1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DebugInfo.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/NoFolder.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/KnownBits.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <climits>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <map>
75 #include <set>
76 #include <utility>
77 #include <vector>
78 
79 using namespace llvm;
80 using namespace PatternMatch;
81 
82 #define DEBUG_TYPE "simplifycfg"
83 
84 // Chosen as 2 so as to be cheap, but still to have enough power to fold
85 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
86 // To catch this, we need to fold a compare and a select, hence '2' being the
87 // minimum reasonable default.
88 static cl::opt<unsigned> PHINodeFoldingThreshold(
89     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
90     cl::desc(
91         "Control the amount of phi node folding to perform (default = 2)"));
92 
93 static cl::opt<bool> DupRet(
94     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
95     cl::desc("Duplicate return instructions into unconditional branches"));
96 
97 static cl::opt<bool>
98     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
99                cl::desc("Sink common instructions down to the end block"));
100 
101 static cl::opt<bool> HoistCondStores(
102     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
103     cl::desc("Hoist conditional stores if an unconditional store precedes"));
104 
105 static cl::opt<bool> MergeCondStores(
106     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
107     cl::desc("Hoist conditional stores even if an unconditional store does not "
108              "precede - hoist multiple conditional stores into a single "
109              "predicated store"));
110 
111 static cl::opt<bool> MergeCondStoresAggressively(
112     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
113     cl::desc("When merging conditional stores, do so even if the resultant "
114              "basic blocks are unlikely to be if-converted as a result"));
115 
116 static cl::opt<bool> SpeculateOneExpensiveInst(
117     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
118     cl::desc("Allow exactly one expensive instruction to be speculatively "
119              "executed"));
120 
121 static cl::opt<unsigned> MaxSpeculationDepth(
122     "max-speculation-depth", cl::Hidden, cl::init(10),
123     cl::desc("Limit maximum recursion depth when calculating costs of "
124              "speculatively executed instructions"));
125 
126 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
127 STATISTIC(NumLinearMaps,
128           "Number of switch instructions turned into linear mapping");
129 STATISTIC(NumLookupTables,
130           "Number of switch instructions turned into lookup tables");
131 STATISTIC(
132     NumLookupTablesHoles,
133     "Number of switch instructions turned into lookup tables (holes checked)");
134 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
135 STATISTIC(NumSinkCommons,
136           "Number of common instructions sunk down to the end block");
137 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
138 
139 namespace {
140 
141 // The first field contains the value that the switch produces when a certain
142 // case group is selected, and the second field is a vector containing the
143 // cases composing the case group.
144 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
145     SwitchCaseResultVectorTy;
146 // The first field contains the phi node that generates a result of the switch
147 // and the second field contains the value generated for a certain case in the
148 // switch for that PHI.
149 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
150 
151 /// ValueEqualityComparisonCase - Represents a case of a switch.
152 struct ValueEqualityComparisonCase {
153   ConstantInt *Value;
154   BasicBlock *Dest;
155 
156   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
157       : Value(Value), Dest(Dest) {}
158 
159   bool operator<(ValueEqualityComparisonCase RHS) const {
160     // Comparing pointers is ok as we only rely on the order for uniquing.
161     return Value < RHS.Value;
162   }
163 
164   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
165 };
166 
167 class SimplifyCFGOpt {
168   const TargetTransformInfo &TTI;
169   const DataLayout &DL;
170   unsigned BonusInstThreshold;
171   AssumptionCache *AC;
172   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
173   // See comments in SimplifyCFGOpt::SimplifySwitch.
174   bool LateSimplifyCFG;
175   Value *isValueEqualityComparison(TerminatorInst *TI);
176   BasicBlock *GetValueEqualityComparisonCases(
177       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
178   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
179                                                      BasicBlock *Pred,
180                                                      IRBuilder<> &Builder);
181   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
182                                            IRBuilder<> &Builder);
183 
184   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
185   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
186   bool SimplifySingleResume(ResumeInst *RI);
187   bool SimplifyCommonResume(ResumeInst *RI);
188   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
189   bool SimplifyUnreachable(UnreachableInst *UI);
190   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
191   bool SimplifyIndirectBr(IndirectBrInst *IBI);
192   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
193   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
194 
195 public:
196   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
197                  unsigned BonusInstThreshold, AssumptionCache *AC,
198                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
199                  bool LateSimplifyCFG)
200       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
201         LoopHeaders(LoopHeaders), LateSimplifyCFG(LateSimplifyCFG) {}
202 
203   bool run(BasicBlock *BB);
204 };
205 
206 } // end anonymous namespace
207 
208 /// Return true if it is safe to merge these two
209 /// terminator instructions together.
210 static bool
211 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
212                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
213   if (SI1 == SI2)
214     return false; // Can't merge with self!
215 
216   // It is not safe to merge these two switch instructions if they have a common
217   // successor, and if that successor has a PHI node, and if *that* PHI node has
218   // conflicting incoming values from the two switch blocks.
219   BasicBlock *SI1BB = SI1->getParent();
220   BasicBlock *SI2BB = SI2->getParent();
221 
222   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
223   bool Fail = false;
224   for (BasicBlock *Succ : successors(SI2BB))
225     if (SI1Succs.count(Succ))
226       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
227         PHINode *PN = cast<PHINode>(BBI);
228         if (PN->getIncomingValueForBlock(SI1BB) !=
229             PN->getIncomingValueForBlock(SI2BB)) {
230           if (FailBlocks)
231             FailBlocks->insert(Succ);
232           Fail = true;
233         }
234       }
235 
236   return !Fail;
237 }
238 
239 /// Return true if it is safe and profitable to merge these two terminator
240 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
241 /// store all PHI nodes in common successors.
242 static bool
243 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
244                                 Instruction *Cond,
245                                 SmallVectorImpl<PHINode *> &PhiNodes) {
246   if (SI1 == SI2)
247     return false; // Can't merge with self!
248   assert(SI1->isUnconditional() && SI2->isConditional());
249 
250   // We fold the unconditional branch if we can easily update all PHI nodes in
251   // common successors:
252   // 1> We have a constant incoming value for the conditional branch;
253   // 2> We have "Cond" as the incoming value for the unconditional branch;
254   // 3> SI2->getCondition() and Cond have same operands.
255   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
256   if (!Ci2)
257     return false;
258   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
259         Cond->getOperand(1) == Ci2->getOperand(1)) &&
260       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
261         Cond->getOperand(1) == Ci2->getOperand(0)))
262     return false;
263 
264   BasicBlock *SI1BB = SI1->getParent();
265   BasicBlock *SI2BB = SI2->getParent();
266   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
267   for (BasicBlock *Succ : successors(SI2BB))
268     if (SI1Succs.count(Succ))
269       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
270         PHINode *PN = cast<PHINode>(BBI);
271         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
272             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
273           return false;
274         PhiNodes.push_back(PN);
275       }
276   return true;
277 }
278 
279 /// Update PHI nodes in Succ to indicate that there will now be entries in it
280 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
281 /// will be the same as those coming in from ExistPred, an existing predecessor
282 /// of Succ.
283 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
284                                   BasicBlock *ExistPred) {
285   if (!isa<PHINode>(Succ->begin()))
286     return; // Quick exit if nothing to do
287 
288   PHINode *PN;
289   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
290     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
291 }
292 
293 /// Compute an abstract "cost" of speculating the given instruction,
294 /// which is assumed to be safe to speculate. TCC_Free means cheap,
295 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
296 /// expensive.
297 static unsigned ComputeSpeculationCost(const User *I,
298                                        const TargetTransformInfo &TTI) {
299   assert(isSafeToSpeculativelyExecute(I) &&
300          "Instruction is not safe to speculatively execute!");
301   return TTI.getUserCost(I);
302 }
303 
304 /// If we have a merge point of an "if condition" as accepted above,
305 /// return true if the specified value dominates the block.  We
306 /// don't handle the true generality of domination here, just a special case
307 /// which works well enough for us.
308 ///
309 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
310 /// see if V (which must be an instruction) and its recursive operands
311 /// that do not dominate BB have a combined cost lower than CostRemaining and
312 /// are non-trapping.  If both are true, the instruction is inserted into the
313 /// set and true is returned.
314 ///
315 /// The cost for most non-trapping instructions is defined as 1 except for
316 /// Select whose cost is 2.
317 ///
318 /// After this function returns, CostRemaining is decreased by the cost of
319 /// V plus its non-dominating operands.  If that cost is greater than
320 /// CostRemaining, false is returned and CostRemaining is undefined.
321 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
322                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
323                                 unsigned &CostRemaining,
324                                 const TargetTransformInfo &TTI,
325                                 unsigned Depth = 0) {
326   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
327   // so limit the recursion depth.
328   // TODO: While this recursion limit does prevent pathological behavior, it
329   // would be better to track visited instructions to avoid cycles.
330   if (Depth == MaxSpeculationDepth)
331     return false;
332 
333   Instruction *I = dyn_cast<Instruction>(V);
334   if (!I) {
335     // Non-instructions all dominate instructions, but not all constantexprs
336     // can be executed unconditionally.
337     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
338       if (C->canTrap())
339         return false;
340     return true;
341   }
342   BasicBlock *PBB = I->getParent();
343 
344   // We don't want to allow weird loops that might have the "if condition" in
345   // the bottom of this block.
346   if (PBB == BB)
347     return false;
348 
349   // If this instruction is defined in a block that contains an unconditional
350   // branch to BB, then it must be in the 'conditional' part of the "if
351   // statement".  If not, it definitely dominates the region.
352   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
353   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
354     return true;
355 
356   // If we aren't allowing aggressive promotion anymore, then don't consider
357   // instructions in the 'if region'.
358   if (!AggressiveInsts)
359     return false;
360 
361   // If we have seen this instruction before, don't count it again.
362   if (AggressiveInsts->count(I))
363     return true;
364 
365   // Okay, it looks like the instruction IS in the "condition".  Check to
366   // see if it's a cheap instruction to unconditionally compute, and if it
367   // only uses stuff defined outside of the condition.  If so, hoist it out.
368   if (!isSafeToSpeculativelyExecute(I))
369     return false;
370 
371   unsigned Cost = ComputeSpeculationCost(I, TTI);
372 
373   // Allow exactly one instruction to be speculated regardless of its cost
374   // (as long as it is safe to do so).
375   // This is intended to flatten the CFG even if the instruction is a division
376   // or other expensive operation. The speculation of an expensive instruction
377   // is expected to be undone in CodeGenPrepare if the speculation has not
378   // enabled further IR optimizations.
379   if (Cost > CostRemaining &&
380       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
381     return false;
382 
383   // Avoid unsigned wrap.
384   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
385 
386   // Okay, we can only really hoist these out if their operands do
387   // not take us over the cost threshold.
388   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
389     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
390                              Depth + 1))
391       return false;
392   // Okay, it's safe to do this!  Remember this instruction.
393   AggressiveInsts->insert(I);
394   return true;
395 }
396 
397 /// Extract ConstantInt from value, looking through IntToPtr
398 /// and PointerNullValue. Return NULL if value is not a constant int.
399 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
400   // Normal constant int.
401   ConstantInt *CI = dyn_cast<ConstantInt>(V);
402   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
403     return CI;
404 
405   // This is some kind of pointer constant. Turn it into a pointer-sized
406   // ConstantInt if possible.
407   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
408 
409   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
410   if (isa<ConstantPointerNull>(V))
411     return ConstantInt::get(PtrTy, 0);
412 
413   // IntToPtr const int.
414   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
415     if (CE->getOpcode() == Instruction::IntToPtr)
416       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
417         // The constant is very likely to have the right type already.
418         if (CI->getType() == PtrTy)
419           return CI;
420         else
421           return cast<ConstantInt>(
422               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
423       }
424   return nullptr;
425 }
426 
427 namespace {
428 
429 /// Given a chain of or (||) or and (&&) comparison of a value against a
430 /// constant, this will try to recover the information required for a switch
431 /// structure.
432 /// It will depth-first traverse the chain of comparison, seeking for patterns
433 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
434 /// representing the different cases for the switch.
435 /// Note that if the chain is composed of '||' it will build the set of elements
436 /// that matches the comparisons (i.e. any of this value validate the chain)
437 /// while for a chain of '&&' it will build the set elements that make the test
438 /// fail.
439 struct ConstantComparesGatherer {
440   const DataLayout &DL;
441   Value *CompValue; /// Value found for the switch comparison
442   Value *Extra;     /// Extra clause to be checked before the switch
443   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
444   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
445 
446   /// Construct and compute the result for the comparison instruction Cond
447   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
448       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
449     gather(Cond);
450   }
451 
452   /// Prevent copy
453   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
454   ConstantComparesGatherer &
455   operator=(const ConstantComparesGatherer &) = delete;
456 
457 private:
458   /// Try to set the current value used for the comparison, it succeeds only if
459   /// it wasn't set before or if the new value is the same as the old one
460   bool setValueOnce(Value *NewVal) {
461     if (CompValue && CompValue != NewVal)
462       return false;
463     CompValue = NewVal;
464     return (CompValue != nullptr);
465   }
466 
467   /// Try to match Instruction "I" as a comparison against a constant and
468   /// populates the array Vals with the set of values that match (or do not
469   /// match depending on isEQ).
470   /// Return false on failure. On success, the Value the comparison matched
471   /// against is placed in CompValue.
472   /// If CompValue is already set, the function is expected to fail if a match
473   /// is found but the value compared to is different.
474   bool matchInstruction(Instruction *I, bool isEQ) {
475     // If this is an icmp against a constant, handle this as one of the cases.
476     ICmpInst *ICI;
477     ConstantInt *C;
478     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
479           (C = GetConstantInt(I->getOperand(1), DL)))) {
480       return false;
481     }
482 
483     Value *RHSVal;
484     const APInt *RHSC;
485 
486     // Pattern match a special case
487     // (x & ~2^z) == y --> x == y || x == y|2^z
488     // This undoes a transformation done by instcombine to fuse 2 compares.
489     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
490 
491       // It's a little bit hard to see why the following transformations are
492       // correct. Here is a CVC3 program to verify them for 64-bit values:
493 
494       /*
495          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
496          x    : BITVECTOR(64);
497          y    : BITVECTOR(64);
498          z    : BITVECTOR(64);
499          mask : BITVECTOR(64) = BVSHL(ONE, z);
500          QUERY( (y & ~mask = y) =>
501                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
502          );
503          QUERY( (y |  mask = y) =>
504                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
505          );
506       */
507 
508       // Please note that each pattern must be a dual implication (<--> or
509       // iff). One directional implication can create spurious matches. If the
510       // implication is only one-way, an unsatisfiable condition on the left
511       // side can imply a satisfiable condition on the right side. Dual
512       // implication ensures that satisfiable conditions are transformed to
513       // other satisfiable conditions and unsatisfiable conditions are
514       // transformed to other unsatisfiable conditions.
515 
516       // Here is a concrete example of a unsatisfiable condition on the left
517       // implying a satisfiable condition on the right:
518       //
519       // mask = (1 << z)
520       // (x & ~mask) == y  --> (x == y || x == (y | mask))
521       //
522       // Substituting y = 3, z = 0 yields:
523       // (x & -2) == 3 --> (x == 3 || x == 2)
524 
525       // Pattern match a special case:
526       /*
527         QUERY( (y & ~mask = y) =>
528                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
529         );
530       */
531       if (match(ICI->getOperand(0),
532                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
533         APInt Mask = ~*RHSC;
534         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
535           // If we already have a value for the switch, it has to match!
536           if (!setValueOnce(RHSVal))
537             return false;
538 
539           Vals.push_back(C);
540           Vals.push_back(
541               ConstantInt::get(C->getContext(),
542                                C->getValue() | Mask));
543           UsedICmps++;
544           return true;
545         }
546       }
547 
548       // Pattern match a special case:
549       /*
550         QUERY( (y |  mask = y) =>
551                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
552         );
553       */
554       if (match(ICI->getOperand(0),
555                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
556         APInt Mask = *RHSC;
557         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
558           // If we already have a value for the switch, it has to match!
559           if (!setValueOnce(RHSVal))
560             return false;
561 
562           Vals.push_back(C);
563           Vals.push_back(ConstantInt::get(C->getContext(),
564                                           C->getValue() & ~Mask));
565           UsedICmps++;
566           return true;
567         }
568       }
569 
570       // If we already have a value for the switch, it has to match!
571       if (!setValueOnce(ICI->getOperand(0)))
572         return false;
573 
574       UsedICmps++;
575       Vals.push_back(C);
576       return ICI->getOperand(0);
577     }
578 
579     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
580     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
581         ICI->getPredicate(), C->getValue());
582 
583     // Shift the range if the compare is fed by an add. This is the range
584     // compare idiom as emitted by instcombine.
585     Value *CandidateVal = I->getOperand(0);
586     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
587       Span = Span.subtract(*RHSC);
588       CandidateVal = RHSVal;
589     }
590 
591     // If this is an and/!= check, then we are looking to build the set of
592     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
593     // x != 0 && x != 1.
594     if (!isEQ)
595       Span = Span.inverse();
596 
597     // If there are a ton of values, we don't want to make a ginormous switch.
598     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
599       return false;
600     }
601 
602     // If we already have a value for the switch, it has to match!
603     if (!setValueOnce(CandidateVal))
604       return false;
605 
606     // Add all values from the range to the set
607     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
608       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
609 
610     UsedICmps++;
611     return true;
612   }
613 
614   /// Given a potentially 'or'd or 'and'd together collection of icmp
615   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
616   /// the value being compared, and stick the list constants into the Vals
617   /// vector.
618   /// One "Extra" case is allowed to differ from the other.
619   void gather(Value *V) {
620     Instruction *I = dyn_cast<Instruction>(V);
621     bool isEQ = (I->getOpcode() == Instruction::Or);
622 
623     // Keep a stack (SmallVector for efficiency) for depth-first traversal
624     SmallVector<Value *, 8> DFT;
625     SmallPtrSet<Value *, 8> Visited;
626 
627     // Initialize
628     Visited.insert(V);
629     DFT.push_back(V);
630 
631     while (!DFT.empty()) {
632       V = DFT.pop_back_val();
633 
634       if (Instruction *I = dyn_cast<Instruction>(V)) {
635         // If it is a || (or && depending on isEQ), process the operands.
636         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
637           if (Visited.insert(I->getOperand(1)).second)
638             DFT.push_back(I->getOperand(1));
639           if (Visited.insert(I->getOperand(0)).second)
640             DFT.push_back(I->getOperand(0));
641           continue;
642         }
643 
644         // Try to match the current instruction
645         if (matchInstruction(I, isEQ))
646           // Match succeed, continue the loop
647           continue;
648       }
649 
650       // One element of the sequence of || (or &&) could not be match as a
651       // comparison against the same value as the others.
652       // We allow only one "Extra" case to be checked before the switch
653       if (!Extra) {
654         Extra = V;
655         continue;
656       }
657       // Failed to parse a proper sequence, abort now
658       CompValue = nullptr;
659       break;
660     }
661   }
662 };
663 
664 } // end anonymous namespace
665 
666 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
667   Instruction *Cond = nullptr;
668   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
669     Cond = dyn_cast<Instruction>(SI->getCondition());
670   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
671     if (BI->isConditional())
672       Cond = dyn_cast<Instruction>(BI->getCondition());
673   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
674     Cond = dyn_cast<Instruction>(IBI->getAddress());
675   }
676 
677   TI->eraseFromParent();
678   if (Cond)
679     RecursivelyDeleteTriviallyDeadInstructions(Cond);
680 }
681 
682 /// Return true if the specified terminator checks
683 /// to see if a value is equal to constant integer value.
684 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
685   Value *CV = nullptr;
686   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
687     // Do not permit merging of large switch instructions into their
688     // predecessors unless there is only one predecessor.
689     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
690                                                pred_end(SI->getParent())) <=
691         128)
692       CV = SI->getCondition();
693   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
694     if (BI->isConditional() && BI->getCondition()->hasOneUse())
695       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
696         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
697           CV = ICI->getOperand(0);
698       }
699 
700   // Unwrap any lossless ptrtoint cast.
701   if (CV) {
702     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
703       Value *Ptr = PTII->getPointerOperand();
704       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
705         CV = Ptr;
706     }
707   }
708   return CV;
709 }
710 
711 /// Given a value comparison instruction,
712 /// decode all of the 'cases' that it represents and return the 'default' block.
713 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
714     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
715   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
716     Cases.reserve(SI->getNumCases());
717     for (auto Case : SI->cases())
718       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
719                                                   Case.getCaseSuccessor()));
720     return SI->getDefaultDest();
721   }
722 
723   BranchInst *BI = cast<BranchInst>(TI);
724   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
725   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
726   Cases.push_back(ValueEqualityComparisonCase(
727       GetConstantInt(ICI->getOperand(1), DL), Succ));
728   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
729 }
730 
731 /// Given a vector of bb/value pairs, remove any entries
732 /// in the list that match the specified block.
733 static void
734 EliminateBlockCases(BasicBlock *BB,
735                     std::vector<ValueEqualityComparisonCase> &Cases) {
736   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
737 }
738 
739 /// Return true if there are any keys in C1 that exist in C2 as well.
740 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
741                           std::vector<ValueEqualityComparisonCase> &C2) {
742   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
743 
744   // Make V1 be smaller than V2.
745   if (V1->size() > V2->size())
746     std::swap(V1, V2);
747 
748   if (V1->empty())
749     return false;
750   if (V1->size() == 1) {
751     // Just scan V2.
752     ConstantInt *TheVal = (*V1)[0].Value;
753     for (unsigned i = 0, e = V2->size(); i != e; ++i)
754       if (TheVal == (*V2)[i].Value)
755         return true;
756   }
757 
758   // Otherwise, just sort both lists and compare element by element.
759   array_pod_sort(V1->begin(), V1->end());
760   array_pod_sort(V2->begin(), V2->end());
761   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
762   while (i1 != e1 && i2 != e2) {
763     if ((*V1)[i1].Value == (*V2)[i2].Value)
764       return true;
765     if ((*V1)[i1].Value < (*V2)[i2].Value)
766       ++i1;
767     else
768       ++i2;
769   }
770   return false;
771 }
772 
773 /// If TI is known to be a terminator instruction and its block is known to
774 /// only have a single predecessor block, check to see if that predecessor is
775 /// also a value comparison with the same value, and if that comparison
776 /// determines the outcome of this comparison. If so, simplify TI. This does a
777 /// very limited form of jump threading.
778 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
779     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
780   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
781   if (!PredVal)
782     return false; // Not a value comparison in predecessor.
783 
784   Value *ThisVal = isValueEqualityComparison(TI);
785   assert(ThisVal && "This isn't a value comparison!!");
786   if (ThisVal != PredVal)
787     return false; // Different predicates.
788 
789   // TODO: Preserve branch weight metadata, similarly to how
790   // FoldValueComparisonIntoPredecessors preserves it.
791 
792   // Find out information about when control will move from Pred to TI's block.
793   std::vector<ValueEqualityComparisonCase> PredCases;
794   BasicBlock *PredDef =
795       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
796   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
797 
798   // Find information about how control leaves this block.
799   std::vector<ValueEqualityComparisonCase> ThisCases;
800   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
801   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
802 
803   // If TI's block is the default block from Pred's comparison, potentially
804   // simplify TI based on this knowledge.
805   if (PredDef == TI->getParent()) {
806     // If we are here, we know that the value is none of those cases listed in
807     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
808     // can simplify TI.
809     if (!ValuesOverlap(PredCases, ThisCases))
810       return false;
811 
812     if (isa<BranchInst>(TI)) {
813       // Okay, one of the successors of this condbr is dead.  Convert it to a
814       // uncond br.
815       assert(ThisCases.size() == 1 && "Branch can only have one case!");
816       // Insert the new branch.
817       Instruction *NI = Builder.CreateBr(ThisDef);
818       (void)NI;
819 
820       // Remove PHI node entries for the dead edge.
821       ThisCases[0].Dest->removePredecessor(TI->getParent());
822 
823       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
824                    << "Through successor TI: " << *TI << "Leaving: " << *NI
825                    << "\n");
826 
827       EraseTerminatorInstAndDCECond(TI);
828       return true;
829     }
830 
831     SwitchInst *SI = cast<SwitchInst>(TI);
832     // Okay, TI has cases that are statically dead, prune them away.
833     SmallPtrSet<Constant *, 16> DeadCases;
834     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
835       DeadCases.insert(PredCases[i].Value);
836 
837     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
838                  << "Through successor TI: " << *TI);
839 
840     // Collect branch weights into a vector.
841     SmallVector<uint32_t, 8> Weights;
842     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
843     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
844     if (HasWeight)
845       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
846            ++MD_i) {
847         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
848         Weights.push_back(CI->getValue().getZExtValue());
849       }
850     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
851       --i;
852       if (DeadCases.count(i->getCaseValue())) {
853         if (HasWeight) {
854           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
855           Weights.pop_back();
856         }
857         i->getCaseSuccessor()->removePredecessor(TI->getParent());
858         SI->removeCase(i);
859       }
860     }
861     if (HasWeight && Weights.size() >= 2)
862       SI->setMetadata(LLVMContext::MD_prof,
863                       MDBuilder(SI->getParent()->getContext())
864                           .createBranchWeights(Weights));
865 
866     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
867     return true;
868   }
869 
870   // Otherwise, TI's block must correspond to some matched value.  Find out
871   // which value (or set of values) this is.
872   ConstantInt *TIV = nullptr;
873   BasicBlock *TIBB = TI->getParent();
874   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
875     if (PredCases[i].Dest == TIBB) {
876       if (TIV)
877         return false; // Cannot handle multiple values coming to this block.
878       TIV = PredCases[i].Value;
879     }
880   assert(TIV && "No edge from pred to succ?");
881 
882   // Okay, we found the one constant that our value can be if we get into TI's
883   // BB.  Find out which successor will unconditionally be branched to.
884   BasicBlock *TheRealDest = nullptr;
885   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
886     if (ThisCases[i].Value == TIV) {
887       TheRealDest = ThisCases[i].Dest;
888       break;
889     }
890 
891   // If not handled by any explicit cases, it is handled by the default case.
892   if (!TheRealDest)
893     TheRealDest = ThisDef;
894 
895   // Remove PHI node entries for dead edges.
896   BasicBlock *CheckEdge = TheRealDest;
897   for (BasicBlock *Succ : successors(TIBB))
898     if (Succ != CheckEdge)
899       Succ->removePredecessor(TIBB);
900     else
901       CheckEdge = nullptr;
902 
903   // Insert the new branch.
904   Instruction *NI = Builder.CreateBr(TheRealDest);
905   (void)NI;
906 
907   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
908                << "Through successor TI: " << *TI << "Leaving: " << *NI
909                << "\n");
910 
911   EraseTerminatorInstAndDCECond(TI);
912   return true;
913 }
914 
915 namespace {
916 
917 /// This class implements a stable ordering of constant
918 /// integers that does not depend on their address.  This is important for
919 /// applications that sort ConstantInt's to ensure uniqueness.
920 struct ConstantIntOrdering {
921   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
922     return LHS->getValue().ult(RHS->getValue());
923   }
924 };
925 
926 } // end anonymous namespace
927 
928 static int ConstantIntSortPredicate(ConstantInt *const *P1,
929                                     ConstantInt *const *P2) {
930   const ConstantInt *LHS = *P1;
931   const ConstantInt *RHS = *P2;
932   if (LHS == RHS)
933     return 0;
934   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
935 }
936 
937 static inline bool HasBranchWeights(const Instruction *I) {
938   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
939   if (ProfMD && ProfMD->getOperand(0))
940     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
941       return MDS->getString().equals("branch_weights");
942 
943   return false;
944 }
945 
946 /// Get Weights of a given TerminatorInst, the default weight is at the front
947 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
948 /// metadata.
949 static void GetBranchWeights(TerminatorInst *TI,
950                              SmallVectorImpl<uint64_t> &Weights) {
951   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
952   assert(MD);
953   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
954     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
955     Weights.push_back(CI->getValue().getZExtValue());
956   }
957 
958   // If TI is a conditional eq, the default case is the false case,
959   // and the corresponding branch-weight data is at index 2. We swap the
960   // default weight to be the first entry.
961   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
962     assert(Weights.size() == 2);
963     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
964     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
965       std::swap(Weights.front(), Weights.back());
966   }
967 }
968 
969 /// Keep halving the weights until all can fit in uint32_t.
970 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
971   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
972   if (Max > UINT_MAX) {
973     unsigned Offset = 32 - countLeadingZeros(Max);
974     for (uint64_t &I : Weights)
975       I >>= Offset;
976   }
977 }
978 
979 /// The specified terminator is a value equality comparison instruction
980 /// (either a switch or a branch on "X == c").
981 /// See if any of the predecessors of the terminator block are value comparisons
982 /// on the same value.  If so, and if safe to do so, fold them together.
983 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
984                                                          IRBuilder<> &Builder) {
985   BasicBlock *BB = TI->getParent();
986   Value *CV = isValueEqualityComparison(TI); // CondVal
987   assert(CV && "Not a comparison?");
988   bool Changed = false;
989 
990   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
991   while (!Preds.empty()) {
992     BasicBlock *Pred = Preds.pop_back_val();
993 
994     // See if the predecessor is a comparison with the same value.
995     TerminatorInst *PTI = Pred->getTerminator();
996     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
997 
998     if (PCV == CV && TI != PTI) {
999       SmallSetVector<BasicBlock*, 4> FailBlocks;
1000       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1001         for (auto *Succ : FailBlocks) {
1002           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1003             return false;
1004         }
1005       }
1006 
1007       // Figure out which 'cases' to copy from SI to PSI.
1008       std::vector<ValueEqualityComparisonCase> BBCases;
1009       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1010 
1011       std::vector<ValueEqualityComparisonCase> PredCases;
1012       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1013 
1014       // Based on whether the default edge from PTI goes to BB or not, fill in
1015       // PredCases and PredDefault with the new switch cases we would like to
1016       // build.
1017       SmallVector<BasicBlock *, 8> NewSuccessors;
1018 
1019       // Update the branch weight metadata along the way
1020       SmallVector<uint64_t, 8> Weights;
1021       bool PredHasWeights = HasBranchWeights(PTI);
1022       bool SuccHasWeights = HasBranchWeights(TI);
1023 
1024       if (PredHasWeights) {
1025         GetBranchWeights(PTI, Weights);
1026         // branch-weight metadata is inconsistent here.
1027         if (Weights.size() != 1 + PredCases.size())
1028           PredHasWeights = SuccHasWeights = false;
1029       } else if (SuccHasWeights)
1030         // If there are no predecessor weights but there are successor weights,
1031         // populate Weights with 1, which will later be scaled to the sum of
1032         // successor's weights
1033         Weights.assign(1 + PredCases.size(), 1);
1034 
1035       SmallVector<uint64_t, 8> SuccWeights;
1036       if (SuccHasWeights) {
1037         GetBranchWeights(TI, SuccWeights);
1038         // branch-weight metadata is inconsistent here.
1039         if (SuccWeights.size() != 1 + BBCases.size())
1040           PredHasWeights = SuccHasWeights = false;
1041       } else if (PredHasWeights)
1042         SuccWeights.assign(1 + BBCases.size(), 1);
1043 
1044       if (PredDefault == BB) {
1045         // If this is the default destination from PTI, only the edges in TI
1046         // that don't occur in PTI, or that branch to BB will be activated.
1047         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1048         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1049           if (PredCases[i].Dest != BB)
1050             PTIHandled.insert(PredCases[i].Value);
1051           else {
1052             // The default destination is BB, we don't need explicit targets.
1053             std::swap(PredCases[i], PredCases.back());
1054 
1055             if (PredHasWeights || SuccHasWeights) {
1056               // Increase weight for the default case.
1057               Weights[0] += Weights[i + 1];
1058               std::swap(Weights[i + 1], Weights.back());
1059               Weights.pop_back();
1060             }
1061 
1062             PredCases.pop_back();
1063             --i;
1064             --e;
1065           }
1066 
1067         // Reconstruct the new switch statement we will be building.
1068         if (PredDefault != BBDefault) {
1069           PredDefault->removePredecessor(Pred);
1070           PredDefault = BBDefault;
1071           NewSuccessors.push_back(BBDefault);
1072         }
1073 
1074         unsigned CasesFromPred = Weights.size();
1075         uint64_t ValidTotalSuccWeight = 0;
1076         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1077           if (!PTIHandled.count(BBCases[i].Value) &&
1078               BBCases[i].Dest != BBDefault) {
1079             PredCases.push_back(BBCases[i]);
1080             NewSuccessors.push_back(BBCases[i].Dest);
1081             if (SuccHasWeights || PredHasWeights) {
1082               // The default weight is at index 0, so weight for the ith case
1083               // should be at index i+1. Scale the cases from successor by
1084               // PredDefaultWeight (Weights[0]).
1085               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1086               ValidTotalSuccWeight += SuccWeights[i + 1];
1087             }
1088           }
1089 
1090         if (SuccHasWeights || PredHasWeights) {
1091           ValidTotalSuccWeight += SuccWeights[0];
1092           // Scale the cases from predecessor by ValidTotalSuccWeight.
1093           for (unsigned i = 1; i < CasesFromPred; ++i)
1094             Weights[i] *= ValidTotalSuccWeight;
1095           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1096           Weights[0] *= SuccWeights[0];
1097         }
1098       } else {
1099         // If this is not the default destination from PSI, only the edges
1100         // in SI that occur in PSI with a destination of BB will be
1101         // activated.
1102         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1103         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1104         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1105           if (PredCases[i].Dest == BB) {
1106             PTIHandled.insert(PredCases[i].Value);
1107 
1108             if (PredHasWeights || SuccHasWeights) {
1109               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1110               std::swap(Weights[i + 1], Weights.back());
1111               Weights.pop_back();
1112             }
1113 
1114             std::swap(PredCases[i], PredCases.back());
1115             PredCases.pop_back();
1116             --i;
1117             --e;
1118           }
1119 
1120         // Okay, now we know which constants were sent to BB from the
1121         // predecessor.  Figure out where they will all go now.
1122         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1123           if (PTIHandled.count(BBCases[i].Value)) {
1124             // If this is one we are capable of getting...
1125             if (PredHasWeights || SuccHasWeights)
1126               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1127             PredCases.push_back(BBCases[i]);
1128             NewSuccessors.push_back(BBCases[i].Dest);
1129             PTIHandled.erase(
1130                 BBCases[i].Value); // This constant is taken care of
1131           }
1132 
1133         // If there are any constants vectored to BB that TI doesn't handle,
1134         // they must go to the default destination of TI.
1135         for (ConstantInt *I : PTIHandled) {
1136           if (PredHasWeights || SuccHasWeights)
1137             Weights.push_back(WeightsForHandled[I]);
1138           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1139           NewSuccessors.push_back(BBDefault);
1140         }
1141       }
1142 
1143       // Okay, at this point, we know which new successor Pred will get.  Make
1144       // sure we update the number of entries in the PHI nodes for these
1145       // successors.
1146       for (BasicBlock *NewSuccessor : NewSuccessors)
1147         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1148 
1149       Builder.SetInsertPoint(PTI);
1150       // Convert pointer to int before we switch.
1151       if (CV->getType()->isPointerTy()) {
1152         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1153                                     "magicptr");
1154       }
1155 
1156       // Now that the successors are updated, create the new Switch instruction.
1157       SwitchInst *NewSI =
1158           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1159       NewSI->setDebugLoc(PTI->getDebugLoc());
1160       for (ValueEqualityComparisonCase &V : PredCases)
1161         NewSI->addCase(V.Value, V.Dest);
1162 
1163       if (PredHasWeights || SuccHasWeights) {
1164         // Halve the weights if any of them cannot fit in an uint32_t
1165         FitWeights(Weights);
1166 
1167         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1168 
1169         NewSI->setMetadata(
1170             LLVMContext::MD_prof,
1171             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1172       }
1173 
1174       EraseTerminatorInstAndDCECond(PTI);
1175 
1176       // Okay, last check.  If BB is still a successor of PSI, then we must
1177       // have an infinite loop case.  If so, add an infinitely looping block
1178       // to handle the case to preserve the behavior of the code.
1179       BasicBlock *InfLoopBlock = nullptr;
1180       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1181         if (NewSI->getSuccessor(i) == BB) {
1182           if (!InfLoopBlock) {
1183             // Insert it at the end of the function, because it's either code,
1184             // or it won't matter if it's hot. :)
1185             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1186                                               BB->getParent());
1187             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1188           }
1189           NewSI->setSuccessor(i, InfLoopBlock);
1190         }
1191 
1192       Changed = true;
1193     }
1194   }
1195   return Changed;
1196 }
1197 
1198 // If we would need to insert a select that uses the value of this invoke
1199 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1200 // can't hoist the invoke, as there is nowhere to put the select in this case.
1201 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1202                                 Instruction *I1, Instruction *I2) {
1203   for (BasicBlock *Succ : successors(BB1)) {
1204     PHINode *PN;
1205     for (BasicBlock::iterator BBI = Succ->begin();
1206          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1207       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1208       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1209       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1210         return false;
1211       }
1212     }
1213   }
1214   return true;
1215 }
1216 
1217 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1218 
1219 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1220 /// in the two blocks up into the branch block. The caller of this function
1221 /// guarantees that BI's block dominates BB1 and BB2.
1222 static bool HoistThenElseCodeToIf(BranchInst *BI,
1223                                   const TargetTransformInfo &TTI) {
1224   // This does very trivial matching, with limited scanning, to find identical
1225   // instructions in the two blocks.  In particular, we don't want to get into
1226   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1227   // such, we currently just scan for obviously identical instructions in an
1228   // identical order.
1229   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1230   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1231 
1232   BasicBlock::iterator BB1_Itr = BB1->begin();
1233   BasicBlock::iterator BB2_Itr = BB2->begin();
1234 
1235   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1236   // Skip debug info if it is not identical.
1237   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1238   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1239   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1240     while (isa<DbgInfoIntrinsic>(I1))
1241       I1 = &*BB1_Itr++;
1242     while (isa<DbgInfoIntrinsic>(I2))
1243       I2 = &*BB2_Itr++;
1244   }
1245   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1246       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1247     return false;
1248 
1249   BasicBlock *BIParent = BI->getParent();
1250 
1251   bool Changed = false;
1252   do {
1253     // If we are hoisting the terminator instruction, don't move one (making a
1254     // broken BB), instead clone it, and remove BI.
1255     if (isa<TerminatorInst>(I1))
1256       goto HoistTerminator;
1257 
1258     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1259       return Changed;
1260 
1261     // For a normal instruction, we just move one to right before the branch,
1262     // then replace all uses of the other with the first.  Finally, we remove
1263     // the now redundant second instruction.
1264     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1265     if (!I2->use_empty())
1266       I2->replaceAllUsesWith(I1);
1267     I1->andIRFlags(I2);
1268     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1269                            LLVMContext::MD_range,
1270                            LLVMContext::MD_fpmath,
1271                            LLVMContext::MD_invariant_load,
1272                            LLVMContext::MD_nonnull,
1273                            LLVMContext::MD_invariant_group,
1274                            LLVMContext::MD_align,
1275                            LLVMContext::MD_dereferenceable,
1276                            LLVMContext::MD_dereferenceable_or_null,
1277                            LLVMContext::MD_mem_parallel_loop_access};
1278     combineMetadata(I1, I2, KnownIDs);
1279 
1280     // I1 and I2 are being combined into a single instruction.  Its debug
1281     // location is the merged locations of the original instructions.
1282     if (!isa<CallInst>(I1))
1283       I1->setDebugLoc(
1284           DILocation::getMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()));
1285 
1286     I2->eraseFromParent();
1287     Changed = true;
1288 
1289     I1 = &*BB1_Itr++;
1290     I2 = &*BB2_Itr++;
1291     // Skip debug info if it is not identical.
1292     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1293     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1294     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1295       while (isa<DbgInfoIntrinsic>(I1))
1296         I1 = &*BB1_Itr++;
1297       while (isa<DbgInfoIntrinsic>(I2))
1298         I2 = &*BB2_Itr++;
1299     }
1300   } while (I1->isIdenticalToWhenDefined(I2));
1301 
1302   return true;
1303 
1304 HoistTerminator:
1305   // It may not be possible to hoist an invoke.
1306   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1307     return Changed;
1308 
1309   for (BasicBlock *Succ : successors(BB1)) {
1310     PHINode *PN;
1311     for (BasicBlock::iterator BBI = Succ->begin();
1312          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1313       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1314       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1315       if (BB1V == BB2V)
1316         continue;
1317 
1318       // Check for passingValueIsAlwaysUndefined here because we would rather
1319       // eliminate undefined control flow then converting it to a select.
1320       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1321           passingValueIsAlwaysUndefined(BB2V, PN))
1322         return Changed;
1323 
1324       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1325         return Changed;
1326       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1327         return Changed;
1328     }
1329   }
1330 
1331   // Okay, it is safe to hoist the terminator.
1332   Instruction *NT = I1->clone();
1333   BIParent->getInstList().insert(BI->getIterator(), NT);
1334   if (!NT->getType()->isVoidTy()) {
1335     I1->replaceAllUsesWith(NT);
1336     I2->replaceAllUsesWith(NT);
1337     NT->takeName(I1);
1338   }
1339   NT->setDebugLoc(DILocation::getMergedLocation(
1340       I1->getDebugLoc(), I2->getDebugLoc()));
1341 
1342   IRBuilder<NoFolder> Builder(NT);
1343   // Hoisting one of the terminators from our successor is a great thing.
1344   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1345   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1346   // nodes, so we insert select instruction to compute the final result.
1347   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1348   for (BasicBlock *Succ : successors(BB1)) {
1349     PHINode *PN;
1350     for (BasicBlock::iterator BBI = Succ->begin();
1351          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1352       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1353       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1354       if (BB1V == BB2V)
1355         continue;
1356 
1357       // These values do not agree.  Insert a select instruction before NT
1358       // that determines the right value.
1359       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1360       if (!SI)
1361         SI = cast<SelectInst>(
1362             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1363                                  BB1V->getName() + "." + BB2V->getName(), BI));
1364 
1365       // Make the PHI node use the select for all incoming values for BB1/BB2
1366       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1367         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1368           PN->setIncomingValue(i, SI);
1369     }
1370   }
1371 
1372   // Update any PHI nodes in our new successors.
1373   for (BasicBlock *Succ : successors(BB1))
1374     AddPredecessorToBlock(Succ, BIParent, BB1);
1375 
1376   EraseTerminatorInstAndDCECond(BI);
1377   return true;
1378 }
1379 
1380 // All instructions in Insts belong to different blocks that all unconditionally
1381 // branch to a common successor. Analyze each instruction and return true if it
1382 // would be possible to sink them into their successor, creating one common
1383 // instruction instead. For every value that would be required to be provided by
1384 // PHI node (because an operand varies in each input block), add to PHIOperands.
1385 static bool canSinkInstructions(
1386     ArrayRef<Instruction *> Insts,
1387     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1388   // Prune out obviously bad instructions to move. Any non-store instruction
1389   // must have exactly one use, and we check later that use is by a single,
1390   // common PHI instruction in the successor.
1391   for (auto *I : Insts) {
1392     // These instructions may change or break semantics if moved.
1393     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1394         I->getType()->isTokenTy())
1395       return false;
1396 
1397     // Conservatively return false if I is an inline-asm instruction. Sinking
1398     // and merging inline-asm instructions can potentially create arguments
1399     // that cannot satisfy the inline-asm constraints.
1400     if (const auto *C = dyn_cast<CallInst>(I))
1401       if (C->isInlineAsm())
1402         return false;
1403 
1404     // Everything must have only one use too, apart from stores which
1405     // have no uses.
1406     if (!isa<StoreInst>(I) && !I->hasOneUse())
1407       return false;
1408   }
1409 
1410   const Instruction *I0 = Insts.front();
1411   for (auto *I : Insts)
1412     if (!I->isSameOperationAs(I0))
1413       return false;
1414 
1415   // All instructions in Insts are known to be the same opcode. If they aren't
1416   // stores, check the only user of each is a PHI or in the same block as the
1417   // instruction, because if a user is in the same block as an instruction
1418   // we're contemplating sinking, it must already be determined to be sinkable.
1419   if (!isa<StoreInst>(I0)) {
1420     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1421     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1422     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1423           auto *U = cast<Instruction>(*I->user_begin());
1424           return (PNUse &&
1425                   PNUse->getParent() == Succ &&
1426                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1427                  U->getParent() == I->getParent();
1428         }))
1429       return false;
1430   }
1431 
1432   // Because SROA can't handle speculating stores of selects, try not
1433   // to sink loads or stores of allocas when we'd have to create a PHI for
1434   // the address operand. Also, because it is likely that loads or stores
1435   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1436   // This can cause code churn which can have unintended consequences down
1437   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1438   // FIXME: This is a workaround for a deficiency in SROA - see
1439   // https://llvm.org/bugs/show_bug.cgi?id=30188
1440   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1441         return isa<AllocaInst>(I->getOperand(1));
1442       }))
1443     return false;
1444   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1445         return isa<AllocaInst>(I->getOperand(0));
1446       }))
1447     return false;
1448 
1449   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1450     if (I0->getOperand(OI)->getType()->isTokenTy())
1451       // Don't touch any operand of token type.
1452       return false;
1453 
1454     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1455       assert(I->getNumOperands() == I0->getNumOperands());
1456       return I->getOperand(OI) == I0->getOperand(OI);
1457     };
1458     if (!all_of(Insts, SameAsI0)) {
1459       if (!canReplaceOperandWithVariable(I0, OI))
1460         // We can't create a PHI from this GEP.
1461         return false;
1462       // Don't create indirect calls! The called value is the final operand.
1463       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1464         // FIXME: if the call was *already* indirect, we should do this.
1465         return false;
1466       }
1467       for (auto *I : Insts)
1468         PHIOperands[I].push_back(I->getOperand(OI));
1469     }
1470   }
1471   return true;
1472 }
1473 
1474 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1475 // instruction of every block in Blocks to their common successor, commoning
1476 // into one instruction.
1477 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1478   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1479 
1480   // canSinkLastInstruction returning true guarantees that every block has at
1481   // least one non-terminator instruction.
1482   SmallVector<Instruction*,4> Insts;
1483   for (auto *BB : Blocks) {
1484     Instruction *I = BB->getTerminator();
1485     do {
1486       I = I->getPrevNode();
1487     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1488     if (!isa<DbgInfoIntrinsic>(I))
1489       Insts.push_back(I);
1490   }
1491 
1492   // The only checking we need to do now is that all users of all instructions
1493   // are the same PHI node. canSinkLastInstruction should have checked this but
1494   // it is slightly over-aggressive - it gets confused by commutative instructions
1495   // so double-check it here.
1496   Instruction *I0 = Insts.front();
1497   if (!isa<StoreInst>(I0)) {
1498     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1499     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1500           auto *U = cast<Instruction>(*I->user_begin());
1501           return U == PNUse;
1502         }))
1503       return false;
1504   }
1505 
1506   // We don't need to do any more checking here; canSinkLastInstruction should
1507   // have done it all for us.
1508   SmallVector<Value*, 4> NewOperands;
1509   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1510     // This check is different to that in canSinkLastInstruction. There, we
1511     // cared about the global view once simplifycfg (and instcombine) have
1512     // completed - it takes into account PHIs that become trivially
1513     // simplifiable.  However here we need a more local view; if an operand
1514     // differs we create a PHI and rely on instcombine to clean up the very
1515     // small mess we may make.
1516     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1517       return I->getOperand(O) != I0->getOperand(O);
1518     });
1519     if (!NeedPHI) {
1520       NewOperands.push_back(I0->getOperand(O));
1521       continue;
1522     }
1523 
1524     // Create a new PHI in the successor block and populate it.
1525     auto *Op = I0->getOperand(O);
1526     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1527     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1528                                Op->getName() + ".sink", &BBEnd->front());
1529     for (auto *I : Insts)
1530       PN->addIncoming(I->getOperand(O), I->getParent());
1531     NewOperands.push_back(PN);
1532   }
1533 
1534   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1535   // and move it to the start of the successor block.
1536   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1537     I0->getOperandUse(O).set(NewOperands[O]);
1538   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1539 
1540   // The debug location for the "common" instruction is the merged locations of
1541   // all the commoned instructions.  We start with the original location of the
1542   // "common" instruction and iteratively merge each location in the loop below.
1543   const DILocation *Loc = I0->getDebugLoc();
1544 
1545   // Update metadata and IR flags, and merge debug locations.
1546   for (auto *I : Insts)
1547     if (I != I0) {
1548       Loc = DILocation::getMergedLocation(Loc, I->getDebugLoc());
1549       combineMetadataForCSE(I0, I);
1550       I0->andIRFlags(I);
1551     }
1552   if (!isa<CallInst>(I0))
1553     I0->setDebugLoc(Loc);
1554 
1555   if (!isa<StoreInst>(I0)) {
1556     // canSinkLastInstruction checked that all instructions were used by
1557     // one and only one PHI node. Find that now, RAUW it to our common
1558     // instruction and nuke it.
1559     assert(I0->hasOneUse());
1560     auto *PN = cast<PHINode>(*I0->user_begin());
1561     PN->replaceAllUsesWith(I0);
1562     PN->eraseFromParent();
1563   }
1564 
1565   // Finally nuke all instructions apart from the common instruction.
1566   for (auto *I : Insts)
1567     if (I != I0)
1568       I->eraseFromParent();
1569 
1570   return true;
1571 }
1572 
1573 namespace {
1574 
1575   // LockstepReverseIterator - Iterates through instructions
1576   // in a set of blocks in reverse order from the first non-terminator.
1577   // For example (assume all blocks have size n):
1578   //   LockstepReverseIterator I([B1, B2, B3]);
1579   //   *I-- = [B1[n], B2[n], B3[n]];
1580   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1581   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1582   //   ...
1583   class LockstepReverseIterator {
1584     ArrayRef<BasicBlock*> Blocks;
1585     SmallVector<Instruction*,4> Insts;
1586     bool Fail;
1587   public:
1588     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) :
1589       Blocks(Blocks) {
1590       reset();
1591     }
1592 
1593     void reset() {
1594       Fail = false;
1595       Insts.clear();
1596       for (auto *BB : Blocks) {
1597         Instruction *Inst = BB->getTerminator();
1598         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1599           Inst = Inst->getPrevNode();
1600         if (!Inst) {
1601           // Block wasn't big enough.
1602           Fail = true;
1603           return;
1604         }
1605         Insts.push_back(Inst);
1606       }
1607     }
1608 
1609     bool isValid() const {
1610       return !Fail;
1611     }
1612 
1613     void operator -- () {
1614       if (Fail)
1615         return;
1616       for (auto *&Inst : Insts) {
1617         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1618           Inst = Inst->getPrevNode();
1619         // Already at beginning of block.
1620         if (!Inst) {
1621           Fail = true;
1622           return;
1623         }
1624       }
1625     }
1626 
1627     ArrayRef<Instruction*> operator * () const {
1628       return Insts;
1629     }
1630   };
1631 
1632 } // end anonymous namespace
1633 
1634 /// Given an unconditional branch that goes to BBEnd,
1635 /// check whether BBEnd has only two predecessors and the other predecessor
1636 /// ends with an unconditional branch. If it is true, sink any common code
1637 /// in the two predecessors to BBEnd.
1638 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1639   assert(BI1->isUnconditional());
1640   BasicBlock *BBEnd = BI1->getSuccessor(0);
1641 
1642   // We support two situations:
1643   //   (1) all incoming arcs are unconditional
1644   //   (2) one incoming arc is conditional
1645   //
1646   // (2) is very common in switch defaults and
1647   // else-if patterns;
1648   //
1649   //   if (a) f(1);
1650   //   else if (b) f(2);
1651   //
1652   // produces:
1653   //
1654   //       [if]
1655   //      /    \
1656   //    [f(1)] [if]
1657   //      |     | \
1658   //      |     |  |
1659   //      |  [f(2)]|
1660   //       \    | /
1661   //        [ end ]
1662   //
1663   // [end] has two unconditional predecessor arcs and one conditional. The
1664   // conditional refers to the implicit empty 'else' arc. This conditional
1665   // arc can also be caused by an empty default block in a switch.
1666   //
1667   // In this case, we attempt to sink code from all *unconditional* arcs.
1668   // If we can sink instructions from these arcs (determined during the scan
1669   // phase below) we insert a common successor for all unconditional arcs and
1670   // connect that to [end], to enable sinking:
1671   //
1672   //       [if]
1673   //      /    \
1674   //    [x(1)] [if]
1675   //      |     | \
1676   //      |     |  \
1677   //      |  [x(2)] |
1678   //       \   /    |
1679   //   [sink.split] |
1680   //         \     /
1681   //         [ end ]
1682   //
1683   SmallVector<BasicBlock*,4> UnconditionalPreds;
1684   Instruction *Cond = nullptr;
1685   for (auto *B : predecessors(BBEnd)) {
1686     auto *T = B->getTerminator();
1687     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1688       UnconditionalPreds.push_back(B);
1689     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1690       Cond = T;
1691     else
1692       return false;
1693   }
1694   if (UnconditionalPreds.size() < 2)
1695     return false;
1696 
1697   bool Changed = false;
1698   // We take a two-step approach to tail sinking. First we scan from the end of
1699   // each block upwards in lockstep. If the n'th instruction from the end of each
1700   // block can be sunk, those instructions are added to ValuesToSink and we
1701   // carry on. If we can sink an instruction but need to PHI-merge some operands
1702   // (because they're not identical in each instruction) we add these to
1703   // PHIOperands.
1704   unsigned ScanIdx = 0;
1705   SmallPtrSet<Value*,4> InstructionsToSink;
1706   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1707   LockstepReverseIterator LRI(UnconditionalPreds);
1708   while (LRI.isValid() &&
1709          canSinkInstructions(*LRI, PHIOperands)) {
1710     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1711     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1712     ++ScanIdx;
1713     --LRI;
1714   }
1715 
1716   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1717     unsigned NumPHIdValues = 0;
1718     for (auto *I : *LRI)
1719       for (auto *V : PHIOperands[I])
1720         if (InstructionsToSink.count(V) == 0)
1721           ++NumPHIdValues;
1722     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1723     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1724     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1725         NumPHIInsts++;
1726 
1727     return NumPHIInsts <= 1;
1728   };
1729 
1730   if (ScanIdx > 0 && Cond) {
1731     // Check if we would actually sink anything first! This mutates the CFG and
1732     // adds an extra block. The goal in doing this is to allow instructions that
1733     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1734     // (such as trunc, add) can be sunk and predicated already. So we check that
1735     // we're going to sink at least one non-speculatable instruction.
1736     LRI.reset();
1737     unsigned Idx = 0;
1738     bool Profitable = false;
1739     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1740       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1741         Profitable = true;
1742         break;
1743       }
1744       --LRI;
1745       ++Idx;
1746     }
1747     if (!Profitable)
1748       return false;
1749 
1750     DEBUG(dbgs() << "SINK: Splitting edge\n");
1751     // We have a conditional edge and we're going to sink some instructions.
1752     // Insert a new block postdominating all blocks we're going to sink from.
1753     if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds,
1754                                 ".sink.split"))
1755       // Edges couldn't be split.
1756       return false;
1757     Changed = true;
1758   }
1759 
1760   // Now that we've analyzed all potential sinking candidates, perform the
1761   // actual sink. We iteratively sink the last non-terminator of the source
1762   // blocks into their common successor unless doing so would require too
1763   // many PHI instructions to be generated (currently only one PHI is allowed
1764   // per sunk instruction).
1765   //
1766   // We can use InstructionsToSink to discount values needing PHI-merging that will
1767   // actually be sunk in a later iteration. This allows us to be more
1768   // aggressive in what we sink. This does allow a false positive where we
1769   // sink presuming a later value will also be sunk, but stop half way through
1770   // and never actually sink it which means we produce more PHIs than intended.
1771   // This is unlikely in practice though.
1772   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1773     DEBUG(dbgs() << "SINK: Sink: "
1774                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1775                  << "\n");
1776 
1777     // Because we've sunk every instruction in turn, the current instruction to
1778     // sink is always at index 0.
1779     LRI.reset();
1780     if (!ProfitableToSinkInstruction(LRI)) {
1781       // Too many PHIs would be created.
1782       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1783       break;
1784     }
1785 
1786     if (!sinkLastInstruction(UnconditionalPreds))
1787       return Changed;
1788     NumSinkCommons++;
1789     Changed = true;
1790   }
1791   return Changed;
1792 }
1793 
1794 /// \brief Determine if we can hoist sink a sole store instruction out of a
1795 /// conditional block.
1796 ///
1797 /// We are looking for code like the following:
1798 ///   BrBB:
1799 ///     store i32 %add, i32* %arrayidx2
1800 ///     ... // No other stores or function calls (we could be calling a memory
1801 ///     ... // function).
1802 ///     %cmp = icmp ult %x, %y
1803 ///     br i1 %cmp, label %EndBB, label %ThenBB
1804 ///   ThenBB:
1805 ///     store i32 %add5, i32* %arrayidx2
1806 ///     br label EndBB
1807 ///   EndBB:
1808 ///     ...
1809 ///   We are going to transform this into:
1810 ///   BrBB:
1811 ///     store i32 %add, i32* %arrayidx2
1812 ///     ... //
1813 ///     %cmp = icmp ult %x, %y
1814 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1815 ///     store i32 %add.add5, i32* %arrayidx2
1816 ///     ...
1817 ///
1818 /// \return The pointer to the value of the previous store if the store can be
1819 ///         hoisted into the predecessor block. 0 otherwise.
1820 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1821                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1822   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1823   if (!StoreToHoist)
1824     return nullptr;
1825 
1826   // Volatile or atomic.
1827   if (!StoreToHoist->isSimple())
1828     return nullptr;
1829 
1830   Value *StorePtr = StoreToHoist->getPointerOperand();
1831 
1832   // Look for a store to the same pointer in BrBB.
1833   unsigned MaxNumInstToLookAt = 9;
1834   for (Instruction &CurI : reverse(*BrBB)) {
1835     if (!MaxNumInstToLookAt)
1836       break;
1837     // Skip debug info.
1838     if (isa<DbgInfoIntrinsic>(CurI))
1839       continue;
1840     --MaxNumInstToLookAt;
1841 
1842     // Could be calling an instruction that affects memory like free().
1843     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1844       return nullptr;
1845 
1846     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1847       // Found the previous store make sure it stores to the same location.
1848       if (SI->getPointerOperand() == StorePtr)
1849         // Found the previous store, return its value operand.
1850         return SI->getValueOperand();
1851       return nullptr; // Unknown store.
1852     }
1853   }
1854 
1855   return nullptr;
1856 }
1857 
1858 /// \brief Speculate a conditional basic block flattening the CFG.
1859 ///
1860 /// Note that this is a very risky transform currently. Speculating
1861 /// instructions like this is most often not desirable. Instead, there is an MI
1862 /// pass which can do it with full awareness of the resource constraints.
1863 /// However, some cases are "obvious" and we should do directly. An example of
1864 /// this is speculating a single, reasonably cheap instruction.
1865 ///
1866 /// There is only one distinct advantage to flattening the CFG at the IR level:
1867 /// it makes very common but simplistic optimizations such as are common in
1868 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1869 /// modeling their effects with easier to reason about SSA value graphs.
1870 ///
1871 ///
1872 /// An illustration of this transform is turning this IR:
1873 /// \code
1874 ///   BB:
1875 ///     %cmp = icmp ult %x, %y
1876 ///     br i1 %cmp, label %EndBB, label %ThenBB
1877 ///   ThenBB:
1878 ///     %sub = sub %x, %y
1879 ///     br label BB2
1880 ///   EndBB:
1881 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1882 ///     ...
1883 /// \endcode
1884 ///
1885 /// Into this IR:
1886 /// \code
1887 ///   BB:
1888 ///     %cmp = icmp ult %x, %y
1889 ///     %sub = sub %x, %y
1890 ///     %cond = select i1 %cmp, 0, %sub
1891 ///     ...
1892 /// \endcode
1893 ///
1894 /// \returns true if the conditional block is removed.
1895 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1896                                    const TargetTransformInfo &TTI) {
1897   // Be conservative for now. FP select instruction can often be expensive.
1898   Value *BrCond = BI->getCondition();
1899   if (isa<FCmpInst>(BrCond))
1900     return false;
1901 
1902   BasicBlock *BB = BI->getParent();
1903   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1904 
1905   // If ThenBB is actually on the false edge of the conditional branch, remember
1906   // to swap the select operands later.
1907   bool Invert = false;
1908   if (ThenBB != BI->getSuccessor(0)) {
1909     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1910     Invert = true;
1911   }
1912   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1913 
1914   // Keep a count of how many times instructions are used within CondBB when
1915   // they are candidates for sinking into CondBB. Specifically:
1916   // - They are defined in BB, and
1917   // - They have no side effects, and
1918   // - All of their uses are in CondBB.
1919   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1920 
1921   unsigned SpeculationCost = 0;
1922   Value *SpeculatedStoreValue = nullptr;
1923   StoreInst *SpeculatedStore = nullptr;
1924   for (BasicBlock::iterator BBI = ThenBB->begin(),
1925                             BBE = std::prev(ThenBB->end());
1926        BBI != BBE; ++BBI) {
1927     Instruction *I = &*BBI;
1928     // Skip debug info.
1929     if (isa<DbgInfoIntrinsic>(I))
1930       continue;
1931 
1932     // Only speculatively execute a single instruction (not counting the
1933     // terminator) for now.
1934     ++SpeculationCost;
1935     if (SpeculationCost > 1)
1936       return false;
1937 
1938     // Don't hoist the instruction if it's unsafe or expensive.
1939     if (!isSafeToSpeculativelyExecute(I) &&
1940         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1941                                   I, BB, ThenBB, EndBB))))
1942       return false;
1943     if (!SpeculatedStoreValue &&
1944         ComputeSpeculationCost(I, TTI) >
1945             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1946       return false;
1947 
1948     // Store the store speculation candidate.
1949     if (SpeculatedStoreValue)
1950       SpeculatedStore = cast<StoreInst>(I);
1951 
1952     // Do not hoist the instruction if any of its operands are defined but not
1953     // used in BB. The transformation will prevent the operand from
1954     // being sunk into the use block.
1955     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1956       Instruction *OpI = dyn_cast<Instruction>(*i);
1957       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1958         continue; // Not a candidate for sinking.
1959 
1960       ++SinkCandidateUseCounts[OpI];
1961     }
1962   }
1963 
1964   // Consider any sink candidates which are only used in CondBB as costs for
1965   // speculation. Note, while we iterate over a DenseMap here, we are summing
1966   // and so iteration order isn't significant.
1967   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
1968            I = SinkCandidateUseCounts.begin(),
1969            E = SinkCandidateUseCounts.end();
1970        I != E; ++I)
1971     if (I->first->getNumUses() == I->second) {
1972       ++SpeculationCost;
1973       if (SpeculationCost > 1)
1974         return false;
1975     }
1976 
1977   // Check that the PHI nodes can be converted to selects.
1978   bool HaveRewritablePHIs = false;
1979   for (BasicBlock::iterator I = EndBB->begin();
1980        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1981     Value *OrigV = PN->getIncomingValueForBlock(BB);
1982     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1983 
1984     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1985     // Skip PHIs which are trivial.
1986     if (ThenV == OrigV)
1987       continue;
1988 
1989     // Don't convert to selects if we could remove undefined behavior instead.
1990     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1991         passingValueIsAlwaysUndefined(ThenV, PN))
1992       return false;
1993 
1994     HaveRewritablePHIs = true;
1995     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1996     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1997     if (!OrigCE && !ThenCE)
1998       continue; // Known safe and cheap.
1999 
2000     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2001         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2002       return false;
2003     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2004     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2005     unsigned MaxCost =
2006         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2007     if (OrigCost + ThenCost > MaxCost)
2008       return false;
2009 
2010     // Account for the cost of an unfolded ConstantExpr which could end up
2011     // getting expanded into Instructions.
2012     // FIXME: This doesn't account for how many operations are combined in the
2013     // constant expression.
2014     ++SpeculationCost;
2015     if (SpeculationCost > 1)
2016       return false;
2017   }
2018 
2019   // If there are no PHIs to process, bail early. This helps ensure idempotence
2020   // as well.
2021   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2022     return false;
2023 
2024   // If we get here, we can hoist the instruction and if-convert.
2025   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2026 
2027   // Insert a select of the value of the speculated store.
2028   if (SpeculatedStoreValue) {
2029     IRBuilder<NoFolder> Builder(BI);
2030     Value *TrueV = SpeculatedStore->getValueOperand();
2031     Value *FalseV = SpeculatedStoreValue;
2032     if (Invert)
2033       std::swap(TrueV, FalseV);
2034     Value *S = Builder.CreateSelect(
2035         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2036     SpeculatedStore->setOperand(0, S);
2037     SpeculatedStore->setDebugLoc(
2038         DILocation::getMergedLocation(
2039           BI->getDebugLoc(), SpeculatedStore->getDebugLoc()));
2040   }
2041 
2042   // Metadata can be dependent on the condition we are hoisting above.
2043   // Conservatively strip all metadata on the instruction.
2044   for (auto &I : *ThenBB)
2045     I.dropUnknownNonDebugMetadata();
2046 
2047   // Hoist the instructions.
2048   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2049                            ThenBB->begin(), std::prev(ThenBB->end()));
2050 
2051   // Insert selects and rewrite the PHI operands.
2052   IRBuilder<NoFolder> Builder(BI);
2053   for (BasicBlock::iterator I = EndBB->begin();
2054        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2055     unsigned OrigI = PN->getBasicBlockIndex(BB);
2056     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
2057     Value *OrigV = PN->getIncomingValue(OrigI);
2058     Value *ThenV = PN->getIncomingValue(ThenI);
2059 
2060     // Skip PHIs which are trivial.
2061     if (OrigV == ThenV)
2062       continue;
2063 
2064     // Create a select whose true value is the speculatively executed value and
2065     // false value is the preexisting value. Swap them if the branch
2066     // destinations were inverted.
2067     Value *TrueV = ThenV, *FalseV = OrigV;
2068     if (Invert)
2069       std::swap(TrueV, FalseV);
2070     Value *V = Builder.CreateSelect(
2071         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2072     PN->setIncomingValue(OrigI, V);
2073     PN->setIncomingValue(ThenI, V);
2074   }
2075 
2076   ++NumSpeculations;
2077   return true;
2078 }
2079 
2080 /// Return true if we can thread a branch across this block.
2081 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2082   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2083   unsigned Size = 0;
2084 
2085   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2086     if (isa<DbgInfoIntrinsic>(BBI))
2087       continue;
2088     if (Size > 10)
2089       return false; // Don't clone large BB's.
2090     ++Size;
2091 
2092     // We can only support instructions that do not define values that are
2093     // live outside of the current basic block.
2094     for (User *U : BBI->users()) {
2095       Instruction *UI = cast<Instruction>(U);
2096       if (UI->getParent() != BB || isa<PHINode>(UI))
2097         return false;
2098     }
2099 
2100     // Looks ok, continue checking.
2101   }
2102 
2103   return true;
2104 }
2105 
2106 /// If we have a conditional branch on a PHI node value that is defined in the
2107 /// same block as the branch and if any PHI entries are constants, thread edges
2108 /// corresponding to that entry to be branches to their ultimate destination.
2109 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2110                                 AssumptionCache *AC) {
2111   BasicBlock *BB = BI->getParent();
2112   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2113   // NOTE: we currently cannot transform this case if the PHI node is used
2114   // outside of the block.
2115   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2116     return false;
2117 
2118   // Degenerate case of a single entry PHI.
2119   if (PN->getNumIncomingValues() == 1) {
2120     FoldSingleEntryPHINodes(PN->getParent());
2121     return true;
2122   }
2123 
2124   // Now we know that this block has multiple preds and two succs.
2125   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2126     return false;
2127 
2128   // Can't fold blocks that contain noduplicate or convergent calls.
2129   if (any_of(*BB, [](const Instruction &I) {
2130         const CallInst *CI = dyn_cast<CallInst>(&I);
2131         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2132       }))
2133     return false;
2134 
2135   // Okay, this is a simple enough basic block.  See if any phi values are
2136   // constants.
2137   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2138     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2139     if (!CB || !CB->getType()->isIntegerTy(1))
2140       continue;
2141 
2142     // Okay, we now know that all edges from PredBB should be revectored to
2143     // branch to RealDest.
2144     BasicBlock *PredBB = PN->getIncomingBlock(i);
2145     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2146 
2147     if (RealDest == BB)
2148       continue; // Skip self loops.
2149     // Skip if the predecessor's terminator is an indirect branch.
2150     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2151       continue;
2152 
2153     // The dest block might have PHI nodes, other predecessors and other
2154     // difficult cases.  Instead of being smart about this, just insert a new
2155     // block that jumps to the destination block, effectively splitting
2156     // the edge we are about to create.
2157     BasicBlock *EdgeBB =
2158         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2159                            RealDest->getParent(), RealDest);
2160     BranchInst::Create(RealDest, EdgeBB);
2161 
2162     // Update PHI nodes.
2163     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2164 
2165     // BB may have instructions that are being threaded over.  Clone these
2166     // instructions into EdgeBB.  We know that there will be no uses of the
2167     // cloned instructions outside of EdgeBB.
2168     BasicBlock::iterator InsertPt = EdgeBB->begin();
2169     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2170     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2171       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2172         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2173         continue;
2174       }
2175       // Clone the instruction.
2176       Instruction *N = BBI->clone();
2177       if (BBI->hasName())
2178         N->setName(BBI->getName() + ".c");
2179 
2180       // Update operands due to translation.
2181       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2182         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2183         if (PI != TranslateMap.end())
2184           *i = PI->second;
2185       }
2186 
2187       // Check for trivial simplification.
2188       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2189         if (!BBI->use_empty())
2190           TranslateMap[&*BBI] = V;
2191         if (!N->mayHaveSideEffects()) {
2192           N->deleteValue(); // Instruction folded away, don't need actual inst
2193           N = nullptr;
2194         }
2195       } else {
2196         if (!BBI->use_empty())
2197           TranslateMap[&*BBI] = N;
2198       }
2199       // Insert the new instruction into its new home.
2200       if (N)
2201         EdgeBB->getInstList().insert(InsertPt, N);
2202 
2203       // Register the new instruction with the assumption cache if necessary.
2204       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2205         if (II->getIntrinsicID() == Intrinsic::assume)
2206           AC->registerAssumption(II);
2207     }
2208 
2209     // Loop over all of the edges from PredBB to BB, changing them to branch
2210     // to EdgeBB instead.
2211     TerminatorInst *PredBBTI = PredBB->getTerminator();
2212     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2213       if (PredBBTI->getSuccessor(i) == BB) {
2214         BB->removePredecessor(PredBB);
2215         PredBBTI->setSuccessor(i, EdgeBB);
2216       }
2217 
2218     // Recurse, simplifying any other constants.
2219     return FoldCondBranchOnPHI(BI, DL, AC) | true;
2220   }
2221 
2222   return false;
2223 }
2224 
2225 /// Given a BB that starts with the specified two-entry PHI node,
2226 /// see if we can eliminate it.
2227 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2228                                 const DataLayout &DL) {
2229   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2230   // statement", which has a very simple dominance structure.  Basically, we
2231   // are trying to find the condition that is being branched on, which
2232   // subsequently causes this merge to happen.  We really want control
2233   // dependence information for this check, but simplifycfg can't keep it up
2234   // to date, and this catches most of the cases we care about anyway.
2235   BasicBlock *BB = PN->getParent();
2236   BasicBlock *IfTrue, *IfFalse;
2237   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2238   if (!IfCond ||
2239       // Don't bother if the branch will be constant folded trivially.
2240       isa<ConstantInt>(IfCond))
2241     return false;
2242 
2243   // Okay, we found that we can merge this two-entry phi node into a select.
2244   // Doing so would require us to fold *all* two entry phi nodes in this block.
2245   // At some point this becomes non-profitable (particularly if the target
2246   // doesn't support cmov's).  Only do this transformation if there are two or
2247   // fewer PHI nodes in this block.
2248   unsigned NumPhis = 0;
2249   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2250     if (NumPhis > 2)
2251       return false;
2252 
2253   // Loop over the PHI's seeing if we can promote them all to select
2254   // instructions.  While we are at it, keep track of the instructions
2255   // that need to be moved to the dominating block.
2256   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2257   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2258            MaxCostVal1 = PHINodeFoldingThreshold;
2259   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2260   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2261 
2262   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2263     PHINode *PN = cast<PHINode>(II++);
2264     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2265       PN->replaceAllUsesWith(V);
2266       PN->eraseFromParent();
2267       continue;
2268     }
2269 
2270     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2271                              MaxCostVal0, TTI) ||
2272         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2273                              MaxCostVal1, TTI))
2274       return false;
2275   }
2276 
2277   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2278   // we ran out of PHIs then we simplified them all.
2279   PN = dyn_cast<PHINode>(BB->begin());
2280   if (!PN)
2281     return true;
2282 
2283   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2284   // often be turned into switches and other things.
2285   if (PN->getType()->isIntegerTy(1) &&
2286       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2287        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2288        isa<BinaryOperator>(IfCond)))
2289     return false;
2290 
2291   // If all PHI nodes are promotable, check to make sure that all instructions
2292   // in the predecessor blocks can be promoted as well. If not, we won't be able
2293   // to get rid of the control flow, so it's not worth promoting to select
2294   // instructions.
2295   BasicBlock *DomBlock = nullptr;
2296   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2297   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2298   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2299     IfBlock1 = nullptr;
2300   } else {
2301     DomBlock = *pred_begin(IfBlock1);
2302     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2303          ++I)
2304       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2305         // This is not an aggressive instruction that we can promote.
2306         // Because of this, we won't be able to get rid of the control flow, so
2307         // the xform is not worth it.
2308         return false;
2309       }
2310   }
2311 
2312   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2313     IfBlock2 = nullptr;
2314   } else {
2315     DomBlock = *pred_begin(IfBlock2);
2316     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2317          ++I)
2318       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2319         // This is not an aggressive instruction that we can promote.
2320         // Because of this, we won't be able to get rid of the control flow, so
2321         // the xform is not worth it.
2322         return false;
2323       }
2324   }
2325 
2326   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2327                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2328 
2329   // If we can still promote the PHI nodes after this gauntlet of tests,
2330   // do all of the PHI's now.
2331   Instruction *InsertPt = DomBlock->getTerminator();
2332   IRBuilder<NoFolder> Builder(InsertPt);
2333 
2334   // Move all 'aggressive' instructions, which are defined in the
2335   // conditional parts of the if's up to the dominating block.
2336   if (IfBlock1) {
2337     for (auto &I : *IfBlock1)
2338       I.dropUnknownNonDebugMetadata();
2339     DomBlock->getInstList().splice(InsertPt->getIterator(),
2340                                    IfBlock1->getInstList(), IfBlock1->begin(),
2341                                    IfBlock1->getTerminator()->getIterator());
2342   }
2343   if (IfBlock2) {
2344     for (auto &I : *IfBlock2)
2345       I.dropUnknownNonDebugMetadata();
2346     DomBlock->getInstList().splice(InsertPt->getIterator(),
2347                                    IfBlock2->getInstList(), IfBlock2->begin(),
2348                                    IfBlock2->getTerminator()->getIterator());
2349   }
2350 
2351   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2352     // Change the PHI node into a select instruction.
2353     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2354     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2355 
2356     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2357     PN->replaceAllUsesWith(Sel);
2358     Sel->takeName(PN);
2359     PN->eraseFromParent();
2360   }
2361 
2362   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2363   // has been flattened.  Change DomBlock to jump directly to our new block to
2364   // avoid other simplifycfg's kicking in on the diamond.
2365   TerminatorInst *OldTI = DomBlock->getTerminator();
2366   Builder.SetInsertPoint(OldTI);
2367   Builder.CreateBr(BB);
2368   OldTI->eraseFromParent();
2369   return true;
2370 }
2371 
2372 /// If we found a conditional branch that goes to two returning blocks,
2373 /// try to merge them together into one return,
2374 /// introducing a select if the return values disagree.
2375 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2376                                            IRBuilder<> &Builder) {
2377   assert(BI->isConditional() && "Must be a conditional branch");
2378   BasicBlock *TrueSucc = BI->getSuccessor(0);
2379   BasicBlock *FalseSucc = BI->getSuccessor(1);
2380   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2381   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2382 
2383   // Check to ensure both blocks are empty (just a return) or optionally empty
2384   // with PHI nodes.  If there are other instructions, merging would cause extra
2385   // computation on one path or the other.
2386   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2387     return false;
2388   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2389     return false;
2390 
2391   Builder.SetInsertPoint(BI);
2392   // Okay, we found a branch that is going to two return nodes.  If
2393   // there is no return value for this function, just change the
2394   // branch into a return.
2395   if (FalseRet->getNumOperands() == 0) {
2396     TrueSucc->removePredecessor(BI->getParent());
2397     FalseSucc->removePredecessor(BI->getParent());
2398     Builder.CreateRetVoid();
2399     EraseTerminatorInstAndDCECond(BI);
2400     return true;
2401   }
2402 
2403   // Otherwise, figure out what the true and false return values are
2404   // so we can insert a new select instruction.
2405   Value *TrueValue = TrueRet->getReturnValue();
2406   Value *FalseValue = FalseRet->getReturnValue();
2407 
2408   // Unwrap any PHI nodes in the return blocks.
2409   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2410     if (TVPN->getParent() == TrueSucc)
2411       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2412   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2413     if (FVPN->getParent() == FalseSucc)
2414       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2415 
2416   // In order for this transformation to be safe, we must be able to
2417   // unconditionally execute both operands to the return.  This is
2418   // normally the case, but we could have a potentially-trapping
2419   // constant expression that prevents this transformation from being
2420   // safe.
2421   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2422     if (TCV->canTrap())
2423       return false;
2424   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2425     if (FCV->canTrap())
2426       return false;
2427 
2428   // Okay, we collected all the mapped values and checked them for sanity, and
2429   // defined to really do this transformation.  First, update the CFG.
2430   TrueSucc->removePredecessor(BI->getParent());
2431   FalseSucc->removePredecessor(BI->getParent());
2432 
2433   // Insert select instructions where needed.
2434   Value *BrCond = BI->getCondition();
2435   if (TrueValue) {
2436     // Insert a select if the results differ.
2437     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2438     } else if (isa<UndefValue>(TrueValue)) {
2439       TrueValue = FalseValue;
2440     } else {
2441       TrueValue =
2442           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2443     }
2444   }
2445 
2446   Value *RI =
2447       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2448 
2449   (void)RI;
2450 
2451   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2452                << "\n  " << *BI << "NewRet = " << *RI
2453                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2454 
2455   EraseTerminatorInstAndDCECond(BI);
2456 
2457   return true;
2458 }
2459 
2460 /// Return true if the given instruction is available
2461 /// in its predecessor block. If yes, the instruction will be removed.
2462 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2463   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2464     return false;
2465   for (Instruction &I : *PB) {
2466     Instruction *PBI = &I;
2467     // Check whether Inst and PBI generate the same value.
2468     if (Inst->isIdenticalTo(PBI)) {
2469       Inst->replaceAllUsesWith(PBI);
2470       Inst->eraseFromParent();
2471       return true;
2472     }
2473   }
2474   return false;
2475 }
2476 
2477 /// Return true if either PBI or BI has branch weight available, and store
2478 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2479 /// not have branch weight, use 1:1 as its weight.
2480 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2481                                    uint64_t &PredTrueWeight,
2482                                    uint64_t &PredFalseWeight,
2483                                    uint64_t &SuccTrueWeight,
2484                                    uint64_t &SuccFalseWeight) {
2485   bool PredHasWeights =
2486       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2487   bool SuccHasWeights =
2488       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2489   if (PredHasWeights || SuccHasWeights) {
2490     if (!PredHasWeights)
2491       PredTrueWeight = PredFalseWeight = 1;
2492     if (!SuccHasWeights)
2493       SuccTrueWeight = SuccFalseWeight = 1;
2494     return true;
2495   } else {
2496     return false;
2497   }
2498 }
2499 
2500 /// If this basic block is simple enough, and if a predecessor branches to us
2501 /// and one of our successors, fold the block into the predecessor and use
2502 /// logical operations to pick the right destination.
2503 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2504   BasicBlock *BB = BI->getParent();
2505 
2506   Instruction *Cond = nullptr;
2507   if (BI->isConditional())
2508     Cond = dyn_cast<Instruction>(BI->getCondition());
2509   else {
2510     // For unconditional branch, check for a simple CFG pattern, where
2511     // BB has a single predecessor and BB's successor is also its predecessor's
2512     // successor. If such pattern exists, check for CSE between BB and its
2513     // predecessor.
2514     if (BasicBlock *PB = BB->getSinglePredecessor())
2515       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2516         if (PBI->isConditional() &&
2517             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2518              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2519           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2520             Instruction *Curr = &*I++;
2521             if (isa<CmpInst>(Curr)) {
2522               Cond = Curr;
2523               break;
2524             }
2525             // Quit if we can't remove this instruction.
2526             if (!checkCSEInPredecessor(Curr, PB))
2527               return false;
2528           }
2529         }
2530 
2531     if (!Cond)
2532       return false;
2533   }
2534 
2535   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2536       Cond->getParent() != BB || !Cond->hasOneUse())
2537     return false;
2538 
2539   // Make sure the instruction after the condition is the cond branch.
2540   BasicBlock::iterator CondIt = ++Cond->getIterator();
2541 
2542   // Ignore dbg intrinsics.
2543   while (isa<DbgInfoIntrinsic>(CondIt))
2544     ++CondIt;
2545 
2546   if (&*CondIt != BI)
2547     return false;
2548 
2549   // Only allow this transformation if computing the condition doesn't involve
2550   // too many instructions and these involved instructions can be executed
2551   // unconditionally. We denote all involved instructions except the condition
2552   // as "bonus instructions", and only allow this transformation when the
2553   // number of the bonus instructions does not exceed a certain threshold.
2554   unsigned NumBonusInsts = 0;
2555   for (auto I = BB->begin(); Cond != &*I; ++I) {
2556     // Ignore dbg intrinsics.
2557     if (isa<DbgInfoIntrinsic>(I))
2558       continue;
2559     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2560       return false;
2561     // I has only one use and can be executed unconditionally.
2562     Instruction *User = dyn_cast<Instruction>(I->user_back());
2563     if (User == nullptr || User->getParent() != BB)
2564       return false;
2565     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2566     // to use any other instruction, User must be an instruction between next(I)
2567     // and Cond.
2568     ++NumBonusInsts;
2569     // Early exits once we reach the limit.
2570     if (NumBonusInsts > BonusInstThreshold)
2571       return false;
2572   }
2573 
2574   // Cond is known to be a compare or binary operator.  Check to make sure that
2575   // neither operand is a potentially-trapping constant expression.
2576   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2577     if (CE->canTrap())
2578       return false;
2579   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2580     if (CE->canTrap())
2581       return false;
2582 
2583   // Finally, don't infinitely unroll conditional loops.
2584   BasicBlock *TrueDest = BI->getSuccessor(0);
2585   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2586   if (TrueDest == BB || FalseDest == BB)
2587     return false;
2588 
2589   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2590     BasicBlock *PredBlock = *PI;
2591     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2592 
2593     // Check that we have two conditional branches.  If there is a PHI node in
2594     // the common successor, verify that the same value flows in from both
2595     // blocks.
2596     SmallVector<PHINode *, 4> PHIs;
2597     if (!PBI || PBI->isUnconditional() ||
2598         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2599         (!BI->isConditional() &&
2600          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2601       continue;
2602 
2603     // Determine if the two branches share a common destination.
2604     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2605     bool InvertPredCond = false;
2606 
2607     if (BI->isConditional()) {
2608       if (PBI->getSuccessor(0) == TrueDest) {
2609         Opc = Instruction::Or;
2610       } else if (PBI->getSuccessor(1) == FalseDest) {
2611         Opc = Instruction::And;
2612       } else if (PBI->getSuccessor(0) == FalseDest) {
2613         Opc = Instruction::And;
2614         InvertPredCond = true;
2615       } else if (PBI->getSuccessor(1) == TrueDest) {
2616         Opc = Instruction::Or;
2617         InvertPredCond = true;
2618       } else {
2619         continue;
2620       }
2621     } else {
2622       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2623         continue;
2624     }
2625 
2626     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2627     IRBuilder<> Builder(PBI);
2628 
2629     // If we need to invert the condition in the pred block to match, do so now.
2630     if (InvertPredCond) {
2631       Value *NewCond = PBI->getCondition();
2632 
2633       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2634         CmpInst *CI = cast<CmpInst>(NewCond);
2635         CI->setPredicate(CI->getInversePredicate());
2636       } else {
2637         NewCond =
2638             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2639       }
2640 
2641       PBI->setCondition(NewCond);
2642       PBI->swapSuccessors();
2643     }
2644 
2645     // If we have bonus instructions, clone them into the predecessor block.
2646     // Note that there may be multiple predecessor blocks, so we cannot move
2647     // bonus instructions to a predecessor block.
2648     ValueToValueMapTy VMap; // maps original values to cloned values
2649     // We already make sure Cond is the last instruction before BI. Therefore,
2650     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2651     // instructions.
2652     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2653       if (isa<DbgInfoIntrinsic>(BonusInst))
2654         continue;
2655       Instruction *NewBonusInst = BonusInst->clone();
2656       RemapInstruction(NewBonusInst, VMap,
2657                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2658       VMap[&*BonusInst] = NewBonusInst;
2659 
2660       // If we moved a load, we cannot any longer claim any knowledge about
2661       // its potential value. The previous information might have been valid
2662       // only given the branch precondition.
2663       // For an analogous reason, we must also drop all the metadata whose
2664       // semantics we don't understand.
2665       NewBonusInst->dropUnknownNonDebugMetadata();
2666 
2667       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2668       NewBonusInst->takeName(&*BonusInst);
2669       BonusInst->setName(BonusInst->getName() + ".old");
2670     }
2671 
2672     // Clone Cond into the predecessor basic block, and or/and the
2673     // two conditions together.
2674     Instruction *New = Cond->clone();
2675     RemapInstruction(New, VMap,
2676                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2677     PredBlock->getInstList().insert(PBI->getIterator(), New);
2678     New->takeName(Cond);
2679     Cond->setName(New->getName() + ".old");
2680 
2681     if (BI->isConditional()) {
2682       Instruction *NewCond = cast<Instruction>(
2683           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2684       PBI->setCondition(NewCond);
2685 
2686       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2687       bool HasWeights =
2688           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2689                                  SuccTrueWeight, SuccFalseWeight);
2690       SmallVector<uint64_t, 8> NewWeights;
2691 
2692       if (PBI->getSuccessor(0) == BB) {
2693         if (HasWeights) {
2694           // PBI: br i1 %x, BB, FalseDest
2695           // BI:  br i1 %y, TrueDest, FalseDest
2696           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2697           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2698           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2699           //               TrueWeight for PBI * FalseWeight for BI.
2700           // We assume that total weights of a BranchInst can fit into 32 bits.
2701           // Therefore, we will not have overflow using 64-bit arithmetic.
2702           NewWeights.push_back(PredFalseWeight *
2703                                    (SuccFalseWeight + SuccTrueWeight) +
2704                                PredTrueWeight * SuccFalseWeight);
2705         }
2706         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2707         PBI->setSuccessor(0, TrueDest);
2708       }
2709       if (PBI->getSuccessor(1) == BB) {
2710         if (HasWeights) {
2711           // PBI: br i1 %x, TrueDest, BB
2712           // BI:  br i1 %y, TrueDest, FalseDest
2713           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2714           //              FalseWeight for PBI * TrueWeight for BI.
2715           NewWeights.push_back(PredTrueWeight *
2716                                    (SuccFalseWeight + SuccTrueWeight) +
2717                                PredFalseWeight * SuccTrueWeight);
2718           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2719           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2720         }
2721         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2722         PBI->setSuccessor(1, FalseDest);
2723       }
2724       if (NewWeights.size() == 2) {
2725         // Halve the weights if any of them cannot fit in an uint32_t
2726         FitWeights(NewWeights);
2727 
2728         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2729                                            NewWeights.end());
2730         PBI->setMetadata(
2731             LLVMContext::MD_prof,
2732             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2733       } else
2734         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2735     } else {
2736       // Update PHI nodes in the common successors.
2737       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2738         ConstantInt *PBI_C = cast<ConstantInt>(
2739             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2740         assert(PBI_C->getType()->isIntegerTy(1));
2741         Instruction *MergedCond = nullptr;
2742         if (PBI->getSuccessor(0) == TrueDest) {
2743           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2744           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2745           //       is false: !PBI_Cond and BI_Value
2746           Instruction *NotCond = cast<Instruction>(
2747               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2748           MergedCond = cast<Instruction>(
2749               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2750           if (PBI_C->isOne())
2751             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2752                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2753         } else {
2754           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2755           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2756           //       is false: PBI_Cond and BI_Value
2757           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2758               Instruction::And, PBI->getCondition(), New, "and.cond"));
2759           if (PBI_C->isOne()) {
2760             Instruction *NotCond = cast<Instruction>(
2761                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2762             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2763                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2764           }
2765         }
2766         // Update PHI Node.
2767         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2768                                   MergedCond);
2769       }
2770       // Change PBI from Conditional to Unconditional.
2771       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2772       EraseTerminatorInstAndDCECond(PBI);
2773       PBI = New_PBI;
2774     }
2775 
2776     // If BI was a loop latch, it may have had associated loop metadata.
2777     // We need to copy it to the new latch, that is, PBI.
2778     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2779       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2780 
2781     // TODO: If BB is reachable from all paths through PredBlock, then we
2782     // could replace PBI's branch probabilities with BI's.
2783 
2784     // Copy any debug value intrinsics into the end of PredBlock.
2785     for (Instruction &I : *BB)
2786       if (isa<DbgInfoIntrinsic>(I))
2787         I.clone()->insertBefore(PBI);
2788 
2789     return true;
2790   }
2791   return false;
2792 }
2793 
2794 // If there is only one store in BB1 and BB2, return it, otherwise return
2795 // nullptr.
2796 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2797   StoreInst *S = nullptr;
2798   for (auto *BB : {BB1, BB2}) {
2799     if (!BB)
2800       continue;
2801     for (auto &I : *BB)
2802       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2803         if (S)
2804           // Multiple stores seen.
2805           return nullptr;
2806         else
2807           S = SI;
2808       }
2809   }
2810   return S;
2811 }
2812 
2813 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2814                                               Value *AlternativeV = nullptr) {
2815   // PHI is going to be a PHI node that allows the value V that is defined in
2816   // BB to be referenced in BB's only successor.
2817   //
2818   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2819   // doesn't matter to us what the other operand is (it'll never get used). We
2820   // could just create a new PHI with an undef incoming value, but that could
2821   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2822   // other PHI. So here we directly look for some PHI in BB's successor with V
2823   // as an incoming operand. If we find one, we use it, else we create a new
2824   // one.
2825   //
2826   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2827   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2828   // where OtherBB is the single other predecessor of BB's only successor.
2829   PHINode *PHI = nullptr;
2830   BasicBlock *Succ = BB->getSingleSuccessor();
2831 
2832   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2833     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2834       PHI = cast<PHINode>(I);
2835       if (!AlternativeV)
2836         break;
2837 
2838       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2839       auto PredI = pred_begin(Succ);
2840       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2841       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2842         break;
2843       PHI = nullptr;
2844     }
2845   if (PHI)
2846     return PHI;
2847 
2848   // If V is not an instruction defined in BB, just return it.
2849   if (!AlternativeV &&
2850       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2851     return V;
2852 
2853   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2854   PHI->addIncoming(V, BB);
2855   for (BasicBlock *PredBB : predecessors(Succ))
2856     if (PredBB != BB)
2857       PHI->addIncoming(
2858           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2859   return PHI;
2860 }
2861 
2862 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2863                                            BasicBlock *QTB, BasicBlock *QFB,
2864                                            BasicBlock *PostBB, Value *Address,
2865                                            bool InvertPCond, bool InvertQCond) {
2866   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2867     return Operator::getOpcode(&I) == Instruction::BitCast &&
2868            I.getType()->isPointerTy();
2869   };
2870 
2871   // If we're not in aggressive mode, we only optimize if we have some
2872   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2873   auto IsWorthwhile = [&](BasicBlock *BB) {
2874     if (!BB)
2875       return true;
2876     // Heuristic: if the block can be if-converted/phi-folded and the
2877     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2878     // thread this store.
2879     unsigned N = 0;
2880     for (auto &I : *BB) {
2881       // Cheap instructions viable for folding.
2882       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2883           isa<StoreInst>(I))
2884         ++N;
2885       // Free instructions.
2886       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2887                IsaBitcastOfPointerType(I))
2888         continue;
2889       else
2890         return false;
2891     }
2892     return N <= PHINodeFoldingThreshold;
2893   };
2894 
2895   if (!MergeCondStoresAggressively &&
2896       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2897        !IsWorthwhile(QFB)))
2898     return false;
2899 
2900   // For every pointer, there must be exactly two stores, one coming from
2901   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2902   // store (to any address) in PTB,PFB or QTB,QFB.
2903   // FIXME: We could relax this restriction with a bit more work and performance
2904   // testing.
2905   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2906   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2907   if (!PStore || !QStore)
2908     return false;
2909 
2910   // Now check the stores are compatible.
2911   if (!QStore->isUnordered() || !PStore->isUnordered())
2912     return false;
2913 
2914   // Check that sinking the store won't cause program behavior changes. Sinking
2915   // the store out of the Q blocks won't change any behavior as we're sinking
2916   // from a block to its unconditional successor. But we're moving a store from
2917   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2918   // So we need to check that there are no aliasing loads or stores in
2919   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2920   // operations between PStore and the end of its parent block.
2921   //
2922   // The ideal way to do this is to query AliasAnalysis, but we don't
2923   // preserve AA currently so that is dangerous. Be super safe and just
2924   // check there are no other memory operations at all.
2925   for (auto &I : *QFB->getSinglePredecessor())
2926     if (I.mayReadOrWriteMemory())
2927       return false;
2928   for (auto &I : *QFB)
2929     if (&I != QStore && I.mayReadOrWriteMemory())
2930       return false;
2931   if (QTB)
2932     for (auto &I : *QTB)
2933       if (&I != QStore && I.mayReadOrWriteMemory())
2934         return false;
2935   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2936        I != E; ++I)
2937     if (&*I != PStore && I->mayReadOrWriteMemory())
2938       return false;
2939 
2940   // OK, we're going to sink the stores to PostBB. The store has to be
2941   // conditional though, so first create the predicate.
2942   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2943                      ->getCondition();
2944   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2945                      ->getCondition();
2946 
2947   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2948                                                 PStore->getParent());
2949   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2950                                                 QStore->getParent(), PPHI);
2951 
2952   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2953 
2954   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2955   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2956 
2957   if (InvertPCond)
2958     PPred = QB.CreateNot(PPred);
2959   if (InvertQCond)
2960     QPred = QB.CreateNot(QPred);
2961   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2962 
2963   auto *T =
2964       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2965   QB.SetInsertPoint(T);
2966   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2967   AAMDNodes AAMD;
2968   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2969   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2970   SI->setAAMetadata(AAMD);
2971 
2972   QStore->eraseFromParent();
2973   PStore->eraseFromParent();
2974 
2975   return true;
2976 }
2977 
2978 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2979   // The intention here is to find diamonds or triangles (see below) where each
2980   // conditional block contains a store to the same address. Both of these
2981   // stores are conditional, so they can't be unconditionally sunk. But it may
2982   // be profitable to speculatively sink the stores into one merged store at the
2983   // end, and predicate the merged store on the union of the two conditions of
2984   // PBI and QBI.
2985   //
2986   // This can reduce the number of stores executed if both of the conditions are
2987   // true, and can allow the blocks to become small enough to be if-converted.
2988   // This optimization will also chain, so that ladders of test-and-set
2989   // sequences can be if-converted away.
2990   //
2991   // We only deal with simple diamonds or triangles:
2992   //
2993   //     PBI       or      PBI        or a combination of the two
2994   //    /   \               | \
2995   //   PTB  PFB             |  PFB
2996   //    \   /               | /
2997   //     QBI                QBI
2998   //    /  \                | \
2999   //   QTB  QFB             |  QFB
3000   //    \  /                | /
3001   //    PostBB            PostBB
3002   //
3003   // We model triangles as a type of diamond with a nullptr "true" block.
3004   // Triangles are canonicalized so that the fallthrough edge is represented by
3005   // a true condition, as in the diagram above.
3006   //
3007   BasicBlock *PTB = PBI->getSuccessor(0);
3008   BasicBlock *PFB = PBI->getSuccessor(1);
3009   BasicBlock *QTB = QBI->getSuccessor(0);
3010   BasicBlock *QFB = QBI->getSuccessor(1);
3011   BasicBlock *PostBB = QFB->getSingleSuccessor();
3012 
3013   // Make sure we have a good guess for PostBB. If QTB's only successor is
3014   // QFB, then QFB is a better PostBB.
3015   if (QTB->getSingleSuccessor() == QFB)
3016     PostBB = QFB;
3017 
3018   // If we couldn't find a good PostBB, stop.
3019   if (!PostBB)
3020     return false;
3021 
3022   bool InvertPCond = false, InvertQCond = false;
3023   // Canonicalize fallthroughs to the true branches.
3024   if (PFB == QBI->getParent()) {
3025     std::swap(PFB, PTB);
3026     InvertPCond = true;
3027   }
3028   if (QFB == PostBB) {
3029     std::swap(QFB, QTB);
3030     InvertQCond = true;
3031   }
3032 
3033   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3034   // and QFB may not. Model fallthroughs as a nullptr block.
3035   if (PTB == QBI->getParent())
3036     PTB = nullptr;
3037   if (QTB == PostBB)
3038     QTB = nullptr;
3039 
3040   // Legality bailouts. We must have at least the non-fallthrough blocks and
3041   // the post-dominating block, and the non-fallthroughs must only have one
3042   // predecessor.
3043   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3044     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3045   };
3046   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3047       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3048     return false;
3049   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3050       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3051     return false;
3052   if (!PostBB->hasNUses(2) || !QBI->getParent()->hasNUses(2))
3053     return false;
3054 
3055   // OK, this is a sequence of two diamonds or triangles.
3056   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3057   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3058   for (auto *BB : {PTB, PFB}) {
3059     if (!BB)
3060       continue;
3061     for (auto &I : *BB)
3062       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3063         PStoreAddresses.insert(SI->getPointerOperand());
3064   }
3065   for (auto *BB : {QTB, QFB}) {
3066     if (!BB)
3067       continue;
3068     for (auto &I : *BB)
3069       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3070         QStoreAddresses.insert(SI->getPointerOperand());
3071   }
3072 
3073   set_intersect(PStoreAddresses, QStoreAddresses);
3074   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3075   // clear what it contains.
3076   auto &CommonAddresses = PStoreAddresses;
3077 
3078   bool Changed = false;
3079   for (auto *Address : CommonAddresses)
3080     Changed |= mergeConditionalStoreToAddress(
3081         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
3082   return Changed;
3083 }
3084 
3085 /// If we have a conditional branch as a predecessor of another block,
3086 /// this function tries to simplify it.  We know
3087 /// that PBI and BI are both conditional branches, and BI is in one of the
3088 /// successor blocks of PBI - PBI branches to BI.
3089 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3090                                            const DataLayout &DL) {
3091   assert(PBI->isConditional() && BI->isConditional());
3092   BasicBlock *BB = BI->getParent();
3093 
3094   // If this block ends with a branch instruction, and if there is a
3095   // predecessor that ends on a branch of the same condition, make
3096   // this conditional branch redundant.
3097   if (PBI->getCondition() == BI->getCondition() &&
3098       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3099     // Okay, the outcome of this conditional branch is statically
3100     // knowable.  If this block had a single pred, handle specially.
3101     if (BB->getSinglePredecessor()) {
3102       // Turn this into a branch on constant.
3103       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3104       BI->setCondition(
3105           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3106       return true; // Nuke the branch on constant.
3107     }
3108 
3109     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3110     // in the constant and simplify the block result.  Subsequent passes of
3111     // simplifycfg will thread the block.
3112     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3113       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3114       PHINode *NewPN = PHINode::Create(
3115           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3116           BI->getCondition()->getName() + ".pr", &BB->front());
3117       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3118       // predecessor, compute the PHI'd conditional value for all of the preds.
3119       // Any predecessor where the condition is not computable we keep symbolic.
3120       for (pred_iterator PI = PB; PI != PE; ++PI) {
3121         BasicBlock *P = *PI;
3122         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3123             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3124             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3125           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3126           NewPN->addIncoming(
3127               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3128               P);
3129         } else {
3130           NewPN->addIncoming(BI->getCondition(), P);
3131         }
3132       }
3133 
3134       BI->setCondition(NewPN);
3135       return true;
3136     }
3137   }
3138 
3139   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3140     if (CE->canTrap())
3141       return false;
3142 
3143   // If both branches are conditional and both contain stores to the same
3144   // address, remove the stores from the conditionals and create a conditional
3145   // merged store at the end.
3146   if (MergeCondStores && mergeConditionalStores(PBI, BI))
3147     return true;
3148 
3149   // If this is a conditional branch in an empty block, and if any
3150   // predecessors are a conditional branch to one of our destinations,
3151   // fold the conditions into logical ops and one cond br.
3152   BasicBlock::iterator BBI = BB->begin();
3153   // Ignore dbg intrinsics.
3154   while (isa<DbgInfoIntrinsic>(BBI))
3155     ++BBI;
3156   if (&*BBI != BI)
3157     return false;
3158 
3159   int PBIOp, BIOp;
3160   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3161     PBIOp = 0;
3162     BIOp = 0;
3163   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3164     PBIOp = 0;
3165     BIOp = 1;
3166   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3167     PBIOp = 1;
3168     BIOp = 0;
3169   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3170     PBIOp = 1;
3171     BIOp = 1;
3172   } else {
3173     return false;
3174   }
3175 
3176   // Check to make sure that the other destination of this branch
3177   // isn't BB itself.  If so, this is an infinite loop that will
3178   // keep getting unwound.
3179   if (PBI->getSuccessor(PBIOp) == BB)
3180     return false;
3181 
3182   // Do not perform this transformation if it would require
3183   // insertion of a large number of select instructions. For targets
3184   // without predication/cmovs, this is a big pessimization.
3185 
3186   // Also do not perform this transformation if any phi node in the common
3187   // destination block can trap when reached by BB or PBB (PR17073). In that
3188   // case, it would be unsafe to hoist the operation into a select instruction.
3189 
3190   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3191   unsigned NumPhis = 0;
3192   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3193        ++II, ++NumPhis) {
3194     if (NumPhis > 2) // Disable this xform.
3195       return false;
3196 
3197     PHINode *PN = cast<PHINode>(II);
3198     Value *BIV = PN->getIncomingValueForBlock(BB);
3199     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3200       if (CE->canTrap())
3201         return false;
3202 
3203     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3204     Value *PBIV = PN->getIncomingValue(PBBIdx);
3205     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3206       if (CE->canTrap())
3207         return false;
3208   }
3209 
3210   // Finally, if everything is ok, fold the branches to logical ops.
3211   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3212 
3213   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3214                << "AND: " << *BI->getParent());
3215 
3216   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3217   // branch in it, where one edge (OtherDest) goes back to itself but the other
3218   // exits.  We don't *know* that the program avoids the infinite loop
3219   // (even though that seems likely).  If we do this xform naively, we'll end up
3220   // recursively unpeeling the loop.  Since we know that (after the xform is
3221   // done) that the block *is* infinite if reached, we just make it an obviously
3222   // infinite loop with no cond branch.
3223   if (OtherDest == BB) {
3224     // Insert it at the end of the function, because it's either code,
3225     // or it won't matter if it's hot. :)
3226     BasicBlock *InfLoopBlock =
3227         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3228     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3229     OtherDest = InfLoopBlock;
3230   }
3231 
3232   DEBUG(dbgs() << *PBI->getParent()->getParent());
3233 
3234   // BI may have other predecessors.  Because of this, we leave
3235   // it alone, but modify PBI.
3236 
3237   // Make sure we get to CommonDest on True&True directions.
3238   Value *PBICond = PBI->getCondition();
3239   IRBuilder<NoFolder> Builder(PBI);
3240   if (PBIOp)
3241     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3242 
3243   Value *BICond = BI->getCondition();
3244   if (BIOp)
3245     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3246 
3247   // Merge the conditions.
3248   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3249 
3250   // Modify PBI to branch on the new condition to the new dests.
3251   PBI->setCondition(Cond);
3252   PBI->setSuccessor(0, CommonDest);
3253   PBI->setSuccessor(1, OtherDest);
3254 
3255   // Update branch weight for PBI.
3256   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3257   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3258   bool HasWeights =
3259       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3260                              SuccTrueWeight, SuccFalseWeight);
3261   if (HasWeights) {
3262     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3263     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3264     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3265     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3266     // The weight to CommonDest should be PredCommon * SuccTotal +
3267     //                                    PredOther * SuccCommon.
3268     // The weight to OtherDest should be PredOther * SuccOther.
3269     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3270                                   PredOther * SuccCommon,
3271                               PredOther * SuccOther};
3272     // Halve the weights if any of them cannot fit in an uint32_t
3273     FitWeights(NewWeights);
3274 
3275     PBI->setMetadata(LLVMContext::MD_prof,
3276                      MDBuilder(BI->getContext())
3277                          .createBranchWeights(NewWeights[0], NewWeights[1]));
3278   }
3279 
3280   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3281   // block that are identical to the entries for BI's block.
3282   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3283 
3284   // We know that the CommonDest already had an edge from PBI to
3285   // it.  If it has PHIs though, the PHIs may have different
3286   // entries for BB and PBI's BB.  If so, insert a select to make
3287   // them agree.
3288   PHINode *PN;
3289   for (BasicBlock::iterator II = CommonDest->begin();
3290        (PN = dyn_cast<PHINode>(II)); ++II) {
3291     Value *BIV = PN->getIncomingValueForBlock(BB);
3292     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3293     Value *PBIV = PN->getIncomingValue(PBBIdx);
3294     if (BIV != PBIV) {
3295       // Insert a select in PBI to pick the right value.
3296       SelectInst *NV = cast<SelectInst>(
3297           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3298       PN->setIncomingValue(PBBIdx, NV);
3299       // Although the select has the same condition as PBI, the original branch
3300       // weights for PBI do not apply to the new select because the select's
3301       // 'logical' edges are incoming edges of the phi that is eliminated, not
3302       // the outgoing edges of PBI.
3303       if (HasWeights) {
3304         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3305         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3306         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3307         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3308         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3309         // The weight to PredOtherDest should be PredOther * SuccCommon.
3310         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3311                                   PredOther * SuccCommon};
3312 
3313         FitWeights(NewWeights);
3314 
3315         NV->setMetadata(LLVMContext::MD_prof,
3316                         MDBuilder(BI->getContext())
3317                             .createBranchWeights(NewWeights[0], NewWeights[1]));
3318       }
3319     }
3320   }
3321 
3322   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3323   DEBUG(dbgs() << *PBI->getParent()->getParent());
3324 
3325   // This basic block is probably dead.  We know it has at least
3326   // one fewer predecessor.
3327   return true;
3328 }
3329 
3330 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3331 // true or to FalseBB if Cond is false.
3332 // Takes care of updating the successors and removing the old terminator.
3333 // Also makes sure not to introduce new successors by assuming that edges to
3334 // non-successor TrueBBs and FalseBBs aren't reachable.
3335 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3336                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3337                                        uint32_t TrueWeight,
3338                                        uint32_t FalseWeight) {
3339   // Remove any superfluous successor edges from the CFG.
3340   // First, figure out which successors to preserve.
3341   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3342   // successor.
3343   BasicBlock *KeepEdge1 = TrueBB;
3344   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3345 
3346   // Then remove the rest.
3347   for (BasicBlock *Succ : OldTerm->successors()) {
3348     // Make sure only to keep exactly one copy of each edge.
3349     if (Succ == KeepEdge1)
3350       KeepEdge1 = nullptr;
3351     else if (Succ == KeepEdge2)
3352       KeepEdge2 = nullptr;
3353     else
3354       Succ->removePredecessor(OldTerm->getParent(),
3355                               /*DontDeleteUselessPHIs=*/true);
3356   }
3357 
3358   IRBuilder<> Builder(OldTerm);
3359   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3360 
3361   // Insert an appropriate new terminator.
3362   if (!KeepEdge1 && !KeepEdge2) {
3363     if (TrueBB == FalseBB)
3364       // We were only looking for one successor, and it was present.
3365       // Create an unconditional branch to it.
3366       Builder.CreateBr(TrueBB);
3367     else {
3368       // We found both of the successors we were looking for.
3369       // Create a conditional branch sharing the condition of the select.
3370       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3371       if (TrueWeight != FalseWeight)
3372         NewBI->setMetadata(LLVMContext::MD_prof,
3373                            MDBuilder(OldTerm->getContext())
3374                                .createBranchWeights(TrueWeight, FalseWeight));
3375     }
3376   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3377     // Neither of the selected blocks were successors, so this
3378     // terminator must be unreachable.
3379     new UnreachableInst(OldTerm->getContext(), OldTerm);
3380   } else {
3381     // One of the selected values was a successor, but the other wasn't.
3382     // Insert an unconditional branch to the one that was found;
3383     // the edge to the one that wasn't must be unreachable.
3384     if (!KeepEdge1)
3385       // Only TrueBB was found.
3386       Builder.CreateBr(TrueBB);
3387     else
3388       // Only FalseBB was found.
3389       Builder.CreateBr(FalseBB);
3390   }
3391 
3392   EraseTerminatorInstAndDCECond(OldTerm);
3393   return true;
3394 }
3395 
3396 // Replaces
3397 //   (switch (select cond, X, Y)) on constant X, Y
3398 // with a branch - conditional if X and Y lead to distinct BBs,
3399 // unconditional otherwise.
3400 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3401   // Check for constant integer values in the select.
3402   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3403   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3404   if (!TrueVal || !FalseVal)
3405     return false;
3406 
3407   // Find the relevant condition and destinations.
3408   Value *Condition = Select->getCondition();
3409   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3410   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3411 
3412   // Get weight for TrueBB and FalseBB.
3413   uint32_t TrueWeight = 0, FalseWeight = 0;
3414   SmallVector<uint64_t, 8> Weights;
3415   bool HasWeights = HasBranchWeights(SI);
3416   if (HasWeights) {
3417     GetBranchWeights(SI, Weights);
3418     if (Weights.size() == 1 + SI->getNumCases()) {
3419       TrueWeight =
3420           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3421       FalseWeight =
3422           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3423     }
3424   }
3425 
3426   // Perform the actual simplification.
3427   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3428                                     FalseWeight);
3429 }
3430 
3431 // Replaces
3432 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3433 //                             blockaddress(@fn, BlockB)))
3434 // with
3435 //   (br cond, BlockA, BlockB).
3436 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3437   // Check that both operands of the select are block addresses.
3438   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3439   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3440   if (!TBA || !FBA)
3441     return false;
3442 
3443   // Extract the actual blocks.
3444   BasicBlock *TrueBB = TBA->getBasicBlock();
3445   BasicBlock *FalseBB = FBA->getBasicBlock();
3446 
3447   // Perform the actual simplification.
3448   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3449                                     0);
3450 }
3451 
3452 /// This is called when we find an icmp instruction
3453 /// (a seteq/setne with a constant) as the only instruction in a
3454 /// block that ends with an uncond branch.  We are looking for a very specific
3455 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3456 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3457 /// default value goes to an uncond block with a seteq in it, we get something
3458 /// like:
3459 ///
3460 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3461 /// DEFAULT:
3462 ///   %tmp = icmp eq i8 %A, 92
3463 ///   br label %end
3464 /// end:
3465 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3466 ///
3467 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3468 /// the PHI, merging the third icmp into the switch.
3469 static bool TryToSimplifyUncondBranchWithICmpInIt(
3470     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3471     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3472     AssumptionCache *AC) {
3473   BasicBlock *BB = ICI->getParent();
3474 
3475   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3476   // complex.
3477   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3478     return false;
3479 
3480   Value *V = ICI->getOperand(0);
3481   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3482 
3483   // The pattern we're looking for is where our only predecessor is a switch on
3484   // 'V' and this block is the default case for the switch.  In this case we can
3485   // fold the compared value into the switch to simplify things.
3486   BasicBlock *Pred = BB->getSinglePredecessor();
3487   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3488     return false;
3489 
3490   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3491   if (SI->getCondition() != V)
3492     return false;
3493 
3494   // If BB is reachable on a non-default case, then we simply know the value of
3495   // V in this block.  Substitute it and constant fold the icmp instruction
3496   // away.
3497   if (SI->getDefaultDest() != BB) {
3498     ConstantInt *VVal = SI->findCaseDest(BB);
3499     assert(VVal && "Should have a unique destination value");
3500     ICI->setOperand(0, VVal);
3501 
3502     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3503       ICI->replaceAllUsesWith(V);
3504       ICI->eraseFromParent();
3505     }
3506     // BB is now empty, so it is likely to simplify away.
3507     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3508   }
3509 
3510   // Ok, the block is reachable from the default dest.  If the constant we're
3511   // comparing exists in one of the other edges, then we can constant fold ICI
3512   // and zap it.
3513   if (SI->findCaseValue(Cst) != SI->case_default()) {
3514     Value *V;
3515     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3516       V = ConstantInt::getFalse(BB->getContext());
3517     else
3518       V = ConstantInt::getTrue(BB->getContext());
3519 
3520     ICI->replaceAllUsesWith(V);
3521     ICI->eraseFromParent();
3522     // BB is now empty, so it is likely to simplify away.
3523     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3524   }
3525 
3526   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3527   // the block.
3528   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3529   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3530   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3531       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3532     return false;
3533 
3534   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3535   // true in the PHI.
3536   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3537   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3538 
3539   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3540     std::swap(DefaultCst, NewCst);
3541 
3542   // Replace ICI (which is used by the PHI for the default value) with true or
3543   // false depending on if it is EQ or NE.
3544   ICI->replaceAllUsesWith(DefaultCst);
3545   ICI->eraseFromParent();
3546 
3547   // Okay, the switch goes to this block on a default value.  Add an edge from
3548   // the switch to the merge point on the compared value.
3549   BasicBlock *NewBB =
3550       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3551   SmallVector<uint64_t, 8> Weights;
3552   bool HasWeights = HasBranchWeights(SI);
3553   if (HasWeights) {
3554     GetBranchWeights(SI, Weights);
3555     if (Weights.size() == 1 + SI->getNumCases()) {
3556       // Split weight for default case to case for "Cst".
3557       Weights[0] = (Weights[0] + 1) >> 1;
3558       Weights.push_back(Weights[0]);
3559 
3560       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3561       SI->setMetadata(
3562           LLVMContext::MD_prof,
3563           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3564     }
3565   }
3566   SI->addCase(Cst, NewBB);
3567 
3568   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3569   Builder.SetInsertPoint(NewBB);
3570   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3571   Builder.CreateBr(SuccBlock);
3572   PHIUse->addIncoming(NewCst, NewBB);
3573   return true;
3574 }
3575 
3576 /// The specified branch is a conditional branch.
3577 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3578 /// fold it into a switch instruction if so.
3579 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3580                                       const DataLayout &DL) {
3581   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3582   if (!Cond)
3583     return false;
3584 
3585   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3586   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3587   // 'setne's and'ed together, collect them.
3588 
3589   // Try to gather values from a chain of and/or to be turned into a switch
3590   ConstantComparesGatherer ConstantCompare(Cond, DL);
3591   // Unpack the result
3592   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3593   Value *CompVal = ConstantCompare.CompValue;
3594   unsigned UsedICmps = ConstantCompare.UsedICmps;
3595   Value *ExtraCase = ConstantCompare.Extra;
3596 
3597   // If we didn't have a multiply compared value, fail.
3598   if (!CompVal)
3599     return false;
3600 
3601   // Avoid turning single icmps into a switch.
3602   if (UsedICmps <= 1)
3603     return false;
3604 
3605   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3606 
3607   // There might be duplicate constants in the list, which the switch
3608   // instruction can't handle, remove them now.
3609   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3610   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3611 
3612   // If Extra was used, we require at least two switch values to do the
3613   // transformation.  A switch with one value is just a conditional branch.
3614   if (ExtraCase && Values.size() < 2)
3615     return false;
3616 
3617   // TODO: Preserve branch weight metadata, similarly to how
3618   // FoldValueComparisonIntoPredecessors preserves it.
3619 
3620   // Figure out which block is which destination.
3621   BasicBlock *DefaultBB = BI->getSuccessor(1);
3622   BasicBlock *EdgeBB = BI->getSuccessor(0);
3623   if (!TrueWhenEqual)
3624     std::swap(DefaultBB, EdgeBB);
3625 
3626   BasicBlock *BB = BI->getParent();
3627 
3628   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3629                << " cases into SWITCH.  BB is:\n"
3630                << *BB);
3631 
3632   // If there are any extra values that couldn't be folded into the switch
3633   // then we evaluate them with an explicit branch first.  Split the block
3634   // right before the condbr to handle it.
3635   if (ExtraCase) {
3636     BasicBlock *NewBB =
3637         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3638     // Remove the uncond branch added to the old block.
3639     TerminatorInst *OldTI = BB->getTerminator();
3640     Builder.SetInsertPoint(OldTI);
3641 
3642     if (TrueWhenEqual)
3643       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3644     else
3645       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3646 
3647     OldTI->eraseFromParent();
3648 
3649     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3650     // for the edge we just added.
3651     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3652 
3653     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3654                  << "\nEXTRABB = " << *BB);
3655     BB = NewBB;
3656   }
3657 
3658   Builder.SetInsertPoint(BI);
3659   // Convert pointer to int before we switch.
3660   if (CompVal->getType()->isPointerTy()) {
3661     CompVal = Builder.CreatePtrToInt(
3662         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3663   }
3664 
3665   // Create the new switch instruction now.
3666   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3667 
3668   // Add all of the 'cases' to the switch instruction.
3669   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3670     New->addCase(Values[i], EdgeBB);
3671 
3672   // We added edges from PI to the EdgeBB.  As such, if there were any
3673   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3674   // the number of edges added.
3675   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3676     PHINode *PN = cast<PHINode>(BBI);
3677     Value *InVal = PN->getIncomingValueForBlock(BB);
3678     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3679       PN->addIncoming(InVal, BB);
3680   }
3681 
3682   // Erase the old branch instruction.
3683   EraseTerminatorInstAndDCECond(BI);
3684 
3685   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3686   return true;
3687 }
3688 
3689 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3690   if (isa<PHINode>(RI->getValue()))
3691     return SimplifyCommonResume(RI);
3692   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3693            RI->getValue() == RI->getParent()->getFirstNonPHI())
3694     // The resume must unwind the exception that caused control to branch here.
3695     return SimplifySingleResume(RI);
3696 
3697   return false;
3698 }
3699 
3700 // Simplify resume that is shared by several landing pads (phi of landing pad).
3701 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3702   BasicBlock *BB = RI->getParent();
3703 
3704   // Check that there are no other instructions except for debug intrinsics
3705   // between the phi of landing pads (RI->getValue()) and resume instruction.
3706   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3707                        E = RI->getIterator();
3708   while (++I != E)
3709     if (!isa<DbgInfoIntrinsic>(I))
3710       return false;
3711 
3712   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3713   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3714 
3715   // Check incoming blocks to see if any of them are trivial.
3716   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3717        Idx++) {
3718     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3719     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3720 
3721     // If the block has other successors, we can not delete it because
3722     // it has other dependents.
3723     if (IncomingBB->getUniqueSuccessor() != BB)
3724       continue;
3725 
3726     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3727     // Not the landing pad that caused the control to branch here.
3728     if (IncomingValue != LandingPad)
3729       continue;
3730 
3731     bool isTrivial = true;
3732 
3733     I = IncomingBB->getFirstNonPHI()->getIterator();
3734     E = IncomingBB->getTerminator()->getIterator();
3735     while (++I != E)
3736       if (!isa<DbgInfoIntrinsic>(I)) {
3737         isTrivial = false;
3738         break;
3739       }
3740 
3741     if (isTrivial)
3742       TrivialUnwindBlocks.insert(IncomingBB);
3743   }
3744 
3745   // If no trivial unwind blocks, don't do any simplifications.
3746   if (TrivialUnwindBlocks.empty())
3747     return false;
3748 
3749   // Turn all invokes that unwind here into calls.
3750   for (auto *TrivialBB : TrivialUnwindBlocks) {
3751     // Blocks that will be simplified should be removed from the phi node.
3752     // Note there could be multiple edges to the resume block, and we need
3753     // to remove them all.
3754     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3755       BB->removePredecessor(TrivialBB, true);
3756 
3757     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3758          PI != PE;) {
3759       BasicBlock *Pred = *PI++;
3760       removeUnwindEdge(Pred);
3761     }
3762 
3763     // In each SimplifyCFG run, only the current processed block can be erased.
3764     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3765     // of erasing TrivialBB, we only remove the branch to the common resume
3766     // block so that we can later erase the resume block since it has no
3767     // predecessors.
3768     TrivialBB->getTerminator()->eraseFromParent();
3769     new UnreachableInst(RI->getContext(), TrivialBB);
3770   }
3771 
3772   // Delete the resume block if all its predecessors have been removed.
3773   if (pred_empty(BB))
3774     BB->eraseFromParent();
3775 
3776   return !TrivialUnwindBlocks.empty();
3777 }
3778 
3779 // Simplify resume that is only used by a single (non-phi) landing pad.
3780 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3781   BasicBlock *BB = RI->getParent();
3782   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3783   assert(RI->getValue() == LPInst &&
3784          "Resume must unwind the exception that caused control to here");
3785 
3786   // Check that there are no other instructions except for debug intrinsics.
3787   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3788   while (++I != E)
3789     if (!isa<DbgInfoIntrinsic>(I))
3790       return false;
3791 
3792   // Turn all invokes that unwind here into calls and delete the basic block.
3793   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3794     BasicBlock *Pred = *PI++;
3795     removeUnwindEdge(Pred);
3796   }
3797 
3798   // The landingpad is now unreachable.  Zap it.
3799   BB->eraseFromParent();
3800   if (LoopHeaders)
3801     LoopHeaders->erase(BB);
3802   return true;
3803 }
3804 
3805 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3806   // If this is a trivial cleanup pad that executes no instructions, it can be
3807   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3808   // that is an EH pad will be updated to continue to the caller and any
3809   // predecessor that terminates with an invoke instruction will have its invoke
3810   // instruction converted to a call instruction.  If the cleanup pad being
3811   // simplified does not continue to the caller, each predecessor will be
3812   // updated to continue to the unwind destination of the cleanup pad being
3813   // simplified.
3814   BasicBlock *BB = RI->getParent();
3815   CleanupPadInst *CPInst = RI->getCleanupPad();
3816   if (CPInst->getParent() != BB)
3817     // This isn't an empty cleanup.
3818     return false;
3819 
3820   // We cannot kill the pad if it has multiple uses.  This typically arises
3821   // from unreachable basic blocks.
3822   if (!CPInst->hasOneUse())
3823     return false;
3824 
3825   // Check that there are no other instructions except for benign intrinsics.
3826   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3827   while (++I != E) {
3828     auto *II = dyn_cast<IntrinsicInst>(I);
3829     if (!II)
3830       return false;
3831 
3832     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3833     switch (IntrinsicID) {
3834     case Intrinsic::dbg_declare:
3835     case Intrinsic::dbg_value:
3836     case Intrinsic::lifetime_end:
3837       break;
3838     default:
3839       return false;
3840     }
3841   }
3842 
3843   // If the cleanup return we are simplifying unwinds to the caller, this will
3844   // set UnwindDest to nullptr.
3845   BasicBlock *UnwindDest = RI->getUnwindDest();
3846   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3847 
3848   // We're about to remove BB from the control flow.  Before we do, sink any
3849   // PHINodes into the unwind destination.  Doing this before changing the
3850   // control flow avoids some potentially slow checks, since we can currently
3851   // be certain that UnwindDest and BB have no common predecessors (since they
3852   // are both EH pads).
3853   if (UnwindDest) {
3854     // First, go through the PHI nodes in UnwindDest and update any nodes that
3855     // reference the block we are removing
3856     for (BasicBlock::iterator I = UnwindDest->begin(),
3857                               IE = DestEHPad->getIterator();
3858          I != IE; ++I) {
3859       PHINode *DestPN = cast<PHINode>(I);
3860 
3861       int Idx = DestPN->getBasicBlockIndex(BB);
3862       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3863       assert(Idx != -1);
3864       // This PHI node has an incoming value that corresponds to a control
3865       // path through the cleanup pad we are removing.  If the incoming
3866       // value is in the cleanup pad, it must be a PHINode (because we
3867       // verified above that the block is otherwise empty).  Otherwise, the
3868       // value is either a constant or a value that dominates the cleanup
3869       // pad being removed.
3870       //
3871       // Because BB and UnwindDest are both EH pads, all of their
3872       // predecessors must unwind to these blocks, and since no instruction
3873       // can have multiple unwind destinations, there will be no overlap in
3874       // incoming blocks between SrcPN and DestPN.
3875       Value *SrcVal = DestPN->getIncomingValue(Idx);
3876       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3877 
3878       // Remove the entry for the block we are deleting.
3879       DestPN->removeIncomingValue(Idx, false);
3880 
3881       if (SrcPN && SrcPN->getParent() == BB) {
3882         // If the incoming value was a PHI node in the cleanup pad we are
3883         // removing, we need to merge that PHI node's incoming values into
3884         // DestPN.
3885         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3886              SrcIdx != SrcE; ++SrcIdx) {
3887           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3888                               SrcPN->getIncomingBlock(SrcIdx));
3889         }
3890       } else {
3891         // Otherwise, the incoming value came from above BB and
3892         // so we can just reuse it.  We must associate all of BB's
3893         // predecessors with this value.
3894         for (auto *pred : predecessors(BB)) {
3895           DestPN->addIncoming(SrcVal, pred);
3896         }
3897       }
3898     }
3899 
3900     // Sink any remaining PHI nodes directly into UnwindDest.
3901     Instruction *InsertPt = DestEHPad;
3902     for (BasicBlock::iterator I = BB->begin(),
3903                               IE = BB->getFirstNonPHI()->getIterator();
3904          I != IE;) {
3905       // The iterator must be incremented here because the instructions are
3906       // being moved to another block.
3907       PHINode *PN = cast<PHINode>(I++);
3908       if (PN->use_empty())
3909         // If the PHI node has no uses, just leave it.  It will be erased
3910         // when we erase BB below.
3911         continue;
3912 
3913       // Otherwise, sink this PHI node into UnwindDest.
3914       // Any predecessors to UnwindDest which are not already represented
3915       // must be back edges which inherit the value from the path through
3916       // BB.  In this case, the PHI value must reference itself.
3917       for (auto *pred : predecessors(UnwindDest))
3918         if (pred != BB)
3919           PN->addIncoming(PN, pred);
3920       PN->moveBefore(InsertPt);
3921     }
3922   }
3923 
3924   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3925     // The iterator must be updated here because we are removing this pred.
3926     BasicBlock *PredBB = *PI++;
3927     if (UnwindDest == nullptr) {
3928       removeUnwindEdge(PredBB);
3929     } else {
3930       TerminatorInst *TI = PredBB->getTerminator();
3931       TI->replaceUsesOfWith(BB, UnwindDest);
3932     }
3933   }
3934 
3935   // The cleanup pad is now unreachable.  Zap it.
3936   BB->eraseFromParent();
3937   return true;
3938 }
3939 
3940 // Try to merge two cleanuppads together.
3941 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3942   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3943   // with.
3944   BasicBlock *UnwindDest = RI->getUnwindDest();
3945   if (!UnwindDest)
3946     return false;
3947 
3948   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3949   // be safe to merge without code duplication.
3950   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3951     return false;
3952 
3953   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3954   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3955   if (!SuccessorCleanupPad)
3956     return false;
3957 
3958   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3959   // Replace any uses of the successor cleanupad with the predecessor pad
3960   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3961   // funclet bundle operands.
3962   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3963   // Remove the old cleanuppad.
3964   SuccessorCleanupPad->eraseFromParent();
3965   // Now, we simply replace the cleanupret with a branch to the unwind
3966   // destination.
3967   BranchInst::Create(UnwindDest, RI->getParent());
3968   RI->eraseFromParent();
3969 
3970   return true;
3971 }
3972 
3973 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3974   // It is possible to transiantly have an undef cleanuppad operand because we
3975   // have deleted some, but not all, dead blocks.
3976   // Eventually, this block will be deleted.
3977   if (isa<UndefValue>(RI->getOperand(0)))
3978     return false;
3979 
3980   if (mergeCleanupPad(RI))
3981     return true;
3982 
3983   if (removeEmptyCleanup(RI))
3984     return true;
3985 
3986   return false;
3987 }
3988 
3989 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3990   BasicBlock *BB = RI->getParent();
3991   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
3992     return false;
3993 
3994   // Find predecessors that end with branches.
3995   SmallVector<BasicBlock *, 8> UncondBranchPreds;
3996   SmallVector<BranchInst *, 8> CondBranchPreds;
3997   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3998     BasicBlock *P = *PI;
3999     TerminatorInst *PTI = P->getTerminator();
4000     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4001       if (BI->isUnconditional())
4002         UncondBranchPreds.push_back(P);
4003       else
4004         CondBranchPreds.push_back(BI);
4005     }
4006   }
4007 
4008   // If we found some, do the transformation!
4009   if (!UncondBranchPreds.empty() && DupRet) {
4010     while (!UncondBranchPreds.empty()) {
4011       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4012       DEBUG(dbgs() << "FOLDING: " << *BB
4013                    << "INTO UNCOND BRANCH PRED: " << *Pred);
4014       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4015     }
4016 
4017     // If we eliminated all predecessors of the block, delete the block now.
4018     if (pred_empty(BB)) {
4019       // We know there are no successors, so just nuke the block.
4020       BB->eraseFromParent();
4021       if (LoopHeaders)
4022         LoopHeaders->erase(BB);
4023     }
4024 
4025     return true;
4026   }
4027 
4028   // Check out all of the conditional branches going to this return
4029   // instruction.  If any of them just select between returns, change the
4030   // branch itself into a select/return pair.
4031   while (!CondBranchPreds.empty()) {
4032     BranchInst *BI = CondBranchPreds.pop_back_val();
4033 
4034     // Check to see if the non-BB successor is also a return block.
4035     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4036         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4037         SimplifyCondBranchToTwoReturns(BI, Builder))
4038       return true;
4039   }
4040   return false;
4041 }
4042 
4043 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4044   BasicBlock *BB = UI->getParent();
4045 
4046   bool Changed = false;
4047 
4048   // If there are any instructions immediately before the unreachable that can
4049   // be removed, do so.
4050   while (UI->getIterator() != BB->begin()) {
4051     BasicBlock::iterator BBI = UI->getIterator();
4052     --BBI;
4053     // Do not delete instructions that can have side effects which might cause
4054     // the unreachable to not be reachable; specifically, calls and volatile
4055     // operations may have this effect.
4056     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4057       break;
4058 
4059     if (BBI->mayHaveSideEffects()) {
4060       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4061         if (SI->isVolatile())
4062           break;
4063       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4064         if (LI->isVolatile())
4065           break;
4066       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4067         if (RMWI->isVolatile())
4068           break;
4069       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4070         if (CXI->isVolatile())
4071           break;
4072       } else if (isa<CatchPadInst>(BBI)) {
4073         // A catchpad may invoke exception object constructors and such, which
4074         // in some languages can be arbitrary code, so be conservative by
4075         // default.
4076         // For CoreCLR, it just involves a type test, so can be removed.
4077         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4078             EHPersonality::CoreCLR)
4079           break;
4080       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4081                  !isa<LandingPadInst>(BBI)) {
4082         break;
4083       }
4084       // Note that deleting LandingPad's here is in fact okay, although it
4085       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4086       // all the predecessors of this block will be the unwind edges of Invokes,
4087       // and we can therefore guarantee this block will be erased.
4088     }
4089 
4090     // Delete this instruction (any uses are guaranteed to be dead)
4091     if (!BBI->use_empty())
4092       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4093     BBI->eraseFromParent();
4094     Changed = true;
4095   }
4096 
4097   // If the unreachable instruction is the first in the block, take a gander
4098   // at all of the predecessors of this instruction, and simplify them.
4099   if (&BB->front() != UI)
4100     return Changed;
4101 
4102   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4103   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4104     TerminatorInst *TI = Preds[i]->getTerminator();
4105     IRBuilder<> Builder(TI);
4106     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4107       if (BI->isUnconditional()) {
4108         if (BI->getSuccessor(0) == BB) {
4109           new UnreachableInst(TI->getContext(), TI);
4110           TI->eraseFromParent();
4111           Changed = true;
4112         }
4113       } else {
4114         if (BI->getSuccessor(0) == BB) {
4115           Builder.CreateBr(BI->getSuccessor(1));
4116           EraseTerminatorInstAndDCECond(BI);
4117         } else if (BI->getSuccessor(1) == BB) {
4118           Builder.CreateBr(BI->getSuccessor(0));
4119           EraseTerminatorInstAndDCECond(BI);
4120           Changed = true;
4121         }
4122       }
4123     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4124       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4125         if (i->getCaseSuccessor() != BB) {
4126           ++i;
4127           continue;
4128         }
4129         BB->removePredecessor(SI->getParent());
4130         i = SI->removeCase(i);
4131         e = SI->case_end();
4132         Changed = true;
4133       }
4134     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4135       if (II->getUnwindDest() == BB) {
4136         removeUnwindEdge(TI->getParent());
4137         Changed = true;
4138       }
4139     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4140       if (CSI->getUnwindDest() == BB) {
4141         removeUnwindEdge(TI->getParent());
4142         Changed = true;
4143         continue;
4144       }
4145 
4146       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4147                                              E = CSI->handler_end();
4148            I != E; ++I) {
4149         if (*I == BB) {
4150           CSI->removeHandler(I);
4151           --I;
4152           --E;
4153           Changed = true;
4154         }
4155       }
4156       if (CSI->getNumHandlers() == 0) {
4157         BasicBlock *CatchSwitchBB = CSI->getParent();
4158         if (CSI->hasUnwindDest()) {
4159           // Redirect preds to the unwind dest
4160           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4161         } else {
4162           // Rewrite all preds to unwind to caller (or from invoke to call).
4163           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4164           for (BasicBlock *EHPred : EHPreds)
4165             removeUnwindEdge(EHPred);
4166         }
4167         // The catchswitch is no longer reachable.
4168         new UnreachableInst(CSI->getContext(), CSI);
4169         CSI->eraseFromParent();
4170         Changed = true;
4171       }
4172     } else if (isa<CleanupReturnInst>(TI)) {
4173       new UnreachableInst(TI->getContext(), TI);
4174       TI->eraseFromParent();
4175       Changed = true;
4176     }
4177   }
4178 
4179   // If this block is now dead, remove it.
4180   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4181     // We know there are no successors, so just nuke the block.
4182     BB->eraseFromParent();
4183     if (LoopHeaders)
4184       LoopHeaders->erase(BB);
4185     return true;
4186   }
4187 
4188   return Changed;
4189 }
4190 
4191 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4192   assert(Cases.size() >= 1);
4193 
4194   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4195   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4196     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4197       return false;
4198   }
4199   return true;
4200 }
4201 
4202 /// Turn a switch with two reachable destinations into an integer range
4203 /// comparison and branch.
4204 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4205   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4206 
4207   bool HasDefault =
4208       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4209 
4210   // Partition the cases into two sets with different destinations.
4211   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4212   BasicBlock *DestB = nullptr;
4213   SmallVector<ConstantInt *, 16> CasesA;
4214   SmallVector<ConstantInt *, 16> CasesB;
4215 
4216   for (auto Case : SI->cases()) {
4217     BasicBlock *Dest = Case.getCaseSuccessor();
4218     if (!DestA)
4219       DestA = Dest;
4220     if (Dest == DestA) {
4221       CasesA.push_back(Case.getCaseValue());
4222       continue;
4223     }
4224     if (!DestB)
4225       DestB = Dest;
4226     if (Dest == DestB) {
4227       CasesB.push_back(Case.getCaseValue());
4228       continue;
4229     }
4230     return false; // More than two destinations.
4231   }
4232 
4233   assert(DestA && DestB &&
4234          "Single-destination switch should have been folded.");
4235   assert(DestA != DestB);
4236   assert(DestB != SI->getDefaultDest());
4237   assert(!CasesB.empty() && "There must be non-default cases.");
4238   assert(!CasesA.empty() || HasDefault);
4239 
4240   // Figure out if one of the sets of cases form a contiguous range.
4241   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4242   BasicBlock *ContiguousDest = nullptr;
4243   BasicBlock *OtherDest = nullptr;
4244   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4245     ContiguousCases = &CasesA;
4246     ContiguousDest = DestA;
4247     OtherDest = DestB;
4248   } else if (CasesAreContiguous(CasesB)) {
4249     ContiguousCases = &CasesB;
4250     ContiguousDest = DestB;
4251     OtherDest = DestA;
4252   } else
4253     return false;
4254 
4255   // Start building the compare and branch.
4256 
4257   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4258   Constant *NumCases =
4259       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4260 
4261   Value *Sub = SI->getCondition();
4262   if (!Offset->isNullValue())
4263     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4264 
4265   Value *Cmp;
4266   // If NumCases overflowed, then all possible values jump to the successor.
4267   if (NumCases->isNullValue() && !ContiguousCases->empty())
4268     Cmp = ConstantInt::getTrue(SI->getContext());
4269   else
4270     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4271   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4272 
4273   // Update weight for the newly-created conditional branch.
4274   if (HasBranchWeights(SI)) {
4275     SmallVector<uint64_t, 8> Weights;
4276     GetBranchWeights(SI, Weights);
4277     if (Weights.size() == 1 + SI->getNumCases()) {
4278       uint64_t TrueWeight = 0;
4279       uint64_t FalseWeight = 0;
4280       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4281         if (SI->getSuccessor(I) == ContiguousDest)
4282           TrueWeight += Weights[I];
4283         else
4284           FalseWeight += Weights[I];
4285       }
4286       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4287         TrueWeight /= 2;
4288         FalseWeight /= 2;
4289       }
4290       NewBI->setMetadata(LLVMContext::MD_prof,
4291                          MDBuilder(SI->getContext())
4292                              .createBranchWeights((uint32_t)TrueWeight,
4293                                                   (uint32_t)FalseWeight));
4294     }
4295   }
4296 
4297   // Prune obsolete incoming values off the successors' PHI nodes.
4298   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4299     unsigned PreviousEdges = ContiguousCases->size();
4300     if (ContiguousDest == SI->getDefaultDest())
4301       ++PreviousEdges;
4302     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4303       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4304   }
4305   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4306     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4307     if (OtherDest == SI->getDefaultDest())
4308       ++PreviousEdges;
4309     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4310       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4311   }
4312 
4313   // Drop the switch.
4314   SI->eraseFromParent();
4315 
4316   return true;
4317 }
4318 
4319 /// Compute masked bits for the condition of a switch
4320 /// and use it to remove dead cases.
4321 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4322                                      const DataLayout &DL) {
4323   Value *Cond = SI->getCondition();
4324   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4325   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4326 
4327   // We can also eliminate cases by determining that their values are outside of
4328   // the limited range of the condition based on how many significant (non-sign)
4329   // bits are in the condition value.
4330   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4331   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4332 
4333   // Gather dead cases.
4334   SmallVector<ConstantInt *, 8> DeadCases;
4335   for (auto &Case : SI->cases()) {
4336     const APInt &CaseVal = Case.getCaseValue()->getValue();
4337     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4338         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4339       DeadCases.push_back(Case.getCaseValue());
4340       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4341     }
4342   }
4343 
4344   // If we can prove that the cases must cover all possible values, the
4345   // default destination becomes dead and we can remove it.  If we know some
4346   // of the bits in the value, we can use that to more precisely compute the
4347   // number of possible unique case values.
4348   bool HasDefault =
4349       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4350   const unsigned NumUnknownBits =
4351       Bits - (Known.Zero | Known.One).countPopulation();
4352   assert(NumUnknownBits <= Bits);
4353   if (HasDefault && DeadCases.empty() &&
4354       NumUnknownBits < 64 /* avoid overflow */ &&
4355       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4356     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4357     BasicBlock *NewDefault =
4358         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4359     SI->setDefaultDest(&*NewDefault);
4360     SplitBlock(&*NewDefault, &NewDefault->front());
4361     auto *OldTI = NewDefault->getTerminator();
4362     new UnreachableInst(SI->getContext(), OldTI);
4363     EraseTerminatorInstAndDCECond(OldTI);
4364     return true;
4365   }
4366 
4367   SmallVector<uint64_t, 8> Weights;
4368   bool HasWeight = HasBranchWeights(SI);
4369   if (HasWeight) {
4370     GetBranchWeights(SI, Weights);
4371     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4372   }
4373 
4374   // Remove dead cases from the switch.
4375   for (ConstantInt *DeadCase : DeadCases) {
4376     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4377     assert(CaseI != SI->case_default() &&
4378            "Case was not found. Probably mistake in DeadCases forming.");
4379     if (HasWeight) {
4380       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4381       Weights.pop_back();
4382     }
4383 
4384     // Prune unused values from PHI nodes.
4385     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4386     SI->removeCase(CaseI);
4387   }
4388   if (HasWeight && Weights.size() >= 2) {
4389     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4390     SI->setMetadata(LLVMContext::MD_prof,
4391                     MDBuilder(SI->getParent()->getContext())
4392                         .createBranchWeights(MDWeights));
4393   }
4394 
4395   return !DeadCases.empty();
4396 }
4397 
4398 /// If BB would be eligible for simplification by
4399 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4400 /// by an unconditional branch), look at the phi node for BB in the successor
4401 /// block and see if the incoming value is equal to CaseValue. If so, return
4402 /// the phi node, and set PhiIndex to BB's index in the phi node.
4403 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4404                                               BasicBlock *BB, int *PhiIndex) {
4405   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4406     return nullptr; // BB must be empty to be a candidate for simplification.
4407   if (!BB->getSinglePredecessor())
4408     return nullptr; // BB must be dominated by the switch.
4409 
4410   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4411   if (!Branch || !Branch->isUnconditional())
4412     return nullptr; // Terminator must be unconditional branch.
4413 
4414   BasicBlock *Succ = Branch->getSuccessor(0);
4415 
4416   BasicBlock::iterator I = Succ->begin();
4417   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4418     int Idx = PHI->getBasicBlockIndex(BB);
4419     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4420 
4421     Value *InValue = PHI->getIncomingValue(Idx);
4422     if (InValue != CaseValue)
4423       continue;
4424 
4425     *PhiIndex = Idx;
4426     return PHI;
4427   }
4428 
4429   return nullptr;
4430 }
4431 
4432 /// Try to forward the condition of a switch instruction to a phi node
4433 /// dominated by the switch, if that would mean that some of the destination
4434 /// blocks of the switch can be folded away.
4435 /// Returns true if a change is made.
4436 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4437   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4438   ForwardingNodesMap ForwardingNodes;
4439 
4440   for (auto Case : SI->cases()) {
4441     ConstantInt *CaseValue = Case.getCaseValue();
4442     BasicBlock *CaseDest = Case.getCaseSuccessor();
4443 
4444     int PhiIndex;
4445     PHINode *PHI =
4446         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4447     if (!PHI)
4448       continue;
4449 
4450     ForwardingNodes[PHI].push_back(PhiIndex);
4451   }
4452 
4453   bool Changed = false;
4454 
4455   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4456                                     E = ForwardingNodes.end();
4457        I != E; ++I) {
4458     PHINode *Phi = I->first;
4459     SmallVectorImpl<int> &Indexes = I->second;
4460 
4461     if (Indexes.size() < 2)
4462       continue;
4463 
4464     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4465       Phi->setIncomingValue(Indexes[I], SI->getCondition());
4466     Changed = true;
4467   }
4468 
4469   return Changed;
4470 }
4471 
4472 /// Return true if the backend will be able to handle
4473 /// initializing an array of constants like C.
4474 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4475   if (C->isThreadDependent())
4476     return false;
4477   if (C->isDLLImportDependent())
4478     return false;
4479 
4480   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4481       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4482       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4483     return false;
4484 
4485   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4486     if (!CE->isGEPWithNoNotionalOverIndexing())
4487       return false;
4488     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4489       return false;
4490   }
4491 
4492   if (!TTI.shouldBuildLookupTablesForConstant(C))
4493     return false;
4494 
4495   return true;
4496 }
4497 
4498 /// If V is a Constant, return it. Otherwise, try to look up
4499 /// its constant value in ConstantPool, returning 0 if it's not there.
4500 static Constant *
4501 LookupConstant(Value *V,
4502                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4503   if (Constant *C = dyn_cast<Constant>(V))
4504     return C;
4505   return ConstantPool.lookup(V);
4506 }
4507 
4508 /// Try to fold instruction I into a constant. This works for
4509 /// simple instructions such as binary operations where both operands are
4510 /// constant or can be replaced by constants from the ConstantPool. Returns the
4511 /// resulting constant on success, 0 otherwise.
4512 static Constant *
4513 ConstantFold(Instruction *I, const DataLayout &DL,
4514              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4515   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4516     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4517     if (!A)
4518       return nullptr;
4519     if (A->isAllOnesValue())
4520       return LookupConstant(Select->getTrueValue(), ConstantPool);
4521     if (A->isNullValue())
4522       return LookupConstant(Select->getFalseValue(), ConstantPool);
4523     return nullptr;
4524   }
4525 
4526   SmallVector<Constant *, 4> COps;
4527   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4528     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4529       COps.push_back(A);
4530     else
4531       return nullptr;
4532   }
4533 
4534   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4535     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4536                                            COps[1], DL);
4537   }
4538 
4539   return ConstantFoldInstOperands(I, COps, DL);
4540 }
4541 
4542 /// Try to determine the resulting constant values in phi nodes
4543 /// at the common destination basic block, *CommonDest, for one of the case
4544 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4545 /// case), of a switch instruction SI.
4546 static bool
4547 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4548                BasicBlock **CommonDest,
4549                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4550                const DataLayout &DL, const TargetTransformInfo &TTI) {
4551   // The block from which we enter the common destination.
4552   BasicBlock *Pred = SI->getParent();
4553 
4554   // If CaseDest is empty except for some side-effect free instructions through
4555   // which we can constant-propagate the CaseVal, continue to its successor.
4556   SmallDenseMap<Value *, Constant *> ConstantPool;
4557   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4558   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4559        ++I) {
4560     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4561       // If the terminator is a simple branch, continue to the next block.
4562       if (T->getNumSuccessors() != 1 || T->isExceptional())
4563         return false;
4564       Pred = CaseDest;
4565       CaseDest = T->getSuccessor(0);
4566     } else if (isa<DbgInfoIntrinsic>(I)) {
4567       // Skip debug intrinsic.
4568       continue;
4569     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4570       // Instruction is side-effect free and constant.
4571 
4572       // If the instruction has uses outside this block or a phi node slot for
4573       // the block, it is not safe to bypass the instruction since it would then
4574       // no longer dominate all its uses.
4575       for (auto &Use : I->uses()) {
4576         User *User = Use.getUser();
4577         if (Instruction *I = dyn_cast<Instruction>(User))
4578           if (I->getParent() == CaseDest)
4579             continue;
4580         if (PHINode *Phi = dyn_cast<PHINode>(User))
4581           if (Phi->getIncomingBlock(Use) == CaseDest)
4582             continue;
4583         return false;
4584       }
4585 
4586       ConstantPool.insert(std::make_pair(&*I, C));
4587     } else {
4588       break;
4589     }
4590   }
4591 
4592   // If we did not have a CommonDest before, use the current one.
4593   if (!*CommonDest)
4594     *CommonDest = CaseDest;
4595   // If the destination isn't the common one, abort.
4596   if (CaseDest != *CommonDest)
4597     return false;
4598 
4599   // Get the values for this case from phi nodes in the destination block.
4600   BasicBlock::iterator I = (*CommonDest)->begin();
4601   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4602     int Idx = PHI->getBasicBlockIndex(Pred);
4603     if (Idx == -1)
4604       continue;
4605 
4606     Constant *ConstVal =
4607         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4608     if (!ConstVal)
4609       return false;
4610 
4611     // Be conservative about which kinds of constants we support.
4612     if (!ValidLookupTableConstant(ConstVal, TTI))
4613       return false;
4614 
4615     Res.push_back(std::make_pair(PHI, ConstVal));
4616   }
4617 
4618   return Res.size() > 0;
4619 }
4620 
4621 // Helper function used to add CaseVal to the list of cases that generate
4622 // Result.
4623 static void MapCaseToResult(ConstantInt *CaseVal,
4624                             SwitchCaseResultVectorTy &UniqueResults,
4625                             Constant *Result) {
4626   for (auto &I : UniqueResults) {
4627     if (I.first == Result) {
4628       I.second.push_back(CaseVal);
4629       return;
4630     }
4631   }
4632   UniqueResults.push_back(
4633       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4634 }
4635 
4636 // Helper function that initializes a map containing
4637 // results for the PHI node of the common destination block for a switch
4638 // instruction. Returns false if multiple PHI nodes have been found or if
4639 // there is not a common destination block for the switch.
4640 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4641                                   BasicBlock *&CommonDest,
4642                                   SwitchCaseResultVectorTy &UniqueResults,
4643                                   Constant *&DefaultResult,
4644                                   const DataLayout &DL,
4645                                   const TargetTransformInfo &TTI) {
4646   for (auto &I : SI->cases()) {
4647     ConstantInt *CaseVal = I.getCaseValue();
4648 
4649     // Resulting value at phi nodes for this case value.
4650     SwitchCaseResultsTy Results;
4651     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4652                         DL, TTI))
4653       return false;
4654 
4655     // Only one value per case is permitted
4656     if (Results.size() > 1)
4657       return false;
4658     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4659 
4660     // Check the PHI consistency.
4661     if (!PHI)
4662       PHI = Results[0].first;
4663     else if (PHI != Results[0].first)
4664       return false;
4665   }
4666   // Find the default result value.
4667   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4668   BasicBlock *DefaultDest = SI->getDefaultDest();
4669   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4670                  DL, TTI);
4671   // If the default value is not found abort unless the default destination
4672   // is unreachable.
4673   DefaultResult =
4674       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4675   if ((!DefaultResult &&
4676        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4677     return false;
4678 
4679   return true;
4680 }
4681 
4682 // Helper function that checks if it is possible to transform a switch with only
4683 // two cases (or two cases + default) that produces a result into a select.
4684 // Example:
4685 // switch (a) {
4686 //   case 10:                %0 = icmp eq i32 %a, 10
4687 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4688 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4689 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4690 //   default:
4691 //     return 4;
4692 // }
4693 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4694                                    Constant *DefaultResult, Value *Condition,
4695                                    IRBuilder<> &Builder) {
4696   assert(ResultVector.size() == 2 &&
4697          "We should have exactly two unique results at this point");
4698   // If we are selecting between only two cases transform into a simple
4699   // select or a two-way select if default is possible.
4700   if (ResultVector[0].second.size() == 1 &&
4701       ResultVector[1].second.size() == 1) {
4702     ConstantInt *const FirstCase = ResultVector[0].second[0];
4703     ConstantInt *const SecondCase = ResultVector[1].second[0];
4704 
4705     bool DefaultCanTrigger = DefaultResult;
4706     Value *SelectValue = ResultVector[1].first;
4707     if (DefaultCanTrigger) {
4708       Value *const ValueCompare =
4709           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4710       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4711                                          DefaultResult, "switch.select");
4712     }
4713     Value *const ValueCompare =
4714         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4715     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4716                                 SelectValue, "switch.select");
4717   }
4718 
4719   return nullptr;
4720 }
4721 
4722 // Helper function to cleanup a switch instruction that has been converted into
4723 // a select, fixing up PHI nodes and basic blocks.
4724 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4725                                               Value *SelectValue,
4726                                               IRBuilder<> &Builder) {
4727   BasicBlock *SelectBB = SI->getParent();
4728   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4729     PHI->removeIncomingValue(SelectBB);
4730   PHI->addIncoming(SelectValue, SelectBB);
4731 
4732   Builder.CreateBr(PHI->getParent());
4733 
4734   // Remove the switch.
4735   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4736     BasicBlock *Succ = SI->getSuccessor(i);
4737 
4738     if (Succ == PHI->getParent())
4739       continue;
4740     Succ->removePredecessor(SelectBB);
4741   }
4742   SI->eraseFromParent();
4743 }
4744 
4745 /// If the switch is only used to initialize one or more
4746 /// phi nodes in a common successor block with only two different
4747 /// constant values, replace the switch with select.
4748 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4749                            AssumptionCache *AC, const DataLayout &DL,
4750                            const TargetTransformInfo &TTI) {
4751   Value *const Cond = SI->getCondition();
4752   PHINode *PHI = nullptr;
4753   BasicBlock *CommonDest = nullptr;
4754   Constant *DefaultResult;
4755   SwitchCaseResultVectorTy UniqueResults;
4756   // Collect all the cases that will deliver the same value from the switch.
4757   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4758                              DL, TTI))
4759     return false;
4760   // Selects choose between maximum two values.
4761   if (UniqueResults.size() != 2)
4762     return false;
4763   assert(PHI != nullptr && "PHI for value select not found");
4764 
4765   Builder.SetInsertPoint(SI);
4766   Value *SelectValue =
4767       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4768   if (SelectValue) {
4769     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4770     return true;
4771   }
4772   // The switch couldn't be converted into a select.
4773   return false;
4774 }
4775 
4776 namespace {
4777 
4778 /// This class represents a lookup table that can be used to replace a switch.
4779 class SwitchLookupTable {
4780 public:
4781   /// Create a lookup table to use as a switch replacement with the contents
4782   /// of Values, using DefaultValue to fill any holes in the table.
4783   SwitchLookupTable(
4784       Module &M, uint64_t TableSize, ConstantInt *Offset,
4785       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4786       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4787 
4788   /// Build instructions with Builder to retrieve the value at
4789   /// the position given by Index in the lookup table.
4790   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4791 
4792   /// Return true if a table with TableSize elements of
4793   /// type ElementType would fit in a target-legal register.
4794   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4795                                  Type *ElementType);
4796 
4797 private:
4798   // Depending on the contents of the table, it can be represented in
4799   // different ways.
4800   enum {
4801     // For tables where each element contains the same value, we just have to
4802     // store that single value and return it for each lookup.
4803     SingleValueKind,
4804 
4805     // For tables where there is a linear relationship between table index
4806     // and values. We calculate the result with a simple multiplication
4807     // and addition instead of a table lookup.
4808     LinearMapKind,
4809 
4810     // For small tables with integer elements, we can pack them into a bitmap
4811     // that fits into a target-legal register. Values are retrieved by
4812     // shift and mask operations.
4813     BitMapKind,
4814 
4815     // The table is stored as an array of values. Values are retrieved by load
4816     // instructions from the table.
4817     ArrayKind
4818   } Kind;
4819 
4820   // For SingleValueKind, this is the single value.
4821   Constant *SingleValue;
4822 
4823   // For BitMapKind, this is the bitmap.
4824   ConstantInt *BitMap;
4825   IntegerType *BitMapElementTy;
4826 
4827   // For LinearMapKind, these are the constants used to derive the value.
4828   ConstantInt *LinearOffset;
4829   ConstantInt *LinearMultiplier;
4830 
4831   // For ArrayKind, this is the array.
4832   GlobalVariable *Array;
4833 };
4834 
4835 } // end anonymous namespace
4836 
4837 SwitchLookupTable::SwitchLookupTable(
4838     Module &M, uint64_t TableSize, ConstantInt *Offset,
4839     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4840     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName)
4841     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4842       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4843   assert(Values.size() && "Can't build lookup table without values!");
4844   assert(TableSize >= Values.size() && "Can't fit values in table!");
4845 
4846   // If all values in the table are equal, this is that value.
4847   SingleValue = Values.begin()->second;
4848 
4849   Type *ValueType = Values.begin()->second->getType();
4850 
4851   // Build up the table contents.
4852   SmallVector<Constant *, 64> TableContents(TableSize);
4853   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4854     ConstantInt *CaseVal = Values[I].first;
4855     Constant *CaseRes = Values[I].second;
4856     assert(CaseRes->getType() == ValueType);
4857 
4858     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4859     TableContents[Idx] = CaseRes;
4860 
4861     if (CaseRes != SingleValue)
4862       SingleValue = nullptr;
4863   }
4864 
4865   // Fill in any holes in the table with the default result.
4866   if (Values.size() < TableSize) {
4867     assert(DefaultValue &&
4868            "Need a default value to fill the lookup table holes.");
4869     assert(DefaultValue->getType() == ValueType);
4870     for (uint64_t I = 0; I < TableSize; ++I) {
4871       if (!TableContents[I])
4872         TableContents[I] = DefaultValue;
4873     }
4874 
4875     if (DefaultValue != SingleValue)
4876       SingleValue = nullptr;
4877   }
4878 
4879   // If each element in the table contains the same value, we only need to store
4880   // that single value.
4881   if (SingleValue) {
4882     Kind = SingleValueKind;
4883     return;
4884   }
4885 
4886   // Check if we can derive the value with a linear transformation from the
4887   // table index.
4888   if (isa<IntegerType>(ValueType)) {
4889     bool LinearMappingPossible = true;
4890     APInt PrevVal;
4891     APInt DistToPrev;
4892     assert(TableSize >= 2 && "Should be a SingleValue table.");
4893     // Check if there is the same distance between two consecutive values.
4894     for (uint64_t I = 0; I < TableSize; ++I) {
4895       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4896       if (!ConstVal) {
4897         // This is an undef. We could deal with it, but undefs in lookup tables
4898         // are very seldom. It's probably not worth the additional complexity.
4899         LinearMappingPossible = false;
4900         break;
4901       }
4902       const APInt &Val = ConstVal->getValue();
4903       if (I != 0) {
4904         APInt Dist = Val - PrevVal;
4905         if (I == 1) {
4906           DistToPrev = Dist;
4907         } else if (Dist != DistToPrev) {
4908           LinearMappingPossible = false;
4909           break;
4910         }
4911       }
4912       PrevVal = Val;
4913     }
4914     if (LinearMappingPossible) {
4915       LinearOffset = cast<ConstantInt>(TableContents[0]);
4916       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4917       Kind = LinearMapKind;
4918       ++NumLinearMaps;
4919       return;
4920     }
4921   }
4922 
4923   // If the type is integer and the table fits in a register, build a bitmap.
4924   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4925     IntegerType *IT = cast<IntegerType>(ValueType);
4926     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4927     for (uint64_t I = TableSize; I > 0; --I) {
4928       TableInt <<= IT->getBitWidth();
4929       // Insert values into the bitmap. Undef values are set to zero.
4930       if (!isa<UndefValue>(TableContents[I - 1])) {
4931         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4932         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4933       }
4934     }
4935     BitMap = ConstantInt::get(M.getContext(), TableInt);
4936     BitMapElementTy = IT;
4937     Kind = BitMapKind;
4938     ++NumBitMaps;
4939     return;
4940   }
4941 
4942   // Store the table in an array.
4943   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4944   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4945 
4946   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4947                              GlobalVariable::PrivateLinkage, Initializer,
4948                              "switch.table." + FuncName);
4949   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4950   Kind = ArrayKind;
4951 }
4952 
4953 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4954   switch (Kind) {
4955   case SingleValueKind:
4956     return SingleValue;
4957   case LinearMapKind: {
4958     // Derive the result value from the input value.
4959     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4960                                           false, "switch.idx.cast");
4961     if (!LinearMultiplier->isOne())
4962       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4963     if (!LinearOffset->isZero())
4964       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4965     return Result;
4966   }
4967   case BitMapKind: {
4968     // Type of the bitmap (e.g. i59).
4969     IntegerType *MapTy = BitMap->getType();
4970 
4971     // Cast Index to the same type as the bitmap.
4972     // Note: The Index is <= the number of elements in the table, so
4973     // truncating it to the width of the bitmask is safe.
4974     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4975 
4976     // Multiply the shift amount by the element width.
4977     ShiftAmt = Builder.CreateMul(
4978         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4979         "switch.shiftamt");
4980 
4981     // Shift down.
4982     Value *DownShifted =
4983         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
4984     // Mask off.
4985     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
4986   }
4987   case ArrayKind: {
4988     // Make sure the table index will not overflow when treated as signed.
4989     IntegerType *IT = cast<IntegerType>(Index->getType());
4990     uint64_t TableSize =
4991         Array->getInitializer()->getType()->getArrayNumElements();
4992     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
4993       Index = Builder.CreateZExt(
4994           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
4995           "switch.tableidx.zext");
4996 
4997     Value *GEPIndices[] = {Builder.getInt32(0), Index};
4998     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
4999                                            GEPIndices, "switch.gep");
5000     return Builder.CreateLoad(GEP, "switch.load");
5001   }
5002   }
5003   llvm_unreachable("Unknown lookup table kind!");
5004 }
5005 
5006 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5007                                            uint64_t TableSize,
5008                                            Type *ElementType) {
5009   auto *IT = dyn_cast<IntegerType>(ElementType);
5010   if (!IT)
5011     return false;
5012   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5013   // are <= 15, we could try to narrow the type.
5014 
5015   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5016   if (TableSize >= UINT_MAX / IT->getBitWidth())
5017     return false;
5018   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5019 }
5020 
5021 /// Determine whether a lookup table should be built for this switch, based on
5022 /// the number of cases, size of the table, and the types of the results.
5023 static bool
5024 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5025                        const TargetTransformInfo &TTI, const DataLayout &DL,
5026                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5027   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5028     return false; // TableSize overflowed, or mul below might overflow.
5029 
5030   bool AllTablesFitInRegister = true;
5031   bool HasIllegalType = false;
5032   for (const auto &I : ResultTypes) {
5033     Type *Ty = I.second;
5034 
5035     // Saturate this flag to true.
5036     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5037 
5038     // Saturate this flag to false.
5039     AllTablesFitInRegister =
5040         AllTablesFitInRegister &&
5041         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5042 
5043     // If both flags saturate, we're done. NOTE: This *only* works with
5044     // saturating flags, and all flags have to saturate first due to the
5045     // non-deterministic behavior of iterating over a dense map.
5046     if (HasIllegalType && !AllTablesFitInRegister)
5047       break;
5048   }
5049 
5050   // If each table would fit in a register, we should build it anyway.
5051   if (AllTablesFitInRegister)
5052     return true;
5053 
5054   // Don't build a table that doesn't fit in-register if it has illegal types.
5055   if (HasIllegalType)
5056     return false;
5057 
5058   // The table density should be at least 40%. This is the same criterion as for
5059   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5060   // FIXME: Find the best cut-off.
5061   return SI->getNumCases() * 10 >= TableSize * 4;
5062 }
5063 
5064 /// Try to reuse the switch table index compare. Following pattern:
5065 /// \code
5066 ///     if (idx < tablesize)
5067 ///        r = table[idx]; // table does not contain default_value
5068 ///     else
5069 ///        r = default_value;
5070 ///     if (r != default_value)
5071 ///        ...
5072 /// \endcode
5073 /// Is optimized to:
5074 /// \code
5075 ///     cond = idx < tablesize;
5076 ///     if (cond)
5077 ///        r = table[idx];
5078 ///     else
5079 ///        r = default_value;
5080 ///     if (cond)
5081 ///        ...
5082 /// \endcode
5083 /// Jump threading will then eliminate the second if(cond).
5084 static void reuseTableCompare(
5085     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5086     Constant *DefaultValue,
5087     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5088 
5089   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5090   if (!CmpInst)
5091     return;
5092 
5093   // We require that the compare is in the same block as the phi so that jump
5094   // threading can do its work afterwards.
5095   if (CmpInst->getParent() != PhiBlock)
5096     return;
5097 
5098   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5099   if (!CmpOp1)
5100     return;
5101 
5102   Value *RangeCmp = RangeCheckBranch->getCondition();
5103   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5104   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5105 
5106   // Check if the compare with the default value is constant true or false.
5107   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5108                                                  DefaultValue, CmpOp1, true);
5109   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5110     return;
5111 
5112   // Check if the compare with the case values is distinct from the default
5113   // compare result.
5114   for (auto ValuePair : Values) {
5115     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5116                                                 ValuePair.second, CmpOp1, true);
5117     if (!CaseConst || CaseConst == DefaultConst)
5118       return;
5119     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5120            "Expect true or false as compare result.");
5121   }
5122 
5123   // Check if the branch instruction dominates the phi node. It's a simple
5124   // dominance check, but sufficient for our needs.
5125   // Although this check is invariant in the calling loops, it's better to do it
5126   // at this late stage. Practically we do it at most once for a switch.
5127   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5128   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5129     BasicBlock *Pred = *PI;
5130     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5131       return;
5132   }
5133 
5134   if (DefaultConst == FalseConst) {
5135     // The compare yields the same result. We can replace it.
5136     CmpInst->replaceAllUsesWith(RangeCmp);
5137     ++NumTableCmpReuses;
5138   } else {
5139     // The compare yields the same result, just inverted. We can replace it.
5140     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5141         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5142         RangeCheckBranch);
5143     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5144     ++NumTableCmpReuses;
5145   }
5146 }
5147 
5148 /// If the switch is only used to initialize one or more phi nodes in a common
5149 /// successor block with different constant values, replace the switch with
5150 /// lookup tables.
5151 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5152                                 const DataLayout &DL,
5153                                 const TargetTransformInfo &TTI) {
5154   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5155 
5156   Function *Fn = SI->getParent()->getParent();
5157   // Only build lookup table when we have a target that supports it or the
5158   // attribute is not set.
5159   if (!TTI.shouldBuildLookupTables() ||
5160       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5161     return false;
5162 
5163   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5164   // split off a dense part and build a lookup table for that.
5165 
5166   // FIXME: This creates arrays of GEPs to constant strings, which means each
5167   // GEP needs a runtime relocation in PIC code. We should just build one big
5168   // string and lookup indices into that.
5169 
5170   // Ignore switches with less than three cases. Lookup tables will not make
5171   // them
5172   // faster, so we don't analyze them.
5173   if (SI->getNumCases() < 3)
5174     return false;
5175 
5176   // Figure out the corresponding result for each case value and phi node in the
5177   // common destination, as well as the min and max case values.
5178   assert(SI->case_begin() != SI->case_end());
5179   SwitchInst::CaseIt CI = SI->case_begin();
5180   ConstantInt *MinCaseVal = CI->getCaseValue();
5181   ConstantInt *MaxCaseVal = CI->getCaseValue();
5182 
5183   BasicBlock *CommonDest = nullptr;
5184   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
5185   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5186   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5187   SmallDenseMap<PHINode *, Type *> ResultTypes;
5188   SmallVector<PHINode *, 4> PHIs;
5189 
5190   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5191     ConstantInt *CaseVal = CI->getCaseValue();
5192     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5193       MinCaseVal = CaseVal;
5194     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5195       MaxCaseVal = CaseVal;
5196 
5197     // Resulting value at phi nodes for this case value.
5198     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
5199     ResultsTy Results;
5200     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5201                         Results, DL, TTI))
5202       return false;
5203 
5204     // Append the result from this case to the list for each phi.
5205     for (const auto &I : Results) {
5206       PHINode *PHI = I.first;
5207       Constant *Value = I.second;
5208       if (!ResultLists.count(PHI))
5209         PHIs.push_back(PHI);
5210       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5211     }
5212   }
5213 
5214   // Keep track of the result types.
5215   for (PHINode *PHI : PHIs) {
5216     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5217   }
5218 
5219   uint64_t NumResults = ResultLists[PHIs[0]].size();
5220   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5221   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5222   bool TableHasHoles = (NumResults < TableSize);
5223 
5224   // If the table has holes, we need a constant result for the default case
5225   // or a bitmask that fits in a register.
5226   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5227   bool HasDefaultResults =
5228       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5229                      DefaultResultsList, DL, TTI);
5230 
5231   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5232   if (NeedMask) {
5233     // As an extra penalty for the validity test we require more cases.
5234     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5235       return false;
5236     if (!DL.fitsInLegalInteger(TableSize))
5237       return false;
5238   }
5239 
5240   for (const auto &I : DefaultResultsList) {
5241     PHINode *PHI = I.first;
5242     Constant *Result = I.second;
5243     DefaultResults[PHI] = Result;
5244   }
5245 
5246   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5247     return false;
5248 
5249   // Create the BB that does the lookups.
5250   Module &Mod = *CommonDest->getParent()->getParent();
5251   BasicBlock *LookupBB = BasicBlock::Create(
5252       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5253 
5254   // Compute the table index value.
5255   Builder.SetInsertPoint(SI);
5256   Value *TableIndex =
5257       Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
5258 
5259   // Compute the maximum table size representable by the integer type we are
5260   // switching upon.
5261   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5262   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5263   assert(MaxTableSize >= TableSize &&
5264          "It is impossible for a switch to have more entries than the max "
5265          "representable value of its input integer type's size.");
5266 
5267   // If the default destination is unreachable, or if the lookup table covers
5268   // all values of the conditional variable, branch directly to the lookup table
5269   // BB. Otherwise, check that the condition is within the case range.
5270   const bool DefaultIsReachable =
5271       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5272   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5273   BranchInst *RangeCheckBranch = nullptr;
5274 
5275   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5276     Builder.CreateBr(LookupBB);
5277     // Note: We call removeProdecessor later since we need to be able to get the
5278     // PHI value for the default case in case we're using a bit mask.
5279   } else {
5280     Value *Cmp = Builder.CreateICmpULT(
5281         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5282     RangeCheckBranch =
5283         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5284   }
5285 
5286   // Populate the BB that does the lookups.
5287   Builder.SetInsertPoint(LookupBB);
5288 
5289   if (NeedMask) {
5290     // Before doing the lookup we do the hole check.
5291     // The LookupBB is therefore re-purposed to do the hole check
5292     // and we create a new LookupBB.
5293     BasicBlock *MaskBB = LookupBB;
5294     MaskBB->setName("switch.hole_check");
5295     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5296                                   CommonDest->getParent(), CommonDest);
5297 
5298     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
5299     // unnecessary illegal types.
5300     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5301     APInt MaskInt(TableSizePowOf2, 0);
5302     APInt One(TableSizePowOf2, 1);
5303     // Build bitmask; fill in a 1 bit for every case.
5304     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5305     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5306       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5307                          .getLimitedValue();
5308       MaskInt |= One << Idx;
5309     }
5310     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5311 
5312     // Get the TableIndex'th bit of the bitmask.
5313     // If this bit is 0 (meaning hole) jump to the default destination,
5314     // else continue with table lookup.
5315     IntegerType *MapTy = TableMask->getType();
5316     Value *MaskIndex =
5317         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5318     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5319     Value *LoBit = Builder.CreateTrunc(
5320         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5321     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5322 
5323     Builder.SetInsertPoint(LookupBB);
5324     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5325   }
5326 
5327   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5328     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
5329     // do not delete PHINodes here.
5330     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5331                                             /*DontDeleteUselessPHIs=*/true);
5332   }
5333 
5334   bool ReturnedEarly = false;
5335   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5336     PHINode *PHI = PHIs[I];
5337     const ResultListTy &ResultList = ResultLists[PHI];
5338 
5339     // If using a bitmask, use any value to fill the lookup table holes.
5340     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5341     StringRef FuncName = Fn->getName();
5342     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5343                             FuncName);
5344 
5345     Value *Result = Table.BuildLookup(TableIndex, Builder);
5346 
5347     // If the result is used to return immediately from the function, we want to
5348     // do that right here.
5349     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5350         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5351       Builder.CreateRet(Result);
5352       ReturnedEarly = true;
5353       break;
5354     }
5355 
5356     // Do a small peephole optimization: re-use the switch table compare if
5357     // possible.
5358     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5359       BasicBlock *PhiBlock = PHI->getParent();
5360       // Search for compare instructions which use the phi.
5361       for (auto *User : PHI->users()) {
5362         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5363       }
5364     }
5365 
5366     PHI->addIncoming(Result, LookupBB);
5367   }
5368 
5369   if (!ReturnedEarly)
5370     Builder.CreateBr(CommonDest);
5371 
5372   // Remove the switch.
5373   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5374     BasicBlock *Succ = SI->getSuccessor(i);
5375 
5376     if (Succ == SI->getDefaultDest())
5377       continue;
5378     Succ->removePredecessor(SI->getParent());
5379   }
5380   SI->eraseFromParent();
5381 
5382   ++NumLookupTables;
5383   if (NeedMask)
5384     ++NumLookupTablesHoles;
5385   return true;
5386 }
5387 
5388 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5389   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5390   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5391   uint64_t Range = Diff + 1;
5392   uint64_t NumCases = Values.size();
5393   // 40% is the default density for building a jump table in optsize/minsize mode.
5394   uint64_t MinDensity = 40;
5395 
5396   return NumCases * 100 >= Range * MinDensity;
5397 }
5398 
5399 // Try and transform a switch that has "holes" in it to a contiguous sequence
5400 // of cases.
5401 //
5402 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5403 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5404 //
5405 // This converts a sparse switch into a dense switch which allows better
5406 // lowering and could also allow transforming into a lookup table.
5407 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5408                               const DataLayout &DL,
5409                               const TargetTransformInfo &TTI) {
5410   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5411   if (CondTy->getIntegerBitWidth() > 64 ||
5412       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5413     return false;
5414   // Only bother with this optimization if there are more than 3 switch cases;
5415   // SDAG will only bother creating jump tables for 4 or more cases.
5416   if (SI->getNumCases() < 4)
5417     return false;
5418 
5419   // This transform is agnostic to the signedness of the input or case values. We
5420   // can treat the case values as signed or unsigned. We can optimize more common
5421   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5422   // as signed.
5423   SmallVector<int64_t,4> Values;
5424   for (auto &C : SI->cases())
5425     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5426   std::sort(Values.begin(), Values.end());
5427 
5428   // If the switch is already dense, there's nothing useful to do here.
5429   if (isSwitchDense(Values))
5430     return false;
5431 
5432   // First, transform the values such that they start at zero and ascend.
5433   int64_t Base = Values[0];
5434   for (auto &V : Values)
5435     V -= Base;
5436 
5437   // Now we have signed numbers that have been shifted so that, given enough
5438   // precision, there are no negative values. Since the rest of the transform
5439   // is bitwise only, we switch now to an unsigned representation.
5440   uint64_t GCD = 0;
5441   for (auto &V : Values)
5442     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5443 
5444   // This transform can be done speculatively because it is so cheap - it results
5445   // in a single rotate operation being inserted. This can only happen if the
5446   // factor extracted is a power of 2.
5447   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5448   // inverse of GCD and then perform this transform.
5449   // FIXME: It's possible that optimizing a switch on powers of two might also
5450   // be beneficial - flag values are often powers of two and we could use a CLZ
5451   // as the key function.
5452   if (GCD <= 1 || !isPowerOf2_64(GCD))
5453     // No common divisor found or too expensive to compute key function.
5454     return false;
5455 
5456   unsigned Shift = Log2_64(GCD);
5457   for (auto &V : Values)
5458     V = (int64_t)((uint64_t)V >> Shift);
5459 
5460   if (!isSwitchDense(Values))
5461     // Transform didn't create a dense switch.
5462     return false;
5463 
5464   // The obvious transform is to shift the switch condition right and emit a
5465   // check that the condition actually cleanly divided by GCD, i.e.
5466   //   C & (1 << Shift - 1) == 0
5467   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5468   //
5469   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5470   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5471   // are nonzero then the switch condition will be very large and will hit the
5472   // default case.
5473 
5474   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5475   Builder.SetInsertPoint(SI);
5476   auto *ShiftC = ConstantInt::get(Ty, Shift);
5477   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5478   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5479   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5480   auto *Rot = Builder.CreateOr(LShr, Shl);
5481   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5482 
5483   for (auto Case : SI->cases()) {
5484     auto *Orig = Case.getCaseValue();
5485     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5486     Case.setValue(
5487         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5488   }
5489   return true;
5490 }
5491 
5492 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5493   BasicBlock *BB = SI->getParent();
5494 
5495   if (isValueEqualityComparison(SI)) {
5496     // If we only have one predecessor, and if it is a branch on this value,
5497     // see if that predecessor totally determines the outcome of this switch.
5498     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5499       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5500         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5501 
5502     Value *Cond = SI->getCondition();
5503     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5504       if (SimplifySwitchOnSelect(SI, Select))
5505         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5506 
5507     // If the block only contains the switch, see if we can fold the block
5508     // away into any preds.
5509     BasicBlock::iterator BBI = BB->begin();
5510     // Ignore dbg intrinsics.
5511     while (isa<DbgInfoIntrinsic>(BBI))
5512       ++BBI;
5513     if (SI == &*BBI)
5514       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5515         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5516   }
5517 
5518   // Try to transform the switch into an icmp and a branch.
5519   if (TurnSwitchRangeIntoICmp(SI, Builder))
5520     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5521 
5522   // Remove unreachable cases.
5523   if (EliminateDeadSwitchCases(SI, AC, DL))
5524     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5525 
5526   if (SwitchToSelect(SI, Builder, AC, DL, TTI))
5527     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5528 
5529   if (ForwardSwitchConditionToPHI(SI))
5530     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5531 
5532   // The conversion from switch to lookup tables results in difficult
5533   // to analyze code and makes pruning branches much harder.
5534   // This is a problem of the switch expression itself can still be
5535   // restricted as a result of inlining or CVP. There only apply this
5536   // transformation during late steps of the optimisation chain.
5537   if (LateSimplifyCFG && SwitchToLookupTable(SI, Builder, DL, TTI))
5538     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5539 
5540   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5541     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5542 
5543   return false;
5544 }
5545 
5546 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5547   BasicBlock *BB = IBI->getParent();
5548   bool Changed = false;
5549 
5550   // Eliminate redundant destinations.
5551   SmallPtrSet<Value *, 8> Succs;
5552   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5553     BasicBlock *Dest = IBI->getDestination(i);
5554     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5555       Dest->removePredecessor(BB);
5556       IBI->removeDestination(i);
5557       --i;
5558       --e;
5559       Changed = true;
5560     }
5561   }
5562 
5563   if (IBI->getNumDestinations() == 0) {
5564     // If the indirectbr has no successors, change it to unreachable.
5565     new UnreachableInst(IBI->getContext(), IBI);
5566     EraseTerminatorInstAndDCECond(IBI);
5567     return true;
5568   }
5569 
5570   if (IBI->getNumDestinations() == 1) {
5571     // If the indirectbr has one successor, change it to a direct branch.
5572     BranchInst::Create(IBI->getDestination(0), IBI);
5573     EraseTerminatorInstAndDCECond(IBI);
5574     return true;
5575   }
5576 
5577   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5578     if (SimplifyIndirectBrOnSelect(IBI, SI))
5579       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5580   }
5581   return Changed;
5582 }
5583 
5584 /// Given an block with only a single landing pad and a unconditional branch
5585 /// try to find another basic block which this one can be merged with.  This
5586 /// handles cases where we have multiple invokes with unique landing pads, but
5587 /// a shared handler.
5588 ///
5589 /// We specifically choose to not worry about merging non-empty blocks
5590 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5591 /// practice, the optimizer produces empty landing pad blocks quite frequently
5592 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5593 /// sinking in this file)
5594 ///
5595 /// This is primarily a code size optimization.  We need to avoid performing
5596 /// any transform which might inhibit optimization (such as our ability to
5597 /// specialize a particular handler via tail commoning).  We do this by not
5598 /// merging any blocks which require us to introduce a phi.  Since the same
5599 /// values are flowing through both blocks, we don't loose any ability to
5600 /// specialize.  If anything, we make such specialization more likely.
5601 ///
5602 /// TODO - This transformation could remove entries from a phi in the target
5603 /// block when the inputs in the phi are the same for the two blocks being
5604 /// merged.  In some cases, this could result in removal of the PHI entirely.
5605 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5606                                  BasicBlock *BB) {
5607   auto Succ = BB->getUniqueSuccessor();
5608   assert(Succ);
5609   // If there's a phi in the successor block, we'd likely have to introduce
5610   // a phi into the merged landing pad block.
5611   if (isa<PHINode>(*Succ->begin()))
5612     return false;
5613 
5614   for (BasicBlock *OtherPred : predecessors(Succ)) {
5615     if (BB == OtherPred)
5616       continue;
5617     BasicBlock::iterator I = OtherPred->begin();
5618     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5619     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5620       continue;
5621     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5622     }
5623     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5624     if (!BI2 || !BI2->isIdenticalTo(BI))
5625       continue;
5626 
5627     // We've found an identical block.  Update our predecessors to take that
5628     // path instead and make ourselves dead.
5629     SmallSet<BasicBlock *, 16> Preds;
5630     Preds.insert(pred_begin(BB), pred_end(BB));
5631     for (BasicBlock *Pred : Preds) {
5632       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5633       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5634              "unexpected successor");
5635       II->setUnwindDest(OtherPred);
5636     }
5637 
5638     // The debug info in OtherPred doesn't cover the merged control flow that
5639     // used to go through BB.  We need to delete it or update it.
5640     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5641       Instruction &Inst = *I;
5642       I++;
5643       if (isa<DbgInfoIntrinsic>(Inst))
5644         Inst.eraseFromParent();
5645     }
5646 
5647     SmallSet<BasicBlock *, 16> Succs;
5648     Succs.insert(succ_begin(BB), succ_end(BB));
5649     for (BasicBlock *Succ : Succs) {
5650       Succ->removePredecessor(BB);
5651     }
5652 
5653     IRBuilder<> Builder(BI);
5654     Builder.CreateUnreachable();
5655     BI->eraseFromParent();
5656     return true;
5657   }
5658   return false;
5659 }
5660 
5661 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5662                                           IRBuilder<> &Builder) {
5663   BasicBlock *BB = BI->getParent();
5664   BasicBlock *Succ = BI->getSuccessor(0);
5665 
5666   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5667     return true;
5668 
5669   // If the Terminator is the only non-phi instruction, simplify the block.
5670   // if LoopHeader is provided, check if the block or its successor is a loop
5671   // header (This is for early invocations before loop simplify and
5672   // vectorization to keep canonical loop forms for nested loops. These blocks
5673   // can be eliminated when the pass is invoked later in the back-end.)
5674   bool NeedCanonicalLoop =
5675       !LateSimplifyCFG &&
5676       (LoopHeaders && (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5677   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5678   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5679       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5680     return true;
5681 
5682   // If the only instruction in the block is a seteq/setne comparison
5683   // against a constant, try to simplify the block.
5684   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5685     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5686       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5687         ;
5688       if (I->isTerminator() &&
5689           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5690                                                 BonusInstThreshold, AC))
5691         return true;
5692     }
5693 
5694   // See if we can merge an empty landing pad block with another which is
5695   // equivalent.
5696   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5697     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5698     }
5699     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5700       return true;
5701   }
5702 
5703   // If this basic block is ONLY a compare and a branch, and if a predecessor
5704   // branches to us and our successor, fold the comparison into the
5705   // predecessor and use logical operations to update the incoming value
5706   // for PHI nodes in common successor.
5707   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5708     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5709   return false;
5710 }
5711 
5712 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5713   BasicBlock *PredPred = nullptr;
5714   for (auto *P : predecessors(BB)) {
5715     BasicBlock *PPred = P->getSinglePredecessor();
5716     if (!PPred || (PredPred && PredPred != PPred))
5717       return nullptr;
5718     PredPred = PPred;
5719   }
5720   return PredPred;
5721 }
5722 
5723 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5724   BasicBlock *BB = BI->getParent();
5725 
5726   // Conditional branch
5727   if (isValueEqualityComparison(BI)) {
5728     // If we only have one predecessor, and if it is a branch on this value,
5729     // see if that predecessor totally determines the outcome of this
5730     // switch.
5731     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5732       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5733         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5734 
5735     // This block must be empty, except for the setcond inst, if it exists.
5736     // Ignore dbg intrinsics.
5737     BasicBlock::iterator I = BB->begin();
5738     // Ignore dbg intrinsics.
5739     while (isa<DbgInfoIntrinsic>(I))
5740       ++I;
5741     if (&*I == BI) {
5742       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5743         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5744     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5745       ++I;
5746       // Ignore dbg intrinsics.
5747       while (isa<DbgInfoIntrinsic>(I))
5748         ++I;
5749       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5750         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5751     }
5752   }
5753 
5754   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5755   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5756     return true;
5757 
5758   // If this basic block has a single dominating predecessor block and the
5759   // dominating block's condition implies BI's condition, we know the direction
5760   // of the BI branch.
5761   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5762     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5763     if (PBI && PBI->isConditional() &&
5764         PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
5765       assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
5766       bool CondIsTrue = PBI->getSuccessor(0) == BB;
5767       Optional<bool> Implication = isImpliedCondition(
5768           PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
5769       if (Implication) {
5770         // Turn this into a branch on constant.
5771         auto *OldCond = BI->getCondition();
5772         ConstantInt *CI = *Implication
5773                               ? ConstantInt::getTrue(BB->getContext())
5774                               : ConstantInt::getFalse(BB->getContext());
5775         BI->setCondition(CI);
5776         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5777         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5778       }
5779     }
5780   }
5781 
5782   // If this basic block is ONLY a compare and a branch, and if a predecessor
5783   // branches to us and one of our successors, fold the comparison into the
5784   // predecessor and use logical operations to pick the right destination.
5785   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5786     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5787 
5788   // We have a conditional branch to two blocks that are only reachable
5789   // from BI.  We know that the condbr dominates the two blocks, so see if
5790   // there is any identical code in the "then" and "else" blocks.  If so, we
5791   // can hoist it up to the branching block.
5792   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5793     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5794       if (HoistThenElseCodeToIf(BI, TTI))
5795         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5796     } else {
5797       // If Successor #1 has multiple preds, we may be able to conditionally
5798       // execute Successor #0 if it branches to Successor #1.
5799       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5800       if (Succ0TI->getNumSuccessors() == 1 &&
5801           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5802         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5803           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5804     }
5805   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5806     // If Successor #0 has multiple preds, we may be able to conditionally
5807     // execute Successor #1 if it branches to Successor #0.
5808     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5809     if (Succ1TI->getNumSuccessors() == 1 &&
5810         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5811       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5812         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5813   }
5814 
5815   // If this is a branch on a phi node in the current block, thread control
5816   // through this block if any PHI node entries are constants.
5817   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5818     if (PN->getParent() == BI->getParent())
5819       if (FoldCondBranchOnPHI(BI, DL, AC))
5820         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5821 
5822   // Scan predecessor blocks for conditional branches.
5823   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5824     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5825       if (PBI != BI && PBI->isConditional())
5826         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5827           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5828 
5829   // Look for diamond patterns.
5830   if (MergeCondStores)
5831     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5832       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5833         if (PBI != BI && PBI->isConditional())
5834           if (mergeConditionalStores(PBI, BI))
5835             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5836 
5837   return false;
5838 }
5839 
5840 /// Check if passing a value to an instruction will cause undefined behavior.
5841 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5842   Constant *C = dyn_cast<Constant>(V);
5843   if (!C)
5844     return false;
5845 
5846   if (I->use_empty())
5847     return false;
5848 
5849   if (C->isNullValue() || isa<UndefValue>(C)) {
5850     // Only look at the first use, avoid hurting compile time with long uselists
5851     User *Use = *I->user_begin();
5852 
5853     // Now make sure that there are no instructions in between that can alter
5854     // control flow (eg. calls)
5855     for (BasicBlock::iterator
5856              i = ++BasicBlock::iterator(I),
5857              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5858          i != UI; ++i)
5859       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5860         return false;
5861 
5862     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5863     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5864       if (GEP->getPointerOperand() == I)
5865         return passingValueIsAlwaysUndefined(V, GEP);
5866 
5867     // Look through bitcasts.
5868     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5869       return passingValueIsAlwaysUndefined(V, BC);
5870 
5871     // Load from null is undefined.
5872     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5873       if (!LI->isVolatile())
5874         return LI->getPointerAddressSpace() == 0;
5875 
5876     // Store to null is undefined.
5877     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5878       if (!SI->isVolatile())
5879         return SI->getPointerAddressSpace() == 0 &&
5880                SI->getPointerOperand() == I;
5881 
5882     // A call to null is undefined.
5883     if (auto CS = CallSite(Use))
5884       return CS.getCalledValue() == I;
5885   }
5886   return false;
5887 }
5888 
5889 /// If BB has an incoming value that will always trigger undefined behavior
5890 /// (eg. null pointer dereference), remove the branch leading here.
5891 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5892   for (BasicBlock::iterator i = BB->begin();
5893        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5894     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5895       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5896         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5897         IRBuilder<> Builder(T);
5898         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5899           BB->removePredecessor(PHI->getIncomingBlock(i));
5900           // Turn uncoditional branches into unreachables and remove the dead
5901           // destination from conditional branches.
5902           if (BI->isUnconditional())
5903             Builder.CreateUnreachable();
5904           else
5905             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5906                                                        : BI->getSuccessor(0));
5907           BI->eraseFromParent();
5908           return true;
5909         }
5910         // TODO: SwitchInst.
5911       }
5912 
5913   return false;
5914 }
5915 
5916 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5917   bool Changed = false;
5918 
5919   assert(BB && BB->getParent() && "Block not embedded in function!");
5920   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5921 
5922   // Remove basic blocks that have no predecessors (except the entry block)...
5923   // or that just have themself as a predecessor.  These are unreachable.
5924   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5925       BB->getSinglePredecessor() == BB) {
5926     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5927     DeleteDeadBlock(BB);
5928     return true;
5929   }
5930 
5931   // Check to see if we can constant propagate this terminator instruction
5932   // away...
5933   Changed |= ConstantFoldTerminator(BB, true);
5934 
5935   // Check for and eliminate duplicate PHI nodes in this block.
5936   Changed |= EliminateDuplicatePHINodes(BB);
5937 
5938   // Check for and remove branches that will always cause undefined behavior.
5939   Changed |= removeUndefIntroducingPredecessor(BB);
5940 
5941   // Merge basic blocks into their predecessor if there is only one distinct
5942   // pred, and if there is only one distinct successor of the predecessor, and
5943   // if there are no PHI nodes.
5944   //
5945   if (MergeBlockIntoPredecessor(BB))
5946     return true;
5947 
5948   IRBuilder<> Builder(BB);
5949 
5950   // If there is a trivial two-entry PHI node in this basic block, and we can
5951   // eliminate it, do so now.
5952   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5953     if (PN->getNumIncomingValues() == 2)
5954       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5955 
5956   Builder.SetInsertPoint(BB->getTerminator());
5957   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5958     if (BI->isUnconditional()) {
5959       if (SimplifyUncondBranch(BI, Builder))
5960         return true;
5961     } else {
5962       if (SimplifyCondBranch(BI, Builder))
5963         return true;
5964     }
5965   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5966     if (SimplifyReturn(RI, Builder))
5967       return true;
5968   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5969     if (SimplifyResume(RI, Builder))
5970       return true;
5971   } else if (CleanupReturnInst *RI =
5972                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5973     if (SimplifyCleanupReturn(RI))
5974       return true;
5975   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5976     if (SimplifySwitch(SI, Builder))
5977       return true;
5978   } else if (UnreachableInst *UI =
5979                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
5980     if (SimplifyUnreachable(UI))
5981       return true;
5982   } else if (IndirectBrInst *IBI =
5983                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5984     if (SimplifyIndirectBr(IBI))
5985       return true;
5986   }
5987 
5988   return Changed;
5989 }
5990 
5991 /// This function is used to do simplification of a CFG.
5992 /// For example, it adjusts branches to branches to eliminate the extra hop,
5993 /// eliminates unreachable basic blocks, and does other "peephole" optimization
5994 /// of the CFG.  It returns true if a modification was made.
5995 ///
5996 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5997                        unsigned BonusInstThreshold, AssumptionCache *AC,
5998                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
5999                        bool LateSimplifyCFG) {
6000   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
6001                         BonusInstThreshold, AC, LoopHeaders, LateSimplifyCFG)
6002       .run(BB);
6003 }
6004