1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRange.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/NoFolder.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Use.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/ValueMapper.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <climits> 72 #include <cstddef> 73 #include <cstdint> 74 #include <iterator> 75 #include <map> 76 #include <set> 77 #include <tuple> 78 #include <utility> 79 #include <vector> 80 81 using namespace llvm; 82 using namespace PatternMatch; 83 84 #define DEBUG_TYPE "simplifycfg" 85 86 // Chosen as 2 so as to be cheap, but still to have enough power to fold 87 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 88 // To catch this, we need to fold a compare and a select, hence '2' being the 89 // minimum reasonable default. 90 static cl::opt<unsigned> PHINodeFoldingThreshold( 91 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 92 cl::desc( 93 "Control the amount of phi node folding to perform (default = 2)")); 94 95 static cl::opt<bool> DupRet( 96 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 97 cl::desc("Duplicate return instructions into unconditional branches")); 98 99 static cl::opt<bool> 100 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 101 cl::desc("Sink common instructions down to the end block")); 102 103 static cl::opt<bool> HoistCondStores( 104 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 105 cl::desc("Hoist conditional stores if an unconditional store precedes")); 106 107 static cl::opt<bool> MergeCondStores( 108 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 109 cl::desc("Hoist conditional stores even if an unconditional store does not " 110 "precede - hoist multiple conditional stores into a single " 111 "predicated store")); 112 113 static cl::opt<bool> MergeCondStoresAggressively( 114 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 115 cl::desc("When merging conditional stores, do so even if the resultant " 116 "basic blocks are unlikely to be if-converted as a result")); 117 118 static cl::opt<bool> SpeculateOneExpensiveInst( 119 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 120 cl::desc("Allow exactly one expensive instruction to be speculatively " 121 "executed")); 122 123 static cl::opt<unsigned> MaxSpeculationDepth( 124 "max-speculation-depth", cl::Hidden, cl::init(10), 125 cl::desc("Limit maximum recursion depth when calculating costs of " 126 "speculatively executed instructions")); 127 128 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 129 STATISTIC(NumLinearMaps, 130 "Number of switch instructions turned into linear mapping"); 131 STATISTIC(NumLookupTables, 132 "Number of switch instructions turned into lookup tables"); 133 STATISTIC( 134 NumLookupTablesHoles, 135 "Number of switch instructions turned into lookup tables (holes checked)"); 136 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 137 STATISTIC(NumSinkCommons, 138 "Number of common instructions sunk down to the end block"); 139 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 140 141 namespace { 142 143 // The first field contains the value that the switch produces when a certain 144 // case group is selected, and the second field is a vector containing the 145 // cases composing the case group. 146 using SwitchCaseResultVectorTy = 147 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 148 149 // The first field contains the phi node that generates a result of the switch 150 // and the second field contains the value generated for a certain case in the 151 // switch for that PHI. 152 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 153 154 /// ValueEqualityComparisonCase - Represents a case of a switch. 155 struct ValueEqualityComparisonCase { 156 ConstantInt *Value; 157 BasicBlock *Dest; 158 159 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 160 : Value(Value), Dest(Dest) {} 161 162 bool operator<(ValueEqualityComparisonCase RHS) const { 163 // Comparing pointers is ok as we only rely on the order for uniquing. 164 return Value < RHS.Value; 165 } 166 167 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 168 }; 169 170 class SimplifyCFGOpt { 171 const TargetTransformInfo &TTI; 172 const DataLayout &DL; 173 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 174 const SimplifyCFGOptions &Options; 175 bool Resimplify; 176 177 Value *isValueEqualityComparison(Instruction *TI); 178 BasicBlock *GetValueEqualityComparisonCases( 179 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 180 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 181 BasicBlock *Pred, 182 IRBuilder<> &Builder); 183 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 184 IRBuilder<> &Builder); 185 186 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 187 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 188 bool SimplifySingleResume(ResumeInst *RI); 189 bool SimplifyCommonResume(ResumeInst *RI); 190 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 191 bool SimplifyUnreachable(UnreachableInst *UI); 192 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 193 bool SimplifyIndirectBr(IndirectBrInst *IBI); 194 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 195 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 197 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 198 IRBuilder<> &Builder); 199 200 public: 201 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 202 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 203 const SimplifyCFGOptions &Opts) 204 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 205 206 bool run(BasicBlock *BB); 207 bool simplifyOnce(BasicBlock *BB); 208 209 // Helper to set Resimplify and return change indication. 210 bool requestResimplify() { 211 Resimplify = true; 212 return true; 213 } 214 }; 215 216 } // end anonymous namespace 217 218 /// Return true if it is safe to merge these two 219 /// terminator instructions together. 220 static bool 221 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 222 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 223 if (SI1 == SI2) 224 return false; // Can't merge with self! 225 226 // It is not safe to merge these two switch instructions if they have a common 227 // successor, and if that successor has a PHI node, and if *that* PHI node has 228 // conflicting incoming values from the two switch blocks. 229 BasicBlock *SI1BB = SI1->getParent(); 230 BasicBlock *SI2BB = SI2->getParent(); 231 232 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 233 bool Fail = false; 234 for (BasicBlock *Succ : successors(SI2BB)) 235 if (SI1Succs.count(Succ)) 236 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 237 PHINode *PN = cast<PHINode>(BBI); 238 if (PN->getIncomingValueForBlock(SI1BB) != 239 PN->getIncomingValueForBlock(SI2BB)) { 240 if (FailBlocks) 241 FailBlocks->insert(Succ); 242 Fail = true; 243 } 244 } 245 246 return !Fail; 247 } 248 249 /// Return true if it is safe and profitable to merge these two terminator 250 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 251 /// store all PHI nodes in common successors. 252 static bool 253 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 254 Instruction *Cond, 255 SmallVectorImpl<PHINode *> &PhiNodes) { 256 if (SI1 == SI2) 257 return false; // Can't merge with self! 258 assert(SI1->isUnconditional() && SI2->isConditional()); 259 260 // We fold the unconditional branch if we can easily update all PHI nodes in 261 // common successors: 262 // 1> We have a constant incoming value for the conditional branch; 263 // 2> We have "Cond" as the incoming value for the unconditional branch; 264 // 3> SI2->getCondition() and Cond have same operands. 265 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 266 if (!Ci2) 267 return false; 268 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 269 Cond->getOperand(1) == Ci2->getOperand(1)) && 270 !(Cond->getOperand(0) == Ci2->getOperand(1) && 271 Cond->getOperand(1) == Ci2->getOperand(0))) 272 return false; 273 274 BasicBlock *SI1BB = SI1->getParent(); 275 BasicBlock *SI2BB = SI2->getParent(); 276 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 277 for (BasicBlock *Succ : successors(SI2BB)) 278 if (SI1Succs.count(Succ)) 279 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 280 PHINode *PN = cast<PHINode>(BBI); 281 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 282 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 283 return false; 284 PhiNodes.push_back(PN); 285 } 286 return true; 287 } 288 289 /// Update PHI nodes in Succ to indicate that there will now be entries in it 290 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 291 /// will be the same as those coming in from ExistPred, an existing predecessor 292 /// of Succ. 293 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 294 BasicBlock *ExistPred) { 295 for (PHINode &PN : Succ->phis()) 296 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 297 } 298 299 /// Compute an abstract "cost" of speculating the given instruction, 300 /// which is assumed to be safe to speculate. TCC_Free means cheap, 301 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 302 /// expensive. 303 static unsigned ComputeSpeculationCost(const User *I, 304 const TargetTransformInfo &TTI) { 305 assert(isSafeToSpeculativelyExecute(I) && 306 "Instruction is not safe to speculatively execute!"); 307 return TTI.getUserCost(I); 308 } 309 310 /// If we have a merge point of an "if condition" as accepted above, 311 /// return true if the specified value dominates the block. We 312 /// don't handle the true generality of domination here, just a special case 313 /// which works well enough for us. 314 /// 315 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 316 /// see if V (which must be an instruction) and its recursive operands 317 /// that do not dominate BB have a combined cost lower than CostRemaining and 318 /// are non-trapping. If both are true, the instruction is inserted into the 319 /// set and true is returned. 320 /// 321 /// The cost for most non-trapping instructions is defined as 1 except for 322 /// Select whose cost is 2. 323 /// 324 /// After this function returns, CostRemaining is decreased by the cost of 325 /// V plus its non-dominating operands. If that cost is greater than 326 /// CostRemaining, false is returned and CostRemaining is undefined. 327 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 328 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 329 unsigned &CostRemaining, 330 const TargetTransformInfo &TTI, 331 unsigned Depth = 0) { 332 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 333 // so limit the recursion depth. 334 // TODO: While this recursion limit does prevent pathological behavior, it 335 // would be better to track visited instructions to avoid cycles. 336 if (Depth == MaxSpeculationDepth) 337 return false; 338 339 Instruction *I = dyn_cast<Instruction>(V); 340 if (!I) { 341 // Non-instructions all dominate instructions, but not all constantexprs 342 // can be executed unconditionally. 343 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 344 if (C->canTrap()) 345 return false; 346 return true; 347 } 348 BasicBlock *PBB = I->getParent(); 349 350 // We don't want to allow weird loops that might have the "if condition" in 351 // the bottom of this block. 352 if (PBB == BB) 353 return false; 354 355 // If this instruction is defined in a block that contains an unconditional 356 // branch to BB, then it must be in the 'conditional' part of the "if 357 // statement". If not, it definitely dominates the region. 358 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 359 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 360 return true; 361 362 // If we have seen this instruction before, don't count it again. 363 if (AggressiveInsts.count(I)) 364 return true; 365 366 // Okay, it looks like the instruction IS in the "condition". Check to 367 // see if it's a cheap instruction to unconditionally compute, and if it 368 // only uses stuff defined outside of the condition. If so, hoist it out. 369 if (!isSafeToSpeculativelyExecute(I)) 370 return false; 371 372 unsigned Cost = ComputeSpeculationCost(I, TTI); 373 374 // Allow exactly one instruction to be speculated regardless of its cost 375 // (as long as it is safe to do so). 376 // This is intended to flatten the CFG even if the instruction is a division 377 // or other expensive operation. The speculation of an expensive instruction 378 // is expected to be undone in CodeGenPrepare if the speculation has not 379 // enabled further IR optimizations. 380 if (Cost > CostRemaining && 381 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 382 return false; 383 384 // Avoid unsigned wrap. 385 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 386 387 // Okay, we can only really hoist these out if their operands do 388 // not take us over the cost threshold. 389 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 390 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 391 Depth + 1)) 392 return false; 393 // Okay, it's safe to do this! Remember this instruction. 394 AggressiveInsts.insert(I); 395 return true; 396 } 397 398 /// Extract ConstantInt from value, looking through IntToPtr 399 /// and PointerNullValue. Return NULL if value is not a constant int. 400 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 401 // Normal constant int. 402 ConstantInt *CI = dyn_cast<ConstantInt>(V); 403 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 404 return CI; 405 406 // This is some kind of pointer constant. Turn it into a pointer-sized 407 // ConstantInt if possible. 408 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 409 410 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 411 if (isa<ConstantPointerNull>(V)) 412 return ConstantInt::get(PtrTy, 0); 413 414 // IntToPtr const int. 415 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 416 if (CE->getOpcode() == Instruction::IntToPtr) 417 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 418 // The constant is very likely to have the right type already. 419 if (CI->getType() == PtrTy) 420 return CI; 421 else 422 return cast<ConstantInt>( 423 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 424 } 425 return nullptr; 426 } 427 428 namespace { 429 430 /// Given a chain of or (||) or and (&&) comparison of a value against a 431 /// constant, this will try to recover the information required for a switch 432 /// structure. 433 /// It will depth-first traverse the chain of comparison, seeking for patterns 434 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 435 /// representing the different cases for the switch. 436 /// Note that if the chain is composed of '||' it will build the set of elements 437 /// that matches the comparisons (i.e. any of this value validate the chain) 438 /// while for a chain of '&&' it will build the set elements that make the test 439 /// fail. 440 struct ConstantComparesGatherer { 441 const DataLayout &DL; 442 443 /// Value found for the switch comparison 444 Value *CompValue = nullptr; 445 446 /// Extra clause to be checked before the switch 447 Value *Extra = nullptr; 448 449 /// Set of integers to match in switch 450 SmallVector<ConstantInt *, 8> Vals; 451 452 /// Number of comparisons matched in the and/or chain 453 unsigned UsedICmps = 0; 454 455 /// Construct and compute the result for the comparison instruction Cond 456 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 457 gather(Cond); 458 } 459 460 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 461 ConstantComparesGatherer & 462 operator=(const ConstantComparesGatherer &) = delete; 463 464 private: 465 /// Try to set the current value used for the comparison, it succeeds only if 466 /// it wasn't set before or if the new value is the same as the old one 467 bool setValueOnce(Value *NewVal) { 468 if (CompValue && CompValue != NewVal) 469 return false; 470 CompValue = NewVal; 471 return (CompValue != nullptr); 472 } 473 474 /// Try to match Instruction "I" as a comparison against a constant and 475 /// populates the array Vals with the set of values that match (or do not 476 /// match depending on isEQ). 477 /// Return false on failure. On success, the Value the comparison matched 478 /// against is placed in CompValue. 479 /// If CompValue is already set, the function is expected to fail if a match 480 /// is found but the value compared to is different. 481 bool matchInstruction(Instruction *I, bool isEQ) { 482 // If this is an icmp against a constant, handle this as one of the cases. 483 ICmpInst *ICI; 484 ConstantInt *C; 485 if (!((ICI = dyn_cast<ICmpInst>(I)) && 486 (C = GetConstantInt(I->getOperand(1), DL)))) { 487 return false; 488 } 489 490 Value *RHSVal; 491 const APInt *RHSC; 492 493 // Pattern match a special case 494 // (x & ~2^z) == y --> x == y || x == y|2^z 495 // This undoes a transformation done by instcombine to fuse 2 compares. 496 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 497 // It's a little bit hard to see why the following transformations are 498 // correct. Here is a CVC3 program to verify them for 64-bit values: 499 500 /* 501 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 502 x : BITVECTOR(64); 503 y : BITVECTOR(64); 504 z : BITVECTOR(64); 505 mask : BITVECTOR(64) = BVSHL(ONE, z); 506 QUERY( (y & ~mask = y) => 507 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 508 ); 509 QUERY( (y | mask = y) => 510 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 511 ); 512 */ 513 514 // Please note that each pattern must be a dual implication (<--> or 515 // iff). One directional implication can create spurious matches. If the 516 // implication is only one-way, an unsatisfiable condition on the left 517 // side can imply a satisfiable condition on the right side. Dual 518 // implication ensures that satisfiable conditions are transformed to 519 // other satisfiable conditions and unsatisfiable conditions are 520 // transformed to other unsatisfiable conditions. 521 522 // Here is a concrete example of a unsatisfiable condition on the left 523 // implying a satisfiable condition on the right: 524 // 525 // mask = (1 << z) 526 // (x & ~mask) == y --> (x == y || x == (y | mask)) 527 // 528 // Substituting y = 3, z = 0 yields: 529 // (x & -2) == 3 --> (x == 3 || x == 2) 530 531 // Pattern match a special case: 532 /* 533 QUERY( (y & ~mask = y) => 534 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 535 ); 536 */ 537 if (match(ICI->getOperand(0), 538 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 539 APInt Mask = ~*RHSC; 540 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 541 // If we already have a value for the switch, it has to match! 542 if (!setValueOnce(RHSVal)) 543 return false; 544 545 Vals.push_back(C); 546 Vals.push_back( 547 ConstantInt::get(C->getContext(), 548 C->getValue() | Mask)); 549 UsedICmps++; 550 return true; 551 } 552 } 553 554 // Pattern match a special case: 555 /* 556 QUERY( (y | mask = y) => 557 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 558 ); 559 */ 560 if (match(ICI->getOperand(0), 561 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 562 APInt Mask = *RHSC; 563 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 564 // If we already have a value for the switch, it has to match! 565 if (!setValueOnce(RHSVal)) 566 return false; 567 568 Vals.push_back(C); 569 Vals.push_back(ConstantInt::get(C->getContext(), 570 C->getValue() & ~Mask)); 571 UsedICmps++; 572 return true; 573 } 574 } 575 576 // If we already have a value for the switch, it has to match! 577 if (!setValueOnce(ICI->getOperand(0))) 578 return false; 579 580 UsedICmps++; 581 Vals.push_back(C); 582 return ICI->getOperand(0); 583 } 584 585 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 586 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 587 ICI->getPredicate(), C->getValue()); 588 589 // Shift the range if the compare is fed by an add. This is the range 590 // compare idiom as emitted by instcombine. 591 Value *CandidateVal = I->getOperand(0); 592 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 593 Span = Span.subtract(*RHSC); 594 CandidateVal = RHSVal; 595 } 596 597 // If this is an and/!= check, then we are looking to build the set of 598 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 599 // x != 0 && x != 1. 600 if (!isEQ) 601 Span = Span.inverse(); 602 603 // If there are a ton of values, we don't want to make a ginormous switch. 604 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 605 return false; 606 } 607 608 // If we already have a value for the switch, it has to match! 609 if (!setValueOnce(CandidateVal)) 610 return false; 611 612 // Add all values from the range to the set 613 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 614 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 615 616 UsedICmps++; 617 return true; 618 } 619 620 /// Given a potentially 'or'd or 'and'd together collection of icmp 621 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 622 /// the value being compared, and stick the list constants into the Vals 623 /// vector. 624 /// One "Extra" case is allowed to differ from the other. 625 void gather(Value *V) { 626 Instruction *I = dyn_cast<Instruction>(V); 627 bool isEQ = (I->getOpcode() == Instruction::Or); 628 629 // Keep a stack (SmallVector for efficiency) for depth-first traversal 630 SmallVector<Value *, 8> DFT; 631 SmallPtrSet<Value *, 8> Visited; 632 633 // Initialize 634 Visited.insert(V); 635 DFT.push_back(V); 636 637 while (!DFT.empty()) { 638 V = DFT.pop_back_val(); 639 640 if (Instruction *I = dyn_cast<Instruction>(V)) { 641 // If it is a || (or && depending on isEQ), process the operands. 642 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 643 if (Visited.insert(I->getOperand(1)).second) 644 DFT.push_back(I->getOperand(1)); 645 if (Visited.insert(I->getOperand(0)).second) 646 DFT.push_back(I->getOperand(0)); 647 continue; 648 } 649 650 // Try to match the current instruction 651 if (matchInstruction(I, isEQ)) 652 // Match succeed, continue the loop 653 continue; 654 } 655 656 // One element of the sequence of || (or &&) could not be match as a 657 // comparison against the same value as the others. 658 // We allow only one "Extra" case to be checked before the switch 659 if (!Extra) { 660 Extra = V; 661 continue; 662 } 663 // Failed to parse a proper sequence, abort now 664 CompValue = nullptr; 665 break; 666 } 667 } 668 }; 669 670 } // end anonymous namespace 671 672 static void EraseTerminatorAndDCECond(Instruction *TI) { 673 Instruction *Cond = nullptr; 674 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 675 Cond = dyn_cast<Instruction>(SI->getCondition()); 676 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 677 if (BI->isConditional()) 678 Cond = dyn_cast<Instruction>(BI->getCondition()); 679 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 680 Cond = dyn_cast<Instruction>(IBI->getAddress()); 681 } 682 683 TI->eraseFromParent(); 684 if (Cond) 685 RecursivelyDeleteTriviallyDeadInstructions(Cond); 686 } 687 688 /// Return true if the specified terminator checks 689 /// to see if a value is equal to constant integer value. 690 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 691 Value *CV = nullptr; 692 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 693 // Do not permit merging of large switch instructions into their 694 // predecessors unless there is only one predecessor. 695 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 696 CV = SI->getCondition(); 697 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 698 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 699 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 700 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 701 CV = ICI->getOperand(0); 702 } 703 704 // Unwrap any lossless ptrtoint cast. 705 if (CV) { 706 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 707 Value *Ptr = PTII->getPointerOperand(); 708 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 709 CV = Ptr; 710 } 711 } 712 return CV; 713 } 714 715 /// Given a value comparison instruction, 716 /// decode all of the 'cases' that it represents and return the 'default' block. 717 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 718 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 719 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 720 Cases.reserve(SI->getNumCases()); 721 for (auto Case : SI->cases()) 722 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 723 Case.getCaseSuccessor())); 724 return SI->getDefaultDest(); 725 } 726 727 BranchInst *BI = cast<BranchInst>(TI); 728 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 729 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 730 Cases.push_back(ValueEqualityComparisonCase( 731 GetConstantInt(ICI->getOperand(1), DL), Succ)); 732 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 733 } 734 735 /// Given a vector of bb/value pairs, remove any entries 736 /// in the list that match the specified block. 737 static void 738 EliminateBlockCases(BasicBlock *BB, 739 std::vector<ValueEqualityComparisonCase> &Cases) { 740 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 741 } 742 743 /// Return true if there are any keys in C1 that exist in C2 as well. 744 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 745 std::vector<ValueEqualityComparisonCase> &C2) { 746 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 747 748 // Make V1 be smaller than V2. 749 if (V1->size() > V2->size()) 750 std::swap(V1, V2); 751 752 if (V1->empty()) 753 return false; 754 if (V1->size() == 1) { 755 // Just scan V2. 756 ConstantInt *TheVal = (*V1)[0].Value; 757 for (unsigned i = 0, e = V2->size(); i != e; ++i) 758 if (TheVal == (*V2)[i].Value) 759 return true; 760 } 761 762 // Otherwise, just sort both lists and compare element by element. 763 array_pod_sort(V1->begin(), V1->end()); 764 array_pod_sort(V2->begin(), V2->end()); 765 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 766 while (i1 != e1 && i2 != e2) { 767 if ((*V1)[i1].Value == (*V2)[i2].Value) 768 return true; 769 if ((*V1)[i1].Value < (*V2)[i2].Value) 770 ++i1; 771 else 772 ++i2; 773 } 774 return false; 775 } 776 777 // Set branch weights on SwitchInst. This sets the metadata if there is at 778 // least one non-zero weight. 779 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 780 // Check that there is at least one non-zero weight. Otherwise, pass 781 // nullptr to setMetadata which will erase the existing metadata. 782 MDNode *N = nullptr; 783 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 784 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 785 SI->setMetadata(LLVMContext::MD_prof, N); 786 } 787 788 // Similar to the above, but for branch and select instructions that take 789 // exactly 2 weights. 790 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 791 uint32_t FalseWeight) { 792 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 793 // Check that there is at least one non-zero weight. Otherwise, pass 794 // nullptr to setMetadata which will erase the existing metadata. 795 MDNode *N = nullptr; 796 if (TrueWeight || FalseWeight) 797 N = MDBuilder(I->getParent()->getContext()) 798 .createBranchWeights(TrueWeight, FalseWeight); 799 I->setMetadata(LLVMContext::MD_prof, N); 800 } 801 802 /// If TI is known to be a terminator instruction and its block is known to 803 /// only have a single predecessor block, check to see if that predecessor is 804 /// also a value comparison with the same value, and if that comparison 805 /// determines the outcome of this comparison. If so, simplify TI. This does a 806 /// very limited form of jump threading. 807 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 808 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 809 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 810 if (!PredVal) 811 return false; // Not a value comparison in predecessor. 812 813 Value *ThisVal = isValueEqualityComparison(TI); 814 assert(ThisVal && "This isn't a value comparison!!"); 815 if (ThisVal != PredVal) 816 return false; // Different predicates. 817 818 // TODO: Preserve branch weight metadata, similarly to how 819 // FoldValueComparisonIntoPredecessors preserves it. 820 821 // Find out information about when control will move from Pred to TI's block. 822 std::vector<ValueEqualityComparisonCase> PredCases; 823 BasicBlock *PredDef = 824 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 825 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 826 827 // Find information about how control leaves this block. 828 std::vector<ValueEqualityComparisonCase> ThisCases; 829 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 830 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 831 832 // If TI's block is the default block from Pred's comparison, potentially 833 // simplify TI based on this knowledge. 834 if (PredDef == TI->getParent()) { 835 // If we are here, we know that the value is none of those cases listed in 836 // PredCases. If there are any cases in ThisCases that are in PredCases, we 837 // can simplify TI. 838 if (!ValuesOverlap(PredCases, ThisCases)) 839 return false; 840 841 if (isa<BranchInst>(TI)) { 842 // Okay, one of the successors of this condbr is dead. Convert it to a 843 // uncond br. 844 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 845 // Insert the new branch. 846 Instruction *NI = Builder.CreateBr(ThisDef); 847 (void)NI; 848 849 // Remove PHI node entries for the dead edge. 850 ThisCases[0].Dest->removePredecessor(TI->getParent()); 851 852 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 853 << "Through successor TI: " << *TI << "Leaving: " << *NI 854 << "\n"); 855 856 EraseTerminatorAndDCECond(TI); 857 return true; 858 } 859 860 SwitchInst *SI = cast<SwitchInst>(TI); 861 // Okay, TI has cases that are statically dead, prune them away. 862 SmallPtrSet<Constant *, 16> DeadCases; 863 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 864 DeadCases.insert(PredCases[i].Value); 865 866 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 867 << "Through successor TI: " << *TI); 868 869 // Collect branch weights into a vector. 870 SmallVector<uint32_t, 8> Weights; 871 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 872 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 873 if (HasWeight) 874 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 875 ++MD_i) { 876 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 877 Weights.push_back(CI->getValue().getZExtValue()); 878 } 879 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 880 --i; 881 if (DeadCases.count(i->getCaseValue())) { 882 if (HasWeight) { 883 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 884 Weights.pop_back(); 885 } 886 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 887 SI->removeCase(i); 888 } 889 } 890 if (HasWeight && Weights.size() >= 2) 891 setBranchWeights(SI, Weights); 892 893 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 894 return true; 895 } 896 897 // Otherwise, TI's block must correspond to some matched value. Find out 898 // which value (or set of values) this is. 899 ConstantInt *TIV = nullptr; 900 BasicBlock *TIBB = TI->getParent(); 901 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 902 if (PredCases[i].Dest == TIBB) { 903 if (TIV) 904 return false; // Cannot handle multiple values coming to this block. 905 TIV = PredCases[i].Value; 906 } 907 assert(TIV && "No edge from pred to succ?"); 908 909 // Okay, we found the one constant that our value can be if we get into TI's 910 // BB. Find out which successor will unconditionally be branched to. 911 BasicBlock *TheRealDest = nullptr; 912 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 913 if (ThisCases[i].Value == TIV) { 914 TheRealDest = ThisCases[i].Dest; 915 break; 916 } 917 918 // If not handled by any explicit cases, it is handled by the default case. 919 if (!TheRealDest) 920 TheRealDest = ThisDef; 921 922 // Remove PHI node entries for dead edges. 923 BasicBlock *CheckEdge = TheRealDest; 924 for (BasicBlock *Succ : successors(TIBB)) 925 if (Succ != CheckEdge) 926 Succ->removePredecessor(TIBB); 927 else 928 CheckEdge = nullptr; 929 930 // Insert the new branch. 931 Instruction *NI = Builder.CreateBr(TheRealDest); 932 (void)NI; 933 934 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 935 << "Through successor TI: " << *TI << "Leaving: " << *NI 936 << "\n"); 937 938 EraseTerminatorAndDCECond(TI); 939 return true; 940 } 941 942 namespace { 943 944 /// This class implements a stable ordering of constant 945 /// integers that does not depend on their address. This is important for 946 /// applications that sort ConstantInt's to ensure uniqueness. 947 struct ConstantIntOrdering { 948 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 949 return LHS->getValue().ult(RHS->getValue()); 950 } 951 }; 952 953 } // end anonymous namespace 954 955 static int ConstantIntSortPredicate(ConstantInt *const *P1, 956 ConstantInt *const *P2) { 957 const ConstantInt *LHS = *P1; 958 const ConstantInt *RHS = *P2; 959 if (LHS == RHS) 960 return 0; 961 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 962 } 963 964 static inline bool HasBranchWeights(const Instruction *I) { 965 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 966 if (ProfMD && ProfMD->getOperand(0)) 967 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 968 return MDS->getString().equals("branch_weights"); 969 970 return false; 971 } 972 973 /// Get Weights of a given terminator, the default weight is at the front 974 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 975 /// metadata. 976 static void GetBranchWeights(Instruction *TI, 977 SmallVectorImpl<uint64_t> &Weights) { 978 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 979 assert(MD); 980 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 981 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 982 Weights.push_back(CI->getValue().getZExtValue()); 983 } 984 985 // If TI is a conditional eq, the default case is the false case, 986 // and the corresponding branch-weight data is at index 2. We swap the 987 // default weight to be the first entry. 988 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 989 assert(Weights.size() == 2); 990 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 991 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 992 std::swap(Weights.front(), Weights.back()); 993 } 994 } 995 996 /// Keep halving the weights until all can fit in uint32_t. 997 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 998 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 999 if (Max > UINT_MAX) { 1000 unsigned Offset = 32 - countLeadingZeros(Max); 1001 for (uint64_t &I : Weights) 1002 I >>= Offset; 1003 } 1004 } 1005 1006 /// The specified terminator is a value equality comparison instruction 1007 /// (either a switch or a branch on "X == c"). 1008 /// See if any of the predecessors of the terminator block are value comparisons 1009 /// on the same value. If so, and if safe to do so, fold them together. 1010 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1011 IRBuilder<> &Builder) { 1012 BasicBlock *BB = TI->getParent(); 1013 Value *CV = isValueEqualityComparison(TI); // CondVal 1014 assert(CV && "Not a comparison?"); 1015 bool Changed = false; 1016 1017 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1018 while (!Preds.empty()) { 1019 BasicBlock *Pred = Preds.pop_back_val(); 1020 1021 // See if the predecessor is a comparison with the same value. 1022 Instruction *PTI = Pred->getTerminator(); 1023 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1024 1025 if (PCV == CV && TI != PTI) { 1026 SmallSetVector<BasicBlock*, 4> FailBlocks; 1027 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1028 for (auto *Succ : FailBlocks) { 1029 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1030 return false; 1031 } 1032 } 1033 1034 // Figure out which 'cases' to copy from SI to PSI. 1035 std::vector<ValueEqualityComparisonCase> BBCases; 1036 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1037 1038 std::vector<ValueEqualityComparisonCase> PredCases; 1039 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1040 1041 // Based on whether the default edge from PTI goes to BB or not, fill in 1042 // PredCases and PredDefault with the new switch cases we would like to 1043 // build. 1044 SmallVector<BasicBlock *, 8> NewSuccessors; 1045 1046 // Update the branch weight metadata along the way 1047 SmallVector<uint64_t, 8> Weights; 1048 bool PredHasWeights = HasBranchWeights(PTI); 1049 bool SuccHasWeights = HasBranchWeights(TI); 1050 1051 if (PredHasWeights) { 1052 GetBranchWeights(PTI, Weights); 1053 // branch-weight metadata is inconsistent here. 1054 if (Weights.size() != 1 + PredCases.size()) 1055 PredHasWeights = SuccHasWeights = false; 1056 } else if (SuccHasWeights) 1057 // If there are no predecessor weights but there are successor weights, 1058 // populate Weights with 1, which will later be scaled to the sum of 1059 // successor's weights 1060 Weights.assign(1 + PredCases.size(), 1); 1061 1062 SmallVector<uint64_t, 8> SuccWeights; 1063 if (SuccHasWeights) { 1064 GetBranchWeights(TI, SuccWeights); 1065 // branch-weight metadata is inconsistent here. 1066 if (SuccWeights.size() != 1 + BBCases.size()) 1067 PredHasWeights = SuccHasWeights = false; 1068 } else if (PredHasWeights) 1069 SuccWeights.assign(1 + BBCases.size(), 1); 1070 1071 if (PredDefault == BB) { 1072 // If this is the default destination from PTI, only the edges in TI 1073 // that don't occur in PTI, or that branch to BB will be activated. 1074 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1075 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1076 if (PredCases[i].Dest != BB) 1077 PTIHandled.insert(PredCases[i].Value); 1078 else { 1079 // The default destination is BB, we don't need explicit targets. 1080 std::swap(PredCases[i], PredCases.back()); 1081 1082 if (PredHasWeights || SuccHasWeights) { 1083 // Increase weight for the default case. 1084 Weights[0] += Weights[i + 1]; 1085 std::swap(Weights[i + 1], Weights.back()); 1086 Weights.pop_back(); 1087 } 1088 1089 PredCases.pop_back(); 1090 --i; 1091 --e; 1092 } 1093 1094 // Reconstruct the new switch statement we will be building. 1095 if (PredDefault != BBDefault) { 1096 PredDefault->removePredecessor(Pred); 1097 PredDefault = BBDefault; 1098 NewSuccessors.push_back(BBDefault); 1099 } 1100 1101 unsigned CasesFromPred = Weights.size(); 1102 uint64_t ValidTotalSuccWeight = 0; 1103 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1104 if (!PTIHandled.count(BBCases[i].Value) && 1105 BBCases[i].Dest != BBDefault) { 1106 PredCases.push_back(BBCases[i]); 1107 NewSuccessors.push_back(BBCases[i].Dest); 1108 if (SuccHasWeights || PredHasWeights) { 1109 // The default weight is at index 0, so weight for the ith case 1110 // should be at index i+1. Scale the cases from successor by 1111 // PredDefaultWeight (Weights[0]). 1112 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1113 ValidTotalSuccWeight += SuccWeights[i + 1]; 1114 } 1115 } 1116 1117 if (SuccHasWeights || PredHasWeights) { 1118 ValidTotalSuccWeight += SuccWeights[0]; 1119 // Scale the cases from predecessor by ValidTotalSuccWeight. 1120 for (unsigned i = 1; i < CasesFromPred; ++i) 1121 Weights[i] *= ValidTotalSuccWeight; 1122 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1123 Weights[0] *= SuccWeights[0]; 1124 } 1125 } else { 1126 // If this is not the default destination from PSI, only the edges 1127 // in SI that occur in PSI with a destination of BB will be 1128 // activated. 1129 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1130 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1131 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1132 if (PredCases[i].Dest == BB) { 1133 PTIHandled.insert(PredCases[i].Value); 1134 1135 if (PredHasWeights || SuccHasWeights) { 1136 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1137 std::swap(Weights[i + 1], Weights.back()); 1138 Weights.pop_back(); 1139 } 1140 1141 std::swap(PredCases[i], PredCases.back()); 1142 PredCases.pop_back(); 1143 --i; 1144 --e; 1145 } 1146 1147 // Okay, now we know which constants were sent to BB from the 1148 // predecessor. Figure out where they will all go now. 1149 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1150 if (PTIHandled.count(BBCases[i].Value)) { 1151 // If this is one we are capable of getting... 1152 if (PredHasWeights || SuccHasWeights) 1153 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1154 PredCases.push_back(BBCases[i]); 1155 NewSuccessors.push_back(BBCases[i].Dest); 1156 PTIHandled.erase( 1157 BBCases[i].Value); // This constant is taken care of 1158 } 1159 1160 // If there are any constants vectored to BB that TI doesn't handle, 1161 // they must go to the default destination of TI. 1162 for (ConstantInt *I : PTIHandled) { 1163 if (PredHasWeights || SuccHasWeights) 1164 Weights.push_back(WeightsForHandled[I]); 1165 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1166 NewSuccessors.push_back(BBDefault); 1167 } 1168 } 1169 1170 // Okay, at this point, we know which new successor Pred will get. Make 1171 // sure we update the number of entries in the PHI nodes for these 1172 // successors. 1173 for (BasicBlock *NewSuccessor : NewSuccessors) 1174 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1175 1176 Builder.SetInsertPoint(PTI); 1177 // Convert pointer to int before we switch. 1178 if (CV->getType()->isPointerTy()) { 1179 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1180 "magicptr"); 1181 } 1182 1183 // Now that the successors are updated, create the new Switch instruction. 1184 SwitchInst *NewSI = 1185 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1186 NewSI->setDebugLoc(PTI->getDebugLoc()); 1187 for (ValueEqualityComparisonCase &V : PredCases) 1188 NewSI->addCase(V.Value, V.Dest); 1189 1190 if (PredHasWeights || SuccHasWeights) { 1191 // Halve the weights if any of them cannot fit in an uint32_t 1192 FitWeights(Weights); 1193 1194 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1195 1196 setBranchWeights(NewSI, MDWeights); 1197 } 1198 1199 EraseTerminatorAndDCECond(PTI); 1200 1201 // Okay, last check. If BB is still a successor of PSI, then we must 1202 // have an infinite loop case. If so, add an infinitely looping block 1203 // to handle the case to preserve the behavior of the code. 1204 BasicBlock *InfLoopBlock = nullptr; 1205 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1206 if (NewSI->getSuccessor(i) == BB) { 1207 if (!InfLoopBlock) { 1208 // Insert it at the end of the function, because it's either code, 1209 // or it won't matter if it's hot. :) 1210 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1211 BB->getParent()); 1212 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1213 } 1214 NewSI->setSuccessor(i, InfLoopBlock); 1215 } 1216 1217 Changed = true; 1218 } 1219 } 1220 return Changed; 1221 } 1222 1223 // If we would need to insert a select that uses the value of this invoke 1224 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1225 // can't hoist the invoke, as there is nowhere to put the select in this case. 1226 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1227 Instruction *I1, Instruction *I2) { 1228 for (BasicBlock *Succ : successors(BB1)) { 1229 for (const PHINode &PN : Succ->phis()) { 1230 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1231 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1232 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1233 return false; 1234 } 1235 } 1236 } 1237 return true; 1238 } 1239 1240 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1241 1242 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1243 /// in the two blocks up into the branch block. The caller of this function 1244 /// guarantees that BI's block dominates BB1 and BB2. 1245 static bool HoistThenElseCodeToIf(BranchInst *BI, 1246 const TargetTransformInfo &TTI) { 1247 // This does very trivial matching, with limited scanning, to find identical 1248 // instructions in the two blocks. In particular, we don't want to get into 1249 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1250 // such, we currently just scan for obviously identical instructions in an 1251 // identical order. 1252 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1253 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1254 1255 BasicBlock::iterator BB1_Itr = BB1->begin(); 1256 BasicBlock::iterator BB2_Itr = BB2->begin(); 1257 1258 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1259 // Skip debug info if it is not identical. 1260 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1261 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1262 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1263 while (isa<DbgInfoIntrinsic>(I1)) 1264 I1 = &*BB1_Itr++; 1265 while (isa<DbgInfoIntrinsic>(I2)) 1266 I2 = &*BB2_Itr++; 1267 } 1268 // FIXME: Can we define a safety predicate for CallBr? 1269 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1270 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1271 isa<CallBrInst>(I1)) 1272 return false; 1273 1274 BasicBlock *BIParent = BI->getParent(); 1275 1276 bool Changed = false; 1277 do { 1278 // If we are hoisting the terminator instruction, don't move one (making a 1279 // broken BB), instead clone it, and remove BI. 1280 if (I1->isTerminator()) 1281 goto HoistTerminator; 1282 1283 // If we're going to hoist a call, make sure that the two instructions we're 1284 // commoning/hoisting are both marked with musttail, or neither of them is 1285 // marked as such. Otherwise, we might end up in a situation where we hoist 1286 // from a block where the terminator is a `ret` to a block where the terminator 1287 // is a `br`, and `musttail` calls expect to be followed by a return. 1288 auto *C1 = dyn_cast<CallInst>(I1); 1289 auto *C2 = dyn_cast<CallInst>(I2); 1290 if (C1 && C2) 1291 if (C1->isMustTailCall() != C2->isMustTailCall()) 1292 return Changed; 1293 1294 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1295 return Changed; 1296 1297 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1298 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1299 // The debug location is an integral part of a debug info intrinsic 1300 // and can't be separated from it or replaced. Instead of attempting 1301 // to merge locations, simply hoist both copies of the intrinsic. 1302 BIParent->getInstList().splice(BI->getIterator(), 1303 BB1->getInstList(), I1); 1304 BIParent->getInstList().splice(BI->getIterator(), 1305 BB2->getInstList(), I2); 1306 Changed = true; 1307 } else { 1308 // For a normal instruction, we just move one to right before the branch, 1309 // then replace all uses of the other with the first. Finally, we remove 1310 // the now redundant second instruction. 1311 BIParent->getInstList().splice(BI->getIterator(), 1312 BB1->getInstList(), I1); 1313 if (!I2->use_empty()) 1314 I2->replaceAllUsesWith(I1); 1315 I1->andIRFlags(I2); 1316 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1317 LLVMContext::MD_range, 1318 LLVMContext::MD_fpmath, 1319 LLVMContext::MD_invariant_load, 1320 LLVMContext::MD_nonnull, 1321 LLVMContext::MD_invariant_group, 1322 LLVMContext::MD_align, 1323 LLVMContext::MD_dereferenceable, 1324 LLVMContext::MD_dereferenceable_or_null, 1325 LLVMContext::MD_mem_parallel_loop_access, 1326 LLVMContext::MD_access_group}; 1327 combineMetadata(I1, I2, KnownIDs, true); 1328 1329 // I1 and I2 are being combined into a single instruction. Its debug 1330 // location is the merged locations of the original instructions. 1331 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1332 1333 I2->eraseFromParent(); 1334 Changed = true; 1335 } 1336 1337 I1 = &*BB1_Itr++; 1338 I2 = &*BB2_Itr++; 1339 // Skip debug info if it is not identical. 1340 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1341 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1342 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1343 while (isa<DbgInfoIntrinsic>(I1)) 1344 I1 = &*BB1_Itr++; 1345 while (isa<DbgInfoIntrinsic>(I2)) 1346 I2 = &*BB2_Itr++; 1347 } 1348 } while (I1->isIdenticalToWhenDefined(I2)); 1349 1350 return true; 1351 1352 HoistTerminator: 1353 // It may not be possible to hoist an invoke. 1354 // FIXME: Can we define a safety predicate for CallBr? 1355 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1356 return Changed; 1357 1358 // TODO: callbr hoisting currently disabled pending further study. 1359 if (isa<CallBrInst>(I1)) 1360 return Changed; 1361 1362 for (BasicBlock *Succ : successors(BB1)) { 1363 for (PHINode &PN : Succ->phis()) { 1364 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1365 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1366 if (BB1V == BB2V) 1367 continue; 1368 1369 // Check for passingValueIsAlwaysUndefined here because we would rather 1370 // eliminate undefined control flow then converting it to a select. 1371 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1372 passingValueIsAlwaysUndefined(BB2V, &PN)) 1373 return Changed; 1374 1375 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1376 return Changed; 1377 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1378 return Changed; 1379 } 1380 } 1381 1382 // Okay, it is safe to hoist the terminator. 1383 Instruction *NT = I1->clone(); 1384 BIParent->getInstList().insert(BI->getIterator(), NT); 1385 if (!NT->getType()->isVoidTy()) { 1386 I1->replaceAllUsesWith(NT); 1387 I2->replaceAllUsesWith(NT); 1388 NT->takeName(I1); 1389 } 1390 1391 // Ensure terminator gets a debug location, even an unknown one, in case 1392 // it involves inlinable calls. 1393 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1394 1395 // PHIs created below will adopt NT's merged DebugLoc. 1396 IRBuilder<NoFolder> Builder(NT); 1397 1398 // Hoisting one of the terminators from our successor is a great thing. 1399 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1400 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1401 // nodes, so we insert select instruction to compute the final result. 1402 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1403 for (BasicBlock *Succ : successors(BB1)) { 1404 for (PHINode &PN : Succ->phis()) { 1405 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1406 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1407 if (BB1V == BB2V) 1408 continue; 1409 1410 // These values do not agree. Insert a select instruction before NT 1411 // that determines the right value. 1412 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1413 if (!SI) 1414 SI = cast<SelectInst>( 1415 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1416 BB1V->getName() + "." + BB2V->getName(), BI)); 1417 1418 // Make the PHI node use the select for all incoming values for BB1/BB2 1419 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1420 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1421 PN.setIncomingValue(i, SI); 1422 } 1423 } 1424 1425 // Update any PHI nodes in our new successors. 1426 for (BasicBlock *Succ : successors(BB1)) 1427 AddPredecessorToBlock(Succ, BIParent, BB1); 1428 1429 EraseTerminatorAndDCECond(BI); 1430 return true; 1431 } 1432 1433 // All instructions in Insts belong to different blocks that all unconditionally 1434 // branch to a common successor. Analyze each instruction and return true if it 1435 // would be possible to sink them into their successor, creating one common 1436 // instruction instead. For every value that would be required to be provided by 1437 // PHI node (because an operand varies in each input block), add to PHIOperands. 1438 static bool canSinkInstructions( 1439 ArrayRef<Instruction *> Insts, 1440 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1441 // Prune out obviously bad instructions to move. Each instruction must have 1442 // exactly zero or one use, and we check later that use is by a single, common 1443 // PHI instruction in the successor. 1444 bool HasUse = !Insts.front()->user_empty(); 1445 for (auto *I : Insts) { 1446 // These instructions may change or break semantics if moved. 1447 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1448 I->getType()->isTokenTy()) 1449 return false; 1450 1451 // Conservatively return false if I is an inline-asm instruction. Sinking 1452 // and merging inline-asm instructions can potentially create arguments 1453 // that cannot satisfy the inline-asm constraints. 1454 if (const auto *C = dyn_cast<CallBase>(I)) 1455 if (C->isInlineAsm()) 1456 return false; 1457 1458 // Each instruction must have zero or one use. 1459 if (HasUse && !I->hasOneUse()) 1460 return false; 1461 if (!HasUse && !I->user_empty()) 1462 return false; 1463 } 1464 1465 const Instruction *I0 = Insts.front(); 1466 for (auto *I : Insts) 1467 if (!I->isSameOperationAs(I0)) 1468 return false; 1469 1470 // All instructions in Insts are known to be the same opcode. If they have a 1471 // use, check that the only user is a PHI or in the same block as the 1472 // instruction, because if a user is in the same block as an instruction we're 1473 // contemplating sinking, it must already be determined to be sinkable. 1474 if (HasUse) { 1475 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1476 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1477 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1478 auto *U = cast<Instruction>(*I->user_begin()); 1479 return (PNUse && 1480 PNUse->getParent() == Succ && 1481 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1482 U->getParent() == I->getParent(); 1483 })) 1484 return false; 1485 } 1486 1487 // Because SROA can't handle speculating stores of selects, try not 1488 // to sink loads or stores of allocas when we'd have to create a PHI for 1489 // the address operand. Also, because it is likely that loads or stores 1490 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1491 // This can cause code churn which can have unintended consequences down 1492 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1493 // FIXME: This is a workaround for a deficiency in SROA - see 1494 // https://llvm.org/bugs/show_bug.cgi?id=30188 1495 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1496 return isa<AllocaInst>(I->getOperand(1)); 1497 })) 1498 return false; 1499 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1500 return isa<AllocaInst>(I->getOperand(0)); 1501 })) 1502 return false; 1503 1504 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1505 if (I0->getOperand(OI)->getType()->isTokenTy()) 1506 // Don't touch any operand of token type. 1507 return false; 1508 1509 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1510 assert(I->getNumOperands() == I0->getNumOperands()); 1511 return I->getOperand(OI) == I0->getOperand(OI); 1512 }; 1513 if (!all_of(Insts, SameAsI0)) { 1514 if (!canReplaceOperandWithVariable(I0, OI)) 1515 // We can't create a PHI from this GEP. 1516 return false; 1517 // Don't create indirect calls! The called value is the final operand. 1518 if (isa<CallBase>(I0) && OI == OE - 1) { 1519 // FIXME: if the call was *already* indirect, we should do this. 1520 return false; 1521 } 1522 for (auto *I : Insts) 1523 PHIOperands[I].push_back(I->getOperand(OI)); 1524 } 1525 } 1526 return true; 1527 } 1528 1529 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1530 // instruction of every block in Blocks to their common successor, commoning 1531 // into one instruction. 1532 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1533 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1534 1535 // canSinkLastInstruction returning true guarantees that every block has at 1536 // least one non-terminator instruction. 1537 SmallVector<Instruction*,4> Insts; 1538 for (auto *BB : Blocks) { 1539 Instruction *I = BB->getTerminator(); 1540 do { 1541 I = I->getPrevNode(); 1542 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1543 if (!isa<DbgInfoIntrinsic>(I)) 1544 Insts.push_back(I); 1545 } 1546 1547 // The only checking we need to do now is that all users of all instructions 1548 // are the same PHI node. canSinkLastInstruction should have checked this but 1549 // it is slightly over-aggressive - it gets confused by commutative instructions 1550 // so double-check it here. 1551 Instruction *I0 = Insts.front(); 1552 if (!I0->user_empty()) { 1553 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1554 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1555 auto *U = cast<Instruction>(*I->user_begin()); 1556 return U == PNUse; 1557 })) 1558 return false; 1559 } 1560 1561 // We don't need to do any more checking here; canSinkLastInstruction should 1562 // have done it all for us. 1563 SmallVector<Value*, 4> NewOperands; 1564 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1565 // This check is different to that in canSinkLastInstruction. There, we 1566 // cared about the global view once simplifycfg (and instcombine) have 1567 // completed - it takes into account PHIs that become trivially 1568 // simplifiable. However here we need a more local view; if an operand 1569 // differs we create a PHI and rely on instcombine to clean up the very 1570 // small mess we may make. 1571 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1572 return I->getOperand(O) != I0->getOperand(O); 1573 }); 1574 if (!NeedPHI) { 1575 NewOperands.push_back(I0->getOperand(O)); 1576 continue; 1577 } 1578 1579 // Create a new PHI in the successor block and populate it. 1580 auto *Op = I0->getOperand(O); 1581 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1582 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1583 Op->getName() + ".sink", &BBEnd->front()); 1584 for (auto *I : Insts) 1585 PN->addIncoming(I->getOperand(O), I->getParent()); 1586 NewOperands.push_back(PN); 1587 } 1588 1589 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1590 // and move it to the start of the successor block. 1591 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1592 I0->getOperandUse(O).set(NewOperands[O]); 1593 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1594 1595 // Update metadata and IR flags, and merge debug locations. 1596 for (auto *I : Insts) 1597 if (I != I0) { 1598 // The debug location for the "common" instruction is the merged locations 1599 // of all the commoned instructions. We start with the original location 1600 // of the "common" instruction and iteratively merge each location in the 1601 // loop below. 1602 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1603 // However, as N-way merge for CallInst is rare, so we use simplified API 1604 // instead of using complex API for N-way merge. 1605 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1606 combineMetadataForCSE(I0, I, true); 1607 I0->andIRFlags(I); 1608 } 1609 1610 if (!I0->user_empty()) { 1611 // canSinkLastInstruction checked that all instructions were used by 1612 // one and only one PHI node. Find that now, RAUW it to our common 1613 // instruction and nuke it. 1614 auto *PN = cast<PHINode>(*I0->user_begin()); 1615 PN->replaceAllUsesWith(I0); 1616 PN->eraseFromParent(); 1617 } 1618 1619 // Finally nuke all instructions apart from the common instruction. 1620 for (auto *I : Insts) 1621 if (I != I0) 1622 I->eraseFromParent(); 1623 1624 return true; 1625 } 1626 1627 namespace { 1628 1629 // LockstepReverseIterator - Iterates through instructions 1630 // in a set of blocks in reverse order from the first non-terminator. 1631 // For example (assume all blocks have size n): 1632 // LockstepReverseIterator I([B1, B2, B3]); 1633 // *I-- = [B1[n], B2[n], B3[n]]; 1634 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1635 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1636 // ... 1637 class LockstepReverseIterator { 1638 ArrayRef<BasicBlock*> Blocks; 1639 SmallVector<Instruction*,4> Insts; 1640 bool Fail; 1641 1642 public: 1643 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1644 reset(); 1645 } 1646 1647 void reset() { 1648 Fail = false; 1649 Insts.clear(); 1650 for (auto *BB : Blocks) { 1651 Instruction *Inst = BB->getTerminator(); 1652 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1653 Inst = Inst->getPrevNode(); 1654 if (!Inst) { 1655 // Block wasn't big enough. 1656 Fail = true; 1657 return; 1658 } 1659 Insts.push_back(Inst); 1660 } 1661 } 1662 1663 bool isValid() const { 1664 return !Fail; 1665 } 1666 1667 void operator--() { 1668 if (Fail) 1669 return; 1670 for (auto *&Inst : Insts) { 1671 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1672 Inst = Inst->getPrevNode(); 1673 // Already at beginning of block. 1674 if (!Inst) { 1675 Fail = true; 1676 return; 1677 } 1678 } 1679 } 1680 1681 ArrayRef<Instruction*> operator * () const { 1682 return Insts; 1683 } 1684 }; 1685 1686 } // end anonymous namespace 1687 1688 /// Check whether BB's predecessors end with unconditional branches. If it is 1689 /// true, sink any common code from the predecessors to BB. 1690 /// We also allow one predecessor to end with conditional branch (but no more 1691 /// than one). 1692 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1693 // We support two situations: 1694 // (1) all incoming arcs are unconditional 1695 // (2) one incoming arc is conditional 1696 // 1697 // (2) is very common in switch defaults and 1698 // else-if patterns; 1699 // 1700 // if (a) f(1); 1701 // else if (b) f(2); 1702 // 1703 // produces: 1704 // 1705 // [if] 1706 // / \ 1707 // [f(1)] [if] 1708 // | | \ 1709 // | | | 1710 // | [f(2)]| 1711 // \ | / 1712 // [ end ] 1713 // 1714 // [end] has two unconditional predecessor arcs and one conditional. The 1715 // conditional refers to the implicit empty 'else' arc. This conditional 1716 // arc can also be caused by an empty default block in a switch. 1717 // 1718 // In this case, we attempt to sink code from all *unconditional* arcs. 1719 // If we can sink instructions from these arcs (determined during the scan 1720 // phase below) we insert a common successor for all unconditional arcs and 1721 // connect that to [end], to enable sinking: 1722 // 1723 // [if] 1724 // / \ 1725 // [x(1)] [if] 1726 // | | \ 1727 // | | \ 1728 // | [x(2)] | 1729 // \ / | 1730 // [sink.split] | 1731 // \ / 1732 // [ end ] 1733 // 1734 SmallVector<BasicBlock*,4> UnconditionalPreds; 1735 Instruction *Cond = nullptr; 1736 for (auto *B : predecessors(BB)) { 1737 auto *T = B->getTerminator(); 1738 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1739 UnconditionalPreds.push_back(B); 1740 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1741 Cond = T; 1742 else 1743 return false; 1744 } 1745 if (UnconditionalPreds.size() < 2) 1746 return false; 1747 1748 bool Changed = false; 1749 // We take a two-step approach to tail sinking. First we scan from the end of 1750 // each block upwards in lockstep. If the n'th instruction from the end of each 1751 // block can be sunk, those instructions are added to ValuesToSink and we 1752 // carry on. If we can sink an instruction but need to PHI-merge some operands 1753 // (because they're not identical in each instruction) we add these to 1754 // PHIOperands. 1755 unsigned ScanIdx = 0; 1756 SmallPtrSet<Value*,4> InstructionsToSink; 1757 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1758 LockstepReverseIterator LRI(UnconditionalPreds); 1759 while (LRI.isValid() && 1760 canSinkInstructions(*LRI, PHIOperands)) { 1761 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1762 << "\n"); 1763 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1764 ++ScanIdx; 1765 --LRI; 1766 } 1767 1768 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1769 unsigned NumPHIdValues = 0; 1770 for (auto *I : *LRI) 1771 for (auto *V : PHIOperands[I]) 1772 if (InstructionsToSink.count(V) == 0) 1773 ++NumPHIdValues; 1774 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1775 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1776 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1777 NumPHIInsts++; 1778 1779 return NumPHIInsts <= 1; 1780 }; 1781 1782 if (ScanIdx > 0 && Cond) { 1783 // Check if we would actually sink anything first! This mutates the CFG and 1784 // adds an extra block. The goal in doing this is to allow instructions that 1785 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1786 // (such as trunc, add) can be sunk and predicated already. So we check that 1787 // we're going to sink at least one non-speculatable instruction. 1788 LRI.reset(); 1789 unsigned Idx = 0; 1790 bool Profitable = false; 1791 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1792 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1793 Profitable = true; 1794 break; 1795 } 1796 --LRI; 1797 ++Idx; 1798 } 1799 if (!Profitable) 1800 return false; 1801 1802 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1803 // We have a conditional edge and we're going to sink some instructions. 1804 // Insert a new block postdominating all blocks we're going to sink from. 1805 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1806 // Edges couldn't be split. 1807 return false; 1808 Changed = true; 1809 } 1810 1811 // Now that we've analyzed all potential sinking candidates, perform the 1812 // actual sink. We iteratively sink the last non-terminator of the source 1813 // blocks into their common successor unless doing so would require too 1814 // many PHI instructions to be generated (currently only one PHI is allowed 1815 // per sunk instruction). 1816 // 1817 // We can use InstructionsToSink to discount values needing PHI-merging that will 1818 // actually be sunk in a later iteration. This allows us to be more 1819 // aggressive in what we sink. This does allow a false positive where we 1820 // sink presuming a later value will also be sunk, but stop half way through 1821 // and never actually sink it which means we produce more PHIs than intended. 1822 // This is unlikely in practice though. 1823 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1824 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1825 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1826 << "\n"); 1827 1828 // Because we've sunk every instruction in turn, the current instruction to 1829 // sink is always at index 0. 1830 LRI.reset(); 1831 if (!ProfitableToSinkInstruction(LRI)) { 1832 // Too many PHIs would be created. 1833 LLVM_DEBUG( 1834 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1835 break; 1836 } 1837 1838 if (!sinkLastInstruction(UnconditionalPreds)) 1839 return Changed; 1840 NumSinkCommons++; 1841 Changed = true; 1842 } 1843 return Changed; 1844 } 1845 1846 /// Determine if we can hoist sink a sole store instruction out of a 1847 /// conditional block. 1848 /// 1849 /// We are looking for code like the following: 1850 /// BrBB: 1851 /// store i32 %add, i32* %arrayidx2 1852 /// ... // No other stores or function calls (we could be calling a memory 1853 /// ... // function). 1854 /// %cmp = icmp ult %x, %y 1855 /// br i1 %cmp, label %EndBB, label %ThenBB 1856 /// ThenBB: 1857 /// store i32 %add5, i32* %arrayidx2 1858 /// br label EndBB 1859 /// EndBB: 1860 /// ... 1861 /// We are going to transform this into: 1862 /// BrBB: 1863 /// store i32 %add, i32* %arrayidx2 1864 /// ... // 1865 /// %cmp = icmp ult %x, %y 1866 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1867 /// store i32 %add.add5, i32* %arrayidx2 1868 /// ... 1869 /// 1870 /// \return The pointer to the value of the previous store if the store can be 1871 /// hoisted into the predecessor block. 0 otherwise. 1872 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1873 BasicBlock *StoreBB, BasicBlock *EndBB) { 1874 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1875 if (!StoreToHoist) 1876 return nullptr; 1877 1878 // Volatile or atomic. 1879 if (!StoreToHoist->isSimple()) 1880 return nullptr; 1881 1882 Value *StorePtr = StoreToHoist->getPointerOperand(); 1883 1884 // Look for a store to the same pointer in BrBB. 1885 unsigned MaxNumInstToLookAt = 9; 1886 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1887 if (!MaxNumInstToLookAt) 1888 break; 1889 --MaxNumInstToLookAt; 1890 1891 // Could be calling an instruction that affects memory like free(). 1892 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1893 return nullptr; 1894 1895 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1896 // Found the previous store make sure it stores to the same location. 1897 if (SI->getPointerOperand() == StorePtr) 1898 // Found the previous store, return its value operand. 1899 return SI->getValueOperand(); 1900 return nullptr; // Unknown store. 1901 } 1902 } 1903 1904 return nullptr; 1905 } 1906 1907 /// Speculate a conditional basic block flattening the CFG. 1908 /// 1909 /// Note that this is a very risky transform currently. Speculating 1910 /// instructions like this is most often not desirable. Instead, there is an MI 1911 /// pass which can do it with full awareness of the resource constraints. 1912 /// However, some cases are "obvious" and we should do directly. An example of 1913 /// this is speculating a single, reasonably cheap instruction. 1914 /// 1915 /// There is only one distinct advantage to flattening the CFG at the IR level: 1916 /// it makes very common but simplistic optimizations such as are common in 1917 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1918 /// modeling their effects with easier to reason about SSA value graphs. 1919 /// 1920 /// 1921 /// An illustration of this transform is turning this IR: 1922 /// \code 1923 /// BB: 1924 /// %cmp = icmp ult %x, %y 1925 /// br i1 %cmp, label %EndBB, label %ThenBB 1926 /// ThenBB: 1927 /// %sub = sub %x, %y 1928 /// br label BB2 1929 /// EndBB: 1930 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1931 /// ... 1932 /// \endcode 1933 /// 1934 /// Into this IR: 1935 /// \code 1936 /// BB: 1937 /// %cmp = icmp ult %x, %y 1938 /// %sub = sub %x, %y 1939 /// %cond = select i1 %cmp, 0, %sub 1940 /// ... 1941 /// \endcode 1942 /// 1943 /// \returns true if the conditional block is removed. 1944 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1945 const TargetTransformInfo &TTI) { 1946 // Be conservative for now. FP select instruction can often be expensive. 1947 Value *BrCond = BI->getCondition(); 1948 if (isa<FCmpInst>(BrCond)) 1949 return false; 1950 1951 BasicBlock *BB = BI->getParent(); 1952 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1953 1954 // If ThenBB is actually on the false edge of the conditional branch, remember 1955 // to swap the select operands later. 1956 bool Invert = false; 1957 if (ThenBB != BI->getSuccessor(0)) { 1958 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1959 Invert = true; 1960 } 1961 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1962 1963 // Keep a count of how many times instructions are used within ThenBB when 1964 // they are candidates for sinking into ThenBB. Specifically: 1965 // - They are defined in BB, and 1966 // - They have no side effects, and 1967 // - All of their uses are in ThenBB. 1968 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1969 1970 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1971 1972 unsigned SpeculationCost = 0; 1973 Value *SpeculatedStoreValue = nullptr; 1974 StoreInst *SpeculatedStore = nullptr; 1975 for (BasicBlock::iterator BBI = ThenBB->begin(), 1976 BBE = std::prev(ThenBB->end()); 1977 BBI != BBE; ++BBI) { 1978 Instruction *I = &*BBI; 1979 // Skip debug info. 1980 if (isa<DbgInfoIntrinsic>(I)) { 1981 SpeculatedDbgIntrinsics.push_back(I); 1982 continue; 1983 } 1984 1985 // Only speculatively execute a single instruction (not counting the 1986 // terminator) for now. 1987 ++SpeculationCost; 1988 if (SpeculationCost > 1) 1989 return false; 1990 1991 // Don't hoist the instruction if it's unsafe or expensive. 1992 if (!isSafeToSpeculativelyExecute(I) && 1993 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1994 I, BB, ThenBB, EndBB)))) 1995 return false; 1996 if (!SpeculatedStoreValue && 1997 ComputeSpeculationCost(I, TTI) > 1998 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1999 return false; 2000 2001 // Store the store speculation candidate. 2002 if (SpeculatedStoreValue) 2003 SpeculatedStore = cast<StoreInst>(I); 2004 2005 // Do not hoist the instruction if any of its operands are defined but not 2006 // used in BB. The transformation will prevent the operand from 2007 // being sunk into the use block. 2008 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2009 Instruction *OpI = dyn_cast<Instruction>(*i); 2010 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2011 continue; // Not a candidate for sinking. 2012 2013 ++SinkCandidateUseCounts[OpI]; 2014 } 2015 } 2016 2017 // Consider any sink candidates which are only used in ThenBB as costs for 2018 // speculation. Note, while we iterate over a DenseMap here, we are summing 2019 // and so iteration order isn't significant. 2020 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2021 I = SinkCandidateUseCounts.begin(), 2022 E = SinkCandidateUseCounts.end(); 2023 I != E; ++I) 2024 if (I->first->hasNUses(I->second)) { 2025 ++SpeculationCost; 2026 if (SpeculationCost > 1) 2027 return false; 2028 } 2029 2030 // Check that the PHI nodes can be converted to selects. 2031 bool HaveRewritablePHIs = false; 2032 for (PHINode &PN : EndBB->phis()) { 2033 Value *OrigV = PN.getIncomingValueForBlock(BB); 2034 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2035 2036 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2037 // Skip PHIs which are trivial. 2038 if (ThenV == OrigV) 2039 continue; 2040 2041 // Don't convert to selects if we could remove undefined behavior instead. 2042 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2043 passingValueIsAlwaysUndefined(ThenV, &PN)) 2044 return false; 2045 2046 HaveRewritablePHIs = true; 2047 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2048 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2049 if (!OrigCE && !ThenCE) 2050 continue; // Known safe and cheap. 2051 2052 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2053 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2054 return false; 2055 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2056 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2057 unsigned MaxCost = 2058 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2059 if (OrigCost + ThenCost > MaxCost) 2060 return false; 2061 2062 // Account for the cost of an unfolded ConstantExpr which could end up 2063 // getting expanded into Instructions. 2064 // FIXME: This doesn't account for how many operations are combined in the 2065 // constant expression. 2066 ++SpeculationCost; 2067 if (SpeculationCost > 1) 2068 return false; 2069 } 2070 2071 // If there are no PHIs to process, bail early. This helps ensure idempotence 2072 // as well. 2073 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2074 return false; 2075 2076 // If we get here, we can hoist the instruction and if-convert. 2077 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2078 2079 // Insert a select of the value of the speculated store. 2080 if (SpeculatedStoreValue) { 2081 IRBuilder<NoFolder> Builder(BI); 2082 Value *TrueV = SpeculatedStore->getValueOperand(); 2083 Value *FalseV = SpeculatedStoreValue; 2084 if (Invert) 2085 std::swap(TrueV, FalseV); 2086 Value *S = Builder.CreateSelect( 2087 BrCond, TrueV, FalseV, "spec.store.select", BI); 2088 SpeculatedStore->setOperand(0, S); 2089 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2090 SpeculatedStore->getDebugLoc()); 2091 } 2092 2093 // Metadata can be dependent on the condition we are hoisting above. 2094 // Conservatively strip all metadata on the instruction. 2095 for (auto &I : *ThenBB) 2096 I.dropUnknownNonDebugMetadata(); 2097 2098 // Hoist the instructions. 2099 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2100 ThenBB->begin(), std::prev(ThenBB->end())); 2101 2102 // Insert selects and rewrite the PHI operands. 2103 IRBuilder<NoFolder> Builder(BI); 2104 for (PHINode &PN : EndBB->phis()) { 2105 unsigned OrigI = PN.getBasicBlockIndex(BB); 2106 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2107 Value *OrigV = PN.getIncomingValue(OrigI); 2108 Value *ThenV = PN.getIncomingValue(ThenI); 2109 2110 // Skip PHIs which are trivial. 2111 if (OrigV == ThenV) 2112 continue; 2113 2114 // Create a select whose true value is the speculatively executed value and 2115 // false value is the preexisting value. Swap them if the branch 2116 // destinations were inverted. 2117 Value *TrueV = ThenV, *FalseV = OrigV; 2118 if (Invert) 2119 std::swap(TrueV, FalseV); 2120 Value *V = Builder.CreateSelect( 2121 BrCond, TrueV, FalseV, "spec.select", BI); 2122 PN.setIncomingValue(OrigI, V); 2123 PN.setIncomingValue(ThenI, V); 2124 } 2125 2126 // Remove speculated dbg intrinsics. 2127 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2128 // dbg value for the different flows and inserting it after the select. 2129 for (Instruction *I : SpeculatedDbgIntrinsics) 2130 I->eraseFromParent(); 2131 2132 ++NumSpeculations; 2133 return true; 2134 } 2135 2136 /// Return true if we can thread a branch across this block. 2137 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2138 unsigned Size = 0; 2139 2140 for (Instruction &I : BB->instructionsWithoutDebug()) { 2141 if (Size > 10) 2142 return false; // Don't clone large BB's. 2143 ++Size; 2144 2145 // We can only support instructions that do not define values that are 2146 // live outside of the current basic block. 2147 for (User *U : I.users()) { 2148 Instruction *UI = cast<Instruction>(U); 2149 if (UI->getParent() != BB || isa<PHINode>(UI)) 2150 return false; 2151 } 2152 2153 // Looks ok, continue checking. 2154 } 2155 2156 return true; 2157 } 2158 2159 /// If we have a conditional branch on a PHI node value that is defined in the 2160 /// same block as the branch and if any PHI entries are constants, thread edges 2161 /// corresponding to that entry to be branches to their ultimate destination. 2162 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2163 AssumptionCache *AC) { 2164 BasicBlock *BB = BI->getParent(); 2165 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2166 // NOTE: we currently cannot transform this case if the PHI node is used 2167 // outside of the block. 2168 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2169 return false; 2170 2171 // Degenerate case of a single entry PHI. 2172 if (PN->getNumIncomingValues() == 1) { 2173 FoldSingleEntryPHINodes(PN->getParent()); 2174 return true; 2175 } 2176 2177 // Now we know that this block has multiple preds and two succs. 2178 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2179 return false; 2180 2181 // Can't fold blocks that contain noduplicate or convergent calls. 2182 if (any_of(*BB, [](const Instruction &I) { 2183 const CallInst *CI = dyn_cast<CallInst>(&I); 2184 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2185 })) 2186 return false; 2187 2188 // Okay, this is a simple enough basic block. See if any phi values are 2189 // constants. 2190 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2191 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2192 if (!CB || !CB->getType()->isIntegerTy(1)) 2193 continue; 2194 2195 // Okay, we now know that all edges from PredBB should be revectored to 2196 // branch to RealDest. 2197 BasicBlock *PredBB = PN->getIncomingBlock(i); 2198 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2199 2200 if (RealDest == BB) 2201 continue; // Skip self loops. 2202 // Skip if the predecessor's terminator is an indirect branch. 2203 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2204 continue; 2205 2206 // The dest block might have PHI nodes, other predecessors and other 2207 // difficult cases. Instead of being smart about this, just insert a new 2208 // block that jumps to the destination block, effectively splitting 2209 // the edge we are about to create. 2210 BasicBlock *EdgeBB = 2211 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2212 RealDest->getParent(), RealDest); 2213 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2214 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2215 2216 // Update PHI nodes. 2217 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2218 2219 // BB may have instructions that are being threaded over. Clone these 2220 // instructions into EdgeBB. We know that there will be no uses of the 2221 // cloned instructions outside of EdgeBB. 2222 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2223 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2224 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2225 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2226 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2227 continue; 2228 } 2229 // Clone the instruction. 2230 Instruction *N = BBI->clone(); 2231 if (BBI->hasName()) 2232 N->setName(BBI->getName() + ".c"); 2233 2234 // Update operands due to translation. 2235 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2236 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2237 if (PI != TranslateMap.end()) 2238 *i = PI->second; 2239 } 2240 2241 // Check for trivial simplification. 2242 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2243 if (!BBI->use_empty()) 2244 TranslateMap[&*BBI] = V; 2245 if (!N->mayHaveSideEffects()) { 2246 N->deleteValue(); // Instruction folded away, don't need actual inst 2247 N = nullptr; 2248 } 2249 } else { 2250 if (!BBI->use_empty()) 2251 TranslateMap[&*BBI] = N; 2252 } 2253 // Insert the new instruction into its new home. 2254 if (N) 2255 EdgeBB->getInstList().insert(InsertPt, N); 2256 2257 // Register the new instruction with the assumption cache if necessary. 2258 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2259 if (II->getIntrinsicID() == Intrinsic::assume) 2260 AC->registerAssumption(II); 2261 } 2262 2263 // Loop over all of the edges from PredBB to BB, changing them to branch 2264 // to EdgeBB instead. 2265 Instruction *PredBBTI = PredBB->getTerminator(); 2266 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2267 if (PredBBTI->getSuccessor(i) == BB) { 2268 BB->removePredecessor(PredBB); 2269 PredBBTI->setSuccessor(i, EdgeBB); 2270 } 2271 2272 // Recurse, simplifying any other constants. 2273 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2274 } 2275 2276 return false; 2277 } 2278 2279 /// Given a BB that starts with the specified two-entry PHI node, 2280 /// see if we can eliminate it. 2281 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2282 const DataLayout &DL) { 2283 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2284 // statement", which has a very simple dominance structure. Basically, we 2285 // are trying to find the condition that is being branched on, which 2286 // subsequently causes this merge to happen. We really want control 2287 // dependence information for this check, but simplifycfg can't keep it up 2288 // to date, and this catches most of the cases we care about anyway. 2289 BasicBlock *BB = PN->getParent(); 2290 const Function *Fn = BB->getParent(); 2291 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2292 return false; 2293 2294 BasicBlock *IfTrue, *IfFalse; 2295 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2296 if (!IfCond || 2297 // Don't bother if the branch will be constant folded trivially. 2298 isa<ConstantInt>(IfCond)) 2299 return false; 2300 2301 // Okay, we found that we can merge this two-entry phi node into a select. 2302 // Doing so would require us to fold *all* two entry phi nodes in this block. 2303 // At some point this becomes non-profitable (particularly if the target 2304 // doesn't support cmov's). Only do this transformation if there are two or 2305 // fewer PHI nodes in this block. 2306 unsigned NumPhis = 0; 2307 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2308 if (NumPhis > 2) 2309 return false; 2310 2311 // Loop over the PHI's seeing if we can promote them all to select 2312 // instructions. While we are at it, keep track of the instructions 2313 // that need to be moved to the dominating block. 2314 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2315 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2316 MaxCostVal1 = PHINodeFoldingThreshold; 2317 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2318 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2319 2320 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2321 PHINode *PN = cast<PHINode>(II++); 2322 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2323 PN->replaceAllUsesWith(V); 2324 PN->eraseFromParent(); 2325 continue; 2326 } 2327 2328 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2329 MaxCostVal0, TTI) || 2330 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2331 MaxCostVal1, TTI)) 2332 return false; 2333 } 2334 2335 // If we folded the first phi, PN dangles at this point. Refresh it. If 2336 // we ran out of PHIs then we simplified them all. 2337 PN = dyn_cast<PHINode>(BB->begin()); 2338 if (!PN) 2339 return true; 2340 2341 // Don't fold i1 branches on PHIs which contain binary operators. These can 2342 // often be turned into switches and other things. 2343 if (PN->getType()->isIntegerTy(1) && 2344 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2345 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2346 isa<BinaryOperator>(IfCond))) 2347 return false; 2348 2349 // If all PHI nodes are promotable, check to make sure that all instructions 2350 // in the predecessor blocks can be promoted as well. If not, we won't be able 2351 // to get rid of the control flow, so it's not worth promoting to select 2352 // instructions. 2353 BasicBlock *DomBlock = nullptr; 2354 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2355 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2356 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2357 IfBlock1 = nullptr; 2358 } else { 2359 DomBlock = *pred_begin(IfBlock1); 2360 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2361 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2362 // This is not an aggressive instruction that we can promote. 2363 // Because of this, we won't be able to get rid of the control flow, so 2364 // the xform is not worth it. 2365 return false; 2366 } 2367 } 2368 2369 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2370 IfBlock2 = nullptr; 2371 } else { 2372 DomBlock = *pred_begin(IfBlock2); 2373 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2374 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2375 // This is not an aggressive instruction that we can promote. 2376 // Because of this, we won't be able to get rid of the control flow, so 2377 // the xform is not worth it. 2378 return false; 2379 } 2380 } 2381 2382 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2383 << " T: " << IfTrue->getName() 2384 << " F: " << IfFalse->getName() << "\n"); 2385 2386 // If we can still promote the PHI nodes after this gauntlet of tests, 2387 // do all of the PHI's now. 2388 Instruction *InsertPt = DomBlock->getTerminator(); 2389 IRBuilder<NoFolder> Builder(InsertPt); 2390 2391 // Move all 'aggressive' instructions, which are defined in the 2392 // conditional parts of the if's up to the dominating block. 2393 if (IfBlock1) 2394 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2395 if (IfBlock2) 2396 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2397 2398 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2399 // Change the PHI node into a select instruction. 2400 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2401 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2402 2403 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2404 PN->replaceAllUsesWith(Sel); 2405 Sel->takeName(PN); 2406 PN->eraseFromParent(); 2407 } 2408 2409 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2410 // has been flattened. Change DomBlock to jump directly to our new block to 2411 // avoid other simplifycfg's kicking in on the diamond. 2412 Instruction *OldTI = DomBlock->getTerminator(); 2413 Builder.SetInsertPoint(OldTI); 2414 Builder.CreateBr(BB); 2415 OldTI->eraseFromParent(); 2416 return true; 2417 } 2418 2419 /// If we found a conditional branch that goes to two returning blocks, 2420 /// try to merge them together into one return, 2421 /// introducing a select if the return values disagree. 2422 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2423 IRBuilder<> &Builder) { 2424 assert(BI->isConditional() && "Must be a conditional branch"); 2425 BasicBlock *TrueSucc = BI->getSuccessor(0); 2426 BasicBlock *FalseSucc = BI->getSuccessor(1); 2427 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2428 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2429 2430 // Check to ensure both blocks are empty (just a return) or optionally empty 2431 // with PHI nodes. If there are other instructions, merging would cause extra 2432 // computation on one path or the other. 2433 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2434 return false; 2435 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2436 return false; 2437 2438 Builder.SetInsertPoint(BI); 2439 // Okay, we found a branch that is going to two return nodes. If 2440 // there is no return value for this function, just change the 2441 // branch into a return. 2442 if (FalseRet->getNumOperands() == 0) { 2443 TrueSucc->removePredecessor(BI->getParent()); 2444 FalseSucc->removePredecessor(BI->getParent()); 2445 Builder.CreateRetVoid(); 2446 EraseTerminatorAndDCECond(BI); 2447 return true; 2448 } 2449 2450 // Otherwise, figure out what the true and false return values are 2451 // so we can insert a new select instruction. 2452 Value *TrueValue = TrueRet->getReturnValue(); 2453 Value *FalseValue = FalseRet->getReturnValue(); 2454 2455 // Unwrap any PHI nodes in the return blocks. 2456 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2457 if (TVPN->getParent() == TrueSucc) 2458 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2459 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2460 if (FVPN->getParent() == FalseSucc) 2461 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2462 2463 // In order for this transformation to be safe, we must be able to 2464 // unconditionally execute both operands to the return. This is 2465 // normally the case, but we could have a potentially-trapping 2466 // constant expression that prevents this transformation from being 2467 // safe. 2468 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2469 if (TCV->canTrap()) 2470 return false; 2471 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2472 if (FCV->canTrap()) 2473 return false; 2474 2475 // Okay, we collected all the mapped values and checked them for sanity, and 2476 // defined to really do this transformation. First, update the CFG. 2477 TrueSucc->removePredecessor(BI->getParent()); 2478 FalseSucc->removePredecessor(BI->getParent()); 2479 2480 // Insert select instructions where needed. 2481 Value *BrCond = BI->getCondition(); 2482 if (TrueValue) { 2483 // Insert a select if the results differ. 2484 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2485 } else if (isa<UndefValue>(TrueValue)) { 2486 TrueValue = FalseValue; 2487 } else { 2488 TrueValue = 2489 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2490 } 2491 } 2492 2493 Value *RI = 2494 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2495 2496 (void)RI; 2497 2498 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2499 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2500 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2501 2502 EraseTerminatorAndDCECond(BI); 2503 2504 return true; 2505 } 2506 2507 /// Return true if the given instruction is available 2508 /// in its predecessor block. If yes, the instruction will be removed. 2509 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2510 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2511 return false; 2512 for (Instruction &I : *PB) { 2513 Instruction *PBI = &I; 2514 // Check whether Inst and PBI generate the same value. 2515 if (Inst->isIdenticalTo(PBI)) { 2516 Inst->replaceAllUsesWith(PBI); 2517 Inst->eraseFromParent(); 2518 return true; 2519 } 2520 } 2521 return false; 2522 } 2523 2524 /// Return true if either PBI or BI has branch weight available, and store 2525 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2526 /// not have branch weight, use 1:1 as its weight. 2527 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2528 uint64_t &PredTrueWeight, 2529 uint64_t &PredFalseWeight, 2530 uint64_t &SuccTrueWeight, 2531 uint64_t &SuccFalseWeight) { 2532 bool PredHasWeights = 2533 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2534 bool SuccHasWeights = 2535 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2536 if (PredHasWeights || SuccHasWeights) { 2537 if (!PredHasWeights) 2538 PredTrueWeight = PredFalseWeight = 1; 2539 if (!SuccHasWeights) 2540 SuccTrueWeight = SuccFalseWeight = 1; 2541 return true; 2542 } else { 2543 return false; 2544 } 2545 } 2546 2547 /// If this basic block is simple enough, and if a predecessor branches to us 2548 /// and one of our successors, fold the block into the predecessor and use 2549 /// logical operations to pick the right destination. 2550 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2551 BasicBlock *BB = BI->getParent(); 2552 2553 const unsigned PredCount = pred_size(BB); 2554 2555 Instruction *Cond = nullptr; 2556 if (BI->isConditional()) 2557 Cond = dyn_cast<Instruction>(BI->getCondition()); 2558 else { 2559 // For unconditional branch, check for a simple CFG pattern, where 2560 // BB has a single predecessor and BB's successor is also its predecessor's 2561 // successor. If such pattern exists, check for CSE between BB and its 2562 // predecessor. 2563 if (BasicBlock *PB = BB->getSinglePredecessor()) 2564 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2565 if (PBI->isConditional() && 2566 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2567 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2568 for (auto I = BB->instructionsWithoutDebug().begin(), 2569 E = BB->instructionsWithoutDebug().end(); 2570 I != E;) { 2571 Instruction *Curr = &*I++; 2572 if (isa<CmpInst>(Curr)) { 2573 Cond = Curr; 2574 break; 2575 } 2576 // Quit if we can't remove this instruction. 2577 if (!tryCSEWithPredecessor(Curr, PB)) 2578 return false; 2579 } 2580 } 2581 2582 if (!Cond) 2583 return false; 2584 } 2585 2586 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2587 Cond->getParent() != BB || !Cond->hasOneUse()) 2588 return false; 2589 2590 // Make sure the instruction after the condition is the cond branch. 2591 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2592 2593 // Ignore dbg intrinsics. 2594 while (isa<DbgInfoIntrinsic>(CondIt)) 2595 ++CondIt; 2596 2597 if (&*CondIt != BI) 2598 return false; 2599 2600 // Only allow this transformation if computing the condition doesn't involve 2601 // too many instructions and these involved instructions can be executed 2602 // unconditionally. We denote all involved instructions except the condition 2603 // as "bonus instructions", and only allow this transformation when the 2604 // number of the bonus instructions we'll need to create when cloning into 2605 // each predecessor does not exceed a certain threshold. 2606 unsigned NumBonusInsts = 0; 2607 for (auto I = BB->begin(); Cond != &*I; ++I) { 2608 // Ignore dbg intrinsics. 2609 if (isa<DbgInfoIntrinsic>(I)) 2610 continue; 2611 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2612 return false; 2613 // I has only one use and can be executed unconditionally. 2614 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2615 if (User == nullptr || User->getParent() != BB) 2616 return false; 2617 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2618 // to use any other instruction, User must be an instruction between next(I) 2619 // and Cond. 2620 2621 // Account for the cost of duplicating this instruction into each 2622 // predecessor. 2623 NumBonusInsts += PredCount; 2624 // Early exits once we reach the limit. 2625 if (NumBonusInsts > BonusInstThreshold) 2626 return false; 2627 } 2628 2629 // Cond is known to be a compare or binary operator. Check to make sure that 2630 // neither operand is a potentially-trapping constant expression. 2631 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2632 if (CE->canTrap()) 2633 return false; 2634 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2635 if (CE->canTrap()) 2636 return false; 2637 2638 // Finally, don't infinitely unroll conditional loops. 2639 BasicBlock *TrueDest = BI->getSuccessor(0); 2640 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2641 if (TrueDest == BB || FalseDest == BB) 2642 return false; 2643 2644 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2645 BasicBlock *PredBlock = *PI; 2646 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2647 2648 // Check that we have two conditional branches. If there is a PHI node in 2649 // the common successor, verify that the same value flows in from both 2650 // blocks. 2651 SmallVector<PHINode *, 4> PHIs; 2652 if (!PBI || PBI->isUnconditional() || 2653 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2654 (!BI->isConditional() && 2655 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2656 continue; 2657 2658 // Determine if the two branches share a common destination. 2659 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2660 bool InvertPredCond = false; 2661 2662 if (BI->isConditional()) { 2663 if (PBI->getSuccessor(0) == TrueDest) { 2664 Opc = Instruction::Or; 2665 } else if (PBI->getSuccessor(1) == FalseDest) { 2666 Opc = Instruction::And; 2667 } else if (PBI->getSuccessor(0) == FalseDest) { 2668 Opc = Instruction::And; 2669 InvertPredCond = true; 2670 } else if (PBI->getSuccessor(1) == TrueDest) { 2671 Opc = Instruction::Or; 2672 InvertPredCond = true; 2673 } else { 2674 continue; 2675 } 2676 } else { 2677 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2678 continue; 2679 } 2680 2681 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2682 IRBuilder<> Builder(PBI); 2683 2684 // If we need to invert the condition in the pred block to match, do so now. 2685 if (InvertPredCond) { 2686 Value *NewCond = PBI->getCondition(); 2687 2688 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2689 CmpInst *CI = cast<CmpInst>(NewCond); 2690 CI->setPredicate(CI->getInversePredicate()); 2691 } else { 2692 NewCond = 2693 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2694 } 2695 2696 PBI->setCondition(NewCond); 2697 PBI->swapSuccessors(); 2698 } 2699 2700 // If we have bonus instructions, clone them into the predecessor block. 2701 // Note that there may be multiple predecessor blocks, so we cannot move 2702 // bonus instructions to a predecessor block. 2703 ValueToValueMapTy VMap; // maps original values to cloned values 2704 // We already make sure Cond is the last instruction before BI. Therefore, 2705 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2706 // instructions. 2707 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2708 if (isa<DbgInfoIntrinsic>(BonusInst)) 2709 continue; 2710 Instruction *NewBonusInst = BonusInst->clone(); 2711 RemapInstruction(NewBonusInst, VMap, 2712 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2713 VMap[&*BonusInst] = NewBonusInst; 2714 2715 // If we moved a load, we cannot any longer claim any knowledge about 2716 // its potential value. The previous information might have been valid 2717 // only given the branch precondition. 2718 // For an analogous reason, we must also drop all the metadata whose 2719 // semantics we don't understand. 2720 NewBonusInst->dropUnknownNonDebugMetadata(); 2721 2722 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2723 NewBonusInst->takeName(&*BonusInst); 2724 BonusInst->setName(BonusInst->getName() + ".old"); 2725 } 2726 2727 // Clone Cond into the predecessor basic block, and or/and the 2728 // two conditions together. 2729 Instruction *CondInPred = Cond->clone(); 2730 RemapInstruction(CondInPred, VMap, 2731 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2732 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2733 CondInPred->takeName(Cond); 2734 Cond->setName(CondInPred->getName() + ".old"); 2735 2736 if (BI->isConditional()) { 2737 Instruction *NewCond = cast<Instruction>( 2738 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2739 PBI->setCondition(NewCond); 2740 2741 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2742 bool HasWeights = 2743 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2744 SuccTrueWeight, SuccFalseWeight); 2745 SmallVector<uint64_t, 8> NewWeights; 2746 2747 if (PBI->getSuccessor(0) == BB) { 2748 if (HasWeights) { 2749 // PBI: br i1 %x, BB, FalseDest 2750 // BI: br i1 %y, TrueDest, FalseDest 2751 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2752 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2753 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2754 // TrueWeight for PBI * FalseWeight for BI. 2755 // We assume that total weights of a BranchInst can fit into 32 bits. 2756 // Therefore, we will not have overflow using 64-bit arithmetic. 2757 NewWeights.push_back(PredFalseWeight * 2758 (SuccFalseWeight + SuccTrueWeight) + 2759 PredTrueWeight * SuccFalseWeight); 2760 } 2761 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2762 PBI->setSuccessor(0, TrueDest); 2763 } 2764 if (PBI->getSuccessor(1) == BB) { 2765 if (HasWeights) { 2766 // PBI: br i1 %x, TrueDest, BB 2767 // BI: br i1 %y, TrueDest, FalseDest 2768 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2769 // FalseWeight for PBI * TrueWeight for BI. 2770 NewWeights.push_back(PredTrueWeight * 2771 (SuccFalseWeight + SuccTrueWeight) + 2772 PredFalseWeight * SuccTrueWeight); 2773 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2774 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2775 } 2776 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2777 PBI->setSuccessor(1, FalseDest); 2778 } 2779 if (NewWeights.size() == 2) { 2780 // Halve the weights if any of them cannot fit in an uint32_t 2781 FitWeights(NewWeights); 2782 2783 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2784 NewWeights.end()); 2785 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2786 } else 2787 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2788 } else { 2789 // Update PHI nodes in the common successors. 2790 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2791 ConstantInt *PBI_C = cast<ConstantInt>( 2792 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2793 assert(PBI_C->getType()->isIntegerTy(1)); 2794 Instruction *MergedCond = nullptr; 2795 if (PBI->getSuccessor(0) == TrueDest) { 2796 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2797 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2798 // is false: !PBI_Cond and BI_Value 2799 Instruction *NotCond = cast<Instruction>( 2800 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2801 MergedCond = cast<Instruction>( 2802 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2803 "and.cond")); 2804 if (PBI_C->isOne()) 2805 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2806 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2807 } else { 2808 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2809 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2810 // is false: PBI_Cond and BI_Value 2811 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2812 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2813 if (PBI_C->isOne()) { 2814 Instruction *NotCond = cast<Instruction>( 2815 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2816 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2817 Instruction::Or, NotCond, MergedCond, "or.cond")); 2818 } 2819 } 2820 // Update PHI Node. 2821 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2822 MergedCond); 2823 } 2824 // Change PBI from Conditional to Unconditional. 2825 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2826 EraseTerminatorAndDCECond(PBI); 2827 PBI = New_PBI; 2828 } 2829 2830 // If BI was a loop latch, it may have had associated loop metadata. 2831 // We need to copy it to the new latch, that is, PBI. 2832 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2833 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2834 2835 // TODO: If BB is reachable from all paths through PredBlock, then we 2836 // could replace PBI's branch probabilities with BI's. 2837 2838 // Copy any debug value intrinsics into the end of PredBlock. 2839 for (Instruction &I : *BB) 2840 if (isa<DbgInfoIntrinsic>(I)) 2841 I.clone()->insertBefore(PBI); 2842 2843 return true; 2844 } 2845 return false; 2846 } 2847 2848 // If there is only one store in BB1 and BB2, return it, otherwise return 2849 // nullptr. 2850 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2851 StoreInst *S = nullptr; 2852 for (auto *BB : {BB1, BB2}) { 2853 if (!BB) 2854 continue; 2855 for (auto &I : *BB) 2856 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2857 if (S) 2858 // Multiple stores seen. 2859 return nullptr; 2860 else 2861 S = SI; 2862 } 2863 } 2864 return S; 2865 } 2866 2867 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2868 Value *AlternativeV = nullptr) { 2869 // PHI is going to be a PHI node that allows the value V that is defined in 2870 // BB to be referenced in BB's only successor. 2871 // 2872 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2873 // doesn't matter to us what the other operand is (it'll never get used). We 2874 // could just create a new PHI with an undef incoming value, but that could 2875 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2876 // other PHI. So here we directly look for some PHI in BB's successor with V 2877 // as an incoming operand. If we find one, we use it, else we create a new 2878 // one. 2879 // 2880 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2881 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2882 // where OtherBB is the single other predecessor of BB's only successor. 2883 PHINode *PHI = nullptr; 2884 BasicBlock *Succ = BB->getSingleSuccessor(); 2885 2886 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2887 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2888 PHI = cast<PHINode>(I); 2889 if (!AlternativeV) 2890 break; 2891 2892 assert(Succ->hasNPredecessors(2)); 2893 auto PredI = pred_begin(Succ); 2894 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2895 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2896 break; 2897 PHI = nullptr; 2898 } 2899 if (PHI) 2900 return PHI; 2901 2902 // If V is not an instruction defined in BB, just return it. 2903 if (!AlternativeV && 2904 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2905 return V; 2906 2907 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2908 PHI->addIncoming(V, BB); 2909 for (BasicBlock *PredBB : predecessors(Succ)) 2910 if (PredBB != BB) 2911 PHI->addIncoming( 2912 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2913 return PHI; 2914 } 2915 2916 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2917 BasicBlock *QTB, BasicBlock *QFB, 2918 BasicBlock *PostBB, Value *Address, 2919 bool InvertPCond, bool InvertQCond, 2920 const DataLayout &DL) { 2921 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2922 return Operator::getOpcode(&I) == Instruction::BitCast && 2923 I.getType()->isPointerTy(); 2924 }; 2925 2926 // If we're not in aggressive mode, we only optimize if we have some 2927 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2928 auto IsWorthwhile = [&](BasicBlock *BB) { 2929 if (!BB) 2930 return true; 2931 // Heuristic: if the block can be if-converted/phi-folded and the 2932 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2933 // thread this store. 2934 unsigned N = 0; 2935 for (auto &I : BB->instructionsWithoutDebug()) { 2936 // Cheap instructions viable for folding. 2937 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2938 isa<StoreInst>(I)) 2939 ++N; 2940 // Free instructions. 2941 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2942 continue; 2943 else 2944 return false; 2945 } 2946 // The store we want to merge is counted in N, so add 1 to make sure 2947 // we're counting the instructions that would be left. 2948 return N <= (PHINodeFoldingThreshold + 1); 2949 }; 2950 2951 if (!MergeCondStoresAggressively && 2952 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2953 !IsWorthwhile(QFB))) 2954 return false; 2955 2956 // For every pointer, there must be exactly two stores, one coming from 2957 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2958 // store (to any address) in PTB,PFB or QTB,QFB. 2959 // FIXME: We could relax this restriction with a bit more work and performance 2960 // testing. 2961 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2962 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2963 if (!PStore || !QStore) 2964 return false; 2965 2966 // Now check the stores are compatible. 2967 if (!QStore->isUnordered() || !PStore->isUnordered()) 2968 return false; 2969 2970 // Check that sinking the store won't cause program behavior changes. Sinking 2971 // the store out of the Q blocks won't change any behavior as we're sinking 2972 // from a block to its unconditional successor. But we're moving a store from 2973 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2974 // So we need to check that there are no aliasing loads or stores in 2975 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2976 // operations between PStore and the end of its parent block. 2977 // 2978 // The ideal way to do this is to query AliasAnalysis, but we don't 2979 // preserve AA currently so that is dangerous. Be super safe and just 2980 // check there are no other memory operations at all. 2981 for (auto &I : *QFB->getSinglePredecessor()) 2982 if (I.mayReadOrWriteMemory()) 2983 return false; 2984 for (auto &I : *QFB) 2985 if (&I != QStore && I.mayReadOrWriteMemory()) 2986 return false; 2987 if (QTB) 2988 for (auto &I : *QTB) 2989 if (&I != QStore && I.mayReadOrWriteMemory()) 2990 return false; 2991 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2992 I != E; ++I) 2993 if (&*I != PStore && I->mayReadOrWriteMemory()) 2994 return false; 2995 2996 // If PostBB has more than two predecessors, we need to split it so we can 2997 // sink the store. 2998 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 2999 // We know that QFB's only successor is PostBB. And QFB has a single 3000 // predecessor. If QTB exists, then its only successor is also PostBB. 3001 // If QTB does not exist, then QFB's only predecessor has a conditional 3002 // branch to QFB and PostBB. 3003 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3004 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3005 "condstore.split"); 3006 if (!NewBB) 3007 return false; 3008 PostBB = NewBB; 3009 } 3010 3011 // OK, we're going to sink the stores to PostBB. The store has to be 3012 // conditional though, so first create the predicate. 3013 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3014 ->getCondition(); 3015 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3016 ->getCondition(); 3017 3018 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3019 PStore->getParent()); 3020 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3021 QStore->getParent(), PPHI); 3022 3023 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3024 3025 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3026 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3027 3028 if (InvertPCond) 3029 PPred = QB.CreateNot(PPred); 3030 if (InvertQCond) 3031 QPred = QB.CreateNot(QPred); 3032 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3033 3034 auto *T = 3035 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3036 QB.SetInsertPoint(T); 3037 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3038 AAMDNodes AAMD; 3039 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3040 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3041 SI->setAAMetadata(AAMD); 3042 unsigned PAlignment = PStore->getAlignment(); 3043 unsigned QAlignment = QStore->getAlignment(); 3044 unsigned TypeAlignment = 3045 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3046 unsigned MinAlignment; 3047 unsigned MaxAlignment; 3048 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3049 // Choose the minimum alignment. If we could prove both stores execute, we 3050 // could use biggest one. In this case, though, we only know that one of the 3051 // stores executes. And we don't know it's safe to take the alignment from a 3052 // store that doesn't execute. 3053 if (MinAlignment != 0) { 3054 // Choose the minimum of all non-zero alignments. 3055 SI->setAlignment(MinAlignment); 3056 } else if (MaxAlignment != 0) { 3057 // Choose the minimal alignment between the non-zero alignment and the ABI 3058 // default alignment for the type of the stored value. 3059 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3060 } else { 3061 // If both alignments are zero, use ABI default alignment for the type of 3062 // the stored value. 3063 SI->setAlignment(TypeAlignment); 3064 } 3065 3066 QStore->eraseFromParent(); 3067 PStore->eraseFromParent(); 3068 3069 return true; 3070 } 3071 3072 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3073 const DataLayout &DL) { 3074 // The intention here is to find diamonds or triangles (see below) where each 3075 // conditional block contains a store to the same address. Both of these 3076 // stores are conditional, so they can't be unconditionally sunk. But it may 3077 // be profitable to speculatively sink the stores into one merged store at the 3078 // end, and predicate the merged store on the union of the two conditions of 3079 // PBI and QBI. 3080 // 3081 // This can reduce the number of stores executed if both of the conditions are 3082 // true, and can allow the blocks to become small enough to be if-converted. 3083 // This optimization will also chain, so that ladders of test-and-set 3084 // sequences can be if-converted away. 3085 // 3086 // We only deal with simple diamonds or triangles: 3087 // 3088 // PBI or PBI or a combination of the two 3089 // / \ | \ 3090 // PTB PFB | PFB 3091 // \ / | / 3092 // QBI QBI 3093 // / \ | \ 3094 // QTB QFB | QFB 3095 // \ / | / 3096 // PostBB PostBB 3097 // 3098 // We model triangles as a type of diamond with a nullptr "true" block. 3099 // Triangles are canonicalized so that the fallthrough edge is represented by 3100 // a true condition, as in the diagram above. 3101 BasicBlock *PTB = PBI->getSuccessor(0); 3102 BasicBlock *PFB = PBI->getSuccessor(1); 3103 BasicBlock *QTB = QBI->getSuccessor(0); 3104 BasicBlock *QFB = QBI->getSuccessor(1); 3105 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3106 3107 // Make sure we have a good guess for PostBB. If QTB's only successor is 3108 // QFB, then QFB is a better PostBB. 3109 if (QTB->getSingleSuccessor() == QFB) 3110 PostBB = QFB; 3111 3112 // If we couldn't find a good PostBB, stop. 3113 if (!PostBB) 3114 return false; 3115 3116 bool InvertPCond = false, InvertQCond = false; 3117 // Canonicalize fallthroughs to the true branches. 3118 if (PFB == QBI->getParent()) { 3119 std::swap(PFB, PTB); 3120 InvertPCond = true; 3121 } 3122 if (QFB == PostBB) { 3123 std::swap(QFB, QTB); 3124 InvertQCond = true; 3125 } 3126 3127 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3128 // and QFB may not. Model fallthroughs as a nullptr block. 3129 if (PTB == QBI->getParent()) 3130 PTB = nullptr; 3131 if (QTB == PostBB) 3132 QTB = nullptr; 3133 3134 // Legality bailouts. We must have at least the non-fallthrough blocks and 3135 // the post-dominating block, and the non-fallthroughs must only have one 3136 // predecessor. 3137 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3138 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3139 }; 3140 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3141 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3142 return false; 3143 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3144 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3145 return false; 3146 if (!QBI->getParent()->hasNUses(2)) 3147 return false; 3148 3149 // OK, this is a sequence of two diamonds or triangles. 3150 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3151 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3152 for (auto *BB : {PTB, PFB}) { 3153 if (!BB) 3154 continue; 3155 for (auto &I : *BB) 3156 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3157 PStoreAddresses.insert(SI->getPointerOperand()); 3158 } 3159 for (auto *BB : {QTB, QFB}) { 3160 if (!BB) 3161 continue; 3162 for (auto &I : *BB) 3163 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3164 QStoreAddresses.insert(SI->getPointerOperand()); 3165 } 3166 3167 set_intersect(PStoreAddresses, QStoreAddresses); 3168 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3169 // clear what it contains. 3170 auto &CommonAddresses = PStoreAddresses; 3171 3172 bool Changed = false; 3173 for (auto *Address : CommonAddresses) 3174 Changed |= mergeConditionalStoreToAddress( 3175 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3176 return Changed; 3177 } 3178 3179 /// If we have a conditional branch as a predecessor of another block, 3180 /// this function tries to simplify it. We know 3181 /// that PBI and BI are both conditional branches, and BI is in one of the 3182 /// successor blocks of PBI - PBI branches to BI. 3183 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3184 const DataLayout &DL) { 3185 assert(PBI->isConditional() && BI->isConditional()); 3186 BasicBlock *BB = BI->getParent(); 3187 3188 // If this block ends with a branch instruction, and if there is a 3189 // predecessor that ends on a branch of the same condition, make 3190 // this conditional branch redundant. 3191 if (PBI->getCondition() == BI->getCondition() && 3192 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3193 // Okay, the outcome of this conditional branch is statically 3194 // knowable. If this block had a single pred, handle specially. 3195 if (BB->getSinglePredecessor()) { 3196 // Turn this into a branch on constant. 3197 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3198 BI->setCondition( 3199 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3200 return true; // Nuke the branch on constant. 3201 } 3202 3203 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3204 // in the constant and simplify the block result. Subsequent passes of 3205 // simplifycfg will thread the block. 3206 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3207 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3208 PHINode *NewPN = PHINode::Create( 3209 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3210 BI->getCondition()->getName() + ".pr", &BB->front()); 3211 // Okay, we're going to insert the PHI node. Since PBI is not the only 3212 // predecessor, compute the PHI'd conditional value for all of the preds. 3213 // Any predecessor where the condition is not computable we keep symbolic. 3214 for (pred_iterator PI = PB; PI != PE; ++PI) { 3215 BasicBlock *P = *PI; 3216 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3217 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3218 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3219 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3220 NewPN->addIncoming( 3221 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3222 P); 3223 } else { 3224 NewPN->addIncoming(BI->getCondition(), P); 3225 } 3226 } 3227 3228 BI->setCondition(NewPN); 3229 return true; 3230 } 3231 } 3232 3233 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3234 if (CE->canTrap()) 3235 return false; 3236 3237 // If both branches are conditional and both contain stores to the same 3238 // address, remove the stores from the conditionals and create a conditional 3239 // merged store at the end. 3240 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3241 return true; 3242 3243 // If this is a conditional branch in an empty block, and if any 3244 // predecessors are a conditional branch to one of our destinations, 3245 // fold the conditions into logical ops and one cond br. 3246 3247 // Ignore dbg intrinsics. 3248 if (&*BB->instructionsWithoutDebug().begin() != BI) 3249 return false; 3250 3251 int PBIOp, BIOp; 3252 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3253 PBIOp = 0; 3254 BIOp = 0; 3255 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3256 PBIOp = 0; 3257 BIOp = 1; 3258 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3259 PBIOp = 1; 3260 BIOp = 0; 3261 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3262 PBIOp = 1; 3263 BIOp = 1; 3264 } else { 3265 return false; 3266 } 3267 3268 // Check to make sure that the other destination of this branch 3269 // isn't BB itself. If so, this is an infinite loop that will 3270 // keep getting unwound. 3271 if (PBI->getSuccessor(PBIOp) == BB) 3272 return false; 3273 3274 // Do not perform this transformation if it would require 3275 // insertion of a large number of select instructions. For targets 3276 // without predication/cmovs, this is a big pessimization. 3277 3278 // Also do not perform this transformation if any phi node in the common 3279 // destination block can trap when reached by BB or PBB (PR17073). In that 3280 // case, it would be unsafe to hoist the operation into a select instruction. 3281 3282 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3283 unsigned NumPhis = 0; 3284 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3285 ++II, ++NumPhis) { 3286 if (NumPhis > 2) // Disable this xform. 3287 return false; 3288 3289 PHINode *PN = cast<PHINode>(II); 3290 Value *BIV = PN->getIncomingValueForBlock(BB); 3291 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3292 if (CE->canTrap()) 3293 return false; 3294 3295 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3296 Value *PBIV = PN->getIncomingValue(PBBIdx); 3297 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3298 if (CE->canTrap()) 3299 return false; 3300 } 3301 3302 // Finally, if everything is ok, fold the branches to logical ops. 3303 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3304 3305 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3306 << "AND: " << *BI->getParent()); 3307 3308 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3309 // branch in it, where one edge (OtherDest) goes back to itself but the other 3310 // exits. We don't *know* that the program avoids the infinite loop 3311 // (even though that seems likely). If we do this xform naively, we'll end up 3312 // recursively unpeeling the loop. Since we know that (after the xform is 3313 // done) that the block *is* infinite if reached, we just make it an obviously 3314 // infinite loop with no cond branch. 3315 if (OtherDest == BB) { 3316 // Insert it at the end of the function, because it's either code, 3317 // or it won't matter if it's hot. :) 3318 BasicBlock *InfLoopBlock = 3319 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3320 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3321 OtherDest = InfLoopBlock; 3322 } 3323 3324 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3325 3326 // BI may have other predecessors. Because of this, we leave 3327 // it alone, but modify PBI. 3328 3329 // Make sure we get to CommonDest on True&True directions. 3330 Value *PBICond = PBI->getCondition(); 3331 IRBuilder<NoFolder> Builder(PBI); 3332 if (PBIOp) 3333 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3334 3335 Value *BICond = BI->getCondition(); 3336 if (BIOp) 3337 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3338 3339 // Merge the conditions. 3340 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3341 3342 // Modify PBI to branch on the new condition to the new dests. 3343 PBI->setCondition(Cond); 3344 PBI->setSuccessor(0, CommonDest); 3345 PBI->setSuccessor(1, OtherDest); 3346 3347 // Update branch weight for PBI. 3348 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3349 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3350 bool HasWeights = 3351 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3352 SuccTrueWeight, SuccFalseWeight); 3353 if (HasWeights) { 3354 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3355 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3356 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3357 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3358 // The weight to CommonDest should be PredCommon * SuccTotal + 3359 // PredOther * SuccCommon. 3360 // The weight to OtherDest should be PredOther * SuccOther. 3361 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3362 PredOther * SuccCommon, 3363 PredOther * SuccOther}; 3364 // Halve the weights if any of them cannot fit in an uint32_t 3365 FitWeights(NewWeights); 3366 3367 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3368 } 3369 3370 // OtherDest may have phi nodes. If so, add an entry from PBI's 3371 // block that are identical to the entries for BI's block. 3372 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3373 3374 // We know that the CommonDest already had an edge from PBI to 3375 // it. If it has PHIs though, the PHIs may have different 3376 // entries for BB and PBI's BB. If so, insert a select to make 3377 // them agree. 3378 for (PHINode &PN : CommonDest->phis()) { 3379 Value *BIV = PN.getIncomingValueForBlock(BB); 3380 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3381 Value *PBIV = PN.getIncomingValue(PBBIdx); 3382 if (BIV != PBIV) { 3383 // Insert a select in PBI to pick the right value. 3384 SelectInst *NV = cast<SelectInst>( 3385 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3386 PN.setIncomingValue(PBBIdx, NV); 3387 // Although the select has the same condition as PBI, the original branch 3388 // weights for PBI do not apply to the new select because the select's 3389 // 'logical' edges are incoming edges of the phi that is eliminated, not 3390 // the outgoing edges of PBI. 3391 if (HasWeights) { 3392 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3393 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3394 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3395 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3396 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3397 // The weight to PredOtherDest should be PredOther * SuccCommon. 3398 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3399 PredOther * SuccCommon}; 3400 3401 FitWeights(NewWeights); 3402 3403 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3404 } 3405 } 3406 } 3407 3408 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3409 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3410 3411 // This basic block is probably dead. We know it has at least 3412 // one fewer predecessor. 3413 return true; 3414 } 3415 3416 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3417 // true or to FalseBB if Cond is false. 3418 // Takes care of updating the successors and removing the old terminator. 3419 // Also makes sure not to introduce new successors by assuming that edges to 3420 // non-successor TrueBBs and FalseBBs aren't reachable. 3421 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3422 BasicBlock *TrueBB, BasicBlock *FalseBB, 3423 uint32_t TrueWeight, 3424 uint32_t FalseWeight) { 3425 // Remove any superfluous successor edges from the CFG. 3426 // First, figure out which successors to preserve. 3427 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3428 // successor. 3429 BasicBlock *KeepEdge1 = TrueBB; 3430 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3431 3432 // Then remove the rest. 3433 for (BasicBlock *Succ : successors(OldTerm)) { 3434 // Make sure only to keep exactly one copy of each edge. 3435 if (Succ == KeepEdge1) 3436 KeepEdge1 = nullptr; 3437 else if (Succ == KeepEdge2) 3438 KeepEdge2 = nullptr; 3439 else 3440 Succ->removePredecessor(OldTerm->getParent(), 3441 /*KeepOneInputPHIs=*/true); 3442 } 3443 3444 IRBuilder<> Builder(OldTerm); 3445 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3446 3447 // Insert an appropriate new terminator. 3448 if (!KeepEdge1 && !KeepEdge2) { 3449 if (TrueBB == FalseBB) 3450 // We were only looking for one successor, and it was present. 3451 // Create an unconditional branch to it. 3452 Builder.CreateBr(TrueBB); 3453 else { 3454 // We found both of the successors we were looking for. 3455 // Create a conditional branch sharing the condition of the select. 3456 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3457 if (TrueWeight != FalseWeight) 3458 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3459 } 3460 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3461 // Neither of the selected blocks were successors, so this 3462 // terminator must be unreachable. 3463 new UnreachableInst(OldTerm->getContext(), OldTerm); 3464 } else { 3465 // One of the selected values was a successor, but the other wasn't. 3466 // Insert an unconditional branch to the one that was found; 3467 // the edge to the one that wasn't must be unreachable. 3468 if (!KeepEdge1) 3469 // Only TrueBB was found. 3470 Builder.CreateBr(TrueBB); 3471 else 3472 // Only FalseBB was found. 3473 Builder.CreateBr(FalseBB); 3474 } 3475 3476 EraseTerminatorAndDCECond(OldTerm); 3477 return true; 3478 } 3479 3480 // Replaces 3481 // (switch (select cond, X, Y)) on constant X, Y 3482 // with a branch - conditional if X and Y lead to distinct BBs, 3483 // unconditional otherwise. 3484 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3485 // Check for constant integer values in the select. 3486 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3487 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3488 if (!TrueVal || !FalseVal) 3489 return false; 3490 3491 // Find the relevant condition and destinations. 3492 Value *Condition = Select->getCondition(); 3493 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3494 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3495 3496 // Get weight for TrueBB and FalseBB. 3497 uint32_t TrueWeight = 0, FalseWeight = 0; 3498 SmallVector<uint64_t, 8> Weights; 3499 bool HasWeights = HasBranchWeights(SI); 3500 if (HasWeights) { 3501 GetBranchWeights(SI, Weights); 3502 if (Weights.size() == 1 + SI->getNumCases()) { 3503 TrueWeight = 3504 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3505 FalseWeight = 3506 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3507 } 3508 } 3509 3510 // Perform the actual simplification. 3511 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3512 FalseWeight); 3513 } 3514 3515 // Replaces 3516 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3517 // blockaddress(@fn, BlockB))) 3518 // with 3519 // (br cond, BlockA, BlockB). 3520 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3521 // Check that both operands of the select are block addresses. 3522 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3523 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3524 if (!TBA || !FBA) 3525 return false; 3526 3527 // Extract the actual blocks. 3528 BasicBlock *TrueBB = TBA->getBasicBlock(); 3529 BasicBlock *FalseBB = FBA->getBasicBlock(); 3530 3531 // Perform the actual simplification. 3532 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3533 0); 3534 } 3535 3536 /// This is called when we find an icmp instruction 3537 /// (a seteq/setne with a constant) as the only instruction in a 3538 /// block that ends with an uncond branch. We are looking for a very specific 3539 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3540 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3541 /// default value goes to an uncond block with a seteq in it, we get something 3542 /// like: 3543 /// 3544 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3545 /// DEFAULT: 3546 /// %tmp = icmp eq i8 %A, 92 3547 /// br label %end 3548 /// end: 3549 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3550 /// 3551 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3552 /// the PHI, merging the third icmp into the switch. 3553 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3554 ICmpInst *ICI, IRBuilder<> &Builder) { 3555 BasicBlock *BB = ICI->getParent(); 3556 3557 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3558 // complex. 3559 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3560 return false; 3561 3562 Value *V = ICI->getOperand(0); 3563 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3564 3565 // The pattern we're looking for is where our only predecessor is a switch on 3566 // 'V' and this block is the default case for the switch. In this case we can 3567 // fold the compared value into the switch to simplify things. 3568 BasicBlock *Pred = BB->getSinglePredecessor(); 3569 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3570 return false; 3571 3572 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3573 if (SI->getCondition() != V) 3574 return false; 3575 3576 // If BB is reachable on a non-default case, then we simply know the value of 3577 // V in this block. Substitute it and constant fold the icmp instruction 3578 // away. 3579 if (SI->getDefaultDest() != BB) { 3580 ConstantInt *VVal = SI->findCaseDest(BB); 3581 assert(VVal && "Should have a unique destination value"); 3582 ICI->setOperand(0, VVal); 3583 3584 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3585 ICI->replaceAllUsesWith(V); 3586 ICI->eraseFromParent(); 3587 } 3588 // BB is now empty, so it is likely to simplify away. 3589 return requestResimplify(); 3590 } 3591 3592 // Ok, the block is reachable from the default dest. If the constant we're 3593 // comparing exists in one of the other edges, then we can constant fold ICI 3594 // and zap it. 3595 if (SI->findCaseValue(Cst) != SI->case_default()) { 3596 Value *V; 3597 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3598 V = ConstantInt::getFalse(BB->getContext()); 3599 else 3600 V = ConstantInt::getTrue(BB->getContext()); 3601 3602 ICI->replaceAllUsesWith(V); 3603 ICI->eraseFromParent(); 3604 // BB is now empty, so it is likely to simplify away. 3605 return requestResimplify(); 3606 } 3607 3608 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3609 // the block. 3610 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3611 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3612 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3613 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3614 return false; 3615 3616 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3617 // true in the PHI. 3618 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3619 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3620 3621 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3622 std::swap(DefaultCst, NewCst); 3623 3624 // Replace ICI (which is used by the PHI for the default value) with true or 3625 // false depending on if it is EQ or NE. 3626 ICI->replaceAllUsesWith(DefaultCst); 3627 ICI->eraseFromParent(); 3628 3629 // Okay, the switch goes to this block on a default value. Add an edge from 3630 // the switch to the merge point on the compared value. 3631 BasicBlock *NewBB = 3632 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3633 SmallVector<uint64_t, 8> Weights; 3634 bool HasWeights = HasBranchWeights(SI); 3635 if (HasWeights) { 3636 GetBranchWeights(SI, Weights); 3637 if (Weights.size() == 1 + SI->getNumCases()) { 3638 // Split weight for default case to case for "Cst". 3639 Weights[0] = (Weights[0] + 1) >> 1; 3640 Weights.push_back(Weights[0]); 3641 3642 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3643 setBranchWeights(SI, MDWeights); 3644 } 3645 } 3646 SI->addCase(Cst, NewBB); 3647 3648 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3649 Builder.SetInsertPoint(NewBB); 3650 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3651 Builder.CreateBr(SuccBlock); 3652 PHIUse->addIncoming(NewCst, NewBB); 3653 return true; 3654 } 3655 3656 /// The specified branch is a conditional branch. 3657 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3658 /// fold it into a switch instruction if so. 3659 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3660 const DataLayout &DL) { 3661 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3662 if (!Cond) 3663 return false; 3664 3665 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3666 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3667 // 'setne's and'ed together, collect them. 3668 3669 // Try to gather values from a chain of and/or to be turned into a switch 3670 ConstantComparesGatherer ConstantCompare(Cond, DL); 3671 // Unpack the result 3672 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3673 Value *CompVal = ConstantCompare.CompValue; 3674 unsigned UsedICmps = ConstantCompare.UsedICmps; 3675 Value *ExtraCase = ConstantCompare.Extra; 3676 3677 // If we didn't have a multiply compared value, fail. 3678 if (!CompVal) 3679 return false; 3680 3681 // Avoid turning single icmps into a switch. 3682 if (UsedICmps <= 1) 3683 return false; 3684 3685 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3686 3687 // There might be duplicate constants in the list, which the switch 3688 // instruction can't handle, remove them now. 3689 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3690 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3691 3692 // If Extra was used, we require at least two switch values to do the 3693 // transformation. A switch with one value is just a conditional branch. 3694 if (ExtraCase && Values.size() < 2) 3695 return false; 3696 3697 // TODO: Preserve branch weight metadata, similarly to how 3698 // FoldValueComparisonIntoPredecessors preserves it. 3699 3700 // Figure out which block is which destination. 3701 BasicBlock *DefaultBB = BI->getSuccessor(1); 3702 BasicBlock *EdgeBB = BI->getSuccessor(0); 3703 if (!TrueWhenEqual) 3704 std::swap(DefaultBB, EdgeBB); 3705 3706 BasicBlock *BB = BI->getParent(); 3707 3708 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3709 << " cases into SWITCH. BB is:\n" 3710 << *BB); 3711 3712 // If there are any extra values that couldn't be folded into the switch 3713 // then we evaluate them with an explicit branch first. Split the block 3714 // right before the condbr to handle it. 3715 if (ExtraCase) { 3716 BasicBlock *NewBB = 3717 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3718 // Remove the uncond branch added to the old block. 3719 Instruction *OldTI = BB->getTerminator(); 3720 Builder.SetInsertPoint(OldTI); 3721 3722 if (TrueWhenEqual) 3723 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3724 else 3725 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3726 3727 OldTI->eraseFromParent(); 3728 3729 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3730 // for the edge we just added. 3731 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3732 3733 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3734 << "\nEXTRABB = " << *BB); 3735 BB = NewBB; 3736 } 3737 3738 Builder.SetInsertPoint(BI); 3739 // Convert pointer to int before we switch. 3740 if (CompVal->getType()->isPointerTy()) { 3741 CompVal = Builder.CreatePtrToInt( 3742 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3743 } 3744 3745 // Create the new switch instruction now. 3746 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3747 3748 // Add all of the 'cases' to the switch instruction. 3749 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3750 New->addCase(Values[i], EdgeBB); 3751 3752 // We added edges from PI to the EdgeBB. As such, if there were any 3753 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3754 // the number of edges added. 3755 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3756 PHINode *PN = cast<PHINode>(BBI); 3757 Value *InVal = PN->getIncomingValueForBlock(BB); 3758 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3759 PN->addIncoming(InVal, BB); 3760 } 3761 3762 // Erase the old branch instruction. 3763 EraseTerminatorAndDCECond(BI); 3764 3765 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3766 return true; 3767 } 3768 3769 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3770 if (isa<PHINode>(RI->getValue())) 3771 return SimplifyCommonResume(RI); 3772 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3773 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3774 // The resume must unwind the exception that caused control to branch here. 3775 return SimplifySingleResume(RI); 3776 3777 return false; 3778 } 3779 3780 // Simplify resume that is shared by several landing pads (phi of landing pad). 3781 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3782 BasicBlock *BB = RI->getParent(); 3783 3784 // Check that there are no other instructions except for debug intrinsics 3785 // between the phi of landing pads (RI->getValue()) and resume instruction. 3786 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3787 E = RI->getIterator(); 3788 while (++I != E) 3789 if (!isa<DbgInfoIntrinsic>(I)) 3790 return false; 3791 3792 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3793 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3794 3795 // Check incoming blocks to see if any of them are trivial. 3796 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3797 Idx++) { 3798 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3799 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3800 3801 // If the block has other successors, we can not delete it because 3802 // it has other dependents. 3803 if (IncomingBB->getUniqueSuccessor() != BB) 3804 continue; 3805 3806 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3807 // Not the landing pad that caused the control to branch here. 3808 if (IncomingValue != LandingPad) 3809 continue; 3810 3811 bool isTrivial = true; 3812 3813 I = IncomingBB->getFirstNonPHI()->getIterator(); 3814 E = IncomingBB->getTerminator()->getIterator(); 3815 while (++I != E) 3816 if (!isa<DbgInfoIntrinsic>(I)) { 3817 isTrivial = false; 3818 break; 3819 } 3820 3821 if (isTrivial) 3822 TrivialUnwindBlocks.insert(IncomingBB); 3823 } 3824 3825 // If no trivial unwind blocks, don't do any simplifications. 3826 if (TrivialUnwindBlocks.empty()) 3827 return false; 3828 3829 // Turn all invokes that unwind here into calls. 3830 for (auto *TrivialBB : TrivialUnwindBlocks) { 3831 // Blocks that will be simplified should be removed from the phi node. 3832 // Note there could be multiple edges to the resume block, and we need 3833 // to remove them all. 3834 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3835 BB->removePredecessor(TrivialBB, true); 3836 3837 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3838 PI != PE;) { 3839 BasicBlock *Pred = *PI++; 3840 removeUnwindEdge(Pred); 3841 } 3842 3843 // In each SimplifyCFG run, only the current processed block can be erased. 3844 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3845 // of erasing TrivialBB, we only remove the branch to the common resume 3846 // block so that we can later erase the resume block since it has no 3847 // predecessors. 3848 TrivialBB->getTerminator()->eraseFromParent(); 3849 new UnreachableInst(RI->getContext(), TrivialBB); 3850 } 3851 3852 // Delete the resume block if all its predecessors have been removed. 3853 if (pred_empty(BB)) 3854 BB->eraseFromParent(); 3855 3856 return !TrivialUnwindBlocks.empty(); 3857 } 3858 3859 // Simplify resume that is only used by a single (non-phi) landing pad. 3860 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3861 BasicBlock *BB = RI->getParent(); 3862 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3863 assert(RI->getValue() == LPInst && 3864 "Resume must unwind the exception that caused control to here"); 3865 3866 // Check that there are no other instructions except for debug intrinsics. 3867 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3868 while (++I != E) 3869 if (!isa<DbgInfoIntrinsic>(I)) 3870 return false; 3871 3872 // Turn all invokes that unwind here into calls and delete the basic block. 3873 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3874 BasicBlock *Pred = *PI++; 3875 removeUnwindEdge(Pred); 3876 } 3877 3878 // The landingpad is now unreachable. Zap it. 3879 if (LoopHeaders) 3880 LoopHeaders->erase(BB); 3881 BB->eraseFromParent(); 3882 return true; 3883 } 3884 3885 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3886 // If this is a trivial cleanup pad that executes no instructions, it can be 3887 // eliminated. If the cleanup pad continues to the caller, any predecessor 3888 // that is an EH pad will be updated to continue to the caller and any 3889 // predecessor that terminates with an invoke instruction will have its invoke 3890 // instruction converted to a call instruction. If the cleanup pad being 3891 // simplified does not continue to the caller, each predecessor will be 3892 // updated to continue to the unwind destination of the cleanup pad being 3893 // simplified. 3894 BasicBlock *BB = RI->getParent(); 3895 CleanupPadInst *CPInst = RI->getCleanupPad(); 3896 if (CPInst->getParent() != BB) 3897 // This isn't an empty cleanup. 3898 return false; 3899 3900 // We cannot kill the pad if it has multiple uses. This typically arises 3901 // from unreachable basic blocks. 3902 if (!CPInst->hasOneUse()) 3903 return false; 3904 3905 // Check that there are no other instructions except for benign intrinsics. 3906 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3907 while (++I != E) { 3908 auto *II = dyn_cast<IntrinsicInst>(I); 3909 if (!II) 3910 return false; 3911 3912 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3913 switch (IntrinsicID) { 3914 case Intrinsic::dbg_declare: 3915 case Intrinsic::dbg_value: 3916 case Intrinsic::dbg_label: 3917 case Intrinsic::lifetime_end: 3918 break; 3919 default: 3920 return false; 3921 } 3922 } 3923 3924 // If the cleanup return we are simplifying unwinds to the caller, this will 3925 // set UnwindDest to nullptr. 3926 BasicBlock *UnwindDest = RI->getUnwindDest(); 3927 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3928 3929 // We're about to remove BB from the control flow. Before we do, sink any 3930 // PHINodes into the unwind destination. Doing this before changing the 3931 // control flow avoids some potentially slow checks, since we can currently 3932 // be certain that UnwindDest and BB have no common predecessors (since they 3933 // are both EH pads). 3934 if (UnwindDest) { 3935 // First, go through the PHI nodes in UnwindDest and update any nodes that 3936 // reference the block we are removing 3937 for (BasicBlock::iterator I = UnwindDest->begin(), 3938 IE = DestEHPad->getIterator(); 3939 I != IE; ++I) { 3940 PHINode *DestPN = cast<PHINode>(I); 3941 3942 int Idx = DestPN->getBasicBlockIndex(BB); 3943 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3944 assert(Idx != -1); 3945 // This PHI node has an incoming value that corresponds to a control 3946 // path through the cleanup pad we are removing. If the incoming 3947 // value is in the cleanup pad, it must be a PHINode (because we 3948 // verified above that the block is otherwise empty). Otherwise, the 3949 // value is either a constant or a value that dominates the cleanup 3950 // pad being removed. 3951 // 3952 // Because BB and UnwindDest are both EH pads, all of their 3953 // predecessors must unwind to these blocks, and since no instruction 3954 // can have multiple unwind destinations, there will be no overlap in 3955 // incoming blocks between SrcPN and DestPN. 3956 Value *SrcVal = DestPN->getIncomingValue(Idx); 3957 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3958 3959 // Remove the entry for the block we are deleting. 3960 DestPN->removeIncomingValue(Idx, false); 3961 3962 if (SrcPN && SrcPN->getParent() == BB) { 3963 // If the incoming value was a PHI node in the cleanup pad we are 3964 // removing, we need to merge that PHI node's incoming values into 3965 // DestPN. 3966 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3967 SrcIdx != SrcE; ++SrcIdx) { 3968 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3969 SrcPN->getIncomingBlock(SrcIdx)); 3970 } 3971 } else { 3972 // Otherwise, the incoming value came from above BB and 3973 // so we can just reuse it. We must associate all of BB's 3974 // predecessors with this value. 3975 for (auto *pred : predecessors(BB)) { 3976 DestPN->addIncoming(SrcVal, pred); 3977 } 3978 } 3979 } 3980 3981 // Sink any remaining PHI nodes directly into UnwindDest. 3982 Instruction *InsertPt = DestEHPad; 3983 for (BasicBlock::iterator I = BB->begin(), 3984 IE = BB->getFirstNonPHI()->getIterator(); 3985 I != IE;) { 3986 // The iterator must be incremented here because the instructions are 3987 // being moved to another block. 3988 PHINode *PN = cast<PHINode>(I++); 3989 if (PN->use_empty()) 3990 // If the PHI node has no uses, just leave it. It will be erased 3991 // when we erase BB below. 3992 continue; 3993 3994 // Otherwise, sink this PHI node into UnwindDest. 3995 // Any predecessors to UnwindDest which are not already represented 3996 // must be back edges which inherit the value from the path through 3997 // BB. In this case, the PHI value must reference itself. 3998 for (auto *pred : predecessors(UnwindDest)) 3999 if (pred != BB) 4000 PN->addIncoming(PN, pred); 4001 PN->moveBefore(InsertPt); 4002 } 4003 } 4004 4005 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4006 // The iterator must be updated here because we are removing this pred. 4007 BasicBlock *PredBB = *PI++; 4008 if (UnwindDest == nullptr) { 4009 removeUnwindEdge(PredBB); 4010 } else { 4011 Instruction *TI = PredBB->getTerminator(); 4012 TI->replaceUsesOfWith(BB, UnwindDest); 4013 } 4014 } 4015 4016 // The cleanup pad is now unreachable. Zap it. 4017 BB->eraseFromParent(); 4018 return true; 4019 } 4020 4021 // Try to merge two cleanuppads together. 4022 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4023 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4024 // with. 4025 BasicBlock *UnwindDest = RI->getUnwindDest(); 4026 if (!UnwindDest) 4027 return false; 4028 4029 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4030 // be safe to merge without code duplication. 4031 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4032 return false; 4033 4034 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4035 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4036 if (!SuccessorCleanupPad) 4037 return false; 4038 4039 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4040 // Replace any uses of the successor cleanupad with the predecessor pad 4041 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4042 // funclet bundle operands. 4043 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4044 // Remove the old cleanuppad. 4045 SuccessorCleanupPad->eraseFromParent(); 4046 // Now, we simply replace the cleanupret with a branch to the unwind 4047 // destination. 4048 BranchInst::Create(UnwindDest, RI->getParent()); 4049 RI->eraseFromParent(); 4050 4051 return true; 4052 } 4053 4054 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4055 // It is possible to transiantly have an undef cleanuppad operand because we 4056 // have deleted some, but not all, dead blocks. 4057 // Eventually, this block will be deleted. 4058 if (isa<UndefValue>(RI->getOperand(0))) 4059 return false; 4060 4061 if (mergeCleanupPad(RI)) 4062 return true; 4063 4064 if (removeEmptyCleanup(RI)) 4065 return true; 4066 4067 return false; 4068 } 4069 4070 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4071 BasicBlock *BB = RI->getParent(); 4072 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4073 return false; 4074 4075 // Find predecessors that end with branches. 4076 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4077 SmallVector<BranchInst *, 8> CondBranchPreds; 4078 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4079 BasicBlock *P = *PI; 4080 Instruction *PTI = P->getTerminator(); 4081 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4082 if (BI->isUnconditional()) 4083 UncondBranchPreds.push_back(P); 4084 else 4085 CondBranchPreds.push_back(BI); 4086 } 4087 } 4088 4089 // If we found some, do the transformation! 4090 if (!UncondBranchPreds.empty() && DupRet) { 4091 while (!UncondBranchPreds.empty()) { 4092 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4093 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4094 << "INTO UNCOND BRANCH PRED: " << *Pred); 4095 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4096 } 4097 4098 // If we eliminated all predecessors of the block, delete the block now. 4099 if (pred_empty(BB)) { 4100 // We know there are no successors, so just nuke the block. 4101 if (LoopHeaders) 4102 LoopHeaders->erase(BB); 4103 BB->eraseFromParent(); 4104 } 4105 4106 return true; 4107 } 4108 4109 // Check out all of the conditional branches going to this return 4110 // instruction. If any of them just select between returns, change the 4111 // branch itself into a select/return pair. 4112 while (!CondBranchPreds.empty()) { 4113 BranchInst *BI = CondBranchPreds.pop_back_val(); 4114 4115 // Check to see if the non-BB successor is also a return block. 4116 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4117 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4118 SimplifyCondBranchToTwoReturns(BI, Builder)) 4119 return true; 4120 } 4121 return false; 4122 } 4123 4124 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4125 BasicBlock *BB = UI->getParent(); 4126 4127 bool Changed = false; 4128 4129 // If there are any instructions immediately before the unreachable that can 4130 // be removed, do so. 4131 while (UI->getIterator() != BB->begin()) { 4132 BasicBlock::iterator BBI = UI->getIterator(); 4133 --BBI; 4134 // Do not delete instructions that can have side effects which might cause 4135 // the unreachable to not be reachable; specifically, calls and volatile 4136 // operations may have this effect. 4137 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4138 break; 4139 4140 if (BBI->mayHaveSideEffects()) { 4141 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4142 if (SI->isVolatile()) 4143 break; 4144 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4145 if (LI->isVolatile()) 4146 break; 4147 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4148 if (RMWI->isVolatile()) 4149 break; 4150 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4151 if (CXI->isVolatile()) 4152 break; 4153 } else if (isa<CatchPadInst>(BBI)) { 4154 // A catchpad may invoke exception object constructors and such, which 4155 // in some languages can be arbitrary code, so be conservative by 4156 // default. 4157 // For CoreCLR, it just involves a type test, so can be removed. 4158 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4159 EHPersonality::CoreCLR) 4160 break; 4161 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4162 !isa<LandingPadInst>(BBI)) { 4163 break; 4164 } 4165 // Note that deleting LandingPad's here is in fact okay, although it 4166 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4167 // all the predecessors of this block will be the unwind edges of Invokes, 4168 // and we can therefore guarantee this block will be erased. 4169 } 4170 4171 // Delete this instruction (any uses are guaranteed to be dead) 4172 if (!BBI->use_empty()) 4173 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4174 BBI->eraseFromParent(); 4175 Changed = true; 4176 } 4177 4178 // If the unreachable instruction is the first in the block, take a gander 4179 // at all of the predecessors of this instruction, and simplify them. 4180 if (&BB->front() != UI) 4181 return Changed; 4182 4183 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4184 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4185 Instruction *TI = Preds[i]->getTerminator(); 4186 IRBuilder<> Builder(TI); 4187 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4188 if (BI->isUnconditional()) { 4189 if (BI->getSuccessor(0) == BB) { 4190 new UnreachableInst(TI->getContext(), TI); 4191 TI->eraseFromParent(); 4192 Changed = true; 4193 } 4194 } else { 4195 if (BI->getSuccessor(0) == BB) { 4196 Builder.CreateBr(BI->getSuccessor(1)); 4197 EraseTerminatorAndDCECond(BI); 4198 } else if (BI->getSuccessor(1) == BB) { 4199 Builder.CreateBr(BI->getSuccessor(0)); 4200 EraseTerminatorAndDCECond(BI); 4201 Changed = true; 4202 } 4203 } 4204 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4205 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4206 if (i->getCaseSuccessor() != BB) { 4207 ++i; 4208 continue; 4209 } 4210 BB->removePredecessor(SI->getParent()); 4211 i = SI->removeCase(i); 4212 e = SI->case_end(); 4213 Changed = true; 4214 } 4215 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4216 if (II->getUnwindDest() == BB) { 4217 removeUnwindEdge(TI->getParent()); 4218 Changed = true; 4219 } 4220 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4221 if (CSI->getUnwindDest() == BB) { 4222 removeUnwindEdge(TI->getParent()); 4223 Changed = true; 4224 continue; 4225 } 4226 4227 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4228 E = CSI->handler_end(); 4229 I != E; ++I) { 4230 if (*I == BB) { 4231 CSI->removeHandler(I); 4232 --I; 4233 --E; 4234 Changed = true; 4235 } 4236 } 4237 if (CSI->getNumHandlers() == 0) { 4238 BasicBlock *CatchSwitchBB = CSI->getParent(); 4239 if (CSI->hasUnwindDest()) { 4240 // Redirect preds to the unwind dest 4241 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4242 } else { 4243 // Rewrite all preds to unwind to caller (or from invoke to call). 4244 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4245 for (BasicBlock *EHPred : EHPreds) 4246 removeUnwindEdge(EHPred); 4247 } 4248 // The catchswitch is no longer reachable. 4249 new UnreachableInst(CSI->getContext(), CSI); 4250 CSI->eraseFromParent(); 4251 Changed = true; 4252 } 4253 } else if (isa<CleanupReturnInst>(TI)) { 4254 new UnreachableInst(TI->getContext(), TI); 4255 TI->eraseFromParent(); 4256 Changed = true; 4257 } 4258 } 4259 4260 // If this block is now dead, remove it. 4261 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4262 // We know there are no successors, so just nuke the block. 4263 if (LoopHeaders) 4264 LoopHeaders->erase(BB); 4265 BB->eraseFromParent(); 4266 return true; 4267 } 4268 4269 return Changed; 4270 } 4271 4272 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4273 assert(Cases.size() >= 1); 4274 4275 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4276 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4277 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4278 return false; 4279 } 4280 return true; 4281 } 4282 4283 /// Turn a switch with two reachable destinations into an integer range 4284 /// comparison and branch. 4285 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4286 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4287 4288 bool HasDefault = 4289 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4290 4291 // Partition the cases into two sets with different destinations. 4292 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4293 BasicBlock *DestB = nullptr; 4294 SmallVector<ConstantInt *, 16> CasesA; 4295 SmallVector<ConstantInt *, 16> CasesB; 4296 4297 for (auto Case : SI->cases()) { 4298 BasicBlock *Dest = Case.getCaseSuccessor(); 4299 if (!DestA) 4300 DestA = Dest; 4301 if (Dest == DestA) { 4302 CasesA.push_back(Case.getCaseValue()); 4303 continue; 4304 } 4305 if (!DestB) 4306 DestB = Dest; 4307 if (Dest == DestB) { 4308 CasesB.push_back(Case.getCaseValue()); 4309 continue; 4310 } 4311 return false; // More than two destinations. 4312 } 4313 4314 assert(DestA && DestB && 4315 "Single-destination switch should have been folded."); 4316 assert(DestA != DestB); 4317 assert(DestB != SI->getDefaultDest()); 4318 assert(!CasesB.empty() && "There must be non-default cases."); 4319 assert(!CasesA.empty() || HasDefault); 4320 4321 // Figure out if one of the sets of cases form a contiguous range. 4322 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4323 BasicBlock *ContiguousDest = nullptr; 4324 BasicBlock *OtherDest = nullptr; 4325 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4326 ContiguousCases = &CasesA; 4327 ContiguousDest = DestA; 4328 OtherDest = DestB; 4329 } else if (CasesAreContiguous(CasesB)) { 4330 ContiguousCases = &CasesB; 4331 ContiguousDest = DestB; 4332 OtherDest = DestA; 4333 } else 4334 return false; 4335 4336 // Start building the compare and branch. 4337 4338 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4339 Constant *NumCases = 4340 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4341 4342 Value *Sub = SI->getCondition(); 4343 if (!Offset->isNullValue()) 4344 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4345 4346 Value *Cmp; 4347 // If NumCases overflowed, then all possible values jump to the successor. 4348 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4349 Cmp = ConstantInt::getTrue(SI->getContext()); 4350 else 4351 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4352 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4353 4354 // Update weight for the newly-created conditional branch. 4355 if (HasBranchWeights(SI)) { 4356 SmallVector<uint64_t, 8> Weights; 4357 GetBranchWeights(SI, Weights); 4358 if (Weights.size() == 1 + SI->getNumCases()) { 4359 uint64_t TrueWeight = 0; 4360 uint64_t FalseWeight = 0; 4361 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4362 if (SI->getSuccessor(I) == ContiguousDest) 4363 TrueWeight += Weights[I]; 4364 else 4365 FalseWeight += Weights[I]; 4366 } 4367 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4368 TrueWeight /= 2; 4369 FalseWeight /= 2; 4370 } 4371 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4372 } 4373 } 4374 4375 // Prune obsolete incoming values off the successors' PHI nodes. 4376 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4377 unsigned PreviousEdges = ContiguousCases->size(); 4378 if (ContiguousDest == SI->getDefaultDest()) 4379 ++PreviousEdges; 4380 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4381 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4382 } 4383 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4384 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4385 if (OtherDest == SI->getDefaultDest()) 4386 ++PreviousEdges; 4387 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4388 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4389 } 4390 4391 // Drop the switch. 4392 SI->eraseFromParent(); 4393 4394 return true; 4395 } 4396 4397 /// Compute masked bits for the condition of a switch 4398 /// and use it to remove dead cases. 4399 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4400 const DataLayout &DL) { 4401 Value *Cond = SI->getCondition(); 4402 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4403 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4404 4405 // We can also eliminate cases by determining that their values are outside of 4406 // the limited range of the condition based on how many significant (non-sign) 4407 // bits are in the condition value. 4408 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4409 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4410 4411 // Gather dead cases. 4412 SmallVector<ConstantInt *, 8> DeadCases; 4413 for (auto &Case : SI->cases()) { 4414 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4415 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4416 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4417 DeadCases.push_back(Case.getCaseValue()); 4418 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4419 << " is dead.\n"); 4420 } 4421 } 4422 4423 // If we can prove that the cases must cover all possible values, the 4424 // default destination becomes dead and we can remove it. If we know some 4425 // of the bits in the value, we can use that to more precisely compute the 4426 // number of possible unique case values. 4427 bool HasDefault = 4428 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4429 const unsigned NumUnknownBits = 4430 Bits - (Known.Zero | Known.One).countPopulation(); 4431 assert(NumUnknownBits <= Bits); 4432 if (HasDefault && DeadCases.empty() && 4433 NumUnknownBits < 64 /* avoid overflow */ && 4434 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4435 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4436 BasicBlock *NewDefault = 4437 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4438 SI->setDefaultDest(&*NewDefault); 4439 SplitBlock(&*NewDefault, &NewDefault->front()); 4440 auto *OldTI = NewDefault->getTerminator(); 4441 new UnreachableInst(SI->getContext(), OldTI); 4442 EraseTerminatorAndDCECond(OldTI); 4443 return true; 4444 } 4445 4446 SmallVector<uint64_t, 8> Weights; 4447 bool HasWeight = HasBranchWeights(SI); 4448 if (HasWeight) { 4449 GetBranchWeights(SI, Weights); 4450 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4451 } 4452 4453 // Remove dead cases from the switch. 4454 for (ConstantInt *DeadCase : DeadCases) { 4455 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4456 assert(CaseI != SI->case_default() && 4457 "Case was not found. Probably mistake in DeadCases forming."); 4458 if (HasWeight) { 4459 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4460 Weights.pop_back(); 4461 } 4462 4463 // Prune unused values from PHI nodes. 4464 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4465 SI->removeCase(CaseI); 4466 } 4467 if (HasWeight && Weights.size() >= 2) { 4468 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4469 setBranchWeights(SI, MDWeights); 4470 } 4471 4472 return !DeadCases.empty(); 4473 } 4474 4475 /// If BB would be eligible for simplification by 4476 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4477 /// by an unconditional branch), look at the phi node for BB in the successor 4478 /// block and see if the incoming value is equal to CaseValue. If so, return 4479 /// the phi node, and set PhiIndex to BB's index in the phi node. 4480 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4481 BasicBlock *BB, int *PhiIndex) { 4482 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4483 return nullptr; // BB must be empty to be a candidate for simplification. 4484 if (!BB->getSinglePredecessor()) 4485 return nullptr; // BB must be dominated by the switch. 4486 4487 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4488 if (!Branch || !Branch->isUnconditional()) 4489 return nullptr; // Terminator must be unconditional branch. 4490 4491 BasicBlock *Succ = Branch->getSuccessor(0); 4492 4493 for (PHINode &PHI : Succ->phis()) { 4494 int Idx = PHI.getBasicBlockIndex(BB); 4495 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4496 4497 Value *InValue = PHI.getIncomingValue(Idx); 4498 if (InValue != CaseValue) 4499 continue; 4500 4501 *PhiIndex = Idx; 4502 return &PHI; 4503 } 4504 4505 return nullptr; 4506 } 4507 4508 /// Try to forward the condition of a switch instruction to a phi node 4509 /// dominated by the switch, if that would mean that some of the destination 4510 /// blocks of the switch can be folded away. Return true if a change is made. 4511 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4512 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4513 4514 ForwardingNodesMap ForwardingNodes; 4515 BasicBlock *SwitchBlock = SI->getParent(); 4516 bool Changed = false; 4517 for (auto &Case : SI->cases()) { 4518 ConstantInt *CaseValue = Case.getCaseValue(); 4519 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4520 4521 // Replace phi operands in successor blocks that are using the constant case 4522 // value rather than the switch condition variable: 4523 // switchbb: 4524 // switch i32 %x, label %default [ 4525 // i32 17, label %succ 4526 // ... 4527 // succ: 4528 // %r = phi i32 ... [ 17, %switchbb ] ... 4529 // --> 4530 // %r = phi i32 ... [ %x, %switchbb ] ... 4531 4532 for (PHINode &Phi : CaseDest->phis()) { 4533 // This only works if there is exactly 1 incoming edge from the switch to 4534 // a phi. If there is >1, that means multiple cases of the switch map to 1 4535 // value in the phi, and that phi value is not the switch condition. Thus, 4536 // this transform would not make sense (the phi would be invalid because 4537 // a phi can't have different incoming values from the same block). 4538 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4539 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4540 count(Phi.blocks(), SwitchBlock) == 1) { 4541 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4542 Changed = true; 4543 } 4544 } 4545 4546 // Collect phi nodes that are indirectly using this switch's case constants. 4547 int PhiIdx; 4548 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4549 ForwardingNodes[Phi].push_back(PhiIdx); 4550 } 4551 4552 for (auto &ForwardingNode : ForwardingNodes) { 4553 PHINode *Phi = ForwardingNode.first; 4554 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4555 if (Indexes.size() < 2) 4556 continue; 4557 4558 for (int Index : Indexes) 4559 Phi->setIncomingValue(Index, SI->getCondition()); 4560 Changed = true; 4561 } 4562 4563 return Changed; 4564 } 4565 4566 /// Return true if the backend will be able to handle 4567 /// initializing an array of constants like C. 4568 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4569 if (C->isThreadDependent()) 4570 return false; 4571 if (C->isDLLImportDependent()) 4572 return false; 4573 4574 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4575 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4576 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4577 return false; 4578 4579 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4580 if (!CE->isGEPWithNoNotionalOverIndexing()) 4581 return false; 4582 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4583 return false; 4584 } 4585 4586 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4587 return false; 4588 4589 return true; 4590 } 4591 4592 /// If V is a Constant, return it. Otherwise, try to look up 4593 /// its constant value in ConstantPool, returning 0 if it's not there. 4594 static Constant * 4595 LookupConstant(Value *V, 4596 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4597 if (Constant *C = dyn_cast<Constant>(V)) 4598 return C; 4599 return ConstantPool.lookup(V); 4600 } 4601 4602 /// Try to fold instruction I into a constant. This works for 4603 /// simple instructions such as binary operations where both operands are 4604 /// constant or can be replaced by constants from the ConstantPool. Returns the 4605 /// resulting constant on success, 0 otherwise. 4606 static Constant * 4607 ConstantFold(Instruction *I, const DataLayout &DL, 4608 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4609 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4610 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4611 if (!A) 4612 return nullptr; 4613 if (A->isAllOnesValue()) 4614 return LookupConstant(Select->getTrueValue(), ConstantPool); 4615 if (A->isNullValue()) 4616 return LookupConstant(Select->getFalseValue(), ConstantPool); 4617 return nullptr; 4618 } 4619 4620 SmallVector<Constant *, 4> COps; 4621 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4622 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4623 COps.push_back(A); 4624 else 4625 return nullptr; 4626 } 4627 4628 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4629 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4630 COps[1], DL); 4631 } 4632 4633 return ConstantFoldInstOperands(I, COps, DL); 4634 } 4635 4636 /// Try to determine the resulting constant values in phi nodes 4637 /// at the common destination basic block, *CommonDest, for one of the case 4638 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4639 /// case), of a switch instruction SI. 4640 static bool 4641 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4642 BasicBlock **CommonDest, 4643 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4644 const DataLayout &DL, const TargetTransformInfo &TTI) { 4645 // The block from which we enter the common destination. 4646 BasicBlock *Pred = SI->getParent(); 4647 4648 // If CaseDest is empty except for some side-effect free instructions through 4649 // which we can constant-propagate the CaseVal, continue to its successor. 4650 SmallDenseMap<Value *, Constant *> ConstantPool; 4651 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4652 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4653 if (I.isTerminator()) { 4654 // If the terminator is a simple branch, continue to the next block. 4655 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4656 return false; 4657 Pred = CaseDest; 4658 CaseDest = I.getSuccessor(0); 4659 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4660 // Instruction is side-effect free and constant. 4661 4662 // If the instruction has uses outside this block or a phi node slot for 4663 // the block, it is not safe to bypass the instruction since it would then 4664 // no longer dominate all its uses. 4665 for (auto &Use : I.uses()) { 4666 User *User = Use.getUser(); 4667 if (Instruction *I = dyn_cast<Instruction>(User)) 4668 if (I->getParent() == CaseDest) 4669 continue; 4670 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4671 if (Phi->getIncomingBlock(Use) == CaseDest) 4672 continue; 4673 return false; 4674 } 4675 4676 ConstantPool.insert(std::make_pair(&I, C)); 4677 } else { 4678 break; 4679 } 4680 } 4681 4682 // If we did not have a CommonDest before, use the current one. 4683 if (!*CommonDest) 4684 *CommonDest = CaseDest; 4685 // If the destination isn't the common one, abort. 4686 if (CaseDest != *CommonDest) 4687 return false; 4688 4689 // Get the values for this case from phi nodes in the destination block. 4690 for (PHINode &PHI : (*CommonDest)->phis()) { 4691 int Idx = PHI.getBasicBlockIndex(Pred); 4692 if (Idx == -1) 4693 continue; 4694 4695 Constant *ConstVal = 4696 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4697 if (!ConstVal) 4698 return false; 4699 4700 // Be conservative about which kinds of constants we support. 4701 if (!ValidLookupTableConstant(ConstVal, TTI)) 4702 return false; 4703 4704 Res.push_back(std::make_pair(&PHI, ConstVal)); 4705 } 4706 4707 return Res.size() > 0; 4708 } 4709 4710 // Helper function used to add CaseVal to the list of cases that generate 4711 // Result. Returns the updated number of cases that generate this result. 4712 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4713 SwitchCaseResultVectorTy &UniqueResults, 4714 Constant *Result) { 4715 for (auto &I : UniqueResults) { 4716 if (I.first == Result) { 4717 I.second.push_back(CaseVal); 4718 return I.second.size(); 4719 } 4720 } 4721 UniqueResults.push_back( 4722 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4723 return 1; 4724 } 4725 4726 // Helper function that initializes a map containing 4727 // results for the PHI node of the common destination block for a switch 4728 // instruction. Returns false if multiple PHI nodes have been found or if 4729 // there is not a common destination block for the switch. 4730 static bool 4731 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4732 SwitchCaseResultVectorTy &UniqueResults, 4733 Constant *&DefaultResult, const DataLayout &DL, 4734 const TargetTransformInfo &TTI, 4735 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4736 for (auto &I : SI->cases()) { 4737 ConstantInt *CaseVal = I.getCaseValue(); 4738 4739 // Resulting value at phi nodes for this case value. 4740 SwitchCaseResultsTy Results; 4741 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4742 DL, TTI)) 4743 return false; 4744 4745 // Only one value per case is permitted. 4746 if (Results.size() > 1) 4747 return false; 4748 4749 // Add the case->result mapping to UniqueResults. 4750 const uintptr_t NumCasesForResult = 4751 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4752 4753 // Early out if there are too many cases for this result. 4754 if (NumCasesForResult > MaxCasesPerResult) 4755 return false; 4756 4757 // Early out if there are too many unique results. 4758 if (UniqueResults.size() > MaxUniqueResults) 4759 return false; 4760 4761 // Check the PHI consistency. 4762 if (!PHI) 4763 PHI = Results[0].first; 4764 else if (PHI != Results[0].first) 4765 return false; 4766 } 4767 // Find the default result value. 4768 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4769 BasicBlock *DefaultDest = SI->getDefaultDest(); 4770 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4771 DL, TTI); 4772 // If the default value is not found abort unless the default destination 4773 // is unreachable. 4774 DefaultResult = 4775 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4776 if ((!DefaultResult && 4777 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4778 return false; 4779 4780 return true; 4781 } 4782 4783 // Helper function that checks if it is possible to transform a switch with only 4784 // two cases (or two cases + default) that produces a result into a select. 4785 // Example: 4786 // switch (a) { 4787 // case 10: %0 = icmp eq i32 %a, 10 4788 // return 10; %1 = select i1 %0, i32 10, i32 4 4789 // case 20: ----> %2 = icmp eq i32 %a, 20 4790 // return 2; %3 = select i1 %2, i32 2, i32 %1 4791 // default: 4792 // return 4; 4793 // } 4794 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4795 Constant *DefaultResult, Value *Condition, 4796 IRBuilder<> &Builder) { 4797 assert(ResultVector.size() == 2 && 4798 "We should have exactly two unique results at this point"); 4799 // If we are selecting between only two cases transform into a simple 4800 // select or a two-way select if default is possible. 4801 if (ResultVector[0].second.size() == 1 && 4802 ResultVector[1].second.size() == 1) { 4803 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4804 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4805 4806 bool DefaultCanTrigger = DefaultResult; 4807 Value *SelectValue = ResultVector[1].first; 4808 if (DefaultCanTrigger) { 4809 Value *const ValueCompare = 4810 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4811 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4812 DefaultResult, "switch.select"); 4813 } 4814 Value *const ValueCompare = 4815 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4816 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4817 SelectValue, "switch.select"); 4818 } 4819 4820 return nullptr; 4821 } 4822 4823 // Helper function to cleanup a switch instruction that has been converted into 4824 // a select, fixing up PHI nodes and basic blocks. 4825 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4826 Value *SelectValue, 4827 IRBuilder<> &Builder) { 4828 BasicBlock *SelectBB = SI->getParent(); 4829 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4830 PHI->removeIncomingValue(SelectBB); 4831 PHI->addIncoming(SelectValue, SelectBB); 4832 4833 Builder.CreateBr(PHI->getParent()); 4834 4835 // Remove the switch. 4836 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4837 BasicBlock *Succ = SI->getSuccessor(i); 4838 4839 if (Succ == PHI->getParent()) 4840 continue; 4841 Succ->removePredecessor(SelectBB); 4842 } 4843 SI->eraseFromParent(); 4844 } 4845 4846 /// If the switch is only used to initialize one or more 4847 /// phi nodes in a common successor block with only two different 4848 /// constant values, replace the switch with select. 4849 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4850 const DataLayout &DL, 4851 const TargetTransformInfo &TTI) { 4852 Value *const Cond = SI->getCondition(); 4853 PHINode *PHI = nullptr; 4854 BasicBlock *CommonDest = nullptr; 4855 Constant *DefaultResult; 4856 SwitchCaseResultVectorTy UniqueResults; 4857 // Collect all the cases that will deliver the same value from the switch. 4858 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4859 DL, TTI, 2, 1)) 4860 return false; 4861 // Selects choose between maximum two values. 4862 if (UniqueResults.size() != 2) 4863 return false; 4864 assert(PHI != nullptr && "PHI for value select not found"); 4865 4866 Builder.SetInsertPoint(SI); 4867 Value *SelectValue = 4868 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4869 if (SelectValue) { 4870 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4871 return true; 4872 } 4873 // The switch couldn't be converted into a select. 4874 return false; 4875 } 4876 4877 namespace { 4878 4879 /// This class represents a lookup table that can be used to replace a switch. 4880 class SwitchLookupTable { 4881 public: 4882 /// Create a lookup table to use as a switch replacement with the contents 4883 /// of Values, using DefaultValue to fill any holes in the table. 4884 SwitchLookupTable( 4885 Module &M, uint64_t TableSize, ConstantInt *Offset, 4886 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4887 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4888 4889 /// Build instructions with Builder to retrieve the value at 4890 /// the position given by Index in the lookup table. 4891 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4892 4893 /// Return true if a table with TableSize elements of 4894 /// type ElementType would fit in a target-legal register. 4895 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4896 Type *ElementType); 4897 4898 private: 4899 // Depending on the contents of the table, it can be represented in 4900 // different ways. 4901 enum { 4902 // For tables where each element contains the same value, we just have to 4903 // store that single value and return it for each lookup. 4904 SingleValueKind, 4905 4906 // For tables where there is a linear relationship between table index 4907 // and values. We calculate the result with a simple multiplication 4908 // and addition instead of a table lookup. 4909 LinearMapKind, 4910 4911 // For small tables with integer elements, we can pack them into a bitmap 4912 // that fits into a target-legal register. Values are retrieved by 4913 // shift and mask operations. 4914 BitMapKind, 4915 4916 // The table is stored as an array of values. Values are retrieved by load 4917 // instructions from the table. 4918 ArrayKind 4919 } Kind; 4920 4921 // For SingleValueKind, this is the single value. 4922 Constant *SingleValue = nullptr; 4923 4924 // For BitMapKind, this is the bitmap. 4925 ConstantInt *BitMap = nullptr; 4926 IntegerType *BitMapElementTy = nullptr; 4927 4928 // For LinearMapKind, these are the constants used to derive the value. 4929 ConstantInt *LinearOffset = nullptr; 4930 ConstantInt *LinearMultiplier = nullptr; 4931 4932 // For ArrayKind, this is the array. 4933 GlobalVariable *Array = nullptr; 4934 }; 4935 4936 } // end anonymous namespace 4937 4938 SwitchLookupTable::SwitchLookupTable( 4939 Module &M, uint64_t TableSize, ConstantInt *Offset, 4940 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4941 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4942 assert(Values.size() && "Can't build lookup table without values!"); 4943 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4944 4945 // If all values in the table are equal, this is that value. 4946 SingleValue = Values.begin()->second; 4947 4948 Type *ValueType = Values.begin()->second->getType(); 4949 4950 // Build up the table contents. 4951 SmallVector<Constant *, 64> TableContents(TableSize); 4952 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4953 ConstantInt *CaseVal = Values[I].first; 4954 Constant *CaseRes = Values[I].second; 4955 assert(CaseRes->getType() == ValueType); 4956 4957 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4958 TableContents[Idx] = CaseRes; 4959 4960 if (CaseRes != SingleValue) 4961 SingleValue = nullptr; 4962 } 4963 4964 // Fill in any holes in the table with the default result. 4965 if (Values.size() < TableSize) { 4966 assert(DefaultValue && 4967 "Need a default value to fill the lookup table holes."); 4968 assert(DefaultValue->getType() == ValueType); 4969 for (uint64_t I = 0; I < TableSize; ++I) { 4970 if (!TableContents[I]) 4971 TableContents[I] = DefaultValue; 4972 } 4973 4974 if (DefaultValue != SingleValue) 4975 SingleValue = nullptr; 4976 } 4977 4978 // If each element in the table contains the same value, we only need to store 4979 // that single value. 4980 if (SingleValue) { 4981 Kind = SingleValueKind; 4982 return; 4983 } 4984 4985 // Check if we can derive the value with a linear transformation from the 4986 // table index. 4987 if (isa<IntegerType>(ValueType)) { 4988 bool LinearMappingPossible = true; 4989 APInt PrevVal; 4990 APInt DistToPrev; 4991 assert(TableSize >= 2 && "Should be a SingleValue table."); 4992 // Check if there is the same distance between two consecutive values. 4993 for (uint64_t I = 0; I < TableSize; ++I) { 4994 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4995 if (!ConstVal) { 4996 // This is an undef. We could deal with it, but undefs in lookup tables 4997 // are very seldom. It's probably not worth the additional complexity. 4998 LinearMappingPossible = false; 4999 break; 5000 } 5001 const APInt &Val = ConstVal->getValue(); 5002 if (I != 0) { 5003 APInt Dist = Val - PrevVal; 5004 if (I == 1) { 5005 DistToPrev = Dist; 5006 } else if (Dist != DistToPrev) { 5007 LinearMappingPossible = false; 5008 break; 5009 } 5010 } 5011 PrevVal = Val; 5012 } 5013 if (LinearMappingPossible) { 5014 LinearOffset = cast<ConstantInt>(TableContents[0]); 5015 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5016 Kind = LinearMapKind; 5017 ++NumLinearMaps; 5018 return; 5019 } 5020 } 5021 5022 // If the type is integer and the table fits in a register, build a bitmap. 5023 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5024 IntegerType *IT = cast<IntegerType>(ValueType); 5025 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5026 for (uint64_t I = TableSize; I > 0; --I) { 5027 TableInt <<= IT->getBitWidth(); 5028 // Insert values into the bitmap. Undef values are set to zero. 5029 if (!isa<UndefValue>(TableContents[I - 1])) { 5030 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5031 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5032 } 5033 } 5034 BitMap = ConstantInt::get(M.getContext(), TableInt); 5035 BitMapElementTy = IT; 5036 Kind = BitMapKind; 5037 ++NumBitMaps; 5038 return; 5039 } 5040 5041 // Store the table in an array. 5042 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5043 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5044 5045 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5046 GlobalVariable::PrivateLinkage, Initializer, 5047 "switch.table." + FuncName); 5048 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5049 // Set the alignment to that of an array items. We will be only loading one 5050 // value out of it. 5051 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5052 Kind = ArrayKind; 5053 } 5054 5055 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5056 switch (Kind) { 5057 case SingleValueKind: 5058 return SingleValue; 5059 case LinearMapKind: { 5060 // Derive the result value from the input value. 5061 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5062 false, "switch.idx.cast"); 5063 if (!LinearMultiplier->isOne()) 5064 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5065 if (!LinearOffset->isZero()) 5066 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5067 return Result; 5068 } 5069 case BitMapKind: { 5070 // Type of the bitmap (e.g. i59). 5071 IntegerType *MapTy = BitMap->getType(); 5072 5073 // Cast Index to the same type as the bitmap. 5074 // Note: The Index is <= the number of elements in the table, so 5075 // truncating it to the width of the bitmask is safe. 5076 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5077 5078 // Multiply the shift amount by the element width. 5079 ShiftAmt = Builder.CreateMul( 5080 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5081 "switch.shiftamt"); 5082 5083 // Shift down. 5084 Value *DownShifted = 5085 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5086 // Mask off. 5087 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5088 } 5089 case ArrayKind: { 5090 // Make sure the table index will not overflow when treated as signed. 5091 IntegerType *IT = cast<IntegerType>(Index->getType()); 5092 uint64_t TableSize = 5093 Array->getInitializer()->getType()->getArrayNumElements(); 5094 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5095 Index = Builder.CreateZExt( 5096 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5097 "switch.tableidx.zext"); 5098 5099 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5100 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5101 GEPIndices, "switch.gep"); 5102 return Builder.CreateLoad( 5103 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5104 "switch.load"); 5105 } 5106 } 5107 llvm_unreachable("Unknown lookup table kind!"); 5108 } 5109 5110 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5111 uint64_t TableSize, 5112 Type *ElementType) { 5113 auto *IT = dyn_cast<IntegerType>(ElementType); 5114 if (!IT) 5115 return false; 5116 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5117 // are <= 15, we could try to narrow the type. 5118 5119 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5120 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5121 return false; 5122 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5123 } 5124 5125 /// Determine whether a lookup table should be built for this switch, based on 5126 /// the number of cases, size of the table, and the types of the results. 5127 static bool 5128 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5129 const TargetTransformInfo &TTI, const DataLayout &DL, 5130 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5131 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5132 return false; // TableSize overflowed, or mul below might overflow. 5133 5134 bool AllTablesFitInRegister = true; 5135 bool HasIllegalType = false; 5136 for (const auto &I : ResultTypes) { 5137 Type *Ty = I.second; 5138 5139 // Saturate this flag to true. 5140 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5141 5142 // Saturate this flag to false. 5143 AllTablesFitInRegister = 5144 AllTablesFitInRegister && 5145 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5146 5147 // If both flags saturate, we're done. NOTE: This *only* works with 5148 // saturating flags, and all flags have to saturate first due to the 5149 // non-deterministic behavior of iterating over a dense map. 5150 if (HasIllegalType && !AllTablesFitInRegister) 5151 break; 5152 } 5153 5154 // If each table would fit in a register, we should build it anyway. 5155 if (AllTablesFitInRegister) 5156 return true; 5157 5158 // Don't build a table that doesn't fit in-register if it has illegal types. 5159 if (HasIllegalType) 5160 return false; 5161 5162 // The table density should be at least 40%. This is the same criterion as for 5163 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5164 // FIXME: Find the best cut-off. 5165 return SI->getNumCases() * 10 >= TableSize * 4; 5166 } 5167 5168 /// Try to reuse the switch table index compare. Following pattern: 5169 /// \code 5170 /// if (idx < tablesize) 5171 /// r = table[idx]; // table does not contain default_value 5172 /// else 5173 /// r = default_value; 5174 /// if (r != default_value) 5175 /// ... 5176 /// \endcode 5177 /// Is optimized to: 5178 /// \code 5179 /// cond = idx < tablesize; 5180 /// if (cond) 5181 /// r = table[idx]; 5182 /// else 5183 /// r = default_value; 5184 /// if (cond) 5185 /// ... 5186 /// \endcode 5187 /// Jump threading will then eliminate the second if(cond). 5188 static void reuseTableCompare( 5189 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5190 Constant *DefaultValue, 5191 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5192 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5193 if (!CmpInst) 5194 return; 5195 5196 // We require that the compare is in the same block as the phi so that jump 5197 // threading can do its work afterwards. 5198 if (CmpInst->getParent() != PhiBlock) 5199 return; 5200 5201 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5202 if (!CmpOp1) 5203 return; 5204 5205 Value *RangeCmp = RangeCheckBranch->getCondition(); 5206 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5207 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5208 5209 // Check if the compare with the default value is constant true or false. 5210 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5211 DefaultValue, CmpOp1, true); 5212 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5213 return; 5214 5215 // Check if the compare with the case values is distinct from the default 5216 // compare result. 5217 for (auto ValuePair : Values) { 5218 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5219 ValuePair.second, CmpOp1, true); 5220 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5221 return; 5222 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5223 "Expect true or false as compare result."); 5224 } 5225 5226 // Check if the branch instruction dominates the phi node. It's a simple 5227 // dominance check, but sufficient for our needs. 5228 // Although this check is invariant in the calling loops, it's better to do it 5229 // at this late stage. Practically we do it at most once for a switch. 5230 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5231 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5232 BasicBlock *Pred = *PI; 5233 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5234 return; 5235 } 5236 5237 if (DefaultConst == FalseConst) { 5238 // The compare yields the same result. We can replace it. 5239 CmpInst->replaceAllUsesWith(RangeCmp); 5240 ++NumTableCmpReuses; 5241 } else { 5242 // The compare yields the same result, just inverted. We can replace it. 5243 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5244 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5245 RangeCheckBranch); 5246 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5247 ++NumTableCmpReuses; 5248 } 5249 } 5250 5251 /// If the switch is only used to initialize one or more phi nodes in a common 5252 /// successor block with different constant values, replace the switch with 5253 /// lookup tables. 5254 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5255 const DataLayout &DL, 5256 const TargetTransformInfo &TTI) { 5257 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5258 5259 Function *Fn = SI->getParent()->getParent(); 5260 // Only build lookup table when we have a target that supports it or the 5261 // attribute is not set. 5262 if (!TTI.shouldBuildLookupTables() || 5263 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5264 return false; 5265 5266 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5267 // split off a dense part and build a lookup table for that. 5268 5269 // FIXME: This creates arrays of GEPs to constant strings, which means each 5270 // GEP needs a runtime relocation in PIC code. We should just build one big 5271 // string and lookup indices into that. 5272 5273 // Ignore switches with less than three cases. Lookup tables will not make 5274 // them faster, so we don't analyze them. 5275 if (SI->getNumCases() < 3) 5276 return false; 5277 5278 // Figure out the corresponding result for each case value and phi node in the 5279 // common destination, as well as the min and max case values. 5280 assert(!empty(SI->cases())); 5281 SwitchInst::CaseIt CI = SI->case_begin(); 5282 ConstantInt *MinCaseVal = CI->getCaseValue(); 5283 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5284 5285 BasicBlock *CommonDest = nullptr; 5286 5287 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5288 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5289 5290 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5291 SmallDenseMap<PHINode *, Type *> ResultTypes; 5292 SmallVector<PHINode *, 4> PHIs; 5293 5294 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5295 ConstantInt *CaseVal = CI->getCaseValue(); 5296 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5297 MinCaseVal = CaseVal; 5298 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5299 MaxCaseVal = CaseVal; 5300 5301 // Resulting value at phi nodes for this case value. 5302 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5303 ResultsTy Results; 5304 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5305 Results, DL, TTI)) 5306 return false; 5307 5308 // Append the result from this case to the list for each phi. 5309 for (const auto &I : Results) { 5310 PHINode *PHI = I.first; 5311 Constant *Value = I.second; 5312 if (!ResultLists.count(PHI)) 5313 PHIs.push_back(PHI); 5314 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5315 } 5316 } 5317 5318 // Keep track of the result types. 5319 for (PHINode *PHI : PHIs) { 5320 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5321 } 5322 5323 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5324 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5325 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5326 bool TableHasHoles = (NumResults < TableSize); 5327 5328 // If the table has holes, we need a constant result for the default case 5329 // or a bitmask that fits in a register. 5330 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5331 bool HasDefaultResults = 5332 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5333 DefaultResultsList, DL, TTI); 5334 5335 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5336 if (NeedMask) { 5337 // As an extra penalty for the validity test we require more cases. 5338 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5339 return false; 5340 if (!DL.fitsInLegalInteger(TableSize)) 5341 return false; 5342 } 5343 5344 for (const auto &I : DefaultResultsList) { 5345 PHINode *PHI = I.first; 5346 Constant *Result = I.second; 5347 DefaultResults[PHI] = Result; 5348 } 5349 5350 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5351 return false; 5352 5353 // Create the BB that does the lookups. 5354 Module &Mod = *CommonDest->getParent()->getParent(); 5355 BasicBlock *LookupBB = BasicBlock::Create( 5356 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5357 5358 // Compute the table index value. 5359 Builder.SetInsertPoint(SI); 5360 Value *TableIndex; 5361 if (MinCaseVal->isNullValue()) 5362 TableIndex = SI->getCondition(); 5363 else 5364 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5365 "switch.tableidx"); 5366 5367 // Compute the maximum table size representable by the integer type we are 5368 // switching upon. 5369 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5370 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5371 assert(MaxTableSize >= TableSize && 5372 "It is impossible for a switch to have more entries than the max " 5373 "representable value of its input integer type's size."); 5374 5375 // If the default destination is unreachable, or if the lookup table covers 5376 // all values of the conditional variable, branch directly to the lookup table 5377 // BB. Otherwise, check that the condition is within the case range. 5378 const bool DefaultIsReachable = 5379 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5380 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5381 BranchInst *RangeCheckBranch = nullptr; 5382 5383 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5384 Builder.CreateBr(LookupBB); 5385 // Note: We call removeProdecessor later since we need to be able to get the 5386 // PHI value for the default case in case we're using a bit mask. 5387 } else { 5388 Value *Cmp = Builder.CreateICmpULT( 5389 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5390 RangeCheckBranch = 5391 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5392 } 5393 5394 // Populate the BB that does the lookups. 5395 Builder.SetInsertPoint(LookupBB); 5396 5397 if (NeedMask) { 5398 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5399 // re-purposed to do the hole check, and we create a new LookupBB. 5400 BasicBlock *MaskBB = LookupBB; 5401 MaskBB->setName("switch.hole_check"); 5402 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5403 CommonDest->getParent(), CommonDest); 5404 5405 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5406 // unnecessary illegal types. 5407 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5408 APInt MaskInt(TableSizePowOf2, 0); 5409 APInt One(TableSizePowOf2, 1); 5410 // Build bitmask; fill in a 1 bit for every case. 5411 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5412 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5413 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5414 .getLimitedValue(); 5415 MaskInt |= One << Idx; 5416 } 5417 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5418 5419 // Get the TableIndex'th bit of the bitmask. 5420 // If this bit is 0 (meaning hole) jump to the default destination, 5421 // else continue with table lookup. 5422 IntegerType *MapTy = TableMask->getType(); 5423 Value *MaskIndex = 5424 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5425 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5426 Value *LoBit = Builder.CreateTrunc( 5427 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5428 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5429 5430 Builder.SetInsertPoint(LookupBB); 5431 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5432 } 5433 5434 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5435 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5436 // do not delete PHINodes here. 5437 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5438 /*KeepOneInputPHIs=*/true); 5439 } 5440 5441 bool ReturnedEarly = false; 5442 for (PHINode *PHI : PHIs) { 5443 const ResultListTy &ResultList = ResultLists[PHI]; 5444 5445 // If using a bitmask, use any value to fill the lookup table holes. 5446 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5447 StringRef FuncName = Fn->getName(); 5448 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5449 FuncName); 5450 5451 Value *Result = Table.BuildLookup(TableIndex, Builder); 5452 5453 // If the result is used to return immediately from the function, we want to 5454 // do that right here. 5455 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5456 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5457 Builder.CreateRet(Result); 5458 ReturnedEarly = true; 5459 break; 5460 } 5461 5462 // Do a small peephole optimization: re-use the switch table compare if 5463 // possible. 5464 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5465 BasicBlock *PhiBlock = PHI->getParent(); 5466 // Search for compare instructions which use the phi. 5467 for (auto *User : PHI->users()) { 5468 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5469 } 5470 } 5471 5472 PHI->addIncoming(Result, LookupBB); 5473 } 5474 5475 if (!ReturnedEarly) 5476 Builder.CreateBr(CommonDest); 5477 5478 // Remove the switch. 5479 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5480 BasicBlock *Succ = SI->getSuccessor(i); 5481 5482 if (Succ == SI->getDefaultDest()) 5483 continue; 5484 Succ->removePredecessor(SI->getParent()); 5485 } 5486 SI->eraseFromParent(); 5487 5488 ++NumLookupTables; 5489 if (NeedMask) 5490 ++NumLookupTablesHoles; 5491 return true; 5492 } 5493 5494 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5495 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5496 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5497 uint64_t Range = Diff + 1; 5498 uint64_t NumCases = Values.size(); 5499 // 40% is the default density for building a jump table in optsize/minsize mode. 5500 uint64_t MinDensity = 40; 5501 5502 return NumCases * 100 >= Range * MinDensity; 5503 } 5504 5505 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5506 /// of cases. 5507 /// 5508 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5509 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5510 /// 5511 /// This converts a sparse switch into a dense switch which allows better 5512 /// lowering and could also allow transforming into a lookup table. 5513 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5514 const DataLayout &DL, 5515 const TargetTransformInfo &TTI) { 5516 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5517 if (CondTy->getIntegerBitWidth() > 64 || 5518 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5519 return false; 5520 // Only bother with this optimization if there are more than 3 switch cases; 5521 // SDAG will only bother creating jump tables for 4 or more cases. 5522 if (SI->getNumCases() < 4) 5523 return false; 5524 5525 // This transform is agnostic to the signedness of the input or case values. We 5526 // can treat the case values as signed or unsigned. We can optimize more common 5527 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5528 // as signed. 5529 SmallVector<int64_t,4> Values; 5530 for (auto &C : SI->cases()) 5531 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5532 llvm::sort(Values); 5533 5534 // If the switch is already dense, there's nothing useful to do here. 5535 if (isSwitchDense(Values)) 5536 return false; 5537 5538 // First, transform the values such that they start at zero and ascend. 5539 int64_t Base = Values[0]; 5540 for (auto &V : Values) 5541 V -= (uint64_t)(Base); 5542 5543 // Now we have signed numbers that have been shifted so that, given enough 5544 // precision, there are no negative values. Since the rest of the transform 5545 // is bitwise only, we switch now to an unsigned representation. 5546 uint64_t GCD = 0; 5547 for (auto &V : Values) 5548 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5549 5550 // This transform can be done speculatively because it is so cheap - it results 5551 // in a single rotate operation being inserted. This can only happen if the 5552 // factor extracted is a power of 2. 5553 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5554 // inverse of GCD and then perform this transform. 5555 // FIXME: It's possible that optimizing a switch on powers of two might also 5556 // be beneficial - flag values are often powers of two and we could use a CLZ 5557 // as the key function. 5558 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5559 // No common divisor found or too expensive to compute key function. 5560 return false; 5561 5562 unsigned Shift = Log2_64(GCD); 5563 for (auto &V : Values) 5564 V = (int64_t)((uint64_t)V >> Shift); 5565 5566 if (!isSwitchDense(Values)) 5567 // Transform didn't create a dense switch. 5568 return false; 5569 5570 // The obvious transform is to shift the switch condition right and emit a 5571 // check that the condition actually cleanly divided by GCD, i.e. 5572 // C & (1 << Shift - 1) == 0 5573 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5574 // 5575 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5576 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5577 // are nonzero then the switch condition will be very large and will hit the 5578 // default case. 5579 5580 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5581 Builder.SetInsertPoint(SI); 5582 auto *ShiftC = ConstantInt::get(Ty, Shift); 5583 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5584 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5585 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5586 auto *Rot = Builder.CreateOr(LShr, Shl); 5587 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5588 5589 for (auto Case : SI->cases()) { 5590 auto *Orig = Case.getCaseValue(); 5591 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5592 Case.setValue( 5593 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5594 } 5595 return true; 5596 } 5597 5598 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5599 BasicBlock *BB = SI->getParent(); 5600 5601 if (isValueEqualityComparison(SI)) { 5602 // If we only have one predecessor, and if it is a branch on this value, 5603 // see if that predecessor totally determines the outcome of this switch. 5604 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5605 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5606 return requestResimplify(); 5607 5608 Value *Cond = SI->getCondition(); 5609 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5610 if (SimplifySwitchOnSelect(SI, Select)) 5611 return requestResimplify(); 5612 5613 // If the block only contains the switch, see if we can fold the block 5614 // away into any preds. 5615 if (SI == &*BB->instructionsWithoutDebug().begin()) 5616 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5617 return requestResimplify(); 5618 } 5619 5620 // Try to transform the switch into an icmp and a branch. 5621 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5622 return requestResimplify(); 5623 5624 // Remove unreachable cases. 5625 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5626 return requestResimplify(); 5627 5628 if (switchToSelect(SI, Builder, DL, TTI)) 5629 return requestResimplify(); 5630 5631 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5632 return requestResimplify(); 5633 5634 // The conversion from switch to lookup tables results in difficult-to-analyze 5635 // code and makes pruning branches much harder. This is a problem if the 5636 // switch expression itself can still be restricted as a result of inlining or 5637 // CVP. Therefore, only apply this transformation during late stages of the 5638 // optimisation pipeline. 5639 if (Options.ConvertSwitchToLookupTable && 5640 SwitchToLookupTable(SI, Builder, DL, TTI)) 5641 return requestResimplify(); 5642 5643 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5644 return requestResimplify(); 5645 5646 return false; 5647 } 5648 5649 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5650 BasicBlock *BB = IBI->getParent(); 5651 bool Changed = false; 5652 5653 // Eliminate redundant destinations. 5654 SmallPtrSet<Value *, 8> Succs; 5655 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5656 BasicBlock *Dest = IBI->getDestination(i); 5657 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5658 Dest->removePredecessor(BB); 5659 IBI->removeDestination(i); 5660 --i; 5661 --e; 5662 Changed = true; 5663 } 5664 } 5665 5666 if (IBI->getNumDestinations() == 0) { 5667 // If the indirectbr has no successors, change it to unreachable. 5668 new UnreachableInst(IBI->getContext(), IBI); 5669 EraseTerminatorAndDCECond(IBI); 5670 return true; 5671 } 5672 5673 if (IBI->getNumDestinations() == 1) { 5674 // If the indirectbr has one successor, change it to a direct branch. 5675 BranchInst::Create(IBI->getDestination(0), IBI); 5676 EraseTerminatorAndDCECond(IBI); 5677 return true; 5678 } 5679 5680 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5681 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5682 return requestResimplify(); 5683 } 5684 return Changed; 5685 } 5686 5687 /// Given an block with only a single landing pad and a unconditional branch 5688 /// try to find another basic block which this one can be merged with. This 5689 /// handles cases where we have multiple invokes with unique landing pads, but 5690 /// a shared handler. 5691 /// 5692 /// We specifically choose to not worry about merging non-empty blocks 5693 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5694 /// practice, the optimizer produces empty landing pad blocks quite frequently 5695 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5696 /// sinking in this file) 5697 /// 5698 /// This is primarily a code size optimization. We need to avoid performing 5699 /// any transform which might inhibit optimization (such as our ability to 5700 /// specialize a particular handler via tail commoning). We do this by not 5701 /// merging any blocks which require us to introduce a phi. Since the same 5702 /// values are flowing through both blocks, we don't lose any ability to 5703 /// specialize. If anything, we make such specialization more likely. 5704 /// 5705 /// TODO - This transformation could remove entries from a phi in the target 5706 /// block when the inputs in the phi are the same for the two blocks being 5707 /// merged. In some cases, this could result in removal of the PHI entirely. 5708 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5709 BasicBlock *BB) { 5710 auto Succ = BB->getUniqueSuccessor(); 5711 assert(Succ); 5712 // If there's a phi in the successor block, we'd likely have to introduce 5713 // a phi into the merged landing pad block. 5714 if (isa<PHINode>(*Succ->begin())) 5715 return false; 5716 5717 for (BasicBlock *OtherPred : predecessors(Succ)) { 5718 if (BB == OtherPred) 5719 continue; 5720 BasicBlock::iterator I = OtherPred->begin(); 5721 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5722 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5723 continue; 5724 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5725 ; 5726 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5727 if (!BI2 || !BI2->isIdenticalTo(BI)) 5728 continue; 5729 5730 // We've found an identical block. Update our predecessors to take that 5731 // path instead and make ourselves dead. 5732 SmallPtrSet<BasicBlock *, 16> Preds; 5733 Preds.insert(pred_begin(BB), pred_end(BB)); 5734 for (BasicBlock *Pred : Preds) { 5735 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5736 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5737 "unexpected successor"); 5738 II->setUnwindDest(OtherPred); 5739 } 5740 5741 // The debug info in OtherPred doesn't cover the merged control flow that 5742 // used to go through BB. We need to delete it or update it. 5743 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5744 Instruction &Inst = *I; 5745 I++; 5746 if (isa<DbgInfoIntrinsic>(Inst)) 5747 Inst.eraseFromParent(); 5748 } 5749 5750 SmallPtrSet<BasicBlock *, 16> Succs; 5751 Succs.insert(succ_begin(BB), succ_end(BB)); 5752 for (BasicBlock *Succ : Succs) { 5753 Succ->removePredecessor(BB); 5754 } 5755 5756 IRBuilder<> Builder(BI); 5757 Builder.CreateUnreachable(); 5758 BI->eraseFromParent(); 5759 return true; 5760 } 5761 return false; 5762 } 5763 5764 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5765 IRBuilder<> &Builder) { 5766 BasicBlock *BB = BI->getParent(); 5767 BasicBlock *Succ = BI->getSuccessor(0); 5768 5769 // If the Terminator is the only non-phi instruction, simplify the block. 5770 // If LoopHeader is provided, check if the block or its successor is a loop 5771 // header. (This is for early invocations before loop simplify and 5772 // vectorization to keep canonical loop forms for nested loops. These blocks 5773 // can be eliminated when the pass is invoked later in the back-end.) 5774 // Note that if BB has only one predecessor then we do not introduce new 5775 // backedge, so we can eliminate BB. 5776 bool NeedCanonicalLoop = 5777 Options.NeedCanonicalLoop && 5778 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5779 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5780 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5781 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5782 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5783 return true; 5784 5785 // If the only instruction in the block is a seteq/setne comparison against a 5786 // constant, try to simplify the block. 5787 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5788 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5789 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5790 ; 5791 if (I->isTerminator() && 5792 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5793 return true; 5794 } 5795 5796 // See if we can merge an empty landing pad block with another which is 5797 // equivalent. 5798 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5799 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5800 ; 5801 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5802 return true; 5803 } 5804 5805 // If this basic block is ONLY a compare and a branch, and if a predecessor 5806 // branches to us and our successor, fold the comparison into the 5807 // predecessor and use logical operations to update the incoming value 5808 // for PHI nodes in common successor. 5809 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5810 return requestResimplify(); 5811 return false; 5812 } 5813 5814 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5815 BasicBlock *PredPred = nullptr; 5816 for (auto *P : predecessors(BB)) { 5817 BasicBlock *PPred = P->getSinglePredecessor(); 5818 if (!PPred || (PredPred && PredPred != PPred)) 5819 return nullptr; 5820 PredPred = PPred; 5821 } 5822 return PredPred; 5823 } 5824 5825 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5826 BasicBlock *BB = BI->getParent(); 5827 const Function *Fn = BB->getParent(); 5828 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5829 return false; 5830 5831 // Conditional branch 5832 if (isValueEqualityComparison(BI)) { 5833 // If we only have one predecessor, and if it is a branch on this value, 5834 // see if that predecessor totally determines the outcome of this 5835 // switch. 5836 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5837 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5838 return requestResimplify(); 5839 5840 // This block must be empty, except for the setcond inst, if it exists. 5841 // Ignore dbg intrinsics. 5842 auto I = BB->instructionsWithoutDebug().begin(); 5843 if (&*I == BI) { 5844 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5845 return requestResimplify(); 5846 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5847 ++I; 5848 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5849 return requestResimplify(); 5850 } 5851 } 5852 5853 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5854 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5855 return true; 5856 5857 // If this basic block has dominating predecessor blocks and the dominating 5858 // blocks' conditions imply BI's condition, we know the direction of BI. 5859 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 5860 if (Imp) { 5861 // Turn this into a branch on constant. 5862 auto *OldCond = BI->getCondition(); 5863 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 5864 : ConstantInt::getFalse(BB->getContext()); 5865 BI->setCondition(TorF); 5866 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5867 return requestResimplify(); 5868 } 5869 5870 // If this basic block is ONLY a compare and a branch, and if a predecessor 5871 // branches to us and one of our successors, fold the comparison into the 5872 // predecessor and use logical operations to pick the right destination. 5873 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5874 return requestResimplify(); 5875 5876 // We have a conditional branch to two blocks that are only reachable 5877 // from BI. We know that the condbr dominates the two blocks, so see if 5878 // there is any identical code in the "then" and "else" blocks. If so, we 5879 // can hoist it up to the branching block. 5880 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5881 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5882 if (HoistThenElseCodeToIf(BI, TTI)) 5883 return requestResimplify(); 5884 } else { 5885 // If Successor #1 has multiple preds, we may be able to conditionally 5886 // execute Successor #0 if it branches to Successor #1. 5887 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5888 if (Succ0TI->getNumSuccessors() == 1 && 5889 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5890 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5891 return requestResimplify(); 5892 } 5893 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5894 // If Successor #0 has multiple preds, we may be able to conditionally 5895 // execute Successor #1 if it branches to Successor #0. 5896 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5897 if (Succ1TI->getNumSuccessors() == 1 && 5898 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5899 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5900 return requestResimplify(); 5901 } 5902 5903 // If this is a branch on a phi node in the current block, thread control 5904 // through this block if any PHI node entries are constants. 5905 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5906 if (PN->getParent() == BI->getParent()) 5907 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5908 return requestResimplify(); 5909 5910 // Scan predecessor blocks for conditional branches. 5911 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5912 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5913 if (PBI != BI && PBI->isConditional()) 5914 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5915 return requestResimplify(); 5916 5917 // Look for diamond patterns. 5918 if (MergeCondStores) 5919 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5920 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5921 if (PBI != BI && PBI->isConditional()) 5922 if (mergeConditionalStores(PBI, BI, DL)) 5923 return requestResimplify(); 5924 5925 return false; 5926 } 5927 5928 /// Check if passing a value to an instruction will cause undefined behavior. 5929 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5930 Constant *C = dyn_cast<Constant>(V); 5931 if (!C) 5932 return false; 5933 5934 if (I->use_empty()) 5935 return false; 5936 5937 if (C->isNullValue() || isa<UndefValue>(C)) { 5938 // Only look at the first use, avoid hurting compile time with long uselists 5939 User *Use = *I->user_begin(); 5940 5941 // Now make sure that there are no instructions in between that can alter 5942 // control flow (eg. calls) 5943 for (BasicBlock::iterator 5944 i = ++BasicBlock::iterator(I), 5945 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5946 i != UI; ++i) 5947 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5948 return false; 5949 5950 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5951 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5952 if (GEP->getPointerOperand() == I) 5953 return passingValueIsAlwaysUndefined(V, GEP); 5954 5955 // Look through bitcasts. 5956 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5957 return passingValueIsAlwaysUndefined(V, BC); 5958 5959 // Load from null is undefined. 5960 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5961 if (!LI->isVolatile()) 5962 return !NullPointerIsDefined(LI->getFunction(), 5963 LI->getPointerAddressSpace()); 5964 5965 // Store to null is undefined. 5966 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5967 if (!SI->isVolatile()) 5968 return (!NullPointerIsDefined(SI->getFunction(), 5969 SI->getPointerAddressSpace())) && 5970 SI->getPointerOperand() == I; 5971 5972 // A call to null is undefined. 5973 if (auto CS = CallSite(Use)) 5974 return !NullPointerIsDefined(CS->getFunction()) && 5975 CS.getCalledValue() == I; 5976 } 5977 return false; 5978 } 5979 5980 /// If BB has an incoming value that will always trigger undefined behavior 5981 /// (eg. null pointer dereference), remove the branch leading here. 5982 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5983 for (PHINode &PHI : BB->phis()) 5984 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5985 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5986 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 5987 IRBuilder<> Builder(T); 5988 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5989 BB->removePredecessor(PHI.getIncomingBlock(i)); 5990 // Turn uncoditional branches into unreachables and remove the dead 5991 // destination from conditional branches. 5992 if (BI->isUnconditional()) 5993 Builder.CreateUnreachable(); 5994 else 5995 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5996 : BI->getSuccessor(0)); 5997 BI->eraseFromParent(); 5998 return true; 5999 } 6000 // TODO: SwitchInst. 6001 } 6002 6003 return false; 6004 } 6005 6006 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6007 bool Changed = false; 6008 6009 assert(BB && BB->getParent() && "Block not embedded in function!"); 6010 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6011 6012 // Remove basic blocks that have no predecessors (except the entry block)... 6013 // or that just have themself as a predecessor. These are unreachable. 6014 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6015 BB->getSinglePredecessor() == BB) { 6016 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6017 DeleteDeadBlock(BB); 6018 return true; 6019 } 6020 6021 // Check to see if we can constant propagate this terminator instruction 6022 // away... 6023 Changed |= ConstantFoldTerminator(BB, true); 6024 6025 // Check for and eliminate duplicate PHI nodes in this block. 6026 Changed |= EliminateDuplicatePHINodes(BB); 6027 6028 // Check for and remove branches that will always cause undefined behavior. 6029 Changed |= removeUndefIntroducingPredecessor(BB); 6030 6031 // Merge basic blocks into their predecessor if there is only one distinct 6032 // pred, and if there is only one distinct successor of the predecessor, and 6033 // if there are no PHI nodes. 6034 if (MergeBlockIntoPredecessor(BB)) 6035 return true; 6036 6037 if (SinkCommon && Options.SinkCommonInsts) 6038 Changed |= SinkCommonCodeFromPredecessors(BB); 6039 6040 IRBuilder<> Builder(BB); 6041 6042 // If there is a trivial two-entry PHI node in this basic block, and we can 6043 // eliminate it, do so now. 6044 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6045 if (PN->getNumIncomingValues() == 2) 6046 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6047 6048 Builder.SetInsertPoint(BB->getTerminator()); 6049 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6050 if (BI->isUnconditional()) { 6051 if (SimplifyUncondBranch(BI, Builder)) 6052 return true; 6053 } else { 6054 if (SimplifyCondBranch(BI, Builder)) 6055 return true; 6056 } 6057 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6058 if (SimplifyReturn(RI, Builder)) 6059 return true; 6060 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6061 if (SimplifyResume(RI, Builder)) 6062 return true; 6063 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6064 if (SimplifyCleanupReturn(RI)) 6065 return true; 6066 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6067 if (SimplifySwitch(SI, Builder)) 6068 return true; 6069 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6070 if (SimplifyUnreachable(UI)) 6071 return true; 6072 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6073 if (SimplifyIndirectBr(IBI)) 6074 return true; 6075 } 6076 6077 return Changed; 6078 } 6079 6080 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6081 bool Changed = false; 6082 6083 // Repeated simplify BB as long as resimplification is requested. 6084 do { 6085 Resimplify = false; 6086 6087 // Perform one round of simplifcation. Resimplify flag will be set if 6088 // another iteration is requested. 6089 Changed |= simplifyOnce(BB); 6090 } while (Resimplify); 6091 6092 return Changed; 6093 } 6094 6095 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6096 const SimplifyCFGOptions &Options, 6097 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6098 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6099 Options) 6100 .run(BB); 6101 } 6102