1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/MemorySSA.h"
31 #include "llvm/Analysis/MemorySSAUpdater.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/NoFolder.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/PatternMatch.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/SSAUpdater.h"
72 #include "llvm/Transforms/Utils/ValueMapper.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <climits>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <map>
80 #include <set>
81 #include <tuple>
82 #include <utility>
83 #include <vector>
84 
85 using namespace llvm;
86 using namespace PatternMatch;
87 
88 #define DEBUG_TYPE "simplifycfg"
89 
90 cl::opt<bool> llvm::RequireAndPreserveDomTree(
91     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
92     cl::init(false),
93     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
94              "into preserving DomTree,"));
95 
96 // Chosen as 2 so as to be cheap, but still to have enough power to fold
97 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
98 // To catch this, we need to fold a compare and a select, hence '2' being the
99 // minimum reasonable default.
100 static cl::opt<unsigned> PHINodeFoldingThreshold(
101     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
102     cl::desc(
103         "Control the amount of phi node folding to perform (default = 2)"));
104 
105 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
106     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
107     cl::desc("Control the maximal total instruction cost that we are willing "
108              "to speculatively execute to fold a 2-entry PHI node into a "
109              "select (default = 4)"));
110 
111 static cl::opt<bool> DupRet(
112     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
113     cl::desc("Duplicate return instructions into unconditional branches"));
114 
115 static cl::opt<bool>
116     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
117                 cl::desc("Hoist common instructions up to the parent block"));
118 
119 static cl::opt<bool>
120     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
121                cl::desc("Sink common instructions down to the end block"));
122 
123 static cl::opt<bool> HoistCondStores(
124     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
125     cl::desc("Hoist conditional stores if an unconditional store precedes"));
126 
127 static cl::opt<bool> MergeCondStores(
128     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
129     cl::desc("Hoist conditional stores even if an unconditional store does not "
130              "precede - hoist multiple conditional stores into a single "
131              "predicated store"));
132 
133 static cl::opt<bool> MergeCondStoresAggressively(
134     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
135     cl::desc("When merging conditional stores, do so even if the resultant "
136              "basic blocks are unlikely to be if-converted as a result"));
137 
138 static cl::opt<bool> SpeculateOneExpensiveInst(
139     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
140     cl::desc("Allow exactly one expensive instruction to be speculatively "
141              "executed"));
142 
143 static cl::opt<unsigned> MaxSpeculationDepth(
144     "max-speculation-depth", cl::Hidden, cl::init(10),
145     cl::desc("Limit maximum recursion depth when calculating costs of "
146              "speculatively executed instructions"));
147 
148 static cl::opt<int>
149 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
150                   cl::desc("Max size of a block which is still considered "
151                            "small enough to thread through"));
152 
153 // Two is chosen to allow one negation and a logical combine.
154 static cl::opt<unsigned>
155     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
156                         cl::init(2),
157                         cl::desc("Maximum cost of combining conditions when "
158                                  "folding branches"));
159 
160 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
161 STATISTIC(NumLinearMaps,
162           "Number of switch instructions turned into linear mapping");
163 STATISTIC(NumLookupTables,
164           "Number of switch instructions turned into lookup tables");
165 STATISTIC(
166     NumLookupTablesHoles,
167     "Number of switch instructions turned into lookup tables (holes checked)");
168 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
169 STATISTIC(NumFoldValueComparisonIntoPredecessors,
170           "Number of value comparisons folded into predecessor basic blocks");
171 STATISTIC(NumFoldBranchToCommonDest,
172           "Number of branches folded into predecessor basic block");
173 STATISTIC(
174     NumHoistCommonCode,
175     "Number of common instruction 'blocks' hoisted up to the begin block");
176 STATISTIC(NumHoistCommonInstrs,
177           "Number of common instructions hoisted up to the begin block");
178 STATISTIC(NumSinkCommonCode,
179           "Number of common instruction 'blocks' sunk down to the end block");
180 STATISTIC(NumSinkCommonInstrs,
181           "Number of common instructions sunk down to the end block");
182 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
183 STATISTIC(NumInvokes,
184           "Number of invokes with empty resume blocks simplified into calls");
185 
186 namespace {
187 
188 // The first field contains the value that the switch produces when a certain
189 // case group is selected, and the second field is a vector containing the
190 // cases composing the case group.
191 using SwitchCaseResultVectorTy =
192     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
193 
194 // The first field contains the phi node that generates a result of the switch
195 // and the second field contains the value generated for a certain case in the
196 // switch for that PHI.
197 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
198 
199 /// ValueEqualityComparisonCase - Represents a case of a switch.
200 struct ValueEqualityComparisonCase {
201   ConstantInt *Value;
202   BasicBlock *Dest;
203 
204   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
205       : Value(Value), Dest(Dest) {}
206 
207   bool operator<(ValueEqualityComparisonCase RHS) const {
208     // Comparing pointers is ok as we only rely on the order for uniquing.
209     return Value < RHS.Value;
210   }
211 
212   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
213 };
214 
215 class SimplifyCFGOpt {
216   const TargetTransformInfo &TTI;
217   DomTreeUpdater *DTU;
218   const DataLayout &DL;
219   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
220   const SimplifyCFGOptions &Options;
221   bool Resimplify;
222 
223   Value *isValueEqualityComparison(Instruction *TI);
224   BasicBlock *GetValueEqualityComparisonCases(
225       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
226   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
227                                                      BasicBlock *Pred,
228                                                      IRBuilder<> &Builder);
229   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
230                                            IRBuilder<> &Builder);
231 
232   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
233   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
234   bool simplifySingleResume(ResumeInst *RI);
235   bool simplifyCommonResume(ResumeInst *RI);
236   bool simplifyCleanupReturn(CleanupReturnInst *RI);
237   bool simplifyUnreachable(UnreachableInst *UI);
238   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
239   bool simplifyIndirectBr(IndirectBrInst *IBI);
240   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
241   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
242   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
243   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
244 
245   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
246                                              IRBuilder<> &Builder);
247 
248   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
249   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
250                               const TargetTransformInfo &TTI);
251   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
252                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
253                                   uint32_t TrueWeight, uint32_t FalseWeight);
254   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
255                                  const DataLayout &DL);
256   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
257   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
258   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
259 
260 public:
261   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
262                  const DataLayout &DL,
263                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
264                  const SimplifyCFGOptions &Opts)
265       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
266 
267   bool simplifyOnce(BasicBlock *BB);
268   bool simplifyOnceImpl(BasicBlock *BB);
269   bool run(BasicBlock *BB);
270 
271   // Helper to set Resimplify and return change indication.
272   bool requestResimplify() {
273     Resimplify = true;
274     return true;
275   }
276 };
277 
278 } // end anonymous namespace
279 
280 /// Return true if it is safe to merge these two
281 /// terminator instructions together.
282 static bool
283 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
284                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
285   if (SI1 == SI2)
286     return false; // Can't merge with self!
287 
288   // It is not safe to merge these two switch instructions if they have a common
289   // successor, and if that successor has a PHI node, and if *that* PHI node has
290   // conflicting incoming values from the two switch blocks.
291   BasicBlock *SI1BB = SI1->getParent();
292   BasicBlock *SI2BB = SI2->getParent();
293 
294   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
295   bool Fail = false;
296   for (BasicBlock *Succ : successors(SI2BB))
297     if (SI1Succs.count(Succ))
298       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
299         PHINode *PN = cast<PHINode>(BBI);
300         if (PN->getIncomingValueForBlock(SI1BB) !=
301             PN->getIncomingValueForBlock(SI2BB)) {
302           if (FailBlocks)
303             FailBlocks->insert(Succ);
304           Fail = true;
305         }
306       }
307 
308   return !Fail;
309 }
310 
311 /// Return true if it is safe and profitable to merge these two terminator
312 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
313 /// store all PHI nodes in common successors.
314 static bool
315 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
316                                 Instruction *Cond,
317                                 SmallVectorImpl<PHINode *> &PhiNodes) {
318   if (SI1 == SI2)
319     return false; // Can't merge with self!
320   assert(SI1->isUnconditional() && SI2->isConditional());
321 
322   // We fold the unconditional branch if we can easily update all PHI nodes in
323   // common successors:
324   // 1> We have a constant incoming value for the conditional branch;
325   // 2> We have "Cond" as the incoming value for the unconditional branch;
326   // 3> SI2->getCondition() and Cond have same operands.
327   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
328   if (!Ci2)
329     return false;
330   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
331         Cond->getOperand(1) == Ci2->getOperand(1)) &&
332       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
333         Cond->getOperand(1) == Ci2->getOperand(0)))
334     return false;
335 
336   BasicBlock *SI1BB = SI1->getParent();
337   BasicBlock *SI2BB = SI2->getParent();
338   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
339   for (BasicBlock *Succ : successors(SI2BB))
340     if (SI1Succs.count(Succ))
341       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
342         PHINode *PN = cast<PHINode>(BBI);
343         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
344             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
345           return false;
346         PhiNodes.push_back(PN);
347       }
348   return true;
349 }
350 
351 /// Update PHI nodes in Succ to indicate that there will now be entries in it
352 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
353 /// will be the same as those coming in from ExistPred, an existing predecessor
354 /// of Succ.
355 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
356                                   BasicBlock *ExistPred,
357                                   MemorySSAUpdater *MSSAU = nullptr) {
358   for (PHINode &PN : Succ->phis())
359     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
360   if (MSSAU)
361     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
362       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
363 }
364 
365 /// Compute an abstract "cost" of speculating the given instruction,
366 /// which is assumed to be safe to speculate. TCC_Free means cheap,
367 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
368 /// expensive.
369 static unsigned ComputeSpeculationCost(const User *I,
370                                        const TargetTransformInfo &TTI) {
371   assert(isSafeToSpeculativelyExecute(I) &&
372          "Instruction is not safe to speculatively execute!");
373   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
374 }
375 
376 /// If we have a merge point of an "if condition" as accepted above,
377 /// return true if the specified value dominates the block.  We
378 /// don't handle the true generality of domination here, just a special case
379 /// which works well enough for us.
380 ///
381 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
382 /// see if V (which must be an instruction) and its recursive operands
383 /// that do not dominate BB have a combined cost lower than CostRemaining and
384 /// are non-trapping.  If both are true, the instruction is inserted into the
385 /// set and true is returned.
386 ///
387 /// The cost for most non-trapping instructions is defined as 1 except for
388 /// Select whose cost is 2.
389 ///
390 /// After this function returns, CostRemaining is decreased by the cost of
391 /// V plus its non-dominating operands.  If that cost is greater than
392 /// CostRemaining, false is returned and CostRemaining is undefined.
393 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
394                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
395                                 int &BudgetRemaining,
396                                 const TargetTransformInfo &TTI,
397                                 unsigned Depth = 0) {
398   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
399   // so limit the recursion depth.
400   // TODO: While this recursion limit does prevent pathological behavior, it
401   // would be better to track visited instructions to avoid cycles.
402   if (Depth == MaxSpeculationDepth)
403     return false;
404 
405   Instruction *I = dyn_cast<Instruction>(V);
406   if (!I) {
407     // Non-instructions all dominate instructions, but not all constantexprs
408     // can be executed unconditionally.
409     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
410       if (C->canTrap())
411         return false;
412     return true;
413   }
414   BasicBlock *PBB = I->getParent();
415 
416   // We don't want to allow weird loops that might have the "if condition" in
417   // the bottom of this block.
418   if (PBB == BB)
419     return false;
420 
421   // If this instruction is defined in a block that contains an unconditional
422   // branch to BB, then it must be in the 'conditional' part of the "if
423   // statement".  If not, it definitely dominates the region.
424   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
425   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
426     return true;
427 
428   // If we have seen this instruction before, don't count it again.
429   if (AggressiveInsts.count(I))
430     return true;
431 
432   // Okay, it looks like the instruction IS in the "condition".  Check to
433   // see if it's a cheap instruction to unconditionally compute, and if it
434   // only uses stuff defined outside of the condition.  If so, hoist it out.
435   if (!isSafeToSpeculativelyExecute(I))
436     return false;
437 
438   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
439 
440   // Allow exactly one instruction to be speculated regardless of its cost
441   // (as long as it is safe to do so).
442   // This is intended to flatten the CFG even if the instruction is a division
443   // or other expensive operation. The speculation of an expensive instruction
444   // is expected to be undone in CodeGenPrepare if the speculation has not
445   // enabled further IR optimizations.
446   if (BudgetRemaining < 0 &&
447       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
448     return false;
449 
450   // Okay, we can only really hoist these out if their operands do
451   // not take us over the cost threshold.
452   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
453     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
454                              Depth + 1))
455       return false;
456   // Okay, it's safe to do this!  Remember this instruction.
457   AggressiveInsts.insert(I);
458   return true;
459 }
460 
461 /// Extract ConstantInt from value, looking through IntToPtr
462 /// and PointerNullValue. Return NULL if value is not a constant int.
463 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
464   // Normal constant int.
465   ConstantInt *CI = dyn_cast<ConstantInt>(V);
466   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
467     return CI;
468 
469   // This is some kind of pointer constant. Turn it into a pointer-sized
470   // ConstantInt if possible.
471   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
472 
473   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
474   if (isa<ConstantPointerNull>(V))
475     return ConstantInt::get(PtrTy, 0);
476 
477   // IntToPtr const int.
478   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
479     if (CE->getOpcode() == Instruction::IntToPtr)
480       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
481         // The constant is very likely to have the right type already.
482         if (CI->getType() == PtrTy)
483           return CI;
484         else
485           return cast<ConstantInt>(
486               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
487       }
488   return nullptr;
489 }
490 
491 namespace {
492 
493 /// Given a chain of or (||) or and (&&) comparison of a value against a
494 /// constant, this will try to recover the information required for a switch
495 /// structure.
496 /// It will depth-first traverse the chain of comparison, seeking for patterns
497 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
498 /// representing the different cases for the switch.
499 /// Note that if the chain is composed of '||' it will build the set of elements
500 /// that matches the comparisons (i.e. any of this value validate the chain)
501 /// while for a chain of '&&' it will build the set elements that make the test
502 /// fail.
503 struct ConstantComparesGatherer {
504   const DataLayout &DL;
505 
506   /// Value found for the switch comparison
507   Value *CompValue = nullptr;
508 
509   /// Extra clause to be checked before the switch
510   Value *Extra = nullptr;
511 
512   /// Set of integers to match in switch
513   SmallVector<ConstantInt *, 8> Vals;
514 
515   /// Number of comparisons matched in the and/or chain
516   unsigned UsedICmps = 0;
517 
518   /// Construct and compute the result for the comparison instruction Cond
519   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
520     gather(Cond);
521   }
522 
523   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
524   ConstantComparesGatherer &
525   operator=(const ConstantComparesGatherer &) = delete;
526 
527 private:
528   /// Try to set the current value used for the comparison, it succeeds only if
529   /// it wasn't set before or if the new value is the same as the old one
530   bool setValueOnce(Value *NewVal) {
531     if (CompValue && CompValue != NewVal)
532       return false;
533     CompValue = NewVal;
534     return (CompValue != nullptr);
535   }
536 
537   /// Try to match Instruction "I" as a comparison against a constant and
538   /// populates the array Vals with the set of values that match (or do not
539   /// match depending on isEQ).
540   /// Return false on failure. On success, the Value the comparison matched
541   /// against is placed in CompValue.
542   /// If CompValue is already set, the function is expected to fail if a match
543   /// is found but the value compared to is different.
544   bool matchInstruction(Instruction *I, bool isEQ) {
545     // If this is an icmp against a constant, handle this as one of the cases.
546     ICmpInst *ICI;
547     ConstantInt *C;
548     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
549           (C = GetConstantInt(I->getOperand(1), DL)))) {
550       return false;
551     }
552 
553     Value *RHSVal;
554     const APInt *RHSC;
555 
556     // Pattern match a special case
557     // (x & ~2^z) == y --> x == y || x == y|2^z
558     // This undoes a transformation done by instcombine to fuse 2 compares.
559     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
560       // It's a little bit hard to see why the following transformations are
561       // correct. Here is a CVC3 program to verify them for 64-bit values:
562 
563       /*
564          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
565          x    : BITVECTOR(64);
566          y    : BITVECTOR(64);
567          z    : BITVECTOR(64);
568          mask : BITVECTOR(64) = BVSHL(ONE, z);
569          QUERY( (y & ~mask = y) =>
570                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
571          );
572          QUERY( (y |  mask = y) =>
573                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
574          );
575       */
576 
577       // Please note that each pattern must be a dual implication (<--> or
578       // iff). One directional implication can create spurious matches. If the
579       // implication is only one-way, an unsatisfiable condition on the left
580       // side can imply a satisfiable condition on the right side. Dual
581       // implication ensures that satisfiable conditions are transformed to
582       // other satisfiable conditions and unsatisfiable conditions are
583       // transformed to other unsatisfiable conditions.
584 
585       // Here is a concrete example of a unsatisfiable condition on the left
586       // implying a satisfiable condition on the right:
587       //
588       // mask = (1 << z)
589       // (x & ~mask) == y  --> (x == y || x == (y | mask))
590       //
591       // Substituting y = 3, z = 0 yields:
592       // (x & -2) == 3 --> (x == 3 || x == 2)
593 
594       // Pattern match a special case:
595       /*
596         QUERY( (y & ~mask = y) =>
597                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
598         );
599       */
600       if (match(ICI->getOperand(0),
601                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
602         APInt Mask = ~*RHSC;
603         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
604           // If we already have a value for the switch, it has to match!
605           if (!setValueOnce(RHSVal))
606             return false;
607 
608           Vals.push_back(C);
609           Vals.push_back(
610               ConstantInt::get(C->getContext(),
611                                C->getValue() | Mask));
612           UsedICmps++;
613           return true;
614         }
615       }
616 
617       // Pattern match a special case:
618       /*
619         QUERY( (y |  mask = y) =>
620                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
621         );
622       */
623       if (match(ICI->getOperand(0),
624                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
625         APInt Mask = *RHSC;
626         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
627           // If we already have a value for the switch, it has to match!
628           if (!setValueOnce(RHSVal))
629             return false;
630 
631           Vals.push_back(C);
632           Vals.push_back(ConstantInt::get(C->getContext(),
633                                           C->getValue() & ~Mask));
634           UsedICmps++;
635           return true;
636         }
637       }
638 
639       // If we already have a value for the switch, it has to match!
640       if (!setValueOnce(ICI->getOperand(0)))
641         return false;
642 
643       UsedICmps++;
644       Vals.push_back(C);
645       return ICI->getOperand(0);
646     }
647 
648     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
649     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
650         ICI->getPredicate(), C->getValue());
651 
652     // Shift the range if the compare is fed by an add. This is the range
653     // compare idiom as emitted by instcombine.
654     Value *CandidateVal = I->getOperand(0);
655     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
656       Span = Span.subtract(*RHSC);
657       CandidateVal = RHSVal;
658     }
659 
660     // If this is an and/!= check, then we are looking to build the set of
661     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
662     // x != 0 && x != 1.
663     if (!isEQ)
664       Span = Span.inverse();
665 
666     // If there are a ton of values, we don't want to make a ginormous switch.
667     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
668       return false;
669     }
670 
671     // If we already have a value for the switch, it has to match!
672     if (!setValueOnce(CandidateVal))
673       return false;
674 
675     // Add all values from the range to the set
676     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
677       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
678 
679     UsedICmps++;
680     return true;
681   }
682 
683   /// Given a potentially 'or'd or 'and'd together collection of icmp
684   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
685   /// the value being compared, and stick the list constants into the Vals
686   /// vector.
687   /// One "Extra" case is allowed to differ from the other.
688   void gather(Value *V) {
689     bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
690 
691     // Keep a stack (SmallVector for efficiency) for depth-first traversal
692     SmallVector<Value *, 8> DFT;
693     SmallPtrSet<Value *, 8> Visited;
694 
695     // Initialize
696     Visited.insert(V);
697     DFT.push_back(V);
698 
699     while (!DFT.empty()) {
700       V = DFT.pop_back_val();
701 
702       if (Instruction *I = dyn_cast<Instruction>(V)) {
703         // If it is a || (or && depending on isEQ), process the operands.
704         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
705           if (Visited.insert(I->getOperand(1)).second)
706             DFT.push_back(I->getOperand(1));
707           if (Visited.insert(I->getOperand(0)).second)
708             DFT.push_back(I->getOperand(0));
709           continue;
710         }
711 
712         // Try to match the current instruction
713         if (matchInstruction(I, isEQ))
714           // Match succeed, continue the loop
715           continue;
716       }
717 
718       // One element of the sequence of || (or &&) could not be match as a
719       // comparison against the same value as the others.
720       // We allow only one "Extra" case to be checked before the switch
721       if (!Extra) {
722         Extra = V;
723         continue;
724       }
725       // Failed to parse a proper sequence, abort now
726       CompValue = nullptr;
727       break;
728     }
729   }
730 };
731 
732 } // end anonymous namespace
733 
734 static void EraseTerminatorAndDCECond(Instruction *TI,
735                                       MemorySSAUpdater *MSSAU = nullptr) {
736   Instruction *Cond = nullptr;
737   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
738     Cond = dyn_cast<Instruction>(SI->getCondition());
739   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
740     if (BI->isConditional())
741       Cond = dyn_cast<Instruction>(BI->getCondition());
742   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
743     Cond = dyn_cast<Instruction>(IBI->getAddress());
744   }
745 
746   TI->eraseFromParent();
747   if (Cond)
748     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
749 }
750 
751 /// Return true if the specified terminator checks
752 /// to see if a value is equal to constant integer value.
753 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
754   Value *CV = nullptr;
755   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
756     // Do not permit merging of large switch instructions into their
757     // predecessors unless there is only one predecessor.
758     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
759       CV = SI->getCondition();
760   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
761     if (BI->isConditional() && BI->getCondition()->hasOneUse())
762       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
763         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
764           CV = ICI->getOperand(0);
765       }
766 
767   // Unwrap any lossless ptrtoint cast.
768   if (CV) {
769     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
770       Value *Ptr = PTII->getPointerOperand();
771       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
772         CV = Ptr;
773     }
774   }
775   return CV;
776 }
777 
778 /// Given a value comparison instruction,
779 /// decode all of the 'cases' that it represents and return the 'default' block.
780 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
781     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
782   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
783     Cases.reserve(SI->getNumCases());
784     for (auto Case : SI->cases())
785       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
786                                                   Case.getCaseSuccessor()));
787     return SI->getDefaultDest();
788   }
789 
790   BranchInst *BI = cast<BranchInst>(TI);
791   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
792   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
793   Cases.push_back(ValueEqualityComparisonCase(
794       GetConstantInt(ICI->getOperand(1), DL), Succ));
795   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
796 }
797 
798 /// Given a vector of bb/value pairs, remove any entries
799 /// in the list that match the specified block.
800 static void
801 EliminateBlockCases(BasicBlock *BB,
802                     std::vector<ValueEqualityComparisonCase> &Cases) {
803   llvm::erase_value(Cases, BB);
804 }
805 
806 /// Return true if there are any keys in C1 that exist in C2 as well.
807 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
808                           std::vector<ValueEqualityComparisonCase> &C2) {
809   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
810 
811   // Make V1 be smaller than V2.
812   if (V1->size() > V2->size())
813     std::swap(V1, V2);
814 
815   if (V1->empty())
816     return false;
817   if (V1->size() == 1) {
818     // Just scan V2.
819     ConstantInt *TheVal = (*V1)[0].Value;
820     for (unsigned i = 0, e = V2->size(); i != e; ++i)
821       if (TheVal == (*V2)[i].Value)
822         return true;
823   }
824 
825   // Otherwise, just sort both lists and compare element by element.
826   array_pod_sort(V1->begin(), V1->end());
827   array_pod_sort(V2->begin(), V2->end());
828   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
829   while (i1 != e1 && i2 != e2) {
830     if ((*V1)[i1].Value == (*V2)[i2].Value)
831       return true;
832     if ((*V1)[i1].Value < (*V2)[i2].Value)
833       ++i1;
834     else
835       ++i2;
836   }
837   return false;
838 }
839 
840 // Set branch weights on SwitchInst. This sets the metadata if there is at
841 // least one non-zero weight.
842 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
843   // Check that there is at least one non-zero weight. Otherwise, pass
844   // nullptr to setMetadata which will erase the existing metadata.
845   MDNode *N = nullptr;
846   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
847     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
848   SI->setMetadata(LLVMContext::MD_prof, N);
849 }
850 
851 // Similar to the above, but for branch and select instructions that take
852 // exactly 2 weights.
853 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
854                              uint32_t FalseWeight) {
855   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
856   // Check that there is at least one non-zero weight. Otherwise, pass
857   // nullptr to setMetadata which will erase the existing metadata.
858   MDNode *N = nullptr;
859   if (TrueWeight || FalseWeight)
860     N = MDBuilder(I->getParent()->getContext())
861             .createBranchWeights(TrueWeight, FalseWeight);
862   I->setMetadata(LLVMContext::MD_prof, N);
863 }
864 
865 /// If TI is known to be a terminator instruction and its block is known to
866 /// only have a single predecessor block, check to see if that predecessor is
867 /// also a value comparison with the same value, and if that comparison
868 /// determines the outcome of this comparison. If so, simplify TI. This does a
869 /// very limited form of jump threading.
870 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
871     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
872   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
873   if (!PredVal)
874     return false; // Not a value comparison in predecessor.
875 
876   Value *ThisVal = isValueEqualityComparison(TI);
877   assert(ThisVal && "This isn't a value comparison!!");
878   if (ThisVal != PredVal)
879     return false; // Different predicates.
880 
881   // TODO: Preserve branch weight metadata, similarly to how
882   // FoldValueComparisonIntoPredecessors preserves it.
883 
884   // Find out information about when control will move from Pred to TI's block.
885   std::vector<ValueEqualityComparisonCase> PredCases;
886   BasicBlock *PredDef =
887       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
888   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
889 
890   // Find information about how control leaves this block.
891   std::vector<ValueEqualityComparisonCase> ThisCases;
892   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
893   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
894 
895   // If TI's block is the default block from Pred's comparison, potentially
896   // simplify TI based on this knowledge.
897   if (PredDef == TI->getParent()) {
898     // If we are here, we know that the value is none of those cases listed in
899     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
900     // can simplify TI.
901     if (!ValuesOverlap(PredCases, ThisCases))
902       return false;
903 
904     if (isa<BranchInst>(TI)) {
905       // Okay, one of the successors of this condbr is dead.  Convert it to a
906       // uncond br.
907       assert(ThisCases.size() == 1 && "Branch can only have one case!");
908       // Insert the new branch.
909       Instruction *NI = Builder.CreateBr(ThisDef);
910       (void)NI;
911 
912       // Remove PHI node entries for the dead edge.
913       ThisCases[0].Dest->removePredecessor(TI->getParent());
914 
915       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
916                         << "Through successor TI: " << *TI << "Leaving: " << *NI
917                         << "\n");
918 
919       EraseTerminatorAndDCECond(TI);
920       return true;
921     }
922 
923     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
924     // Okay, TI has cases that are statically dead, prune them away.
925     SmallPtrSet<Constant *, 16> DeadCases;
926     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
927       DeadCases.insert(PredCases[i].Value);
928 
929     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
930                       << "Through successor TI: " << *TI);
931 
932     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
933       --i;
934       if (DeadCases.count(i->getCaseValue())) {
935         i->getCaseSuccessor()->removePredecessor(TI->getParent());
936         SI.removeCase(i);
937       }
938     }
939     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
940     return true;
941   }
942 
943   // Otherwise, TI's block must correspond to some matched value.  Find out
944   // which value (or set of values) this is.
945   ConstantInt *TIV = nullptr;
946   BasicBlock *TIBB = TI->getParent();
947   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
948     if (PredCases[i].Dest == TIBB) {
949       if (TIV)
950         return false; // Cannot handle multiple values coming to this block.
951       TIV = PredCases[i].Value;
952     }
953   assert(TIV && "No edge from pred to succ?");
954 
955   // Okay, we found the one constant that our value can be if we get into TI's
956   // BB.  Find out which successor will unconditionally be branched to.
957   BasicBlock *TheRealDest = nullptr;
958   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
959     if (ThisCases[i].Value == TIV) {
960       TheRealDest = ThisCases[i].Dest;
961       break;
962     }
963 
964   // If not handled by any explicit cases, it is handled by the default case.
965   if (!TheRealDest)
966     TheRealDest = ThisDef;
967 
968   // Remove PHI node entries for dead edges.
969   BasicBlock *CheckEdge = TheRealDest;
970   for (BasicBlock *Succ : successors(TIBB))
971     if (Succ != CheckEdge)
972       Succ->removePredecessor(TIBB);
973     else
974       CheckEdge = nullptr;
975 
976   // Insert the new branch.
977   Instruction *NI = Builder.CreateBr(TheRealDest);
978   (void)NI;
979 
980   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
981                     << "Through successor TI: " << *TI << "Leaving: " << *NI
982                     << "\n");
983 
984   EraseTerminatorAndDCECond(TI);
985   return true;
986 }
987 
988 namespace {
989 
990 /// This class implements a stable ordering of constant
991 /// integers that does not depend on their address.  This is important for
992 /// applications that sort ConstantInt's to ensure uniqueness.
993 struct ConstantIntOrdering {
994   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
995     return LHS->getValue().ult(RHS->getValue());
996   }
997 };
998 
999 } // end anonymous namespace
1000 
1001 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1002                                     ConstantInt *const *P2) {
1003   const ConstantInt *LHS = *P1;
1004   const ConstantInt *RHS = *P2;
1005   if (LHS == RHS)
1006     return 0;
1007   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1008 }
1009 
1010 static inline bool HasBranchWeights(const Instruction *I) {
1011   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1012   if (ProfMD && ProfMD->getOperand(0))
1013     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1014       return MDS->getString().equals("branch_weights");
1015 
1016   return false;
1017 }
1018 
1019 /// Get Weights of a given terminator, the default weight is at the front
1020 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1021 /// metadata.
1022 static void GetBranchWeights(Instruction *TI,
1023                              SmallVectorImpl<uint64_t> &Weights) {
1024   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1025   assert(MD);
1026   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1027     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1028     Weights.push_back(CI->getValue().getZExtValue());
1029   }
1030 
1031   // If TI is a conditional eq, the default case is the false case,
1032   // and the corresponding branch-weight data is at index 2. We swap the
1033   // default weight to be the first entry.
1034   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1035     assert(Weights.size() == 2);
1036     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1037     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1038       std::swap(Weights.front(), Weights.back());
1039   }
1040 }
1041 
1042 /// Keep halving the weights until all can fit in uint32_t.
1043 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1044   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1045   if (Max > UINT_MAX) {
1046     unsigned Offset = 32 - countLeadingZeros(Max);
1047     for (uint64_t &I : Weights)
1048       I >>= Offset;
1049   }
1050 }
1051 
1052 /// The specified terminator is a value equality comparison instruction
1053 /// (either a switch or a branch on "X == c").
1054 /// See if any of the predecessors of the terminator block are value comparisons
1055 /// on the same value.  If so, and if safe to do so, fold them together.
1056 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1057                                                          IRBuilder<> &Builder) {
1058   BasicBlock *BB = TI->getParent();
1059   Value *CV = isValueEqualityComparison(TI); // CondVal
1060   assert(CV && "Not a comparison?");
1061 
1062   bool Changed = false;
1063 
1064   auto _ = make_scope_exit([&]() {
1065     if (Changed)
1066       ++NumFoldValueComparisonIntoPredecessors;
1067   });
1068 
1069   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1070   while (!Preds.empty()) {
1071     BasicBlock *Pred = Preds.pop_back_val();
1072 
1073     // See if the predecessor is a comparison with the same value.
1074     Instruction *PTI = Pred->getTerminator();
1075     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1076 
1077     if (PCV == CV && TI != PTI) {
1078       SmallSetVector<BasicBlock*, 4> FailBlocks;
1079       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1080         for (auto *Succ : FailBlocks) {
1081           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1082             return false;
1083         }
1084       }
1085 
1086       // Figure out which 'cases' to copy from SI to PSI.
1087       std::vector<ValueEqualityComparisonCase> BBCases;
1088       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1089 
1090       std::vector<ValueEqualityComparisonCase> PredCases;
1091       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1092 
1093       // Based on whether the default edge from PTI goes to BB or not, fill in
1094       // PredCases and PredDefault with the new switch cases we would like to
1095       // build.
1096       SmallVector<BasicBlock *, 8> NewSuccessors;
1097 
1098       // Update the branch weight metadata along the way
1099       SmallVector<uint64_t, 8> Weights;
1100       bool PredHasWeights = HasBranchWeights(PTI);
1101       bool SuccHasWeights = HasBranchWeights(TI);
1102 
1103       if (PredHasWeights) {
1104         GetBranchWeights(PTI, Weights);
1105         // branch-weight metadata is inconsistent here.
1106         if (Weights.size() != 1 + PredCases.size())
1107           PredHasWeights = SuccHasWeights = false;
1108       } else if (SuccHasWeights)
1109         // If there are no predecessor weights but there are successor weights,
1110         // populate Weights with 1, which will later be scaled to the sum of
1111         // successor's weights
1112         Weights.assign(1 + PredCases.size(), 1);
1113 
1114       SmallVector<uint64_t, 8> SuccWeights;
1115       if (SuccHasWeights) {
1116         GetBranchWeights(TI, SuccWeights);
1117         // branch-weight metadata is inconsistent here.
1118         if (SuccWeights.size() != 1 + BBCases.size())
1119           PredHasWeights = SuccHasWeights = false;
1120       } else if (PredHasWeights)
1121         SuccWeights.assign(1 + BBCases.size(), 1);
1122 
1123       if (PredDefault == BB) {
1124         // If this is the default destination from PTI, only the edges in TI
1125         // that don't occur in PTI, or that branch to BB will be activated.
1126         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1127         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1128           if (PredCases[i].Dest != BB)
1129             PTIHandled.insert(PredCases[i].Value);
1130           else {
1131             // The default destination is BB, we don't need explicit targets.
1132             std::swap(PredCases[i], PredCases.back());
1133 
1134             if (PredHasWeights || SuccHasWeights) {
1135               // Increase weight for the default case.
1136               Weights[0] += Weights[i + 1];
1137               std::swap(Weights[i + 1], Weights.back());
1138               Weights.pop_back();
1139             }
1140 
1141             PredCases.pop_back();
1142             --i;
1143             --e;
1144           }
1145 
1146         // Reconstruct the new switch statement we will be building.
1147         if (PredDefault != BBDefault) {
1148           PredDefault->removePredecessor(Pred);
1149           PredDefault = BBDefault;
1150           NewSuccessors.push_back(BBDefault);
1151         }
1152 
1153         unsigned CasesFromPred = Weights.size();
1154         uint64_t ValidTotalSuccWeight = 0;
1155         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1156           if (!PTIHandled.count(BBCases[i].Value) &&
1157               BBCases[i].Dest != BBDefault) {
1158             PredCases.push_back(BBCases[i]);
1159             NewSuccessors.push_back(BBCases[i].Dest);
1160             if (SuccHasWeights || PredHasWeights) {
1161               // The default weight is at index 0, so weight for the ith case
1162               // should be at index i+1. Scale the cases from successor by
1163               // PredDefaultWeight (Weights[0]).
1164               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1165               ValidTotalSuccWeight += SuccWeights[i + 1];
1166             }
1167           }
1168 
1169         if (SuccHasWeights || PredHasWeights) {
1170           ValidTotalSuccWeight += SuccWeights[0];
1171           // Scale the cases from predecessor by ValidTotalSuccWeight.
1172           for (unsigned i = 1; i < CasesFromPred; ++i)
1173             Weights[i] *= ValidTotalSuccWeight;
1174           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1175           Weights[0] *= SuccWeights[0];
1176         }
1177       } else {
1178         // If this is not the default destination from PSI, only the edges
1179         // in SI that occur in PSI with a destination of BB will be
1180         // activated.
1181         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1182         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1183         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1184           if (PredCases[i].Dest == BB) {
1185             PTIHandled.insert(PredCases[i].Value);
1186 
1187             if (PredHasWeights || SuccHasWeights) {
1188               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1189               std::swap(Weights[i + 1], Weights.back());
1190               Weights.pop_back();
1191             }
1192 
1193             std::swap(PredCases[i], PredCases.back());
1194             PredCases.pop_back();
1195             --i;
1196             --e;
1197           }
1198 
1199         // Okay, now we know which constants were sent to BB from the
1200         // predecessor.  Figure out where they will all go now.
1201         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1202           if (PTIHandled.count(BBCases[i].Value)) {
1203             // If this is one we are capable of getting...
1204             if (PredHasWeights || SuccHasWeights)
1205               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1206             PredCases.push_back(BBCases[i]);
1207             NewSuccessors.push_back(BBCases[i].Dest);
1208             PTIHandled.erase(
1209                 BBCases[i].Value); // This constant is taken care of
1210           }
1211 
1212         // If there are any constants vectored to BB that TI doesn't handle,
1213         // they must go to the default destination of TI.
1214         for (ConstantInt *I : PTIHandled) {
1215           if (PredHasWeights || SuccHasWeights)
1216             Weights.push_back(WeightsForHandled[I]);
1217           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1218           NewSuccessors.push_back(BBDefault);
1219         }
1220       }
1221 
1222       // Okay, at this point, we know which new successor Pred will get.  Make
1223       // sure we update the number of entries in the PHI nodes for these
1224       // successors.
1225       for (BasicBlock *NewSuccessor : NewSuccessors)
1226         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1227 
1228       Builder.SetInsertPoint(PTI);
1229       // Convert pointer to int before we switch.
1230       if (CV->getType()->isPointerTy()) {
1231         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1232                                     "magicptr");
1233       }
1234 
1235       // Now that the successors are updated, create the new Switch instruction.
1236       SwitchInst *NewSI =
1237           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1238       NewSI->setDebugLoc(PTI->getDebugLoc());
1239       for (ValueEqualityComparisonCase &V : PredCases)
1240         NewSI->addCase(V.Value, V.Dest);
1241 
1242       if (PredHasWeights || SuccHasWeights) {
1243         // Halve the weights if any of them cannot fit in an uint32_t
1244         FitWeights(Weights);
1245 
1246         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1247 
1248         setBranchWeights(NewSI, MDWeights);
1249       }
1250 
1251       EraseTerminatorAndDCECond(PTI);
1252 
1253       // Okay, last check.  If BB is still a successor of PSI, then we must
1254       // have an infinite loop case.  If so, add an infinitely looping block
1255       // to handle the case to preserve the behavior of the code.
1256       BasicBlock *InfLoopBlock = nullptr;
1257       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1258         if (NewSI->getSuccessor(i) == BB) {
1259           if (!InfLoopBlock) {
1260             // Insert it at the end of the function, because it's either code,
1261             // or it won't matter if it's hot. :)
1262             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1263                                               BB->getParent());
1264             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1265           }
1266           NewSI->setSuccessor(i, InfLoopBlock);
1267         }
1268 
1269       Changed = true;
1270     }
1271   }
1272   return Changed;
1273 }
1274 
1275 // If we would need to insert a select that uses the value of this invoke
1276 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1277 // can't hoist the invoke, as there is nowhere to put the select in this case.
1278 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1279                                 Instruction *I1, Instruction *I2) {
1280   for (BasicBlock *Succ : successors(BB1)) {
1281     for (const PHINode &PN : Succ->phis()) {
1282       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1283       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1284       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1285         return false;
1286       }
1287     }
1288   }
1289   return true;
1290 }
1291 
1292 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1293 
1294 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1295 /// in the two blocks up into the branch block. The caller of this function
1296 /// guarantees that BI's block dominates BB1 and BB2.
1297 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1298                                            const TargetTransformInfo &TTI) {
1299   // This does very trivial matching, with limited scanning, to find identical
1300   // instructions in the two blocks.  In particular, we don't want to get into
1301   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1302   // such, we currently just scan for obviously identical instructions in an
1303   // identical order.
1304   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1305   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1306 
1307   BasicBlock::iterator BB1_Itr = BB1->begin();
1308   BasicBlock::iterator BB2_Itr = BB2->begin();
1309 
1310   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1311   // Skip debug info if it is not identical.
1312   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1313   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1314   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1315     while (isa<DbgInfoIntrinsic>(I1))
1316       I1 = &*BB1_Itr++;
1317     while (isa<DbgInfoIntrinsic>(I2))
1318       I2 = &*BB2_Itr++;
1319   }
1320   // FIXME: Can we define a safety predicate for CallBr?
1321   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1322       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1323       isa<CallBrInst>(I1))
1324     return false;
1325 
1326   BasicBlock *BIParent = BI->getParent();
1327 
1328   bool Changed = false;
1329 
1330   auto _ = make_scope_exit([&]() {
1331     if (Changed)
1332       ++NumHoistCommonCode;
1333   });
1334 
1335   do {
1336     // If we are hoisting the terminator instruction, don't move one (making a
1337     // broken BB), instead clone it, and remove BI.
1338     if (I1->isTerminator())
1339       goto HoistTerminator;
1340 
1341     // If we're going to hoist a call, make sure that the two instructions we're
1342     // commoning/hoisting are both marked with musttail, or neither of them is
1343     // marked as such. Otherwise, we might end up in a situation where we hoist
1344     // from a block where the terminator is a `ret` to a block where the terminator
1345     // is a `br`, and `musttail` calls expect to be followed by a return.
1346     auto *C1 = dyn_cast<CallInst>(I1);
1347     auto *C2 = dyn_cast<CallInst>(I2);
1348     if (C1 && C2)
1349       if (C1->isMustTailCall() != C2->isMustTailCall())
1350         return Changed;
1351 
1352     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1353       return Changed;
1354 
1355     // If any of the two call sites has nomerge attribute, stop hoisting.
1356     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1357       if (CB1->cannotMerge())
1358         return Changed;
1359     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1360       if (CB2->cannotMerge())
1361         return Changed;
1362 
1363     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1364       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1365       // The debug location is an integral part of a debug info intrinsic
1366       // and can't be separated from it or replaced.  Instead of attempting
1367       // to merge locations, simply hoist both copies of the intrinsic.
1368       BIParent->getInstList().splice(BI->getIterator(),
1369                                      BB1->getInstList(), I1);
1370       BIParent->getInstList().splice(BI->getIterator(),
1371                                      BB2->getInstList(), I2);
1372       Changed = true;
1373     } else {
1374       // For a normal instruction, we just move one to right before the branch,
1375       // then replace all uses of the other with the first.  Finally, we remove
1376       // the now redundant second instruction.
1377       BIParent->getInstList().splice(BI->getIterator(),
1378                                      BB1->getInstList(), I1);
1379       if (!I2->use_empty())
1380         I2->replaceAllUsesWith(I1);
1381       I1->andIRFlags(I2);
1382       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1383                              LLVMContext::MD_range,
1384                              LLVMContext::MD_fpmath,
1385                              LLVMContext::MD_invariant_load,
1386                              LLVMContext::MD_nonnull,
1387                              LLVMContext::MD_invariant_group,
1388                              LLVMContext::MD_align,
1389                              LLVMContext::MD_dereferenceable,
1390                              LLVMContext::MD_dereferenceable_or_null,
1391                              LLVMContext::MD_mem_parallel_loop_access,
1392                              LLVMContext::MD_access_group,
1393                              LLVMContext::MD_preserve_access_index};
1394       combineMetadata(I1, I2, KnownIDs, true);
1395 
1396       // I1 and I2 are being combined into a single instruction.  Its debug
1397       // location is the merged locations of the original instructions.
1398       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1399 
1400       I2->eraseFromParent();
1401       Changed = true;
1402     }
1403     ++NumHoistCommonInstrs;
1404 
1405     I1 = &*BB1_Itr++;
1406     I2 = &*BB2_Itr++;
1407     // Skip debug info if it is not identical.
1408     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1409     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1410     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1411       while (isa<DbgInfoIntrinsic>(I1))
1412         I1 = &*BB1_Itr++;
1413       while (isa<DbgInfoIntrinsic>(I2))
1414         I2 = &*BB2_Itr++;
1415     }
1416   } while (I1->isIdenticalToWhenDefined(I2));
1417 
1418   return true;
1419 
1420 HoistTerminator:
1421   // It may not be possible to hoist an invoke.
1422   // FIXME: Can we define a safety predicate for CallBr?
1423   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1424     return Changed;
1425 
1426   // TODO: callbr hoisting currently disabled pending further study.
1427   if (isa<CallBrInst>(I1))
1428     return Changed;
1429 
1430   for (BasicBlock *Succ : successors(BB1)) {
1431     for (PHINode &PN : Succ->phis()) {
1432       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1433       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1434       if (BB1V == BB2V)
1435         continue;
1436 
1437       // Check for passingValueIsAlwaysUndefined here because we would rather
1438       // eliminate undefined control flow then converting it to a select.
1439       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1440           passingValueIsAlwaysUndefined(BB2V, &PN))
1441         return Changed;
1442 
1443       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1444         return Changed;
1445       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1446         return Changed;
1447     }
1448   }
1449 
1450   // Okay, it is safe to hoist the terminator.
1451   Instruction *NT = I1->clone();
1452   BIParent->getInstList().insert(BI->getIterator(), NT);
1453   if (!NT->getType()->isVoidTy()) {
1454     I1->replaceAllUsesWith(NT);
1455     I2->replaceAllUsesWith(NT);
1456     NT->takeName(I1);
1457   }
1458   Changed = true;
1459   ++NumHoistCommonInstrs;
1460 
1461   // Ensure terminator gets a debug location, even an unknown one, in case
1462   // it involves inlinable calls.
1463   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1464 
1465   // PHIs created below will adopt NT's merged DebugLoc.
1466   IRBuilder<NoFolder> Builder(NT);
1467 
1468   // Hoisting one of the terminators from our successor is a great thing.
1469   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1470   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1471   // nodes, so we insert select instruction to compute the final result.
1472   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1473   for (BasicBlock *Succ : successors(BB1)) {
1474     for (PHINode &PN : Succ->phis()) {
1475       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1476       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1477       if (BB1V == BB2V)
1478         continue;
1479 
1480       // These values do not agree.  Insert a select instruction before NT
1481       // that determines the right value.
1482       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1483       if (!SI) {
1484         // Propagate fast-math-flags from phi node to its replacement select.
1485         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1486         if (isa<FPMathOperator>(PN))
1487           Builder.setFastMathFlags(PN.getFastMathFlags());
1488 
1489         SI = cast<SelectInst>(
1490             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1491                                  BB1V->getName() + "." + BB2V->getName(), BI));
1492       }
1493 
1494       // Make the PHI node use the select for all incoming values for BB1/BB2
1495       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1496         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1497           PN.setIncomingValue(i, SI);
1498     }
1499   }
1500 
1501   // Update any PHI nodes in our new successors.
1502   for (BasicBlock *Succ : successors(BB1))
1503     AddPredecessorToBlock(Succ, BIParent, BB1);
1504 
1505   EraseTerminatorAndDCECond(BI);
1506   return Changed;
1507 }
1508 
1509 // Check lifetime markers.
1510 static bool isLifeTimeMarker(const Instruction *I) {
1511   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1512     switch (II->getIntrinsicID()) {
1513     default:
1514       break;
1515     case Intrinsic::lifetime_start:
1516     case Intrinsic::lifetime_end:
1517       return true;
1518     }
1519   }
1520   return false;
1521 }
1522 
1523 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1524 // into variables.
1525 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1526                                                 int OpIdx) {
1527   return !isa<IntrinsicInst>(I);
1528 }
1529 
1530 // All instructions in Insts belong to different blocks that all unconditionally
1531 // branch to a common successor. Analyze each instruction and return true if it
1532 // would be possible to sink them into their successor, creating one common
1533 // instruction instead. For every value that would be required to be provided by
1534 // PHI node (because an operand varies in each input block), add to PHIOperands.
1535 static bool canSinkInstructions(
1536     ArrayRef<Instruction *> Insts,
1537     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1538   // Prune out obviously bad instructions to move. Each instruction must have
1539   // exactly zero or one use, and we check later that use is by a single, common
1540   // PHI instruction in the successor.
1541   bool HasUse = !Insts.front()->user_empty();
1542   for (auto *I : Insts) {
1543     // These instructions may change or break semantics if moved.
1544     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1545         I->getType()->isTokenTy())
1546       return false;
1547 
1548     // Conservatively return false if I is an inline-asm instruction. Sinking
1549     // and merging inline-asm instructions can potentially create arguments
1550     // that cannot satisfy the inline-asm constraints.
1551     // If the instruction has nomerge attribute, return false.
1552     if (const auto *C = dyn_cast<CallBase>(I))
1553       if (C->isInlineAsm() || C->cannotMerge())
1554         return false;
1555 
1556     // Each instruction must have zero or one use.
1557     if (HasUse && !I->hasOneUse())
1558       return false;
1559     if (!HasUse && !I->user_empty())
1560       return false;
1561   }
1562 
1563   const Instruction *I0 = Insts.front();
1564   for (auto *I : Insts)
1565     if (!I->isSameOperationAs(I0))
1566       return false;
1567 
1568   // All instructions in Insts are known to be the same opcode. If they have a
1569   // use, check that the only user is a PHI or in the same block as the
1570   // instruction, because if a user is in the same block as an instruction we're
1571   // contemplating sinking, it must already be determined to be sinkable.
1572   if (HasUse) {
1573     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1574     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1575     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1576           auto *U = cast<Instruction>(*I->user_begin());
1577           return (PNUse &&
1578                   PNUse->getParent() == Succ &&
1579                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1580                  U->getParent() == I->getParent();
1581         }))
1582       return false;
1583   }
1584 
1585   // Because SROA can't handle speculating stores of selects, try not to sink
1586   // loads, stores or lifetime markers of allocas when we'd have to create a
1587   // PHI for the address operand. Also, because it is likely that loads or
1588   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1589   // them.
1590   // This can cause code churn which can have unintended consequences down
1591   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1592   // FIXME: This is a workaround for a deficiency in SROA - see
1593   // https://llvm.org/bugs/show_bug.cgi?id=30188
1594   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1595         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1596       }))
1597     return false;
1598   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1599         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1600       }))
1601     return false;
1602   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1603         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1604       }))
1605     return false;
1606 
1607   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1608     Value *Op = I0->getOperand(OI);
1609     if (Op->getType()->isTokenTy())
1610       // Don't touch any operand of token type.
1611       return false;
1612 
1613     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1614       assert(I->getNumOperands() == I0->getNumOperands());
1615       return I->getOperand(OI) == I0->getOperand(OI);
1616     };
1617     if (!all_of(Insts, SameAsI0)) {
1618       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1619           !canReplaceOperandWithVariable(I0, OI))
1620         // We can't create a PHI from this GEP.
1621         return false;
1622       // Don't create indirect calls! The called value is the final operand.
1623       if (isa<CallBase>(I0) && OI == OE - 1) {
1624         // FIXME: if the call was *already* indirect, we should do this.
1625         return false;
1626       }
1627       for (auto *I : Insts)
1628         PHIOperands[I].push_back(I->getOperand(OI));
1629     }
1630   }
1631   return true;
1632 }
1633 
1634 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1635 // instruction of every block in Blocks to their common successor, commoning
1636 // into one instruction.
1637 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1638   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1639 
1640   // canSinkLastInstruction returning true guarantees that every block has at
1641   // least one non-terminator instruction.
1642   SmallVector<Instruction*,4> Insts;
1643   for (auto *BB : Blocks) {
1644     Instruction *I = BB->getTerminator();
1645     do {
1646       I = I->getPrevNode();
1647     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1648     if (!isa<DbgInfoIntrinsic>(I))
1649       Insts.push_back(I);
1650   }
1651 
1652   // The only checking we need to do now is that all users of all instructions
1653   // are the same PHI node. canSinkLastInstruction should have checked this but
1654   // it is slightly over-aggressive - it gets confused by commutative instructions
1655   // so double-check it here.
1656   Instruction *I0 = Insts.front();
1657   if (!I0->user_empty()) {
1658     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1659     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1660           auto *U = cast<Instruction>(*I->user_begin());
1661           return U == PNUse;
1662         }))
1663       return false;
1664   }
1665 
1666   // We don't need to do any more checking here; canSinkLastInstruction should
1667   // have done it all for us.
1668   SmallVector<Value*, 4> NewOperands;
1669   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1670     // This check is different to that in canSinkLastInstruction. There, we
1671     // cared about the global view once simplifycfg (and instcombine) have
1672     // completed - it takes into account PHIs that become trivially
1673     // simplifiable.  However here we need a more local view; if an operand
1674     // differs we create a PHI and rely on instcombine to clean up the very
1675     // small mess we may make.
1676     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1677       return I->getOperand(O) != I0->getOperand(O);
1678     });
1679     if (!NeedPHI) {
1680       NewOperands.push_back(I0->getOperand(O));
1681       continue;
1682     }
1683 
1684     // Create a new PHI in the successor block and populate it.
1685     auto *Op = I0->getOperand(O);
1686     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1687     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1688                                Op->getName() + ".sink", &BBEnd->front());
1689     for (auto *I : Insts)
1690       PN->addIncoming(I->getOperand(O), I->getParent());
1691     NewOperands.push_back(PN);
1692   }
1693 
1694   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1695   // and move it to the start of the successor block.
1696   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1697     I0->getOperandUse(O).set(NewOperands[O]);
1698   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1699 
1700   // Update metadata and IR flags, and merge debug locations.
1701   for (auto *I : Insts)
1702     if (I != I0) {
1703       // The debug location for the "common" instruction is the merged locations
1704       // of all the commoned instructions.  We start with the original location
1705       // of the "common" instruction and iteratively merge each location in the
1706       // loop below.
1707       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1708       // However, as N-way merge for CallInst is rare, so we use simplified API
1709       // instead of using complex API for N-way merge.
1710       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1711       combineMetadataForCSE(I0, I, true);
1712       I0->andIRFlags(I);
1713     }
1714 
1715   if (!I0->user_empty()) {
1716     // canSinkLastInstruction checked that all instructions were used by
1717     // one and only one PHI node. Find that now, RAUW it to our common
1718     // instruction and nuke it.
1719     auto *PN = cast<PHINode>(*I0->user_begin());
1720     PN->replaceAllUsesWith(I0);
1721     PN->eraseFromParent();
1722   }
1723 
1724   // Finally nuke all instructions apart from the common instruction.
1725   for (auto *I : Insts)
1726     if (I != I0)
1727       I->eraseFromParent();
1728 
1729   return true;
1730 }
1731 
1732 namespace {
1733 
1734   // LockstepReverseIterator - Iterates through instructions
1735   // in a set of blocks in reverse order from the first non-terminator.
1736   // For example (assume all blocks have size n):
1737   //   LockstepReverseIterator I([B1, B2, B3]);
1738   //   *I-- = [B1[n], B2[n], B3[n]];
1739   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1740   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1741   //   ...
1742   class LockstepReverseIterator {
1743     ArrayRef<BasicBlock*> Blocks;
1744     SmallVector<Instruction*,4> Insts;
1745     bool Fail;
1746 
1747   public:
1748     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1749       reset();
1750     }
1751 
1752     void reset() {
1753       Fail = false;
1754       Insts.clear();
1755       for (auto *BB : Blocks) {
1756         Instruction *Inst = BB->getTerminator();
1757         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1758           Inst = Inst->getPrevNode();
1759         if (!Inst) {
1760           // Block wasn't big enough.
1761           Fail = true;
1762           return;
1763         }
1764         Insts.push_back(Inst);
1765       }
1766     }
1767 
1768     bool isValid() const {
1769       return !Fail;
1770     }
1771 
1772     void operator--() {
1773       if (Fail)
1774         return;
1775       for (auto *&Inst : Insts) {
1776         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1777           Inst = Inst->getPrevNode();
1778         // Already at beginning of block.
1779         if (!Inst) {
1780           Fail = true;
1781           return;
1782         }
1783       }
1784     }
1785 
1786     ArrayRef<Instruction*> operator * () const {
1787       return Insts;
1788     }
1789   };
1790 
1791 } // end anonymous namespace
1792 
1793 /// Check whether BB's predecessors end with unconditional branches. If it is
1794 /// true, sink any common code from the predecessors to BB.
1795 /// We also allow one predecessor to end with conditional branch (but no more
1796 /// than one).
1797 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1798   // We support two situations:
1799   //   (1) all incoming arcs are unconditional
1800   //   (2) one incoming arc is conditional
1801   //
1802   // (2) is very common in switch defaults and
1803   // else-if patterns;
1804   //
1805   //   if (a) f(1);
1806   //   else if (b) f(2);
1807   //
1808   // produces:
1809   //
1810   //       [if]
1811   //      /    \
1812   //    [f(1)] [if]
1813   //      |     | \
1814   //      |     |  |
1815   //      |  [f(2)]|
1816   //       \    | /
1817   //        [ end ]
1818   //
1819   // [end] has two unconditional predecessor arcs and one conditional. The
1820   // conditional refers to the implicit empty 'else' arc. This conditional
1821   // arc can also be caused by an empty default block in a switch.
1822   //
1823   // In this case, we attempt to sink code from all *unconditional* arcs.
1824   // If we can sink instructions from these arcs (determined during the scan
1825   // phase below) we insert a common successor for all unconditional arcs and
1826   // connect that to [end], to enable sinking:
1827   //
1828   //       [if]
1829   //      /    \
1830   //    [x(1)] [if]
1831   //      |     | \
1832   //      |     |  \
1833   //      |  [x(2)] |
1834   //       \   /    |
1835   //   [sink.split] |
1836   //         \     /
1837   //         [ end ]
1838   //
1839   SmallVector<BasicBlock*,4> UnconditionalPreds;
1840   Instruction *Cond = nullptr;
1841   for (auto *B : predecessors(BB)) {
1842     auto *T = B->getTerminator();
1843     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1844       UnconditionalPreds.push_back(B);
1845     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1846       Cond = T;
1847     else
1848       return false;
1849   }
1850   if (UnconditionalPreds.size() < 2)
1851     return false;
1852 
1853   // We take a two-step approach to tail sinking. First we scan from the end of
1854   // each block upwards in lockstep. If the n'th instruction from the end of each
1855   // block can be sunk, those instructions are added to ValuesToSink and we
1856   // carry on. If we can sink an instruction but need to PHI-merge some operands
1857   // (because they're not identical in each instruction) we add these to
1858   // PHIOperands.
1859   unsigned ScanIdx = 0;
1860   SmallPtrSet<Value*,4> InstructionsToSink;
1861   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1862   LockstepReverseIterator LRI(UnconditionalPreds);
1863   while (LRI.isValid() &&
1864          canSinkInstructions(*LRI, PHIOperands)) {
1865     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1866                       << "\n");
1867     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1868     ++ScanIdx;
1869     --LRI;
1870   }
1871 
1872   // If no instructions can be sunk, early-return.
1873   if (ScanIdx == 0)
1874     return false;
1875 
1876   bool Changed = false;
1877 
1878   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1879     unsigned NumPHIdValues = 0;
1880     for (auto *I : *LRI)
1881       for (auto *V : PHIOperands[I])
1882         if (InstructionsToSink.count(V) == 0)
1883           ++NumPHIdValues;
1884     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1885     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1886     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1887         NumPHIInsts++;
1888 
1889     return NumPHIInsts <= 1;
1890   };
1891 
1892   if (Cond) {
1893     // Check if we would actually sink anything first! This mutates the CFG and
1894     // adds an extra block. The goal in doing this is to allow instructions that
1895     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1896     // (such as trunc, add) can be sunk and predicated already. So we check that
1897     // we're going to sink at least one non-speculatable instruction.
1898     LRI.reset();
1899     unsigned Idx = 0;
1900     bool Profitable = false;
1901     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1902       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1903         Profitable = true;
1904         break;
1905       }
1906       --LRI;
1907       ++Idx;
1908     }
1909     if (!Profitable)
1910       return false;
1911 
1912     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1913     // We have a conditional edge and we're going to sink some instructions.
1914     // Insert a new block postdominating all blocks we're going to sink from.
1915     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1916       // Edges couldn't be split.
1917       return false;
1918     Changed = true;
1919   }
1920 
1921   // Now that we've analyzed all potential sinking candidates, perform the
1922   // actual sink. We iteratively sink the last non-terminator of the source
1923   // blocks into their common successor unless doing so would require too
1924   // many PHI instructions to be generated (currently only one PHI is allowed
1925   // per sunk instruction).
1926   //
1927   // We can use InstructionsToSink to discount values needing PHI-merging that will
1928   // actually be sunk in a later iteration. This allows us to be more
1929   // aggressive in what we sink. This does allow a false positive where we
1930   // sink presuming a later value will also be sunk, but stop half way through
1931   // and never actually sink it which means we produce more PHIs than intended.
1932   // This is unlikely in practice though.
1933   unsigned SinkIdx = 0;
1934   for (; SinkIdx != ScanIdx; ++SinkIdx) {
1935     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1936                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1937                       << "\n");
1938 
1939     // Because we've sunk every instruction in turn, the current instruction to
1940     // sink is always at index 0.
1941     LRI.reset();
1942     if (!ProfitableToSinkInstruction(LRI)) {
1943       // Too many PHIs would be created.
1944       LLVM_DEBUG(
1945           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1946       break;
1947     }
1948 
1949     if (!sinkLastInstruction(UnconditionalPreds)) {
1950       LLVM_DEBUG(
1951           dbgs()
1952           << "SINK: stopping here, failed to actually sink instruction!\n");
1953       break;
1954     }
1955 
1956     NumSinkCommonInstrs++;
1957     Changed = true;
1958   }
1959   if (SinkIdx != 0)
1960     ++NumSinkCommonCode;
1961   return Changed;
1962 }
1963 
1964 /// Determine if we can hoist sink a sole store instruction out of a
1965 /// conditional block.
1966 ///
1967 /// We are looking for code like the following:
1968 ///   BrBB:
1969 ///     store i32 %add, i32* %arrayidx2
1970 ///     ... // No other stores or function calls (we could be calling a memory
1971 ///     ... // function).
1972 ///     %cmp = icmp ult %x, %y
1973 ///     br i1 %cmp, label %EndBB, label %ThenBB
1974 ///   ThenBB:
1975 ///     store i32 %add5, i32* %arrayidx2
1976 ///     br label EndBB
1977 ///   EndBB:
1978 ///     ...
1979 ///   We are going to transform this into:
1980 ///   BrBB:
1981 ///     store i32 %add, i32* %arrayidx2
1982 ///     ... //
1983 ///     %cmp = icmp ult %x, %y
1984 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1985 ///     store i32 %add.add5, i32* %arrayidx2
1986 ///     ...
1987 ///
1988 /// \return The pointer to the value of the previous store if the store can be
1989 ///         hoisted into the predecessor block. 0 otherwise.
1990 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1991                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1992   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1993   if (!StoreToHoist)
1994     return nullptr;
1995 
1996   // Volatile or atomic.
1997   if (!StoreToHoist->isSimple())
1998     return nullptr;
1999 
2000   Value *StorePtr = StoreToHoist->getPointerOperand();
2001 
2002   // Look for a store to the same pointer in BrBB.
2003   unsigned MaxNumInstToLookAt = 9;
2004   // Skip pseudo probe intrinsic calls which are not really killing any memory
2005   // accesses.
2006   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2007     if (!MaxNumInstToLookAt)
2008       break;
2009     --MaxNumInstToLookAt;
2010 
2011     // Could be calling an instruction that affects memory like free().
2012     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2013       return nullptr;
2014 
2015     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2016       // Found the previous store make sure it stores to the same location.
2017       if (SI->getPointerOperand() == StorePtr)
2018         // Found the previous store, return its value operand.
2019         return SI->getValueOperand();
2020       return nullptr; // Unknown store.
2021     }
2022   }
2023 
2024   return nullptr;
2025 }
2026 
2027 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2028 /// converted to selects.
2029 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2030                                            BasicBlock *EndBB,
2031                                            unsigned &SpeculatedInstructions,
2032                                            int &BudgetRemaining,
2033                                            const TargetTransformInfo &TTI) {
2034   TargetTransformInfo::TargetCostKind CostKind =
2035     BB->getParent()->hasMinSize()
2036     ? TargetTransformInfo::TCK_CodeSize
2037     : TargetTransformInfo::TCK_SizeAndLatency;
2038 
2039   bool HaveRewritablePHIs = false;
2040   for (PHINode &PN : EndBB->phis()) {
2041     Value *OrigV = PN.getIncomingValueForBlock(BB);
2042     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2043 
2044     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2045     // Skip PHIs which are trivial.
2046     if (ThenV == OrigV)
2047       continue;
2048 
2049     BudgetRemaining -=
2050         TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2051                                CmpInst::BAD_ICMP_PREDICATE, CostKind);
2052 
2053     // Don't convert to selects if we could remove undefined behavior instead.
2054     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2055         passingValueIsAlwaysUndefined(ThenV, &PN))
2056       return false;
2057 
2058     HaveRewritablePHIs = true;
2059     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2060     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2061     if (!OrigCE && !ThenCE)
2062       continue; // Known safe and cheap.
2063 
2064     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2065         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2066       return false;
2067     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2068     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2069     unsigned MaxCost =
2070         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2071     if (OrigCost + ThenCost > MaxCost)
2072       return false;
2073 
2074     // Account for the cost of an unfolded ConstantExpr which could end up
2075     // getting expanded into Instructions.
2076     // FIXME: This doesn't account for how many operations are combined in the
2077     // constant expression.
2078     ++SpeculatedInstructions;
2079     if (SpeculatedInstructions > 1)
2080       return false;
2081   }
2082 
2083   return HaveRewritablePHIs;
2084 }
2085 
2086 /// Speculate a conditional basic block flattening the CFG.
2087 ///
2088 /// Note that this is a very risky transform currently. Speculating
2089 /// instructions like this is most often not desirable. Instead, there is an MI
2090 /// pass which can do it with full awareness of the resource constraints.
2091 /// However, some cases are "obvious" and we should do directly. An example of
2092 /// this is speculating a single, reasonably cheap instruction.
2093 ///
2094 /// There is only one distinct advantage to flattening the CFG at the IR level:
2095 /// it makes very common but simplistic optimizations such as are common in
2096 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2097 /// modeling their effects with easier to reason about SSA value graphs.
2098 ///
2099 ///
2100 /// An illustration of this transform is turning this IR:
2101 /// \code
2102 ///   BB:
2103 ///     %cmp = icmp ult %x, %y
2104 ///     br i1 %cmp, label %EndBB, label %ThenBB
2105 ///   ThenBB:
2106 ///     %sub = sub %x, %y
2107 ///     br label BB2
2108 ///   EndBB:
2109 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2110 ///     ...
2111 /// \endcode
2112 ///
2113 /// Into this IR:
2114 /// \code
2115 ///   BB:
2116 ///     %cmp = icmp ult %x, %y
2117 ///     %sub = sub %x, %y
2118 ///     %cond = select i1 %cmp, 0, %sub
2119 ///     ...
2120 /// \endcode
2121 ///
2122 /// \returns true if the conditional block is removed.
2123 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2124                                             const TargetTransformInfo &TTI) {
2125   // Be conservative for now. FP select instruction can often be expensive.
2126   Value *BrCond = BI->getCondition();
2127   if (isa<FCmpInst>(BrCond))
2128     return false;
2129 
2130   BasicBlock *BB = BI->getParent();
2131   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2132   int BudgetRemaining =
2133     PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2134 
2135   // If ThenBB is actually on the false edge of the conditional branch, remember
2136   // to swap the select operands later.
2137   bool Invert = false;
2138   if (ThenBB != BI->getSuccessor(0)) {
2139     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2140     Invert = true;
2141   }
2142   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2143 
2144   // Keep a count of how many times instructions are used within ThenBB when
2145   // they are candidates for sinking into ThenBB. Specifically:
2146   // - They are defined in BB, and
2147   // - They have no side effects, and
2148   // - All of their uses are in ThenBB.
2149   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2150 
2151   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2152 
2153   unsigned SpeculatedInstructions = 0;
2154   Value *SpeculatedStoreValue = nullptr;
2155   StoreInst *SpeculatedStore = nullptr;
2156   for (BasicBlock::iterator BBI = ThenBB->begin(),
2157                             BBE = std::prev(ThenBB->end());
2158        BBI != BBE; ++BBI) {
2159     Instruction *I = &*BBI;
2160     // Skip debug info.
2161     if (isa<DbgInfoIntrinsic>(I)) {
2162       SpeculatedDbgIntrinsics.push_back(I);
2163       continue;
2164     }
2165 
2166     // Skip pseudo probes. The consequence is we lose track of the branch
2167     // probability for ThenBB, which is fine since the optimization here takes
2168     // place regardless of the branch probability.
2169     if (isa<PseudoProbeInst>(I)) {
2170       SpeculatedDbgIntrinsics.push_back(I);
2171       continue;
2172     }
2173 
2174     // Only speculatively execute a single instruction (not counting the
2175     // terminator) for now.
2176     ++SpeculatedInstructions;
2177     if (SpeculatedInstructions > 1)
2178       return false;
2179 
2180     // Don't hoist the instruction if it's unsafe or expensive.
2181     if (!isSafeToSpeculativelyExecute(I) &&
2182         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2183                                   I, BB, ThenBB, EndBB))))
2184       return false;
2185     if (!SpeculatedStoreValue &&
2186         ComputeSpeculationCost(I, TTI) >
2187             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2188       return false;
2189 
2190     // Store the store speculation candidate.
2191     if (SpeculatedStoreValue)
2192       SpeculatedStore = cast<StoreInst>(I);
2193 
2194     // Do not hoist the instruction if any of its operands are defined but not
2195     // used in BB. The transformation will prevent the operand from
2196     // being sunk into the use block.
2197     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2198       Instruction *OpI = dyn_cast<Instruction>(*i);
2199       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2200         continue; // Not a candidate for sinking.
2201 
2202       ++SinkCandidateUseCounts[OpI];
2203     }
2204   }
2205 
2206   // Consider any sink candidates which are only used in ThenBB as costs for
2207   // speculation. Note, while we iterate over a DenseMap here, we are summing
2208   // and so iteration order isn't significant.
2209   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2210            I = SinkCandidateUseCounts.begin(),
2211            E = SinkCandidateUseCounts.end();
2212        I != E; ++I)
2213     if (I->first->hasNUses(I->second)) {
2214       ++SpeculatedInstructions;
2215       if (SpeculatedInstructions > 1)
2216         return false;
2217     }
2218 
2219   // Check that we can insert the selects and that it's not too expensive to do
2220   // so.
2221   bool Convert = SpeculatedStore != nullptr;
2222   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2223                                             SpeculatedInstructions,
2224                                             BudgetRemaining, TTI);
2225   if (!Convert || BudgetRemaining < 0)
2226     return false;
2227 
2228   // If we get here, we can hoist the instruction and if-convert.
2229   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2230 
2231   // Insert a select of the value of the speculated store.
2232   if (SpeculatedStoreValue) {
2233     IRBuilder<NoFolder> Builder(BI);
2234     Value *TrueV = SpeculatedStore->getValueOperand();
2235     Value *FalseV = SpeculatedStoreValue;
2236     if (Invert)
2237       std::swap(TrueV, FalseV);
2238     Value *S = Builder.CreateSelect(
2239         BrCond, TrueV, FalseV, "spec.store.select", BI);
2240     SpeculatedStore->setOperand(0, S);
2241     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2242                                          SpeculatedStore->getDebugLoc());
2243   }
2244 
2245   // Metadata can be dependent on the condition we are hoisting above.
2246   // Conservatively strip all metadata on the instruction. Drop the debug loc
2247   // to avoid making it appear as if the condition is a constant, which would
2248   // be misleading while debugging.
2249   for (auto &I : *ThenBB) {
2250     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2251       I.setDebugLoc(DebugLoc());
2252     I.dropUnknownNonDebugMetadata();
2253   }
2254 
2255   // Hoist the instructions.
2256   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2257                            ThenBB->begin(), std::prev(ThenBB->end()));
2258 
2259   // Insert selects and rewrite the PHI operands.
2260   IRBuilder<NoFolder> Builder(BI);
2261   for (PHINode &PN : EndBB->phis()) {
2262     unsigned OrigI = PN.getBasicBlockIndex(BB);
2263     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2264     Value *OrigV = PN.getIncomingValue(OrigI);
2265     Value *ThenV = PN.getIncomingValue(ThenI);
2266 
2267     // Skip PHIs which are trivial.
2268     if (OrigV == ThenV)
2269       continue;
2270 
2271     // Create a select whose true value is the speculatively executed value and
2272     // false value is the pre-existing value. Swap them if the branch
2273     // destinations were inverted.
2274     Value *TrueV = ThenV, *FalseV = OrigV;
2275     if (Invert)
2276       std::swap(TrueV, FalseV);
2277     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2278     PN.setIncomingValue(OrigI, V);
2279     PN.setIncomingValue(ThenI, V);
2280   }
2281 
2282   // Remove speculated dbg intrinsics.
2283   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2284   // dbg value for the different flows and inserting it after the select.
2285   for (Instruction *I : SpeculatedDbgIntrinsics)
2286     I->eraseFromParent();
2287 
2288   ++NumSpeculations;
2289   return true;
2290 }
2291 
2292 /// Return true if we can thread a branch across this block.
2293 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2294   int Size = 0;
2295 
2296   for (Instruction &I : BB->instructionsWithoutDebug()) {
2297     if (Size > MaxSmallBlockSize)
2298       return false; // Don't clone large BB's.
2299 
2300     // Can't fold blocks that contain noduplicate or convergent calls.
2301     if (CallInst *CI = dyn_cast<CallInst>(&I))
2302       if (CI->cannotDuplicate() || CI->isConvergent())
2303         return false;
2304 
2305     // We will delete Phis while threading, so Phis should not be accounted in
2306     // block's size
2307     if (!isa<PHINode>(I))
2308       ++Size;
2309 
2310     // We can only support instructions that do not define values that are
2311     // live outside of the current basic block.
2312     for (User *U : I.users()) {
2313       Instruction *UI = cast<Instruction>(U);
2314       if (UI->getParent() != BB || isa<PHINode>(UI))
2315         return false;
2316     }
2317 
2318     // Looks ok, continue checking.
2319   }
2320 
2321   return true;
2322 }
2323 
2324 /// If we have a conditional branch on a PHI node value that is defined in the
2325 /// same block as the branch and if any PHI entries are constants, thread edges
2326 /// corresponding to that entry to be branches to their ultimate destination.
2327 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2328                                 AssumptionCache *AC) {
2329   BasicBlock *BB = BI->getParent();
2330   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2331   // NOTE: we currently cannot transform this case if the PHI node is used
2332   // outside of the block.
2333   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2334     return false;
2335 
2336   // Degenerate case of a single entry PHI.
2337   if (PN->getNumIncomingValues() == 1) {
2338     FoldSingleEntryPHINodes(PN->getParent());
2339     return true;
2340   }
2341 
2342   // Now we know that this block has multiple preds and two succs.
2343   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2344     return false;
2345 
2346   // Okay, this is a simple enough basic block.  See if any phi values are
2347   // constants.
2348   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2349     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2350     if (!CB || !CB->getType()->isIntegerTy(1))
2351       continue;
2352 
2353     // Okay, we now know that all edges from PredBB should be revectored to
2354     // branch to RealDest.
2355     BasicBlock *PredBB = PN->getIncomingBlock(i);
2356     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2357 
2358     if (RealDest == BB)
2359       continue; // Skip self loops.
2360     // Skip if the predecessor's terminator is an indirect branch.
2361     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2362       continue;
2363 
2364     // The dest block might have PHI nodes, other predecessors and other
2365     // difficult cases.  Instead of being smart about this, just insert a new
2366     // block that jumps to the destination block, effectively splitting
2367     // the edge we are about to create.
2368     BasicBlock *EdgeBB =
2369         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2370                            RealDest->getParent(), RealDest);
2371     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2372     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2373 
2374     // Update PHI nodes.
2375     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2376 
2377     // BB may have instructions that are being threaded over.  Clone these
2378     // instructions into EdgeBB.  We know that there will be no uses of the
2379     // cloned instructions outside of EdgeBB.
2380     BasicBlock::iterator InsertPt = EdgeBB->begin();
2381     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2382     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2383       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2384         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2385         continue;
2386       }
2387       // Clone the instruction.
2388       Instruction *N = BBI->clone();
2389       if (BBI->hasName())
2390         N->setName(BBI->getName() + ".c");
2391 
2392       // Update operands due to translation.
2393       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2394         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2395         if (PI != TranslateMap.end())
2396           *i = PI->second;
2397       }
2398 
2399       // Check for trivial simplification.
2400       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2401         if (!BBI->use_empty())
2402           TranslateMap[&*BBI] = V;
2403         if (!N->mayHaveSideEffects()) {
2404           N->deleteValue(); // Instruction folded away, don't need actual inst
2405           N = nullptr;
2406         }
2407       } else {
2408         if (!BBI->use_empty())
2409           TranslateMap[&*BBI] = N;
2410       }
2411       if (N) {
2412         // Insert the new instruction into its new home.
2413         EdgeBB->getInstList().insert(InsertPt, N);
2414 
2415         // Register the new instruction with the assumption cache if necessary.
2416         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2417           AC->registerAssumption(cast<IntrinsicInst>(N));
2418       }
2419     }
2420 
2421     // Loop over all of the edges from PredBB to BB, changing them to branch
2422     // to EdgeBB instead.
2423     Instruction *PredBBTI = PredBB->getTerminator();
2424     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2425       if (PredBBTI->getSuccessor(i) == BB) {
2426         BB->removePredecessor(PredBB);
2427         PredBBTI->setSuccessor(i, EdgeBB);
2428       }
2429 
2430     // Recurse, simplifying any other constants.
2431     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2432   }
2433 
2434   return false;
2435 }
2436 
2437 /// Given a BB that starts with the specified two-entry PHI node,
2438 /// see if we can eliminate it.
2439 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2440                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2441   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2442   // statement", which has a very simple dominance structure.  Basically, we
2443   // are trying to find the condition that is being branched on, which
2444   // subsequently causes this merge to happen.  We really want control
2445   // dependence information for this check, but simplifycfg can't keep it up
2446   // to date, and this catches most of the cases we care about anyway.
2447   BasicBlock *BB = PN->getParent();
2448 
2449   BasicBlock *IfTrue, *IfFalse;
2450   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2451   if (!IfCond ||
2452       // Don't bother if the branch will be constant folded trivially.
2453       isa<ConstantInt>(IfCond))
2454     return false;
2455 
2456   // Okay, we found that we can merge this two-entry phi node into a select.
2457   // Doing so would require us to fold *all* two entry phi nodes in this block.
2458   // At some point this becomes non-profitable (particularly if the target
2459   // doesn't support cmov's).  Only do this transformation if there are two or
2460   // fewer PHI nodes in this block.
2461   unsigned NumPhis = 0;
2462   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2463     if (NumPhis > 2)
2464       return false;
2465 
2466   // Loop over the PHI's seeing if we can promote them all to select
2467   // instructions.  While we are at it, keep track of the instructions
2468   // that need to be moved to the dominating block.
2469   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2470   int BudgetRemaining =
2471       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2472 
2473   bool Changed = false;
2474   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2475     PHINode *PN = cast<PHINode>(II++);
2476     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2477       PN->replaceAllUsesWith(V);
2478       PN->eraseFromParent();
2479       Changed = true;
2480       continue;
2481     }
2482 
2483     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2484                              BudgetRemaining, TTI) ||
2485         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2486                              BudgetRemaining, TTI))
2487       return Changed;
2488   }
2489 
2490   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2491   // we ran out of PHIs then we simplified them all.
2492   PN = dyn_cast<PHINode>(BB->begin());
2493   if (!PN)
2494     return true;
2495 
2496   // Return true if at least one of these is a 'not', and another is either
2497   // a 'not' too, or a constant.
2498   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2499     if (!match(V0, m_Not(m_Value())))
2500       std::swap(V0, V1);
2501     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2502     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2503   };
2504 
2505   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2506   // of the incoming values is an 'not' and another one is freely invertible.
2507   // These can often be turned into switches and other things.
2508   if (PN->getType()->isIntegerTy(1) &&
2509       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2510        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2511        isa<BinaryOperator>(IfCond)) &&
2512       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2513                                  PN->getIncomingValue(1)))
2514     return Changed;
2515 
2516   // If all PHI nodes are promotable, check to make sure that all instructions
2517   // in the predecessor blocks can be promoted as well. If not, we won't be able
2518   // to get rid of the control flow, so it's not worth promoting to select
2519   // instructions.
2520   BasicBlock *DomBlock = nullptr;
2521   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2522   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2523   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2524     IfBlock1 = nullptr;
2525   } else {
2526     DomBlock = *pred_begin(IfBlock1);
2527     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2528       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2529           !isa<PseudoProbeInst>(I)) {
2530         // This is not an aggressive instruction that we can promote.
2531         // Because of this, we won't be able to get rid of the control flow, so
2532         // the xform is not worth it.
2533         return Changed;
2534       }
2535   }
2536 
2537   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2538     IfBlock2 = nullptr;
2539   } else {
2540     DomBlock = *pred_begin(IfBlock2);
2541     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2542       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2543           !isa<PseudoProbeInst>(I)) {
2544         // This is not an aggressive instruction that we can promote.
2545         // Because of this, we won't be able to get rid of the control flow, so
2546         // the xform is not worth it.
2547         return Changed;
2548       }
2549   }
2550   assert(DomBlock && "Failed to find root DomBlock");
2551 
2552   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2553                     << "  T: " << IfTrue->getName()
2554                     << "  F: " << IfFalse->getName() << "\n");
2555 
2556   // If we can still promote the PHI nodes after this gauntlet of tests,
2557   // do all of the PHI's now.
2558   Instruction *InsertPt = DomBlock->getTerminator();
2559   IRBuilder<NoFolder> Builder(InsertPt);
2560 
2561   // Move all 'aggressive' instructions, which are defined in the
2562   // conditional parts of the if's up to the dominating block.
2563   if (IfBlock1)
2564     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2565   if (IfBlock2)
2566     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2567 
2568   // Propagate fast-math-flags from phi nodes to replacement selects.
2569   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2570   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2571     if (isa<FPMathOperator>(PN))
2572       Builder.setFastMathFlags(PN->getFastMathFlags());
2573 
2574     // Change the PHI node into a select instruction.
2575     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2576     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2577 
2578     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2579     PN->replaceAllUsesWith(Sel);
2580     Sel->takeName(PN);
2581     PN->eraseFromParent();
2582   }
2583 
2584   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2585   // has been flattened.  Change DomBlock to jump directly to our new block to
2586   // avoid other simplifycfg's kicking in on the diamond.
2587   Instruction *OldTI = DomBlock->getTerminator();
2588   Builder.SetInsertPoint(OldTI);
2589   Builder.CreateBr(BB);
2590 
2591   SmallVector<DominatorTree::UpdateType, 3> Updates;
2592   if (DTU) {
2593     for (auto *Successor : successors(DomBlock))
2594       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2595     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2596   }
2597 
2598   OldTI->eraseFromParent();
2599   if (DTU)
2600     DTU->applyUpdatesPermissive(Updates);
2601 
2602   return true;
2603 }
2604 
2605 /// If we found a conditional branch that goes to two returning blocks,
2606 /// try to merge them together into one return,
2607 /// introducing a select if the return values disagree.
2608 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2609                                                     IRBuilder<> &Builder) {
2610   auto *BB = BI->getParent();
2611   assert(BI->isConditional() && "Must be a conditional branch");
2612   BasicBlock *TrueSucc = BI->getSuccessor(0);
2613   BasicBlock *FalseSucc = BI->getSuccessor(1);
2614   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2615   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2616 
2617   // Check to ensure both blocks are empty (just a return) or optionally empty
2618   // with PHI nodes.  If there are other instructions, merging would cause extra
2619   // computation on one path or the other.
2620   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2621     return false;
2622   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2623     return false;
2624 
2625   Builder.SetInsertPoint(BI);
2626   // Okay, we found a branch that is going to two return nodes.  If
2627   // there is no return value for this function, just change the
2628   // branch into a return.
2629   if (FalseRet->getNumOperands() == 0) {
2630     TrueSucc->removePredecessor(BB);
2631     FalseSucc->removePredecessor(BB);
2632     Builder.CreateRetVoid();
2633     EraseTerminatorAndDCECond(BI);
2634     if (DTU) {
2635       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, TrueSucc},
2636                                    {DominatorTree::Delete, BB, FalseSucc}});
2637     }
2638     return true;
2639   }
2640 
2641   // Otherwise, figure out what the true and false return values are
2642   // so we can insert a new select instruction.
2643   Value *TrueValue = TrueRet->getReturnValue();
2644   Value *FalseValue = FalseRet->getReturnValue();
2645 
2646   // Unwrap any PHI nodes in the return blocks.
2647   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2648     if (TVPN->getParent() == TrueSucc)
2649       TrueValue = TVPN->getIncomingValueForBlock(BB);
2650   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2651     if (FVPN->getParent() == FalseSucc)
2652       FalseValue = FVPN->getIncomingValueForBlock(BB);
2653 
2654   // In order for this transformation to be safe, we must be able to
2655   // unconditionally execute both operands to the return.  This is
2656   // normally the case, but we could have a potentially-trapping
2657   // constant expression that prevents this transformation from being
2658   // safe.
2659   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2660     if (TCV->canTrap())
2661       return false;
2662   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2663     if (FCV->canTrap())
2664       return false;
2665 
2666   // Okay, we collected all the mapped values and checked them for sanity, and
2667   // defined to really do this transformation.  First, update the CFG.
2668   TrueSucc->removePredecessor(BB);
2669   FalseSucc->removePredecessor(BB);
2670 
2671   // Insert select instructions where needed.
2672   Value *BrCond = BI->getCondition();
2673   if (TrueValue) {
2674     // Insert a select if the results differ.
2675     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2676     } else if (isa<UndefValue>(TrueValue)) {
2677       TrueValue = FalseValue;
2678     } else {
2679       TrueValue =
2680           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2681     }
2682   }
2683 
2684   Value *RI =
2685       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2686 
2687   (void)RI;
2688 
2689   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2690                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2691                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2692 
2693   EraseTerminatorAndDCECond(BI);
2694 
2695   if (DTU) {
2696     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, TrueSucc},
2697                                  {DominatorTree::Delete, BB, FalseSucc}});
2698   }
2699 
2700   return true;
2701 }
2702 
2703 /// Return true if the given instruction is available
2704 /// in its predecessor block. If yes, the instruction will be removed.
2705 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2706   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2707     return false;
2708   for (Instruction &I : *PB) {
2709     Instruction *PBI = &I;
2710     // Check whether Inst and PBI generate the same value.
2711     if (Inst->isIdenticalTo(PBI)) {
2712       Inst->replaceAllUsesWith(PBI);
2713       Inst->eraseFromParent();
2714       return true;
2715     }
2716   }
2717   return false;
2718 }
2719 
2720 /// Return true if either PBI or BI has branch weight available, and store
2721 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2722 /// not have branch weight, use 1:1 as its weight.
2723 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2724                                    uint64_t &PredTrueWeight,
2725                                    uint64_t &PredFalseWeight,
2726                                    uint64_t &SuccTrueWeight,
2727                                    uint64_t &SuccFalseWeight) {
2728   bool PredHasWeights =
2729       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2730   bool SuccHasWeights =
2731       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2732   if (PredHasWeights || SuccHasWeights) {
2733     if (!PredHasWeights)
2734       PredTrueWeight = PredFalseWeight = 1;
2735     if (!SuccHasWeights)
2736       SuccTrueWeight = SuccFalseWeight = 1;
2737     return true;
2738   } else {
2739     return false;
2740   }
2741 }
2742 
2743 /// If this basic block is simple enough, and if a predecessor branches to us
2744 /// and one of our successors, fold the block into the predecessor and use
2745 /// logical operations to pick the right destination.
2746 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
2747                                   MemorySSAUpdater *MSSAU,
2748                                   const TargetTransformInfo *TTI,
2749                                   unsigned BonusInstThreshold) {
2750   BasicBlock *BB = BI->getParent();
2751 
2752   const unsigned PredCount = pred_size(BB);
2753 
2754   bool Changed = false;
2755 
2756   auto _ = make_scope_exit([&]() {
2757     if (Changed)
2758       ++NumFoldBranchToCommonDest;
2759   });
2760 
2761   TargetTransformInfo::TargetCostKind CostKind =
2762     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
2763                                   : TargetTransformInfo::TCK_SizeAndLatency;
2764 
2765   Instruction *Cond = nullptr;
2766   if (BI->isConditional())
2767     Cond = dyn_cast<Instruction>(BI->getCondition());
2768   else {
2769     // For unconditional branch, check for a simple CFG pattern, where
2770     // BB has a single predecessor and BB's successor is also its predecessor's
2771     // successor. If such pattern exists, check for CSE between BB and its
2772     // predecessor.
2773     if (BasicBlock *PB = BB->getSinglePredecessor())
2774       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2775         if (PBI->isConditional() &&
2776             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2777              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2778           for (auto I = BB->instructionsWithoutDebug().begin(),
2779                     E = BB->instructionsWithoutDebug().end();
2780                I != E;) {
2781             Instruction *Curr = &*I++;
2782             if (isa<CmpInst>(Curr)) {
2783               Cond = Curr;
2784               break;
2785             }
2786             // Quit if we can't remove this instruction.
2787             if (!tryCSEWithPredecessor(Curr, PB))
2788               return Changed;
2789             Changed = true;
2790           }
2791         }
2792 
2793     if (!Cond)
2794       return Changed;
2795   }
2796 
2797   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2798       Cond->getParent() != BB || !Cond->hasOneUse())
2799     return Changed;
2800 
2801   // Only allow this transformation if computing the condition doesn't involve
2802   // too many instructions and these involved instructions can be executed
2803   // unconditionally. We denote all involved instructions except the condition
2804   // as "bonus instructions", and only allow this transformation when the
2805   // number of the bonus instructions we'll need to create when cloning into
2806   // each predecessor does not exceed a certain threshold.
2807   unsigned NumBonusInsts = 0;
2808   for (Instruction &I : *BB) {
2809     // Don't check the branch condition comparison itself.
2810     if (&I == Cond)
2811       continue;
2812     // Ignore dbg intrinsics, and the terminator.
2813     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
2814       continue;
2815     // I must be safe to execute unconditionally.
2816     if (!isSafeToSpeculativelyExecute(&I))
2817       return Changed;
2818 
2819     // Account for the cost of duplicating this instruction into each
2820     // predecessor.
2821     NumBonusInsts += PredCount;
2822     // Early exits once we reach the limit.
2823     if (NumBonusInsts > BonusInstThreshold)
2824       return Changed;
2825   }
2826 
2827   // Also, for now, all liveout uses of bonus instructions must be in PHI nodes
2828   // in successor blocks as incoming values from the bonus instructions's block,
2829   // otherwise we'll fail to update them.
2830   // FIXME: We could lift this restriction, but we need to form PHI nodes and
2831   // rewrite offending uses, but we can't do that without having a domtree.
2832   if (any_of(*BB, [BB](Instruction &I) {
2833         return any_of(I.uses(), [BB](Use &U) {
2834           auto *User = cast<Instruction>(U.getUser());
2835           if (User->getParent() == BB)
2836             return false; // Not an external use.
2837           auto *PN = dyn_cast<PHINode>(User);
2838           return !PN || PN->getIncomingBlock(U) != BB;
2839         });
2840       }))
2841     return Changed;
2842 
2843   // Cond is known to be a compare or binary operator.  Check to make sure that
2844   // neither operand is a potentially-trapping constant expression.
2845   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2846     if (CE->canTrap())
2847       return Changed;
2848   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2849     if (CE->canTrap())
2850       return Changed;
2851 
2852   // Finally, don't infinitely unroll conditional loops.
2853   BasicBlock *TrueDest = BI->getSuccessor(0);
2854   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2855   if (TrueDest == BB || FalseDest == BB)
2856     return Changed;
2857 
2858   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2859     BasicBlock *PredBlock = *PI;
2860     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2861 
2862     // Check that we have two conditional branches.  If there is a PHI node in
2863     // the common successor, verify that the same value flows in from both
2864     // blocks.
2865     SmallVector<PHINode *, 4> PHIs;
2866     if (!PBI || PBI->isUnconditional() ||
2867         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2868         (!BI->isConditional() &&
2869          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2870       continue;
2871 
2872     // Determine if the two branches share a common destination.
2873     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2874     bool InvertPredCond = false;
2875 
2876     if (BI->isConditional()) {
2877       if (PBI->getSuccessor(0) == TrueDest) {
2878         Opc = Instruction::Or;
2879       } else if (PBI->getSuccessor(1) == FalseDest) {
2880         Opc = Instruction::And;
2881       } else if (PBI->getSuccessor(0) == FalseDest) {
2882         Opc = Instruction::And;
2883         InvertPredCond = true;
2884       } else if (PBI->getSuccessor(1) == TrueDest) {
2885         Opc = Instruction::Or;
2886         InvertPredCond = true;
2887       } else {
2888         continue;
2889       }
2890     } else {
2891       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2892         continue;
2893     }
2894 
2895     // Check the cost of inserting the necessary logic before performing the
2896     // transformation.
2897     if (TTI && Opc != Instruction::BinaryOpsEnd) {
2898       Type *Ty = BI->getCondition()->getType();
2899       unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
2900       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
2901           !isa<CmpInst>(PBI->getCondition())))
2902         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
2903 
2904       if (Cost > BranchFoldThreshold)
2905         continue;
2906     }
2907 
2908     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2909     Changed = true;
2910 
2911     SmallVector<DominatorTree::UpdateType, 3> Updates;
2912 
2913     IRBuilder<> Builder(PBI);
2914     // The builder is used to create instructions to eliminate the branch in BB.
2915     // If BB's terminator has !annotation metadata, add it to the new
2916     // instructions.
2917     Builder.CollectMetadataToCopy(BB->getTerminator(),
2918                                   {LLVMContext::MD_annotation});
2919 
2920     // If we need to invert the condition in the pred block to match, do so now.
2921     if (InvertPredCond) {
2922       Value *NewCond = PBI->getCondition();
2923       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2924         CmpInst *CI = cast<CmpInst>(NewCond);
2925         CI->setPredicate(CI->getInversePredicate());
2926       } else {
2927         NewCond =
2928             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2929       }
2930 
2931       PBI->setCondition(NewCond);
2932       PBI->swapSuccessors();
2933     }
2934 
2935     BasicBlock *UniqueSucc =
2936         BI->isConditional()
2937             ? (PBI->getSuccessor(0) == BB ? TrueDest : FalseDest)
2938             : TrueDest;
2939 
2940     // Before cloning instructions, notify the successor basic block that it
2941     // is about to have a new predecessor. This will update PHI nodes,
2942     // which will allow us to update live-out uses of bonus instructions.
2943     if (BI->isConditional())
2944       AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
2945 
2946     // If we have bonus instructions, clone them into the predecessor block.
2947     // Note that there may be multiple predecessor blocks, so we cannot move
2948     // bonus instructions to a predecessor block.
2949     ValueToValueMapTy VMap; // maps original values to cloned values
2950     Instruction *CondInPred;
2951     for (Instruction &BonusInst : *BB) {
2952       if (isa<DbgInfoIntrinsic>(BonusInst) || isa<BranchInst>(BonusInst))
2953         continue;
2954 
2955       Instruction *NewBonusInst = BonusInst.clone();
2956 
2957       if (&BonusInst == Cond)
2958         CondInPred = NewBonusInst;
2959 
2960       // When we fold the bonus instructions we want to make sure we
2961       // reset their debug locations in order to avoid stepping on dead
2962       // code caused by folding dead branches.
2963       NewBonusInst->setDebugLoc(DebugLoc());
2964 
2965       RemapInstruction(NewBonusInst, VMap,
2966                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2967       VMap[&BonusInst] = NewBonusInst;
2968 
2969       // If we moved a load, we cannot any longer claim any knowledge about
2970       // its potential value. The previous information might have been valid
2971       // only given the branch precondition.
2972       // For an analogous reason, we must also drop all the metadata whose
2973       // semantics we don't understand. We *can* preserve !annotation, because
2974       // it is tied to the instruction itself, not the value or position.
2975       NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
2976 
2977       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2978       NewBonusInst->takeName(&BonusInst);
2979       BonusInst.setName(BonusInst.getName() + ".old");
2980       BonusInst.replaceUsesWithIf(
2981           NewBonusInst, [BB, BI, UniqueSucc, PredBlock](Use &U) {
2982             auto *User = cast<Instruction>(U.getUser());
2983             // Ignore non-external uses of bonus instructions.
2984             if (User->getParent() == BB) {
2985               assert(!isa<PHINode>(User) &&
2986                      "Non-external users are never PHI instructions.");
2987               return false;
2988             }
2989             (void)BI;
2990             assert(isa<PHINode>(User) && "All external users must be PHI's.");
2991             auto *PN = cast<PHINode>(User);
2992             assert(is_contained(successors(BB), User->getParent()) &&
2993                    "All external users must be in successors of BB.");
2994             assert((PN->getIncomingBlock(U) == BB ||
2995                     PN->getIncomingBlock(U) == PredBlock) &&
2996                    "The incoming block for that incoming value external use "
2997                    "must be either the original block with bonus instructions, "
2998                    "or the new predecessor block.");
2999             // UniqueSucc is the block for which we change it's predecessors,
3000             // so it is the only block in which we'll need to update PHI nodes.
3001             if (User->getParent() != UniqueSucc)
3002               return false;
3003             // Update the incoming value for the new predecessor.
3004             return PN->getIncomingBlock(U) ==
3005                    (BI->isConditional() ? PredBlock : BB);
3006           });
3007     }
3008 
3009     // Now that the Cond was cloned into the predecessor basic block,
3010     // or/and the two conditions together.
3011     if (BI->isConditional()) {
3012       Instruction *NewCond = cast<Instruction>(
3013           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
3014       PBI->setCondition(NewCond);
3015 
3016       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3017       bool HasWeights =
3018           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3019                                  SuccTrueWeight, SuccFalseWeight);
3020       SmallVector<uint64_t, 8> NewWeights;
3021 
3022       if (PBI->getSuccessor(0) == BB) {
3023         if (HasWeights) {
3024           // PBI: br i1 %x, BB, FalseDest
3025           // BI:  br i1 %y, UniqueSucc, FalseDest
3026           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3027           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3028           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3029           //               TrueWeight for PBI * FalseWeight for BI.
3030           // We assume that total weights of a BranchInst can fit into 32 bits.
3031           // Therefore, we will not have overflow using 64-bit arithmetic.
3032           NewWeights.push_back(PredFalseWeight *
3033                                    (SuccFalseWeight + SuccTrueWeight) +
3034                                PredTrueWeight * SuccFalseWeight);
3035         }
3036         PBI->setSuccessor(0, UniqueSucc);
3037       }
3038       if (PBI->getSuccessor(1) == BB) {
3039         if (HasWeights) {
3040           // PBI: br i1 %x, TrueDest, BB
3041           // BI:  br i1 %y, TrueDest, UniqueSucc
3042           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3043           //              FalseWeight for PBI * TrueWeight for BI.
3044           NewWeights.push_back(PredTrueWeight *
3045                                    (SuccFalseWeight + SuccTrueWeight) +
3046                                PredFalseWeight * SuccTrueWeight);
3047           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3048           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3049         }
3050         PBI->setSuccessor(1, UniqueSucc);
3051       }
3052       if (NewWeights.size() == 2) {
3053         // Halve the weights if any of them cannot fit in an uint32_t
3054         FitWeights(NewWeights);
3055 
3056         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
3057                                            NewWeights.end());
3058         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3059       } else
3060         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3061 
3062       Updates.push_back({DominatorTree::Delete, PredBlock, BB});
3063       Updates.push_back({DominatorTree::Insert, PredBlock, UniqueSucc});
3064     } else {
3065       // Update PHI nodes in the common successors.
3066       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
3067         ConstantInt *PBI_C = cast<ConstantInt>(
3068             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
3069         assert(PBI_C->getType()->isIntegerTy(1));
3070         Instruction *MergedCond = nullptr;
3071         if (PBI->getSuccessor(0) == UniqueSucc) {
3072           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
3073           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
3074           //       is false: !PBI_Cond and BI_Value
3075           Instruction *NotCond = cast<Instruction>(
3076               Builder.CreateNot(PBI->getCondition(), "not.cond"));
3077           MergedCond = cast<Instruction>(
3078                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
3079                                    "and.cond"));
3080           if (PBI_C->isOne())
3081             MergedCond = cast<Instruction>(Builder.CreateBinOp(
3082                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
3083         } else {
3084           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
3085           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
3086           //       is false: PBI_Cond and BI_Value
3087           MergedCond = cast<Instruction>(Builder.CreateBinOp(
3088               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
3089           if (PBI_C->isOne()) {
3090             Instruction *NotCond = cast<Instruction>(
3091                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
3092             MergedCond = cast<Instruction>(Builder.CreateBinOp(
3093                 Instruction::Or, NotCond, MergedCond, "or.cond"));
3094           }
3095         }
3096         // Update PHI Node.
3097 	PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
3098       }
3099 
3100       // PBI is changed to branch to UniqueSucc below. Remove itself from
3101       // potential phis from all other successors.
3102       if (MSSAU)
3103         MSSAU->changeCondBranchToUnconditionalTo(PBI, UniqueSucc);
3104 
3105       // Change PBI from Conditional to Unconditional.
3106       BranchInst *New_PBI = BranchInst::Create(UniqueSucc, PBI);
3107       EraseTerminatorAndDCECond(PBI, MSSAU);
3108       PBI = New_PBI;
3109     }
3110 
3111     if (DTU)
3112       DTU->applyUpdatesPermissive(Updates);
3113 
3114     // If BI was a loop latch, it may have had associated loop metadata.
3115     // We need to copy it to the new latch, that is, PBI.
3116     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3117       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3118 
3119     // TODO: If BB is reachable from all paths through PredBlock, then we
3120     // could replace PBI's branch probabilities with BI's.
3121 
3122     // Copy any debug value intrinsics into the end of PredBlock.
3123     for (Instruction &I : *BB) {
3124       if (isa<DbgInfoIntrinsic>(I)) {
3125         Instruction *NewI = I.clone();
3126         RemapInstruction(NewI, VMap,
3127                          RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3128         NewI->insertBefore(PBI);
3129       }
3130     }
3131 
3132     return Changed;
3133   }
3134   return Changed;
3135 }
3136 
3137 // If there is only one store in BB1 and BB2, return it, otherwise return
3138 // nullptr.
3139 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3140   StoreInst *S = nullptr;
3141   for (auto *BB : {BB1, BB2}) {
3142     if (!BB)
3143       continue;
3144     for (auto &I : *BB)
3145       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3146         if (S)
3147           // Multiple stores seen.
3148           return nullptr;
3149         else
3150           S = SI;
3151       }
3152   }
3153   return S;
3154 }
3155 
3156 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3157                                               Value *AlternativeV = nullptr) {
3158   // PHI is going to be a PHI node that allows the value V that is defined in
3159   // BB to be referenced in BB's only successor.
3160   //
3161   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3162   // doesn't matter to us what the other operand is (it'll never get used). We
3163   // could just create a new PHI with an undef incoming value, but that could
3164   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3165   // other PHI. So here we directly look for some PHI in BB's successor with V
3166   // as an incoming operand. If we find one, we use it, else we create a new
3167   // one.
3168   //
3169   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3170   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3171   // where OtherBB is the single other predecessor of BB's only successor.
3172   PHINode *PHI = nullptr;
3173   BasicBlock *Succ = BB->getSingleSuccessor();
3174 
3175   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3176     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3177       PHI = cast<PHINode>(I);
3178       if (!AlternativeV)
3179         break;
3180 
3181       assert(Succ->hasNPredecessors(2));
3182       auto PredI = pred_begin(Succ);
3183       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3184       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3185         break;
3186       PHI = nullptr;
3187     }
3188   if (PHI)
3189     return PHI;
3190 
3191   // If V is not an instruction defined in BB, just return it.
3192   if (!AlternativeV &&
3193       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3194     return V;
3195 
3196   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3197   PHI->addIncoming(V, BB);
3198   for (BasicBlock *PredBB : predecessors(Succ))
3199     if (PredBB != BB)
3200       PHI->addIncoming(
3201           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3202   return PHI;
3203 }
3204 
3205 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
3206                                            BasicBlock *QTB, BasicBlock *QFB,
3207                                            BasicBlock *PostBB, Value *Address,
3208                                            bool InvertPCond, bool InvertQCond,
3209                                            const DataLayout &DL,
3210                                            const TargetTransformInfo &TTI) {
3211   // For every pointer, there must be exactly two stores, one coming from
3212   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3213   // store (to any address) in PTB,PFB or QTB,QFB.
3214   // FIXME: We could relax this restriction with a bit more work and performance
3215   // testing.
3216   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3217   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3218   if (!PStore || !QStore)
3219     return false;
3220 
3221   // Now check the stores are compatible.
3222   if (!QStore->isUnordered() || !PStore->isUnordered())
3223     return false;
3224 
3225   // Check that sinking the store won't cause program behavior changes. Sinking
3226   // the store out of the Q blocks won't change any behavior as we're sinking
3227   // from a block to its unconditional successor. But we're moving a store from
3228   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3229   // So we need to check that there are no aliasing loads or stores in
3230   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3231   // operations between PStore and the end of its parent block.
3232   //
3233   // The ideal way to do this is to query AliasAnalysis, but we don't
3234   // preserve AA currently so that is dangerous. Be super safe and just
3235   // check there are no other memory operations at all.
3236   for (auto &I : *QFB->getSinglePredecessor())
3237     if (I.mayReadOrWriteMemory())
3238       return false;
3239   for (auto &I : *QFB)
3240     if (&I != QStore && I.mayReadOrWriteMemory())
3241       return false;
3242   if (QTB)
3243     for (auto &I : *QTB)
3244       if (&I != QStore && I.mayReadOrWriteMemory())
3245         return false;
3246   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3247        I != E; ++I)
3248     if (&*I != PStore && I->mayReadOrWriteMemory())
3249       return false;
3250 
3251   // If we're not in aggressive mode, we only optimize if we have some
3252   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3253   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3254     if (!BB)
3255       return true;
3256     // Heuristic: if the block can be if-converted/phi-folded and the
3257     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3258     // thread this store.
3259     int BudgetRemaining =
3260         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3261     for (auto &I : BB->instructionsWithoutDebug()) {
3262       // Consider terminator instruction to be free.
3263       if (I.isTerminator())
3264         continue;
3265       // If this is one the stores that we want to speculate out of this BB,
3266       // then don't count it's cost, consider it to be free.
3267       if (auto *S = dyn_cast<StoreInst>(&I))
3268         if (llvm::find(FreeStores, S))
3269           continue;
3270       // Else, we have a white-list of instructions that we are ak speculating.
3271       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3272         return false; // Not in white-list - not worthwhile folding.
3273       // And finally, if this is a non-free instruction that we are okay
3274       // speculating, ensure that we consider the speculation budget.
3275       BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3276       if (BudgetRemaining < 0)
3277         return false; // Eagerly refuse to fold as soon as we're out of budget.
3278     }
3279     assert(BudgetRemaining >= 0 &&
3280            "When we run out of budget we will eagerly return from within the "
3281            "per-instruction loop.");
3282     return true;
3283   };
3284 
3285   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3286   if (!MergeCondStoresAggressively &&
3287       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3288        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3289     return false;
3290 
3291   // If PostBB has more than two predecessors, we need to split it so we can
3292   // sink the store.
3293   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3294     // We know that QFB's only successor is PostBB. And QFB has a single
3295     // predecessor. If QTB exists, then its only successor is also PostBB.
3296     // If QTB does not exist, then QFB's only predecessor has a conditional
3297     // branch to QFB and PostBB.
3298     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3299     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3300                                                "condstore.split");
3301     if (!NewBB)
3302       return false;
3303     PostBB = NewBB;
3304   }
3305 
3306   // OK, we're going to sink the stores to PostBB. The store has to be
3307   // conditional though, so first create the predicate.
3308   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3309                      ->getCondition();
3310   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3311                      ->getCondition();
3312 
3313   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3314                                                 PStore->getParent());
3315   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3316                                                 QStore->getParent(), PPHI);
3317 
3318   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3319 
3320   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3321   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3322 
3323   if (InvertPCond)
3324     PPred = QB.CreateNot(PPred);
3325   if (InvertQCond)
3326     QPred = QB.CreateNot(QPred);
3327   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3328 
3329   auto *T =
3330       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3331   QB.SetInsertPoint(T);
3332   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3333   AAMDNodes AAMD;
3334   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3335   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3336   SI->setAAMetadata(AAMD);
3337   // Choose the minimum alignment. If we could prove both stores execute, we
3338   // could use biggest one.  In this case, though, we only know that one of the
3339   // stores executes.  And we don't know it's safe to take the alignment from a
3340   // store that doesn't execute.
3341   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3342 
3343   QStore->eraseFromParent();
3344   PStore->eraseFromParent();
3345 
3346   return true;
3347 }
3348 
3349 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3350                                    const DataLayout &DL,
3351                                    const TargetTransformInfo &TTI) {
3352   // The intention here is to find diamonds or triangles (see below) where each
3353   // conditional block contains a store to the same address. Both of these
3354   // stores are conditional, so they can't be unconditionally sunk. But it may
3355   // be profitable to speculatively sink the stores into one merged store at the
3356   // end, and predicate the merged store on the union of the two conditions of
3357   // PBI and QBI.
3358   //
3359   // This can reduce the number of stores executed if both of the conditions are
3360   // true, and can allow the blocks to become small enough to be if-converted.
3361   // This optimization will also chain, so that ladders of test-and-set
3362   // sequences can be if-converted away.
3363   //
3364   // We only deal with simple diamonds or triangles:
3365   //
3366   //     PBI       or      PBI        or a combination of the two
3367   //    /   \               | \
3368   //   PTB  PFB             |  PFB
3369   //    \   /               | /
3370   //     QBI                QBI
3371   //    /  \                | \
3372   //   QTB  QFB             |  QFB
3373   //    \  /                | /
3374   //    PostBB            PostBB
3375   //
3376   // We model triangles as a type of diamond with a nullptr "true" block.
3377   // Triangles are canonicalized so that the fallthrough edge is represented by
3378   // a true condition, as in the diagram above.
3379   BasicBlock *PTB = PBI->getSuccessor(0);
3380   BasicBlock *PFB = PBI->getSuccessor(1);
3381   BasicBlock *QTB = QBI->getSuccessor(0);
3382   BasicBlock *QFB = QBI->getSuccessor(1);
3383   BasicBlock *PostBB = QFB->getSingleSuccessor();
3384 
3385   // Make sure we have a good guess for PostBB. If QTB's only successor is
3386   // QFB, then QFB is a better PostBB.
3387   if (QTB->getSingleSuccessor() == QFB)
3388     PostBB = QFB;
3389 
3390   // If we couldn't find a good PostBB, stop.
3391   if (!PostBB)
3392     return false;
3393 
3394   bool InvertPCond = false, InvertQCond = false;
3395   // Canonicalize fallthroughs to the true branches.
3396   if (PFB == QBI->getParent()) {
3397     std::swap(PFB, PTB);
3398     InvertPCond = true;
3399   }
3400   if (QFB == PostBB) {
3401     std::swap(QFB, QTB);
3402     InvertQCond = true;
3403   }
3404 
3405   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3406   // and QFB may not. Model fallthroughs as a nullptr block.
3407   if (PTB == QBI->getParent())
3408     PTB = nullptr;
3409   if (QTB == PostBB)
3410     QTB = nullptr;
3411 
3412   // Legality bailouts. We must have at least the non-fallthrough blocks and
3413   // the post-dominating block, and the non-fallthroughs must only have one
3414   // predecessor.
3415   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3416     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3417   };
3418   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3419       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3420     return false;
3421   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3422       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3423     return false;
3424   if (!QBI->getParent()->hasNUses(2))
3425     return false;
3426 
3427   // OK, this is a sequence of two diamonds or triangles.
3428   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3429   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3430   for (auto *BB : {PTB, PFB}) {
3431     if (!BB)
3432       continue;
3433     for (auto &I : *BB)
3434       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3435         PStoreAddresses.insert(SI->getPointerOperand());
3436   }
3437   for (auto *BB : {QTB, QFB}) {
3438     if (!BB)
3439       continue;
3440     for (auto &I : *BB)
3441       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3442         QStoreAddresses.insert(SI->getPointerOperand());
3443   }
3444 
3445   set_intersect(PStoreAddresses, QStoreAddresses);
3446   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3447   // clear what it contains.
3448   auto &CommonAddresses = PStoreAddresses;
3449 
3450   bool Changed = false;
3451   for (auto *Address : CommonAddresses)
3452     Changed |= mergeConditionalStoreToAddress(
3453         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI);
3454   return Changed;
3455 }
3456 
3457 
3458 /// If the previous block ended with a widenable branch, determine if reusing
3459 /// the target block is profitable and legal.  This will have the effect of
3460 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3461 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
3462   // TODO: This can be generalized in two important ways:
3463   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3464   //    values from the PBI edge.
3465   // 2) We can sink side effecting instructions into BI's fallthrough
3466   //    successor provided they doesn't contribute to computation of
3467   //    BI's condition.
3468   Value *CondWB, *WC;
3469   BasicBlock *IfTrueBB, *IfFalseBB;
3470   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3471       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3472     return false;
3473   if (!IfFalseBB->phis().empty())
3474     return false; // TODO
3475   // Use lambda to lazily compute expensive condition after cheap ones.
3476   auto NoSideEffects = [](BasicBlock &BB) {
3477     return !llvm::any_of(BB, [](const Instruction &I) {
3478         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3479       });
3480   };
3481   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3482       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3483       NoSideEffects(*BI->getParent())) {
3484     BI->getSuccessor(1)->removePredecessor(BI->getParent());
3485     BI->setSuccessor(1, IfFalseBB);
3486     return true;
3487   }
3488   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3489       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3490       NoSideEffects(*BI->getParent())) {
3491     BI->getSuccessor(0)->removePredecessor(BI->getParent());
3492     BI->setSuccessor(0, IfFalseBB);
3493     return true;
3494   }
3495   return false;
3496 }
3497 
3498 /// If we have a conditional branch as a predecessor of another block,
3499 /// this function tries to simplify it.  We know
3500 /// that PBI and BI are both conditional branches, and BI is in one of the
3501 /// successor blocks of PBI - PBI branches to BI.
3502 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3503                                            const DataLayout &DL,
3504                                            const TargetTransformInfo &TTI) {
3505   assert(PBI->isConditional() && BI->isConditional());
3506   BasicBlock *BB = BI->getParent();
3507 
3508   // If this block ends with a branch instruction, and if there is a
3509   // predecessor that ends on a branch of the same condition, make
3510   // this conditional branch redundant.
3511   if (PBI->getCondition() == BI->getCondition() &&
3512       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3513     // Okay, the outcome of this conditional branch is statically
3514     // knowable.  If this block had a single pred, handle specially.
3515     if (BB->getSinglePredecessor()) {
3516       // Turn this into a branch on constant.
3517       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3518       BI->setCondition(
3519           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3520       return true; // Nuke the branch on constant.
3521     }
3522 
3523     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3524     // in the constant and simplify the block result.  Subsequent passes of
3525     // simplifycfg will thread the block.
3526     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3527       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3528       PHINode *NewPN = PHINode::Create(
3529           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3530           BI->getCondition()->getName() + ".pr", &BB->front());
3531       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3532       // predecessor, compute the PHI'd conditional value for all of the preds.
3533       // Any predecessor where the condition is not computable we keep symbolic.
3534       for (pred_iterator PI = PB; PI != PE; ++PI) {
3535         BasicBlock *P = *PI;
3536         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3537             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3538             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3539           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3540           NewPN->addIncoming(
3541               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3542               P);
3543         } else {
3544           NewPN->addIncoming(BI->getCondition(), P);
3545         }
3546       }
3547 
3548       BI->setCondition(NewPN);
3549       return true;
3550     }
3551   }
3552 
3553   // If the previous block ended with a widenable branch, determine if reusing
3554   // the target block is profitable and legal.  This will have the effect of
3555   // "widening" PBI, but doesn't require us to reason about hosting safety.
3556   if (tryWidenCondBranchToCondBranch(PBI, BI))
3557     return true;
3558 
3559   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3560     if (CE->canTrap())
3561       return false;
3562 
3563   // If both branches are conditional and both contain stores to the same
3564   // address, remove the stores from the conditionals and create a conditional
3565   // merged store at the end.
3566   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI))
3567     return true;
3568 
3569   // If this is a conditional branch in an empty block, and if any
3570   // predecessors are a conditional branch to one of our destinations,
3571   // fold the conditions into logical ops and one cond br.
3572 
3573   // Ignore dbg intrinsics.
3574   if (&*BB->instructionsWithoutDebug().begin() != BI)
3575     return false;
3576 
3577   int PBIOp, BIOp;
3578   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3579     PBIOp = 0;
3580     BIOp = 0;
3581   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3582     PBIOp = 0;
3583     BIOp = 1;
3584   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3585     PBIOp = 1;
3586     BIOp = 0;
3587   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3588     PBIOp = 1;
3589     BIOp = 1;
3590   } else {
3591     return false;
3592   }
3593 
3594   // Check to make sure that the other destination of this branch
3595   // isn't BB itself.  If so, this is an infinite loop that will
3596   // keep getting unwound.
3597   if (PBI->getSuccessor(PBIOp) == BB)
3598     return false;
3599 
3600   // Do not perform this transformation if it would require
3601   // insertion of a large number of select instructions. For targets
3602   // without predication/cmovs, this is a big pessimization.
3603 
3604   // Also do not perform this transformation if any phi node in the common
3605   // destination block can trap when reached by BB or PBB (PR17073). In that
3606   // case, it would be unsafe to hoist the operation into a select instruction.
3607 
3608   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3609   unsigned NumPhis = 0;
3610   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3611        ++II, ++NumPhis) {
3612     if (NumPhis > 2) // Disable this xform.
3613       return false;
3614 
3615     PHINode *PN = cast<PHINode>(II);
3616     Value *BIV = PN->getIncomingValueForBlock(BB);
3617     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3618       if (CE->canTrap())
3619         return false;
3620 
3621     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3622     Value *PBIV = PN->getIncomingValue(PBBIdx);
3623     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3624       if (CE->canTrap())
3625         return false;
3626   }
3627 
3628   // Finally, if everything is ok, fold the branches to logical ops.
3629   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3630 
3631   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3632                     << "AND: " << *BI->getParent());
3633 
3634   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3635   // branch in it, where one edge (OtherDest) goes back to itself but the other
3636   // exits.  We don't *know* that the program avoids the infinite loop
3637   // (even though that seems likely).  If we do this xform naively, we'll end up
3638   // recursively unpeeling the loop.  Since we know that (after the xform is
3639   // done) that the block *is* infinite if reached, we just make it an obviously
3640   // infinite loop with no cond branch.
3641   if (OtherDest == BB) {
3642     // Insert it at the end of the function, because it's either code,
3643     // or it won't matter if it's hot. :)
3644     BasicBlock *InfLoopBlock =
3645         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3646     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3647     OtherDest = InfLoopBlock;
3648   }
3649 
3650   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3651 
3652   // BI may have other predecessors.  Because of this, we leave
3653   // it alone, but modify PBI.
3654 
3655   // Make sure we get to CommonDest on True&True directions.
3656   Value *PBICond = PBI->getCondition();
3657   IRBuilder<NoFolder> Builder(PBI);
3658   if (PBIOp)
3659     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3660 
3661   Value *BICond = BI->getCondition();
3662   if (BIOp)
3663     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3664 
3665   // Merge the conditions.
3666   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3667 
3668   // Modify PBI to branch on the new condition to the new dests.
3669   PBI->setCondition(Cond);
3670   PBI->setSuccessor(0, CommonDest);
3671   PBI->setSuccessor(1, OtherDest);
3672 
3673   // Update branch weight for PBI.
3674   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3675   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3676   bool HasWeights =
3677       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3678                              SuccTrueWeight, SuccFalseWeight);
3679   if (HasWeights) {
3680     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3681     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3682     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3683     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3684     // The weight to CommonDest should be PredCommon * SuccTotal +
3685     //                                    PredOther * SuccCommon.
3686     // The weight to OtherDest should be PredOther * SuccOther.
3687     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3688                                   PredOther * SuccCommon,
3689                               PredOther * SuccOther};
3690     // Halve the weights if any of them cannot fit in an uint32_t
3691     FitWeights(NewWeights);
3692 
3693     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3694   }
3695 
3696   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3697   // block that are identical to the entries for BI's block.
3698   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3699 
3700   // We know that the CommonDest already had an edge from PBI to
3701   // it.  If it has PHIs though, the PHIs may have different
3702   // entries for BB and PBI's BB.  If so, insert a select to make
3703   // them agree.
3704   for (PHINode &PN : CommonDest->phis()) {
3705     Value *BIV = PN.getIncomingValueForBlock(BB);
3706     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3707     Value *PBIV = PN.getIncomingValue(PBBIdx);
3708     if (BIV != PBIV) {
3709       // Insert a select in PBI to pick the right value.
3710       SelectInst *NV = cast<SelectInst>(
3711           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3712       PN.setIncomingValue(PBBIdx, NV);
3713       // Although the select has the same condition as PBI, the original branch
3714       // weights for PBI do not apply to the new select because the select's
3715       // 'logical' edges are incoming edges of the phi that is eliminated, not
3716       // the outgoing edges of PBI.
3717       if (HasWeights) {
3718         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3719         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3720         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3721         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3722         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3723         // The weight to PredOtherDest should be PredOther * SuccCommon.
3724         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3725                                   PredOther * SuccCommon};
3726 
3727         FitWeights(NewWeights);
3728 
3729         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3730       }
3731     }
3732   }
3733 
3734   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3735   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3736 
3737   // This basic block is probably dead.  We know it has at least
3738   // one fewer predecessor.
3739   return true;
3740 }
3741 
3742 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3743 // true or to FalseBB if Cond is false.
3744 // Takes care of updating the successors and removing the old terminator.
3745 // Also makes sure not to introduce new successors by assuming that edges to
3746 // non-successor TrueBBs and FalseBBs aren't reachable.
3747 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3748                                                 Value *Cond, BasicBlock *TrueBB,
3749                                                 BasicBlock *FalseBB,
3750                                                 uint32_t TrueWeight,
3751                                                 uint32_t FalseWeight) {
3752   // Remove any superfluous successor edges from the CFG.
3753   // First, figure out which successors to preserve.
3754   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3755   // successor.
3756   BasicBlock *KeepEdge1 = TrueBB;
3757   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3758 
3759   // Then remove the rest.
3760   for (BasicBlock *Succ : successors(OldTerm)) {
3761     // Make sure only to keep exactly one copy of each edge.
3762     if (Succ == KeepEdge1)
3763       KeepEdge1 = nullptr;
3764     else if (Succ == KeepEdge2)
3765       KeepEdge2 = nullptr;
3766     else
3767       Succ->removePredecessor(OldTerm->getParent(),
3768                               /*KeepOneInputPHIs=*/true);
3769   }
3770 
3771   IRBuilder<> Builder(OldTerm);
3772   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3773 
3774   // Insert an appropriate new terminator.
3775   if (!KeepEdge1 && !KeepEdge2) {
3776     if (TrueBB == FalseBB)
3777       // We were only looking for one successor, and it was present.
3778       // Create an unconditional branch to it.
3779       Builder.CreateBr(TrueBB);
3780     else {
3781       // We found both of the successors we were looking for.
3782       // Create a conditional branch sharing the condition of the select.
3783       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3784       if (TrueWeight != FalseWeight)
3785         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3786     }
3787   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3788     // Neither of the selected blocks were successors, so this
3789     // terminator must be unreachable.
3790     new UnreachableInst(OldTerm->getContext(), OldTerm);
3791   } else {
3792     // One of the selected values was a successor, but the other wasn't.
3793     // Insert an unconditional branch to the one that was found;
3794     // the edge to the one that wasn't must be unreachable.
3795     if (!KeepEdge1)
3796       // Only TrueBB was found.
3797       Builder.CreateBr(TrueBB);
3798     else
3799       // Only FalseBB was found.
3800       Builder.CreateBr(FalseBB);
3801   }
3802 
3803   EraseTerminatorAndDCECond(OldTerm);
3804   return true;
3805 }
3806 
3807 // Replaces
3808 //   (switch (select cond, X, Y)) on constant X, Y
3809 // with a branch - conditional if X and Y lead to distinct BBs,
3810 // unconditional otherwise.
3811 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3812                                             SelectInst *Select) {
3813   // Check for constant integer values in the select.
3814   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3815   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3816   if (!TrueVal || !FalseVal)
3817     return false;
3818 
3819   // Find the relevant condition and destinations.
3820   Value *Condition = Select->getCondition();
3821   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3822   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3823 
3824   // Get weight for TrueBB and FalseBB.
3825   uint32_t TrueWeight = 0, FalseWeight = 0;
3826   SmallVector<uint64_t, 8> Weights;
3827   bool HasWeights = HasBranchWeights(SI);
3828   if (HasWeights) {
3829     GetBranchWeights(SI, Weights);
3830     if (Weights.size() == 1 + SI->getNumCases()) {
3831       TrueWeight =
3832           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3833       FalseWeight =
3834           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3835     }
3836   }
3837 
3838   // Perform the actual simplification.
3839   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3840                                     FalseWeight);
3841 }
3842 
3843 // Replaces
3844 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3845 //                             blockaddress(@fn, BlockB)))
3846 // with
3847 //   (br cond, BlockA, BlockB).
3848 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3849                                                 SelectInst *SI) {
3850   // Check that both operands of the select are block addresses.
3851   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3852   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3853   if (!TBA || !FBA)
3854     return false;
3855 
3856   // Extract the actual blocks.
3857   BasicBlock *TrueBB = TBA->getBasicBlock();
3858   BasicBlock *FalseBB = FBA->getBasicBlock();
3859 
3860   // Perform the actual simplification.
3861   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3862                                     0);
3863 }
3864 
3865 /// This is called when we find an icmp instruction
3866 /// (a seteq/setne with a constant) as the only instruction in a
3867 /// block that ends with an uncond branch.  We are looking for a very specific
3868 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3869 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3870 /// default value goes to an uncond block with a seteq in it, we get something
3871 /// like:
3872 ///
3873 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3874 /// DEFAULT:
3875 ///   %tmp = icmp eq i8 %A, 92
3876 ///   br label %end
3877 /// end:
3878 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3879 ///
3880 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3881 /// the PHI, merging the third icmp into the switch.
3882 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3883     ICmpInst *ICI, IRBuilder<> &Builder) {
3884   BasicBlock *BB = ICI->getParent();
3885 
3886   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3887   // complex.
3888   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3889     return false;
3890 
3891   Value *V = ICI->getOperand(0);
3892   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3893 
3894   // The pattern we're looking for is where our only predecessor is a switch on
3895   // 'V' and this block is the default case for the switch.  In this case we can
3896   // fold the compared value into the switch to simplify things.
3897   BasicBlock *Pred = BB->getSinglePredecessor();
3898   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3899     return false;
3900 
3901   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3902   if (SI->getCondition() != V)
3903     return false;
3904 
3905   // If BB is reachable on a non-default case, then we simply know the value of
3906   // V in this block.  Substitute it and constant fold the icmp instruction
3907   // away.
3908   if (SI->getDefaultDest() != BB) {
3909     ConstantInt *VVal = SI->findCaseDest(BB);
3910     assert(VVal && "Should have a unique destination value");
3911     ICI->setOperand(0, VVal);
3912 
3913     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3914       ICI->replaceAllUsesWith(V);
3915       ICI->eraseFromParent();
3916     }
3917     // BB is now empty, so it is likely to simplify away.
3918     return requestResimplify();
3919   }
3920 
3921   // Ok, the block is reachable from the default dest.  If the constant we're
3922   // comparing exists in one of the other edges, then we can constant fold ICI
3923   // and zap it.
3924   if (SI->findCaseValue(Cst) != SI->case_default()) {
3925     Value *V;
3926     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3927       V = ConstantInt::getFalse(BB->getContext());
3928     else
3929       V = ConstantInt::getTrue(BB->getContext());
3930 
3931     ICI->replaceAllUsesWith(V);
3932     ICI->eraseFromParent();
3933     // BB is now empty, so it is likely to simplify away.
3934     return requestResimplify();
3935   }
3936 
3937   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3938   // the block.
3939   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3940   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3941   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3942       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3943     return false;
3944 
3945   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3946   // true in the PHI.
3947   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3948   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3949 
3950   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3951     std::swap(DefaultCst, NewCst);
3952 
3953   // Replace ICI (which is used by the PHI for the default value) with true or
3954   // false depending on if it is EQ or NE.
3955   ICI->replaceAllUsesWith(DefaultCst);
3956   ICI->eraseFromParent();
3957 
3958   // Okay, the switch goes to this block on a default value.  Add an edge from
3959   // the switch to the merge point on the compared value.
3960   BasicBlock *NewBB =
3961       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3962   {
3963     SwitchInstProfUpdateWrapper SIW(*SI);
3964     auto W0 = SIW.getSuccessorWeight(0);
3965     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3966     if (W0) {
3967       NewW = ((uint64_t(*W0) + 1) >> 1);
3968       SIW.setSuccessorWeight(0, *NewW);
3969     }
3970     SIW.addCase(Cst, NewBB, NewW);
3971   }
3972 
3973   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3974   Builder.SetInsertPoint(NewBB);
3975   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3976   Builder.CreateBr(SuccBlock);
3977   PHIUse->addIncoming(NewCst, NewBB);
3978   return true;
3979 }
3980 
3981 /// The specified branch is a conditional branch.
3982 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3983 /// fold it into a switch instruction if so.
3984 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
3985                                                IRBuilder<> &Builder,
3986                                                const DataLayout &DL) {
3987   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3988   if (!Cond)
3989     return false;
3990 
3991   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3992   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3993   // 'setne's and'ed together, collect them.
3994 
3995   // Try to gather values from a chain of and/or to be turned into a switch
3996   ConstantComparesGatherer ConstantCompare(Cond, DL);
3997   // Unpack the result
3998   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3999   Value *CompVal = ConstantCompare.CompValue;
4000   unsigned UsedICmps = ConstantCompare.UsedICmps;
4001   Value *ExtraCase = ConstantCompare.Extra;
4002 
4003   // If we didn't have a multiply compared value, fail.
4004   if (!CompVal)
4005     return false;
4006 
4007   // Avoid turning single icmps into a switch.
4008   if (UsedICmps <= 1)
4009     return false;
4010 
4011   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
4012 
4013   // There might be duplicate constants in the list, which the switch
4014   // instruction can't handle, remove them now.
4015   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4016   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4017 
4018   // If Extra was used, we require at least two switch values to do the
4019   // transformation.  A switch with one value is just a conditional branch.
4020   if (ExtraCase && Values.size() < 2)
4021     return false;
4022 
4023   // TODO: Preserve branch weight metadata, similarly to how
4024   // FoldValueComparisonIntoPredecessors preserves it.
4025 
4026   // Figure out which block is which destination.
4027   BasicBlock *DefaultBB = BI->getSuccessor(1);
4028   BasicBlock *EdgeBB = BI->getSuccessor(0);
4029   if (!TrueWhenEqual)
4030     std::swap(DefaultBB, EdgeBB);
4031 
4032   BasicBlock *BB = BI->getParent();
4033 
4034   // MSAN does not like undefs as branch condition which can be introduced
4035   // with "explicit branch".
4036   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4037     return false;
4038 
4039   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4040                     << " cases into SWITCH.  BB is:\n"
4041                     << *BB);
4042 
4043   // If there are any extra values that couldn't be folded into the switch
4044   // then we evaluate them with an explicit branch first. Split the block
4045   // right before the condbr to handle it.
4046   if (ExtraCase) {
4047     BasicBlock *NewBB =
4048         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
4049     // Remove the uncond branch added to the old block.
4050     Instruction *OldTI = BB->getTerminator();
4051     Builder.SetInsertPoint(OldTI);
4052 
4053     if (TrueWhenEqual)
4054       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4055     else
4056       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4057 
4058     OldTI->eraseFromParent();
4059 
4060     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4061     // for the edge we just added.
4062     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4063 
4064     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4065                       << "\nEXTRABB = " << *BB);
4066     BB = NewBB;
4067   }
4068 
4069   Builder.SetInsertPoint(BI);
4070   // Convert pointer to int before we switch.
4071   if (CompVal->getType()->isPointerTy()) {
4072     CompVal = Builder.CreatePtrToInt(
4073         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4074   }
4075 
4076   // Create the new switch instruction now.
4077   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4078 
4079   // Add all of the 'cases' to the switch instruction.
4080   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4081     New->addCase(Values[i], EdgeBB);
4082 
4083   // We added edges from PI to the EdgeBB.  As such, if there were any
4084   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4085   // the number of edges added.
4086   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4087     PHINode *PN = cast<PHINode>(BBI);
4088     Value *InVal = PN->getIncomingValueForBlock(BB);
4089     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4090       PN->addIncoming(InVal, BB);
4091   }
4092 
4093   // Erase the old branch instruction.
4094   EraseTerminatorAndDCECond(BI);
4095 
4096   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4097   return true;
4098 }
4099 
4100 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4101   if (isa<PHINode>(RI->getValue()))
4102     return simplifyCommonResume(RI);
4103   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4104            RI->getValue() == RI->getParent()->getFirstNonPHI())
4105     // The resume must unwind the exception that caused control to branch here.
4106     return simplifySingleResume(RI);
4107 
4108   return false;
4109 }
4110 
4111 // Check if cleanup block is empty
4112 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4113   for (Instruction &I : R) {
4114     auto *II = dyn_cast<IntrinsicInst>(&I);
4115     if (!II)
4116       return false;
4117 
4118     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4119     switch (IntrinsicID) {
4120     case Intrinsic::dbg_declare:
4121     case Intrinsic::dbg_value:
4122     case Intrinsic::dbg_label:
4123     case Intrinsic::lifetime_end:
4124       break;
4125     default:
4126       return false;
4127     }
4128   }
4129   return true;
4130 }
4131 
4132 // Simplify resume that is shared by several landing pads (phi of landing pad).
4133 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4134   BasicBlock *BB = RI->getParent();
4135 
4136   // Check that there are no other instructions except for debug and lifetime
4137   // intrinsics between the phi's and resume instruction.
4138   if (!isCleanupBlockEmpty(
4139           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4140     return false;
4141 
4142   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4143   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4144 
4145   // Check incoming blocks to see if any of them are trivial.
4146   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4147        Idx++) {
4148     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4149     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4150 
4151     // If the block has other successors, we can not delete it because
4152     // it has other dependents.
4153     if (IncomingBB->getUniqueSuccessor() != BB)
4154       continue;
4155 
4156     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4157     // Not the landing pad that caused the control to branch here.
4158     if (IncomingValue != LandingPad)
4159       continue;
4160 
4161     if (isCleanupBlockEmpty(
4162             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4163       TrivialUnwindBlocks.insert(IncomingBB);
4164   }
4165 
4166   // If no trivial unwind blocks, don't do any simplifications.
4167   if (TrivialUnwindBlocks.empty())
4168     return false;
4169 
4170   // Turn all invokes that unwind here into calls.
4171   for (auto *TrivialBB : TrivialUnwindBlocks) {
4172     // Blocks that will be simplified should be removed from the phi node.
4173     // Note there could be multiple edges to the resume block, and we need
4174     // to remove them all.
4175     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4176       BB->removePredecessor(TrivialBB, true);
4177 
4178     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
4179          PI != PE;) {
4180       BasicBlock *Pred = *PI++;
4181       removeUnwindEdge(Pred, DTU);
4182       ++NumInvokes;
4183     }
4184 
4185     // In each SimplifyCFG run, only the current processed block can be erased.
4186     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4187     // of erasing TrivialBB, we only remove the branch to the common resume
4188     // block so that we can later erase the resume block since it has no
4189     // predecessors.
4190     TrivialBB->getTerminator()->eraseFromParent();
4191     new UnreachableInst(RI->getContext(), TrivialBB);
4192     if (DTU)
4193       DTU->applyUpdatesPermissive({{DominatorTree::Delete, TrivialBB, BB}});
4194   }
4195 
4196   // Delete the resume block if all its predecessors have been removed.
4197   if (pred_empty(BB)) {
4198     if (DTU)
4199       DTU->deleteBB(BB);
4200     else
4201       BB->eraseFromParent();
4202   }
4203 
4204   return !TrivialUnwindBlocks.empty();
4205 }
4206 
4207 // Simplify resume that is only used by a single (non-phi) landing pad.
4208 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4209   BasicBlock *BB = RI->getParent();
4210   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4211   assert(RI->getValue() == LPInst &&
4212          "Resume must unwind the exception that caused control to here");
4213 
4214   // Check that there are no other instructions except for debug intrinsics.
4215   if (!isCleanupBlockEmpty(
4216           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4217     return false;
4218 
4219   // Turn all invokes that unwind here into calls and delete the basic block.
4220   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4221     BasicBlock *Pred = *PI++;
4222     removeUnwindEdge(Pred, DTU);
4223     ++NumInvokes;
4224   }
4225 
4226   // The landingpad is now unreachable.  Zap it.
4227   if (LoopHeaders)
4228     LoopHeaders->erase(BB);
4229   if (DTU)
4230     DTU->deleteBB(BB);
4231   else
4232     BB->eraseFromParent();
4233   return true;
4234 }
4235 
4236 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4237   // If this is a trivial cleanup pad that executes no instructions, it can be
4238   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4239   // that is an EH pad will be updated to continue to the caller and any
4240   // predecessor that terminates with an invoke instruction will have its invoke
4241   // instruction converted to a call instruction.  If the cleanup pad being
4242   // simplified does not continue to the caller, each predecessor will be
4243   // updated to continue to the unwind destination of the cleanup pad being
4244   // simplified.
4245   BasicBlock *BB = RI->getParent();
4246   CleanupPadInst *CPInst = RI->getCleanupPad();
4247   if (CPInst->getParent() != BB)
4248     // This isn't an empty cleanup.
4249     return false;
4250 
4251   // We cannot kill the pad if it has multiple uses.  This typically arises
4252   // from unreachable basic blocks.
4253   if (!CPInst->hasOneUse())
4254     return false;
4255 
4256   // Check that there are no other instructions except for benign intrinsics.
4257   if (!isCleanupBlockEmpty(
4258           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4259     return false;
4260 
4261   // If the cleanup return we are simplifying unwinds to the caller, this will
4262   // set UnwindDest to nullptr.
4263   BasicBlock *UnwindDest = RI->getUnwindDest();
4264   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4265 
4266   // We're about to remove BB from the control flow.  Before we do, sink any
4267   // PHINodes into the unwind destination.  Doing this before changing the
4268   // control flow avoids some potentially slow checks, since we can currently
4269   // be certain that UnwindDest and BB have no common predecessors (since they
4270   // are both EH pads).
4271   if (UnwindDest) {
4272     // First, go through the PHI nodes in UnwindDest and update any nodes that
4273     // reference the block we are removing
4274     for (BasicBlock::iterator I = UnwindDest->begin(),
4275                               IE = DestEHPad->getIterator();
4276          I != IE; ++I) {
4277       PHINode *DestPN = cast<PHINode>(I);
4278 
4279       int Idx = DestPN->getBasicBlockIndex(BB);
4280       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4281       assert(Idx != -1);
4282       // This PHI node has an incoming value that corresponds to a control
4283       // path through the cleanup pad we are removing.  If the incoming
4284       // value is in the cleanup pad, it must be a PHINode (because we
4285       // verified above that the block is otherwise empty).  Otherwise, the
4286       // value is either a constant or a value that dominates the cleanup
4287       // pad being removed.
4288       //
4289       // Because BB and UnwindDest are both EH pads, all of their
4290       // predecessors must unwind to these blocks, and since no instruction
4291       // can have multiple unwind destinations, there will be no overlap in
4292       // incoming blocks between SrcPN and DestPN.
4293       Value *SrcVal = DestPN->getIncomingValue(Idx);
4294       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4295 
4296       // Remove the entry for the block we are deleting.
4297       DestPN->removeIncomingValue(Idx, false);
4298 
4299       if (SrcPN && SrcPN->getParent() == BB) {
4300         // If the incoming value was a PHI node in the cleanup pad we are
4301         // removing, we need to merge that PHI node's incoming values into
4302         // DestPN.
4303         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4304              SrcIdx != SrcE; ++SrcIdx) {
4305           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4306                               SrcPN->getIncomingBlock(SrcIdx));
4307         }
4308       } else {
4309         // Otherwise, the incoming value came from above BB and
4310         // so we can just reuse it.  We must associate all of BB's
4311         // predecessors with this value.
4312         for (auto *pred : predecessors(BB)) {
4313           DestPN->addIncoming(SrcVal, pred);
4314         }
4315       }
4316     }
4317 
4318     // Sink any remaining PHI nodes directly into UnwindDest.
4319     Instruction *InsertPt = DestEHPad;
4320     for (BasicBlock::iterator I = BB->begin(),
4321                               IE = BB->getFirstNonPHI()->getIterator();
4322          I != IE;) {
4323       // The iterator must be incremented here because the instructions are
4324       // being moved to another block.
4325       PHINode *PN = cast<PHINode>(I++);
4326       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4327         // If the PHI node has no uses or all of its uses are in this basic
4328         // block (meaning they are debug or lifetime intrinsics), just leave
4329         // it.  It will be erased when we erase BB below.
4330         continue;
4331 
4332       // Otherwise, sink this PHI node into UnwindDest.
4333       // Any predecessors to UnwindDest which are not already represented
4334       // must be back edges which inherit the value from the path through
4335       // BB.  In this case, the PHI value must reference itself.
4336       for (auto *pred : predecessors(UnwindDest))
4337         if (pred != BB)
4338           PN->addIncoming(PN, pred);
4339       PN->moveBefore(InsertPt);
4340     }
4341   }
4342 
4343   std::vector<DominatorTree::UpdateType> Updates;
4344 
4345   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4346     // The iterator must be updated here because we are removing this pred.
4347     BasicBlock *PredBB = *PI++;
4348     if (UnwindDest == nullptr) {
4349       if (DTU)
4350         DTU->applyUpdatesPermissive(Updates);
4351       Updates.clear();
4352       removeUnwindEdge(PredBB, DTU);
4353       ++NumInvokes;
4354     } else {
4355       Instruction *TI = PredBB->getTerminator();
4356       TI->replaceUsesOfWith(BB, UnwindDest);
4357       Updates.push_back({DominatorTree::Delete, PredBB, BB});
4358       Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4359     }
4360   }
4361 
4362   if (DTU) {
4363     DTU->applyUpdatesPermissive(Updates);
4364     DTU->deleteBB(BB);
4365   } else
4366     // The cleanup pad is now unreachable.  Zap it.
4367     BB->eraseFromParent();
4368 
4369   return true;
4370 }
4371 
4372 // Try to merge two cleanuppads together.
4373 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4374   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4375   // with.
4376   BasicBlock *UnwindDest = RI->getUnwindDest();
4377   if (!UnwindDest)
4378     return false;
4379 
4380   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4381   // be safe to merge without code duplication.
4382   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4383     return false;
4384 
4385   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4386   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4387   if (!SuccessorCleanupPad)
4388     return false;
4389 
4390   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4391   // Replace any uses of the successor cleanupad with the predecessor pad
4392   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4393   // funclet bundle operands.
4394   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4395   // Remove the old cleanuppad.
4396   SuccessorCleanupPad->eraseFromParent();
4397   // Now, we simply replace the cleanupret with a branch to the unwind
4398   // destination.
4399   BranchInst::Create(UnwindDest, RI->getParent());
4400   RI->eraseFromParent();
4401 
4402   return true;
4403 }
4404 
4405 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4406   // It is possible to transiantly have an undef cleanuppad operand because we
4407   // have deleted some, but not all, dead blocks.
4408   // Eventually, this block will be deleted.
4409   if (isa<UndefValue>(RI->getOperand(0)))
4410     return false;
4411 
4412   if (mergeCleanupPad(RI))
4413     return true;
4414 
4415   if (removeEmptyCleanup(RI, DTU))
4416     return true;
4417 
4418   return false;
4419 }
4420 
4421 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4422   BasicBlock *BB = RI->getParent();
4423   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4424     return false;
4425 
4426   // Find predecessors that end with branches.
4427   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4428   SmallVector<BranchInst *, 8> CondBranchPreds;
4429   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4430     BasicBlock *P = *PI;
4431     Instruction *PTI = P->getTerminator();
4432     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4433       if (BI->isUnconditional())
4434         UncondBranchPreds.push_back(P);
4435       else
4436         CondBranchPreds.push_back(BI);
4437     }
4438   }
4439 
4440   // If we found some, do the transformation!
4441   if (!UncondBranchPreds.empty() && DupRet) {
4442     while (!UncondBranchPreds.empty()) {
4443       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4444       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4445                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4446       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4447     }
4448 
4449     // If we eliminated all predecessors of the block, delete the block now.
4450     if (pred_empty(BB)) {
4451       // We know there are no successors, so just nuke the block.
4452       if (LoopHeaders)
4453         LoopHeaders->erase(BB);
4454       if (DTU)
4455         DTU->deleteBB(BB);
4456       else
4457         BB->eraseFromParent();
4458     }
4459 
4460     return true;
4461   }
4462 
4463   // Check out all of the conditional branches going to this return
4464   // instruction.  If any of them just select between returns, change the
4465   // branch itself into a select/return pair.
4466   while (!CondBranchPreds.empty()) {
4467     BranchInst *BI = CondBranchPreds.pop_back_val();
4468 
4469     // Check to see if the non-BB successor is also a return block.
4470     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4471         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4472         SimplifyCondBranchToTwoReturns(BI, Builder))
4473       return true;
4474   }
4475   return false;
4476 }
4477 
4478 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4479   BasicBlock *BB = UI->getParent();
4480 
4481   bool Changed = false;
4482 
4483   // If there are any instructions immediately before the unreachable that can
4484   // be removed, do so.
4485   while (UI->getIterator() != BB->begin()) {
4486     BasicBlock::iterator BBI = UI->getIterator();
4487     --BBI;
4488     // Do not delete instructions that can have side effects which might cause
4489     // the unreachable to not be reachable; specifically, calls and volatile
4490     // operations may have this effect.
4491     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4492       break;
4493 
4494     if (BBI->mayHaveSideEffects()) {
4495       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4496         if (SI->isVolatile())
4497           break;
4498       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4499         if (LI->isVolatile())
4500           break;
4501       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4502         if (RMWI->isVolatile())
4503           break;
4504       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4505         if (CXI->isVolatile())
4506           break;
4507       } else if (isa<CatchPadInst>(BBI)) {
4508         // A catchpad may invoke exception object constructors and such, which
4509         // in some languages can be arbitrary code, so be conservative by
4510         // default.
4511         // For CoreCLR, it just involves a type test, so can be removed.
4512         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4513             EHPersonality::CoreCLR)
4514           break;
4515       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4516                  !isa<LandingPadInst>(BBI)) {
4517         break;
4518       }
4519       // Note that deleting LandingPad's here is in fact okay, although it
4520       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4521       // all the predecessors of this block will be the unwind edges of Invokes,
4522       // and we can therefore guarantee this block will be erased.
4523     }
4524 
4525     // Delete this instruction (any uses are guaranteed to be dead)
4526     if (!BBI->use_empty())
4527       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4528     BBI->eraseFromParent();
4529     Changed = true;
4530   }
4531 
4532   // If the unreachable instruction is the first in the block, take a gander
4533   // at all of the predecessors of this instruction, and simplify them.
4534   if (&BB->front() != UI)
4535     return Changed;
4536 
4537   std::vector<DominatorTree::UpdateType> Updates;
4538 
4539   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4540   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4541     auto *Predecessor = Preds[i];
4542     Instruction *TI = Predecessor->getTerminator();
4543     IRBuilder<> Builder(TI);
4544     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4545       if (BI->isUnconditional()) {
4546         assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4547         new UnreachableInst(TI->getContext(), TI);
4548         TI->eraseFromParent();
4549         Changed = true;
4550       } else {
4551         Value* Cond = BI->getCondition();
4552         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4553                "Same-destination conditional branch instruction was "
4554                "already canonicalized into an unconditional branch.");
4555         if (BI->getSuccessor(0) == BB) {
4556           Builder.CreateAssumption(Builder.CreateNot(Cond));
4557           Builder.CreateBr(BI->getSuccessor(1));
4558         } else {
4559           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4560           Builder.CreateAssumption(Cond);
4561           Builder.CreateBr(BI->getSuccessor(0));
4562         }
4563         EraseTerminatorAndDCECond(BI);
4564         Changed = true;
4565       }
4566       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4567     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4568       SwitchInstProfUpdateWrapper SU(*SI);
4569       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4570         if (i->getCaseSuccessor() != BB) {
4571           ++i;
4572           continue;
4573         }
4574         BB->removePredecessor(SU->getParent());
4575         i = SU.removeCase(i);
4576         e = SU->case_end();
4577         Changed = true;
4578       }
4579       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4580     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4581       if (II->getUnwindDest() == BB) {
4582         if (DTU)
4583           DTU->applyUpdatesPermissive(Updates);
4584         Updates.clear();
4585         removeUnwindEdge(TI->getParent(), DTU);
4586         Changed = true;
4587       }
4588     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4589       if (CSI->getUnwindDest() == BB) {
4590         if (DTU)
4591           DTU->applyUpdatesPermissive(Updates);
4592         Updates.clear();
4593         removeUnwindEdge(TI->getParent(), DTU);
4594         Changed = true;
4595         continue;
4596       }
4597 
4598       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4599                                              E = CSI->handler_end();
4600            I != E; ++I) {
4601         if (*I == BB) {
4602           CSI->removeHandler(I);
4603           --I;
4604           --E;
4605           Changed = true;
4606         }
4607       }
4608       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4609       if (CSI->getNumHandlers() == 0) {
4610         if (CSI->hasUnwindDest()) {
4611           // Redirect all predecessors of the block containing CatchSwitchInst
4612           // to instead branch to the CatchSwitchInst's unwind destination.
4613           for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4614             Updates.push_back(
4615                 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor});
4616             Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor,
4617                                CSI->getUnwindDest()});
4618           }
4619           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4620         } else {
4621           // Rewrite all preds to unwind to caller (or from invoke to call).
4622           if (DTU)
4623             DTU->applyUpdatesPermissive(Updates);
4624           Updates.clear();
4625           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4626           for (BasicBlock *EHPred : EHPreds)
4627             removeUnwindEdge(EHPred, DTU);
4628         }
4629         // The catchswitch is no longer reachable.
4630         new UnreachableInst(CSI->getContext(), CSI);
4631         CSI->eraseFromParent();
4632         Changed = true;
4633       }
4634     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4635       (void)CRI;
4636       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4637              "Expected to always have an unwind to BB.");
4638       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4639       new UnreachableInst(TI->getContext(), TI);
4640       TI->eraseFromParent();
4641       Changed = true;
4642     }
4643   }
4644 
4645   if (DTU)
4646     DTU->applyUpdatesPermissive(Updates);
4647 
4648   // If this block is now dead, remove it.
4649   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4650     // We know there are no successors, so just nuke the block.
4651     if (LoopHeaders)
4652       LoopHeaders->erase(BB);
4653     if (DTU)
4654       DTU->deleteBB(BB);
4655     else
4656       BB->eraseFromParent();
4657     return true;
4658   }
4659 
4660   return Changed;
4661 }
4662 
4663 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4664   assert(Cases.size() >= 1);
4665 
4666   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4667   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4668     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4669       return false;
4670   }
4671   return true;
4672 }
4673 
4674 static void createUnreachableSwitchDefault(SwitchInst *Switch) {
4675   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4676   BasicBlock *NewDefaultBlock =
4677      SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
4678   Switch->setDefaultDest(&*NewDefaultBlock);
4679   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
4680   auto *NewTerminator = NewDefaultBlock->getTerminator();
4681   new UnreachableInst(Switch->getContext(), NewTerminator);
4682   EraseTerminatorAndDCECond(NewTerminator);
4683 }
4684 
4685 /// Turn a switch with two reachable destinations into an integer range
4686 /// comparison and branch.
4687 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4688                                              IRBuilder<> &Builder) {
4689   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4690 
4691   bool HasDefault =
4692       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4693 
4694   // Partition the cases into two sets with different destinations.
4695   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4696   BasicBlock *DestB = nullptr;
4697   SmallVector<ConstantInt *, 16> CasesA;
4698   SmallVector<ConstantInt *, 16> CasesB;
4699 
4700   for (auto Case : SI->cases()) {
4701     BasicBlock *Dest = Case.getCaseSuccessor();
4702     if (!DestA)
4703       DestA = Dest;
4704     if (Dest == DestA) {
4705       CasesA.push_back(Case.getCaseValue());
4706       continue;
4707     }
4708     if (!DestB)
4709       DestB = Dest;
4710     if (Dest == DestB) {
4711       CasesB.push_back(Case.getCaseValue());
4712       continue;
4713     }
4714     return false; // More than two destinations.
4715   }
4716 
4717   assert(DestA && DestB &&
4718          "Single-destination switch should have been folded.");
4719   assert(DestA != DestB);
4720   assert(DestB != SI->getDefaultDest());
4721   assert(!CasesB.empty() && "There must be non-default cases.");
4722   assert(!CasesA.empty() || HasDefault);
4723 
4724   // Figure out if one of the sets of cases form a contiguous range.
4725   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4726   BasicBlock *ContiguousDest = nullptr;
4727   BasicBlock *OtherDest = nullptr;
4728   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4729     ContiguousCases = &CasesA;
4730     ContiguousDest = DestA;
4731     OtherDest = DestB;
4732   } else if (CasesAreContiguous(CasesB)) {
4733     ContiguousCases = &CasesB;
4734     ContiguousDest = DestB;
4735     OtherDest = DestA;
4736   } else
4737     return false;
4738 
4739   // Start building the compare and branch.
4740 
4741   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4742   Constant *NumCases =
4743       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4744 
4745   Value *Sub = SI->getCondition();
4746   if (!Offset->isNullValue())
4747     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4748 
4749   Value *Cmp;
4750   // If NumCases overflowed, then all possible values jump to the successor.
4751   if (NumCases->isNullValue() && !ContiguousCases->empty())
4752     Cmp = ConstantInt::getTrue(SI->getContext());
4753   else
4754     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4755   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4756 
4757   // Update weight for the newly-created conditional branch.
4758   if (HasBranchWeights(SI)) {
4759     SmallVector<uint64_t, 8> Weights;
4760     GetBranchWeights(SI, Weights);
4761     if (Weights.size() == 1 + SI->getNumCases()) {
4762       uint64_t TrueWeight = 0;
4763       uint64_t FalseWeight = 0;
4764       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4765         if (SI->getSuccessor(I) == ContiguousDest)
4766           TrueWeight += Weights[I];
4767         else
4768           FalseWeight += Weights[I];
4769       }
4770       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4771         TrueWeight /= 2;
4772         FalseWeight /= 2;
4773       }
4774       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4775     }
4776   }
4777 
4778   // Prune obsolete incoming values off the successors' PHI nodes.
4779   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4780     unsigned PreviousEdges = ContiguousCases->size();
4781     if (ContiguousDest == SI->getDefaultDest())
4782       ++PreviousEdges;
4783     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4784       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4785   }
4786   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4787     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4788     if (OtherDest == SI->getDefaultDest())
4789       ++PreviousEdges;
4790     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4791       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4792   }
4793 
4794   // Clean up the default block - it may have phis or other instructions before
4795   // the unreachable terminator.
4796   if (!HasDefault)
4797     createUnreachableSwitchDefault(SI);
4798 
4799   // Drop the switch.
4800   SI->eraseFromParent();
4801 
4802   return true;
4803 }
4804 
4805 /// Compute masked bits for the condition of a switch
4806 /// and use it to remove dead cases.
4807 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4808                                      const DataLayout &DL) {
4809   Value *Cond = SI->getCondition();
4810   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4811   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4812 
4813   // We can also eliminate cases by determining that their values are outside of
4814   // the limited range of the condition based on how many significant (non-sign)
4815   // bits are in the condition value.
4816   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4817   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4818 
4819   // Gather dead cases.
4820   SmallVector<ConstantInt *, 8> DeadCases;
4821   for (auto &Case : SI->cases()) {
4822     const APInt &CaseVal = Case.getCaseValue()->getValue();
4823     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4824         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4825       DeadCases.push_back(Case.getCaseValue());
4826       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4827                         << " is dead.\n");
4828     }
4829   }
4830 
4831   // If we can prove that the cases must cover all possible values, the
4832   // default destination becomes dead and we can remove it.  If we know some
4833   // of the bits in the value, we can use that to more precisely compute the
4834   // number of possible unique case values.
4835   bool HasDefault =
4836       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4837   const unsigned NumUnknownBits =
4838       Bits - (Known.Zero | Known.One).countPopulation();
4839   assert(NumUnknownBits <= Bits);
4840   if (HasDefault && DeadCases.empty() &&
4841       NumUnknownBits < 64 /* avoid overflow */ &&
4842       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4843     createUnreachableSwitchDefault(SI);
4844     return true;
4845   }
4846 
4847   if (DeadCases.empty())
4848     return false;
4849 
4850   SwitchInstProfUpdateWrapper SIW(*SI);
4851   for (ConstantInt *DeadCase : DeadCases) {
4852     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4853     assert(CaseI != SI->case_default() &&
4854            "Case was not found. Probably mistake in DeadCases forming.");
4855     // Prune unused values from PHI nodes.
4856     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4857     SIW.removeCase(CaseI);
4858   }
4859 
4860   return true;
4861 }
4862 
4863 /// If BB would be eligible for simplification by
4864 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4865 /// by an unconditional branch), look at the phi node for BB in the successor
4866 /// block and see if the incoming value is equal to CaseValue. If so, return
4867 /// the phi node, and set PhiIndex to BB's index in the phi node.
4868 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4869                                               BasicBlock *BB, int *PhiIndex) {
4870   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4871     return nullptr; // BB must be empty to be a candidate for simplification.
4872   if (!BB->getSinglePredecessor())
4873     return nullptr; // BB must be dominated by the switch.
4874 
4875   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4876   if (!Branch || !Branch->isUnconditional())
4877     return nullptr; // Terminator must be unconditional branch.
4878 
4879   BasicBlock *Succ = Branch->getSuccessor(0);
4880 
4881   for (PHINode &PHI : Succ->phis()) {
4882     int Idx = PHI.getBasicBlockIndex(BB);
4883     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4884 
4885     Value *InValue = PHI.getIncomingValue(Idx);
4886     if (InValue != CaseValue)
4887       continue;
4888 
4889     *PhiIndex = Idx;
4890     return &PHI;
4891   }
4892 
4893   return nullptr;
4894 }
4895 
4896 /// Try to forward the condition of a switch instruction to a phi node
4897 /// dominated by the switch, if that would mean that some of the destination
4898 /// blocks of the switch can be folded away. Return true if a change is made.
4899 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4900   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4901 
4902   ForwardingNodesMap ForwardingNodes;
4903   BasicBlock *SwitchBlock = SI->getParent();
4904   bool Changed = false;
4905   for (auto &Case : SI->cases()) {
4906     ConstantInt *CaseValue = Case.getCaseValue();
4907     BasicBlock *CaseDest = Case.getCaseSuccessor();
4908 
4909     // Replace phi operands in successor blocks that are using the constant case
4910     // value rather than the switch condition variable:
4911     //   switchbb:
4912     //   switch i32 %x, label %default [
4913     //     i32 17, label %succ
4914     //   ...
4915     //   succ:
4916     //     %r = phi i32 ... [ 17, %switchbb ] ...
4917     // -->
4918     //     %r = phi i32 ... [ %x, %switchbb ] ...
4919 
4920     for (PHINode &Phi : CaseDest->phis()) {
4921       // This only works if there is exactly 1 incoming edge from the switch to
4922       // a phi. If there is >1, that means multiple cases of the switch map to 1
4923       // value in the phi, and that phi value is not the switch condition. Thus,
4924       // this transform would not make sense (the phi would be invalid because
4925       // a phi can't have different incoming values from the same block).
4926       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4927       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4928           count(Phi.blocks(), SwitchBlock) == 1) {
4929         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4930         Changed = true;
4931       }
4932     }
4933 
4934     // Collect phi nodes that are indirectly using this switch's case constants.
4935     int PhiIdx;
4936     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4937       ForwardingNodes[Phi].push_back(PhiIdx);
4938   }
4939 
4940   for (auto &ForwardingNode : ForwardingNodes) {
4941     PHINode *Phi = ForwardingNode.first;
4942     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4943     if (Indexes.size() < 2)
4944       continue;
4945 
4946     for (int Index : Indexes)
4947       Phi->setIncomingValue(Index, SI->getCondition());
4948     Changed = true;
4949   }
4950 
4951   return Changed;
4952 }
4953 
4954 /// Return true if the backend will be able to handle
4955 /// initializing an array of constants like C.
4956 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4957   if (C->isThreadDependent())
4958     return false;
4959   if (C->isDLLImportDependent())
4960     return false;
4961 
4962   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4963       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4964       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4965     return false;
4966 
4967   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4968     if (!CE->isGEPWithNoNotionalOverIndexing())
4969       return false;
4970     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4971       return false;
4972   }
4973 
4974   if (!TTI.shouldBuildLookupTablesForConstant(C))
4975     return false;
4976 
4977   return true;
4978 }
4979 
4980 /// If V is a Constant, return it. Otherwise, try to look up
4981 /// its constant value in ConstantPool, returning 0 if it's not there.
4982 static Constant *
4983 LookupConstant(Value *V,
4984                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4985   if (Constant *C = dyn_cast<Constant>(V))
4986     return C;
4987   return ConstantPool.lookup(V);
4988 }
4989 
4990 /// Try to fold instruction I into a constant. This works for
4991 /// simple instructions such as binary operations where both operands are
4992 /// constant or can be replaced by constants from the ConstantPool. Returns the
4993 /// resulting constant on success, 0 otherwise.
4994 static Constant *
4995 ConstantFold(Instruction *I, const DataLayout &DL,
4996              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4997   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4998     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4999     if (!A)
5000       return nullptr;
5001     if (A->isAllOnesValue())
5002       return LookupConstant(Select->getTrueValue(), ConstantPool);
5003     if (A->isNullValue())
5004       return LookupConstant(Select->getFalseValue(), ConstantPool);
5005     return nullptr;
5006   }
5007 
5008   SmallVector<Constant *, 4> COps;
5009   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5010     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5011       COps.push_back(A);
5012     else
5013       return nullptr;
5014   }
5015 
5016   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5017     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5018                                            COps[1], DL);
5019   }
5020 
5021   return ConstantFoldInstOperands(I, COps, DL);
5022 }
5023 
5024 /// Try to determine the resulting constant values in phi nodes
5025 /// at the common destination basic block, *CommonDest, for one of the case
5026 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5027 /// case), of a switch instruction SI.
5028 static bool
5029 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5030                BasicBlock **CommonDest,
5031                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5032                const DataLayout &DL, const TargetTransformInfo &TTI) {
5033   // The block from which we enter the common destination.
5034   BasicBlock *Pred = SI->getParent();
5035 
5036   // If CaseDest is empty except for some side-effect free instructions through
5037   // which we can constant-propagate the CaseVal, continue to its successor.
5038   SmallDenseMap<Value *, Constant *> ConstantPool;
5039   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5040   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5041     if (I.isTerminator()) {
5042       // If the terminator is a simple branch, continue to the next block.
5043       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5044         return false;
5045       Pred = CaseDest;
5046       CaseDest = I.getSuccessor(0);
5047     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5048       // Instruction is side-effect free and constant.
5049 
5050       // If the instruction has uses outside this block or a phi node slot for
5051       // the block, it is not safe to bypass the instruction since it would then
5052       // no longer dominate all its uses.
5053       for (auto &Use : I.uses()) {
5054         User *User = Use.getUser();
5055         if (Instruction *I = dyn_cast<Instruction>(User))
5056           if (I->getParent() == CaseDest)
5057             continue;
5058         if (PHINode *Phi = dyn_cast<PHINode>(User))
5059           if (Phi->getIncomingBlock(Use) == CaseDest)
5060             continue;
5061         return false;
5062       }
5063 
5064       ConstantPool.insert(std::make_pair(&I, C));
5065     } else {
5066       break;
5067     }
5068   }
5069 
5070   // If we did not have a CommonDest before, use the current one.
5071   if (!*CommonDest)
5072     *CommonDest = CaseDest;
5073   // If the destination isn't the common one, abort.
5074   if (CaseDest != *CommonDest)
5075     return false;
5076 
5077   // Get the values for this case from phi nodes in the destination block.
5078   for (PHINode &PHI : (*CommonDest)->phis()) {
5079     int Idx = PHI.getBasicBlockIndex(Pred);
5080     if (Idx == -1)
5081       continue;
5082 
5083     Constant *ConstVal =
5084         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5085     if (!ConstVal)
5086       return false;
5087 
5088     // Be conservative about which kinds of constants we support.
5089     if (!ValidLookupTableConstant(ConstVal, TTI))
5090       return false;
5091 
5092     Res.push_back(std::make_pair(&PHI, ConstVal));
5093   }
5094 
5095   return Res.size() > 0;
5096 }
5097 
5098 // Helper function used to add CaseVal to the list of cases that generate
5099 // Result. Returns the updated number of cases that generate this result.
5100 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5101                                  SwitchCaseResultVectorTy &UniqueResults,
5102                                  Constant *Result) {
5103   for (auto &I : UniqueResults) {
5104     if (I.first == Result) {
5105       I.second.push_back(CaseVal);
5106       return I.second.size();
5107     }
5108   }
5109   UniqueResults.push_back(
5110       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5111   return 1;
5112 }
5113 
5114 // Helper function that initializes a map containing
5115 // results for the PHI node of the common destination block for a switch
5116 // instruction. Returns false if multiple PHI nodes have been found or if
5117 // there is not a common destination block for the switch.
5118 static bool
5119 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5120                       SwitchCaseResultVectorTy &UniqueResults,
5121                       Constant *&DefaultResult, const DataLayout &DL,
5122                       const TargetTransformInfo &TTI,
5123                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5124   for (auto &I : SI->cases()) {
5125     ConstantInt *CaseVal = I.getCaseValue();
5126 
5127     // Resulting value at phi nodes for this case value.
5128     SwitchCaseResultsTy Results;
5129     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5130                         DL, TTI))
5131       return false;
5132 
5133     // Only one value per case is permitted.
5134     if (Results.size() > 1)
5135       return false;
5136 
5137     // Add the case->result mapping to UniqueResults.
5138     const uintptr_t NumCasesForResult =
5139         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5140 
5141     // Early out if there are too many cases for this result.
5142     if (NumCasesForResult > MaxCasesPerResult)
5143       return false;
5144 
5145     // Early out if there are too many unique results.
5146     if (UniqueResults.size() > MaxUniqueResults)
5147       return false;
5148 
5149     // Check the PHI consistency.
5150     if (!PHI)
5151       PHI = Results[0].first;
5152     else if (PHI != Results[0].first)
5153       return false;
5154   }
5155   // Find the default result value.
5156   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5157   BasicBlock *DefaultDest = SI->getDefaultDest();
5158   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5159                  DL, TTI);
5160   // If the default value is not found abort unless the default destination
5161   // is unreachable.
5162   DefaultResult =
5163       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5164   if ((!DefaultResult &&
5165        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5166     return false;
5167 
5168   return true;
5169 }
5170 
5171 // Helper function that checks if it is possible to transform a switch with only
5172 // two cases (or two cases + default) that produces a result into a select.
5173 // Example:
5174 // switch (a) {
5175 //   case 10:                %0 = icmp eq i32 %a, 10
5176 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5177 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5178 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5179 //   default:
5180 //     return 4;
5181 // }
5182 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5183                                    Constant *DefaultResult, Value *Condition,
5184                                    IRBuilder<> &Builder) {
5185   assert(ResultVector.size() == 2 &&
5186          "We should have exactly two unique results at this point");
5187   // If we are selecting between only two cases transform into a simple
5188   // select or a two-way select if default is possible.
5189   if (ResultVector[0].second.size() == 1 &&
5190       ResultVector[1].second.size() == 1) {
5191     ConstantInt *const FirstCase = ResultVector[0].second[0];
5192     ConstantInt *const SecondCase = ResultVector[1].second[0];
5193 
5194     bool DefaultCanTrigger = DefaultResult;
5195     Value *SelectValue = ResultVector[1].first;
5196     if (DefaultCanTrigger) {
5197       Value *const ValueCompare =
5198           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5199       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5200                                          DefaultResult, "switch.select");
5201     }
5202     Value *const ValueCompare =
5203         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5204     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5205                                 SelectValue, "switch.select");
5206   }
5207 
5208   return nullptr;
5209 }
5210 
5211 // Helper function to cleanup a switch instruction that has been converted into
5212 // a select, fixing up PHI nodes and basic blocks.
5213 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5214                                               Value *SelectValue,
5215                                               IRBuilder<> &Builder) {
5216   BasicBlock *SelectBB = SI->getParent();
5217   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5218     PHI->removeIncomingValue(SelectBB);
5219   PHI->addIncoming(SelectValue, SelectBB);
5220 
5221   Builder.CreateBr(PHI->getParent());
5222 
5223   // Remove the switch.
5224   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5225     BasicBlock *Succ = SI->getSuccessor(i);
5226 
5227     if (Succ == PHI->getParent())
5228       continue;
5229     Succ->removePredecessor(SelectBB);
5230   }
5231   SI->eraseFromParent();
5232 }
5233 
5234 /// If the switch is only used to initialize one or more
5235 /// phi nodes in a common successor block with only two different
5236 /// constant values, replace the switch with select.
5237 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5238                            const DataLayout &DL,
5239                            const TargetTransformInfo &TTI) {
5240   Value *const Cond = SI->getCondition();
5241   PHINode *PHI = nullptr;
5242   BasicBlock *CommonDest = nullptr;
5243   Constant *DefaultResult;
5244   SwitchCaseResultVectorTy UniqueResults;
5245   // Collect all the cases that will deliver the same value from the switch.
5246   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5247                              DL, TTI, 2, 1))
5248     return false;
5249   // Selects choose between maximum two values.
5250   if (UniqueResults.size() != 2)
5251     return false;
5252   assert(PHI != nullptr && "PHI for value select not found");
5253 
5254   Builder.SetInsertPoint(SI);
5255   Value *SelectValue =
5256       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5257   if (SelectValue) {
5258     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
5259     return true;
5260   }
5261   // The switch couldn't be converted into a select.
5262   return false;
5263 }
5264 
5265 namespace {
5266 
5267 /// This class represents a lookup table that can be used to replace a switch.
5268 class SwitchLookupTable {
5269 public:
5270   /// Create a lookup table to use as a switch replacement with the contents
5271   /// of Values, using DefaultValue to fill any holes in the table.
5272   SwitchLookupTable(
5273       Module &M, uint64_t TableSize, ConstantInt *Offset,
5274       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5275       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5276 
5277   /// Build instructions with Builder to retrieve the value at
5278   /// the position given by Index in the lookup table.
5279   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5280 
5281   /// Return true if a table with TableSize elements of
5282   /// type ElementType would fit in a target-legal register.
5283   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5284                                  Type *ElementType);
5285 
5286 private:
5287   // Depending on the contents of the table, it can be represented in
5288   // different ways.
5289   enum {
5290     // For tables where each element contains the same value, we just have to
5291     // store that single value and return it for each lookup.
5292     SingleValueKind,
5293 
5294     // For tables where there is a linear relationship between table index
5295     // and values. We calculate the result with a simple multiplication
5296     // and addition instead of a table lookup.
5297     LinearMapKind,
5298 
5299     // For small tables with integer elements, we can pack them into a bitmap
5300     // that fits into a target-legal register. Values are retrieved by
5301     // shift and mask operations.
5302     BitMapKind,
5303 
5304     // The table is stored as an array of values. Values are retrieved by load
5305     // instructions from the table.
5306     ArrayKind
5307   } Kind;
5308 
5309   // For SingleValueKind, this is the single value.
5310   Constant *SingleValue = nullptr;
5311 
5312   // For BitMapKind, this is the bitmap.
5313   ConstantInt *BitMap = nullptr;
5314   IntegerType *BitMapElementTy = nullptr;
5315 
5316   // For LinearMapKind, these are the constants used to derive the value.
5317   ConstantInt *LinearOffset = nullptr;
5318   ConstantInt *LinearMultiplier = nullptr;
5319 
5320   // For ArrayKind, this is the array.
5321   GlobalVariable *Array = nullptr;
5322 };
5323 
5324 } // end anonymous namespace
5325 
5326 SwitchLookupTable::SwitchLookupTable(
5327     Module &M, uint64_t TableSize, ConstantInt *Offset,
5328     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5329     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5330   assert(Values.size() && "Can't build lookup table without values!");
5331   assert(TableSize >= Values.size() && "Can't fit values in table!");
5332 
5333   // If all values in the table are equal, this is that value.
5334   SingleValue = Values.begin()->second;
5335 
5336   Type *ValueType = Values.begin()->second->getType();
5337 
5338   // Build up the table contents.
5339   SmallVector<Constant *, 64> TableContents(TableSize);
5340   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5341     ConstantInt *CaseVal = Values[I].first;
5342     Constant *CaseRes = Values[I].second;
5343     assert(CaseRes->getType() == ValueType);
5344 
5345     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5346     TableContents[Idx] = CaseRes;
5347 
5348     if (CaseRes != SingleValue)
5349       SingleValue = nullptr;
5350   }
5351 
5352   // Fill in any holes in the table with the default result.
5353   if (Values.size() < TableSize) {
5354     assert(DefaultValue &&
5355            "Need a default value to fill the lookup table holes.");
5356     assert(DefaultValue->getType() == ValueType);
5357     for (uint64_t I = 0; I < TableSize; ++I) {
5358       if (!TableContents[I])
5359         TableContents[I] = DefaultValue;
5360     }
5361 
5362     if (DefaultValue != SingleValue)
5363       SingleValue = nullptr;
5364   }
5365 
5366   // If each element in the table contains the same value, we only need to store
5367   // that single value.
5368   if (SingleValue) {
5369     Kind = SingleValueKind;
5370     return;
5371   }
5372 
5373   // Check if we can derive the value with a linear transformation from the
5374   // table index.
5375   if (isa<IntegerType>(ValueType)) {
5376     bool LinearMappingPossible = true;
5377     APInt PrevVal;
5378     APInt DistToPrev;
5379     assert(TableSize >= 2 && "Should be a SingleValue table.");
5380     // Check if there is the same distance between two consecutive values.
5381     for (uint64_t I = 0; I < TableSize; ++I) {
5382       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5383       if (!ConstVal) {
5384         // This is an undef. We could deal with it, but undefs in lookup tables
5385         // are very seldom. It's probably not worth the additional complexity.
5386         LinearMappingPossible = false;
5387         break;
5388       }
5389       const APInt &Val = ConstVal->getValue();
5390       if (I != 0) {
5391         APInt Dist = Val - PrevVal;
5392         if (I == 1) {
5393           DistToPrev = Dist;
5394         } else if (Dist != DistToPrev) {
5395           LinearMappingPossible = false;
5396           break;
5397         }
5398       }
5399       PrevVal = Val;
5400     }
5401     if (LinearMappingPossible) {
5402       LinearOffset = cast<ConstantInt>(TableContents[0]);
5403       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5404       Kind = LinearMapKind;
5405       ++NumLinearMaps;
5406       return;
5407     }
5408   }
5409 
5410   // If the type is integer and the table fits in a register, build a bitmap.
5411   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5412     IntegerType *IT = cast<IntegerType>(ValueType);
5413     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5414     for (uint64_t I = TableSize; I > 0; --I) {
5415       TableInt <<= IT->getBitWidth();
5416       // Insert values into the bitmap. Undef values are set to zero.
5417       if (!isa<UndefValue>(TableContents[I - 1])) {
5418         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5419         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5420       }
5421     }
5422     BitMap = ConstantInt::get(M.getContext(), TableInt);
5423     BitMapElementTy = IT;
5424     Kind = BitMapKind;
5425     ++NumBitMaps;
5426     return;
5427   }
5428 
5429   // Store the table in an array.
5430   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5431   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5432 
5433   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5434                              GlobalVariable::PrivateLinkage, Initializer,
5435                              "switch.table." + FuncName);
5436   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5437   // Set the alignment to that of an array items. We will be only loading one
5438   // value out of it.
5439   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5440   Kind = ArrayKind;
5441 }
5442 
5443 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5444   switch (Kind) {
5445   case SingleValueKind:
5446     return SingleValue;
5447   case LinearMapKind: {
5448     // Derive the result value from the input value.
5449     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5450                                           false, "switch.idx.cast");
5451     if (!LinearMultiplier->isOne())
5452       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5453     if (!LinearOffset->isZero())
5454       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5455     return Result;
5456   }
5457   case BitMapKind: {
5458     // Type of the bitmap (e.g. i59).
5459     IntegerType *MapTy = BitMap->getType();
5460 
5461     // Cast Index to the same type as the bitmap.
5462     // Note: The Index is <= the number of elements in the table, so
5463     // truncating it to the width of the bitmask is safe.
5464     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5465 
5466     // Multiply the shift amount by the element width.
5467     ShiftAmt = Builder.CreateMul(
5468         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5469         "switch.shiftamt");
5470 
5471     // Shift down.
5472     Value *DownShifted =
5473         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5474     // Mask off.
5475     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5476   }
5477   case ArrayKind: {
5478     // Make sure the table index will not overflow when treated as signed.
5479     IntegerType *IT = cast<IntegerType>(Index->getType());
5480     uint64_t TableSize =
5481         Array->getInitializer()->getType()->getArrayNumElements();
5482     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5483       Index = Builder.CreateZExt(
5484           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5485           "switch.tableidx.zext");
5486 
5487     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5488     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5489                                            GEPIndices, "switch.gep");
5490     return Builder.CreateLoad(
5491         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5492         "switch.load");
5493   }
5494   }
5495   llvm_unreachable("Unknown lookup table kind!");
5496 }
5497 
5498 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5499                                            uint64_t TableSize,
5500                                            Type *ElementType) {
5501   auto *IT = dyn_cast<IntegerType>(ElementType);
5502   if (!IT)
5503     return false;
5504   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5505   // are <= 15, we could try to narrow the type.
5506 
5507   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5508   if (TableSize >= UINT_MAX / IT->getBitWidth())
5509     return false;
5510   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5511 }
5512 
5513 /// Determine whether a lookup table should be built for this switch, based on
5514 /// the number of cases, size of the table, and the types of the results.
5515 static bool
5516 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5517                        const TargetTransformInfo &TTI, const DataLayout &DL,
5518                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5519   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5520     return false; // TableSize overflowed, or mul below might overflow.
5521 
5522   bool AllTablesFitInRegister = true;
5523   bool HasIllegalType = false;
5524   for (const auto &I : ResultTypes) {
5525     Type *Ty = I.second;
5526 
5527     // Saturate this flag to true.
5528     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5529 
5530     // Saturate this flag to false.
5531     AllTablesFitInRegister =
5532         AllTablesFitInRegister &&
5533         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5534 
5535     // If both flags saturate, we're done. NOTE: This *only* works with
5536     // saturating flags, and all flags have to saturate first due to the
5537     // non-deterministic behavior of iterating over a dense map.
5538     if (HasIllegalType && !AllTablesFitInRegister)
5539       break;
5540   }
5541 
5542   // If each table would fit in a register, we should build it anyway.
5543   if (AllTablesFitInRegister)
5544     return true;
5545 
5546   // Don't build a table that doesn't fit in-register if it has illegal types.
5547   if (HasIllegalType)
5548     return false;
5549 
5550   // The table density should be at least 40%. This is the same criterion as for
5551   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5552   // FIXME: Find the best cut-off.
5553   return SI->getNumCases() * 10 >= TableSize * 4;
5554 }
5555 
5556 /// Try to reuse the switch table index compare. Following pattern:
5557 /// \code
5558 ///     if (idx < tablesize)
5559 ///        r = table[idx]; // table does not contain default_value
5560 ///     else
5561 ///        r = default_value;
5562 ///     if (r != default_value)
5563 ///        ...
5564 /// \endcode
5565 /// Is optimized to:
5566 /// \code
5567 ///     cond = idx < tablesize;
5568 ///     if (cond)
5569 ///        r = table[idx];
5570 ///     else
5571 ///        r = default_value;
5572 ///     if (cond)
5573 ///        ...
5574 /// \endcode
5575 /// Jump threading will then eliminate the second if(cond).
5576 static void reuseTableCompare(
5577     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5578     Constant *DefaultValue,
5579     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5580   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5581   if (!CmpInst)
5582     return;
5583 
5584   // We require that the compare is in the same block as the phi so that jump
5585   // threading can do its work afterwards.
5586   if (CmpInst->getParent() != PhiBlock)
5587     return;
5588 
5589   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5590   if (!CmpOp1)
5591     return;
5592 
5593   Value *RangeCmp = RangeCheckBranch->getCondition();
5594   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5595   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5596 
5597   // Check if the compare with the default value is constant true or false.
5598   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5599                                                  DefaultValue, CmpOp1, true);
5600   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5601     return;
5602 
5603   // Check if the compare with the case values is distinct from the default
5604   // compare result.
5605   for (auto ValuePair : Values) {
5606     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5607                                                 ValuePair.second, CmpOp1, true);
5608     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5609       return;
5610     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5611            "Expect true or false as compare result.");
5612   }
5613 
5614   // Check if the branch instruction dominates the phi node. It's a simple
5615   // dominance check, but sufficient for our needs.
5616   // Although this check is invariant in the calling loops, it's better to do it
5617   // at this late stage. Practically we do it at most once for a switch.
5618   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5619   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5620     BasicBlock *Pred = *PI;
5621     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5622       return;
5623   }
5624 
5625   if (DefaultConst == FalseConst) {
5626     // The compare yields the same result. We can replace it.
5627     CmpInst->replaceAllUsesWith(RangeCmp);
5628     ++NumTableCmpReuses;
5629   } else {
5630     // The compare yields the same result, just inverted. We can replace it.
5631     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5632         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5633         RangeCheckBranch);
5634     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5635     ++NumTableCmpReuses;
5636   }
5637 }
5638 
5639 /// If the switch is only used to initialize one or more phi nodes in a common
5640 /// successor block with different constant values, replace the switch with
5641 /// lookup tables.
5642 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5643                                 const DataLayout &DL,
5644                                 const TargetTransformInfo &TTI) {
5645   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5646 
5647   Function *Fn = SI->getParent()->getParent();
5648   // Only build lookup table when we have a target that supports it or the
5649   // attribute is not set.
5650   if (!TTI.shouldBuildLookupTables() ||
5651       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5652     return false;
5653 
5654   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5655   // split off a dense part and build a lookup table for that.
5656 
5657   // FIXME: This creates arrays of GEPs to constant strings, which means each
5658   // GEP needs a runtime relocation in PIC code. We should just build one big
5659   // string and lookup indices into that.
5660 
5661   // Ignore switches with less than three cases. Lookup tables will not make
5662   // them faster, so we don't analyze them.
5663   if (SI->getNumCases() < 3)
5664     return false;
5665 
5666   // Figure out the corresponding result for each case value and phi node in the
5667   // common destination, as well as the min and max case values.
5668   assert(!SI->cases().empty());
5669   SwitchInst::CaseIt CI = SI->case_begin();
5670   ConstantInt *MinCaseVal = CI->getCaseValue();
5671   ConstantInt *MaxCaseVal = CI->getCaseValue();
5672 
5673   BasicBlock *CommonDest = nullptr;
5674 
5675   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5676   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5677 
5678   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5679   SmallDenseMap<PHINode *, Type *> ResultTypes;
5680   SmallVector<PHINode *, 4> PHIs;
5681 
5682   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5683     ConstantInt *CaseVal = CI->getCaseValue();
5684     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5685       MinCaseVal = CaseVal;
5686     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5687       MaxCaseVal = CaseVal;
5688 
5689     // Resulting value at phi nodes for this case value.
5690     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5691     ResultsTy Results;
5692     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5693                         Results, DL, TTI))
5694       return false;
5695 
5696     // Append the result from this case to the list for each phi.
5697     for (const auto &I : Results) {
5698       PHINode *PHI = I.first;
5699       Constant *Value = I.second;
5700       if (!ResultLists.count(PHI))
5701         PHIs.push_back(PHI);
5702       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5703     }
5704   }
5705 
5706   // Keep track of the result types.
5707   for (PHINode *PHI : PHIs) {
5708     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5709   }
5710 
5711   uint64_t NumResults = ResultLists[PHIs[0]].size();
5712   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5713   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5714   bool TableHasHoles = (NumResults < TableSize);
5715 
5716   // If the table has holes, we need a constant result for the default case
5717   // or a bitmask that fits in a register.
5718   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5719   bool HasDefaultResults =
5720       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5721                      DefaultResultsList, DL, TTI);
5722 
5723   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5724   if (NeedMask) {
5725     // As an extra penalty for the validity test we require more cases.
5726     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5727       return false;
5728     if (!DL.fitsInLegalInteger(TableSize))
5729       return false;
5730   }
5731 
5732   for (const auto &I : DefaultResultsList) {
5733     PHINode *PHI = I.first;
5734     Constant *Result = I.second;
5735     DefaultResults[PHI] = Result;
5736   }
5737 
5738   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5739     return false;
5740 
5741   // Create the BB that does the lookups.
5742   Module &Mod = *CommonDest->getParent()->getParent();
5743   BasicBlock *LookupBB = BasicBlock::Create(
5744       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5745 
5746   // Compute the table index value.
5747   Builder.SetInsertPoint(SI);
5748   Value *TableIndex;
5749   if (MinCaseVal->isNullValue())
5750     TableIndex = SI->getCondition();
5751   else
5752     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5753                                    "switch.tableidx");
5754 
5755   // Compute the maximum table size representable by the integer type we are
5756   // switching upon.
5757   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5758   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5759   assert(MaxTableSize >= TableSize &&
5760          "It is impossible for a switch to have more entries than the max "
5761          "representable value of its input integer type's size.");
5762 
5763   // If the default destination is unreachable, or if the lookup table covers
5764   // all values of the conditional variable, branch directly to the lookup table
5765   // BB. Otherwise, check that the condition is within the case range.
5766   const bool DefaultIsReachable =
5767       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5768   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5769   BranchInst *RangeCheckBranch = nullptr;
5770 
5771   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5772     Builder.CreateBr(LookupBB);
5773     // Note: We call removeProdecessor later since we need to be able to get the
5774     // PHI value for the default case in case we're using a bit mask.
5775   } else {
5776     Value *Cmp = Builder.CreateICmpULT(
5777         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5778     RangeCheckBranch =
5779         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5780   }
5781 
5782   // Populate the BB that does the lookups.
5783   Builder.SetInsertPoint(LookupBB);
5784 
5785   if (NeedMask) {
5786     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5787     // re-purposed to do the hole check, and we create a new LookupBB.
5788     BasicBlock *MaskBB = LookupBB;
5789     MaskBB->setName("switch.hole_check");
5790     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5791                                   CommonDest->getParent(), CommonDest);
5792 
5793     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5794     // unnecessary illegal types.
5795     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5796     APInt MaskInt(TableSizePowOf2, 0);
5797     APInt One(TableSizePowOf2, 1);
5798     // Build bitmask; fill in a 1 bit for every case.
5799     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5800     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5801       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5802                          .getLimitedValue();
5803       MaskInt |= One << Idx;
5804     }
5805     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5806 
5807     // Get the TableIndex'th bit of the bitmask.
5808     // If this bit is 0 (meaning hole) jump to the default destination,
5809     // else continue with table lookup.
5810     IntegerType *MapTy = TableMask->getType();
5811     Value *MaskIndex =
5812         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5813     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5814     Value *LoBit = Builder.CreateTrunc(
5815         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5816     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5817 
5818     Builder.SetInsertPoint(LookupBB);
5819     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5820   }
5821 
5822   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5823     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5824     // do not delete PHINodes here.
5825     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5826                                             /*KeepOneInputPHIs=*/true);
5827   }
5828 
5829   bool ReturnedEarly = false;
5830   for (PHINode *PHI : PHIs) {
5831     const ResultListTy &ResultList = ResultLists[PHI];
5832 
5833     // If using a bitmask, use any value to fill the lookup table holes.
5834     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5835     StringRef FuncName = Fn->getName();
5836     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5837                             FuncName);
5838 
5839     Value *Result = Table.BuildLookup(TableIndex, Builder);
5840 
5841     // If the result is used to return immediately from the function, we want to
5842     // do that right here.
5843     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5844         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5845       Builder.CreateRet(Result);
5846       ReturnedEarly = true;
5847       break;
5848     }
5849 
5850     // Do a small peephole optimization: re-use the switch table compare if
5851     // possible.
5852     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5853       BasicBlock *PhiBlock = PHI->getParent();
5854       // Search for compare instructions which use the phi.
5855       for (auto *User : PHI->users()) {
5856         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5857       }
5858     }
5859 
5860     PHI->addIncoming(Result, LookupBB);
5861   }
5862 
5863   if (!ReturnedEarly)
5864     Builder.CreateBr(CommonDest);
5865 
5866   // Remove the switch.
5867   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5868     BasicBlock *Succ = SI->getSuccessor(i);
5869 
5870     if (Succ == SI->getDefaultDest())
5871       continue;
5872     Succ->removePredecessor(SI->getParent());
5873   }
5874   SI->eraseFromParent();
5875 
5876   ++NumLookupTables;
5877   if (NeedMask)
5878     ++NumLookupTablesHoles;
5879   return true;
5880 }
5881 
5882 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5883   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5884   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5885   uint64_t Range = Diff + 1;
5886   uint64_t NumCases = Values.size();
5887   // 40% is the default density for building a jump table in optsize/minsize mode.
5888   uint64_t MinDensity = 40;
5889 
5890   return NumCases * 100 >= Range * MinDensity;
5891 }
5892 
5893 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5894 /// of cases.
5895 ///
5896 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5897 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5898 ///
5899 /// This converts a sparse switch into a dense switch which allows better
5900 /// lowering and could also allow transforming into a lookup table.
5901 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5902                               const DataLayout &DL,
5903                               const TargetTransformInfo &TTI) {
5904   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5905   if (CondTy->getIntegerBitWidth() > 64 ||
5906       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5907     return false;
5908   // Only bother with this optimization if there are more than 3 switch cases;
5909   // SDAG will only bother creating jump tables for 4 or more cases.
5910   if (SI->getNumCases() < 4)
5911     return false;
5912 
5913   // This transform is agnostic to the signedness of the input or case values. We
5914   // can treat the case values as signed or unsigned. We can optimize more common
5915   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5916   // as signed.
5917   SmallVector<int64_t,4> Values;
5918   for (auto &C : SI->cases())
5919     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5920   llvm::sort(Values);
5921 
5922   // If the switch is already dense, there's nothing useful to do here.
5923   if (isSwitchDense(Values))
5924     return false;
5925 
5926   // First, transform the values such that they start at zero and ascend.
5927   int64_t Base = Values[0];
5928   for (auto &V : Values)
5929     V -= (uint64_t)(Base);
5930 
5931   // Now we have signed numbers that have been shifted so that, given enough
5932   // precision, there are no negative values. Since the rest of the transform
5933   // is bitwise only, we switch now to an unsigned representation.
5934 
5935   // This transform can be done speculatively because it is so cheap - it
5936   // results in a single rotate operation being inserted.
5937   // FIXME: It's possible that optimizing a switch on powers of two might also
5938   // be beneficial - flag values are often powers of two and we could use a CLZ
5939   // as the key function.
5940 
5941   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5942   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5943   // less than 64.
5944   unsigned Shift = 64;
5945   for (auto &V : Values)
5946     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5947   assert(Shift < 64);
5948   if (Shift > 0)
5949     for (auto &V : Values)
5950       V = (int64_t)((uint64_t)V >> Shift);
5951 
5952   if (!isSwitchDense(Values))
5953     // Transform didn't create a dense switch.
5954     return false;
5955 
5956   // The obvious transform is to shift the switch condition right and emit a
5957   // check that the condition actually cleanly divided by GCD, i.e.
5958   //   C & (1 << Shift - 1) == 0
5959   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5960   //
5961   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5962   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5963   // are nonzero then the switch condition will be very large and will hit the
5964   // default case.
5965 
5966   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5967   Builder.SetInsertPoint(SI);
5968   auto *ShiftC = ConstantInt::get(Ty, Shift);
5969   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5970   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5971   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5972   auto *Rot = Builder.CreateOr(LShr, Shl);
5973   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5974 
5975   for (auto Case : SI->cases()) {
5976     auto *Orig = Case.getCaseValue();
5977     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5978     Case.setValue(
5979         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5980   }
5981   return true;
5982 }
5983 
5984 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5985   BasicBlock *BB = SI->getParent();
5986 
5987   if (isValueEqualityComparison(SI)) {
5988     // If we only have one predecessor, and if it is a branch on this value,
5989     // see if that predecessor totally determines the outcome of this switch.
5990     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5991       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5992         return requestResimplify();
5993 
5994     Value *Cond = SI->getCondition();
5995     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5996       if (SimplifySwitchOnSelect(SI, Select))
5997         return requestResimplify();
5998 
5999     // If the block only contains the switch, see if we can fold the block
6000     // away into any preds.
6001     if (SI == &*BB->instructionsWithoutDebug().begin())
6002       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6003         return requestResimplify();
6004   }
6005 
6006   // Try to transform the switch into an icmp and a branch.
6007   if (TurnSwitchRangeIntoICmp(SI, Builder))
6008     return requestResimplify();
6009 
6010   // Remove unreachable cases.
6011   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
6012     return requestResimplify();
6013 
6014   if (switchToSelect(SI, Builder, DL, TTI))
6015     return requestResimplify();
6016 
6017   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6018     return requestResimplify();
6019 
6020   // The conversion from switch to lookup tables results in difficult-to-analyze
6021   // code and makes pruning branches much harder. This is a problem if the
6022   // switch expression itself can still be restricted as a result of inlining or
6023   // CVP. Therefore, only apply this transformation during late stages of the
6024   // optimisation pipeline.
6025   if (Options.ConvertSwitchToLookupTable &&
6026       SwitchToLookupTable(SI, Builder, DL, TTI))
6027     return requestResimplify();
6028 
6029   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6030     return requestResimplify();
6031 
6032   return false;
6033 }
6034 
6035 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6036   BasicBlock *BB = IBI->getParent();
6037   bool Changed = false;
6038 
6039   // Eliminate redundant destinations.
6040   SmallPtrSet<Value *, 8> Succs;
6041   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6042     BasicBlock *Dest = IBI->getDestination(i);
6043     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6044       Dest->removePredecessor(BB);
6045       IBI->removeDestination(i);
6046       --i;
6047       --e;
6048       Changed = true;
6049     }
6050   }
6051 
6052   if (IBI->getNumDestinations() == 0) {
6053     // If the indirectbr has no successors, change it to unreachable.
6054     new UnreachableInst(IBI->getContext(), IBI);
6055     EraseTerminatorAndDCECond(IBI);
6056     return true;
6057   }
6058 
6059   if (IBI->getNumDestinations() == 1) {
6060     // If the indirectbr has one successor, change it to a direct branch.
6061     BranchInst::Create(IBI->getDestination(0), IBI);
6062     EraseTerminatorAndDCECond(IBI);
6063     return true;
6064   }
6065 
6066   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6067     if (SimplifyIndirectBrOnSelect(IBI, SI))
6068       return requestResimplify();
6069   }
6070   return Changed;
6071 }
6072 
6073 /// Given an block with only a single landing pad and a unconditional branch
6074 /// try to find another basic block which this one can be merged with.  This
6075 /// handles cases where we have multiple invokes with unique landing pads, but
6076 /// a shared handler.
6077 ///
6078 /// We specifically choose to not worry about merging non-empty blocks
6079 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6080 /// practice, the optimizer produces empty landing pad blocks quite frequently
6081 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6082 /// sinking in this file)
6083 ///
6084 /// This is primarily a code size optimization.  We need to avoid performing
6085 /// any transform which might inhibit optimization (such as our ability to
6086 /// specialize a particular handler via tail commoning).  We do this by not
6087 /// merging any blocks which require us to introduce a phi.  Since the same
6088 /// values are flowing through both blocks, we don't lose any ability to
6089 /// specialize.  If anything, we make such specialization more likely.
6090 ///
6091 /// TODO - This transformation could remove entries from a phi in the target
6092 /// block when the inputs in the phi are the same for the two blocks being
6093 /// merged.  In some cases, this could result in removal of the PHI entirely.
6094 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6095                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6096   auto Succ = BB->getUniqueSuccessor();
6097   assert(Succ);
6098   // If there's a phi in the successor block, we'd likely have to introduce
6099   // a phi into the merged landing pad block.
6100   if (isa<PHINode>(*Succ->begin()))
6101     return false;
6102 
6103   for (BasicBlock *OtherPred : predecessors(Succ)) {
6104     if (BB == OtherPred)
6105       continue;
6106     BasicBlock::iterator I = OtherPred->begin();
6107     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6108     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6109       continue;
6110     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6111       ;
6112     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6113     if (!BI2 || !BI2->isIdenticalTo(BI))
6114       continue;
6115 
6116     std::vector<DominatorTree::UpdateType> Updates;
6117 
6118     // We've found an identical block.  Update our predecessors to take that
6119     // path instead and make ourselves dead.
6120     SmallPtrSet<BasicBlock *, 16> Preds;
6121     Preds.insert(pred_begin(BB), pred_end(BB));
6122     for (BasicBlock *Pred : Preds) {
6123       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6124       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6125              "unexpected successor");
6126       II->setUnwindDest(OtherPred);
6127       Updates.push_back({DominatorTree::Delete, Pred, BB});
6128       Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6129     }
6130 
6131     // The debug info in OtherPred doesn't cover the merged control flow that
6132     // used to go through BB.  We need to delete it or update it.
6133     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6134       Instruction &Inst = *I;
6135       I++;
6136       if (isa<DbgInfoIntrinsic>(Inst))
6137         Inst.eraseFromParent();
6138     }
6139 
6140     SmallPtrSet<BasicBlock *, 16> Succs;
6141     Succs.insert(succ_begin(BB), succ_end(BB));
6142     for (BasicBlock *Succ : Succs) {
6143       Succ->removePredecessor(BB);
6144       Updates.push_back({DominatorTree::Delete, BB, Succ});
6145     }
6146 
6147     IRBuilder<> Builder(BI);
6148     Builder.CreateUnreachable();
6149     BI->eraseFromParent();
6150     if (DTU)
6151       DTU->applyUpdatesPermissive(Updates);
6152     return true;
6153   }
6154   return false;
6155 }
6156 
6157 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6158   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6159                                    : simplifyCondBranch(Branch, Builder);
6160 }
6161 
6162 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6163                                           IRBuilder<> &Builder) {
6164   BasicBlock *BB = BI->getParent();
6165   BasicBlock *Succ = BI->getSuccessor(0);
6166 
6167   // If the Terminator is the only non-phi instruction, simplify the block.
6168   // If LoopHeader is provided, check if the block or its successor is a loop
6169   // header. (This is for early invocations before loop simplify and
6170   // vectorization to keep canonical loop forms for nested loops. These blocks
6171   // can be eliminated when the pass is invoked later in the back-end.)
6172   // Note that if BB has only one predecessor then we do not introduce new
6173   // backedge, so we can eliminate BB.
6174   bool NeedCanonicalLoop =
6175       Options.NeedCanonicalLoop &&
6176       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
6177        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
6178   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
6179   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6180       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6181     return true;
6182 
6183   // If the only instruction in the block is a seteq/setne comparison against a
6184   // constant, try to simplify the block.
6185   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6186     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6187       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6188         ;
6189       if (I->isTerminator() &&
6190           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6191         return true;
6192     }
6193 
6194   // See if we can merge an empty landing pad block with another which is
6195   // equivalent.
6196   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6197     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6198       ;
6199     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6200       return true;
6201   }
6202 
6203   // If this basic block is ONLY a compare and a branch, and if a predecessor
6204   // branches to us and our successor, fold the comparison into the
6205   // predecessor and use logical operations to update the incoming value
6206   // for PHI nodes in common successor.
6207   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6208                              Options.BonusInstThreshold))
6209     return requestResimplify();
6210   return false;
6211 }
6212 
6213 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6214   BasicBlock *PredPred = nullptr;
6215   for (auto *P : predecessors(BB)) {
6216     BasicBlock *PPred = P->getSinglePredecessor();
6217     if (!PPred || (PredPred && PredPred != PPred))
6218       return nullptr;
6219     PredPred = PPred;
6220   }
6221   return PredPred;
6222 }
6223 
6224 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6225   BasicBlock *BB = BI->getParent();
6226   if (!Options.SimplifyCondBranch)
6227     return false;
6228 
6229   // Conditional branch
6230   if (isValueEqualityComparison(BI)) {
6231     // If we only have one predecessor, and if it is a branch on this value,
6232     // see if that predecessor totally determines the outcome of this
6233     // switch.
6234     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6235       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6236         return requestResimplify();
6237 
6238     // This block must be empty, except for the setcond inst, if it exists.
6239     // Ignore dbg intrinsics.
6240     auto I = BB->instructionsWithoutDebug().begin();
6241     if (&*I == BI) {
6242       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6243         return requestResimplify();
6244     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6245       ++I;
6246       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6247         return requestResimplify();
6248     }
6249   }
6250 
6251   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6252   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6253     return true;
6254 
6255   // If this basic block has dominating predecessor blocks and the dominating
6256   // blocks' conditions imply BI's condition, we know the direction of BI.
6257   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6258   if (Imp) {
6259     // Turn this into a branch on constant.
6260     auto *OldCond = BI->getCondition();
6261     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6262                              : ConstantInt::getFalse(BB->getContext());
6263     BI->setCondition(TorF);
6264     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6265     return requestResimplify();
6266   }
6267 
6268   // If this basic block is ONLY a compare and a branch, and if a predecessor
6269   // branches to us and one of our successors, fold the comparison into the
6270   // predecessor and use logical operations to pick the right destination.
6271   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6272                              Options.BonusInstThreshold))
6273     return requestResimplify();
6274 
6275   // We have a conditional branch to two blocks that are only reachable
6276   // from BI.  We know that the condbr dominates the two blocks, so see if
6277   // there is any identical code in the "then" and "else" blocks.  If so, we
6278   // can hoist it up to the branching block.
6279   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6280     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6281       if (HoistCommon && Options.HoistCommonInsts)
6282         if (HoistThenElseCodeToIf(BI, TTI))
6283           return requestResimplify();
6284     } else {
6285       // If Successor #1 has multiple preds, we may be able to conditionally
6286       // execute Successor #0 if it branches to Successor #1.
6287       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6288       if (Succ0TI->getNumSuccessors() == 1 &&
6289           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6290         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6291           return requestResimplify();
6292     }
6293   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6294     // If Successor #0 has multiple preds, we may be able to conditionally
6295     // execute Successor #1 if it branches to Successor #0.
6296     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6297     if (Succ1TI->getNumSuccessors() == 1 &&
6298         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6299       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6300         return requestResimplify();
6301   }
6302 
6303   // If this is a branch on a phi node in the current block, thread control
6304   // through this block if any PHI node entries are constants.
6305   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6306     if (PN->getParent() == BI->getParent())
6307       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
6308         return requestResimplify();
6309 
6310   // Scan predecessor blocks for conditional branches.
6311   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6312     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6313       if (PBI != BI && PBI->isConditional())
6314         if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI))
6315           return requestResimplify();
6316 
6317   // Look for diamond patterns.
6318   if (MergeCondStores)
6319     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6320       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6321         if (PBI != BI && PBI->isConditional())
6322           if (mergeConditionalStores(PBI, BI, DL, TTI))
6323             return requestResimplify();
6324 
6325   return false;
6326 }
6327 
6328 /// Check if passing a value to an instruction will cause undefined behavior.
6329 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
6330   Constant *C = dyn_cast<Constant>(V);
6331   if (!C)
6332     return false;
6333 
6334   if (I->use_empty())
6335     return false;
6336 
6337   if (C->isNullValue() || isa<UndefValue>(C)) {
6338     // Only look at the first use, avoid hurting compile time with long uselists
6339     User *Use = *I->user_begin();
6340 
6341     // Now make sure that there are no instructions in between that can alter
6342     // control flow (eg. calls)
6343     for (BasicBlock::iterator
6344              i = ++BasicBlock::iterator(I),
6345              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6346          i != UI; ++i)
6347       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6348         return false;
6349 
6350     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6351     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6352       if (GEP->getPointerOperand() == I)
6353         return passingValueIsAlwaysUndefined(V, GEP);
6354 
6355     // Look through bitcasts.
6356     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6357       return passingValueIsAlwaysUndefined(V, BC);
6358 
6359     // Load from null is undefined.
6360     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6361       if (!LI->isVolatile())
6362         return !NullPointerIsDefined(LI->getFunction(),
6363                                      LI->getPointerAddressSpace());
6364 
6365     // Store to null is undefined.
6366     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6367       if (!SI->isVolatile())
6368         return (!NullPointerIsDefined(SI->getFunction(),
6369                                       SI->getPointerAddressSpace())) &&
6370                SI->getPointerOperand() == I;
6371 
6372     // A call to null is undefined.
6373     if (auto *CB = dyn_cast<CallBase>(Use))
6374       return !NullPointerIsDefined(CB->getFunction()) &&
6375              CB->getCalledOperand() == I;
6376   }
6377   return false;
6378 }
6379 
6380 /// If BB has an incoming value that will always trigger undefined behavior
6381 /// (eg. null pointer dereference), remove the branch leading here.
6382 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
6383   for (PHINode &PHI : BB->phis())
6384     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6385       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6386         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
6387         IRBuilder<> Builder(T);
6388         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6389           BB->removePredecessor(PHI.getIncomingBlock(i));
6390           // Turn uncoditional branches into unreachables and remove the dead
6391           // destination from conditional branches.
6392           if (BI->isUnconditional())
6393             Builder.CreateUnreachable();
6394           else
6395             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6396                                                        : BI->getSuccessor(0));
6397           BI->eraseFromParent();
6398           return true;
6399         }
6400         // TODO: SwitchInst.
6401       }
6402 
6403   return false;
6404 }
6405 
6406 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6407   bool Changed = false;
6408 
6409   assert(BB && BB->getParent() && "Block not embedded in function!");
6410   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6411 
6412   // Remove basic blocks that have no predecessors (except the entry block)...
6413   // or that just have themself as a predecessor.  These are unreachable.
6414   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6415       BB->getSinglePredecessor() == BB) {
6416     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6417     DeleteDeadBlock(BB, DTU);
6418     return true;
6419   }
6420 
6421   // Check to see if we can constant propagate this terminator instruction
6422   // away...
6423   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6424                                     /*TLI=*/nullptr, DTU);
6425 
6426   // Check for and eliminate duplicate PHI nodes in this block.
6427   Changed |= EliminateDuplicatePHINodes(BB);
6428 
6429   // Check for and remove branches that will always cause undefined behavior.
6430   Changed |= removeUndefIntroducingPredecessor(BB);
6431 
6432   // Merge basic blocks into their predecessor if there is only one distinct
6433   // pred, and if there is only one distinct successor of the predecessor, and
6434   // if there are no PHI nodes.
6435   if (MergeBlockIntoPredecessor(BB, DTU))
6436     return true;
6437 
6438   if (SinkCommon && Options.SinkCommonInsts)
6439     Changed |= SinkCommonCodeFromPredecessors(BB);
6440 
6441   IRBuilder<> Builder(BB);
6442 
6443   if (Options.FoldTwoEntryPHINode) {
6444     // If there is a trivial two-entry PHI node in this basic block, and we can
6445     // eliminate it, do so now.
6446     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6447       if (PN->getNumIncomingValues() == 2)
6448         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6449   }
6450 
6451   Instruction *Terminator = BB->getTerminator();
6452   Builder.SetInsertPoint(Terminator);
6453   switch (Terminator->getOpcode()) {
6454   case Instruction::Br:
6455     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6456     break;
6457   case Instruction::Ret:
6458     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6459     break;
6460   case Instruction::Resume:
6461     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6462     break;
6463   case Instruction::CleanupRet:
6464     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6465     break;
6466   case Instruction::Switch:
6467     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6468     break;
6469   case Instruction::Unreachable:
6470     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6471     break;
6472   case Instruction::IndirectBr:
6473     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6474     break;
6475   }
6476 
6477   return Changed;
6478 }
6479 
6480 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6481   assert((!RequireAndPreserveDomTree ||
6482           (DTU &&
6483            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6484          "Original domtree is invalid?");
6485 
6486   bool Changed = simplifyOnceImpl(BB);
6487 
6488   assert((!RequireAndPreserveDomTree ||
6489           (DTU &&
6490            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6491          "Failed to maintain validity of domtree!");
6492 
6493   return Changed;
6494 }
6495 
6496 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6497   bool Changed = false;
6498 
6499   // Repeated simplify BB as long as resimplification is requested.
6500   do {
6501     Resimplify = false;
6502 
6503     // Perform one round of simplifcation. Resimplify flag will be set if
6504     // another iteration is requested.
6505     Changed |= simplifyOnce(BB);
6506   } while (Resimplify);
6507 
6508   return Changed;
6509 }
6510 
6511 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6512                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6513                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6514   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6515                         Options)
6516       .run(BB);
6517 }
6518