1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/SSAUpdater.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 97 cl::init(false), 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> DupRet( 117 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 118 cl::desc("Duplicate return instructions into unconditional branches")); 119 120 static cl::opt<bool> 121 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 122 cl::desc("Hoist common instructions up to the parent block")); 123 124 static cl::opt<bool> 125 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 126 cl::desc("Sink common instructions down to the end block")); 127 128 static cl::opt<bool> HoistCondStores( 129 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 130 cl::desc("Hoist conditional stores if an unconditional store precedes")); 131 132 static cl::opt<bool> MergeCondStores( 133 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 134 cl::desc("Hoist conditional stores even if an unconditional store does not " 135 "precede - hoist multiple conditional stores into a single " 136 "predicated store")); 137 138 static cl::opt<bool> MergeCondStoresAggressively( 139 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 140 cl::desc("When merging conditional stores, do so even if the resultant " 141 "basic blocks are unlikely to be if-converted as a result")); 142 143 static cl::opt<bool> SpeculateOneExpensiveInst( 144 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 145 cl::desc("Allow exactly one expensive instruction to be speculatively " 146 "executed")); 147 148 static cl::opt<unsigned> MaxSpeculationDepth( 149 "max-speculation-depth", cl::Hidden, cl::init(10), 150 cl::desc("Limit maximum recursion depth when calculating costs of " 151 "speculatively executed instructions")); 152 153 static cl::opt<int> 154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 155 cl::desc("Max size of a block which is still considered " 156 "small enough to thread through")); 157 158 // Two is chosen to allow one negation and a logical combine. 159 static cl::opt<unsigned> 160 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 161 cl::init(2), 162 cl::desc("Maximum cost of combining conditions when " 163 "folding branches")); 164 165 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 166 STATISTIC(NumLinearMaps, 167 "Number of switch instructions turned into linear mapping"); 168 STATISTIC(NumLookupTables, 169 "Number of switch instructions turned into lookup tables"); 170 STATISTIC( 171 NumLookupTablesHoles, 172 "Number of switch instructions turned into lookup tables (holes checked)"); 173 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 174 STATISTIC(NumFoldValueComparisonIntoPredecessors, 175 "Number of value comparisons folded into predecessor basic blocks"); 176 STATISTIC(NumFoldBranchToCommonDest, 177 "Number of branches folded into predecessor basic block"); 178 STATISTIC( 179 NumHoistCommonCode, 180 "Number of common instruction 'blocks' hoisted up to the begin block"); 181 STATISTIC(NumHoistCommonInstrs, 182 "Number of common instructions hoisted up to the begin block"); 183 STATISTIC(NumSinkCommonCode, 184 "Number of common instruction 'blocks' sunk down to the end block"); 185 STATISTIC(NumSinkCommonInstrs, 186 "Number of common instructions sunk down to the end block"); 187 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 188 STATISTIC(NumInvokes, 189 "Number of invokes with empty resume blocks simplified into calls"); 190 191 namespace { 192 193 // The first field contains the value that the switch produces when a certain 194 // case group is selected, and the second field is a vector containing the 195 // cases composing the case group. 196 using SwitchCaseResultVectorTy = 197 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 198 199 // The first field contains the phi node that generates a result of the switch 200 // and the second field contains the value generated for a certain case in the 201 // switch for that PHI. 202 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 203 204 /// ValueEqualityComparisonCase - Represents a case of a switch. 205 struct ValueEqualityComparisonCase { 206 ConstantInt *Value; 207 BasicBlock *Dest; 208 209 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 210 : Value(Value), Dest(Dest) {} 211 212 bool operator<(ValueEqualityComparisonCase RHS) const { 213 // Comparing pointers is ok as we only rely on the order for uniquing. 214 return Value < RHS.Value; 215 } 216 217 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 218 }; 219 220 class SimplifyCFGOpt { 221 const TargetTransformInfo &TTI; 222 DomTreeUpdater *DTU; 223 const DataLayout &DL; 224 ArrayRef<WeakVH> LoopHeaders; 225 const SimplifyCFGOptions &Options; 226 bool Resimplify; 227 228 Value *isValueEqualityComparison(Instruction *TI); 229 BasicBlock *GetValueEqualityComparisonCases( 230 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 231 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 232 BasicBlock *Pred, 233 IRBuilder<> &Builder); 234 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 235 Instruction *PTI, 236 IRBuilder<> &Builder); 237 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 238 IRBuilder<> &Builder); 239 240 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 241 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 242 bool simplifySingleResume(ResumeInst *RI); 243 bool simplifyCommonResume(ResumeInst *RI); 244 bool simplifyCleanupReturn(CleanupReturnInst *RI); 245 bool simplifyUnreachable(UnreachableInst *UI); 246 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 247 bool simplifyIndirectBr(IndirectBrInst *IBI); 248 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 249 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 250 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 251 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 252 253 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 254 IRBuilder<> &Builder); 255 256 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 257 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 258 const TargetTransformInfo &TTI); 259 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 260 BasicBlock *TrueBB, BasicBlock *FalseBB, 261 uint32_t TrueWeight, uint32_t FalseWeight); 262 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 263 const DataLayout &DL); 264 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 265 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 266 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 267 268 public: 269 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 270 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 271 const SimplifyCFGOptions &Opts) 272 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 273 assert((!DTU || !DTU->hasPostDomTree()) && 274 "SimplifyCFG is not yet capable of maintaining validity of a " 275 "PostDomTree, so don't ask for it."); 276 } 277 278 bool simplifyOnce(BasicBlock *BB); 279 bool simplifyOnceImpl(BasicBlock *BB); 280 bool run(BasicBlock *BB); 281 282 // Helper to set Resimplify and return change indication. 283 bool requestResimplify() { 284 Resimplify = true; 285 return true; 286 } 287 }; 288 289 } // end anonymous namespace 290 291 /// Return true if it is safe to merge these two 292 /// terminator instructions together. 293 static bool 294 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 295 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 296 if (SI1 == SI2) 297 return false; // Can't merge with self! 298 299 // It is not safe to merge these two switch instructions if they have a common 300 // successor, and if that successor has a PHI node, and if *that* PHI node has 301 // conflicting incoming values from the two switch blocks. 302 BasicBlock *SI1BB = SI1->getParent(); 303 BasicBlock *SI2BB = SI2->getParent(); 304 305 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 306 bool Fail = false; 307 for (BasicBlock *Succ : successors(SI2BB)) 308 if (SI1Succs.count(Succ)) 309 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 310 PHINode *PN = cast<PHINode>(BBI); 311 if (PN->getIncomingValueForBlock(SI1BB) != 312 PN->getIncomingValueForBlock(SI2BB)) { 313 if (FailBlocks) 314 FailBlocks->insert(Succ); 315 Fail = true; 316 } 317 } 318 319 return !Fail; 320 } 321 322 /// Update PHI nodes in Succ to indicate that there will now be entries in it 323 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 324 /// will be the same as those coming in from ExistPred, an existing predecessor 325 /// of Succ. 326 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 327 BasicBlock *ExistPred, 328 MemorySSAUpdater *MSSAU = nullptr) { 329 for (PHINode &PN : Succ->phis()) 330 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 331 if (MSSAU) 332 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 333 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 334 } 335 336 /// Compute an abstract "cost" of speculating the given instruction, 337 /// which is assumed to be safe to speculate. TCC_Free means cheap, 338 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 339 /// expensive. 340 static InstructionCost computeSpeculationCost(const User *I, 341 const TargetTransformInfo &TTI) { 342 assert(isSafeToSpeculativelyExecute(I) && 343 "Instruction is not safe to speculatively execute!"); 344 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 345 } 346 347 /// If we have a merge point of an "if condition" as accepted above, 348 /// return true if the specified value dominates the block. We 349 /// don't handle the true generality of domination here, just a special case 350 /// which works well enough for us. 351 /// 352 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 353 /// see if V (which must be an instruction) and its recursive operands 354 /// that do not dominate BB have a combined cost lower than Budget and 355 /// are non-trapping. If both are true, the instruction is inserted into the 356 /// set and true is returned. 357 /// 358 /// The cost for most non-trapping instructions is defined as 1 except for 359 /// Select whose cost is 2. 360 /// 361 /// After this function returns, Cost is increased by the cost of 362 /// V plus its non-dominating operands. If that cost is greater than 363 /// Budget, false is returned and Cost is undefined. 364 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 365 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 366 InstructionCost &Cost, 367 InstructionCost Budget, 368 const TargetTransformInfo &TTI, 369 unsigned Depth = 0) { 370 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 371 // so limit the recursion depth. 372 // TODO: While this recursion limit does prevent pathological behavior, it 373 // would be better to track visited instructions to avoid cycles. 374 if (Depth == MaxSpeculationDepth) 375 return false; 376 377 Instruction *I = dyn_cast<Instruction>(V); 378 if (!I) { 379 // Non-instructions all dominate instructions, but not all constantexprs 380 // can be executed unconditionally. 381 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 382 if (C->canTrap()) 383 return false; 384 return true; 385 } 386 BasicBlock *PBB = I->getParent(); 387 388 // We don't want to allow weird loops that might have the "if condition" in 389 // the bottom of this block. 390 if (PBB == BB) 391 return false; 392 393 // If this instruction is defined in a block that contains an unconditional 394 // branch to BB, then it must be in the 'conditional' part of the "if 395 // statement". If not, it definitely dominates the region. 396 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 397 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 398 return true; 399 400 // If we have seen this instruction before, don't count it again. 401 if (AggressiveInsts.count(I)) 402 return true; 403 404 // Okay, it looks like the instruction IS in the "condition". Check to 405 // see if it's a cheap instruction to unconditionally compute, and if it 406 // only uses stuff defined outside of the condition. If so, hoist it out. 407 if (!isSafeToSpeculativelyExecute(I)) 408 return false; 409 410 Cost += computeSpeculationCost(I, TTI); 411 412 // Allow exactly one instruction to be speculated regardless of its cost 413 // (as long as it is safe to do so). 414 // This is intended to flatten the CFG even if the instruction is a division 415 // or other expensive operation. The speculation of an expensive instruction 416 // is expected to be undone in CodeGenPrepare if the speculation has not 417 // enabled further IR optimizations. 418 if (Cost > Budget && 419 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 420 !Cost.isValid())) 421 return false; 422 423 // Okay, we can only really hoist these out if their operands do 424 // not take us over the cost threshold. 425 for (Use &Op : I->operands()) 426 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 427 Depth + 1)) 428 return false; 429 // Okay, it's safe to do this! Remember this instruction. 430 AggressiveInsts.insert(I); 431 return true; 432 } 433 434 /// Extract ConstantInt from value, looking through IntToPtr 435 /// and PointerNullValue. Return NULL if value is not a constant int. 436 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 437 // Normal constant int. 438 ConstantInt *CI = dyn_cast<ConstantInt>(V); 439 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 440 return CI; 441 442 // This is some kind of pointer constant. Turn it into a pointer-sized 443 // ConstantInt if possible. 444 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 445 446 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 447 if (isa<ConstantPointerNull>(V)) 448 return ConstantInt::get(PtrTy, 0); 449 450 // IntToPtr const int. 451 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 452 if (CE->getOpcode() == Instruction::IntToPtr) 453 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 454 // The constant is very likely to have the right type already. 455 if (CI->getType() == PtrTy) 456 return CI; 457 else 458 return cast<ConstantInt>( 459 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 460 } 461 return nullptr; 462 } 463 464 namespace { 465 466 /// Given a chain of or (||) or and (&&) comparison of a value against a 467 /// constant, this will try to recover the information required for a switch 468 /// structure. 469 /// It will depth-first traverse the chain of comparison, seeking for patterns 470 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 471 /// representing the different cases for the switch. 472 /// Note that if the chain is composed of '||' it will build the set of elements 473 /// that matches the comparisons (i.e. any of this value validate the chain) 474 /// while for a chain of '&&' it will build the set elements that make the test 475 /// fail. 476 struct ConstantComparesGatherer { 477 const DataLayout &DL; 478 479 /// Value found for the switch comparison 480 Value *CompValue = nullptr; 481 482 /// Extra clause to be checked before the switch 483 Value *Extra = nullptr; 484 485 /// Set of integers to match in switch 486 SmallVector<ConstantInt *, 8> Vals; 487 488 /// Number of comparisons matched in the and/or chain 489 unsigned UsedICmps = 0; 490 491 /// Construct and compute the result for the comparison instruction Cond 492 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 493 gather(Cond); 494 } 495 496 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 497 ConstantComparesGatherer & 498 operator=(const ConstantComparesGatherer &) = delete; 499 500 private: 501 /// Try to set the current value used for the comparison, it succeeds only if 502 /// it wasn't set before or if the new value is the same as the old one 503 bool setValueOnce(Value *NewVal) { 504 if (CompValue && CompValue != NewVal) 505 return false; 506 CompValue = NewVal; 507 return (CompValue != nullptr); 508 } 509 510 /// Try to match Instruction "I" as a comparison against a constant and 511 /// populates the array Vals with the set of values that match (or do not 512 /// match depending on isEQ). 513 /// Return false on failure. On success, the Value the comparison matched 514 /// against is placed in CompValue. 515 /// If CompValue is already set, the function is expected to fail if a match 516 /// is found but the value compared to is different. 517 bool matchInstruction(Instruction *I, bool isEQ) { 518 // If this is an icmp against a constant, handle this as one of the cases. 519 ICmpInst *ICI; 520 ConstantInt *C; 521 if (!((ICI = dyn_cast<ICmpInst>(I)) && 522 (C = GetConstantInt(I->getOperand(1), DL)))) { 523 return false; 524 } 525 526 Value *RHSVal; 527 const APInt *RHSC; 528 529 // Pattern match a special case 530 // (x & ~2^z) == y --> x == y || x == y|2^z 531 // This undoes a transformation done by instcombine to fuse 2 compares. 532 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 533 // It's a little bit hard to see why the following transformations are 534 // correct. Here is a CVC3 program to verify them for 64-bit values: 535 536 /* 537 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 538 x : BITVECTOR(64); 539 y : BITVECTOR(64); 540 z : BITVECTOR(64); 541 mask : BITVECTOR(64) = BVSHL(ONE, z); 542 QUERY( (y & ~mask = y) => 543 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 544 ); 545 QUERY( (y | mask = y) => 546 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 547 ); 548 */ 549 550 // Please note that each pattern must be a dual implication (<--> or 551 // iff). One directional implication can create spurious matches. If the 552 // implication is only one-way, an unsatisfiable condition on the left 553 // side can imply a satisfiable condition on the right side. Dual 554 // implication ensures that satisfiable conditions are transformed to 555 // other satisfiable conditions and unsatisfiable conditions are 556 // transformed to other unsatisfiable conditions. 557 558 // Here is a concrete example of a unsatisfiable condition on the left 559 // implying a satisfiable condition on the right: 560 // 561 // mask = (1 << z) 562 // (x & ~mask) == y --> (x == y || x == (y | mask)) 563 // 564 // Substituting y = 3, z = 0 yields: 565 // (x & -2) == 3 --> (x == 3 || x == 2) 566 567 // Pattern match a special case: 568 /* 569 QUERY( (y & ~mask = y) => 570 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 571 ); 572 */ 573 if (match(ICI->getOperand(0), 574 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 575 APInt Mask = ~*RHSC; 576 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 577 // If we already have a value for the switch, it has to match! 578 if (!setValueOnce(RHSVal)) 579 return false; 580 581 Vals.push_back(C); 582 Vals.push_back( 583 ConstantInt::get(C->getContext(), 584 C->getValue() | Mask)); 585 UsedICmps++; 586 return true; 587 } 588 } 589 590 // Pattern match a special case: 591 /* 592 QUERY( (y | mask = y) => 593 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 594 ); 595 */ 596 if (match(ICI->getOperand(0), 597 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 598 APInt Mask = *RHSC; 599 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 600 // If we already have a value for the switch, it has to match! 601 if (!setValueOnce(RHSVal)) 602 return false; 603 604 Vals.push_back(C); 605 Vals.push_back(ConstantInt::get(C->getContext(), 606 C->getValue() & ~Mask)); 607 UsedICmps++; 608 return true; 609 } 610 } 611 612 // If we already have a value for the switch, it has to match! 613 if (!setValueOnce(ICI->getOperand(0))) 614 return false; 615 616 UsedICmps++; 617 Vals.push_back(C); 618 return ICI->getOperand(0); 619 } 620 621 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 622 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 623 ICI->getPredicate(), C->getValue()); 624 625 // Shift the range if the compare is fed by an add. This is the range 626 // compare idiom as emitted by instcombine. 627 Value *CandidateVal = I->getOperand(0); 628 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 629 Span = Span.subtract(*RHSC); 630 CandidateVal = RHSVal; 631 } 632 633 // If this is an and/!= check, then we are looking to build the set of 634 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 635 // x != 0 && x != 1. 636 if (!isEQ) 637 Span = Span.inverse(); 638 639 // If there are a ton of values, we don't want to make a ginormous switch. 640 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 641 return false; 642 } 643 644 // If we already have a value for the switch, it has to match! 645 if (!setValueOnce(CandidateVal)) 646 return false; 647 648 // Add all values from the range to the set 649 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 650 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 651 652 UsedICmps++; 653 return true; 654 } 655 656 /// Given a potentially 'or'd or 'and'd together collection of icmp 657 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 658 /// the value being compared, and stick the list constants into the Vals 659 /// vector. 660 /// One "Extra" case is allowed to differ from the other. 661 void gather(Value *V) { 662 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 663 664 // Keep a stack (SmallVector for efficiency) for depth-first traversal 665 SmallVector<Value *, 8> DFT; 666 SmallPtrSet<Value *, 8> Visited; 667 668 // Initialize 669 Visited.insert(V); 670 DFT.push_back(V); 671 672 while (!DFT.empty()) { 673 V = DFT.pop_back_val(); 674 675 if (Instruction *I = dyn_cast<Instruction>(V)) { 676 // If it is a || (or && depending on isEQ), process the operands. 677 Value *Op0, *Op1; 678 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 679 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 680 if (Visited.insert(Op1).second) 681 DFT.push_back(Op1); 682 if (Visited.insert(Op0).second) 683 DFT.push_back(Op0); 684 685 continue; 686 } 687 688 // Try to match the current instruction 689 if (matchInstruction(I, isEQ)) 690 // Match succeed, continue the loop 691 continue; 692 } 693 694 // One element of the sequence of || (or &&) could not be match as a 695 // comparison against the same value as the others. 696 // We allow only one "Extra" case to be checked before the switch 697 if (!Extra) { 698 Extra = V; 699 continue; 700 } 701 // Failed to parse a proper sequence, abort now 702 CompValue = nullptr; 703 break; 704 } 705 } 706 }; 707 708 } // end anonymous namespace 709 710 static void EraseTerminatorAndDCECond(Instruction *TI, 711 MemorySSAUpdater *MSSAU = nullptr) { 712 Instruction *Cond = nullptr; 713 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 714 Cond = dyn_cast<Instruction>(SI->getCondition()); 715 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 716 if (BI->isConditional()) 717 Cond = dyn_cast<Instruction>(BI->getCondition()); 718 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 719 Cond = dyn_cast<Instruction>(IBI->getAddress()); 720 } 721 722 TI->eraseFromParent(); 723 if (Cond) 724 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 725 } 726 727 /// Return true if the specified terminator checks 728 /// to see if a value is equal to constant integer value. 729 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 730 Value *CV = nullptr; 731 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 732 // Do not permit merging of large switch instructions into their 733 // predecessors unless there is only one predecessor. 734 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 735 CV = SI->getCondition(); 736 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 737 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 738 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 739 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 740 CV = ICI->getOperand(0); 741 } 742 743 // Unwrap any lossless ptrtoint cast. 744 if (CV) { 745 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 746 Value *Ptr = PTII->getPointerOperand(); 747 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 748 CV = Ptr; 749 } 750 } 751 return CV; 752 } 753 754 /// Given a value comparison instruction, 755 /// decode all of the 'cases' that it represents and return the 'default' block. 756 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 757 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 758 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 759 Cases.reserve(SI->getNumCases()); 760 for (auto Case : SI->cases()) 761 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 762 Case.getCaseSuccessor())); 763 return SI->getDefaultDest(); 764 } 765 766 BranchInst *BI = cast<BranchInst>(TI); 767 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 768 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 769 Cases.push_back(ValueEqualityComparisonCase( 770 GetConstantInt(ICI->getOperand(1), DL), Succ)); 771 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 772 } 773 774 /// Given a vector of bb/value pairs, remove any entries 775 /// in the list that match the specified block. 776 static void 777 EliminateBlockCases(BasicBlock *BB, 778 std::vector<ValueEqualityComparisonCase> &Cases) { 779 llvm::erase_value(Cases, BB); 780 } 781 782 /// Return true if there are any keys in C1 that exist in C2 as well. 783 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 784 std::vector<ValueEqualityComparisonCase> &C2) { 785 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 786 787 // Make V1 be smaller than V2. 788 if (V1->size() > V2->size()) 789 std::swap(V1, V2); 790 791 if (V1->empty()) 792 return false; 793 if (V1->size() == 1) { 794 // Just scan V2. 795 ConstantInt *TheVal = (*V1)[0].Value; 796 for (unsigned i = 0, e = V2->size(); i != e; ++i) 797 if (TheVal == (*V2)[i].Value) 798 return true; 799 } 800 801 // Otherwise, just sort both lists and compare element by element. 802 array_pod_sort(V1->begin(), V1->end()); 803 array_pod_sort(V2->begin(), V2->end()); 804 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 805 while (i1 != e1 && i2 != e2) { 806 if ((*V1)[i1].Value == (*V2)[i2].Value) 807 return true; 808 if ((*V1)[i1].Value < (*V2)[i2].Value) 809 ++i1; 810 else 811 ++i2; 812 } 813 return false; 814 } 815 816 // Set branch weights on SwitchInst. This sets the metadata if there is at 817 // least one non-zero weight. 818 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 819 // Check that there is at least one non-zero weight. Otherwise, pass 820 // nullptr to setMetadata which will erase the existing metadata. 821 MDNode *N = nullptr; 822 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 823 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 824 SI->setMetadata(LLVMContext::MD_prof, N); 825 } 826 827 // Similar to the above, but for branch and select instructions that take 828 // exactly 2 weights. 829 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 830 uint32_t FalseWeight) { 831 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 832 // Check that there is at least one non-zero weight. Otherwise, pass 833 // nullptr to setMetadata which will erase the existing metadata. 834 MDNode *N = nullptr; 835 if (TrueWeight || FalseWeight) 836 N = MDBuilder(I->getParent()->getContext()) 837 .createBranchWeights(TrueWeight, FalseWeight); 838 I->setMetadata(LLVMContext::MD_prof, N); 839 } 840 841 /// If TI is known to be a terminator instruction and its block is known to 842 /// only have a single predecessor block, check to see if that predecessor is 843 /// also a value comparison with the same value, and if that comparison 844 /// determines the outcome of this comparison. If so, simplify TI. This does a 845 /// very limited form of jump threading. 846 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 847 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 848 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 849 if (!PredVal) 850 return false; // Not a value comparison in predecessor. 851 852 Value *ThisVal = isValueEqualityComparison(TI); 853 assert(ThisVal && "This isn't a value comparison!!"); 854 if (ThisVal != PredVal) 855 return false; // Different predicates. 856 857 // TODO: Preserve branch weight metadata, similarly to how 858 // FoldValueComparisonIntoPredecessors preserves it. 859 860 // Find out information about when control will move from Pred to TI's block. 861 std::vector<ValueEqualityComparisonCase> PredCases; 862 BasicBlock *PredDef = 863 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 864 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 865 866 // Find information about how control leaves this block. 867 std::vector<ValueEqualityComparisonCase> ThisCases; 868 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 869 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 870 871 // If TI's block is the default block from Pred's comparison, potentially 872 // simplify TI based on this knowledge. 873 if (PredDef == TI->getParent()) { 874 // If we are here, we know that the value is none of those cases listed in 875 // PredCases. If there are any cases in ThisCases that are in PredCases, we 876 // can simplify TI. 877 if (!ValuesOverlap(PredCases, ThisCases)) 878 return false; 879 880 if (isa<BranchInst>(TI)) { 881 // Okay, one of the successors of this condbr is dead. Convert it to a 882 // uncond br. 883 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 884 // Insert the new branch. 885 Instruction *NI = Builder.CreateBr(ThisDef); 886 (void)NI; 887 888 // Remove PHI node entries for the dead edge. 889 ThisCases[0].Dest->removePredecessor(PredDef); 890 891 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 892 << "Through successor TI: " << *TI << "Leaving: " << *NI 893 << "\n"); 894 895 EraseTerminatorAndDCECond(TI); 896 897 if (DTU) 898 DTU->applyUpdates( 899 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 900 901 return true; 902 } 903 904 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 905 // Okay, TI has cases that are statically dead, prune them away. 906 SmallPtrSet<Constant *, 16> DeadCases; 907 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 908 DeadCases.insert(PredCases[i].Value); 909 910 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 911 << "Through successor TI: " << *TI); 912 913 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 914 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 915 --i; 916 auto *Successor = i->getCaseSuccessor(); 917 if (DTU) 918 ++NumPerSuccessorCases[Successor]; 919 if (DeadCases.count(i->getCaseValue())) { 920 Successor->removePredecessor(PredDef); 921 SI.removeCase(i); 922 if (DTU) 923 --NumPerSuccessorCases[Successor]; 924 } 925 } 926 927 if (DTU) { 928 std::vector<DominatorTree::UpdateType> Updates; 929 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 930 if (I.second == 0) 931 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 932 DTU->applyUpdates(Updates); 933 } 934 935 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 936 return true; 937 } 938 939 // Otherwise, TI's block must correspond to some matched value. Find out 940 // which value (or set of values) this is. 941 ConstantInt *TIV = nullptr; 942 BasicBlock *TIBB = TI->getParent(); 943 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 944 if (PredCases[i].Dest == TIBB) { 945 if (TIV) 946 return false; // Cannot handle multiple values coming to this block. 947 TIV = PredCases[i].Value; 948 } 949 assert(TIV && "No edge from pred to succ?"); 950 951 // Okay, we found the one constant that our value can be if we get into TI's 952 // BB. Find out which successor will unconditionally be branched to. 953 BasicBlock *TheRealDest = nullptr; 954 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 955 if (ThisCases[i].Value == TIV) { 956 TheRealDest = ThisCases[i].Dest; 957 break; 958 } 959 960 // If not handled by any explicit cases, it is handled by the default case. 961 if (!TheRealDest) 962 TheRealDest = ThisDef; 963 964 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 965 966 // Remove PHI node entries for dead edges. 967 BasicBlock *CheckEdge = TheRealDest; 968 for (BasicBlock *Succ : successors(TIBB)) 969 if (Succ != CheckEdge) { 970 if (Succ != TheRealDest) 971 RemovedSuccs.insert(Succ); 972 Succ->removePredecessor(TIBB); 973 } else 974 CheckEdge = nullptr; 975 976 // Insert the new branch. 977 Instruction *NI = Builder.CreateBr(TheRealDest); 978 (void)NI; 979 980 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 981 << "Through successor TI: " << *TI << "Leaving: " << *NI 982 << "\n"); 983 984 EraseTerminatorAndDCECond(TI); 985 if (DTU) { 986 SmallVector<DominatorTree::UpdateType, 2> Updates; 987 Updates.reserve(RemovedSuccs.size()); 988 for (auto *RemovedSucc : RemovedSuccs) 989 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 990 DTU->applyUpdates(Updates); 991 } 992 return true; 993 } 994 995 namespace { 996 997 /// This class implements a stable ordering of constant 998 /// integers that does not depend on their address. This is important for 999 /// applications that sort ConstantInt's to ensure uniqueness. 1000 struct ConstantIntOrdering { 1001 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1002 return LHS->getValue().ult(RHS->getValue()); 1003 } 1004 }; 1005 1006 } // end anonymous namespace 1007 1008 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1009 ConstantInt *const *P2) { 1010 const ConstantInt *LHS = *P1; 1011 const ConstantInt *RHS = *P2; 1012 if (LHS == RHS) 1013 return 0; 1014 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1015 } 1016 1017 static inline bool HasBranchWeights(const Instruction *I) { 1018 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1019 if (ProfMD && ProfMD->getOperand(0)) 1020 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1021 return MDS->getString().equals("branch_weights"); 1022 1023 return false; 1024 } 1025 1026 /// Get Weights of a given terminator, the default weight is at the front 1027 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1028 /// metadata. 1029 static void GetBranchWeights(Instruction *TI, 1030 SmallVectorImpl<uint64_t> &Weights) { 1031 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1032 assert(MD); 1033 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1034 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1035 Weights.push_back(CI->getValue().getZExtValue()); 1036 } 1037 1038 // If TI is a conditional eq, the default case is the false case, 1039 // and the corresponding branch-weight data is at index 2. We swap the 1040 // default weight to be the first entry. 1041 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1042 assert(Weights.size() == 2); 1043 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1044 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1045 std::swap(Weights.front(), Weights.back()); 1046 } 1047 } 1048 1049 /// Keep halving the weights until all can fit in uint32_t. 1050 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1051 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1052 if (Max > UINT_MAX) { 1053 unsigned Offset = 32 - countLeadingZeros(Max); 1054 for (uint64_t &I : Weights) 1055 I >>= Offset; 1056 } 1057 } 1058 1059 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1060 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1061 Instruction *PTI = PredBlock->getTerminator(); 1062 1063 // If we have bonus instructions, clone them into the predecessor block. 1064 // Note that there may be multiple predecessor blocks, so we cannot move 1065 // bonus instructions to a predecessor block. 1066 for (Instruction &BonusInst : *BB) { 1067 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1068 continue; 1069 1070 Instruction *NewBonusInst = BonusInst.clone(); 1071 1072 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1073 // Unless the instruction has the same !dbg location as the original 1074 // branch, drop it. When we fold the bonus instructions we want to make 1075 // sure we reset their debug locations in order to avoid stepping on 1076 // dead code caused by folding dead branches. 1077 NewBonusInst->setDebugLoc(DebugLoc()); 1078 } 1079 1080 RemapInstruction(NewBonusInst, VMap, 1081 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1082 VMap[&BonusInst] = NewBonusInst; 1083 1084 // If we moved a load, we cannot any longer claim any knowledge about 1085 // its potential value. The previous information might have been valid 1086 // only given the branch precondition. 1087 // For an analogous reason, we must also drop all the metadata whose 1088 // semantics we don't understand. We *can* preserve !annotation, because 1089 // it is tied to the instruction itself, not the value or position. 1090 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1091 1092 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1093 NewBonusInst->takeName(&BonusInst); 1094 BonusInst.setName(NewBonusInst->getName() + ".old"); 1095 1096 // Update (liveout) uses of bonus instructions, 1097 // now that the bonus instruction has been cloned into predecessor. 1098 SSAUpdater SSAUpdate; 1099 SSAUpdate.Initialize(BonusInst.getType(), 1100 (NewBonusInst->getName() + ".merge").str()); 1101 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1102 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1103 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1104 auto *UI = cast<Instruction>(U.getUser()); 1105 if (UI->getParent() != PredBlock) 1106 SSAUpdate.RewriteUseAfterInsertions(U); 1107 else // Use is in the same block as, and comes before, NewBonusInst. 1108 SSAUpdate.RewriteUse(U); 1109 } 1110 } 1111 } 1112 1113 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1114 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1115 BasicBlock *BB = TI->getParent(); 1116 BasicBlock *Pred = PTI->getParent(); 1117 1118 std::vector<DominatorTree::UpdateType> Updates; 1119 1120 // Figure out which 'cases' to copy from SI to PSI. 1121 std::vector<ValueEqualityComparisonCase> BBCases; 1122 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1123 1124 std::vector<ValueEqualityComparisonCase> PredCases; 1125 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1126 1127 // Based on whether the default edge from PTI goes to BB or not, fill in 1128 // PredCases and PredDefault with the new switch cases we would like to 1129 // build. 1130 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1131 1132 // Update the branch weight metadata along the way 1133 SmallVector<uint64_t, 8> Weights; 1134 bool PredHasWeights = HasBranchWeights(PTI); 1135 bool SuccHasWeights = HasBranchWeights(TI); 1136 1137 if (PredHasWeights) { 1138 GetBranchWeights(PTI, Weights); 1139 // branch-weight metadata is inconsistent here. 1140 if (Weights.size() != 1 + PredCases.size()) 1141 PredHasWeights = SuccHasWeights = false; 1142 } else if (SuccHasWeights) 1143 // If there are no predecessor weights but there are successor weights, 1144 // populate Weights with 1, which will later be scaled to the sum of 1145 // successor's weights 1146 Weights.assign(1 + PredCases.size(), 1); 1147 1148 SmallVector<uint64_t, 8> SuccWeights; 1149 if (SuccHasWeights) { 1150 GetBranchWeights(TI, SuccWeights); 1151 // branch-weight metadata is inconsistent here. 1152 if (SuccWeights.size() != 1 + BBCases.size()) 1153 PredHasWeights = SuccHasWeights = false; 1154 } else if (PredHasWeights) 1155 SuccWeights.assign(1 + BBCases.size(), 1); 1156 1157 if (PredDefault == BB) { 1158 // If this is the default destination from PTI, only the edges in TI 1159 // that don't occur in PTI, or that branch to BB will be activated. 1160 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1161 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1162 if (PredCases[i].Dest != BB) 1163 PTIHandled.insert(PredCases[i].Value); 1164 else { 1165 // The default destination is BB, we don't need explicit targets. 1166 std::swap(PredCases[i], PredCases.back()); 1167 1168 if (PredHasWeights || SuccHasWeights) { 1169 // Increase weight for the default case. 1170 Weights[0] += Weights[i + 1]; 1171 std::swap(Weights[i + 1], Weights.back()); 1172 Weights.pop_back(); 1173 } 1174 1175 PredCases.pop_back(); 1176 --i; 1177 --e; 1178 } 1179 1180 // Reconstruct the new switch statement we will be building. 1181 if (PredDefault != BBDefault) { 1182 PredDefault->removePredecessor(Pred); 1183 if (DTU && PredDefault != BB) 1184 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1185 PredDefault = BBDefault; 1186 ++NewSuccessors[BBDefault]; 1187 } 1188 1189 unsigned CasesFromPred = Weights.size(); 1190 uint64_t ValidTotalSuccWeight = 0; 1191 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1192 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1193 PredCases.push_back(BBCases[i]); 1194 ++NewSuccessors[BBCases[i].Dest]; 1195 if (SuccHasWeights || PredHasWeights) { 1196 // The default weight is at index 0, so weight for the ith case 1197 // should be at index i+1. Scale the cases from successor by 1198 // PredDefaultWeight (Weights[0]). 1199 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1200 ValidTotalSuccWeight += SuccWeights[i + 1]; 1201 } 1202 } 1203 1204 if (SuccHasWeights || PredHasWeights) { 1205 ValidTotalSuccWeight += SuccWeights[0]; 1206 // Scale the cases from predecessor by ValidTotalSuccWeight. 1207 for (unsigned i = 1; i < CasesFromPred; ++i) 1208 Weights[i] *= ValidTotalSuccWeight; 1209 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1210 Weights[0] *= SuccWeights[0]; 1211 } 1212 } else { 1213 // If this is not the default destination from PSI, only the edges 1214 // in SI that occur in PSI with a destination of BB will be 1215 // activated. 1216 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1217 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1218 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1219 if (PredCases[i].Dest == BB) { 1220 PTIHandled.insert(PredCases[i].Value); 1221 1222 if (PredHasWeights || SuccHasWeights) { 1223 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1224 std::swap(Weights[i + 1], Weights.back()); 1225 Weights.pop_back(); 1226 } 1227 1228 std::swap(PredCases[i], PredCases.back()); 1229 PredCases.pop_back(); 1230 --i; 1231 --e; 1232 } 1233 1234 // Okay, now we know which constants were sent to BB from the 1235 // predecessor. Figure out where they will all go now. 1236 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1237 if (PTIHandled.count(BBCases[i].Value)) { 1238 // If this is one we are capable of getting... 1239 if (PredHasWeights || SuccHasWeights) 1240 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1241 PredCases.push_back(BBCases[i]); 1242 ++NewSuccessors[BBCases[i].Dest]; 1243 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1244 } 1245 1246 // If there are any constants vectored to BB that TI doesn't handle, 1247 // they must go to the default destination of TI. 1248 for (ConstantInt *I : PTIHandled) { 1249 if (PredHasWeights || SuccHasWeights) 1250 Weights.push_back(WeightsForHandled[I]); 1251 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1252 ++NewSuccessors[BBDefault]; 1253 } 1254 } 1255 1256 // Okay, at this point, we know which new successor Pred will get. Make 1257 // sure we update the number of entries in the PHI nodes for these 1258 // successors. 1259 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1260 NewSuccessors) { 1261 for (auto I : seq(0, NewSuccessor.second)) { 1262 (void)I; 1263 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1264 } 1265 if (DTU && !is_contained(successors(Pred), NewSuccessor.first)) 1266 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1267 } 1268 1269 Builder.SetInsertPoint(PTI); 1270 // Convert pointer to int before we switch. 1271 if (CV->getType()->isPointerTy()) { 1272 CV = 1273 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1274 } 1275 1276 // Now that the successors are updated, create the new Switch instruction. 1277 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1278 NewSI->setDebugLoc(PTI->getDebugLoc()); 1279 for (ValueEqualityComparisonCase &V : PredCases) 1280 NewSI->addCase(V.Value, V.Dest); 1281 1282 if (PredHasWeights || SuccHasWeights) { 1283 // Halve the weights if any of them cannot fit in an uint32_t 1284 FitWeights(Weights); 1285 1286 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1287 1288 setBranchWeights(NewSI, MDWeights); 1289 } 1290 1291 EraseTerminatorAndDCECond(PTI); 1292 1293 // Okay, last check. If BB is still a successor of PSI, then we must 1294 // have an infinite loop case. If so, add an infinitely looping block 1295 // to handle the case to preserve the behavior of the code. 1296 BasicBlock *InfLoopBlock = nullptr; 1297 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1298 if (NewSI->getSuccessor(i) == BB) { 1299 if (!InfLoopBlock) { 1300 // Insert it at the end of the function, because it's either code, 1301 // or it won't matter if it's hot. :) 1302 InfLoopBlock = 1303 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1304 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1305 if (DTU) 1306 Updates.push_back( 1307 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1308 } 1309 NewSI->setSuccessor(i, InfLoopBlock); 1310 } 1311 1312 if (DTU) { 1313 if (InfLoopBlock) 1314 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1315 1316 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1317 1318 DTU->applyUpdates(Updates); 1319 } 1320 1321 ++NumFoldValueComparisonIntoPredecessors; 1322 return true; 1323 } 1324 1325 /// The specified terminator is a value equality comparison instruction 1326 /// (either a switch or a branch on "X == c"). 1327 /// See if any of the predecessors of the terminator block are value comparisons 1328 /// on the same value. If so, and if safe to do so, fold them together. 1329 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1330 IRBuilder<> &Builder) { 1331 BasicBlock *BB = TI->getParent(); 1332 Value *CV = isValueEqualityComparison(TI); // CondVal 1333 assert(CV && "Not a comparison?"); 1334 1335 bool Changed = false; 1336 1337 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1338 while (!Preds.empty()) { 1339 BasicBlock *Pred = Preds.pop_back_val(); 1340 Instruction *PTI = Pred->getTerminator(); 1341 1342 // Don't try to fold into itself. 1343 if (Pred == BB) 1344 continue; 1345 1346 // See if the predecessor is a comparison with the same value. 1347 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1348 if (PCV != CV) 1349 continue; 1350 1351 SmallSetVector<BasicBlock *, 4> FailBlocks; 1352 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1353 for (auto *Succ : FailBlocks) { 1354 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1355 return false; 1356 } 1357 } 1358 1359 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1360 Changed = true; 1361 } 1362 return Changed; 1363 } 1364 1365 // If we would need to insert a select that uses the value of this invoke 1366 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1367 // can't hoist the invoke, as there is nowhere to put the select in this case. 1368 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1369 Instruction *I1, Instruction *I2) { 1370 for (BasicBlock *Succ : successors(BB1)) { 1371 for (const PHINode &PN : Succ->phis()) { 1372 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1373 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1374 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1375 return false; 1376 } 1377 } 1378 } 1379 return true; 1380 } 1381 1382 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1383 1384 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1385 /// in the two blocks up into the branch block. The caller of this function 1386 /// guarantees that BI's block dominates BB1 and BB2. 1387 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1388 const TargetTransformInfo &TTI) { 1389 // This does very trivial matching, with limited scanning, to find identical 1390 // instructions in the two blocks. In particular, we don't want to get into 1391 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1392 // such, we currently just scan for obviously identical instructions in an 1393 // identical order. 1394 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1395 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1396 1397 BasicBlock::iterator BB1_Itr = BB1->begin(); 1398 BasicBlock::iterator BB2_Itr = BB2->begin(); 1399 1400 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1401 // Skip debug info if it is not identical. 1402 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1403 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1404 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1405 while (isa<DbgInfoIntrinsic>(I1)) 1406 I1 = &*BB1_Itr++; 1407 while (isa<DbgInfoIntrinsic>(I2)) 1408 I2 = &*BB2_Itr++; 1409 } 1410 // FIXME: Can we define a safety predicate for CallBr? 1411 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1412 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1413 isa<CallBrInst>(I1)) 1414 return false; 1415 1416 BasicBlock *BIParent = BI->getParent(); 1417 1418 bool Changed = false; 1419 1420 auto _ = make_scope_exit([&]() { 1421 if (Changed) 1422 ++NumHoistCommonCode; 1423 }); 1424 1425 do { 1426 // If we are hoisting the terminator instruction, don't move one (making a 1427 // broken BB), instead clone it, and remove BI. 1428 if (I1->isTerminator()) 1429 goto HoistTerminator; 1430 1431 // If we're going to hoist a call, make sure that the two instructions we're 1432 // commoning/hoisting are both marked with musttail, or neither of them is 1433 // marked as such. Otherwise, we might end up in a situation where we hoist 1434 // from a block where the terminator is a `ret` to a block where the terminator 1435 // is a `br`, and `musttail` calls expect to be followed by a return. 1436 auto *C1 = dyn_cast<CallInst>(I1); 1437 auto *C2 = dyn_cast<CallInst>(I2); 1438 if (C1 && C2) 1439 if (C1->isMustTailCall() != C2->isMustTailCall()) 1440 return Changed; 1441 1442 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1443 return Changed; 1444 1445 // If any of the two call sites has nomerge attribute, stop hoisting. 1446 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1447 if (CB1->cannotMerge()) 1448 return Changed; 1449 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1450 if (CB2->cannotMerge()) 1451 return Changed; 1452 1453 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1454 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1455 // The debug location is an integral part of a debug info intrinsic 1456 // and can't be separated from it or replaced. Instead of attempting 1457 // to merge locations, simply hoist both copies of the intrinsic. 1458 BIParent->getInstList().splice(BI->getIterator(), 1459 BB1->getInstList(), I1); 1460 BIParent->getInstList().splice(BI->getIterator(), 1461 BB2->getInstList(), I2); 1462 Changed = true; 1463 } else { 1464 // For a normal instruction, we just move one to right before the branch, 1465 // then replace all uses of the other with the first. Finally, we remove 1466 // the now redundant second instruction. 1467 BIParent->getInstList().splice(BI->getIterator(), 1468 BB1->getInstList(), I1); 1469 if (!I2->use_empty()) 1470 I2->replaceAllUsesWith(I1); 1471 I1->andIRFlags(I2); 1472 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1473 LLVMContext::MD_range, 1474 LLVMContext::MD_fpmath, 1475 LLVMContext::MD_invariant_load, 1476 LLVMContext::MD_nonnull, 1477 LLVMContext::MD_invariant_group, 1478 LLVMContext::MD_align, 1479 LLVMContext::MD_dereferenceable, 1480 LLVMContext::MD_dereferenceable_or_null, 1481 LLVMContext::MD_mem_parallel_loop_access, 1482 LLVMContext::MD_access_group, 1483 LLVMContext::MD_preserve_access_index}; 1484 combineMetadata(I1, I2, KnownIDs, true); 1485 1486 // I1 and I2 are being combined into a single instruction. Its debug 1487 // location is the merged locations of the original instructions. 1488 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1489 1490 I2->eraseFromParent(); 1491 Changed = true; 1492 } 1493 ++NumHoistCommonInstrs; 1494 1495 I1 = &*BB1_Itr++; 1496 I2 = &*BB2_Itr++; 1497 // Skip debug info if it is not identical. 1498 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1499 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1500 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1501 while (isa<DbgInfoIntrinsic>(I1)) 1502 I1 = &*BB1_Itr++; 1503 while (isa<DbgInfoIntrinsic>(I2)) 1504 I2 = &*BB2_Itr++; 1505 } 1506 } while (I1->isIdenticalToWhenDefined(I2)); 1507 1508 return true; 1509 1510 HoistTerminator: 1511 // It may not be possible to hoist an invoke. 1512 // FIXME: Can we define a safety predicate for CallBr? 1513 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1514 return Changed; 1515 1516 // TODO: callbr hoisting currently disabled pending further study. 1517 if (isa<CallBrInst>(I1)) 1518 return Changed; 1519 1520 for (BasicBlock *Succ : successors(BB1)) { 1521 for (PHINode &PN : Succ->phis()) { 1522 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1523 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1524 if (BB1V == BB2V) 1525 continue; 1526 1527 // Check for passingValueIsAlwaysUndefined here because we would rather 1528 // eliminate undefined control flow then converting it to a select. 1529 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1530 passingValueIsAlwaysUndefined(BB2V, &PN)) 1531 return Changed; 1532 1533 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1534 return Changed; 1535 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1536 return Changed; 1537 } 1538 } 1539 1540 // Okay, it is safe to hoist the terminator. 1541 Instruction *NT = I1->clone(); 1542 BIParent->getInstList().insert(BI->getIterator(), NT); 1543 if (!NT->getType()->isVoidTy()) { 1544 I1->replaceAllUsesWith(NT); 1545 I2->replaceAllUsesWith(NT); 1546 NT->takeName(I1); 1547 } 1548 Changed = true; 1549 ++NumHoistCommonInstrs; 1550 1551 // Ensure terminator gets a debug location, even an unknown one, in case 1552 // it involves inlinable calls. 1553 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1554 1555 // PHIs created below will adopt NT's merged DebugLoc. 1556 IRBuilder<NoFolder> Builder(NT); 1557 1558 // Hoisting one of the terminators from our successor is a great thing. 1559 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1560 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1561 // nodes, so we insert select instruction to compute the final result. 1562 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1563 for (BasicBlock *Succ : successors(BB1)) { 1564 for (PHINode &PN : Succ->phis()) { 1565 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1566 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1567 if (BB1V == BB2V) 1568 continue; 1569 1570 // These values do not agree. Insert a select instruction before NT 1571 // that determines the right value. 1572 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1573 if (!SI) { 1574 // Propagate fast-math-flags from phi node to its replacement select. 1575 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1576 if (isa<FPMathOperator>(PN)) 1577 Builder.setFastMathFlags(PN.getFastMathFlags()); 1578 1579 SI = cast<SelectInst>( 1580 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1581 BB1V->getName() + "." + BB2V->getName(), BI)); 1582 } 1583 1584 // Make the PHI node use the select for all incoming values for BB1/BB2 1585 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1586 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1587 PN.setIncomingValue(i, SI); 1588 } 1589 } 1590 1591 SmallVector<DominatorTree::UpdateType, 4> Updates; 1592 1593 // Update any PHI nodes in our new successors. 1594 for (BasicBlock *Succ : successors(BB1)) { 1595 AddPredecessorToBlock(Succ, BIParent, BB1); 1596 if (DTU) 1597 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1598 } 1599 1600 if (DTU) 1601 for (BasicBlock *Succ : successors(BI)) 1602 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1603 1604 EraseTerminatorAndDCECond(BI); 1605 if (DTU) 1606 DTU->applyUpdates(Updates); 1607 return Changed; 1608 } 1609 1610 // Check lifetime markers. 1611 static bool isLifeTimeMarker(const Instruction *I) { 1612 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1613 switch (II->getIntrinsicID()) { 1614 default: 1615 break; 1616 case Intrinsic::lifetime_start: 1617 case Intrinsic::lifetime_end: 1618 return true; 1619 } 1620 } 1621 return false; 1622 } 1623 1624 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1625 // into variables. 1626 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1627 int OpIdx) { 1628 return !isa<IntrinsicInst>(I); 1629 } 1630 1631 // All instructions in Insts belong to different blocks that all unconditionally 1632 // branch to a common successor. Analyze each instruction and return true if it 1633 // would be possible to sink them into their successor, creating one common 1634 // instruction instead. For every value that would be required to be provided by 1635 // PHI node (because an operand varies in each input block), add to PHIOperands. 1636 static bool canSinkInstructions( 1637 ArrayRef<Instruction *> Insts, 1638 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1639 // Prune out obviously bad instructions to move. Each instruction must have 1640 // exactly zero or one use, and we check later that use is by a single, common 1641 // PHI instruction in the successor. 1642 bool HasUse = !Insts.front()->user_empty(); 1643 for (auto *I : Insts) { 1644 // These instructions may change or break semantics if moved. 1645 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1646 I->getType()->isTokenTy()) 1647 return false; 1648 1649 // Do not try to sink an instruction in an infinite loop - it can cause 1650 // this algorithm to infinite loop. 1651 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1652 return false; 1653 1654 // Conservatively return false if I is an inline-asm instruction. Sinking 1655 // and merging inline-asm instructions can potentially create arguments 1656 // that cannot satisfy the inline-asm constraints. 1657 // If the instruction has nomerge attribute, return false. 1658 if (const auto *C = dyn_cast<CallBase>(I)) 1659 if (C->isInlineAsm() || C->cannotMerge()) 1660 return false; 1661 1662 // Each instruction must have zero or one use. 1663 if (HasUse && !I->hasOneUse()) 1664 return false; 1665 if (!HasUse && !I->user_empty()) 1666 return false; 1667 } 1668 1669 const Instruction *I0 = Insts.front(); 1670 for (auto *I : Insts) 1671 if (!I->isSameOperationAs(I0)) 1672 return false; 1673 1674 // All instructions in Insts are known to be the same opcode. If they have a 1675 // use, check that the only user is a PHI or in the same block as the 1676 // instruction, because if a user is in the same block as an instruction we're 1677 // contemplating sinking, it must already be determined to be sinkable. 1678 if (HasUse) { 1679 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1680 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1681 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1682 auto *U = cast<Instruction>(*I->user_begin()); 1683 return (PNUse && 1684 PNUse->getParent() == Succ && 1685 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1686 U->getParent() == I->getParent(); 1687 })) 1688 return false; 1689 } 1690 1691 // Because SROA can't handle speculating stores of selects, try not to sink 1692 // loads, stores or lifetime markers of allocas when we'd have to create a 1693 // PHI for the address operand. Also, because it is likely that loads or 1694 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1695 // them. 1696 // This can cause code churn which can have unintended consequences down 1697 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1698 // FIXME: This is a workaround for a deficiency in SROA - see 1699 // https://llvm.org/bugs/show_bug.cgi?id=30188 1700 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1701 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1702 })) 1703 return false; 1704 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1705 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1706 })) 1707 return false; 1708 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1709 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1710 })) 1711 return false; 1712 1713 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1714 Value *Op = I0->getOperand(OI); 1715 if (Op->getType()->isTokenTy()) 1716 // Don't touch any operand of token type. 1717 return false; 1718 1719 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1720 assert(I->getNumOperands() == I0->getNumOperands()); 1721 return I->getOperand(OI) == I0->getOperand(OI); 1722 }; 1723 if (!all_of(Insts, SameAsI0)) { 1724 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1725 !canReplaceOperandWithVariable(I0, OI)) 1726 // We can't create a PHI from this GEP. 1727 return false; 1728 // Don't create indirect calls! The called value is the final operand. 1729 if (isa<CallBase>(I0) && OI == OE - 1) { 1730 // FIXME: if the call was *already* indirect, we should do this. 1731 return false; 1732 } 1733 for (auto *I : Insts) 1734 PHIOperands[I].push_back(I->getOperand(OI)); 1735 } 1736 } 1737 return true; 1738 } 1739 1740 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1741 // instruction of every block in Blocks to their common successor, commoning 1742 // into one instruction. 1743 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1744 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1745 1746 // canSinkInstructions returning true guarantees that every block has at 1747 // least one non-terminator instruction. 1748 SmallVector<Instruction*,4> Insts; 1749 for (auto *BB : Blocks) { 1750 Instruction *I = BB->getTerminator(); 1751 do { 1752 I = I->getPrevNode(); 1753 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1754 if (!isa<DbgInfoIntrinsic>(I)) 1755 Insts.push_back(I); 1756 } 1757 1758 // The only checking we need to do now is that all users of all instructions 1759 // are the same PHI node. canSinkInstructions should have checked this but 1760 // it is slightly over-aggressive - it gets confused by commutative 1761 // instructions so double-check it here. 1762 Instruction *I0 = Insts.front(); 1763 if (!I0->user_empty()) { 1764 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1765 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1766 auto *U = cast<Instruction>(*I->user_begin()); 1767 return U == PNUse; 1768 })) 1769 return false; 1770 } 1771 1772 // We don't need to do any more checking here; canSinkInstructions should 1773 // have done it all for us. 1774 SmallVector<Value*, 4> NewOperands; 1775 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1776 // This check is different to that in canSinkInstructions. There, we 1777 // cared about the global view once simplifycfg (and instcombine) have 1778 // completed - it takes into account PHIs that become trivially 1779 // simplifiable. However here we need a more local view; if an operand 1780 // differs we create a PHI and rely on instcombine to clean up the very 1781 // small mess we may make. 1782 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1783 return I->getOperand(O) != I0->getOperand(O); 1784 }); 1785 if (!NeedPHI) { 1786 NewOperands.push_back(I0->getOperand(O)); 1787 continue; 1788 } 1789 1790 // Create a new PHI in the successor block and populate it. 1791 auto *Op = I0->getOperand(O); 1792 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1793 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1794 Op->getName() + ".sink", &BBEnd->front()); 1795 for (auto *I : Insts) 1796 PN->addIncoming(I->getOperand(O), I->getParent()); 1797 NewOperands.push_back(PN); 1798 } 1799 1800 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1801 // and move it to the start of the successor block. 1802 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1803 I0->getOperandUse(O).set(NewOperands[O]); 1804 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1805 1806 // Update metadata and IR flags, and merge debug locations. 1807 for (auto *I : Insts) 1808 if (I != I0) { 1809 // The debug location for the "common" instruction is the merged locations 1810 // of all the commoned instructions. We start with the original location 1811 // of the "common" instruction and iteratively merge each location in the 1812 // loop below. 1813 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1814 // However, as N-way merge for CallInst is rare, so we use simplified API 1815 // instead of using complex API for N-way merge. 1816 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1817 combineMetadataForCSE(I0, I, true); 1818 I0->andIRFlags(I); 1819 } 1820 1821 if (!I0->user_empty()) { 1822 // canSinkLastInstruction checked that all instructions were used by 1823 // one and only one PHI node. Find that now, RAUW it to our common 1824 // instruction and nuke it. 1825 auto *PN = cast<PHINode>(*I0->user_begin()); 1826 PN->replaceAllUsesWith(I0); 1827 PN->eraseFromParent(); 1828 } 1829 1830 // Finally nuke all instructions apart from the common instruction. 1831 for (auto *I : Insts) 1832 if (I != I0) 1833 I->eraseFromParent(); 1834 1835 return true; 1836 } 1837 1838 namespace { 1839 1840 // LockstepReverseIterator - Iterates through instructions 1841 // in a set of blocks in reverse order from the first non-terminator. 1842 // For example (assume all blocks have size n): 1843 // LockstepReverseIterator I([B1, B2, B3]); 1844 // *I-- = [B1[n], B2[n], B3[n]]; 1845 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1846 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1847 // ... 1848 class LockstepReverseIterator { 1849 ArrayRef<BasicBlock*> Blocks; 1850 SmallVector<Instruction*,4> Insts; 1851 bool Fail; 1852 1853 public: 1854 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1855 reset(); 1856 } 1857 1858 void reset() { 1859 Fail = false; 1860 Insts.clear(); 1861 for (auto *BB : Blocks) { 1862 Instruction *Inst = BB->getTerminator(); 1863 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1864 Inst = Inst->getPrevNode(); 1865 if (!Inst) { 1866 // Block wasn't big enough. 1867 Fail = true; 1868 return; 1869 } 1870 Insts.push_back(Inst); 1871 } 1872 } 1873 1874 bool isValid() const { 1875 return !Fail; 1876 } 1877 1878 void operator--() { 1879 if (Fail) 1880 return; 1881 for (auto *&Inst : Insts) { 1882 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1883 Inst = Inst->getPrevNode(); 1884 // Already at beginning of block. 1885 if (!Inst) { 1886 Fail = true; 1887 return; 1888 } 1889 } 1890 } 1891 1892 ArrayRef<Instruction*> operator * () const { 1893 return Insts; 1894 } 1895 }; 1896 1897 } // end anonymous namespace 1898 1899 /// Check whether BB's predecessors end with unconditional branches. If it is 1900 /// true, sink any common code from the predecessors to BB. 1901 /// We also allow one predecessor to end with conditional branch (but no more 1902 /// than one). 1903 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1904 DomTreeUpdater *DTU) { 1905 // We support two situations: 1906 // (1) all incoming arcs are unconditional 1907 // (2) one incoming arc is conditional 1908 // 1909 // (2) is very common in switch defaults and 1910 // else-if patterns; 1911 // 1912 // if (a) f(1); 1913 // else if (b) f(2); 1914 // 1915 // produces: 1916 // 1917 // [if] 1918 // / \ 1919 // [f(1)] [if] 1920 // | | \ 1921 // | | | 1922 // | [f(2)]| 1923 // \ | / 1924 // [ end ] 1925 // 1926 // [end] has two unconditional predecessor arcs and one conditional. The 1927 // conditional refers to the implicit empty 'else' arc. This conditional 1928 // arc can also be caused by an empty default block in a switch. 1929 // 1930 // In this case, we attempt to sink code from all *unconditional* arcs. 1931 // If we can sink instructions from these arcs (determined during the scan 1932 // phase below) we insert a common successor for all unconditional arcs and 1933 // connect that to [end], to enable sinking: 1934 // 1935 // [if] 1936 // / \ 1937 // [x(1)] [if] 1938 // | | \ 1939 // | | \ 1940 // | [x(2)] | 1941 // \ / | 1942 // [sink.split] | 1943 // \ / 1944 // [ end ] 1945 // 1946 SmallVector<BasicBlock*,4> UnconditionalPreds; 1947 Instruction *Cond = nullptr; 1948 for (auto *B : predecessors(BB)) { 1949 auto *T = B->getTerminator(); 1950 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1951 UnconditionalPreds.push_back(B); 1952 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1953 Cond = T; 1954 else 1955 return false; 1956 } 1957 if (UnconditionalPreds.size() < 2) 1958 return false; 1959 1960 // We take a two-step approach to tail sinking. First we scan from the end of 1961 // each block upwards in lockstep. If the n'th instruction from the end of each 1962 // block can be sunk, those instructions are added to ValuesToSink and we 1963 // carry on. If we can sink an instruction but need to PHI-merge some operands 1964 // (because they're not identical in each instruction) we add these to 1965 // PHIOperands. 1966 unsigned ScanIdx = 0; 1967 SmallPtrSet<Value*,4> InstructionsToSink; 1968 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1969 LockstepReverseIterator LRI(UnconditionalPreds); 1970 while (LRI.isValid() && 1971 canSinkInstructions(*LRI, PHIOperands)) { 1972 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1973 << "\n"); 1974 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1975 ++ScanIdx; 1976 --LRI; 1977 } 1978 1979 // If no instructions can be sunk, early-return. 1980 if (ScanIdx == 0) 1981 return false; 1982 1983 bool Changed = false; 1984 1985 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1986 unsigned NumPHIdValues = 0; 1987 for (auto *I : *LRI) 1988 for (auto *V : PHIOperands[I]) 1989 if (InstructionsToSink.count(V) == 0) 1990 ++NumPHIdValues; 1991 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1992 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1993 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1994 NumPHIInsts++; 1995 1996 return NumPHIInsts <= 1; 1997 }; 1998 1999 if (Cond) { 2000 // Check if we would actually sink anything first! This mutates the CFG and 2001 // adds an extra block. The goal in doing this is to allow instructions that 2002 // couldn't be sunk before to be sunk - obviously, speculatable instructions 2003 // (such as trunc, add) can be sunk and predicated already. So we check that 2004 // we're going to sink at least one non-speculatable instruction. 2005 LRI.reset(); 2006 unsigned Idx = 0; 2007 bool Profitable = false; 2008 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 2009 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2010 Profitable = true; 2011 break; 2012 } 2013 --LRI; 2014 ++Idx; 2015 } 2016 if (!Profitable) 2017 return false; 2018 2019 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2020 // We have a conditional edge and we're going to sink some instructions. 2021 // Insert a new block postdominating all blocks we're going to sink from. 2022 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2023 // Edges couldn't be split. 2024 return false; 2025 Changed = true; 2026 } 2027 2028 // Now that we've analyzed all potential sinking candidates, perform the 2029 // actual sink. We iteratively sink the last non-terminator of the source 2030 // blocks into their common successor unless doing so would require too 2031 // many PHI instructions to be generated (currently only one PHI is allowed 2032 // per sunk instruction). 2033 // 2034 // We can use InstructionsToSink to discount values needing PHI-merging that will 2035 // actually be sunk in a later iteration. This allows us to be more 2036 // aggressive in what we sink. This does allow a false positive where we 2037 // sink presuming a later value will also be sunk, but stop half way through 2038 // and never actually sink it which means we produce more PHIs than intended. 2039 // This is unlikely in practice though. 2040 unsigned SinkIdx = 0; 2041 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2042 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2043 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2044 << "\n"); 2045 2046 // Because we've sunk every instruction in turn, the current instruction to 2047 // sink is always at index 0. 2048 LRI.reset(); 2049 if (!ProfitableToSinkInstruction(LRI)) { 2050 // Too many PHIs would be created. 2051 LLVM_DEBUG( 2052 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2053 break; 2054 } 2055 2056 if (!sinkLastInstruction(UnconditionalPreds)) { 2057 LLVM_DEBUG( 2058 dbgs() 2059 << "SINK: stopping here, failed to actually sink instruction!\n"); 2060 break; 2061 } 2062 2063 NumSinkCommonInstrs++; 2064 Changed = true; 2065 } 2066 if (SinkIdx != 0) 2067 ++NumSinkCommonCode; 2068 return Changed; 2069 } 2070 2071 /// Determine if we can hoist sink a sole store instruction out of a 2072 /// conditional block. 2073 /// 2074 /// We are looking for code like the following: 2075 /// BrBB: 2076 /// store i32 %add, i32* %arrayidx2 2077 /// ... // No other stores or function calls (we could be calling a memory 2078 /// ... // function). 2079 /// %cmp = icmp ult %x, %y 2080 /// br i1 %cmp, label %EndBB, label %ThenBB 2081 /// ThenBB: 2082 /// store i32 %add5, i32* %arrayidx2 2083 /// br label EndBB 2084 /// EndBB: 2085 /// ... 2086 /// We are going to transform this into: 2087 /// BrBB: 2088 /// store i32 %add, i32* %arrayidx2 2089 /// ... // 2090 /// %cmp = icmp ult %x, %y 2091 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2092 /// store i32 %add.add5, i32* %arrayidx2 2093 /// ... 2094 /// 2095 /// \return The pointer to the value of the previous store if the store can be 2096 /// hoisted into the predecessor block. 0 otherwise. 2097 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2098 BasicBlock *StoreBB, BasicBlock *EndBB) { 2099 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2100 if (!StoreToHoist) 2101 return nullptr; 2102 2103 // Volatile or atomic. 2104 if (!StoreToHoist->isSimple()) 2105 return nullptr; 2106 2107 Value *StorePtr = StoreToHoist->getPointerOperand(); 2108 2109 // Look for a store to the same pointer in BrBB. 2110 unsigned MaxNumInstToLookAt = 9; 2111 // Skip pseudo probe intrinsic calls which are not really killing any memory 2112 // accesses. 2113 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2114 if (!MaxNumInstToLookAt) 2115 break; 2116 --MaxNumInstToLookAt; 2117 2118 // Could be calling an instruction that affects memory like free(). 2119 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2120 return nullptr; 2121 2122 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2123 // Found the previous store make sure it stores to the same location. 2124 if (SI->getPointerOperand() == StorePtr) 2125 // Found the previous store, return its value operand. 2126 return SI->getValueOperand(); 2127 return nullptr; // Unknown store. 2128 } 2129 } 2130 2131 return nullptr; 2132 } 2133 2134 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2135 /// converted to selects. 2136 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2137 BasicBlock *EndBB, 2138 unsigned &SpeculatedInstructions, 2139 InstructionCost &Cost, 2140 const TargetTransformInfo &TTI) { 2141 TargetTransformInfo::TargetCostKind CostKind = 2142 BB->getParent()->hasMinSize() 2143 ? TargetTransformInfo::TCK_CodeSize 2144 : TargetTransformInfo::TCK_SizeAndLatency; 2145 2146 bool HaveRewritablePHIs = false; 2147 for (PHINode &PN : EndBB->phis()) { 2148 Value *OrigV = PN.getIncomingValueForBlock(BB); 2149 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2150 2151 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2152 // Skip PHIs which are trivial. 2153 if (ThenV == OrigV) 2154 continue; 2155 2156 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2157 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2158 2159 // Don't convert to selects if we could remove undefined behavior instead. 2160 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2161 passingValueIsAlwaysUndefined(ThenV, &PN)) 2162 return false; 2163 2164 HaveRewritablePHIs = true; 2165 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2166 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2167 if (!OrigCE && !ThenCE) 2168 continue; // Known safe and cheap. 2169 2170 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2171 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2172 return false; 2173 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2174 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2175 InstructionCost MaxCost = 2176 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2177 if (OrigCost + ThenCost > MaxCost) 2178 return false; 2179 2180 // Account for the cost of an unfolded ConstantExpr which could end up 2181 // getting expanded into Instructions. 2182 // FIXME: This doesn't account for how many operations are combined in the 2183 // constant expression. 2184 ++SpeculatedInstructions; 2185 if (SpeculatedInstructions > 1) 2186 return false; 2187 } 2188 2189 return HaveRewritablePHIs; 2190 } 2191 2192 /// Speculate a conditional basic block flattening the CFG. 2193 /// 2194 /// Note that this is a very risky transform currently. Speculating 2195 /// instructions like this is most often not desirable. Instead, there is an MI 2196 /// pass which can do it with full awareness of the resource constraints. 2197 /// However, some cases are "obvious" and we should do directly. An example of 2198 /// this is speculating a single, reasonably cheap instruction. 2199 /// 2200 /// There is only one distinct advantage to flattening the CFG at the IR level: 2201 /// it makes very common but simplistic optimizations such as are common in 2202 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2203 /// modeling their effects with easier to reason about SSA value graphs. 2204 /// 2205 /// 2206 /// An illustration of this transform is turning this IR: 2207 /// \code 2208 /// BB: 2209 /// %cmp = icmp ult %x, %y 2210 /// br i1 %cmp, label %EndBB, label %ThenBB 2211 /// ThenBB: 2212 /// %sub = sub %x, %y 2213 /// br label BB2 2214 /// EndBB: 2215 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2216 /// ... 2217 /// \endcode 2218 /// 2219 /// Into this IR: 2220 /// \code 2221 /// BB: 2222 /// %cmp = icmp ult %x, %y 2223 /// %sub = sub %x, %y 2224 /// %cond = select i1 %cmp, 0, %sub 2225 /// ... 2226 /// \endcode 2227 /// 2228 /// \returns true if the conditional block is removed. 2229 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2230 const TargetTransformInfo &TTI) { 2231 // Be conservative for now. FP select instruction can often be expensive. 2232 Value *BrCond = BI->getCondition(); 2233 if (isa<FCmpInst>(BrCond)) 2234 return false; 2235 2236 BasicBlock *BB = BI->getParent(); 2237 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2238 InstructionCost Budget = 2239 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2240 2241 // If ThenBB is actually on the false edge of the conditional branch, remember 2242 // to swap the select operands later. 2243 bool Invert = false; 2244 if (ThenBB != BI->getSuccessor(0)) { 2245 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2246 Invert = true; 2247 } 2248 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2249 2250 // Keep a count of how many times instructions are used within ThenBB when 2251 // they are candidates for sinking into ThenBB. Specifically: 2252 // - They are defined in BB, and 2253 // - They have no side effects, and 2254 // - All of their uses are in ThenBB. 2255 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2256 2257 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2258 2259 unsigned SpeculatedInstructions = 0; 2260 Value *SpeculatedStoreValue = nullptr; 2261 StoreInst *SpeculatedStore = nullptr; 2262 for (BasicBlock::iterator BBI = ThenBB->begin(), 2263 BBE = std::prev(ThenBB->end()); 2264 BBI != BBE; ++BBI) { 2265 Instruction *I = &*BBI; 2266 // Skip debug info. 2267 if (isa<DbgInfoIntrinsic>(I)) { 2268 SpeculatedDbgIntrinsics.push_back(I); 2269 continue; 2270 } 2271 2272 // Skip pseudo probes. The consequence is we lose track of the branch 2273 // probability for ThenBB, which is fine since the optimization here takes 2274 // place regardless of the branch probability. 2275 if (isa<PseudoProbeInst>(I)) { 2276 continue; 2277 } 2278 2279 // Only speculatively execute a single instruction (not counting the 2280 // terminator) for now. 2281 ++SpeculatedInstructions; 2282 if (SpeculatedInstructions > 1) 2283 return false; 2284 2285 // Don't hoist the instruction if it's unsafe or expensive. 2286 if (!isSafeToSpeculativelyExecute(I) && 2287 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2288 I, BB, ThenBB, EndBB)))) 2289 return false; 2290 if (!SpeculatedStoreValue && 2291 computeSpeculationCost(I, TTI) > 2292 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2293 return false; 2294 2295 // Store the store speculation candidate. 2296 if (SpeculatedStoreValue) 2297 SpeculatedStore = cast<StoreInst>(I); 2298 2299 // Do not hoist the instruction if any of its operands are defined but not 2300 // used in BB. The transformation will prevent the operand from 2301 // being sunk into the use block. 2302 for (Use &Op : I->operands()) { 2303 Instruction *OpI = dyn_cast<Instruction>(Op); 2304 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2305 continue; // Not a candidate for sinking. 2306 2307 ++SinkCandidateUseCounts[OpI]; 2308 } 2309 } 2310 2311 // Consider any sink candidates which are only used in ThenBB as costs for 2312 // speculation. Note, while we iterate over a DenseMap here, we are summing 2313 // and so iteration order isn't significant. 2314 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2315 I = SinkCandidateUseCounts.begin(), 2316 E = SinkCandidateUseCounts.end(); 2317 I != E; ++I) 2318 if (I->first->hasNUses(I->second)) { 2319 ++SpeculatedInstructions; 2320 if (SpeculatedInstructions > 1) 2321 return false; 2322 } 2323 2324 // Check that we can insert the selects and that it's not too expensive to do 2325 // so. 2326 bool Convert = SpeculatedStore != nullptr; 2327 InstructionCost Cost = 0; 2328 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2329 SpeculatedInstructions, 2330 Cost, TTI); 2331 if (!Convert || Cost > Budget) 2332 return false; 2333 2334 // If we get here, we can hoist the instruction and if-convert. 2335 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2336 2337 // Insert a select of the value of the speculated store. 2338 if (SpeculatedStoreValue) { 2339 IRBuilder<NoFolder> Builder(BI); 2340 Value *TrueV = SpeculatedStore->getValueOperand(); 2341 Value *FalseV = SpeculatedStoreValue; 2342 if (Invert) 2343 std::swap(TrueV, FalseV); 2344 Value *S = Builder.CreateSelect( 2345 BrCond, TrueV, FalseV, "spec.store.select", BI); 2346 SpeculatedStore->setOperand(0, S); 2347 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2348 SpeculatedStore->getDebugLoc()); 2349 } 2350 2351 // Metadata can be dependent on the condition we are hoisting above. 2352 // Conservatively strip all metadata on the instruction. Drop the debug loc 2353 // to avoid making it appear as if the condition is a constant, which would 2354 // be misleading while debugging. 2355 for (auto &I : *ThenBB) { 2356 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2357 I.setDebugLoc(DebugLoc()); 2358 I.dropUnknownNonDebugMetadata(); 2359 } 2360 2361 // A hoisted conditional probe should be treated as dangling so that it will 2362 // not be over-counted when the samples collected on the non-conditional path 2363 // are counted towards the conditional path. We leave it for the counts 2364 // inference algorithm to figure out a proper count for a danglng probe. 2365 moveAndDanglePseudoProbes(ThenBB, BI); 2366 2367 // Hoist the instructions. 2368 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2369 ThenBB->begin(), std::prev(ThenBB->end())); 2370 2371 // Insert selects and rewrite the PHI operands. 2372 IRBuilder<NoFolder> Builder(BI); 2373 for (PHINode &PN : EndBB->phis()) { 2374 unsigned OrigI = PN.getBasicBlockIndex(BB); 2375 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2376 Value *OrigV = PN.getIncomingValue(OrigI); 2377 Value *ThenV = PN.getIncomingValue(ThenI); 2378 2379 // Skip PHIs which are trivial. 2380 if (OrigV == ThenV) 2381 continue; 2382 2383 // Create a select whose true value is the speculatively executed value and 2384 // false value is the pre-existing value. Swap them if the branch 2385 // destinations were inverted. 2386 Value *TrueV = ThenV, *FalseV = OrigV; 2387 if (Invert) 2388 std::swap(TrueV, FalseV); 2389 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2390 PN.setIncomingValue(OrigI, V); 2391 PN.setIncomingValue(ThenI, V); 2392 } 2393 2394 // Remove speculated dbg intrinsics. 2395 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2396 // dbg value for the different flows and inserting it after the select. 2397 for (Instruction *I : SpeculatedDbgIntrinsics) 2398 I->eraseFromParent(); 2399 2400 ++NumSpeculations; 2401 return true; 2402 } 2403 2404 /// Return true if we can thread a branch across this block. 2405 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2406 int Size = 0; 2407 2408 for (Instruction &I : BB->instructionsWithoutDebug()) { 2409 if (Size > MaxSmallBlockSize) 2410 return false; // Don't clone large BB's. 2411 2412 // Can't fold blocks that contain noduplicate or convergent calls. 2413 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2414 if (CI->cannotDuplicate() || CI->isConvergent()) 2415 return false; 2416 2417 // We will delete Phis while threading, so Phis should not be accounted in 2418 // block's size 2419 if (!isa<PHINode>(I)) 2420 ++Size; 2421 2422 // We can only support instructions that do not define values that are 2423 // live outside of the current basic block. 2424 for (User *U : I.users()) { 2425 Instruction *UI = cast<Instruction>(U); 2426 if (UI->getParent() != BB || isa<PHINode>(UI)) 2427 return false; 2428 } 2429 2430 // Looks ok, continue checking. 2431 } 2432 2433 return true; 2434 } 2435 2436 /// If we have a conditional branch on a PHI node value that is defined in the 2437 /// same block as the branch and if any PHI entries are constants, thread edges 2438 /// corresponding to that entry to be branches to their ultimate destination. 2439 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2440 const DataLayout &DL, AssumptionCache *AC) { 2441 BasicBlock *BB = BI->getParent(); 2442 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2443 // NOTE: we currently cannot transform this case if the PHI node is used 2444 // outside of the block. 2445 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2446 return false; 2447 2448 // Degenerate case of a single entry PHI. 2449 if (PN->getNumIncomingValues() == 1) { 2450 FoldSingleEntryPHINodes(PN->getParent()); 2451 return true; 2452 } 2453 2454 // Now we know that this block has multiple preds and two succs. 2455 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2456 return false; 2457 2458 // Okay, this is a simple enough basic block. See if any phi values are 2459 // constants. 2460 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2461 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2462 if (!CB || !CB->getType()->isIntegerTy(1)) 2463 continue; 2464 2465 // Okay, we now know that all edges from PredBB should be revectored to 2466 // branch to RealDest. 2467 BasicBlock *PredBB = PN->getIncomingBlock(i); 2468 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2469 2470 if (RealDest == BB) 2471 continue; // Skip self loops. 2472 // Skip if the predecessor's terminator is an indirect branch. 2473 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2474 continue; 2475 2476 SmallVector<DominatorTree::UpdateType, 3> Updates; 2477 2478 // The dest block might have PHI nodes, other predecessors and other 2479 // difficult cases. Instead of being smart about this, just insert a new 2480 // block that jumps to the destination block, effectively splitting 2481 // the edge we are about to create. 2482 BasicBlock *EdgeBB = 2483 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2484 RealDest->getParent(), RealDest); 2485 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2486 if (DTU) 2487 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2488 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2489 2490 // Update PHI nodes. 2491 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2492 2493 // BB may have instructions that are being threaded over. Clone these 2494 // instructions into EdgeBB. We know that there will be no uses of the 2495 // cloned instructions outside of EdgeBB. 2496 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2497 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2498 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2499 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2500 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2501 continue; 2502 } 2503 // Clone the instruction. 2504 Instruction *N = BBI->clone(); 2505 if (BBI->hasName()) 2506 N->setName(BBI->getName() + ".c"); 2507 2508 // Update operands due to translation. 2509 for (Use &Op : N->operands()) { 2510 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2511 if (PI != TranslateMap.end()) 2512 Op = PI->second; 2513 } 2514 2515 // Check for trivial simplification. 2516 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2517 if (!BBI->use_empty()) 2518 TranslateMap[&*BBI] = V; 2519 if (!N->mayHaveSideEffects()) { 2520 N->deleteValue(); // Instruction folded away, don't need actual inst 2521 N = nullptr; 2522 } 2523 } else { 2524 if (!BBI->use_empty()) 2525 TranslateMap[&*BBI] = N; 2526 } 2527 if (N) { 2528 // Insert the new instruction into its new home. 2529 EdgeBB->getInstList().insert(InsertPt, N); 2530 2531 // Register the new instruction with the assumption cache if necessary. 2532 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2533 AC->registerAssumption(cast<IntrinsicInst>(N)); 2534 } 2535 } 2536 2537 // Loop over all of the edges from PredBB to BB, changing them to branch 2538 // to EdgeBB instead. 2539 Instruction *PredBBTI = PredBB->getTerminator(); 2540 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2541 if (PredBBTI->getSuccessor(i) == BB) { 2542 BB->removePredecessor(PredBB); 2543 PredBBTI->setSuccessor(i, EdgeBB); 2544 } 2545 2546 if (DTU) { 2547 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2548 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2549 2550 DTU->applyUpdates(Updates); 2551 } 2552 2553 // Recurse, simplifying any other constants. 2554 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2555 } 2556 2557 return false; 2558 } 2559 2560 /// Given a BB that starts with the specified two-entry PHI node, 2561 /// see if we can eliminate it. 2562 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2563 DomTreeUpdater *DTU, const DataLayout &DL) { 2564 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2565 // statement", which has a very simple dominance structure. Basically, we 2566 // are trying to find the condition that is being branched on, which 2567 // subsequently causes this merge to happen. We really want control 2568 // dependence information for this check, but simplifycfg can't keep it up 2569 // to date, and this catches most of the cases we care about anyway. 2570 BasicBlock *BB = PN->getParent(); 2571 2572 BasicBlock *IfTrue, *IfFalse; 2573 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2574 if (!IfCond || 2575 // Don't bother if the branch will be constant folded trivially. 2576 isa<ConstantInt>(IfCond)) 2577 return false; 2578 2579 // Okay, we found that we can merge this two-entry phi node into a select. 2580 // Doing so would require us to fold *all* two entry phi nodes in this block. 2581 // At some point this becomes non-profitable (particularly if the target 2582 // doesn't support cmov's). Only do this transformation if there are two or 2583 // fewer PHI nodes in this block. 2584 unsigned NumPhis = 0; 2585 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2586 if (NumPhis > 2) 2587 return false; 2588 2589 // Loop over the PHI's seeing if we can promote them all to select 2590 // instructions. While we are at it, keep track of the instructions 2591 // that need to be moved to the dominating block. 2592 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2593 InstructionCost Cost = 0; 2594 InstructionCost Budget = 2595 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2596 2597 bool Changed = false; 2598 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2599 PHINode *PN = cast<PHINode>(II++); 2600 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2601 PN->replaceAllUsesWith(V); 2602 PN->eraseFromParent(); 2603 Changed = true; 2604 continue; 2605 } 2606 2607 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2608 Cost, Budget, TTI) || 2609 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2610 Cost, Budget, TTI)) 2611 return Changed; 2612 } 2613 2614 // If we folded the first phi, PN dangles at this point. Refresh it. If 2615 // we ran out of PHIs then we simplified them all. 2616 PN = dyn_cast<PHINode>(BB->begin()); 2617 if (!PN) 2618 return true; 2619 2620 // Return true if at least one of these is a 'not', and another is either 2621 // a 'not' too, or a constant. 2622 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2623 if (!match(V0, m_Not(m_Value()))) 2624 std::swap(V0, V1); 2625 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2626 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2627 }; 2628 2629 // Don't fold i1 branches on PHIs which contain binary operators or 2630 // select form of or/ands, unless one of the incoming values is an 'not' and 2631 // another one is freely invertible. 2632 // These can often be turned into switches and other things. 2633 auto IsBinOpOrAnd = [](Value *V) { 2634 return match( 2635 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2636 }; 2637 if (PN->getType()->isIntegerTy(1) && 2638 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2639 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2640 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2641 PN->getIncomingValue(1))) 2642 return Changed; 2643 2644 // If all PHI nodes are promotable, check to make sure that all instructions 2645 // in the predecessor blocks can be promoted as well. If not, we won't be able 2646 // to get rid of the control flow, so it's not worth promoting to select 2647 // instructions. 2648 BasicBlock *DomBlock = nullptr; 2649 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2650 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2651 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2652 IfBlock1 = nullptr; 2653 } else { 2654 DomBlock = *pred_begin(IfBlock1); 2655 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2656 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2657 !isa<PseudoProbeInst>(I)) { 2658 // This is not an aggressive instruction that we can promote. 2659 // Because of this, we won't be able to get rid of the control flow, so 2660 // the xform is not worth it. 2661 return Changed; 2662 } 2663 } 2664 2665 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2666 IfBlock2 = nullptr; 2667 } else { 2668 DomBlock = *pred_begin(IfBlock2); 2669 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2670 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2671 !isa<PseudoProbeInst>(I)) { 2672 // This is not an aggressive instruction that we can promote. 2673 // Because of this, we won't be able to get rid of the control flow, so 2674 // the xform is not worth it. 2675 return Changed; 2676 } 2677 } 2678 assert(DomBlock && "Failed to find root DomBlock"); 2679 2680 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2681 << " T: " << IfTrue->getName() 2682 << " F: " << IfFalse->getName() << "\n"); 2683 2684 // If we can still promote the PHI nodes after this gauntlet of tests, 2685 // do all of the PHI's now. 2686 Instruction *InsertPt = DomBlock->getTerminator(); 2687 IRBuilder<NoFolder> Builder(InsertPt); 2688 2689 // Move all 'aggressive' instructions, which are defined in the 2690 // conditional parts of the if's up to the dominating block. 2691 if (IfBlock1) 2692 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2693 if (IfBlock2) 2694 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2695 2696 // Propagate fast-math-flags from phi nodes to replacement selects. 2697 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2698 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2699 if (isa<FPMathOperator>(PN)) 2700 Builder.setFastMathFlags(PN->getFastMathFlags()); 2701 2702 // Change the PHI node into a select instruction. 2703 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2704 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2705 2706 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2707 PN->replaceAllUsesWith(Sel); 2708 Sel->takeName(PN); 2709 PN->eraseFromParent(); 2710 } 2711 2712 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2713 // has been flattened. Change DomBlock to jump directly to our new block to 2714 // avoid other simplifycfg's kicking in on the diamond. 2715 Instruction *OldTI = DomBlock->getTerminator(); 2716 Builder.SetInsertPoint(OldTI); 2717 Builder.CreateBr(BB); 2718 2719 SmallVector<DominatorTree::UpdateType, 3> Updates; 2720 if (DTU) { 2721 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2722 for (auto *Successor : successors(DomBlock)) 2723 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2724 } 2725 2726 OldTI->eraseFromParent(); 2727 if (DTU) 2728 DTU->applyUpdates(Updates); 2729 2730 return true; 2731 } 2732 2733 /// If we found a conditional branch that goes to two returning blocks, 2734 /// try to merge them together into one return, 2735 /// introducing a select if the return values disagree. 2736 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2737 IRBuilder<> &Builder) { 2738 auto *BB = BI->getParent(); 2739 assert(BI->isConditional() && "Must be a conditional branch"); 2740 BasicBlock *TrueSucc = BI->getSuccessor(0); 2741 BasicBlock *FalseSucc = BI->getSuccessor(1); 2742 // NOTE: destinations may match, this could be degenerate uncond branch. 2743 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2744 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2745 2746 // Check to ensure both blocks are empty (just a return) or optionally empty 2747 // with PHI nodes. If there are other instructions, merging would cause extra 2748 // computation on one path or the other. 2749 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2750 return false; 2751 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2752 return false; 2753 2754 Builder.SetInsertPoint(BI); 2755 // Okay, we found a branch that is going to two return nodes. If 2756 // there is no return value for this function, just change the 2757 // branch into a return. 2758 if (FalseRet->getNumOperands() == 0) { 2759 TrueSucc->removePredecessor(BB); 2760 FalseSucc->removePredecessor(BB); 2761 Builder.CreateRetVoid(); 2762 EraseTerminatorAndDCECond(BI); 2763 if (DTU) { 2764 SmallVector<DominatorTree::UpdateType, 2> Updates; 2765 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2766 if (TrueSucc != FalseSucc) 2767 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2768 DTU->applyUpdates(Updates); 2769 } 2770 return true; 2771 } 2772 2773 // Otherwise, figure out what the true and false return values are 2774 // so we can insert a new select instruction. 2775 Value *TrueValue = TrueRet->getReturnValue(); 2776 Value *FalseValue = FalseRet->getReturnValue(); 2777 2778 // Unwrap any PHI nodes in the return blocks. 2779 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2780 if (TVPN->getParent() == TrueSucc) 2781 TrueValue = TVPN->getIncomingValueForBlock(BB); 2782 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2783 if (FVPN->getParent() == FalseSucc) 2784 FalseValue = FVPN->getIncomingValueForBlock(BB); 2785 2786 // In order for this transformation to be safe, we must be able to 2787 // unconditionally execute both operands to the return. This is 2788 // normally the case, but we could have a potentially-trapping 2789 // constant expression that prevents this transformation from being 2790 // safe. 2791 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2792 if (TCV->canTrap()) 2793 return false; 2794 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2795 if (FCV->canTrap()) 2796 return false; 2797 2798 // Okay, we collected all the mapped values and checked them for sanity, and 2799 // defined to really do this transformation. First, update the CFG. 2800 TrueSucc->removePredecessor(BB); 2801 FalseSucc->removePredecessor(BB); 2802 2803 // Insert select instructions where needed. 2804 Value *BrCond = BI->getCondition(); 2805 if (TrueValue) { 2806 // Insert a select if the results differ. 2807 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2808 } else if (isa<UndefValue>(TrueValue)) { 2809 TrueValue = FalseValue; 2810 } else { 2811 TrueValue = 2812 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2813 } 2814 } 2815 2816 Value *RI = 2817 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2818 2819 (void)RI; 2820 2821 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2822 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2823 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2824 2825 EraseTerminatorAndDCECond(BI); 2826 if (DTU) { 2827 SmallVector<DominatorTree::UpdateType, 2> Updates; 2828 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2829 if (TrueSucc != FalseSucc) 2830 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2831 DTU->applyUpdates(Updates); 2832 } 2833 2834 return true; 2835 } 2836 2837 /// Return true if either PBI or BI has branch weight available, and store 2838 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2839 /// not have branch weight, use 1:1 as its weight. 2840 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2841 uint64_t &PredTrueWeight, 2842 uint64_t &PredFalseWeight, 2843 uint64_t &SuccTrueWeight, 2844 uint64_t &SuccFalseWeight) { 2845 bool PredHasWeights = 2846 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2847 bool SuccHasWeights = 2848 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2849 if (PredHasWeights || SuccHasWeights) { 2850 if (!PredHasWeights) 2851 PredTrueWeight = PredFalseWeight = 1; 2852 if (!SuccHasWeights) 2853 SuccTrueWeight = SuccFalseWeight = 1; 2854 return true; 2855 } else { 2856 return false; 2857 } 2858 } 2859 2860 /// Determine if the two branches share a common destination and deduce a glue 2861 /// that joins the branches' conditions to arrive at the common destination if 2862 /// that would be profitable. 2863 static Optional<std::pair<Instruction::BinaryOps, bool>> 2864 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 2865 const TargetTransformInfo *TTI) { 2866 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 2867 "Both blocks must end with a conditional branches."); 2868 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 2869 "PredBB must be a predecessor of BB."); 2870 2871 // We have the potential to fold the conditions together, but if the 2872 // predecessor branch is predictable, we may not want to merge them. 2873 uint64_t PTWeight, PFWeight; 2874 BranchProbability PBITrueProb, Likely; 2875 if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) && 2876 (PTWeight + PFWeight) != 0) { 2877 PBITrueProb = 2878 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 2879 Likely = TTI->getPredictableBranchThreshold(); 2880 } 2881 2882 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 2883 // Speculate the 2nd condition unless the 1st is probably true. 2884 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 2885 return {{Instruction::Or, false}}; 2886 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 2887 // Speculate the 2nd condition unless the 1st is probably false. 2888 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 2889 return {{Instruction::And, false}}; 2890 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 2891 // Speculate the 2nd condition unless the 1st is probably true. 2892 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 2893 return {{Instruction::And, true}}; 2894 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 2895 // Speculate the 2nd condition unless the 1st is probably false. 2896 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 2897 return {{Instruction::Or, true}}; 2898 } 2899 return None; 2900 } 2901 2902 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 2903 DomTreeUpdater *DTU, 2904 MemorySSAUpdater *MSSAU, 2905 const TargetTransformInfo *TTI) { 2906 BasicBlock *BB = BI->getParent(); 2907 BasicBlock *PredBlock = PBI->getParent(); 2908 2909 // Determine if the two branches share a common destination. 2910 Instruction::BinaryOps Opc; 2911 bool InvertPredCond; 2912 std::tie(Opc, InvertPredCond) = 2913 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 2914 2915 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2916 2917 IRBuilder<> Builder(PBI); 2918 // The builder is used to create instructions to eliminate the branch in BB. 2919 // If BB's terminator has !annotation metadata, add it to the new 2920 // instructions. 2921 Builder.CollectMetadataToCopy(BB->getTerminator(), 2922 {LLVMContext::MD_annotation}); 2923 2924 // If we need to invert the condition in the pred block to match, do so now. 2925 if (InvertPredCond) { 2926 Value *NewCond = PBI->getCondition(); 2927 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2928 CmpInst *CI = cast<CmpInst>(NewCond); 2929 CI->setPredicate(CI->getInversePredicate()); 2930 } else { 2931 NewCond = 2932 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2933 } 2934 2935 PBI->setCondition(NewCond); 2936 PBI->swapSuccessors(); 2937 } 2938 2939 BasicBlock *UniqueSucc = 2940 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 2941 2942 // Before cloning instructions, notify the successor basic block that it 2943 // is about to have a new predecessor. This will update PHI nodes, 2944 // which will allow us to update live-out uses of bonus instructions. 2945 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 2946 2947 // Try to update branch weights. 2948 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2949 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2950 SuccTrueWeight, SuccFalseWeight)) { 2951 SmallVector<uint64_t, 8> NewWeights; 2952 2953 if (PBI->getSuccessor(0) == BB) { 2954 // PBI: br i1 %x, BB, FalseDest 2955 // BI: br i1 %y, UniqueSucc, FalseDest 2956 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2957 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2958 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2959 // TrueWeight for PBI * FalseWeight for BI. 2960 // We assume that total weights of a BranchInst can fit into 32 bits. 2961 // Therefore, we will not have overflow using 64-bit arithmetic. 2962 NewWeights.push_back(PredFalseWeight * 2963 (SuccFalseWeight + SuccTrueWeight) + 2964 PredTrueWeight * SuccFalseWeight); 2965 } else { 2966 // PBI: br i1 %x, TrueDest, BB 2967 // BI: br i1 %y, TrueDest, UniqueSucc 2968 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2969 // FalseWeight for PBI * TrueWeight for BI. 2970 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 2971 PredFalseWeight * SuccTrueWeight); 2972 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2973 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2974 } 2975 2976 // Halve the weights if any of them cannot fit in an uint32_t 2977 FitWeights(NewWeights); 2978 2979 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 2980 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2981 2982 // TODO: If BB is reachable from all paths through PredBlock, then we 2983 // could replace PBI's branch probabilities with BI's. 2984 } else 2985 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2986 2987 // Now, update the CFG. 2988 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 2989 2990 if (DTU) 2991 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 2992 {DominatorTree::Delete, PredBlock, BB}}); 2993 2994 // If BI was a loop latch, it may have had associated loop metadata. 2995 // We need to copy it to the new latch, that is, PBI. 2996 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2997 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2998 2999 ValueToValueMapTy VMap; // maps original values to cloned values 3000 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3001 3002 // Now that the Cond was cloned into the predecessor basic block, 3003 // or/and the two conditions together. 3004 Value *NewCond = nullptr; 3005 Value *BICond = VMap[BI->getCondition()]; 3006 3007 if (impliesPoison(BICond, PBI->getCondition())) 3008 NewCond = Builder.CreateBinOp(Opc, PBI->getCondition(), BICond, "or.cond"); 3009 else 3010 NewCond = 3011 Opc == Instruction::And 3012 ? Builder.CreateLogicalAnd(PBI->getCondition(), BICond, "or.cond") 3013 : Builder.CreateLogicalOr(PBI->getCondition(), BICond, "or.cond"); 3014 PBI->setCondition(NewCond); 3015 3016 // Copy any debug value intrinsics into the end of PredBlock. 3017 for (Instruction &I : *BB) { 3018 if (isa<DbgInfoIntrinsic>(I)) { 3019 Instruction *NewI = I.clone(); 3020 RemapInstruction(NewI, VMap, 3021 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3022 NewI->insertBefore(PBI); 3023 } 3024 } 3025 3026 ++NumFoldBranchToCommonDest; 3027 return true; 3028 } 3029 3030 /// If this basic block is simple enough, and if a predecessor branches to us 3031 /// and one of our successors, fold the block into the predecessor and use 3032 /// logical operations to pick the right destination. 3033 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3034 MemorySSAUpdater *MSSAU, 3035 const TargetTransformInfo *TTI, 3036 unsigned BonusInstThreshold) { 3037 // If this block ends with an unconditional branch, 3038 // let SpeculativelyExecuteBB() deal with it. 3039 if (!BI->isConditional()) 3040 return false; 3041 3042 BasicBlock *BB = BI->getParent(); 3043 3044 bool Changed = false; 3045 3046 TargetTransformInfo::TargetCostKind CostKind = 3047 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3048 : TargetTransformInfo::TCK_SizeAndLatency; 3049 3050 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3051 3052 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3053 Cond->getParent() != BB || !Cond->hasOneUse()) 3054 return Changed; 3055 3056 // Cond is known to be a compare or binary operator. Check to make sure that 3057 // neither operand is a potentially-trapping constant expression. 3058 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3059 if (CE->canTrap()) 3060 return Changed; 3061 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3062 if (CE->canTrap()) 3063 return Changed; 3064 3065 // Finally, don't infinitely unroll conditional loops. 3066 if (is_contained(successors(BB), BB)) 3067 return Changed; 3068 3069 // With which predecessors will we want to deal with? 3070 SmallVector<BasicBlock *, 8> Preds; 3071 for (BasicBlock *PredBlock : predecessors(BB)) { 3072 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3073 3074 // Check that we have two conditional branches. If there is a PHI node in 3075 // the common successor, verify that the same value flows in from both 3076 // blocks. 3077 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3078 continue; 3079 3080 // Determine if the two branches share a common destination. 3081 Instruction::BinaryOps Opc; 3082 bool InvertPredCond; 3083 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3084 std::tie(Opc, InvertPredCond) = *Recipe; 3085 else 3086 continue; 3087 3088 // Check the cost of inserting the necessary logic before performing the 3089 // transformation. 3090 if (TTI) { 3091 Type *Ty = BI->getCondition()->getType(); 3092 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3093 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3094 !isa<CmpInst>(PBI->getCondition()))) 3095 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3096 3097 if (Cost > BranchFoldThreshold) 3098 continue; 3099 } 3100 3101 // Ok, we do want to deal with this predecessor. Record it. 3102 Preds.emplace_back(PredBlock); 3103 } 3104 3105 // If there aren't any predecessors into which we can fold, 3106 // don't bother checking the cost. 3107 if (Preds.empty()) 3108 return Changed; 3109 3110 // Only allow this transformation if computing the condition doesn't involve 3111 // too many instructions and these involved instructions can be executed 3112 // unconditionally. We denote all involved instructions except the condition 3113 // as "bonus instructions", and only allow this transformation when the 3114 // number of the bonus instructions we'll need to create when cloning into 3115 // each predecessor does not exceed a certain threshold. 3116 unsigned NumBonusInsts = 0; 3117 const unsigned PredCount = Preds.size(); 3118 for (Instruction &I : *BB) { 3119 // Don't check the branch condition comparison itself. 3120 if (&I == Cond) 3121 continue; 3122 // Ignore dbg intrinsics, and the terminator. 3123 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3124 continue; 3125 // I must be safe to execute unconditionally. 3126 if (!isSafeToSpeculativelyExecute(&I)) 3127 return Changed; 3128 3129 // Account for the cost of duplicating this instruction into each 3130 // predecessor. 3131 NumBonusInsts += PredCount; 3132 // Early exits once we reach the limit. 3133 if (NumBonusInsts > BonusInstThreshold) 3134 return Changed; 3135 } 3136 3137 // Ok, we have the budget. Perform the transformation. 3138 for (BasicBlock *PredBlock : Preds) { 3139 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3140 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3141 } 3142 return Changed; 3143 } 3144 3145 // If there is only one store in BB1 and BB2, return it, otherwise return 3146 // nullptr. 3147 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3148 StoreInst *S = nullptr; 3149 for (auto *BB : {BB1, BB2}) { 3150 if (!BB) 3151 continue; 3152 for (auto &I : *BB) 3153 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3154 if (S) 3155 // Multiple stores seen. 3156 return nullptr; 3157 else 3158 S = SI; 3159 } 3160 } 3161 return S; 3162 } 3163 3164 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3165 Value *AlternativeV = nullptr) { 3166 // PHI is going to be a PHI node that allows the value V that is defined in 3167 // BB to be referenced in BB's only successor. 3168 // 3169 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3170 // doesn't matter to us what the other operand is (it'll never get used). We 3171 // could just create a new PHI with an undef incoming value, but that could 3172 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3173 // other PHI. So here we directly look for some PHI in BB's successor with V 3174 // as an incoming operand. If we find one, we use it, else we create a new 3175 // one. 3176 // 3177 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3178 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3179 // where OtherBB is the single other predecessor of BB's only successor. 3180 PHINode *PHI = nullptr; 3181 BasicBlock *Succ = BB->getSingleSuccessor(); 3182 3183 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3184 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3185 PHI = cast<PHINode>(I); 3186 if (!AlternativeV) 3187 break; 3188 3189 assert(Succ->hasNPredecessors(2)); 3190 auto PredI = pred_begin(Succ); 3191 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3192 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3193 break; 3194 PHI = nullptr; 3195 } 3196 if (PHI) 3197 return PHI; 3198 3199 // If V is not an instruction defined in BB, just return it. 3200 if (!AlternativeV && 3201 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3202 return V; 3203 3204 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3205 PHI->addIncoming(V, BB); 3206 for (BasicBlock *PredBB : predecessors(Succ)) 3207 if (PredBB != BB) 3208 PHI->addIncoming( 3209 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3210 return PHI; 3211 } 3212 3213 static bool mergeConditionalStoreToAddress( 3214 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3215 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3216 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3217 // For every pointer, there must be exactly two stores, one coming from 3218 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3219 // store (to any address) in PTB,PFB or QTB,QFB. 3220 // FIXME: We could relax this restriction with a bit more work and performance 3221 // testing. 3222 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3223 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3224 if (!PStore || !QStore) 3225 return false; 3226 3227 // Now check the stores are compatible. 3228 if (!QStore->isUnordered() || !PStore->isUnordered()) 3229 return false; 3230 3231 // Check that sinking the store won't cause program behavior changes. Sinking 3232 // the store out of the Q blocks won't change any behavior as we're sinking 3233 // from a block to its unconditional successor. But we're moving a store from 3234 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3235 // So we need to check that there are no aliasing loads or stores in 3236 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3237 // operations between PStore and the end of its parent block. 3238 // 3239 // The ideal way to do this is to query AliasAnalysis, but we don't 3240 // preserve AA currently so that is dangerous. Be super safe and just 3241 // check there are no other memory operations at all. 3242 for (auto &I : *QFB->getSinglePredecessor()) 3243 if (I.mayReadOrWriteMemory()) 3244 return false; 3245 for (auto &I : *QFB) 3246 if (&I != QStore && I.mayReadOrWriteMemory()) 3247 return false; 3248 if (QTB) 3249 for (auto &I : *QTB) 3250 if (&I != QStore && I.mayReadOrWriteMemory()) 3251 return false; 3252 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3253 I != E; ++I) 3254 if (&*I != PStore && I->mayReadOrWriteMemory()) 3255 return false; 3256 3257 // If we're not in aggressive mode, we only optimize if we have some 3258 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3259 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3260 if (!BB) 3261 return true; 3262 // Heuristic: if the block can be if-converted/phi-folded and the 3263 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3264 // thread this store. 3265 InstructionCost Cost = 0; 3266 InstructionCost Budget = 3267 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3268 for (auto &I : BB->instructionsWithoutDebug()) { 3269 // Consider terminator instruction to be free. 3270 if (I.isTerminator()) 3271 continue; 3272 // If this is one the stores that we want to speculate out of this BB, 3273 // then don't count it's cost, consider it to be free. 3274 if (auto *S = dyn_cast<StoreInst>(&I)) 3275 if (llvm::find(FreeStores, S)) 3276 continue; 3277 // Else, we have a white-list of instructions that we are ak speculating. 3278 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3279 return false; // Not in white-list - not worthwhile folding. 3280 // And finally, if this is a non-free instruction that we are okay 3281 // speculating, ensure that we consider the speculation budget. 3282 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3283 if (Cost > Budget) 3284 return false; // Eagerly refuse to fold as soon as we're out of budget. 3285 } 3286 assert(Cost <= Budget && 3287 "When we run out of budget we will eagerly return from within the " 3288 "per-instruction loop."); 3289 return true; 3290 }; 3291 3292 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3293 if (!MergeCondStoresAggressively && 3294 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3295 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3296 return false; 3297 3298 // If PostBB has more than two predecessors, we need to split it so we can 3299 // sink the store. 3300 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3301 // We know that QFB's only successor is PostBB. And QFB has a single 3302 // predecessor. If QTB exists, then its only successor is also PostBB. 3303 // If QTB does not exist, then QFB's only predecessor has a conditional 3304 // branch to QFB and PostBB. 3305 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3306 BasicBlock *NewBB = 3307 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3308 if (!NewBB) 3309 return false; 3310 PostBB = NewBB; 3311 } 3312 3313 // OK, we're going to sink the stores to PostBB. The store has to be 3314 // conditional though, so first create the predicate. 3315 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3316 ->getCondition(); 3317 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3318 ->getCondition(); 3319 3320 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3321 PStore->getParent()); 3322 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3323 QStore->getParent(), PPHI); 3324 3325 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3326 3327 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3328 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3329 3330 if (InvertPCond) 3331 PPred = QB.CreateNot(PPred); 3332 if (InvertQCond) 3333 QPred = QB.CreateNot(QPred); 3334 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3335 3336 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3337 /*Unreachable=*/false, 3338 /*BranchWeights=*/nullptr, DTU); 3339 QB.SetInsertPoint(T); 3340 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3341 AAMDNodes AAMD; 3342 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3343 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3344 SI->setAAMetadata(AAMD); 3345 // Choose the minimum alignment. If we could prove both stores execute, we 3346 // could use biggest one. In this case, though, we only know that one of the 3347 // stores executes. And we don't know it's safe to take the alignment from a 3348 // store that doesn't execute. 3349 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3350 3351 QStore->eraseFromParent(); 3352 PStore->eraseFromParent(); 3353 3354 return true; 3355 } 3356 3357 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3358 DomTreeUpdater *DTU, const DataLayout &DL, 3359 const TargetTransformInfo &TTI) { 3360 // The intention here is to find diamonds or triangles (see below) where each 3361 // conditional block contains a store to the same address. Both of these 3362 // stores are conditional, so they can't be unconditionally sunk. But it may 3363 // be profitable to speculatively sink the stores into one merged store at the 3364 // end, and predicate the merged store on the union of the two conditions of 3365 // PBI and QBI. 3366 // 3367 // This can reduce the number of stores executed if both of the conditions are 3368 // true, and can allow the blocks to become small enough to be if-converted. 3369 // This optimization will also chain, so that ladders of test-and-set 3370 // sequences can be if-converted away. 3371 // 3372 // We only deal with simple diamonds or triangles: 3373 // 3374 // PBI or PBI or a combination of the two 3375 // / \ | \ 3376 // PTB PFB | PFB 3377 // \ / | / 3378 // QBI QBI 3379 // / \ | \ 3380 // QTB QFB | QFB 3381 // \ / | / 3382 // PostBB PostBB 3383 // 3384 // We model triangles as a type of diamond with a nullptr "true" block. 3385 // Triangles are canonicalized so that the fallthrough edge is represented by 3386 // a true condition, as in the diagram above. 3387 BasicBlock *PTB = PBI->getSuccessor(0); 3388 BasicBlock *PFB = PBI->getSuccessor(1); 3389 BasicBlock *QTB = QBI->getSuccessor(0); 3390 BasicBlock *QFB = QBI->getSuccessor(1); 3391 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3392 3393 // Make sure we have a good guess for PostBB. If QTB's only successor is 3394 // QFB, then QFB is a better PostBB. 3395 if (QTB->getSingleSuccessor() == QFB) 3396 PostBB = QFB; 3397 3398 // If we couldn't find a good PostBB, stop. 3399 if (!PostBB) 3400 return false; 3401 3402 bool InvertPCond = false, InvertQCond = false; 3403 // Canonicalize fallthroughs to the true branches. 3404 if (PFB == QBI->getParent()) { 3405 std::swap(PFB, PTB); 3406 InvertPCond = true; 3407 } 3408 if (QFB == PostBB) { 3409 std::swap(QFB, QTB); 3410 InvertQCond = true; 3411 } 3412 3413 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3414 // and QFB may not. Model fallthroughs as a nullptr block. 3415 if (PTB == QBI->getParent()) 3416 PTB = nullptr; 3417 if (QTB == PostBB) 3418 QTB = nullptr; 3419 3420 // Legality bailouts. We must have at least the non-fallthrough blocks and 3421 // the post-dominating block, and the non-fallthroughs must only have one 3422 // predecessor. 3423 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3424 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3425 }; 3426 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3427 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3428 return false; 3429 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3430 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3431 return false; 3432 if (!QBI->getParent()->hasNUses(2)) 3433 return false; 3434 3435 // OK, this is a sequence of two diamonds or triangles. 3436 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3437 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3438 for (auto *BB : {PTB, PFB}) { 3439 if (!BB) 3440 continue; 3441 for (auto &I : *BB) 3442 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3443 PStoreAddresses.insert(SI->getPointerOperand()); 3444 } 3445 for (auto *BB : {QTB, QFB}) { 3446 if (!BB) 3447 continue; 3448 for (auto &I : *BB) 3449 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3450 QStoreAddresses.insert(SI->getPointerOperand()); 3451 } 3452 3453 set_intersect(PStoreAddresses, QStoreAddresses); 3454 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3455 // clear what it contains. 3456 auto &CommonAddresses = PStoreAddresses; 3457 3458 bool Changed = false; 3459 for (auto *Address : CommonAddresses) 3460 Changed |= 3461 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3462 InvertPCond, InvertQCond, DTU, DL, TTI); 3463 return Changed; 3464 } 3465 3466 /// If the previous block ended with a widenable branch, determine if reusing 3467 /// the target block is profitable and legal. This will have the effect of 3468 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3469 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3470 DomTreeUpdater *DTU) { 3471 // TODO: This can be generalized in two important ways: 3472 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3473 // values from the PBI edge. 3474 // 2) We can sink side effecting instructions into BI's fallthrough 3475 // successor provided they doesn't contribute to computation of 3476 // BI's condition. 3477 Value *CondWB, *WC; 3478 BasicBlock *IfTrueBB, *IfFalseBB; 3479 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3480 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3481 return false; 3482 if (!IfFalseBB->phis().empty()) 3483 return false; // TODO 3484 // Use lambda to lazily compute expensive condition after cheap ones. 3485 auto NoSideEffects = [](BasicBlock &BB) { 3486 return !llvm::any_of(BB, [](const Instruction &I) { 3487 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3488 }); 3489 }; 3490 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3491 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3492 NoSideEffects(*BI->getParent())) { 3493 auto *OldSuccessor = BI->getSuccessor(1); 3494 OldSuccessor->removePredecessor(BI->getParent()); 3495 BI->setSuccessor(1, IfFalseBB); 3496 if (DTU) 3497 DTU->applyUpdates( 3498 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3499 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3500 return true; 3501 } 3502 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3503 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3504 NoSideEffects(*BI->getParent())) { 3505 auto *OldSuccessor = BI->getSuccessor(0); 3506 OldSuccessor->removePredecessor(BI->getParent()); 3507 BI->setSuccessor(0, IfFalseBB); 3508 if (DTU) 3509 DTU->applyUpdates( 3510 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3511 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3512 return true; 3513 } 3514 return false; 3515 } 3516 3517 /// If we have a conditional branch as a predecessor of another block, 3518 /// this function tries to simplify it. We know 3519 /// that PBI and BI are both conditional branches, and BI is in one of the 3520 /// successor blocks of PBI - PBI branches to BI. 3521 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3522 DomTreeUpdater *DTU, 3523 const DataLayout &DL, 3524 const TargetTransformInfo &TTI) { 3525 assert(PBI->isConditional() && BI->isConditional()); 3526 BasicBlock *BB = BI->getParent(); 3527 3528 // If this block ends with a branch instruction, and if there is a 3529 // predecessor that ends on a branch of the same condition, make 3530 // this conditional branch redundant. 3531 if (PBI->getCondition() == BI->getCondition() && 3532 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3533 // Okay, the outcome of this conditional branch is statically 3534 // knowable. If this block had a single pred, handle specially. 3535 if (BB->getSinglePredecessor()) { 3536 // Turn this into a branch on constant. 3537 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3538 BI->setCondition( 3539 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3540 return true; // Nuke the branch on constant. 3541 } 3542 3543 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3544 // in the constant and simplify the block result. Subsequent passes of 3545 // simplifycfg will thread the block. 3546 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3547 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3548 PHINode *NewPN = PHINode::Create( 3549 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3550 BI->getCondition()->getName() + ".pr", &BB->front()); 3551 // Okay, we're going to insert the PHI node. Since PBI is not the only 3552 // predecessor, compute the PHI'd conditional value for all of the preds. 3553 // Any predecessor where the condition is not computable we keep symbolic. 3554 for (pred_iterator PI = PB; PI != PE; ++PI) { 3555 BasicBlock *P = *PI; 3556 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3557 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3558 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3559 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3560 NewPN->addIncoming( 3561 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3562 P); 3563 } else { 3564 NewPN->addIncoming(BI->getCondition(), P); 3565 } 3566 } 3567 3568 BI->setCondition(NewPN); 3569 return true; 3570 } 3571 } 3572 3573 // If the previous block ended with a widenable branch, determine if reusing 3574 // the target block is profitable and legal. This will have the effect of 3575 // "widening" PBI, but doesn't require us to reason about hosting safety. 3576 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3577 return true; 3578 3579 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3580 if (CE->canTrap()) 3581 return false; 3582 3583 // If both branches are conditional and both contain stores to the same 3584 // address, remove the stores from the conditionals and create a conditional 3585 // merged store at the end. 3586 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3587 return true; 3588 3589 // If this is a conditional branch in an empty block, and if any 3590 // predecessors are a conditional branch to one of our destinations, 3591 // fold the conditions into logical ops and one cond br. 3592 3593 // Ignore dbg intrinsics. 3594 if (&*BB->instructionsWithoutDebug().begin() != BI) 3595 return false; 3596 3597 int PBIOp, BIOp; 3598 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3599 PBIOp = 0; 3600 BIOp = 0; 3601 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3602 PBIOp = 0; 3603 BIOp = 1; 3604 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3605 PBIOp = 1; 3606 BIOp = 0; 3607 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3608 PBIOp = 1; 3609 BIOp = 1; 3610 } else { 3611 return false; 3612 } 3613 3614 // Check to make sure that the other destination of this branch 3615 // isn't BB itself. If so, this is an infinite loop that will 3616 // keep getting unwound. 3617 if (PBI->getSuccessor(PBIOp) == BB) 3618 return false; 3619 3620 // Do not perform this transformation if it would require 3621 // insertion of a large number of select instructions. For targets 3622 // without predication/cmovs, this is a big pessimization. 3623 3624 // Also do not perform this transformation if any phi node in the common 3625 // destination block can trap when reached by BB or PBB (PR17073). In that 3626 // case, it would be unsafe to hoist the operation into a select instruction. 3627 3628 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3629 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3630 unsigned NumPhis = 0; 3631 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3632 ++II, ++NumPhis) { 3633 if (NumPhis > 2) // Disable this xform. 3634 return false; 3635 3636 PHINode *PN = cast<PHINode>(II); 3637 Value *BIV = PN->getIncomingValueForBlock(BB); 3638 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3639 if (CE->canTrap()) 3640 return false; 3641 3642 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3643 Value *PBIV = PN->getIncomingValue(PBBIdx); 3644 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3645 if (CE->canTrap()) 3646 return false; 3647 } 3648 3649 // Finally, if everything is ok, fold the branches to logical ops. 3650 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3651 3652 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3653 << "AND: " << *BI->getParent()); 3654 3655 SmallVector<DominatorTree::UpdateType, 5> Updates; 3656 3657 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3658 // branch in it, where one edge (OtherDest) goes back to itself but the other 3659 // exits. We don't *know* that the program avoids the infinite loop 3660 // (even though that seems likely). If we do this xform naively, we'll end up 3661 // recursively unpeeling the loop. Since we know that (after the xform is 3662 // done) that the block *is* infinite if reached, we just make it an obviously 3663 // infinite loop with no cond branch. 3664 if (OtherDest == BB) { 3665 // Insert it at the end of the function, because it's either code, 3666 // or it won't matter if it's hot. :) 3667 BasicBlock *InfLoopBlock = 3668 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3669 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3670 if (DTU) 3671 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3672 OtherDest = InfLoopBlock; 3673 } 3674 3675 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3676 3677 // BI may have other predecessors. Because of this, we leave 3678 // it alone, but modify PBI. 3679 3680 // Make sure we get to CommonDest on True&True directions. 3681 Value *PBICond = PBI->getCondition(); 3682 IRBuilder<NoFolder> Builder(PBI); 3683 if (PBIOp) 3684 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3685 3686 Value *BICond = BI->getCondition(); 3687 if (BIOp) 3688 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3689 3690 // Merge the conditions. 3691 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3692 3693 // Modify PBI to branch on the new condition to the new dests. 3694 PBI->setCondition(Cond); 3695 PBI->setSuccessor(0, CommonDest); 3696 PBI->setSuccessor(1, OtherDest); 3697 3698 if (DTU) { 3699 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3700 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3701 3702 DTU->applyUpdates(Updates); 3703 } 3704 3705 // Update branch weight for PBI. 3706 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3707 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3708 bool HasWeights = 3709 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3710 SuccTrueWeight, SuccFalseWeight); 3711 if (HasWeights) { 3712 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3713 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3714 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3715 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3716 // The weight to CommonDest should be PredCommon * SuccTotal + 3717 // PredOther * SuccCommon. 3718 // The weight to OtherDest should be PredOther * SuccOther. 3719 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3720 PredOther * SuccCommon, 3721 PredOther * SuccOther}; 3722 // Halve the weights if any of them cannot fit in an uint32_t 3723 FitWeights(NewWeights); 3724 3725 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3726 } 3727 3728 // OtherDest may have phi nodes. If so, add an entry from PBI's 3729 // block that are identical to the entries for BI's block. 3730 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3731 3732 // We know that the CommonDest already had an edge from PBI to 3733 // it. If it has PHIs though, the PHIs may have different 3734 // entries for BB and PBI's BB. If so, insert a select to make 3735 // them agree. 3736 for (PHINode &PN : CommonDest->phis()) { 3737 Value *BIV = PN.getIncomingValueForBlock(BB); 3738 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3739 Value *PBIV = PN.getIncomingValue(PBBIdx); 3740 if (BIV != PBIV) { 3741 // Insert a select in PBI to pick the right value. 3742 SelectInst *NV = cast<SelectInst>( 3743 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3744 PN.setIncomingValue(PBBIdx, NV); 3745 // Although the select has the same condition as PBI, the original branch 3746 // weights for PBI do not apply to the new select because the select's 3747 // 'logical' edges are incoming edges of the phi that is eliminated, not 3748 // the outgoing edges of PBI. 3749 if (HasWeights) { 3750 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3751 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3752 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3753 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3754 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3755 // The weight to PredOtherDest should be PredOther * SuccCommon. 3756 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3757 PredOther * SuccCommon}; 3758 3759 FitWeights(NewWeights); 3760 3761 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3762 } 3763 } 3764 } 3765 3766 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3767 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3768 3769 // This basic block is probably dead. We know it has at least 3770 // one fewer predecessor. 3771 return true; 3772 } 3773 3774 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3775 // true or to FalseBB if Cond is false. 3776 // Takes care of updating the successors and removing the old terminator. 3777 // Also makes sure not to introduce new successors by assuming that edges to 3778 // non-successor TrueBBs and FalseBBs aren't reachable. 3779 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3780 Value *Cond, BasicBlock *TrueBB, 3781 BasicBlock *FalseBB, 3782 uint32_t TrueWeight, 3783 uint32_t FalseWeight) { 3784 auto *BB = OldTerm->getParent(); 3785 // Remove any superfluous successor edges from the CFG. 3786 // First, figure out which successors to preserve. 3787 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3788 // successor. 3789 BasicBlock *KeepEdge1 = TrueBB; 3790 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3791 3792 SmallPtrSet<BasicBlock *, 2> RemovedSuccessors; 3793 3794 // Then remove the rest. 3795 for (BasicBlock *Succ : successors(OldTerm)) { 3796 // Make sure only to keep exactly one copy of each edge. 3797 if (Succ == KeepEdge1) 3798 KeepEdge1 = nullptr; 3799 else if (Succ == KeepEdge2) 3800 KeepEdge2 = nullptr; 3801 else { 3802 Succ->removePredecessor(BB, 3803 /*KeepOneInputPHIs=*/true); 3804 3805 if (Succ != TrueBB && Succ != FalseBB) 3806 RemovedSuccessors.insert(Succ); 3807 } 3808 } 3809 3810 IRBuilder<> Builder(OldTerm); 3811 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3812 3813 // Insert an appropriate new terminator. 3814 if (!KeepEdge1 && !KeepEdge2) { 3815 if (TrueBB == FalseBB) { 3816 // We were only looking for one successor, and it was present. 3817 // Create an unconditional branch to it. 3818 Builder.CreateBr(TrueBB); 3819 } else { 3820 // We found both of the successors we were looking for. 3821 // Create a conditional branch sharing the condition of the select. 3822 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3823 if (TrueWeight != FalseWeight) 3824 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3825 } 3826 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3827 // Neither of the selected blocks were successors, so this 3828 // terminator must be unreachable. 3829 new UnreachableInst(OldTerm->getContext(), OldTerm); 3830 } else { 3831 // One of the selected values was a successor, but the other wasn't. 3832 // Insert an unconditional branch to the one that was found; 3833 // the edge to the one that wasn't must be unreachable. 3834 if (!KeepEdge1) { 3835 // Only TrueBB was found. 3836 Builder.CreateBr(TrueBB); 3837 } else { 3838 // Only FalseBB was found. 3839 Builder.CreateBr(FalseBB); 3840 } 3841 } 3842 3843 EraseTerminatorAndDCECond(OldTerm); 3844 3845 if (DTU) { 3846 SmallVector<DominatorTree::UpdateType, 2> Updates; 3847 Updates.reserve(RemovedSuccessors.size()); 3848 for (auto *RemovedSuccessor : RemovedSuccessors) 3849 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3850 DTU->applyUpdates(Updates); 3851 } 3852 3853 return true; 3854 } 3855 3856 // Replaces 3857 // (switch (select cond, X, Y)) on constant X, Y 3858 // with a branch - conditional if X and Y lead to distinct BBs, 3859 // unconditional otherwise. 3860 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3861 SelectInst *Select) { 3862 // Check for constant integer values in the select. 3863 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3864 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3865 if (!TrueVal || !FalseVal) 3866 return false; 3867 3868 // Find the relevant condition and destinations. 3869 Value *Condition = Select->getCondition(); 3870 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3871 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3872 3873 // Get weight for TrueBB and FalseBB. 3874 uint32_t TrueWeight = 0, FalseWeight = 0; 3875 SmallVector<uint64_t, 8> Weights; 3876 bool HasWeights = HasBranchWeights(SI); 3877 if (HasWeights) { 3878 GetBranchWeights(SI, Weights); 3879 if (Weights.size() == 1 + SI->getNumCases()) { 3880 TrueWeight = 3881 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3882 FalseWeight = 3883 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3884 } 3885 } 3886 3887 // Perform the actual simplification. 3888 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3889 FalseWeight); 3890 } 3891 3892 // Replaces 3893 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3894 // blockaddress(@fn, BlockB))) 3895 // with 3896 // (br cond, BlockA, BlockB). 3897 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3898 SelectInst *SI) { 3899 // Check that both operands of the select are block addresses. 3900 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3901 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3902 if (!TBA || !FBA) 3903 return false; 3904 3905 // Extract the actual blocks. 3906 BasicBlock *TrueBB = TBA->getBasicBlock(); 3907 BasicBlock *FalseBB = FBA->getBasicBlock(); 3908 3909 // Perform the actual simplification. 3910 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3911 0); 3912 } 3913 3914 /// This is called when we find an icmp instruction 3915 /// (a seteq/setne with a constant) as the only instruction in a 3916 /// block that ends with an uncond branch. We are looking for a very specific 3917 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3918 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3919 /// default value goes to an uncond block with a seteq in it, we get something 3920 /// like: 3921 /// 3922 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3923 /// DEFAULT: 3924 /// %tmp = icmp eq i8 %A, 92 3925 /// br label %end 3926 /// end: 3927 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3928 /// 3929 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3930 /// the PHI, merging the third icmp into the switch. 3931 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3932 ICmpInst *ICI, IRBuilder<> &Builder) { 3933 BasicBlock *BB = ICI->getParent(); 3934 3935 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3936 // complex. 3937 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3938 return false; 3939 3940 Value *V = ICI->getOperand(0); 3941 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3942 3943 // The pattern we're looking for is where our only predecessor is a switch on 3944 // 'V' and this block is the default case for the switch. In this case we can 3945 // fold the compared value into the switch to simplify things. 3946 BasicBlock *Pred = BB->getSinglePredecessor(); 3947 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3948 return false; 3949 3950 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3951 if (SI->getCondition() != V) 3952 return false; 3953 3954 // If BB is reachable on a non-default case, then we simply know the value of 3955 // V in this block. Substitute it and constant fold the icmp instruction 3956 // away. 3957 if (SI->getDefaultDest() != BB) { 3958 ConstantInt *VVal = SI->findCaseDest(BB); 3959 assert(VVal && "Should have a unique destination value"); 3960 ICI->setOperand(0, VVal); 3961 3962 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3963 ICI->replaceAllUsesWith(V); 3964 ICI->eraseFromParent(); 3965 } 3966 // BB is now empty, so it is likely to simplify away. 3967 return requestResimplify(); 3968 } 3969 3970 // Ok, the block is reachable from the default dest. If the constant we're 3971 // comparing exists in one of the other edges, then we can constant fold ICI 3972 // and zap it. 3973 if (SI->findCaseValue(Cst) != SI->case_default()) { 3974 Value *V; 3975 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3976 V = ConstantInt::getFalse(BB->getContext()); 3977 else 3978 V = ConstantInt::getTrue(BB->getContext()); 3979 3980 ICI->replaceAllUsesWith(V); 3981 ICI->eraseFromParent(); 3982 // BB is now empty, so it is likely to simplify away. 3983 return requestResimplify(); 3984 } 3985 3986 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3987 // the block. 3988 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3989 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3990 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3991 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3992 return false; 3993 3994 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3995 // true in the PHI. 3996 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3997 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3998 3999 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4000 std::swap(DefaultCst, NewCst); 4001 4002 // Replace ICI (which is used by the PHI for the default value) with true or 4003 // false depending on if it is EQ or NE. 4004 ICI->replaceAllUsesWith(DefaultCst); 4005 ICI->eraseFromParent(); 4006 4007 SmallVector<DominatorTree::UpdateType, 2> Updates; 4008 4009 // Okay, the switch goes to this block on a default value. Add an edge from 4010 // the switch to the merge point on the compared value. 4011 BasicBlock *NewBB = 4012 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4013 { 4014 SwitchInstProfUpdateWrapper SIW(*SI); 4015 auto W0 = SIW.getSuccessorWeight(0); 4016 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4017 if (W0) { 4018 NewW = ((uint64_t(*W0) + 1) >> 1); 4019 SIW.setSuccessorWeight(0, *NewW); 4020 } 4021 SIW.addCase(Cst, NewBB, NewW); 4022 if (DTU) 4023 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4024 } 4025 4026 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4027 Builder.SetInsertPoint(NewBB); 4028 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4029 Builder.CreateBr(SuccBlock); 4030 PHIUse->addIncoming(NewCst, NewBB); 4031 if (DTU) { 4032 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4033 DTU->applyUpdates(Updates); 4034 } 4035 return true; 4036 } 4037 4038 /// The specified branch is a conditional branch. 4039 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4040 /// fold it into a switch instruction if so. 4041 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4042 IRBuilder<> &Builder, 4043 const DataLayout &DL) { 4044 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4045 if (!Cond) 4046 return false; 4047 4048 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4049 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4050 // 'setne's and'ed together, collect them. 4051 4052 // Try to gather values from a chain of and/or to be turned into a switch 4053 ConstantComparesGatherer ConstantCompare(Cond, DL); 4054 // Unpack the result 4055 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4056 Value *CompVal = ConstantCompare.CompValue; 4057 unsigned UsedICmps = ConstantCompare.UsedICmps; 4058 Value *ExtraCase = ConstantCompare.Extra; 4059 4060 // If we didn't have a multiply compared value, fail. 4061 if (!CompVal) 4062 return false; 4063 4064 // Avoid turning single icmps into a switch. 4065 if (UsedICmps <= 1) 4066 return false; 4067 4068 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4069 4070 // There might be duplicate constants in the list, which the switch 4071 // instruction can't handle, remove them now. 4072 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4073 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4074 4075 // If Extra was used, we require at least two switch values to do the 4076 // transformation. A switch with one value is just a conditional branch. 4077 if (ExtraCase && Values.size() < 2) 4078 return false; 4079 4080 // TODO: Preserve branch weight metadata, similarly to how 4081 // FoldValueComparisonIntoPredecessors preserves it. 4082 4083 // Figure out which block is which destination. 4084 BasicBlock *DefaultBB = BI->getSuccessor(1); 4085 BasicBlock *EdgeBB = BI->getSuccessor(0); 4086 if (!TrueWhenEqual) 4087 std::swap(DefaultBB, EdgeBB); 4088 4089 BasicBlock *BB = BI->getParent(); 4090 4091 // MSAN does not like undefs as branch condition which can be introduced 4092 // with "explicit branch". 4093 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4094 return false; 4095 4096 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4097 << " cases into SWITCH. BB is:\n" 4098 << *BB); 4099 4100 SmallVector<DominatorTree::UpdateType, 2> Updates; 4101 4102 // If there are any extra values that couldn't be folded into the switch 4103 // then we evaluate them with an explicit branch first. Split the block 4104 // right before the condbr to handle it. 4105 if (ExtraCase) { 4106 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4107 /*MSSAU=*/nullptr, "switch.early.test"); 4108 4109 // Remove the uncond branch added to the old block. 4110 Instruction *OldTI = BB->getTerminator(); 4111 Builder.SetInsertPoint(OldTI); 4112 4113 if (TrueWhenEqual) 4114 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4115 else 4116 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4117 4118 OldTI->eraseFromParent(); 4119 4120 if (DTU) 4121 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4122 4123 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4124 // for the edge we just added. 4125 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4126 4127 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4128 << "\nEXTRABB = " << *BB); 4129 BB = NewBB; 4130 } 4131 4132 Builder.SetInsertPoint(BI); 4133 // Convert pointer to int before we switch. 4134 if (CompVal->getType()->isPointerTy()) { 4135 CompVal = Builder.CreatePtrToInt( 4136 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4137 } 4138 4139 // Create the new switch instruction now. 4140 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4141 4142 // Add all of the 'cases' to the switch instruction. 4143 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4144 New->addCase(Values[i], EdgeBB); 4145 4146 // We added edges from PI to the EdgeBB. As such, if there were any 4147 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4148 // the number of edges added. 4149 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4150 PHINode *PN = cast<PHINode>(BBI); 4151 Value *InVal = PN->getIncomingValueForBlock(BB); 4152 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4153 PN->addIncoming(InVal, BB); 4154 } 4155 4156 // Erase the old branch instruction. 4157 EraseTerminatorAndDCECond(BI); 4158 if (DTU) 4159 DTU->applyUpdates(Updates); 4160 4161 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4162 return true; 4163 } 4164 4165 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4166 if (isa<PHINode>(RI->getValue())) 4167 return simplifyCommonResume(RI); 4168 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4169 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4170 // The resume must unwind the exception that caused control to branch here. 4171 return simplifySingleResume(RI); 4172 4173 return false; 4174 } 4175 4176 // Check if cleanup block is empty 4177 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4178 for (Instruction &I : R) { 4179 auto *II = dyn_cast<IntrinsicInst>(&I); 4180 if (!II) 4181 return false; 4182 4183 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4184 switch (IntrinsicID) { 4185 case Intrinsic::dbg_declare: 4186 case Intrinsic::dbg_value: 4187 case Intrinsic::dbg_label: 4188 case Intrinsic::lifetime_end: 4189 break; 4190 default: 4191 return false; 4192 } 4193 } 4194 return true; 4195 } 4196 4197 // Simplify resume that is shared by several landing pads (phi of landing pad). 4198 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4199 BasicBlock *BB = RI->getParent(); 4200 4201 // Check that there are no other instructions except for debug and lifetime 4202 // intrinsics between the phi's and resume instruction. 4203 if (!isCleanupBlockEmpty( 4204 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4205 return false; 4206 4207 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4208 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4209 4210 // Check incoming blocks to see if any of them are trivial. 4211 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4212 Idx++) { 4213 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4214 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4215 4216 // If the block has other successors, we can not delete it because 4217 // it has other dependents. 4218 if (IncomingBB->getUniqueSuccessor() != BB) 4219 continue; 4220 4221 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4222 // Not the landing pad that caused the control to branch here. 4223 if (IncomingValue != LandingPad) 4224 continue; 4225 4226 if (isCleanupBlockEmpty( 4227 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4228 TrivialUnwindBlocks.insert(IncomingBB); 4229 } 4230 4231 // If no trivial unwind blocks, don't do any simplifications. 4232 if (TrivialUnwindBlocks.empty()) 4233 return false; 4234 4235 // Turn all invokes that unwind here into calls. 4236 for (auto *TrivialBB : TrivialUnwindBlocks) { 4237 // Blocks that will be simplified should be removed from the phi node. 4238 // Note there could be multiple edges to the resume block, and we need 4239 // to remove them all. 4240 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4241 BB->removePredecessor(TrivialBB, true); 4242 4243 for (BasicBlock *Pred : 4244 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4245 removeUnwindEdge(Pred, DTU); 4246 ++NumInvokes; 4247 } 4248 4249 // In each SimplifyCFG run, only the current processed block can be erased. 4250 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4251 // of erasing TrivialBB, we only remove the branch to the common resume 4252 // block so that we can later erase the resume block since it has no 4253 // predecessors. 4254 TrivialBB->getTerminator()->eraseFromParent(); 4255 new UnreachableInst(RI->getContext(), TrivialBB); 4256 if (DTU) 4257 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4258 } 4259 4260 // Delete the resume block if all its predecessors have been removed. 4261 if (pred_empty(BB)) { 4262 if (DTU) 4263 DTU->deleteBB(BB); 4264 else 4265 BB->eraseFromParent(); 4266 } 4267 4268 return !TrivialUnwindBlocks.empty(); 4269 } 4270 4271 // Simplify resume that is only used by a single (non-phi) landing pad. 4272 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4273 BasicBlock *BB = RI->getParent(); 4274 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4275 assert(RI->getValue() == LPInst && 4276 "Resume must unwind the exception that caused control to here"); 4277 4278 // Check that there are no other instructions except for debug intrinsics. 4279 if (!isCleanupBlockEmpty( 4280 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4281 return false; 4282 4283 // Turn all invokes that unwind here into calls and delete the basic block. 4284 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4285 removeUnwindEdge(Pred, DTU); 4286 ++NumInvokes; 4287 } 4288 4289 // The landingpad is now unreachable. Zap it. 4290 if (DTU) 4291 DTU->deleteBB(BB); 4292 else 4293 BB->eraseFromParent(); 4294 return true; 4295 } 4296 4297 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4298 // If this is a trivial cleanup pad that executes no instructions, it can be 4299 // eliminated. If the cleanup pad continues to the caller, any predecessor 4300 // that is an EH pad will be updated to continue to the caller and any 4301 // predecessor that terminates with an invoke instruction will have its invoke 4302 // instruction converted to a call instruction. If the cleanup pad being 4303 // simplified does not continue to the caller, each predecessor will be 4304 // updated to continue to the unwind destination of the cleanup pad being 4305 // simplified. 4306 BasicBlock *BB = RI->getParent(); 4307 CleanupPadInst *CPInst = RI->getCleanupPad(); 4308 if (CPInst->getParent() != BB) 4309 // This isn't an empty cleanup. 4310 return false; 4311 4312 // We cannot kill the pad if it has multiple uses. This typically arises 4313 // from unreachable basic blocks. 4314 if (!CPInst->hasOneUse()) 4315 return false; 4316 4317 // Check that there are no other instructions except for benign intrinsics. 4318 if (!isCleanupBlockEmpty( 4319 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4320 return false; 4321 4322 // If the cleanup return we are simplifying unwinds to the caller, this will 4323 // set UnwindDest to nullptr. 4324 BasicBlock *UnwindDest = RI->getUnwindDest(); 4325 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4326 4327 // We're about to remove BB from the control flow. Before we do, sink any 4328 // PHINodes into the unwind destination. Doing this before changing the 4329 // control flow avoids some potentially slow checks, since we can currently 4330 // be certain that UnwindDest and BB have no common predecessors (since they 4331 // are both EH pads). 4332 if (UnwindDest) { 4333 // First, go through the PHI nodes in UnwindDest and update any nodes that 4334 // reference the block we are removing 4335 for (BasicBlock::iterator I = UnwindDest->begin(), 4336 IE = DestEHPad->getIterator(); 4337 I != IE; ++I) { 4338 PHINode *DestPN = cast<PHINode>(I); 4339 4340 int Idx = DestPN->getBasicBlockIndex(BB); 4341 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4342 assert(Idx != -1); 4343 // This PHI node has an incoming value that corresponds to a control 4344 // path through the cleanup pad we are removing. If the incoming 4345 // value is in the cleanup pad, it must be a PHINode (because we 4346 // verified above that the block is otherwise empty). Otherwise, the 4347 // value is either a constant or a value that dominates the cleanup 4348 // pad being removed. 4349 // 4350 // Because BB and UnwindDest are both EH pads, all of their 4351 // predecessors must unwind to these blocks, and since no instruction 4352 // can have multiple unwind destinations, there will be no overlap in 4353 // incoming blocks between SrcPN and DestPN. 4354 Value *SrcVal = DestPN->getIncomingValue(Idx); 4355 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4356 4357 // Remove the entry for the block we are deleting. 4358 DestPN->removeIncomingValue(Idx, false); 4359 4360 if (SrcPN && SrcPN->getParent() == BB) { 4361 // If the incoming value was a PHI node in the cleanup pad we are 4362 // removing, we need to merge that PHI node's incoming values into 4363 // DestPN. 4364 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4365 SrcIdx != SrcE; ++SrcIdx) { 4366 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4367 SrcPN->getIncomingBlock(SrcIdx)); 4368 } 4369 } else { 4370 // Otherwise, the incoming value came from above BB and 4371 // so we can just reuse it. We must associate all of BB's 4372 // predecessors with this value. 4373 for (auto *pred : predecessors(BB)) { 4374 DestPN->addIncoming(SrcVal, pred); 4375 } 4376 } 4377 } 4378 4379 // Sink any remaining PHI nodes directly into UnwindDest. 4380 Instruction *InsertPt = DestEHPad; 4381 for (BasicBlock::iterator I = BB->begin(), 4382 IE = BB->getFirstNonPHI()->getIterator(); 4383 I != IE;) { 4384 // The iterator must be incremented here because the instructions are 4385 // being moved to another block. 4386 PHINode *PN = cast<PHINode>(I++); 4387 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4388 // If the PHI node has no uses or all of its uses are in this basic 4389 // block (meaning they are debug or lifetime intrinsics), just leave 4390 // it. It will be erased when we erase BB below. 4391 continue; 4392 4393 // Otherwise, sink this PHI node into UnwindDest. 4394 // Any predecessors to UnwindDest which are not already represented 4395 // must be back edges which inherit the value from the path through 4396 // BB. In this case, the PHI value must reference itself. 4397 for (auto *pred : predecessors(UnwindDest)) 4398 if (pred != BB) 4399 PN->addIncoming(PN, pred); 4400 PN->moveBefore(InsertPt); 4401 } 4402 } 4403 4404 std::vector<DominatorTree::UpdateType> Updates; 4405 4406 // We use make_early_inc_range here because we may remove some predecessors. 4407 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4408 if (UnwindDest == nullptr) { 4409 if (DTU) { 4410 DTU->applyUpdates(Updates); 4411 Updates.clear(); 4412 } 4413 removeUnwindEdge(PredBB, DTU); 4414 ++NumInvokes; 4415 } else { 4416 Instruction *TI = PredBB->getTerminator(); 4417 TI->replaceUsesOfWith(BB, UnwindDest); 4418 if (DTU) { 4419 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4420 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4421 } 4422 } 4423 } 4424 4425 if (DTU) { 4426 DTU->applyUpdates(Updates); 4427 DTU->deleteBB(BB); 4428 } else 4429 // The cleanup pad is now unreachable. Zap it. 4430 BB->eraseFromParent(); 4431 4432 return true; 4433 } 4434 4435 // Try to merge two cleanuppads together. 4436 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4437 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4438 // with. 4439 BasicBlock *UnwindDest = RI->getUnwindDest(); 4440 if (!UnwindDest) 4441 return false; 4442 4443 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4444 // be safe to merge without code duplication. 4445 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4446 return false; 4447 4448 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4449 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4450 if (!SuccessorCleanupPad) 4451 return false; 4452 4453 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4454 // Replace any uses of the successor cleanupad with the predecessor pad 4455 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4456 // funclet bundle operands. 4457 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4458 // Remove the old cleanuppad. 4459 SuccessorCleanupPad->eraseFromParent(); 4460 // Now, we simply replace the cleanupret with a branch to the unwind 4461 // destination. 4462 BranchInst::Create(UnwindDest, RI->getParent()); 4463 RI->eraseFromParent(); 4464 4465 return true; 4466 } 4467 4468 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4469 // It is possible to transiantly have an undef cleanuppad operand because we 4470 // have deleted some, but not all, dead blocks. 4471 // Eventually, this block will be deleted. 4472 if (isa<UndefValue>(RI->getOperand(0))) 4473 return false; 4474 4475 if (mergeCleanupPad(RI)) 4476 return true; 4477 4478 if (removeEmptyCleanup(RI, DTU)) 4479 return true; 4480 4481 return false; 4482 } 4483 4484 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4485 BasicBlock *BB = RI->getParent(); 4486 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4487 return false; 4488 4489 // Find predecessors that end with branches. 4490 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4491 SmallVector<BranchInst *, 8> CondBranchPreds; 4492 for (BasicBlock *P : predecessors(BB)) { 4493 Instruction *PTI = P->getTerminator(); 4494 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4495 if (BI->isUnconditional()) 4496 UncondBranchPreds.push_back(P); 4497 else 4498 CondBranchPreds.push_back(BI); 4499 } 4500 } 4501 4502 // If we found some, do the transformation! 4503 if (!UncondBranchPreds.empty() && DupRet) { 4504 while (!UncondBranchPreds.empty()) { 4505 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4506 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4507 << "INTO UNCOND BRANCH PRED: " << *Pred); 4508 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4509 } 4510 4511 // If we eliminated all predecessors of the block, delete the block now. 4512 if (pred_empty(BB)) { 4513 // We know there are no successors, so just nuke the block. 4514 if (DTU) 4515 DTU->deleteBB(BB); 4516 else 4517 BB->eraseFromParent(); 4518 } 4519 4520 return true; 4521 } 4522 4523 // Check out all of the conditional branches going to this return 4524 // instruction. If any of them just select between returns, change the 4525 // branch itself into a select/return pair. 4526 while (!CondBranchPreds.empty()) { 4527 BranchInst *BI = CondBranchPreds.pop_back_val(); 4528 4529 // Check to see if the non-BB successor is also a return block. 4530 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4531 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4532 SimplifyCondBranchToTwoReturns(BI, Builder)) 4533 return true; 4534 } 4535 return false; 4536 } 4537 4538 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4539 BasicBlock *BB = UI->getParent(); 4540 4541 bool Changed = false; 4542 4543 // If there are any instructions immediately before the unreachable that can 4544 // be removed, do so. 4545 while (UI->getIterator() != BB->begin()) { 4546 BasicBlock::iterator BBI = UI->getIterator(); 4547 --BBI; 4548 // Do not delete instructions that can have side effects which might cause 4549 // the unreachable to not be reachable; specifically, calls and volatile 4550 // operations may have this effect. 4551 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4552 break; 4553 4554 if (BBI->mayHaveSideEffects()) { 4555 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4556 if (SI->isVolatile()) 4557 break; 4558 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4559 if (LI->isVolatile()) 4560 break; 4561 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4562 if (RMWI->isVolatile()) 4563 break; 4564 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4565 if (CXI->isVolatile()) 4566 break; 4567 } else if (isa<CatchPadInst>(BBI)) { 4568 // A catchpad may invoke exception object constructors and such, which 4569 // in some languages can be arbitrary code, so be conservative by 4570 // default. 4571 // For CoreCLR, it just involves a type test, so can be removed. 4572 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4573 EHPersonality::CoreCLR) 4574 break; 4575 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4576 !isa<LandingPadInst>(BBI)) { 4577 break; 4578 } 4579 // Note that deleting LandingPad's here is in fact okay, although it 4580 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4581 // all the predecessors of this block will be the unwind edges of Invokes, 4582 // and we can therefore guarantee this block will be erased. 4583 } 4584 4585 // Delete this instruction (any uses are guaranteed to be dead) 4586 if (!BBI->use_empty()) 4587 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4588 BBI->eraseFromParent(); 4589 Changed = true; 4590 } 4591 4592 // If the unreachable instruction is the first in the block, take a gander 4593 // at all of the predecessors of this instruction, and simplify them. 4594 if (&BB->front() != UI) 4595 return Changed; 4596 4597 std::vector<DominatorTree::UpdateType> Updates; 4598 4599 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4600 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4601 auto *Predecessor = Preds[i]; 4602 Instruction *TI = Predecessor->getTerminator(); 4603 IRBuilder<> Builder(TI); 4604 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4605 // We could either have a proper unconditional branch, 4606 // or a degenerate conditional branch with matching destinations. 4607 if (all_of(BI->successors(), 4608 [BB](auto *Successor) { return Successor == BB; })) { 4609 new UnreachableInst(TI->getContext(), TI); 4610 TI->eraseFromParent(); 4611 Changed = true; 4612 } else { 4613 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4614 Value* Cond = BI->getCondition(); 4615 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4616 "The destinations are guaranteed to be different here."); 4617 if (BI->getSuccessor(0) == BB) { 4618 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4619 Builder.CreateBr(BI->getSuccessor(1)); 4620 } else { 4621 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4622 Builder.CreateAssumption(Cond); 4623 Builder.CreateBr(BI->getSuccessor(0)); 4624 } 4625 EraseTerminatorAndDCECond(BI); 4626 Changed = true; 4627 } 4628 if (DTU) 4629 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4630 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4631 SwitchInstProfUpdateWrapper SU(*SI); 4632 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4633 if (i->getCaseSuccessor() != BB) { 4634 ++i; 4635 continue; 4636 } 4637 BB->removePredecessor(SU->getParent()); 4638 i = SU.removeCase(i); 4639 e = SU->case_end(); 4640 Changed = true; 4641 } 4642 // Note that the default destination can't be removed! 4643 if (DTU && SI->getDefaultDest() != BB) 4644 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4645 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4646 if (II->getUnwindDest() == BB) { 4647 if (DTU) { 4648 DTU->applyUpdates(Updates); 4649 Updates.clear(); 4650 } 4651 removeUnwindEdge(TI->getParent(), DTU); 4652 Changed = true; 4653 } 4654 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4655 if (CSI->getUnwindDest() == BB) { 4656 if (DTU) { 4657 DTU->applyUpdates(Updates); 4658 Updates.clear(); 4659 } 4660 removeUnwindEdge(TI->getParent(), DTU); 4661 Changed = true; 4662 continue; 4663 } 4664 4665 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4666 E = CSI->handler_end(); 4667 I != E; ++I) { 4668 if (*I == BB) { 4669 CSI->removeHandler(I); 4670 --I; 4671 --E; 4672 Changed = true; 4673 } 4674 } 4675 if (DTU) 4676 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4677 if (CSI->getNumHandlers() == 0) { 4678 if (CSI->hasUnwindDest()) { 4679 // Redirect all predecessors of the block containing CatchSwitchInst 4680 // to instead branch to the CatchSwitchInst's unwind destination. 4681 if (DTU) { 4682 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4683 Updates.push_back({DominatorTree::Insert, 4684 PredecessorOfPredecessor, 4685 CSI->getUnwindDest()}); 4686 Updates.push_back({DominatorTree::Delete, 4687 PredecessorOfPredecessor, Predecessor}); 4688 } 4689 } 4690 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4691 } else { 4692 // Rewrite all preds to unwind to caller (or from invoke to call). 4693 if (DTU) { 4694 DTU->applyUpdates(Updates); 4695 Updates.clear(); 4696 } 4697 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4698 for (BasicBlock *EHPred : EHPreds) 4699 removeUnwindEdge(EHPred, DTU); 4700 } 4701 // The catchswitch is no longer reachable. 4702 new UnreachableInst(CSI->getContext(), CSI); 4703 CSI->eraseFromParent(); 4704 Changed = true; 4705 } 4706 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4707 (void)CRI; 4708 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4709 "Expected to always have an unwind to BB."); 4710 if (DTU) 4711 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4712 new UnreachableInst(TI->getContext(), TI); 4713 TI->eraseFromParent(); 4714 Changed = true; 4715 } 4716 } 4717 4718 if (DTU) 4719 DTU->applyUpdates(Updates); 4720 4721 // If this block is now dead, remove it. 4722 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4723 // We know there are no successors, so just nuke the block. 4724 if (DTU) 4725 DTU->deleteBB(BB); 4726 else 4727 BB->eraseFromParent(); 4728 return true; 4729 } 4730 4731 return Changed; 4732 } 4733 4734 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4735 assert(Cases.size() >= 1); 4736 4737 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4738 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4739 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4740 return false; 4741 } 4742 return true; 4743 } 4744 4745 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4746 DomTreeUpdater *DTU) { 4747 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4748 auto *BB = Switch->getParent(); 4749 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4750 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4751 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4752 Switch->setDefaultDest(&*NewDefaultBlock); 4753 if (DTU) 4754 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4755 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4756 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4757 SmallVector<DominatorTree::UpdateType, 2> Updates; 4758 if (DTU) 4759 for (auto *Successor : successors(NewDefaultBlock)) 4760 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4761 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4762 new UnreachableInst(Switch->getContext(), NewTerminator); 4763 EraseTerminatorAndDCECond(NewTerminator); 4764 if (DTU) 4765 DTU->applyUpdates(Updates); 4766 } 4767 4768 /// Turn a switch with two reachable destinations into an integer range 4769 /// comparison and branch. 4770 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4771 IRBuilder<> &Builder) { 4772 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4773 4774 bool HasDefault = 4775 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4776 4777 auto *BB = SI->getParent(); 4778 4779 // Partition the cases into two sets with different destinations. 4780 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4781 BasicBlock *DestB = nullptr; 4782 SmallVector<ConstantInt *, 16> CasesA; 4783 SmallVector<ConstantInt *, 16> CasesB; 4784 4785 for (auto Case : SI->cases()) { 4786 BasicBlock *Dest = Case.getCaseSuccessor(); 4787 if (!DestA) 4788 DestA = Dest; 4789 if (Dest == DestA) { 4790 CasesA.push_back(Case.getCaseValue()); 4791 continue; 4792 } 4793 if (!DestB) 4794 DestB = Dest; 4795 if (Dest == DestB) { 4796 CasesB.push_back(Case.getCaseValue()); 4797 continue; 4798 } 4799 return false; // More than two destinations. 4800 } 4801 4802 assert(DestA && DestB && 4803 "Single-destination switch should have been folded."); 4804 assert(DestA != DestB); 4805 assert(DestB != SI->getDefaultDest()); 4806 assert(!CasesB.empty() && "There must be non-default cases."); 4807 assert(!CasesA.empty() || HasDefault); 4808 4809 // Figure out if one of the sets of cases form a contiguous range. 4810 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4811 BasicBlock *ContiguousDest = nullptr; 4812 BasicBlock *OtherDest = nullptr; 4813 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4814 ContiguousCases = &CasesA; 4815 ContiguousDest = DestA; 4816 OtherDest = DestB; 4817 } else if (CasesAreContiguous(CasesB)) { 4818 ContiguousCases = &CasesB; 4819 ContiguousDest = DestB; 4820 OtherDest = DestA; 4821 } else 4822 return false; 4823 4824 // Start building the compare and branch. 4825 4826 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4827 Constant *NumCases = 4828 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4829 4830 Value *Sub = SI->getCondition(); 4831 if (!Offset->isNullValue()) 4832 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4833 4834 Value *Cmp; 4835 // If NumCases overflowed, then all possible values jump to the successor. 4836 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4837 Cmp = ConstantInt::getTrue(SI->getContext()); 4838 else 4839 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4840 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4841 4842 // Update weight for the newly-created conditional branch. 4843 if (HasBranchWeights(SI)) { 4844 SmallVector<uint64_t, 8> Weights; 4845 GetBranchWeights(SI, Weights); 4846 if (Weights.size() == 1 + SI->getNumCases()) { 4847 uint64_t TrueWeight = 0; 4848 uint64_t FalseWeight = 0; 4849 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4850 if (SI->getSuccessor(I) == ContiguousDest) 4851 TrueWeight += Weights[I]; 4852 else 4853 FalseWeight += Weights[I]; 4854 } 4855 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4856 TrueWeight /= 2; 4857 FalseWeight /= 2; 4858 } 4859 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4860 } 4861 } 4862 4863 // Prune obsolete incoming values off the successors' PHI nodes. 4864 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4865 unsigned PreviousEdges = ContiguousCases->size(); 4866 if (ContiguousDest == SI->getDefaultDest()) 4867 ++PreviousEdges; 4868 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4869 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4870 } 4871 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4872 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4873 if (OtherDest == SI->getDefaultDest()) 4874 ++PreviousEdges; 4875 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4876 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4877 } 4878 4879 // Clean up the default block - it may have phis or other instructions before 4880 // the unreachable terminator. 4881 if (!HasDefault) 4882 createUnreachableSwitchDefault(SI, DTU); 4883 4884 auto *UnreachableDefault = SI->getDefaultDest(); 4885 4886 // Drop the switch. 4887 SI->eraseFromParent(); 4888 4889 if (!HasDefault && DTU) 4890 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4891 4892 return true; 4893 } 4894 4895 /// Compute masked bits for the condition of a switch 4896 /// and use it to remove dead cases. 4897 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 4898 AssumptionCache *AC, 4899 const DataLayout &DL) { 4900 Value *Cond = SI->getCondition(); 4901 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4902 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4903 4904 // We can also eliminate cases by determining that their values are outside of 4905 // the limited range of the condition based on how many significant (non-sign) 4906 // bits are in the condition value. 4907 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4908 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4909 4910 // Gather dead cases. 4911 SmallVector<ConstantInt *, 8> DeadCases; 4912 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 4913 for (auto &Case : SI->cases()) { 4914 auto *Successor = Case.getCaseSuccessor(); 4915 if (DTU) 4916 ++NumPerSuccessorCases[Successor]; 4917 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4918 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4919 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4920 DeadCases.push_back(Case.getCaseValue()); 4921 if (DTU) 4922 --NumPerSuccessorCases[Successor]; 4923 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4924 << " is dead.\n"); 4925 } 4926 } 4927 4928 // If we can prove that the cases must cover all possible values, the 4929 // default destination becomes dead and we can remove it. If we know some 4930 // of the bits in the value, we can use that to more precisely compute the 4931 // number of possible unique case values. 4932 bool HasDefault = 4933 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4934 const unsigned NumUnknownBits = 4935 Bits - (Known.Zero | Known.One).countPopulation(); 4936 assert(NumUnknownBits <= Bits); 4937 if (HasDefault && DeadCases.empty() && 4938 NumUnknownBits < 64 /* avoid overflow */ && 4939 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4940 createUnreachableSwitchDefault(SI, DTU); 4941 return true; 4942 } 4943 4944 if (DeadCases.empty()) 4945 return false; 4946 4947 SwitchInstProfUpdateWrapper SIW(*SI); 4948 for (ConstantInt *DeadCase : DeadCases) { 4949 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4950 assert(CaseI != SI->case_default() && 4951 "Case was not found. Probably mistake in DeadCases forming."); 4952 // Prune unused values from PHI nodes. 4953 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4954 SIW.removeCase(CaseI); 4955 } 4956 4957 if (DTU) { 4958 std::vector<DominatorTree::UpdateType> Updates; 4959 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 4960 if (I.second == 0) 4961 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 4962 DTU->applyUpdates(Updates); 4963 } 4964 4965 return true; 4966 } 4967 4968 /// If BB would be eligible for simplification by 4969 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4970 /// by an unconditional branch), look at the phi node for BB in the successor 4971 /// block and see if the incoming value is equal to CaseValue. If so, return 4972 /// the phi node, and set PhiIndex to BB's index in the phi node. 4973 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4974 BasicBlock *BB, int *PhiIndex) { 4975 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4976 return nullptr; // BB must be empty to be a candidate for simplification. 4977 if (!BB->getSinglePredecessor()) 4978 return nullptr; // BB must be dominated by the switch. 4979 4980 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4981 if (!Branch || !Branch->isUnconditional()) 4982 return nullptr; // Terminator must be unconditional branch. 4983 4984 BasicBlock *Succ = Branch->getSuccessor(0); 4985 4986 for (PHINode &PHI : Succ->phis()) { 4987 int Idx = PHI.getBasicBlockIndex(BB); 4988 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4989 4990 Value *InValue = PHI.getIncomingValue(Idx); 4991 if (InValue != CaseValue) 4992 continue; 4993 4994 *PhiIndex = Idx; 4995 return &PHI; 4996 } 4997 4998 return nullptr; 4999 } 5000 5001 /// Try to forward the condition of a switch instruction to a phi node 5002 /// dominated by the switch, if that would mean that some of the destination 5003 /// blocks of the switch can be folded away. Return true if a change is made. 5004 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5005 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5006 5007 ForwardingNodesMap ForwardingNodes; 5008 BasicBlock *SwitchBlock = SI->getParent(); 5009 bool Changed = false; 5010 for (auto &Case : SI->cases()) { 5011 ConstantInt *CaseValue = Case.getCaseValue(); 5012 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5013 5014 // Replace phi operands in successor blocks that are using the constant case 5015 // value rather than the switch condition variable: 5016 // switchbb: 5017 // switch i32 %x, label %default [ 5018 // i32 17, label %succ 5019 // ... 5020 // succ: 5021 // %r = phi i32 ... [ 17, %switchbb ] ... 5022 // --> 5023 // %r = phi i32 ... [ %x, %switchbb ] ... 5024 5025 for (PHINode &Phi : CaseDest->phis()) { 5026 // This only works if there is exactly 1 incoming edge from the switch to 5027 // a phi. If there is >1, that means multiple cases of the switch map to 1 5028 // value in the phi, and that phi value is not the switch condition. Thus, 5029 // this transform would not make sense (the phi would be invalid because 5030 // a phi can't have different incoming values from the same block). 5031 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5032 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5033 count(Phi.blocks(), SwitchBlock) == 1) { 5034 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5035 Changed = true; 5036 } 5037 } 5038 5039 // Collect phi nodes that are indirectly using this switch's case constants. 5040 int PhiIdx; 5041 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5042 ForwardingNodes[Phi].push_back(PhiIdx); 5043 } 5044 5045 for (auto &ForwardingNode : ForwardingNodes) { 5046 PHINode *Phi = ForwardingNode.first; 5047 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5048 if (Indexes.size() < 2) 5049 continue; 5050 5051 for (int Index : Indexes) 5052 Phi->setIncomingValue(Index, SI->getCondition()); 5053 Changed = true; 5054 } 5055 5056 return Changed; 5057 } 5058 5059 /// Return true if the backend will be able to handle 5060 /// initializing an array of constants like C. 5061 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5062 if (C->isThreadDependent()) 5063 return false; 5064 if (C->isDLLImportDependent()) 5065 return false; 5066 5067 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5068 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5069 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5070 return false; 5071 5072 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5073 if (!CE->isGEPWithNoNotionalOverIndexing()) 5074 return false; 5075 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5076 return false; 5077 } 5078 5079 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5080 return false; 5081 5082 return true; 5083 } 5084 5085 /// If V is a Constant, return it. Otherwise, try to look up 5086 /// its constant value in ConstantPool, returning 0 if it's not there. 5087 static Constant * 5088 LookupConstant(Value *V, 5089 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5090 if (Constant *C = dyn_cast<Constant>(V)) 5091 return C; 5092 return ConstantPool.lookup(V); 5093 } 5094 5095 /// Try to fold instruction I into a constant. This works for 5096 /// simple instructions such as binary operations where both operands are 5097 /// constant or can be replaced by constants from the ConstantPool. Returns the 5098 /// resulting constant on success, 0 otherwise. 5099 static Constant * 5100 ConstantFold(Instruction *I, const DataLayout &DL, 5101 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5102 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5103 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5104 if (!A) 5105 return nullptr; 5106 if (A->isAllOnesValue()) 5107 return LookupConstant(Select->getTrueValue(), ConstantPool); 5108 if (A->isNullValue()) 5109 return LookupConstant(Select->getFalseValue(), ConstantPool); 5110 return nullptr; 5111 } 5112 5113 SmallVector<Constant *, 4> COps; 5114 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5115 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5116 COps.push_back(A); 5117 else 5118 return nullptr; 5119 } 5120 5121 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5122 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5123 COps[1], DL); 5124 } 5125 5126 return ConstantFoldInstOperands(I, COps, DL); 5127 } 5128 5129 /// Try to determine the resulting constant values in phi nodes 5130 /// at the common destination basic block, *CommonDest, for one of the case 5131 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5132 /// case), of a switch instruction SI. 5133 static bool 5134 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5135 BasicBlock **CommonDest, 5136 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5137 const DataLayout &DL, const TargetTransformInfo &TTI) { 5138 // The block from which we enter the common destination. 5139 BasicBlock *Pred = SI->getParent(); 5140 5141 // If CaseDest is empty except for some side-effect free instructions through 5142 // which we can constant-propagate the CaseVal, continue to its successor. 5143 SmallDenseMap<Value *, Constant *> ConstantPool; 5144 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5145 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5146 if (I.isTerminator()) { 5147 // If the terminator is a simple branch, continue to the next block. 5148 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5149 return false; 5150 Pred = CaseDest; 5151 CaseDest = I.getSuccessor(0); 5152 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5153 // Instruction is side-effect free and constant. 5154 5155 // If the instruction has uses outside this block or a phi node slot for 5156 // the block, it is not safe to bypass the instruction since it would then 5157 // no longer dominate all its uses. 5158 for (auto &Use : I.uses()) { 5159 User *User = Use.getUser(); 5160 if (Instruction *I = dyn_cast<Instruction>(User)) 5161 if (I->getParent() == CaseDest) 5162 continue; 5163 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5164 if (Phi->getIncomingBlock(Use) == CaseDest) 5165 continue; 5166 return false; 5167 } 5168 5169 ConstantPool.insert(std::make_pair(&I, C)); 5170 } else { 5171 break; 5172 } 5173 } 5174 5175 // If we did not have a CommonDest before, use the current one. 5176 if (!*CommonDest) 5177 *CommonDest = CaseDest; 5178 // If the destination isn't the common one, abort. 5179 if (CaseDest != *CommonDest) 5180 return false; 5181 5182 // Get the values for this case from phi nodes in the destination block. 5183 for (PHINode &PHI : (*CommonDest)->phis()) { 5184 int Idx = PHI.getBasicBlockIndex(Pred); 5185 if (Idx == -1) 5186 continue; 5187 5188 Constant *ConstVal = 5189 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5190 if (!ConstVal) 5191 return false; 5192 5193 // Be conservative about which kinds of constants we support. 5194 if (!ValidLookupTableConstant(ConstVal, TTI)) 5195 return false; 5196 5197 Res.push_back(std::make_pair(&PHI, ConstVal)); 5198 } 5199 5200 return Res.size() > 0; 5201 } 5202 5203 // Helper function used to add CaseVal to the list of cases that generate 5204 // Result. Returns the updated number of cases that generate this result. 5205 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5206 SwitchCaseResultVectorTy &UniqueResults, 5207 Constant *Result) { 5208 for (auto &I : UniqueResults) { 5209 if (I.first == Result) { 5210 I.second.push_back(CaseVal); 5211 return I.second.size(); 5212 } 5213 } 5214 UniqueResults.push_back( 5215 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5216 return 1; 5217 } 5218 5219 // Helper function that initializes a map containing 5220 // results for the PHI node of the common destination block for a switch 5221 // instruction. Returns false if multiple PHI nodes have been found or if 5222 // there is not a common destination block for the switch. 5223 static bool 5224 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5225 SwitchCaseResultVectorTy &UniqueResults, 5226 Constant *&DefaultResult, const DataLayout &DL, 5227 const TargetTransformInfo &TTI, 5228 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5229 for (auto &I : SI->cases()) { 5230 ConstantInt *CaseVal = I.getCaseValue(); 5231 5232 // Resulting value at phi nodes for this case value. 5233 SwitchCaseResultsTy Results; 5234 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5235 DL, TTI)) 5236 return false; 5237 5238 // Only one value per case is permitted. 5239 if (Results.size() > 1) 5240 return false; 5241 5242 // Add the case->result mapping to UniqueResults. 5243 const uintptr_t NumCasesForResult = 5244 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5245 5246 // Early out if there are too many cases for this result. 5247 if (NumCasesForResult > MaxCasesPerResult) 5248 return false; 5249 5250 // Early out if there are too many unique results. 5251 if (UniqueResults.size() > MaxUniqueResults) 5252 return false; 5253 5254 // Check the PHI consistency. 5255 if (!PHI) 5256 PHI = Results[0].first; 5257 else if (PHI != Results[0].first) 5258 return false; 5259 } 5260 // Find the default result value. 5261 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5262 BasicBlock *DefaultDest = SI->getDefaultDest(); 5263 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5264 DL, TTI); 5265 // If the default value is not found abort unless the default destination 5266 // is unreachable. 5267 DefaultResult = 5268 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5269 if ((!DefaultResult && 5270 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5271 return false; 5272 5273 return true; 5274 } 5275 5276 // Helper function that checks if it is possible to transform a switch with only 5277 // two cases (or two cases + default) that produces a result into a select. 5278 // Example: 5279 // switch (a) { 5280 // case 10: %0 = icmp eq i32 %a, 10 5281 // return 10; %1 = select i1 %0, i32 10, i32 4 5282 // case 20: ----> %2 = icmp eq i32 %a, 20 5283 // return 2; %3 = select i1 %2, i32 2, i32 %1 5284 // default: 5285 // return 4; 5286 // } 5287 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5288 Constant *DefaultResult, Value *Condition, 5289 IRBuilder<> &Builder) { 5290 assert(ResultVector.size() == 2 && 5291 "We should have exactly two unique results at this point"); 5292 // If we are selecting between only two cases transform into a simple 5293 // select or a two-way select if default is possible. 5294 if (ResultVector[0].second.size() == 1 && 5295 ResultVector[1].second.size() == 1) { 5296 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5297 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5298 5299 bool DefaultCanTrigger = DefaultResult; 5300 Value *SelectValue = ResultVector[1].first; 5301 if (DefaultCanTrigger) { 5302 Value *const ValueCompare = 5303 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5304 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5305 DefaultResult, "switch.select"); 5306 } 5307 Value *const ValueCompare = 5308 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5309 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5310 SelectValue, "switch.select"); 5311 } 5312 5313 return nullptr; 5314 } 5315 5316 // Helper function to cleanup a switch instruction that has been converted into 5317 // a select, fixing up PHI nodes and basic blocks. 5318 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5319 Value *SelectValue, 5320 IRBuilder<> &Builder, 5321 DomTreeUpdater *DTU) { 5322 std::vector<DominatorTree::UpdateType> Updates; 5323 5324 BasicBlock *SelectBB = SI->getParent(); 5325 BasicBlock *DestBB = PHI->getParent(); 5326 5327 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5328 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5329 Builder.CreateBr(DestBB); 5330 5331 // Remove the switch. 5332 5333 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5334 PHI->removeIncomingValue(SelectBB); 5335 PHI->addIncoming(SelectValue, SelectBB); 5336 5337 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5338 BasicBlock *Succ = SI->getSuccessor(i); 5339 5340 if (Succ == DestBB) 5341 continue; 5342 Succ->removePredecessor(SelectBB); 5343 if (DTU) 5344 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5345 } 5346 SI->eraseFromParent(); 5347 if (DTU) 5348 DTU->applyUpdates(Updates); 5349 } 5350 5351 /// If the switch is only used to initialize one or more 5352 /// phi nodes in a common successor block with only two different 5353 /// constant values, replace the switch with select. 5354 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5355 DomTreeUpdater *DTU, const DataLayout &DL, 5356 const TargetTransformInfo &TTI) { 5357 Value *const Cond = SI->getCondition(); 5358 PHINode *PHI = nullptr; 5359 BasicBlock *CommonDest = nullptr; 5360 Constant *DefaultResult; 5361 SwitchCaseResultVectorTy UniqueResults; 5362 // Collect all the cases that will deliver the same value from the switch. 5363 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5364 DL, TTI, 2, 1)) 5365 return false; 5366 // Selects choose between maximum two values. 5367 if (UniqueResults.size() != 2) 5368 return false; 5369 assert(PHI != nullptr && "PHI for value select not found"); 5370 5371 Builder.SetInsertPoint(SI); 5372 Value *SelectValue = 5373 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5374 if (SelectValue) { 5375 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5376 return true; 5377 } 5378 // The switch couldn't be converted into a select. 5379 return false; 5380 } 5381 5382 namespace { 5383 5384 /// This class represents a lookup table that can be used to replace a switch. 5385 class SwitchLookupTable { 5386 public: 5387 /// Create a lookup table to use as a switch replacement with the contents 5388 /// of Values, using DefaultValue to fill any holes in the table. 5389 SwitchLookupTable( 5390 Module &M, uint64_t TableSize, ConstantInt *Offset, 5391 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5392 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5393 5394 /// Build instructions with Builder to retrieve the value at 5395 /// the position given by Index in the lookup table. 5396 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5397 5398 /// Return true if a table with TableSize elements of 5399 /// type ElementType would fit in a target-legal register. 5400 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5401 Type *ElementType); 5402 5403 private: 5404 // Depending on the contents of the table, it can be represented in 5405 // different ways. 5406 enum { 5407 // For tables where each element contains the same value, we just have to 5408 // store that single value and return it for each lookup. 5409 SingleValueKind, 5410 5411 // For tables where there is a linear relationship between table index 5412 // and values. We calculate the result with a simple multiplication 5413 // and addition instead of a table lookup. 5414 LinearMapKind, 5415 5416 // For small tables with integer elements, we can pack them into a bitmap 5417 // that fits into a target-legal register. Values are retrieved by 5418 // shift and mask operations. 5419 BitMapKind, 5420 5421 // The table is stored as an array of values. Values are retrieved by load 5422 // instructions from the table. 5423 ArrayKind 5424 } Kind; 5425 5426 // For SingleValueKind, this is the single value. 5427 Constant *SingleValue = nullptr; 5428 5429 // For BitMapKind, this is the bitmap. 5430 ConstantInt *BitMap = nullptr; 5431 IntegerType *BitMapElementTy = nullptr; 5432 5433 // For LinearMapKind, these are the constants used to derive the value. 5434 ConstantInt *LinearOffset = nullptr; 5435 ConstantInt *LinearMultiplier = nullptr; 5436 5437 // For ArrayKind, this is the array. 5438 GlobalVariable *Array = nullptr; 5439 }; 5440 5441 } // end anonymous namespace 5442 5443 SwitchLookupTable::SwitchLookupTable( 5444 Module &M, uint64_t TableSize, ConstantInt *Offset, 5445 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5446 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5447 assert(Values.size() && "Can't build lookup table without values!"); 5448 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5449 5450 // If all values in the table are equal, this is that value. 5451 SingleValue = Values.begin()->second; 5452 5453 Type *ValueType = Values.begin()->second->getType(); 5454 5455 // Build up the table contents. 5456 SmallVector<Constant *, 64> TableContents(TableSize); 5457 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5458 ConstantInt *CaseVal = Values[I].first; 5459 Constant *CaseRes = Values[I].second; 5460 assert(CaseRes->getType() == ValueType); 5461 5462 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5463 TableContents[Idx] = CaseRes; 5464 5465 if (CaseRes != SingleValue) 5466 SingleValue = nullptr; 5467 } 5468 5469 // Fill in any holes in the table with the default result. 5470 if (Values.size() < TableSize) { 5471 assert(DefaultValue && 5472 "Need a default value to fill the lookup table holes."); 5473 assert(DefaultValue->getType() == ValueType); 5474 for (uint64_t I = 0; I < TableSize; ++I) { 5475 if (!TableContents[I]) 5476 TableContents[I] = DefaultValue; 5477 } 5478 5479 if (DefaultValue != SingleValue) 5480 SingleValue = nullptr; 5481 } 5482 5483 // If each element in the table contains the same value, we only need to store 5484 // that single value. 5485 if (SingleValue) { 5486 Kind = SingleValueKind; 5487 return; 5488 } 5489 5490 // Check if we can derive the value with a linear transformation from the 5491 // table index. 5492 if (isa<IntegerType>(ValueType)) { 5493 bool LinearMappingPossible = true; 5494 APInt PrevVal; 5495 APInt DistToPrev; 5496 assert(TableSize >= 2 && "Should be a SingleValue table."); 5497 // Check if there is the same distance between two consecutive values. 5498 for (uint64_t I = 0; I < TableSize; ++I) { 5499 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5500 if (!ConstVal) { 5501 // This is an undef. We could deal with it, but undefs in lookup tables 5502 // are very seldom. It's probably not worth the additional complexity. 5503 LinearMappingPossible = false; 5504 break; 5505 } 5506 const APInt &Val = ConstVal->getValue(); 5507 if (I != 0) { 5508 APInt Dist = Val - PrevVal; 5509 if (I == 1) { 5510 DistToPrev = Dist; 5511 } else if (Dist != DistToPrev) { 5512 LinearMappingPossible = false; 5513 break; 5514 } 5515 } 5516 PrevVal = Val; 5517 } 5518 if (LinearMappingPossible) { 5519 LinearOffset = cast<ConstantInt>(TableContents[0]); 5520 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5521 Kind = LinearMapKind; 5522 ++NumLinearMaps; 5523 return; 5524 } 5525 } 5526 5527 // If the type is integer and the table fits in a register, build a bitmap. 5528 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5529 IntegerType *IT = cast<IntegerType>(ValueType); 5530 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5531 for (uint64_t I = TableSize; I > 0; --I) { 5532 TableInt <<= IT->getBitWidth(); 5533 // Insert values into the bitmap. Undef values are set to zero. 5534 if (!isa<UndefValue>(TableContents[I - 1])) { 5535 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5536 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5537 } 5538 } 5539 BitMap = ConstantInt::get(M.getContext(), TableInt); 5540 BitMapElementTy = IT; 5541 Kind = BitMapKind; 5542 ++NumBitMaps; 5543 return; 5544 } 5545 5546 // Store the table in an array. 5547 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5548 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5549 5550 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5551 GlobalVariable::PrivateLinkage, Initializer, 5552 "switch.table." + FuncName); 5553 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5554 // Set the alignment to that of an array items. We will be only loading one 5555 // value out of it. 5556 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5557 Kind = ArrayKind; 5558 } 5559 5560 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5561 switch (Kind) { 5562 case SingleValueKind: 5563 return SingleValue; 5564 case LinearMapKind: { 5565 // Derive the result value from the input value. 5566 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5567 false, "switch.idx.cast"); 5568 if (!LinearMultiplier->isOne()) 5569 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5570 if (!LinearOffset->isZero()) 5571 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5572 return Result; 5573 } 5574 case BitMapKind: { 5575 // Type of the bitmap (e.g. i59). 5576 IntegerType *MapTy = BitMap->getType(); 5577 5578 // Cast Index to the same type as the bitmap. 5579 // Note: The Index is <= the number of elements in the table, so 5580 // truncating it to the width of the bitmask is safe. 5581 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5582 5583 // Multiply the shift amount by the element width. 5584 ShiftAmt = Builder.CreateMul( 5585 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5586 "switch.shiftamt"); 5587 5588 // Shift down. 5589 Value *DownShifted = 5590 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5591 // Mask off. 5592 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5593 } 5594 case ArrayKind: { 5595 // Make sure the table index will not overflow when treated as signed. 5596 IntegerType *IT = cast<IntegerType>(Index->getType()); 5597 uint64_t TableSize = 5598 Array->getInitializer()->getType()->getArrayNumElements(); 5599 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5600 Index = Builder.CreateZExt( 5601 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5602 "switch.tableidx.zext"); 5603 5604 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5605 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5606 GEPIndices, "switch.gep"); 5607 return Builder.CreateLoad( 5608 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5609 "switch.load"); 5610 } 5611 } 5612 llvm_unreachable("Unknown lookup table kind!"); 5613 } 5614 5615 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5616 uint64_t TableSize, 5617 Type *ElementType) { 5618 auto *IT = dyn_cast<IntegerType>(ElementType); 5619 if (!IT) 5620 return false; 5621 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5622 // are <= 15, we could try to narrow the type. 5623 5624 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5625 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5626 return false; 5627 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5628 } 5629 5630 /// Determine whether a lookup table should be built for this switch, based on 5631 /// the number of cases, size of the table, and the types of the results. 5632 static bool 5633 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5634 const TargetTransformInfo &TTI, const DataLayout &DL, 5635 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5636 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5637 return false; // TableSize overflowed, or mul below might overflow. 5638 5639 bool AllTablesFitInRegister = true; 5640 bool HasIllegalType = false; 5641 for (const auto &I : ResultTypes) { 5642 Type *Ty = I.second; 5643 5644 // Saturate this flag to true. 5645 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5646 5647 // Saturate this flag to false. 5648 AllTablesFitInRegister = 5649 AllTablesFitInRegister && 5650 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5651 5652 // If both flags saturate, we're done. NOTE: This *only* works with 5653 // saturating flags, and all flags have to saturate first due to the 5654 // non-deterministic behavior of iterating over a dense map. 5655 if (HasIllegalType && !AllTablesFitInRegister) 5656 break; 5657 } 5658 5659 // If each table would fit in a register, we should build it anyway. 5660 if (AllTablesFitInRegister) 5661 return true; 5662 5663 // Don't build a table that doesn't fit in-register if it has illegal types. 5664 if (HasIllegalType) 5665 return false; 5666 5667 // The table density should be at least 40%. This is the same criterion as for 5668 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5669 // FIXME: Find the best cut-off. 5670 return SI->getNumCases() * 10 >= TableSize * 4; 5671 } 5672 5673 /// Try to reuse the switch table index compare. Following pattern: 5674 /// \code 5675 /// if (idx < tablesize) 5676 /// r = table[idx]; // table does not contain default_value 5677 /// else 5678 /// r = default_value; 5679 /// if (r != default_value) 5680 /// ... 5681 /// \endcode 5682 /// Is optimized to: 5683 /// \code 5684 /// cond = idx < tablesize; 5685 /// if (cond) 5686 /// r = table[idx]; 5687 /// else 5688 /// r = default_value; 5689 /// if (cond) 5690 /// ... 5691 /// \endcode 5692 /// Jump threading will then eliminate the second if(cond). 5693 static void reuseTableCompare( 5694 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5695 Constant *DefaultValue, 5696 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5697 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5698 if (!CmpInst) 5699 return; 5700 5701 // We require that the compare is in the same block as the phi so that jump 5702 // threading can do its work afterwards. 5703 if (CmpInst->getParent() != PhiBlock) 5704 return; 5705 5706 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5707 if (!CmpOp1) 5708 return; 5709 5710 Value *RangeCmp = RangeCheckBranch->getCondition(); 5711 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5712 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5713 5714 // Check if the compare with the default value is constant true or false. 5715 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5716 DefaultValue, CmpOp1, true); 5717 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5718 return; 5719 5720 // Check if the compare with the case values is distinct from the default 5721 // compare result. 5722 for (auto ValuePair : Values) { 5723 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5724 ValuePair.second, CmpOp1, true); 5725 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5726 return; 5727 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5728 "Expect true or false as compare result."); 5729 } 5730 5731 // Check if the branch instruction dominates the phi node. It's a simple 5732 // dominance check, but sufficient for our needs. 5733 // Although this check is invariant in the calling loops, it's better to do it 5734 // at this late stage. Practically we do it at most once for a switch. 5735 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5736 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5737 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5738 return; 5739 } 5740 5741 if (DefaultConst == FalseConst) { 5742 // The compare yields the same result. We can replace it. 5743 CmpInst->replaceAllUsesWith(RangeCmp); 5744 ++NumTableCmpReuses; 5745 } else { 5746 // The compare yields the same result, just inverted. We can replace it. 5747 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5748 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5749 RangeCheckBranch); 5750 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5751 ++NumTableCmpReuses; 5752 } 5753 } 5754 5755 /// If the switch is only used to initialize one or more phi nodes in a common 5756 /// successor block with different constant values, replace the switch with 5757 /// lookup tables. 5758 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5759 DomTreeUpdater *DTU, const DataLayout &DL, 5760 const TargetTransformInfo &TTI) { 5761 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5762 5763 BasicBlock *BB = SI->getParent(); 5764 Function *Fn = BB->getParent(); 5765 // Only build lookup table when we have a target that supports it or the 5766 // attribute is not set. 5767 if (!TTI.shouldBuildLookupTables() || 5768 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5769 return false; 5770 5771 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5772 // split off a dense part and build a lookup table for that. 5773 5774 // FIXME: This creates arrays of GEPs to constant strings, which means each 5775 // GEP needs a runtime relocation in PIC code. We should just build one big 5776 // string and lookup indices into that. 5777 5778 // Ignore switches with less than three cases. Lookup tables will not make 5779 // them faster, so we don't analyze them. 5780 if (SI->getNumCases() < 3) 5781 return false; 5782 5783 // Figure out the corresponding result for each case value and phi node in the 5784 // common destination, as well as the min and max case values. 5785 assert(!SI->cases().empty()); 5786 SwitchInst::CaseIt CI = SI->case_begin(); 5787 ConstantInt *MinCaseVal = CI->getCaseValue(); 5788 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5789 5790 BasicBlock *CommonDest = nullptr; 5791 5792 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5793 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5794 5795 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5796 SmallDenseMap<PHINode *, Type *> ResultTypes; 5797 SmallVector<PHINode *, 4> PHIs; 5798 5799 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5800 ConstantInt *CaseVal = CI->getCaseValue(); 5801 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5802 MinCaseVal = CaseVal; 5803 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5804 MaxCaseVal = CaseVal; 5805 5806 // Resulting value at phi nodes for this case value. 5807 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5808 ResultsTy Results; 5809 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5810 Results, DL, TTI)) 5811 return false; 5812 5813 // Append the result from this case to the list for each phi. 5814 for (const auto &I : Results) { 5815 PHINode *PHI = I.first; 5816 Constant *Value = I.second; 5817 if (!ResultLists.count(PHI)) 5818 PHIs.push_back(PHI); 5819 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5820 } 5821 } 5822 5823 // Keep track of the result types. 5824 for (PHINode *PHI : PHIs) { 5825 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5826 } 5827 5828 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5829 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5830 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5831 bool TableHasHoles = (NumResults < TableSize); 5832 5833 // If the table has holes, we need a constant result for the default case 5834 // or a bitmask that fits in a register. 5835 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5836 bool HasDefaultResults = 5837 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5838 DefaultResultsList, DL, TTI); 5839 5840 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5841 if (NeedMask) { 5842 // As an extra penalty for the validity test we require more cases. 5843 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5844 return false; 5845 if (!DL.fitsInLegalInteger(TableSize)) 5846 return false; 5847 } 5848 5849 for (const auto &I : DefaultResultsList) { 5850 PHINode *PHI = I.first; 5851 Constant *Result = I.second; 5852 DefaultResults[PHI] = Result; 5853 } 5854 5855 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5856 return false; 5857 5858 std::vector<DominatorTree::UpdateType> Updates; 5859 5860 // Create the BB that does the lookups. 5861 Module &Mod = *CommonDest->getParent()->getParent(); 5862 BasicBlock *LookupBB = BasicBlock::Create( 5863 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5864 5865 // Compute the table index value. 5866 Builder.SetInsertPoint(SI); 5867 Value *TableIndex; 5868 if (MinCaseVal->isNullValue()) 5869 TableIndex = SI->getCondition(); 5870 else 5871 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5872 "switch.tableidx"); 5873 5874 // Compute the maximum table size representable by the integer type we are 5875 // switching upon. 5876 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5877 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5878 assert(MaxTableSize >= TableSize && 5879 "It is impossible for a switch to have more entries than the max " 5880 "representable value of its input integer type's size."); 5881 5882 // If the default destination is unreachable, or if the lookup table covers 5883 // all values of the conditional variable, branch directly to the lookup table 5884 // BB. Otherwise, check that the condition is within the case range. 5885 const bool DefaultIsReachable = 5886 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5887 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5888 BranchInst *RangeCheckBranch = nullptr; 5889 5890 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5891 Builder.CreateBr(LookupBB); 5892 if (DTU) 5893 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5894 // Note: We call removeProdecessor later since we need to be able to get the 5895 // PHI value for the default case in case we're using a bit mask. 5896 } else { 5897 Value *Cmp = Builder.CreateICmpULT( 5898 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5899 RangeCheckBranch = 5900 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5901 if (DTU) 5902 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5903 } 5904 5905 // Populate the BB that does the lookups. 5906 Builder.SetInsertPoint(LookupBB); 5907 5908 if (NeedMask) { 5909 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5910 // re-purposed to do the hole check, and we create a new LookupBB. 5911 BasicBlock *MaskBB = LookupBB; 5912 MaskBB->setName("switch.hole_check"); 5913 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5914 CommonDest->getParent(), CommonDest); 5915 5916 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5917 // unnecessary illegal types. 5918 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5919 APInt MaskInt(TableSizePowOf2, 0); 5920 APInt One(TableSizePowOf2, 1); 5921 // Build bitmask; fill in a 1 bit for every case. 5922 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5923 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5924 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5925 .getLimitedValue(); 5926 MaskInt |= One << Idx; 5927 } 5928 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5929 5930 // Get the TableIndex'th bit of the bitmask. 5931 // If this bit is 0 (meaning hole) jump to the default destination, 5932 // else continue with table lookup. 5933 IntegerType *MapTy = TableMask->getType(); 5934 Value *MaskIndex = 5935 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5936 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5937 Value *LoBit = Builder.CreateTrunc( 5938 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5939 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5940 if (DTU) { 5941 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 5942 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 5943 } 5944 Builder.SetInsertPoint(LookupBB); 5945 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 5946 } 5947 5948 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5949 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5950 // do not delete PHINodes here. 5951 SI->getDefaultDest()->removePredecessor(BB, 5952 /*KeepOneInputPHIs=*/true); 5953 if (DTU) 5954 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 5955 } 5956 5957 bool ReturnedEarly = false; 5958 for (PHINode *PHI : PHIs) { 5959 const ResultListTy &ResultList = ResultLists[PHI]; 5960 5961 // If using a bitmask, use any value to fill the lookup table holes. 5962 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5963 StringRef FuncName = Fn->getName(); 5964 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5965 FuncName); 5966 5967 Value *Result = Table.BuildLookup(TableIndex, Builder); 5968 5969 // If the result is used to return immediately from the function, we want to 5970 // do that right here. 5971 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5972 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5973 Builder.CreateRet(Result); 5974 ReturnedEarly = true; 5975 break; 5976 } 5977 5978 // Do a small peephole optimization: re-use the switch table compare if 5979 // possible. 5980 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5981 BasicBlock *PhiBlock = PHI->getParent(); 5982 // Search for compare instructions which use the phi. 5983 for (auto *User : PHI->users()) { 5984 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5985 } 5986 } 5987 5988 PHI->addIncoming(Result, LookupBB); 5989 } 5990 5991 if (!ReturnedEarly) { 5992 Builder.CreateBr(CommonDest); 5993 if (DTU) 5994 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 5995 } 5996 5997 // Remove the switch. 5998 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 5999 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6000 BasicBlock *Succ = SI->getSuccessor(i); 6001 6002 if (Succ == SI->getDefaultDest()) 6003 continue; 6004 Succ->removePredecessor(BB); 6005 RemovedSuccessors.insert(Succ); 6006 } 6007 SI->eraseFromParent(); 6008 6009 if (DTU) { 6010 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 6011 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 6012 DTU->applyUpdates(Updates); 6013 } 6014 6015 ++NumLookupTables; 6016 if (NeedMask) 6017 ++NumLookupTablesHoles; 6018 return true; 6019 } 6020 6021 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6022 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6023 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6024 uint64_t Range = Diff + 1; 6025 uint64_t NumCases = Values.size(); 6026 // 40% is the default density for building a jump table in optsize/minsize mode. 6027 uint64_t MinDensity = 40; 6028 6029 return NumCases * 100 >= Range * MinDensity; 6030 } 6031 6032 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6033 /// of cases. 6034 /// 6035 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6036 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6037 /// 6038 /// This converts a sparse switch into a dense switch which allows better 6039 /// lowering and could also allow transforming into a lookup table. 6040 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6041 const DataLayout &DL, 6042 const TargetTransformInfo &TTI) { 6043 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6044 if (CondTy->getIntegerBitWidth() > 64 || 6045 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6046 return false; 6047 // Only bother with this optimization if there are more than 3 switch cases; 6048 // SDAG will only bother creating jump tables for 4 or more cases. 6049 if (SI->getNumCases() < 4) 6050 return false; 6051 6052 // This transform is agnostic to the signedness of the input or case values. We 6053 // can treat the case values as signed or unsigned. We can optimize more common 6054 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6055 // as signed. 6056 SmallVector<int64_t,4> Values; 6057 for (auto &C : SI->cases()) 6058 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6059 llvm::sort(Values); 6060 6061 // If the switch is already dense, there's nothing useful to do here. 6062 if (isSwitchDense(Values)) 6063 return false; 6064 6065 // First, transform the values such that they start at zero and ascend. 6066 int64_t Base = Values[0]; 6067 for (auto &V : Values) 6068 V -= (uint64_t)(Base); 6069 6070 // Now we have signed numbers that have been shifted so that, given enough 6071 // precision, there are no negative values. Since the rest of the transform 6072 // is bitwise only, we switch now to an unsigned representation. 6073 6074 // This transform can be done speculatively because it is so cheap - it 6075 // results in a single rotate operation being inserted. 6076 // FIXME: It's possible that optimizing a switch on powers of two might also 6077 // be beneficial - flag values are often powers of two and we could use a CLZ 6078 // as the key function. 6079 6080 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6081 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6082 // less than 64. 6083 unsigned Shift = 64; 6084 for (auto &V : Values) 6085 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6086 assert(Shift < 64); 6087 if (Shift > 0) 6088 for (auto &V : Values) 6089 V = (int64_t)((uint64_t)V >> Shift); 6090 6091 if (!isSwitchDense(Values)) 6092 // Transform didn't create a dense switch. 6093 return false; 6094 6095 // The obvious transform is to shift the switch condition right and emit a 6096 // check that the condition actually cleanly divided by GCD, i.e. 6097 // C & (1 << Shift - 1) == 0 6098 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6099 // 6100 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6101 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6102 // are nonzero then the switch condition will be very large and will hit the 6103 // default case. 6104 6105 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6106 Builder.SetInsertPoint(SI); 6107 auto *ShiftC = ConstantInt::get(Ty, Shift); 6108 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6109 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6110 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6111 auto *Rot = Builder.CreateOr(LShr, Shl); 6112 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6113 6114 for (auto Case : SI->cases()) { 6115 auto *Orig = Case.getCaseValue(); 6116 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6117 Case.setValue( 6118 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6119 } 6120 return true; 6121 } 6122 6123 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6124 BasicBlock *BB = SI->getParent(); 6125 6126 if (isValueEqualityComparison(SI)) { 6127 // If we only have one predecessor, and if it is a branch on this value, 6128 // see if that predecessor totally determines the outcome of this switch. 6129 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6130 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6131 return requestResimplify(); 6132 6133 Value *Cond = SI->getCondition(); 6134 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6135 if (SimplifySwitchOnSelect(SI, Select)) 6136 return requestResimplify(); 6137 6138 // If the block only contains the switch, see if we can fold the block 6139 // away into any preds. 6140 if (SI == &*BB->instructionsWithoutDebug().begin()) 6141 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6142 return requestResimplify(); 6143 } 6144 6145 // Try to transform the switch into an icmp and a branch. 6146 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6147 return requestResimplify(); 6148 6149 // Remove unreachable cases. 6150 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6151 return requestResimplify(); 6152 6153 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6154 return requestResimplify(); 6155 6156 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6157 return requestResimplify(); 6158 6159 // The conversion from switch to lookup tables results in difficult-to-analyze 6160 // code and makes pruning branches much harder. This is a problem if the 6161 // switch expression itself can still be restricted as a result of inlining or 6162 // CVP. Therefore, only apply this transformation during late stages of the 6163 // optimisation pipeline. 6164 if (Options.ConvertSwitchToLookupTable && 6165 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6166 return requestResimplify(); 6167 6168 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6169 return requestResimplify(); 6170 6171 return false; 6172 } 6173 6174 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6175 BasicBlock *BB = IBI->getParent(); 6176 bool Changed = false; 6177 6178 // Eliminate redundant destinations. 6179 SmallPtrSet<Value *, 8> Succs; 6180 SmallPtrSet<BasicBlock *, 8> RemovedSuccs; 6181 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6182 BasicBlock *Dest = IBI->getDestination(i); 6183 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6184 if (!Dest->hasAddressTaken()) 6185 RemovedSuccs.insert(Dest); 6186 Dest->removePredecessor(BB); 6187 IBI->removeDestination(i); 6188 --i; 6189 --e; 6190 Changed = true; 6191 } 6192 } 6193 6194 if (DTU) { 6195 std::vector<DominatorTree::UpdateType> Updates; 6196 Updates.reserve(RemovedSuccs.size()); 6197 for (auto *RemovedSucc : RemovedSuccs) 6198 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6199 DTU->applyUpdates(Updates); 6200 } 6201 6202 if (IBI->getNumDestinations() == 0) { 6203 // If the indirectbr has no successors, change it to unreachable. 6204 new UnreachableInst(IBI->getContext(), IBI); 6205 EraseTerminatorAndDCECond(IBI); 6206 return true; 6207 } 6208 6209 if (IBI->getNumDestinations() == 1) { 6210 // If the indirectbr has one successor, change it to a direct branch. 6211 BranchInst::Create(IBI->getDestination(0), IBI); 6212 EraseTerminatorAndDCECond(IBI); 6213 return true; 6214 } 6215 6216 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6217 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6218 return requestResimplify(); 6219 } 6220 return Changed; 6221 } 6222 6223 /// Given an block with only a single landing pad and a unconditional branch 6224 /// try to find another basic block which this one can be merged with. This 6225 /// handles cases where we have multiple invokes with unique landing pads, but 6226 /// a shared handler. 6227 /// 6228 /// We specifically choose to not worry about merging non-empty blocks 6229 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6230 /// practice, the optimizer produces empty landing pad blocks quite frequently 6231 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6232 /// sinking in this file) 6233 /// 6234 /// This is primarily a code size optimization. We need to avoid performing 6235 /// any transform which might inhibit optimization (such as our ability to 6236 /// specialize a particular handler via tail commoning). We do this by not 6237 /// merging any blocks which require us to introduce a phi. Since the same 6238 /// values are flowing through both blocks, we don't lose any ability to 6239 /// specialize. If anything, we make such specialization more likely. 6240 /// 6241 /// TODO - This transformation could remove entries from a phi in the target 6242 /// block when the inputs in the phi are the same for the two blocks being 6243 /// merged. In some cases, this could result in removal of the PHI entirely. 6244 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6245 BasicBlock *BB, DomTreeUpdater *DTU) { 6246 auto Succ = BB->getUniqueSuccessor(); 6247 assert(Succ); 6248 // If there's a phi in the successor block, we'd likely have to introduce 6249 // a phi into the merged landing pad block. 6250 if (isa<PHINode>(*Succ->begin())) 6251 return false; 6252 6253 for (BasicBlock *OtherPred : predecessors(Succ)) { 6254 if (BB == OtherPred) 6255 continue; 6256 BasicBlock::iterator I = OtherPred->begin(); 6257 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6258 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6259 continue; 6260 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6261 ; 6262 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6263 if (!BI2 || !BI2->isIdenticalTo(BI)) 6264 continue; 6265 6266 std::vector<DominatorTree::UpdateType> Updates; 6267 6268 // We've found an identical block. Update our predecessors to take that 6269 // path instead and make ourselves dead. 6270 SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 6271 for (BasicBlock *Pred : Preds) { 6272 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6273 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6274 "unexpected successor"); 6275 II->setUnwindDest(OtherPred); 6276 if (DTU) { 6277 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6278 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6279 } 6280 } 6281 6282 // The debug info in OtherPred doesn't cover the merged control flow that 6283 // used to go through BB. We need to delete it or update it. 6284 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6285 Instruction &Inst = *I; 6286 I++; 6287 if (isa<DbgInfoIntrinsic>(Inst)) 6288 Inst.eraseFromParent(); 6289 } 6290 6291 SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB)); 6292 for (BasicBlock *Succ : Succs) { 6293 Succ->removePredecessor(BB); 6294 if (DTU) 6295 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6296 } 6297 6298 IRBuilder<> Builder(BI); 6299 Builder.CreateUnreachable(); 6300 BI->eraseFromParent(); 6301 if (DTU) 6302 DTU->applyUpdates(Updates); 6303 return true; 6304 } 6305 return false; 6306 } 6307 6308 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6309 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6310 : simplifyCondBranch(Branch, Builder); 6311 } 6312 6313 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6314 IRBuilder<> &Builder) { 6315 BasicBlock *BB = BI->getParent(); 6316 BasicBlock *Succ = BI->getSuccessor(0); 6317 6318 // If the Terminator is the only non-phi instruction, simplify the block. 6319 // If LoopHeader is provided, check if the block or its successor is a loop 6320 // header. (This is for early invocations before loop simplify and 6321 // vectorization to keep canonical loop forms for nested loops. These blocks 6322 // can be eliminated when the pass is invoked later in the back-end.) 6323 // Note that if BB has only one predecessor then we do not introduce new 6324 // backedge, so we can eliminate BB. 6325 bool NeedCanonicalLoop = 6326 Options.NeedCanonicalLoop && 6327 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6328 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6329 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6330 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6331 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6332 return true; 6333 6334 // If the only instruction in the block is a seteq/setne comparison against a 6335 // constant, try to simplify the block. 6336 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6337 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6338 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6339 ; 6340 if (I->isTerminator() && 6341 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6342 return true; 6343 } 6344 6345 // See if we can merge an empty landing pad block with another which is 6346 // equivalent. 6347 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6348 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6349 ; 6350 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6351 return true; 6352 } 6353 6354 // If this basic block is ONLY a compare and a branch, and if a predecessor 6355 // branches to us and our successor, fold the comparison into the 6356 // predecessor and use logical operations to update the incoming value 6357 // for PHI nodes in common successor. 6358 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6359 Options.BonusInstThreshold)) 6360 return requestResimplify(); 6361 return false; 6362 } 6363 6364 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6365 BasicBlock *PredPred = nullptr; 6366 for (auto *P : predecessors(BB)) { 6367 BasicBlock *PPred = P->getSinglePredecessor(); 6368 if (!PPred || (PredPred && PredPred != PPred)) 6369 return nullptr; 6370 PredPred = PPred; 6371 } 6372 return PredPred; 6373 } 6374 6375 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6376 BasicBlock *BB = BI->getParent(); 6377 if (!Options.SimplifyCondBranch) 6378 return false; 6379 6380 // Conditional branch 6381 if (isValueEqualityComparison(BI)) { 6382 // If we only have one predecessor, and if it is a branch on this value, 6383 // see if that predecessor totally determines the outcome of this 6384 // switch. 6385 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6386 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6387 return requestResimplify(); 6388 6389 // This block must be empty, except for the setcond inst, if it exists. 6390 // Ignore dbg and pseudo intrinsics. 6391 auto I = BB->instructionsWithoutDebug(true).begin(); 6392 if (&*I == BI) { 6393 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6394 return requestResimplify(); 6395 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6396 ++I; 6397 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6398 return requestResimplify(); 6399 } 6400 } 6401 6402 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6403 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6404 return true; 6405 6406 // If this basic block has dominating predecessor blocks and the dominating 6407 // blocks' conditions imply BI's condition, we know the direction of BI. 6408 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6409 if (Imp) { 6410 // Turn this into a branch on constant. 6411 auto *OldCond = BI->getCondition(); 6412 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6413 : ConstantInt::getFalse(BB->getContext()); 6414 BI->setCondition(TorF); 6415 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6416 return requestResimplify(); 6417 } 6418 6419 // If this basic block is ONLY a compare and a branch, and if a predecessor 6420 // branches to us and one of our successors, fold the comparison into the 6421 // predecessor and use logical operations to pick the right destination. 6422 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6423 Options.BonusInstThreshold)) 6424 return requestResimplify(); 6425 6426 // We have a conditional branch to two blocks that are only reachable 6427 // from BI. We know that the condbr dominates the two blocks, so see if 6428 // there is any identical code in the "then" and "else" blocks. If so, we 6429 // can hoist it up to the branching block. 6430 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6431 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6432 if (HoistCommon && Options.HoistCommonInsts) 6433 if (HoistThenElseCodeToIf(BI, TTI)) 6434 return requestResimplify(); 6435 } else { 6436 // If Successor #1 has multiple preds, we may be able to conditionally 6437 // execute Successor #0 if it branches to Successor #1. 6438 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6439 if (Succ0TI->getNumSuccessors() == 1 && 6440 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6441 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6442 return requestResimplify(); 6443 } 6444 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6445 // If Successor #0 has multiple preds, we may be able to conditionally 6446 // execute Successor #1 if it branches to Successor #0. 6447 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6448 if (Succ1TI->getNumSuccessors() == 1 && 6449 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6450 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6451 return requestResimplify(); 6452 } 6453 6454 // If this is a branch on a phi node in the current block, thread control 6455 // through this block if any PHI node entries are constants. 6456 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6457 if (PN->getParent() == BI->getParent()) 6458 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6459 return requestResimplify(); 6460 6461 // Scan predecessor blocks for conditional branches. 6462 for (BasicBlock *Pred : predecessors(BB)) 6463 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6464 if (PBI != BI && PBI->isConditional()) 6465 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6466 return requestResimplify(); 6467 6468 // Look for diamond patterns. 6469 if (MergeCondStores) 6470 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6471 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6472 if (PBI != BI && PBI->isConditional()) 6473 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6474 return requestResimplify(); 6475 6476 return false; 6477 } 6478 6479 /// Check if passing a value to an instruction will cause undefined behavior. 6480 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6481 Constant *C = dyn_cast<Constant>(V); 6482 if (!C) 6483 return false; 6484 6485 if (I->use_empty()) 6486 return false; 6487 6488 if (C->isNullValue() || isa<UndefValue>(C)) { 6489 // Only look at the first use, avoid hurting compile time with long uselists 6490 User *Use = *I->user_begin(); 6491 6492 // Now make sure that there are no instructions in between that can alter 6493 // control flow (eg. calls) 6494 for (BasicBlock::iterator 6495 i = ++BasicBlock::iterator(I), 6496 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6497 i != UI; ++i) 6498 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6499 return false; 6500 6501 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6502 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6503 if (GEP->getPointerOperand() == I) { 6504 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6505 PtrValueMayBeModified = true; 6506 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6507 } 6508 6509 // Look through bitcasts. 6510 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6511 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6512 6513 // Load from null is undefined. 6514 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6515 if (!LI->isVolatile()) 6516 return !NullPointerIsDefined(LI->getFunction(), 6517 LI->getPointerAddressSpace()); 6518 6519 // Store to null is undefined. 6520 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6521 if (!SI->isVolatile()) 6522 return (!NullPointerIsDefined(SI->getFunction(), 6523 SI->getPointerAddressSpace())) && 6524 SI->getPointerOperand() == I; 6525 6526 if (auto *CB = dyn_cast<CallBase>(Use)) { 6527 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6528 return false; 6529 // A call to null is undefined. 6530 if (CB->getCalledOperand() == I) 6531 return true; 6532 6533 if (C->isNullValue()) { 6534 for (const llvm::Use &Arg : CB->args()) 6535 if (Arg == I) { 6536 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6537 if (CB->isPassingUndefUB(ArgIdx) && 6538 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6539 // Passing null to a nonnnull+noundef argument is undefined. 6540 return !PtrValueMayBeModified; 6541 } 6542 } 6543 } else if (isa<UndefValue>(C)) { 6544 // Passing undef to a noundef argument is undefined. 6545 for (const llvm::Use &Arg : CB->args()) 6546 if (Arg == I) { 6547 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6548 if (CB->isPassingUndefUB(ArgIdx)) { 6549 // Passing undef to a noundef argument is undefined. 6550 return true; 6551 } 6552 } 6553 } 6554 } 6555 } 6556 return false; 6557 } 6558 6559 /// If BB has an incoming value that will always trigger undefined behavior 6560 /// (eg. null pointer dereference), remove the branch leading here. 6561 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6562 DomTreeUpdater *DTU) { 6563 for (PHINode &PHI : BB->phis()) 6564 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6565 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6566 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6567 Instruction *T = Predecessor->getTerminator(); 6568 IRBuilder<> Builder(T); 6569 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6570 BB->removePredecessor(Predecessor); 6571 // Turn uncoditional branches into unreachables and remove the dead 6572 // destination from conditional branches. 6573 if (BI->isUnconditional()) 6574 Builder.CreateUnreachable(); 6575 else 6576 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6577 : BI->getSuccessor(0)); 6578 BI->eraseFromParent(); 6579 if (DTU) 6580 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6581 return true; 6582 } 6583 // TODO: SwitchInst. 6584 } 6585 6586 return false; 6587 } 6588 6589 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6590 bool Changed = false; 6591 6592 assert(BB && BB->getParent() && "Block not embedded in function!"); 6593 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6594 6595 // Remove basic blocks that have no predecessors (except the entry block)... 6596 // or that just have themself as a predecessor. These are unreachable. 6597 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6598 BB->getSinglePredecessor() == BB) { 6599 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6600 DeleteDeadBlock(BB, DTU); 6601 return true; 6602 } 6603 6604 // Check to see if we can constant propagate this terminator instruction 6605 // away... 6606 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6607 /*TLI=*/nullptr, DTU); 6608 6609 // Check for and eliminate duplicate PHI nodes in this block. 6610 Changed |= EliminateDuplicatePHINodes(BB); 6611 6612 // Check for and remove branches that will always cause undefined behavior. 6613 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6614 6615 // Merge basic blocks into their predecessor if there is only one distinct 6616 // pred, and if there is only one distinct successor of the predecessor, and 6617 // if there are no PHI nodes. 6618 if (MergeBlockIntoPredecessor(BB, DTU)) 6619 return true; 6620 6621 if (SinkCommon && Options.SinkCommonInsts) 6622 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6623 6624 IRBuilder<> Builder(BB); 6625 6626 if (Options.FoldTwoEntryPHINode) { 6627 // If there is a trivial two-entry PHI node in this basic block, and we can 6628 // eliminate it, do so now. 6629 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6630 if (PN->getNumIncomingValues() == 2) 6631 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6632 } 6633 6634 Instruction *Terminator = BB->getTerminator(); 6635 Builder.SetInsertPoint(Terminator); 6636 switch (Terminator->getOpcode()) { 6637 case Instruction::Br: 6638 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6639 break; 6640 case Instruction::Ret: 6641 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6642 break; 6643 case Instruction::Resume: 6644 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6645 break; 6646 case Instruction::CleanupRet: 6647 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6648 break; 6649 case Instruction::Switch: 6650 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6651 break; 6652 case Instruction::Unreachable: 6653 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6654 break; 6655 case Instruction::IndirectBr: 6656 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6657 break; 6658 } 6659 6660 return Changed; 6661 } 6662 6663 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6664 bool Changed = simplifyOnceImpl(BB); 6665 6666 return Changed; 6667 } 6668 6669 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6670 bool Changed = false; 6671 6672 // Repeated simplify BB as long as resimplification is requested. 6673 do { 6674 Resimplify = false; 6675 6676 // Perform one round of simplifcation. Resimplify flag will be set if 6677 // another iteration is requested. 6678 Changed |= simplifyOnce(BB); 6679 } while (Resimplify); 6680 6681 return Changed; 6682 } 6683 6684 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6685 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6686 ArrayRef<WeakVH> LoopHeaders) { 6687 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6688 Options) 6689 .run(BB); 6690 } 6691