1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/ConstantRange.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/NoFolder.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Use.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/ValueMapper.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <climits>
72 #include <cstddef>
73 #include <cstdint>
74 #include <iterator>
75 #include <map>
76 #include <set>
77 #include <tuple>
78 #include <utility>
79 #include <vector>
80 
81 using namespace llvm;
82 using namespace PatternMatch;
83 
84 #define DEBUG_TYPE "simplifycfg"
85 
86 // Chosen as 2 so as to be cheap, but still to have enough power to fold
87 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
88 // To catch this, we need to fold a compare and a select, hence '2' being the
89 // minimum reasonable default.
90 static cl::opt<unsigned> PHINodeFoldingThreshold(
91     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
92     cl::desc(
93         "Control the amount of phi node folding to perform (default = 2)"));
94 
95 static cl::opt<bool> DupRet(
96     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
97     cl::desc("Duplicate return instructions into unconditional branches"));
98 
99 static cl::opt<bool>
100     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
101                cl::desc("Sink common instructions down to the end block"));
102 
103 static cl::opt<bool> HoistCondStores(
104     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
105     cl::desc("Hoist conditional stores if an unconditional store precedes"));
106 
107 static cl::opt<bool> MergeCondStores(
108     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
109     cl::desc("Hoist conditional stores even if an unconditional store does not "
110              "precede - hoist multiple conditional stores into a single "
111              "predicated store"));
112 
113 static cl::opt<bool> MergeCondStoresAggressively(
114     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
115     cl::desc("When merging conditional stores, do so even if the resultant "
116              "basic blocks are unlikely to be if-converted as a result"));
117 
118 static cl::opt<bool> SpeculateOneExpensiveInst(
119     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
120     cl::desc("Allow exactly one expensive instruction to be speculatively "
121              "executed"));
122 
123 static cl::opt<unsigned> MaxSpeculationDepth(
124     "max-speculation-depth", cl::Hidden, cl::init(10),
125     cl::desc("Limit maximum recursion depth when calculating costs of "
126              "speculatively executed instructions"));
127 
128 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
129 STATISTIC(NumLinearMaps,
130           "Number of switch instructions turned into linear mapping");
131 STATISTIC(NumLookupTables,
132           "Number of switch instructions turned into lookup tables");
133 STATISTIC(
134     NumLookupTablesHoles,
135     "Number of switch instructions turned into lookup tables (holes checked)");
136 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
137 STATISTIC(NumSinkCommons,
138           "Number of common instructions sunk down to the end block");
139 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
140 
141 namespace {
142 
143 // The first field contains the value that the switch produces when a certain
144 // case group is selected, and the second field is a vector containing the
145 // cases composing the case group.
146 using SwitchCaseResultVectorTy =
147     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
148 
149 // The first field contains the phi node that generates a result of the switch
150 // and the second field contains the value generated for a certain case in the
151 // switch for that PHI.
152 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
153 
154 /// ValueEqualityComparisonCase - Represents a case of a switch.
155 struct ValueEqualityComparisonCase {
156   ConstantInt *Value;
157   BasicBlock *Dest;
158 
159   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
160       : Value(Value), Dest(Dest) {}
161 
162   bool operator<(ValueEqualityComparisonCase RHS) const {
163     // Comparing pointers is ok as we only rely on the order for uniquing.
164     return Value < RHS.Value;
165   }
166 
167   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
168 };
169 
170 class SimplifyCFGOpt {
171   const TargetTransformInfo &TTI;
172   const DataLayout &DL;
173   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
174   const SimplifyCFGOptions &Options;
175   bool Resimplify;
176 
177   Value *isValueEqualityComparison(Instruction *TI);
178   BasicBlock *GetValueEqualityComparisonCases(
179       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
180   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
181                                                      BasicBlock *Pred,
182                                                      IRBuilder<> &Builder);
183   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
184                                            IRBuilder<> &Builder);
185 
186   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
187   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
188   bool SimplifySingleResume(ResumeInst *RI);
189   bool SimplifyCommonResume(ResumeInst *RI);
190   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
191   bool SimplifyUnreachable(UnreachableInst *UI);
192   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
193   bool SimplifyIndirectBr(IndirectBrInst *IBI);
194   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
195   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
196 
197   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
198                                              IRBuilder<> &Builder);
199 
200 public:
201   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
202                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
203                  const SimplifyCFGOptions &Opts)
204       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
205 
206   bool run(BasicBlock *BB);
207   bool simplifyOnce(BasicBlock *BB);
208 
209   // Helper to set Resimplify and return change indication.
210   bool requestResimplify() {
211     Resimplify = true;
212     return true;
213   }
214 };
215 
216 } // end anonymous namespace
217 
218 /// Return true if it is safe to merge these two
219 /// terminator instructions together.
220 static bool
221 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
222                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
223   if (SI1 == SI2)
224     return false; // Can't merge with self!
225 
226   // It is not safe to merge these two switch instructions if they have a common
227   // successor, and if that successor has a PHI node, and if *that* PHI node has
228   // conflicting incoming values from the two switch blocks.
229   BasicBlock *SI1BB = SI1->getParent();
230   BasicBlock *SI2BB = SI2->getParent();
231 
232   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
233   bool Fail = false;
234   for (BasicBlock *Succ : successors(SI2BB))
235     if (SI1Succs.count(Succ))
236       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
237         PHINode *PN = cast<PHINode>(BBI);
238         if (PN->getIncomingValueForBlock(SI1BB) !=
239             PN->getIncomingValueForBlock(SI2BB)) {
240           if (FailBlocks)
241             FailBlocks->insert(Succ);
242           Fail = true;
243         }
244       }
245 
246   return !Fail;
247 }
248 
249 /// Return true if it is safe and profitable to merge these two terminator
250 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
251 /// store all PHI nodes in common successors.
252 static bool
253 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
254                                 Instruction *Cond,
255                                 SmallVectorImpl<PHINode *> &PhiNodes) {
256   if (SI1 == SI2)
257     return false; // Can't merge with self!
258   assert(SI1->isUnconditional() && SI2->isConditional());
259 
260   // We fold the unconditional branch if we can easily update all PHI nodes in
261   // common successors:
262   // 1> We have a constant incoming value for the conditional branch;
263   // 2> We have "Cond" as the incoming value for the unconditional branch;
264   // 3> SI2->getCondition() and Cond have same operands.
265   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
266   if (!Ci2)
267     return false;
268   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
269         Cond->getOperand(1) == Ci2->getOperand(1)) &&
270       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
271         Cond->getOperand(1) == Ci2->getOperand(0)))
272     return false;
273 
274   BasicBlock *SI1BB = SI1->getParent();
275   BasicBlock *SI2BB = SI2->getParent();
276   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
277   for (BasicBlock *Succ : successors(SI2BB))
278     if (SI1Succs.count(Succ))
279       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
280         PHINode *PN = cast<PHINode>(BBI);
281         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
282             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
283           return false;
284         PhiNodes.push_back(PN);
285       }
286   return true;
287 }
288 
289 /// Update PHI nodes in Succ to indicate that there will now be entries in it
290 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
291 /// will be the same as those coming in from ExistPred, an existing predecessor
292 /// of Succ.
293 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
294                                   BasicBlock *ExistPred) {
295   for (PHINode &PN : Succ->phis())
296     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
297 }
298 
299 /// Compute an abstract "cost" of speculating the given instruction,
300 /// which is assumed to be safe to speculate. TCC_Free means cheap,
301 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
302 /// expensive.
303 static unsigned ComputeSpeculationCost(const User *I,
304                                        const TargetTransformInfo &TTI) {
305   assert(isSafeToSpeculativelyExecute(I) &&
306          "Instruction is not safe to speculatively execute!");
307   return TTI.getUserCost(I);
308 }
309 
310 /// If we have a merge point of an "if condition" as accepted above,
311 /// return true if the specified value dominates the block.  We
312 /// don't handle the true generality of domination here, just a special case
313 /// which works well enough for us.
314 ///
315 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
316 /// see if V (which must be an instruction) and its recursive operands
317 /// that do not dominate BB have a combined cost lower than CostRemaining and
318 /// are non-trapping.  If both are true, the instruction is inserted into the
319 /// set and true is returned.
320 ///
321 /// The cost for most non-trapping instructions is defined as 1 except for
322 /// Select whose cost is 2.
323 ///
324 /// After this function returns, CostRemaining is decreased by the cost of
325 /// V plus its non-dominating operands.  If that cost is greater than
326 /// CostRemaining, false is returned and CostRemaining is undefined.
327 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
328                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
329                                 unsigned &CostRemaining,
330                                 const TargetTransformInfo &TTI,
331                                 unsigned Depth = 0) {
332   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
333   // so limit the recursion depth.
334   // TODO: While this recursion limit does prevent pathological behavior, it
335   // would be better to track visited instructions to avoid cycles.
336   if (Depth == MaxSpeculationDepth)
337     return false;
338 
339   Instruction *I = dyn_cast<Instruction>(V);
340   if (!I) {
341     // Non-instructions all dominate instructions, but not all constantexprs
342     // can be executed unconditionally.
343     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
344       if (C->canTrap())
345         return false;
346     return true;
347   }
348   BasicBlock *PBB = I->getParent();
349 
350   // We don't want to allow weird loops that might have the "if condition" in
351   // the bottom of this block.
352   if (PBB == BB)
353     return false;
354 
355   // If this instruction is defined in a block that contains an unconditional
356   // branch to BB, then it must be in the 'conditional' part of the "if
357   // statement".  If not, it definitely dominates the region.
358   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
359   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
360     return true;
361 
362   // If we have seen this instruction before, don't count it again.
363   if (AggressiveInsts.count(I))
364     return true;
365 
366   // Okay, it looks like the instruction IS in the "condition".  Check to
367   // see if it's a cheap instruction to unconditionally compute, and if it
368   // only uses stuff defined outside of the condition.  If so, hoist it out.
369   if (!isSafeToSpeculativelyExecute(I))
370     return false;
371 
372   unsigned Cost = ComputeSpeculationCost(I, TTI);
373 
374   // Allow exactly one instruction to be speculated regardless of its cost
375   // (as long as it is safe to do so).
376   // This is intended to flatten the CFG even if the instruction is a division
377   // or other expensive operation. The speculation of an expensive instruction
378   // is expected to be undone in CodeGenPrepare if the speculation has not
379   // enabled further IR optimizations.
380   if (Cost > CostRemaining &&
381       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
382     return false;
383 
384   // Avoid unsigned wrap.
385   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
386 
387   // Okay, we can only really hoist these out if their operands do
388   // not take us over the cost threshold.
389   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
390     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
391                              Depth + 1))
392       return false;
393   // Okay, it's safe to do this!  Remember this instruction.
394   AggressiveInsts.insert(I);
395   return true;
396 }
397 
398 /// Extract ConstantInt from value, looking through IntToPtr
399 /// and PointerNullValue. Return NULL if value is not a constant int.
400 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
401   // Normal constant int.
402   ConstantInt *CI = dyn_cast<ConstantInt>(V);
403   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
404     return CI;
405 
406   // This is some kind of pointer constant. Turn it into a pointer-sized
407   // ConstantInt if possible.
408   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
409 
410   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
411   if (isa<ConstantPointerNull>(V))
412     return ConstantInt::get(PtrTy, 0);
413 
414   // IntToPtr const int.
415   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
416     if (CE->getOpcode() == Instruction::IntToPtr)
417       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
418         // The constant is very likely to have the right type already.
419         if (CI->getType() == PtrTy)
420           return CI;
421         else
422           return cast<ConstantInt>(
423               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
424       }
425   return nullptr;
426 }
427 
428 namespace {
429 
430 /// Given a chain of or (||) or and (&&) comparison of a value against a
431 /// constant, this will try to recover the information required for a switch
432 /// structure.
433 /// It will depth-first traverse the chain of comparison, seeking for patterns
434 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
435 /// representing the different cases for the switch.
436 /// Note that if the chain is composed of '||' it will build the set of elements
437 /// that matches the comparisons (i.e. any of this value validate the chain)
438 /// while for a chain of '&&' it will build the set elements that make the test
439 /// fail.
440 struct ConstantComparesGatherer {
441   const DataLayout &DL;
442 
443   /// Value found for the switch comparison
444   Value *CompValue = nullptr;
445 
446   /// Extra clause to be checked before the switch
447   Value *Extra = nullptr;
448 
449   /// Set of integers to match in switch
450   SmallVector<ConstantInt *, 8> Vals;
451 
452   /// Number of comparisons matched in the and/or chain
453   unsigned UsedICmps = 0;
454 
455   /// Construct and compute the result for the comparison instruction Cond
456   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
457     gather(Cond);
458   }
459 
460   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
461   ConstantComparesGatherer &
462   operator=(const ConstantComparesGatherer &) = delete;
463 
464 private:
465   /// Try to set the current value used for the comparison, it succeeds only if
466   /// it wasn't set before or if the new value is the same as the old one
467   bool setValueOnce(Value *NewVal) {
468     if (CompValue && CompValue != NewVal)
469       return false;
470     CompValue = NewVal;
471     return (CompValue != nullptr);
472   }
473 
474   /// Try to match Instruction "I" as a comparison against a constant and
475   /// populates the array Vals with the set of values that match (or do not
476   /// match depending on isEQ).
477   /// Return false on failure. On success, the Value the comparison matched
478   /// against is placed in CompValue.
479   /// If CompValue is already set, the function is expected to fail if a match
480   /// is found but the value compared to is different.
481   bool matchInstruction(Instruction *I, bool isEQ) {
482     // If this is an icmp against a constant, handle this as one of the cases.
483     ICmpInst *ICI;
484     ConstantInt *C;
485     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
486           (C = GetConstantInt(I->getOperand(1), DL)))) {
487       return false;
488     }
489 
490     Value *RHSVal;
491     const APInt *RHSC;
492 
493     // Pattern match a special case
494     // (x & ~2^z) == y --> x == y || x == y|2^z
495     // This undoes a transformation done by instcombine to fuse 2 compares.
496     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
497       // It's a little bit hard to see why the following transformations are
498       // correct. Here is a CVC3 program to verify them for 64-bit values:
499 
500       /*
501          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
502          x    : BITVECTOR(64);
503          y    : BITVECTOR(64);
504          z    : BITVECTOR(64);
505          mask : BITVECTOR(64) = BVSHL(ONE, z);
506          QUERY( (y & ~mask = y) =>
507                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
508          );
509          QUERY( (y |  mask = y) =>
510                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
511          );
512       */
513 
514       // Please note that each pattern must be a dual implication (<--> or
515       // iff). One directional implication can create spurious matches. If the
516       // implication is only one-way, an unsatisfiable condition on the left
517       // side can imply a satisfiable condition on the right side. Dual
518       // implication ensures that satisfiable conditions are transformed to
519       // other satisfiable conditions and unsatisfiable conditions are
520       // transformed to other unsatisfiable conditions.
521 
522       // Here is a concrete example of a unsatisfiable condition on the left
523       // implying a satisfiable condition on the right:
524       //
525       // mask = (1 << z)
526       // (x & ~mask) == y  --> (x == y || x == (y | mask))
527       //
528       // Substituting y = 3, z = 0 yields:
529       // (x & -2) == 3 --> (x == 3 || x == 2)
530 
531       // Pattern match a special case:
532       /*
533         QUERY( (y & ~mask = y) =>
534                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
535         );
536       */
537       if (match(ICI->getOperand(0),
538                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
539         APInt Mask = ~*RHSC;
540         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
541           // If we already have a value for the switch, it has to match!
542           if (!setValueOnce(RHSVal))
543             return false;
544 
545           Vals.push_back(C);
546           Vals.push_back(
547               ConstantInt::get(C->getContext(),
548                                C->getValue() | Mask));
549           UsedICmps++;
550           return true;
551         }
552       }
553 
554       // Pattern match a special case:
555       /*
556         QUERY( (y |  mask = y) =>
557                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
558         );
559       */
560       if (match(ICI->getOperand(0),
561                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
562         APInt Mask = *RHSC;
563         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
564           // If we already have a value for the switch, it has to match!
565           if (!setValueOnce(RHSVal))
566             return false;
567 
568           Vals.push_back(C);
569           Vals.push_back(ConstantInt::get(C->getContext(),
570                                           C->getValue() & ~Mask));
571           UsedICmps++;
572           return true;
573         }
574       }
575 
576       // If we already have a value for the switch, it has to match!
577       if (!setValueOnce(ICI->getOperand(0)))
578         return false;
579 
580       UsedICmps++;
581       Vals.push_back(C);
582       return ICI->getOperand(0);
583     }
584 
585     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
586     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
587         ICI->getPredicate(), C->getValue());
588 
589     // Shift the range if the compare is fed by an add. This is the range
590     // compare idiom as emitted by instcombine.
591     Value *CandidateVal = I->getOperand(0);
592     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
593       Span = Span.subtract(*RHSC);
594       CandidateVal = RHSVal;
595     }
596 
597     // If this is an and/!= check, then we are looking to build the set of
598     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
599     // x != 0 && x != 1.
600     if (!isEQ)
601       Span = Span.inverse();
602 
603     // If there are a ton of values, we don't want to make a ginormous switch.
604     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
605       return false;
606     }
607 
608     // If we already have a value for the switch, it has to match!
609     if (!setValueOnce(CandidateVal))
610       return false;
611 
612     // Add all values from the range to the set
613     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
614       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
615 
616     UsedICmps++;
617     return true;
618   }
619 
620   /// Given a potentially 'or'd or 'and'd together collection of icmp
621   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
622   /// the value being compared, and stick the list constants into the Vals
623   /// vector.
624   /// One "Extra" case is allowed to differ from the other.
625   void gather(Value *V) {
626     Instruction *I = dyn_cast<Instruction>(V);
627     bool isEQ = (I->getOpcode() == Instruction::Or);
628 
629     // Keep a stack (SmallVector for efficiency) for depth-first traversal
630     SmallVector<Value *, 8> DFT;
631     SmallPtrSet<Value *, 8> Visited;
632 
633     // Initialize
634     Visited.insert(V);
635     DFT.push_back(V);
636 
637     while (!DFT.empty()) {
638       V = DFT.pop_back_val();
639 
640       if (Instruction *I = dyn_cast<Instruction>(V)) {
641         // If it is a || (or && depending on isEQ), process the operands.
642         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
643           if (Visited.insert(I->getOperand(1)).second)
644             DFT.push_back(I->getOperand(1));
645           if (Visited.insert(I->getOperand(0)).second)
646             DFT.push_back(I->getOperand(0));
647           continue;
648         }
649 
650         // Try to match the current instruction
651         if (matchInstruction(I, isEQ))
652           // Match succeed, continue the loop
653           continue;
654       }
655 
656       // One element of the sequence of || (or &&) could not be match as a
657       // comparison against the same value as the others.
658       // We allow only one "Extra" case to be checked before the switch
659       if (!Extra) {
660         Extra = V;
661         continue;
662       }
663       // Failed to parse a proper sequence, abort now
664       CompValue = nullptr;
665       break;
666     }
667   }
668 };
669 
670 } // end anonymous namespace
671 
672 static void EraseTerminatorAndDCECond(Instruction *TI) {
673   Instruction *Cond = nullptr;
674   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
675     Cond = dyn_cast<Instruction>(SI->getCondition());
676   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
677     if (BI->isConditional())
678       Cond = dyn_cast<Instruction>(BI->getCondition());
679   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
680     Cond = dyn_cast<Instruction>(IBI->getAddress());
681   }
682 
683   TI->eraseFromParent();
684   if (Cond)
685     RecursivelyDeleteTriviallyDeadInstructions(Cond);
686 }
687 
688 /// Return true if the specified terminator checks
689 /// to see if a value is equal to constant integer value.
690 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
691   Value *CV = nullptr;
692   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
693     // Do not permit merging of large switch instructions into their
694     // predecessors unless there is only one predecessor.
695     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
696       CV = SI->getCondition();
697   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
698     if (BI->isConditional() && BI->getCondition()->hasOneUse())
699       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
700         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
701           CV = ICI->getOperand(0);
702       }
703 
704   // Unwrap any lossless ptrtoint cast.
705   if (CV) {
706     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
707       Value *Ptr = PTII->getPointerOperand();
708       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
709         CV = Ptr;
710     }
711   }
712   return CV;
713 }
714 
715 /// Given a value comparison instruction,
716 /// decode all of the 'cases' that it represents and return the 'default' block.
717 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
718     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
719   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
720     Cases.reserve(SI->getNumCases());
721     for (auto Case : SI->cases())
722       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
723                                                   Case.getCaseSuccessor()));
724     return SI->getDefaultDest();
725   }
726 
727   BranchInst *BI = cast<BranchInst>(TI);
728   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
729   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
730   Cases.push_back(ValueEqualityComparisonCase(
731       GetConstantInt(ICI->getOperand(1), DL), Succ));
732   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
733 }
734 
735 /// Given a vector of bb/value pairs, remove any entries
736 /// in the list that match the specified block.
737 static void
738 EliminateBlockCases(BasicBlock *BB,
739                     std::vector<ValueEqualityComparisonCase> &Cases) {
740   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
741 }
742 
743 /// Return true if there are any keys in C1 that exist in C2 as well.
744 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
745                           std::vector<ValueEqualityComparisonCase> &C2) {
746   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
747 
748   // Make V1 be smaller than V2.
749   if (V1->size() > V2->size())
750     std::swap(V1, V2);
751 
752   if (V1->empty())
753     return false;
754   if (V1->size() == 1) {
755     // Just scan V2.
756     ConstantInt *TheVal = (*V1)[0].Value;
757     for (unsigned i = 0, e = V2->size(); i != e; ++i)
758       if (TheVal == (*V2)[i].Value)
759         return true;
760   }
761 
762   // Otherwise, just sort both lists and compare element by element.
763   array_pod_sort(V1->begin(), V1->end());
764   array_pod_sort(V2->begin(), V2->end());
765   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
766   while (i1 != e1 && i2 != e2) {
767     if ((*V1)[i1].Value == (*V2)[i2].Value)
768       return true;
769     if ((*V1)[i1].Value < (*V2)[i2].Value)
770       ++i1;
771     else
772       ++i2;
773   }
774   return false;
775 }
776 
777 // Set branch weights on SwitchInst. This sets the metadata if there is at
778 // least one non-zero weight.
779 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
780   // Check that there is at least one non-zero weight. Otherwise, pass
781   // nullptr to setMetadata which will erase the existing metadata.
782   MDNode *N = nullptr;
783   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
784     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
785   SI->setMetadata(LLVMContext::MD_prof, N);
786 }
787 
788 // Similar to the above, but for branch and select instructions that take
789 // exactly 2 weights.
790 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
791                              uint32_t FalseWeight) {
792   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
793   // Check that there is at least one non-zero weight. Otherwise, pass
794   // nullptr to setMetadata which will erase the existing metadata.
795   MDNode *N = nullptr;
796   if (TrueWeight || FalseWeight)
797     N = MDBuilder(I->getParent()->getContext())
798             .createBranchWeights(TrueWeight, FalseWeight);
799   I->setMetadata(LLVMContext::MD_prof, N);
800 }
801 
802 /// If TI is known to be a terminator instruction and its block is known to
803 /// only have a single predecessor block, check to see if that predecessor is
804 /// also a value comparison with the same value, and if that comparison
805 /// determines the outcome of this comparison. If so, simplify TI. This does a
806 /// very limited form of jump threading.
807 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
808     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
809   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
810   if (!PredVal)
811     return false; // Not a value comparison in predecessor.
812 
813   Value *ThisVal = isValueEqualityComparison(TI);
814   assert(ThisVal && "This isn't a value comparison!!");
815   if (ThisVal != PredVal)
816     return false; // Different predicates.
817 
818   // TODO: Preserve branch weight metadata, similarly to how
819   // FoldValueComparisonIntoPredecessors preserves it.
820 
821   // Find out information about when control will move from Pred to TI's block.
822   std::vector<ValueEqualityComparisonCase> PredCases;
823   BasicBlock *PredDef =
824       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
825   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
826 
827   // Find information about how control leaves this block.
828   std::vector<ValueEqualityComparisonCase> ThisCases;
829   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
830   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
831 
832   // If TI's block is the default block from Pred's comparison, potentially
833   // simplify TI based on this knowledge.
834   if (PredDef == TI->getParent()) {
835     // If we are here, we know that the value is none of those cases listed in
836     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
837     // can simplify TI.
838     if (!ValuesOverlap(PredCases, ThisCases))
839       return false;
840 
841     if (isa<BranchInst>(TI)) {
842       // Okay, one of the successors of this condbr is dead.  Convert it to a
843       // uncond br.
844       assert(ThisCases.size() == 1 && "Branch can only have one case!");
845       // Insert the new branch.
846       Instruction *NI = Builder.CreateBr(ThisDef);
847       (void)NI;
848 
849       // Remove PHI node entries for the dead edge.
850       ThisCases[0].Dest->removePredecessor(TI->getParent());
851 
852       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
853                         << "Through successor TI: " << *TI << "Leaving: " << *NI
854                         << "\n");
855 
856       EraseTerminatorAndDCECond(TI);
857       return true;
858     }
859 
860     SwitchInst *SI = cast<SwitchInst>(TI);
861     // Okay, TI has cases that are statically dead, prune them away.
862     SmallPtrSet<Constant *, 16> DeadCases;
863     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
864       DeadCases.insert(PredCases[i].Value);
865 
866     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
867                       << "Through successor TI: " << *TI);
868 
869     // Collect branch weights into a vector.
870     SmallVector<uint32_t, 8> Weights;
871     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
872     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
873     if (HasWeight)
874       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
875            ++MD_i) {
876         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
877         Weights.push_back(CI->getValue().getZExtValue());
878       }
879     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
880       --i;
881       if (DeadCases.count(i->getCaseValue())) {
882         if (HasWeight) {
883           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
884           Weights.pop_back();
885         }
886         i->getCaseSuccessor()->removePredecessor(TI->getParent());
887         SI->removeCase(i);
888       }
889     }
890     if (HasWeight && Weights.size() >= 2)
891       setBranchWeights(SI, Weights);
892 
893     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
894     return true;
895   }
896 
897   // Otherwise, TI's block must correspond to some matched value.  Find out
898   // which value (or set of values) this is.
899   ConstantInt *TIV = nullptr;
900   BasicBlock *TIBB = TI->getParent();
901   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
902     if (PredCases[i].Dest == TIBB) {
903       if (TIV)
904         return false; // Cannot handle multiple values coming to this block.
905       TIV = PredCases[i].Value;
906     }
907   assert(TIV && "No edge from pred to succ?");
908 
909   // Okay, we found the one constant that our value can be if we get into TI's
910   // BB.  Find out which successor will unconditionally be branched to.
911   BasicBlock *TheRealDest = nullptr;
912   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
913     if (ThisCases[i].Value == TIV) {
914       TheRealDest = ThisCases[i].Dest;
915       break;
916     }
917 
918   // If not handled by any explicit cases, it is handled by the default case.
919   if (!TheRealDest)
920     TheRealDest = ThisDef;
921 
922   // Remove PHI node entries for dead edges.
923   BasicBlock *CheckEdge = TheRealDest;
924   for (BasicBlock *Succ : successors(TIBB))
925     if (Succ != CheckEdge)
926       Succ->removePredecessor(TIBB);
927     else
928       CheckEdge = nullptr;
929 
930   // Insert the new branch.
931   Instruction *NI = Builder.CreateBr(TheRealDest);
932   (void)NI;
933 
934   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
935                     << "Through successor TI: " << *TI << "Leaving: " << *NI
936                     << "\n");
937 
938   EraseTerminatorAndDCECond(TI);
939   return true;
940 }
941 
942 namespace {
943 
944 /// This class implements a stable ordering of constant
945 /// integers that does not depend on their address.  This is important for
946 /// applications that sort ConstantInt's to ensure uniqueness.
947 struct ConstantIntOrdering {
948   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
949     return LHS->getValue().ult(RHS->getValue());
950   }
951 };
952 
953 } // end anonymous namespace
954 
955 static int ConstantIntSortPredicate(ConstantInt *const *P1,
956                                     ConstantInt *const *P2) {
957   const ConstantInt *LHS = *P1;
958   const ConstantInt *RHS = *P2;
959   if (LHS == RHS)
960     return 0;
961   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
962 }
963 
964 static inline bool HasBranchWeights(const Instruction *I) {
965   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
966   if (ProfMD && ProfMD->getOperand(0))
967     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
968       return MDS->getString().equals("branch_weights");
969 
970   return false;
971 }
972 
973 /// Get Weights of a given terminator, the default weight is at the front
974 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
975 /// metadata.
976 static void GetBranchWeights(Instruction *TI,
977                              SmallVectorImpl<uint64_t> &Weights) {
978   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
979   assert(MD);
980   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
981     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
982     Weights.push_back(CI->getValue().getZExtValue());
983   }
984 
985   // If TI is a conditional eq, the default case is the false case,
986   // and the corresponding branch-weight data is at index 2. We swap the
987   // default weight to be the first entry.
988   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
989     assert(Weights.size() == 2);
990     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
991     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
992       std::swap(Weights.front(), Weights.back());
993   }
994 }
995 
996 /// Keep halving the weights until all can fit in uint32_t.
997 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
998   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
999   if (Max > UINT_MAX) {
1000     unsigned Offset = 32 - countLeadingZeros(Max);
1001     for (uint64_t &I : Weights)
1002       I >>= Offset;
1003   }
1004 }
1005 
1006 /// The specified terminator is a value equality comparison instruction
1007 /// (either a switch or a branch on "X == c").
1008 /// See if any of the predecessors of the terminator block are value comparisons
1009 /// on the same value.  If so, and if safe to do so, fold them together.
1010 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1011                                                          IRBuilder<> &Builder) {
1012   BasicBlock *BB = TI->getParent();
1013   Value *CV = isValueEqualityComparison(TI); // CondVal
1014   assert(CV && "Not a comparison?");
1015   bool Changed = false;
1016 
1017   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1018   while (!Preds.empty()) {
1019     BasicBlock *Pred = Preds.pop_back_val();
1020 
1021     // See if the predecessor is a comparison with the same value.
1022     Instruction *PTI = Pred->getTerminator();
1023     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1024 
1025     if (PCV == CV && TI != PTI) {
1026       SmallSetVector<BasicBlock*, 4> FailBlocks;
1027       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1028         for (auto *Succ : FailBlocks) {
1029           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1030             return false;
1031         }
1032       }
1033 
1034       // Figure out which 'cases' to copy from SI to PSI.
1035       std::vector<ValueEqualityComparisonCase> BBCases;
1036       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1037 
1038       std::vector<ValueEqualityComparisonCase> PredCases;
1039       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1040 
1041       // Based on whether the default edge from PTI goes to BB or not, fill in
1042       // PredCases and PredDefault with the new switch cases we would like to
1043       // build.
1044       SmallVector<BasicBlock *, 8> NewSuccessors;
1045 
1046       // Update the branch weight metadata along the way
1047       SmallVector<uint64_t, 8> Weights;
1048       bool PredHasWeights = HasBranchWeights(PTI);
1049       bool SuccHasWeights = HasBranchWeights(TI);
1050 
1051       if (PredHasWeights) {
1052         GetBranchWeights(PTI, Weights);
1053         // branch-weight metadata is inconsistent here.
1054         if (Weights.size() != 1 + PredCases.size())
1055           PredHasWeights = SuccHasWeights = false;
1056       } else if (SuccHasWeights)
1057         // If there are no predecessor weights but there are successor weights,
1058         // populate Weights with 1, which will later be scaled to the sum of
1059         // successor's weights
1060         Weights.assign(1 + PredCases.size(), 1);
1061 
1062       SmallVector<uint64_t, 8> SuccWeights;
1063       if (SuccHasWeights) {
1064         GetBranchWeights(TI, SuccWeights);
1065         // branch-weight metadata is inconsistent here.
1066         if (SuccWeights.size() != 1 + BBCases.size())
1067           PredHasWeights = SuccHasWeights = false;
1068       } else if (PredHasWeights)
1069         SuccWeights.assign(1 + BBCases.size(), 1);
1070 
1071       if (PredDefault == BB) {
1072         // If this is the default destination from PTI, only the edges in TI
1073         // that don't occur in PTI, or that branch to BB will be activated.
1074         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1075         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1076           if (PredCases[i].Dest != BB)
1077             PTIHandled.insert(PredCases[i].Value);
1078           else {
1079             // The default destination is BB, we don't need explicit targets.
1080             std::swap(PredCases[i], PredCases.back());
1081 
1082             if (PredHasWeights || SuccHasWeights) {
1083               // Increase weight for the default case.
1084               Weights[0] += Weights[i + 1];
1085               std::swap(Weights[i + 1], Weights.back());
1086               Weights.pop_back();
1087             }
1088 
1089             PredCases.pop_back();
1090             --i;
1091             --e;
1092           }
1093 
1094         // Reconstruct the new switch statement we will be building.
1095         if (PredDefault != BBDefault) {
1096           PredDefault->removePredecessor(Pred);
1097           PredDefault = BBDefault;
1098           NewSuccessors.push_back(BBDefault);
1099         }
1100 
1101         unsigned CasesFromPred = Weights.size();
1102         uint64_t ValidTotalSuccWeight = 0;
1103         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1104           if (!PTIHandled.count(BBCases[i].Value) &&
1105               BBCases[i].Dest != BBDefault) {
1106             PredCases.push_back(BBCases[i]);
1107             NewSuccessors.push_back(BBCases[i].Dest);
1108             if (SuccHasWeights || PredHasWeights) {
1109               // The default weight is at index 0, so weight for the ith case
1110               // should be at index i+1. Scale the cases from successor by
1111               // PredDefaultWeight (Weights[0]).
1112               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1113               ValidTotalSuccWeight += SuccWeights[i + 1];
1114             }
1115           }
1116 
1117         if (SuccHasWeights || PredHasWeights) {
1118           ValidTotalSuccWeight += SuccWeights[0];
1119           // Scale the cases from predecessor by ValidTotalSuccWeight.
1120           for (unsigned i = 1; i < CasesFromPred; ++i)
1121             Weights[i] *= ValidTotalSuccWeight;
1122           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1123           Weights[0] *= SuccWeights[0];
1124         }
1125       } else {
1126         // If this is not the default destination from PSI, only the edges
1127         // in SI that occur in PSI with a destination of BB will be
1128         // activated.
1129         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1130         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1131         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1132           if (PredCases[i].Dest == BB) {
1133             PTIHandled.insert(PredCases[i].Value);
1134 
1135             if (PredHasWeights || SuccHasWeights) {
1136               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1137               std::swap(Weights[i + 1], Weights.back());
1138               Weights.pop_back();
1139             }
1140 
1141             std::swap(PredCases[i], PredCases.back());
1142             PredCases.pop_back();
1143             --i;
1144             --e;
1145           }
1146 
1147         // Okay, now we know which constants were sent to BB from the
1148         // predecessor.  Figure out where they will all go now.
1149         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1150           if (PTIHandled.count(BBCases[i].Value)) {
1151             // If this is one we are capable of getting...
1152             if (PredHasWeights || SuccHasWeights)
1153               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1154             PredCases.push_back(BBCases[i]);
1155             NewSuccessors.push_back(BBCases[i].Dest);
1156             PTIHandled.erase(
1157                 BBCases[i].Value); // This constant is taken care of
1158           }
1159 
1160         // If there are any constants vectored to BB that TI doesn't handle,
1161         // they must go to the default destination of TI.
1162         for (ConstantInt *I : PTIHandled) {
1163           if (PredHasWeights || SuccHasWeights)
1164             Weights.push_back(WeightsForHandled[I]);
1165           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1166           NewSuccessors.push_back(BBDefault);
1167         }
1168       }
1169 
1170       // Okay, at this point, we know which new successor Pred will get.  Make
1171       // sure we update the number of entries in the PHI nodes for these
1172       // successors.
1173       for (BasicBlock *NewSuccessor : NewSuccessors)
1174         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1175 
1176       Builder.SetInsertPoint(PTI);
1177       // Convert pointer to int before we switch.
1178       if (CV->getType()->isPointerTy()) {
1179         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1180                                     "magicptr");
1181       }
1182 
1183       // Now that the successors are updated, create the new Switch instruction.
1184       SwitchInst *NewSI =
1185           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1186       NewSI->setDebugLoc(PTI->getDebugLoc());
1187       for (ValueEqualityComparisonCase &V : PredCases)
1188         NewSI->addCase(V.Value, V.Dest);
1189 
1190       if (PredHasWeights || SuccHasWeights) {
1191         // Halve the weights if any of them cannot fit in an uint32_t
1192         FitWeights(Weights);
1193 
1194         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1195 
1196         setBranchWeights(NewSI, MDWeights);
1197       }
1198 
1199       EraseTerminatorAndDCECond(PTI);
1200 
1201       // Okay, last check.  If BB is still a successor of PSI, then we must
1202       // have an infinite loop case.  If so, add an infinitely looping block
1203       // to handle the case to preserve the behavior of the code.
1204       BasicBlock *InfLoopBlock = nullptr;
1205       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1206         if (NewSI->getSuccessor(i) == BB) {
1207           if (!InfLoopBlock) {
1208             // Insert it at the end of the function, because it's either code,
1209             // or it won't matter if it's hot. :)
1210             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1211                                               BB->getParent());
1212             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1213           }
1214           NewSI->setSuccessor(i, InfLoopBlock);
1215         }
1216 
1217       Changed = true;
1218     }
1219   }
1220   return Changed;
1221 }
1222 
1223 // If we would need to insert a select that uses the value of this invoke
1224 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1225 // can't hoist the invoke, as there is nowhere to put the select in this case.
1226 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1227                                 Instruction *I1, Instruction *I2) {
1228   for (BasicBlock *Succ : successors(BB1)) {
1229     for (const PHINode &PN : Succ->phis()) {
1230       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1231       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1232       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1233         return false;
1234       }
1235     }
1236   }
1237   return true;
1238 }
1239 
1240 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1241 
1242 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1243 /// in the two blocks up into the branch block. The caller of this function
1244 /// guarantees that BI's block dominates BB1 and BB2.
1245 static bool HoistThenElseCodeToIf(BranchInst *BI,
1246                                   const TargetTransformInfo &TTI) {
1247   // This does very trivial matching, with limited scanning, to find identical
1248   // instructions in the two blocks.  In particular, we don't want to get into
1249   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1250   // such, we currently just scan for obviously identical instructions in an
1251   // identical order.
1252   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1253   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1254 
1255   BasicBlock::iterator BB1_Itr = BB1->begin();
1256   BasicBlock::iterator BB2_Itr = BB2->begin();
1257 
1258   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1259   // Skip debug info if it is not identical.
1260   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1261   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1262   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1263     while (isa<DbgInfoIntrinsic>(I1))
1264       I1 = &*BB1_Itr++;
1265     while (isa<DbgInfoIntrinsic>(I2))
1266       I2 = &*BB2_Itr++;
1267   }
1268   // FIXME: Can we define a safety predicate for CallBr?
1269   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1270       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1271       isa<CallBrInst>(I1))
1272     return false;
1273 
1274   BasicBlock *BIParent = BI->getParent();
1275 
1276   bool Changed = false;
1277   do {
1278     // If we are hoisting the terminator instruction, don't move one (making a
1279     // broken BB), instead clone it, and remove BI.
1280     if (I1->isTerminator())
1281       goto HoistTerminator;
1282 
1283     // If we're going to hoist a call, make sure that the two instructions we're
1284     // commoning/hoisting are both marked with musttail, or neither of them is
1285     // marked as such. Otherwise, we might end up in a situation where we hoist
1286     // from a block where the terminator is a `ret` to a block where the terminator
1287     // is a `br`, and `musttail` calls expect to be followed by a return.
1288     auto *C1 = dyn_cast<CallInst>(I1);
1289     auto *C2 = dyn_cast<CallInst>(I2);
1290     if (C1 && C2)
1291       if (C1->isMustTailCall() != C2->isMustTailCall())
1292         return Changed;
1293 
1294     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1295       return Changed;
1296 
1297     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1298       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1299       // The debug location is an integral part of a debug info intrinsic
1300       // and can't be separated from it or replaced.  Instead of attempting
1301       // to merge locations, simply hoist both copies of the intrinsic.
1302       BIParent->getInstList().splice(BI->getIterator(),
1303                                      BB1->getInstList(), I1);
1304       BIParent->getInstList().splice(BI->getIterator(),
1305                                      BB2->getInstList(), I2);
1306       Changed = true;
1307     } else {
1308       // For a normal instruction, we just move one to right before the branch,
1309       // then replace all uses of the other with the first.  Finally, we remove
1310       // the now redundant second instruction.
1311       BIParent->getInstList().splice(BI->getIterator(),
1312                                      BB1->getInstList(), I1);
1313       if (!I2->use_empty())
1314         I2->replaceAllUsesWith(I1);
1315       I1->andIRFlags(I2);
1316       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1317                              LLVMContext::MD_range,
1318                              LLVMContext::MD_fpmath,
1319                              LLVMContext::MD_invariant_load,
1320                              LLVMContext::MD_nonnull,
1321                              LLVMContext::MD_invariant_group,
1322                              LLVMContext::MD_align,
1323                              LLVMContext::MD_dereferenceable,
1324                              LLVMContext::MD_dereferenceable_or_null,
1325                              LLVMContext::MD_mem_parallel_loop_access,
1326                              LLVMContext::MD_access_group};
1327       combineMetadata(I1, I2, KnownIDs, true);
1328 
1329       // I1 and I2 are being combined into a single instruction.  Its debug
1330       // location is the merged locations of the original instructions.
1331       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1332 
1333       I2->eraseFromParent();
1334       Changed = true;
1335     }
1336 
1337     I1 = &*BB1_Itr++;
1338     I2 = &*BB2_Itr++;
1339     // Skip debug info if it is not identical.
1340     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1341     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1342     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1343       while (isa<DbgInfoIntrinsic>(I1))
1344         I1 = &*BB1_Itr++;
1345       while (isa<DbgInfoIntrinsic>(I2))
1346         I2 = &*BB2_Itr++;
1347     }
1348   } while (I1->isIdenticalToWhenDefined(I2));
1349 
1350   return true;
1351 
1352 HoistTerminator:
1353   // It may not be possible to hoist an invoke.
1354   // FIXME: Can we define a safety predicate for CallBr?
1355   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1356     return Changed;
1357 
1358   // TODO: callbr hoisting currently disabled pending further study.
1359   if (isa<CallBrInst>(I1))
1360     return Changed;
1361 
1362   for (BasicBlock *Succ : successors(BB1)) {
1363     for (PHINode &PN : Succ->phis()) {
1364       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1365       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1366       if (BB1V == BB2V)
1367         continue;
1368 
1369       // Check for passingValueIsAlwaysUndefined here because we would rather
1370       // eliminate undefined control flow then converting it to a select.
1371       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1372           passingValueIsAlwaysUndefined(BB2V, &PN))
1373         return Changed;
1374 
1375       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1376         return Changed;
1377       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1378         return Changed;
1379     }
1380   }
1381 
1382   // Okay, it is safe to hoist the terminator.
1383   Instruction *NT = I1->clone();
1384   BIParent->getInstList().insert(BI->getIterator(), NT);
1385   if (!NT->getType()->isVoidTy()) {
1386     I1->replaceAllUsesWith(NT);
1387     I2->replaceAllUsesWith(NT);
1388     NT->takeName(I1);
1389   }
1390 
1391   // Ensure terminator gets a debug location, even an unknown one, in case
1392   // it involves inlinable calls.
1393   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1394 
1395   // PHIs created below will adopt NT's merged DebugLoc.
1396   IRBuilder<NoFolder> Builder(NT);
1397 
1398   // Hoisting one of the terminators from our successor is a great thing.
1399   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1400   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1401   // nodes, so we insert select instruction to compute the final result.
1402   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1403   for (BasicBlock *Succ : successors(BB1)) {
1404     for (PHINode &PN : Succ->phis()) {
1405       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1406       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1407       if (BB1V == BB2V)
1408         continue;
1409 
1410       // These values do not agree.  Insert a select instruction before NT
1411       // that determines the right value.
1412       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1413       if (!SI)
1414         SI = cast<SelectInst>(
1415             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1416                                  BB1V->getName() + "." + BB2V->getName(), BI));
1417 
1418       // Make the PHI node use the select for all incoming values for BB1/BB2
1419       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1420         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1421           PN.setIncomingValue(i, SI);
1422     }
1423   }
1424 
1425   // Update any PHI nodes in our new successors.
1426   for (BasicBlock *Succ : successors(BB1))
1427     AddPredecessorToBlock(Succ, BIParent, BB1);
1428 
1429   EraseTerminatorAndDCECond(BI);
1430   return true;
1431 }
1432 
1433 // All instructions in Insts belong to different blocks that all unconditionally
1434 // branch to a common successor. Analyze each instruction and return true if it
1435 // would be possible to sink them into their successor, creating one common
1436 // instruction instead. For every value that would be required to be provided by
1437 // PHI node (because an operand varies in each input block), add to PHIOperands.
1438 static bool canSinkInstructions(
1439     ArrayRef<Instruction *> Insts,
1440     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1441   // Prune out obviously bad instructions to move. Each instruction must have
1442   // exactly zero or one use, and we check later that use is by a single, common
1443   // PHI instruction in the successor.
1444   bool HasUse = !Insts.front()->user_empty();
1445   for (auto *I : Insts) {
1446     // These instructions may change or break semantics if moved.
1447     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1448         I->getType()->isTokenTy())
1449       return false;
1450 
1451     // Conservatively return false if I is an inline-asm instruction. Sinking
1452     // and merging inline-asm instructions can potentially create arguments
1453     // that cannot satisfy the inline-asm constraints.
1454     if (const auto *C = dyn_cast<CallBase>(I))
1455       if (C->isInlineAsm())
1456         return false;
1457 
1458     // Each instruction must have zero or one use.
1459     if (HasUse && !I->hasOneUse())
1460       return false;
1461     if (!HasUse && !I->user_empty())
1462       return false;
1463   }
1464 
1465   const Instruction *I0 = Insts.front();
1466   for (auto *I : Insts)
1467     if (!I->isSameOperationAs(I0))
1468       return false;
1469 
1470   // All instructions in Insts are known to be the same opcode. If they have a
1471   // use, check that the only user is a PHI or in the same block as the
1472   // instruction, because if a user is in the same block as an instruction we're
1473   // contemplating sinking, it must already be determined to be sinkable.
1474   if (HasUse) {
1475     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1476     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1477     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1478           auto *U = cast<Instruction>(*I->user_begin());
1479           return (PNUse &&
1480                   PNUse->getParent() == Succ &&
1481                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1482                  U->getParent() == I->getParent();
1483         }))
1484       return false;
1485   }
1486 
1487   // Because SROA can't handle speculating stores of selects, try not
1488   // to sink loads or stores of allocas when we'd have to create a PHI for
1489   // the address operand. Also, because it is likely that loads or stores
1490   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1491   // This can cause code churn which can have unintended consequences down
1492   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1493   // FIXME: This is a workaround for a deficiency in SROA - see
1494   // https://llvm.org/bugs/show_bug.cgi?id=30188
1495   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1496         return isa<AllocaInst>(I->getOperand(1));
1497       }))
1498     return false;
1499   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1500         return isa<AllocaInst>(I->getOperand(0));
1501       }))
1502     return false;
1503 
1504   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1505     if (I0->getOperand(OI)->getType()->isTokenTy())
1506       // Don't touch any operand of token type.
1507       return false;
1508 
1509     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1510       assert(I->getNumOperands() == I0->getNumOperands());
1511       return I->getOperand(OI) == I0->getOperand(OI);
1512     };
1513     if (!all_of(Insts, SameAsI0)) {
1514       if (!canReplaceOperandWithVariable(I0, OI))
1515         // We can't create a PHI from this GEP.
1516         return false;
1517       // Don't create indirect calls! The called value is the final operand.
1518       if (isa<CallBase>(I0) && OI == OE - 1) {
1519         // FIXME: if the call was *already* indirect, we should do this.
1520         return false;
1521       }
1522       for (auto *I : Insts)
1523         PHIOperands[I].push_back(I->getOperand(OI));
1524     }
1525   }
1526   return true;
1527 }
1528 
1529 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1530 // instruction of every block in Blocks to their common successor, commoning
1531 // into one instruction.
1532 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1533   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1534 
1535   // canSinkLastInstruction returning true guarantees that every block has at
1536   // least one non-terminator instruction.
1537   SmallVector<Instruction*,4> Insts;
1538   for (auto *BB : Blocks) {
1539     Instruction *I = BB->getTerminator();
1540     do {
1541       I = I->getPrevNode();
1542     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1543     if (!isa<DbgInfoIntrinsic>(I))
1544       Insts.push_back(I);
1545   }
1546 
1547   // The only checking we need to do now is that all users of all instructions
1548   // are the same PHI node. canSinkLastInstruction should have checked this but
1549   // it is slightly over-aggressive - it gets confused by commutative instructions
1550   // so double-check it here.
1551   Instruction *I0 = Insts.front();
1552   if (!I0->user_empty()) {
1553     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1554     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1555           auto *U = cast<Instruction>(*I->user_begin());
1556           return U == PNUse;
1557         }))
1558       return false;
1559   }
1560 
1561   // We don't need to do any more checking here; canSinkLastInstruction should
1562   // have done it all for us.
1563   SmallVector<Value*, 4> NewOperands;
1564   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1565     // This check is different to that in canSinkLastInstruction. There, we
1566     // cared about the global view once simplifycfg (and instcombine) have
1567     // completed - it takes into account PHIs that become trivially
1568     // simplifiable.  However here we need a more local view; if an operand
1569     // differs we create a PHI and rely on instcombine to clean up the very
1570     // small mess we may make.
1571     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1572       return I->getOperand(O) != I0->getOperand(O);
1573     });
1574     if (!NeedPHI) {
1575       NewOperands.push_back(I0->getOperand(O));
1576       continue;
1577     }
1578 
1579     // Create a new PHI in the successor block and populate it.
1580     auto *Op = I0->getOperand(O);
1581     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1582     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1583                                Op->getName() + ".sink", &BBEnd->front());
1584     for (auto *I : Insts)
1585       PN->addIncoming(I->getOperand(O), I->getParent());
1586     NewOperands.push_back(PN);
1587   }
1588 
1589   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1590   // and move it to the start of the successor block.
1591   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1592     I0->getOperandUse(O).set(NewOperands[O]);
1593   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1594 
1595   // Update metadata and IR flags, and merge debug locations.
1596   for (auto *I : Insts)
1597     if (I != I0) {
1598       // The debug location for the "common" instruction is the merged locations
1599       // of all the commoned instructions.  We start with the original location
1600       // of the "common" instruction and iteratively merge each location in the
1601       // loop below.
1602       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1603       // However, as N-way merge for CallInst is rare, so we use simplified API
1604       // instead of using complex API for N-way merge.
1605       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1606       combineMetadataForCSE(I0, I, true);
1607       I0->andIRFlags(I);
1608     }
1609 
1610   if (!I0->user_empty()) {
1611     // canSinkLastInstruction checked that all instructions were used by
1612     // one and only one PHI node. Find that now, RAUW it to our common
1613     // instruction and nuke it.
1614     auto *PN = cast<PHINode>(*I0->user_begin());
1615     PN->replaceAllUsesWith(I0);
1616     PN->eraseFromParent();
1617   }
1618 
1619   // Finally nuke all instructions apart from the common instruction.
1620   for (auto *I : Insts)
1621     if (I != I0)
1622       I->eraseFromParent();
1623 
1624   return true;
1625 }
1626 
1627 namespace {
1628 
1629   // LockstepReverseIterator - Iterates through instructions
1630   // in a set of blocks in reverse order from the first non-terminator.
1631   // For example (assume all blocks have size n):
1632   //   LockstepReverseIterator I([B1, B2, B3]);
1633   //   *I-- = [B1[n], B2[n], B3[n]];
1634   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1635   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1636   //   ...
1637   class LockstepReverseIterator {
1638     ArrayRef<BasicBlock*> Blocks;
1639     SmallVector<Instruction*,4> Insts;
1640     bool Fail;
1641 
1642   public:
1643     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1644       reset();
1645     }
1646 
1647     void reset() {
1648       Fail = false;
1649       Insts.clear();
1650       for (auto *BB : Blocks) {
1651         Instruction *Inst = BB->getTerminator();
1652         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1653           Inst = Inst->getPrevNode();
1654         if (!Inst) {
1655           // Block wasn't big enough.
1656           Fail = true;
1657           return;
1658         }
1659         Insts.push_back(Inst);
1660       }
1661     }
1662 
1663     bool isValid() const {
1664       return !Fail;
1665     }
1666 
1667     void operator--() {
1668       if (Fail)
1669         return;
1670       for (auto *&Inst : Insts) {
1671         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1672           Inst = Inst->getPrevNode();
1673         // Already at beginning of block.
1674         if (!Inst) {
1675           Fail = true;
1676           return;
1677         }
1678       }
1679     }
1680 
1681     ArrayRef<Instruction*> operator * () const {
1682       return Insts;
1683     }
1684   };
1685 
1686 } // end anonymous namespace
1687 
1688 /// Check whether BB's predecessors end with unconditional branches. If it is
1689 /// true, sink any common code from the predecessors to BB.
1690 /// We also allow one predecessor to end with conditional branch (but no more
1691 /// than one).
1692 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1693   // We support two situations:
1694   //   (1) all incoming arcs are unconditional
1695   //   (2) one incoming arc is conditional
1696   //
1697   // (2) is very common in switch defaults and
1698   // else-if patterns;
1699   //
1700   //   if (a) f(1);
1701   //   else if (b) f(2);
1702   //
1703   // produces:
1704   //
1705   //       [if]
1706   //      /    \
1707   //    [f(1)] [if]
1708   //      |     | \
1709   //      |     |  |
1710   //      |  [f(2)]|
1711   //       \    | /
1712   //        [ end ]
1713   //
1714   // [end] has two unconditional predecessor arcs and one conditional. The
1715   // conditional refers to the implicit empty 'else' arc. This conditional
1716   // arc can also be caused by an empty default block in a switch.
1717   //
1718   // In this case, we attempt to sink code from all *unconditional* arcs.
1719   // If we can sink instructions from these arcs (determined during the scan
1720   // phase below) we insert a common successor for all unconditional arcs and
1721   // connect that to [end], to enable sinking:
1722   //
1723   //       [if]
1724   //      /    \
1725   //    [x(1)] [if]
1726   //      |     | \
1727   //      |     |  \
1728   //      |  [x(2)] |
1729   //       \   /    |
1730   //   [sink.split] |
1731   //         \     /
1732   //         [ end ]
1733   //
1734   SmallVector<BasicBlock*,4> UnconditionalPreds;
1735   Instruction *Cond = nullptr;
1736   for (auto *B : predecessors(BB)) {
1737     auto *T = B->getTerminator();
1738     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1739       UnconditionalPreds.push_back(B);
1740     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1741       Cond = T;
1742     else
1743       return false;
1744   }
1745   if (UnconditionalPreds.size() < 2)
1746     return false;
1747 
1748   bool Changed = false;
1749   // We take a two-step approach to tail sinking. First we scan from the end of
1750   // each block upwards in lockstep. If the n'th instruction from the end of each
1751   // block can be sunk, those instructions are added to ValuesToSink and we
1752   // carry on. If we can sink an instruction but need to PHI-merge some operands
1753   // (because they're not identical in each instruction) we add these to
1754   // PHIOperands.
1755   unsigned ScanIdx = 0;
1756   SmallPtrSet<Value*,4> InstructionsToSink;
1757   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1758   LockstepReverseIterator LRI(UnconditionalPreds);
1759   while (LRI.isValid() &&
1760          canSinkInstructions(*LRI, PHIOperands)) {
1761     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1762                       << "\n");
1763     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1764     ++ScanIdx;
1765     --LRI;
1766   }
1767 
1768   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1769     unsigned NumPHIdValues = 0;
1770     for (auto *I : *LRI)
1771       for (auto *V : PHIOperands[I])
1772         if (InstructionsToSink.count(V) == 0)
1773           ++NumPHIdValues;
1774     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1775     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1776     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1777         NumPHIInsts++;
1778 
1779     return NumPHIInsts <= 1;
1780   };
1781 
1782   if (ScanIdx > 0 && Cond) {
1783     // Check if we would actually sink anything first! This mutates the CFG and
1784     // adds an extra block. The goal in doing this is to allow instructions that
1785     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1786     // (such as trunc, add) can be sunk and predicated already. So we check that
1787     // we're going to sink at least one non-speculatable instruction.
1788     LRI.reset();
1789     unsigned Idx = 0;
1790     bool Profitable = false;
1791     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1792       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1793         Profitable = true;
1794         break;
1795       }
1796       --LRI;
1797       ++Idx;
1798     }
1799     if (!Profitable)
1800       return false;
1801 
1802     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1803     // We have a conditional edge and we're going to sink some instructions.
1804     // Insert a new block postdominating all blocks we're going to sink from.
1805     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1806       // Edges couldn't be split.
1807       return false;
1808     Changed = true;
1809   }
1810 
1811   // Now that we've analyzed all potential sinking candidates, perform the
1812   // actual sink. We iteratively sink the last non-terminator of the source
1813   // blocks into their common successor unless doing so would require too
1814   // many PHI instructions to be generated (currently only one PHI is allowed
1815   // per sunk instruction).
1816   //
1817   // We can use InstructionsToSink to discount values needing PHI-merging that will
1818   // actually be sunk in a later iteration. This allows us to be more
1819   // aggressive in what we sink. This does allow a false positive where we
1820   // sink presuming a later value will also be sunk, but stop half way through
1821   // and never actually sink it which means we produce more PHIs than intended.
1822   // This is unlikely in practice though.
1823   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1824     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1825                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1826                       << "\n");
1827 
1828     // Because we've sunk every instruction in turn, the current instruction to
1829     // sink is always at index 0.
1830     LRI.reset();
1831     if (!ProfitableToSinkInstruction(LRI)) {
1832       // Too many PHIs would be created.
1833       LLVM_DEBUG(
1834           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1835       break;
1836     }
1837 
1838     if (!sinkLastInstruction(UnconditionalPreds))
1839       return Changed;
1840     NumSinkCommons++;
1841     Changed = true;
1842   }
1843   return Changed;
1844 }
1845 
1846 /// Determine if we can hoist sink a sole store instruction out of a
1847 /// conditional block.
1848 ///
1849 /// We are looking for code like the following:
1850 ///   BrBB:
1851 ///     store i32 %add, i32* %arrayidx2
1852 ///     ... // No other stores or function calls (we could be calling a memory
1853 ///     ... // function).
1854 ///     %cmp = icmp ult %x, %y
1855 ///     br i1 %cmp, label %EndBB, label %ThenBB
1856 ///   ThenBB:
1857 ///     store i32 %add5, i32* %arrayidx2
1858 ///     br label EndBB
1859 ///   EndBB:
1860 ///     ...
1861 ///   We are going to transform this into:
1862 ///   BrBB:
1863 ///     store i32 %add, i32* %arrayidx2
1864 ///     ... //
1865 ///     %cmp = icmp ult %x, %y
1866 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1867 ///     store i32 %add.add5, i32* %arrayidx2
1868 ///     ...
1869 ///
1870 /// \return The pointer to the value of the previous store if the store can be
1871 ///         hoisted into the predecessor block. 0 otherwise.
1872 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1873                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1874   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1875   if (!StoreToHoist)
1876     return nullptr;
1877 
1878   // Volatile or atomic.
1879   if (!StoreToHoist->isSimple())
1880     return nullptr;
1881 
1882   Value *StorePtr = StoreToHoist->getPointerOperand();
1883 
1884   // Look for a store to the same pointer in BrBB.
1885   unsigned MaxNumInstToLookAt = 9;
1886   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1887     if (!MaxNumInstToLookAt)
1888       break;
1889     --MaxNumInstToLookAt;
1890 
1891     // Could be calling an instruction that affects memory like free().
1892     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1893       return nullptr;
1894 
1895     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1896       // Found the previous store make sure it stores to the same location.
1897       if (SI->getPointerOperand() == StorePtr)
1898         // Found the previous store, return its value operand.
1899         return SI->getValueOperand();
1900       return nullptr; // Unknown store.
1901     }
1902   }
1903 
1904   return nullptr;
1905 }
1906 
1907 /// Speculate a conditional basic block flattening the CFG.
1908 ///
1909 /// Note that this is a very risky transform currently. Speculating
1910 /// instructions like this is most often not desirable. Instead, there is an MI
1911 /// pass which can do it with full awareness of the resource constraints.
1912 /// However, some cases are "obvious" and we should do directly. An example of
1913 /// this is speculating a single, reasonably cheap instruction.
1914 ///
1915 /// There is only one distinct advantage to flattening the CFG at the IR level:
1916 /// it makes very common but simplistic optimizations such as are common in
1917 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1918 /// modeling their effects with easier to reason about SSA value graphs.
1919 ///
1920 ///
1921 /// An illustration of this transform is turning this IR:
1922 /// \code
1923 ///   BB:
1924 ///     %cmp = icmp ult %x, %y
1925 ///     br i1 %cmp, label %EndBB, label %ThenBB
1926 ///   ThenBB:
1927 ///     %sub = sub %x, %y
1928 ///     br label BB2
1929 ///   EndBB:
1930 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1931 ///     ...
1932 /// \endcode
1933 ///
1934 /// Into this IR:
1935 /// \code
1936 ///   BB:
1937 ///     %cmp = icmp ult %x, %y
1938 ///     %sub = sub %x, %y
1939 ///     %cond = select i1 %cmp, 0, %sub
1940 ///     ...
1941 /// \endcode
1942 ///
1943 /// \returns true if the conditional block is removed.
1944 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1945                                    const TargetTransformInfo &TTI) {
1946   // Be conservative for now. FP select instruction can often be expensive.
1947   Value *BrCond = BI->getCondition();
1948   if (isa<FCmpInst>(BrCond))
1949     return false;
1950 
1951   BasicBlock *BB = BI->getParent();
1952   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1953 
1954   // If ThenBB is actually on the false edge of the conditional branch, remember
1955   // to swap the select operands later.
1956   bool Invert = false;
1957   if (ThenBB != BI->getSuccessor(0)) {
1958     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1959     Invert = true;
1960   }
1961   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1962 
1963   // Keep a count of how many times instructions are used within ThenBB when
1964   // they are candidates for sinking into ThenBB. Specifically:
1965   // - They are defined in BB, and
1966   // - They have no side effects, and
1967   // - All of their uses are in ThenBB.
1968   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1969 
1970   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1971 
1972   unsigned SpeculationCost = 0;
1973   Value *SpeculatedStoreValue = nullptr;
1974   StoreInst *SpeculatedStore = nullptr;
1975   for (BasicBlock::iterator BBI = ThenBB->begin(),
1976                             BBE = std::prev(ThenBB->end());
1977        BBI != BBE; ++BBI) {
1978     Instruction *I = &*BBI;
1979     // Skip debug info.
1980     if (isa<DbgInfoIntrinsic>(I)) {
1981       SpeculatedDbgIntrinsics.push_back(I);
1982       continue;
1983     }
1984 
1985     // Only speculatively execute a single instruction (not counting the
1986     // terminator) for now.
1987     ++SpeculationCost;
1988     if (SpeculationCost > 1)
1989       return false;
1990 
1991     // Don't hoist the instruction if it's unsafe or expensive.
1992     if (!isSafeToSpeculativelyExecute(I) &&
1993         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1994                                   I, BB, ThenBB, EndBB))))
1995       return false;
1996     if (!SpeculatedStoreValue &&
1997         ComputeSpeculationCost(I, TTI) >
1998             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1999       return false;
2000 
2001     // Store the store speculation candidate.
2002     if (SpeculatedStoreValue)
2003       SpeculatedStore = cast<StoreInst>(I);
2004 
2005     // Do not hoist the instruction if any of its operands are defined but not
2006     // used in BB. The transformation will prevent the operand from
2007     // being sunk into the use block.
2008     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2009       Instruction *OpI = dyn_cast<Instruction>(*i);
2010       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2011         continue; // Not a candidate for sinking.
2012 
2013       ++SinkCandidateUseCounts[OpI];
2014     }
2015   }
2016 
2017   // Consider any sink candidates which are only used in ThenBB as costs for
2018   // speculation. Note, while we iterate over a DenseMap here, we are summing
2019   // and so iteration order isn't significant.
2020   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2021            I = SinkCandidateUseCounts.begin(),
2022            E = SinkCandidateUseCounts.end();
2023        I != E; ++I)
2024     if (I->first->hasNUses(I->second)) {
2025       ++SpeculationCost;
2026       if (SpeculationCost > 1)
2027         return false;
2028     }
2029 
2030   // Check that the PHI nodes can be converted to selects.
2031   bool HaveRewritablePHIs = false;
2032   for (PHINode &PN : EndBB->phis()) {
2033     Value *OrigV = PN.getIncomingValueForBlock(BB);
2034     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2035 
2036     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2037     // Skip PHIs which are trivial.
2038     if (ThenV == OrigV)
2039       continue;
2040 
2041     // Don't convert to selects if we could remove undefined behavior instead.
2042     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2043         passingValueIsAlwaysUndefined(ThenV, &PN))
2044       return false;
2045 
2046     HaveRewritablePHIs = true;
2047     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2048     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2049     if (!OrigCE && !ThenCE)
2050       continue; // Known safe and cheap.
2051 
2052     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2053         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2054       return false;
2055     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2056     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2057     unsigned MaxCost =
2058         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2059     if (OrigCost + ThenCost > MaxCost)
2060       return false;
2061 
2062     // Account for the cost of an unfolded ConstantExpr which could end up
2063     // getting expanded into Instructions.
2064     // FIXME: This doesn't account for how many operations are combined in the
2065     // constant expression.
2066     ++SpeculationCost;
2067     if (SpeculationCost > 1)
2068       return false;
2069   }
2070 
2071   // If there are no PHIs to process, bail early. This helps ensure idempotence
2072   // as well.
2073   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2074     return false;
2075 
2076   // If we get here, we can hoist the instruction and if-convert.
2077   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2078 
2079   // Insert a select of the value of the speculated store.
2080   if (SpeculatedStoreValue) {
2081     IRBuilder<NoFolder> Builder(BI);
2082     Value *TrueV = SpeculatedStore->getValueOperand();
2083     Value *FalseV = SpeculatedStoreValue;
2084     if (Invert)
2085       std::swap(TrueV, FalseV);
2086     Value *S = Builder.CreateSelect(
2087         BrCond, TrueV, FalseV, "spec.store.select", BI);
2088     SpeculatedStore->setOperand(0, S);
2089     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2090                                          SpeculatedStore->getDebugLoc());
2091   }
2092 
2093   // Metadata can be dependent on the condition we are hoisting above.
2094   // Conservatively strip all metadata on the instruction.
2095   for (auto &I : *ThenBB)
2096     I.dropUnknownNonDebugMetadata();
2097 
2098   // Hoist the instructions.
2099   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2100                            ThenBB->begin(), std::prev(ThenBB->end()));
2101 
2102   // Insert selects and rewrite the PHI operands.
2103   IRBuilder<NoFolder> Builder(BI);
2104   for (PHINode &PN : EndBB->phis()) {
2105     unsigned OrigI = PN.getBasicBlockIndex(BB);
2106     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2107     Value *OrigV = PN.getIncomingValue(OrigI);
2108     Value *ThenV = PN.getIncomingValue(ThenI);
2109 
2110     // Skip PHIs which are trivial.
2111     if (OrigV == ThenV)
2112       continue;
2113 
2114     // Create a select whose true value is the speculatively executed value and
2115     // false value is the preexisting value. Swap them if the branch
2116     // destinations were inverted.
2117     Value *TrueV = ThenV, *FalseV = OrigV;
2118     if (Invert)
2119       std::swap(TrueV, FalseV);
2120     Value *V = Builder.CreateSelect(
2121         BrCond, TrueV, FalseV, "spec.select", BI);
2122     PN.setIncomingValue(OrigI, V);
2123     PN.setIncomingValue(ThenI, V);
2124   }
2125 
2126   // Remove speculated dbg intrinsics.
2127   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2128   // dbg value for the different flows and inserting it after the select.
2129   for (Instruction *I : SpeculatedDbgIntrinsics)
2130     I->eraseFromParent();
2131 
2132   ++NumSpeculations;
2133   return true;
2134 }
2135 
2136 /// Return true if we can thread a branch across this block.
2137 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2138   unsigned Size = 0;
2139 
2140   for (Instruction &I : BB->instructionsWithoutDebug()) {
2141     if (Size > 10)
2142       return false; // Don't clone large BB's.
2143     ++Size;
2144 
2145     // We can only support instructions that do not define values that are
2146     // live outside of the current basic block.
2147     for (User *U : I.users()) {
2148       Instruction *UI = cast<Instruction>(U);
2149       if (UI->getParent() != BB || isa<PHINode>(UI))
2150         return false;
2151     }
2152 
2153     // Looks ok, continue checking.
2154   }
2155 
2156   return true;
2157 }
2158 
2159 /// If we have a conditional branch on a PHI node value that is defined in the
2160 /// same block as the branch and if any PHI entries are constants, thread edges
2161 /// corresponding to that entry to be branches to their ultimate destination.
2162 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2163                                 AssumptionCache *AC) {
2164   BasicBlock *BB = BI->getParent();
2165   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2166   // NOTE: we currently cannot transform this case if the PHI node is used
2167   // outside of the block.
2168   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2169     return false;
2170 
2171   // Degenerate case of a single entry PHI.
2172   if (PN->getNumIncomingValues() == 1) {
2173     FoldSingleEntryPHINodes(PN->getParent());
2174     return true;
2175   }
2176 
2177   // Now we know that this block has multiple preds and two succs.
2178   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2179     return false;
2180 
2181   // Can't fold blocks that contain noduplicate or convergent calls.
2182   if (any_of(*BB, [](const Instruction &I) {
2183         const CallInst *CI = dyn_cast<CallInst>(&I);
2184         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2185       }))
2186     return false;
2187 
2188   // Okay, this is a simple enough basic block.  See if any phi values are
2189   // constants.
2190   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2191     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2192     if (!CB || !CB->getType()->isIntegerTy(1))
2193       continue;
2194 
2195     // Okay, we now know that all edges from PredBB should be revectored to
2196     // branch to RealDest.
2197     BasicBlock *PredBB = PN->getIncomingBlock(i);
2198     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2199 
2200     if (RealDest == BB)
2201       continue; // Skip self loops.
2202     // Skip if the predecessor's terminator is an indirect branch.
2203     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2204       continue;
2205 
2206     // The dest block might have PHI nodes, other predecessors and other
2207     // difficult cases.  Instead of being smart about this, just insert a new
2208     // block that jumps to the destination block, effectively splitting
2209     // the edge we are about to create.
2210     BasicBlock *EdgeBB =
2211         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2212                            RealDest->getParent(), RealDest);
2213     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2214     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2215 
2216     // Update PHI nodes.
2217     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2218 
2219     // BB may have instructions that are being threaded over.  Clone these
2220     // instructions into EdgeBB.  We know that there will be no uses of the
2221     // cloned instructions outside of EdgeBB.
2222     BasicBlock::iterator InsertPt = EdgeBB->begin();
2223     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2224     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2225       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2226         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2227         continue;
2228       }
2229       // Clone the instruction.
2230       Instruction *N = BBI->clone();
2231       if (BBI->hasName())
2232         N->setName(BBI->getName() + ".c");
2233 
2234       // Update operands due to translation.
2235       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2236         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2237         if (PI != TranslateMap.end())
2238           *i = PI->second;
2239       }
2240 
2241       // Check for trivial simplification.
2242       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2243         if (!BBI->use_empty())
2244           TranslateMap[&*BBI] = V;
2245         if (!N->mayHaveSideEffects()) {
2246           N->deleteValue(); // Instruction folded away, don't need actual inst
2247           N = nullptr;
2248         }
2249       } else {
2250         if (!BBI->use_empty())
2251           TranslateMap[&*BBI] = N;
2252       }
2253       // Insert the new instruction into its new home.
2254       if (N)
2255         EdgeBB->getInstList().insert(InsertPt, N);
2256 
2257       // Register the new instruction with the assumption cache if necessary.
2258       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2259         if (II->getIntrinsicID() == Intrinsic::assume)
2260           AC->registerAssumption(II);
2261     }
2262 
2263     // Loop over all of the edges from PredBB to BB, changing them to branch
2264     // to EdgeBB instead.
2265     Instruction *PredBBTI = PredBB->getTerminator();
2266     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2267       if (PredBBTI->getSuccessor(i) == BB) {
2268         BB->removePredecessor(PredBB);
2269         PredBBTI->setSuccessor(i, EdgeBB);
2270       }
2271 
2272     // Recurse, simplifying any other constants.
2273     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2274   }
2275 
2276   return false;
2277 }
2278 
2279 /// Given a BB that starts with the specified two-entry PHI node,
2280 /// see if we can eliminate it.
2281 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2282                                 const DataLayout &DL) {
2283   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2284   // statement", which has a very simple dominance structure.  Basically, we
2285   // are trying to find the condition that is being branched on, which
2286   // subsequently causes this merge to happen.  We really want control
2287   // dependence information for this check, but simplifycfg can't keep it up
2288   // to date, and this catches most of the cases we care about anyway.
2289   BasicBlock *BB = PN->getParent();
2290   const Function *Fn = BB->getParent();
2291   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2292     return false;
2293 
2294   BasicBlock *IfTrue, *IfFalse;
2295   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2296   if (!IfCond ||
2297       // Don't bother if the branch will be constant folded trivially.
2298       isa<ConstantInt>(IfCond))
2299     return false;
2300 
2301   // Okay, we found that we can merge this two-entry phi node into a select.
2302   // Doing so would require us to fold *all* two entry phi nodes in this block.
2303   // At some point this becomes non-profitable (particularly if the target
2304   // doesn't support cmov's).  Only do this transformation if there are two or
2305   // fewer PHI nodes in this block.
2306   unsigned NumPhis = 0;
2307   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2308     if (NumPhis > 2)
2309       return false;
2310 
2311   // Loop over the PHI's seeing if we can promote them all to select
2312   // instructions.  While we are at it, keep track of the instructions
2313   // that need to be moved to the dominating block.
2314   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2315   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2316            MaxCostVal1 = PHINodeFoldingThreshold;
2317   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2318   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2319 
2320   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2321     PHINode *PN = cast<PHINode>(II++);
2322     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2323       PN->replaceAllUsesWith(V);
2324       PN->eraseFromParent();
2325       continue;
2326     }
2327 
2328     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2329                              MaxCostVal0, TTI) ||
2330         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2331                              MaxCostVal1, TTI))
2332       return false;
2333   }
2334 
2335   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2336   // we ran out of PHIs then we simplified them all.
2337   PN = dyn_cast<PHINode>(BB->begin());
2338   if (!PN)
2339     return true;
2340 
2341   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2342   // often be turned into switches and other things.
2343   if (PN->getType()->isIntegerTy(1) &&
2344       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2345        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2346        isa<BinaryOperator>(IfCond)))
2347     return false;
2348 
2349   // If all PHI nodes are promotable, check to make sure that all instructions
2350   // in the predecessor blocks can be promoted as well. If not, we won't be able
2351   // to get rid of the control flow, so it's not worth promoting to select
2352   // instructions.
2353   BasicBlock *DomBlock = nullptr;
2354   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2355   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2356   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2357     IfBlock1 = nullptr;
2358   } else {
2359     DomBlock = *pred_begin(IfBlock1);
2360     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2361       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2362         // This is not an aggressive instruction that we can promote.
2363         // Because of this, we won't be able to get rid of the control flow, so
2364         // the xform is not worth it.
2365         return false;
2366       }
2367   }
2368 
2369   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2370     IfBlock2 = nullptr;
2371   } else {
2372     DomBlock = *pred_begin(IfBlock2);
2373     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2374       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2375         // This is not an aggressive instruction that we can promote.
2376         // Because of this, we won't be able to get rid of the control flow, so
2377         // the xform is not worth it.
2378         return false;
2379       }
2380   }
2381 
2382   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2383                     << "  T: " << IfTrue->getName()
2384                     << "  F: " << IfFalse->getName() << "\n");
2385 
2386   // If we can still promote the PHI nodes after this gauntlet of tests,
2387   // do all of the PHI's now.
2388   Instruction *InsertPt = DomBlock->getTerminator();
2389   IRBuilder<NoFolder> Builder(InsertPt);
2390 
2391   // Move all 'aggressive' instructions, which are defined in the
2392   // conditional parts of the if's up to the dominating block.
2393   if (IfBlock1)
2394     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2395   if (IfBlock2)
2396     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2397 
2398   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2399     // Change the PHI node into a select instruction.
2400     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2401     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2402 
2403     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2404     PN->replaceAllUsesWith(Sel);
2405     Sel->takeName(PN);
2406     PN->eraseFromParent();
2407   }
2408 
2409   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2410   // has been flattened.  Change DomBlock to jump directly to our new block to
2411   // avoid other simplifycfg's kicking in on the diamond.
2412   Instruction *OldTI = DomBlock->getTerminator();
2413   Builder.SetInsertPoint(OldTI);
2414   Builder.CreateBr(BB);
2415   OldTI->eraseFromParent();
2416   return true;
2417 }
2418 
2419 /// If we found a conditional branch that goes to two returning blocks,
2420 /// try to merge them together into one return,
2421 /// introducing a select if the return values disagree.
2422 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2423                                            IRBuilder<> &Builder) {
2424   assert(BI->isConditional() && "Must be a conditional branch");
2425   BasicBlock *TrueSucc = BI->getSuccessor(0);
2426   BasicBlock *FalseSucc = BI->getSuccessor(1);
2427   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2428   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2429 
2430   // Check to ensure both blocks are empty (just a return) or optionally empty
2431   // with PHI nodes.  If there are other instructions, merging would cause extra
2432   // computation on one path or the other.
2433   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2434     return false;
2435   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2436     return false;
2437 
2438   Builder.SetInsertPoint(BI);
2439   // Okay, we found a branch that is going to two return nodes.  If
2440   // there is no return value for this function, just change the
2441   // branch into a return.
2442   if (FalseRet->getNumOperands() == 0) {
2443     TrueSucc->removePredecessor(BI->getParent());
2444     FalseSucc->removePredecessor(BI->getParent());
2445     Builder.CreateRetVoid();
2446     EraseTerminatorAndDCECond(BI);
2447     return true;
2448   }
2449 
2450   // Otherwise, figure out what the true and false return values are
2451   // so we can insert a new select instruction.
2452   Value *TrueValue = TrueRet->getReturnValue();
2453   Value *FalseValue = FalseRet->getReturnValue();
2454 
2455   // Unwrap any PHI nodes in the return blocks.
2456   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2457     if (TVPN->getParent() == TrueSucc)
2458       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2459   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2460     if (FVPN->getParent() == FalseSucc)
2461       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2462 
2463   // In order for this transformation to be safe, we must be able to
2464   // unconditionally execute both operands to the return.  This is
2465   // normally the case, but we could have a potentially-trapping
2466   // constant expression that prevents this transformation from being
2467   // safe.
2468   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2469     if (TCV->canTrap())
2470       return false;
2471   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2472     if (FCV->canTrap())
2473       return false;
2474 
2475   // Okay, we collected all the mapped values and checked them for sanity, and
2476   // defined to really do this transformation.  First, update the CFG.
2477   TrueSucc->removePredecessor(BI->getParent());
2478   FalseSucc->removePredecessor(BI->getParent());
2479 
2480   // Insert select instructions where needed.
2481   Value *BrCond = BI->getCondition();
2482   if (TrueValue) {
2483     // Insert a select if the results differ.
2484     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2485     } else if (isa<UndefValue>(TrueValue)) {
2486       TrueValue = FalseValue;
2487     } else {
2488       TrueValue =
2489           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2490     }
2491   }
2492 
2493   Value *RI =
2494       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2495 
2496   (void)RI;
2497 
2498   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2499                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2500                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2501 
2502   EraseTerminatorAndDCECond(BI);
2503 
2504   return true;
2505 }
2506 
2507 /// Return true if the given instruction is available
2508 /// in its predecessor block. If yes, the instruction will be removed.
2509 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2510   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2511     return false;
2512   for (Instruction &I : *PB) {
2513     Instruction *PBI = &I;
2514     // Check whether Inst and PBI generate the same value.
2515     if (Inst->isIdenticalTo(PBI)) {
2516       Inst->replaceAllUsesWith(PBI);
2517       Inst->eraseFromParent();
2518       return true;
2519     }
2520   }
2521   return false;
2522 }
2523 
2524 /// Return true if either PBI or BI has branch weight available, and store
2525 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2526 /// not have branch weight, use 1:1 as its weight.
2527 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2528                                    uint64_t &PredTrueWeight,
2529                                    uint64_t &PredFalseWeight,
2530                                    uint64_t &SuccTrueWeight,
2531                                    uint64_t &SuccFalseWeight) {
2532   bool PredHasWeights =
2533       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2534   bool SuccHasWeights =
2535       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2536   if (PredHasWeights || SuccHasWeights) {
2537     if (!PredHasWeights)
2538       PredTrueWeight = PredFalseWeight = 1;
2539     if (!SuccHasWeights)
2540       SuccTrueWeight = SuccFalseWeight = 1;
2541     return true;
2542   } else {
2543     return false;
2544   }
2545 }
2546 
2547 /// If this basic block is simple enough, and if a predecessor branches to us
2548 /// and one of our successors, fold the block into the predecessor and use
2549 /// logical operations to pick the right destination.
2550 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2551   BasicBlock *BB = BI->getParent();
2552 
2553   const unsigned PredCount = pred_size(BB);
2554 
2555   Instruction *Cond = nullptr;
2556   if (BI->isConditional())
2557     Cond = dyn_cast<Instruction>(BI->getCondition());
2558   else {
2559     // For unconditional branch, check for a simple CFG pattern, where
2560     // BB has a single predecessor and BB's successor is also its predecessor's
2561     // successor. If such pattern exists, check for CSE between BB and its
2562     // predecessor.
2563     if (BasicBlock *PB = BB->getSinglePredecessor())
2564       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2565         if (PBI->isConditional() &&
2566             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2567              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2568           for (auto I = BB->instructionsWithoutDebug().begin(),
2569                     E = BB->instructionsWithoutDebug().end();
2570                I != E;) {
2571             Instruction *Curr = &*I++;
2572             if (isa<CmpInst>(Curr)) {
2573               Cond = Curr;
2574               break;
2575             }
2576             // Quit if we can't remove this instruction.
2577             if (!tryCSEWithPredecessor(Curr, PB))
2578               return false;
2579           }
2580         }
2581 
2582     if (!Cond)
2583       return false;
2584   }
2585 
2586   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2587       Cond->getParent() != BB || !Cond->hasOneUse())
2588     return false;
2589 
2590   // Make sure the instruction after the condition is the cond branch.
2591   BasicBlock::iterator CondIt = ++Cond->getIterator();
2592 
2593   // Ignore dbg intrinsics.
2594   while (isa<DbgInfoIntrinsic>(CondIt))
2595     ++CondIt;
2596 
2597   if (&*CondIt != BI)
2598     return false;
2599 
2600   // Only allow this transformation if computing the condition doesn't involve
2601   // too many instructions and these involved instructions can be executed
2602   // unconditionally. We denote all involved instructions except the condition
2603   // as "bonus instructions", and only allow this transformation when the
2604   // number of the bonus instructions we'll need to create when cloning into
2605   // each predecessor does not exceed a certain threshold.
2606   unsigned NumBonusInsts = 0;
2607   for (auto I = BB->begin(); Cond != &*I; ++I) {
2608     // Ignore dbg intrinsics.
2609     if (isa<DbgInfoIntrinsic>(I))
2610       continue;
2611     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2612       return false;
2613     // I has only one use and can be executed unconditionally.
2614     Instruction *User = dyn_cast<Instruction>(I->user_back());
2615     if (User == nullptr || User->getParent() != BB)
2616       return false;
2617     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2618     // to use any other instruction, User must be an instruction between next(I)
2619     // and Cond.
2620 
2621     // Account for the cost of duplicating this instruction into each
2622     // predecessor.
2623     NumBonusInsts += PredCount;
2624     // Early exits once we reach the limit.
2625     if (NumBonusInsts > BonusInstThreshold)
2626       return false;
2627   }
2628 
2629   // Cond is known to be a compare or binary operator.  Check to make sure that
2630   // neither operand is a potentially-trapping constant expression.
2631   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2632     if (CE->canTrap())
2633       return false;
2634   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2635     if (CE->canTrap())
2636       return false;
2637 
2638   // Finally, don't infinitely unroll conditional loops.
2639   BasicBlock *TrueDest = BI->getSuccessor(0);
2640   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2641   if (TrueDest == BB || FalseDest == BB)
2642     return false;
2643 
2644   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2645     BasicBlock *PredBlock = *PI;
2646     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2647 
2648     // Check that we have two conditional branches.  If there is a PHI node in
2649     // the common successor, verify that the same value flows in from both
2650     // blocks.
2651     SmallVector<PHINode *, 4> PHIs;
2652     if (!PBI || PBI->isUnconditional() ||
2653         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2654         (!BI->isConditional() &&
2655          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2656       continue;
2657 
2658     // Determine if the two branches share a common destination.
2659     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2660     bool InvertPredCond = false;
2661 
2662     if (BI->isConditional()) {
2663       if (PBI->getSuccessor(0) == TrueDest) {
2664         Opc = Instruction::Or;
2665       } else if (PBI->getSuccessor(1) == FalseDest) {
2666         Opc = Instruction::And;
2667       } else if (PBI->getSuccessor(0) == FalseDest) {
2668         Opc = Instruction::And;
2669         InvertPredCond = true;
2670       } else if (PBI->getSuccessor(1) == TrueDest) {
2671         Opc = Instruction::Or;
2672         InvertPredCond = true;
2673       } else {
2674         continue;
2675       }
2676     } else {
2677       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2678         continue;
2679     }
2680 
2681     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2682     IRBuilder<> Builder(PBI);
2683 
2684     // If we need to invert the condition in the pred block to match, do so now.
2685     if (InvertPredCond) {
2686       Value *NewCond = PBI->getCondition();
2687 
2688       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2689         CmpInst *CI = cast<CmpInst>(NewCond);
2690         CI->setPredicate(CI->getInversePredicate());
2691       } else {
2692         NewCond =
2693             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2694       }
2695 
2696       PBI->setCondition(NewCond);
2697       PBI->swapSuccessors();
2698     }
2699 
2700     // If we have bonus instructions, clone them into the predecessor block.
2701     // Note that there may be multiple predecessor blocks, so we cannot move
2702     // bonus instructions to a predecessor block.
2703     ValueToValueMapTy VMap; // maps original values to cloned values
2704     // We already make sure Cond is the last instruction before BI. Therefore,
2705     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2706     // instructions.
2707     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2708       if (isa<DbgInfoIntrinsic>(BonusInst))
2709         continue;
2710       Instruction *NewBonusInst = BonusInst->clone();
2711       RemapInstruction(NewBonusInst, VMap,
2712                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2713       VMap[&*BonusInst] = NewBonusInst;
2714 
2715       // If we moved a load, we cannot any longer claim any knowledge about
2716       // its potential value. The previous information might have been valid
2717       // only given the branch precondition.
2718       // For an analogous reason, we must also drop all the metadata whose
2719       // semantics we don't understand.
2720       NewBonusInst->dropUnknownNonDebugMetadata();
2721 
2722       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2723       NewBonusInst->takeName(&*BonusInst);
2724       BonusInst->setName(BonusInst->getName() + ".old");
2725     }
2726 
2727     // Clone Cond into the predecessor basic block, and or/and the
2728     // two conditions together.
2729     Instruction *CondInPred = Cond->clone();
2730     RemapInstruction(CondInPred, VMap,
2731                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2732     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2733     CondInPred->takeName(Cond);
2734     Cond->setName(CondInPred->getName() + ".old");
2735 
2736     if (BI->isConditional()) {
2737       Instruction *NewCond = cast<Instruction>(
2738           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2739       PBI->setCondition(NewCond);
2740 
2741       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2742       bool HasWeights =
2743           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2744                                  SuccTrueWeight, SuccFalseWeight);
2745       SmallVector<uint64_t, 8> NewWeights;
2746 
2747       if (PBI->getSuccessor(0) == BB) {
2748         if (HasWeights) {
2749           // PBI: br i1 %x, BB, FalseDest
2750           // BI:  br i1 %y, TrueDest, FalseDest
2751           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2752           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2753           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2754           //               TrueWeight for PBI * FalseWeight for BI.
2755           // We assume that total weights of a BranchInst can fit into 32 bits.
2756           // Therefore, we will not have overflow using 64-bit arithmetic.
2757           NewWeights.push_back(PredFalseWeight *
2758                                    (SuccFalseWeight + SuccTrueWeight) +
2759                                PredTrueWeight * SuccFalseWeight);
2760         }
2761         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2762         PBI->setSuccessor(0, TrueDest);
2763       }
2764       if (PBI->getSuccessor(1) == BB) {
2765         if (HasWeights) {
2766           // PBI: br i1 %x, TrueDest, BB
2767           // BI:  br i1 %y, TrueDest, FalseDest
2768           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2769           //              FalseWeight for PBI * TrueWeight for BI.
2770           NewWeights.push_back(PredTrueWeight *
2771                                    (SuccFalseWeight + SuccTrueWeight) +
2772                                PredFalseWeight * SuccTrueWeight);
2773           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2774           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2775         }
2776         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2777         PBI->setSuccessor(1, FalseDest);
2778       }
2779       if (NewWeights.size() == 2) {
2780         // Halve the weights if any of them cannot fit in an uint32_t
2781         FitWeights(NewWeights);
2782 
2783         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2784                                            NewWeights.end());
2785         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2786       } else
2787         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2788     } else {
2789       // Update PHI nodes in the common successors.
2790       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2791         ConstantInt *PBI_C = cast<ConstantInt>(
2792             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2793         assert(PBI_C->getType()->isIntegerTy(1));
2794         Instruction *MergedCond = nullptr;
2795         if (PBI->getSuccessor(0) == TrueDest) {
2796           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2797           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2798           //       is false: !PBI_Cond and BI_Value
2799           Instruction *NotCond = cast<Instruction>(
2800               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2801           MergedCond = cast<Instruction>(
2802                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2803                                    "and.cond"));
2804           if (PBI_C->isOne())
2805             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2806                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2807         } else {
2808           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2809           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2810           //       is false: PBI_Cond and BI_Value
2811           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2812               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2813           if (PBI_C->isOne()) {
2814             Instruction *NotCond = cast<Instruction>(
2815                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2816             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2817                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2818           }
2819         }
2820         // Update PHI Node.
2821         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2822                                   MergedCond);
2823       }
2824       // Change PBI from Conditional to Unconditional.
2825       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2826       EraseTerminatorAndDCECond(PBI);
2827       PBI = New_PBI;
2828     }
2829 
2830     // If BI was a loop latch, it may have had associated loop metadata.
2831     // We need to copy it to the new latch, that is, PBI.
2832     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2833       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2834 
2835     // TODO: If BB is reachable from all paths through PredBlock, then we
2836     // could replace PBI's branch probabilities with BI's.
2837 
2838     // Copy any debug value intrinsics into the end of PredBlock.
2839     for (Instruction &I : *BB)
2840       if (isa<DbgInfoIntrinsic>(I))
2841         I.clone()->insertBefore(PBI);
2842 
2843     return true;
2844   }
2845   return false;
2846 }
2847 
2848 // If there is only one store in BB1 and BB2, return it, otherwise return
2849 // nullptr.
2850 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2851   StoreInst *S = nullptr;
2852   for (auto *BB : {BB1, BB2}) {
2853     if (!BB)
2854       continue;
2855     for (auto &I : *BB)
2856       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2857         if (S)
2858           // Multiple stores seen.
2859           return nullptr;
2860         else
2861           S = SI;
2862       }
2863   }
2864   return S;
2865 }
2866 
2867 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2868                                               Value *AlternativeV = nullptr) {
2869   // PHI is going to be a PHI node that allows the value V that is defined in
2870   // BB to be referenced in BB's only successor.
2871   //
2872   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2873   // doesn't matter to us what the other operand is (it'll never get used). We
2874   // could just create a new PHI with an undef incoming value, but that could
2875   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2876   // other PHI. So here we directly look for some PHI in BB's successor with V
2877   // as an incoming operand. If we find one, we use it, else we create a new
2878   // one.
2879   //
2880   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2881   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2882   // where OtherBB is the single other predecessor of BB's only successor.
2883   PHINode *PHI = nullptr;
2884   BasicBlock *Succ = BB->getSingleSuccessor();
2885 
2886   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2887     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2888       PHI = cast<PHINode>(I);
2889       if (!AlternativeV)
2890         break;
2891 
2892       assert(Succ->hasNPredecessors(2));
2893       auto PredI = pred_begin(Succ);
2894       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2895       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2896         break;
2897       PHI = nullptr;
2898     }
2899   if (PHI)
2900     return PHI;
2901 
2902   // If V is not an instruction defined in BB, just return it.
2903   if (!AlternativeV &&
2904       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2905     return V;
2906 
2907   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2908   PHI->addIncoming(V, BB);
2909   for (BasicBlock *PredBB : predecessors(Succ))
2910     if (PredBB != BB)
2911       PHI->addIncoming(
2912           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2913   return PHI;
2914 }
2915 
2916 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2917                                            BasicBlock *QTB, BasicBlock *QFB,
2918                                            BasicBlock *PostBB, Value *Address,
2919                                            bool InvertPCond, bool InvertQCond,
2920                                            const DataLayout &DL) {
2921   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2922     return Operator::getOpcode(&I) == Instruction::BitCast &&
2923            I.getType()->isPointerTy();
2924   };
2925 
2926   // If we're not in aggressive mode, we only optimize if we have some
2927   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2928   auto IsWorthwhile = [&](BasicBlock *BB) {
2929     if (!BB)
2930       return true;
2931     // Heuristic: if the block can be if-converted/phi-folded and the
2932     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2933     // thread this store.
2934     unsigned N = 0;
2935     for (auto &I : BB->instructionsWithoutDebug()) {
2936       // Cheap instructions viable for folding.
2937       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2938           isa<StoreInst>(I))
2939         ++N;
2940       // Free instructions.
2941       else if (I.isTerminator() || IsaBitcastOfPointerType(I))
2942         continue;
2943       else
2944         return false;
2945     }
2946     // The store we want to merge is counted in N, so add 1 to make sure
2947     // we're counting the instructions that would be left.
2948     return N <= (PHINodeFoldingThreshold + 1);
2949   };
2950 
2951   if (!MergeCondStoresAggressively &&
2952       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2953        !IsWorthwhile(QFB)))
2954     return false;
2955 
2956   // For every pointer, there must be exactly two stores, one coming from
2957   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2958   // store (to any address) in PTB,PFB or QTB,QFB.
2959   // FIXME: We could relax this restriction with a bit more work and performance
2960   // testing.
2961   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2962   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2963   if (!PStore || !QStore)
2964     return false;
2965 
2966   // Now check the stores are compatible.
2967   if (!QStore->isUnordered() || !PStore->isUnordered())
2968     return false;
2969 
2970   // Check that sinking the store won't cause program behavior changes. Sinking
2971   // the store out of the Q blocks won't change any behavior as we're sinking
2972   // from a block to its unconditional successor. But we're moving a store from
2973   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2974   // So we need to check that there are no aliasing loads or stores in
2975   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2976   // operations between PStore and the end of its parent block.
2977   //
2978   // The ideal way to do this is to query AliasAnalysis, but we don't
2979   // preserve AA currently so that is dangerous. Be super safe and just
2980   // check there are no other memory operations at all.
2981   for (auto &I : *QFB->getSinglePredecessor())
2982     if (I.mayReadOrWriteMemory())
2983       return false;
2984   for (auto &I : *QFB)
2985     if (&I != QStore && I.mayReadOrWriteMemory())
2986       return false;
2987   if (QTB)
2988     for (auto &I : *QTB)
2989       if (&I != QStore && I.mayReadOrWriteMemory())
2990         return false;
2991   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2992        I != E; ++I)
2993     if (&*I != PStore && I->mayReadOrWriteMemory())
2994       return false;
2995 
2996   // If PostBB has more than two predecessors, we need to split it so we can
2997   // sink the store.
2998   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
2999     // We know that QFB's only successor is PostBB. And QFB has a single
3000     // predecessor. If QTB exists, then its only successor is also PostBB.
3001     // If QTB does not exist, then QFB's only predecessor has a conditional
3002     // branch to QFB and PostBB.
3003     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3004     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3005                                                "condstore.split");
3006     if (!NewBB)
3007       return false;
3008     PostBB = NewBB;
3009   }
3010 
3011   // OK, we're going to sink the stores to PostBB. The store has to be
3012   // conditional though, so first create the predicate.
3013   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3014                      ->getCondition();
3015   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3016                      ->getCondition();
3017 
3018   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3019                                                 PStore->getParent());
3020   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3021                                                 QStore->getParent(), PPHI);
3022 
3023   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3024 
3025   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3026   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3027 
3028   if (InvertPCond)
3029     PPred = QB.CreateNot(PPred);
3030   if (InvertQCond)
3031     QPred = QB.CreateNot(QPred);
3032   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3033 
3034   auto *T =
3035       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3036   QB.SetInsertPoint(T);
3037   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3038   AAMDNodes AAMD;
3039   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3040   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3041   SI->setAAMetadata(AAMD);
3042   unsigned PAlignment = PStore->getAlignment();
3043   unsigned QAlignment = QStore->getAlignment();
3044   unsigned TypeAlignment =
3045       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3046   unsigned MinAlignment;
3047   unsigned MaxAlignment;
3048   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3049   // Choose the minimum alignment. If we could prove both stores execute, we
3050   // could use biggest one.  In this case, though, we only know that one of the
3051   // stores executes.  And we don't know it's safe to take the alignment from a
3052   // store that doesn't execute.
3053   if (MinAlignment != 0) {
3054     // Choose the minimum of all non-zero alignments.
3055     SI->setAlignment(MinAlignment);
3056   } else if (MaxAlignment != 0) {
3057     // Choose the minimal alignment between the non-zero alignment and the ABI
3058     // default alignment for the type of the stored value.
3059     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3060   } else {
3061     // If both alignments are zero, use ABI default alignment for the type of
3062     // the stored value.
3063     SI->setAlignment(TypeAlignment);
3064   }
3065 
3066   QStore->eraseFromParent();
3067   PStore->eraseFromParent();
3068 
3069   return true;
3070 }
3071 
3072 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3073                                    const DataLayout &DL) {
3074   // The intention here is to find diamonds or triangles (see below) where each
3075   // conditional block contains a store to the same address. Both of these
3076   // stores are conditional, so they can't be unconditionally sunk. But it may
3077   // be profitable to speculatively sink the stores into one merged store at the
3078   // end, and predicate the merged store on the union of the two conditions of
3079   // PBI and QBI.
3080   //
3081   // This can reduce the number of stores executed if both of the conditions are
3082   // true, and can allow the blocks to become small enough to be if-converted.
3083   // This optimization will also chain, so that ladders of test-and-set
3084   // sequences can be if-converted away.
3085   //
3086   // We only deal with simple diamonds or triangles:
3087   //
3088   //     PBI       or      PBI        or a combination of the two
3089   //    /   \               | \
3090   //   PTB  PFB             |  PFB
3091   //    \   /               | /
3092   //     QBI                QBI
3093   //    /  \                | \
3094   //   QTB  QFB             |  QFB
3095   //    \  /                | /
3096   //    PostBB            PostBB
3097   //
3098   // We model triangles as a type of diamond with a nullptr "true" block.
3099   // Triangles are canonicalized so that the fallthrough edge is represented by
3100   // a true condition, as in the diagram above.
3101   BasicBlock *PTB = PBI->getSuccessor(0);
3102   BasicBlock *PFB = PBI->getSuccessor(1);
3103   BasicBlock *QTB = QBI->getSuccessor(0);
3104   BasicBlock *QFB = QBI->getSuccessor(1);
3105   BasicBlock *PostBB = QFB->getSingleSuccessor();
3106 
3107   // Make sure we have a good guess for PostBB. If QTB's only successor is
3108   // QFB, then QFB is a better PostBB.
3109   if (QTB->getSingleSuccessor() == QFB)
3110     PostBB = QFB;
3111 
3112   // If we couldn't find a good PostBB, stop.
3113   if (!PostBB)
3114     return false;
3115 
3116   bool InvertPCond = false, InvertQCond = false;
3117   // Canonicalize fallthroughs to the true branches.
3118   if (PFB == QBI->getParent()) {
3119     std::swap(PFB, PTB);
3120     InvertPCond = true;
3121   }
3122   if (QFB == PostBB) {
3123     std::swap(QFB, QTB);
3124     InvertQCond = true;
3125   }
3126 
3127   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3128   // and QFB may not. Model fallthroughs as a nullptr block.
3129   if (PTB == QBI->getParent())
3130     PTB = nullptr;
3131   if (QTB == PostBB)
3132     QTB = nullptr;
3133 
3134   // Legality bailouts. We must have at least the non-fallthrough blocks and
3135   // the post-dominating block, and the non-fallthroughs must only have one
3136   // predecessor.
3137   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3138     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3139   };
3140   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3141       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3142     return false;
3143   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3144       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3145     return false;
3146   if (!QBI->getParent()->hasNUses(2))
3147     return false;
3148 
3149   // OK, this is a sequence of two diamonds or triangles.
3150   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3151   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3152   for (auto *BB : {PTB, PFB}) {
3153     if (!BB)
3154       continue;
3155     for (auto &I : *BB)
3156       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3157         PStoreAddresses.insert(SI->getPointerOperand());
3158   }
3159   for (auto *BB : {QTB, QFB}) {
3160     if (!BB)
3161       continue;
3162     for (auto &I : *BB)
3163       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3164         QStoreAddresses.insert(SI->getPointerOperand());
3165   }
3166 
3167   set_intersect(PStoreAddresses, QStoreAddresses);
3168   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3169   // clear what it contains.
3170   auto &CommonAddresses = PStoreAddresses;
3171 
3172   bool Changed = false;
3173   for (auto *Address : CommonAddresses)
3174     Changed |= mergeConditionalStoreToAddress(
3175         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3176   return Changed;
3177 }
3178 
3179 /// If we have a conditional branch as a predecessor of another block,
3180 /// this function tries to simplify it.  We know
3181 /// that PBI and BI are both conditional branches, and BI is in one of the
3182 /// successor blocks of PBI - PBI branches to BI.
3183 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3184                                            const DataLayout &DL) {
3185   assert(PBI->isConditional() && BI->isConditional());
3186   BasicBlock *BB = BI->getParent();
3187 
3188   // If this block ends with a branch instruction, and if there is a
3189   // predecessor that ends on a branch of the same condition, make
3190   // this conditional branch redundant.
3191   if (PBI->getCondition() == BI->getCondition() &&
3192       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3193     // Okay, the outcome of this conditional branch is statically
3194     // knowable.  If this block had a single pred, handle specially.
3195     if (BB->getSinglePredecessor()) {
3196       // Turn this into a branch on constant.
3197       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3198       BI->setCondition(
3199           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3200       return true; // Nuke the branch on constant.
3201     }
3202 
3203     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3204     // in the constant and simplify the block result.  Subsequent passes of
3205     // simplifycfg will thread the block.
3206     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3207       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3208       PHINode *NewPN = PHINode::Create(
3209           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3210           BI->getCondition()->getName() + ".pr", &BB->front());
3211       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3212       // predecessor, compute the PHI'd conditional value for all of the preds.
3213       // Any predecessor where the condition is not computable we keep symbolic.
3214       for (pred_iterator PI = PB; PI != PE; ++PI) {
3215         BasicBlock *P = *PI;
3216         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3217             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3218             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3219           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3220           NewPN->addIncoming(
3221               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3222               P);
3223         } else {
3224           NewPN->addIncoming(BI->getCondition(), P);
3225         }
3226       }
3227 
3228       BI->setCondition(NewPN);
3229       return true;
3230     }
3231   }
3232 
3233   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3234     if (CE->canTrap())
3235       return false;
3236 
3237   // If both branches are conditional and both contain stores to the same
3238   // address, remove the stores from the conditionals and create a conditional
3239   // merged store at the end.
3240   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3241     return true;
3242 
3243   // If this is a conditional branch in an empty block, and if any
3244   // predecessors are a conditional branch to one of our destinations,
3245   // fold the conditions into logical ops and one cond br.
3246 
3247   // Ignore dbg intrinsics.
3248   if (&*BB->instructionsWithoutDebug().begin() != BI)
3249     return false;
3250 
3251   int PBIOp, BIOp;
3252   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3253     PBIOp = 0;
3254     BIOp = 0;
3255   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3256     PBIOp = 0;
3257     BIOp = 1;
3258   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3259     PBIOp = 1;
3260     BIOp = 0;
3261   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3262     PBIOp = 1;
3263     BIOp = 1;
3264   } else {
3265     return false;
3266   }
3267 
3268   // Check to make sure that the other destination of this branch
3269   // isn't BB itself.  If so, this is an infinite loop that will
3270   // keep getting unwound.
3271   if (PBI->getSuccessor(PBIOp) == BB)
3272     return false;
3273 
3274   // Do not perform this transformation if it would require
3275   // insertion of a large number of select instructions. For targets
3276   // without predication/cmovs, this is a big pessimization.
3277 
3278   // Also do not perform this transformation if any phi node in the common
3279   // destination block can trap when reached by BB or PBB (PR17073). In that
3280   // case, it would be unsafe to hoist the operation into a select instruction.
3281 
3282   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3283   unsigned NumPhis = 0;
3284   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3285        ++II, ++NumPhis) {
3286     if (NumPhis > 2) // Disable this xform.
3287       return false;
3288 
3289     PHINode *PN = cast<PHINode>(II);
3290     Value *BIV = PN->getIncomingValueForBlock(BB);
3291     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3292       if (CE->canTrap())
3293         return false;
3294 
3295     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3296     Value *PBIV = PN->getIncomingValue(PBBIdx);
3297     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3298       if (CE->canTrap())
3299         return false;
3300   }
3301 
3302   // Finally, if everything is ok, fold the branches to logical ops.
3303   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3304 
3305   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3306                     << "AND: " << *BI->getParent());
3307 
3308   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3309   // branch in it, where one edge (OtherDest) goes back to itself but the other
3310   // exits.  We don't *know* that the program avoids the infinite loop
3311   // (even though that seems likely).  If we do this xform naively, we'll end up
3312   // recursively unpeeling the loop.  Since we know that (after the xform is
3313   // done) that the block *is* infinite if reached, we just make it an obviously
3314   // infinite loop with no cond branch.
3315   if (OtherDest == BB) {
3316     // Insert it at the end of the function, because it's either code,
3317     // or it won't matter if it's hot. :)
3318     BasicBlock *InfLoopBlock =
3319         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3320     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3321     OtherDest = InfLoopBlock;
3322   }
3323 
3324   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3325 
3326   // BI may have other predecessors.  Because of this, we leave
3327   // it alone, but modify PBI.
3328 
3329   // Make sure we get to CommonDest on True&True directions.
3330   Value *PBICond = PBI->getCondition();
3331   IRBuilder<NoFolder> Builder(PBI);
3332   if (PBIOp)
3333     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3334 
3335   Value *BICond = BI->getCondition();
3336   if (BIOp)
3337     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3338 
3339   // Merge the conditions.
3340   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3341 
3342   // Modify PBI to branch on the new condition to the new dests.
3343   PBI->setCondition(Cond);
3344   PBI->setSuccessor(0, CommonDest);
3345   PBI->setSuccessor(1, OtherDest);
3346 
3347   // Update branch weight for PBI.
3348   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3349   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3350   bool HasWeights =
3351       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3352                              SuccTrueWeight, SuccFalseWeight);
3353   if (HasWeights) {
3354     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3355     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3356     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3357     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3358     // The weight to CommonDest should be PredCommon * SuccTotal +
3359     //                                    PredOther * SuccCommon.
3360     // The weight to OtherDest should be PredOther * SuccOther.
3361     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3362                                   PredOther * SuccCommon,
3363                               PredOther * SuccOther};
3364     // Halve the weights if any of them cannot fit in an uint32_t
3365     FitWeights(NewWeights);
3366 
3367     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3368   }
3369 
3370   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3371   // block that are identical to the entries for BI's block.
3372   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3373 
3374   // We know that the CommonDest already had an edge from PBI to
3375   // it.  If it has PHIs though, the PHIs may have different
3376   // entries for BB and PBI's BB.  If so, insert a select to make
3377   // them agree.
3378   for (PHINode &PN : CommonDest->phis()) {
3379     Value *BIV = PN.getIncomingValueForBlock(BB);
3380     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3381     Value *PBIV = PN.getIncomingValue(PBBIdx);
3382     if (BIV != PBIV) {
3383       // Insert a select in PBI to pick the right value.
3384       SelectInst *NV = cast<SelectInst>(
3385           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3386       PN.setIncomingValue(PBBIdx, NV);
3387       // Although the select has the same condition as PBI, the original branch
3388       // weights for PBI do not apply to the new select because the select's
3389       // 'logical' edges are incoming edges of the phi that is eliminated, not
3390       // the outgoing edges of PBI.
3391       if (HasWeights) {
3392         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3393         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3394         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3395         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3396         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3397         // The weight to PredOtherDest should be PredOther * SuccCommon.
3398         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3399                                   PredOther * SuccCommon};
3400 
3401         FitWeights(NewWeights);
3402 
3403         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3404       }
3405     }
3406   }
3407 
3408   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3409   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3410 
3411   // This basic block is probably dead.  We know it has at least
3412   // one fewer predecessor.
3413   return true;
3414 }
3415 
3416 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3417 // true or to FalseBB if Cond is false.
3418 // Takes care of updating the successors and removing the old terminator.
3419 // Also makes sure not to introduce new successors by assuming that edges to
3420 // non-successor TrueBBs and FalseBBs aren't reachable.
3421 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3422                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3423                                        uint32_t TrueWeight,
3424                                        uint32_t FalseWeight) {
3425   // Remove any superfluous successor edges from the CFG.
3426   // First, figure out which successors to preserve.
3427   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3428   // successor.
3429   BasicBlock *KeepEdge1 = TrueBB;
3430   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3431 
3432   // Then remove the rest.
3433   for (BasicBlock *Succ : successors(OldTerm)) {
3434     // Make sure only to keep exactly one copy of each edge.
3435     if (Succ == KeepEdge1)
3436       KeepEdge1 = nullptr;
3437     else if (Succ == KeepEdge2)
3438       KeepEdge2 = nullptr;
3439     else
3440       Succ->removePredecessor(OldTerm->getParent(),
3441                               /*KeepOneInputPHIs=*/true);
3442   }
3443 
3444   IRBuilder<> Builder(OldTerm);
3445   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3446 
3447   // Insert an appropriate new terminator.
3448   if (!KeepEdge1 && !KeepEdge2) {
3449     if (TrueBB == FalseBB)
3450       // We were only looking for one successor, and it was present.
3451       // Create an unconditional branch to it.
3452       Builder.CreateBr(TrueBB);
3453     else {
3454       // We found both of the successors we were looking for.
3455       // Create a conditional branch sharing the condition of the select.
3456       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3457       if (TrueWeight != FalseWeight)
3458         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3459     }
3460   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3461     // Neither of the selected blocks were successors, so this
3462     // terminator must be unreachable.
3463     new UnreachableInst(OldTerm->getContext(), OldTerm);
3464   } else {
3465     // One of the selected values was a successor, but the other wasn't.
3466     // Insert an unconditional branch to the one that was found;
3467     // the edge to the one that wasn't must be unreachable.
3468     if (!KeepEdge1)
3469       // Only TrueBB was found.
3470       Builder.CreateBr(TrueBB);
3471     else
3472       // Only FalseBB was found.
3473       Builder.CreateBr(FalseBB);
3474   }
3475 
3476   EraseTerminatorAndDCECond(OldTerm);
3477   return true;
3478 }
3479 
3480 // Replaces
3481 //   (switch (select cond, X, Y)) on constant X, Y
3482 // with a branch - conditional if X and Y lead to distinct BBs,
3483 // unconditional otherwise.
3484 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3485   // Check for constant integer values in the select.
3486   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3487   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3488   if (!TrueVal || !FalseVal)
3489     return false;
3490 
3491   // Find the relevant condition and destinations.
3492   Value *Condition = Select->getCondition();
3493   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3494   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3495 
3496   // Get weight for TrueBB and FalseBB.
3497   uint32_t TrueWeight = 0, FalseWeight = 0;
3498   SmallVector<uint64_t, 8> Weights;
3499   bool HasWeights = HasBranchWeights(SI);
3500   if (HasWeights) {
3501     GetBranchWeights(SI, Weights);
3502     if (Weights.size() == 1 + SI->getNumCases()) {
3503       TrueWeight =
3504           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3505       FalseWeight =
3506           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3507     }
3508   }
3509 
3510   // Perform the actual simplification.
3511   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3512                                     FalseWeight);
3513 }
3514 
3515 // Replaces
3516 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3517 //                             blockaddress(@fn, BlockB)))
3518 // with
3519 //   (br cond, BlockA, BlockB).
3520 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3521   // Check that both operands of the select are block addresses.
3522   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3523   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3524   if (!TBA || !FBA)
3525     return false;
3526 
3527   // Extract the actual blocks.
3528   BasicBlock *TrueBB = TBA->getBasicBlock();
3529   BasicBlock *FalseBB = FBA->getBasicBlock();
3530 
3531   // Perform the actual simplification.
3532   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3533                                     0);
3534 }
3535 
3536 /// This is called when we find an icmp instruction
3537 /// (a seteq/setne with a constant) as the only instruction in a
3538 /// block that ends with an uncond branch.  We are looking for a very specific
3539 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3540 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3541 /// default value goes to an uncond block with a seteq in it, we get something
3542 /// like:
3543 ///
3544 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3545 /// DEFAULT:
3546 ///   %tmp = icmp eq i8 %A, 92
3547 ///   br label %end
3548 /// end:
3549 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3550 ///
3551 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3552 /// the PHI, merging the third icmp into the switch.
3553 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3554     ICmpInst *ICI, IRBuilder<> &Builder) {
3555   BasicBlock *BB = ICI->getParent();
3556 
3557   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3558   // complex.
3559   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3560     return false;
3561 
3562   Value *V = ICI->getOperand(0);
3563   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3564 
3565   // The pattern we're looking for is where our only predecessor is a switch on
3566   // 'V' and this block is the default case for the switch.  In this case we can
3567   // fold the compared value into the switch to simplify things.
3568   BasicBlock *Pred = BB->getSinglePredecessor();
3569   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3570     return false;
3571 
3572   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3573   if (SI->getCondition() != V)
3574     return false;
3575 
3576   // If BB is reachable on a non-default case, then we simply know the value of
3577   // V in this block.  Substitute it and constant fold the icmp instruction
3578   // away.
3579   if (SI->getDefaultDest() != BB) {
3580     ConstantInt *VVal = SI->findCaseDest(BB);
3581     assert(VVal && "Should have a unique destination value");
3582     ICI->setOperand(0, VVal);
3583 
3584     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3585       ICI->replaceAllUsesWith(V);
3586       ICI->eraseFromParent();
3587     }
3588     // BB is now empty, so it is likely to simplify away.
3589     return requestResimplify();
3590   }
3591 
3592   // Ok, the block is reachable from the default dest.  If the constant we're
3593   // comparing exists in one of the other edges, then we can constant fold ICI
3594   // and zap it.
3595   if (SI->findCaseValue(Cst) != SI->case_default()) {
3596     Value *V;
3597     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3598       V = ConstantInt::getFalse(BB->getContext());
3599     else
3600       V = ConstantInt::getTrue(BB->getContext());
3601 
3602     ICI->replaceAllUsesWith(V);
3603     ICI->eraseFromParent();
3604     // BB is now empty, so it is likely to simplify away.
3605     return requestResimplify();
3606   }
3607 
3608   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3609   // the block.
3610   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3611   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3612   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3613       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3614     return false;
3615 
3616   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3617   // true in the PHI.
3618   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3619   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3620 
3621   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3622     std::swap(DefaultCst, NewCst);
3623 
3624   // Replace ICI (which is used by the PHI for the default value) with true or
3625   // false depending on if it is EQ or NE.
3626   ICI->replaceAllUsesWith(DefaultCst);
3627   ICI->eraseFromParent();
3628 
3629   // Okay, the switch goes to this block on a default value.  Add an edge from
3630   // the switch to the merge point on the compared value.
3631   BasicBlock *NewBB =
3632       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3633   SmallVector<uint64_t, 8> Weights;
3634   bool HasWeights = HasBranchWeights(SI);
3635   if (HasWeights) {
3636     GetBranchWeights(SI, Weights);
3637     if (Weights.size() == 1 + SI->getNumCases()) {
3638       // Split weight for default case to case for "Cst".
3639       Weights[0] = (Weights[0] + 1) >> 1;
3640       Weights.push_back(Weights[0]);
3641 
3642       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3643       setBranchWeights(SI, MDWeights);
3644     }
3645   }
3646   SI->addCase(Cst, NewBB);
3647 
3648   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3649   Builder.SetInsertPoint(NewBB);
3650   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3651   Builder.CreateBr(SuccBlock);
3652   PHIUse->addIncoming(NewCst, NewBB);
3653   return true;
3654 }
3655 
3656 /// The specified branch is a conditional branch.
3657 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3658 /// fold it into a switch instruction if so.
3659 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3660                                       const DataLayout &DL) {
3661   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3662   if (!Cond)
3663     return false;
3664 
3665   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3666   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3667   // 'setne's and'ed together, collect them.
3668 
3669   // Try to gather values from a chain of and/or to be turned into a switch
3670   ConstantComparesGatherer ConstantCompare(Cond, DL);
3671   // Unpack the result
3672   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3673   Value *CompVal = ConstantCompare.CompValue;
3674   unsigned UsedICmps = ConstantCompare.UsedICmps;
3675   Value *ExtraCase = ConstantCompare.Extra;
3676 
3677   // If we didn't have a multiply compared value, fail.
3678   if (!CompVal)
3679     return false;
3680 
3681   // Avoid turning single icmps into a switch.
3682   if (UsedICmps <= 1)
3683     return false;
3684 
3685   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3686 
3687   // There might be duplicate constants in the list, which the switch
3688   // instruction can't handle, remove them now.
3689   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3690   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3691 
3692   // If Extra was used, we require at least two switch values to do the
3693   // transformation.  A switch with one value is just a conditional branch.
3694   if (ExtraCase && Values.size() < 2)
3695     return false;
3696 
3697   // TODO: Preserve branch weight metadata, similarly to how
3698   // FoldValueComparisonIntoPredecessors preserves it.
3699 
3700   // Figure out which block is which destination.
3701   BasicBlock *DefaultBB = BI->getSuccessor(1);
3702   BasicBlock *EdgeBB = BI->getSuccessor(0);
3703   if (!TrueWhenEqual)
3704     std::swap(DefaultBB, EdgeBB);
3705 
3706   BasicBlock *BB = BI->getParent();
3707 
3708   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3709                     << " cases into SWITCH.  BB is:\n"
3710                     << *BB);
3711 
3712   // If there are any extra values that couldn't be folded into the switch
3713   // then we evaluate them with an explicit branch first.  Split the block
3714   // right before the condbr to handle it.
3715   if (ExtraCase) {
3716     BasicBlock *NewBB =
3717         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3718     // Remove the uncond branch added to the old block.
3719     Instruction *OldTI = BB->getTerminator();
3720     Builder.SetInsertPoint(OldTI);
3721 
3722     if (TrueWhenEqual)
3723       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3724     else
3725       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3726 
3727     OldTI->eraseFromParent();
3728 
3729     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3730     // for the edge we just added.
3731     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3732 
3733     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3734                       << "\nEXTRABB = " << *BB);
3735     BB = NewBB;
3736   }
3737 
3738   Builder.SetInsertPoint(BI);
3739   // Convert pointer to int before we switch.
3740   if (CompVal->getType()->isPointerTy()) {
3741     CompVal = Builder.CreatePtrToInt(
3742         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3743   }
3744 
3745   // Create the new switch instruction now.
3746   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3747 
3748   // Add all of the 'cases' to the switch instruction.
3749   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3750     New->addCase(Values[i], EdgeBB);
3751 
3752   // We added edges from PI to the EdgeBB.  As such, if there were any
3753   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3754   // the number of edges added.
3755   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3756     PHINode *PN = cast<PHINode>(BBI);
3757     Value *InVal = PN->getIncomingValueForBlock(BB);
3758     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3759       PN->addIncoming(InVal, BB);
3760   }
3761 
3762   // Erase the old branch instruction.
3763   EraseTerminatorAndDCECond(BI);
3764 
3765   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3766   return true;
3767 }
3768 
3769 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3770   if (isa<PHINode>(RI->getValue()))
3771     return SimplifyCommonResume(RI);
3772   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3773            RI->getValue() == RI->getParent()->getFirstNonPHI())
3774     // The resume must unwind the exception that caused control to branch here.
3775     return SimplifySingleResume(RI);
3776 
3777   return false;
3778 }
3779 
3780 // Simplify resume that is shared by several landing pads (phi of landing pad).
3781 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3782   BasicBlock *BB = RI->getParent();
3783 
3784   // Check that there are no other instructions except for debug intrinsics
3785   // between the phi of landing pads (RI->getValue()) and resume instruction.
3786   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3787                        E = RI->getIterator();
3788   while (++I != E)
3789     if (!isa<DbgInfoIntrinsic>(I))
3790       return false;
3791 
3792   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3793   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3794 
3795   // Check incoming blocks to see if any of them are trivial.
3796   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3797        Idx++) {
3798     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3799     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3800 
3801     // If the block has other successors, we can not delete it because
3802     // it has other dependents.
3803     if (IncomingBB->getUniqueSuccessor() != BB)
3804       continue;
3805 
3806     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3807     // Not the landing pad that caused the control to branch here.
3808     if (IncomingValue != LandingPad)
3809       continue;
3810 
3811     bool isTrivial = true;
3812 
3813     I = IncomingBB->getFirstNonPHI()->getIterator();
3814     E = IncomingBB->getTerminator()->getIterator();
3815     while (++I != E)
3816       if (!isa<DbgInfoIntrinsic>(I)) {
3817         isTrivial = false;
3818         break;
3819       }
3820 
3821     if (isTrivial)
3822       TrivialUnwindBlocks.insert(IncomingBB);
3823   }
3824 
3825   // If no trivial unwind blocks, don't do any simplifications.
3826   if (TrivialUnwindBlocks.empty())
3827     return false;
3828 
3829   // Turn all invokes that unwind here into calls.
3830   for (auto *TrivialBB : TrivialUnwindBlocks) {
3831     // Blocks that will be simplified should be removed from the phi node.
3832     // Note there could be multiple edges to the resume block, and we need
3833     // to remove them all.
3834     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3835       BB->removePredecessor(TrivialBB, true);
3836 
3837     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3838          PI != PE;) {
3839       BasicBlock *Pred = *PI++;
3840       removeUnwindEdge(Pred);
3841     }
3842 
3843     // In each SimplifyCFG run, only the current processed block can be erased.
3844     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3845     // of erasing TrivialBB, we only remove the branch to the common resume
3846     // block so that we can later erase the resume block since it has no
3847     // predecessors.
3848     TrivialBB->getTerminator()->eraseFromParent();
3849     new UnreachableInst(RI->getContext(), TrivialBB);
3850   }
3851 
3852   // Delete the resume block if all its predecessors have been removed.
3853   if (pred_empty(BB))
3854     BB->eraseFromParent();
3855 
3856   return !TrivialUnwindBlocks.empty();
3857 }
3858 
3859 // Simplify resume that is only used by a single (non-phi) landing pad.
3860 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3861   BasicBlock *BB = RI->getParent();
3862   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3863   assert(RI->getValue() == LPInst &&
3864          "Resume must unwind the exception that caused control to here");
3865 
3866   // Check that there are no other instructions except for debug intrinsics.
3867   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3868   while (++I != E)
3869     if (!isa<DbgInfoIntrinsic>(I))
3870       return false;
3871 
3872   // Turn all invokes that unwind here into calls and delete the basic block.
3873   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3874     BasicBlock *Pred = *PI++;
3875     removeUnwindEdge(Pred);
3876   }
3877 
3878   // The landingpad is now unreachable.  Zap it.
3879   if (LoopHeaders)
3880     LoopHeaders->erase(BB);
3881   BB->eraseFromParent();
3882   return true;
3883 }
3884 
3885 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3886   // If this is a trivial cleanup pad that executes no instructions, it can be
3887   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3888   // that is an EH pad will be updated to continue to the caller and any
3889   // predecessor that terminates with an invoke instruction will have its invoke
3890   // instruction converted to a call instruction.  If the cleanup pad being
3891   // simplified does not continue to the caller, each predecessor will be
3892   // updated to continue to the unwind destination of the cleanup pad being
3893   // simplified.
3894   BasicBlock *BB = RI->getParent();
3895   CleanupPadInst *CPInst = RI->getCleanupPad();
3896   if (CPInst->getParent() != BB)
3897     // This isn't an empty cleanup.
3898     return false;
3899 
3900   // We cannot kill the pad if it has multiple uses.  This typically arises
3901   // from unreachable basic blocks.
3902   if (!CPInst->hasOneUse())
3903     return false;
3904 
3905   // Check that there are no other instructions except for benign intrinsics.
3906   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3907   while (++I != E) {
3908     auto *II = dyn_cast<IntrinsicInst>(I);
3909     if (!II)
3910       return false;
3911 
3912     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3913     switch (IntrinsicID) {
3914     case Intrinsic::dbg_declare:
3915     case Intrinsic::dbg_value:
3916     case Intrinsic::dbg_label:
3917     case Intrinsic::lifetime_end:
3918       break;
3919     default:
3920       return false;
3921     }
3922   }
3923 
3924   // If the cleanup return we are simplifying unwinds to the caller, this will
3925   // set UnwindDest to nullptr.
3926   BasicBlock *UnwindDest = RI->getUnwindDest();
3927   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3928 
3929   // We're about to remove BB from the control flow.  Before we do, sink any
3930   // PHINodes into the unwind destination.  Doing this before changing the
3931   // control flow avoids some potentially slow checks, since we can currently
3932   // be certain that UnwindDest and BB have no common predecessors (since they
3933   // are both EH pads).
3934   if (UnwindDest) {
3935     // First, go through the PHI nodes in UnwindDest and update any nodes that
3936     // reference the block we are removing
3937     for (BasicBlock::iterator I = UnwindDest->begin(),
3938                               IE = DestEHPad->getIterator();
3939          I != IE; ++I) {
3940       PHINode *DestPN = cast<PHINode>(I);
3941 
3942       int Idx = DestPN->getBasicBlockIndex(BB);
3943       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3944       assert(Idx != -1);
3945       // This PHI node has an incoming value that corresponds to a control
3946       // path through the cleanup pad we are removing.  If the incoming
3947       // value is in the cleanup pad, it must be a PHINode (because we
3948       // verified above that the block is otherwise empty).  Otherwise, the
3949       // value is either a constant or a value that dominates the cleanup
3950       // pad being removed.
3951       //
3952       // Because BB and UnwindDest are both EH pads, all of their
3953       // predecessors must unwind to these blocks, and since no instruction
3954       // can have multiple unwind destinations, there will be no overlap in
3955       // incoming blocks between SrcPN and DestPN.
3956       Value *SrcVal = DestPN->getIncomingValue(Idx);
3957       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3958 
3959       // Remove the entry for the block we are deleting.
3960       DestPN->removeIncomingValue(Idx, false);
3961 
3962       if (SrcPN && SrcPN->getParent() == BB) {
3963         // If the incoming value was a PHI node in the cleanup pad we are
3964         // removing, we need to merge that PHI node's incoming values into
3965         // DestPN.
3966         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3967              SrcIdx != SrcE; ++SrcIdx) {
3968           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3969                               SrcPN->getIncomingBlock(SrcIdx));
3970         }
3971       } else {
3972         // Otherwise, the incoming value came from above BB and
3973         // so we can just reuse it.  We must associate all of BB's
3974         // predecessors with this value.
3975         for (auto *pred : predecessors(BB)) {
3976           DestPN->addIncoming(SrcVal, pred);
3977         }
3978       }
3979     }
3980 
3981     // Sink any remaining PHI nodes directly into UnwindDest.
3982     Instruction *InsertPt = DestEHPad;
3983     for (BasicBlock::iterator I = BB->begin(),
3984                               IE = BB->getFirstNonPHI()->getIterator();
3985          I != IE;) {
3986       // The iterator must be incremented here because the instructions are
3987       // being moved to another block.
3988       PHINode *PN = cast<PHINode>(I++);
3989       if (PN->use_empty())
3990         // If the PHI node has no uses, just leave it.  It will be erased
3991         // when we erase BB below.
3992         continue;
3993 
3994       // Otherwise, sink this PHI node into UnwindDest.
3995       // Any predecessors to UnwindDest which are not already represented
3996       // must be back edges which inherit the value from the path through
3997       // BB.  In this case, the PHI value must reference itself.
3998       for (auto *pred : predecessors(UnwindDest))
3999         if (pred != BB)
4000           PN->addIncoming(PN, pred);
4001       PN->moveBefore(InsertPt);
4002     }
4003   }
4004 
4005   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4006     // The iterator must be updated here because we are removing this pred.
4007     BasicBlock *PredBB = *PI++;
4008     if (UnwindDest == nullptr) {
4009       removeUnwindEdge(PredBB);
4010     } else {
4011       Instruction *TI = PredBB->getTerminator();
4012       TI->replaceUsesOfWith(BB, UnwindDest);
4013     }
4014   }
4015 
4016   // The cleanup pad is now unreachable.  Zap it.
4017   BB->eraseFromParent();
4018   return true;
4019 }
4020 
4021 // Try to merge two cleanuppads together.
4022 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4023   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4024   // with.
4025   BasicBlock *UnwindDest = RI->getUnwindDest();
4026   if (!UnwindDest)
4027     return false;
4028 
4029   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4030   // be safe to merge without code duplication.
4031   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4032     return false;
4033 
4034   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4035   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4036   if (!SuccessorCleanupPad)
4037     return false;
4038 
4039   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4040   // Replace any uses of the successor cleanupad with the predecessor pad
4041   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4042   // funclet bundle operands.
4043   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4044   // Remove the old cleanuppad.
4045   SuccessorCleanupPad->eraseFromParent();
4046   // Now, we simply replace the cleanupret with a branch to the unwind
4047   // destination.
4048   BranchInst::Create(UnwindDest, RI->getParent());
4049   RI->eraseFromParent();
4050 
4051   return true;
4052 }
4053 
4054 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4055   // It is possible to transiantly have an undef cleanuppad operand because we
4056   // have deleted some, but not all, dead blocks.
4057   // Eventually, this block will be deleted.
4058   if (isa<UndefValue>(RI->getOperand(0)))
4059     return false;
4060 
4061   if (mergeCleanupPad(RI))
4062     return true;
4063 
4064   if (removeEmptyCleanup(RI))
4065     return true;
4066 
4067   return false;
4068 }
4069 
4070 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4071   BasicBlock *BB = RI->getParent();
4072   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4073     return false;
4074 
4075   // Find predecessors that end with branches.
4076   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4077   SmallVector<BranchInst *, 8> CondBranchPreds;
4078   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4079     BasicBlock *P = *PI;
4080     Instruction *PTI = P->getTerminator();
4081     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4082       if (BI->isUnconditional())
4083         UncondBranchPreds.push_back(P);
4084       else
4085         CondBranchPreds.push_back(BI);
4086     }
4087   }
4088 
4089   // If we found some, do the transformation!
4090   if (!UncondBranchPreds.empty() && DupRet) {
4091     while (!UncondBranchPreds.empty()) {
4092       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4093       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4094                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4095       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4096     }
4097 
4098     // If we eliminated all predecessors of the block, delete the block now.
4099     if (pred_empty(BB)) {
4100       // We know there are no successors, so just nuke the block.
4101       if (LoopHeaders)
4102         LoopHeaders->erase(BB);
4103       BB->eraseFromParent();
4104     }
4105 
4106     return true;
4107   }
4108 
4109   // Check out all of the conditional branches going to this return
4110   // instruction.  If any of them just select between returns, change the
4111   // branch itself into a select/return pair.
4112   while (!CondBranchPreds.empty()) {
4113     BranchInst *BI = CondBranchPreds.pop_back_val();
4114 
4115     // Check to see if the non-BB successor is also a return block.
4116     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4117         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4118         SimplifyCondBranchToTwoReturns(BI, Builder))
4119       return true;
4120   }
4121   return false;
4122 }
4123 
4124 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4125   BasicBlock *BB = UI->getParent();
4126 
4127   bool Changed = false;
4128 
4129   // If there are any instructions immediately before the unreachable that can
4130   // be removed, do so.
4131   while (UI->getIterator() != BB->begin()) {
4132     BasicBlock::iterator BBI = UI->getIterator();
4133     --BBI;
4134     // Do not delete instructions that can have side effects which might cause
4135     // the unreachable to not be reachable; specifically, calls and volatile
4136     // operations may have this effect.
4137     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4138       break;
4139 
4140     if (BBI->mayHaveSideEffects()) {
4141       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4142         if (SI->isVolatile())
4143           break;
4144       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4145         if (LI->isVolatile())
4146           break;
4147       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4148         if (RMWI->isVolatile())
4149           break;
4150       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4151         if (CXI->isVolatile())
4152           break;
4153       } else if (isa<CatchPadInst>(BBI)) {
4154         // A catchpad may invoke exception object constructors and such, which
4155         // in some languages can be arbitrary code, so be conservative by
4156         // default.
4157         // For CoreCLR, it just involves a type test, so can be removed.
4158         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4159             EHPersonality::CoreCLR)
4160           break;
4161       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4162                  !isa<LandingPadInst>(BBI)) {
4163         break;
4164       }
4165       // Note that deleting LandingPad's here is in fact okay, although it
4166       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4167       // all the predecessors of this block will be the unwind edges of Invokes,
4168       // and we can therefore guarantee this block will be erased.
4169     }
4170 
4171     // Delete this instruction (any uses are guaranteed to be dead)
4172     if (!BBI->use_empty())
4173       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4174     BBI->eraseFromParent();
4175     Changed = true;
4176   }
4177 
4178   // If the unreachable instruction is the first in the block, take a gander
4179   // at all of the predecessors of this instruction, and simplify them.
4180   if (&BB->front() != UI)
4181     return Changed;
4182 
4183   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4184   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4185     Instruction *TI = Preds[i]->getTerminator();
4186     IRBuilder<> Builder(TI);
4187     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4188       if (BI->isUnconditional()) {
4189         if (BI->getSuccessor(0) == BB) {
4190           new UnreachableInst(TI->getContext(), TI);
4191           TI->eraseFromParent();
4192           Changed = true;
4193         }
4194       } else {
4195         if (BI->getSuccessor(0) == BB) {
4196           Builder.CreateBr(BI->getSuccessor(1));
4197           EraseTerminatorAndDCECond(BI);
4198         } else if (BI->getSuccessor(1) == BB) {
4199           Builder.CreateBr(BI->getSuccessor(0));
4200           EraseTerminatorAndDCECond(BI);
4201           Changed = true;
4202         }
4203       }
4204     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4205       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4206         if (i->getCaseSuccessor() != BB) {
4207           ++i;
4208           continue;
4209         }
4210         BB->removePredecessor(SI->getParent());
4211         i = SI->removeCase(i);
4212         e = SI->case_end();
4213         Changed = true;
4214       }
4215     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4216       if (II->getUnwindDest() == BB) {
4217         removeUnwindEdge(TI->getParent());
4218         Changed = true;
4219       }
4220     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4221       if (CSI->getUnwindDest() == BB) {
4222         removeUnwindEdge(TI->getParent());
4223         Changed = true;
4224         continue;
4225       }
4226 
4227       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4228                                              E = CSI->handler_end();
4229            I != E; ++I) {
4230         if (*I == BB) {
4231           CSI->removeHandler(I);
4232           --I;
4233           --E;
4234           Changed = true;
4235         }
4236       }
4237       if (CSI->getNumHandlers() == 0) {
4238         BasicBlock *CatchSwitchBB = CSI->getParent();
4239         if (CSI->hasUnwindDest()) {
4240           // Redirect preds to the unwind dest
4241           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4242         } else {
4243           // Rewrite all preds to unwind to caller (or from invoke to call).
4244           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4245           for (BasicBlock *EHPred : EHPreds)
4246             removeUnwindEdge(EHPred);
4247         }
4248         // The catchswitch is no longer reachable.
4249         new UnreachableInst(CSI->getContext(), CSI);
4250         CSI->eraseFromParent();
4251         Changed = true;
4252       }
4253     } else if (isa<CleanupReturnInst>(TI)) {
4254       new UnreachableInst(TI->getContext(), TI);
4255       TI->eraseFromParent();
4256       Changed = true;
4257     }
4258   }
4259 
4260   // If this block is now dead, remove it.
4261   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4262     // We know there are no successors, so just nuke the block.
4263     if (LoopHeaders)
4264       LoopHeaders->erase(BB);
4265     BB->eraseFromParent();
4266     return true;
4267   }
4268 
4269   return Changed;
4270 }
4271 
4272 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4273   assert(Cases.size() >= 1);
4274 
4275   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4276   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4277     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4278       return false;
4279   }
4280   return true;
4281 }
4282 
4283 /// Turn a switch with two reachable destinations into an integer range
4284 /// comparison and branch.
4285 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4286   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4287 
4288   bool HasDefault =
4289       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4290 
4291   // Partition the cases into two sets with different destinations.
4292   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4293   BasicBlock *DestB = nullptr;
4294   SmallVector<ConstantInt *, 16> CasesA;
4295   SmallVector<ConstantInt *, 16> CasesB;
4296 
4297   for (auto Case : SI->cases()) {
4298     BasicBlock *Dest = Case.getCaseSuccessor();
4299     if (!DestA)
4300       DestA = Dest;
4301     if (Dest == DestA) {
4302       CasesA.push_back(Case.getCaseValue());
4303       continue;
4304     }
4305     if (!DestB)
4306       DestB = Dest;
4307     if (Dest == DestB) {
4308       CasesB.push_back(Case.getCaseValue());
4309       continue;
4310     }
4311     return false; // More than two destinations.
4312   }
4313 
4314   assert(DestA && DestB &&
4315          "Single-destination switch should have been folded.");
4316   assert(DestA != DestB);
4317   assert(DestB != SI->getDefaultDest());
4318   assert(!CasesB.empty() && "There must be non-default cases.");
4319   assert(!CasesA.empty() || HasDefault);
4320 
4321   // Figure out if one of the sets of cases form a contiguous range.
4322   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4323   BasicBlock *ContiguousDest = nullptr;
4324   BasicBlock *OtherDest = nullptr;
4325   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4326     ContiguousCases = &CasesA;
4327     ContiguousDest = DestA;
4328     OtherDest = DestB;
4329   } else if (CasesAreContiguous(CasesB)) {
4330     ContiguousCases = &CasesB;
4331     ContiguousDest = DestB;
4332     OtherDest = DestA;
4333   } else
4334     return false;
4335 
4336   // Start building the compare and branch.
4337 
4338   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4339   Constant *NumCases =
4340       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4341 
4342   Value *Sub = SI->getCondition();
4343   if (!Offset->isNullValue())
4344     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4345 
4346   Value *Cmp;
4347   // If NumCases overflowed, then all possible values jump to the successor.
4348   if (NumCases->isNullValue() && !ContiguousCases->empty())
4349     Cmp = ConstantInt::getTrue(SI->getContext());
4350   else
4351     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4352   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4353 
4354   // Update weight for the newly-created conditional branch.
4355   if (HasBranchWeights(SI)) {
4356     SmallVector<uint64_t, 8> Weights;
4357     GetBranchWeights(SI, Weights);
4358     if (Weights.size() == 1 + SI->getNumCases()) {
4359       uint64_t TrueWeight = 0;
4360       uint64_t FalseWeight = 0;
4361       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4362         if (SI->getSuccessor(I) == ContiguousDest)
4363           TrueWeight += Weights[I];
4364         else
4365           FalseWeight += Weights[I];
4366       }
4367       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4368         TrueWeight /= 2;
4369         FalseWeight /= 2;
4370       }
4371       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4372     }
4373   }
4374 
4375   // Prune obsolete incoming values off the successors' PHI nodes.
4376   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4377     unsigned PreviousEdges = ContiguousCases->size();
4378     if (ContiguousDest == SI->getDefaultDest())
4379       ++PreviousEdges;
4380     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4381       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4382   }
4383   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4384     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4385     if (OtherDest == SI->getDefaultDest())
4386       ++PreviousEdges;
4387     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4388       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4389   }
4390 
4391   // Drop the switch.
4392   SI->eraseFromParent();
4393 
4394   return true;
4395 }
4396 
4397 /// Compute masked bits for the condition of a switch
4398 /// and use it to remove dead cases.
4399 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4400                                      const DataLayout &DL) {
4401   Value *Cond = SI->getCondition();
4402   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4403   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4404 
4405   // We can also eliminate cases by determining that their values are outside of
4406   // the limited range of the condition based on how many significant (non-sign)
4407   // bits are in the condition value.
4408   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4409   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4410 
4411   // Gather dead cases.
4412   SmallVector<ConstantInt *, 8> DeadCases;
4413   for (auto &Case : SI->cases()) {
4414     const APInt &CaseVal = Case.getCaseValue()->getValue();
4415     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4416         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4417       DeadCases.push_back(Case.getCaseValue());
4418       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4419                         << " is dead.\n");
4420     }
4421   }
4422 
4423   // If we can prove that the cases must cover all possible values, the
4424   // default destination becomes dead and we can remove it.  If we know some
4425   // of the bits in the value, we can use that to more precisely compute the
4426   // number of possible unique case values.
4427   bool HasDefault =
4428       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4429   const unsigned NumUnknownBits =
4430       Bits - (Known.Zero | Known.One).countPopulation();
4431   assert(NumUnknownBits <= Bits);
4432   if (HasDefault && DeadCases.empty() &&
4433       NumUnknownBits < 64 /* avoid overflow */ &&
4434       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4435     LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4436     BasicBlock *NewDefault =
4437         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4438     SI->setDefaultDest(&*NewDefault);
4439     SplitBlock(&*NewDefault, &NewDefault->front());
4440     auto *OldTI = NewDefault->getTerminator();
4441     new UnreachableInst(SI->getContext(), OldTI);
4442     EraseTerminatorAndDCECond(OldTI);
4443     return true;
4444   }
4445 
4446   SmallVector<uint64_t, 8> Weights;
4447   bool HasWeight = HasBranchWeights(SI);
4448   if (HasWeight) {
4449     GetBranchWeights(SI, Weights);
4450     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4451   }
4452 
4453   // Remove dead cases from the switch.
4454   for (ConstantInt *DeadCase : DeadCases) {
4455     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4456     assert(CaseI != SI->case_default() &&
4457            "Case was not found. Probably mistake in DeadCases forming.");
4458     if (HasWeight) {
4459       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4460       Weights.pop_back();
4461     }
4462 
4463     // Prune unused values from PHI nodes.
4464     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4465     SI->removeCase(CaseI);
4466   }
4467   if (HasWeight && Weights.size() >= 2) {
4468     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4469     setBranchWeights(SI, MDWeights);
4470   }
4471 
4472   return !DeadCases.empty();
4473 }
4474 
4475 /// If BB would be eligible for simplification by
4476 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4477 /// by an unconditional branch), look at the phi node for BB in the successor
4478 /// block and see if the incoming value is equal to CaseValue. If so, return
4479 /// the phi node, and set PhiIndex to BB's index in the phi node.
4480 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4481                                               BasicBlock *BB, int *PhiIndex) {
4482   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4483     return nullptr; // BB must be empty to be a candidate for simplification.
4484   if (!BB->getSinglePredecessor())
4485     return nullptr; // BB must be dominated by the switch.
4486 
4487   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4488   if (!Branch || !Branch->isUnconditional())
4489     return nullptr; // Terminator must be unconditional branch.
4490 
4491   BasicBlock *Succ = Branch->getSuccessor(0);
4492 
4493   for (PHINode &PHI : Succ->phis()) {
4494     int Idx = PHI.getBasicBlockIndex(BB);
4495     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4496 
4497     Value *InValue = PHI.getIncomingValue(Idx);
4498     if (InValue != CaseValue)
4499       continue;
4500 
4501     *PhiIndex = Idx;
4502     return &PHI;
4503   }
4504 
4505   return nullptr;
4506 }
4507 
4508 /// Try to forward the condition of a switch instruction to a phi node
4509 /// dominated by the switch, if that would mean that some of the destination
4510 /// blocks of the switch can be folded away. Return true if a change is made.
4511 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4512   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4513 
4514   ForwardingNodesMap ForwardingNodes;
4515   BasicBlock *SwitchBlock = SI->getParent();
4516   bool Changed = false;
4517   for (auto &Case : SI->cases()) {
4518     ConstantInt *CaseValue = Case.getCaseValue();
4519     BasicBlock *CaseDest = Case.getCaseSuccessor();
4520 
4521     // Replace phi operands in successor blocks that are using the constant case
4522     // value rather than the switch condition variable:
4523     //   switchbb:
4524     //   switch i32 %x, label %default [
4525     //     i32 17, label %succ
4526     //   ...
4527     //   succ:
4528     //     %r = phi i32 ... [ 17, %switchbb ] ...
4529     // -->
4530     //     %r = phi i32 ... [ %x, %switchbb ] ...
4531 
4532     for (PHINode &Phi : CaseDest->phis()) {
4533       // This only works if there is exactly 1 incoming edge from the switch to
4534       // a phi. If there is >1, that means multiple cases of the switch map to 1
4535       // value in the phi, and that phi value is not the switch condition. Thus,
4536       // this transform would not make sense (the phi would be invalid because
4537       // a phi can't have different incoming values from the same block).
4538       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4539       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4540           count(Phi.blocks(), SwitchBlock) == 1) {
4541         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4542         Changed = true;
4543       }
4544     }
4545 
4546     // Collect phi nodes that are indirectly using this switch's case constants.
4547     int PhiIdx;
4548     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4549       ForwardingNodes[Phi].push_back(PhiIdx);
4550   }
4551 
4552   for (auto &ForwardingNode : ForwardingNodes) {
4553     PHINode *Phi = ForwardingNode.first;
4554     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4555     if (Indexes.size() < 2)
4556       continue;
4557 
4558     for (int Index : Indexes)
4559       Phi->setIncomingValue(Index, SI->getCondition());
4560     Changed = true;
4561   }
4562 
4563   return Changed;
4564 }
4565 
4566 /// Return true if the backend will be able to handle
4567 /// initializing an array of constants like C.
4568 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4569   if (C->isThreadDependent())
4570     return false;
4571   if (C->isDLLImportDependent())
4572     return false;
4573 
4574   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4575       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4576       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4577     return false;
4578 
4579   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4580     if (!CE->isGEPWithNoNotionalOverIndexing())
4581       return false;
4582     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4583       return false;
4584   }
4585 
4586   if (!TTI.shouldBuildLookupTablesForConstant(C))
4587     return false;
4588 
4589   return true;
4590 }
4591 
4592 /// If V is a Constant, return it. Otherwise, try to look up
4593 /// its constant value in ConstantPool, returning 0 if it's not there.
4594 static Constant *
4595 LookupConstant(Value *V,
4596                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4597   if (Constant *C = dyn_cast<Constant>(V))
4598     return C;
4599   return ConstantPool.lookup(V);
4600 }
4601 
4602 /// Try to fold instruction I into a constant. This works for
4603 /// simple instructions such as binary operations where both operands are
4604 /// constant or can be replaced by constants from the ConstantPool. Returns the
4605 /// resulting constant on success, 0 otherwise.
4606 static Constant *
4607 ConstantFold(Instruction *I, const DataLayout &DL,
4608              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4609   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4610     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4611     if (!A)
4612       return nullptr;
4613     if (A->isAllOnesValue())
4614       return LookupConstant(Select->getTrueValue(), ConstantPool);
4615     if (A->isNullValue())
4616       return LookupConstant(Select->getFalseValue(), ConstantPool);
4617     return nullptr;
4618   }
4619 
4620   SmallVector<Constant *, 4> COps;
4621   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4622     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4623       COps.push_back(A);
4624     else
4625       return nullptr;
4626   }
4627 
4628   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4629     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4630                                            COps[1], DL);
4631   }
4632 
4633   return ConstantFoldInstOperands(I, COps, DL);
4634 }
4635 
4636 /// Try to determine the resulting constant values in phi nodes
4637 /// at the common destination basic block, *CommonDest, for one of the case
4638 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4639 /// case), of a switch instruction SI.
4640 static bool
4641 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4642                BasicBlock **CommonDest,
4643                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4644                const DataLayout &DL, const TargetTransformInfo &TTI) {
4645   // The block from which we enter the common destination.
4646   BasicBlock *Pred = SI->getParent();
4647 
4648   // If CaseDest is empty except for some side-effect free instructions through
4649   // which we can constant-propagate the CaseVal, continue to its successor.
4650   SmallDenseMap<Value *, Constant *> ConstantPool;
4651   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4652   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4653     if (I.isTerminator()) {
4654       // If the terminator is a simple branch, continue to the next block.
4655       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4656         return false;
4657       Pred = CaseDest;
4658       CaseDest = I.getSuccessor(0);
4659     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4660       // Instruction is side-effect free and constant.
4661 
4662       // If the instruction has uses outside this block or a phi node slot for
4663       // the block, it is not safe to bypass the instruction since it would then
4664       // no longer dominate all its uses.
4665       for (auto &Use : I.uses()) {
4666         User *User = Use.getUser();
4667         if (Instruction *I = dyn_cast<Instruction>(User))
4668           if (I->getParent() == CaseDest)
4669             continue;
4670         if (PHINode *Phi = dyn_cast<PHINode>(User))
4671           if (Phi->getIncomingBlock(Use) == CaseDest)
4672             continue;
4673         return false;
4674       }
4675 
4676       ConstantPool.insert(std::make_pair(&I, C));
4677     } else {
4678       break;
4679     }
4680   }
4681 
4682   // If we did not have a CommonDest before, use the current one.
4683   if (!*CommonDest)
4684     *CommonDest = CaseDest;
4685   // If the destination isn't the common one, abort.
4686   if (CaseDest != *CommonDest)
4687     return false;
4688 
4689   // Get the values for this case from phi nodes in the destination block.
4690   for (PHINode &PHI : (*CommonDest)->phis()) {
4691     int Idx = PHI.getBasicBlockIndex(Pred);
4692     if (Idx == -1)
4693       continue;
4694 
4695     Constant *ConstVal =
4696         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4697     if (!ConstVal)
4698       return false;
4699 
4700     // Be conservative about which kinds of constants we support.
4701     if (!ValidLookupTableConstant(ConstVal, TTI))
4702       return false;
4703 
4704     Res.push_back(std::make_pair(&PHI, ConstVal));
4705   }
4706 
4707   return Res.size() > 0;
4708 }
4709 
4710 // Helper function used to add CaseVal to the list of cases that generate
4711 // Result. Returns the updated number of cases that generate this result.
4712 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4713                                  SwitchCaseResultVectorTy &UniqueResults,
4714                                  Constant *Result) {
4715   for (auto &I : UniqueResults) {
4716     if (I.first == Result) {
4717       I.second.push_back(CaseVal);
4718       return I.second.size();
4719     }
4720   }
4721   UniqueResults.push_back(
4722       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4723   return 1;
4724 }
4725 
4726 // Helper function that initializes a map containing
4727 // results for the PHI node of the common destination block for a switch
4728 // instruction. Returns false if multiple PHI nodes have been found or if
4729 // there is not a common destination block for the switch.
4730 static bool
4731 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4732                       SwitchCaseResultVectorTy &UniqueResults,
4733                       Constant *&DefaultResult, const DataLayout &DL,
4734                       const TargetTransformInfo &TTI,
4735                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4736   for (auto &I : SI->cases()) {
4737     ConstantInt *CaseVal = I.getCaseValue();
4738 
4739     // Resulting value at phi nodes for this case value.
4740     SwitchCaseResultsTy Results;
4741     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4742                         DL, TTI))
4743       return false;
4744 
4745     // Only one value per case is permitted.
4746     if (Results.size() > 1)
4747       return false;
4748 
4749     // Add the case->result mapping to UniqueResults.
4750     const uintptr_t NumCasesForResult =
4751         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4752 
4753     // Early out if there are too many cases for this result.
4754     if (NumCasesForResult > MaxCasesPerResult)
4755       return false;
4756 
4757     // Early out if there are too many unique results.
4758     if (UniqueResults.size() > MaxUniqueResults)
4759       return false;
4760 
4761     // Check the PHI consistency.
4762     if (!PHI)
4763       PHI = Results[0].first;
4764     else if (PHI != Results[0].first)
4765       return false;
4766   }
4767   // Find the default result value.
4768   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4769   BasicBlock *DefaultDest = SI->getDefaultDest();
4770   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4771                  DL, TTI);
4772   // If the default value is not found abort unless the default destination
4773   // is unreachable.
4774   DefaultResult =
4775       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4776   if ((!DefaultResult &&
4777        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4778     return false;
4779 
4780   return true;
4781 }
4782 
4783 // Helper function that checks if it is possible to transform a switch with only
4784 // two cases (or two cases + default) that produces a result into a select.
4785 // Example:
4786 // switch (a) {
4787 //   case 10:                %0 = icmp eq i32 %a, 10
4788 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4789 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4790 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4791 //   default:
4792 //     return 4;
4793 // }
4794 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4795                                    Constant *DefaultResult, Value *Condition,
4796                                    IRBuilder<> &Builder) {
4797   assert(ResultVector.size() == 2 &&
4798          "We should have exactly two unique results at this point");
4799   // If we are selecting between only two cases transform into a simple
4800   // select or a two-way select if default is possible.
4801   if (ResultVector[0].second.size() == 1 &&
4802       ResultVector[1].second.size() == 1) {
4803     ConstantInt *const FirstCase = ResultVector[0].second[0];
4804     ConstantInt *const SecondCase = ResultVector[1].second[0];
4805 
4806     bool DefaultCanTrigger = DefaultResult;
4807     Value *SelectValue = ResultVector[1].first;
4808     if (DefaultCanTrigger) {
4809       Value *const ValueCompare =
4810           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4811       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4812                                          DefaultResult, "switch.select");
4813     }
4814     Value *const ValueCompare =
4815         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4816     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4817                                 SelectValue, "switch.select");
4818   }
4819 
4820   return nullptr;
4821 }
4822 
4823 // Helper function to cleanup a switch instruction that has been converted into
4824 // a select, fixing up PHI nodes and basic blocks.
4825 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4826                                               Value *SelectValue,
4827                                               IRBuilder<> &Builder) {
4828   BasicBlock *SelectBB = SI->getParent();
4829   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4830     PHI->removeIncomingValue(SelectBB);
4831   PHI->addIncoming(SelectValue, SelectBB);
4832 
4833   Builder.CreateBr(PHI->getParent());
4834 
4835   // Remove the switch.
4836   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4837     BasicBlock *Succ = SI->getSuccessor(i);
4838 
4839     if (Succ == PHI->getParent())
4840       continue;
4841     Succ->removePredecessor(SelectBB);
4842   }
4843   SI->eraseFromParent();
4844 }
4845 
4846 /// If the switch is only used to initialize one or more
4847 /// phi nodes in a common successor block with only two different
4848 /// constant values, replace the switch with select.
4849 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4850                            const DataLayout &DL,
4851                            const TargetTransformInfo &TTI) {
4852   Value *const Cond = SI->getCondition();
4853   PHINode *PHI = nullptr;
4854   BasicBlock *CommonDest = nullptr;
4855   Constant *DefaultResult;
4856   SwitchCaseResultVectorTy UniqueResults;
4857   // Collect all the cases that will deliver the same value from the switch.
4858   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4859                              DL, TTI, 2, 1))
4860     return false;
4861   // Selects choose between maximum two values.
4862   if (UniqueResults.size() != 2)
4863     return false;
4864   assert(PHI != nullptr && "PHI for value select not found");
4865 
4866   Builder.SetInsertPoint(SI);
4867   Value *SelectValue =
4868       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4869   if (SelectValue) {
4870     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4871     return true;
4872   }
4873   // The switch couldn't be converted into a select.
4874   return false;
4875 }
4876 
4877 namespace {
4878 
4879 /// This class represents a lookup table that can be used to replace a switch.
4880 class SwitchLookupTable {
4881 public:
4882   /// Create a lookup table to use as a switch replacement with the contents
4883   /// of Values, using DefaultValue to fill any holes in the table.
4884   SwitchLookupTable(
4885       Module &M, uint64_t TableSize, ConstantInt *Offset,
4886       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4887       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4888 
4889   /// Build instructions with Builder to retrieve the value at
4890   /// the position given by Index in the lookup table.
4891   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4892 
4893   /// Return true if a table with TableSize elements of
4894   /// type ElementType would fit in a target-legal register.
4895   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4896                                  Type *ElementType);
4897 
4898 private:
4899   // Depending on the contents of the table, it can be represented in
4900   // different ways.
4901   enum {
4902     // For tables where each element contains the same value, we just have to
4903     // store that single value and return it for each lookup.
4904     SingleValueKind,
4905 
4906     // For tables where there is a linear relationship between table index
4907     // and values. We calculate the result with a simple multiplication
4908     // and addition instead of a table lookup.
4909     LinearMapKind,
4910 
4911     // For small tables with integer elements, we can pack them into a bitmap
4912     // that fits into a target-legal register. Values are retrieved by
4913     // shift and mask operations.
4914     BitMapKind,
4915 
4916     // The table is stored as an array of values. Values are retrieved by load
4917     // instructions from the table.
4918     ArrayKind
4919   } Kind;
4920 
4921   // For SingleValueKind, this is the single value.
4922   Constant *SingleValue = nullptr;
4923 
4924   // For BitMapKind, this is the bitmap.
4925   ConstantInt *BitMap = nullptr;
4926   IntegerType *BitMapElementTy = nullptr;
4927 
4928   // For LinearMapKind, these are the constants used to derive the value.
4929   ConstantInt *LinearOffset = nullptr;
4930   ConstantInt *LinearMultiplier = nullptr;
4931 
4932   // For ArrayKind, this is the array.
4933   GlobalVariable *Array = nullptr;
4934 };
4935 
4936 } // end anonymous namespace
4937 
4938 SwitchLookupTable::SwitchLookupTable(
4939     Module &M, uint64_t TableSize, ConstantInt *Offset,
4940     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4941     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4942   assert(Values.size() && "Can't build lookup table without values!");
4943   assert(TableSize >= Values.size() && "Can't fit values in table!");
4944 
4945   // If all values in the table are equal, this is that value.
4946   SingleValue = Values.begin()->second;
4947 
4948   Type *ValueType = Values.begin()->second->getType();
4949 
4950   // Build up the table contents.
4951   SmallVector<Constant *, 64> TableContents(TableSize);
4952   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4953     ConstantInt *CaseVal = Values[I].first;
4954     Constant *CaseRes = Values[I].second;
4955     assert(CaseRes->getType() == ValueType);
4956 
4957     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4958     TableContents[Idx] = CaseRes;
4959 
4960     if (CaseRes != SingleValue)
4961       SingleValue = nullptr;
4962   }
4963 
4964   // Fill in any holes in the table with the default result.
4965   if (Values.size() < TableSize) {
4966     assert(DefaultValue &&
4967            "Need a default value to fill the lookup table holes.");
4968     assert(DefaultValue->getType() == ValueType);
4969     for (uint64_t I = 0; I < TableSize; ++I) {
4970       if (!TableContents[I])
4971         TableContents[I] = DefaultValue;
4972     }
4973 
4974     if (DefaultValue != SingleValue)
4975       SingleValue = nullptr;
4976   }
4977 
4978   // If each element in the table contains the same value, we only need to store
4979   // that single value.
4980   if (SingleValue) {
4981     Kind = SingleValueKind;
4982     return;
4983   }
4984 
4985   // Check if we can derive the value with a linear transformation from the
4986   // table index.
4987   if (isa<IntegerType>(ValueType)) {
4988     bool LinearMappingPossible = true;
4989     APInt PrevVal;
4990     APInt DistToPrev;
4991     assert(TableSize >= 2 && "Should be a SingleValue table.");
4992     // Check if there is the same distance between two consecutive values.
4993     for (uint64_t I = 0; I < TableSize; ++I) {
4994       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4995       if (!ConstVal) {
4996         // This is an undef. We could deal with it, but undefs in lookup tables
4997         // are very seldom. It's probably not worth the additional complexity.
4998         LinearMappingPossible = false;
4999         break;
5000       }
5001       const APInt &Val = ConstVal->getValue();
5002       if (I != 0) {
5003         APInt Dist = Val - PrevVal;
5004         if (I == 1) {
5005           DistToPrev = Dist;
5006         } else if (Dist != DistToPrev) {
5007           LinearMappingPossible = false;
5008           break;
5009         }
5010       }
5011       PrevVal = Val;
5012     }
5013     if (LinearMappingPossible) {
5014       LinearOffset = cast<ConstantInt>(TableContents[0]);
5015       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5016       Kind = LinearMapKind;
5017       ++NumLinearMaps;
5018       return;
5019     }
5020   }
5021 
5022   // If the type is integer and the table fits in a register, build a bitmap.
5023   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5024     IntegerType *IT = cast<IntegerType>(ValueType);
5025     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5026     for (uint64_t I = TableSize; I > 0; --I) {
5027       TableInt <<= IT->getBitWidth();
5028       // Insert values into the bitmap. Undef values are set to zero.
5029       if (!isa<UndefValue>(TableContents[I - 1])) {
5030         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5031         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5032       }
5033     }
5034     BitMap = ConstantInt::get(M.getContext(), TableInt);
5035     BitMapElementTy = IT;
5036     Kind = BitMapKind;
5037     ++NumBitMaps;
5038     return;
5039   }
5040 
5041   // Store the table in an array.
5042   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5043   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5044 
5045   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5046                              GlobalVariable::PrivateLinkage, Initializer,
5047                              "switch.table." + FuncName);
5048   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5049   // Set the alignment to that of an array items. We will be only loading one
5050   // value out of it.
5051   Array->setAlignment(DL.getPrefTypeAlignment(ValueType));
5052   Kind = ArrayKind;
5053 }
5054 
5055 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5056   switch (Kind) {
5057   case SingleValueKind:
5058     return SingleValue;
5059   case LinearMapKind: {
5060     // Derive the result value from the input value.
5061     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5062                                           false, "switch.idx.cast");
5063     if (!LinearMultiplier->isOne())
5064       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5065     if (!LinearOffset->isZero())
5066       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5067     return Result;
5068   }
5069   case BitMapKind: {
5070     // Type of the bitmap (e.g. i59).
5071     IntegerType *MapTy = BitMap->getType();
5072 
5073     // Cast Index to the same type as the bitmap.
5074     // Note: The Index is <= the number of elements in the table, so
5075     // truncating it to the width of the bitmask is safe.
5076     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5077 
5078     // Multiply the shift amount by the element width.
5079     ShiftAmt = Builder.CreateMul(
5080         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5081         "switch.shiftamt");
5082 
5083     // Shift down.
5084     Value *DownShifted =
5085         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5086     // Mask off.
5087     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5088   }
5089   case ArrayKind: {
5090     // Make sure the table index will not overflow when treated as signed.
5091     IntegerType *IT = cast<IntegerType>(Index->getType());
5092     uint64_t TableSize =
5093         Array->getInitializer()->getType()->getArrayNumElements();
5094     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5095       Index = Builder.CreateZExt(
5096           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5097           "switch.tableidx.zext");
5098 
5099     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5100     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5101                                            GEPIndices, "switch.gep");
5102     return Builder.CreateLoad(
5103         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5104         "switch.load");
5105   }
5106   }
5107   llvm_unreachable("Unknown lookup table kind!");
5108 }
5109 
5110 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5111                                            uint64_t TableSize,
5112                                            Type *ElementType) {
5113   auto *IT = dyn_cast<IntegerType>(ElementType);
5114   if (!IT)
5115     return false;
5116   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5117   // are <= 15, we could try to narrow the type.
5118 
5119   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5120   if (TableSize >= UINT_MAX / IT->getBitWidth())
5121     return false;
5122   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5123 }
5124 
5125 /// Determine whether a lookup table should be built for this switch, based on
5126 /// the number of cases, size of the table, and the types of the results.
5127 static bool
5128 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5129                        const TargetTransformInfo &TTI, const DataLayout &DL,
5130                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5131   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5132     return false; // TableSize overflowed, or mul below might overflow.
5133 
5134   bool AllTablesFitInRegister = true;
5135   bool HasIllegalType = false;
5136   for (const auto &I : ResultTypes) {
5137     Type *Ty = I.second;
5138 
5139     // Saturate this flag to true.
5140     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5141 
5142     // Saturate this flag to false.
5143     AllTablesFitInRegister =
5144         AllTablesFitInRegister &&
5145         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5146 
5147     // If both flags saturate, we're done. NOTE: This *only* works with
5148     // saturating flags, and all flags have to saturate first due to the
5149     // non-deterministic behavior of iterating over a dense map.
5150     if (HasIllegalType && !AllTablesFitInRegister)
5151       break;
5152   }
5153 
5154   // If each table would fit in a register, we should build it anyway.
5155   if (AllTablesFitInRegister)
5156     return true;
5157 
5158   // Don't build a table that doesn't fit in-register if it has illegal types.
5159   if (HasIllegalType)
5160     return false;
5161 
5162   // The table density should be at least 40%. This is the same criterion as for
5163   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5164   // FIXME: Find the best cut-off.
5165   return SI->getNumCases() * 10 >= TableSize * 4;
5166 }
5167 
5168 /// Try to reuse the switch table index compare. Following pattern:
5169 /// \code
5170 ///     if (idx < tablesize)
5171 ///        r = table[idx]; // table does not contain default_value
5172 ///     else
5173 ///        r = default_value;
5174 ///     if (r != default_value)
5175 ///        ...
5176 /// \endcode
5177 /// Is optimized to:
5178 /// \code
5179 ///     cond = idx < tablesize;
5180 ///     if (cond)
5181 ///        r = table[idx];
5182 ///     else
5183 ///        r = default_value;
5184 ///     if (cond)
5185 ///        ...
5186 /// \endcode
5187 /// Jump threading will then eliminate the second if(cond).
5188 static void reuseTableCompare(
5189     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5190     Constant *DefaultValue,
5191     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5192   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5193   if (!CmpInst)
5194     return;
5195 
5196   // We require that the compare is in the same block as the phi so that jump
5197   // threading can do its work afterwards.
5198   if (CmpInst->getParent() != PhiBlock)
5199     return;
5200 
5201   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5202   if (!CmpOp1)
5203     return;
5204 
5205   Value *RangeCmp = RangeCheckBranch->getCondition();
5206   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5207   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5208 
5209   // Check if the compare with the default value is constant true or false.
5210   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5211                                                  DefaultValue, CmpOp1, true);
5212   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5213     return;
5214 
5215   // Check if the compare with the case values is distinct from the default
5216   // compare result.
5217   for (auto ValuePair : Values) {
5218     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5219                                                 ValuePair.second, CmpOp1, true);
5220     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5221       return;
5222     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5223            "Expect true or false as compare result.");
5224   }
5225 
5226   // Check if the branch instruction dominates the phi node. It's a simple
5227   // dominance check, but sufficient for our needs.
5228   // Although this check is invariant in the calling loops, it's better to do it
5229   // at this late stage. Practically we do it at most once for a switch.
5230   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5231   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5232     BasicBlock *Pred = *PI;
5233     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5234       return;
5235   }
5236 
5237   if (DefaultConst == FalseConst) {
5238     // The compare yields the same result. We can replace it.
5239     CmpInst->replaceAllUsesWith(RangeCmp);
5240     ++NumTableCmpReuses;
5241   } else {
5242     // The compare yields the same result, just inverted. We can replace it.
5243     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5244         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5245         RangeCheckBranch);
5246     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5247     ++NumTableCmpReuses;
5248   }
5249 }
5250 
5251 /// If the switch is only used to initialize one or more phi nodes in a common
5252 /// successor block with different constant values, replace the switch with
5253 /// lookup tables.
5254 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5255                                 const DataLayout &DL,
5256                                 const TargetTransformInfo &TTI) {
5257   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5258 
5259   Function *Fn = SI->getParent()->getParent();
5260   // Only build lookup table when we have a target that supports it or the
5261   // attribute is not set.
5262   if (!TTI.shouldBuildLookupTables() ||
5263       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5264     return false;
5265 
5266   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5267   // split off a dense part and build a lookup table for that.
5268 
5269   // FIXME: This creates arrays of GEPs to constant strings, which means each
5270   // GEP needs a runtime relocation in PIC code. We should just build one big
5271   // string and lookup indices into that.
5272 
5273   // Ignore switches with less than three cases. Lookup tables will not make
5274   // them faster, so we don't analyze them.
5275   if (SI->getNumCases() < 3)
5276     return false;
5277 
5278   // Figure out the corresponding result for each case value and phi node in the
5279   // common destination, as well as the min and max case values.
5280   assert(!empty(SI->cases()));
5281   SwitchInst::CaseIt CI = SI->case_begin();
5282   ConstantInt *MinCaseVal = CI->getCaseValue();
5283   ConstantInt *MaxCaseVal = CI->getCaseValue();
5284 
5285   BasicBlock *CommonDest = nullptr;
5286 
5287   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5288   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5289 
5290   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5291   SmallDenseMap<PHINode *, Type *> ResultTypes;
5292   SmallVector<PHINode *, 4> PHIs;
5293 
5294   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5295     ConstantInt *CaseVal = CI->getCaseValue();
5296     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5297       MinCaseVal = CaseVal;
5298     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5299       MaxCaseVal = CaseVal;
5300 
5301     // Resulting value at phi nodes for this case value.
5302     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5303     ResultsTy Results;
5304     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5305                         Results, DL, TTI))
5306       return false;
5307 
5308     // Append the result from this case to the list for each phi.
5309     for (const auto &I : Results) {
5310       PHINode *PHI = I.first;
5311       Constant *Value = I.second;
5312       if (!ResultLists.count(PHI))
5313         PHIs.push_back(PHI);
5314       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5315     }
5316   }
5317 
5318   // Keep track of the result types.
5319   for (PHINode *PHI : PHIs) {
5320     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5321   }
5322 
5323   uint64_t NumResults = ResultLists[PHIs[0]].size();
5324   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5325   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5326   bool TableHasHoles = (NumResults < TableSize);
5327 
5328   // If the table has holes, we need a constant result for the default case
5329   // or a bitmask that fits in a register.
5330   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5331   bool HasDefaultResults =
5332       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5333                      DefaultResultsList, DL, TTI);
5334 
5335   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5336   if (NeedMask) {
5337     // As an extra penalty for the validity test we require more cases.
5338     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5339       return false;
5340     if (!DL.fitsInLegalInteger(TableSize))
5341       return false;
5342   }
5343 
5344   for (const auto &I : DefaultResultsList) {
5345     PHINode *PHI = I.first;
5346     Constant *Result = I.second;
5347     DefaultResults[PHI] = Result;
5348   }
5349 
5350   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5351     return false;
5352 
5353   // Create the BB that does the lookups.
5354   Module &Mod = *CommonDest->getParent()->getParent();
5355   BasicBlock *LookupBB = BasicBlock::Create(
5356       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5357 
5358   // Compute the table index value.
5359   Builder.SetInsertPoint(SI);
5360   Value *TableIndex;
5361   if (MinCaseVal->isNullValue())
5362     TableIndex = SI->getCondition();
5363   else
5364     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5365                                    "switch.tableidx");
5366 
5367   // Compute the maximum table size representable by the integer type we are
5368   // switching upon.
5369   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5370   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5371   assert(MaxTableSize >= TableSize &&
5372          "It is impossible for a switch to have more entries than the max "
5373          "representable value of its input integer type's size.");
5374 
5375   // If the default destination is unreachable, or if the lookup table covers
5376   // all values of the conditional variable, branch directly to the lookup table
5377   // BB. Otherwise, check that the condition is within the case range.
5378   const bool DefaultIsReachable =
5379       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5380   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5381   BranchInst *RangeCheckBranch = nullptr;
5382 
5383   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5384     Builder.CreateBr(LookupBB);
5385     // Note: We call removeProdecessor later since we need to be able to get the
5386     // PHI value for the default case in case we're using a bit mask.
5387   } else {
5388     Value *Cmp = Builder.CreateICmpULT(
5389         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5390     RangeCheckBranch =
5391         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5392   }
5393 
5394   // Populate the BB that does the lookups.
5395   Builder.SetInsertPoint(LookupBB);
5396 
5397   if (NeedMask) {
5398     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5399     // re-purposed to do the hole check, and we create a new LookupBB.
5400     BasicBlock *MaskBB = LookupBB;
5401     MaskBB->setName("switch.hole_check");
5402     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5403                                   CommonDest->getParent(), CommonDest);
5404 
5405     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5406     // unnecessary illegal types.
5407     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5408     APInt MaskInt(TableSizePowOf2, 0);
5409     APInt One(TableSizePowOf2, 1);
5410     // Build bitmask; fill in a 1 bit for every case.
5411     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5412     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5413       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5414                          .getLimitedValue();
5415       MaskInt |= One << Idx;
5416     }
5417     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5418 
5419     // Get the TableIndex'th bit of the bitmask.
5420     // If this bit is 0 (meaning hole) jump to the default destination,
5421     // else continue with table lookup.
5422     IntegerType *MapTy = TableMask->getType();
5423     Value *MaskIndex =
5424         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5425     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5426     Value *LoBit = Builder.CreateTrunc(
5427         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5428     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5429 
5430     Builder.SetInsertPoint(LookupBB);
5431     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5432   }
5433 
5434   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5435     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5436     // do not delete PHINodes here.
5437     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5438                                             /*KeepOneInputPHIs=*/true);
5439   }
5440 
5441   bool ReturnedEarly = false;
5442   for (PHINode *PHI : PHIs) {
5443     const ResultListTy &ResultList = ResultLists[PHI];
5444 
5445     // If using a bitmask, use any value to fill the lookup table holes.
5446     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5447     StringRef FuncName = Fn->getName();
5448     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5449                             FuncName);
5450 
5451     Value *Result = Table.BuildLookup(TableIndex, Builder);
5452 
5453     // If the result is used to return immediately from the function, we want to
5454     // do that right here.
5455     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5456         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5457       Builder.CreateRet(Result);
5458       ReturnedEarly = true;
5459       break;
5460     }
5461 
5462     // Do a small peephole optimization: re-use the switch table compare if
5463     // possible.
5464     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5465       BasicBlock *PhiBlock = PHI->getParent();
5466       // Search for compare instructions which use the phi.
5467       for (auto *User : PHI->users()) {
5468         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5469       }
5470     }
5471 
5472     PHI->addIncoming(Result, LookupBB);
5473   }
5474 
5475   if (!ReturnedEarly)
5476     Builder.CreateBr(CommonDest);
5477 
5478   // Remove the switch.
5479   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5480     BasicBlock *Succ = SI->getSuccessor(i);
5481 
5482     if (Succ == SI->getDefaultDest())
5483       continue;
5484     Succ->removePredecessor(SI->getParent());
5485   }
5486   SI->eraseFromParent();
5487 
5488   ++NumLookupTables;
5489   if (NeedMask)
5490     ++NumLookupTablesHoles;
5491   return true;
5492 }
5493 
5494 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5495   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5496   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5497   uint64_t Range = Diff + 1;
5498   uint64_t NumCases = Values.size();
5499   // 40% is the default density for building a jump table in optsize/minsize mode.
5500   uint64_t MinDensity = 40;
5501 
5502   return NumCases * 100 >= Range * MinDensity;
5503 }
5504 
5505 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5506 /// of cases.
5507 ///
5508 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5509 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5510 ///
5511 /// This converts a sparse switch into a dense switch which allows better
5512 /// lowering and could also allow transforming into a lookup table.
5513 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5514                               const DataLayout &DL,
5515                               const TargetTransformInfo &TTI) {
5516   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5517   if (CondTy->getIntegerBitWidth() > 64 ||
5518       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5519     return false;
5520   // Only bother with this optimization if there are more than 3 switch cases;
5521   // SDAG will only bother creating jump tables for 4 or more cases.
5522   if (SI->getNumCases() < 4)
5523     return false;
5524 
5525   // This transform is agnostic to the signedness of the input or case values. We
5526   // can treat the case values as signed or unsigned. We can optimize more common
5527   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5528   // as signed.
5529   SmallVector<int64_t,4> Values;
5530   for (auto &C : SI->cases())
5531     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5532   llvm::sort(Values);
5533 
5534   // If the switch is already dense, there's nothing useful to do here.
5535   if (isSwitchDense(Values))
5536     return false;
5537 
5538   // First, transform the values such that they start at zero and ascend.
5539   int64_t Base = Values[0];
5540   for (auto &V : Values)
5541     V -= (uint64_t)(Base);
5542 
5543   // Now we have signed numbers that have been shifted so that, given enough
5544   // precision, there are no negative values. Since the rest of the transform
5545   // is bitwise only, we switch now to an unsigned representation.
5546   uint64_t GCD = 0;
5547   for (auto &V : Values)
5548     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5549 
5550   // This transform can be done speculatively because it is so cheap - it results
5551   // in a single rotate operation being inserted. This can only happen if the
5552   // factor extracted is a power of 2.
5553   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5554   // inverse of GCD and then perform this transform.
5555   // FIXME: It's possible that optimizing a switch on powers of two might also
5556   // be beneficial - flag values are often powers of two and we could use a CLZ
5557   // as the key function.
5558   if (GCD <= 1 || !isPowerOf2_64(GCD))
5559     // No common divisor found or too expensive to compute key function.
5560     return false;
5561 
5562   unsigned Shift = Log2_64(GCD);
5563   for (auto &V : Values)
5564     V = (int64_t)((uint64_t)V >> Shift);
5565 
5566   if (!isSwitchDense(Values))
5567     // Transform didn't create a dense switch.
5568     return false;
5569 
5570   // The obvious transform is to shift the switch condition right and emit a
5571   // check that the condition actually cleanly divided by GCD, i.e.
5572   //   C & (1 << Shift - 1) == 0
5573   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5574   //
5575   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5576   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5577   // are nonzero then the switch condition will be very large and will hit the
5578   // default case.
5579 
5580   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5581   Builder.SetInsertPoint(SI);
5582   auto *ShiftC = ConstantInt::get(Ty, Shift);
5583   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5584   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5585   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5586   auto *Rot = Builder.CreateOr(LShr, Shl);
5587   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5588 
5589   for (auto Case : SI->cases()) {
5590     auto *Orig = Case.getCaseValue();
5591     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5592     Case.setValue(
5593         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5594   }
5595   return true;
5596 }
5597 
5598 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5599   BasicBlock *BB = SI->getParent();
5600 
5601   if (isValueEqualityComparison(SI)) {
5602     // If we only have one predecessor, and if it is a branch on this value,
5603     // see if that predecessor totally determines the outcome of this switch.
5604     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5605       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5606         return requestResimplify();
5607 
5608     Value *Cond = SI->getCondition();
5609     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5610       if (SimplifySwitchOnSelect(SI, Select))
5611         return requestResimplify();
5612 
5613     // If the block only contains the switch, see if we can fold the block
5614     // away into any preds.
5615     if (SI == &*BB->instructionsWithoutDebug().begin())
5616       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5617         return requestResimplify();
5618   }
5619 
5620   // Try to transform the switch into an icmp and a branch.
5621   if (TurnSwitchRangeIntoICmp(SI, Builder))
5622     return requestResimplify();
5623 
5624   // Remove unreachable cases.
5625   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5626     return requestResimplify();
5627 
5628   if (switchToSelect(SI, Builder, DL, TTI))
5629     return requestResimplify();
5630 
5631   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5632     return requestResimplify();
5633 
5634   // The conversion from switch to lookup tables results in difficult-to-analyze
5635   // code and makes pruning branches much harder. This is a problem if the
5636   // switch expression itself can still be restricted as a result of inlining or
5637   // CVP. Therefore, only apply this transformation during late stages of the
5638   // optimisation pipeline.
5639   if (Options.ConvertSwitchToLookupTable &&
5640       SwitchToLookupTable(SI, Builder, DL, TTI))
5641     return requestResimplify();
5642 
5643   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5644     return requestResimplify();
5645 
5646   return false;
5647 }
5648 
5649 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5650   BasicBlock *BB = IBI->getParent();
5651   bool Changed = false;
5652 
5653   // Eliminate redundant destinations.
5654   SmallPtrSet<Value *, 8> Succs;
5655   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5656     BasicBlock *Dest = IBI->getDestination(i);
5657     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5658       Dest->removePredecessor(BB);
5659       IBI->removeDestination(i);
5660       --i;
5661       --e;
5662       Changed = true;
5663     }
5664   }
5665 
5666   if (IBI->getNumDestinations() == 0) {
5667     // If the indirectbr has no successors, change it to unreachable.
5668     new UnreachableInst(IBI->getContext(), IBI);
5669     EraseTerminatorAndDCECond(IBI);
5670     return true;
5671   }
5672 
5673   if (IBI->getNumDestinations() == 1) {
5674     // If the indirectbr has one successor, change it to a direct branch.
5675     BranchInst::Create(IBI->getDestination(0), IBI);
5676     EraseTerminatorAndDCECond(IBI);
5677     return true;
5678   }
5679 
5680   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5681     if (SimplifyIndirectBrOnSelect(IBI, SI))
5682       return requestResimplify();
5683   }
5684   return Changed;
5685 }
5686 
5687 /// Given an block with only a single landing pad and a unconditional branch
5688 /// try to find another basic block which this one can be merged with.  This
5689 /// handles cases where we have multiple invokes with unique landing pads, but
5690 /// a shared handler.
5691 ///
5692 /// We specifically choose to not worry about merging non-empty blocks
5693 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5694 /// practice, the optimizer produces empty landing pad blocks quite frequently
5695 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5696 /// sinking in this file)
5697 ///
5698 /// This is primarily a code size optimization.  We need to avoid performing
5699 /// any transform which might inhibit optimization (such as our ability to
5700 /// specialize a particular handler via tail commoning).  We do this by not
5701 /// merging any blocks which require us to introduce a phi.  Since the same
5702 /// values are flowing through both blocks, we don't lose any ability to
5703 /// specialize.  If anything, we make such specialization more likely.
5704 ///
5705 /// TODO - This transformation could remove entries from a phi in the target
5706 /// block when the inputs in the phi are the same for the two blocks being
5707 /// merged.  In some cases, this could result in removal of the PHI entirely.
5708 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5709                                  BasicBlock *BB) {
5710   auto Succ = BB->getUniqueSuccessor();
5711   assert(Succ);
5712   // If there's a phi in the successor block, we'd likely have to introduce
5713   // a phi into the merged landing pad block.
5714   if (isa<PHINode>(*Succ->begin()))
5715     return false;
5716 
5717   for (BasicBlock *OtherPred : predecessors(Succ)) {
5718     if (BB == OtherPred)
5719       continue;
5720     BasicBlock::iterator I = OtherPred->begin();
5721     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5722     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5723       continue;
5724     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5725       ;
5726     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5727     if (!BI2 || !BI2->isIdenticalTo(BI))
5728       continue;
5729 
5730     // We've found an identical block.  Update our predecessors to take that
5731     // path instead and make ourselves dead.
5732     SmallPtrSet<BasicBlock *, 16> Preds;
5733     Preds.insert(pred_begin(BB), pred_end(BB));
5734     for (BasicBlock *Pred : Preds) {
5735       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5736       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5737              "unexpected successor");
5738       II->setUnwindDest(OtherPred);
5739     }
5740 
5741     // The debug info in OtherPred doesn't cover the merged control flow that
5742     // used to go through BB.  We need to delete it or update it.
5743     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5744       Instruction &Inst = *I;
5745       I++;
5746       if (isa<DbgInfoIntrinsic>(Inst))
5747         Inst.eraseFromParent();
5748     }
5749 
5750     SmallPtrSet<BasicBlock *, 16> Succs;
5751     Succs.insert(succ_begin(BB), succ_end(BB));
5752     for (BasicBlock *Succ : Succs) {
5753       Succ->removePredecessor(BB);
5754     }
5755 
5756     IRBuilder<> Builder(BI);
5757     Builder.CreateUnreachable();
5758     BI->eraseFromParent();
5759     return true;
5760   }
5761   return false;
5762 }
5763 
5764 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5765                                           IRBuilder<> &Builder) {
5766   BasicBlock *BB = BI->getParent();
5767   BasicBlock *Succ = BI->getSuccessor(0);
5768 
5769   // If the Terminator is the only non-phi instruction, simplify the block.
5770   // If LoopHeader is provided, check if the block or its successor is a loop
5771   // header. (This is for early invocations before loop simplify and
5772   // vectorization to keep canonical loop forms for nested loops. These blocks
5773   // can be eliminated when the pass is invoked later in the back-end.)
5774   // Note that if BB has only one predecessor then we do not introduce new
5775   // backedge, so we can eliminate BB.
5776   bool NeedCanonicalLoop =
5777       Options.NeedCanonicalLoop &&
5778       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5779        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5780   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5781   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5782       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5783     return true;
5784 
5785   // If the only instruction in the block is a seteq/setne comparison against a
5786   // constant, try to simplify the block.
5787   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5788     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5789       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5790         ;
5791       if (I->isTerminator() &&
5792           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5793         return true;
5794     }
5795 
5796   // See if we can merge an empty landing pad block with another which is
5797   // equivalent.
5798   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5799     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5800       ;
5801     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5802       return true;
5803   }
5804 
5805   // If this basic block is ONLY a compare and a branch, and if a predecessor
5806   // branches to us and our successor, fold the comparison into the
5807   // predecessor and use logical operations to update the incoming value
5808   // for PHI nodes in common successor.
5809   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5810     return requestResimplify();
5811   return false;
5812 }
5813 
5814 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5815   BasicBlock *PredPred = nullptr;
5816   for (auto *P : predecessors(BB)) {
5817     BasicBlock *PPred = P->getSinglePredecessor();
5818     if (!PPred || (PredPred && PredPred != PPred))
5819       return nullptr;
5820     PredPred = PPred;
5821   }
5822   return PredPred;
5823 }
5824 
5825 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5826   BasicBlock *BB = BI->getParent();
5827   const Function *Fn = BB->getParent();
5828   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5829     return false;
5830 
5831   // Conditional branch
5832   if (isValueEqualityComparison(BI)) {
5833     // If we only have one predecessor, and if it is a branch on this value,
5834     // see if that predecessor totally determines the outcome of this
5835     // switch.
5836     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5837       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5838         return requestResimplify();
5839 
5840     // This block must be empty, except for the setcond inst, if it exists.
5841     // Ignore dbg intrinsics.
5842     auto I = BB->instructionsWithoutDebug().begin();
5843     if (&*I == BI) {
5844       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5845         return requestResimplify();
5846     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5847       ++I;
5848       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5849         return requestResimplify();
5850     }
5851   }
5852 
5853   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5854   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5855     return true;
5856 
5857   // If this basic block has dominating predecessor blocks and the dominating
5858   // blocks' conditions imply BI's condition, we know the direction of BI.
5859   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
5860   if (Imp) {
5861     // Turn this into a branch on constant.
5862     auto *OldCond = BI->getCondition();
5863     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
5864                              : ConstantInt::getFalse(BB->getContext());
5865     BI->setCondition(TorF);
5866     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5867     return requestResimplify();
5868   }
5869 
5870   // If this basic block is ONLY a compare and a branch, and if a predecessor
5871   // branches to us and one of our successors, fold the comparison into the
5872   // predecessor and use logical operations to pick the right destination.
5873   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5874     return requestResimplify();
5875 
5876   // We have a conditional branch to two blocks that are only reachable
5877   // from BI.  We know that the condbr dominates the two blocks, so see if
5878   // there is any identical code in the "then" and "else" blocks.  If so, we
5879   // can hoist it up to the branching block.
5880   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5881     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5882       if (HoistThenElseCodeToIf(BI, TTI))
5883         return requestResimplify();
5884     } else {
5885       // If Successor #1 has multiple preds, we may be able to conditionally
5886       // execute Successor #0 if it branches to Successor #1.
5887       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
5888       if (Succ0TI->getNumSuccessors() == 1 &&
5889           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5890         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5891           return requestResimplify();
5892     }
5893   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5894     // If Successor #0 has multiple preds, we may be able to conditionally
5895     // execute Successor #1 if it branches to Successor #0.
5896     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
5897     if (Succ1TI->getNumSuccessors() == 1 &&
5898         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5899       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5900         return requestResimplify();
5901   }
5902 
5903   // If this is a branch on a phi node in the current block, thread control
5904   // through this block if any PHI node entries are constants.
5905   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5906     if (PN->getParent() == BI->getParent())
5907       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5908         return requestResimplify();
5909 
5910   // Scan predecessor blocks for conditional branches.
5911   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5912     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5913       if (PBI != BI && PBI->isConditional())
5914         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5915           return requestResimplify();
5916 
5917   // Look for diamond patterns.
5918   if (MergeCondStores)
5919     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5920       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5921         if (PBI != BI && PBI->isConditional())
5922           if (mergeConditionalStores(PBI, BI, DL))
5923             return requestResimplify();
5924 
5925   return false;
5926 }
5927 
5928 /// Check if passing a value to an instruction will cause undefined behavior.
5929 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5930   Constant *C = dyn_cast<Constant>(V);
5931   if (!C)
5932     return false;
5933 
5934   if (I->use_empty())
5935     return false;
5936 
5937   if (C->isNullValue() || isa<UndefValue>(C)) {
5938     // Only look at the first use, avoid hurting compile time with long uselists
5939     User *Use = *I->user_begin();
5940 
5941     // Now make sure that there are no instructions in between that can alter
5942     // control flow (eg. calls)
5943     for (BasicBlock::iterator
5944              i = ++BasicBlock::iterator(I),
5945              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5946          i != UI; ++i)
5947       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5948         return false;
5949 
5950     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5951     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5952       if (GEP->getPointerOperand() == I)
5953         return passingValueIsAlwaysUndefined(V, GEP);
5954 
5955     // Look through bitcasts.
5956     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5957       return passingValueIsAlwaysUndefined(V, BC);
5958 
5959     // Load from null is undefined.
5960     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5961       if (!LI->isVolatile())
5962         return !NullPointerIsDefined(LI->getFunction(),
5963                                      LI->getPointerAddressSpace());
5964 
5965     // Store to null is undefined.
5966     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5967       if (!SI->isVolatile())
5968         return (!NullPointerIsDefined(SI->getFunction(),
5969                                       SI->getPointerAddressSpace())) &&
5970                SI->getPointerOperand() == I;
5971 
5972     // A call to null is undefined.
5973     if (auto CS = CallSite(Use))
5974       return !NullPointerIsDefined(CS->getFunction()) &&
5975              CS.getCalledValue() == I;
5976   }
5977   return false;
5978 }
5979 
5980 /// If BB has an incoming value that will always trigger undefined behavior
5981 /// (eg. null pointer dereference), remove the branch leading here.
5982 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5983   for (PHINode &PHI : BB->phis())
5984     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5985       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5986         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
5987         IRBuilder<> Builder(T);
5988         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5989           BB->removePredecessor(PHI.getIncomingBlock(i));
5990           // Turn uncoditional branches into unreachables and remove the dead
5991           // destination from conditional branches.
5992           if (BI->isUnconditional())
5993             Builder.CreateUnreachable();
5994           else
5995             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5996                                                        : BI->getSuccessor(0));
5997           BI->eraseFromParent();
5998           return true;
5999         }
6000         // TODO: SwitchInst.
6001       }
6002 
6003   return false;
6004 }
6005 
6006 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6007   bool Changed = false;
6008 
6009   assert(BB && BB->getParent() && "Block not embedded in function!");
6010   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6011 
6012   // Remove basic blocks that have no predecessors (except the entry block)...
6013   // or that just have themself as a predecessor.  These are unreachable.
6014   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6015       BB->getSinglePredecessor() == BB) {
6016     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6017     DeleteDeadBlock(BB);
6018     return true;
6019   }
6020 
6021   // Check to see if we can constant propagate this terminator instruction
6022   // away...
6023   Changed |= ConstantFoldTerminator(BB, true);
6024 
6025   // Check for and eliminate duplicate PHI nodes in this block.
6026   Changed |= EliminateDuplicatePHINodes(BB);
6027 
6028   // Check for and remove branches that will always cause undefined behavior.
6029   Changed |= removeUndefIntroducingPredecessor(BB);
6030 
6031   // Merge basic blocks into their predecessor if there is only one distinct
6032   // pred, and if there is only one distinct successor of the predecessor, and
6033   // if there are no PHI nodes.
6034   if (MergeBlockIntoPredecessor(BB))
6035     return true;
6036 
6037   if (SinkCommon && Options.SinkCommonInsts)
6038     Changed |= SinkCommonCodeFromPredecessors(BB);
6039 
6040   IRBuilder<> Builder(BB);
6041 
6042   // If there is a trivial two-entry PHI node in this basic block, and we can
6043   // eliminate it, do so now.
6044   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6045     if (PN->getNumIncomingValues() == 2)
6046       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6047 
6048   Builder.SetInsertPoint(BB->getTerminator());
6049   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6050     if (BI->isUnconditional()) {
6051       if (SimplifyUncondBranch(BI, Builder))
6052         return true;
6053     } else {
6054       if (SimplifyCondBranch(BI, Builder))
6055         return true;
6056     }
6057   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6058     if (SimplifyReturn(RI, Builder))
6059       return true;
6060   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6061     if (SimplifyResume(RI, Builder))
6062       return true;
6063   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6064     if (SimplifyCleanupReturn(RI))
6065       return true;
6066   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6067     if (SimplifySwitch(SI, Builder))
6068       return true;
6069   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6070     if (SimplifyUnreachable(UI))
6071       return true;
6072   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6073     if (SimplifyIndirectBr(IBI))
6074       return true;
6075   }
6076 
6077   return Changed;
6078 }
6079 
6080 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6081   bool Changed = false;
6082 
6083   // Repeated simplify BB as long as resimplification is requested.
6084   do {
6085     Resimplify = false;
6086 
6087     // Perform one round of simplifcation. Resimplify flag will be set if
6088     // another iteration is requested.
6089     Changed |= simplifyOnce(BB);
6090   } while (Resimplify);
6091 
6092   return Changed;
6093 }
6094 
6095 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6096                        const SimplifyCFGOptions &Options,
6097                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6098   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6099                         Options)
6100       .run(BB);
6101 }
6102