1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "simplifycfg" 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/Support/CFG.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/ConstantRange.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/NoFolder.h" 44 #include "llvm/Support/PatternMatch.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include <algorithm> 48 #include <map> 49 #include <set> 50 using namespace llvm; 51 using namespace PatternMatch; 52 53 static cl::opt<unsigned> 54 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 55 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 56 57 static cl::opt<bool> 58 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 59 cl::desc("Duplicate return instructions into unconditional branches")); 60 61 static cl::opt<bool> 62 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 63 cl::desc("Sink common instructions down to the end block")); 64 65 static cl::opt<bool> HoistCondStores( 66 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 67 cl::desc("Hoist conditional stores if an unconditional store precedes")); 68 69 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 70 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 71 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 72 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 73 74 namespace { 75 /// ValueEqualityComparisonCase - Represents a case of a switch. 76 struct ValueEqualityComparisonCase { 77 ConstantInt *Value; 78 BasicBlock *Dest; 79 80 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 81 : Value(Value), Dest(Dest) {} 82 83 bool operator<(ValueEqualityComparisonCase RHS) const { 84 // Comparing pointers is ok as we only rely on the order for uniquing. 85 return Value < RHS.Value; 86 } 87 88 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 89 }; 90 91 class SimplifyCFGOpt { 92 const TargetTransformInfo &TTI; 93 const DataLayout *const TD; 94 Value *isValueEqualityComparison(TerminatorInst *TI); 95 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 96 std::vector<ValueEqualityComparisonCase> &Cases); 97 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 98 BasicBlock *Pred, 99 IRBuilder<> &Builder); 100 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 101 IRBuilder<> &Builder); 102 103 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 104 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 105 bool SimplifyUnreachable(UnreachableInst *UI); 106 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 107 bool SimplifyIndirectBr(IndirectBrInst *IBI); 108 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 109 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 110 111 public: 112 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD) 113 : TTI(TTI), TD(TD) {} 114 bool run(BasicBlock *BB); 115 }; 116 } 117 118 /// SafeToMergeTerminators - Return true if it is safe to merge these two 119 /// terminator instructions together. 120 /// 121 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 122 if (SI1 == SI2) return false; // Can't merge with self! 123 124 // It is not safe to merge these two switch instructions if they have a common 125 // successor, and if that successor has a PHI node, and if *that* PHI node has 126 // conflicting incoming values from the two switch blocks. 127 BasicBlock *SI1BB = SI1->getParent(); 128 BasicBlock *SI2BB = SI2->getParent(); 129 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 130 131 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 132 if (SI1Succs.count(*I)) 133 for (BasicBlock::iterator BBI = (*I)->begin(); 134 isa<PHINode>(BBI); ++BBI) { 135 PHINode *PN = cast<PHINode>(BBI); 136 if (PN->getIncomingValueForBlock(SI1BB) != 137 PN->getIncomingValueForBlock(SI2BB)) 138 return false; 139 } 140 141 return true; 142 } 143 144 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 145 /// to merge these two terminator instructions together, where SI1 is an 146 /// unconditional branch. PhiNodes will store all PHI nodes in common 147 /// successors. 148 /// 149 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 150 BranchInst *SI2, 151 Instruction *Cond, 152 SmallVectorImpl<PHINode*> &PhiNodes) { 153 if (SI1 == SI2) return false; // Can't merge with self! 154 assert(SI1->isUnconditional() && SI2->isConditional()); 155 156 // We fold the unconditional branch if we can easily update all PHI nodes in 157 // common successors: 158 // 1> We have a constant incoming value for the conditional branch; 159 // 2> We have "Cond" as the incoming value for the unconditional branch; 160 // 3> SI2->getCondition() and Cond have same operands. 161 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 162 if (!Ci2) return false; 163 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 164 Cond->getOperand(1) == Ci2->getOperand(1)) && 165 !(Cond->getOperand(0) == Ci2->getOperand(1) && 166 Cond->getOperand(1) == Ci2->getOperand(0))) 167 return false; 168 169 BasicBlock *SI1BB = SI1->getParent(); 170 BasicBlock *SI2BB = SI2->getParent(); 171 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 172 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 173 if (SI1Succs.count(*I)) 174 for (BasicBlock::iterator BBI = (*I)->begin(); 175 isa<PHINode>(BBI); ++BBI) { 176 PHINode *PN = cast<PHINode>(BBI); 177 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 178 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 179 return false; 180 PhiNodes.push_back(PN); 181 } 182 return true; 183 } 184 185 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 186 /// now be entries in it from the 'NewPred' block. The values that will be 187 /// flowing into the PHI nodes will be the same as those coming in from 188 /// ExistPred, an existing predecessor of Succ. 189 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 190 BasicBlock *ExistPred) { 191 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 192 193 PHINode *PN; 194 for (BasicBlock::iterator I = Succ->begin(); 195 (PN = dyn_cast<PHINode>(I)); ++I) 196 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 197 } 198 199 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the 200 /// given instruction, which is assumed to be safe to speculate. 1 means 201 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 202 static unsigned ComputeSpeculationCost(const User *I) { 203 assert(isSafeToSpeculativelyExecute(I) && 204 "Instruction is not safe to speculatively execute!"); 205 switch (Operator::getOpcode(I)) { 206 default: 207 // In doubt, be conservative. 208 return UINT_MAX; 209 case Instruction::GetElementPtr: 210 // GEPs are cheap if all indices are constant. 211 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 212 return UINT_MAX; 213 return 1; 214 case Instruction::Load: 215 case Instruction::Add: 216 case Instruction::Sub: 217 case Instruction::And: 218 case Instruction::Or: 219 case Instruction::Xor: 220 case Instruction::Shl: 221 case Instruction::LShr: 222 case Instruction::AShr: 223 case Instruction::ICmp: 224 case Instruction::Trunc: 225 case Instruction::ZExt: 226 case Instruction::SExt: 227 return 1; // These are all cheap. 228 229 case Instruction::Call: 230 case Instruction::Select: 231 return 2; 232 } 233 } 234 235 /// DominatesMergePoint - If we have a merge point of an "if condition" as 236 /// accepted above, return true if the specified value dominates the block. We 237 /// don't handle the true generality of domination here, just a special case 238 /// which works well enough for us. 239 /// 240 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 241 /// see if V (which must be an instruction) and its recursive operands 242 /// that do not dominate BB have a combined cost lower than CostRemaining and 243 /// are non-trapping. If both are true, the instruction is inserted into the 244 /// set and true is returned. 245 /// 246 /// The cost for most non-trapping instructions is defined as 1 except for 247 /// Select whose cost is 2. 248 /// 249 /// After this function returns, CostRemaining is decreased by the cost of 250 /// V plus its non-dominating operands. If that cost is greater than 251 /// CostRemaining, false is returned and CostRemaining is undefined. 252 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 253 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 254 unsigned &CostRemaining) { 255 Instruction *I = dyn_cast<Instruction>(V); 256 if (!I) { 257 // Non-instructions all dominate instructions, but not all constantexprs 258 // can be executed unconditionally. 259 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 260 if (C->canTrap()) 261 return false; 262 return true; 263 } 264 BasicBlock *PBB = I->getParent(); 265 266 // We don't want to allow weird loops that might have the "if condition" in 267 // the bottom of this block. 268 if (PBB == BB) return false; 269 270 // If this instruction is defined in a block that contains an unconditional 271 // branch to BB, then it must be in the 'conditional' part of the "if 272 // statement". If not, it definitely dominates the region. 273 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 274 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB) 275 return true; 276 277 // If we aren't allowing aggressive promotion anymore, then don't consider 278 // instructions in the 'if region'. 279 if (AggressiveInsts == 0) return false; 280 281 // If we have seen this instruction before, don't count it again. 282 if (AggressiveInsts->count(I)) return true; 283 284 // Okay, it looks like the instruction IS in the "condition". Check to 285 // see if it's a cheap instruction to unconditionally compute, and if it 286 // only uses stuff defined outside of the condition. If so, hoist it out. 287 if (!isSafeToSpeculativelyExecute(I)) 288 return false; 289 290 unsigned Cost = ComputeSpeculationCost(I); 291 292 if (Cost > CostRemaining) 293 return false; 294 295 CostRemaining -= Cost; 296 297 // Okay, we can only really hoist these out if their operands do 298 // not take us over the cost threshold. 299 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 300 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 301 return false; 302 // Okay, it's safe to do this! Remember this instruction. 303 AggressiveInsts->insert(I); 304 return true; 305 } 306 307 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 308 /// and PointerNullValue. Return NULL if value is not a constant int. 309 static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) { 310 // Normal constant int. 311 ConstantInt *CI = dyn_cast<ConstantInt>(V); 312 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy()) 313 return CI; 314 315 // This is some kind of pointer constant. Turn it into a pointer-sized 316 // ConstantInt if possible. 317 IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType())); 318 319 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 320 if (isa<ConstantPointerNull>(V)) 321 return ConstantInt::get(PtrTy, 0); 322 323 // IntToPtr const int. 324 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 325 if (CE->getOpcode() == Instruction::IntToPtr) 326 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 327 // The constant is very likely to have the right type already. 328 if (CI->getType() == PtrTy) 329 return CI; 330 else 331 return cast<ConstantInt> 332 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 333 } 334 return 0; 335 } 336 337 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 338 /// collection of icmp eq/ne instructions that compare a value against a 339 /// constant, return the value being compared, and stick the constant into the 340 /// Values vector. 341 static Value * 342 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 343 const DataLayout *TD, bool isEQ, unsigned &UsedICmps) { 344 Instruction *I = dyn_cast<Instruction>(V); 345 if (I == 0) return 0; 346 347 // If this is an icmp against a constant, handle this as one of the cases. 348 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 349 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) { 350 Value *RHSVal; 351 ConstantInt *RHSC; 352 353 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 354 // (x & ~2^x) == y --> x == y || x == y|2^x 355 // This undoes a transformation done by instcombine to fuse 2 compares. 356 if (match(ICI->getOperand(0), 357 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 358 APInt Not = ~RHSC->getValue(); 359 if (Not.isPowerOf2()) { 360 Vals.push_back(C); 361 Vals.push_back( 362 ConstantInt::get(C->getContext(), C->getValue() | Not)); 363 UsedICmps++; 364 return RHSVal; 365 } 366 } 367 368 UsedICmps++; 369 Vals.push_back(C); 370 return I->getOperand(0); 371 } 372 373 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 374 // the set. 375 ConstantRange Span = 376 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 377 378 // Shift the range if the compare is fed by an add. This is the range 379 // compare idiom as emitted by instcombine. 380 bool hasAdd = 381 match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC))); 382 if (hasAdd) 383 Span = Span.subtract(RHSC->getValue()); 384 385 // If this is an and/!= check then we want to optimize "x ugt 2" into 386 // x != 0 && x != 1. 387 if (!isEQ) 388 Span = Span.inverse(); 389 390 // If there are a ton of values, we don't want to make a ginormous switch. 391 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) 392 return 0; 393 394 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 395 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 396 UsedICmps++; 397 return hasAdd ? RHSVal : I->getOperand(0); 398 } 399 return 0; 400 } 401 402 // Otherwise, we can only handle an | or &, depending on isEQ. 403 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 404 return 0; 405 406 unsigned NumValsBeforeLHS = Vals.size(); 407 unsigned UsedICmpsBeforeLHS = UsedICmps; 408 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD, 409 isEQ, UsedICmps)) { 410 unsigned NumVals = Vals.size(); 411 unsigned UsedICmpsBeforeRHS = UsedICmps; 412 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 413 isEQ, UsedICmps)) { 414 if (LHS == RHS) 415 return LHS; 416 Vals.resize(NumVals); 417 UsedICmps = UsedICmpsBeforeRHS; 418 } 419 420 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 421 // set it and return success. 422 if (Extra == 0 || Extra == I->getOperand(1)) { 423 Extra = I->getOperand(1); 424 return LHS; 425 } 426 427 Vals.resize(NumValsBeforeLHS); 428 UsedICmps = UsedICmpsBeforeLHS; 429 return 0; 430 } 431 432 // If the LHS can't be folded in, but Extra is available and RHS can, try to 433 // use LHS as Extra. 434 if (Extra == 0 || Extra == I->getOperand(0)) { 435 Value *OldExtra = Extra; 436 Extra = I->getOperand(0); 437 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 438 isEQ, UsedICmps)) 439 return RHS; 440 assert(Vals.size() == NumValsBeforeLHS); 441 Extra = OldExtra; 442 } 443 444 return 0; 445 } 446 447 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 448 Instruction *Cond = 0; 449 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 450 Cond = dyn_cast<Instruction>(SI->getCondition()); 451 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 452 if (BI->isConditional()) 453 Cond = dyn_cast<Instruction>(BI->getCondition()); 454 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 455 Cond = dyn_cast<Instruction>(IBI->getAddress()); 456 } 457 458 TI->eraseFromParent(); 459 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 460 } 461 462 /// isValueEqualityComparison - Return true if the specified terminator checks 463 /// to see if a value is equal to constant integer value. 464 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 465 Value *CV = 0; 466 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 467 // Do not permit merging of large switch instructions into their 468 // predecessors unless there is only one predecessor. 469 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 470 pred_end(SI->getParent())) <= 128) 471 CV = SI->getCondition(); 472 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 473 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 474 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 475 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), TD)) 476 CV = ICI->getOperand(0); 477 478 // Unwrap any lossless ptrtoint cast. 479 if (TD && CV) { 480 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 481 Value *Ptr = PTII->getPointerOperand(); 482 if (PTII->getType() == TD->getIntPtrType(Ptr->getType())) 483 CV = Ptr; 484 } 485 } 486 return CV; 487 } 488 489 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 490 /// decode all of the 'cases' that it represents and return the 'default' block. 491 BasicBlock *SimplifyCFGOpt:: 492 GetValueEqualityComparisonCases(TerminatorInst *TI, 493 std::vector<ValueEqualityComparisonCase> 494 &Cases) { 495 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 496 Cases.reserve(SI->getNumCases()); 497 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 498 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 499 i.getCaseSuccessor())); 500 return SI->getDefaultDest(); 501 } 502 503 BranchInst *BI = cast<BranchInst>(TI); 504 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 505 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 506 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 507 TD), 508 Succ)); 509 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 510 } 511 512 513 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 514 /// in the list that match the specified block. 515 static void EliminateBlockCases(BasicBlock *BB, 516 std::vector<ValueEqualityComparisonCase> &Cases) { 517 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 518 } 519 520 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 521 /// well. 522 static bool 523 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 524 std::vector<ValueEqualityComparisonCase > &C2) { 525 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 526 527 // Make V1 be smaller than V2. 528 if (V1->size() > V2->size()) 529 std::swap(V1, V2); 530 531 if (V1->size() == 0) return false; 532 if (V1->size() == 1) { 533 // Just scan V2. 534 ConstantInt *TheVal = (*V1)[0].Value; 535 for (unsigned i = 0, e = V2->size(); i != e; ++i) 536 if (TheVal == (*V2)[i].Value) 537 return true; 538 } 539 540 // Otherwise, just sort both lists and compare element by element. 541 array_pod_sort(V1->begin(), V1->end()); 542 array_pod_sort(V2->begin(), V2->end()); 543 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 544 while (i1 != e1 && i2 != e2) { 545 if ((*V1)[i1].Value == (*V2)[i2].Value) 546 return true; 547 if ((*V1)[i1].Value < (*V2)[i2].Value) 548 ++i1; 549 else 550 ++i2; 551 } 552 return false; 553 } 554 555 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 556 /// terminator instruction and its block is known to only have a single 557 /// predecessor block, check to see if that predecessor is also a value 558 /// comparison with the same value, and if that comparison determines the 559 /// outcome of this comparison. If so, simplify TI. This does a very limited 560 /// form of jump threading. 561 bool SimplifyCFGOpt:: 562 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 563 BasicBlock *Pred, 564 IRBuilder<> &Builder) { 565 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 566 if (!PredVal) return false; // Not a value comparison in predecessor. 567 568 Value *ThisVal = isValueEqualityComparison(TI); 569 assert(ThisVal && "This isn't a value comparison!!"); 570 if (ThisVal != PredVal) return false; // Different predicates. 571 572 // TODO: Preserve branch weight metadata, similarly to how 573 // FoldValueComparisonIntoPredecessors preserves it. 574 575 // Find out information about when control will move from Pred to TI's block. 576 std::vector<ValueEqualityComparisonCase> PredCases; 577 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 578 PredCases); 579 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 580 581 // Find information about how control leaves this block. 582 std::vector<ValueEqualityComparisonCase> ThisCases; 583 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 584 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 585 586 // If TI's block is the default block from Pred's comparison, potentially 587 // simplify TI based on this knowledge. 588 if (PredDef == TI->getParent()) { 589 // If we are here, we know that the value is none of those cases listed in 590 // PredCases. If there are any cases in ThisCases that are in PredCases, we 591 // can simplify TI. 592 if (!ValuesOverlap(PredCases, ThisCases)) 593 return false; 594 595 if (isa<BranchInst>(TI)) { 596 // Okay, one of the successors of this condbr is dead. Convert it to a 597 // uncond br. 598 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 599 // Insert the new branch. 600 Instruction *NI = Builder.CreateBr(ThisDef); 601 (void) NI; 602 603 // Remove PHI node entries for the dead edge. 604 ThisCases[0].Dest->removePredecessor(TI->getParent()); 605 606 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 607 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 608 609 EraseTerminatorInstAndDCECond(TI); 610 return true; 611 } 612 613 SwitchInst *SI = cast<SwitchInst>(TI); 614 // Okay, TI has cases that are statically dead, prune them away. 615 SmallPtrSet<Constant*, 16> DeadCases; 616 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 617 DeadCases.insert(PredCases[i].Value); 618 619 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 620 << "Through successor TI: " << *TI); 621 622 // Collect branch weights into a vector. 623 SmallVector<uint32_t, 8> Weights; 624 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 625 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 626 if (HasWeight) 627 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 628 ++MD_i) { 629 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 630 assert(CI); 631 Weights.push_back(CI->getValue().getZExtValue()); 632 } 633 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 634 --i; 635 if (DeadCases.count(i.getCaseValue())) { 636 if (HasWeight) { 637 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 638 Weights.pop_back(); 639 } 640 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 641 SI->removeCase(i); 642 } 643 } 644 if (HasWeight && Weights.size() >= 2) 645 SI->setMetadata(LLVMContext::MD_prof, 646 MDBuilder(SI->getParent()->getContext()). 647 createBranchWeights(Weights)); 648 649 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 650 return true; 651 } 652 653 // Otherwise, TI's block must correspond to some matched value. Find out 654 // which value (or set of values) this is. 655 ConstantInt *TIV = 0; 656 BasicBlock *TIBB = TI->getParent(); 657 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 658 if (PredCases[i].Dest == TIBB) { 659 if (TIV != 0) 660 return false; // Cannot handle multiple values coming to this block. 661 TIV = PredCases[i].Value; 662 } 663 assert(TIV && "No edge from pred to succ?"); 664 665 // Okay, we found the one constant that our value can be if we get into TI's 666 // BB. Find out which successor will unconditionally be branched to. 667 BasicBlock *TheRealDest = 0; 668 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 669 if (ThisCases[i].Value == TIV) { 670 TheRealDest = ThisCases[i].Dest; 671 break; 672 } 673 674 // If not handled by any explicit cases, it is handled by the default case. 675 if (TheRealDest == 0) TheRealDest = ThisDef; 676 677 // Remove PHI node entries for dead edges. 678 BasicBlock *CheckEdge = TheRealDest; 679 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 680 if (*SI != CheckEdge) 681 (*SI)->removePredecessor(TIBB); 682 else 683 CheckEdge = 0; 684 685 // Insert the new branch. 686 Instruction *NI = Builder.CreateBr(TheRealDest); 687 (void) NI; 688 689 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 690 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 691 692 EraseTerminatorInstAndDCECond(TI); 693 return true; 694 } 695 696 namespace { 697 /// ConstantIntOrdering - This class implements a stable ordering of constant 698 /// integers that does not depend on their address. This is important for 699 /// applications that sort ConstantInt's to ensure uniqueness. 700 struct ConstantIntOrdering { 701 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 702 return LHS->getValue().ult(RHS->getValue()); 703 } 704 }; 705 } 706 707 static int ConstantIntSortPredicate(ConstantInt *const *P1, 708 ConstantInt *const *P2) { 709 const ConstantInt *LHS = *P1; 710 const ConstantInt *RHS = *P2; 711 if (LHS->getValue().ult(RHS->getValue())) 712 return 1; 713 if (LHS->getValue() == RHS->getValue()) 714 return 0; 715 return -1; 716 } 717 718 static inline bool HasBranchWeights(const Instruction* I) { 719 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof); 720 if (ProfMD && ProfMD->getOperand(0)) 721 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 722 return MDS->getString().equals("branch_weights"); 723 724 return false; 725 } 726 727 /// Get Weights of a given TerminatorInst, the default weight is at the front 728 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 729 /// metadata. 730 static void GetBranchWeights(TerminatorInst *TI, 731 SmallVectorImpl<uint64_t> &Weights) { 732 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof); 733 assert(MD); 734 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 735 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i)); 736 assert(CI); 737 Weights.push_back(CI->getValue().getZExtValue()); 738 } 739 740 // If TI is a conditional eq, the default case is the false case, 741 // and the corresponding branch-weight data is at index 2. We swap the 742 // default weight to be the first entry. 743 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 744 assert(Weights.size() == 2); 745 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 746 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 747 std::swap(Weights.front(), Weights.back()); 748 } 749 } 750 751 /// Keep halving the weights until all can fit in uint32_t. 752 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 753 while (true) { 754 bool Halve = false; 755 for (unsigned i = 0; i < Weights.size(); ++i) 756 if (Weights[i] > UINT_MAX) { 757 Halve = true; 758 break; 759 } 760 761 if (! Halve) 762 return; 763 764 for (unsigned i = 0; i < Weights.size(); ++i) 765 Weights[i] /= 2; 766 } 767 } 768 769 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 770 /// equality comparison instruction (either a switch or a branch on "X == c"). 771 /// See if any of the predecessors of the terminator block are value comparisons 772 /// on the same value. If so, and if safe to do so, fold them together. 773 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 774 IRBuilder<> &Builder) { 775 BasicBlock *BB = TI->getParent(); 776 Value *CV = isValueEqualityComparison(TI); // CondVal 777 assert(CV && "Not a comparison?"); 778 bool Changed = false; 779 780 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 781 while (!Preds.empty()) { 782 BasicBlock *Pred = Preds.pop_back_val(); 783 784 // See if the predecessor is a comparison with the same value. 785 TerminatorInst *PTI = Pred->getTerminator(); 786 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 787 788 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 789 // Figure out which 'cases' to copy from SI to PSI. 790 std::vector<ValueEqualityComparisonCase> BBCases; 791 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 792 793 std::vector<ValueEqualityComparisonCase> PredCases; 794 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 795 796 // Based on whether the default edge from PTI goes to BB or not, fill in 797 // PredCases and PredDefault with the new switch cases we would like to 798 // build. 799 SmallVector<BasicBlock*, 8> NewSuccessors; 800 801 // Update the branch weight metadata along the way 802 SmallVector<uint64_t, 8> Weights; 803 bool PredHasWeights = HasBranchWeights(PTI); 804 bool SuccHasWeights = HasBranchWeights(TI); 805 806 if (PredHasWeights) { 807 GetBranchWeights(PTI, Weights); 808 // branch-weight metadata is inconsistent here. 809 if (Weights.size() != 1 + PredCases.size()) 810 PredHasWeights = SuccHasWeights = false; 811 } else if (SuccHasWeights) 812 // If there are no predecessor weights but there are successor weights, 813 // populate Weights with 1, which will later be scaled to the sum of 814 // successor's weights 815 Weights.assign(1 + PredCases.size(), 1); 816 817 SmallVector<uint64_t, 8> SuccWeights; 818 if (SuccHasWeights) { 819 GetBranchWeights(TI, SuccWeights); 820 // branch-weight metadata is inconsistent here. 821 if (SuccWeights.size() != 1 + BBCases.size()) 822 PredHasWeights = SuccHasWeights = false; 823 } else if (PredHasWeights) 824 SuccWeights.assign(1 + BBCases.size(), 1); 825 826 if (PredDefault == BB) { 827 // If this is the default destination from PTI, only the edges in TI 828 // that don't occur in PTI, or that branch to BB will be activated. 829 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 830 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 831 if (PredCases[i].Dest != BB) 832 PTIHandled.insert(PredCases[i].Value); 833 else { 834 // The default destination is BB, we don't need explicit targets. 835 std::swap(PredCases[i], PredCases.back()); 836 837 if (PredHasWeights || SuccHasWeights) { 838 // Increase weight for the default case. 839 Weights[0] += Weights[i+1]; 840 std::swap(Weights[i+1], Weights.back()); 841 Weights.pop_back(); 842 } 843 844 PredCases.pop_back(); 845 --i; --e; 846 } 847 848 // Reconstruct the new switch statement we will be building. 849 if (PredDefault != BBDefault) { 850 PredDefault->removePredecessor(Pred); 851 PredDefault = BBDefault; 852 NewSuccessors.push_back(BBDefault); 853 } 854 855 unsigned CasesFromPred = Weights.size(); 856 uint64_t ValidTotalSuccWeight = 0; 857 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 858 if (!PTIHandled.count(BBCases[i].Value) && 859 BBCases[i].Dest != BBDefault) { 860 PredCases.push_back(BBCases[i]); 861 NewSuccessors.push_back(BBCases[i].Dest); 862 if (SuccHasWeights || PredHasWeights) { 863 // The default weight is at index 0, so weight for the ith case 864 // should be at index i+1. Scale the cases from successor by 865 // PredDefaultWeight (Weights[0]). 866 Weights.push_back(Weights[0] * SuccWeights[i+1]); 867 ValidTotalSuccWeight += SuccWeights[i+1]; 868 } 869 } 870 871 if (SuccHasWeights || PredHasWeights) { 872 ValidTotalSuccWeight += SuccWeights[0]; 873 // Scale the cases from predecessor by ValidTotalSuccWeight. 874 for (unsigned i = 1; i < CasesFromPred; ++i) 875 Weights[i] *= ValidTotalSuccWeight; 876 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 877 Weights[0] *= SuccWeights[0]; 878 } 879 } else { 880 // If this is not the default destination from PSI, only the edges 881 // in SI that occur in PSI with a destination of BB will be 882 // activated. 883 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 884 std::map<ConstantInt*, uint64_t> WeightsForHandled; 885 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 886 if (PredCases[i].Dest == BB) { 887 PTIHandled.insert(PredCases[i].Value); 888 889 if (PredHasWeights || SuccHasWeights) { 890 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 891 std::swap(Weights[i+1], Weights.back()); 892 Weights.pop_back(); 893 } 894 895 std::swap(PredCases[i], PredCases.back()); 896 PredCases.pop_back(); 897 --i; --e; 898 } 899 900 // Okay, now we know which constants were sent to BB from the 901 // predecessor. Figure out where they will all go now. 902 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 903 if (PTIHandled.count(BBCases[i].Value)) { 904 // If this is one we are capable of getting... 905 if (PredHasWeights || SuccHasWeights) 906 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 907 PredCases.push_back(BBCases[i]); 908 NewSuccessors.push_back(BBCases[i].Dest); 909 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 910 } 911 912 // If there are any constants vectored to BB that TI doesn't handle, 913 // they must go to the default destination of TI. 914 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 915 PTIHandled.begin(), 916 E = PTIHandled.end(); I != E; ++I) { 917 if (PredHasWeights || SuccHasWeights) 918 Weights.push_back(WeightsForHandled[*I]); 919 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 920 NewSuccessors.push_back(BBDefault); 921 } 922 } 923 924 // Okay, at this point, we know which new successor Pred will get. Make 925 // sure we update the number of entries in the PHI nodes for these 926 // successors. 927 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 928 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 929 930 Builder.SetInsertPoint(PTI); 931 // Convert pointer to int before we switch. 932 if (CV->getType()->isPointerTy()) { 933 assert(TD && "Cannot switch on pointer without DataLayout"); 934 CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getType()), 935 "magicptr"); 936 } 937 938 // Now that the successors are updated, create the new Switch instruction. 939 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 940 PredCases.size()); 941 NewSI->setDebugLoc(PTI->getDebugLoc()); 942 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 943 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 944 945 if (PredHasWeights || SuccHasWeights) { 946 // Halve the weights if any of them cannot fit in an uint32_t 947 FitWeights(Weights); 948 949 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 950 951 NewSI->setMetadata(LLVMContext::MD_prof, 952 MDBuilder(BB->getContext()). 953 createBranchWeights(MDWeights)); 954 } 955 956 EraseTerminatorInstAndDCECond(PTI); 957 958 // Okay, last check. If BB is still a successor of PSI, then we must 959 // have an infinite loop case. If so, add an infinitely looping block 960 // to handle the case to preserve the behavior of the code. 961 BasicBlock *InfLoopBlock = 0; 962 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 963 if (NewSI->getSuccessor(i) == BB) { 964 if (InfLoopBlock == 0) { 965 // Insert it at the end of the function, because it's either code, 966 // or it won't matter if it's hot. :) 967 InfLoopBlock = BasicBlock::Create(BB->getContext(), 968 "infloop", BB->getParent()); 969 BranchInst::Create(InfLoopBlock, InfLoopBlock); 970 } 971 NewSI->setSuccessor(i, InfLoopBlock); 972 } 973 974 Changed = true; 975 } 976 } 977 return Changed; 978 } 979 980 // isSafeToHoistInvoke - If we would need to insert a select that uses the 981 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 982 // would need to do this), we can't hoist the invoke, as there is nowhere 983 // to put the select in this case. 984 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 985 Instruction *I1, Instruction *I2) { 986 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 987 PHINode *PN; 988 for (BasicBlock::iterator BBI = SI->begin(); 989 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 990 Value *BB1V = PN->getIncomingValueForBlock(BB1); 991 Value *BB2V = PN->getIncomingValueForBlock(BB2); 992 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 993 return false; 994 } 995 } 996 } 997 return true; 998 } 999 1000 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 1001 /// BB2, hoist any common code in the two blocks up into the branch block. The 1002 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 1003 static bool HoistThenElseCodeToIf(BranchInst *BI) { 1004 // This does very trivial matching, with limited scanning, to find identical 1005 // instructions in the two blocks. In particular, we don't want to get into 1006 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1007 // such, we currently just scan for obviously identical instructions in an 1008 // identical order. 1009 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1010 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1011 1012 BasicBlock::iterator BB1_Itr = BB1->begin(); 1013 BasicBlock::iterator BB2_Itr = BB2->begin(); 1014 1015 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1016 // Skip debug info if it is not identical. 1017 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1018 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1019 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1020 while (isa<DbgInfoIntrinsic>(I1)) 1021 I1 = BB1_Itr++; 1022 while (isa<DbgInfoIntrinsic>(I2)) 1023 I2 = BB2_Itr++; 1024 } 1025 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1026 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1027 return false; 1028 1029 BasicBlock *BIParent = BI->getParent(); 1030 1031 bool Changed = false; 1032 do { 1033 // If we are hoisting the terminator instruction, don't move one (making a 1034 // broken BB), instead clone it, and remove BI. 1035 if (isa<TerminatorInst>(I1)) 1036 goto HoistTerminator; 1037 1038 // For a normal instruction, we just move one to right before the branch, 1039 // then replace all uses of the other with the first. Finally, we remove 1040 // the now redundant second instruction. 1041 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1042 if (!I2->use_empty()) 1043 I2->replaceAllUsesWith(I1); 1044 I1->intersectOptionalDataWith(I2); 1045 I2->eraseFromParent(); 1046 Changed = true; 1047 1048 I1 = BB1_Itr++; 1049 I2 = BB2_Itr++; 1050 // Skip debug info if it is not identical. 1051 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1052 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1053 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1054 while (isa<DbgInfoIntrinsic>(I1)) 1055 I1 = BB1_Itr++; 1056 while (isa<DbgInfoIntrinsic>(I2)) 1057 I2 = BB2_Itr++; 1058 } 1059 } while (I1->isIdenticalToWhenDefined(I2)); 1060 1061 return true; 1062 1063 HoistTerminator: 1064 // It may not be possible to hoist an invoke. 1065 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1066 return Changed; 1067 1068 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1069 PHINode *PN; 1070 for (BasicBlock::iterator BBI = SI->begin(); 1071 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1072 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1073 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1074 if (BB1V == BB2V) 1075 continue; 1076 1077 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1078 return Changed; 1079 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1080 return Changed; 1081 } 1082 } 1083 1084 // Okay, it is safe to hoist the terminator. 1085 Instruction *NT = I1->clone(); 1086 BIParent->getInstList().insert(BI, NT); 1087 if (!NT->getType()->isVoidTy()) { 1088 I1->replaceAllUsesWith(NT); 1089 I2->replaceAllUsesWith(NT); 1090 NT->takeName(I1); 1091 } 1092 1093 IRBuilder<true, NoFolder> Builder(NT); 1094 // Hoisting one of the terminators from our successor is a great thing. 1095 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1096 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1097 // nodes, so we insert select instruction to compute the final result. 1098 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1099 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1100 PHINode *PN; 1101 for (BasicBlock::iterator BBI = SI->begin(); 1102 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1103 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1104 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1105 if (BB1V == BB2V) continue; 1106 1107 // These values do not agree. Insert a select instruction before NT 1108 // that determines the right value. 1109 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1110 if (SI == 0) 1111 SI = cast<SelectInst> 1112 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1113 BB1V->getName()+"."+BB2V->getName())); 1114 1115 // Make the PHI node use the select for all incoming values for BB1/BB2 1116 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1117 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1118 PN->setIncomingValue(i, SI); 1119 } 1120 } 1121 1122 // Update any PHI nodes in our new successors. 1123 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1124 AddPredecessorToBlock(*SI, BIParent, BB1); 1125 1126 EraseTerminatorInstAndDCECond(BI); 1127 return true; 1128 } 1129 1130 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1131 /// check whether BBEnd has only two predecessors and the other predecessor 1132 /// ends with an unconditional branch. If it is true, sink any common code 1133 /// in the two predecessors to BBEnd. 1134 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1135 assert(BI1->isUnconditional()); 1136 BasicBlock *BB1 = BI1->getParent(); 1137 BasicBlock *BBEnd = BI1->getSuccessor(0); 1138 1139 // Check that BBEnd has two predecessors and the other predecessor ends with 1140 // an unconditional branch. 1141 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1142 BasicBlock *Pred0 = *PI++; 1143 if (PI == PE) // Only one predecessor. 1144 return false; 1145 BasicBlock *Pred1 = *PI++; 1146 if (PI != PE) // More than two predecessors. 1147 return false; 1148 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1149 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1150 if (!BI2 || !BI2->isUnconditional()) 1151 return false; 1152 1153 // Gather the PHI nodes in BBEnd. 1154 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2; 1155 Instruction *FirstNonPhiInBBEnd = 0; 1156 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); 1157 I != E; ++I) { 1158 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1159 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1160 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1161 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN); 1162 } else { 1163 FirstNonPhiInBBEnd = &*I; 1164 break; 1165 } 1166 } 1167 if (!FirstNonPhiInBBEnd) 1168 return false; 1169 1170 1171 // This does very trivial matching, with limited scanning, to find identical 1172 // instructions in the two blocks. We scan backward for obviously identical 1173 // instructions in an identical order. 1174 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1175 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(), 1176 RE2 = BB2->getInstList().rend(); 1177 // Skip debug info. 1178 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1179 if (RI1 == RE1) 1180 return false; 1181 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1182 if (RI2 == RE2) 1183 return false; 1184 // Skip the unconditional branches. 1185 ++RI1; 1186 ++RI2; 1187 1188 bool Changed = false; 1189 while (RI1 != RE1 && RI2 != RE2) { 1190 // Skip debug info. 1191 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1192 if (RI1 == RE1) 1193 return Changed; 1194 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1195 if (RI2 == RE2) 1196 return Changed; 1197 1198 Instruction *I1 = &*RI1, *I2 = &*RI2; 1199 // I1 and I2 should have a single use in the same PHI node, and they 1200 // perform the same operation. 1201 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1202 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1203 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1204 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1205 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1206 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1207 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1208 !I1->hasOneUse() || !I2->hasOneUse() || 1209 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() || 1210 MapValueFromBB1ToBB2[I1].first != I2) 1211 return Changed; 1212 1213 // Check whether we should swap the operands of ICmpInst. 1214 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1215 bool SwapOpnds = false; 1216 if (ICmp1 && ICmp2 && 1217 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1218 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1219 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1220 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1221 ICmp2->swapOperands(); 1222 SwapOpnds = true; 1223 } 1224 if (!I1->isSameOperationAs(I2)) { 1225 if (SwapOpnds) 1226 ICmp2->swapOperands(); 1227 return Changed; 1228 } 1229 1230 // The operands should be either the same or they need to be generated 1231 // with a PHI node after sinking. We only handle the case where there is 1232 // a single pair of different operands. 1233 Value *DifferentOp1 = 0, *DifferentOp2 = 0; 1234 unsigned Op1Idx = 0; 1235 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1236 if (I1->getOperand(I) == I2->getOperand(I)) 1237 continue; 1238 // Early exit if we have more-than one pair of different operands or 1239 // the different operand is already in MapValueFromBB1ToBB2. 1240 // Early exit if we need a PHI node to replace a constant. 1241 if (DifferentOp1 || 1242 MapValueFromBB1ToBB2.find(I1->getOperand(I)) != 1243 MapValueFromBB1ToBB2.end() || 1244 isa<Constant>(I1->getOperand(I)) || 1245 isa<Constant>(I2->getOperand(I))) { 1246 // If we can't sink the instructions, undo the swapping. 1247 if (SwapOpnds) 1248 ICmp2->swapOperands(); 1249 return Changed; 1250 } 1251 DifferentOp1 = I1->getOperand(I); 1252 Op1Idx = I; 1253 DifferentOp2 = I2->getOperand(I); 1254 } 1255 1256 // We insert the pair of different operands to MapValueFromBB1ToBB2 and 1257 // remove (I1, I2) from MapValueFromBB1ToBB2. 1258 if (DifferentOp1) { 1259 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2, 1260 DifferentOp1->getName() + ".sink", 1261 BBEnd->begin()); 1262 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN); 1263 // I1 should use NewPN instead of DifferentOp1. 1264 I1->setOperand(Op1Idx, NewPN); 1265 NewPN->addIncoming(DifferentOp1, BB1); 1266 NewPN->addIncoming(DifferentOp2, BB2); 1267 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1268 } 1269 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second; 1270 MapValueFromBB1ToBB2.erase(I1); 1271 1272 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";); 1273 DEBUG(dbgs() << " " << *I2 << "\n";); 1274 // We need to update RE1 and RE2 if we are going to sink the first 1275 // instruction in the basic block down. 1276 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1277 // Sink the instruction. 1278 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1279 if (!OldPN->use_empty()) 1280 OldPN->replaceAllUsesWith(I1); 1281 OldPN->eraseFromParent(); 1282 1283 if (!I2->use_empty()) 1284 I2->replaceAllUsesWith(I1); 1285 I1->intersectOptionalDataWith(I2); 1286 I2->eraseFromParent(); 1287 1288 if (UpdateRE1) 1289 RE1 = BB1->getInstList().rend(); 1290 if (UpdateRE2) 1291 RE2 = BB2->getInstList().rend(); 1292 FirstNonPhiInBBEnd = I1; 1293 NumSinkCommons++; 1294 Changed = true; 1295 } 1296 return Changed; 1297 } 1298 1299 /// \brief Determine if we can hoist sink a sole store instruction out of a 1300 /// conditional block. 1301 /// 1302 /// We are looking for code like the following: 1303 /// BrBB: 1304 /// store i32 %add, i32* %arrayidx2 1305 /// ... // No other stores or function calls (we could be calling a memory 1306 /// ... // function). 1307 /// %cmp = icmp ult %x, %y 1308 /// br i1 %cmp, label %EndBB, label %ThenBB 1309 /// ThenBB: 1310 /// store i32 %add5, i32* %arrayidx2 1311 /// br label EndBB 1312 /// EndBB: 1313 /// ... 1314 /// We are going to transform this into: 1315 /// BrBB: 1316 /// store i32 %add, i32* %arrayidx2 1317 /// ... // 1318 /// %cmp = icmp ult %x, %y 1319 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1320 /// store i32 %add.add5, i32* %arrayidx2 1321 /// ... 1322 /// 1323 /// \return The pointer to the value of the previous store if the store can be 1324 /// hoisted into the predecessor block. 0 otherwise. 1325 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1326 BasicBlock *StoreBB, BasicBlock *EndBB) { 1327 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1328 if (!StoreToHoist) 1329 return 0; 1330 1331 // Volatile or atomic. 1332 if (!StoreToHoist->isSimple()) 1333 return 0; 1334 1335 Value *StorePtr = StoreToHoist->getPointerOperand(); 1336 1337 // Look for a store to the same pointer in BrBB. 1338 unsigned MaxNumInstToLookAt = 10; 1339 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1340 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1341 Instruction *CurI = &*RI; 1342 1343 // Could be calling an instruction that effects memory like free(). 1344 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1345 return 0; 1346 1347 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1348 // Found the previous store make sure it stores to the same location. 1349 if (SI && SI->getPointerOperand() == StorePtr) 1350 // Found the previous store, return its value operand. 1351 return SI->getValueOperand(); 1352 else if (SI) 1353 return 0; // Unknown store. 1354 } 1355 1356 return 0; 1357 } 1358 1359 /// \brief Speculate a conditional basic block flattening the CFG. 1360 /// 1361 /// Note that this is a very risky transform currently. Speculating 1362 /// instructions like this is most often not desirable. Instead, there is an MI 1363 /// pass which can do it with full awareness of the resource constraints. 1364 /// However, some cases are "obvious" and we should do directly. An example of 1365 /// this is speculating a single, reasonably cheap instruction. 1366 /// 1367 /// There is only one distinct advantage to flattening the CFG at the IR level: 1368 /// it makes very common but simplistic optimizations such as are common in 1369 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1370 /// modeling their effects with easier to reason about SSA value graphs. 1371 /// 1372 /// 1373 /// An illustration of this transform is turning this IR: 1374 /// \code 1375 /// BB: 1376 /// %cmp = icmp ult %x, %y 1377 /// br i1 %cmp, label %EndBB, label %ThenBB 1378 /// ThenBB: 1379 /// %sub = sub %x, %y 1380 /// br label BB2 1381 /// EndBB: 1382 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1383 /// ... 1384 /// \endcode 1385 /// 1386 /// Into this IR: 1387 /// \code 1388 /// BB: 1389 /// %cmp = icmp ult %x, %y 1390 /// %sub = sub %x, %y 1391 /// %cond = select i1 %cmp, 0, %sub 1392 /// ... 1393 /// \endcode 1394 /// 1395 /// \returns true if the conditional block is removed. 1396 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) { 1397 // Be conservative for now. FP select instruction can often be expensive. 1398 Value *BrCond = BI->getCondition(); 1399 if (isa<FCmpInst>(BrCond)) 1400 return false; 1401 1402 BasicBlock *BB = BI->getParent(); 1403 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1404 1405 // If ThenBB is actually on the false edge of the conditional branch, remember 1406 // to swap the select operands later. 1407 bool Invert = false; 1408 if (ThenBB != BI->getSuccessor(0)) { 1409 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1410 Invert = true; 1411 } 1412 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1413 1414 // Keep a count of how many times instructions are used within CondBB when 1415 // they are candidates for sinking into CondBB. Specifically: 1416 // - They are defined in BB, and 1417 // - They have no side effects, and 1418 // - All of their uses are in CondBB. 1419 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1420 1421 unsigned SpeculationCost = 0; 1422 Value *SpeculatedStoreValue = 0; 1423 StoreInst *SpeculatedStore = 0; 1424 for (BasicBlock::iterator BBI = ThenBB->begin(), 1425 BBE = llvm::prior(ThenBB->end()); 1426 BBI != BBE; ++BBI) { 1427 Instruction *I = BBI; 1428 // Skip debug info. 1429 if (isa<DbgInfoIntrinsic>(I)) 1430 continue; 1431 1432 // Only speculatively execution a single instruction (not counting the 1433 // terminator) for now. 1434 ++SpeculationCost; 1435 if (SpeculationCost > 1) 1436 return false; 1437 1438 // Don't hoist the instruction if it's unsafe or expensive. 1439 if (!isSafeToSpeculativelyExecute(I) && 1440 !(HoistCondStores && 1441 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB, 1442 EndBB)))) 1443 return false; 1444 if (!SpeculatedStoreValue && 1445 ComputeSpeculationCost(I) > PHINodeFoldingThreshold) 1446 return false; 1447 1448 // Store the store speculation candidate. 1449 if (SpeculatedStoreValue) 1450 SpeculatedStore = cast<StoreInst>(I); 1451 1452 // Do not hoist the instruction if any of its operands are defined but not 1453 // used in BB. The transformation will prevent the operand from 1454 // being sunk into the use block. 1455 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1456 i != e; ++i) { 1457 Instruction *OpI = dyn_cast<Instruction>(*i); 1458 if (!OpI || OpI->getParent() != BB || 1459 OpI->mayHaveSideEffects()) 1460 continue; // Not a candidate for sinking. 1461 1462 ++SinkCandidateUseCounts[OpI]; 1463 } 1464 } 1465 1466 // Consider any sink candidates which are only used in CondBB as costs for 1467 // speculation. Note, while we iterate over a DenseMap here, we are summing 1468 // and so iteration order isn't significant. 1469 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1470 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1471 I != E; ++I) 1472 if (I->first->getNumUses() == I->second) { 1473 ++SpeculationCost; 1474 if (SpeculationCost > 1) 1475 return false; 1476 } 1477 1478 // Check that the PHI nodes can be converted to selects. 1479 bool HaveRewritablePHIs = false; 1480 for (BasicBlock::iterator I = EndBB->begin(); 1481 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1482 Value *OrigV = PN->getIncomingValueForBlock(BB); 1483 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1484 1485 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1486 // Skip PHIs which are trivial. 1487 if (ThenV == OrigV) 1488 continue; 1489 1490 HaveRewritablePHIs = true; 1491 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1492 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1493 if (!OrigCE && !ThenCE) 1494 continue; // Known safe and cheap. 1495 1496 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1497 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1498 return false; 1499 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE) : 0; 1500 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE) : 0; 1501 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold) 1502 return false; 1503 1504 // Account for the cost of an unfolded ConstantExpr which could end up 1505 // getting expanded into Instructions. 1506 // FIXME: This doesn't account for how many operations are combined in the 1507 // constant expression. 1508 ++SpeculationCost; 1509 if (SpeculationCost > 1) 1510 return false; 1511 } 1512 1513 // If there are no PHIs to process, bail early. This helps ensure idempotence 1514 // as well. 1515 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1516 return false; 1517 1518 // If we get here, we can hoist the instruction and if-convert. 1519 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1520 1521 // Insert a select of the value of the speculated store. 1522 if (SpeculatedStoreValue) { 1523 IRBuilder<true, NoFolder> Builder(BI); 1524 Value *TrueV = SpeculatedStore->getValueOperand(); 1525 Value *FalseV = SpeculatedStoreValue; 1526 if (Invert) 1527 std::swap(TrueV, FalseV); 1528 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1529 "." + FalseV->getName()); 1530 SpeculatedStore->setOperand(0, S); 1531 } 1532 1533 // Hoist the instructions. 1534 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(), 1535 llvm::prior(ThenBB->end())); 1536 1537 // Insert selects and rewrite the PHI operands. 1538 IRBuilder<true, NoFolder> Builder(BI); 1539 for (BasicBlock::iterator I = EndBB->begin(); 1540 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1541 unsigned OrigI = PN->getBasicBlockIndex(BB); 1542 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1543 Value *OrigV = PN->getIncomingValue(OrigI); 1544 Value *ThenV = PN->getIncomingValue(ThenI); 1545 1546 // Skip PHIs which are trivial. 1547 if (OrigV == ThenV) 1548 continue; 1549 1550 // Create a select whose true value is the speculatively executed value and 1551 // false value is the preexisting value. Swap them if the branch 1552 // destinations were inverted. 1553 Value *TrueV = ThenV, *FalseV = OrigV; 1554 if (Invert) 1555 std::swap(TrueV, FalseV); 1556 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1557 TrueV->getName() + "." + FalseV->getName()); 1558 PN->setIncomingValue(OrigI, V); 1559 PN->setIncomingValue(ThenI, V); 1560 } 1561 1562 ++NumSpeculations; 1563 return true; 1564 } 1565 1566 /// \returns True if this block contains a CallInst with the NoDuplicate 1567 /// attribute. 1568 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1569 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1570 const CallInst *CI = dyn_cast<CallInst>(I); 1571 if (!CI) 1572 continue; 1573 if (CI->cannotDuplicate()) 1574 return true; 1575 } 1576 return false; 1577 } 1578 1579 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1580 /// across this block. 1581 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1582 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1583 unsigned Size = 0; 1584 1585 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1586 if (isa<DbgInfoIntrinsic>(BBI)) 1587 continue; 1588 if (Size > 10) return false; // Don't clone large BB's. 1589 ++Size; 1590 1591 // We can only support instructions that do not define values that are 1592 // live outside of the current basic block. 1593 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 1594 UI != E; ++UI) { 1595 Instruction *U = cast<Instruction>(*UI); 1596 if (U->getParent() != BB || isa<PHINode>(U)) return false; 1597 } 1598 1599 // Looks ok, continue checking. 1600 } 1601 1602 return true; 1603 } 1604 1605 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1606 /// that is defined in the same block as the branch and if any PHI entries are 1607 /// constants, thread edges corresponding to that entry to be branches to their 1608 /// ultimate destination. 1609 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) { 1610 BasicBlock *BB = BI->getParent(); 1611 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1612 // NOTE: we currently cannot transform this case if the PHI node is used 1613 // outside of the block. 1614 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1615 return false; 1616 1617 // Degenerate case of a single entry PHI. 1618 if (PN->getNumIncomingValues() == 1) { 1619 FoldSingleEntryPHINodes(PN->getParent()); 1620 return true; 1621 } 1622 1623 // Now we know that this block has multiple preds and two succs. 1624 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1625 1626 if (HasNoDuplicateCall(BB)) return false; 1627 1628 // Okay, this is a simple enough basic block. See if any phi values are 1629 // constants. 1630 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1631 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1632 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue; 1633 1634 // Okay, we now know that all edges from PredBB should be revectored to 1635 // branch to RealDest. 1636 BasicBlock *PredBB = PN->getIncomingBlock(i); 1637 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1638 1639 if (RealDest == BB) continue; // Skip self loops. 1640 // Skip if the predecessor's terminator is an indirect branch. 1641 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1642 1643 // The dest block might have PHI nodes, other predecessors and other 1644 // difficult cases. Instead of being smart about this, just insert a new 1645 // block that jumps to the destination block, effectively splitting 1646 // the edge we are about to create. 1647 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1648 RealDest->getName()+".critedge", 1649 RealDest->getParent(), RealDest); 1650 BranchInst::Create(RealDest, EdgeBB); 1651 1652 // Update PHI nodes. 1653 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1654 1655 // BB may have instructions that are being threaded over. Clone these 1656 // instructions into EdgeBB. We know that there will be no uses of the 1657 // cloned instructions outside of EdgeBB. 1658 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1659 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1660 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1661 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1662 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1663 continue; 1664 } 1665 // Clone the instruction. 1666 Instruction *N = BBI->clone(); 1667 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1668 1669 // Update operands due to translation. 1670 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1671 i != e; ++i) { 1672 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1673 if (PI != TranslateMap.end()) 1674 *i = PI->second; 1675 } 1676 1677 // Check for trivial simplification. 1678 if (Value *V = SimplifyInstruction(N, TD)) { 1679 TranslateMap[BBI] = V; 1680 delete N; // Instruction folded away, don't need actual inst 1681 } else { 1682 // Insert the new instruction into its new home. 1683 EdgeBB->getInstList().insert(InsertPt, N); 1684 if (!BBI->use_empty()) 1685 TranslateMap[BBI] = N; 1686 } 1687 } 1688 1689 // Loop over all of the edges from PredBB to BB, changing them to branch 1690 // to EdgeBB instead. 1691 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1692 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1693 if (PredBBTI->getSuccessor(i) == BB) { 1694 BB->removePredecessor(PredBB); 1695 PredBBTI->setSuccessor(i, EdgeBB); 1696 } 1697 1698 // Recurse, simplifying any other constants. 1699 return FoldCondBranchOnPHI(BI, TD) | true; 1700 } 1701 1702 return false; 1703 } 1704 1705 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1706 /// PHI node, see if we can eliminate it. 1707 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) { 1708 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1709 // statement", which has a very simple dominance structure. Basically, we 1710 // are trying to find the condition that is being branched on, which 1711 // subsequently causes this merge to happen. We really want control 1712 // dependence information for this check, but simplifycfg can't keep it up 1713 // to date, and this catches most of the cases we care about anyway. 1714 BasicBlock *BB = PN->getParent(); 1715 BasicBlock *IfTrue, *IfFalse; 1716 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1717 if (!IfCond || 1718 // Don't bother if the branch will be constant folded trivially. 1719 isa<ConstantInt>(IfCond)) 1720 return false; 1721 1722 // Okay, we found that we can merge this two-entry phi node into a select. 1723 // Doing so would require us to fold *all* two entry phi nodes in this block. 1724 // At some point this becomes non-profitable (particularly if the target 1725 // doesn't support cmov's). Only do this transformation if there are two or 1726 // fewer PHI nodes in this block. 1727 unsigned NumPhis = 0; 1728 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1729 if (NumPhis > 2) 1730 return false; 1731 1732 // Loop over the PHI's seeing if we can promote them all to select 1733 // instructions. While we are at it, keep track of the instructions 1734 // that need to be moved to the dominating block. 1735 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1736 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1737 MaxCostVal1 = PHINodeFoldingThreshold; 1738 1739 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1740 PHINode *PN = cast<PHINode>(II++); 1741 if (Value *V = SimplifyInstruction(PN, TD)) { 1742 PN->replaceAllUsesWith(V); 1743 PN->eraseFromParent(); 1744 continue; 1745 } 1746 1747 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1748 MaxCostVal0) || 1749 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1750 MaxCostVal1)) 1751 return false; 1752 } 1753 1754 // If we folded the first phi, PN dangles at this point. Refresh it. If 1755 // we ran out of PHIs then we simplified them all. 1756 PN = dyn_cast<PHINode>(BB->begin()); 1757 if (PN == 0) return true; 1758 1759 // Don't fold i1 branches on PHIs which contain binary operators. These can 1760 // often be turned into switches and other things. 1761 if (PN->getType()->isIntegerTy(1) && 1762 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1763 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1764 isa<BinaryOperator>(IfCond))) 1765 return false; 1766 1767 // If we all PHI nodes are promotable, check to make sure that all 1768 // instructions in the predecessor blocks can be promoted as well. If 1769 // not, we won't be able to get rid of the control flow, so it's not 1770 // worth promoting to select instructions. 1771 BasicBlock *DomBlock = 0; 1772 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1773 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1774 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1775 IfBlock1 = 0; 1776 } else { 1777 DomBlock = *pred_begin(IfBlock1); 1778 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1779 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1780 // This is not an aggressive instruction that we can promote. 1781 // Because of this, we won't be able to get rid of the control 1782 // flow, so the xform is not worth it. 1783 return false; 1784 } 1785 } 1786 1787 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1788 IfBlock2 = 0; 1789 } else { 1790 DomBlock = *pred_begin(IfBlock2); 1791 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1792 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1793 // This is not an aggressive instruction that we can promote. 1794 // Because of this, we won't be able to get rid of the control 1795 // flow, so the xform is not worth it. 1796 return false; 1797 } 1798 } 1799 1800 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1801 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1802 1803 // If we can still promote the PHI nodes after this gauntlet of tests, 1804 // do all of the PHI's now. 1805 Instruction *InsertPt = DomBlock->getTerminator(); 1806 IRBuilder<true, NoFolder> Builder(InsertPt); 1807 1808 // Move all 'aggressive' instructions, which are defined in the 1809 // conditional parts of the if's up to the dominating block. 1810 if (IfBlock1) 1811 DomBlock->getInstList().splice(InsertPt, 1812 IfBlock1->getInstList(), IfBlock1->begin(), 1813 IfBlock1->getTerminator()); 1814 if (IfBlock2) 1815 DomBlock->getInstList().splice(InsertPt, 1816 IfBlock2->getInstList(), IfBlock2->begin(), 1817 IfBlock2->getTerminator()); 1818 1819 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1820 // Change the PHI node into a select instruction. 1821 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1822 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1823 1824 SelectInst *NV = 1825 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1826 PN->replaceAllUsesWith(NV); 1827 NV->takeName(PN); 1828 PN->eraseFromParent(); 1829 } 1830 1831 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1832 // has been flattened. Change DomBlock to jump directly to our new block to 1833 // avoid other simplifycfg's kicking in on the diamond. 1834 TerminatorInst *OldTI = DomBlock->getTerminator(); 1835 Builder.SetInsertPoint(OldTI); 1836 Builder.CreateBr(BB); 1837 OldTI->eraseFromParent(); 1838 return true; 1839 } 1840 1841 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1842 /// to two returning blocks, try to merge them together into one return, 1843 /// introducing a select if the return values disagree. 1844 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1845 IRBuilder<> &Builder) { 1846 assert(BI->isConditional() && "Must be a conditional branch"); 1847 BasicBlock *TrueSucc = BI->getSuccessor(0); 1848 BasicBlock *FalseSucc = BI->getSuccessor(1); 1849 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1850 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1851 1852 // Check to ensure both blocks are empty (just a return) or optionally empty 1853 // with PHI nodes. If there are other instructions, merging would cause extra 1854 // computation on one path or the other. 1855 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1856 return false; 1857 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1858 return false; 1859 1860 Builder.SetInsertPoint(BI); 1861 // Okay, we found a branch that is going to two return nodes. If 1862 // there is no return value for this function, just change the 1863 // branch into a return. 1864 if (FalseRet->getNumOperands() == 0) { 1865 TrueSucc->removePredecessor(BI->getParent()); 1866 FalseSucc->removePredecessor(BI->getParent()); 1867 Builder.CreateRetVoid(); 1868 EraseTerminatorInstAndDCECond(BI); 1869 return true; 1870 } 1871 1872 // Otherwise, figure out what the true and false return values are 1873 // so we can insert a new select instruction. 1874 Value *TrueValue = TrueRet->getReturnValue(); 1875 Value *FalseValue = FalseRet->getReturnValue(); 1876 1877 // Unwrap any PHI nodes in the return blocks. 1878 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1879 if (TVPN->getParent() == TrueSucc) 1880 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1881 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1882 if (FVPN->getParent() == FalseSucc) 1883 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1884 1885 // In order for this transformation to be safe, we must be able to 1886 // unconditionally execute both operands to the return. This is 1887 // normally the case, but we could have a potentially-trapping 1888 // constant expression that prevents this transformation from being 1889 // safe. 1890 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1891 if (TCV->canTrap()) 1892 return false; 1893 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1894 if (FCV->canTrap()) 1895 return false; 1896 1897 // Okay, we collected all the mapped values and checked them for sanity, and 1898 // defined to really do this transformation. First, update the CFG. 1899 TrueSucc->removePredecessor(BI->getParent()); 1900 FalseSucc->removePredecessor(BI->getParent()); 1901 1902 // Insert select instructions where needed. 1903 Value *BrCond = BI->getCondition(); 1904 if (TrueValue) { 1905 // Insert a select if the results differ. 1906 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1907 } else if (isa<UndefValue>(TrueValue)) { 1908 TrueValue = FalseValue; 1909 } else { 1910 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1911 FalseValue, "retval"); 1912 } 1913 } 1914 1915 Value *RI = !TrueValue ? 1916 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1917 1918 (void) RI; 1919 1920 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1921 << "\n " << *BI << "NewRet = " << *RI 1922 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1923 1924 EraseTerminatorInstAndDCECond(BI); 1925 1926 return true; 1927 } 1928 1929 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 1930 /// probabilities of the branch taking each edge. Fills in the two APInt 1931 /// parameters and return true, or returns false if no or invalid metadata was 1932 /// found. 1933 static bool ExtractBranchMetadata(BranchInst *BI, 1934 uint64_t &ProbTrue, uint64_t &ProbFalse) { 1935 assert(BI->isConditional() && 1936 "Looking for probabilities on unconditional branch?"); 1937 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 1938 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 1939 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1)); 1940 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2)); 1941 if (!CITrue || !CIFalse) return false; 1942 ProbTrue = CITrue->getValue().getZExtValue(); 1943 ProbFalse = CIFalse->getValue().getZExtValue(); 1944 return true; 1945 } 1946 1947 /// checkCSEInPredecessor - Return true if the given instruction is available 1948 /// in its predecessor block. If yes, the instruction will be removed. 1949 /// 1950 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 1951 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 1952 return false; 1953 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 1954 Instruction *PBI = &*I; 1955 // Check whether Inst and PBI generate the same value. 1956 if (Inst->isIdenticalTo(PBI)) { 1957 Inst->replaceAllUsesWith(PBI); 1958 Inst->eraseFromParent(); 1959 return true; 1960 } 1961 } 1962 return false; 1963 } 1964 1965 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1966 /// predecessor branches to us and one of our successors, fold the block into 1967 /// the predecessor and use logical operations to pick the right destination. 1968 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 1969 BasicBlock *BB = BI->getParent(); 1970 1971 Instruction *Cond = 0; 1972 if (BI->isConditional()) 1973 Cond = dyn_cast<Instruction>(BI->getCondition()); 1974 else { 1975 // For unconditional branch, check for a simple CFG pattern, where 1976 // BB has a single predecessor and BB's successor is also its predecessor's 1977 // successor. If such pattern exisits, check for CSE between BB and its 1978 // predecessor. 1979 if (BasicBlock *PB = BB->getSinglePredecessor()) 1980 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 1981 if (PBI->isConditional() && 1982 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 1983 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 1984 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 1985 I != E; ) { 1986 Instruction *Curr = I++; 1987 if (isa<CmpInst>(Curr)) { 1988 Cond = Curr; 1989 break; 1990 } 1991 // Quit if we can't remove this instruction. 1992 if (!checkCSEInPredecessor(Curr, PB)) 1993 return false; 1994 } 1995 } 1996 1997 if (Cond == 0) 1998 return false; 1999 } 2000 2001 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2002 Cond->getParent() != BB || !Cond->hasOneUse()) 2003 return false; 2004 2005 // Only allow this if the condition is a simple instruction that can be 2006 // executed unconditionally. It must be in the same block as the branch, and 2007 // must be at the front of the block. 2008 BasicBlock::iterator FrontIt = BB->front(); 2009 2010 // Ignore dbg intrinsics. 2011 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2012 2013 // Allow a single instruction to be hoisted in addition to the compare 2014 // that feeds the branch. We later ensure that any values that _it_ uses 2015 // were also live in the predecessor, so that we don't unnecessarily create 2016 // register pressure or inhibit out-of-order execution. 2017 Instruction *BonusInst = 0; 2018 if (&*FrontIt != Cond && 2019 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond && 2020 isSafeToSpeculativelyExecute(FrontIt)) { 2021 BonusInst = &*FrontIt; 2022 ++FrontIt; 2023 2024 // Ignore dbg intrinsics. 2025 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2026 } 2027 2028 // Only a single bonus inst is allowed. 2029 if (&*FrontIt != Cond) 2030 return false; 2031 2032 // Make sure the instruction after the condition is the cond branch. 2033 BasicBlock::iterator CondIt = Cond; ++CondIt; 2034 2035 // Ingore dbg intrinsics. 2036 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2037 2038 if (&*CondIt != BI) 2039 return false; 2040 2041 // Cond is known to be a compare or binary operator. Check to make sure that 2042 // neither operand is a potentially-trapping constant expression. 2043 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2044 if (CE->canTrap()) 2045 return false; 2046 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2047 if (CE->canTrap()) 2048 return false; 2049 2050 // Finally, don't infinitely unroll conditional loops. 2051 BasicBlock *TrueDest = BI->getSuccessor(0); 2052 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0; 2053 if (TrueDest == BB || FalseDest == BB) 2054 return false; 2055 2056 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2057 BasicBlock *PredBlock = *PI; 2058 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2059 2060 // Check that we have two conditional branches. If there is a PHI node in 2061 // the common successor, verify that the same value flows in from both 2062 // blocks. 2063 SmallVector<PHINode*, 4> PHIs; 2064 if (PBI == 0 || PBI->isUnconditional() || 2065 (BI->isConditional() && 2066 !SafeToMergeTerminators(BI, PBI)) || 2067 (!BI->isConditional() && 2068 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2069 continue; 2070 2071 // Determine if the two branches share a common destination. 2072 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2073 bool InvertPredCond = false; 2074 2075 if (BI->isConditional()) { 2076 if (PBI->getSuccessor(0) == TrueDest) 2077 Opc = Instruction::Or; 2078 else if (PBI->getSuccessor(1) == FalseDest) 2079 Opc = Instruction::And; 2080 else if (PBI->getSuccessor(0) == FalseDest) 2081 Opc = Instruction::And, InvertPredCond = true; 2082 else if (PBI->getSuccessor(1) == TrueDest) 2083 Opc = Instruction::Or, InvertPredCond = true; 2084 else 2085 continue; 2086 } else { 2087 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2088 continue; 2089 } 2090 2091 // Ensure that any values used in the bonus instruction are also used 2092 // by the terminator of the predecessor. This means that those values 2093 // must already have been resolved, so we won't be inhibiting the 2094 // out-of-order core by speculating them earlier. We also allow 2095 // instructions that are used by the terminator's condition because it 2096 // exposes more merging opportunities. 2097 bool UsedByBranch = (BonusInst && BonusInst->hasOneUse() && 2098 *BonusInst->use_begin() == Cond); 2099 2100 if (BonusInst && !UsedByBranch) { 2101 // Collect the values used by the bonus inst 2102 SmallPtrSet<Value*, 4> UsedValues; 2103 for (Instruction::op_iterator OI = BonusInst->op_begin(), 2104 OE = BonusInst->op_end(); OI != OE; ++OI) { 2105 Value *V = *OI; 2106 if (!isa<Constant>(V) && !isa<Argument>(V)) 2107 UsedValues.insert(V); 2108 } 2109 2110 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 2111 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 2112 2113 // Walk up to four levels back up the use-def chain of the predecessor's 2114 // terminator to see if all those values were used. The choice of four 2115 // levels is arbitrary, to provide a compile-time-cost bound. 2116 while (!Worklist.empty()) { 2117 std::pair<Value*, unsigned> Pair = Worklist.back(); 2118 Worklist.pop_back(); 2119 2120 if (Pair.second >= 4) continue; 2121 UsedValues.erase(Pair.first); 2122 if (UsedValues.empty()) break; 2123 2124 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 2125 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 2126 OI != OE; ++OI) 2127 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 2128 } 2129 } 2130 2131 if (!UsedValues.empty()) return false; 2132 } 2133 2134 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2135 IRBuilder<> Builder(PBI); 2136 2137 // If we need to invert the condition in the pred block to match, do so now. 2138 if (InvertPredCond) { 2139 Value *NewCond = PBI->getCondition(); 2140 2141 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2142 CmpInst *CI = cast<CmpInst>(NewCond); 2143 CI->setPredicate(CI->getInversePredicate()); 2144 } else { 2145 NewCond = Builder.CreateNot(NewCond, 2146 PBI->getCondition()->getName()+".not"); 2147 } 2148 2149 PBI->setCondition(NewCond); 2150 PBI->swapSuccessors(); 2151 } 2152 2153 // If we have a bonus inst, clone it into the predecessor block. 2154 Instruction *NewBonus = 0; 2155 if (BonusInst) { 2156 NewBonus = BonusInst->clone(); 2157 2158 // If we moved a load, we cannot any longer claim any knowledge about 2159 // its potential value. The previous information might have been valid 2160 // only given the branch precondition. 2161 // For an analogous reason, we must also drop all the metadata whose 2162 // semantics we don't understand. 2163 NewBonus->dropUnknownMetadata(LLVMContext::MD_dbg); 2164 2165 PredBlock->getInstList().insert(PBI, NewBonus); 2166 NewBonus->takeName(BonusInst); 2167 BonusInst->setName(BonusInst->getName()+".old"); 2168 } 2169 2170 // Clone Cond into the predecessor basic block, and or/and the 2171 // two conditions together. 2172 Instruction *New = Cond->clone(); 2173 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 2174 PredBlock->getInstList().insert(PBI, New); 2175 New->takeName(Cond); 2176 Cond->setName(New->getName()+".old"); 2177 2178 if (BI->isConditional()) { 2179 Instruction *NewCond = 2180 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2181 New, "or.cond")); 2182 PBI->setCondition(NewCond); 2183 2184 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2185 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2186 PredFalseWeight); 2187 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2188 SuccFalseWeight); 2189 SmallVector<uint64_t, 8> NewWeights; 2190 2191 if (PBI->getSuccessor(0) == BB) { 2192 if (PredHasWeights && SuccHasWeights) { 2193 // PBI: br i1 %x, BB, FalseDest 2194 // BI: br i1 %y, TrueDest, FalseDest 2195 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2196 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2197 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2198 // TrueWeight for PBI * FalseWeight for BI. 2199 // We assume that total weights of a BranchInst can fit into 32 bits. 2200 // Therefore, we will not have overflow using 64-bit arithmetic. 2201 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2202 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2203 } 2204 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2205 PBI->setSuccessor(0, TrueDest); 2206 } 2207 if (PBI->getSuccessor(1) == BB) { 2208 if (PredHasWeights && SuccHasWeights) { 2209 // PBI: br i1 %x, TrueDest, BB 2210 // BI: br i1 %y, TrueDest, FalseDest 2211 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2212 // FalseWeight for PBI * TrueWeight for BI. 2213 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2214 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2215 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2216 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2217 } 2218 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2219 PBI->setSuccessor(1, FalseDest); 2220 } 2221 if (NewWeights.size() == 2) { 2222 // Halve the weights if any of them cannot fit in an uint32_t 2223 FitWeights(NewWeights); 2224 2225 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2226 PBI->setMetadata(LLVMContext::MD_prof, 2227 MDBuilder(BI->getContext()). 2228 createBranchWeights(MDWeights)); 2229 } else 2230 PBI->setMetadata(LLVMContext::MD_prof, NULL); 2231 } else { 2232 // Update PHI nodes in the common successors. 2233 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2234 ConstantInt *PBI_C = cast<ConstantInt>( 2235 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2236 assert(PBI_C->getType()->isIntegerTy(1)); 2237 Instruction *MergedCond = 0; 2238 if (PBI->getSuccessor(0) == TrueDest) { 2239 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2240 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2241 // is false: !PBI_Cond and BI_Value 2242 Instruction *NotCond = 2243 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2244 "not.cond")); 2245 MergedCond = 2246 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2247 NotCond, New, 2248 "and.cond")); 2249 if (PBI_C->isOne()) 2250 MergedCond = 2251 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2252 PBI->getCondition(), MergedCond, 2253 "or.cond")); 2254 } else { 2255 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2256 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2257 // is false: PBI_Cond and BI_Value 2258 MergedCond = 2259 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2260 PBI->getCondition(), New, 2261 "and.cond")); 2262 if (PBI_C->isOne()) { 2263 Instruction *NotCond = 2264 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2265 "not.cond")); 2266 MergedCond = 2267 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2268 NotCond, MergedCond, 2269 "or.cond")); 2270 } 2271 } 2272 // Update PHI Node. 2273 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2274 MergedCond); 2275 } 2276 // Change PBI from Conditional to Unconditional. 2277 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2278 EraseTerminatorInstAndDCECond(PBI); 2279 PBI = New_PBI; 2280 } 2281 2282 // TODO: If BB is reachable from all paths through PredBlock, then we 2283 // could replace PBI's branch probabilities with BI's. 2284 2285 // Copy any debug value intrinsics into the end of PredBlock. 2286 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2287 if (isa<DbgInfoIntrinsic>(*I)) 2288 I->clone()->insertBefore(PBI); 2289 2290 return true; 2291 } 2292 return false; 2293 } 2294 2295 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2296 /// predecessor of another block, this function tries to simplify it. We know 2297 /// that PBI and BI are both conditional branches, and BI is in one of the 2298 /// successor blocks of PBI - PBI branches to BI. 2299 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2300 assert(PBI->isConditional() && BI->isConditional()); 2301 BasicBlock *BB = BI->getParent(); 2302 2303 // If this block ends with a branch instruction, and if there is a 2304 // predecessor that ends on a branch of the same condition, make 2305 // this conditional branch redundant. 2306 if (PBI->getCondition() == BI->getCondition() && 2307 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2308 // Okay, the outcome of this conditional branch is statically 2309 // knowable. If this block had a single pred, handle specially. 2310 if (BB->getSinglePredecessor()) { 2311 // Turn this into a branch on constant. 2312 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2313 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2314 CondIsTrue)); 2315 return true; // Nuke the branch on constant. 2316 } 2317 2318 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2319 // in the constant and simplify the block result. Subsequent passes of 2320 // simplifycfg will thread the block. 2321 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2322 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2323 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2324 std::distance(PB, PE), 2325 BI->getCondition()->getName() + ".pr", 2326 BB->begin()); 2327 // Okay, we're going to insert the PHI node. Since PBI is not the only 2328 // predecessor, compute the PHI'd conditional value for all of the preds. 2329 // Any predecessor where the condition is not computable we keep symbolic. 2330 for (pred_iterator PI = PB; PI != PE; ++PI) { 2331 BasicBlock *P = *PI; 2332 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2333 PBI != BI && PBI->isConditional() && 2334 PBI->getCondition() == BI->getCondition() && 2335 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2336 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2337 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2338 CondIsTrue), P); 2339 } else { 2340 NewPN->addIncoming(BI->getCondition(), P); 2341 } 2342 } 2343 2344 BI->setCondition(NewPN); 2345 return true; 2346 } 2347 } 2348 2349 // If this is a conditional branch in an empty block, and if any 2350 // predecessors is a conditional branch to one of our destinations, 2351 // fold the conditions into logical ops and one cond br. 2352 BasicBlock::iterator BBI = BB->begin(); 2353 // Ignore dbg intrinsics. 2354 while (isa<DbgInfoIntrinsic>(BBI)) 2355 ++BBI; 2356 if (&*BBI != BI) 2357 return false; 2358 2359 2360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2361 if (CE->canTrap()) 2362 return false; 2363 2364 int PBIOp, BIOp; 2365 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2366 PBIOp = BIOp = 0; 2367 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2368 PBIOp = 0, BIOp = 1; 2369 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2370 PBIOp = 1, BIOp = 0; 2371 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2372 PBIOp = BIOp = 1; 2373 else 2374 return false; 2375 2376 // Check to make sure that the other destination of this branch 2377 // isn't BB itself. If so, this is an infinite loop that will 2378 // keep getting unwound. 2379 if (PBI->getSuccessor(PBIOp) == BB) 2380 return false; 2381 2382 // Do not perform this transformation if it would require 2383 // insertion of a large number of select instructions. For targets 2384 // without predication/cmovs, this is a big pessimization. 2385 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2386 2387 unsigned NumPhis = 0; 2388 for (BasicBlock::iterator II = CommonDest->begin(); 2389 isa<PHINode>(II); ++II, ++NumPhis) 2390 if (NumPhis > 2) // Disable this xform. 2391 return false; 2392 2393 // Finally, if everything is ok, fold the branches to logical ops. 2394 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2395 2396 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2397 << "AND: " << *BI->getParent()); 2398 2399 2400 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2401 // branch in it, where one edge (OtherDest) goes back to itself but the other 2402 // exits. We don't *know* that the program avoids the infinite loop 2403 // (even though that seems likely). If we do this xform naively, we'll end up 2404 // recursively unpeeling the loop. Since we know that (after the xform is 2405 // done) that the block *is* infinite if reached, we just make it an obviously 2406 // infinite loop with no cond branch. 2407 if (OtherDest == BB) { 2408 // Insert it at the end of the function, because it's either code, 2409 // or it won't matter if it's hot. :) 2410 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2411 "infloop", BB->getParent()); 2412 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2413 OtherDest = InfLoopBlock; 2414 } 2415 2416 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2417 2418 // BI may have other predecessors. Because of this, we leave 2419 // it alone, but modify PBI. 2420 2421 // Make sure we get to CommonDest on True&True directions. 2422 Value *PBICond = PBI->getCondition(); 2423 IRBuilder<true, NoFolder> Builder(PBI); 2424 if (PBIOp) 2425 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2426 2427 Value *BICond = BI->getCondition(); 2428 if (BIOp) 2429 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2430 2431 // Merge the conditions. 2432 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2433 2434 // Modify PBI to branch on the new condition to the new dests. 2435 PBI->setCondition(Cond); 2436 PBI->setSuccessor(0, CommonDest); 2437 PBI->setSuccessor(1, OtherDest); 2438 2439 // Update branch weight for PBI. 2440 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2441 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2442 PredFalseWeight); 2443 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2444 SuccFalseWeight); 2445 if (PredHasWeights && SuccHasWeights) { 2446 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2447 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2448 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2449 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2450 // The weight to CommonDest should be PredCommon * SuccTotal + 2451 // PredOther * SuccCommon. 2452 // The weight to OtherDest should be PredOther * SuccOther. 2453 SmallVector<uint64_t, 2> NewWeights; 2454 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2455 PredOther * SuccCommon); 2456 NewWeights.push_back(PredOther * SuccOther); 2457 // Halve the weights if any of them cannot fit in an uint32_t 2458 FitWeights(NewWeights); 2459 2460 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2461 PBI->setMetadata(LLVMContext::MD_prof, 2462 MDBuilder(BI->getContext()). 2463 createBranchWeights(MDWeights)); 2464 } 2465 2466 // OtherDest may have phi nodes. If so, add an entry from PBI's 2467 // block that are identical to the entries for BI's block. 2468 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2469 2470 // We know that the CommonDest already had an edge from PBI to 2471 // it. If it has PHIs though, the PHIs may have different 2472 // entries for BB and PBI's BB. If so, insert a select to make 2473 // them agree. 2474 PHINode *PN; 2475 for (BasicBlock::iterator II = CommonDest->begin(); 2476 (PN = dyn_cast<PHINode>(II)); ++II) { 2477 Value *BIV = PN->getIncomingValueForBlock(BB); 2478 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2479 Value *PBIV = PN->getIncomingValue(PBBIdx); 2480 if (BIV != PBIV) { 2481 // Insert a select in PBI to pick the right value. 2482 Value *NV = cast<SelectInst> 2483 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2484 PN->setIncomingValue(PBBIdx, NV); 2485 } 2486 } 2487 2488 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2489 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2490 2491 // This basic block is probably dead. We know it has at least 2492 // one fewer predecessor. 2493 return true; 2494 } 2495 2496 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2497 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2498 // Takes care of updating the successors and removing the old terminator. 2499 // Also makes sure not to introduce new successors by assuming that edges to 2500 // non-successor TrueBBs and FalseBBs aren't reachable. 2501 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2502 BasicBlock *TrueBB, BasicBlock *FalseBB, 2503 uint32_t TrueWeight, 2504 uint32_t FalseWeight){ 2505 // Remove any superfluous successor edges from the CFG. 2506 // First, figure out which successors to preserve. 2507 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2508 // successor. 2509 BasicBlock *KeepEdge1 = TrueBB; 2510 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0; 2511 2512 // Then remove the rest. 2513 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2514 BasicBlock *Succ = OldTerm->getSuccessor(I); 2515 // Make sure only to keep exactly one copy of each edge. 2516 if (Succ == KeepEdge1) 2517 KeepEdge1 = 0; 2518 else if (Succ == KeepEdge2) 2519 KeepEdge2 = 0; 2520 else 2521 Succ->removePredecessor(OldTerm->getParent()); 2522 } 2523 2524 IRBuilder<> Builder(OldTerm); 2525 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2526 2527 // Insert an appropriate new terminator. 2528 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) { 2529 if (TrueBB == FalseBB) 2530 // We were only looking for one successor, and it was present. 2531 // Create an unconditional branch to it. 2532 Builder.CreateBr(TrueBB); 2533 else { 2534 // We found both of the successors we were looking for. 2535 // Create a conditional branch sharing the condition of the select. 2536 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2537 if (TrueWeight != FalseWeight) 2538 NewBI->setMetadata(LLVMContext::MD_prof, 2539 MDBuilder(OldTerm->getContext()). 2540 createBranchWeights(TrueWeight, FalseWeight)); 2541 } 2542 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2543 // Neither of the selected blocks were successors, so this 2544 // terminator must be unreachable. 2545 new UnreachableInst(OldTerm->getContext(), OldTerm); 2546 } else { 2547 // One of the selected values was a successor, but the other wasn't. 2548 // Insert an unconditional branch to the one that was found; 2549 // the edge to the one that wasn't must be unreachable. 2550 if (KeepEdge1 == 0) 2551 // Only TrueBB was found. 2552 Builder.CreateBr(TrueBB); 2553 else 2554 // Only FalseBB was found. 2555 Builder.CreateBr(FalseBB); 2556 } 2557 2558 EraseTerminatorInstAndDCECond(OldTerm); 2559 return true; 2560 } 2561 2562 // SimplifySwitchOnSelect - Replaces 2563 // (switch (select cond, X, Y)) on constant X, Y 2564 // with a branch - conditional if X and Y lead to distinct BBs, 2565 // unconditional otherwise. 2566 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2567 // Check for constant integer values in the select. 2568 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2569 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2570 if (!TrueVal || !FalseVal) 2571 return false; 2572 2573 // Find the relevant condition and destinations. 2574 Value *Condition = Select->getCondition(); 2575 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2576 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2577 2578 // Get weight for TrueBB and FalseBB. 2579 uint32_t TrueWeight = 0, FalseWeight = 0; 2580 SmallVector<uint64_t, 8> Weights; 2581 bool HasWeights = HasBranchWeights(SI); 2582 if (HasWeights) { 2583 GetBranchWeights(SI, Weights); 2584 if (Weights.size() == 1 + SI->getNumCases()) { 2585 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2586 getSuccessorIndex()]; 2587 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2588 getSuccessorIndex()]; 2589 } 2590 } 2591 2592 // Perform the actual simplification. 2593 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2594 TrueWeight, FalseWeight); 2595 } 2596 2597 // SimplifyIndirectBrOnSelect - Replaces 2598 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2599 // blockaddress(@fn, BlockB))) 2600 // with 2601 // (br cond, BlockA, BlockB). 2602 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2603 // Check that both operands of the select are block addresses. 2604 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2605 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2606 if (!TBA || !FBA) 2607 return false; 2608 2609 // Extract the actual blocks. 2610 BasicBlock *TrueBB = TBA->getBasicBlock(); 2611 BasicBlock *FalseBB = FBA->getBasicBlock(); 2612 2613 // Perform the actual simplification. 2614 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2615 0, 0); 2616 } 2617 2618 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2619 /// instruction (a seteq/setne with a constant) as the only instruction in a 2620 /// block that ends with an uncond branch. We are looking for a very specific 2621 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2622 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2623 /// default value goes to an uncond block with a seteq in it, we get something 2624 /// like: 2625 /// 2626 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2627 /// DEFAULT: 2628 /// %tmp = icmp eq i8 %A, 92 2629 /// br label %end 2630 /// end: 2631 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2632 /// 2633 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2634 /// the PHI, merging the third icmp into the switch. 2635 static bool TryToSimplifyUncondBranchWithICmpInIt( 2636 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, 2637 const DataLayout *TD) { 2638 BasicBlock *BB = ICI->getParent(); 2639 2640 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2641 // complex. 2642 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2643 2644 Value *V = ICI->getOperand(0); 2645 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2646 2647 // The pattern we're looking for is where our only predecessor is a switch on 2648 // 'V' and this block is the default case for the switch. In this case we can 2649 // fold the compared value into the switch to simplify things. 2650 BasicBlock *Pred = BB->getSinglePredecessor(); 2651 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false; 2652 2653 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2654 if (SI->getCondition() != V) 2655 return false; 2656 2657 // If BB is reachable on a non-default case, then we simply know the value of 2658 // V in this block. Substitute it and constant fold the icmp instruction 2659 // away. 2660 if (SI->getDefaultDest() != BB) { 2661 ConstantInt *VVal = SI->findCaseDest(BB); 2662 assert(VVal && "Should have a unique destination value"); 2663 ICI->setOperand(0, VVal); 2664 2665 if (Value *V = SimplifyInstruction(ICI, TD)) { 2666 ICI->replaceAllUsesWith(V); 2667 ICI->eraseFromParent(); 2668 } 2669 // BB is now empty, so it is likely to simplify away. 2670 return SimplifyCFG(BB, TTI, TD) | true; 2671 } 2672 2673 // Ok, the block is reachable from the default dest. If the constant we're 2674 // comparing exists in one of the other edges, then we can constant fold ICI 2675 // and zap it. 2676 if (SI->findCaseValue(Cst) != SI->case_default()) { 2677 Value *V; 2678 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2679 V = ConstantInt::getFalse(BB->getContext()); 2680 else 2681 V = ConstantInt::getTrue(BB->getContext()); 2682 2683 ICI->replaceAllUsesWith(V); 2684 ICI->eraseFromParent(); 2685 // BB is now empty, so it is likely to simplify away. 2686 return SimplifyCFG(BB, TTI, TD) | true; 2687 } 2688 2689 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2690 // the block. 2691 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2692 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back()); 2693 if (PHIUse == 0 || PHIUse != &SuccBlock->front() || 2694 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2695 return false; 2696 2697 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2698 // true in the PHI. 2699 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2700 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2701 2702 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2703 std::swap(DefaultCst, NewCst); 2704 2705 // Replace ICI (which is used by the PHI for the default value) with true or 2706 // false depending on if it is EQ or NE. 2707 ICI->replaceAllUsesWith(DefaultCst); 2708 ICI->eraseFromParent(); 2709 2710 // Okay, the switch goes to this block on a default value. Add an edge from 2711 // the switch to the merge point on the compared value. 2712 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2713 BB->getParent(), BB); 2714 SmallVector<uint64_t, 8> Weights; 2715 bool HasWeights = HasBranchWeights(SI); 2716 if (HasWeights) { 2717 GetBranchWeights(SI, Weights); 2718 if (Weights.size() == 1 + SI->getNumCases()) { 2719 // Split weight for default case to case for "Cst". 2720 Weights[0] = (Weights[0]+1) >> 1; 2721 Weights.push_back(Weights[0]); 2722 2723 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2724 SI->setMetadata(LLVMContext::MD_prof, 2725 MDBuilder(SI->getContext()). 2726 createBranchWeights(MDWeights)); 2727 } 2728 } 2729 SI->addCase(Cst, NewBB); 2730 2731 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2732 Builder.SetInsertPoint(NewBB); 2733 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2734 Builder.CreateBr(SuccBlock); 2735 PHIUse->addIncoming(NewCst, NewBB); 2736 return true; 2737 } 2738 2739 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2740 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2741 /// fold it into a switch instruction if so. 2742 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD, 2743 IRBuilder<> &Builder) { 2744 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2745 if (Cond == 0) return false; 2746 2747 2748 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2749 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2750 // 'setne's and'ed together, collect them. 2751 Value *CompVal = 0; 2752 std::vector<ConstantInt*> Values; 2753 bool TrueWhenEqual = true; 2754 Value *ExtraCase = 0; 2755 unsigned UsedICmps = 0; 2756 2757 if (Cond->getOpcode() == Instruction::Or) { 2758 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true, 2759 UsedICmps); 2760 } else if (Cond->getOpcode() == Instruction::And) { 2761 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false, 2762 UsedICmps); 2763 TrueWhenEqual = false; 2764 } 2765 2766 // If we didn't have a multiply compared value, fail. 2767 if (CompVal == 0) return false; 2768 2769 // Avoid turning single icmps into a switch. 2770 if (UsedICmps <= 1) 2771 return false; 2772 2773 // There might be duplicate constants in the list, which the switch 2774 // instruction can't handle, remove them now. 2775 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2776 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2777 2778 // If Extra was used, we require at least two switch values to do the 2779 // transformation. A switch with one value is just an cond branch. 2780 if (ExtraCase && Values.size() < 2) return false; 2781 2782 // TODO: Preserve branch weight metadata, similarly to how 2783 // FoldValueComparisonIntoPredecessors preserves it. 2784 2785 // Figure out which block is which destination. 2786 BasicBlock *DefaultBB = BI->getSuccessor(1); 2787 BasicBlock *EdgeBB = BI->getSuccessor(0); 2788 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2789 2790 BasicBlock *BB = BI->getParent(); 2791 2792 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2793 << " cases into SWITCH. BB is:\n" << *BB); 2794 2795 // If there are any extra values that couldn't be folded into the switch 2796 // then we evaluate them with an explicit branch first. Split the block 2797 // right before the condbr to handle it. 2798 if (ExtraCase) { 2799 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2800 // Remove the uncond branch added to the old block. 2801 TerminatorInst *OldTI = BB->getTerminator(); 2802 Builder.SetInsertPoint(OldTI); 2803 2804 if (TrueWhenEqual) 2805 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2806 else 2807 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2808 2809 OldTI->eraseFromParent(); 2810 2811 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2812 // for the edge we just added. 2813 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2814 2815 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2816 << "\nEXTRABB = " << *BB); 2817 BB = NewBB; 2818 } 2819 2820 Builder.SetInsertPoint(BI); 2821 // Convert pointer to int before we switch. 2822 if (CompVal->getType()->isPointerTy()) { 2823 assert(TD && "Cannot switch on pointer without DataLayout"); 2824 CompVal = Builder.CreatePtrToInt(CompVal, 2825 TD->getIntPtrType(CompVal->getType()), 2826 "magicptr"); 2827 } 2828 2829 // Create the new switch instruction now. 2830 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2831 2832 // Add all of the 'cases' to the switch instruction. 2833 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2834 New->addCase(Values[i], EdgeBB); 2835 2836 // We added edges from PI to the EdgeBB. As such, if there were any 2837 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2838 // the number of edges added. 2839 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2840 isa<PHINode>(BBI); ++BBI) { 2841 PHINode *PN = cast<PHINode>(BBI); 2842 Value *InVal = PN->getIncomingValueForBlock(BB); 2843 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2844 PN->addIncoming(InVal, BB); 2845 } 2846 2847 // Erase the old branch instruction. 2848 EraseTerminatorInstAndDCECond(BI); 2849 2850 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2851 return true; 2852 } 2853 2854 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2855 // If this is a trivial landing pad that just continues unwinding the caught 2856 // exception then zap the landing pad, turning its invokes into calls. 2857 BasicBlock *BB = RI->getParent(); 2858 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2859 if (RI->getValue() != LPInst) 2860 // Not a landing pad, or the resume is not unwinding the exception that 2861 // caused control to branch here. 2862 return false; 2863 2864 // Check that there are no other instructions except for debug intrinsics. 2865 BasicBlock::iterator I = LPInst, E = RI; 2866 while (++I != E) 2867 if (!isa<DbgInfoIntrinsic>(I)) 2868 return false; 2869 2870 // Turn all invokes that unwind here into calls and delete the basic block. 2871 bool InvokeRequiresTableEntry = false; 2872 bool Changed = false; 2873 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2874 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2875 2876 if (II->hasFnAttr(Attribute::UWTable)) { 2877 // Don't remove an `invoke' instruction if the ABI requires an entry into 2878 // the table. 2879 InvokeRequiresTableEntry = true; 2880 continue; 2881 } 2882 2883 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2884 2885 // Insert a call instruction before the invoke. 2886 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2887 Call->takeName(II); 2888 Call->setCallingConv(II->getCallingConv()); 2889 Call->setAttributes(II->getAttributes()); 2890 Call->setDebugLoc(II->getDebugLoc()); 2891 2892 // Anything that used the value produced by the invoke instruction now uses 2893 // the value produced by the call instruction. Note that we do this even 2894 // for void functions and calls with no uses so that the callgraph edge is 2895 // updated. 2896 II->replaceAllUsesWith(Call); 2897 BB->removePredecessor(II->getParent()); 2898 2899 // Insert a branch to the normal destination right before the invoke. 2900 BranchInst::Create(II->getNormalDest(), II); 2901 2902 // Finally, delete the invoke instruction! 2903 II->eraseFromParent(); 2904 Changed = true; 2905 } 2906 2907 if (!InvokeRequiresTableEntry) 2908 // The landingpad is now unreachable. Zap it. 2909 BB->eraseFromParent(); 2910 2911 return Changed; 2912 } 2913 2914 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2915 BasicBlock *BB = RI->getParent(); 2916 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2917 2918 // Find predecessors that end with branches. 2919 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2920 SmallVector<BranchInst*, 8> CondBranchPreds; 2921 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2922 BasicBlock *P = *PI; 2923 TerminatorInst *PTI = P->getTerminator(); 2924 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2925 if (BI->isUnconditional()) 2926 UncondBranchPreds.push_back(P); 2927 else 2928 CondBranchPreds.push_back(BI); 2929 } 2930 } 2931 2932 // If we found some, do the transformation! 2933 if (!UncondBranchPreds.empty() && DupRet) { 2934 while (!UncondBranchPreds.empty()) { 2935 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2936 DEBUG(dbgs() << "FOLDING: " << *BB 2937 << "INTO UNCOND BRANCH PRED: " << *Pred); 2938 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2939 } 2940 2941 // If we eliminated all predecessors of the block, delete the block now. 2942 if (pred_begin(BB) == pred_end(BB)) 2943 // We know there are no successors, so just nuke the block. 2944 BB->eraseFromParent(); 2945 2946 return true; 2947 } 2948 2949 // Check out all of the conditional branches going to this return 2950 // instruction. If any of them just select between returns, change the 2951 // branch itself into a select/return pair. 2952 while (!CondBranchPreds.empty()) { 2953 BranchInst *BI = CondBranchPreds.pop_back_val(); 2954 2955 // Check to see if the non-BB successor is also a return block. 2956 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2957 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2958 SimplifyCondBranchToTwoReturns(BI, Builder)) 2959 return true; 2960 } 2961 return false; 2962 } 2963 2964 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2965 BasicBlock *BB = UI->getParent(); 2966 2967 bool Changed = false; 2968 2969 // If there are any instructions immediately before the unreachable that can 2970 // be removed, do so. 2971 while (UI != BB->begin()) { 2972 BasicBlock::iterator BBI = UI; 2973 --BBI; 2974 // Do not delete instructions that can have side effects which might cause 2975 // the unreachable to not be reachable; specifically, calls and volatile 2976 // operations may have this effect. 2977 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2978 2979 if (BBI->mayHaveSideEffects()) { 2980 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 2981 if (SI->isVolatile()) 2982 break; 2983 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 2984 if (LI->isVolatile()) 2985 break; 2986 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 2987 if (RMWI->isVolatile()) 2988 break; 2989 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 2990 if (CXI->isVolatile()) 2991 break; 2992 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 2993 !isa<LandingPadInst>(BBI)) { 2994 break; 2995 } 2996 // Note that deleting LandingPad's here is in fact okay, although it 2997 // involves a bit of subtle reasoning. If this inst is a LandingPad, 2998 // all the predecessors of this block will be the unwind edges of Invokes, 2999 // and we can therefore guarantee this block will be erased. 3000 } 3001 3002 // Delete this instruction (any uses are guaranteed to be dead) 3003 if (!BBI->use_empty()) 3004 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3005 BBI->eraseFromParent(); 3006 Changed = true; 3007 } 3008 3009 // If the unreachable instruction is the first in the block, take a gander 3010 // at all of the predecessors of this instruction, and simplify them. 3011 if (&BB->front() != UI) return Changed; 3012 3013 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3014 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3015 TerminatorInst *TI = Preds[i]->getTerminator(); 3016 IRBuilder<> Builder(TI); 3017 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3018 if (BI->isUnconditional()) { 3019 if (BI->getSuccessor(0) == BB) { 3020 new UnreachableInst(TI->getContext(), TI); 3021 TI->eraseFromParent(); 3022 Changed = true; 3023 } 3024 } else { 3025 if (BI->getSuccessor(0) == BB) { 3026 Builder.CreateBr(BI->getSuccessor(1)); 3027 EraseTerminatorInstAndDCECond(BI); 3028 } else if (BI->getSuccessor(1) == BB) { 3029 Builder.CreateBr(BI->getSuccessor(0)); 3030 EraseTerminatorInstAndDCECond(BI); 3031 Changed = true; 3032 } 3033 } 3034 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3035 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3036 i != e; ++i) 3037 if (i.getCaseSuccessor() == BB) { 3038 BB->removePredecessor(SI->getParent()); 3039 SI->removeCase(i); 3040 --i; --e; 3041 Changed = true; 3042 } 3043 // If the default value is unreachable, figure out the most popular 3044 // destination and make it the default. 3045 if (SI->getDefaultDest() == BB) { 3046 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 3047 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3048 i != e; ++i) { 3049 std::pair<unsigned, unsigned> &entry = 3050 Popularity[i.getCaseSuccessor()]; 3051 if (entry.first == 0) { 3052 entry.first = 1; 3053 entry.second = i.getCaseIndex(); 3054 } else { 3055 entry.first++; 3056 } 3057 } 3058 3059 // Find the most popular block. 3060 unsigned MaxPop = 0; 3061 unsigned MaxIndex = 0; 3062 BasicBlock *MaxBlock = 0; 3063 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 3064 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 3065 if (I->second.first > MaxPop || 3066 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 3067 MaxPop = I->second.first; 3068 MaxIndex = I->second.second; 3069 MaxBlock = I->first; 3070 } 3071 } 3072 if (MaxBlock) { 3073 // Make this the new default, allowing us to delete any explicit 3074 // edges to it. 3075 SI->setDefaultDest(MaxBlock); 3076 Changed = true; 3077 3078 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 3079 // it. 3080 if (isa<PHINode>(MaxBlock->begin())) 3081 for (unsigned i = 0; i != MaxPop-1; ++i) 3082 MaxBlock->removePredecessor(SI->getParent()); 3083 3084 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3085 i != e; ++i) 3086 if (i.getCaseSuccessor() == MaxBlock) { 3087 SI->removeCase(i); 3088 --i; --e; 3089 } 3090 } 3091 } 3092 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 3093 if (II->getUnwindDest() == BB) { 3094 // Convert the invoke to a call instruction. This would be a good 3095 // place to note that the call does not throw though. 3096 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 3097 II->removeFromParent(); // Take out of symbol table 3098 3099 // Insert the call now... 3100 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 3101 Builder.SetInsertPoint(BI); 3102 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 3103 Args, II->getName()); 3104 CI->setCallingConv(II->getCallingConv()); 3105 CI->setAttributes(II->getAttributes()); 3106 // If the invoke produced a value, the call does now instead. 3107 II->replaceAllUsesWith(CI); 3108 delete II; 3109 Changed = true; 3110 } 3111 } 3112 } 3113 3114 // If this block is now dead, remove it. 3115 if (pred_begin(BB) == pred_end(BB) && 3116 BB != &BB->getParent()->getEntryBlock()) { 3117 // We know there are no successors, so just nuke the block. 3118 BB->eraseFromParent(); 3119 return true; 3120 } 3121 3122 return Changed; 3123 } 3124 3125 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 3126 /// integer range comparison into a sub, an icmp and a branch. 3127 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3128 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3129 3130 // Make sure all cases point to the same destination and gather the values. 3131 SmallVector<ConstantInt *, 16> Cases; 3132 SwitchInst::CaseIt I = SI->case_begin(); 3133 Cases.push_back(I.getCaseValue()); 3134 SwitchInst::CaseIt PrevI = I++; 3135 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) { 3136 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor()) 3137 return false; 3138 Cases.push_back(I.getCaseValue()); 3139 } 3140 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered"); 3141 3142 // Sort the case values, then check if they form a range we can transform. 3143 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3144 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 3145 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 3146 return false; 3147 } 3148 3149 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 3150 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()); 3151 3152 Value *Sub = SI->getCondition(); 3153 if (!Offset->isNullValue()) 3154 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 3155 Value *Cmp; 3156 // If NumCases overflowed, then all possible values jump to the successor. 3157 if (NumCases->isNullValue() && SI->getNumCases() != 0) 3158 Cmp = ConstantInt::getTrue(SI->getContext()); 3159 else 3160 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3161 BranchInst *NewBI = Builder.CreateCondBr( 3162 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest()); 3163 3164 // Update weight for the newly-created conditional branch. 3165 SmallVector<uint64_t, 8> Weights; 3166 bool HasWeights = HasBranchWeights(SI); 3167 if (HasWeights) { 3168 GetBranchWeights(SI, Weights); 3169 if (Weights.size() == 1 + SI->getNumCases()) { 3170 // Combine all weights for the cases to be the true weight of NewBI. 3171 // We assume that the sum of all weights for a Terminator can fit into 32 3172 // bits. 3173 uint32_t NewTrueWeight = 0; 3174 for (unsigned I = 1, E = Weights.size(); I != E; ++I) 3175 NewTrueWeight += (uint32_t)Weights[I]; 3176 NewBI->setMetadata(LLVMContext::MD_prof, 3177 MDBuilder(SI->getContext()). 3178 createBranchWeights(NewTrueWeight, 3179 (uint32_t)Weights[0])); 3180 } 3181 } 3182 3183 // Prune obsolete incoming values off the successor's PHI nodes. 3184 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin(); 3185 isa<PHINode>(BBI); ++BBI) { 3186 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I) 3187 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3188 } 3189 SI->eraseFromParent(); 3190 3191 return true; 3192 } 3193 3194 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3195 /// and use it to remove dead cases. 3196 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 3197 Value *Cond = SI->getCondition(); 3198 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3199 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3200 ComputeMaskedBits(Cond, KnownZero, KnownOne); 3201 3202 // Gather dead cases. 3203 SmallVector<ConstantInt*, 8> DeadCases; 3204 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3205 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3206 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3207 DeadCases.push_back(I.getCaseValue()); 3208 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3209 << I.getCaseValue() << "' is dead.\n"); 3210 } 3211 } 3212 3213 SmallVector<uint64_t, 8> Weights; 3214 bool HasWeight = HasBranchWeights(SI); 3215 if (HasWeight) { 3216 GetBranchWeights(SI, Weights); 3217 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3218 } 3219 3220 // Remove dead cases from the switch. 3221 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3222 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3223 assert(Case != SI->case_default() && 3224 "Case was not found. Probably mistake in DeadCases forming."); 3225 if (HasWeight) { 3226 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3227 Weights.pop_back(); 3228 } 3229 3230 // Prune unused values from PHI nodes. 3231 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3232 SI->removeCase(Case); 3233 } 3234 if (HasWeight && Weights.size() >= 2) { 3235 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3236 SI->setMetadata(LLVMContext::MD_prof, 3237 MDBuilder(SI->getParent()->getContext()). 3238 createBranchWeights(MDWeights)); 3239 } 3240 3241 return !DeadCases.empty(); 3242 } 3243 3244 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3245 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3246 /// by an unconditional branch), look at the phi node for BB in the successor 3247 /// block and see if the incoming value is equal to CaseValue. If so, return 3248 /// the phi node, and set PhiIndex to BB's index in the phi node. 3249 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3250 BasicBlock *BB, 3251 int *PhiIndex) { 3252 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3253 return NULL; // BB must be empty to be a candidate for simplification. 3254 if (!BB->getSinglePredecessor()) 3255 return NULL; // BB must be dominated by the switch. 3256 3257 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3258 if (!Branch || !Branch->isUnconditional()) 3259 return NULL; // Terminator must be unconditional branch. 3260 3261 BasicBlock *Succ = Branch->getSuccessor(0); 3262 3263 BasicBlock::iterator I = Succ->begin(); 3264 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3265 int Idx = PHI->getBasicBlockIndex(BB); 3266 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3267 3268 Value *InValue = PHI->getIncomingValue(Idx); 3269 if (InValue != CaseValue) continue; 3270 3271 *PhiIndex = Idx; 3272 return PHI; 3273 } 3274 3275 return NULL; 3276 } 3277 3278 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3279 /// instruction to a phi node dominated by the switch, if that would mean that 3280 /// some of the destination blocks of the switch can be folded away. 3281 /// Returns true if a change is made. 3282 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3283 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3284 ForwardingNodesMap ForwardingNodes; 3285 3286 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3287 ConstantInt *CaseValue = I.getCaseValue(); 3288 BasicBlock *CaseDest = I.getCaseSuccessor(); 3289 3290 int PhiIndex; 3291 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3292 &PhiIndex); 3293 if (!PHI) continue; 3294 3295 ForwardingNodes[PHI].push_back(PhiIndex); 3296 } 3297 3298 bool Changed = false; 3299 3300 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3301 E = ForwardingNodes.end(); I != E; ++I) { 3302 PHINode *Phi = I->first; 3303 SmallVectorImpl<int> &Indexes = I->second; 3304 3305 if (Indexes.size() < 2) continue; 3306 3307 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3308 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3309 Changed = true; 3310 } 3311 3312 return Changed; 3313 } 3314 3315 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3316 /// initializing an array of constants like C. 3317 static bool ValidLookupTableConstant(Constant *C) { 3318 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3319 return CE->isGEPWithNoNotionalOverIndexing(); 3320 3321 return isa<ConstantFP>(C) || 3322 isa<ConstantInt>(C) || 3323 isa<ConstantPointerNull>(C) || 3324 isa<GlobalValue>(C) || 3325 isa<UndefValue>(C); 3326 } 3327 3328 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up 3329 /// its constant value in ConstantPool, returning 0 if it's not there. 3330 static Constant *LookupConstant(Value *V, 3331 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3332 if (Constant *C = dyn_cast<Constant>(V)) 3333 return C; 3334 return ConstantPool.lookup(V); 3335 } 3336 3337 /// ConstantFold - Try to fold instruction I into a constant. This works for 3338 /// simple instructions such as binary operations where both operands are 3339 /// constant or can be replaced by constants from the ConstantPool. Returns the 3340 /// resulting constant on success, 0 otherwise. 3341 static Constant * 3342 ConstantFold(Instruction *I, 3343 const SmallDenseMap<Value *, Constant *> &ConstantPool, 3344 const DataLayout *DL) { 3345 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3346 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3347 if (!A) 3348 return 0; 3349 if (A->isAllOnesValue()) 3350 return LookupConstant(Select->getTrueValue(), ConstantPool); 3351 if (A->isNullValue()) 3352 return LookupConstant(Select->getFalseValue(), ConstantPool); 3353 return 0; 3354 } 3355 3356 SmallVector<Constant *, 4> COps; 3357 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3358 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3359 COps.push_back(A); 3360 else 3361 return 0; 3362 } 3363 3364 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) 3365 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 3366 COps[1], DL); 3367 3368 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL); 3369 } 3370 3371 /// GetCaseResults - Try to determine the resulting constant values in phi nodes 3372 /// at the common destination basic block, *CommonDest, for one of the case 3373 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3374 /// case), of a switch instruction SI. 3375 static bool 3376 GetCaseResults(SwitchInst *SI, 3377 ConstantInt *CaseVal, 3378 BasicBlock *CaseDest, 3379 BasicBlock **CommonDest, 3380 SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res, 3381 const DataLayout *DL) { 3382 // The block from which we enter the common destination. 3383 BasicBlock *Pred = SI->getParent(); 3384 3385 // If CaseDest is empty except for some side-effect free instructions through 3386 // which we can constant-propagate the CaseVal, continue to its successor. 3387 SmallDenseMap<Value*, Constant*> ConstantPool; 3388 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3389 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3390 ++I) { 3391 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3392 // If the terminator is a simple branch, continue to the next block. 3393 if (T->getNumSuccessors() != 1) 3394 return false; 3395 Pred = CaseDest; 3396 CaseDest = T->getSuccessor(0); 3397 } else if (isa<DbgInfoIntrinsic>(I)) { 3398 // Skip debug intrinsic. 3399 continue; 3400 } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) { 3401 // Instruction is side-effect free and constant. 3402 ConstantPool.insert(std::make_pair(I, C)); 3403 } else { 3404 break; 3405 } 3406 } 3407 3408 // If we did not have a CommonDest before, use the current one. 3409 if (!*CommonDest) 3410 *CommonDest = CaseDest; 3411 // If the destination isn't the common one, abort. 3412 if (CaseDest != *CommonDest) 3413 return false; 3414 3415 // Get the values for this case from phi nodes in the destination block. 3416 BasicBlock::iterator I = (*CommonDest)->begin(); 3417 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3418 int Idx = PHI->getBasicBlockIndex(Pred); 3419 if (Idx == -1) 3420 continue; 3421 3422 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3423 ConstantPool); 3424 if (!ConstVal) 3425 return false; 3426 3427 // Note: If the constant comes from constant-propagating the case value 3428 // through the CaseDest basic block, it will be safe to remove the 3429 // instructions in that block. They cannot be used (except in the phi nodes 3430 // we visit) outside CaseDest, because that block does not dominate its 3431 // successor. If it did, we would not be in this phi node. 3432 3433 // Be conservative about which kinds of constants we support. 3434 if (!ValidLookupTableConstant(ConstVal)) 3435 return false; 3436 3437 Res.push_back(std::make_pair(PHI, ConstVal)); 3438 } 3439 3440 return Res.size() > 0; 3441 } 3442 3443 namespace { 3444 /// SwitchLookupTable - This class represents a lookup table that can be used 3445 /// to replace a switch. 3446 class SwitchLookupTable { 3447 public: 3448 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3449 /// with the contents of Values, using DefaultValue to fill any holes in the 3450 /// table. 3451 SwitchLookupTable(Module &M, 3452 uint64_t TableSize, 3453 ConstantInt *Offset, 3454 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3455 Constant *DefaultValue, 3456 const DataLayout *TD); 3457 3458 /// BuildLookup - Build instructions with Builder to retrieve the value at 3459 /// the position given by Index in the lookup table. 3460 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3461 3462 /// WouldFitInRegister - Return true if a table with TableSize elements of 3463 /// type ElementType would fit in a target-legal register. 3464 static bool WouldFitInRegister(const DataLayout *TD, 3465 uint64_t TableSize, 3466 const Type *ElementType); 3467 3468 private: 3469 // Depending on the contents of the table, it can be represented in 3470 // different ways. 3471 enum { 3472 // For tables where each element contains the same value, we just have to 3473 // store that single value and return it for each lookup. 3474 SingleValueKind, 3475 3476 // For small tables with integer elements, we can pack them into a bitmap 3477 // that fits into a target-legal register. Values are retrieved by 3478 // shift and mask operations. 3479 BitMapKind, 3480 3481 // The table is stored as an array of values. Values are retrieved by load 3482 // instructions from the table. 3483 ArrayKind 3484 } Kind; 3485 3486 // For SingleValueKind, this is the single value. 3487 Constant *SingleValue; 3488 3489 // For BitMapKind, this is the bitmap. 3490 ConstantInt *BitMap; 3491 IntegerType *BitMapElementTy; 3492 3493 // For ArrayKind, this is the array. 3494 GlobalVariable *Array; 3495 }; 3496 } 3497 3498 SwitchLookupTable::SwitchLookupTable(Module &M, 3499 uint64_t TableSize, 3500 ConstantInt *Offset, 3501 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3502 Constant *DefaultValue, 3503 const DataLayout *TD) 3504 : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) { 3505 assert(Values.size() && "Can't build lookup table without values!"); 3506 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3507 3508 // If all values in the table are equal, this is that value. 3509 SingleValue = Values.begin()->second; 3510 3511 Type *ValueType = Values.begin()->second->getType(); 3512 3513 // Build up the table contents. 3514 SmallVector<Constant*, 64> TableContents(TableSize); 3515 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3516 ConstantInt *CaseVal = Values[I].first; 3517 Constant *CaseRes = Values[I].second; 3518 assert(CaseRes->getType() == ValueType); 3519 3520 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3521 .getLimitedValue(); 3522 TableContents[Idx] = CaseRes; 3523 3524 if (CaseRes != SingleValue) 3525 SingleValue = 0; 3526 } 3527 3528 // Fill in any holes in the table with the default result. 3529 if (Values.size() < TableSize) { 3530 assert(DefaultValue && "Need a default value to fill the lookup table holes."); 3531 assert(DefaultValue->getType() == ValueType); 3532 for (uint64_t I = 0; I < TableSize; ++I) { 3533 if (!TableContents[I]) 3534 TableContents[I] = DefaultValue; 3535 } 3536 3537 if (DefaultValue != SingleValue) 3538 SingleValue = 0; 3539 } 3540 3541 // If each element in the table contains the same value, we only need to store 3542 // that single value. 3543 if (SingleValue) { 3544 Kind = SingleValueKind; 3545 return; 3546 } 3547 3548 // If the type is integer and the table fits in a register, build a bitmap. 3549 if (WouldFitInRegister(TD, TableSize, ValueType)) { 3550 IntegerType *IT = cast<IntegerType>(ValueType); 3551 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3552 for (uint64_t I = TableSize; I > 0; --I) { 3553 TableInt <<= IT->getBitWidth(); 3554 // Insert values into the bitmap. Undef values are set to zero. 3555 if (!isa<UndefValue>(TableContents[I - 1])) { 3556 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3557 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3558 } 3559 } 3560 BitMap = ConstantInt::get(M.getContext(), TableInt); 3561 BitMapElementTy = IT; 3562 Kind = BitMapKind; 3563 ++NumBitMaps; 3564 return; 3565 } 3566 3567 // Store the table in an array. 3568 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 3569 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3570 3571 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3572 GlobalVariable::PrivateLinkage, 3573 Initializer, 3574 "switch.table"); 3575 Array->setUnnamedAddr(true); 3576 Kind = ArrayKind; 3577 } 3578 3579 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3580 switch (Kind) { 3581 case SingleValueKind: 3582 return SingleValue; 3583 case BitMapKind: { 3584 // Type of the bitmap (e.g. i59). 3585 IntegerType *MapTy = BitMap->getType(); 3586 3587 // Cast Index to the same type as the bitmap. 3588 // Note: The Index is <= the number of elements in the table, so 3589 // truncating it to the width of the bitmask is safe. 3590 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3591 3592 // Multiply the shift amount by the element width. 3593 ShiftAmt = Builder.CreateMul(ShiftAmt, 3594 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3595 "switch.shiftamt"); 3596 3597 // Shift down. 3598 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3599 "switch.downshift"); 3600 // Mask off. 3601 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3602 "switch.masked"); 3603 } 3604 case ArrayKind: { 3605 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3606 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3607 "switch.gep"); 3608 return Builder.CreateLoad(GEP, "switch.load"); 3609 } 3610 } 3611 llvm_unreachable("Unknown lookup table kind!"); 3612 } 3613 3614 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD, 3615 uint64_t TableSize, 3616 const Type *ElementType) { 3617 if (!TD) 3618 return false; 3619 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3620 if (!IT) 3621 return false; 3622 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3623 // are <= 15, we could try to narrow the type. 3624 3625 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3626 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3627 return false; 3628 return TD->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3629 } 3630 3631 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3632 /// for this switch, based on the number of cases, size of the table and the 3633 /// types of the results. 3634 static bool ShouldBuildLookupTable(SwitchInst *SI, 3635 uint64_t TableSize, 3636 const TargetTransformInfo &TTI, 3637 const DataLayout *TD, 3638 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3639 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3640 return false; // TableSize overflowed, or mul below might overflow. 3641 3642 bool AllTablesFitInRegister = true; 3643 bool HasIllegalType = false; 3644 for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(), 3645 E = ResultTypes.end(); I != E; ++I) { 3646 Type *Ty = I->second; 3647 3648 // Saturate this flag to true. 3649 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 3650 3651 // Saturate this flag to false. 3652 AllTablesFitInRegister = AllTablesFitInRegister && 3653 SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty); 3654 3655 // If both flags saturate, we're done. NOTE: This *only* works with 3656 // saturating flags, and all flags have to saturate first due to the 3657 // non-deterministic behavior of iterating over a dense map. 3658 if (HasIllegalType && !AllTablesFitInRegister) 3659 break; 3660 } 3661 3662 // If each table would fit in a register, we should build it anyway. 3663 if (AllTablesFitInRegister) 3664 return true; 3665 3666 // Don't build a table that doesn't fit in-register if it has illegal types. 3667 if (HasIllegalType) 3668 return false; 3669 3670 // The table density should be at least 40%. This is the same criterion as for 3671 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3672 // FIXME: Find the best cut-off. 3673 return SI->getNumCases() * 10 >= TableSize * 4; 3674 } 3675 3676 /// SwitchToLookupTable - If the switch is only used to initialize one or more 3677 /// phi nodes in a common successor block with different constant values, 3678 /// replace the switch with lookup tables. 3679 static bool SwitchToLookupTable(SwitchInst *SI, 3680 IRBuilder<> &Builder, 3681 const TargetTransformInfo &TTI, 3682 const DataLayout* TD) { 3683 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3684 3685 // Only build lookup table when we have a target that supports it. 3686 if (!TTI.shouldBuildLookupTables()) 3687 return false; 3688 3689 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 3690 // split off a dense part and build a lookup table for that. 3691 3692 // FIXME: This creates arrays of GEPs to constant strings, which means each 3693 // GEP needs a runtime relocation in PIC code. We should just build one big 3694 // string and lookup indices into that. 3695 3696 // Ignore switches with less than three cases. Lookup tables will not make them 3697 // faster, so we don't analyze them. 3698 if (SI->getNumCases() < 3) 3699 return false; 3700 3701 // Figure out the corresponding result for each case value and phi node in the 3702 // common destination, as well as the the min and max case values. 3703 assert(SI->case_begin() != SI->case_end()); 3704 SwitchInst::CaseIt CI = SI->case_begin(); 3705 ConstantInt *MinCaseVal = CI.getCaseValue(); 3706 ConstantInt *MaxCaseVal = CI.getCaseValue(); 3707 3708 BasicBlock *CommonDest = 0; 3709 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 3710 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 3711 SmallDenseMap<PHINode*, Constant*> DefaultResults; 3712 SmallDenseMap<PHINode*, Type*> ResultTypes; 3713 SmallVector<PHINode*, 4> PHIs; 3714 3715 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 3716 ConstantInt *CaseVal = CI.getCaseValue(); 3717 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 3718 MinCaseVal = CaseVal; 3719 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 3720 MaxCaseVal = CaseVal; 3721 3722 // Resulting value at phi nodes for this case value. 3723 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 3724 ResultsTy Results; 3725 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 3726 Results, TD)) 3727 return false; 3728 3729 // Append the result from this case to the list for each phi. 3730 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) { 3731 if (!ResultLists.count(I->first)) 3732 PHIs.push_back(I->first); 3733 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second)); 3734 } 3735 } 3736 3737 // Keep track of the result types. 3738 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3739 PHINode *PHI = PHIs[I]; 3740 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 3741 } 3742 3743 uint64_t NumResults = ResultLists[PHIs[0]].size(); 3744 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 3745 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 3746 bool TableHasHoles = (NumResults < TableSize); 3747 3748 // If the table has holes, we need a constant result for the default case. 3749 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 3750 if (TableHasHoles && !GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest, 3751 DefaultResultsList, TD)) 3752 return false; 3753 3754 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) { 3755 PHINode *PHI = DefaultResultsList[I].first; 3756 Constant *Result = DefaultResultsList[I].second; 3757 DefaultResults[PHI] = Result; 3758 } 3759 3760 if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes)) 3761 return false; 3762 3763 // Create the BB that does the lookups. 3764 Module &Mod = *CommonDest->getParent()->getParent(); 3765 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 3766 "switch.lookup", 3767 CommonDest->getParent(), 3768 CommonDest); 3769 3770 // Compute the table index value. 3771 Builder.SetInsertPoint(SI); 3772 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 3773 "switch.tableidx"); 3774 3775 // Compute the maximum table size representable by the integer type we are 3776 // switching upon. 3777 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 3778 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 3779 assert(MaxTableSize >= TableSize && 3780 "It is impossible for a switch to have more entries than the max " 3781 "representable value of its input integer type's size."); 3782 3783 // If we have a fully covered lookup table, unconditionally branch to the 3784 // lookup table BB. Otherwise, check if the condition value is within the case 3785 // range. If it is so, branch to the new BB. Otherwise branch to SI's default 3786 // destination. 3787 const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize; 3788 if (GeneratingCoveredLookupTable) { 3789 Builder.CreateBr(LookupBB); 3790 SI->getDefaultDest()->removePredecessor(SI->getParent()); 3791 } else { 3792 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 3793 MinCaseVal->getType(), TableSize)); 3794 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 3795 } 3796 3797 // Populate the BB that does the lookups. 3798 Builder.SetInsertPoint(LookupBB); 3799 bool ReturnedEarly = false; 3800 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3801 PHINode *PHI = PHIs[I]; 3802 3803 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI], 3804 DefaultResults[PHI], TD); 3805 3806 Value *Result = Table.BuildLookup(TableIndex, Builder); 3807 3808 // If the result is used to return immediately from the function, we want to 3809 // do that right here. 3810 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) && 3811 *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) { 3812 Builder.CreateRet(Result); 3813 ReturnedEarly = true; 3814 break; 3815 } 3816 3817 PHI->addIncoming(Result, LookupBB); 3818 } 3819 3820 if (!ReturnedEarly) 3821 Builder.CreateBr(CommonDest); 3822 3823 // Remove the switch. 3824 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 3825 BasicBlock *Succ = SI->getSuccessor(i); 3826 3827 if (Succ == SI->getDefaultDest()) 3828 continue; 3829 Succ->removePredecessor(SI->getParent()); 3830 } 3831 SI->eraseFromParent(); 3832 3833 ++NumLookupTables; 3834 return true; 3835 } 3836 3837 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 3838 BasicBlock *BB = SI->getParent(); 3839 3840 if (isValueEqualityComparison(SI)) { 3841 // If we only have one predecessor, and if it is a branch on this value, 3842 // see if that predecessor totally determines the outcome of this switch. 3843 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3844 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 3845 return SimplifyCFG(BB, TTI, TD) | true; 3846 3847 Value *Cond = SI->getCondition(); 3848 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 3849 if (SimplifySwitchOnSelect(SI, Select)) 3850 return SimplifyCFG(BB, TTI, TD) | true; 3851 3852 // If the block only contains the switch, see if we can fold the block 3853 // away into any preds. 3854 BasicBlock::iterator BBI = BB->begin(); 3855 // Ignore dbg intrinsics. 3856 while (isa<DbgInfoIntrinsic>(BBI)) 3857 ++BBI; 3858 if (SI == &*BBI) 3859 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 3860 return SimplifyCFG(BB, TTI, TD) | true; 3861 } 3862 3863 // Try to transform the switch into an icmp and a branch. 3864 if (TurnSwitchRangeIntoICmp(SI, Builder)) 3865 return SimplifyCFG(BB, TTI, TD) | true; 3866 3867 // Remove unreachable cases. 3868 if (EliminateDeadSwitchCases(SI)) 3869 return SimplifyCFG(BB, TTI, TD) | true; 3870 3871 if (ForwardSwitchConditionToPHI(SI)) 3872 return SimplifyCFG(BB, TTI, TD) | true; 3873 3874 if (SwitchToLookupTable(SI, Builder, TTI, TD)) 3875 return SimplifyCFG(BB, TTI, TD) | true; 3876 3877 return false; 3878 } 3879 3880 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 3881 BasicBlock *BB = IBI->getParent(); 3882 bool Changed = false; 3883 3884 // Eliminate redundant destinations. 3885 SmallPtrSet<Value *, 8> Succs; 3886 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 3887 BasicBlock *Dest = IBI->getDestination(i); 3888 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 3889 Dest->removePredecessor(BB); 3890 IBI->removeDestination(i); 3891 --i; --e; 3892 Changed = true; 3893 } 3894 } 3895 3896 if (IBI->getNumDestinations() == 0) { 3897 // If the indirectbr has no successors, change it to unreachable. 3898 new UnreachableInst(IBI->getContext(), IBI); 3899 EraseTerminatorInstAndDCECond(IBI); 3900 return true; 3901 } 3902 3903 if (IBI->getNumDestinations() == 1) { 3904 // If the indirectbr has one successor, change it to a direct branch. 3905 BranchInst::Create(IBI->getDestination(0), IBI); 3906 EraseTerminatorInstAndDCECond(IBI); 3907 return true; 3908 } 3909 3910 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 3911 if (SimplifyIndirectBrOnSelect(IBI, SI)) 3912 return SimplifyCFG(BB, TTI, TD) | true; 3913 } 3914 return Changed; 3915 } 3916 3917 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 3918 BasicBlock *BB = BI->getParent(); 3919 3920 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 3921 return true; 3922 3923 // If the Terminator is the only non-phi instruction, simplify the block. 3924 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 3925 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 3926 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 3927 return true; 3928 3929 // If the only instruction in the block is a seteq/setne comparison 3930 // against a constant, try to simplify the block. 3931 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 3932 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 3933 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 3934 ; 3935 if (I->isTerminator() && 3936 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD)) 3937 return true; 3938 } 3939 3940 // If this basic block is ONLY a compare and a branch, and if a predecessor 3941 // branches to us and our successor, fold the comparison into the 3942 // predecessor and use logical operations to update the incoming value 3943 // for PHI nodes in common successor. 3944 if (FoldBranchToCommonDest(BI)) 3945 return SimplifyCFG(BB, TTI, TD) | true; 3946 return false; 3947 } 3948 3949 3950 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 3951 BasicBlock *BB = BI->getParent(); 3952 3953 // Conditional branch 3954 if (isValueEqualityComparison(BI)) { 3955 // If we only have one predecessor, and if it is a branch on this value, 3956 // see if that predecessor totally determines the outcome of this 3957 // switch. 3958 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3959 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 3960 return SimplifyCFG(BB, TTI, TD) | true; 3961 3962 // This block must be empty, except for the setcond inst, if it exists. 3963 // Ignore dbg intrinsics. 3964 BasicBlock::iterator I = BB->begin(); 3965 // Ignore dbg intrinsics. 3966 while (isa<DbgInfoIntrinsic>(I)) 3967 ++I; 3968 if (&*I == BI) { 3969 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 3970 return SimplifyCFG(BB, TTI, TD) | true; 3971 } else if (&*I == cast<Instruction>(BI->getCondition())){ 3972 ++I; 3973 // Ignore dbg intrinsics. 3974 while (isa<DbgInfoIntrinsic>(I)) 3975 ++I; 3976 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 3977 return SimplifyCFG(BB, TTI, TD) | true; 3978 } 3979 } 3980 3981 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 3982 if (SimplifyBranchOnICmpChain(BI, TD, Builder)) 3983 return true; 3984 3985 // If this basic block is ONLY a compare and a branch, and if a predecessor 3986 // branches to us and one of our successors, fold the comparison into the 3987 // predecessor and use logical operations to pick the right destination. 3988 if (FoldBranchToCommonDest(BI)) 3989 return SimplifyCFG(BB, TTI, TD) | true; 3990 3991 // We have a conditional branch to two blocks that are only reachable 3992 // from BI. We know that the condbr dominates the two blocks, so see if 3993 // there is any identical code in the "then" and "else" blocks. If so, we 3994 // can hoist it up to the branching block. 3995 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) { 3996 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 3997 if (HoistThenElseCodeToIf(BI)) 3998 return SimplifyCFG(BB, TTI, TD) | true; 3999 } else { 4000 // If Successor #1 has multiple preds, we may be able to conditionally 4001 // execute Successor #0 if it branches to successor #1. 4002 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 4003 if (Succ0TI->getNumSuccessors() == 1 && 4004 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 4005 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 4006 return SimplifyCFG(BB, TTI, TD) | true; 4007 } 4008 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 4009 // If Successor #0 has multiple preds, we may be able to conditionally 4010 // execute Successor #1 if it branches to successor #0. 4011 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 4012 if (Succ1TI->getNumSuccessors() == 1 && 4013 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 4014 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 4015 return SimplifyCFG(BB, TTI, TD) | true; 4016 } 4017 4018 // If this is a branch on a phi node in the current block, thread control 4019 // through this block if any PHI node entries are constants. 4020 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 4021 if (PN->getParent() == BI->getParent()) 4022 if (FoldCondBranchOnPHI(BI, TD)) 4023 return SimplifyCFG(BB, TTI, TD) | true; 4024 4025 // Scan predecessor blocks for conditional branches. 4026 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 4027 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 4028 if (PBI != BI && PBI->isConditional()) 4029 if (SimplifyCondBranchToCondBranch(PBI, BI)) 4030 return SimplifyCFG(BB, TTI, TD) | true; 4031 4032 return false; 4033 } 4034 4035 /// Check if passing a value to an instruction will cause undefined behavior. 4036 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 4037 Constant *C = dyn_cast<Constant>(V); 4038 if (!C) 4039 return false; 4040 4041 if (I->use_empty()) 4042 return false; 4043 4044 if (C->isNullValue()) { 4045 // Only look at the first use, avoid hurting compile time with long uselists 4046 User *Use = *I->use_begin(); 4047 4048 // Now make sure that there are no instructions in between that can alter 4049 // control flow (eg. calls) 4050 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 4051 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 4052 return false; 4053 4054 // Look through GEPs. A load from a GEP derived from NULL is still undefined 4055 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 4056 if (GEP->getPointerOperand() == I) 4057 return passingValueIsAlwaysUndefined(V, GEP); 4058 4059 // Look through bitcasts. 4060 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 4061 return passingValueIsAlwaysUndefined(V, BC); 4062 4063 // Load from null is undefined. 4064 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 4065 if (!LI->isVolatile()) 4066 return LI->getPointerAddressSpace() == 0; 4067 4068 // Store to null is undefined. 4069 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 4070 if (!SI->isVolatile()) 4071 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 4072 } 4073 return false; 4074 } 4075 4076 /// If BB has an incoming value that will always trigger undefined behavior 4077 /// (eg. null pointer dereference), remove the branch leading here. 4078 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 4079 for (BasicBlock::iterator i = BB->begin(); 4080 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 4081 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 4082 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 4083 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 4084 IRBuilder<> Builder(T); 4085 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 4086 BB->removePredecessor(PHI->getIncomingBlock(i)); 4087 // Turn uncoditional branches into unreachables and remove the dead 4088 // destination from conditional branches. 4089 if (BI->isUnconditional()) 4090 Builder.CreateUnreachable(); 4091 else 4092 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 4093 BI->getSuccessor(0)); 4094 BI->eraseFromParent(); 4095 return true; 4096 } 4097 // TODO: SwitchInst. 4098 } 4099 4100 return false; 4101 } 4102 4103 bool SimplifyCFGOpt::run(BasicBlock *BB) { 4104 bool Changed = false; 4105 4106 assert(BB && BB->getParent() && "Block not embedded in function!"); 4107 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 4108 4109 // Remove basic blocks that have no predecessors (except the entry block)... 4110 // or that just have themself as a predecessor. These are unreachable. 4111 if ((pred_begin(BB) == pred_end(BB) && 4112 BB != &BB->getParent()->getEntryBlock()) || 4113 BB->getSinglePredecessor() == BB) { 4114 DEBUG(dbgs() << "Removing BB: \n" << *BB); 4115 DeleteDeadBlock(BB); 4116 return true; 4117 } 4118 4119 // Check to see if we can constant propagate this terminator instruction 4120 // away... 4121 Changed |= ConstantFoldTerminator(BB, true); 4122 4123 // Check for and eliminate duplicate PHI nodes in this block. 4124 Changed |= EliminateDuplicatePHINodes(BB); 4125 4126 // Check for and remove branches that will always cause undefined behavior. 4127 Changed |= removeUndefIntroducingPredecessor(BB); 4128 4129 // Merge basic blocks into their predecessor if there is only one distinct 4130 // pred, and if there is only one distinct successor of the predecessor, and 4131 // if there are no PHI nodes. 4132 // 4133 if (MergeBlockIntoPredecessor(BB)) 4134 return true; 4135 4136 IRBuilder<> Builder(BB); 4137 4138 // If there is a trivial two-entry PHI node in this basic block, and we can 4139 // eliminate it, do so now. 4140 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 4141 if (PN->getNumIncomingValues() == 2) 4142 Changed |= FoldTwoEntryPHINode(PN, TD); 4143 4144 Builder.SetInsertPoint(BB->getTerminator()); 4145 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 4146 if (BI->isUnconditional()) { 4147 if (SimplifyUncondBranch(BI, Builder)) return true; 4148 } else { 4149 if (SimplifyCondBranch(BI, Builder)) return true; 4150 } 4151 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 4152 if (SimplifyReturn(RI, Builder)) return true; 4153 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 4154 if (SimplifyResume(RI, Builder)) return true; 4155 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 4156 if (SimplifySwitch(SI, Builder)) return true; 4157 } else if (UnreachableInst *UI = 4158 dyn_cast<UnreachableInst>(BB->getTerminator())) { 4159 if (SimplifyUnreachable(UI)) return true; 4160 } else if (IndirectBrInst *IBI = 4161 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 4162 if (SimplifyIndirectBr(IBI)) return true; 4163 } 4164 4165 return Changed; 4166 } 4167 4168 /// SimplifyCFG - This function is used to do simplification of a CFG. For 4169 /// example, it adjusts branches to branches to eliminate the extra hop, it 4170 /// eliminates unreachable basic blocks, and does other "peephole" optimization 4171 /// of the CFG. It returns true if a modification was made. 4172 /// 4173 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 4174 const DataLayout *TD) { 4175 return SimplifyCFGOpt(TTI, TD).run(BB); 4176 } 4177