) {
2898       Type *Ty = BI->getCondition()->getType();
2899       unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
2900       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
2901           !isa<CmpInst>(PBI->getCondition())))
2902         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
2903 
2904       if (Cost > BranchFoldThreshold)
2905         continue;
2906     }
2907 
2908     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2909     Changed = true;
2910 
2911     SmallVector<DominatorTree::UpdateType, 3> Updates;
2912 
2913     IRBuilder<> Builder(PBI);
2914     // The builder is used to create instructions to eliminate the branch in BB.
2915     // If BB's terminator has !annotation metadata, add it to the new
2916     // instructions.
2917     Builder.CollectMetadataToCopy(BB->getTerminator(),
2918                                   {LLVMContext::MD_annotation});
2919 
2920     // If we need to invert the condition in the pred block to match, do so now.
2921     if (InvertPredCond) {
2922       Value *NewCond = PBI->getCondition();
2923       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2924         CmpInst *CI = cast<CmpInst>(NewCond);
2925         CI->setPredicate(CI->getInversePredicate());
2926       } else {
2927         NewCond =
2928             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2929       }
2930 
2931       PBI->setCondition(NewCond);
2932       PBI->swapSuccessors();
2933     }
2934 
2935     BasicBlock *UniqueSucc =
2936         BI->isConditional()
2937             ? (PBI->getSuccessor(0) == BB ? TrueDest : FalseDest)
2938             : TrueDest;
2939 
2940     // Before cloning instructions, notify the successor basic block that it
2941     // is about to have a new predecessor. This will update PHI nodes,
2942     // which will allow us to update live-out uses of bonus instructions.
2943     if (BI->isConditional())
2944       AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
2945 
2946     // If we have bonus instructions, clone them into the predecessor block.
2947     // Note that there may be multiple predecessor blocks, so we cannot move
2948     // bonus instructions to a predecessor block.
2949     ValueToValueMapTy VMap; // maps original values to cloned values
2950     Instruction *CondInPred;
2951     for (Instruction &BonusInst : *BB) {
2952       if (isa<DbgInfoIntrinsic>(BonusInst) || isa<BranchInst>(BonusInst))
2953         continue;
2954 
2955       Instruction *NewBonusInst = BonusInst.clone();
2956 
2957       if (&BonusInst == Cond)
2958         CondInPred = NewBonusInst;
2959 
2960       // When we fold the bonus instructions we want to make sure we
2961       // reset their debug locations in order to avoid stepping on dead
2962       // code caused by folding dead branches.
2963       NewBonusInst->setDebugLoc(DebugLoc());
2964 
2965       RemapInstruction(NewBonusInst, VMap,
2966                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2967       VMap[&BonusInst] = NewBonusInst;
2968 
2969       // If we moved a load, we cannot any longer claim any knowledge about
2970       // its potential value. The previous information might have been valid
2971       // only given the branch precondition.
2972       // For an analogous reason, we must also drop all the metadata whose
2973       // semantics we don't understand. We *can* preserve !annotation, because
2974       // it is tied to the instruction itself, not the value or position.
2975       NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
2976 
2977       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2978       NewBonusInst->takeName(&BonusInst);
2979       BonusInst.setName(BonusInst.getName() + ".old");
2980       BonusInst.replaceUsesWithIf(
2981           NewBonusInst, [BB, BI, UniqueSucc, PredBlock](Use &U) {
2982             auto *User = cast<Instruction>(U.getUser());
2983             // Ignore non-external uses of bonus instructions.
2984             if (User->getParent() == BB) {
2985               assert(!isa<PHINode>(User) &&
2986                      "Non-external users are never PHI instructions.");
2987               return false;
2988             }
2989             if (User->getParent() == PredBlock) {
2990               // The "exteral" use is in the block into which we just cloned the
2991               // bonus instruction. This means two things: 1. we are in an
2992               // unreachable block 2. the instruction is self-referencing.
2993               // So let's just rewrite it...
2994               return true;
2995             }
2996             (void)BI;
2997             assert(isa<PHINode>(User) && "All external users must be PHI's.");
2998             auto *PN = cast<PHINode>(User);
2999             assert(is_contained(successors(BB), User->getParent()) &&
3000                    "All external users must be in successors of BB.");
3001             assert((PN->getIncomingBlock(U) == BB ||
3002                     PN->getIncomingBlock(U) == PredBlock) &&
3003                    "The incoming block for that incoming value external use "
3004                    "must be either the original block with bonus instructions, "
3005                    "or the new predecessor block.");
3006             // UniqueSucc is the block for which we change it's predecessors,
3007             // so it is the only block in which we'll need to update PHI nodes.
3008             if (User->getParent() != UniqueSucc)
3009               return false;
3010             // Update the incoming value for the new predecessor.
3011             return PN->getIncomingBlock(U) ==
3012                    (BI->isConditional() ? PredBlock : BB);
3013           });
3014     }
3015 
3016     // Now that the Cond was cloned into the predecessor basic block,
3017     // or/and the two conditions together.
3018     if (BI->isConditional()) {
3019       Instruction *NewCond = cast<Instruction>(
3020           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
3021       PBI->setCondition(NewCond);
3022 
3023       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3024       bool HasWeights =
3025           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3026                                  SuccTrueWeight, SuccFalseWeight);
3027       SmallVector<uint64_t, 8> NewWeights;
3028 
3029       if (PBI->getSuccessor(0) == BB) {
3030         if (HasWeights) {
3031           // PBI: br i1 %x, BB, FalseDest
3032           // BI:  br i1 %y, UniqueSucc, FalseDest
3033           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3034           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3035           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3036           //               TrueWeight for PBI * FalseWeight for BI.
3037           // We assume that total weights of a BranchInst can fit into 32 bits.
3038           // Therefore, we will not have overflow using 64-bit arithmetic.
3039           NewWeights.push_back(PredFalseWeight *
3040                                    (SuccFalseWeight + SuccTrueWeight) +
3041                                PredTrueWeight * SuccFalseWeight);
3042         }
3043         PBI->setSuccessor(0, UniqueSucc);
3044       }
3045       if (PBI->getSuccessor(1) == BB) {
3046         if (HasWeights) {
3047           // PBI: br i1 %x, TrueDest, BB
3048           // BI:  br i1 %y, TrueDest, UniqueSucc
3049           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3050           //              FalseWeight for PBI * TrueWeight for BI.
3051           NewWeights.push_back(PredTrueWeight *
3052                                    (SuccFalseWeight + SuccTrueWeight) +
3053                                PredFalseWeight * SuccTrueWeight);
3054           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3055           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3056         }
3057         PBI->setSuccessor(1, UniqueSucc);
3058       }
3059       if (NewWeights.size() == 2) {
3060         // Halve the weights if any of them cannot fit in an uint32_t
3061         FitWeights(NewWeights);
3062 
3063         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
3064                                            NewWeights.end());
3065         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3066       } else
3067         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3068 
3069       Updates.push_back({DominatorTree::Delete, PredBlock, BB});
3070       Updates.push_back({DominatorTree::Insert, PredBlock, UniqueSucc});
3071     } else {
3072       // Update PHI nodes in the common successors.
3073       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
3074         ConstantInt *PBI_C = cast<ConstantInt>(
3075             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
3076         assert(PBI_C->getType()->isIntegerTy(1));
3077         Instruction *MergedCond = nullptr;
3078         if (PBI->getSuccessor(0) == UniqueSucc) {
3079           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
3080           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
3081           //       is false: !PBI_Cond and BI_Value
3082           Instruction *NotCond = cast<Instruction>(
3083               Builder.CreateNot(PBI->getCondition(), "not.cond"));
3084           MergedCond = cast<Instruction>(
3085                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
3086                                    "and.cond"));
3087           if (PBI_C->isOne())
3088             MergedCond = cast<Instruction>(Builder.CreateBinOp(
3089                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
3090         } else {
3091           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
3092           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
3093           //       is false: PBI_Cond and BI_Value
3094           MergedCond = cast<Instruction>(Builder.CreateBinOp(
3095               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
3096           if (PBI_C->isOne()) {
3097             Instruction *NotCond = cast<Instruction>(
3098                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
3099             MergedCond = cast<Instruction>(Builder.CreateBinOp(
3100                 Instruction::Or, NotCond, MergedCond, "or.cond"));
3101           }
3102         }
3103         // Update PHI Node.
3104 	PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
3105       }
3106 
3107       // PBI is changed to branch to UniqueSucc below. Remove itself from
3108       // potential phis from all other successors.
3109       if (MSSAU)
3110         MSSAU->changeCondBranchToUnconditionalTo(PBI, UniqueSucc);
3111 
3112       // Change PBI from Conditional to Unconditional.
3113       BranchInst *New_PBI = BranchInst::Create(UniqueSucc, PBI);
3114       EraseTerminatorAndDCECond(PBI, MSSAU);
3115       PBI = New_PBI;
3116     }
3117 
3118     if (DTU)
3119       DTU->applyUpdatesPermissive(Updates);
3120 
3121     // If BI was a loop latch, it may have had associated loop metadata.
3122     // We need to copy it to the new latch, that is, PBI.
3123     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3124       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3125 
3126     // TODO: If BB is reachable from all paths through PredBlock, then we
3127     // could replace PBI's branch probabilities with BI's.
3128 
3129     // Copy any debug value intrinsics into the end of PredBlock.
3130     for (Instruction &I : *BB) {
3131       if (isa<DbgInfoIntrinsic>(I)) {
3132         Instruction *NewI = I.clone();
3133         RemapInstruction(NewI, VMap,
3134                          RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3135         NewI->insertBefore(PBI);
3136       }
3137     }
3138 
3139     return Changed;
3140   }
3141   return Changed;
3142 }
3143 
3144 // If there is only one store in BB1 and BB2, return it, otherwise return
3145 // nullptr.
3146 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3147   StoreInst *S = nullptr;
3148   for (auto *BB : {BB1, BB2}) {
3149     if (!BB)
3150       continue;
3151     for (auto &I : *BB)
3152       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3153         if (S)
3154           // Multiple stores seen.
3155           return nullptr;
3156         else
3157           S = SI;
3158       }
3159   }
3160   return S;
3161 }
3162 
3163 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3164                                               Value *AlternativeV = nullptr) {
3165   // PHI is going to be a PHI node that allows the value V that is defined in
3166   // BB to be referenced in BB's only successor.
3167   //
3168   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3169   // doesn't matter to us what the other operand is (it'll never get used). We
3170   // could just create a new PHI with an undef incoming value, but that could
3171   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3172   // other PHI. So here we directly look for some PHI in BB's successor with V
3173   // as an incoming operand. If we find one, we use it, else we create a new
3174   // one.
3175   //
3176   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3177   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3178   // where OtherBB is the single other predecessor of BB's only successor.
3179   PHINode *PHI = nullptr;
3180   BasicBlock *Succ = BB->getSingleSuccessor();
3181 
3182   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3183     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3184       PHI = cast<PHINode>(I);
3185       if (!AlternativeV)
3186         break;
3187 
3188       assert(Succ->hasNPredecessors(2));
3189       auto PredI = pred_begin(Succ);
3190       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3191       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3192         break;
3193       PHI = nullptr;
3194     }
3195   if (PHI)
3196     return PHI;
3197 
3198   // If V is not an instruction defined in BB, just return it.
3199   if (!AlternativeV &&
3200       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3201     return V;
3202 
3203   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3204   PHI->addIncoming(V, BB);
3205   for (BasicBlock *PredBB : predecessors(Succ))
3206     if (PredBB != BB)
3207       PHI->addIncoming(
3208           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3209   return PHI;
3210 }
3211 
3212 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
3213                                            BasicBlock *QTB, BasicBlock *QFB,
3214                                            BasicBlock *PostBB, Value *Address,
3215                                            bool InvertPCond, bool InvertQCond,
3216                                            const DataLayout &DL,
3217                                            const TargetTransformInfo &TTI) {
3218   // For every pointer, there must be exactly two stores, one coming from
3219   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3220   // store (to any address) in PTB,PFB or QTB,QFB.
3221   // FIXME: We could relax this restriction with a bit more work and performance
3222   // testing.
3223   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3224   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3225   if (!PStore || !QStore)
3226     return false;
3227 
3228   // Now check the stores are compatible.
3229   if (!QStore->isUnordered() || !PStore->isUnordered())
3230     return false;
3231 
3232   // Check that sinking the store won't cause program behavior changes. Sinking
3233   // the store out of the Q blocks won't change any behavior as we're sinking
3234   // from a block to its unconditional successor. But we're moving a store from
3235   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3236   // So we need to check that there are no aliasing loads or stores in
3237   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3238   // operations between PStore and the end of its parent block.
3239   //
3240   // The ideal way to do this is to query AliasAnalysis, but we don't
3241   // preserve AA currently so that is dangerous. Be super safe and just
3242   // check there are no other memory operations at all.
3243   for (auto &I : *QFB->getSinglePredecessor())
3244     if (I.mayReadOrWriteMemory())
3245       return false;
3246   for (auto &I : *QFB)
3247     if (&I != QStore && I.mayReadOrWriteMemory())
3248       return false;
3249   if (QTB)
3250     for (auto &I : *QTB)
3251       if (&I != QStore && I.mayReadOrWriteMemory())
3252         return false;
3253   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3254        I != E; ++I)
3255     if (&*I != PStore && I->mayReadOrWriteMemory())
3256       return false;
3257 
3258   // If we're not in aggressive mode, we only optimize if we have some
3259   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3260   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3261     if (!BB)
3262       return true;
3263     // Heuristic: if the block can be if-converted/phi-folded and the
3264     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3265     // thread this store.
3266     int BudgetRemaining =
3267         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3268     for (auto &I : BB->instructionsWithoutDebug()) {
3269       // Consider terminator instruction to be free.
3270       if (I.isTerminator())
3271         continue;
3272       // If this is one the stores that we want to speculate out of this BB,
3273       // then don't count it's cost, consider it to be free.
3274       if (auto *S = dyn_cast<StoreInst>(&I))
3275         if (llvm::find(FreeStores, S))
3276           continue;
3277       // Else, we have a white-list of instructions that we are ak speculating.
3278       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3279         return false; // Not in white-list - not worthwhile folding.
3280       // And finally, if this is a non-free instruction that we are okay
3281       // speculating, ensure that we consider the speculation budget.
3282       BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3283       if (BudgetRemaining < 0)
3284         return false; // Eagerly refuse to fold as soon as we're out of budget.
3285     }
3286     assert(BudgetRemaining >= 0 &&
3287            "When we run out of budget we will eagerly return from within the "
3288            "per-instruction loop.");
3289     return true;
3290   };
3291 
3292   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3293   if (!MergeCondStoresAggressively &&
3294       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3295        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3296     return false;
3297 
3298   // If PostBB has more than two predecessors, we need to split it so we can
3299   // sink the store.
3300   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3301     // We know that QFB's only successor is PostBB. And QFB has a single
3302     // predecessor. If QTB exists, then its only successor is also PostBB.
3303     // If QTB does not exist, then QFB's only predecessor has a conditional
3304     // branch to QFB and PostBB.
3305     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3306     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3307                                                "condstore.split");
3308     if (!NewBB)
3309       return false;
3310     PostBB = NewBB;
3311   }
3312 
3313   // OK, we're going to sink the stores to PostBB. The store has to be
3314   // conditional though, so first create the predicate.
3315   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3316                      ->getCondition();
3317   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3318                      ->getCondition();
3319 
3320   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3321                                                 PStore->getParent());
3322   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3323                                                 QStore->getParent(), PPHI);
3324 
3325   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3326 
3327   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3328   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3329 
3330   if (InvertPCond)
3331     PPred = QB.CreateNot(PPred);
3332   if (InvertQCond)
3333     QPred = QB.CreateNot(QPred);
3334   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3335 
3336   auto *T =
3337       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3338   QB.SetInsertPoint(T);
3339   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3340   AAMDNodes AAMD;
3341   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3342   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3343   SI->setAAMetadata(AAMD);
3344   // Choose the minimum alignment. If we could prove both stores execute, we
3345   // could use biggest one.  In this case, though, we only know that one of the
3346   // stores executes.  And we don't know it's safe to take the alignment from a
3347   // store that doesn't execute.
3348   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3349 
3350   QStore->eraseFromParent();
3351   PStore->eraseFromParent();
3352 
3353   return true;
3354 }
3355 
3356 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3357                                    const DataLayout &DL,
3358                                    const TargetTransformInfo &TTI) {
3359   // The intention here is to find diamonds or triangles (see below) where each
3360   // conditional block contains a store to the same address. Both of these
3361   // stores are conditional, so they can't be unconditionally sunk. But it may
3362   // be profitable to speculatively sink the stores into one merged store at the
3363   // end, and predicate the merged store on the union of the two conditions of
3364   // PBI and QBI.
3365   //
3366   // This can reduce the number of stores executed if both of the conditions are
3367   // true, and can allow the blocks to become small enough to be if-converted.
3368   // This optimization will also chain, so that ladders of test-and-set
3369   // sequences can be if-converted away.
3370   //
3371   // We only deal with simple diamonds or triangles:
3372   //
3373   //     PBI       or      PBI        or a combination of the two
3374   //    /   \               | \
3375   //   PTB  PFB             |  PFB
3376   //    \   /               | /
3377   //     QBI                QBI
3378   //    /  \                | \
3379   //   QTB  QFB             |  QFB
3380   //    \  /                | /
3381   //    PostBB            PostBB
3382   //
3383   // We model triangles as a type of diamond with a nullptr "true" block.
3384   // Triangles are canonicalized so that the fallthrough edge is represented by
3385   // a true condition, as in the diagram above.
3386   BasicBlock *PTB = PBI->getSuccessor(0);
3387   BasicBlock *PFB = PBI->getSuccessor(1);
3388   BasicBlock *QTB = QBI->getSuccessor(0);
3389   BasicBlock *QFB = QBI->getSuccessor(1);
3390   BasicBlock *PostBB = QFB->getSingleSuccessor();
3391 
3392   // Make sure we have a good guess for PostBB. If QTB's only successor is
3393   // QFB, then QFB is a better PostBB.
3394   if (QTB->getSingleSuccessor() == QFB)
3395     PostBB = QFB;
3396 
3397   // If we couldn't find a good PostBB, stop.
3398   if (!PostBB)
3399     return false;
3400 
3401   bool InvertPCond = false, InvertQCond = false;
3402   // Canonicalize fallthroughs to the true branches.
3403   if (PFB == QBI->getParent()) {
3404     std::swap(PFB, PTB);
3405     InvertPCond = true;
3406   }
3407   if (QFB == PostBB) {
3408     std::swap(QFB, QTB);
3409     InvertQCond = true;
3410   }
3411 
3412   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3413   // and QFB may not. Model fallthroughs as a nullptr block.
3414   if (PTB == QBI->getParent())
3415     PTB = nullptr;
3416   if (QTB == PostBB)
3417     QTB = nullptr;
3418 
3419   // Legality bailouts. We must have at least the non-fallthrough blocks and
3420   // the post-dominating block, and the non-fallthroughs must only have one
3421   // predecessor.
3422   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3423     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3424   };
3425   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3426       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3427     return false;
3428   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3429       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3430     return false;
3431   if (!QBI->getParent()->hasNUses(2))
3432     return false;
3433 
3434   // OK, this is a sequence of two diamonds or triangles.
3435   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3436   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3437   for (auto *BB : {PTB, PFB}) {
3438     if (!BB)
3439       continue;
3440     for (auto &I : *BB)
3441       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3442         PStoreAddresses.insert(SI->getPointerOperand());
3443   }
3444   for (auto *BB : {QTB, QFB}) {
3445     if (!BB)
3446       continue;
3447     for (auto &I : *BB)
3448       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3449         QStoreAddresses.insert(SI->getPointerOperand());
3450   }
3451 
3452   set_intersect(PStoreAddresses, QStoreAddresses);
3453   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3454   // clear what it contains.
3455   auto &CommonAddresses = PStoreAddresses;
3456 
3457   bool Changed = false;
3458   for (auto *Address : CommonAddresses)
3459     Changed |= mergeConditionalStoreToAddress(
3460         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI);
3461   return Changed;
3462 }
3463 
3464 
3465 /// If the previous block ended with a widenable branch, determine if reusing
3466 /// the target block is profitable and legal.  This will have the effect of
3467 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3468 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
3469   // TODO: This can be generalized in two important ways:
3470   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3471   //    values from the PBI edge.
3472   // 2) We can sink side effecting instructions into BI's fallthrough
3473   //    successor provided they doesn't contribute to computation of
3474   //    BI's condition.
3475   Value *CondWB, *WC;
3476   BasicBlock *IfTrueBB, *IfFalseBB;
3477   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3478       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3479     return false;
3480   if (!IfFalseBB->phis().empty())
3481     return false; // TODO
3482   // Use lambda to lazily compute expensive condition after cheap ones.
3483   auto NoSideEffects = [](BasicBlock &BB) {
3484     return !llvm::any_of(BB, [](const Instruction &I) {
3485         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3486       });
3487   };
3488   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3489       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3490       NoSideEffects(*BI->getParent())) {
3491     BI->getSuccessor(1)->removePredecessor(BI->getParent());
3492     BI->setSuccessor(1, IfFalseBB);
3493     return true;
3494   }
3495   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3496       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3497       NoSideEffects(*BI->getParent())) {
3498     BI->getSuccessor(0)->removePredecessor(BI->getParent());
3499     BI->setSuccessor(0, IfFalseBB);
3500     return true;
3501   }
3502   return false;
3503 }
3504 
3505 /// If we have a conditional branch as a predecessor of another block,
3506 /// this function tries to simplify it.  We know
3507 /// that PBI and BI are both conditional branches, and BI is in one of the
3508 /// successor blocks of PBI - PBI branches to BI.
3509 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3510                                            const DataLayout &DL,
3511                                            const TargetTransformInfo &TTI) {
3512   assert(PBI->isConditional() && BI->isConditional());
3513   BasicBlock *BB = BI->getParent();
3514 
3515   // If this block ends with a branch instruction, and if there is a
3516   // predecessor that ends on a branch of the same condition, make
3517   // this conditional branch redundant.
3518   if (PBI->getCondition() == BI->getCondition() &&
3519       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3520     // Okay, the outcome of this conditional branch is statically
3521     // knowable.  If this block had a single pred, handle specially.
3522     if (BB->getSinglePredecessor()) {
3523       // Turn this into a branch on constant.
3524       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3525       BI->setCondition(
3526           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3527       return true; // Nuke the branch on constant.
3528     }
3529 
3530     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3531     // in the constant and simplify the block result.  Subsequent passes of
3532     // simplifycfg will thread the block.
3533     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3534       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3535       PHINode *NewPN = PHINode::Create(
3536           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3537           BI->getCondition()->getName() + ".pr", &BB->front());
3538       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3539       // predecessor, compute the PHI'd conditional value for all of the preds.
3540       // Any predecessor where the condition is not computable we keep symbolic.
3541       for (pred_iterator PI = PB; PI != PE; ++PI) {
3542         BasicBlock *P = *PI;
3543         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3544             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3545             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3546           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3547           NewPN->addIncoming(
3548               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3549               P);
3550         } else {
3551           NewPN->addIncoming(BI->getCondition(), P);
3552         }
3553       }
3554 
3555       BI->setCondition(NewPN);
3556       return true;
3557     }
3558   }
3559 
3560   // If the previous block ended with a widenable branch, determine if reusing
3561   // the target block is profitable and legal.  This will have the effect of
3562   // "widening" PBI, but doesn't require us to reason about hosting safety.
3563   if (tryWidenCondBranchToCondBranch(PBI, BI))
3564     return true;
3565 
3566   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3567     if (CE->canTrap())
3568       return false;
3569 
3570   // If both branches are conditional and both contain stores to the same
3571   // address, remove the stores from the conditionals and create a conditional
3572   // merged store at the end.
3573   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI))
3574     return true;
3575 
3576   // If this is a conditional branch in an empty block, and if any
3577   // predecessors are a conditional branch to one of our destinations,
3578   // fold the conditions into logical ops and one cond br.
3579 
3580   // Ignore dbg intrinsics.
3581   if (&*BB->instructionsWithoutDebug().begin() != BI)
3582     return false;
3583 
3584   int PBIOp, BIOp;
3585   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3586     PBIOp = 0;
3587     BIOp = 0;
3588   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3589     PBIOp = 0;
3590     BIOp = 1;
3591   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3592     PBIOp = 1;
3593     BIOp = 0;
3594   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3595     PBIOp = 1;
3596     BIOp = 1;
3597   } else {
3598     return false;
3599   }
3600 
3601   // Check to make sure that the other destination of this branch
3602   // isn't BB itself.  If so, this is an infinite loop that will
3603   // keep getting unwound.
3604   if (PBI->getSuccessor(PBIOp) == BB)
3605     return false;
3606 
3607   // Do not perform this transformation if it would require
3608   // insertion of a large number of select instructions. For targets
3609   // without predication/cmovs, this is a big pessimization.
3610 
3611   // Also do not perform this transformation if any phi node in the common
3612   // destination block can trap when reached by BB or PBB (PR17073). In that
3613   // case, it would be unsafe to hoist the operation into a select instruction.
3614 
3615   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3616   unsigned NumPhis = 0;
3617   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3618        ++II, ++NumPhis) {
3619     if (NumPhis > 2) // Disable this xform.
3620       return false;
3621 
3622     PHINode *PN = cast<PHINode>(II);
3623     Value *BIV = PN->getIncomingValueForBlock(BB);
3624     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3625       if (CE->canTrap())
3626         return false;
3627 
3628     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3629     Value *PBIV = PN->getIncomingValue(PBBIdx);
3630     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3631       if (CE->canTrap())
3632         return false;
3633   }
3634 
3635   // Finally, if everything is ok, fold the branches to logical ops.
3636   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3637 
3638   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3639                     << "AND: " << *BI->getParent());
3640 
3641   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3642   // branch in it, where one edge (OtherDest) goes back to itself but the other
3643   // exits.  We don't *know* that the program avoids the infinite loop
3644   // (even though that seems likely).  If we do this xform naively, we'll end up
3645   // recursively unpeeling the loop.  Since we know that (after the xform is
3646   // done) that the block *is* infinite if reached, we just make it an obviously
3647   // infinite loop with no cond branch.
3648   if (OtherDest == BB) {
3649     // Insert it at the end of the function, because it's either code,
3650     // or it won't matter if it's hot. :)
3651     BasicBlock *InfLoopBlock =
3652         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3653     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3654     OtherDest = InfLoopBlock;
3655   }
3656 
3657   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3658 
3659   // BI may have other predecessors.  Because of this, we leave
3660   // it alone, but modify PBI.
3661 
3662   // Make sure we get to CommonDest on True&True directions.
3663   Value *PBICond = PBI->getCondition();
3664   IRBuilder<NoFolder> Builder(PBI);
3665   if (PBIOp)
3666     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3667 
3668   Value *BICond = BI->getCondition();
3669   if (BIOp)
3670     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3671 
3672   // Merge the conditions.
3673   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3674 
3675   // Modify PBI to branch on the new condition to the new dests.
3676   PBI->setCondition(Cond);
3677   PBI->setSuccessor(0, CommonDest);
3678   PBI->setSuccessor(1, OtherDest);
3679 
3680   // Update branch weight for PBI.
3681   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3682   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3683   bool HasWeights =
3684       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3685                              SuccTrueWeight, SuccFalseWeight);
3686   if (HasWeights) {
3687     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3688     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3689     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3690     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3691     // The weight to CommonDest should be PredCommon * SuccTotal +
3692     //                                    PredOther * SuccCommon.
3693     // The weight to OtherDest should be PredOther * SuccOther.
3694     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3695                                   PredOther * SuccCommon,
3696                               PredOther * SuccOther};
3697     // Halve the weights if any of them cannot fit in an uint32_t
3698     FitWeights(NewWeights);
3699 
3700     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3701   }
3702 
3703   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3704   // block that are identical to the entries for BI's block.
3705   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3706 
3707   // We know that the CommonDest already had an edge from PBI to
3708   // it.  If it has PHIs though, the PHIs may have different
3709   // entries for BB and PBI's BB.  If so, insert a select to make
3710   // them agree.
3711   for (PHINode &PN : CommonDest->phis()) {
3712     Value *BIV = PN.getIncomingValueForBlock(BB);
3713     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3714     Value *PBIV = PN.getIncomingValue(PBBIdx);
3715     if (BIV != PBIV) {
3716       // Insert a select in PBI to pick the right value.
3717       SelectInst *NV = cast<SelectInst>(
3718           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3719       PN.setIncomingValue(PBBIdx, NV);
3720       // Although the select has the same condition as PBI, the original branch
3721       // weights for PBI do not apply to the new select because the select's
3722       // 'logical' edges are incoming edges of the phi that is eliminated, not
3723       // the outgoing edges of PBI.
3724       if (HasWeights) {
3725         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3726         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3727         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3728         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3729         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3730         // The weight to PredOtherDest should be PredOther * SuccCommon.
3731         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3732                                   PredOther * SuccCommon};
3733 
3734         FitWeights(NewWeights);
3735 
3736         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3737       }
3738     }
3739   }
3740 
3741   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3742   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3743 
3744   // This basic block is probably dead.  We know it has at least
3745   // one fewer predecessor.
3746   return true;
3747 }
3748 
3749 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3750 // true or to FalseBB if Cond is false.
3751 // Takes care of updating the successors and removing the old terminator.
3752 // Also makes sure not to introduce new successors by assuming that edges to
3753 // non-successor TrueBBs and FalseBBs aren't reachable.
3754 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3755                                                 Value *Cond, BasicBlock *TrueBB,
3756                                                 BasicBlock *FalseBB,
3757                                                 uint32_t TrueWeight,
3758                                                 uint32_t FalseWeight) {
3759   // Remove any superfluous successor edges from the CFG.
3760   // First, figure out which successors to preserve.
3761   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3762   // successor.
3763   BasicBlock *KeepEdge1 = TrueBB;
3764   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3765 
3766   // Then remove the rest.
3767   for (BasicBlock *Succ : successors(OldTerm)) {
3768     // Make sure only to keep exactly one copy of each edge.
3769     if (Succ == KeepEdge1)
3770       KeepEdge1 = nullptr;
3771     else if (Succ == KeepEdge2)
3772       KeepEdge2 = nullptr;
3773     else
3774       Succ->removePredecessor(OldTerm->getParent(),
3775                               /*KeepOneInputPHIs=*/true);
3776   }
3777 
3778   IRBuilder<> Builder(OldTerm);
3779   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3780 
3781   // Insert an appropriate new terminator.
3782   if (!KeepEdge1 && !KeepEdge2) {
3783     if (TrueBB == FalseBB)
3784       // We were only looking for one successor, and it was present.
3785       // Create an unconditional branch to it.
3786       Builder.CreateBr(TrueBB);
3787     else {
3788       // We found both of the successors we were looking for.
3789       // Create a conditional branch sharing the condition of the select.
3790       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3791       if (TrueWeight != FalseWeight)
3792         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3793     }
3794   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3795     // Neither of the selected blocks were successors, so this
3796     // terminator must be unreachable.
3797     new UnreachableInst(OldTerm->getContext(), OldTerm);
3798   } else {
3799     // One of the selected values was a successor, but the other wasn't.
3800     // Insert an unconditional branch to the one that was found;
3801     // the edge to the one that wasn't must be unreachable.
3802     if (!KeepEdge1)
3803       // Only TrueBB was found.
3804       Builder.CreateBr(TrueBB);
3805     else
3806       // Only FalseBB was found.
3807       Builder.CreateBr(FalseBB);
3808   }
3809 
3810   EraseTerminatorAndDCECond(OldTerm);
3811   return true;
3812 }
3813 
3814 // Replaces
3815 //   (switch (select cond, X, Y)) on constant X, Y
3816 // with a branch - conditional if X and Y lead to distinct BBs,
3817 // unconditional otherwise.
3818 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3819                                             SelectInst *Select) {
3820   // Check for constant integer values in the select.
3821   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3822   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3823   if (!TrueVal || !FalseVal)
3824     return false;
3825 
3826   // Find the relevant condition and destinations.
3827   Value *Condition = Select->getCondition();
3828   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3829   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3830 
3831   // Get weight for TrueBB and FalseBB.
3832   uint32_t TrueWeight = 0, FalseWeight = 0;
3833   SmallVector<uint64_t, 8> Weights;
3834   bool HasWeights = HasBranchWeights(SI);
3835   if (HasWeights) {
3836     GetBranchWeights(SI, Weights);
3837     if (Weights.size() == 1 + SI->getNumCases()) {
3838       TrueWeight =
3839           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3840       FalseWeight =
3841           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3842     }
3843   }
3844 
3845   // Perform the actual simplification.
3846   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3847                                     FalseWeight);
3848 }
3849 
3850 // Replaces
3851 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3852 //                             blockaddress(@fn, BlockB)))
3853 // with
3854 //   (br cond, BlockA, BlockB).
3855 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3856                                                 SelectInst *SI) {
3857   // Check that both operands of the select are block addresses.
3858   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3859   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3860   if (!TBA || !FBA)
3861     return false;
3862 
3863   // Extract the actual blocks.
3864   BasicBlock *TrueBB = TBA->getBasicBlock();
3865   BasicBlock *FalseBB = FBA->getBasicBlock();
3866 
3867   // Perform the actual simplification.
3868   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3869                                     0);
3870 }
3871 
3872 /// This is called when we find an icmp instruction
3873 /// (a seteq/setne with a constant) as the only instruction in a
3874 /// block that ends with an uncond branch.  We are looking for a very specific
3875 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3876 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3877 /// default value goes to an uncond block with a seteq in it, we get something
3878 /// like:
3879 ///
3880 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3881 /// DEFAULT:
3882 ///   %tmp = icmp eq i8 %A, 92
3883 ///   br label %end
3884 /// end:
3885 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3886 ///
3887 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3888 /// the PHI, merging the third icmp into the switch.
3889 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3890     ICmpInst *ICI, IRBuilder<> &Builder) {
3891   BasicBlock *BB = ICI->getParent();
3892 
3893   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3894   // complex.
3895   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3896     return false;
3897 
3898   Value *V = ICI->getOperand(0);
3899   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3900 
3901   // The pattern we're looking for is where our only predecessor is a switch on
3902   // 'V' and this block is the default case for the switch.  In this case we can
3903   // fold the compared value into the switch to simplify things.
3904   BasicBlock *Pred = BB->getSinglePredecessor();
3905   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3906     return false;
3907 
3908   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3909   if (SI->getCondition() != V)
3910     return false;
3911 
3912   // If BB is reachable on a non-default case, then we simply know the value of
3913   // V in this block.  Substitute it and constant fold the icmp instruction
3914   // away.
3915   if (SI->getDefaultDest() != BB) {
3916     ConstantInt *VVal = SI->findCaseDest(BB);
3917     assert(VVal && "Should have a unique destination value");
3918     ICI->setOperand(0, VVal);
3919 
3920     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3921       ICI->replaceAllUsesWith(V);
3922       ICI->eraseFromParent();
3923     }
3924     // BB is now empty, so it is likely to simplify away.
3925     return requestResimplify();
3926   }
3927 
3928   // Ok, the block is reachable from the default dest.  If the constant we're
3929   // comparing exists in one of the other edges, then we can constant fold ICI
3930   // and zap it.
3931   if (SI->findCaseValue(Cst) != SI->case_default()) {
3932     Value *V;
3933     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3934       V = ConstantInt::getFalse(BB->getContext());
3935     else
3936       V = ConstantInt::getTrue(BB->getContext());
3937 
3938     ICI->replaceAllUsesWith(V);
3939     ICI->eraseFromParent();
3940     // BB is now empty, so it is likely to simplify away.
3941     return requestResimplify();
3942   }
3943 
3944   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3945   // the block.
3946   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3947   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3948   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3949       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3950     return false;
3951 
3952   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3953   // true in the PHI.
3954   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3955   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3956 
3957   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3958     std::swap(DefaultCst, NewCst);
3959 
3960   // Replace ICI (which is used by the PHI for the default value) with true or
3961   // false depending on if it is EQ or NE.
3962   ICI->replaceAllUsesWith(DefaultCst);
3963   ICI->eraseFromParent();
3964 
3965   // Okay, the switch goes to this block on a default value.  Add an edge from
3966   // the switch to the merge point on the compared value.
3967   BasicBlock *NewBB =
3968       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3969   {
3970     SwitchInstProfUpdateWrapper SIW(*SI);
3971     auto W0 = SIW.getSuccessorWeight(0);
3972     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3973     if (W0) {
3974       NewW = ((uint64_t(*W0) + 1) >> 1);
3975       SIW.setSuccessorWeight(0, *NewW);
3976     }
3977     SIW.addCase(Cst, NewBB, NewW);
3978   }
3979 
3980   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3981   Builder.SetInsertPoint(NewBB);
3982   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3983   Builder.CreateBr(SuccBlock);
3984   PHIUse->addIncoming(NewCst, NewBB);
3985   return true;
3986 }
3987 
3988 /// The specified branch is a conditional branch.
3989 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3990 /// fold it into a switch instruction if so.
3991 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
3992                                                IRBuilder<> &Builder,
3993                                                const DataLayout &DL) {
3994   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3995   if (!Cond)
3996     return false;
3997 
3998   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3999   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4000   // 'setne's and'ed together, collect them.
4001 
4002   // Try to gather values from a chain of and/or to be turned into a switch
4003   ConstantComparesGatherer ConstantCompare(Cond, DL);
4004   // Unpack the result
4005   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4006   Value *CompVal = ConstantCompare.CompValue;
4007   unsigned UsedICmps = ConstantCompare.UsedICmps;
4008   Value *ExtraCase = ConstantCompare.Extra;
4009 
4010   // If we didn't have a multiply compared value, fail.
4011   if (!CompVal)
4012     return false;
4013 
4014   // Avoid turning single icmps into a switch.
4015   if (UsedICmps <= 1)
4016     return false;
4017 
4018   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
4019 
4020   // There might be duplicate constants in the list, which the switch
4021   // instruction can't handle, remove them now.
4022   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4023   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4024 
4025   // If Extra was used, we require at least two switch values to do the
4026   // transformation.  A switch with one value is just a conditional branch.
4027   if (ExtraCase && Values.size() < 2)
4028     return false;
4029 
4030   // TODO: Preserve branch weight metadata, similarly to how
4031   // FoldValueComparisonIntoPredecessors preserves it.
4032 
4033   // Figure out which block is which destination.
4034   BasicBlock *DefaultBB = BI->getSuccessor(1);
4035   BasicBlock *EdgeBB = BI->getSuccessor(0);
4036   if (!TrueWhenEqual)
4037     std::swap(DefaultBB, EdgeBB);
4038 
4039   BasicBlock *BB = BI->getParent();
4040 
4041   // MSAN does not like undefs as branch condition which can be introduced
4042   // with "explicit branch".
4043   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4044     return false;
4045 
4046   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4047                     << " cases into SWITCH.  BB is:\n"
4048                     << *BB);
4049 
4050   // If there are any extra values that couldn't be folded into the switch
4051   // then we evaluate them with an explicit branch first. Split the block
4052   // right before the condbr to handle it.
4053   if (ExtraCase) {
4054     BasicBlock *NewBB =
4055         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
4056     // Remove the uncond branch added to the old block.
4057     Instruction *OldTI = BB->getTerminator();
4058     Builder.SetInsertPoint(OldTI);
4059 
4060     if (TrueWhenEqual)
4061       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4062     else
4063       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4064 
4065     OldTI->eraseFromParent();
4066 
4067     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4068     // for the edge we just added.
4069     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4070 
4071     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4072                       << "\nEXTRABB = " << *BB);
4073     BB = NewBB;
4074   }
4075 
4076   Builder.SetInsertPoint(BI);
4077   // Convert pointer to int before we switch.
4078   if (CompVal->getType()->isPointerTy()) {
4079     CompVal = Builder.CreatePtrToInt(
4080         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4081   }
4082 
4083   // Create the new switch instruction now.
4084   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4085 
4086   // Add all of the 'cases' to the switch instruction.
4087   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4088     New->addCase(Values[i], EdgeBB);
4089 
4090   // We added edges from PI to the EdgeBB.  As such, if there were any
4091   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4092   // the number of edges added.
4093   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4094     PHINode *PN = cast<PHINode>(BBI);
4095     Value *InVal = PN->getIncomingValueForBlock(BB);
4096     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4097       PN->addIncoming(InVal, BB);
4098   }
4099 
4100   // Erase the old branch instruction.
4101   EraseTerminatorAndDCECond(BI);
4102 
4103   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4104   return true;
4105 }
4106 
4107 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4108   if (isa<PHINode>(RI->getValue()))
4109     return simplifyCommonResume(RI);
4110   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4111            RI->getValue() == RI->getParent()->getFirstNonPHI())
4112     // The resume must unwind the exception that caused control to branch here.
4113     return simplifySingleResume(RI);
4114 
4115   return false;
4116 }
4117 
4118 // Check if cleanup block is empty
4119 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4120   for (Instruction &I : R) {
4121     auto *II = dyn_cast<IntrinsicInst>(&I);
4122     if (!II)
4123       return false;
4124 
4125     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4126     switch (IntrinsicID) {
4127     case Intrinsic::dbg_declare:
4128     case Intrinsic::dbg_value:
4129     case Intrinsic::dbg_label:
4130     case Intrinsic::lifetime_end:
4131       break;
4132     default:
4133       return false;
4134     }
4135   }
4136   return true;
4137 }
4138 
4139 // Simplify resume that is shared by several landing pads (phi of landing pad).
4140 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4141   BasicBlock *BB = RI->getParent();
4142 
4143   // Check that there are no other instructions except for debug and lifetime
4144   // intrinsics between the phi's and resume instruction.
4145   if (!isCleanupBlockEmpty(
4146           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4147     return false;
4148 
4149   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4150   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4151 
4152   // Check incoming blocks to see if any of them are trivial.
4153   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4154        Idx++) {
4155     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4156     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4157 
4158     // If the block has other successors, we can not delete it because
4159     // it has other dependents.
4160     if (IncomingBB->getUniqueSuccessor() != BB)
4161       continue;
4162 
4163     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4164     // Not the landing pad that caused the control to branch here.
4165     if (IncomingValue != LandingPad)
4166       continue;
4167 
4168     if (isCleanupBlockEmpty(
4169             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4170       TrivialUnwindBlocks.insert(IncomingBB);
4171   }
4172 
4173   // If no trivial unwind blocks, don't do any simplifications.
4174   if (TrivialUnwindBlocks.empty())
4175     return false;
4176 
4177   // Turn all invokes that unwind here into calls.
4178   for (auto *TrivialBB : TrivialUnwindBlocks) {
4179     // Blocks that will be simplified should be removed from the phi node.
4180     // Note there could be multiple edges to the resume block, and we need
4181     // to remove them all.
4182     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4183       BB->removePredecessor(TrivialBB, true);
4184 
4185     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
4186          PI != PE;) {
4187       BasicBlock *Pred = *PI++;
4188       removeUnwindEdge(Pred, DTU);
4189       ++NumInvokes;
4190     }
4191 
4192     // In each SimplifyCFG run, only the current processed block can be erased.
4193     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4194     // of erasing TrivialBB, we only remove the branch to the common resume
4195     // block so that we can later erase the resume block since it has no
4196     // predecessors.
4197     TrivialBB->getTerminator()->eraseFromParent();
4198     new UnreachableInst(RI->getContext(), TrivialBB);
4199     if (DTU)
4200       DTU->applyUpdatesPermissive({{DominatorTree::Delete, TrivialBB, BB}});
4201   }
4202 
4203   // Delete the resume block if all its predecessors have been removed.
4204   if (pred_empty(BB)) {
4205     if (DTU)
4206       DTU->deleteBB(BB);
4207     else
4208       BB->eraseFromParent();
4209   }
4210 
4211   return !TrivialUnwindBlocks.empty();
4212 }
4213 
4214 // Simplify resume that is only used by a single (non-phi) landing pad.
4215 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4216   BasicBlock *BB = RI->getParent();
4217   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4218   assert(RI->getValue() == LPInst &&
4219          "Resume must unwind the exception that caused control to here");
4220 
4221   // Check that there are no other instructions except for debug intrinsics.
4222   if (!isCleanupBlockEmpty(
4223           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4224     return false;
4225 
4226   // Turn all invokes that unwind here into calls and delete the basic block.
4227   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4228     BasicBlock *Pred = *PI++;
4229     removeUnwindEdge(Pred, DTU);
4230     ++NumInvokes;
4231   }
4232 
4233   // The landingpad is now unreachable.  Zap it.
4234   if (LoopHeaders)
4235     LoopHeaders->erase(BB);
4236   if (DTU)
4237     DTU->deleteBB(BB);
4238   else
4239     BB->eraseFromParent();
4240   return true;
4241 }
4242 
4243 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4244   // If this is a trivial cleanup pad that executes no instructions, it can be
4245   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4246   // that is an EH pad will be updated to continue to the caller and any
4247   // predecessor that terminates with an invoke instruction will have its invoke
4248   // instruction converted to a call instruction.  If the cleanup pad being
4249   // simplified does not continue to the caller, each predecessor will be
4250   // updated to continue to the unwind destination of the cleanup pad being
4251   // simplified.
4252   BasicBlock *BB = RI->getParent();
4253   CleanupPadInst *CPInst = RI->getCleanupPad();
4254   if (CPInst->getParent() != BB)
4255     // This isn't an empty cleanup.
4256     return false;
4257 
4258   // We cannot kill the pad if it has multiple uses.  This typically arises
4259   // from unreachable basic blocks.
4260   if (!CPInst->hasOneUse())
4261     return false;
4262 
4263   // Check that there are no other instructions except for benign intrinsics.
4264   if (!isCleanupBlockEmpty(
4265           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4266     return false;
4267 
4268   // If the cleanup return we are simplifying unwinds to the caller, this will
4269   // set UnwindDest to nullptr.
4270   BasicBlock *UnwindDest = RI->getUnwindDest();
4271   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4272 
4273   // We're about to remove BB from the control flow.  Before we do, sink any
4274   // PHINodes into the unwind destination.  Doing this before changing the
4275   // control flow avoids some potentially slow checks, since we can currently
4276   // be certain that UnwindDest and BB have no common predecessors (since they
4277   // are both EH pads).
4278   if (UnwindDest) {
4279     // First, go through the PHI nodes in UnwindDest and update any nodes that
4280     // reference the block we are removing
4281     for (BasicBlock::iterator I = UnwindDest->begin(),
4282                               IE = DestEHPad->getIterator();
4283          I != IE; ++I) {
4284       PHINode *DestPN = cast<PHINode>(I);
4285 
4286       int Idx = DestPN->getBasicBlockIndex(BB);
4287       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4288       assert(Idx != -1);
4289       // This PHI node has an incoming value that corresponds to a control
4290       // path through the cleanup pad we are removing.  If the incoming
4291       // value is in the cleanup pad, it must be a PHINode (because we
4292       // verified above that the block is otherwise empty).  Otherwise, the
4293       // value is either a constant or a value that dominates the cleanup
4294       // pad being removed.
4295       //
4296       // Because BB and UnwindDest are both EH pads, all of their
4297       // predecessors must unwind to these blocks, and since no instruction
4298       // can have multiple unwind destinations, there will be no overlap in
4299       // incoming blocks between SrcPN and DestPN.
4300       Value *SrcVal = DestPN->getIncomingValue(Idx);
4301       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4302 
4303       // Remove the entry for the block we are deleting.
4304       DestPN->removeIncomingValue(Idx, false);
4305 
4306       if (SrcPN && SrcPN->getParent() == BB) {
4307         // If the incoming value was a PHI node in the cleanup pad we are
4308         // removing, we need to merge that PHI node's incoming values into
4309         // DestPN.
4310         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4311              SrcIdx != SrcE; ++SrcIdx) {
4312           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4313                               SrcPN->getIncomingBlock(SrcIdx));
4314         }
4315       } else {
4316         // Otherwise, the incoming value came from above BB and
4317         // so we can just reuse it.  We must associate all of BB's
4318         // predecessors with this value.
4319         for (auto *pred : predecessors(BB)) {
4320           DestPN->addIncoming(SrcVal, pred);
4321         }
4322       }
4323     }
4324 
4325     // Sink any remaining PHI nodes directly into UnwindDest.
4326     Instruction *InsertPt = DestEHPad;
4327     for (BasicBlock::iterator I = BB->begin(),
4328                               IE = BB->getFirstNonPHI()->getIterator();
4329          I != IE;) {
4330       // The iterator must be incremented here because the instructions are
4331       // being moved to another block.
4332       PHINode *PN = cast<PHINode>(I++);
4333       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4334         // If the PHI node has no uses or all of its uses are in this basic
4335         // block (meaning they are debug or lifetime intrinsics), just leave
4336         // it.  It will be erased when we erase BB below.
4337         continue;
4338 
4339       // Otherwise, sink this PHI node into UnwindDest.
4340       // Any predecessors to UnwindDest which are not already represented
4341       // must be back edges which inherit the value from the path through
4342       // BB.  In this case, the PHI value must reference itself.
4343       for (auto *pred : predecessors(UnwindDest))
4344         if (pred != BB)
4345           PN->addIncoming(PN, pred);
4346       PN->moveBefore(InsertPt);
4347     }
4348   }
4349 
4350   std::vector<DominatorTree::UpdateType> Updates;
4351 
4352   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4353     // The iterator must be updated here because we are removing this pred.
4354     BasicBlock *PredBB = *PI++;
4355     if (UnwindDest == nullptr) {
4356       if (DTU)
4357         DTU->applyUpdatesPermissive(Updates);
4358       Updates.clear();
4359       removeUnwindEdge(PredBB, DTU);
4360       ++NumInvokes;
4361     } else {
4362       Instruction *TI = PredBB->getTerminator();
4363       TI->replaceUsesOfWith(BB, UnwindDest);
4364       Updates.push_back({DominatorTree::Delete, PredBB, BB});
4365       Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4366     }
4367   }
4368 
4369   if (DTU) {
4370     DTU->applyUpdatesPermissive(Updates);
4371     DTU->deleteBB(BB);
4372   } else
4373     // The cleanup pad is now unreachable.  Zap it.
4374     BB->eraseFromParent();
4375 
4376   return true;
4377 }
4378 
4379 // Try to merge two cleanuppads together.
4380 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4381   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4382   // with.
4383   BasicBlock *UnwindDest = RI->getUnwindDest();
4384   if (!UnwindDest)
4385     return false;
4386 
4387   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4388   // be safe to merge without code duplication.
4389   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4390     return false;
4391 
4392   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4393   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4394   if (!SuccessorCleanupPad)
4395     return false;
4396 
4397   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4398   // Replace any uses of the successor cleanupad with the predecessor pad
4399   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4400   // funclet bundle operands.
4401   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4402   // Remove the old cleanuppad.
4403   SuccessorCleanupPad->eraseFromParent();
4404   // Now, we simply replace the cleanupret with a branch to the unwind
4405   // destination.
4406   BranchInst::Create(UnwindDest, RI->getParent());
4407   RI->eraseFromParent();
4408 
4409   return true;
4410 }
4411 
4412 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4413   // It is possible to transiantly have an undef cleanuppad operand because we
4414   // have deleted some, but not all, dead blocks.
4415   // Eventually, this block will be deleted.
4416   if (isa<UndefValue>(RI->getOperand(0)))
4417     return false;
4418 
4419   if (mergeCleanupPad(RI))
4420     return true;
4421 
4422   if (removeEmptyCleanup(RI, DTU))
4423     return true;
4424 
4425   return false;
4426 }
4427 
4428 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4429   BasicBlock *BB = RI->getParent();
4430   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4431     return false;
4432 
4433   // Find predecessors that end with branches.
4434   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4435   SmallVector<BranchInst *, 8> CondBranchPreds;
4436   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4437     BasicBlock *P = *PI;
4438     Instruction *PTI = P->getTerminator();
4439     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4440       if (BI->isUnconditional())
4441         UncondBranchPreds.push_back(P);
4442       else
4443         CondBranchPreds.push_back(BI);
4444     }
4445   }
4446 
4447   // If we found some, do the transformation!
4448   if (!UncondBranchPreds.empty() && DupRet) {
4449     while (!UncondBranchPreds.empty()) {
4450       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4451       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4452                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4453       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4454     }
4455 
4456     // If we eliminated all predecessors of the block, delete the block now.
4457     if (pred_empty(BB)) {
4458       // We know there are no successors, so just nuke the block.
4459       if (LoopHeaders)
4460         LoopHeaders->erase(BB);
4461       if (DTU)
4462         DTU->deleteBB(BB);
4463       else
4464         BB->eraseFromParent();
4465     }
4466 
4467     return true;
4468   }
4469 
4470   // Check out all of the conditional branches going to this return
4471   // instruction.  If any of them just select between returns, change the
4472   // branch itself into a select/return pair.
4473   while (!CondBranchPreds.empty()) {
4474     BranchInst *BI = CondBranchPreds.pop_back_val();
4475 
4476     // Check to see if the non-BB successor is also a return block.
4477     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4478         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4479         SimplifyCondBranchToTwoReturns(BI, Builder))
4480       return true;
4481   }
4482   return false;
4483 }
4484 
4485 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4486   BasicBlock *BB = UI->getParent();
4487 
4488   bool Changed = false;
4489 
4490   // If there are any instructions immediately before the unreachable that can
4491   // be removed, do so.
4492   while (UI->getIterator() != BB->begin()) {
4493     BasicBlock::iterator BBI = UI->getIterator();
4494     --BBI;
4495     // Do not delete instructions that can have side effects which might cause
4496     // the unreachable to not be reachable; specifically, calls and volatile
4497     // operations may have this effect.
4498     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4499       break;
4500 
4501     if (BBI->mayHaveSideEffects()) {
4502       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4503         if (SI->isVolatile())
4504           break;
4505       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4506         if (LI->isVolatile())
4507           break;
4508       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4509         if (RMWI->isVolatile())
4510           break;
4511       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4512         if (CXI->isVolatile())
4513           break;
4514       } else if (isa<CatchPadInst>(BBI)) {
4515         // A catchpad may invoke exception object constructors and such, which
4516         // in some languages can be arbitrary code, so be conservative by
4517         // default.
4518         // For CoreCLR, it just involves a type test, so can be removed.
4519         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4520             EHPersonality::CoreCLR)
4521           break;
4522       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4523                  !isa<LandingPadInst>(BBI)) {
4524         break;
4525       }
4526       // Note that deleting LandingPad's here is in fact okay, although it
4527       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4528       // all the predecessors of this block will be the unwind edges of Invokes,
4529       // and we can therefore guarantee this block will be erased.
4530     }
4531 
4532     // Delete this instruction (any uses are guaranteed to be dead)
4533     if (!BBI->use_empty())
4534       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4535     BBI->eraseFromParent();
4536     Changed = true;
4537   }
4538 
4539   // If the unreachable instruction is the first in the block, take a gander
4540   // at all of the predecessors of this instruction, and simplify them.
4541   if (&BB->front() != UI)
4542     return Changed;
4543 
4544   std::vector<DominatorTree::UpdateType> Updates;
4545 
4546   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4547   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4548     auto *Predecessor = Preds[i];
4549     Instruction *TI = Predecessor->getTerminator();
4550     IRBuilder<> Builder(TI);
4551     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4552       if (BI->isUnconditional()) {
4553         assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4554         new UnreachableInst(TI->getContext(), TI);
4555         TI->eraseFromParent();
4556         Changed = true;
4557       } else {
4558         Value* Cond = BI->getCondition();
4559         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4560                "Same-destination conditional branch instruction was "
4561                "already canonicalized into an unconditional branch.");
4562         if (BI->getSuccessor(0) == BB) {
4563           Builder.CreateAssumption(Builder.CreateNot(Cond));
4564           Builder.CreateBr(BI->getSuccessor(1));
4565         } else {
4566           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4567           Builder.CreateAssumption(Cond);
4568           Builder.CreateBr(BI->getSuccessor(0));
4569         }
4570         EraseTerminatorAndDCECond(BI);
4571         Changed = true;
4572       }
4573       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4574     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4575       SwitchInstProfUpdateWrapper SU(*SI);
4576       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4577         if (i->getCaseSuccessor() != BB) {
4578           ++i;
4579           continue;
4580         }
4581         BB->removePredecessor(SU->getParent());
4582         i = SU.removeCase(i);
4583         e = SU->case_end();
4584         Changed = true;
4585       }
4586       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4587     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4588       if (II->getUnwindDest() == BB) {
4589         if (DTU)
4590           DTU->applyUpdatesPermissive(Updates);
4591         Updates.clear();
4592         removeUnwindEdge(TI->getParent(), DTU);
4593         Changed = true;
4594       }
4595     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4596       if (CSI->getUnwindDest() == BB) {
4597         if (DTU)
4598           DTU->applyUpdatesPermissive(Updates);
4599         Updates.clear();
4600         removeUnwindEdge(TI->getParent(), DTU);
4601         Changed = true;
4602         continue;
4603       }
4604 
4605       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4606                                              E = CSI->handler_end();
4607            I != E; ++I) {
4608         if (*I == BB) {
4609           CSI->removeHandler(I);
4610           --I;
4611           --E;
4612           Changed = true;
4613         }
4614       }
4615       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4616       if (CSI->getNumHandlers() == 0) {
4617         if (CSI->hasUnwindDest()) {
4618           // Redirect all predecessors of the block containing CatchSwitchInst
4619           // to instead branch to the CatchSwitchInst's unwind destination.
4620           for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4621             Updates.push_back(
4622                 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor});
4623             Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor,
4624                                CSI->getUnwindDest()});
4625           }
4626           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4627         } else {
4628           // Rewrite all preds to unwind to caller (or from invoke to call).
4629           if (DTU)
4630             DTU->applyUpdatesPermissive(Updates);
4631           Updates.clear();
4632           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4633           for (BasicBlock *EHPred : EHPreds)
4634             removeUnwindEdge(EHPred, DTU);
4635         }
4636         // The catchswitch is no longer reachable.
4637         new UnreachableInst(CSI->getContext(), CSI);
4638         CSI->eraseFromParent();
4639         Changed = true;
4640       }
4641     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4642       (void)CRI;
4643       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4644              "Expected to always have an unwind to BB.");
4645       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4646       new UnreachableInst(TI->getContext(), TI);
4647       TI->eraseFromParent();
4648       Changed = true;
4649     }
4650   }
4651 
4652   if (DTU)
4653     DTU->applyUpdatesPermissive(Updates);
4654 
4655   // If this block is now dead, remove it.
4656   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4657     // We know there are no successors, so just nuke the block.
4658     if (LoopHeaders)
4659       LoopHeaders->erase(BB);
4660     if (DTU)
4661       DTU->deleteBB(BB);
4662     else
4663       BB->eraseFromParent();
4664     return true;
4665   }
4666 
4667   return Changed;
4668 }
4669 
4670 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4671   assert(Cases.size() >= 1);
4672 
4673   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4674   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4675     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4676       return false;
4677   }
4678   return true;
4679 }
4680 
4681 static void createUnreachableSwitchDefault(SwitchInst *Switch) {
4682   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4683   BasicBlock *NewDefaultBlock =
4684      SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
4685   Switch->setDefaultDest(&*NewDefaultBlock);
4686   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
4687   auto *NewTerminator = NewDefaultBlock->getTerminator();
4688   new UnreachableInst(Switch->getContext(), NewTerminator);
4689   EraseTerminatorAndDCECond(NewTerminator);
4690 }
4691 
4692 /// Turn a switch with two reachable destinations into an integer range
4693 /// comparison and branch.
4694 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4695                                              IRBuilder<> &Builder) {
4696   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4697 
4698   bool HasDefault =
4699       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4700 
4701   // Partition the cases into two sets with different destinations.
4702   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4703   BasicBlock *DestB = nullptr;
4704   SmallVector<ConstantInt *, 16> CasesA;
4705   SmallVector<ConstantInt *, 16> CasesB;
4706 
4707   for (auto Case : SI->cases()) {
4708     BasicBlock *Dest = Case.getCaseSuccessor();
4709     if (!DestA)
4710       DestA = Dest;
4711     if (Dest == DestA) {
4712       CasesA.push_back(Case.getCaseValue());
4713       continue;
4714     }
4715     if (!DestB)
4716       DestB = Dest;
4717     if (Dest == DestB) {
4718       CasesB.push_back(Case.getCaseValue());
4719       continue;
4720     }
4721     return false; // More than two destinations.
4722   }
4723 
4724   assert(DestA && DestB &&
4725          "Single-destination switch should have been folded.");
4726   assert(DestA != DestB);
4727   assert(DestB != SI->getDefaultDest());
4728   assert(!CasesB.empty() && "There must be non-default cases.");
4729   assert(!CasesA.empty() || HasDefault);
4730 
4731   // Figure out if one of the sets of cases form a contiguous range.
4732   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4733   BasicBlock *ContiguousDest = nullptr;
4734   BasicBlock *OtherDest = nullptr;
4735   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4736     ContiguousCases = &CasesA;
4737     ContiguousDest = DestA;
4738     OtherDest = DestB;
4739   } else if (CasesAreContiguous(CasesB)) {
4740     ContiguousCases = &CasesB;
4741     ContiguousDest = DestB;
4742     OtherDest = DestA;
4743   } else
4744     return false;
4745 
4746   // Start building the compare and branch.
4747 
4748   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4749   Constant *NumCases =
4750       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4751 
4752   Value *Sub = SI->getCondition();
4753   if (!Offset->isNullValue())
4754     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4755 
4756   Value *Cmp;
4757   // If NumCases overflowed, then all possible values jump to the successor.
4758   if (NumCases->isNullValue() && !ContiguousCases->empty())
4759     Cmp = ConstantInt::getTrue(SI->getContext());
4760   else
4761     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4762   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4763 
4764   // Update weight for the newly-created conditional branch.
4765   if (HasBranchWeights(SI)) {
4766     SmallVector<uint64_t, 8> Weights;
4767     GetBranchWeights(SI, Weights);
4768     if (Weights.size() == 1 + SI->getNumCases()) {
4769       uint64_t TrueWeight = 0;
4770       uint64_t FalseWeight = 0;
4771       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4772         if (SI->getSuccessor(I) == ContiguousDest)
4773           TrueWeight += Weights[I];
4774         else
4775           FalseWeight += Weights[I];
4776       }
4777       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4778         TrueWeight /= 2;
4779         FalseWeight /= 2;
4780       }
4781       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4782     }
4783   }
4784 
4785   // Prune obsolete incoming values off the successors' PHI nodes.
4786   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4787     unsigned PreviousEdges = ContiguousCases->size();
4788     if (ContiguousDest == SI->getDefaultDest())
4789       ++PreviousEdges;
4790     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4791       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4792   }
4793   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4794     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4795     if (OtherDest == SI->getDefaultDest())
4796       ++PreviousEdges;
4797     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4798       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4799   }
4800 
4801   // Clean up the default block - it may have phis or other instructions before
4802   // the unreachable terminator.
4803   if (!HasDefault)
4804     createUnreachableSwitchDefault(SI);
4805 
4806   // Drop the switch.
4807   SI->eraseFromParent();
4808 
4809   return true;
4810 }
4811 
4812 /// Compute masked bits for the condition of a switch
4813 /// and use it to remove dead cases.
4814 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4815                                      const DataLayout &DL) {
4816   Value *Cond = SI->getCondition();
4817   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4818   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4819 
4820   // We can also eliminate cases by determining that their values are outside of
4821   // the limited range of the condition based on how many significant (non-sign)
4822   // bits are in the condition value.
4823   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4824   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4825 
4826   // Gather dead cases.
4827   SmallVector<ConstantInt *, 8> DeadCases;
4828   for (auto &Case : SI->cases()) {
4829     const APInt &CaseVal = Case.getCaseValue()->getValue();
4830     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4831         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4832       DeadCases.push_back(Case.getCaseValue());
4833       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4834                         << " is dead.\n");
4835     }
4836   }
4837 
4838   // If we can prove that the cases must cover all possible values, the
4839   // default destination becomes dead and we can remove it.  If we know some
4840   // of the bits in the value, we can use that to more precisely compute the
4841   // number of possible unique case values.
4842   bool HasDefault =
4843       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4844   const unsigned NumUnknownBits =
4845       Bits - (Known.Zero | Known.One).countPopulation();
4846   assert(NumUnknownBits <= Bits);
4847   if (HasDefault && DeadCases.empty() &&
4848       NumUnknownBits < 64 /* avoid overflow */ &&
4849       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4850     createUnreachableSwitchDefault(SI);
4851     return true;
4852   }
4853 
4854   if (DeadCases.empty())
4855     return false;
4856 
4857   SwitchInstProfUpdateWrapper SIW(*SI);
4858   for (ConstantInt *DeadCase : DeadCases) {
4859     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4860     assert(CaseI != SI->case_default() &&
4861            "Case was not found. Probably mistake in DeadCases forming.");
4862     // Prune unused values from PHI nodes.
4863     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4864     SIW.removeCase(CaseI);
4865   }
4866 
4867   return true;
4868 }
4869 
4870 /// If BB would be eligible for simplification by
4871 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4872 /// by an unconditional branch), look at the phi node for BB in the successor
4873 /// block and see if the incoming value is equal to CaseValue. If so, return
4874 /// the phi node, and set PhiIndex to BB's index in the phi node.
4875 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4876                                               BasicBlock *BB, int *PhiIndex) {
4877   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4878     return nullptr; // BB must be empty to be a candidate for simplification.
4879   if (!BB->getSinglePredecessor())
4880     return nullptr; // BB must be dominated by the switch.
4881 
4882   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4883   if (!Branch || !Branch->isUnconditional())
4884     return nullptr; // Terminator must be unconditional branch.
4885 
4886   BasicBlock *Succ = Branch->getSuccessor(0);
4887 
4888   for (PHINode &PHI : Succ->phis()) {
4889     int Idx = PHI.getBasicBlockIndex(BB);
4890     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4891 
4892     Value *InValue = PHI.getIncomingValue(Idx);
4893     if (InValue != CaseValue)
4894       continue;
4895 
4896     *PhiIndex = Idx;
4897     return &PHI;
4898   }
4899 
4900   return nullptr;
4901 }
4902 
4903 /// Try to forward the condition of a switch instruction to a phi node
4904 /// dominated by the switch, if that would mean that some of the destination
4905 /// blocks of the switch can be folded away. Return true if a change is made.
4906 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4907   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4908 
4909   ForwardingNodesMap ForwardingNodes;
4910   BasicBlock *SwitchBlock = SI->getParent();
4911   bool Changed = false;
4912   for (auto &Case : SI->cases()) {
4913     ConstantInt *CaseValue = Case.getCaseValue();
4914     BasicBlock *CaseDest = Case.getCaseSuccessor();
4915 
4916     // Replace phi operands in successor blocks that are using the constant case
4917     // value rather than the switch condition variable:
4918     //   switchbb:
4919     //   switch i32 %x, label %default [
4920     //     i32 17, label %succ
4921     //   ...
4922     //   succ:
4923     //     %r = phi i32 ... [ 17, %switchbb ] ...
4924     // -->
4925     //     %r = phi i32 ... [ %x, %switchbb ] ...
4926 
4927     for (PHINode &Phi : CaseDest->phis()) {
4928       // This only works if there is exactly 1 incoming edge from the switch to
4929       // a phi. If there is >1, that means multiple cases of the switch map to 1
4930       // value in the phi, and that phi value is not the switch condition. Thus,
4931       // this transform would not make sense (the phi would be invalid because
4932       // a phi can't have different incoming values from the same block).
4933       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4934       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4935           count(Phi.blocks(), SwitchBlock) == 1) {
4936         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4937         Changed = true;
4938       }
4939     }
4940 
4941     // Collect phi nodes that are indirectly using this switch's case constants.
4942     int PhiIdx;
4943     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4944       ForwardingNodes[Phi].push_back(PhiIdx);
4945   }
4946 
4947   for (auto &ForwardingNode : ForwardingNodes) {
4948     PHINode *Phi = ForwardingNode.first;
4949     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4950     if (Indexes.size() < 2)
4951       continue;
4952 
4953     for (int Index : Indexes)
4954       Phi->setIncomingValue(Index, SI->getCondition());
4955     Changed = true;
4956   }
4957 
4958   return Changed;
4959 }
4960 
4961 /// Return true if the backend will be able to handle
4962 /// initializing an array of constants like C.
4963 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4964   if (C->isThreadDependent())
4965     return false;
4966   if (C->isDLLImportDependent())
4967     return false;
4968 
4969   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4970       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4971       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4972     return false;
4973 
4974   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4975     if (!CE->isGEPWithNoNotionalOverIndexing())
4976       return false;
4977     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4978       return false;
4979   }
4980 
4981   if (!TTI.shouldBuildLookupTablesForConstant(C))
4982     return false;
4983 
4984   return true;
4985 }
4986 
4987 /// If V is a Constant, return it. Otherwise, try to look up
4988 /// its constant value in ConstantPool, returning 0 if it's not there.
4989 static Constant *
4990 LookupConstant(Value *V,
4991                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4992   if (Constant *C = dyn_cast<Constant>(V))
4993     return C;
4994   return ConstantPool.lookup(V);
4995 }
4996 
4997 /// Try to fold instruction I into a constant. This works for
4998 /// simple instructions such as binary operations where both operands are
4999 /// constant or can be replaced by constants from the ConstantPool. Returns the
5000 /// resulting constant on success, 0 otherwise.
5001 static Constant *
5002 ConstantFold(Instruction *I, const DataLayout &DL,
5003              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5004   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5005     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5006     if (!A)
5007       return nullptr;
5008     if (A->isAllOnesValue())
5009       return LookupConstant(Select->getTrueValue(), ConstantPool);
5010     if (A->isNullValue())
5011       return LookupConstant(Select->getFalseValue(), ConstantPool);
5012     return nullptr;
5013   }
5014 
5015   SmallVector<Constant *, 4> COps;
5016   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5017     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5018       COps.push_back(A);
5019     else
5020       return nullptr;
5021   }
5022 
5023   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5024     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5025                                            COps[1], DL);
5026   }
5027 
5028   return ConstantFoldInstOperands(I, COps, DL);
5029 }
5030 
5031 /// Try to determine the resulting constant values in phi nodes
5032 /// at the common destination basic block, *CommonDest, for one of the case
5033 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5034 /// case), of a switch instruction SI.
5035 static bool
5036 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5037                BasicBlock **CommonDest,
5038                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5039                const DataLayout &DL, const TargetTransformInfo &TTI) {
5040   // The block from which we enter the common destination.
5041   BasicBlock *Pred = SI->getParent();
5042 
5043   // If CaseDest is empty except for some side-effect free instructions through
5044   // which we can constant-propagate the CaseVal, continue to its successor.
5045   SmallDenseMap<Value *, Constant *> ConstantPool;
5046   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5047   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5048     if (I.isTerminator()) {
5049       // If the terminator is a simple branch, continue to the next block.
5050       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5051         return false;
5052       Pred = CaseDest;
5053       CaseDest = I.getSuccessor(0);
5054     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5055       // Instruction is side-effect free and constant.
5056 
5057       // If the instruction has uses outside this block or a phi node slot for
5058       // the block, it is not safe to bypass the instruction since it would then
5059       // no longer dominate all its uses.
5060       for (auto &Use : I.uses()) {
5061         User *User = Use.getUser();
5062         if (Instruction *I = dyn_cast<Instruction>(User))
5063           if (I->getParent() == CaseDest)
5064             continue;
5065         if (PHINode *Phi = dyn_cast<PHINode>(User))
5066           if (Phi->getIncomingBlock(Use) == CaseDest)
5067             continue;
5068         return false;
5069       }
5070 
5071       ConstantPool.insert(std::make_pair(&I, C));
5072     } else {
5073       break;
5074     }
5075   }
5076 
5077   // If we did not have a CommonDest before, use the current one.
5078   if (!*CommonDest)
5079     *CommonDest = CaseDest;
5080   // If the destination isn't the common one, abort.
5081   if (CaseDest != *CommonDest)
5082     return false;
5083 
5084   // Get the values for this case from phi nodes in the destination block.
5085   for (PHINode &PHI : (*CommonDest)->phis()) {
5086     int Idx = PHI.getBasicBlockIndex(Pred);
5087     if (Idx == -1)
5088       continue;
5089 
5090     Constant *ConstVal =
5091         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5092     if (!ConstVal)
5093       return false;
5094 
5095     // Be conservative about which kinds of constants we support.
5096     if (!ValidLookupTableConstant(ConstVal, TTI))
5097       return false;
5098 
5099     Res.push_back(std::make_pair(&PHI, ConstVal));
5100   }
5101 
5102   return Res.size() > 0;
5103 }
5104 
5105 // Helper function used to add CaseVal to the list of cases that generate
5106 // Result. Returns the updated number of cases that generate this result.
5107 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5108                                  SwitchCaseResultVectorTy &UniqueResults,
5109                                  Constant *Result) {
5110   for (auto &I : UniqueResults) {
5111     if (I.first == Result) {
5112       I.second.push_back(CaseVal);
5113       return I.second.size();
5114     }
5115   }
5116   UniqueResults.push_back(
5117       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5118   return 1;
5119 }
5120 
5121 // Helper function that initializes a map containing
5122 // results for the PHI node of the common destination block for a switch
5123 // instruction. Returns false if multiple PHI nodes have been found or if
5124 // there is not a common destination block for the switch.
5125 static bool
5126 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5127                       SwitchCaseResultVectorTy &UniqueResults,
5128                       Constant *&DefaultResult, const DataLayout &DL,
5129                       const TargetTransformInfo &TTI,
5130                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5131   for (auto &I : SI->cases()) {
5132     ConstantInt *CaseVal = I.getCaseValue();
5133 
5134     // Resulting value at phi nodes for this case value.
5135     SwitchCaseResultsTy Results;
5136     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5137                         DL, TTI))
5138       return false;
5139 
5140     // Only one value per case is permitted.
5141     if (Results.size() > 1)
5142       return false;
5143 
5144     // Add the case->result mapping to UniqueResults.
5145     const uintptr_t NumCasesForResult =
5146         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5147 
5148     // Early out if there are too many cases for this result.
5149     if (NumCasesForResult > MaxCasesPerResult)
5150       return false;
5151 
5152     // Early out if there are too many unique results.
5153     if (UniqueResults.size() > MaxUniqueResults)
5154       return false;
5155 
5156     // Check the PHI consistency.
5157     if (!PHI)
5158       PHI = Results[0].first;
5159     else if (PHI != Results[0].first)
5160       return false;
5161   }
5162   // Find the default result value.
5163   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5164   BasicBlock *DefaultDest = SI->getDefaultDest();
5165   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5166                  DL, TTI);
5167   // If the default value is not found abort unless the default destination
5168   // is unreachable.
5169   DefaultResult =
5170       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5171   if ((!DefaultResult &&
5172        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5173     return false;
5174 
5175   return true;
5176 }
5177 
5178 // Helper function that checks if it is possible to transform a switch with only
5179 // two cases (or two cases + default) that produces a result into a select.
5180 // Example:
5181 // switch (a) {
5182 //   case 10:                %0 = icmp eq i32 %a, 10
5183 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5184 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5185 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5186 //   default:
5187 //     return 4;
5188 // }
5189 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5190                                    Constant *DefaultResult, Value *Condition,
5191                                    IRBuilder<> &Builder) {
5192   assert(ResultVector.size() == 2 &&
5193          "We should have exactly two unique results at this point");
5194   // If we are selecting between only two cases transform into a simple
5195   // select or a two-way select if default is possible.
5196   if (ResultVector[0].second.size() == 1 &&
5197       ResultVector[1].second.size() == 1) {
5198     ConstantInt *const FirstCase = ResultVector[0].second[0];
5199     ConstantInt *const SecondCase = ResultVector[1].second[0];
5200 
5201     bool DefaultCanTrigger = DefaultResult;
5202     Value *SelectValue = ResultVector[1].first;
5203     if (DefaultCanTrigger) {
5204       Value *const ValueCompare =
5205           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5206       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5207                                          DefaultResult, "switch.select");
5208     }
5209     Value *const ValueCompare =
5210         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5211     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5212                                 SelectValue, "switch.select");
5213   }
5214 
5215   return nullptr;
5216 }
5217 
5218 // Helper function to cleanup a switch instruction that has been converted into
5219 // a select, fixing up PHI nodes and basic blocks.
5220 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5221                                               Value *SelectValue,
5222                                               IRBuilder<> &Builder) {
5223   BasicBlock *SelectBB = SI->getParent();
5224   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5225     PHI->removeIncomingValue(SelectBB);
5226   PHI->addIncoming(SelectValue, SelectBB);
5227 
5228   Builder.CreateBr(PHI->getParent());
5229 
5230   // Remove the switch.
5231   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5232     BasicBlock *Succ = SI->getSuccessor(i);
5233 
5234     if (Succ == PHI->getParent())
5235       continue;
5236     Succ->removePredecessor(SelectBB);
5237   }
5238   SI->eraseFromParent();
5239 }
5240 
5241 /// If the switch is only used to initialize one or more
5242 /// phi nodes in a common successor block with only two different
5243 /// constant values, replace the switch with select.
5244 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5245                            const DataLayout &DL,
5246                            const TargetTransformInfo &TTI) {
5247   Value *const Cond = SI->getCondition();
5248   PHINode *PHI = nullptr;
5249   BasicBlock *CommonDest = nullptr;
5250   Constant *DefaultResult;
5251   SwitchCaseResultVectorTy UniqueResults;
5252   // Collect all the cases that will deliver the same value from the switch.
5253   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5254                              DL, TTI, 2, 1))
5255     return false;
5256   // Selects choose between maximum two values.
5257   if (UniqueResults.size() != 2)
5258     return false;
5259   assert(PHI != nullptr && "PHI for value select not found");
5260 
5261   Builder.SetInsertPoint(SI);
5262   Value *SelectValue =
5263       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5264   if (SelectValue) {
5265     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
5266     return true;
5267   }
5268   // The switch couldn't be converted into a select.
5269   return false;
5270 }
5271 
5272 namespace {
5273 
5274 /// This class represents a lookup table that can be used to replace a switch.
5275 class SwitchLookupTable {
5276 public:
5277   /// Create a lookup table to use as a switch replacement with the contents
5278   /// of Values, using DefaultValue to fill any holes in the table.
5279   SwitchLookupTable(
5280       Module &M, uint64_t TableSize, ConstantInt *Offset,
5281       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5282       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5283 
5284   /// Build instructions with Builder to retrieve the value at
5285   /// the position given by Index in the lookup table.
5286   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5287 
5288   /// Return true if a table with TableSize elements of
5289   /// type ElementType would fit in a target-legal register.
5290   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5291                                  Type *ElementType);
5292 
5293 private:
5294   // Depending on the contents of the table, it can be represented in
5295   // different ways.
5296   enum {
5297     // For tables where each element contains the same value, we just have to
5298     // store that single value and return it for each lookup.
5299     SingleValueKind,
5300 
5301     // For tables where there is a linear relationship between table index
5302     // and values. We calculate the result with a simple multiplication
5303     // and addition instead of a table lookup.
5304     LinearMapKind,
5305 
5306     // For small tables with integer elements, we can pack them into a bitmap
5307     // that fits into a target-legal register. Values are retrieved by
5308     // shift and mask operations.
5309     BitMapKind,
5310 
5311     // The table is stored as an array of values. Values are retrieved by load
5312     // instructions from the table.
5313     ArrayKind
5314   } Kind;
5315 
5316   // For SingleValueKind, this is the single value.
5317   Constant *SingleValue = nullptr;
5318 
5319   // For BitMapKind, this is the bitmap.
5320   ConstantInt *BitMap = nullptr;
5321   IntegerType *BitMapElementTy = nullptr;
5322 
5323   // For LinearMapKind, these are the constants used to derive the value.
5324   ConstantInt *LinearOffset = nullptr;
5325   ConstantInt *LinearMultiplier = nullptr;
5326 
5327   // For ArrayKind, this is the array.
5328   GlobalVariable *Array = nullptr;
5329 };
5330 
5331 } // end anonymous namespace
5332 
5333 SwitchLookupTable::SwitchLookupTable(
5334     Module &M, uint64_t TableSize, ConstantInt *Offset,
5335     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5336     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5337   assert(Values.size() && "Can't build lookup table without values!");
5338   assert(TableSize >= Values.size() && "Can't fit values in table!");
5339 
5340   // If all values in the table are equal, this is that value.
5341   SingleValue = Values.begin()->second;
5342 
5343   Type *ValueType = Values.begin()->second->getType();
5344 
5345   // Build up the table contents.
5346   SmallVector<Constant *, 64> TableContents(TableSize);
5347   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5348     ConstantInt *CaseVal = Values[I].first;
5349     Constant *CaseRes = Values[I].second;
5350     assert(CaseRes->getType() == ValueType);
5351 
5352     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5353     TableContents[Idx] = CaseRes;
5354 
5355     if (CaseRes != SingleValue)
5356       SingleValue = nullptr;
5357   }
5358 
5359   // Fill in any holes in the table with the default result.
5360   if (Values.size() < TableSize) {
5361     assert(DefaultValue &&
5362            "Need a default value to fill the lookup table holes.");
5363     assert(DefaultValue->getType() == ValueType);
5364     for (uint64_t I = 0; I < TableSize; ++I) {
5365       if (!TableContents[I])
5366         TableContents[I] = DefaultValue;
5367     }
5368 
5369     if (DefaultValue != SingleValue)
5370       SingleValue = nullptr;
5371   }
5372 
5373   // If each element in the table contains the same value, we only need to store
5374   // that single value.
5375   if (SingleValue) {
5376     Kind = SingleValueKind;
5377     return;
5378   }
5379 
5380   // Check if we can derive the value with a linear transformation from the
5381   // table index.
5382   if (isa<IntegerType>(ValueType)) {
5383     bool LinearMappingPossible = true;
5384     APInt PrevVal;
5385     APInt DistToPrev;
5386     assert(TableSize >= 2 && "Should be a SingleValue table.");
5387     // Check if there is the same distance between two consecutive values.
5388     for (uint64_t I = 0; I < TableSize; ++I) {
5389       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5390       if (!ConstVal) {
5391         // This is an undef. We could deal with it, but undefs in lookup tables
5392         // are very seldom. It's probably not worth the additional complexity.
5393         LinearMappingPossible = false;
5394         break;
5395       }
5396       const APInt &Val = ConstVal->getValue();
5397       if (I != 0) {
5398         APInt Dist = Val - PrevVal;
5399         if (I == 1) {
5400           DistToPrev = Dist;
5401         } else if (Dist != DistToPrev) {
5402           LinearMappingPossible = false;
5403           break;
5404         }
5405       }
5406       PrevVal = Val;
5407     }
5408     if (LinearMappingPossible) {
5409       LinearOffset = cast<ConstantInt>(TableContents[0]);
5410       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5411       Kind = LinearMapKind;
5412       ++NumLinearMaps;
5413       return;
5414     }
5415   }
5416 
5417   // If the type is integer and the table fits in a register, build a bitmap.
5418   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5419     IntegerType *IT = cast<IntegerType>(ValueType);
5420     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5421     for (uint64_t I = TableSize; I > 0; --I) {
5422       TableInt <<= IT->getBitWidth();
5423       // Insert values into the bitmap. Undef values are set to zero.
5424       if (!isa<UndefValue>(TableContents[I - 1])) {
5425         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5426         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5427       }
5428     }
5429     BitMap = ConstantInt::get(M.getContext(), TableInt);
5430     BitMapElementTy = IT;
5431     Kind = BitMapKind;
5432     ++NumBitMaps;
5433     return;
5434   }
5435 
5436   // Store the table in an array.
5437   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5438   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5439 
5440   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5441                              GlobalVariable::PrivateLinkage, Initializer,
5442                              "switch.table." + FuncName);
5443   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5444   // Set the alignment to that of an array items. We will be only loading one
5445   // value out of it.
5446   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5447   Kind = ArrayKind;
5448 }
5449 
5450 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5451   switch (Kind) {
5452   case SingleValueKind:
5453     return SingleValue;
5454   case LinearMapKind: {
5455     // Derive the result value from the input value.
5456     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5457                                           false, "switch.idx.cast");
5458     if (!LinearMultiplier->isOne())
5459       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5460     if (!LinearOffset->isZero())
5461       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5462     return Result;
5463   }
5464   case BitMapKind: {
5465     // Type of the bitmap (e.g. i59).
5466     IntegerType *MapTy = BitMap->getType();
5467 
5468     // Cast Index to the same type as the bitmap.
5469     // Note: The Index is <= the number of elements in the table, so
5470     // truncating it to the width of the bitmask is safe.
5471     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5472 
5473     // Multiply the shift amount by the element width.
5474     ShiftAmt = Builder.CreateMul(
5475         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5476         "switch.shiftamt");
5477 
5478     // Shift down.
5479     Value *DownShifted =
5480         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5481     // Mask off.
5482     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5483   }
5484   case ArrayKind: {
5485     // Make sure the table index will not overflow when treated as signed.
5486     IntegerType *IT = cast<IntegerType>(Index->getType());
5487     uint64_t TableSize =
5488         Array->getInitializer()->getType()->getArrayNumElements();
5489     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5490       Index = Builder.CreateZExt(
5491           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5492           "switch.tableidx.zext");
5493 
5494     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5495     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5496                                            GEPIndices, "switch.gep");
5497     return Builder.CreateLoad(
5498         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5499         "switch.load");
5500   }
5501   }
5502   llvm_unreachable("Unknown lookup table kind!");
5503 }
5504 
5505 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5506                                            uint64_t TableSize,
5507                                            Type *ElementType) {
5508   auto *IT = dyn_cast<IntegerType>(ElementType);
5509   if (!IT)
5510     return false;
5511   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5512   // are <= 15, we could try to narrow the type.
5513 
5514   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5515   if (TableSize >= UINT_MAX / IT->getBitWidth())
5516     return false;
5517   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5518 }
5519 
5520 /// Determine whether a lookup table should be built for this switch, based on
5521 /// the number of cases, size of the table, and the types of the results.
5522 static bool
5523 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5524                        const TargetTransformInfo &TTI, const DataLayout &DL,
5525                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5526   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5527     return false; // TableSize overflowed, or mul below might overflow.
5528 
5529   bool AllTablesFitInRegister = true;
5530   bool HasIllegalType = false;
5531   for (const auto &I : ResultTypes) {
5532     Type *Ty = I.second;
5533 
5534     // Saturate this flag to true.
5535     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5536 
5537     // Saturate this flag to false.
5538     AllTablesFitInRegister =
5539         AllTablesFitInRegister &&
5540         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5541 
5542     // If both flags saturate, we're done. NOTE: This *only* works with
5543     // saturating flags, and all flags have to saturate first due to the
5544     // non-deterministic behavior of iterating over a dense map.
5545     if (HasIllegalType && !AllTablesFitInRegister)
5546       break;
5547   }
5548 
5549   // If each table would fit in a register, we should build it anyway.
5550   if (AllTablesFitInRegister)
5551     return true;
5552 
5553   // Don't build a table that doesn't fit in-register if it has illegal types.
5554   if (HasIllegalType)
5555     return false;
5556 
5557   // The table density should be at least 40%. This is the same criterion as for
5558   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5559   // FIXME: Find the best cut-off.
5560   return SI->getNumCases() * 10 >= TableSize * 4;
5561 }
5562 
5563 /// Try to reuse the switch table index compare. Following pattern:
5564 /// \code
5565 ///     if (idx < tablesize)
5566 ///        r = table[idx]; // table does not contain default_value
5567 ///     else
5568 ///        r = default_value;
5569 ///     if (r != default_value)
5570 ///        ...
5571 /// \endcode
5572 /// Is optimized to:
5573 /// \code
5574 ///     cond = idx < tablesize;
5575 ///     if (cond)
5576 ///        r = table[idx];
5577 ///     else
5578 ///        r = default_value;
5579 ///     if (cond)
5580 ///        ...
5581 /// \endcode
5582 /// Jump threading will then eliminate the second if(cond).
5583 static void reuseTableCompare(
5584     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5585     Constant *DefaultValue,
5586     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5587   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5588   if (!CmpInst)
5589     return;
5590 
5591   // We require that the compare is in the same block as the phi so that jump
5592   // threading can do its work afterwards.
5593   if (CmpInst->getParent() != PhiBlock)
5594     return;
5595 
5596   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5597   if (!CmpOp1)
5598     return;
5599 
5600   Value *RangeCmp = RangeCheckBranch->getCondition();
5601   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5602   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5603 
5604   // Check if the compare with the default value is constant true or false.
5605   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5606                                                  DefaultValue, CmpOp1, true);
5607   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5608     return;
5609 
5610   // Check if the compare with the case values is distinct from the default
5611   // compare result.
5612   for (auto ValuePair : Values) {
5613     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5614                                                 ValuePair.second, CmpOp1, true);
5615     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5616       return;
5617     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5618            "Expect true or false as compare result.");
5619   }
5620 
5621   // Check if the branch instruction dominates the phi node. It's a simple
5622   // dominance check, but sufficient for our needs.
5623   // Although this check is invariant in the calling loops, it's better to do it
5624   // at this late stage. Practically we do it at most once for a switch.
5625   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5626   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5627     BasicBlock *Pred = *PI;
5628     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5629       return;
5630   }
5631 
5632   if (DefaultConst == FalseConst) {
5633     // The compare yields the same result. We can replace it.
5634     CmpInst->replaceAllUsesWith(RangeCmp);
5635     ++NumTableCmpReuses;
5636   } else {
5637     // The compare yields the same result, just inverted. We can replace it.
5638     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5639         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5640         RangeCheckBranch);
5641     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5642     ++NumTableCmpReuses;
5643   }
5644 }
5645 
5646 /// If the switch is only used to initialize one or more phi nodes in a common
5647 /// successor block with different constant values, replace the switch with
5648 /// lookup tables.
5649 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5650                                 const DataLayout &DL,
5651                                 const TargetTransformInfo &TTI) {
5652   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5653 
5654   Function *Fn = SI->getParent()->getParent();
5655   // Only build lookup table when we have a target that supports it or the
5656   // attribute is not set.
5657   if (!TTI.shouldBuildLookupTables() ||
5658       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5659     return false;
5660 
5661   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5662   // split off a dense part and build a lookup table for that.
5663 
5664   // FIXME: This creates arrays of GEPs to constant strings, which means each
5665   // GEP needs a runtime relocation in PIC code. We should just build one big
5666   // string and lookup indices into that.
5667 
5668   // Ignore switches with less than three cases. Lookup tables will not make
5669   // them faster, so we don't analyze them.
5670   if (SI->getNumCases() < 3)
5671     return false;
5672 
5673   // Figure out the corresponding result for each case value and phi node in the
5674   // common destination, as well as the min and max case values.
5675   assert(!SI->cases().empty());
5676   SwitchInst::CaseIt CI = SI->case_begin();
5677   ConstantInt *MinCaseVal = CI->getCaseValue();
5678   ConstantInt *MaxCaseVal = CI->getCaseValue();
5679 
5680   BasicBlock *CommonDest = nullptr;
5681 
5682   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5683   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5684 
5685   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5686   SmallDenseMap<PHINode *, Type *> ResultTypes;
5687   SmallVector<PHINode *, 4> PHIs;
5688 
5689   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5690     ConstantInt *CaseVal = CI->getCaseValue();
5691     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5692       MinCaseVal = CaseVal;
5693     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5694       MaxCaseVal = CaseVal;
5695 
5696     // Resulting value at phi nodes for this case value.
5697     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5698     ResultsTy Results;
5699     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5700                         Results, DL, TTI))
5701       return false;
5702 
5703     // Append the result from this case to the list for each phi.
5704     for (const auto &I : Results) {
5705       PHINode *PHI = I.first;
5706       Constant *Value = I.second;
5707       if (!ResultLists.count(PHI))
5708         PHIs.push_back(PHI);
5709       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5710     }
5711   }
5712 
5713   // Keep track of the result types.
5714   for (PHINode *PHI : PHIs) {
5715     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5716   }
5717 
5718   uint64_t NumResults = ResultLists[PHIs[0]].size();
5719   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5720   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5721   bool TableHasHoles = (NumResults < TableSize);
5722 
5723   // If the table has holes, we need a constant result for the default case
5724   // or a bitmask that fits in a register.
5725   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5726   bool HasDefaultResults =
5727       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5728                      DefaultResultsList, DL, TTI);
5729 
5730   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5731   if (NeedMask) {
5732     // As an extra penalty for the validity test we require more cases.
5733     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5734       return false;
5735     if (!DL.fitsInLegalInteger(TableSize))
5736       return false;
5737   }
5738 
5739   for (const auto &I : DefaultResultsList) {
5740     PHINode *PHI = I.first;
5741     Constant *Result = I.second;
5742     DefaultResults[PHI] = Result;
5743   }
5744 
5745   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5746     return false;
5747 
5748   // Create the BB that does the lookups.
5749   Module &Mod = *CommonDest->getParent()->getParent();
5750   BasicBlock *LookupBB = BasicBlock::Create(
5751       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5752 
5753   // Compute the table index value.
5754   Builder.SetInsertPoint(SI);
5755   Value *TableIndex;
5756   if (MinCaseVal->isNullValue())
5757     TableIndex = SI->getCondition();
5758   else
5759     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5760                                    "switch.tableidx");
5761 
5762   // Compute the maximum table size representable by the integer type we are
5763   // switching upon.
5764   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5765   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5766   assert(MaxTableSize >= TableSize &&
5767          "It is impossible for a switch to have more entries than the max "
5768          "representable value of its input integer type's size.");
5769 
5770   // If the default destination is unreachable, or if the lookup table covers
5771   // all values of the conditional variable, branch directly to the lookup table
5772   // BB. Otherwise, check that the condition is within the case range.
5773   const bool DefaultIsReachable =
5774       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5775   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5776   BranchInst *RangeCheckBranch = nullptr;
5777 
5778   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5779     Builder.CreateBr(LookupBB);
5780     // Note: We call removeProdecessor later since we need to be able to get the
5781     // PHI value for the default case in case we're using a bit mask.
5782   } else {
5783     Value *Cmp = Builder.CreateICmpULT(
5784         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5785     RangeCheckBranch =
5786         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5787   }
5788 
5789   // Populate the BB that does the lookups.
5790   Builder.SetInsertPoint(LookupBB);
5791 
5792   if (NeedMask) {
5793     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5794     // re-purposed to do the hole check, and we create a new LookupBB.
5795     BasicBlock *MaskBB = LookupBB;
5796     MaskBB->setName("switch.hole_check");
5797     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5798                                   CommonDest->getParent(), CommonDest);
5799 
5800     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5801     // unnecessary illegal types.
5802     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5803     APInt MaskInt(TableSizePowOf2, 0);
5804     APInt One(TableSizePowOf2, 1);
5805     // Build bitmask; fill in a 1 bit for every case.
5806     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5807     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5808       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5809                          .getLimitedValue();
5810       MaskInt |= One << Idx;
5811     }
5812     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5813 
5814     // Get the TableIndex'th bit of the bitmask.
5815     // If this bit is 0 (meaning hole) jump to the default destination,
5816     // else continue with table lookup.
5817     IntegerType *MapTy = TableMask->getType();
5818     Value *MaskIndex =
5819         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5820     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5821     Value *LoBit = Builder.CreateTrunc(
5822         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5823     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5824 
5825     Builder.SetInsertPoint(LookupBB);
5826     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5827   }
5828 
5829   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5830     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5831     // do not delete PHINodes here.
5832     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5833                                             /*KeepOneInputPHIs=*/true);
5834   }
5835 
5836   bool ReturnedEarly = false;
5837   for (PHINode *PHI : PHIs) {
5838     const ResultListTy &ResultList = ResultLists[PHI];
5839 
5840     // If using a bitmask, use any value to fill the lookup table holes.
5841     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5842     StringRef FuncName = Fn->getName();
5843     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5844                             FuncName);
5845 
5846     Value *Result = Table.BuildLookup(TableIndex, Builder);
5847 
5848     // If the result is used to return immediately from the function, we want to
5849     // do that right here.
5850     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5851         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5852       Builder.CreateRet(Result);
5853       ReturnedEarly = true;
5854       break;
5855     }
5856 
5857     // Do a small peephole optimization: re-use the switch table compare if
5858     // possible.
5859     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5860       BasicBlock *PhiBlock = PHI->getParent();
5861       // Search for compare instructions which use the phi.
5862       for (auto *User : PHI->users()) {
5863         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5864       }
5865     }
5866 
5867     PHI->addIncoming(Result, LookupBB);
5868   }
5869 
5870   if (!ReturnedEarly)
5871     Builder.CreateBr(CommonDest);
5872 
5873   // Remove the switch.
5874   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5875     BasicBlock *Succ = SI->getSuccessor(i);
5876 
5877     if (Succ == SI->getDefaultDest())
5878       continue;
5879     Succ->removePredecessor(SI->getParent());
5880   }
5881   SI->eraseFromParent();
5882 
5883   ++NumLookupTables;
5884   if (NeedMask)
5885     ++NumLookupTablesHoles;
5886   return true;
5887 }
5888 
5889 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5890   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5891   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5892   uint64_t Range = Diff + 1;
5893   uint64_t NumCases = Values.size();
5894   // 40% is the default density for building a jump table in optsize/minsize mode.
5895   uint64_t MinDensity = 40;
5896 
5897   return NumCases * 100 >= Range * MinDensity;
5898 }
5899 
5900 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5901 /// of cases.
5902 ///
5903 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5904 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5905 ///
5906 /// This converts a sparse switch into a dense switch which allows better
5907 /// lowering and could also allow transforming into a lookup table.
5908 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5909                               const DataLayout &DL,
5910                               const TargetTransformInfo &TTI) {
5911   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5912   if (CondTy->getIntegerBitWidth() > 64 ||
5913       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5914     return false;
5915   // Only bother with this optimization if there are more than 3 switch cases;
5916   // SDAG will only bother creating jump tables for 4 or more cases.
5917   if (SI->getNumCases() < 4)
5918     return false;
5919 
5920   // This transform is agnostic to the signedness of the input or case values. We
5921   // can treat the case values as signed or unsigned. We can optimize more common
5922   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5923   // as signed.
5924   SmallVector<int64_t,4> Values;
5925   for (auto &C : SI->cases())
5926     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5927   llvm::sort(Values);
5928 
5929   // If the switch is already dense, there's nothing useful to do here.
5930   if (isSwitchDense(Values))
5931     return false;
5932 
5933   // First, transform the values such that they start at zero and ascend.
5934   int64_t Base = Values[0];
5935   for (auto &V : Values)
5936     V -= (uint64_t)(Base);
5937 
5938   // Now we have signed numbers that have been shifted so that, given enough
5939   // precision, there are no negative values. Since the rest of the transform
5940   // is bitwise only, we switch now to an unsigned representation.
5941 
5942   // This transform can be done speculatively because it is so cheap - it
5943   // results in a single rotate operation being inserted.
5944   // FIXME: It's possible that optimizing a switch on powers of two might also
5945   // be beneficial - flag values are often powers of two and we could use a CLZ
5946   // as the key function.
5947 
5948   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5949   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5950   // less than 64.
5951   unsigned Shift = 64;
5952   for (auto &V : Values)
5953     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5954   assert(Shift < 64);
5955   if (Shift > 0)
5956     for (auto &V : Values)
5957       V = (int64_t)((uint64_t)V >> Shift);
5958 
5959   if (!isSwitchDense(Values))
5960     // Transform didn't create a dense switch.
5961     return false;
5962 
5963   // The obvious transform is to shift the switch condition right and emit a
5964   // check that the condition actually cleanly divided by GCD, i.e.
5965   //   C & (1 << Shift - 1) == 0
5966   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5967   //
5968   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5969   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5970   // are nonzero then the switch condition will be very large and will hit the
5971   // default case.
5972 
5973   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5974   Builder.SetInsertPoint(SI);
5975   auto *ShiftC = ConstantInt::get(Ty, Shift);
5976   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5977   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5978   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5979   auto *Rot = Builder.CreateOr(LShr, Shl);
5980   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5981 
5982   for (auto Case : SI->cases()) {
5983     auto *Orig = Case.getCaseValue();
5984     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5985     Case.setValue(
5986         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5987   }
5988   return true;
5989 }
5990 
5991 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5992   BasicBlock *BB = SI->getParent();
5993 
5994   if (isValueEqualityComparison(SI)) {
5995     // If we only have one predecessor, and if it is a branch on this value,
5996     // see if that predecessor totally determines the outcome of this switch.
5997     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5998       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5999         return requestResimplify();
6000 
6001     Value *Cond = SI->getCondition();
6002     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6003       if (SimplifySwitchOnSelect(SI, Select))
6004         return requestResimplify();
6005 
6006     // If the block only contains the switch, see if we can fold the block
6007     // away into any preds.
6008     if (SI == &*BB->instructionsWithoutDebug().begin())
6009       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6010         return requestResimplify();
6011   }
6012 
6013   // Try to transform the switch into an icmp and a branch.
6014   if (TurnSwitchRangeIntoICmp(SI, Builder))
6015     return requestResimplify();
6016 
6017   // Remove unreachable cases.
6018   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
6019     return requestResimplify();
6020 
6021   if (switchToSelect(SI, Builder, DL, TTI))
6022     return requestResimplify();
6023 
6024   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6025     return requestResimplify();
6026 
6027   // The conversion from switch to lookup tables results in difficult-to-analyze
6028   // code and makes pruning branches much harder. This is a problem if the
6029   // switch expression itself can still be restricted as a result of inlining or
6030   // CVP. Therefore, only apply this transformation during late stages of the
6031   // optimisation pipeline.
6032   if (Options.ConvertSwitchToLookupTable &&
6033       SwitchToLookupTable(SI, Builder, DL, TTI))
6034     return requestResimplify();
6035 
6036   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6037     return requestResimplify();
6038 
6039   return false;
6040 }
6041 
6042 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6043   BasicBlock *BB = IBI->getParent();
6044   bool Changed = false;
6045 
6046   // Eliminate redundant destinations.
6047   SmallPtrSet<Value *, 8> Succs;
6048   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6049     BasicBlock *Dest = IBI->getDestination(i);
6050     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6051       Dest->removePredecessor(BB);
6052       IBI->removeDestination(i);
6053       --i;
6054       --e;
6055       Changed = true;
6056     }
6057   }
6058 
6059   if (IBI->getNumDestinations() == 0) {
6060     // If the indirectbr has no successors, change it to unreachable.
6061     new UnreachableInst(IBI->getContext(), IBI);
6062     EraseTerminatorAndDCECond(IBI);
6063     return true;
6064   }
6065 
6066   if (IBI->getNumDestinations() == 1) {
6067     // If the indirectbr has one successor, change it to a direct branch.
6068     BranchInst::Create(IBI->getDestination(0), IBI);
6069     EraseTerminatorAndDCECond(IBI);
6070     return true;
6071   }
6072 
6073   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6074     if (SimplifyIndirectBrOnSelect(IBI, SI))
6075       return requestResimplify();
6076   }
6077   return Changed;
6078 }
6079 
6080 /// Given an block with only a single landing pad and a unconditional branch
6081 /// try to find another basic block which this one can be merged with.  This
6082 /// handles cases where we have multiple invokes with unique landing pads, but
6083 /// a shared handler.
6084 ///
6085 /// We specifically choose to not worry about merging non-empty blocks
6086 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6087 /// practice, the optimizer produces empty landing pad blocks quite frequently
6088 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6089 /// sinking in this file)
6090 ///
6091 /// This is primarily a code size optimization.  We need to avoid performing
6092 /// any transform which might inhibit optimization (such as our ability to
6093 /// specialize a particular handler via tail commoning).  We do this by not
6094 /// merging any blocks which require us to introduce a phi.  Since the same
6095 /// values are flowing through both blocks, we don't lose any ability to
6096 /// specialize.  If anything, we make such specialization more likely.
6097 ///
6098 /// TODO - This transformation could remove entries from a phi in the target
6099 /// block when the inputs in the phi are the same for the two blocks being
6100 /// merged.  In some cases, this could result in removal of the PHI entirely.
6101 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6102                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6103   auto Succ = BB->getUniqueSuccessor();
6104   assert(Succ);
6105   // If there's a phi in the successor block, we'd likely have to introduce
6106   // a phi into the merged landing pad block.
6107   if (isa<PHINode>(*Succ->begin()))
6108     return false;
6109 
6110   for (BasicBlock *OtherPred : predecessors(Succ)) {
6111     if (BB == OtherPred)
6112       continue;
6113     BasicBlock::iterator I = OtherPred->begin();
6114     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6115     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6116       continue;
6117     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6118       ;
6119     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6120     if (!BI2 || !BI2->isIdenticalTo(BI))
6121       continue;
6122 
6123     std::vector<DominatorTree::UpdateType> Updates;
6124 
6125     // We've found an identical block.  Update our predecessors to take that
6126     // path instead and make ourselves dead.
6127     SmallPtrSet<BasicBlock *, 16> Preds;
6128     Preds.insert(pred_begin(BB), pred_end(BB));
6129     for (BasicBlock *Pred : Preds) {
6130       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6131       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6132              "unexpected successor");
6133       II->setUnwindDest(OtherPred);
6134       Updates.push_back({DominatorTree::Delete, Pred, BB});
6135       Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6136     }
6137 
6138     // The debug info in OtherPred doesn't cover the merged control flow that
6139     // used to go through BB.  We need to delete it or update it.
6140     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6141       Instruction &Inst = *I;
6142       I++;
6143       if (isa<DbgInfoIntrinsic>(Inst))
6144         Inst.eraseFromParent();
6145     }
6146 
6147     SmallPtrSet<BasicBlock *, 16> Succs;
6148     Succs.insert(succ_begin(BB), succ_end(BB));
6149     for (BasicBlock *Succ : Succs) {
6150       Succ->removePredecessor(BB);
6151       Updates.push_back({DominatorTree::Delete, BB, Succ});
6152     }
6153 
6154     IRBuilder<> Builder(BI);
6155     Builder.CreateUnreachable();
6156     BI->eraseFromParent();
6157     if (DTU)
6158       DTU->applyUpdatesPermissive(Updates);
6159     return true;
6160   }
6161   return false;
6162 }
6163 
6164 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6165   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6166                                    : simplifyCondBranch(Branch, Builder);
6167 }
6168 
6169 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6170                                           IRBuilder<> &Builder) {
6171   BasicBlock *BB = BI->getParent();
6172   BasicBlock *Succ = BI->getSuccessor(0);
6173 
6174   // If the Terminator is the only non-phi instruction, simplify the block.
6175   // If LoopHeader is provided, check if the block or its successor is a loop
6176   // header. (This is for early invocations before loop simplify and
6177   // vectorization to keep canonical loop forms for nested loops. These blocks
6178   // can be eliminated when the pass is invoked later in the back-end.)
6179   // Note that if BB has only one predecessor then we do not introduce new
6180   // backedge, so we can eliminate BB.
6181   bool NeedCanonicalLoop =
6182       Options.NeedCanonicalLoop &&
6183       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
6184        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
6185   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
6186   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6187       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6188     return true;
6189 
6190   // If the only instruction in the block is a seteq/setne comparison against a
6191   // constant, try to simplify the block.
6192   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6193     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6194       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6195         ;
6196       if (I->isTerminator() &&
6197           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6198         return true;
6199     }
6200 
6201   // See if we can merge an empty landing pad block with another which is
6202   // equivalent.
6203   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6204     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6205       ;
6206     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6207       return true;
6208   }
6209 
6210   // If this basic block is ONLY a compare and a branch, and if a predecessor
6211   // branches to us and our successor, fold the comparison into the
6212   // predecessor and use logical operations to update the incoming value
6213   // for PHI nodes in common successor.
6214   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6215                              Options.BonusInstThreshold))
6216     return requestResimplify();
6217   return false;
6218 }
6219 
6220 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6221   BasicBlock *PredPred = nullptr;
6222   for (auto *P : predecessors(BB)) {
6223     BasicBlock *PPred = P->getSinglePredecessor();
6224     if (!PPred || (PredPred && PredPred != PPred))
6225       return nullptr;
6226     PredPred = PPred;
6227   }
6228   return PredPred;
6229 }
6230 
6231 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6232   BasicBlock *BB = BI->getParent();
6233   if (!Options.SimplifyCondBranch)
6234     return false;
6235 
6236   // Conditional branch
6237   if (isValueEqualityComparison(BI)) {
6238     // If we only have one predecessor, and if it is a branch on this value,
6239     // see if that predecessor totally determines the outcome of this
6240     // switch.
6241     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6242       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6243         return requestResimplify();
6244 
6245     // This block must be empty, except for the setcond inst, if it exists.
6246     // Ignore dbg intrinsics.
6247     auto I = BB->instructionsWithoutDebug().begin();
6248     if (&*I == BI) {
6249       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6250         return requestResimplify();
6251     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6252       ++I;
6253       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6254         return requestResimplify();
6255     }
6256   }
6257 
6258   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6259   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6260     return true;
6261 
6262   // If this basic block has dominating predecessor blocks and the dominating
6263   // blocks' conditions imply BI's condition, we know the direction of BI.
6264   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6265   if (Imp) {
6266     // Turn this into a branch on constant.
6267     auto *OldCond = BI->getCondition();
6268     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6269                              : ConstantInt::getFalse(BB->getContext());
6270     BI->setCondition(TorF);
6271     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6272     return requestResimplify();
6273   }
6274 
6275   // If this basic block is ONLY a compare and a branch, and if a predecessor
6276   // branches to us and one of our successors, fold the comparison into the
6277   // predecessor and use logical operations to pick the right destination.
6278   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6279                              Options.BonusInstThreshold))
6280     return requestResimplify();
6281 
6282   // We have a conditional branch to two blocks that are only reachable
6283   // from BI.  We know that the condbr dominates the two blocks, so see if
6284   // there is any identical code in the "then" and "else" blocks.  If so, we
6285   // can hoist it up to the branching block.
6286   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6287     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6288       if (HoistCommon && Options.HoistCommonInsts)
6289         if (HoistThenElseCodeToIf(BI, TTI))
6290           return requestResimplify();
6291     } else {
6292       // If Successor #1 has multiple preds, we may be able to conditionally
6293       // execute Successor #0 if it branches to Successor #1.
6294       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6295       if (Succ0TI->getNumSuccessors() == 1 &&
6296           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6297         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6298           return requestResimplify();
6299     }
6300   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6301     // If Successor #0 has multiple preds, we may be able to conditionally
6302     // execute Successor #1 if it branches to Successor #0.
6303     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6304     if (Succ1TI->getNumSuccessors() == 1 &&
6305         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6306       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6307         return requestResimplify();
6308   }
6309 
6310   // If this is a branch on a phi node in the current block, thread control
6311   // through this block if any PHI node entries are constants.
6312   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6313     if (PN->getParent() == BI->getParent())
6314       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
6315         return requestResimplify();
6316 
6317   // Scan predecessor blocks for conditional branches.
6318   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6319     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6320       if (PBI != BI && PBI->isConditional())
6321         if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI))
6322           return requestResimplify();
6323 
6324   // Look for diamond patterns.
6325   if (MergeCondStores)
6326     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6327       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6328         if (PBI != BI && PBI->isConditional())
6329           if (mergeConditionalStores(PBI, BI, DL, TTI))
6330             return requestResimplify();
6331 
6332   return false;
6333 }
6334 
6335 /// Check if passing a value to an instruction will cause undefined behavior.
6336 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
6337   Constant *C = dyn_cast<Constant>(V);
6338   if (!C)
6339     return false;
6340 
6341   if (I->use_empty())
6342     return false;
6343 
6344   if (C->isNullValue() || isa<UndefValue>(C)) {
6345     // Only look at the first use, avoid hurting compile time with long uselists
6346     User *Use = *I->user_begin();
6347 
6348     // Now make sure that there are no instructions in between that can alter
6349     // control flow (eg. calls)
6350     for (BasicBlock::iterator
6351              i = ++BasicBlock::iterator(I),
6352              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6353          i != UI; ++i)
6354       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6355         return false;
6356 
6357     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6358     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6359       if (GEP->getPointerOperand() == I)
6360         return passingValueIsAlwaysUndefined(V, GEP);
6361 
6362     // Look through bitcasts.
6363     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6364       return passingValueIsAlwaysUndefined(V, BC);
6365 
6366     // Load from null is undefined.
6367     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6368       if (!LI->isVolatile())
6369         return !NullPointerIsDefined(LI->getFunction(),
6370                                      LI->getPointerAddressSpace());
6371 
6372     // Store to null is undefined.
6373     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6374       if (!SI->isVolatile())
6375         return (!NullPointerIsDefined(SI->getFunction(),
6376                                       SI->getPointerAddressSpace())) &&
6377                SI->getPointerOperand() == I;
6378 
6379     // A call to null is undefined.
6380     if (auto *CB = dyn_cast<CallBase>(Use))
6381       return !NullPointerIsDefined(CB->getFunction()) &&
6382              CB->getCalledOperand() == I;
6383   }
6384   return false;
6385 }
6386 
6387 /// If BB has an incoming value that will always trigger undefined behavior
6388 /// (eg. null pointer dereference), remove the branch leading here.
6389 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
6390   for (PHINode &PHI : BB->phis())
6391     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6392       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6393         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
6394         IRBuilder<> Builder(T);
6395         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6396           BB->removePredecessor(PHI.getIncomingBlock(i));
6397           // Turn uncoditional branches into unreachables and remove the dead
6398           // destination from conditional branches.
6399           if (BI->isUnconditional())
6400             Builder.CreateUnreachable();
6401           else
6402             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6403                                                        : BI->getSuccessor(0));
6404           BI->eraseFromParent();
6405           return true;
6406         }
6407         // TODO: SwitchInst.
6408       }
6409 
6410   return false;
6411 }
6412 
6413 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6414   bool Changed = false;
6415 
6416   assert(BB && BB->getParent() && "Block not embedded in function!");
6417   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6418 
6419   // Remove basic blocks that have no predecessors (except the entry block)...
6420   // or that just have themself as a predecessor.  These are unreachable.
6421   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6422       BB->getSinglePredecessor() == BB) {
6423     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6424     DeleteDeadBlock(BB, DTU);
6425     return true;
6426   }
6427 
6428   // Check to see if we can constant propagate this terminator instruction
6429   // away...
6430   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6431                                     /*TLI=*/nullptr, DTU);
6432 
6433   // Check for and eliminate duplicate PHI nodes in this block.
6434   Changed |= EliminateDuplicatePHINodes(BB);
6435 
6436   // Check for and remove branches that will always cause undefined behavior.
6437   Changed |= removeUndefIntroducingPredecessor(BB);
6438 
6439   // Merge basic blocks into their predecessor if there is only one distinct
6440   // pred, and if there is only one distinct successor of the predecessor, and
6441   // if there are no PHI nodes.
6442   if (MergeBlockIntoPredecessor(BB, DTU))
6443     return true;
6444 
6445   if (SinkCommon && Options.SinkCommonInsts)
6446     Changed |= SinkCommonCodeFromPredecessors(BB);
6447 
6448   IRBuilder<> Builder(BB);
6449 
6450   if (Options.FoldTwoEntryPHINode) {
6451     // If there is a trivial two-entry PHI node in this basic block, and we can
6452     // eliminate it, do so now.
6453     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6454       if (PN->getNumIncomingValues() == 2)
6455         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6456   }
6457 
6458   Instruction *Terminator = BB->getTerminator();
6459   Builder.SetInsertPoint(Terminator);
6460   switch (Terminator->getOpcode()) {
6461   case Instruction::Br:
6462     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6463     break;
6464   case Instruction::Ret:
6465     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6466     break;
6467   case Instruction::Resume:
6468     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6469     break;
6470   case Instruction::CleanupRet:
6471     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6472     break;
6473   case Instruction::Switch:
6474     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6475     break;
6476   case Instruction::Unreachable:
6477     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6478     break;
6479   case Instruction::IndirectBr:
6480     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6481     break;
6482   }
6483 
6484   return Changed;
6485 }
6486 
6487 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6488   assert((!RequireAndPreserveDomTree ||
6489           (DTU &&
6490            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6491          "Original domtree is invalid?");
6492 
6493   bool Changed = simplifyOnceImpl(BB);
6494 
6495   assert((!RequireAndPreserveDomTree ||
6496           (DTU &&
6497            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6498          "Failed to maintain validity of domtree!");
6499 
6500   return Changed;
6501 }
6502 
6503 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6504   bool Changed = false;
6505 
6506   // Repeated simplify BB as long as resimplification is requested.
6507   do {
6508     Resimplify = false;
6509 
6510     // Perform one round of simplifcation. Resimplify flag will be set if
6511     // another iteration is requested.
6512     Changed |= simplifyOnce(BB);
6513   } while (Resimplify);
6514 
6515   return Changed;
6516 }
6517 
6518 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6519                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6520                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6521   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6522                         Options)
6523       .run(BB);
6524 }
6525