1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/MemorySSA.h"
31 #include "llvm/Analysis/MemorySSAUpdater.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/NoFolder.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/PatternMatch.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/SSAUpdater.h"
72 #include "llvm/Transforms/Utils/ValueMapper.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <climits>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <map>
80 #include <set>
81 #include <tuple>
82 #include <utility>
83 #include <vector>
84 
85 using namespace llvm;
86 using namespace PatternMatch;
87 
88 #define DEBUG_TYPE "simplifycfg"
89 
90 cl::opt<bool> llvm::RequireAndPreserveDomTree(
91     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
92     cl::init(false),
93     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
94              "into preserving DomTree,"));
95 
96 // Chosen as 2 so as to be cheap, but still to have enough power to fold
97 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
98 // To catch this, we need to fold a compare and a select, hence '2' being the
99 // minimum reasonable default.
100 static cl::opt<unsigned> PHINodeFoldingThreshold(
101     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
102     cl::desc(
103         "Control the amount of phi node folding to perform (default = 2)"));
104 
105 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
106     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
107     cl::desc("Control the maximal total instruction cost that we are willing "
108              "to speculatively execute to fold a 2-entry PHI node into a "
109              "select (default = 4)"));
110 
111 static cl::opt<bool> DupRet(
112     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
113     cl::desc("Duplicate return instructions into unconditional branches"));
114 
115 static cl::opt<bool>
116     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
117                 cl::desc("Hoist common instructions up to the parent block"));
118 
119 static cl::opt<bool>
120     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
121                cl::desc("Sink common instructions down to the end block"));
122 
123 static cl::opt<bool> HoistCondStores(
124     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
125     cl::desc("Hoist conditional stores if an unconditional store precedes"));
126 
127 static cl::opt<bool> MergeCondStores(
128     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
129     cl::desc("Hoist conditional stores even if an unconditional store does not "
130              "precede - hoist multiple conditional stores into a single "
131              "predicated store"));
132 
133 static cl::opt<bool> MergeCondStoresAggressively(
134     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
135     cl::desc("When merging conditional stores, do so even if the resultant "
136              "basic blocks are unlikely to be if-converted as a result"));
137 
138 static cl::opt<bool> SpeculateOneExpensiveInst(
139     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
140     cl::desc("Allow exactly one expensive instruction to be speculatively "
141              "executed"));
142 
143 static cl::opt<unsigned> MaxSpeculationDepth(
144     "max-speculation-depth", cl::Hidden, cl::init(10),
145     cl::desc("Limit maximum recursion depth when calculating costs of "
146              "speculatively executed instructions"));
147 
148 static cl::opt<int>
149 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
150                   cl::desc("Max size of a block which is still considered "
151                            "small enough to thread through"));
152 
153 // Two is chosen to allow one negation and a logical combine.
154 static cl::opt<unsigned>
155     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
156                         cl::init(2),
157                         cl::desc("Maximum cost of combining conditions when "
158                                  "folding branches"));
159 
160 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
161 STATISTIC(NumLinearMaps,
162           "Number of switch instructions turned into linear mapping");
163 STATISTIC(NumLookupTables,
164           "Number of switch instructions turned into lookup tables");
165 STATISTIC(
166     NumLookupTablesHoles,
167     "Number of switch instructions turned into lookup tables (holes checked)");
168 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
169 STATISTIC(NumFoldValueComparisonIntoPredecessors,
170           "Number of value comparisons folded into predecessor basic blocks");
171 STATISTIC(NumFoldBranchToCommonDest,
172           "Number of branches folded into predecessor basic block");
173 STATISTIC(
174     NumHoistCommonCode,
175     "Number of common instruction 'blocks' hoisted up to the begin block");
176 STATISTIC(NumHoistCommonInstrs,
177           "Number of common instructions hoisted up to the begin block");
178 STATISTIC(NumSinkCommonCode,
179           "Number of common instruction 'blocks' sunk down to the end block");
180 STATISTIC(NumSinkCommonInstrs,
181           "Number of common instructions sunk down to the end block");
182 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
183 STATISTIC(NumInvokes,
184           "Number of invokes with empty resume blocks simplified into calls");
185 
186 namespace {
187 
188 // The first field contains the value that the switch produces when a certain
189 // case group is selected, and the second field is a vector containing the
190 // cases composing the case group.
191 using SwitchCaseResultVectorTy =
192     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
193 
194 // The first field contains the phi node that generates a result of the switch
195 // and the second field contains the value generated for a certain case in the
196 // switch for that PHI.
197 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
198 
199 /// ValueEqualityComparisonCase - Represents a case of a switch.
200 struct ValueEqualityComparisonCase {
201   ConstantInt *Value;
202   BasicBlock *Dest;
203 
204   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
205       : Value(Value), Dest(Dest) {}
206 
207   bool operator<(ValueEqualityComparisonCase RHS) const {
208     // Comparing pointers is ok as we only rely on the order for uniquing.
209     return Value < RHS.Value;
210   }
211 
212   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
213 };
214 
215 class SimplifyCFGOpt {
216   const TargetTransformInfo &TTI;
217   DomTreeUpdater *DTU;
218   const DataLayout &DL;
219   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
220   const SimplifyCFGOptions &Options;
221   bool Resimplify;
222 
223   Value *isValueEqualityComparison(Instruction *TI);
224   BasicBlock *GetValueEqualityComparisonCases(
225       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
226   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
227                                                      BasicBlock *Pred,
228                                                      IRBuilder<> &Builder);
229   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
230                                            IRBuilder<> &Builder);
231 
232   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
233   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
234   bool simplifySingleResume(ResumeInst *RI);
235   bool simplifyCommonResume(ResumeInst *RI);
236   bool simplifyCleanupReturn(CleanupReturnInst *RI);
237   bool simplifyUnreachable(UnreachableInst *UI);
238   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
239   bool simplifyIndirectBr(IndirectBrInst *IBI);
240   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
241   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
242   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
243   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
244 
245   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
246                                              IRBuilder<> &Builder);
247 
248   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
249   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
250                               const TargetTransformInfo &TTI);
251   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
252                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
253                                   uint32_t TrueWeight, uint32_t FalseWeight);
254   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
255                                  const DataLayout &DL);
256   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
257   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
258   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
259 
260 public:
261   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
262                  const DataLayout &DL,
263                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
264                  const SimplifyCFGOptions &Opts)
265       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
266 
267   bool run(BasicBlock *BB);
268   bool simplifyOnce(BasicBlock *BB);
269 
270   // Helper to set Resimplify and return change indication.
271   bool requestResimplify() {
272     Resimplify = true;
273     return true;
274   }
275 };
276 
277 } // end anonymous namespace
278 
279 /// Return true if it is safe to merge these two
280 /// terminator instructions together.
281 static bool
282 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
283                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
284   if (SI1 == SI2)
285     return false; // Can't merge with self!
286 
287   // It is not safe to merge these two switch instructions if they have a common
288   // successor, and if that successor has a PHI node, and if *that* PHI node has
289   // conflicting incoming values from the two switch blocks.
290   BasicBlock *SI1BB = SI1->getParent();
291   BasicBlock *SI2BB = SI2->getParent();
292 
293   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
294   bool Fail = false;
295   for (BasicBlock *Succ : successors(SI2BB))
296     if (SI1Succs.count(Succ))
297       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
298         PHINode *PN = cast<PHINode>(BBI);
299         if (PN->getIncomingValueForBlock(SI1BB) !=
300             PN->getIncomingValueForBlock(SI2BB)) {
301           if (FailBlocks)
302             FailBlocks->insert(Succ);
303           Fail = true;
304         }
305       }
306 
307   return !Fail;
308 }
309 
310 /// Return true if it is safe and profitable to merge these two terminator
311 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
312 /// store all PHI nodes in common successors.
313 static bool
314 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
315                                 Instruction *Cond,
316                                 SmallVectorImpl<PHINode *> &PhiNodes) {
317   if (SI1 == SI2)
318     return false; // Can't merge with self!
319   assert(SI1->isUnconditional() && SI2->isConditional());
320 
321   // We fold the unconditional branch if we can easily update all PHI nodes in
322   // common successors:
323   // 1> We have a constant incoming value for the conditional branch;
324   // 2> We have "Cond" as the incoming value for the unconditional branch;
325   // 3> SI2->getCondition() and Cond have same operands.
326   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
327   if (!Ci2)
328     return false;
329   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
330         Cond->getOperand(1) == Ci2->getOperand(1)) &&
331       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
332         Cond->getOperand(1) == Ci2->getOperand(0)))
333     return false;
334 
335   BasicBlock *SI1BB = SI1->getParent();
336   BasicBlock *SI2BB = SI2->getParent();
337   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
338   for (BasicBlock *Succ : successors(SI2BB))
339     if (SI1Succs.count(Succ))
340       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
341         PHINode *PN = cast<PHINode>(BBI);
342         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
343             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
344           return false;
345         PhiNodes.push_back(PN);
346       }
347   return true;
348 }
349 
350 /// Update PHI nodes in Succ to indicate that there will now be entries in it
351 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
352 /// will be the same as those coming in from ExistPred, an existing predecessor
353 /// of Succ.
354 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
355                                   BasicBlock *ExistPred,
356                                   MemorySSAUpdater *MSSAU = nullptr) {
357   for (PHINode &PN : Succ->phis())
358     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
359   if (MSSAU)
360     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
361       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
362 }
363 
364 /// Compute an abstract "cost" of speculating the given instruction,
365 /// which is assumed to be safe to speculate. TCC_Free means cheap,
366 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
367 /// expensive.
368 static unsigned ComputeSpeculationCost(const User *I,
369                                        const TargetTransformInfo &TTI) {
370   assert(isSafeToSpeculativelyExecute(I) &&
371          "Instruction is not safe to speculatively execute!");
372   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
373 }
374 
375 /// If we have a merge point of an "if condition" as accepted above,
376 /// return true if the specified value dominates the block.  We
377 /// don't handle the true generality of domination here, just a special case
378 /// which works well enough for us.
379 ///
380 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
381 /// see if V (which must be an instruction) and its recursive operands
382 /// that do not dominate BB have a combined cost lower than CostRemaining and
383 /// are non-trapping.  If both are true, the instruction is inserted into the
384 /// set and true is returned.
385 ///
386 /// The cost for most non-trapping instructions is defined as 1 except for
387 /// Select whose cost is 2.
388 ///
389 /// After this function returns, CostRemaining is decreased by the cost of
390 /// V plus its non-dominating operands.  If that cost is greater than
391 /// CostRemaining, false is returned and CostRemaining is undefined.
392 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
393                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
394                                 int &BudgetRemaining,
395                                 const TargetTransformInfo &TTI,
396                                 unsigned Depth = 0) {
397   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
398   // so limit the recursion depth.
399   // TODO: While this recursion limit does prevent pathological behavior, it
400   // would be better to track visited instructions to avoid cycles.
401   if (Depth == MaxSpeculationDepth)
402     return false;
403 
404   Instruction *I = dyn_cast<Instruction>(V);
405   if (!I) {
406     // Non-instructions all dominate instructions, but not all constantexprs
407     // can be executed unconditionally.
408     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
409       if (C->canTrap())
410         return false;
411     return true;
412   }
413   BasicBlock *PBB = I->getParent();
414 
415   // We don't want to allow weird loops that might have the "if condition" in
416   // the bottom of this block.
417   if (PBB == BB)
418     return false;
419 
420   // If this instruction is defined in a block that contains an unconditional
421   // branch to BB, then it must be in the 'conditional' part of the "if
422   // statement".  If not, it definitely dominates the region.
423   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
424   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
425     return true;
426 
427   // If we have seen this instruction before, don't count it again.
428   if (AggressiveInsts.count(I))
429     return true;
430 
431   // Okay, it looks like the instruction IS in the "condition".  Check to
432   // see if it's a cheap instruction to unconditionally compute, and if it
433   // only uses stuff defined outside of the condition.  If so, hoist it out.
434   if (!isSafeToSpeculativelyExecute(I))
435     return false;
436 
437   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
438 
439   // Allow exactly one instruction to be speculated regardless of its cost
440   // (as long as it is safe to do so).
441   // This is intended to flatten the CFG even if the instruction is a division
442   // or other expensive operation. The speculation of an expensive instruction
443   // is expected to be undone in CodeGenPrepare if the speculation has not
444   // enabled further IR optimizations.
445   if (BudgetRemaining < 0 &&
446       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
447     return false;
448 
449   // Okay, we can only really hoist these out if their operands do
450   // not take us over the cost threshold.
451   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
452     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
453                              Depth + 1))
454       return false;
455   // Okay, it's safe to do this!  Remember this instruction.
456   AggressiveInsts.insert(I);
457   return true;
458 }
459 
460 /// Extract ConstantInt from value, looking through IntToPtr
461 /// and PointerNullValue. Return NULL if value is not a constant int.
462 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
463   // Normal constant int.
464   ConstantInt *CI = dyn_cast<ConstantInt>(V);
465   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
466     return CI;
467 
468   // This is some kind of pointer constant. Turn it into a pointer-sized
469   // ConstantInt if possible.
470   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
471 
472   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
473   if (isa<ConstantPointerNull>(V))
474     return ConstantInt::get(PtrTy, 0);
475 
476   // IntToPtr const int.
477   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
478     if (CE->getOpcode() == Instruction::IntToPtr)
479       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
480         // The constant is very likely to have the right type already.
481         if (CI->getType() == PtrTy)
482           return CI;
483         else
484           return cast<ConstantInt>(
485               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
486       }
487   return nullptr;
488 }
489 
490 namespace {
491 
492 /// Given a chain of or (||) or and (&&) comparison of a value against a
493 /// constant, this will try to recover the information required for a switch
494 /// structure.
495 /// It will depth-first traverse the chain of comparison, seeking for patterns
496 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
497 /// representing the different cases for the switch.
498 /// Note that if the chain is composed of '||' it will build the set of elements
499 /// that matches the comparisons (i.e. any of this value validate the chain)
500 /// while for a chain of '&&' it will build the set elements that make the test
501 /// fail.
502 struct ConstantComparesGatherer {
503   const DataLayout &DL;
504 
505   /// Value found for the switch comparison
506   Value *CompValue = nullptr;
507 
508   /// Extra clause to be checked before the switch
509   Value *Extra = nullptr;
510 
511   /// Set of integers to match in switch
512   SmallVector<ConstantInt *, 8> Vals;
513 
514   /// Number of comparisons matched in the and/or chain
515   unsigned UsedICmps = 0;
516 
517   /// Construct and compute the result for the comparison instruction Cond
518   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
519     gather(Cond);
520   }
521 
522   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
523   ConstantComparesGatherer &
524   operator=(const ConstantComparesGatherer &) = delete;
525 
526 private:
527   /// Try to set the current value used for the comparison, it succeeds only if
528   /// it wasn't set before or if the new value is the same as the old one
529   bool setValueOnce(Value *NewVal) {
530     if (CompValue && CompValue != NewVal)
531       return false;
532     CompValue = NewVal;
533     return (CompValue != nullptr);
534   }
535 
536   /// Try to match Instruction "I" as a comparison against a constant and
537   /// populates the array Vals with the set of values that match (or do not
538   /// match depending on isEQ).
539   /// Return false on failure. On success, the Value the comparison matched
540   /// against is placed in CompValue.
541   /// If CompValue is already set, the function is expected to fail if a match
542   /// is found but the value compared to is different.
543   bool matchInstruction(Instruction *I, bool isEQ) {
544     // If this is an icmp against a constant, handle this as one of the cases.
545     ICmpInst *ICI;
546     ConstantInt *C;
547     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
548           (C = GetConstantInt(I->getOperand(1), DL)))) {
549       return false;
550     }
551 
552     Value *RHSVal;
553     const APInt *RHSC;
554 
555     // Pattern match a special case
556     // (x & ~2^z) == y --> x == y || x == y|2^z
557     // This undoes a transformation done by instcombine to fuse 2 compares.
558     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
559       // It's a little bit hard to see why the following transformations are
560       // correct. Here is a CVC3 program to verify them for 64-bit values:
561 
562       /*
563          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
564          x    : BITVECTOR(64);
565          y    : BITVECTOR(64);
566          z    : BITVECTOR(64);
567          mask : BITVECTOR(64) = BVSHL(ONE, z);
568          QUERY( (y & ~mask = y) =>
569                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
570          );
571          QUERY( (y |  mask = y) =>
572                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
573          );
574       */
575 
576       // Please note that each pattern must be a dual implication (<--> or
577       // iff). One directional implication can create spurious matches. If the
578       // implication is only one-way, an unsatisfiable condition on the left
579       // side can imply a satisfiable condition on the right side. Dual
580       // implication ensures that satisfiable conditions are transformed to
581       // other satisfiable conditions and unsatisfiable conditions are
582       // transformed to other unsatisfiable conditions.
583 
584       // Here is a concrete example of a unsatisfiable condition on the left
585       // implying a satisfiable condition on the right:
586       //
587       // mask = (1 << z)
588       // (x & ~mask) == y  --> (x == y || x == (y | mask))
589       //
590       // Substituting y = 3, z = 0 yields:
591       // (x & -2) == 3 --> (x == 3 || x == 2)
592 
593       // Pattern match a special case:
594       /*
595         QUERY( (y & ~mask = y) =>
596                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
597         );
598       */
599       if (match(ICI->getOperand(0),
600                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
601         APInt Mask = ~*RHSC;
602         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
603           // If we already have a value for the switch, it has to match!
604           if (!setValueOnce(RHSVal))
605             return false;
606 
607           Vals.push_back(C);
608           Vals.push_back(
609               ConstantInt::get(C->getContext(),
610                                C->getValue() | Mask));
611           UsedICmps++;
612           return true;
613         }
614       }
615 
616       // Pattern match a special case:
617       /*
618         QUERY( (y |  mask = y) =>
619                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
620         );
621       */
622       if (match(ICI->getOperand(0),
623                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
624         APInt Mask = *RHSC;
625         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
626           // If we already have a value for the switch, it has to match!
627           if (!setValueOnce(RHSVal))
628             return false;
629 
630           Vals.push_back(C);
631           Vals.push_back(ConstantInt::get(C->getContext(),
632                                           C->getValue() & ~Mask));
633           UsedICmps++;
634           return true;
635         }
636       }
637 
638       // If we already have a value for the switch, it has to match!
639       if (!setValueOnce(ICI->getOperand(0)))
640         return false;
641 
642       UsedICmps++;
643       Vals.push_back(C);
644       return ICI->getOperand(0);
645     }
646 
647     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
648     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
649         ICI->getPredicate(), C->getValue());
650 
651     // Shift the range if the compare is fed by an add. This is the range
652     // compare idiom as emitted by instcombine.
653     Value *CandidateVal = I->getOperand(0);
654     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
655       Span = Span.subtract(*RHSC);
656       CandidateVal = RHSVal;
657     }
658 
659     // If this is an and/!= check, then we are looking to build the set of
660     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
661     // x != 0 && x != 1.
662     if (!isEQ)
663       Span = Span.inverse();
664 
665     // If there are a ton of values, we don't want to make a ginormous switch.
666     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
667       return false;
668     }
669 
670     // If we already have a value for the switch, it has to match!
671     if (!setValueOnce(CandidateVal))
672       return false;
673 
674     // Add all values from the range to the set
675     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
676       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
677 
678     UsedICmps++;
679     return true;
680   }
681 
682   /// Given a potentially 'or'd or 'and'd together collection of icmp
683   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
684   /// the value being compared, and stick the list constants into the Vals
685   /// vector.
686   /// One "Extra" case is allowed to differ from the other.
687   void gather(Value *V) {
688     bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
689 
690     // Keep a stack (SmallVector for efficiency) for depth-first traversal
691     SmallVector<Value *, 8> DFT;
692     SmallPtrSet<Value *, 8> Visited;
693 
694     // Initialize
695     Visited.insert(V);
696     DFT.push_back(V);
697 
698     while (!DFT.empty()) {
699       V = DFT.pop_back_val();
700 
701       if (Instruction *I = dyn_cast<Instruction>(V)) {
702         // If it is a || (or && depending on isEQ), process the operands.
703         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
704           if (Visited.insert(I->getOperand(1)).second)
705             DFT.push_back(I->getOperand(1));
706           if (Visited.insert(I->getOperand(0)).second)
707             DFT.push_back(I->getOperand(0));
708           continue;
709         }
710 
711         // Try to match the current instruction
712         if (matchInstruction(I, isEQ))
713           // Match succeed, continue the loop
714           continue;
715       }
716 
717       // One element of the sequence of || (or &&) could not be match as a
718       // comparison against the same value as the others.
719       // We allow only one "Extra" case to be checked before the switch
720       if (!Extra) {
721         Extra = V;
722         continue;
723       }
724       // Failed to parse a proper sequence, abort now
725       CompValue = nullptr;
726       break;
727     }
728   }
729 };
730 
731 } // end anonymous namespace
732 
733 static void EraseTerminatorAndDCECond(Instruction *TI,
734                                       MemorySSAUpdater *MSSAU = nullptr) {
735   Instruction *Cond = nullptr;
736   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
737     Cond = dyn_cast<Instruction>(SI->getCondition());
738   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
739     if (BI->isConditional())
740       Cond = dyn_cast<Instruction>(BI->getCondition());
741   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
742     Cond = dyn_cast<Instruction>(IBI->getAddress());
743   }
744 
745   TI->eraseFromParent();
746   if (Cond)
747     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
748 }
749 
750 /// Return true if the specified terminator checks
751 /// to see if a value is equal to constant integer value.
752 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
753   Value *CV = nullptr;
754   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
755     // Do not permit merging of large switch instructions into their
756     // predecessors unless there is only one predecessor.
757     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
758       CV = SI->getCondition();
759   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
760     if (BI->isConditional() && BI->getCondition()->hasOneUse())
761       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
762         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
763           CV = ICI->getOperand(0);
764       }
765 
766   // Unwrap any lossless ptrtoint cast.
767   if (CV) {
768     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
769       Value *Ptr = PTII->getPointerOperand();
770       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
771         CV = Ptr;
772     }
773   }
774   return CV;
775 }
776 
777 /// Given a value comparison instruction,
778 /// decode all of the 'cases' that it represents and return the 'default' block.
779 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
780     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
781   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
782     Cases.reserve(SI->getNumCases());
783     for (auto Case : SI->cases())
784       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
785                                                   Case.getCaseSuccessor()));
786     return SI->getDefaultDest();
787   }
788 
789   BranchInst *BI = cast<BranchInst>(TI);
790   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
791   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
792   Cases.push_back(ValueEqualityComparisonCase(
793       GetConstantInt(ICI->getOperand(1), DL), Succ));
794   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
795 }
796 
797 /// Given a vector of bb/value pairs, remove any entries
798 /// in the list that match the specified block.
799 static void
800 EliminateBlockCases(BasicBlock *BB,
801                     std::vector<ValueEqualityComparisonCase> &Cases) {
802   llvm::erase_value(Cases, BB);
803 }
804 
805 /// Return true if there are any keys in C1 that exist in C2 as well.
806 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
807                           std::vector<ValueEqualityComparisonCase> &C2) {
808   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
809 
810   // Make V1 be smaller than V2.
811   if (V1->size() > V2->size())
812     std::swap(V1, V2);
813 
814   if (V1->empty())
815     return false;
816   if (V1->size() == 1) {
817     // Just scan V2.
818     ConstantInt *TheVal = (*V1)[0].Value;
819     for (unsigned i = 0, e = V2->size(); i != e; ++i)
820       if (TheVal == (*V2)[i].Value)
821         return true;
822   }
823 
824   // Otherwise, just sort both lists and compare element by element.
825   array_pod_sort(V1->begin(), V1->end());
826   array_pod_sort(V2->begin(), V2->end());
827   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
828   while (i1 != e1 && i2 != e2) {
829     if ((*V1)[i1].Value == (*V2)[i2].Value)
830       return true;
831     if ((*V1)[i1].Value < (*V2)[i2].Value)
832       ++i1;
833     else
834       ++i2;
835   }
836   return false;
837 }
838 
839 // Set branch weights on SwitchInst. This sets the metadata if there is at
840 // least one non-zero weight.
841 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
842   // Check that there is at least one non-zero weight. Otherwise, pass
843   // nullptr to setMetadata which will erase the existing metadata.
844   MDNode *N = nullptr;
845   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
846     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
847   SI->setMetadata(LLVMContext::MD_prof, N);
848 }
849 
850 // Similar to the above, but for branch and select instructions that take
851 // exactly 2 weights.
852 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
853                              uint32_t FalseWeight) {
854   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
855   // Check that there is at least one non-zero weight. Otherwise, pass
856   // nullptr to setMetadata which will erase the existing metadata.
857   MDNode *N = nullptr;
858   if (TrueWeight || FalseWeight)
859     N = MDBuilder(I->getParent()->getContext())
860             .createBranchWeights(TrueWeight, FalseWeight);
861   I->setMetadata(LLVMContext::MD_prof, N);
862 }
863 
864 /// If TI is known to be a terminator instruction and its block is known to
865 /// only have a single predecessor block, check to see if that predecessor is
866 /// also a value comparison with the same value, and if that comparison
867 /// determines the outcome of this comparison. If so, simplify TI. This does a
868 /// very limited form of jump threading.
869 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
870     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
871   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
872   if (!PredVal)
873     return false; // Not a value comparison in predecessor.
874 
875   Value *ThisVal = isValueEqualityComparison(TI);
876   assert(ThisVal && "This isn't a value comparison!!");
877   if (ThisVal != PredVal)
878     return false; // Different predicates.
879 
880   // TODO: Preserve branch weight metadata, similarly to how
881   // FoldValueComparisonIntoPredecessors preserves it.
882 
883   // Find out information about when control will move from Pred to TI's block.
884   std::vector<ValueEqualityComparisonCase> PredCases;
885   BasicBlock *PredDef =
886       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
887   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
888 
889   // Find information about how control leaves this block.
890   std::vector<ValueEqualityComparisonCase> ThisCases;
891   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
892   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
893 
894   // If TI's block is the default block from Pred's comparison, potentially
895   // simplify TI based on this knowledge.
896   if (PredDef == TI->getParent()) {
897     // If we are here, we know that the value is none of those cases listed in
898     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
899     // can simplify TI.
900     if (!ValuesOverlap(PredCases, ThisCases))
901       return false;
902 
903     if (isa<BranchInst>(TI)) {
904       // Okay, one of the successors of this condbr is dead.  Convert it to a
905       // uncond br.
906       assert(ThisCases.size() == 1 && "Branch can only have one case!");
907       // Insert the new branch.
908       Instruction *NI = Builder.CreateBr(ThisDef);
909       (void)NI;
910 
911       // Remove PHI node entries for the dead edge.
912       ThisCases[0].Dest->removePredecessor(TI->getParent());
913 
914       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
915                         << "Through successor TI: " << *TI << "Leaving: " << *NI
916                         << "\n");
917 
918       EraseTerminatorAndDCECond(TI);
919       return true;
920     }
921 
922     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
923     // Okay, TI has cases that are statically dead, prune them away.
924     SmallPtrSet<Constant *, 16> DeadCases;
925     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
926       DeadCases.insert(PredCases[i].Value);
927 
928     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
929                       << "Through successor TI: " << *TI);
930 
931     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
932       --i;
933       if (DeadCases.count(i->getCaseValue())) {
934         i->getCaseSuccessor()->removePredecessor(TI->getParent());
935         SI.removeCase(i);
936       }
937     }
938     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
939     return true;
940   }
941 
942   // Otherwise, TI's block must correspond to some matched value.  Find out
943   // which value (or set of values) this is.
944   ConstantInt *TIV = nullptr;
945   BasicBlock *TIBB = TI->getParent();
946   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
947     if (PredCases[i].Dest == TIBB) {
948       if (TIV)
949         return false; // Cannot handle multiple values coming to this block.
950       TIV = PredCases[i].Value;
951     }
952   assert(TIV && "No edge from pred to succ?");
953 
954   // Okay, we found the one constant that our value can be if we get into TI's
955   // BB.  Find out which successor will unconditionally be branched to.
956   BasicBlock *TheRealDest = nullptr;
957   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
958     if (ThisCases[i].Value == TIV) {
959       TheRealDest = ThisCases[i].Dest;
960       break;
961     }
962 
963   // If not handled by any explicit cases, it is handled by the default case.
964   if (!TheRealDest)
965     TheRealDest = ThisDef;
966 
967   // Remove PHI node entries for dead edges.
968   BasicBlock *CheckEdge = TheRealDest;
969   for (BasicBlock *Succ : successors(TIBB))
970     if (Succ != CheckEdge)
971       Succ->removePredecessor(TIBB);
972     else
973       CheckEdge = nullptr;
974 
975   // Insert the new branch.
976   Instruction *NI = Builder.CreateBr(TheRealDest);
977   (void)NI;
978 
979   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
980                     << "Through successor TI: " << *TI << "Leaving: " << *NI
981                     << "\n");
982 
983   EraseTerminatorAndDCECond(TI);
984   return true;
985 }
986 
987 namespace {
988 
989 /// This class implements a stable ordering of constant
990 /// integers that does not depend on their address.  This is important for
991 /// applications that sort ConstantInt's to ensure uniqueness.
992 struct ConstantIntOrdering {
993   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
994     return LHS->getValue().ult(RHS->getValue());
995   }
996 };
997 
998 } // end anonymous namespace
999 
1000 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1001                                     ConstantInt *const *P2) {
1002   const ConstantInt *LHS = *P1;
1003   const ConstantInt *RHS = *P2;
1004   if (LHS == RHS)
1005     return 0;
1006   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1007 }
1008 
1009 static inline bool HasBranchWeights(const Instruction *I) {
1010   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1011   if (ProfMD && ProfMD->getOperand(0))
1012     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1013       return MDS->getString().equals("branch_weights");
1014 
1015   return false;
1016 }
1017 
1018 /// Get Weights of a given terminator, the default weight is at the front
1019 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1020 /// metadata.
1021 static void GetBranchWeights(Instruction *TI,
1022                              SmallVectorImpl<uint64_t> &Weights) {
1023   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1024   assert(MD);
1025   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1026     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1027     Weights.push_back(CI->getValue().getZExtValue());
1028   }
1029 
1030   // If TI is a conditional eq, the default case is the false case,
1031   // and the corresponding branch-weight data is at index 2. We swap the
1032   // default weight to be the first entry.
1033   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1034     assert(Weights.size() == 2);
1035     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1036     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1037       std::swap(Weights.front(), Weights.back());
1038   }
1039 }
1040 
1041 /// Keep halving the weights until all can fit in uint32_t.
1042 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1043   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1044   if (Max > UINT_MAX) {
1045     unsigned Offset = 32 - countLeadingZeros(Max);
1046     for (uint64_t &I : Weights)
1047       I >>= Offset;
1048   }
1049 }
1050 
1051 /// The specified terminator is a value equality comparison instruction
1052 /// (either a switch or a branch on "X == c").
1053 /// See if any of the predecessors of the terminator block are value comparisons
1054 /// on the same value.  If so, and if safe to do so, fold them together.
1055 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1056                                                          IRBuilder<> &Builder) {
1057   BasicBlock *BB = TI->getParent();
1058   Value *CV = isValueEqualityComparison(TI); // CondVal
1059   assert(CV && "Not a comparison?");
1060 
1061   bool Changed = false;
1062 
1063   auto _ = make_scope_exit([&]() {
1064     if (Changed)
1065       ++NumFoldValueComparisonIntoPredecessors;
1066   });
1067 
1068   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1069   while (!Preds.empty()) {
1070     BasicBlock *Pred = Preds.pop_back_val();
1071 
1072     // See if the predecessor is a comparison with the same value.
1073     Instruction *PTI = Pred->getTerminator();
1074     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1075 
1076     if (PCV == CV && TI != PTI) {
1077       SmallSetVector<BasicBlock*, 4> FailBlocks;
1078       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1079         for (auto *Succ : FailBlocks) {
1080           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1081             return false;
1082         }
1083       }
1084 
1085       // Figure out which 'cases' to copy from SI to PSI.
1086       std::vector<ValueEqualityComparisonCase> BBCases;
1087       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1088 
1089       std::vector<ValueEqualityComparisonCase> PredCases;
1090       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1091 
1092       // Based on whether the default edge from PTI goes to BB or not, fill in
1093       // PredCases and PredDefault with the new switch cases we would like to
1094       // build.
1095       SmallVector<BasicBlock *, 8> NewSuccessors;
1096 
1097       // Update the branch weight metadata along the way
1098       SmallVector<uint64_t, 8> Weights;
1099       bool PredHasWeights = HasBranchWeights(PTI);
1100       bool SuccHasWeights = HasBranchWeights(TI);
1101 
1102       if (PredHasWeights) {
1103         GetBranchWeights(PTI, Weights);
1104         // branch-weight metadata is inconsistent here.
1105         if (Weights.size() != 1 + PredCases.size())
1106           PredHasWeights = SuccHasWeights = false;
1107       } else if (SuccHasWeights)
1108         // If there are no predecessor weights but there are successor weights,
1109         // populate Weights with 1, which will later be scaled to the sum of
1110         // successor's weights
1111         Weights.assign(1 + PredCases.size(), 1);
1112 
1113       SmallVector<uint64_t, 8> SuccWeights;
1114       if (SuccHasWeights) {
1115         GetBranchWeights(TI, SuccWeights);
1116         // branch-weight metadata is inconsistent here.
1117         if (SuccWeights.size() != 1 + BBCases.size())
1118           PredHasWeights = SuccHasWeights = false;
1119       } else if (PredHasWeights)
1120         SuccWeights.assign(1 + BBCases.size(), 1);
1121 
1122       if (PredDefault == BB) {
1123         // If this is the default destination from PTI, only the edges in TI
1124         // that don't occur in PTI, or that branch to BB will be activated.
1125         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1126         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1127           if (PredCases[i].Dest != BB)
1128             PTIHandled.insert(PredCases[i].Value);
1129           else {
1130             // The default destination is BB, we don't need explicit targets.
1131             std::swap(PredCases[i], PredCases.back());
1132 
1133             if (PredHasWeights || SuccHasWeights) {
1134               // Increase weight for the default case.
1135               Weights[0] += Weights[i + 1];
1136               std::swap(Weights[i + 1], Weights.back());
1137               Weights.pop_back();
1138             }
1139 
1140             PredCases.pop_back();
1141             --i;
1142             --e;
1143           }
1144 
1145         // Reconstruct the new switch statement we will be building.
1146         if (PredDefault != BBDefault) {
1147           PredDefault->removePredecessor(Pred);
1148           PredDefault = BBDefault;
1149           NewSuccessors.push_back(BBDefault);
1150         }
1151 
1152         unsigned CasesFromPred = Weights.size();
1153         uint64_t ValidTotalSuccWeight = 0;
1154         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1155           if (!PTIHandled.count(BBCases[i].Value) &&
1156               BBCases[i].Dest != BBDefault) {
1157             PredCases.push_back(BBCases[i]);
1158             NewSuccessors.push_back(BBCases[i].Dest);
1159             if (SuccHasWeights || PredHasWeights) {
1160               // The default weight is at index 0, so weight for the ith case
1161               // should be at index i+1. Scale the cases from successor by
1162               // PredDefaultWeight (Weights[0]).
1163               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1164               ValidTotalSuccWeight += SuccWeights[i + 1];
1165             }
1166           }
1167 
1168         if (SuccHasWeights || PredHasWeights) {
1169           ValidTotalSuccWeight += SuccWeights[0];
1170           // Scale the cases from predecessor by ValidTotalSuccWeight.
1171           for (unsigned i = 1; i < CasesFromPred; ++i)
1172             Weights[i] *= ValidTotalSuccWeight;
1173           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1174           Weights[0] *= SuccWeights[0];
1175         }
1176       } else {
1177         // If this is not the default destination from PSI, only the edges
1178         // in SI that occur in PSI with a destination of BB will be
1179         // activated.
1180         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1181         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1182         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1183           if (PredCases[i].Dest == BB) {
1184             PTIHandled.insert(PredCases[i].Value);
1185 
1186             if (PredHasWeights || SuccHasWeights) {
1187               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1188               std::swap(Weights[i + 1], Weights.back());
1189               Weights.pop_back();
1190             }
1191 
1192             std::swap(PredCases[i], PredCases.back());
1193             PredCases.pop_back();
1194             --i;
1195             --e;
1196           }
1197 
1198         // Okay, now we know which constants were sent to BB from the
1199         // predecessor.  Figure out where they will all go now.
1200         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1201           if (PTIHandled.count(BBCases[i].Value)) {
1202             // If this is one we are capable of getting...
1203             if (PredHasWeights || SuccHasWeights)
1204               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1205             PredCases.push_back(BBCases[i]);
1206             NewSuccessors.push_back(BBCases[i].Dest);
1207             PTIHandled.erase(
1208                 BBCases[i].Value); // This constant is taken care of
1209           }
1210 
1211         // If there are any constants vectored to BB that TI doesn't handle,
1212         // they must go to the default destination of TI.
1213         for (ConstantInt *I : PTIHandled) {
1214           if (PredHasWeights || SuccHasWeights)
1215             Weights.push_back(WeightsForHandled[I]);
1216           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1217           NewSuccessors.push_back(BBDefault);
1218         }
1219       }
1220 
1221       // Okay, at this point, we know which new successor Pred will get.  Make
1222       // sure we update the number of entries in the PHI nodes for these
1223       // successors.
1224       for (BasicBlock *NewSuccessor : NewSuccessors)
1225         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1226 
1227       Builder.SetInsertPoint(PTI);
1228       // Convert pointer to int before we switch.
1229       if (CV->getType()->isPointerTy()) {
1230         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1231                                     "magicptr");
1232       }
1233 
1234       // Now that the successors are updated, create the new Switch instruction.
1235       SwitchInst *NewSI =
1236           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1237       NewSI->setDebugLoc(PTI->getDebugLoc());
1238       for (ValueEqualityComparisonCase &V : PredCases)
1239         NewSI->addCase(V.Value, V.Dest);
1240 
1241       if (PredHasWeights || SuccHasWeights) {
1242         // Halve the weights if any of them cannot fit in an uint32_t
1243         FitWeights(Weights);
1244 
1245         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1246 
1247         setBranchWeights(NewSI, MDWeights);
1248       }
1249 
1250       EraseTerminatorAndDCECond(PTI);
1251 
1252       // Okay, last check.  If BB is still a successor of PSI, then we must
1253       // have an infinite loop case.  If so, add an infinitely looping block
1254       // to handle the case to preserve the behavior of the code.
1255       BasicBlock *InfLoopBlock = nullptr;
1256       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1257         if (NewSI->getSuccessor(i) == BB) {
1258           if (!InfLoopBlock) {
1259             // Insert it at the end of the function, because it's either code,
1260             // or it won't matter if it's hot. :)
1261             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1262                                               BB->getParent());
1263             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1264           }
1265           NewSI->setSuccessor(i, InfLoopBlock);
1266         }
1267 
1268       Changed = true;
1269     }
1270   }
1271   return Changed;
1272 }
1273 
1274 // If we would need to insert a select that uses the value of this invoke
1275 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1276 // can't hoist the invoke, as there is nowhere to put the select in this case.
1277 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1278                                 Instruction *I1, Instruction *I2) {
1279   for (BasicBlock *Succ : successors(BB1)) {
1280     for (const PHINode &PN : Succ->phis()) {
1281       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1282       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1283       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1284         return false;
1285       }
1286     }
1287   }
1288   return true;
1289 }
1290 
1291 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1292 
1293 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1294 /// in the two blocks up into the branch block. The caller of this function
1295 /// guarantees that BI's block dominates BB1 and BB2.
1296 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1297                                            const TargetTransformInfo &TTI) {
1298   // This does very trivial matching, with limited scanning, to find identical
1299   // instructions in the two blocks.  In particular, we don't want to get into
1300   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1301   // such, we currently just scan for obviously identical instructions in an
1302   // identical order.
1303   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1304   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1305 
1306   BasicBlock::iterator BB1_Itr = BB1->begin();
1307   BasicBlock::iterator BB2_Itr = BB2->begin();
1308 
1309   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1310   // Skip debug info if it is not identical.
1311   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1312   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1313   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1314     while (isa<DbgInfoIntrinsic>(I1))
1315       I1 = &*BB1_Itr++;
1316     while (isa<DbgInfoIntrinsic>(I2))
1317       I2 = &*BB2_Itr++;
1318   }
1319   // FIXME: Can we define a safety predicate for CallBr?
1320   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1321       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1322       isa<CallBrInst>(I1))
1323     return false;
1324 
1325   BasicBlock *BIParent = BI->getParent();
1326 
1327   bool Changed = false;
1328 
1329   auto _ = make_scope_exit([&]() {
1330     if (Changed)
1331       ++NumHoistCommonCode;
1332   });
1333 
1334   do {
1335     // If we are hoisting the terminator instruction, don't move one (making a
1336     // broken BB), instead clone it, and remove BI.
1337     if (I1->isTerminator())
1338       goto HoistTerminator;
1339 
1340     // If we're going to hoist a call, make sure that the two instructions we're
1341     // commoning/hoisting are both marked with musttail, or neither of them is
1342     // marked as such. Otherwise, we might end up in a situation where we hoist
1343     // from a block where the terminator is a `ret` to a block where the terminator
1344     // is a `br`, and `musttail` calls expect to be followed by a return.
1345     auto *C1 = dyn_cast<CallInst>(I1);
1346     auto *C2 = dyn_cast<CallInst>(I2);
1347     if (C1 && C2)
1348       if (C1->isMustTailCall() != C2->isMustTailCall())
1349         return Changed;
1350 
1351     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1352       return Changed;
1353 
1354     // If any of the two call sites has nomerge attribute, stop hoisting.
1355     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1356       if (CB1->cannotMerge())
1357         return Changed;
1358     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1359       if (CB2->cannotMerge())
1360         return Changed;
1361 
1362     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1363       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1364       // The debug location is an integral part of a debug info intrinsic
1365       // and can't be separated from it or replaced.  Instead of attempting
1366       // to merge locations, simply hoist both copies of the intrinsic.
1367       BIParent->getInstList().splice(BI->getIterator(),
1368                                      BB1->getInstList(), I1);
1369       BIParent->getInstList().splice(BI->getIterator(),
1370                                      BB2->getInstList(), I2);
1371       Changed = true;
1372     } else {
1373       // For a normal instruction, we just move one to right before the branch,
1374       // then replace all uses of the other with the first.  Finally, we remove
1375       // the now redundant second instruction.
1376       BIParent->getInstList().splice(BI->getIterator(),
1377                                      BB1->getInstList(), I1);
1378       if (!I2->use_empty())
1379         I2->replaceAllUsesWith(I1);
1380       I1->andIRFlags(I2);
1381       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1382                              LLVMContext::MD_range,
1383                              LLVMContext::MD_fpmath,
1384                              LLVMContext::MD_invariant_load,
1385                              LLVMContext::MD_nonnull,
1386                              LLVMContext::MD_invariant_group,
1387                              LLVMContext::MD_align,
1388                              LLVMContext::MD_dereferenceable,
1389                              LLVMContext::MD_dereferenceable_or_null,
1390                              LLVMContext::MD_mem_parallel_loop_access,
1391                              LLVMContext::MD_access_group,
1392                              LLVMContext::MD_preserve_access_index};
1393       combineMetadata(I1, I2, KnownIDs, true);
1394 
1395       // I1 and I2 are being combined into a single instruction.  Its debug
1396       // location is the merged locations of the original instructions.
1397       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1398 
1399       I2->eraseFromParent();
1400       Changed = true;
1401     }
1402     ++NumHoistCommonInstrs;
1403 
1404     I1 = &*BB1_Itr++;
1405     I2 = &*BB2_Itr++;
1406     // Skip debug info if it is not identical.
1407     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1408     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1409     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1410       while (isa<DbgInfoIntrinsic>(I1))
1411         I1 = &*BB1_Itr++;
1412       while (isa<DbgInfoIntrinsic>(I2))
1413         I2 = &*BB2_Itr++;
1414     }
1415   } while (I1->isIdenticalToWhenDefined(I2));
1416 
1417   return true;
1418 
1419 HoistTerminator:
1420   // It may not be possible to hoist an invoke.
1421   // FIXME: Can we define a safety predicate for CallBr?
1422   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1423     return Changed;
1424 
1425   // TODO: callbr hoisting currently disabled pending further study.
1426   if (isa<CallBrInst>(I1))
1427     return Changed;
1428 
1429   for (BasicBlock *Succ : successors(BB1)) {
1430     for (PHINode &PN : Succ->phis()) {
1431       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1432       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1433       if (BB1V == BB2V)
1434         continue;
1435 
1436       // Check for passingValueIsAlwaysUndefined here because we would rather
1437       // eliminate undefined control flow then converting it to a select.
1438       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1439           passingValueIsAlwaysUndefined(BB2V, &PN))
1440         return Changed;
1441 
1442       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1443         return Changed;
1444       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1445         return Changed;
1446     }
1447   }
1448 
1449   // Okay, it is safe to hoist the terminator.
1450   Instruction *NT = I1->clone();
1451   BIParent->getInstList().insert(BI->getIterator(), NT);
1452   if (!NT->getType()->isVoidTy()) {
1453     I1->replaceAllUsesWith(NT);
1454     I2->replaceAllUsesWith(NT);
1455     NT->takeName(I1);
1456   }
1457   Changed = true;
1458   ++NumHoistCommonInstrs;
1459 
1460   // Ensure terminator gets a debug location, even an unknown one, in case
1461   // it involves inlinable calls.
1462   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1463 
1464   // PHIs created below will adopt NT's merged DebugLoc.
1465   IRBuilder<NoFolder> Builder(NT);
1466 
1467   // Hoisting one of the terminators from our successor is a great thing.
1468   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1469   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1470   // nodes, so we insert select instruction to compute the final result.
1471   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1472   for (BasicBlock *Succ : successors(BB1)) {
1473     for (PHINode &PN : Succ->phis()) {
1474       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1475       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1476       if (BB1V == BB2V)
1477         continue;
1478 
1479       // These values do not agree.  Insert a select instruction before NT
1480       // that determines the right value.
1481       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1482       if (!SI) {
1483         // Propagate fast-math-flags from phi node to its replacement select.
1484         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1485         if (isa<FPMathOperator>(PN))
1486           Builder.setFastMathFlags(PN.getFastMathFlags());
1487 
1488         SI = cast<SelectInst>(
1489             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1490                                  BB1V->getName() + "." + BB2V->getName(), BI));
1491       }
1492 
1493       // Make the PHI node use the select for all incoming values for BB1/BB2
1494       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1495         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1496           PN.setIncomingValue(i, SI);
1497     }
1498   }
1499 
1500   // Update any PHI nodes in our new successors.
1501   for (BasicBlock *Succ : successors(BB1))
1502     AddPredecessorToBlock(Succ, BIParent, BB1);
1503 
1504   EraseTerminatorAndDCECond(BI);
1505   return Changed;
1506 }
1507 
1508 // Check lifetime markers.
1509 static bool isLifeTimeMarker(const Instruction *I) {
1510   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1511     switch (II->getIntrinsicID()) {
1512     default:
1513       break;
1514     case Intrinsic::lifetime_start:
1515     case Intrinsic::lifetime_end:
1516       return true;
1517     }
1518   }
1519   return false;
1520 }
1521 
1522 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1523 // into variables.
1524 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1525                                                 int OpIdx) {
1526   return !isa<IntrinsicInst>(I);
1527 }
1528 
1529 // All instructions in Insts belong to different blocks that all unconditionally
1530 // branch to a common successor. Analyze each instruction and return true if it
1531 // would be possible to sink them into their successor, creating one common
1532 // instruction instead. For every value that would be required to be provided by
1533 // PHI node (because an operand varies in each input block), add to PHIOperands.
1534 static bool canSinkInstructions(
1535     ArrayRef<Instruction *> Insts,
1536     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1537   // Prune out obviously bad instructions to move. Each instruction must have
1538   // exactly zero or one use, and we check later that use is by a single, common
1539   // PHI instruction in the successor.
1540   bool HasUse = !Insts.front()->user_empty();
1541   for (auto *I : Insts) {
1542     // These instructions may change or break semantics if moved.
1543     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1544         I->getType()->isTokenTy())
1545       return false;
1546 
1547     // Conservatively return false if I is an inline-asm instruction. Sinking
1548     // and merging inline-asm instructions can potentially create arguments
1549     // that cannot satisfy the inline-asm constraints.
1550     // If the instruction has nomerge attribute, return false.
1551     if (const auto *C = dyn_cast<CallBase>(I))
1552       if (C->isInlineAsm() || C->cannotMerge())
1553         return false;
1554 
1555     // Each instruction must have zero or one use.
1556     if (HasUse && !I->hasOneUse())
1557       return false;
1558     if (!HasUse && !I->user_empty())
1559       return false;
1560   }
1561 
1562   const Instruction *I0 = Insts.front();
1563   for (auto *I : Insts)
1564     if (!I->isSameOperationAs(I0))
1565       return false;
1566 
1567   // All instructions in Insts are known to be the same opcode. If they have a
1568   // use, check that the only user is a PHI or in the same block as the
1569   // instruction, because if a user is in the same block as an instruction we're
1570   // contemplating sinking, it must already be determined to be sinkable.
1571   if (HasUse) {
1572     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1573     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1574     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1575           auto *U = cast<Instruction>(*I->user_begin());
1576           return (PNUse &&
1577                   PNUse->getParent() == Succ &&
1578                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1579                  U->getParent() == I->getParent();
1580         }))
1581       return false;
1582   }
1583 
1584   // Because SROA can't handle speculating stores of selects, try not to sink
1585   // loads, stores or lifetime markers of allocas when we'd have to create a
1586   // PHI for the address operand. Also, because it is likely that loads or
1587   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1588   // them.
1589   // This can cause code churn which can have unintended consequences down
1590   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1591   // FIXME: This is a workaround for a deficiency in SROA - see
1592   // https://llvm.org/bugs/show_bug.cgi?id=30188
1593   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1594         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1595       }))
1596     return false;
1597   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1598         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1599       }))
1600     return false;
1601   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1602         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1603       }))
1604     return false;
1605 
1606   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1607     Value *Op = I0->getOperand(OI);
1608     if (Op->getType()->isTokenTy())
1609       // Don't touch any operand of token type.
1610       return false;
1611 
1612     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1613       assert(I->getNumOperands() == I0->getNumOperands());
1614       return I->getOperand(OI) == I0->getOperand(OI);
1615     };
1616     if (!all_of(Insts, SameAsI0)) {
1617       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1618           !canReplaceOperandWithVariable(I0, OI))
1619         // We can't create a PHI from this GEP.
1620         return false;
1621       // Don't create indirect calls! The called value is the final operand.
1622       if (isa<CallBase>(I0) && OI == OE - 1) {
1623         // FIXME: if the call was *already* indirect, we should do this.
1624         return false;
1625       }
1626       for (auto *I : Insts)
1627         PHIOperands[I].push_back(I->getOperand(OI));
1628     }
1629   }
1630   return true;
1631 }
1632 
1633 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1634 // instruction of every block in Blocks to their common successor, commoning
1635 // into one instruction.
1636 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1637   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1638 
1639   // canSinkLastInstruction returning true guarantees that every block has at
1640   // least one non-terminator instruction.
1641   SmallVector<Instruction*,4> Insts;
1642   for (auto *BB : Blocks) {
1643     Instruction *I = BB->getTerminator();
1644     do {
1645       I = I->getPrevNode();
1646     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1647     if (!isa<DbgInfoIntrinsic>(I))
1648       Insts.push_back(I);
1649   }
1650 
1651   // The only checking we need to do now is that all users of all instructions
1652   // are the same PHI node. canSinkLastInstruction should have checked this but
1653   // it is slightly over-aggressive - it gets confused by commutative instructions
1654   // so double-check it here.
1655   Instruction *I0 = Insts.front();
1656   if (!I0->user_empty()) {
1657     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1658     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1659           auto *U = cast<Instruction>(*I->user_begin());
1660           return U == PNUse;
1661         }))
1662       return false;
1663   }
1664 
1665   // We don't need to do any more checking here; canSinkLastInstruction should
1666   // have done it all for us.
1667   SmallVector<Value*, 4> NewOperands;
1668   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1669     // This check is different to that in canSinkLastInstruction. There, we
1670     // cared about the global view once simplifycfg (and instcombine) have
1671     // completed - it takes into account PHIs that become trivially
1672     // simplifiable.  However here we need a more local view; if an operand
1673     // differs we create a PHI and rely on instcombine to clean up the very
1674     // small mess we may make.
1675     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1676       return I->getOperand(O) != I0->getOperand(O);
1677     });
1678     if (!NeedPHI) {
1679       NewOperands.push_back(I0->getOperand(O));
1680       continue;
1681     }
1682 
1683     // Create a new PHI in the successor block and populate it.
1684     auto *Op = I0->getOperand(O);
1685     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1686     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1687                                Op->getName() + ".sink", &BBEnd->front());
1688     for (auto *I : Insts)
1689       PN->addIncoming(I->getOperand(O), I->getParent());
1690     NewOperands.push_back(PN);
1691   }
1692 
1693   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1694   // and move it to the start of the successor block.
1695   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1696     I0->getOperandUse(O).set(NewOperands[O]);
1697   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1698 
1699   // Update metadata and IR flags, and merge debug locations.
1700   for (auto *I : Insts)
1701     if (I != I0) {
1702       // The debug location for the "common" instruction is the merged locations
1703       // of all the commoned instructions.  We start with the original location
1704       // of the "common" instruction and iteratively merge each location in the
1705       // loop below.
1706       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1707       // However, as N-way merge for CallInst is rare, so we use simplified API
1708       // instead of using complex API for N-way merge.
1709       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1710       combineMetadataForCSE(I0, I, true);
1711       I0->andIRFlags(I);
1712     }
1713 
1714   if (!I0->user_empty()) {
1715     // canSinkLastInstruction checked that all instructions were used by
1716     // one and only one PHI node. Find that now, RAUW it to our common
1717     // instruction and nuke it.
1718     auto *PN = cast<PHINode>(*I0->user_begin());
1719     PN->replaceAllUsesWith(I0);
1720     PN->eraseFromParent();
1721   }
1722 
1723   // Finally nuke all instructions apart from the common instruction.
1724   for (auto *I : Insts)
1725     if (I != I0)
1726       I->eraseFromParent();
1727 
1728   return true;
1729 }
1730 
1731 namespace {
1732 
1733   // LockstepReverseIterator - Iterates through instructions
1734   // in a set of blocks in reverse order from the first non-terminator.
1735   // For example (assume all blocks have size n):
1736   //   LockstepReverseIterator I([B1, B2, B3]);
1737   //   *I-- = [B1[n], B2[n], B3[n]];
1738   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1739   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1740   //   ...
1741   class LockstepReverseIterator {
1742     ArrayRef<BasicBlock*> Blocks;
1743     SmallVector<Instruction*,4> Insts;
1744     bool Fail;
1745 
1746   public:
1747     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1748       reset();
1749     }
1750 
1751     void reset() {
1752       Fail = false;
1753       Insts.clear();
1754       for (auto *BB : Blocks) {
1755         Instruction *Inst = BB->getTerminator();
1756         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1757           Inst = Inst->getPrevNode();
1758         if (!Inst) {
1759           // Block wasn't big enough.
1760           Fail = true;
1761           return;
1762         }
1763         Insts.push_back(Inst);
1764       }
1765     }
1766 
1767     bool isValid() const {
1768       return !Fail;
1769     }
1770 
1771     void operator--() {
1772       if (Fail)
1773         return;
1774       for (auto *&Inst : Insts) {
1775         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1776           Inst = Inst->getPrevNode();
1777         // Already at beginning of block.
1778         if (!Inst) {
1779           Fail = true;
1780           return;
1781         }
1782       }
1783     }
1784 
1785     ArrayRef<Instruction*> operator * () const {
1786       return Insts;
1787     }
1788   };
1789 
1790 } // end anonymous namespace
1791 
1792 /// Check whether BB's predecessors end with unconditional branches. If it is
1793 /// true, sink any common code from the predecessors to BB.
1794 /// We also allow one predecessor to end with conditional branch (but no more
1795 /// than one).
1796 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1797   // We support two situations:
1798   //   (1) all incoming arcs are unconditional
1799   //   (2) one incoming arc is conditional
1800   //
1801   // (2) is very common in switch defaults and
1802   // else-if patterns;
1803   //
1804   //   if (a) f(1);
1805   //   else if (b) f(2);
1806   //
1807   // produces:
1808   //
1809   //       [if]
1810   //      /    \
1811   //    [f(1)] [if]
1812   //      |     | \
1813   //      |     |  |
1814   //      |  [f(2)]|
1815   //       \    | /
1816   //        [ end ]
1817   //
1818   // [end] has two unconditional predecessor arcs and one conditional. The
1819   // conditional refers to the implicit empty 'else' arc. This conditional
1820   // arc can also be caused by an empty default block in a switch.
1821   //
1822   // In this case, we attempt to sink code from all *unconditional* arcs.
1823   // If we can sink instructions from these arcs (determined during the scan
1824   // phase below) we insert a common successor for all unconditional arcs and
1825   // connect that to [end], to enable sinking:
1826   //
1827   //       [if]
1828   //      /    \
1829   //    [x(1)] [if]
1830   //      |     | \
1831   //      |     |  \
1832   //      |  [x(2)] |
1833   //       \   /    |
1834   //   [sink.split] |
1835   //         \     /
1836   //         [ end ]
1837   //
1838   SmallVector<BasicBlock*,4> UnconditionalPreds;
1839   Instruction *Cond = nullptr;
1840   for (auto *B : predecessors(BB)) {
1841     auto *T = B->getTerminator();
1842     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1843       UnconditionalPreds.push_back(B);
1844     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1845       Cond = T;
1846     else
1847       return false;
1848   }
1849   if (UnconditionalPreds.size() < 2)
1850     return false;
1851 
1852   // We take a two-step approach to tail sinking. First we scan from the end of
1853   // each block upwards in lockstep. If the n'th instruction from the end of each
1854   // block can be sunk, those instructions are added to ValuesToSink and we
1855   // carry on. If we can sink an instruction but need to PHI-merge some operands
1856   // (because they're not identical in each instruction) we add these to
1857   // PHIOperands.
1858   unsigned ScanIdx = 0;
1859   SmallPtrSet<Value*,4> InstructionsToSink;
1860   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1861   LockstepReverseIterator LRI(UnconditionalPreds);
1862   while (LRI.isValid() &&
1863          canSinkInstructions(*LRI, PHIOperands)) {
1864     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1865                       << "\n");
1866     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1867     ++ScanIdx;
1868     --LRI;
1869   }
1870 
1871   // If no instructions can be sunk, early-return.
1872   if (ScanIdx == 0)
1873     return false;
1874 
1875   bool Changed = false;
1876 
1877   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1878     unsigned NumPHIdValues = 0;
1879     for (auto *I : *LRI)
1880       for (auto *V : PHIOperands[I])
1881         if (InstructionsToSink.count(V) == 0)
1882           ++NumPHIdValues;
1883     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1884     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1885     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1886         NumPHIInsts++;
1887 
1888     return NumPHIInsts <= 1;
1889   };
1890 
1891   if (Cond) {
1892     // Check if we would actually sink anything first! This mutates the CFG and
1893     // adds an extra block. The goal in doing this is to allow instructions that
1894     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1895     // (such as trunc, add) can be sunk and predicated already. So we check that
1896     // we're going to sink at least one non-speculatable instruction.
1897     LRI.reset();
1898     unsigned Idx = 0;
1899     bool Profitable = false;
1900     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1901       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1902         Profitable = true;
1903         break;
1904       }
1905       --LRI;
1906       ++Idx;
1907     }
1908     if (!Profitable)
1909       return false;
1910 
1911     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1912     // We have a conditional edge and we're going to sink some instructions.
1913     // Insert a new block postdominating all blocks we're going to sink from.
1914     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1915       // Edges couldn't be split.
1916       return false;
1917     Changed = true;
1918   }
1919 
1920   // Now that we've analyzed all potential sinking candidates, perform the
1921   // actual sink. We iteratively sink the last non-terminator of the source
1922   // blocks into their common successor unless doing so would require too
1923   // many PHI instructions to be generated (currently only one PHI is allowed
1924   // per sunk instruction).
1925   //
1926   // We can use InstructionsToSink to discount values needing PHI-merging that will
1927   // actually be sunk in a later iteration. This allows us to be more
1928   // aggressive in what we sink. This does allow a false positive where we
1929   // sink presuming a later value will also be sunk, but stop half way through
1930   // and never actually sink it which means we produce more PHIs than intended.
1931   // This is unlikely in practice though.
1932   unsigned SinkIdx = 0;
1933   for (; SinkIdx != ScanIdx; ++SinkIdx) {
1934     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1935                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1936                       << "\n");
1937 
1938     // Because we've sunk every instruction in turn, the current instruction to
1939     // sink is always at index 0.
1940     LRI.reset();
1941     if (!ProfitableToSinkInstruction(LRI)) {
1942       // Too many PHIs would be created.
1943       LLVM_DEBUG(
1944           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1945       break;
1946     }
1947 
1948     if (!sinkLastInstruction(UnconditionalPreds)) {
1949       LLVM_DEBUG(
1950           dbgs()
1951           << "SINK: stopping here, failed to actually sink instruction!\n");
1952       break;
1953     }
1954 
1955     NumSinkCommonInstrs++;
1956     Changed = true;
1957   }
1958   if (SinkIdx != 0)
1959     ++NumSinkCommonCode;
1960   return Changed;
1961 }
1962 
1963 /// Determine if we can hoist sink a sole store instruction out of a
1964 /// conditional block.
1965 ///
1966 /// We are looking for code like the following:
1967 ///   BrBB:
1968 ///     store i32 %add, i32* %arrayidx2
1969 ///     ... // No other stores or function calls (we could be calling a memory
1970 ///     ... // function).
1971 ///     %cmp = icmp ult %x, %y
1972 ///     br i1 %cmp, label %EndBB, label %ThenBB
1973 ///   ThenBB:
1974 ///     store i32 %add5, i32* %arrayidx2
1975 ///     br label EndBB
1976 ///   EndBB:
1977 ///     ...
1978 ///   We are going to transform this into:
1979 ///   BrBB:
1980 ///     store i32 %add, i32* %arrayidx2
1981 ///     ... //
1982 ///     %cmp = icmp ult %x, %y
1983 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1984 ///     store i32 %add.add5, i32* %arrayidx2
1985 ///     ...
1986 ///
1987 /// \return The pointer to the value of the previous store if the store can be
1988 ///         hoisted into the predecessor block. 0 otherwise.
1989 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1990                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1991   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1992   if (!StoreToHoist)
1993     return nullptr;
1994 
1995   // Volatile or atomic.
1996   if (!StoreToHoist->isSimple())
1997     return nullptr;
1998 
1999   Value *StorePtr = StoreToHoist->getPointerOperand();
2000 
2001   // Look for a store to the same pointer in BrBB.
2002   unsigned MaxNumInstToLookAt = 9;
2003   // Skip pseudo probe intrinsic calls which are not really killing any memory
2004   // accesses.
2005   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2006     if (!MaxNumInstToLookAt)
2007       break;
2008     --MaxNumInstToLookAt;
2009 
2010     // Could be calling an instruction that affects memory like free().
2011     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2012       return nullptr;
2013 
2014     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2015       // Found the previous store make sure it stores to the same location.
2016       if (SI->getPointerOperand() == StorePtr)
2017         // Found the previous store, return its value operand.
2018         return SI->getValueOperand();
2019       return nullptr; // Unknown store.
2020     }
2021   }
2022 
2023   return nullptr;
2024 }
2025 
2026 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2027 /// converted to selects.
2028 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2029                                            BasicBlock *EndBB,
2030                                            unsigned &SpeculatedInstructions,
2031                                            int &BudgetRemaining,
2032                                            const TargetTransformInfo &TTI) {
2033   TargetTransformInfo::TargetCostKind CostKind =
2034     BB->getParent()->hasMinSize()
2035     ? TargetTransformInfo::TCK_CodeSize
2036     : TargetTransformInfo::TCK_SizeAndLatency;
2037 
2038   bool HaveRewritablePHIs = false;
2039   for (PHINode &PN : EndBB->phis()) {
2040     Value *OrigV = PN.getIncomingValueForBlock(BB);
2041     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2042 
2043     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2044     // Skip PHIs which are trivial.
2045     if (ThenV == OrigV)
2046       continue;
2047 
2048     BudgetRemaining -=
2049         TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2050                                CmpInst::BAD_ICMP_PREDICATE, CostKind);
2051 
2052     // Don't convert to selects if we could remove undefined behavior instead.
2053     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2054         passingValueIsAlwaysUndefined(ThenV, &PN))
2055       return false;
2056 
2057     HaveRewritablePHIs = true;
2058     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2059     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2060     if (!OrigCE && !ThenCE)
2061       continue; // Known safe and cheap.
2062 
2063     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2064         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2065       return false;
2066     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2067     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2068     unsigned MaxCost =
2069         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2070     if (OrigCost + ThenCost > MaxCost)
2071       return false;
2072 
2073     // Account for the cost of an unfolded ConstantExpr which could end up
2074     // getting expanded into Instructions.
2075     // FIXME: This doesn't account for how many operations are combined in the
2076     // constant expression.
2077     ++SpeculatedInstructions;
2078     if (SpeculatedInstructions > 1)
2079       return false;
2080   }
2081 
2082   return HaveRewritablePHIs;
2083 }
2084 
2085 /// Speculate a conditional basic block flattening the CFG.
2086 ///
2087 /// Note that this is a very risky transform currently. Speculating
2088 /// instructions like this is most often not desirable. Instead, there is an MI
2089 /// pass which can do it with full awareness of the resource constraints.
2090 /// However, some cases are "obvious" and we should do directly. An example of
2091 /// this is speculating a single, reasonably cheap instruction.
2092 ///
2093 /// There is only one distinct advantage to flattening the CFG at the IR level:
2094 /// it makes very common but simplistic optimizations such as are common in
2095 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2096 /// modeling their effects with easier to reason about SSA value graphs.
2097 ///
2098 ///
2099 /// An illustration of this transform is turning this IR:
2100 /// \code
2101 ///   BB:
2102 ///     %cmp = icmp ult %x, %y
2103 ///     br i1 %cmp, label %EndBB, label %ThenBB
2104 ///   ThenBB:
2105 ///     %sub = sub %x, %y
2106 ///     br label BB2
2107 ///   EndBB:
2108 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2109 ///     ...
2110 /// \endcode
2111 ///
2112 /// Into this IR:
2113 /// \code
2114 ///   BB:
2115 ///     %cmp = icmp ult %x, %y
2116 ///     %sub = sub %x, %y
2117 ///     %cond = select i1 %cmp, 0, %sub
2118 ///     ...
2119 /// \endcode
2120 ///
2121 /// \returns true if the conditional block is removed.
2122 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2123                                             const TargetTransformInfo &TTI) {
2124   // Be conservative for now. FP select instruction can often be expensive.
2125   Value *BrCond = BI->getCondition();
2126   if (isa<FCmpInst>(BrCond))
2127     return false;
2128 
2129   BasicBlock *BB = BI->getParent();
2130   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2131   int BudgetRemaining =
2132     PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2133 
2134   // If ThenBB is actually on the false edge of the conditional branch, remember
2135   // to swap the select operands later.
2136   bool Invert = false;
2137   if (ThenBB != BI->getSuccessor(0)) {
2138     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2139     Invert = true;
2140   }
2141   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2142 
2143   // Keep a count of how many times instructions are used within ThenBB when
2144   // they are candidates for sinking into ThenBB. Specifically:
2145   // - They are defined in BB, and
2146   // - They have no side effects, and
2147   // - All of their uses are in ThenBB.
2148   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2149 
2150   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2151 
2152   unsigned SpeculatedInstructions = 0;
2153   Value *SpeculatedStoreValue = nullptr;
2154   StoreInst *SpeculatedStore = nullptr;
2155   for (BasicBlock::iterator BBI = ThenBB->begin(),
2156                             BBE = std::prev(ThenBB->end());
2157        BBI != BBE; ++BBI) {
2158     Instruction *I = &*BBI;
2159     // Skip debug info.
2160     if (isa<DbgInfoIntrinsic>(I)) {
2161       SpeculatedDbgIntrinsics.push_back(I);
2162       continue;
2163     }
2164 
2165     // Skip pseudo probes. The consequence is we lose track of the branch
2166     // probability for ThenBB, which is fine since the optimization here takes
2167     // place regardless of the branch probability.
2168     if (isa<PseudoProbeInst>(I)) {
2169       SpeculatedDbgIntrinsics.push_back(I);
2170       continue;
2171     }
2172 
2173     // Only speculatively execute a single instruction (not counting the
2174     // terminator) for now.
2175     ++SpeculatedInstructions;
2176     if (SpeculatedInstructions > 1)
2177       return false;
2178 
2179     // Don't hoist the instruction if it's unsafe or expensive.
2180     if (!isSafeToSpeculativelyExecute(I) &&
2181         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2182                                   I, BB, ThenBB, EndBB))))
2183       return false;
2184     if (!SpeculatedStoreValue &&
2185         ComputeSpeculationCost(I, TTI) >
2186             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2187       return false;
2188 
2189     // Store the store speculation candidate.
2190     if (SpeculatedStoreValue)
2191       SpeculatedStore = cast<StoreInst>(I);
2192 
2193     // Do not hoist the instruction if any of its operands are defined but not
2194     // used in BB. The transformation will prevent the operand from
2195     // being sunk into the use block.
2196     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2197       Instruction *OpI = dyn_cast<Instruction>(*i);
2198       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2199         continue; // Not a candidate for sinking.
2200 
2201       ++SinkCandidateUseCounts[OpI];
2202     }
2203   }
2204 
2205   // Consider any sink candidates which are only used in ThenBB as costs for
2206   // speculation. Note, while we iterate over a DenseMap here, we are summing
2207   // and so iteration order isn't significant.
2208   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2209            I = SinkCandidateUseCounts.begin(),
2210            E = SinkCandidateUseCounts.end();
2211        I != E; ++I)
2212     if (I->first->hasNUses(I->second)) {
2213       ++SpeculatedInstructions;
2214       if (SpeculatedInstructions > 1)
2215         return false;
2216     }
2217 
2218   // Check that we can insert the selects and that it's not too expensive to do
2219   // so.
2220   bool Convert = SpeculatedStore != nullptr;
2221   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2222                                             SpeculatedInstructions,
2223                                             BudgetRemaining, TTI);
2224   if (!Convert || BudgetRemaining < 0)
2225     return false;
2226 
2227   // If we get here, we can hoist the instruction and if-convert.
2228   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2229 
2230   // Insert a select of the value of the speculated store.
2231   if (SpeculatedStoreValue) {
2232     IRBuilder<NoFolder> Builder(BI);
2233     Value *TrueV = SpeculatedStore->getValueOperand();
2234     Value *FalseV = SpeculatedStoreValue;
2235     if (Invert)
2236       std::swap(TrueV, FalseV);
2237     Value *S = Builder.CreateSelect(
2238         BrCond, TrueV, FalseV, "spec.store.select", BI);
2239     SpeculatedStore->setOperand(0, S);
2240     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2241                                          SpeculatedStore->getDebugLoc());
2242   }
2243 
2244   // Metadata can be dependent on the condition we are hoisting above.
2245   // Conservatively strip all metadata on the instruction. Drop the debug loc
2246   // to avoid making it appear as if the condition is a constant, which would
2247   // be misleading while debugging.
2248   for (auto &I : *ThenBB) {
2249     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2250       I.setDebugLoc(DebugLoc());
2251     I.dropUnknownNonDebugMetadata();
2252   }
2253 
2254   // Hoist the instructions.
2255   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2256                            ThenBB->begin(), std::prev(ThenBB->end()));
2257 
2258   // Insert selects and rewrite the PHI operands.
2259   IRBuilder<NoFolder> Builder(BI);
2260   for (PHINode &PN : EndBB->phis()) {
2261     unsigned OrigI = PN.getBasicBlockIndex(BB);
2262     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2263     Value *OrigV = PN.getIncomingValue(OrigI);
2264     Value *ThenV = PN.getIncomingValue(ThenI);
2265 
2266     // Skip PHIs which are trivial.
2267     if (OrigV == ThenV)
2268       continue;
2269 
2270     // Create a select whose true value is the speculatively executed value and
2271     // false value is the pre-existing value. Swap them if the branch
2272     // destinations were inverted.
2273     Value *TrueV = ThenV, *FalseV = OrigV;
2274     if (Invert)
2275       std::swap(TrueV, FalseV);
2276     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2277     PN.setIncomingValue(OrigI, V);
2278     PN.setIncomingValue(ThenI, V);
2279   }
2280 
2281   // Remove speculated dbg intrinsics.
2282   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2283   // dbg value for the different flows and inserting it after the select.
2284   for (Instruction *I : SpeculatedDbgIntrinsics)
2285     I->eraseFromParent();
2286 
2287   ++NumSpeculations;
2288   return true;
2289 }
2290 
2291 /// Return true if we can thread a branch across this block.
2292 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2293   int Size = 0;
2294 
2295   for (Instruction &I : BB->instructionsWithoutDebug()) {
2296     if (Size > MaxSmallBlockSize)
2297       return false; // Don't clone large BB's.
2298 
2299     // Can't fold blocks that contain noduplicate or convergent calls.
2300     if (CallInst *CI = dyn_cast<CallInst>(&I))
2301       if (CI->cannotDuplicate() || CI->isConvergent())
2302         return false;
2303 
2304     // We will delete Phis while threading, so Phis should not be accounted in
2305     // block's size
2306     if (!isa<PHINode>(I))
2307       ++Size;
2308 
2309     // We can only support instructions that do not define values that are
2310     // live outside of the current basic block.
2311     for (User *U : I.users()) {
2312       Instruction *UI = cast<Instruction>(U);
2313       if (UI->getParent() != BB || isa<PHINode>(UI))
2314         return false;
2315     }
2316 
2317     // Looks ok, continue checking.
2318   }
2319 
2320   return true;
2321 }
2322 
2323 /// If we have a conditional branch on a PHI node value that is defined in the
2324 /// same block as the branch and if any PHI entries are constants, thread edges
2325 /// corresponding to that entry to be branches to their ultimate destination.
2326 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2327                                 AssumptionCache *AC) {
2328   BasicBlock *BB = BI->getParent();
2329   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2330   // NOTE: we currently cannot transform this case if the PHI node is used
2331   // outside of the block.
2332   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2333     return false;
2334 
2335   // Degenerate case of a single entry PHI.
2336   if (PN->getNumIncomingValues() == 1) {
2337     FoldSingleEntryPHINodes(PN->getParent());
2338     return true;
2339   }
2340 
2341   // Now we know that this block has multiple preds and two succs.
2342   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2343     return false;
2344 
2345   // Okay, this is a simple enough basic block.  See if any phi values are
2346   // constants.
2347   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2348     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2349     if (!CB || !CB->getType()->isIntegerTy(1))
2350       continue;
2351 
2352     // Okay, we now know that all edges from PredBB should be revectored to
2353     // branch to RealDest.
2354     BasicBlock *PredBB = PN->getIncomingBlock(i);
2355     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2356 
2357     if (RealDest == BB)
2358       continue; // Skip self loops.
2359     // Skip if the predecessor's terminator is an indirect branch.
2360     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2361       continue;
2362 
2363     // The dest block might have PHI nodes, other predecessors and other
2364     // difficult cases.  Instead of being smart about this, just insert a new
2365     // block that jumps to the destination block, effectively splitting
2366     // the edge we are about to create.
2367     BasicBlock *EdgeBB =
2368         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2369                            RealDest->getParent(), RealDest);
2370     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2371     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2372 
2373     // Update PHI nodes.
2374     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2375 
2376     // BB may have instructions that are being threaded over.  Clone these
2377     // instructions into EdgeBB.  We know that there will be no uses of the
2378     // cloned instructions outside of EdgeBB.
2379     BasicBlock::iterator InsertPt = EdgeBB->begin();
2380     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2381     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2382       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2383         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2384         continue;
2385       }
2386       // Clone the instruction.
2387       Instruction *N = BBI->clone();
2388       if (BBI->hasName())
2389         N->setName(BBI->getName() + ".c");
2390 
2391       // Update operands due to translation.
2392       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2393         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2394         if (PI != TranslateMap.end())
2395           *i = PI->second;
2396       }
2397 
2398       // Check for trivial simplification.
2399       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2400         if (!BBI->use_empty())
2401           TranslateMap[&*BBI] = V;
2402         if (!N->mayHaveSideEffects()) {
2403           N->deleteValue(); // Instruction folded away, don't need actual inst
2404           N = nullptr;
2405         }
2406       } else {
2407         if (!BBI->use_empty())
2408           TranslateMap[&*BBI] = N;
2409       }
2410       if (N) {
2411         // Insert the new instruction into its new home.
2412         EdgeBB->getInstList().insert(InsertPt, N);
2413 
2414         // Register the new instruction with the assumption cache if necessary.
2415         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2416           AC->registerAssumption(cast<IntrinsicInst>(N));
2417       }
2418     }
2419 
2420     // Loop over all of the edges from PredBB to BB, changing them to branch
2421     // to EdgeBB instead.
2422     Instruction *PredBBTI = PredBB->getTerminator();
2423     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2424       if (PredBBTI->getSuccessor(i) == BB) {
2425         BB->removePredecessor(PredBB);
2426         PredBBTI->setSuccessor(i, EdgeBB);
2427       }
2428 
2429     // Recurse, simplifying any other constants.
2430     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2431   }
2432 
2433   return false;
2434 }
2435 
2436 /// Given a BB that starts with the specified two-entry PHI node,
2437 /// see if we can eliminate it.
2438 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2439                                 const DataLayout &DL) {
2440   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2441   // statement", which has a very simple dominance structure.  Basically, we
2442   // are trying to find the condition that is being branched on, which
2443   // subsequently causes this merge to happen.  We really want control
2444   // dependence information for this check, but simplifycfg can't keep it up
2445   // to date, and this catches most of the cases we care about anyway.
2446   BasicBlock *BB = PN->getParent();
2447 
2448   BasicBlock *IfTrue, *IfFalse;
2449   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2450   if (!IfCond ||
2451       // Don't bother if the branch will be constant folded trivially.
2452       isa<ConstantInt>(IfCond))
2453     return false;
2454 
2455   // Okay, we found that we can merge this two-entry phi node into a select.
2456   // Doing so would require us to fold *all* two entry phi nodes in this block.
2457   // At some point this becomes non-profitable (particularly if the target
2458   // doesn't support cmov's).  Only do this transformation if there are two or
2459   // fewer PHI nodes in this block.
2460   unsigned NumPhis = 0;
2461   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2462     if (NumPhis > 2)
2463       return false;
2464 
2465   // Loop over the PHI's seeing if we can promote them all to select
2466   // instructions.  While we are at it, keep track of the instructions
2467   // that need to be moved to the dominating block.
2468   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2469   int BudgetRemaining =
2470       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2471 
2472   bool Changed = false;
2473   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2474     PHINode *PN = cast<PHINode>(II++);
2475     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2476       PN->replaceAllUsesWith(V);
2477       PN->eraseFromParent();
2478       Changed = true;
2479       continue;
2480     }
2481 
2482     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2483                              BudgetRemaining, TTI) ||
2484         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2485                              BudgetRemaining, TTI))
2486       return Changed;
2487   }
2488 
2489   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2490   // we ran out of PHIs then we simplified them all.
2491   PN = dyn_cast<PHINode>(BB->begin());
2492   if (!PN)
2493     return true;
2494 
2495   // Return true if at least one of these is a 'not', and another is either
2496   // a 'not' too, or a constant.
2497   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2498     if (!match(V0, m_Not(m_Value())))
2499       std::swap(V0, V1);
2500     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2501     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2502   };
2503 
2504   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2505   // of the incoming values is an 'not' and another one is freely invertible.
2506   // These can often be turned into switches and other things.
2507   if (PN->getType()->isIntegerTy(1) &&
2508       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2509        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2510        isa<BinaryOperator>(IfCond)) &&
2511       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2512                                  PN->getIncomingValue(1)))
2513     return Changed;
2514 
2515   // If all PHI nodes are promotable, check to make sure that all instructions
2516   // in the predecessor blocks can be promoted as well. If not, we won't be able
2517   // to get rid of the control flow, so it's not worth promoting to select
2518   // instructions.
2519   BasicBlock *DomBlock = nullptr;
2520   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2521   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2522   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2523     IfBlock1 = nullptr;
2524   } else {
2525     DomBlock = *pred_begin(IfBlock1);
2526     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2527       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2528           !isa<PseudoProbeInst>(I)) {
2529         // This is not an aggressive instruction that we can promote.
2530         // Because of this, we won't be able to get rid of the control flow, so
2531         // the xform is not worth it.
2532         return Changed;
2533       }
2534   }
2535 
2536   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2537     IfBlock2 = nullptr;
2538   } else {
2539     DomBlock = *pred_begin(IfBlock2);
2540     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2541       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2542           !isa<PseudoProbeInst>(I)) {
2543         // This is not an aggressive instruction that we can promote.
2544         // Because of this, we won't be able to get rid of the control flow, so
2545         // the xform is not worth it.
2546         return Changed;
2547       }
2548   }
2549   assert(DomBlock && "Failed to find root DomBlock");
2550 
2551   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2552                     << "  T: " << IfTrue->getName()
2553                     << "  F: " << IfFalse->getName() << "\n");
2554 
2555   // If we can still promote the PHI nodes after this gauntlet of tests,
2556   // do all of the PHI's now.
2557   Instruction *InsertPt = DomBlock->getTerminator();
2558   IRBuilder<NoFolder> Builder(InsertPt);
2559 
2560   // Move all 'aggressive' instructions, which are defined in the
2561   // conditional parts of the if's up to the dominating block.
2562   if (IfBlock1)
2563     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2564   if (IfBlock2)
2565     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2566 
2567   // Propagate fast-math-flags from phi nodes to replacement selects.
2568   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2569   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2570     if (isa<FPMathOperator>(PN))
2571       Builder.setFastMathFlags(PN->getFastMathFlags());
2572 
2573     // Change the PHI node into a select instruction.
2574     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2575     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2576 
2577     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2578     PN->replaceAllUsesWith(Sel);
2579     Sel->takeName(PN);
2580     PN->eraseFromParent();
2581   }
2582 
2583   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2584   // has been flattened.  Change DomBlock to jump directly to our new block to
2585   // avoid other simplifycfg's kicking in on the diamond.
2586   Instruction *OldTI = DomBlock->getTerminator();
2587   Builder.SetInsertPoint(OldTI);
2588   Builder.CreateBr(BB);
2589   OldTI->eraseFromParent();
2590   return true;
2591 }
2592 
2593 /// If we found a conditional branch that goes to two returning blocks,
2594 /// try to merge them together into one return,
2595 /// introducing a select if the return values disagree.
2596 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2597                                                     IRBuilder<> &Builder) {
2598   assert(BI->isConditional() && "Must be a conditional branch");
2599   BasicBlock *TrueSucc = BI->getSuccessor(0);
2600   BasicBlock *FalseSucc = BI->getSuccessor(1);
2601   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2602   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2603 
2604   // Check to ensure both blocks are empty (just a return) or optionally empty
2605   // with PHI nodes.  If there are other instructions, merging would cause extra
2606   // computation on one path or the other.
2607   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2608     return false;
2609   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2610     return false;
2611 
2612   Builder.SetInsertPoint(BI);
2613   // Okay, we found a branch that is going to two return nodes.  If
2614   // there is no return value for this function, just change the
2615   // branch into a return.
2616   if (FalseRet->getNumOperands() == 0) {
2617     TrueSucc->removePredecessor(BI->getParent());
2618     FalseSucc->removePredecessor(BI->getParent());
2619     Builder.CreateRetVoid();
2620     EraseTerminatorAndDCECond(BI);
2621     return true;
2622   }
2623 
2624   // Otherwise, figure out what the true and false return values are
2625   // so we can insert a new select instruction.
2626   Value *TrueValue = TrueRet->getReturnValue();
2627   Value *FalseValue = FalseRet->getReturnValue();
2628 
2629   // Unwrap any PHI nodes in the return blocks.
2630   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2631     if (TVPN->getParent() == TrueSucc)
2632       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2633   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2634     if (FVPN->getParent() == FalseSucc)
2635       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2636 
2637   // In order for this transformation to be safe, we must be able to
2638   // unconditionally execute both operands to the return.  This is
2639   // normally the case, but we could have a potentially-trapping
2640   // constant expression that prevents this transformation from being
2641   // safe.
2642   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2643     if (TCV->canTrap())
2644       return false;
2645   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2646     if (FCV->canTrap())
2647       return false;
2648 
2649   // Okay, we collected all the mapped values and checked them for sanity, and
2650   // defined to really do this transformation.  First, update the CFG.
2651   TrueSucc->removePredecessor(BI->getParent());
2652   FalseSucc->removePredecessor(BI->getParent());
2653 
2654   // Insert select instructions where needed.
2655   Value *BrCond = BI->getCondition();
2656   if (TrueValue) {
2657     // Insert a select if the results differ.
2658     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2659     } else if (isa<UndefValue>(TrueValue)) {
2660       TrueValue = FalseValue;
2661     } else {
2662       TrueValue =
2663           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2664     }
2665   }
2666 
2667   Value *RI =
2668       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2669 
2670   (void)RI;
2671 
2672   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2673                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2674                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2675 
2676   EraseTerminatorAndDCECond(BI);
2677 
2678   return true;
2679 }
2680 
2681 /// Return true if the given instruction is available
2682 /// in its predecessor block. If yes, the instruction will be removed.
2683 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2684   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2685     return false;
2686   for (Instruction &I : *PB) {
2687     Instruction *PBI = &I;
2688     // Check whether Inst and PBI generate the same value.
2689     if (Inst->isIdenticalTo(PBI)) {
2690       Inst->replaceAllUsesWith(PBI);
2691       Inst->eraseFromParent();
2692       return true;
2693     }
2694   }
2695   return false;
2696 }
2697 
2698 /// Return true if either PBI or BI has branch weight available, and store
2699 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2700 /// not have branch weight, use 1:1 as its weight.
2701 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2702                                    uint64_t &PredTrueWeight,
2703                                    uint64_t &PredFalseWeight,
2704                                    uint64_t &SuccTrueWeight,
2705                                    uint64_t &SuccFalseWeight) {
2706   bool PredHasWeights =
2707       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2708   bool SuccHasWeights =
2709       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2710   if (PredHasWeights || SuccHasWeights) {
2711     if (!PredHasWeights)
2712       PredTrueWeight = PredFalseWeight = 1;
2713     if (!SuccHasWeights)
2714       SuccTrueWeight = SuccFalseWeight = 1;
2715     return true;
2716   } else {
2717     return false;
2718   }
2719 }
2720 
2721 /// If this basic block is simple enough, and if a predecessor branches to us
2722 /// and one of our successors, fold the block into the predecessor and use
2723 /// logical operations to pick the right destination.
2724 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU,
2725                                   const TargetTransformInfo *TTI,
2726                                   unsigned BonusInstThreshold) {
2727   BasicBlock *BB = BI->getParent();
2728 
2729   const unsigned PredCount = pred_size(BB);
2730 
2731   bool Changed = false;
2732 
2733   auto _ = make_scope_exit([&]() {
2734     if (Changed)
2735       ++NumFoldBranchToCommonDest;
2736   });
2737 
2738   TargetTransformInfo::TargetCostKind CostKind =
2739     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
2740                                   : TargetTransformInfo::TCK_SizeAndLatency;
2741 
2742   Instruction *Cond = nullptr;
2743   if (BI->isConditional())
2744     Cond = dyn_cast<Instruction>(BI->getCondition());
2745   else {
2746     // For unconditional branch, check for a simple CFG pattern, where
2747     // BB has a single predecessor and BB's successor is also its predecessor's
2748     // successor. If such pattern exists, check for CSE between BB and its
2749     // predecessor.
2750     if (BasicBlock *PB = BB->getSinglePredecessor())
2751       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2752         if (PBI->isConditional() &&
2753             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2754              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2755           for (auto I = BB->instructionsWithoutDebug().begin(),
2756                     E = BB->instructionsWithoutDebug().end();
2757                I != E;) {
2758             Instruction *Curr = &*I++;
2759             if (isa<CmpInst>(Curr)) {
2760               Cond = Curr;
2761               break;
2762             }
2763             // Quit if we can't remove this instruction.
2764             if (!tryCSEWithPredecessor(Curr, PB))
2765               return Changed;
2766             Changed = true;
2767           }
2768         }
2769 
2770     if (!Cond)
2771       return Changed;
2772   }
2773 
2774   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2775       Cond->getParent() != BB || !Cond->hasOneUse())
2776     return Changed;
2777 
2778   // Only allow this transformation if computing the condition doesn't involve
2779   // too many instructions and these involved instructions can be executed
2780   // unconditionally. We denote all involved instructions except the condition
2781   // as "bonus instructions", and only allow this transformation when the
2782   // number of the bonus instructions we'll need to create when cloning into
2783   // each predecessor does not exceed a certain threshold.
2784   unsigned NumBonusInsts = 0;
2785   for (Instruction &I : *BB) {
2786     // Don't check the branch condition comparison itself.
2787     if (&I == Cond)
2788       continue;
2789     // Ignore dbg intrinsics, and the terminator.
2790     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
2791       continue;
2792     // I must be safe to execute unconditionally.
2793     if (!isSafeToSpeculativelyExecute(&I))
2794       return Changed;
2795 
2796     // Account for the cost of duplicating this instruction into each
2797     // predecessor.
2798     NumBonusInsts += PredCount;
2799     // Early exits once we reach the limit.
2800     if (NumBonusInsts > BonusInstThreshold)
2801       return Changed;
2802   }
2803 
2804   // Also, for now, all liveout uses of bonus instructions must be in PHI nodes
2805   // in successor blocks as incoming values from the bonus instructions's block,
2806   // otherwise we'll fail to update them.
2807   // FIXME: We could lift this restriction, but we need to form PHI nodes and
2808   // rewrite offending uses, but we can't do that without having a domtree.
2809   if (any_of(*BB, [BB](Instruction &I) {
2810         return any_of(I.uses(), [BB](Use &U) {
2811           auto *User = cast<Instruction>(U.getUser());
2812           if (User->getParent() == BB)
2813             return false; // Not an external use.
2814           auto *PN = dyn_cast<PHINode>(User);
2815           return !PN || PN->getIncomingBlock(U) != BB;
2816         });
2817       }))
2818     return Changed;
2819 
2820   // Cond is known to be a compare or binary operator.  Check to make sure that
2821   // neither operand is a potentially-trapping constant expression.
2822   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2823     if (CE->canTrap())
2824       return Changed;
2825   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2826     if (CE->canTrap())
2827       return Changed;
2828 
2829   // Finally, don't infinitely unroll conditional loops.
2830   BasicBlock *TrueDest = BI->getSuccessor(0);
2831   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2832   if (TrueDest == BB || FalseDest == BB)
2833     return Changed;
2834 
2835   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2836     BasicBlock *PredBlock = *PI;
2837     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2838 
2839     // Check that we have two conditional branches.  If there is a PHI node in
2840     // the common successor, verify that the same value flows in from both
2841     // blocks.
2842     SmallVector<PHINode *, 4> PHIs;
2843     if (!PBI || PBI->isUnconditional() ||
2844         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2845         (!BI->isConditional() &&
2846          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2847       continue;
2848 
2849     // Determine if the two branches share a common destination.
2850     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2851     bool InvertPredCond = false;
2852 
2853     if (BI->isConditional()) {
2854       if (PBI->getSuccessor(0) == TrueDest) {
2855         Opc = Instruction::Or;
2856       } else if (PBI->getSuccessor(1) == FalseDest) {
2857         Opc = Instruction::And;
2858       } else if (PBI->getSuccessor(0) == FalseDest) {
2859         Opc = Instruction::And;
2860         InvertPredCond = true;
2861       } else if (PBI->getSuccessor(1) == TrueDest) {
2862         Opc = Instruction::Or;
2863         InvertPredCond = true;
2864       } else {
2865         continue;
2866       }
2867     } else {
2868       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2869         continue;
2870     }
2871 
2872     // Check the cost of inserting the necessary logic before performing the
2873     // transformation.
2874     if (TTI && Opc != Instruction::BinaryOpsEnd) {
2875       Type *Ty = BI->getCondition()->getType();
2876       unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
2877       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
2878           !isa<CmpInst>(PBI->getCondition())))
2879         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
2880 
2881       if (Cost > BranchFoldThreshold)
2882         continue;
2883     }
2884 
2885     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2886     Changed = true;
2887 
2888     IRBuilder<> Builder(PBI);
2889     // The builder is used to create instructions to eliminate the branch in BB.
2890     // If BB's terminator has !annotation metadata, add it to the new
2891     // instructions.
2892     Builder.CollectMetadataToCopy(BB->getTerminator(),
2893                                   {LLVMContext::MD_annotation});
2894 
2895     // If we need to invert the condition in the pred block to match, do so now.
2896     if (InvertPredCond) {
2897       Value *NewCond = PBI->getCondition();
2898       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2899         CmpInst *CI = cast<CmpInst>(NewCond);
2900         CI->setPredicate(CI->getInversePredicate());
2901       } else {
2902         NewCond =
2903             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2904       }
2905 
2906       PBI->setCondition(NewCond);
2907       PBI->swapSuccessors();
2908     }
2909 
2910     BasicBlock *UniqueSucc =
2911         BI->isConditional()
2912             ? (PBI->getSuccessor(0) == BB ? TrueDest : FalseDest)
2913             : TrueDest;
2914 
2915     // Before cloning instructions, notify the successor basic block that it
2916     // is about to have a new predecessor. This will update PHI nodes,
2917     // which will allow us to update live-out uses of bonus instructions.
2918     if (BI->isConditional())
2919       AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
2920 
2921     // If we have bonus instructions, clone them into the predecessor block.
2922     // Note that there may be multiple predecessor blocks, so we cannot move
2923     // bonus instructions to a predecessor block.
2924     ValueToValueMapTy VMap; // maps original values to cloned values
2925     Instruction *CondInPred;
2926     for (Instruction &BonusInst : *BB) {
2927       if (isa<DbgInfoIntrinsic>(BonusInst) || isa<BranchInst>(BonusInst))
2928         continue;
2929 
2930       Instruction *NewBonusInst = BonusInst.clone();
2931 
2932       if (&BonusInst == Cond)
2933         CondInPred = NewBonusInst;
2934 
2935       // When we fold the bonus instructions we want to make sure we
2936       // reset their debug locations in order to avoid stepping on dead
2937       // code caused by folding dead branches.
2938       NewBonusInst->setDebugLoc(DebugLoc());
2939 
2940       RemapInstruction(NewBonusInst, VMap,
2941                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2942       VMap[&BonusInst] = NewBonusInst;
2943 
2944       // If we moved a load, we cannot any longer claim any knowledge about
2945       // its potential value. The previous information might have been valid
2946       // only given the branch precondition.
2947       // For an analogous reason, we must also drop all the metadata whose
2948       // semantics we don't understand. We *can* preserve !annotation, because
2949       // it is tied to the instruction itself, not the value or position.
2950       NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
2951 
2952       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2953       NewBonusInst->takeName(&BonusInst);
2954       BonusInst.setName(BonusInst.getName() + ".old");
2955       BonusInst.replaceUsesWithIf(
2956           NewBonusInst, [BB, BI, UniqueSucc, PredBlock](Use &U) {
2957             auto *User = cast<Instruction>(U.getUser());
2958             // Ignore non-external uses of bonus instructions.
2959             if (User->getParent() == BB) {
2960               assert(!isa<PHINode>(User) &&
2961                      "Non-external users are never PHI instructions.");
2962               return false;
2963             }
2964             (void)BI;
2965             assert(isa<PHINode>(User) && "All external users must be PHI's.");
2966             auto *PN = cast<PHINode>(User);
2967             assert(is_contained(successors(BB), User->getParent()) &&
2968                    "All external users must be in successors of BB.");
2969             assert((PN->getIncomingBlock(U) == BB ||
2970                     PN->getIncomingBlock(U) == PredBlock) &&
2971                    "The incoming block for that incoming value external use "
2972                    "must be either the original block with bonus instructions, "
2973                    "or the new predecessor block.");
2974             // UniqueSucc is the block for which we change it's predecessors,
2975             // so it is the only block in which we'll need to update PHI nodes.
2976             if (User->getParent() != UniqueSucc)
2977               return false;
2978             // Update the incoming value for the new predecessor.
2979             return PN->getIncomingBlock(U) ==
2980                    (BI->isConditional() ? PredBlock : BB);
2981           });
2982     }
2983 
2984     // Now that the Cond was cloned into the predecessor basic block,
2985     // or/and the two conditions together.
2986     if (BI->isConditional()) {
2987       Instruction *NewCond = cast<Instruction>(
2988           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2989       PBI->setCondition(NewCond);
2990 
2991       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2992       bool HasWeights =
2993           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2994                                  SuccTrueWeight, SuccFalseWeight);
2995       SmallVector<uint64_t, 8> NewWeights;
2996 
2997       if (PBI->getSuccessor(0) == BB) {
2998         if (HasWeights) {
2999           // PBI: br i1 %x, BB, FalseDest
3000           // BI:  br i1 %y, UniqueSucc, FalseDest
3001           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3002           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3003           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3004           //               TrueWeight for PBI * FalseWeight for BI.
3005           // We assume that total weights of a BranchInst can fit into 32 bits.
3006           // Therefore, we will not have overflow using 64-bit arithmetic.
3007           NewWeights.push_back(PredFalseWeight *
3008                                    (SuccFalseWeight + SuccTrueWeight) +
3009                                PredTrueWeight * SuccFalseWeight);
3010         }
3011         PBI->setSuccessor(0, UniqueSucc);
3012       }
3013       if (PBI->getSuccessor(1) == BB) {
3014         if (HasWeights) {
3015           // PBI: br i1 %x, TrueDest, BB
3016           // BI:  br i1 %y, TrueDest, UniqueSucc
3017           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3018           //              FalseWeight for PBI * TrueWeight for BI.
3019           NewWeights.push_back(PredTrueWeight *
3020                                    (SuccFalseWeight + SuccTrueWeight) +
3021                                PredFalseWeight * SuccTrueWeight);
3022           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3023           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3024         }
3025         PBI->setSuccessor(1, UniqueSucc);
3026       }
3027       if (NewWeights.size() == 2) {
3028         // Halve the weights if any of them cannot fit in an uint32_t
3029         FitWeights(NewWeights);
3030 
3031         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
3032                                            NewWeights.end());
3033         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3034       } else
3035         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3036     } else {
3037       // Update PHI nodes in the common successors.
3038       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
3039         ConstantInt *PBI_C = cast<ConstantInt>(
3040             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
3041         assert(PBI_C->getType()->isIntegerTy(1));
3042         Instruction *MergedCond = nullptr;
3043         if (PBI->getSuccessor(0) == UniqueSucc) {
3044           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
3045           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
3046           //       is false: !PBI_Cond and BI_Value
3047           Instruction *NotCond = cast<Instruction>(
3048               Builder.CreateNot(PBI->getCondition(), "not.cond"));
3049           MergedCond = cast<Instruction>(
3050                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
3051                                    "and.cond"));
3052           if (PBI_C->isOne())
3053             MergedCond = cast<Instruction>(Builder.CreateBinOp(
3054                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
3055         } else {
3056           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
3057           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
3058           //       is false: PBI_Cond and BI_Value
3059           MergedCond = cast<Instruction>(Builder.CreateBinOp(
3060               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
3061           if (PBI_C->isOne()) {
3062             Instruction *NotCond = cast<Instruction>(
3063                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
3064             MergedCond = cast<Instruction>(Builder.CreateBinOp(
3065                 Instruction::Or, NotCond, MergedCond, "or.cond"));
3066           }
3067         }
3068         // Update PHI Node.
3069 	PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
3070       }
3071 
3072       // PBI is changed to branch to UniqueSucc below. Remove itself from
3073       // potential phis from all other successors.
3074       if (MSSAU)
3075         MSSAU->changeCondBranchToUnconditionalTo(PBI, UniqueSucc);
3076 
3077       // Change PBI from Conditional to Unconditional.
3078       BranchInst *New_PBI = BranchInst::Create(UniqueSucc, PBI);
3079       EraseTerminatorAndDCECond(PBI, MSSAU);
3080       PBI = New_PBI;
3081     }
3082 
3083     // If BI was a loop latch, it may have had associated loop metadata.
3084     // We need to copy it to the new latch, that is, PBI.
3085     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3086       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3087 
3088     // TODO: If BB is reachable from all paths through PredBlock, then we
3089     // could replace PBI's branch probabilities with BI's.
3090 
3091     // Copy any debug value intrinsics into the end of PredBlock.
3092     for (Instruction &I : *BB) {
3093       if (isa<DbgInfoIntrinsic>(I)) {
3094         Instruction *NewI = I.clone();
3095         RemapInstruction(NewI, VMap,
3096                          RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3097         NewI->insertBefore(PBI);
3098       }
3099     }
3100 
3101     return Changed;
3102   }
3103   return Changed;
3104 }
3105 
3106 // If there is only one store in BB1 and BB2, return it, otherwise return
3107 // nullptr.
3108 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3109   StoreInst *S = nullptr;
3110   for (auto *BB : {BB1, BB2}) {
3111     if (!BB)
3112       continue;
3113     for (auto &I : *BB)
3114       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3115         if (S)
3116           // Multiple stores seen.
3117           return nullptr;
3118         else
3119           S = SI;
3120       }
3121   }
3122   return S;
3123 }
3124 
3125 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3126                                               Value *AlternativeV = nullptr) {
3127   // PHI is going to be a PHI node that allows the value V that is defined in
3128   // BB to be referenced in BB's only successor.
3129   //
3130   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3131   // doesn't matter to us what the other operand is (it'll never get used). We
3132   // could just create a new PHI with an undef incoming value, but that could
3133   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3134   // other PHI. So here we directly look for some PHI in BB's successor with V
3135   // as an incoming operand. If we find one, we use it, else we create a new
3136   // one.
3137   //
3138   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3139   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3140   // where OtherBB is the single other predecessor of BB's only successor.
3141   PHINode *PHI = nullptr;
3142   BasicBlock *Succ = BB->getSingleSuccessor();
3143 
3144   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3145     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3146       PHI = cast<PHINode>(I);
3147       if (!AlternativeV)
3148         break;
3149 
3150       assert(Succ->hasNPredecessors(2));
3151       auto PredI = pred_begin(Succ);
3152       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3153       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3154         break;
3155       PHI = nullptr;
3156     }
3157   if (PHI)
3158     return PHI;
3159 
3160   // If V is not an instruction defined in BB, just return it.
3161   if (!AlternativeV &&
3162       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3163     return V;
3164 
3165   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3166   PHI->addIncoming(V, BB);
3167   for (BasicBlock *PredBB : predecessors(Succ))
3168     if (PredBB != BB)
3169       PHI->addIncoming(
3170           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3171   return PHI;
3172 }
3173 
3174 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
3175                                            BasicBlock *QTB, BasicBlock *QFB,
3176                                            BasicBlock *PostBB, Value *Address,
3177                                            bool InvertPCond, bool InvertQCond,
3178                                            const DataLayout &DL,
3179                                            const TargetTransformInfo &TTI) {
3180   // For every pointer, there must be exactly two stores, one coming from
3181   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3182   // store (to any address) in PTB,PFB or QTB,QFB.
3183   // FIXME: We could relax this restriction with a bit more work and performance
3184   // testing.
3185   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3186   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3187   if (!PStore || !QStore)
3188     return false;
3189 
3190   // Now check the stores are compatible.
3191   if (!QStore->isUnordered() || !PStore->isUnordered())
3192     return false;
3193 
3194   // Check that sinking the store won't cause program behavior changes. Sinking
3195   // the store out of the Q blocks won't change any behavior as we're sinking
3196   // from a block to its unconditional successor. But we're moving a store from
3197   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3198   // So we need to check that there are no aliasing loads or stores in
3199   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3200   // operations between PStore and the end of its parent block.
3201   //
3202   // The ideal way to do this is to query AliasAnalysis, but we don't
3203   // preserve AA currently so that is dangerous. Be super safe and just
3204   // check there are no other memory operations at all.
3205   for (auto &I : *QFB->getSinglePredecessor())
3206     if (I.mayReadOrWriteMemory())
3207       return false;
3208   for (auto &I : *QFB)
3209     if (&I != QStore && I.mayReadOrWriteMemory())
3210       return false;
3211   if (QTB)
3212     for (auto &I : *QTB)
3213       if (&I != QStore && I.mayReadOrWriteMemory())
3214         return false;
3215   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3216        I != E; ++I)
3217     if (&*I != PStore && I->mayReadOrWriteMemory())
3218       return false;
3219 
3220   // If we're not in aggressive mode, we only optimize if we have some
3221   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3222   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3223     if (!BB)
3224       return true;
3225     // Heuristic: if the block can be if-converted/phi-folded and the
3226     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3227     // thread this store.
3228     int BudgetRemaining =
3229         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3230     for (auto &I : BB->instructionsWithoutDebug()) {
3231       // Consider terminator instruction to be free.
3232       if (I.isTerminator())
3233         continue;
3234       // If this is one the stores that we want to speculate out of this BB,
3235       // then don't count it's cost, consider it to be free.
3236       if (auto *S = dyn_cast<StoreInst>(&I))
3237         if (llvm::find(FreeStores, S))
3238           continue;
3239       // Else, we have a white-list of instructions that we are ak speculating.
3240       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3241         return false; // Not in white-list - not worthwhile folding.
3242       // And finally, if this is a non-free instruction that we are okay
3243       // speculating, ensure that we consider the speculation budget.
3244       BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3245       if (BudgetRemaining < 0)
3246         return false; // Eagerly refuse to fold as soon as we're out of budget.
3247     }
3248     assert(BudgetRemaining >= 0 &&
3249            "When we run out of budget we will eagerly return from within the "
3250            "per-instruction loop.");
3251     return true;
3252   };
3253 
3254   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3255   if (!MergeCondStoresAggressively &&
3256       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3257        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3258     return false;
3259 
3260   // If PostBB has more than two predecessors, we need to split it so we can
3261   // sink the store.
3262   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3263     // We know that QFB's only successor is PostBB. And QFB has a single
3264     // predecessor. If QTB exists, then its only successor is also PostBB.
3265     // If QTB does not exist, then QFB's only predecessor has a conditional
3266     // branch to QFB and PostBB.
3267     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3268     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3269                                                "condstore.split");
3270     if (!NewBB)
3271       return false;
3272     PostBB = NewBB;
3273   }
3274 
3275   // OK, we're going to sink the stores to PostBB. The store has to be
3276   // conditional though, so first create the predicate.
3277   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3278                      ->getCondition();
3279   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3280                      ->getCondition();
3281 
3282   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3283                                                 PStore->getParent());
3284   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3285                                                 QStore->getParent(), PPHI);
3286 
3287   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3288 
3289   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3290   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3291 
3292   if (InvertPCond)
3293     PPred = QB.CreateNot(PPred);
3294   if (InvertQCond)
3295     QPred = QB.CreateNot(QPred);
3296   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3297 
3298   auto *T =
3299       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3300   QB.SetInsertPoint(T);
3301   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3302   AAMDNodes AAMD;
3303   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3304   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3305   SI->setAAMetadata(AAMD);
3306   // Choose the minimum alignment. If we could prove both stores execute, we
3307   // could use biggest one.  In this case, though, we only know that one of the
3308   // stores executes.  And we don't know it's safe to take the alignment from a
3309   // store that doesn't execute.
3310   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3311 
3312   QStore->eraseFromParent();
3313   PStore->eraseFromParent();
3314 
3315   return true;
3316 }
3317 
3318 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3319                                    const DataLayout &DL,
3320                                    const TargetTransformInfo &TTI) {
3321   // The intention here is to find diamonds or triangles (see below) where each
3322   // conditional block contains a store to the same address. Both of these
3323   // stores are conditional, so they can't be unconditionally sunk. But it may
3324   // be profitable to speculatively sink the stores into one merged store at the
3325   // end, and predicate the merged store on the union of the two conditions of
3326   // PBI and QBI.
3327   //
3328   // This can reduce the number of stores executed if both of the conditions are
3329   // true, and can allow the blocks to become small enough to be if-converted.
3330   // This optimization will also chain, so that ladders of test-and-set
3331   // sequences can be if-converted away.
3332   //
3333   // We only deal with simple diamonds or triangles:
3334   //
3335   //     PBI       or      PBI        or a combination of the two
3336   //    /   \               | \
3337   //   PTB  PFB             |  PFB
3338   //    \   /               | /
3339   //     QBI                QBI
3340   //    /  \                | \
3341   //   QTB  QFB             |  QFB
3342   //    \  /                | /
3343   //    PostBB            PostBB
3344   //
3345   // We model triangles as a type of diamond with a nullptr "true" block.
3346   // Triangles are canonicalized so that the fallthrough edge is represented by
3347   // a true condition, as in the diagram above.
3348   BasicBlock *PTB = PBI->getSuccessor(0);
3349   BasicBlock *PFB = PBI->getSuccessor(1);
3350   BasicBlock *QTB = QBI->getSuccessor(0);
3351   BasicBlock *QFB = QBI->getSuccessor(1);
3352   BasicBlock *PostBB = QFB->getSingleSuccessor();
3353 
3354   // Make sure we have a good guess for PostBB. If QTB's only successor is
3355   // QFB, then QFB is a better PostBB.
3356   if (QTB->getSingleSuccessor() == QFB)
3357     PostBB = QFB;
3358 
3359   // If we couldn't find a good PostBB, stop.
3360   if (!PostBB)
3361     return false;
3362 
3363   bool InvertPCond = false, InvertQCond = false;
3364   // Canonicalize fallthroughs to the true branches.
3365   if (PFB == QBI->getParent()) {
3366     std::swap(PFB, PTB);
3367     InvertPCond = true;
3368   }
3369   if (QFB == PostBB) {
3370     std::swap(QFB, QTB);
3371     InvertQCond = true;
3372   }
3373 
3374   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3375   // and QFB may not. Model fallthroughs as a nullptr block.
3376   if (PTB == QBI->getParent())
3377     PTB = nullptr;
3378   if (QTB == PostBB)
3379     QTB = nullptr;
3380 
3381   // Legality bailouts. We must have at least the non-fallthrough blocks and
3382   // the post-dominating block, and the non-fallthroughs must only have one
3383   // predecessor.
3384   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3385     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3386   };
3387   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3388       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3389     return false;
3390   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3391       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3392     return false;
3393   if (!QBI->getParent()->hasNUses(2))
3394     return false;
3395 
3396   // OK, this is a sequence of two diamonds or triangles.
3397   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3398   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3399   for (auto *BB : {PTB, PFB}) {
3400     if (!BB)
3401       continue;
3402     for (auto &I : *BB)
3403       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3404         PStoreAddresses.insert(SI->getPointerOperand());
3405   }
3406   for (auto *BB : {QTB, QFB}) {
3407     if (!BB)
3408       continue;
3409     for (auto &I : *BB)
3410       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3411         QStoreAddresses.insert(SI->getPointerOperand());
3412   }
3413 
3414   set_intersect(PStoreAddresses, QStoreAddresses);
3415   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3416   // clear what it contains.
3417   auto &CommonAddresses = PStoreAddresses;
3418 
3419   bool Changed = false;
3420   for (auto *Address : CommonAddresses)
3421     Changed |= mergeConditionalStoreToAddress(
3422         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI);
3423   return Changed;
3424 }
3425 
3426 
3427 /// If the previous block ended with a widenable branch, determine if reusing
3428 /// the target block is profitable and legal.  This will have the effect of
3429 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3430 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
3431   // TODO: This can be generalized in two important ways:
3432   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3433   //    values from the PBI edge.
3434   // 2) We can sink side effecting instructions into BI's fallthrough
3435   //    successor provided they doesn't contribute to computation of
3436   //    BI's condition.
3437   Value *CondWB, *WC;
3438   BasicBlock *IfTrueBB, *IfFalseBB;
3439   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3440       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3441     return false;
3442   if (!IfFalseBB->phis().empty())
3443     return false; // TODO
3444   // Use lambda to lazily compute expensive condition after cheap ones.
3445   auto NoSideEffects = [](BasicBlock &BB) {
3446     return !llvm::any_of(BB, [](const Instruction &I) {
3447         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3448       });
3449   };
3450   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3451       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3452       NoSideEffects(*BI->getParent())) {
3453     BI->getSuccessor(1)->removePredecessor(BI->getParent());
3454     BI->setSuccessor(1, IfFalseBB);
3455     return true;
3456   }
3457   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3458       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3459       NoSideEffects(*BI->getParent())) {
3460     BI->getSuccessor(0)->removePredecessor(BI->getParent());
3461     BI->setSuccessor(0, IfFalseBB);
3462     return true;
3463   }
3464   return false;
3465 }
3466 
3467 /// If we have a conditional branch as a predecessor of another block,
3468 /// this function tries to simplify it.  We know
3469 /// that PBI and BI are both conditional branches, and BI is in one of the
3470 /// successor blocks of PBI - PBI branches to BI.
3471 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3472                                            const DataLayout &DL,
3473                                            const TargetTransformInfo &TTI) {
3474   assert(PBI->isConditional() && BI->isConditional());
3475   BasicBlock *BB = BI->getParent();
3476 
3477   // If this block ends with a branch instruction, and if there is a
3478   // predecessor that ends on a branch of the same condition, make
3479   // this conditional branch redundant.
3480   if (PBI->getCondition() == BI->getCondition() &&
3481       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3482     // Okay, the outcome of this conditional branch is statically
3483     // knowable.  If this block had a single pred, handle specially.
3484     if (BB->getSinglePredecessor()) {
3485       // Turn this into a branch on constant.
3486       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3487       BI->setCondition(
3488           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3489       return true; // Nuke the branch on constant.
3490     }
3491 
3492     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3493     // in the constant and simplify the block result.  Subsequent passes of
3494     // simplifycfg will thread the block.
3495     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3496       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3497       PHINode *NewPN = PHINode::Create(
3498           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3499           BI->getCondition()->getName() + ".pr", &BB->front());
3500       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3501       // predecessor, compute the PHI'd conditional value for all of the preds.
3502       // Any predecessor where the condition is not computable we keep symbolic.
3503       for (pred_iterator PI = PB; PI != PE; ++PI) {
3504         BasicBlock *P = *PI;
3505         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3506             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3507             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3508           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3509           NewPN->addIncoming(
3510               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3511               P);
3512         } else {
3513           NewPN->addIncoming(BI->getCondition(), P);
3514         }
3515       }
3516 
3517       BI->setCondition(NewPN);
3518       return true;
3519     }
3520   }
3521 
3522   // If the previous block ended with a widenable branch, determine if reusing
3523   // the target block is profitable and legal.  This will have the effect of
3524   // "widening" PBI, but doesn't require us to reason about hosting safety.
3525   if (tryWidenCondBranchToCondBranch(PBI, BI))
3526     return true;
3527 
3528   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3529     if (CE->canTrap())
3530       return false;
3531 
3532   // If both branches are conditional and both contain stores to the same
3533   // address, remove the stores from the conditionals and create a conditional
3534   // merged store at the end.
3535   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI))
3536     return true;
3537 
3538   // If this is a conditional branch in an empty block, and if any
3539   // predecessors are a conditional branch to one of our destinations,
3540   // fold the conditions into logical ops and one cond br.
3541 
3542   // Ignore dbg intrinsics.
3543   if (&*BB->instructionsWithoutDebug().begin() != BI)
3544     return false;
3545 
3546   int PBIOp, BIOp;
3547   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3548     PBIOp = 0;
3549     BIOp = 0;
3550   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3551     PBIOp = 0;
3552     BIOp = 1;
3553   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3554     PBIOp = 1;
3555     BIOp = 0;
3556   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3557     PBIOp = 1;
3558     BIOp = 1;
3559   } else {
3560     return false;
3561   }
3562 
3563   // Check to make sure that the other destination of this branch
3564   // isn't BB itself.  If so, this is an infinite loop that will
3565   // keep getting unwound.
3566   if (PBI->getSuccessor(PBIOp) == BB)
3567     return false;
3568 
3569   // Do not perform this transformation if it would require
3570   // insertion of a large number of select instructions. For targets
3571   // without predication/cmovs, this is a big pessimization.
3572 
3573   // Also do not perform this transformation if any phi node in the common
3574   // destination block can trap when reached by BB or PBB (PR17073). In that
3575   // case, it would be unsafe to hoist the operation into a select instruction.
3576 
3577   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3578   unsigned NumPhis = 0;
3579   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3580        ++II, ++NumPhis) {
3581     if (NumPhis > 2) // Disable this xform.
3582       return false;
3583 
3584     PHINode *PN = cast<PHINode>(II);
3585     Value *BIV = PN->getIncomingValueForBlock(BB);
3586     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3587       if (CE->canTrap())
3588         return false;
3589 
3590     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3591     Value *PBIV = PN->getIncomingValue(PBBIdx);
3592     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3593       if (CE->canTrap())
3594         return false;
3595   }
3596 
3597   // Finally, if everything is ok, fold the branches to logical ops.
3598   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3599 
3600   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3601                     << "AND: " << *BI->getParent());
3602 
3603   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3604   // branch in it, where one edge (OtherDest) goes back to itself but the other
3605   // exits.  We don't *know* that the program avoids the infinite loop
3606   // (even though that seems likely).  If we do this xform naively, we'll end up
3607   // recursively unpeeling the loop.  Since we know that (after the xform is
3608   // done) that the block *is* infinite if reached, we just make it an obviously
3609   // infinite loop with no cond branch.
3610   if (OtherDest == BB) {
3611     // Insert it at the end of the function, because it's either code,
3612     // or it won't matter if it's hot. :)
3613     BasicBlock *InfLoopBlock =
3614         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3615     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3616     OtherDest = InfLoopBlock;
3617   }
3618 
3619   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3620 
3621   // BI may have other predecessors.  Because of this, we leave
3622   // it alone, but modify PBI.
3623 
3624   // Make sure we get to CommonDest on True&True directions.
3625   Value *PBICond = PBI->getCondition();
3626   IRBuilder<NoFolder> Builder(PBI);
3627   if (PBIOp)
3628     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3629 
3630   Value *BICond = BI->getCondition();
3631   if (BIOp)
3632     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3633 
3634   // Merge the conditions.
3635   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3636 
3637   // Modify PBI to branch on the new condition to the new dests.
3638   PBI->setCondition(Cond);
3639   PBI->setSuccessor(0, CommonDest);
3640   PBI->setSuccessor(1, OtherDest);
3641 
3642   // Update branch weight for PBI.
3643   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3644   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3645   bool HasWeights =
3646       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3647                              SuccTrueWeight, SuccFalseWeight);
3648   if (HasWeights) {
3649     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3650     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3651     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3652     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3653     // The weight to CommonDest should be PredCommon * SuccTotal +
3654     //                                    PredOther * SuccCommon.
3655     // The weight to OtherDest should be PredOther * SuccOther.
3656     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3657                                   PredOther * SuccCommon,
3658                               PredOther * SuccOther};
3659     // Halve the weights if any of them cannot fit in an uint32_t
3660     FitWeights(NewWeights);
3661 
3662     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3663   }
3664 
3665   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3666   // block that are identical to the entries for BI's block.
3667   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3668 
3669   // We know that the CommonDest already had an edge from PBI to
3670   // it.  If it has PHIs though, the PHIs may have different
3671   // entries for BB and PBI's BB.  If so, insert a select to make
3672   // them agree.
3673   for (PHINode &PN : CommonDest->phis()) {
3674     Value *BIV = PN.getIncomingValueForBlock(BB);
3675     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3676     Value *PBIV = PN.getIncomingValue(PBBIdx);
3677     if (BIV != PBIV) {
3678       // Insert a select in PBI to pick the right value.
3679       SelectInst *NV = cast<SelectInst>(
3680           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3681       PN.setIncomingValue(PBBIdx, NV);
3682       // Although the select has the same condition as PBI, the original branch
3683       // weights for PBI do not apply to the new select because the select's
3684       // 'logical' edges are incoming edges of the phi that is eliminated, not
3685       // the outgoing edges of PBI.
3686       if (HasWeights) {
3687         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3688         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3689         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3690         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3691         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3692         // The weight to PredOtherDest should be PredOther * SuccCommon.
3693         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3694                                   PredOther * SuccCommon};
3695 
3696         FitWeights(NewWeights);
3697 
3698         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3699       }
3700     }
3701   }
3702 
3703   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3704   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3705 
3706   // This basic block is probably dead.  We know it has at least
3707   // one fewer predecessor.
3708   return true;
3709 }
3710 
3711 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3712 // true or to FalseBB if Cond is false.
3713 // Takes care of updating the successors and removing the old terminator.
3714 // Also makes sure not to introduce new successors by assuming that edges to
3715 // non-successor TrueBBs and FalseBBs aren't reachable.
3716 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3717                                                 Value *Cond, BasicBlock *TrueBB,
3718                                                 BasicBlock *FalseBB,
3719                                                 uint32_t TrueWeight,
3720                                                 uint32_t FalseWeight) {
3721   // Remove any superfluous successor edges from the CFG.
3722   // First, figure out which successors to preserve.
3723   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3724   // successor.
3725   BasicBlock *KeepEdge1 = TrueBB;
3726   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3727 
3728   // Then remove the rest.
3729   for (BasicBlock *Succ : successors(OldTerm)) {
3730     // Make sure only to keep exactly one copy of each edge.
3731     if (Succ == KeepEdge1)
3732       KeepEdge1 = nullptr;
3733     else if (Succ == KeepEdge2)
3734       KeepEdge2 = nullptr;
3735     else
3736       Succ->removePredecessor(OldTerm->getParent(),
3737                               /*KeepOneInputPHIs=*/true);
3738   }
3739 
3740   IRBuilder<> Builder(OldTerm);
3741   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3742 
3743   // Insert an appropriate new terminator.
3744   if (!KeepEdge1 && !KeepEdge2) {
3745     if (TrueBB == FalseBB)
3746       // We were only looking for one successor, and it was present.
3747       // Create an unconditional branch to it.
3748       Builder.CreateBr(TrueBB);
3749     else {
3750       // We found both of the successors we were looking for.
3751       // Create a conditional branch sharing the condition of the select.
3752       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3753       if (TrueWeight != FalseWeight)
3754         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3755     }
3756   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3757     // Neither of the selected blocks were successors, so this
3758     // terminator must be unreachable.
3759     new UnreachableInst(OldTerm->getContext(), OldTerm);
3760   } else {
3761     // One of the selected values was a successor, but the other wasn't.
3762     // Insert an unconditional branch to the one that was found;
3763     // the edge to the one that wasn't must be unreachable.
3764     if (!KeepEdge1)
3765       // Only TrueBB was found.
3766       Builder.CreateBr(TrueBB);
3767     else
3768       // Only FalseBB was found.
3769       Builder.CreateBr(FalseBB);
3770   }
3771 
3772   EraseTerminatorAndDCECond(OldTerm);
3773   return true;
3774 }
3775 
3776 // Replaces
3777 //   (switch (select cond, X, Y)) on constant X, Y
3778 // with a branch - conditional if X and Y lead to distinct BBs,
3779 // unconditional otherwise.
3780 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3781                                             SelectInst *Select) {
3782   // Check for constant integer values in the select.
3783   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3784   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3785   if (!TrueVal || !FalseVal)
3786     return false;
3787 
3788   // Find the relevant condition and destinations.
3789   Value *Condition = Select->getCondition();
3790   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3791   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3792 
3793   // Get weight for TrueBB and FalseBB.
3794   uint32_t TrueWeight = 0, FalseWeight = 0;
3795   SmallVector<uint64_t, 8> Weights;
3796   bool HasWeights = HasBranchWeights(SI);
3797   if (HasWeights) {
3798     GetBranchWeights(SI, Weights);
3799     if (Weights.size() == 1 + SI->getNumCases()) {
3800       TrueWeight =
3801           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3802       FalseWeight =
3803           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3804     }
3805   }
3806 
3807   // Perform the actual simplification.
3808   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3809                                     FalseWeight);
3810 }
3811 
3812 // Replaces
3813 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3814 //                             blockaddress(@fn, BlockB)))
3815 // with
3816 //   (br cond, BlockA, BlockB).
3817 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3818                                                 SelectInst *SI) {
3819   // Check that both operands of the select are block addresses.
3820   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3821   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3822   if (!TBA || !FBA)
3823     return false;
3824 
3825   // Extract the actual blocks.
3826   BasicBlock *TrueBB = TBA->getBasicBlock();
3827   BasicBlock *FalseBB = FBA->getBasicBlock();
3828 
3829   // Perform the actual simplification.
3830   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3831                                     0);
3832 }
3833 
3834 /// This is called when we find an icmp instruction
3835 /// (a seteq/setne with a constant) as the only instruction in a
3836 /// block that ends with an uncond branch.  We are looking for a very specific
3837 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3838 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3839 /// default value goes to an uncond block with a seteq in it, we get something
3840 /// like:
3841 ///
3842 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3843 /// DEFAULT:
3844 ///   %tmp = icmp eq i8 %A, 92
3845 ///   br label %end
3846 /// end:
3847 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3848 ///
3849 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3850 /// the PHI, merging the third icmp into the switch.
3851 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3852     ICmpInst *ICI, IRBuilder<> &Builder) {
3853   BasicBlock *BB = ICI->getParent();
3854 
3855   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3856   // complex.
3857   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3858     return false;
3859 
3860   Value *V = ICI->getOperand(0);
3861   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3862 
3863   // The pattern we're looking for is where our only predecessor is a switch on
3864   // 'V' and this block is the default case for the switch.  In this case we can
3865   // fold the compared value into the switch to simplify things.
3866   BasicBlock *Pred = BB->getSinglePredecessor();
3867   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3868     return false;
3869 
3870   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3871   if (SI->getCondition() != V)
3872     return false;
3873 
3874   // If BB is reachable on a non-default case, then we simply know the value of
3875   // V in this block.  Substitute it and constant fold the icmp instruction
3876   // away.
3877   if (SI->getDefaultDest() != BB) {
3878     ConstantInt *VVal = SI->findCaseDest(BB);
3879     assert(VVal && "Should have a unique destination value");
3880     ICI->setOperand(0, VVal);
3881 
3882     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3883       ICI->replaceAllUsesWith(V);
3884       ICI->eraseFromParent();
3885     }
3886     // BB is now empty, so it is likely to simplify away.
3887     return requestResimplify();
3888   }
3889 
3890   // Ok, the block is reachable from the default dest.  If the constant we're
3891   // comparing exists in one of the other edges, then we can constant fold ICI
3892   // and zap it.
3893   if (SI->findCaseValue(Cst) != SI->case_default()) {
3894     Value *V;
3895     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3896       V = ConstantInt::getFalse(BB->getContext());
3897     else
3898       V = ConstantInt::getTrue(BB->getContext());
3899 
3900     ICI->replaceAllUsesWith(V);
3901     ICI->eraseFromParent();
3902     // BB is now empty, so it is likely to simplify away.
3903     return requestResimplify();
3904   }
3905 
3906   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3907   // the block.
3908   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3909   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3910   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3911       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3912     return false;
3913 
3914   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3915   // true in the PHI.
3916   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3917   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3918 
3919   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3920     std::swap(DefaultCst, NewCst);
3921 
3922   // Replace ICI (which is used by the PHI for the default value) with true or
3923   // false depending on if it is EQ or NE.
3924   ICI->replaceAllUsesWith(DefaultCst);
3925   ICI->eraseFromParent();
3926 
3927   // Okay, the switch goes to this block on a default value.  Add an edge from
3928   // the switch to the merge point on the compared value.
3929   BasicBlock *NewBB =
3930       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3931   {
3932     SwitchInstProfUpdateWrapper SIW(*SI);
3933     auto W0 = SIW.getSuccessorWeight(0);
3934     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3935     if (W0) {
3936       NewW = ((uint64_t(*W0) + 1) >> 1);
3937       SIW.setSuccessorWeight(0, *NewW);
3938     }
3939     SIW.addCase(Cst, NewBB, NewW);
3940   }
3941 
3942   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3943   Builder.SetInsertPoint(NewBB);
3944   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3945   Builder.CreateBr(SuccBlock);
3946   PHIUse->addIncoming(NewCst, NewBB);
3947   return true;
3948 }
3949 
3950 /// The specified branch is a conditional branch.
3951 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3952 /// fold it into a switch instruction if so.
3953 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
3954                                                IRBuilder<> &Builder,
3955                                                const DataLayout &DL) {
3956   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3957   if (!Cond)
3958     return false;
3959 
3960   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3961   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3962   // 'setne's and'ed together, collect them.
3963 
3964   // Try to gather values from a chain of and/or to be turned into a switch
3965   ConstantComparesGatherer ConstantCompare(Cond, DL);
3966   // Unpack the result
3967   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3968   Value *CompVal = ConstantCompare.CompValue;
3969   unsigned UsedICmps = ConstantCompare.UsedICmps;
3970   Value *ExtraCase = ConstantCompare.Extra;
3971 
3972   // If we didn't have a multiply compared value, fail.
3973   if (!CompVal)
3974     return false;
3975 
3976   // Avoid turning single icmps into a switch.
3977   if (UsedICmps <= 1)
3978     return false;
3979 
3980   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3981 
3982   // There might be duplicate constants in the list, which the switch
3983   // instruction can't handle, remove them now.
3984   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3985   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3986 
3987   // If Extra was used, we require at least two switch values to do the
3988   // transformation.  A switch with one value is just a conditional branch.
3989   if (ExtraCase && Values.size() < 2)
3990     return false;
3991 
3992   // TODO: Preserve branch weight metadata, similarly to how
3993   // FoldValueComparisonIntoPredecessors preserves it.
3994 
3995   // Figure out which block is which destination.
3996   BasicBlock *DefaultBB = BI->getSuccessor(1);
3997   BasicBlock *EdgeBB = BI->getSuccessor(0);
3998   if (!TrueWhenEqual)
3999     std::swap(DefaultBB, EdgeBB);
4000 
4001   BasicBlock *BB = BI->getParent();
4002 
4003   // MSAN does not like undefs as branch condition which can be introduced
4004   // with "explicit branch".
4005   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4006     return false;
4007 
4008   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4009                     << " cases into SWITCH.  BB is:\n"
4010                     << *BB);
4011 
4012   // If there are any extra values that couldn't be folded into the switch
4013   // then we evaluate them with an explicit branch first. Split the block
4014   // right before the condbr to handle it.
4015   if (ExtraCase) {
4016     BasicBlock *NewBB =
4017         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
4018     // Remove the uncond branch added to the old block.
4019     Instruction *OldTI = BB->getTerminator();
4020     Builder.SetInsertPoint(OldTI);
4021 
4022     if (TrueWhenEqual)
4023       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4024     else
4025       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4026 
4027     OldTI->eraseFromParent();
4028 
4029     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4030     // for the edge we just added.
4031     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4032 
4033     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4034                       << "\nEXTRABB = " << *BB);
4035     BB = NewBB;
4036   }
4037 
4038   Builder.SetInsertPoint(BI);
4039   // Convert pointer to int before we switch.
4040   if (CompVal->getType()->isPointerTy()) {
4041     CompVal = Builder.CreatePtrToInt(
4042         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4043   }
4044 
4045   // Create the new switch instruction now.
4046   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4047 
4048   // Add all of the 'cases' to the switch instruction.
4049   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4050     New->addCase(Values[i], EdgeBB);
4051 
4052   // We added edges from PI to the EdgeBB.  As such, if there were any
4053   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4054   // the number of edges added.
4055   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4056     PHINode *PN = cast<PHINode>(BBI);
4057     Value *InVal = PN->getIncomingValueForBlock(BB);
4058     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4059       PN->addIncoming(InVal, BB);
4060   }
4061 
4062   // Erase the old branch instruction.
4063   EraseTerminatorAndDCECond(BI);
4064 
4065   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4066   return true;
4067 }
4068 
4069 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4070   if (isa<PHINode>(RI->getValue()))
4071     return simplifyCommonResume(RI);
4072   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4073            RI->getValue() == RI->getParent()->getFirstNonPHI())
4074     // The resume must unwind the exception that caused control to branch here.
4075     return simplifySingleResume(RI);
4076 
4077   return false;
4078 }
4079 
4080 // Check if cleanup block is empty
4081 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4082   for (Instruction &I : R) {
4083     auto *II = dyn_cast<IntrinsicInst>(&I);
4084     if (!II)
4085       return false;
4086 
4087     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4088     switch (IntrinsicID) {
4089     case Intrinsic::dbg_declare:
4090     case Intrinsic::dbg_value:
4091     case Intrinsic::dbg_label:
4092     case Intrinsic::lifetime_end:
4093       break;
4094     default:
4095       return false;
4096     }
4097   }
4098   return true;
4099 }
4100 
4101 // Simplify resume that is shared by several landing pads (phi of landing pad).
4102 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4103   BasicBlock *BB = RI->getParent();
4104 
4105   // Check that there are no other instructions except for debug and lifetime
4106   // intrinsics between the phi's and resume instruction.
4107   if (!isCleanupBlockEmpty(
4108           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4109     return false;
4110 
4111   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4112   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4113 
4114   // Check incoming blocks to see if any of them are trivial.
4115   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4116        Idx++) {
4117     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4118     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4119 
4120     // If the block has other successors, we can not delete it because
4121     // it has other dependents.
4122     if (IncomingBB->getUniqueSuccessor() != BB)
4123       continue;
4124 
4125     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4126     // Not the landing pad that caused the control to branch here.
4127     if (IncomingValue != LandingPad)
4128       continue;
4129 
4130     if (isCleanupBlockEmpty(
4131             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4132       TrivialUnwindBlocks.insert(IncomingBB);
4133   }
4134 
4135   // If no trivial unwind blocks, don't do any simplifications.
4136   if (TrivialUnwindBlocks.empty())
4137     return false;
4138 
4139   // Turn all invokes that unwind here into calls.
4140   for (auto *TrivialBB : TrivialUnwindBlocks) {
4141     // Blocks that will be simplified should be removed from the phi node.
4142     // Note there could be multiple edges to the resume block, and we need
4143     // to remove them all.
4144     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4145       BB->removePredecessor(TrivialBB, true);
4146 
4147     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
4148          PI != PE;) {
4149       BasicBlock *Pred = *PI++;
4150       removeUnwindEdge(Pred);
4151       ++NumInvokes;
4152     }
4153 
4154     // In each SimplifyCFG run, only the current processed block can be erased.
4155     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4156     // of erasing TrivialBB, we only remove the branch to the common resume
4157     // block so that we can later erase the resume block since it has no
4158     // predecessors.
4159     TrivialBB->getTerminator()->eraseFromParent();
4160     new UnreachableInst(RI->getContext(), TrivialBB);
4161   }
4162 
4163   // Delete the resume block if all its predecessors have been removed.
4164   if (pred_empty(BB))
4165     BB->eraseFromParent();
4166 
4167   return !TrivialUnwindBlocks.empty();
4168 }
4169 
4170 // Simplify resume that is only used by a single (non-phi) landing pad.
4171 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4172   BasicBlock *BB = RI->getParent();
4173   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4174   assert(RI->getValue() == LPInst &&
4175          "Resume must unwind the exception that caused control to here");
4176 
4177   // Check that there are no other instructions except for debug intrinsics.
4178   if (!isCleanupBlockEmpty(
4179           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4180     return false;
4181 
4182   // Turn all invokes that unwind here into calls and delete the basic block.
4183   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4184     BasicBlock *Pred = *PI++;
4185     removeUnwindEdge(Pred);
4186     ++NumInvokes;
4187   }
4188 
4189   // The landingpad is now unreachable.  Zap it.
4190   if (LoopHeaders)
4191     LoopHeaders->erase(BB);
4192   BB->eraseFromParent();
4193   return true;
4194 }
4195 
4196 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
4197   // If this is a trivial cleanup pad that executes no instructions, it can be
4198   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4199   // that is an EH pad will be updated to continue to the caller and any
4200   // predecessor that terminates with an invoke instruction will have its invoke
4201   // instruction converted to a call instruction.  If the cleanup pad being
4202   // simplified does not continue to the caller, each predecessor will be
4203   // updated to continue to the unwind destination of the cleanup pad being
4204   // simplified.
4205   BasicBlock *BB = RI->getParent();
4206   CleanupPadInst *CPInst = RI->getCleanupPad();
4207   if (CPInst->getParent() != BB)
4208     // This isn't an empty cleanup.
4209     return false;
4210 
4211   // We cannot kill the pad if it has multiple uses.  This typically arises
4212   // from unreachable basic blocks.
4213   if (!CPInst->hasOneUse())
4214     return false;
4215 
4216   // Check that there are no other instructions except for benign intrinsics.
4217   if (!isCleanupBlockEmpty(
4218           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4219     return false;
4220 
4221   // If the cleanup return we are simplifying unwinds to the caller, this will
4222   // set UnwindDest to nullptr.
4223   BasicBlock *UnwindDest = RI->getUnwindDest();
4224   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4225 
4226   // We're about to remove BB from the control flow.  Before we do, sink any
4227   // PHINodes into the unwind destination.  Doing this before changing the
4228   // control flow avoids some potentially slow checks, since we can currently
4229   // be certain that UnwindDest and BB have no common predecessors (since they
4230   // are both EH pads).
4231   if (UnwindDest) {
4232     // First, go through the PHI nodes in UnwindDest and update any nodes that
4233     // reference the block we are removing
4234     for (BasicBlock::iterator I = UnwindDest->begin(),
4235                               IE = DestEHPad->getIterator();
4236          I != IE; ++I) {
4237       PHINode *DestPN = cast<PHINode>(I);
4238 
4239       int Idx = DestPN->getBasicBlockIndex(BB);
4240       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4241       assert(Idx != -1);
4242       // This PHI node has an incoming value that corresponds to a control
4243       // path through the cleanup pad we are removing.  If the incoming
4244       // value is in the cleanup pad, it must be a PHINode (because we
4245       // verified above that the block is otherwise empty).  Otherwise, the
4246       // value is either a constant or a value that dominates the cleanup
4247       // pad being removed.
4248       //
4249       // Because BB and UnwindDest are both EH pads, all of their
4250       // predecessors must unwind to these blocks, and since no instruction
4251       // can have multiple unwind destinations, there will be no overlap in
4252       // incoming blocks between SrcPN and DestPN.
4253       Value *SrcVal = DestPN->getIncomingValue(Idx);
4254       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4255 
4256       // Remove the entry for the block we are deleting.
4257       DestPN->removeIncomingValue(Idx, false);
4258 
4259       if (SrcPN && SrcPN->getParent() == BB) {
4260         // If the incoming value was a PHI node in the cleanup pad we are
4261         // removing, we need to merge that PHI node's incoming values into
4262         // DestPN.
4263         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4264              SrcIdx != SrcE; ++SrcIdx) {
4265           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4266                               SrcPN->getIncomingBlock(SrcIdx));
4267         }
4268       } else {
4269         // Otherwise, the incoming value came from above BB and
4270         // so we can just reuse it.  We must associate all of BB's
4271         // predecessors with this value.
4272         for (auto *pred : predecessors(BB)) {
4273           DestPN->addIncoming(SrcVal, pred);
4274         }
4275       }
4276     }
4277 
4278     // Sink any remaining PHI nodes directly into UnwindDest.
4279     Instruction *InsertPt = DestEHPad;
4280     for (BasicBlock::iterator I = BB->begin(),
4281                               IE = BB->getFirstNonPHI()->getIterator();
4282          I != IE;) {
4283       // The iterator must be incremented here because the instructions are
4284       // being moved to another block.
4285       PHINode *PN = cast<PHINode>(I++);
4286       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4287         // If the PHI node has no uses or all of its uses are in this basic
4288         // block (meaning they are debug or lifetime intrinsics), just leave
4289         // it.  It will be erased when we erase BB below.
4290         continue;
4291 
4292       // Otherwise, sink this PHI node into UnwindDest.
4293       // Any predecessors to UnwindDest which are not already represented
4294       // must be back edges which inherit the value from the path through
4295       // BB.  In this case, the PHI value must reference itself.
4296       for (auto *pred : predecessors(UnwindDest))
4297         if (pred != BB)
4298           PN->addIncoming(PN, pred);
4299       PN->moveBefore(InsertPt);
4300     }
4301   }
4302 
4303   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4304     // The iterator must be updated here because we are removing this pred.
4305     BasicBlock *PredBB = *PI++;
4306     if (UnwindDest == nullptr) {
4307       removeUnwindEdge(PredBB);
4308       ++NumInvokes;
4309     } else {
4310       Instruction *TI = PredBB->getTerminator();
4311       TI->replaceUsesOfWith(BB, UnwindDest);
4312     }
4313   }
4314 
4315   // The cleanup pad is now unreachable.  Zap it.
4316   BB->eraseFromParent();
4317   return true;
4318 }
4319 
4320 // Try to merge two cleanuppads together.
4321 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4322   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4323   // with.
4324   BasicBlock *UnwindDest = RI->getUnwindDest();
4325   if (!UnwindDest)
4326     return false;
4327 
4328   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4329   // be safe to merge without code duplication.
4330   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4331     return false;
4332 
4333   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4334   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4335   if (!SuccessorCleanupPad)
4336     return false;
4337 
4338   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4339   // Replace any uses of the successor cleanupad with the predecessor pad
4340   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4341   // funclet bundle operands.
4342   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4343   // Remove the old cleanuppad.
4344   SuccessorCleanupPad->eraseFromParent();
4345   // Now, we simply replace the cleanupret with a branch to the unwind
4346   // destination.
4347   BranchInst::Create(UnwindDest, RI->getParent());
4348   RI->eraseFromParent();
4349 
4350   return true;
4351 }
4352 
4353 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4354   // It is possible to transiantly have an undef cleanuppad operand because we
4355   // have deleted some, but not all, dead blocks.
4356   // Eventually, this block will be deleted.
4357   if (isa<UndefValue>(RI->getOperand(0)))
4358     return false;
4359 
4360   if (mergeCleanupPad(RI))
4361     return true;
4362 
4363   if (removeEmptyCleanup(RI))
4364     return true;
4365 
4366   return false;
4367 }
4368 
4369 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4370   BasicBlock *BB = RI->getParent();
4371   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4372     return false;
4373 
4374   // Find predecessors that end with branches.
4375   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4376   SmallVector<BranchInst *, 8> CondBranchPreds;
4377   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4378     BasicBlock *P = *PI;
4379     Instruction *PTI = P->getTerminator();
4380     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4381       if (BI->isUnconditional())
4382         UncondBranchPreds.push_back(P);
4383       else
4384         CondBranchPreds.push_back(BI);
4385     }
4386   }
4387 
4388   // If we found some, do the transformation!
4389   if (!UncondBranchPreds.empty() && DupRet) {
4390     while (!UncondBranchPreds.empty()) {
4391       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4392       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4393                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4394       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4395     }
4396 
4397     // If we eliminated all predecessors of the block, delete the block now.
4398     if (pred_empty(BB)) {
4399       // We know there are no successors, so just nuke the block.
4400       if (LoopHeaders)
4401         LoopHeaders->erase(BB);
4402       BB->eraseFromParent();
4403     }
4404 
4405     return true;
4406   }
4407 
4408   // Check out all of the conditional branches going to this return
4409   // instruction.  If any of them just select between returns, change the
4410   // branch itself into a select/return pair.
4411   while (!CondBranchPreds.empty()) {
4412     BranchInst *BI = CondBranchPreds.pop_back_val();
4413 
4414     // Check to see if the non-BB successor is also a return block.
4415     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4416         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4417         SimplifyCondBranchToTwoReturns(BI, Builder))
4418       return true;
4419   }
4420   return false;
4421 }
4422 
4423 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4424   BasicBlock *BB = UI->getParent();
4425 
4426   bool Changed = false;
4427 
4428   // If there are any instructions immediately before the unreachable that can
4429   // be removed, do so.
4430   while (UI->getIterator() != BB->begin()) {
4431     BasicBlock::iterator BBI = UI->getIterator();
4432     --BBI;
4433     // Do not delete instructions that can have side effects which might cause
4434     // the unreachable to not be reachable; specifically, calls and volatile
4435     // operations may have this effect.
4436     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4437       break;
4438 
4439     if (BBI->mayHaveSideEffects()) {
4440       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4441         if (SI->isVolatile())
4442           break;
4443       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4444         if (LI->isVolatile())
4445           break;
4446       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4447         if (RMWI->isVolatile())
4448           break;
4449       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4450         if (CXI->isVolatile())
4451           break;
4452       } else if (isa<CatchPadInst>(BBI)) {
4453         // A catchpad may invoke exception object constructors and such, which
4454         // in some languages can be arbitrary code, so be conservative by
4455         // default.
4456         // For CoreCLR, it just involves a type test, so can be removed.
4457         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4458             EHPersonality::CoreCLR)
4459           break;
4460       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4461                  !isa<LandingPadInst>(BBI)) {
4462         break;
4463       }
4464       // Note that deleting LandingPad's here is in fact okay, although it
4465       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4466       // all the predecessors of this block will be the unwind edges of Invokes,
4467       // and we can therefore guarantee this block will be erased.
4468     }
4469 
4470     // Delete this instruction (any uses are guaranteed to be dead)
4471     if (!BBI->use_empty())
4472       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4473     BBI->eraseFromParent();
4474     Changed = true;
4475   }
4476 
4477   // If the unreachable instruction is the first in the block, take a gander
4478   // at all of the predecessors of this instruction, and simplify them.
4479   if (&BB->front() != UI)
4480     return Changed;
4481 
4482   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4483   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4484     Instruction *TI = Preds[i]->getTerminator();
4485     IRBuilder<> Builder(TI);
4486     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4487       if (BI->isUnconditional()) {
4488         assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4489         new UnreachableInst(TI->getContext(), TI);
4490         TI->eraseFromParent();
4491         Changed = true;
4492       } else {
4493         Value* Cond = BI->getCondition();
4494         if (BI->getSuccessor(0) == BB) {
4495           Builder.CreateAssumption(Builder.CreateNot(Cond));
4496           Builder.CreateBr(BI->getSuccessor(1));
4497         } else {
4498           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4499           Builder.CreateAssumption(Cond);
4500           Builder.CreateBr(BI->getSuccessor(0));
4501         }
4502         EraseTerminatorAndDCECond(BI);
4503         Changed = true;
4504       }
4505     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4506       SwitchInstProfUpdateWrapper SU(*SI);
4507       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4508         if (i->getCaseSuccessor() != BB) {
4509           ++i;
4510           continue;
4511         }
4512         BB->removePredecessor(SU->getParent());
4513         i = SU.removeCase(i);
4514         e = SU->case_end();
4515         Changed = true;
4516       }
4517     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4518       if (II->getUnwindDest() == BB) {
4519         removeUnwindEdge(TI->getParent());
4520         Changed = true;
4521       }
4522     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4523       if (CSI->getUnwindDest() == BB) {
4524         removeUnwindEdge(TI->getParent());
4525         Changed = true;
4526         continue;
4527       }
4528 
4529       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4530                                              E = CSI->handler_end();
4531            I != E; ++I) {
4532         if (*I == BB) {
4533           CSI->removeHandler(I);
4534           --I;
4535           --E;
4536           Changed = true;
4537         }
4538       }
4539       if (CSI->getNumHandlers() == 0) {
4540         BasicBlock *CatchSwitchBB = CSI->getParent();
4541         if (CSI->hasUnwindDest()) {
4542           // Redirect preds to the unwind dest
4543           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4544         } else {
4545           // Rewrite all preds to unwind to caller (or from invoke to call).
4546           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4547           for (BasicBlock *EHPred : EHPreds)
4548             removeUnwindEdge(EHPred);
4549         }
4550         // The catchswitch is no longer reachable.
4551         new UnreachableInst(CSI->getContext(), CSI);
4552         CSI->eraseFromParent();
4553         Changed = true;
4554       }
4555     } else if (isa<CleanupReturnInst>(TI)) {
4556       new UnreachableInst(TI->getContext(), TI);
4557       TI->eraseFromParent();
4558       Changed = true;
4559     }
4560   }
4561 
4562   // If this block is now dead, remove it.
4563   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4564     // We know there are no successors, so just nuke the block.
4565     if (LoopHeaders)
4566       LoopHeaders->erase(BB);
4567     BB->eraseFromParent();
4568     return true;
4569   }
4570 
4571   return Changed;
4572 }
4573 
4574 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4575   assert(Cases.size() >= 1);
4576 
4577   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4578   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4579     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4580       return false;
4581   }
4582   return true;
4583 }
4584 
4585 static void createUnreachableSwitchDefault(SwitchInst *Switch) {
4586   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4587   BasicBlock *NewDefaultBlock =
4588      SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
4589   Switch->setDefaultDest(&*NewDefaultBlock);
4590   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
4591   auto *NewTerminator = NewDefaultBlock->getTerminator();
4592   new UnreachableInst(Switch->getContext(), NewTerminator);
4593   EraseTerminatorAndDCECond(NewTerminator);
4594 }
4595 
4596 /// Turn a switch with two reachable destinations into an integer range
4597 /// comparison and branch.
4598 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4599                                              IRBuilder<> &Builder) {
4600   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4601 
4602   bool HasDefault =
4603       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4604 
4605   // Partition the cases into two sets with different destinations.
4606   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4607   BasicBlock *DestB = nullptr;
4608   SmallVector<ConstantInt *, 16> CasesA;
4609   SmallVector<ConstantInt *, 16> CasesB;
4610 
4611   for (auto Case : SI->cases()) {
4612     BasicBlock *Dest = Case.getCaseSuccessor();
4613     if (!DestA)
4614       DestA = Dest;
4615     if (Dest == DestA) {
4616       CasesA.push_back(Case.getCaseValue());
4617       continue;
4618     }
4619     if (!DestB)
4620       DestB = Dest;
4621     if (Dest == DestB) {
4622       CasesB.push_back(Case.getCaseValue());
4623       continue;
4624     }
4625     return false; // More than two destinations.
4626   }
4627 
4628   assert(DestA && DestB &&
4629          "Single-destination switch should have been folded.");
4630   assert(DestA != DestB);
4631   assert(DestB != SI->getDefaultDest());
4632   assert(!CasesB.empty() && "There must be non-default cases.");
4633   assert(!CasesA.empty() || HasDefault);
4634 
4635   // Figure out if one of the sets of cases form a contiguous range.
4636   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4637   BasicBlock *ContiguousDest = nullptr;
4638   BasicBlock *OtherDest = nullptr;
4639   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4640     ContiguousCases = &CasesA;
4641     ContiguousDest = DestA;
4642     OtherDest = DestB;
4643   } else if (CasesAreContiguous(CasesB)) {
4644     ContiguousCases = &CasesB;
4645     ContiguousDest = DestB;
4646     OtherDest = DestA;
4647   } else
4648     return false;
4649 
4650   // Start building the compare and branch.
4651 
4652   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4653   Constant *NumCases =
4654       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4655 
4656   Value *Sub = SI->getCondition();
4657   if (!Offset->isNullValue())
4658     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4659 
4660   Value *Cmp;
4661   // If NumCases overflowed, then all possible values jump to the successor.
4662   if (NumCases->isNullValue() && !ContiguousCases->empty())
4663     Cmp = ConstantInt::getTrue(SI->getContext());
4664   else
4665     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4666   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4667 
4668   // Update weight for the newly-created conditional branch.
4669   if (HasBranchWeights(SI)) {
4670     SmallVector<uint64_t, 8> Weights;
4671     GetBranchWeights(SI, Weights);
4672     if (Weights.size() == 1 + SI->getNumCases()) {
4673       uint64_t TrueWeight = 0;
4674       uint64_t FalseWeight = 0;
4675       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4676         if (SI->getSuccessor(I) == ContiguousDest)
4677           TrueWeight += Weights[I];
4678         else
4679           FalseWeight += Weights[I];
4680       }
4681       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4682         TrueWeight /= 2;
4683         FalseWeight /= 2;
4684       }
4685       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4686     }
4687   }
4688 
4689   // Prune obsolete incoming values off the successors' PHI nodes.
4690   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4691     unsigned PreviousEdges = ContiguousCases->size();
4692     if (ContiguousDest == SI->getDefaultDest())
4693       ++PreviousEdges;
4694     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4695       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4696   }
4697   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4698     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4699     if (OtherDest == SI->getDefaultDest())
4700       ++PreviousEdges;
4701     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4702       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4703   }
4704 
4705   // Clean up the default block - it may have phis or other instructions before
4706   // the unreachable terminator.
4707   if (!HasDefault)
4708     createUnreachableSwitchDefault(SI);
4709 
4710   // Drop the switch.
4711   SI->eraseFromParent();
4712 
4713   return true;
4714 }
4715 
4716 /// Compute masked bits for the condition of a switch
4717 /// and use it to remove dead cases.
4718 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4719                                      const DataLayout &DL) {
4720   Value *Cond = SI->getCondition();
4721   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4722   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4723 
4724   // We can also eliminate cases by determining that their values are outside of
4725   // the limited range of the condition based on how many significant (non-sign)
4726   // bits are in the condition value.
4727   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4728   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4729 
4730   // Gather dead cases.
4731   SmallVector<ConstantInt *, 8> DeadCases;
4732   for (auto &Case : SI->cases()) {
4733     const APInt &CaseVal = Case.getCaseValue()->getValue();
4734     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4735         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4736       DeadCases.push_back(Case.getCaseValue());
4737       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4738                         << " is dead.\n");
4739     }
4740   }
4741 
4742   // If we can prove that the cases must cover all possible values, the
4743   // default destination becomes dead and we can remove it.  If we know some
4744   // of the bits in the value, we can use that to more precisely compute the
4745   // number of possible unique case values.
4746   bool HasDefault =
4747       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4748   const unsigned NumUnknownBits =
4749       Bits - (Known.Zero | Known.One).countPopulation();
4750   assert(NumUnknownBits <= Bits);
4751   if (HasDefault && DeadCases.empty() &&
4752       NumUnknownBits < 64 /* avoid overflow */ &&
4753       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4754     createUnreachableSwitchDefault(SI);
4755     return true;
4756   }
4757 
4758   if (DeadCases.empty())
4759     return false;
4760 
4761   SwitchInstProfUpdateWrapper SIW(*SI);
4762   for (ConstantInt *DeadCase : DeadCases) {
4763     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4764     assert(CaseI != SI->case_default() &&
4765            "Case was not found. Probably mistake in DeadCases forming.");
4766     // Prune unused values from PHI nodes.
4767     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4768     SIW.removeCase(CaseI);
4769   }
4770 
4771   return true;
4772 }
4773 
4774 /// If BB would be eligible for simplification by
4775 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4776 /// by an unconditional branch), look at the phi node for BB in the successor
4777 /// block and see if the incoming value is equal to CaseValue. If so, return
4778 /// the phi node, and set PhiIndex to BB's index in the phi node.
4779 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4780                                               BasicBlock *BB, int *PhiIndex) {
4781   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4782     return nullptr; // BB must be empty to be a candidate for simplification.
4783   if (!BB->getSinglePredecessor())
4784     return nullptr; // BB must be dominated by the switch.
4785 
4786   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4787   if (!Branch || !Branch->isUnconditional())
4788     return nullptr; // Terminator must be unconditional branch.
4789 
4790   BasicBlock *Succ = Branch->getSuccessor(0);
4791 
4792   for (PHINode &PHI : Succ->phis()) {
4793     int Idx = PHI.getBasicBlockIndex(BB);
4794     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4795 
4796     Value *InValue = PHI.getIncomingValue(Idx);
4797     if (InValue != CaseValue)
4798       continue;
4799 
4800     *PhiIndex = Idx;
4801     return &PHI;
4802   }
4803 
4804   return nullptr;
4805 }
4806 
4807 /// Try to forward the condition of a switch instruction to a phi node
4808 /// dominated by the switch, if that would mean that some of the destination
4809 /// blocks of the switch can be folded away. Return true if a change is made.
4810 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4811   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4812 
4813   ForwardingNodesMap ForwardingNodes;
4814   BasicBlock *SwitchBlock = SI->getParent();
4815   bool Changed = false;
4816   for (auto &Case : SI->cases()) {
4817     ConstantInt *CaseValue = Case.getCaseValue();
4818     BasicBlock *CaseDest = Case.getCaseSuccessor();
4819 
4820     // Replace phi operands in successor blocks that are using the constant case
4821     // value rather than the switch condition variable:
4822     //   switchbb:
4823     //   switch i32 %x, label %default [
4824     //     i32 17, label %succ
4825     //   ...
4826     //   succ:
4827     //     %r = phi i32 ... [ 17, %switchbb ] ...
4828     // -->
4829     //     %r = phi i32 ... [ %x, %switchbb ] ...
4830 
4831     for (PHINode &Phi : CaseDest->phis()) {
4832       // This only works if there is exactly 1 incoming edge from the switch to
4833       // a phi. If there is >1, that means multiple cases of the switch map to 1
4834       // value in the phi, and that phi value is not the switch condition. Thus,
4835       // this transform would not make sense (the phi would be invalid because
4836       // a phi can't have different incoming values from the same block).
4837       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4838       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4839           count(Phi.blocks(), SwitchBlock) == 1) {
4840         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4841         Changed = true;
4842       }
4843     }
4844 
4845     // Collect phi nodes that are indirectly using this switch's case constants.
4846     int PhiIdx;
4847     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4848       ForwardingNodes[Phi].push_back(PhiIdx);
4849   }
4850 
4851   for (auto &ForwardingNode : ForwardingNodes) {
4852     PHINode *Phi = ForwardingNode.first;
4853     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4854     if (Indexes.size() < 2)
4855       continue;
4856 
4857     for (int Index : Indexes)
4858       Phi->setIncomingValue(Index, SI->getCondition());
4859     Changed = true;
4860   }
4861 
4862   return Changed;
4863 }
4864 
4865 /// Return true if the backend will be able to handle
4866 /// initializing an array of constants like C.
4867 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4868   if (C->isThreadDependent())
4869     return false;
4870   if (C->isDLLImportDependent())
4871     return false;
4872 
4873   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4874       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4875       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4876     return false;
4877 
4878   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4879     if (!CE->isGEPWithNoNotionalOverIndexing())
4880       return false;
4881     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4882       return false;
4883   }
4884 
4885   if (!TTI.shouldBuildLookupTablesForConstant(C))
4886     return false;
4887 
4888   return true;
4889 }
4890 
4891 /// If V is a Constant, return it. Otherwise, try to look up
4892 /// its constant value in ConstantPool, returning 0 if it's not there.
4893 static Constant *
4894 LookupConstant(Value *V,
4895                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4896   if (Constant *C = dyn_cast<Constant>(V))
4897     return C;
4898   return ConstantPool.lookup(V);
4899 }
4900 
4901 /// Try to fold instruction I into a constant. This works for
4902 /// simple instructions such as binary operations where both operands are
4903 /// constant or can be replaced by constants from the ConstantPool. Returns the
4904 /// resulting constant on success, 0 otherwise.
4905 static Constant *
4906 ConstantFold(Instruction *I, const DataLayout &DL,
4907              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4908   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4909     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4910     if (!A)
4911       return nullptr;
4912     if (A->isAllOnesValue())
4913       return LookupConstant(Select->getTrueValue(), ConstantPool);
4914     if (A->isNullValue())
4915       return LookupConstant(Select->getFalseValue(), ConstantPool);
4916     return nullptr;
4917   }
4918 
4919   SmallVector<Constant *, 4> COps;
4920   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4921     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4922       COps.push_back(A);
4923     else
4924       return nullptr;
4925   }
4926 
4927   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4928     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4929                                            COps[1], DL);
4930   }
4931 
4932   return ConstantFoldInstOperands(I, COps, DL);
4933 }
4934 
4935 /// Try to determine the resulting constant values in phi nodes
4936 /// at the common destination basic block, *CommonDest, for one of the case
4937 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4938 /// case), of a switch instruction SI.
4939 static bool
4940 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4941                BasicBlock **CommonDest,
4942                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4943                const DataLayout &DL, const TargetTransformInfo &TTI) {
4944   // The block from which we enter the common destination.
4945   BasicBlock *Pred = SI->getParent();
4946 
4947   // If CaseDest is empty except for some side-effect free instructions through
4948   // which we can constant-propagate the CaseVal, continue to its successor.
4949   SmallDenseMap<Value *, Constant *> ConstantPool;
4950   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4951   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4952     if (I.isTerminator()) {
4953       // If the terminator is a simple branch, continue to the next block.
4954       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4955         return false;
4956       Pred = CaseDest;
4957       CaseDest = I.getSuccessor(0);
4958     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4959       // Instruction is side-effect free and constant.
4960 
4961       // If the instruction has uses outside this block or a phi node slot for
4962       // the block, it is not safe to bypass the instruction since it would then
4963       // no longer dominate all its uses.
4964       for (auto &Use : I.uses()) {
4965         User *User = Use.getUser();
4966         if (Instruction *I = dyn_cast<Instruction>(User))
4967           if (I->getParent() == CaseDest)
4968             continue;
4969         if (PHINode *Phi = dyn_cast<PHINode>(User))
4970           if (Phi->getIncomingBlock(Use) == CaseDest)
4971             continue;
4972         return false;
4973       }
4974 
4975       ConstantPool.insert(std::make_pair(&I, C));
4976     } else {
4977       break;
4978     }
4979   }
4980 
4981   // If we did not have a CommonDest before, use the current one.
4982   if (!*CommonDest)
4983     *CommonDest = CaseDest;
4984   // If the destination isn't the common one, abort.
4985   if (CaseDest != *CommonDest)
4986     return false;
4987 
4988   // Get the values for this case from phi nodes in the destination block.
4989   for (PHINode &PHI : (*CommonDest)->phis()) {
4990     int Idx = PHI.getBasicBlockIndex(Pred);
4991     if (Idx == -1)
4992       continue;
4993 
4994     Constant *ConstVal =
4995         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4996     if (!ConstVal)
4997       return false;
4998 
4999     // Be conservative about which kinds of constants we support.
5000     if (!ValidLookupTableConstant(ConstVal, TTI))
5001       return false;
5002 
5003     Res.push_back(std::make_pair(&PHI, ConstVal));
5004   }
5005 
5006   return Res.size() > 0;
5007 }
5008 
5009 // Helper function used to add CaseVal to the list of cases that generate
5010 // Result. Returns the updated number of cases that generate this result.
5011 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5012                                  SwitchCaseResultVectorTy &UniqueResults,
5013                                  Constant *Result) {
5014   for (auto &I : UniqueResults) {
5015     if (I.first == Result) {
5016       I.second.push_back(CaseVal);
5017       return I.second.size();
5018     }
5019   }
5020   UniqueResults.push_back(
5021       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5022   return 1;
5023 }
5024 
5025 // Helper function that initializes a map containing
5026 // results for the PHI node of the common destination block for a switch
5027 // instruction. Returns false if multiple PHI nodes have been found or if
5028 // there is not a common destination block for the switch.
5029 static bool
5030 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5031                       SwitchCaseResultVectorTy &UniqueResults,
5032                       Constant *&DefaultResult, const DataLayout &DL,
5033                       const TargetTransformInfo &TTI,
5034                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5035   for (auto &I : SI->cases()) {
5036     ConstantInt *CaseVal = I.getCaseValue();
5037 
5038     // Resulting value at phi nodes for this case value.
5039     SwitchCaseResultsTy Results;
5040     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5041                         DL, TTI))
5042       return false;
5043 
5044     // Only one value per case is permitted.
5045     if (Results.size() > 1)
5046       return false;
5047 
5048     // Add the case->result mapping to UniqueResults.
5049     const uintptr_t NumCasesForResult =
5050         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5051 
5052     // Early out if there are too many cases for this result.
5053     if (NumCasesForResult > MaxCasesPerResult)
5054       return false;
5055 
5056     // Early out if there are too many unique results.
5057     if (UniqueResults.size() > MaxUniqueResults)
5058       return false;
5059 
5060     // Check the PHI consistency.
5061     if (!PHI)
5062       PHI = Results[0].first;
5063     else if (PHI != Results[0].first)
5064       return false;
5065   }
5066   // Find the default result value.
5067   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5068   BasicBlock *DefaultDest = SI->getDefaultDest();
5069   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5070                  DL, TTI);
5071   // If the default value is not found abort unless the default destination
5072   // is unreachable.
5073   DefaultResult =
5074       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5075   if ((!DefaultResult &&
5076        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5077     return false;
5078 
5079   return true;
5080 }
5081 
5082 // Helper function that checks if it is possible to transform a switch with only
5083 // two cases (or two cases + default) that produces a result into a select.
5084 // Example:
5085 // switch (a) {
5086 //   case 10:                %0 = icmp eq i32 %a, 10
5087 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5088 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5089 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5090 //   default:
5091 //     return 4;
5092 // }
5093 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5094                                    Constant *DefaultResult, Value *Condition,
5095                                    IRBuilder<> &Builder) {
5096   assert(ResultVector.size() == 2 &&
5097          "We should have exactly two unique results at this point");
5098   // If we are selecting between only two cases transform into a simple
5099   // select or a two-way select if default is possible.
5100   if (ResultVector[0].second.size() == 1 &&
5101       ResultVector[1].second.size() == 1) {
5102     ConstantInt *const FirstCase = ResultVector[0].second[0];
5103     ConstantInt *const SecondCase = ResultVector[1].second[0];
5104 
5105     bool DefaultCanTrigger = DefaultResult;
5106     Value *SelectValue = ResultVector[1].first;
5107     if (DefaultCanTrigger) {
5108       Value *const ValueCompare =
5109           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5110       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5111                                          DefaultResult, "switch.select");
5112     }
5113     Value *const ValueCompare =
5114         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5115     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5116                                 SelectValue, "switch.select");
5117   }
5118 
5119   return nullptr;
5120 }
5121 
5122 // Helper function to cleanup a switch instruction that has been converted into
5123 // a select, fixing up PHI nodes and basic blocks.
5124 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5125                                               Value *SelectValue,
5126                                               IRBuilder<> &Builder) {
5127   BasicBlock *SelectBB = SI->getParent();
5128   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5129     PHI->removeIncomingValue(SelectBB);
5130   PHI->addIncoming(SelectValue, SelectBB);
5131 
5132   Builder.CreateBr(PHI->getParent());
5133 
5134   // Remove the switch.
5135   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5136     BasicBlock *Succ = SI->getSuccessor(i);
5137 
5138     if (Succ == PHI->getParent())
5139       continue;
5140     Succ->removePredecessor(SelectBB);
5141   }
5142   SI->eraseFromParent();
5143 }
5144 
5145 /// If the switch is only used to initialize one or more
5146 /// phi nodes in a common successor block with only two different
5147 /// constant values, replace the switch with select.
5148 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5149                            const DataLayout &DL,
5150                            const TargetTransformInfo &TTI) {
5151   Value *const Cond = SI->getCondition();
5152   PHINode *PHI = nullptr;
5153   BasicBlock *CommonDest = nullptr;
5154   Constant *DefaultResult;
5155   SwitchCaseResultVectorTy UniqueResults;
5156   // Collect all the cases that will deliver the same value from the switch.
5157   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5158                              DL, TTI, 2, 1))
5159     return false;
5160   // Selects choose between maximum two values.
5161   if (UniqueResults.size() != 2)
5162     return false;
5163   assert(PHI != nullptr && "PHI for value select not found");
5164 
5165   Builder.SetInsertPoint(SI);
5166   Value *SelectValue =
5167       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5168   if (SelectValue) {
5169     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
5170     return true;
5171   }
5172   // The switch couldn't be converted into a select.
5173   return false;
5174 }
5175 
5176 namespace {
5177 
5178 /// This class represents a lookup table that can be used to replace a switch.
5179 class SwitchLookupTable {
5180 public:
5181   /// Create a lookup table to use as a switch replacement with the contents
5182   /// of Values, using DefaultValue to fill any holes in the table.
5183   SwitchLookupTable(
5184       Module &M, uint64_t TableSize, ConstantInt *Offset,
5185       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5186       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5187 
5188   /// Build instructions with Builder to retrieve the value at
5189   /// the position given by Index in the lookup table.
5190   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5191 
5192   /// Return true if a table with TableSize elements of
5193   /// type ElementType would fit in a target-legal register.
5194   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5195                                  Type *ElementType);
5196 
5197 private:
5198   // Depending on the contents of the table, it can be represented in
5199   // different ways.
5200   enum {
5201     // For tables where each element contains the same value, we just have to
5202     // store that single value and return it for each lookup.
5203     SingleValueKind,
5204 
5205     // For tables where there is a linear relationship between table index
5206     // and values. We calculate the result with a simple multiplication
5207     // and addition instead of a table lookup.
5208     LinearMapKind,
5209 
5210     // For small tables with integer elements, we can pack them into a bitmap
5211     // that fits into a target-legal register. Values are retrieved by
5212     // shift and mask operations.
5213     BitMapKind,
5214 
5215     // The table is stored as an array of values. Values are retrieved by load
5216     // instructions from the table.
5217     ArrayKind
5218   } Kind;
5219 
5220   // For SingleValueKind, this is the single value.
5221   Constant *SingleValue = nullptr;
5222 
5223   // For BitMapKind, this is the bitmap.
5224   ConstantInt *BitMap = nullptr;
5225   IntegerType *BitMapElementTy = nullptr;
5226 
5227   // For LinearMapKind, these are the constants used to derive the value.
5228   ConstantInt *LinearOffset = nullptr;
5229   ConstantInt *LinearMultiplier = nullptr;
5230 
5231   // For ArrayKind, this is the array.
5232   GlobalVariable *Array = nullptr;
5233 };
5234 
5235 } // end anonymous namespace
5236 
5237 SwitchLookupTable::SwitchLookupTable(
5238     Module &M, uint64_t TableSize, ConstantInt *Offset,
5239     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5240     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5241   assert(Values.size() && "Can't build lookup table without values!");
5242   assert(TableSize >= Values.size() && "Can't fit values in table!");
5243 
5244   // If all values in the table are equal, this is that value.
5245   SingleValue = Values.begin()->second;
5246 
5247   Type *ValueType = Values.begin()->second->getType();
5248 
5249   // Build up the table contents.
5250   SmallVector<Constant *, 64> TableContents(TableSize);
5251   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5252     ConstantInt *CaseVal = Values[I].first;
5253     Constant *CaseRes = Values[I].second;
5254     assert(CaseRes->getType() == ValueType);
5255 
5256     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5257     TableContents[Idx] = CaseRes;
5258 
5259     if (CaseRes != SingleValue)
5260       SingleValue = nullptr;
5261   }
5262 
5263   // Fill in any holes in the table with the default result.
5264   if (Values.size() < TableSize) {
5265     assert(DefaultValue &&
5266            "Need a default value to fill the lookup table holes.");
5267     assert(DefaultValue->getType() == ValueType);
5268     for (uint64_t I = 0; I < TableSize; ++I) {
5269       if (!TableContents[I])
5270         TableContents[I] = DefaultValue;
5271     }
5272 
5273     if (DefaultValue != SingleValue)
5274       SingleValue = nullptr;
5275   }
5276 
5277   // If each element in the table contains the same value, we only need to store
5278   // that single value.
5279   if (SingleValue) {
5280     Kind = SingleValueKind;
5281     return;
5282   }
5283 
5284   // Check if we can derive the value with a linear transformation from the
5285   // table index.
5286   if (isa<IntegerType>(ValueType)) {
5287     bool LinearMappingPossible = true;
5288     APInt PrevVal;
5289     APInt DistToPrev;
5290     assert(TableSize >= 2 && "Should be a SingleValue table.");
5291     // Check if there is the same distance between two consecutive values.
5292     for (uint64_t I = 0; I < TableSize; ++I) {
5293       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5294       if (!ConstVal) {
5295         // This is an undef. We could deal with it, but undefs in lookup tables
5296         // are very seldom. It's probably not worth the additional complexity.
5297         LinearMappingPossible = false;
5298         break;
5299       }
5300       const APInt &Val = ConstVal->getValue();
5301       if (I != 0) {
5302         APInt Dist = Val - PrevVal;
5303         if (I == 1) {
5304           DistToPrev = Dist;
5305         } else if (Dist != DistToPrev) {
5306           LinearMappingPossible = false;
5307           break;
5308         }
5309       }
5310       PrevVal = Val;
5311     }
5312     if (LinearMappingPossible) {
5313       LinearOffset = cast<ConstantInt>(TableContents[0]);
5314       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5315       Kind = LinearMapKind;
5316       ++NumLinearMaps;
5317       return;
5318     }
5319   }
5320 
5321   // If the type is integer and the table fits in a register, build a bitmap.
5322   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5323     IntegerType *IT = cast<IntegerType>(ValueType);
5324     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5325     for (uint64_t I = TableSize; I > 0; --I) {
5326       TableInt <<= IT->getBitWidth();
5327       // Insert values into the bitmap. Undef values are set to zero.
5328       if (!isa<UndefValue>(TableContents[I - 1])) {
5329         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5330         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5331       }
5332     }
5333     BitMap = ConstantInt::get(M.getContext(), TableInt);
5334     BitMapElementTy = IT;
5335     Kind = BitMapKind;
5336     ++NumBitMaps;
5337     return;
5338   }
5339 
5340   // Store the table in an array.
5341   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5342   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5343 
5344   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5345                              GlobalVariable::PrivateLinkage, Initializer,
5346                              "switch.table." + FuncName);
5347   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5348   // Set the alignment to that of an array items. We will be only loading one
5349   // value out of it.
5350   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5351   Kind = ArrayKind;
5352 }
5353 
5354 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5355   switch (Kind) {
5356   case SingleValueKind:
5357     return SingleValue;
5358   case LinearMapKind: {
5359     // Derive the result value from the input value.
5360     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5361                                           false, "switch.idx.cast");
5362     if (!LinearMultiplier->isOne())
5363       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5364     if (!LinearOffset->isZero())
5365       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5366     return Result;
5367   }
5368   case BitMapKind: {
5369     // Type of the bitmap (e.g. i59).
5370     IntegerType *MapTy = BitMap->getType();
5371 
5372     // Cast Index to the same type as the bitmap.
5373     // Note: The Index is <= the number of elements in the table, so
5374     // truncating it to the width of the bitmask is safe.
5375     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5376 
5377     // Multiply the shift amount by the element width.
5378     ShiftAmt = Builder.CreateMul(
5379         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5380         "switch.shiftamt");
5381 
5382     // Shift down.
5383     Value *DownShifted =
5384         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5385     // Mask off.
5386     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5387   }
5388   case ArrayKind: {
5389     // Make sure the table index will not overflow when treated as signed.
5390     IntegerType *IT = cast<IntegerType>(Index->getType());
5391     uint64_t TableSize =
5392         Array->getInitializer()->getType()->getArrayNumElements();
5393     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5394       Index = Builder.CreateZExt(
5395           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5396           "switch.tableidx.zext");
5397 
5398     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5399     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5400                                            GEPIndices, "switch.gep");
5401     return Builder.CreateLoad(
5402         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5403         "switch.load");
5404   }
5405   }
5406   llvm_unreachable("Unknown lookup table kind!");
5407 }
5408 
5409 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5410                                            uint64_t TableSize,
5411                                            Type *ElementType) {
5412   auto *IT = dyn_cast<IntegerType>(ElementType);
5413   if (!IT)
5414     return false;
5415   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5416   // are <= 15, we could try to narrow the type.
5417 
5418   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5419   if (TableSize >= UINT_MAX / IT->getBitWidth())
5420     return false;
5421   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5422 }
5423 
5424 /// Determine whether a lookup table should be built for this switch, based on
5425 /// the number of cases, size of the table, and the types of the results.
5426 static bool
5427 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5428                        const TargetTransformInfo &TTI, const DataLayout &DL,
5429                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5430   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5431     return false; // TableSize overflowed, or mul below might overflow.
5432 
5433   bool AllTablesFitInRegister = true;
5434   bool HasIllegalType = false;
5435   for (const auto &I : ResultTypes) {
5436     Type *Ty = I.second;
5437 
5438     // Saturate this flag to true.
5439     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5440 
5441     // Saturate this flag to false.
5442     AllTablesFitInRegister =
5443         AllTablesFitInRegister &&
5444         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5445 
5446     // If both flags saturate, we're done. NOTE: This *only* works with
5447     // saturating flags, and all flags have to saturate first due to the
5448     // non-deterministic behavior of iterating over a dense map.
5449     if (HasIllegalType && !AllTablesFitInRegister)
5450       break;
5451   }
5452 
5453   // If each table would fit in a register, we should build it anyway.
5454   if (AllTablesFitInRegister)
5455     return true;
5456 
5457   // Don't build a table that doesn't fit in-register if it has illegal types.
5458   if (HasIllegalType)
5459     return false;
5460 
5461   // The table density should be at least 40%. This is the same criterion as for
5462   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5463   // FIXME: Find the best cut-off.
5464   return SI->getNumCases() * 10 >= TableSize * 4;
5465 }
5466 
5467 /// Try to reuse the switch table index compare. Following pattern:
5468 /// \code
5469 ///     if (idx < tablesize)
5470 ///        r = table[idx]; // table does not contain default_value
5471 ///     else
5472 ///        r = default_value;
5473 ///     if (r != default_value)
5474 ///        ...
5475 /// \endcode
5476 /// Is optimized to:
5477 /// \code
5478 ///     cond = idx < tablesize;
5479 ///     if (cond)
5480 ///        r = table[idx];
5481 ///     else
5482 ///        r = default_value;
5483 ///     if (cond)
5484 ///        ...
5485 /// \endcode
5486 /// Jump threading will then eliminate the second if(cond).
5487 static void reuseTableCompare(
5488     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5489     Constant *DefaultValue,
5490     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5491   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5492   if (!CmpInst)
5493     return;
5494 
5495   // We require that the compare is in the same block as the phi so that jump
5496   // threading can do its work afterwards.
5497   if (CmpInst->getParent() != PhiBlock)
5498     return;
5499 
5500   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5501   if (!CmpOp1)
5502     return;
5503 
5504   Value *RangeCmp = RangeCheckBranch->getCondition();
5505   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5506   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5507 
5508   // Check if the compare with the default value is constant true or false.
5509   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5510                                                  DefaultValue, CmpOp1, true);
5511   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5512     return;
5513 
5514   // Check if the compare with the case values is distinct from the default
5515   // compare result.
5516   for (auto ValuePair : Values) {
5517     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5518                                                 ValuePair.second, CmpOp1, true);
5519     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5520       return;
5521     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5522            "Expect true or false as compare result.");
5523   }
5524 
5525   // Check if the branch instruction dominates the phi node. It's a simple
5526   // dominance check, but sufficient for our needs.
5527   // Although this check is invariant in the calling loops, it's better to do it
5528   // at this late stage. Practically we do it at most once for a switch.
5529   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5530   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5531     BasicBlock *Pred = *PI;
5532     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5533       return;
5534   }
5535 
5536   if (DefaultConst == FalseConst) {
5537     // The compare yields the same result. We can replace it.
5538     CmpInst->replaceAllUsesWith(RangeCmp);
5539     ++NumTableCmpReuses;
5540   } else {
5541     // The compare yields the same result, just inverted. We can replace it.
5542     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5543         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5544         RangeCheckBranch);
5545     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5546     ++NumTableCmpReuses;
5547   }
5548 }
5549 
5550 /// If the switch is only used to initialize one or more phi nodes in a common
5551 /// successor block with different constant values, replace the switch with
5552 /// lookup tables.
5553 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5554                                 const DataLayout &DL,
5555                                 const TargetTransformInfo &TTI) {
5556   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5557 
5558   Function *Fn = SI->getParent()->getParent();
5559   // Only build lookup table when we have a target that supports it or the
5560   // attribute is not set.
5561   if (!TTI.shouldBuildLookupTables() ||
5562       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5563     return false;
5564 
5565   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5566   // split off a dense part and build a lookup table for that.
5567 
5568   // FIXME: This creates arrays of GEPs to constant strings, which means each
5569   // GEP needs a runtime relocation in PIC code. We should just build one big
5570   // string and lookup indices into that.
5571 
5572   // Ignore switches with less than three cases. Lookup tables will not make
5573   // them faster, so we don't analyze them.
5574   if (SI->getNumCases() < 3)
5575     return false;
5576 
5577   // Figure out the corresponding result for each case value and phi node in the
5578   // common destination, as well as the min and max case values.
5579   assert(!SI->cases().empty());
5580   SwitchInst::CaseIt CI = SI->case_begin();
5581   ConstantInt *MinCaseVal = CI->getCaseValue();
5582   ConstantInt *MaxCaseVal = CI->getCaseValue();
5583 
5584   BasicBlock *CommonDest = nullptr;
5585 
5586   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5587   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5588 
5589   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5590   SmallDenseMap<PHINode *, Type *> ResultTypes;
5591   SmallVector<PHINode *, 4> PHIs;
5592 
5593   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5594     ConstantInt *CaseVal = CI->getCaseValue();
5595     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5596       MinCaseVal = CaseVal;
5597     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5598       MaxCaseVal = CaseVal;
5599 
5600     // Resulting value at phi nodes for this case value.
5601     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5602     ResultsTy Results;
5603     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5604                         Results, DL, TTI))
5605       return false;
5606 
5607     // Append the result from this case to the list for each phi.
5608     for (const auto &I : Results) {
5609       PHINode *PHI = I.first;
5610       Constant *Value = I.second;
5611       if (!ResultLists.count(PHI))
5612         PHIs.push_back(PHI);
5613       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5614     }
5615   }
5616 
5617   // Keep track of the result types.
5618   for (PHINode *PHI : PHIs) {
5619     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5620   }
5621 
5622   uint64_t NumResults = ResultLists[PHIs[0]].size();
5623   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5624   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5625   bool TableHasHoles = (NumResults < TableSize);
5626 
5627   // If the table has holes, we need a constant result for the default case
5628   // or a bitmask that fits in a register.
5629   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5630   bool HasDefaultResults =
5631       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5632                      DefaultResultsList, DL, TTI);
5633 
5634   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5635   if (NeedMask) {
5636     // As an extra penalty for the validity test we require more cases.
5637     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5638       return false;
5639     if (!DL.fitsInLegalInteger(TableSize))
5640       return false;
5641   }
5642 
5643   for (const auto &I : DefaultResultsList) {
5644     PHINode *PHI = I.first;
5645     Constant *Result = I.second;
5646     DefaultResults[PHI] = Result;
5647   }
5648 
5649   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5650     return false;
5651 
5652   // Create the BB that does the lookups.
5653   Module &Mod = *CommonDest->getParent()->getParent();
5654   BasicBlock *LookupBB = BasicBlock::Create(
5655       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5656 
5657   // Compute the table index value.
5658   Builder.SetInsertPoint(SI);
5659   Value *TableIndex;
5660   if (MinCaseVal->isNullValue())
5661     TableIndex = SI->getCondition();
5662   else
5663     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5664                                    "switch.tableidx");
5665 
5666   // Compute the maximum table size representable by the integer type we are
5667   // switching upon.
5668   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5669   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5670   assert(MaxTableSize >= TableSize &&
5671          "It is impossible for a switch to have more entries than the max "
5672          "representable value of its input integer type's size.");
5673 
5674   // If the default destination is unreachable, or if the lookup table covers
5675   // all values of the conditional variable, branch directly to the lookup table
5676   // BB. Otherwise, check that the condition is within the case range.
5677   const bool DefaultIsReachable =
5678       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5679   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5680   BranchInst *RangeCheckBranch = nullptr;
5681 
5682   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5683     Builder.CreateBr(LookupBB);
5684     // Note: We call removeProdecessor later since we need to be able to get the
5685     // PHI value for the default case in case we're using a bit mask.
5686   } else {
5687     Value *Cmp = Builder.CreateICmpULT(
5688         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5689     RangeCheckBranch =
5690         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5691   }
5692 
5693   // Populate the BB that does the lookups.
5694   Builder.SetInsertPoint(LookupBB);
5695 
5696   if (NeedMask) {
5697     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5698     // re-purposed to do the hole check, and we create a new LookupBB.
5699     BasicBlock *MaskBB = LookupBB;
5700     MaskBB->setName("switch.hole_check");
5701     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5702                                   CommonDest->getParent(), CommonDest);
5703 
5704     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5705     // unnecessary illegal types.
5706     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5707     APInt MaskInt(TableSizePowOf2, 0);
5708     APInt One(TableSizePowOf2, 1);
5709     // Build bitmask; fill in a 1 bit for every case.
5710     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5711     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5712       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5713                          .getLimitedValue();
5714       MaskInt |= One << Idx;
5715     }
5716     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5717 
5718     // Get the TableIndex'th bit of the bitmask.
5719     // If this bit is 0 (meaning hole) jump to the default destination,
5720     // else continue with table lookup.
5721     IntegerType *MapTy = TableMask->getType();
5722     Value *MaskIndex =
5723         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5724     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5725     Value *LoBit = Builder.CreateTrunc(
5726         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5727     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5728 
5729     Builder.SetInsertPoint(LookupBB);
5730     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5731   }
5732 
5733   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5734     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5735     // do not delete PHINodes here.
5736     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5737                                             /*KeepOneInputPHIs=*/true);
5738   }
5739 
5740   bool ReturnedEarly = false;
5741   for (PHINode *PHI : PHIs) {
5742     const ResultListTy &ResultList = ResultLists[PHI];
5743 
5744     // If using a bitmask, use any value to fill the lookup table holes.
5745     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5746     StringRef FuncName = Fn->getName();
5747     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5748                             FuncName);
5749 
5750     Value *Result = Table.BuildLookup(TableIndex, Builder);
5751 
5752     // If the result is used to return immediately from the function, we want to
5753     // do that right here.
5754     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5755         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5756       Builder.CreateRet(Result);
5757       ReturnedEarly = true;
5758       break;
5759     }
5760 
5761     // Do a small peephole optimization: re-use the switch table compare if
5762     // possible.
5763     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5764       BasicBlock *PhiBlock = PHI->getParent();
5765       // Search for compare instructions which use the phi.
5766       for (auto *User : PHI->users()) {
5767         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5768       }
5769     }
5770 
5771     PHI->addIncoming(Result, LookupBB);
5772   }
5773 
5774   if (!ReturnedEarly)
5775     Builder.CreateBr(CommonDest);
5776 
5777   // Remove the switch.
5778   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5779     BasicBlock *Succ = SI->getSuccessor(i);
5780 
5781     if (Succ == SI->getDefaultDest())
5782       continue;
5783     Succ->removePredecessor(SI->getParent());
5784   }
5785   SI->eraseFromParent();
5786 
5787   ++NumLookupTables;
5788   if (NeedMask)
5789     ++NumLookupTablesHoles;
5790   return true;
5791 }
5792 
5793 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5794   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5795   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5796   uint64_t Range = Diff + 1;
5797   uint64_t NumCases = Values.size();
5798   // 40% is the default density for building a jump table in optsize/minsize mode.
5799   uint64_t MinDensity = 40;
5800 
5801   return NumCases * 100 >= Range * MinDensity;
5802 }
5803 
5804 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5805 /// of cases.
5806 ///
5807 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5808 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5809 ///
5810 /// This converts a sparse switch into a dense switch which allows better
5811 /// lowering and could also allow transforming into a lookup table.
5812 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5813                               const DataLayout &DL,
5814                               const TargetTransformInfo &TTI) {
5815   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5816   if (CondTy->getIntegerBitWidth() > 64 ||
5817       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5818     return false;
5819   // Only bother with this optimization if there are more than 3 switch cases;
5820   // SDAG will only bother creating jump tables for 4 or more cases.
5821   if (SI->getNumCases() < 4)
5822     return false;
5823 
5824   // This transform is agnostic to the signedness of the input or case values. We
5825   // can treat the case values as signed or unsigned. We can optimize more common
5826   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5827   // as signed.
5828   SmallVector<int64_t,4> Values;
5829   for (auto &C : SI->cases())
5830     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5831   llvm::sort(Values);
5832 
5833   // If the switch is already dense, there's nothing useful to do here.
5834   if (isSwitchDense(Values))
5835     return false;
5836 
5837   // First, transform the values such that they start at zero and ascend.
5838   int64_t Base = Values[0];
5839   for (auto &V : Values)
5840     V -= (uint64_t)(Base);
5841 
5842   // Now we have signed numbers that have been shifted so that, given enough
5843   // precision, there are no negative values. Since the rest of the transform
5844   // is bitwise only, we switch now to an unsigned representation.
5845 
5846   // This transform can be done speculatively because it is so cheap - it
5847   // results in a single rotate operation being inserted.
5848   // FIXME: It's possible that optimizing a switch on powers of two might also
5849   // be beneficial - flag values are often powers of two and we could use a CLZ
5850   // as the key function.
5851 
5852   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5853   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5854   // less than 64.
5855   unsigned Shift = 64;
5856   for (auto &V : Values)
5857     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5858   assert(Shift < 64);
5859   if (Shift > 0)
5860     for (auto &V : Values)
5861       V = (int64_t)((uint64_t)V >> Shift);
5862 
5863   if (!isSwitchDense(Values))
5864     // Transform didn't create a dense switch.
5865     return false;
5866 
5867   // The obvious transform is to shift the switch condition right and emit a
5868   // check that the condition actually cleanly divided by GCD, i.e.
5869   //   C & (1 << Shift - 1) == 0
5870   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5871   //
5872   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5873   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5874   // are nonzero then the switch condition will be very large and will hit the
5875   // default case.
5876 
5877   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5878   Builder.SetInsertPoint(SI);
5879   auto *ShiftC = ConstantInt::get(Ty, Shift);
5880   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5881   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5882   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5883   auto *Rot = Builder.CreateOr(LShr, Shl);
5884   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5885 
5886   for (auto Case : SI->cases()) {
5887     auto *Orig = Case.getCaseValue();
5888     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5889     Case.setValue(
5890         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5891   }
5892   return true;
5893 }
5894 
5895 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5896   BasicBlock *BB = SI->getParent();
5897 
5898   if (isValueEqualityComparison(SI)) {
5899     // If we only have one predecessor, and if it is a branch on this value,
5900     // see if that predecessor totally determines the outcome of this switch.
5901     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5902       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5903         return requestResimplify();
5904 
5905     Value *Cond = SI->getCondition();
5906     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5907       if (SimplifySwitchOnSelect(SI, Select))
5908         return requestResimplify();
5909 
5910     // If the block only contains the switch, see if we can fold the block
5911     // away into any preds.
5912     if (SI == &*BB->instructionsWithoutDebug().begin())
5913       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5914         return requestResimplify();
5915   }
5916 
5917   // Try to transform the switch into an icmp and a branch.
5918   if (TurnSwitchRangeIntoICmp(SI, Builder))
5919     return requestResimplify();
5920 
5921   // Remove unreachable cases.
5922   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5923     return requestResimplify();
5924 
5925   if (switchToSelect(SI, Builder, DL, TTI))
5926     return requestResimplify();
5927 
5928   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5929     return requestResimplify();
5930 
5931   // The conversion from switch to lookup tables results in difficult-to-analyze
5932   // code and makes pruning branches much harder. This is a problem if the
5933   // switch expression itself can still be restricted as a result of inlining or
5934   // CVP. Therefore, only apply this transformation during late stages of the
5935   // optimisation pipeline.
5936   if (Options.ConvertSwitchToLookupTable &&
5937       SwitchToLookupTable(SI, Builder, DL, TTI))
5938     return requestResimplify();
5939 
5940   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5941     return requestResimplify();
5942 
5943   return false;
5944 }
5945 
5946 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
5947   BasicBlock *BB = IBI->getParent();
5948   bool Changed = false;
5949 
5950   // Eliminate redundant destinations.
5951   SmallPtrSet<Value *, 8> Succs;
5952   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5953     BasicBlock *Dest = IBI->getDestination(i);
5954     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5955       Dest->removePredecessor(BB);
5956       IBI->removeDestination(i);
5957       --i;
5958       --e;
5959       Changed = true;
5960     }
5961   }
5962 
5963   if (IBI->getNumDestinations() == 0) {
5964     // If the indirectbr has no successors, change it to unreachable.
5965     new UnreachableInst(IBI->getContext(), IBI);
5966     EraseTerminatorAndDCECond(IBI);
5967     return true;
5968   }
5969 
5970   if (IBI->getNumDestinations() == 1) {
5971     // If the indirectbr has one successor, change it to a direct branch.
5972     BranchInst::Create(IBI->getDestination(0), IBI);
5973     EraseTerminatorAndDCECond(IBI);
5974     return true;
5975   }
5976 
5977   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5978     if (SimplifyIndirectBrOnSelect(IBI, SI))
5979       return requestResimplify();
5980   }
5981   return Changed;
5982 }
5983 
5984 /// Given an block with only a single landing pad and a unconditional branch
5985 /// try to find another basic block which this one can be merged with.  This
5986 /// handles cases where we have multiple invokes with unique landing pads, but
5987 /// a shared handler.
5988 ///
5989 /// We specifically choose to not worry about merging non-empty blocks
5990 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5991 /// practice, the optimizer produces empty landing pad blocks quite frequently
5992 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5993 /// sinking in this file)
5994 ///
5995 /// This is primarily a code size optimization.  We need to avoid performing
5996 /// any transform which might inhibit optimization (such as our ability to
5997 /// specialize a particular handler via tail commoning).  We do this by not
5998 /// merging any blocks which require us to introduce a phi.  Since the same
5999 /// values are flowing through both blocks, we don't lose any ability to
6000 /// specialize.  If anything, we make such specialization more likely.
6001 ///
6002 /// TODO - This transformation could remove entries from a phi in the target
6003 /// block when the inputs in the phi are the same for the two blocks being
6004 /// merged.  In some cases, this could result in removal of the PHI entirely.
6005 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6006                                  BasicBlock *BB) {
6007   auto Succ = BB->getUniqueSuccessor();
6008   assert(Succ);
6009   // If there's a phi in the successor block, we'd likely have to introduce
6010   // a phi into the merged landing pad block.
6011   if (isa<PHINode>(*Succ->begin()))
6012     return false;
6013 
6014   for (BasicBlock *OtherPred : predecessors(Succ)) {
6015     if (BB == OtherPred)
6016       continue;
6017     BasicBlock::iterator I = OtherPred->begin();
6018     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6019     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6020       continue;
6021     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6022       ;
6023     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6024     if (!BI2 || !BI2->isIdenticalTo(BI))
6025       continue;
6026 
6027     // We've found an identical block.  Update our predecessors to take that
6028     // path instead and make ourselves dead.
6029     SmallPtrSet<BasicBlock *, 16> Preds;
6030     Preds.insert(pred_begin(BB), pred_end(BB));
6031     for (BasicBlock *Pred : Preds) {
6032       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6033       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6034              "unexpected successor");
6035       II->setUnwindDest(OtherPred);
6036     }
6037 
6038     // The debug info in OtherPred doesn't cover the merged control flow that
6039     // used to go through BB.  We need to delete it or update it.
6040     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6041       Instruction &Inst = *I;
6042       I++;
6043       if (isa<DbgInfoIntrinsic>(Inst))
6044         Inst.eraseFromParent();
6045     }
6046 
6047     SmallPtrSet<BasicBlock *, 16> Succs;
6048     Succs.insert(succ_begin(BB), succ_end(BB));
6049     for (BasicBlock *Succ : Succs) {
6050       Succ->removePredecessor(BB);
6051     }
6052 
6053     IRBuilder<> Builder(BI);
6054     Builder.CreateUnreachable();
6055     BI->eraseFromParent();
6056     return true;
6057   }
6058   return false;
6059 }
6060 
6061 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6062   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6063                                    : simplifyCondBranch(Branch, Builder);
6064 }
6065 
6066 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6067                                           IRBuilder<> &Builder) {
6068   BasicBlock *BB = BI->getParent();
6069   BasicBlock *Succ = BI->getSuccessor(0);
6070 
6071   // If the Terminator is the only non-phi instruction, simplify the block.
6072   // If LoopHeader is provided, check if the block or its successor is a loop
6073   // header. (This is for early invocations before loop simplify and
6074   // vectorization to keep canonical loop forms for nested loops. These blocks
6075   // can be eliminated when the pass is invoked later in the back-end.)
6076   // Note that if BB has only one predecessor then we do not introduce new
6077   // backedge, so we can eliminate BB.
6078   bool NeedCanonicalLoop =
6079       Options.NeedCanonicalLoop &&
6080       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
6081        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
6082   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
6083   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6084       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6085     return true;
6086 
6087   // If the only instruction in the block is a seteq/setne comparison against a
6088   // constant, try to simplify the block.
6089   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6090     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6091       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6092         ;
6093       if (I->isTerminator() &&
6094           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6095         return true;
6096     }
6097 
6098   // See if we can merge an empty landing pad block with another which is
6099   // equivalent.
6100   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6101     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6102       ;
6103     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
6104       return true;
6105   }
6106 
6107   // If this basic block is ONLY a compare and a branch, and if a predecessor
6108   // branches to us and our successor, fold the comparison into the
6109   // predecessor and use logical operations to update the incoming value
6110   // for PHI nodes in common successor.
6111   if (FoldBranchToCommonDest(BI, nullptr, &TTI, Options.BonusInstThreshold))
6112     return requestResimplify();
6113   return false;
6114 }
6115 
6116 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6117   BasicBlock *PredPred = nullptr;
6118   for (auto *P : predecessors(BB)) {
6119     BasicBlock *PPred = P->getSinglePredecessor();
6120     if (!PPred || (PredPred && PredPred != PPred))
6121       return nullptr;
6122     PredPred = PPred;
6123   }
6124   return PredPred;
6125 }
6126 
6127 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6128   BasicBlock *BB = BI->getParent();
6129   if (!Options.SimplifyCondBranch)
6130     return false;
6131 
6132   // Conditional branch
6133   if (isValueEqualityComparison(BI)) {
6134     // If we only have one predecessor, and if it is a branch on this value,
6135     // see if that predecessor totally determines the outcome of this
6136     // switch.
6137     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6138       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6139         return requestResimplify();
6140 
6141     // This block must be empty, except for the setcond inst, if it exists.
6142     // Ignore dbg intrinsics.
6143     auto I = BB->instructionsWithoutDebug().begin();
6144     if (&*I == BI) {
6145       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6146         return requestResimplify();
6147     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6148       ++I;
6149       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6150         return requestResimplify();
6151     }
6152   }
6153 
6154   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6155   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6156     return true;
6157 
6158   // If this basic block has dominating predecessor blocks and the dominating
6159   // blocks' conditions imply BI's condition, we know the direction of BI.
6160   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6161   if (Imp) {
6162     // Turn this into a branch on constant.
6163     auto *OldCond = BI->getCondition();
6164     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6165                              : ConstantInt::getFalse(BB->getContext());
6166     BI->setCondition(TorF);
6167     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6168     return requestResimplify();
6169   }
6170 
6171   // If this basic block is ONLY a compare and a branch, and if a predecessor
6172   // branches to us and one of our successors, fold the comparison into the
6173   // predecessor and use logical operations to pick the right destination.
6174   if (FoldBranchToCommonDest(BI, nullptr, &TTI, Options.BonusInstThreshold))
6175     return requestResimplify();
6176 
6177   // We have a conditional branch to two blocks that are only reachable
6178   // from BI.  We know that the condbr dominates the two blocks, so see if
6179   // there is any identical code in the "then" and "else" blocks.  If so, we
6180   // can hoist it up to the branching block.
6181   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6182     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6183       if (HoistCommon && Options.HoistCommonInsts)
6184         if (HoistThenElseCodeToIf(BI, TTI))
6185           return requestResimplify();
6186     } else {
6187       // If Successor #1 has multiple preds, we may be able to conditionally
6188       // execute Successor #0 if it branches to Successor #1.
6189       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6190       if (Succ0TI->getNumSuccessors() == 1 &&
6191           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6192         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6193           return requestResimplify();
6194     }
6195   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6196     // If Successor #0 has multiple preds, we may be able to conditionally
6197     // execute Successor #1 if it branches to Successor #0.
6198     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6199     if (Succ1TI->getNumSuccessors() == 1 &&
6200         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6201       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6202         return requestResimplify();
6203   }
6204 
6205   // If this is a branch on a phi node in the current block, thread control
6206   // through this block if any PHI node entries are constants.
6207   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6208     if (PN->getParent() == BI->getParent())
6209       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
6210         return requestResimplify();
6211 
6212   // Scan predecessor blocks for conditional branches.
6213   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6214     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6215       if (PBI != BI && PBI->isConditional())
6216         if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI))
6217           return requestResimplify();
6218 
6219   // Look for diamond patterns.
6220   if (MergeCondStores)
6221     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6222       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6223         if (PBI != BI && PBI->isConditional())
6224           if (mergeConditionalStores(PBI, BI, DL, TTI))
6225             return requestResimplify();
6226 
6227   return false;
6228 }
6229 
6230 /// Check if passing a value to an instruction will cause undefined behavior.
6231 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
6232   Constant *C = dyn_cast<Constant>(V);
6233   if (!C)
6234     return false;
6235 
6236   if (I->use_empty())
6237     return false;
6238 
6239   if (C->isNullValue() || isa<UndefValue>(C)) {
6240     // Only look at the first use, avoid hurting compile time with long uselists
6241     User *Use = *I->user_begin();
6242 
6243     // Now make sure that there are no instructions in between that can alter
6244     // control flow (eg. calls)
6245     for (BasicBlock::iterator
6246              i = ++BasicBlock::iterator(I),
6247              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6248          i != UI; ++i)
6249       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6250         return false;
6251 
6252     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6253     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6254       if (GEP->getPointerOperand() == I)
6255         return passingValueIsAlwaysUndefined(V, GEP);
6256 
6257     // Look through bitcasts.
6258     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6259       return passingValueIsAlwaysUndefined(V, BC);
6260 
6261     // Load from null is undefined.
6262     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6263       if (!LI->isVolatile())
6264         return !NullPointerIsDefined(LI->getFunction(),
6265                                      LI->getPointerAddressSpace());
6266 
6267     // Store to null is undefined.
6268     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6269       if (!SI->isVolatile())
6270         return (!NullPointerIsDefined(SI->getFunction(),
6271                                       SI->getPointerAddressSpace())) &&
6272                SI->getPointerOperand() == I;
6273 
6274     // A call to null is undefined.
6275     if (auto *CB = dyn_cast<CallBase>(Use))
6276       return !NullPointerIsDefined(CB->getFunction()) &&
6277              CB->getCalledOperand() == I;
6278   }
6279   return false;
6280 }
6281 
6282 /// If BB has an incoming value that will always trigger undefined behavior
6283 /// (eg. null pointer dereference), remove the branch leading here.
6284 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
6285   for (PHINode &PHI : BB->phis())
6286     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6287       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6288         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
6289         IRBuilder<> Builder(T);
6290         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6291           BB->removePredecessor(PHI.getIncomingBlock(i));
6292           // Turn uncoditional branches into unreachables and remove the dead
6293           // destination from conditional branches.
6294           if (BI->isUnconditional())
6295             Builder.CreateUnreachable();
6296           else
6297             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6298                                                        : BI->getSuccessor(0));
6299           BI->eraseFromParent();
6300           return true;
6301         }
6302         // TODO: SwitchInst.
6303       }
6304 
6305   return false;
6306 }
6307 
6308 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6309   bool Changed = false;
6310 
6311   assert(BB && BB->getParent() && "Block not embedded in function!");
6312   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6313 
6314   // Remove basic blocks that have no predecessors (except the entry block)...
6315   // or that just have themself as a predecessor.  These are unreachable.
6316   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6317       BB->getSinglePredecessor() == BB) {
6318     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6319     DeleteDeadBlock(BB);
6320     return true;
6321   }
6322 
6323   // Check to see if we can constant propagate this terminator instruction
6324   // away...
6325   Changed |= ConstantFoldTerminator(BB, true);
6326 
6327   // Check for and eliminate duplicate PHI nodes in this block.
6328   Changed |= EliminateDuplicatePHINodes(BB);
6329 
6330   // Check for and remove branches that will always cause undefined behavior.
6331   Changed |= removeUndefIntroducingPredecessor(BB);
6332 
6333   // Merge basic blocks into their predecessor if there is only one distinct
6334   // pred, and if there is only one distinct successor of the predecessor, and
6335   // if there are no PHI nodes.
6336   if (MergeBlockIntoPredecessor(BB, DTU))
6337     return true;
6338 
6339   if (SinkCommon && Options.SinkCommonInsts)
6340     Changed |= SinkCommonCodeFromPredecessors(BB);
6341 
6342   IRBuilder<> Builder(BB);
6343 
6344   if (Options.FoldTwoEntryPHINode) {
6345     // If there is a trivial two-entry PHI node in this basic block, and we can
6346     // eliminate it, do so now.
6347     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6348       if (PN->getNumIncomingValues() == 2)
6349         Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6350   }
6351 
6352   Instruction *Terminator = BB->getTerminator();
6353   Builder.SetInsertPoint(Terminator);
6354   switch (Terminator->getOpcode()) {
6355   case Instruction::Br:
6356     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6357     break;
6358   case Instruction::Ret:
6359     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6360     break;
6361   case Instruction::Resume:
6362     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6363     break;
6364   case Instruction::CleanupRet:
6365     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6366     break;
6367   case Instruction::Switch:
6368     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6369     break;
6370   case Instruction::Unreachable:
6371     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6372     break;
6373   case Instruction::IndirectBr:
6374     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6375     break;
6376   }
6377 
6378   return Changed;
6379 }
6380 
6381 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6382   bool Changed = false;
6383 
6384   // Repeated simplify BB as long as resimplification is requested.
6385   do {
6386     Resimplify = false;
6387 
6388     // Perform one round of simplifcation. Resimplify flag will be set if
6389     // another iteration is requested.
6390     Changed |= simplifyOnce(BB);
6391   } while (Resimplify);
6392 
6393   return Changed;
6394 }
6395 
6396 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6397                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6398                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6399   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6400                         Options)
6401       .run(BB);
6402 }
6403