1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetOperations.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/NoFolder.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> PHINodeFoldingThreshold( 62 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc( 64 "Control the amount of phi node folding to perform (default = 2)")); 65 66 static cl::opt<bool> DupRet( 67 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 68 cl::desc("Duplicate return instructions into unconditional branches")); 69 70 static cl::opt<bool> 71 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 72 cl::desc("Sink common instructions down to the end block")); 73 74 static cl::opt<bool> HoistCondStores( 75 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 76 cl::desc("Hoist conditional stores if an unconditional store precedes")); 77 78 static cl::opt<bool> MergeCondStores( 79 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 80 cl::desc("Hoist conditional stores even if an unconditional store does not " 81 "precede - hoist multiple conditional stores into a single " 82 "predicated store")); 83 84 static cl::opt<bool> MergeCondStoresAggressively( 85 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 86 cl::desc("When merging conditional stores, do so even if the resultant " 87 "basic blocks are unlikely to be if-converted as a result")); 88 89 static cl::opt<bool> SpeculateOneExpensiveInst( 90 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 91 cl::desc("Allow exactly one expensive instruction to be speculatively " 92 "executed")); 93 94 static cl::opt<unsigned> MaxSpeculationDepth( 95 "max-speculation-depth", cl::Hidden, cl::init(10), 96 cl::desc("Limit maximum recursion depth when calculating costs of " 97 "speculatively executed instructions")); 98 99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 100 STATISTIC(NumLinearMaps, 101 "Number of switch instructions turned into linear mapping"); 102 STATISTIC(NumLookupTables, 103 "Number of switch instructions turned into lookup tables"); 104 STATISTIC( 105 NumLookupTablesHoles, 106 "Number of switch instructions turned into lookup tables (holes checked)"); 107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 108 STATISTIC(NumSinkCommons, 109 "Number of common instructions sunk down to the end block"); 110 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 111 112 namespace { 113 // The first field contains the value that the switch produces when a certain 114 // case group is selected, and the second field is a vector containing the 115 // cases composing the case group. 116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 117 SwitchCaseResultVectorTy; 118 // The first field contains the phi node that generates a result of the switch 119 // and the second field contains the value generated for a certain case in the 120 // switch for that PHI. 121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 122 123 /// ValueEqualityComparisonCase - Represents a case of a switch. 124 struct ValueEqualityComparisonCase { 125 ConstantInt *Value; 126 BasicBlock *Dest; 127 128 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 129 : Value(Value), Dest(Dest) {} 130 131 bool operator<(ValueEqualityComparisonCase RHS) const { 132 // Comparing pointers is ok as we only rely on the order for uniquing. 133 return Value < RHS.Value; 134 } 135 136 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 137 }; 138 139 class SimplifyCFGOpt { 140 const TargetTransformInfo &TTI; 141 const DataLayout &DL; 142 unsigned BonusInstThreshold; 143 AssumptionCache *AC; 144 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 145 Value *isValueEqualityComparison(TerminatorInst *TI); 146 BasicBlock *GetValueEqualityComparisonCases( 147 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 148 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 149 BasicBlock *Pred, 150 IRBuilder<> &Builder); 151 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 152 IRBuilder<> &Builder); 153 154 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 155 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 156 bool SimplifySingleResume(ResumeInst *RI); 157 bool SimplifyCommonResume(ResumeInst *RI); 158 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 159 bool SimplifyUnreachable(UnreachableInst *UI); 160 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 161 bool SimplifyIndirectBr(IndirectBrInst *IBI); 162 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 163 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 164 165 public: 166 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 167 unsigned BonusInstThreshold, AssumptionCache *AC, 168 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) 169 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC), 170 LoopHeaders(LoopHeaders) {} 171 bool run(BasicBlock *BB); 172 }; 173 } 174 175 /// Return true if it is safe to merge these two 176 /// terminator instructions together. 177 static bool 178 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 179 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 180 if (SI1 == SI2) 181 return false; // Can't merge with self! 182 183 // It is not safe to merge these two switch instructions if they have a common 184 // successor, and if that successor has a PHI node, and if *that* PHI node has 185 // conflicting incoming values from the two switch blocks. 186 BasicBlock *SI1BB = SI1->getParent(); 187 BasicBlock *SI2BB = SI2->getParent(); 188 189 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 190 bool Fail = false; 191 for (BasicBlock *Succ : successors(SI2BB)) 192 if (SI1Succs.count(Succ)) 193 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 194 PHINode *PN = cast<PHINode>(BBI); 195 if (PN->getIncomingValueForBlock(SI1BB) != 196 PN->getIncomingValueForBlock(SI2BB)) { 197 if (FailBlocks) 198 FailBlocks->insert(Succ); 199 Fail = true; 200 } 201 } 202 203 return !Fail; 204 } 205 206 /// Return true if it is safe and profitable to merge these two terminator 207 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 208 /// store all PHI nodes in common successors. 209 static bool 210 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 211 Instruction *Cond, 212 SmallVectorImpl<PHINode *> &PhiNodes) { 213 if (SI1 == SI2) 214 return false; // Can't merge with self! 215 assert(SI1->isUnconditional() && SI2->isConditional()); 216 217 // We fold the unconditional branch if we can easily update all PHI nodes in 218 // common successors: 219 // 1> We have a constant incoming value for the conditional branch; 220 // 2> We have "Cond" as the incoming value for the unconditional branch; 221 // 3> SI2->getCondition() and Cond have same operands. 222 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 223 if (!Ci2) 224 return false; 225 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 226 Cond->getOperand(1) == Ci2->getOperand(1)) && 227 !(Cond->getOperand(0) == Ci2->getOperand(1) && 228 Cond->getOperand(1) == Ci2->getOperand(0))) 229 return false; 230 231 BasicBlock *SI1BB = SI1->getParent(); 232 BasicBlock *SI2BB = SI2->getParent(); 233 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 234 for (BasicBlock *Succ : successors(SI2BB)) 235 if (SI1Succs.count(Succ)) 236 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 237 PHINode *PN = cast<PHINode>(BBI); 238 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 239 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 240 return false; 241 PhiNodes.push_back(PN); 242 } 243 return true; 244 } 245 246 /// Update PHI nodes in Succ to indicate that there will now be entries in it 247 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 248 /// will be the same as those coming in from ExistPred, an existing predecessor 249 /// of Succ. 250 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 251 BasicBlock *ExistPred) { 252 if (!isa<PHINode>(Succ->begin())) 253 return; // Quick exit if nothing to do 254 255 PHINode *PN; 256 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 257 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 258 } 259 260 /// Compute an abstract "cost" of speculating the given instruction, 261 /// which is assumed to be safe to speculate. TCC_Free means cheap, 262 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 263 /// expensive. 264 static unsigned ComputeSpeculationCost(const User *I, 265 const TargetTransformInfo &TTI) { 266 assert(isSafeToSpeculativelyExecute(I) && 267 "Instruction is not safe to speculatively execute!"); 268 return TTI.getUserCost(I); 269 } 270 271 /// If we have a merge point of an "if condition" as accepted above, 272 /// return true if the specified value dominates the block. We 273 /// don't handle the true generality of domination here, just a special case 274 /// which works well enough for us. 275 /// 276 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 277 /// see if V (which must be an instruction) and its recursive operands 278 /// that do not dominate BB have a combined cost lower than CostRemaining and 279 /// are non-trapping. If both are true, the instruction is inserted into the 280 /// set and true is returned. 281 /// 282 /// The cost for most non-trapping instructions is defined as 1 except for 283 /// Select whose cost is 2. 284 /// 285 /// After this function returns, CostRemaining is decreased by the cost of 286 /// V plus its non-dominating operands. If that cost is greater than 287 /// CostRemaining, false is returned and CostRemaining is undefined. 288 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 289 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 290 unsigned &CostRemaining, 291 const TargetTransformInfo &TTI, 292 unsigned Depth = 0) { 293 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 294 // so limit the recursion depth. 295 // TODO: While this recursion limit does prevent pathological behavior, it 296 // would be better to track visited instructions to avoid cycles. 297 if (Depth == MaxSpeculationDepth) 298 return false; 299 300 Instruction *I = dyn_cast<Instruction>(V); 301 if (!I) { 302 // Non-instructions all dominate instructions, but not all constantexprs 303 // can be executed unconditionally. 304 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 305 if (C->canTrap()) 306 return false; 307 return true; 308 } 309 BasicBlock *PBB = I->getParent(); 310 311 // We don't want to allow weird loops that might have the "if condition" in 312 // the bottom of this block. 313 if (PBB == BB) 314 return false; 315 316 // If this instruction is defined in a block that contains an unconditional 317 // branch to BB, then it must be in the 'conditional' part of the "if 318 // statement". If not, it definitely dominates the region. 319 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 320 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 321 return true; 322 323 // If we aren't allowing aggressive promotion anymore, then don't consider 324 // instructions in the 'if region'. 325 if (!AggressiveInsts) 326 return false; 327 328 // If we have seen this instruction before, don't count it again. 329 if (AggressiveInsts->count(I)) 330 return true; 331 332 // Okay, it looks like the instruction IS in the "condition". Check to 333 // see if it's a cheap instruction to unconditionally compute, and if it 334 // only uses stuff defined outside of the condition. If so, hoist it out. 335 if (!isSafeToSpeculativelyExecute(I)) 336 return false; 337 338 unsigned Cost = ComputeSpeculationCost(I, TTI); 339 340 // Allow exactly one instruction to be speculated regardless of its cost 341 // (as long as it is safe to do so). 342 // This is intended to flatten the CFG even if the instruction is a division 343 // or other expensive operation. The speculation of an expensive instruction 344 // is expected to be undone in CodeGenPrepare if the speculation has not 345 // enabled further IR optimizations. 346 if (Cost > CostRemaining && 347 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 348 return false; 349 350 // Avoid unsigned wrap. 351 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 352 353 // Okay, we can only really hoist these out if their operands do 354 // not take us over the cost threshold. 355 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 356 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 357 Depth + 1)) 358 return false; 359 // Okay, it's safe to do this! Remember this instruction. 360 AggressiveInsts->insert(I); 361 return true; 362 } 363 364 /// Extract ConstantInt from value, looking through IntToPtr 365 /// and PointerNullValue. Return NULL if value is not a constant int. 366 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 367 // Normal constant int. 368 ConstantInt *CI = dyn_cast<ConstantInt>(V); 369 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 370 return CI; 371 372 // This is some kind of pointer constant. Turn it into a pointer-sized 373 // ConstantInt if possible. 374 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 375 376 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 377 if (isa<ConstantPointerNull>(V)) 378 return ConstantInt::get(PtrTy, 0); 379 380 // IntToPtr const int. 381 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 382 if (CE->getOpcode() == Instruction::IntToPtr) 383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 384 // The constant is very likely to have the right type already. 385 if (CI->getType() == PtrTy) 386 return CI; 387 else 388 return cast<ConstantInt>( 389 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 390 } 391 return nullptr; 392 } 393 394 namespace { 395 396 /// Given a chain of or (||) or and (&&) comparison of a value against a 397 /// constant, this will try to recover the information required for a switch 398 /// structure. 399 /// It will depth-first traverse the chain of comparison, seeking for patterns 400 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 401 /// representing the different cases for the switch. 402 /// Note that if the chain is composed of '||' it will build the set of elements 403 /// that matches the comparisons (i.e. any of this value validate the chain) 404 /// while for a chain of '&&' it will build the set elements that make the test 405 /// fail. 406 struct ConstantComparesGatherer { 407 const DataLayout &DL; 408 Value *CompValue; /// Value found for the switch comparison 409 Value *Extra; /// Extra clause to be checked before the switch 410 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 411 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 412 413 /// Construct and compute the result for the comparison instruction Cond 414 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 415 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 416 gather(Cond); 417 } 418 419 /// Prevent copy 420 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 421 ConstantComparesGatherer & 422 operator=(const ConstantComparesGatherer &) = delete; 423 424 private: 425 /// Try to set the current value used for the comparison, it succeeds only if 426 /// it wasn't set before or if the new value is the same as the old one 427 bool setValueOnce(Value *NewVal) { 428 if (CompValue && CompValue != NewVal) 429 return false; 430 CompValue = NewVal; 431 return (CompValue != nullptr); 432 } 433 434 /// Try to match Instruction "I" as a comparison against a constant and 435 /// populates the array Vals with the set of values that match (or do not 436 /// match depending on isEQ). 437 /// Return false on failure. On success, the Value the comparison matched 438 /// against is placed in CompValue. 439 /// If CompValue is already set, the function is expected to fail if a match 440 /// is found but the value compared to is different. 441 bool matchInstruction(Instruction *I, bool isEQ) { 442 // If this is an icmp against a constant, handle this as one of the cases. 443 ICmpInst *ICI; 444 ConstantInt *C; 445 if (!((ICI = dyn_cast<ICmpInst>(I)) && 446 (C = GetConstantInt(I->getOperand(1), DL)))) { 447 return false; 448 } 449 450 Value *RHSVal; 451 const APInt *RHSC; 452 453 // Pattern match a special case 454 // (x & ~2^z) == y --> x == y || x == y|2^z 455 // This undoes a transformation done by instcombine to fuse 2 compares. 456 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 457 458 // It's a little bit hard to see why the following transformations are 459 // correct. Here is a CVC3 program to verify them for 64-bit values: 460 461 /* 462 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 463 x : BITVECTOR(64); 464 y : BITVECTOR(64); 465 z : BITVECTOR(64); 466 mask : BITVECTOR(64) = BVSHL(ONE, z); 467 QUERY( (y & ~mask = y) => 468 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 469 ); 470 QUERY( (y | mask = y) => 471 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 472 ); 473 */ 474 475 // Please note that each pattern must be a dual implication (<--> or 476 // iff). One directional implication can create spurious matches. If the 477 // implication is only one-way, an unsatisfiable condition on the left 478 // side can imply a satisfiable condition on the right side. Dual 479 // implication ensures that satisfiable conditions are transformed to 480 // other satisfiable conditions and unsatisfiable conditions are 481 // transformed to other unsatisfiable conditions. 482 483 // Here is a concrete example of a unsatisfiable condition on the left 484 // implying a satisfiable condition on the right: 485 // 486 // mask = (1 << z) 487 // (x & ~mask) == y --> (x == y || x == (y | mask)) 488 // 489 // Substituting y = 3, z = 0 yields: 490 // (x & -2) == 3 --> (x == 3 || x == 2) 491 492 // Pattern match a special case: 493 /* 494 QUERY( (y & ~mask = y) => 495 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 496 ); 497 */ 498 if (match(ICI->getOperand(0), 499 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 500 APInt Mask = ~*RHSC; 501 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 502 // If we already have a value for the switch, it has to match! 503 if (!setValueOnce(RHSVal)) 504 return false; 505 506 Vals.push_back(C); 507 Vals.push_back( 508 ConstantInt::get(C->getContext(), 509 C->getValue() | Mask)); 510 UsedICmps++; 511 return true; 512 } 513 } 514 515 // Pattern match a special case: 516 /* 517 QUERY( (y | mask = y) => 518 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 519 ); 520 */ 521 if (match(ICI->getOperand(0), 522 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 523 APInt Mask = *RHSC; 524 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 525 // If we already have a value for the switch, it has to match! 526 if (!setValueOnce(RHSVal)) 527 return false; 528 529 Vals.push_back(C); 530 Vals.push_back(ConstantInt::get(C->getContext(), 531 C->getValue() & ~Mask)); 532 UsedICmps++; 533 return true; 534 } 535 } 536 537 // If we already have a value for the switch, it has to match! 538 if (!setValueOnce(ICI->getOperand(0))) 539 return false; 540 541 UsedICmps++; 542 Vals.push_back(C); 543 return ICI->getOperand(0); 544 } 545 546 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 547 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 548 ICI->getPredicate(), C->getValue()); 549 550 // Shift the range if the compare is fed by an add. This is the range 551 // compare idiom as emitted by instcombine. 552 Value *CandidateVal = I->getOperand(0); 553 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 554 Span = Span.subtract(*RHSC); 555 CandidateVal = RHSVal; 556 } 557 558 // If this is an and/!= check, then we are looking to build the set of 559 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 560 // x != 0 && x != 1. 561 if (!isEQ) 562 Span = Span.inverse(); 563 564 // If there are a ton of values, we don't want to make a ginormous switch. 565 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 566 return false; 567 } 568 569 // If we already have a value for the switch, it has to match! 570 if (!setValueOnce(CandidateVal)) 571 return false; 572 573 // Add all values from the range to the set 574 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 575 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 576 577 UsedICmps++; 578 return true; 579 } 580 581 /// Given a potentially 'or'd or 'and'd together collection of icmp 582 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 583 /// the value being compared, and stick the list constants into the Vals 584 /// vector. 585 /// One "Extra" case is allowed to differ from the other. 586 void gather(Value *V) { 587 Instruction *I = dyn_cast<Instruction>(V); 588 bool isEQ = (I->getOpcode() == Instruction::Or); 589 590 // Keep a stack (SmallVector for efficiency) for depth-first traversal 591 SmallVector<Value *, 8> DFT; 592 SmallPtrSet<Value *, 8> Visited; 593 594 // Initialize 595 Visited.insert(V); 596 DFT.push_back(V); 597 598 while (!DFT.empty()) { 599 V = DFT.pop_back_val(); 600 601 if (Instruction *I = dyn_cast<Instruction>(V)) { 602 // If it is a || (or && depending on isEQ), process the operands. 603 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 604 if (Visited.insert(I->getOperand(1)).second) 605 DFT.push_back(I->getOperand(1)); 606 if (Visited.insert(I->getOperand(0)).second) 607 DFT.push_back(I->getOperand(0)); 608 continue; 609 } 610 611 // Try to match the current instruction 612 if (matchInstruction(I, isEQ)) 613 // Match succeed, continue the loop 614 continue; 615 } 616 617 // One element of the sequence of || (or &&) could not be match as a 618 // comparison against the same value as the others. 619 // We allow only one "Extra" case to be checked before the switch 620 if (!Extra) { 621 Extra = V; 622 continue; 623 } 624 // Failed to parse a proper sequence, abort now 625 CompValue = nullptr; 626 break; 627 } 628 } 629 }; 630 } 631 632 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 633 Instruction *Cond = nullptr; 634 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 635 Cond = dyn_cast<Instruction>(SI->getCondition()); 636 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 637 if (BI->isConditional()) 638 Cond = dyn_cast<Instruction>(BI->getCondition()); 639 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 640 Cond = dyn_cast<Instruction>(IBI->getAddress()); 641 } 642 643 TI->eraseFromParent(); 644 if (Cond) 645 RecursivelyDeleteTriviallyDeadInstructions(Cond); 646 } 647 648 /// Return true if the specified terminator checks 649 /// to see if a value is equal to constant integer value. 650 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 651 Value *CV = nullptr; 652 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 653 // Do not permit merging of large switch instructions into their 654 // predecessors unless there is only one predecessor. 655 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 656 pred_end(SI->getParent())) <= 657 128) 658 CV = SI->getCondition(); 659 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 660 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 661 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 662 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 663 CV = ICI->getOperand(0); 664 } 665 666 // Unwrap any lossless ptrtoint cast. 667 if (CV) { 668 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 669 Value *Ptr = PTII->getPointerOperand(); 670 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 671 CV = Ptr; 672 } 673 } 674 return CV; 675 } 676 677 /// Given a value comparison instruction, 678 /// decode all of the 'cases' that it represents and return the 'default' block. 679 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 680 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 681 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 682 Cases.reserve(SI->getNumCases()); 683 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 684 ++i) 685 Cases.push_back( 686 ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor())); 687 return SI->getDefaultDest(); 688 } 689 690 BranchInst *BI = cast<BranchInst>(TI); 691 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 692 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 693 Cases.push_back(ValueEqualityComparisonCase( 694 GetConstantInt(ICI->getOperand(1), DL), Succ)); 695 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 696 } 697 698 /// Given a vector of bb/value pairs, remove any entries 699 /// in the list that match the specified block. 700 static void 701 EliminateBlockCases(BasicBlock *BB, 702 std::vector<ValueEqualityComparisonCase> &Cases) { 703 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 704 } 705 706 /// Return true if there are any keys in C1 that exist in C2 as well. 707 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 708 std::vector<ValueEqualityComparisonCase> &C2) { 709 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 710 711 // Make V1 be smaller than V2. 712 if (V1->size() > V2->size()) 713 std::swap(V1, V2); 714 715 if (V1->size() == 0) 716 return false; 717 if (V1->size() == 1) { 718 // Just scan V2. 719 ConstantInt *TheVal = (*V1)[0].Value; 720 for (unsigned i = 0, e = V2->size(); i != e; ++i) 721 if (TheVal == (*V2)[i].Value) 722 return true; 723 } 724 725 // Otherwise, just sort both lists and compare element by element. 726 array_pod_sort(V1->begin(), V1->end()); 727 array_pod_sort(V2->begin(), V2->end()); 728 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 729 while (i1 != e1 && i2 != e2) { 730 if ((*V1)[i1].Value == (*V2)[i2].Value) 731 return true; 732 if ((*V1)[i1].Value < (*V2)[i2].Value) 733 ++i1; 734 else 735 ++i2; 736 } 737 return false; 738 } 739 740 /// If TI is known to be a terminator instruction and its block is known to 741 /// only have a single predecessor block, check to see if that predecessor is 742 /// also a value comparison with the same value, and if that comparison 743 /// determines the outcome of this comparison. If so, simplify TI. This does a 744 /// very limited form of jump threading. 745 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 746 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 747 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 748 if (!PredVal) 749 return false; // Not a value comparison in predecessor. 750 751 Value *ThisVal = isValueEqualityComparison(TI); 752 assert(ThisVal && "This isn't a value comparison!!"); 753 if (ThisVal != PredVal) 754 return false; // Different predicates. 755 756 // TODO: Preserve branch weight metadata, similarly to how 757 // FoldValueComparisonIntoPredecessors preserves it. 758 759 // Find out information about when control will move from Pred to TI's block. 760 std::vector<ValueEqualityComparisonCase> PredCases; 761 BasicBlock *PredDef = 762 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 763 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 764 765 // Find information about how control leaves this block. 766 std::vector<ValueEqualityComparisonCase> ThisCases; 767 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 768 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 769 770 // If TI's block is the default block from Pred's comparison, potentially 771 // simplify TI based on this knowledge. 772 if (PredDef == TI->getParent()) { 773 // If we are here, we know that the value is none of those cases listed in 774 // PredCases. If there are any cases in ThisCases that are in PredCases, we 775 // can simplify TI. 776 if (!ValuesOverlap(PredCases, ThisCases)) 777 return false; 778 779 if (isa<BranchInst>(TI)) { 780 // Okay, one of the successors of this condbr is dead. Convert it to a 781 // uncond br. 782 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 783 // Insert the new branch. 784 Instruction *NI = Builder.CreateBr(ThisDef); 785 (void)NI; 786 787 // Remove PHI node entries for the dead edge. 788 ThisCases[0].Dest->removePredecessor(TI->getParent()); 789 790 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 791 << "Through successor TI: " << *TI << "Leaving: " << *NI 792 << "\n"); 793 794 EraseTerminatorInstAndDCECond(TI); 795 return true; 796 } 797 798 SwitchInst *SI = cast<SwitchInst>(TI); 799 // Okay, TI has cases that are statically dead, prune them away. 800 SmallPtrSet<Constant *, 16> DeadCases; 801 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 802 DeadCases.insert(PredCases[i].Value); 803 804 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 805 << "Through successor TI: " << *TI); 806 807 // Collect branch weights into a vector. 808 SmallVector<uint32_t, 8> Weights; 809 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 810 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 811 if (HasWeight) 812 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 813 ++MD_i) { 814 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 815 Weights.push_back(CI->getValue().getZExtValue()); 816 } 817 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 818 --i; 819 if (DeadCases.count(i.getCaseValue())) { 820 if (HasWeight) { 821 std::swap(Weights[i.getCaseIndex() + 1], Weights.back()); 822 Weights.pop_back(); 823 } 824 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 825 SI->removeCase(i); 826 } 827 } 828 if (HasWeight && Weights.size() >= 2) 829 SI->setMetadata(LLVMContext::MD_prof, 830 MDBuilder(SI->getParent()->getContext()) 831 .createBranchWeights(Weights)); 832 833 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 834 return true; 835 } 836 837 // Otherwise, TI's block must correspond to some matched value. Find out 838 // which value (or set of values) this is. 839 ConstantInt *TIV = nullptr; 840 BasicBlock *TIBB = TI->getParent(); 841 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 842 if (PredCases[i].Dest == TIBB) { 843 if (TIV) 844 return false; // Cannot handle multiple values coming to this block. 845 TIV = PredCases[i].Value; 846 } 847 assert(TIV && "No edge from pred to succ?"); 848 849 // Okay, we found the one constant that our value can be if we get into TI's 850 // BB. Find out which successor will unconditionally be branched to. 851 BasicBlock *TheRealDest = nullptr; 852 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 853 if (ThisCases[i].Value == TIV) { 854 TheRealDest = ThisCases[i].Dest; 855 break; 856 } 857 858 // If not handled by any explicit cases, it is handled by the default case. 859 if (!TheRealDest) 860 TheRealDest = ThisDef; 861 862 // Remove PHI node entries for dead edges. 863 BasicBlock *CheckEdge = TheRealDest; 864 for (BasicBlock *Succ : successors(TIBB)) 865 if (Succ != CheckEdge) 866 Succ->removePredecessor(TIBB); 867 else 868 CheckEdge = nullptr; 869 870 // Insert the new branch. 871 Instruction *NI = Builder.CreateBr(TheRealDest); 872 (void)NI; 873 874 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 875 << "Through successor TI: " << *TI << "Leaving: " << *NI 876 << "\n"); 877 878 EraseTerminatorInstAndDCECond(TI); 879 return true; 880 } 881 882 namespace { 883 /// This class implements a stable ordering of constant 884 /// integers that does not depend on their address. This is important for 885 /// applications that sort ConstantInt's to ensure uniqueness. 886 struct ConstantIntOrdering { 887 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 888 return LHS->getValue().ult(RHS->getValue()); 889 } 890 }; 891 } 892 893 static int ConstantIntSortPredicate(ConstantInt *const *P1, 894 ConstantInt *const *P2) { 895 const ConstantInt *LHS = *P1; 896 const ConstantInt *RHS = *P2; 897 if (LHS == RHS) 898 return 0; 899 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 900 } 901 902 static inline bool HasBranchWeights(const Instruction *I) { 903 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 904 if (ProfMD && ProfMD->getOperand(0)) 905 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 906 return MDS->getString().equals("branch_weights"); 907 908 return false; 909 } 910 911 /// Get Weights of a given TerminatorInst, the default weight is at the front 912 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 913 /// metadata. 914 static void GetBranchWeights(TerminatorInst *TI, 915 SmallVectorImpl<uint64_t> &Weights) { 916 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 917 assert(MD); 918 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 919 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 920 Weights.push_back(CI->getValue().getZExtValue()); 921 } 922 923 // If TI is a conditional eq, the default case is the false case, 924 // and the corresponding branch-weight data is at index 2. We swap the 925 // default weight to be the first entry. 926 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 927 assert(Weights.size() == 2); 928 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 929 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 930 std::swap(Weights.front(), Weights.back()); 931 } 932 } 933 934 /// Keep halving the weights until all can fit in uint32_t. 935 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 936 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 937 if (Max > UINT_MAX) { 938 unsigned Offset = 32 - countLeadingZeros(Max); 939 for (uint64_t &I : Weights) 940 I >>= Offset; 941 } 942 } 943 944 /// The specified terminator is a value equality comparison instruction 945 /// (either a switch or a branch on "X == c"). 946 /// See if any of the predecessors of the terminator block are value comparisons 947 /// on the same value. If so, and if safe to do so, fold them together. 948 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 949 IRBuilder<> &Builder) { 950 BasicBlock *BB = TI->getParent(); 951 Value *CV = isValueEqualityComparison(TI); // CondVal 952 assert(CV && "Not a comparison?"); 953 bool Changed = false; 954 955 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 956 while (!Preds.empty()) { 957 BasicBlock *Pred = Preds.pop_back_val(); 958 959 // See if the predecessor is a comparison with the same value. 960 TerminatorInst *PTI = Pred->getTerminator(); 961 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 962 963 if (PCV == CV && TI != PTI) { 964 SmallSetVector<BasicBlock*, 4> FailBlocks; 965 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 966 for (auto *Succ : FailBlocks) { 967 std::vector<BasicBlock*> Blocks = { TI->getParent() }; 968 if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split")) 969 return false; 970 } 971 } 972 973 // Figure out which 'cases' to copy from SI to PSI. 974 std::vector<ValueEqualityComparisonCase> BBCases; 975 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 976 977 std::vector<ValueEqualityComparisonCase> PredCases; 978 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 979 980 // Based on whether the default edge from PTI goes to BB or not, fill in 981 // PredCases and PredDefault with the new switch cases we would like to 982 // build. 983 SmallVector<BasicBlock *, 8> NewSuccessors; 984 985 // Update the branch weight metadata along the way 986 SmallVector<uint64_t, 8> Weights; 987 bool PredHasWeights = HasBranchWeights(PTI); 988 bool SuccHasWeights = HasBranchWeights(TI); 989 990 if (PredHasWeights) { 991 GetBranchWeights(PTI, Weights); 992 // branch-weight metadata is inconsistent here. 993 if (Weights.size() != 1 + PredCases.size()) 994 PredHasWeights = SuccHasWeights = false; 995 } else if (SuccHasWeights) 996 // If there are no predecessor weights but there are successor weights, 997 // populate Weights with 1, which will later be scaled to the sum of 998 // successor's weights 999 Weights.assign(1 + PredCases.size(), 1); 1000 1001 SmallVector<uint64_t, 8> SuccWeights; 1002 if (SuccHasWeights) { 1003 GetBranchWeights(TI, SuccWeights); 1004 // branch-weight metadata is inconsistent here. 1005 if (SuccWeights.size() != 1 + BBCases.size()) 1006 PredHasWeights = SuccHasWeights = false; 1007 } else if (PredHasWeights) 1008 SuccWeights.assign(1 + BBCases.size(), 1); 1009 1010 if (PredDefault == BB) { 1011 // If this is the default destination from PTI, only the edges in TI 1012 // that don't occur in PTI, or that branch to BB will be activated. 1013 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1014 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1015 if (PredCases[i].Dest != BB) 1016 PTIHandled.insert(PredCases[i].Value); 1017 else { 1018 // The default destination is BB, we don't need explicit targets. 1019 std::swap(PredCases[i], PredCases.back()); 1020 1021 if (PredHasWeights || SuccHasWeights) { 1022 // Increase weight for the default case. 1023 Weights[0] += Weights[i + 1]; 1024 std::swap(Weights[i + 1], Weights.back()); 1025 Weights.pop_back(); 1026 } 1027 1028 PredCases.pop_back(); 1029 --i; 1030 --e; 1031 } 1032 1033 // Reconstruct the new switch statement we will be building. 1034 if (PredDefault != BBDefault) { 1035 PredDefault->removePredecessor(Pred); 1036 PredDefault = BBDefault; 1037 NewSuccessors.push_back(BBDefault); 1038 } 1039 1040 unsigned CasesFromPred = Weights.size(); 1041 uint64_t ValidTotalSuccWeight = 0; 1042 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1043 if (!PTIHandled.count(BBCases[i].Value) && 1044 BBCases[i].Dest != BBDefault) { 1045 PredCases.push_back(BBCases[i]); 1046 NewSuccessors.push_back(BBCases[i].Dest); 1047 if (SuccHasWeights || PredHasWeights) { 1048 // The default weight is at index 0, so weight for the ith case 1049 // should be at index i+1. Scale the cases from successor by 1050 // PredDefaultWeight (Weights[0]). 1051 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1052 ValidTotalSuccWeight += SuccWeights[i + 1]; 1053 } 1054 } 1055 1056 if (SuccHasWeights || PredHasWeights) { 1057 ValidTotalSuccWeight += SuccWeights[0]; 1058 // Scale the cases from predecessor by ValidTotalSuccWeight. 1059 for (unsigned i = 1; i < CasesFromPred; ++i) 1060 Weights[i] *= ValidTotalSuccWeight; 1061 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1062 Weights[0] *= SuccWeights[0]; 1063 } 1064 } else { 1065 // If this is not the default destination from PSI, only the edges 1066 // in SI that occur in PSI with a destination of BB will be 1067 // activated. 1068 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1069 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1070 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1071 if (PredCases[i].Dest == BB) { 1072 PTIHandled.insert(PredCases[i].Value); 1073 1074 if (PredHasWeights || SuccHasWeights) { 1075 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1076 std::swap(Weights[i + 1], Weights.back()); 1077 Weights.pop_back(); 1078 } 1079 1080 std::swap(PredCases[i], PredCases.back()); 1081 PredCases.pop_back(); 1082 --i; 1083 --e; 1084 } 1085 1086 // Okay, now we know which constants were sent to BB from the 1087 // predecessor. Figure out where they will all go now. 1088 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1089 if (PTIHandled.count(BBCases[i].Value)) { 1090 // If this is one we are capable of getting... 1091 if (PredHasWeights || SuccHasWeights) 1092 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1093 PredCases.push_back(BBCases[i]); 1094 NewSuccessors.push_back(BBCases[i].Dest); 1095 PTIHandled.erase( 1096 BBCases[i].Value); // This constant is taken care of 1097 } 1098 1099 // If there are any constants vectored to BB that TI doesn't handle, 1100 // they must go to the default destination of TI. 1101 for (ConstantInt *I : PTIHandled) { 1102 if (PredHasWeights || SuccHasWeights) 1103 Weights.push_back(WeightsForHandled[I]); 1104 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1105 NewSuccessors.push_back(BBDefault); 1106 } 1107 } 1108 1109 // Okay, at this point, we know which new successor Pred will get. Make 1110 // sure we update the number of entries in the PHI nodes for these 1111 // successors. 1112 for (BasicBlock *NewSuccessor : NewSuccessors) 1113 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1114 1115 Builder.SetInsertPoint(PTI); 1116 // Convert pointer to int before we switch. 1117 if (CV->getType()->isPointerTy()) { 1118 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1119 "magicptr"); 1120 } 1121 1122 // Now that the successors are updated, create the new Switch instruction. 1123 SwitchInst *NewSI = 1124 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1125 NewSI->setDebugLoc(PTI->getDebugLoc()); 1126 for (ValueEqualityComparisonCase &V : PredCases) 1127 NewSI->addCase(V.Value, V.Dest); 1128 1129 if (PredHasWeights || SuccHasWeights) { 1130 // Halve the weights if any of them cannot fit in an uint32_t 1131 FitWeights(Weights); 1132 1133 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1134 1135 NewSI->setMetadata( 1136 LLVMContext::MD_prof, 1137 MDBuilder(BB->getContext()).createBranchWeights(MDWeights)); 1138 } 1139 1140 EraseTerminatorInstAndDCECond(PTI); 1141 1142 // Okay, last check. If BB is still a successor of PSI, then we must 1143 // have an infinite loop case. If so, add an infinitely looping block 1144 // to handle the case to preserve the behavior of the code. 1145 BasicBlock *InfLoopBlock = nullptr; 1146 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1147 if (NewSI->getSuccessor(i) == BB) { 1148 if (!InfLoopBlock) { 1149 // Insert it at the end of the function, because it's either code, 1150 // or it won't matter if it's hot. :) 1151 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1152 BB->getParent()); 1153 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1154 } 1155 NewSI->setSuccessor(i, InfLoopBlock); 1156 } 1157 1158 Changed = true; 1159 } 1160 } 1161 return Changed; 1162 } 1163 1164 // If we would need to insert a select that uses the value of this invoke 1165 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1166 // can't hoist the invoke, as there is nowhere to put the select in this case. 1167 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1168 Instruction *I1, Instruction *I2) { 1169 for (BasicBlock *Succ : successors(BB1)) { 1170 PHINode *PN; 1171 for (BasicBlock::iterator BBI = Succ->begin(); 1172 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1173 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1174 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1175 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1176 return false; 1177 } 1178 } 1179 } 1180 return true; 1181 } 1182 1183 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1184 1185 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1186 /// in the two blocks up into the branch block. The caller of this function 1187 /// guarantees that BI's block dominates BB1 and BB2. 1188 static bool HoistThenElseCodeToIf(BranchInst *BI, 1189 const TargetTransformInfo &TTI) { 1190 // This does very trivial matching, with limited scanning, to find identical 1191 // instructions in the two blocks. In particular, we don't want to get into 1192 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1193 // such, we currently just scan for obviously identical instructions in an 1194 // identical order. 1195 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1196 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1197 1198 BasicBlock::iterator BB1_Itr = BB1->begin(); 1199 BasicBlock::iterator BB2_Itr = BB2->begin(); 1200 1201 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1202 // Skip debug info if it is not identical. 1203 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1204 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1205 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1206 while (isa<DbgInfoIntrinsic>(I1)) 1207 I1 = &*BB1_Itr++; 1208 while (isa<DbgInfoIntrinsic>(I2)) 1209 I2 = &*BB2_Itr++; 1210 } 1211 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1212 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1213 return false; 1214 1215 BasicBlock *BIParent = BI->getParent(); 1216 1217 bool Changed = false; 1218 do { 1219 // If we are hoisting the terminator instruction, don't move one (making a 1220 // broken BB), instead clone it, and remove BI. 1221 if (isa<TerminatorInst>(I1)) 1222 goto HoistTerminator; 1223 1224 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1225 return Changed; 1226 1227 // For a normal instruction, we just move one to right before the branch, 1228 // then replace all uses of the other with the first. Finally, we remove 1229 // the now redundant second instruction. 1230 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1231 if (!I2->use_empty()) 1232 I2->replaceAllUsesWith(I1); 1233 I1->intersectOptionalDataWith(I2); 1234 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1235 LLVMContext::MD_range, 1236 LLVMContext::MD_fpmath, 1237 LLVMContext::MD_invariant_load, 1238 LLVMContext::MD_nonnull, 1239 LLVMContext::MD_invariant_group, 1240 LLVMContext::MD_align, 1241 LLVMContext::MD_dereferenceable, 1242 LLVMContext::MD_dereferenceable_or_null, 1243 LLVMContext::MD_mem_parallel_loop_access}; 1244 combineMetadata(I1, I2, KnownIDs); 1245 I2->eraseFromParent(); 1246 Changed = true; 1247 1248 I1 = &*BB1_Itr++; 1249 I2 = &*BB2_Itr++; 1250 // Skip debug info if it is not identical. 1251 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1252 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1253 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1254 while (isa<DbgInfoIntrinsic>(I1)) 1255 I1 = &*BB1_Itr++; 1256 while (isa<DbgInfoIntrinsic>(I2)) 1257 I2 = &*BB2_Itr++; 1258 } 1259 } while (I1->isIdenticalToWhenDefined(I2)); 1260 1261 return true; 1262 1263 HoistTerminator: 1264 // It may not be possible to hoist an invoke. 1265 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1266 return Changed; 1267 1268 for (BasicBlock *Succ : successors(BB1)) { 1269 PHINode *PN; 1270 for (BasicBlock::iterator BBI = Succ->begin(); 1271 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1272 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1273 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1274 if (BB1V == BB2V) 1275 continue; 1276 1277 // Check for passingValueIsAlwaysUndefined here because we would rather 1278 // eliminate undefined control flow then converting it to a select. 1279 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1280 passingValueIsAlwaysUndefined(BB2V, PN)) 1281 return Changed; 1282 1283 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1284 return Changed; 1285 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1286 return Changed; 1287 } 1288 } 1289 1290 // Okay, it is safe to hoist the terminator. 1291 Instruction *NT = I1->clone(); 1292 BIParent->getInstList().insert(BI->getIterator(), NT); 1293 if (!NT->getType()->isVoidTy()) { 1294 I1->replaceAllUsesWith(NT); 1295 I2->replaceAllUsesWith(NT); 1296 NT->takeName(I1); 1297 } 1298 1299 IRBuilder<NoFolder> Builder(NT); 1300 // Hoisting one of the terminators from our successor is a great thing. 1301 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1302 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1303 // nodes, so we insert select instruction to compute the final result. 1304 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1305 for (BasicBlock *Succ : successors(BB1)) { 1306 PHINode *PN; 1307 for (BasicBlock::iterator BBI = Succ->begin(); 1308 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1309 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1310 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1311 if (BB1V == BB2V) 1312 continue; 1313 1314 // These values do not agree. Insert a select instruction before NT 1315 // that determines the right value. 1316 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1317 if (!SI) 1318 SI = cast<SelectInst>( 1319 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1320 BB1V->getName() + "." + BB2V->getName(), BI)); 1321 1322 // Make the PHI node use the select for all incoming values for BB1/BB2 1323 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1324 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1325 PN->setIncomingValue(i, SI); 1326 } 1327 } 1328 1329 // Update any PHI nodes in our new successors. 1330 for (BasicBlock *Succ : successors(BB1)) 1331 AddPredecessorToBlock(Succ, BIParent, BB1); 1332 1333 EraseTerminatorInstAndDCECond(BI); 1334 return true; 1335 } 1336 1337 // Is it legal to place a variable in operand \c OpIdx of \c I? 1338 // FIXME: This should be promoted to Instruction. 1339 static bool canReplaceOperandWithVariable(const Instruction *I, 1340 unsigned OpIdx) { 1341 // Early exit. 1342 if (!isa<Constant>(I->getOperand(OpIdx))) 1343 return true; 1344 1345 switch (I->getOpcode()) { 1346 default: 1347 return true; 1348 case Instruction::Call: 1349 case Instruction::Invoke: 1350 // FIXME: many arithmetic intrinsics have no issue taking a 1351 // variable, however it's hard to distingish these from 1352 // specials such as @llvm.frameaddress that require a constant. 1353 return !isa<IntrinsicInst>(I); 1354 case Instruction::ShuffleVector: 1355 // Shufflevector masks are constant. 1356 return OpIdx != 2; 1357 case Instruction::ExtractValue: 1358 case Instruction::InsertValue: 1359 // All operands apart from the first are constant. 1360 return OpIdx == 0; 1361 case Instruction::Alloca: 1362 return false; 1363 case Instruction::GetElementPtr: 1364 if (OpIdx == 0) 1365 return true; 1366 gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1); 1367 return !It->isStructTy(); 1368 } 1369 } 1370 1371 // All instructions in Insts belong to different blocks that all unconditionally 1372 // branch to a common successor. Analyze each instruction and return true if it 1373 // would be possible to sink them into their successor, creating one common 1374 // instruction instead. For every value that would be required to be provided by 1375 // PHI node (because an operand varies in each input block), add to PHIOperands. 1376 static bool canSinkInstructions( 1377 ArrayRef<Instruction *> Insts, 1378 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1379 // Prune out obviously bad instructions to move. Any non-store instruction 1380 // must have exactly one use, and we check later that use is by a single, 1381 // common PHI instruction in the successor. 1382 for (auto *I : Insts) { 1383 // These instructions may change or break semantics if moved. 1384 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1385 I->getType()->isTokenTy()) 1386 return false; 1387 // Everything must have only one use too, apart from stores which 1388 // have no uses. 1389 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1390 return false; 1391 } 1392 1393 const Instruction *I0 = Insts.front(); 1394 for (auto *I : Insts) 1395 if (!I->isSameOperationAs(I0)) 1396 return false; 1397 1398 // All instructions in Insts are known to be the same opcode. If they aren't 1399 // stores, check the only user of each is a PHI or in the same block as the 1400 // instruction, because if a user is in the same block as an instruction 1401 // we're contemplating sinking, it must already be determined to be sinkable. 1402 if (!isa<StoreInst>(I0)) { 1403 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1404 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1405 auto *U = cast<Instruction>(*I->user_begin()); 1406 return U == PNUse || U->getParent() == I->getParent(); 1407 })) 1408 return false; 1409 } 1410 1411 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1412 if (I0->getOperand(OI)->getType()->isTokenTy()) 1413 // Don't touch any operand of token type. 1414 return false; 1415 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1416 assert(I->getNumOperands() == I0->getNumOperands()); 1417 return I->getOperand(OI) == I0->getOperand(OI); 1418 }; 1419 if (!all_of(Insts, SameAsI0)) { 1420 if (!canReplaceOperandWithVariable(I0, OI)) 1421 // We can't create a PHI from this GEP. 1422 return false; 1423 // Don't create indirect calls! The called value is the final operand. 1424 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1425 // FIXME: if the call was *already* indirect, we should do this. 1426 return false; 1427 } 1428 // Because SROA can't handle speculating stores of selects, try not 1429 // to sink stores of allocas when we'd have to create a PHI for the 1430 // address operand. 1431 // FIXME: This is a workaround for a deficiency in SROA - see 1432 // https://llvm.org/bugs/show_bug.cgi?id=30188 1433 if (OI == 1 && isa<StoreInst>(I0) && 1434 any_of(Insts, [](const Instruction *I) { 1435 return isa<AllocaInst>(I->getOperand(1)); 1436 })) 1437 return false; 1438 for (auto *I : Insts) 1439 PHIOperands[I].push_back(I->getOperand(OI)); 1440 } 1441 } 1442 return true; 1443 } 1444 1445 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1446 // instruction of every block in Blocks to their common successor, commoning 1447 // into one instruction. 1448 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1449 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1450 1451 // canSinkLastInstruction returning true guarantees that every block has at 1452 // least one non-terminator instruction. 1453 SmallVector<Instruction*,4> Insts; 1454 for (auto *BB : Blocks) 1455 Insts.push_back(BB->getTerminator()->getPrevNode()); 1456 1457 // The only checking we need to do now is that all users of all instructions 1458 // are the same PHI node. canSinkLastInstruction should have checked this but 1459 // it is slightly over-aggressive - it gets confused by commutative instructions 1460 // so double-check it here. 1461 Instruction *I0 = Insts.front(); 1462 if (!isa<StoreInst>(I0)) { 1463 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1464 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1465 auto *U = cast<Instruction>(*I->user_begin()); 1466 return U == PNUse; 1467 })) 1468 return false; 1469 } 1470 1471 // We don't need to do any more checking here; canSinkLastInstruction should 1472 // have done it all for us. 1473 SmallVector<Value*, 4> NewOperands; 1474 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1475 // This check is different to that in canSinkLastInstruction. There, we 1476 // cared about the global view once simplifycfg (and instcombine) have 1477 // completed - it takes into account PHIs that become trivially 1478 // simplifiable. However here we need a more local view; if an operand 1479 // differs we create a PHI and rely on instcombine to clean up the very 1480 // small mess we may make. 1481 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1482 return I->getOperand(O) != I0->getOperand(O); 1483 }); 1484 if (!NeedPHI) { 1485 NewOperands.push_back(I0->getOperand(O)); 1486 continue; 1487 } 1488 1489 // Create a new PHI in the successor block and populate it. 1490 auto *Op = I0->getOperand(O); 1491 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1492 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1493 Op->getName() + ".sink", &BBEnd->front()); 1494 for (auto *I : Insts) 1495 PN->addIncoming(I->getOperand(O), I->getParent()); 1496 NewOperands.push_back(PN); 1497 } 1498 1499 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1500 // and move it to the start of the successor block. 1501 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1502 I0->getOperandUse(O).set(NewOperands[O]); 1503 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1504 1505 // Update metadata. 1506 for (auto *I : Insts) 1507 if (I != I0) 1508 combineMetadataForCSE(I0, I); 1509 1510 if (!isa<StoreInst>(I0)) { 1511 // canSinkLastInstruction checked that all instructions were used by 1512 // one and only one PHI node. Find that now, RAUW it to our common 1513 // instruction and nuke it. 1514 assert(I0->hasOneUse()); 1515 auto *PN = cast<PHINode>(*I0->user_begin()); 1516 PN->replaceAllUsesWith(I0); 1517 PN->eraseFromParent(); 1518 } 1519 1520 // Finally nuke all instructions apart from the common instruction. 1521 for (auto *I : Insts) 1522 if (I != I0) 1523 I->eraseFromParent(); 1524 1525 return true; 1526 } 1527 1528 namespace { 1529 // LockstepReverseIterator - Iterates through instructions 1530 // in a set of blocks in reverse order from the first non-terminator. 1531 // For example (assume all blocks have size n): 1532 // LockstepReverseIterator I([B1, B2, B3]); 1533 // *I-- = [B1[n], B2[n], B3[n]]; 1534 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1535 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1536 // ... 1537 class LockstepReverseIterator { 1538 ArrayRef<BasicBlock*> Blocks; 1539 SmallVector<Instruction*,4> Insts; 1540 bool Fail; 1541 public: 1542 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : 1543 Blocks(Blocks) { 1544 reset(); 1545 } 1546 1547 void reset() { 1548 Fail = false; 1549 Insts.clear(); 1550 for (auto *BB : Blocks) { 1551 if (BB->size() <= 1) { 1552 // Block wasn't big enough 1553 Fail = true; 1554 return; 1555 } 1556 Insts.push_back(BB->getTerminator()->getPrevNode()); 1557 } 1558 } 1559 1560 bool isValid() const { 1561 return !Fail; 1562 } 1563 1564 void operator -- () { 1565 if (Fail) 1566 return; 1567 for (auto *&Inst : Insts) { 1568 if (Inst == &Inst->getParent()->front()) { 1569 Fail = true; 1570 return; 1571 } 1572 Inst = Inst->getPrevNode(); 1573 } 1574 } 1575 1576 ArrayRef<Instruction*> operator * () const { 1577 return Insts; 1578 } 1579 }; 1580 } 1581 1582 /// Given an unconditional branch that goes to BBEnd, 1583 /// check whether BBEnd has only two predecessors and the other predecessor 1584 /// ends with an unconditional branch. If it is true, sink any common code 1585 /// in the two predecessors to BBEnd. 1586 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1587 assert(BI1->isUnconditional()); 1588 BasicBlock *BBEnd = BI1->getSuccessor(0); 1589 1590 // We support two situations: 1591 // (1) all incoming arcs are unconditional 1592 // (2) one incoming arc is conditional 1593 // 1594 // (2) is very common in switch defaults and 1595 // else-if patterns; 1596 // 1597 // if (a) f(1); 1598 // else if (b) f(2); 1599 // 1600 // produces: 1601 // 1602 // [if] 1603 // / \ 1604 // [f(1)] [if] 1605 // | | \ 1606 // | | \ 1607 // | [f(2)]| 1608 // \ | / 1609 // [ end ] 1610 // 1611 // [end] has two unconditional predecessor arcs and one conditional. The 1612 // conditional refers to the implicit empty 'else' arc. This conditional 1613 // arc can also be caused by an empty default block in a switch. 1614 // 1615 // In this case, we attempt to sink code from all *unconditional* arcs. 1616 // If we can sink instructions from these arcs (determined during the scan 1617 // phase below) we insert a common successor for all unconditional arcs and 1618 // connect that to [end], to enable sinking: 1619 // 1620 // [if] 1621 // / \ 1622 // [x(1)] [if] 1623 // | | \ 1624 // | | \ 1625 // | [x(2)] | 1626 // \ / | 1627 // [sink.split] | 1628 // \ / 1629 // [ end ] 1630 // 1631 SmallVector<BasicBlock*,4> UnconditionalPreds; 1632 Instruction *Cond = nullptr; 1633 for (auto *B : predecessors(BBEnd)) { 1634 auto *T = B->getTerminator(); 1635 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1636 UnconditionalPreds.push_back(B); 1637 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1638 Cond = T; 1639 else 1640 return false; 1641 } 1642 if (UnconditionalPreds.size() < 2) 1643 return false; 1644 1645 bool Changed = false; 1646 // We take a two-step approach to tail sinking. First we scan from the end of 1647 // each block upwards in lockstep. If the n'th instruction from the end of each 1648 // block can be sunk, those instructions are added to ValuesToSink and we 1649 // carry on. If we can sink an instruction but need to PHI-merge some operands 1650 // (because they're not identical in each instruction) we add these to 1651 // PHIOperands. 1652 unsigned ScanIdx = 0; 1653 SmallPtrSet<Value*,4> InstructionsToSink; 1654 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1655 LockstepReverseIterator LRI(UnconditionalPreds); 1656 while (LRI.isValid() && 1657 canSinkInstructions(*LRI, PHIOperands)) { 1658 DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n"); 1659 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1660 ++ScanIdx; 1661 --LRI; 1662 } 1663 1664 auto ProfitableToSinkLastInstruction = [&]() { 1665 LRI.reset(); 1666 unsigned NumPHIdValues = 0; 1667 for (auto *I : *LRI) 1668 for (auto *V : PHIOperands[I]) 1669 if (InstructionsToSink.count(V) == 0) 1670 ++NumPHIdValues; 1671 DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1672 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1673 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1674 NumPHIInsts++; 1675 1676 return NumPHIInsts <= 1; 1677 }; 1678 1679 if (ScanIdx > 0 && Cond) { 1680 // Check if we would actually sink anything first! 1681 if (!ProfitableToSinkLastInstruction()) 1682 return false; 1683 1684 DEBUG(dbgs() << "SINK: Splitting edge\n"); 1685 // We have a conditional edge and we're going to sink some instructions. 1686 // Insert a new block postdominating all blocks we're going to sink from. 1687 if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds, 1688 ".sink.split")) 1689 // Edges couldn't be split. 1690 return false; 1691 Changed = true; 1692 } 1693 1694 // Now that we've analyzed all potential sinking candidates, perform the 1695 // actual sink. We iteratively sink the last non-terminator of the source 1696 // blocks into their common successor unless doing so would require too 1697 // many PHI instructions to be generated (currently only one PHI is allowed 1698 // per sunk instruction). 1699 // 1700 // We can use InstructionsToSink to discount values needing PHI-merging that will 1701 // actually be sunk in a later iteration. This allows us to be more 1702 // aggressive in what we sink. This does allow a false positive where we 1703 // sink presuming a later value will also be sunk, but stop half way through 1704 // and never actually sink it which means we produce more PHIs than intended. 1705 // This is unlikely in practice though. 1706 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1707 DEBUG(dbgs() << "SINK: Sink: " 1708 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1709 << "\n"); 1710 1711 // Because we've sunk every instruction in turn, the current instruction to 1712 // sink is always at index 0. 1713 if (!ProfitableToSinkLastInstruction()) { 1714 // Too many PHIs would be created. 1715 DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1716 break; 1717 } 1718 1719 if (!sinkLastInstruction(UnconditionalPreds)) 1720 return Changed; 1721 NumSinkCommons++; 1722 Changed = true; 1723 } 1724 return Changed; 1725 } 1726 1727 /// \brief Determine if we can hoist sink a sole store instruction out of a 1728 /// conditional block. 1729 /// 1730 /// We are looking for code like the following: 1731 /// BrBB: 1732 /// store i32 %add, i32* %arrayidx2 1733 /// ... // No other stores or function calls (we could be calling a memory 1734 /// ... // function). 1735 /// %cmp = icmp ult %x, %y 1736 /// br i1 %cmp, label %EndBB, label %ThenBB 1737 /// ThenBB: 1738 /// store i32 %add5, i32* %arrayidx2 1739 /// br label EndBB 1740 /// EndBB: 1741 /// ... 1742 /// We are going to transform this into: 1743 /// BrBB: 1744 /// store i32 %add, i32* %arrayidx2 1745 /// ... // 1746 /// %cmp = icmp ult %x, %y 1747 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1748 /// store i32 %add.add5, i32* %arrayidx2 1749 /// ... 1750 /// 1751 /// \return The pointer to the value of the previous store if the store can be 1752 /// hoisted into the predecessor block. 0 otherwise. 1753 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1754 BasicBlock *StoreBB, BasicBlock *EndBB) { 1755 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1756 if (!StoreToHoist) 1757 return nullptr; 1758 1759 // Volatile or atomic. 1760 if (!StoreToHoist->isSimple()) 1761 return nullptr; 1762 1763 Value *StorePtr = StoreToHoist->getPointerOperand(); 1764 1765 // Look for a store to the same pointer in BrBB. 1766 unsigned MaxNumInstToLookAt = 9; 1767 for (Instruction &CurI : reverse(*BrBB)) { 1768 if (!MaxNumInstToLookAt) 1769 break; 1770 // Skip debug info. 1771 if (isa<DbgInfoIntrinsic>(CurI)) 1772 continue; 1773 --MaxNumInstToLookAt; 1774 1775 // Could be calling an instruction that affects memory like free(). 1776 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1777 return nullptr; 1778 1779 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1780 // Found the previous store make sure it stores to the same location. 1781 if (SI->getPointerOperand() == StorePtr) 1782 // Found the previous store, return its value operand. 1783 return SI->getValueOperand(); 1784 return nullptr; // Unknown store. 1785 } 1786 } 1787 1788 return nullptr; 1789 } 1790 1791 /// \brief Speculate a conditional basic block flattening the CFG. 1792 /// 1793 /// Note that this is a very risky transform currently. Speculating 1794 /// instructions like this is most often not desirable. Instead, there is an MI 1795 /// pass which can do it with full awareness of the resource constraints. 1796 /// However, some cases are "obvious" and we should do directly. An example of 1797 /// this is speculating a single, reasonably cheap instruction. 1798 /// 1799 /// There is only one distinct advantage to flattening the CFG at the IR level: 1800 /// it makes very common but simplistic optimizations such as are common in 1801 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1802 /// modeling their effects with easier to reason about SSA value graphs. 1803 /// 1804 /// 1805 /// An illustration of this transform is turning this IR: 1806 /// \code 1807 /// BB: 1808 /// %cmp = icmp ult %x, %y 1809 /// br i1 %cmp, label %EndBB, label %ThenBB 1810 /// ThenBB: 1811 /// %sub = sub %x, %y 1812 /// br label BB2 1813 /// EndBB: 1814 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1815 /// ... 1816 /// \endcode 1817 /// 1818 /// Into this IR: 1819 /// \code 1820 /// BB: 1821 /// %cmp = icmp ult %x, %y 1822 /// %sub = sub %x, %y 1823 /// %cond = select i1 %cmp, 0, %sub 1824 /// ... 1825 /// \endcode 1826 /// 1827 /// \returns true if the conditional block is removed. 1828 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1829 const TargetTransformInfo &TTI) { 1830 // Be conservative for now. FP select instruction can often be expensive. 1831 Value *BrCond = BI->getCondition(); 1832 if (isa<FCmpInst>(BrCond)) 1833 return false; 1834 1835 BasicBlock *BB = BI->getParent(); 1836 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1837 1838 // If ThenBB is actually on the false edge of the conditional branch, remember 1839 // to swap the select operands later. 1840 bool Invert = false; 1841 if (ThenBB != BI->getSuccessor(0)) { 1842 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1843 Invert = true; 1844 } 1845 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1846 1847 // Keep a count of how many times instructions are used within CondBB when 1848 // they are candidates for sinking into CondBB. Specifically: 1849 // - They are defined in BB, and 1850 // - They have no side effects, and 1851 // - All of their uses are in CondBB. 1852 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1853 1854 unsigned SpeculationCost = 0; 1855 Value *SpeculatedStoreValue = nullptr; 1856 StoreInst *SpeculatedStore = nullptr; 1857 for (BasicBlock::iterator BBI = ThenBB->begin(), 1858 BBE = std::prev(ThenBB->end()); 1859 BBI != BBE; ++BBI) { 1860 Instruction *I = &*BBI; 1861 // Skip debug info. 1862 if (isa<DbgInfoIntrinsic>(I)) 1863 continue; 1864 1865 // Only speculatively execute a single instruction (not counting the 1866 // terminator) for now. 1867 ++SpeculationCost; 1868 if (SpeculationCost > 1) 1869 return false; 1870 1871 // Don't hoist the instruction if it's unsafe or expensive. 1872 if (!isSafeToSpeculativelyExecute(I) && 1873 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1874 I, BB, ThenBB, EndBB)))) 1875 return false; 1876 if (!SpeculatedStoreValue && 1877 ComputeSpeculationCost(I, TTI) > 1878 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1879 return false; 1880 1881 // Store the store speculation candidate. 1882 if (SpeculatedStoreValue) 1883 SpeculatedStore = cast<StoreInst>(I); 1884 1885 // Do not hoist the instruction if any of its operands are defined but not 1886 // used in BB. The transformation will prevent the operand from 1887 // being sunk into the use block. 1888 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1889 Instruction *OpI = dyn_cast<Instruction>(*i); 1890 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1891 continue; // Not a candidate for sinking. 1892 1893 ++SinkCandidateUseCounts[OpI]; 1894 } 1895 } 1896 1897 // Consider any sink candidates which are only used in CondBB as costs for 1898 // speculation. Note, while we iterate over a DenseMap here, we are summing 1899 // and so iteration order isn't significant. 1900 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 1901 I = SinkCandidateUseCounts.begin(), 1902 E = SinkCandidateUseCounts.end(); 1903 I != E; ++I) 1904 if (I->first->getNumUses() == I->second) { 1905 ++SpeculationCost; 1906 if (SpeculationCost > 1) 1907 return false; 1908 } 1909 1910 // Check that the PHI nodes can be converted to selects. 1911 bool HaveRewritablePHIs = false; 1912 for (BasicBlock::iterator I = EndBB->begin(); 1913 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1914 Value *OrigV = PN->getIncomingValueForBlock(BB); 1915 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1916 1917 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1918 // Skip PHIs which are trivial. 1919 if (ThenV == OrigV) 1920 continue; 1921 1922 // Don't convert to selects if we could remove undefined behavior instead. 1923 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1924 passingValueIsAlwaysUndefined(ThenV, PN)) 1925 return false; 1926 1927 HaveRewritablePHIs = true; 1928 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1929 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1930 if (!OrigCE && !ThenCE) 1931 continue; // Known safe and cheap. 1932 1933 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1934 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1935 return false; 1936 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1937 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1938 unsigned MaxCost = 1939 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 1940 if (OrigCost + ThenCost > MaxCost) 1941 return false; 1942 1943 // Account for the cost of an unfolded ConstantExpr which could end up 1944 // getting expanded into Instructions. 1945 // FIXME: This doesn't account for how many operations are combined in the 1946 // constant expression. 1947 ++SpeculationCost; 1948 if (SpeculationCost > 1) 1949 return false; 1950 } 1951 1952 // If there are no PHIs to process, bail early. This helps ensure idempotence 1953 // as well. 1954 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1955 return false; 1956 1957 // If we get here, we can hoist the instruction and if-convert. 1958 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1959 1960 // Insert a select of the value of the speculated store. 1961 if (SpeculatedStoreValue) { 1962 IRBuilder<NoFolder> Builder(BI); 1963 Value *TrueV = SpeculatedStore->getValueOperand(); 1964 Value *FalseV = SpeculatedStoreValue; 1965 if (Invert) 1966 std::swap(TrueV, FalseV); 1967 Value *S = Builder.CreateSelect( 1968 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 1969 SpeculatedStore->setOperand(0, S); 1970 } 1971 1972 // Metadata can be dependent on the condition we are hoisting above. 1973 // Conservatively strip all metadata on the instruction. 1974 for (auto &I : *ThenBB) 1975 I.dropUnknownNonDebugMetadata(); 1976 1977 // Hoist the instructions. 1978 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 1979 ThenBB->begin(), std::prev(ThenBB->end())); 1980 1981 // Insert selects and rewrite the PHI operands. 1982 IRBuilder<NoFolder> Builder(BI); 1983 for (BasicBlock::iterator I = EndBB->begin(); 1984 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1985 unsigned OrigI = PN->getBasicBlockIndex(BB); 1986 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1987 Value *OrigV = PN->getIncomingValue(OrigI); 1988 Value *ThenV = PN->getIncomingValue(ThenI); 1989 1990 // Skip PHIs which are trivial. 1991 if (OrigV == ThenV) 1992 continue; 1993 1994 // Create a select whose true value is the speculatively executed value and 1995 // false value is the preexisting value. Swap them if the branch 1996 // destinations were inverted. 1997 Value *TrueV = ThenV, *FalseV = OrigV; 1998 if (Invert) 1999 std::swap(TrueV, FalseV); 2000 Value *V = Builder.CreateSelect( 2001 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2002 PN->setIncomingValue(OrigI, V); 2003 PN->setIncomingValue(ThenI, V); 2004 } 2005 2006 ++NumSpeculations; 2007 return true; 2008 } 2009 2010 /// Return true if we can thread a branch across this block. 2011 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2012 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 2013 unsigned Size = 0; 2014 2015 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2016 if (isa<DbgInfoIntrinsic>(BBI)) 2017 continue; 2018 if (Size > 10) 2019 return false; // Don't clone large BB's. 2020 ++Size; 2021 2022 // We can only support instructions that do not define values that are 2023 // live outside of the current basic block. 2024 for (User *U : BBI->users()) { 2025 Instruction *UI = cast<Instruction>(U); 2026 if (UI->getParent() != BB || isa<PHINode>(UI)) 2027 return false; 2028 } 2029 2030 // Looks ok, continue checking. 2031 } 2032 2033 return true; 2034 } 2035 2036 /// If we have a conditional branch on a PHI node value that is defined in the 2037 /// same block as the branch and if any PHI entries are constants, thread edges 2038 /// corresponding to that entry to be branches to their ultimate destination. 2039 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 2040 BasicBlock *BB = BI->getParent(); 2041 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2042 // NOTE: we currently cannot transform this case if the PHI node is used 2043 // outside of the block. 2044 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2045 return false; 2046 2047 // Degenerate case of a single entry PHI. 2048 if (PN->getNumIncomingValues() == 1) { 2049 FoldSingleEntryPHINodes(PN->getParent()); 2050 return true; 2051 } 2052 2053 // Now we know that this block has multiple preds and two succs. 2054 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2055 return false; 2056 2057 // Can't fold blocks that contain noduplicate or convergent calls. 2058 if (any_of(*BB, [](const Instruction &I) { 2059 const CallInst *CI = dyn_cast<CallInst>(&I); 2060 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2061 })) 2062 return false; 2063 2064 // Okay, this is a simple enough basic block. See if any phi values are 2065 // constants. 2066 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2067 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2068 if (!CB || !CB->getType()->isIntegerTy(1)) 2069 continue; 2070 2071 // Okay, we now know that all edges from PredBB should be revectored to 2072 // branch to RealDest. 2073 BasicBlock *PredBB = PN->getIncomingBlock(i); 2074 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2075 2076 if (RealDest == BB) 2077 continue; // Skip self loops. 2078 // Skip if the predecessor's terminator is an indirect branch. 2079 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2080 continue; 2081 2082 // The dest block might have PHI nodes, other predecessors and other 2083 // difficult cases. Instead of being smart about this, just insert a new 2084 // block that jumps to the destination block, effectively splitting 2085 // the edge we are about to create. 2086 BasicBlock *EdgeBB = 2087 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2088 RealDest->getParent(), RealDest); 2089 BranchInst::Create(RealDest, EdgeBB); 2090 2091 // Update PHI nodes. 2092 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2093 2094 // BB may have instructions that are being threaded over. Clone these 2095 // instructions into EdgeBB. We know that there will be no uses of the 2096 // cloned instructions outside of EdgeBB. 2097 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2098 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2099 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2100 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2101 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2102 continue; 2103 } 2104 // Clone the instruction. 2105 Instruction *N = BBI->clone(); 2106 if (BBI->hasName()) 2107 N->setName(BBI->getName() + ".c"); 2108 2109 // Update operands due to translation. 2110 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2111 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2112 if (PI != TranslateMap.end()) 2113 *i = PI->second; 2114 } 2115 2116 // Check for trivial simplification. 2117 if (Value *V = SimplifyInstruction(N, DL)) { 2118 if (!BBI->use_empty()) 2119 TranslateMap[&*BBI] = V; 2120 if (!N->mayHaveSideEffects()) { 2121 delete N; // Instruction folded away, don't need actual inst 2122 N = nullptr; 2123 } 2124 } else { 2125 if (!BBI->use_empty()) 2126 TranslateMap[&*BBI] = N; 2127 } 2128 // Insert the new instruction into its new home. 2129 if (N) 2130 EdgeBB->getInstList().insert(InsertPt, N); 2131 } 2132 2133 // Loop over all of the edges from PredBB to BB, changing them to branch 2134 // to EdgeBB instead. 2135 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2136 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2137 if (PredBBTI->getSuccessor(i) == BB) { 2138 BB->removePredecessor(PredBB); 2139 PredBBTI->setSuccessor(i, EdgeBB); 2140 } 2141 2142 // Recurse, simplifying any other constants. 2143 return FoldCondBranchOnPHI(BI, DL) | true; 2144 } 2145 2146 return false; 2147 } 2148 2149 /// Given a BB that starts with the specified two-entry PHI node, 2150 /// see if we can eliminate it. 2151 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2152 const DataLayout &DL) { 2153 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2154 // statement", which has a very simple dominance structure. Basically, we 2155 // are trying to find the condition that is being branched on, which 2156 // subsequently causes this merge to happen. We really want control 2157 // dependence information for this check, but simplifycfg can't keep it up 2158 // to date, and this catches most of the cases we care about anyway. 2159 BasicBlock *BB = PN->getParent(); 2160 BasicBlock *IfTrue, *IfFalse; 2161 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2162 if (!IfCond || 2163 // Don't bother if the branch will be constant folded trivially. 2164 isa<ConstantInt>(IfCond)) 2165 return false; 2166 2167 // Okay, we found that we can merge this two-entry phi node into a select. 2168 // Doing so would require us to fold *all* two entry phi nodes in this block. 2169 // At some point this becomes non-profitable (particularly if the target 2170 // doesn't support cmov's). Only do this transformation if there are two or 2171 // fewer PHI nodes in this block. 2172 unsigned NumPhis = 0; 2173 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2174 if (NumPhis > 2) 2175 return false; 2176 2177 // Loop over the PHI's seeing if we can promote them all to select 2178 // instructions. While we are at it, keep track of the instructions 2179 // that need to be moved to the dominating block. 2180 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2181 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2182 MaxCostVal1 = PHINodeFoldingThreshold; 2183 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2184 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2185 2186 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2187 PHINode *PN = cast<PHINode>(II++); 2188 if (Value *V = SimplifyInstruction(PN, DL)) { 2189 PN->replaceAllUsesWith(V); 2190 PN->eraseFromParent(); 2191 continue; 2192 } 2193 2194 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2195 MaxCostVal0, TTI) || 2196 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2197 MaxCostVal1, TTI)) 2198 return false; 2199 } 2200 2201 // If we folded the first phi, PN dangles at this point. Refresh it. If 2202 // we ran out of PHIs then we simplified them all. 2203 PN = dyn_cast<PHINode>(BB->begin()); 2204 if (!PN) 2205 return true; 2206 2207 // Don't fold i1 branches on PHIs which contain binary operators. These can 2208 // often be turned into switches and other things. 2209 if (PN->getType()->isIntegerTy(1) && 2210 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2211 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2212 isa<BinaryOperator>(IfCond))) 2213 return false; 2214 2215 // If all PHI nodes are promotable, check to make sure that all instructions 2216 // in the predecessor blocks can be promoted as well. If not, we won't be able 2217 // to get rid of the control flow, so it's not worth promoting to select 2218 // instructions. 2219 BasicBlock *DomBlock = nullptr; 2220 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2221 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2222 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2223 IfBlock1 = nullptr; 2224 } else { 2225 DomBlock = *pred_begin(IfBlock1); 2226 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2227 ++I) 2228 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2229 // This is not an aggressive instruction that we can promote. 2230 // Because of this, we won't be able to get rid of the control flow, so 2231 // the xform is not worth it. 2232 return false; 2233 } 2234 } 2235 2236 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2237 IfBlock2 = nullptr; 2238 } else { 2239 DomBlock = *pred_begin(IfBlock2); 2240 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2241 ++I) 2242 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2243 // This is not an aggressive instruction that we can promote. 2244 // Because of this, we won't be able to get rid of the control flow, so 2245 // the xform is not worth it. 2246 return false; 2247 } 2248 } 2249 2250 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2251 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2252 2253 // If we can still promote the PHI nodes after this gauntlet of tests, 2254 // do all of the PHI's now. 2255 Instruction *InsertPt = DomBlock->getTerminator(); 2256 IRBuilder<NoFolder> Builder(InsertPt); 2257 2258 // Move all 'aggressive' instructions, which are defined in the 2259 // conditional parts of the if's up to the dominating block. 2260 if (IfBlock1) { 2261 for (auto &I : *IfBlock1) 2262 I.dropUnknownNonDebugMetadata(); 2263 DomBlock->getInstList().splice(InsertPt->getIterator(), 2264 IfBlock1->getInstList(), IfBlock1->begin(), 2265 IfBlock1->getTerminator()->getIterator()); 2266 } 2267 if (IfBlock2) { 2268 for (auto &I : *IfBlock2) 2269 I.dropUnknownNonDebugMetadata(); 2270 DomBlock->getInstList().splice(InsertPt->getIterator(), 2271 IfBlock2->getInstList(), IfBlock2->begin(), 2272 IfBlock2->getTerminator()->getIterator()); 2273 } 2274 2275 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2276 // Change the PHI node into a select instruction. 2277 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2278 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2279 2280 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2281 PN->replaceAllUsesWith(Sel); 2282 Sel->takeName(PN); 2283 PN->eraseFromParent(); 2284 } 2285 2286 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2287 // has been flattened. Change DomBlock to jump directly to our new block to 2288 // avoid other simplifycfg's kicking in on the diamond. 2289 TerminatorInst *OldTI = DomBlock->getTerminator(); 2290 Builder.SetInsertPoint(OldTI); 2291 Builder.CreateBr(BB); 2292 OldTI->eraseFromParent(); 2293 return true; 2294 } 2295 2296 /// If we found a conditional branch that goes to two returning blocks, 2297 /// try to merge them together into one return, 2298 /// introducing a select if the return values disagree. 2299 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2300 IRBuilder<> &Builder) { 2301 assert(BI->isConditional() && "Must be a conditional branch"); 2302 BasicBlock *TrueSucc = BI->getSuccessor(0); 2303 BasicBlock *FalseSucc = BI->getSuccessor(1); 2304 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2305 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2306 2307 // Check to ensure both blocks are empty (just a return) or optionally empty 2308 // with PHI nodes. If there are other instructions, merging would cause extra 2309 // computation on one path or the other. 2310 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2311 return false; 2312 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2313 return false; 2314 2315 Builder.SetInsertPoint(BI); 2316 // Okay, we found a branch that is going to two return nodes. If 2317 // there is no return value for this function, just change the 2318 // branch into a return. 2319 if (FalseRet->getNumOperands() == 0) { 2320 TrueSucc->removePredecessor(BI->getParent()); 2321 FalseSucc->removePredecessor(BI->getParent()); 2322 Builder.CreateRetVoid(); 2323 EraseTerminatorInstAndDCECond(BI); 2324 return true; 2325 } 2326 2327 // Otherwise, figure out what the true and false return values are 2328 // so we can insert a new select instruction. 2329 Value *TrueValue = TrueRet->getReturnValue(); 2330 Value *FalseValue = FalseRet->getReturnValue(); 2331 2332 // Unwrap any PHI nodes in the return blocks. 2333 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2334 if (TVPN->getParent() == TrueSucc) 2335 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2336 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2337 if (FVPN->getParent() == FalseSucc) 2338 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2339 2340 // In order for this transformation to be safe, we must be able to 2341 // unconditionally execute both operands to the return. This is 2342 // normally the case, but we could have a potentially-trapping 2343 // constant expression that prevents this transformation from being 2344 // safe. 2345 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2346 if (TCV->canTrap()) 2347 return false; 2348 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2349 if (FCV->canTrap()) 2350 return false; 2351 2352 // Okay, we collected all the mapped values and checked them for sanity, and 2353 // defined to really do this transformation. First, update the CFG. 2354 TrueSucc->removePredecessor(BI->getParent()); 2355 FalseSucc->removePredecessor(BI->getParent()); 2356 2357 // Insert select instructions where needed. 2358 Value *BrCond = BI->getCondition(); 2359 if (TrueValue) { 2360 // Insert a select if the results differ. 2361 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2362 } else if (isa<UndefValue>(TrueValue)) { 2363 TrueValue = FalseValue; 2364 } else { 2365 TrueValue = 2366 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2367 } 2368 } 2369 2370 Value *RI = 2371 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2372 2373 (void)RI; 2374 2375 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2376 << "\n " << *BI << "NewRet = " << *RI 2377 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2378 2379 EraseTerminatorInstAndDCECond(BI); 2380 2381 return true; 2382 } 2383 2384 /// Return true if the given instruction is available 2385 /// in its predecessor block. If yes, the instruction will be removed. 2386 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2387 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2388 return false; 2389 for (Instruction &I : *PB) { 2390 Instruction *PBI = &I; 2391 // Check whether Inst and PBI generate the same value. 2392 if (Inst->isIdenticalTo(PBI)) { 2393 Inst->replaceAllUsesWith(PBI); 2394 Inst->eraseFromParent(); 2395 return true; 2396 } 2397 } 2398 return false; 2399 } 2400 2401 /// Return true if either PBI or BI has branch weight available, and store 2402 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2403 /// not have branch weight, use 1:1 as its weight. 2404 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2405 uint64_t &PredTrueWeight, 2406 uint64_t &PredFalseWeight, 2407 uint64_t &SuccTrueWeight, 2408 uint64_t &SuccFalseWeight) { 2409 bool PredHasWeights = 2410 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2411 bool SuccHasWeights = 2412 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2413 if (PredHasWeights || SuccHasWeights) { 2414 if (!PredHasWeights) 2415 PredTrueWeight = PredFalseWeight = 1; 2416 if (!SuccHasWeights) 2417 SuccTrueWeight = SuccFalseWeight = 1; 2418 return true; 2419 } else { 2420 return false; 2421 } 2422 } 2423 2424 /// If this basic block is simple enough, and if a predecessor branches to us 2425 /// and one of our successors, fold the block into the predecessor and use 2426 /// logical operations to pick the right destination. 2427 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2428 BasicBlock *BB = BI->getParent(); 2429 2430 Instruction *Cond = nullptr; 2431 if (BI->isConditional()) 2432 Cond = dyn_cast<Instruction>(BI->getCondition()); 2433 else { 2434 // For unconditional branch, check for a simple CFG pattern, where 2435 // BB has a single predecessor and BB's successor is also its predecessor's 2436 // successor. If such pattern exisits, check for CSE between BB and its 2437 // predecessor. 2438 if (BasicBlock *PB = BB->getSinglePredecessor()) 2439 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2440 if (PBI->isConditional() && 2441 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2442 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2443 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2444 Instruction *Curr = &*I++; 2445 if (isa<CmpInst>(Curr)) { 2446 Cond = Curr; 2447 break; 2448 } 2449 // Quit if we can't remove this instruction. 2450 if (!checkCSEInPredecessor(Curr, PB)) 2451 return false; 2452 } 2453 } 2454 2455 if (!Cond) 2456 return false; 2457 } 2458 2459 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2460 Cond->getParent() != BB || !Cond->hasOneUse()) 2461 return false; 2462 2463 // Make sure the instruction after the condition is the cond branch. 2464 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2465 2466 // Ignore dbg intrinsics. 2467 while (isa<DbgInfoIntrinsic>(CondIt)) 2468 ++CondIt; 2469 2470 if (&*CondIt != BI) 2471 return false; 2472 2473 // Only allow this transformation if computing the condition doesn't involve 2474 // too many instructions and these involved instructions can be executed 2475 // unconditionally. We denote all involved instructions except the condition 2476 // as "bonus instructions", and only allow this transformation when the 2477 // number of the bonus instructions does not exceed a certain threshold. 2478 unsigned NumBonusInsts = 0; 2479 for (auto I = BB->begin(); Cond != &*I; ++I) { 2480 // Ignore dbg intrinsics. 2481 if (isa<DbgInfoIntrinsic>(I)) 2482 continue; 2483 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2484 return false; 2485 // I has only one use and can be executed unconditionally. 2486 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2487 if (User == nullptr || User->getParent() != BB) 2488 return false; 2489 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2490 // to use any other instruction, User must be an instruction between next(I) 2491 // and Cond. 2492 ++NumBonusInsts; 2493 // Early exits once we reach the limit. 2494 if (NumBonusInsts > BonusInstThreshold) 2495 return false; 2496 } 2497 2498 // Cond is known to be a compare or binary operator. Check to make sure that 2499 // neither operand is a potentially-trapping constant expression. 2500 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2501 if (CE->canTrap()) 2502 return false; 2503 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2504 if (CE->canTrap()) 2505 return false; 2506 2507 // Finally, don't infinitely unroll conditional loops. 2508 BasicBlock *TrueDest = BI->getSuccessor(0); 2509 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2510 if (TrueDest == BB || FalseDest == BB) 2511 return false; 2512 2513 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2514 BasicBlock *PredBlock = *PI; 2515 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2516 2517 // Check that we have two conditional branches. If there is a PHI node in 2518 // the common successor, verify that the same value flows in from both 2519 // blocks. 2520 SmallVector<PHINode *, 4> PHIs; 2521 if (!PBI || PBI->isUnconditional() || 2522 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2523 (!BI->isConditional() && 2524 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2525 continue; 2526 2527 // Determine if the two branches share a common destination. 2528 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2529 bool InvertPredCond = false; 2530 2531 if (BI->isConditional()) { 2532 if (PBI->getSuccessor(0) == TrueDest) { 2533 Opc = Instruction::Or; 2534 } else if (PBI->getSuccessor(1) == FalseDest) { 2535 Opc = Instruction::And; 2536 } else if (PBI->getSuccessor(0) == FalseDest) { 2537 Opc = Instruction::And; 2538 InvertPredCond = true; 2539 } else if (PBI->getSuccessor(1) == TrueDest) { 2540 Opc = Instruction::Or; 2541 InvertPredCond = true; 2542 } else { 2543 continue; 2544 } 2545 } else { 2546 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2547 continue; 2548 } 2549 2550 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2551 IRBuilder<> Builder(PBI); 2552 2553 // If we need to invert the condition in the pred block to match, do so now. 2554 if (InvertPredCond) { 2555 Value *NewCond = PBI->getCondition(); 2556 2557 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2558 CmpInst *CI = cast<CmpInst>(NewCond); 2559 CI->setPredicate(CI->getInversePredicate()); 2560 } else { 2561 NewCond = 2562 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2563 } 2564 2565 PBI->setCondition(NewCond); 2566 PBI->swapSuccessors(); 2567 } 2568 2569 // If we have bonus instructions, clone them into the predecessor block. 2570 // Note that there may be multiple predecessor blocks, so we cannot move 2571 // bonus instructions to a predecessor block. 2572 ValueToValueMapTy VMap; // maps original values to cloned values 2573 // We already make sure Cond is the last instruction before BI. Therefore, 2574 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2575 // instructions. 2576 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2577 if (isa<DbgInfoIntrinsic>(BonusInst)) 2578 continue; 2579 Instruction *NewBonusInst = BonusInst->clone(); 2580 RemapInstruction(NewBonusInst, VMap, 2581 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2582 VMap[&*BonusInst] = NewBonusInst; 2583 2584 // If we moved a load, we cannot any longer claim any knowledge about 2585 // its potential value. The previous information might have been valid 2586 // only given the branch precondition. 2587 // For an analogous reason, we must also drop all the metadata whose 2588 // semantics we don't understand. 2589 NewBonusInst->dropUnknownNonDebugMetadata(); 2590 2591 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2592 NewBonusInst->takeName(&*BonusInst); 2593 BonusInst->setName(BonusInst->getName() + ".old"); 2594 } 2595 2596 // Clone Cond into the predecessor basic block, and or/and the 2597 // two conditions together. 2598 Instruction *New = Cond->clone(); 2599 RemapInstruction(New, VMap, 2600 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2601 PredBlock->getInstList().insert(PBI->getIterator(), New); 2602 New->takeName(Cond); 2603 Cond->setName(New->getName() + ".old"); 2604 2605 if (BI->isConditional()) { 2606 Instruction *NewCond = cast<Instruction>( 2607 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2608 PBI->setCondition(NewCond); 2609 2610 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2611 bool HasWeights = 2612 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2613 SuccTrueWeight, SuccFalseWeight); 2614 SmallVector<uint64_t, 8> NewWeights; 2615 2616 if (PBI->getSuccessor(0) == BB) { 2617 if (HasWeights) { 2618 // PBI: br i1 %x, BB, FalseDest 2619 // BI: br i1 %y, TrueDest, FalseDest 2620 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2621 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2622 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2623 // TrueWeight for PBI * FalseWeight for BI. 2624 // We assume that total weights of a BranchInst can fit into 32 bits. 2625 // Therefore, we will not have overflow using 64-bit arithmetic. 2626 NewWeights.push_back(PredFalseWeight * 2627 (SuccFalseWeight + SuccTrueWeight) + 2628 PredTrueWeight * SuccFalseWeight); 2629 } 2630 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2631 PBI->setSuccessor(0, TrueDest); 2632 } 2633 if (PBI->getSuccessor(1) == BB) { 2634 if (HasWeights) { 2635 // PBI: br i1 %x, TrueDest, BB 2636 // BI: br i1 %y, TrueDest, FalseDest 2637 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2638 // FalseWeight for PBI * TrueWeight for BI. 2639 NewWeights.push_back(PredTrueWeight * 2640 (SuccFalseWeight + SuccTrueWeight) + 2641 PredFalseWeight * SuccTrueWeight); 2642 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2643 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2644 } 2645 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2646 PBI->setSuccessor(1, FalseDest); 2647 } 2648 if (NewWeights.size() == 2) { 2649 // Halve the weights if any of them cannot fit in an uint32_t 2650 FitWeights(NewWeights); 2651 2652 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2653 NewWeights.end()); 2654 PBI->setMetadata( 2655 LLVMContext::MD_prof, 2656 MDBuilder(BI->getContext()).createBranchWeights(MDWeights)); 2657 } else 2658 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2659 } else { 2660 // Update PHI nodes in the common successors. 2661 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2662 ConstantInt *PBI_C = cast<ConstantInt>( 2663 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2664 assert(PBI_C->getType()->isIntegerTy(1)); 2665 Instruction *MergedCond = nullptr; 2666 if (PBI->getSuccessor(0) == TrueDest) { 2667 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2668 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2669 // is false: !PBI_Cond and BI_Value 2670 Instruction *NotCond = cast<Instruction>( 2671 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2672 MergedCond = cast<Instruction>( 2673 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2674 if (PBI_C->isOne()) 2675 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2676 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2677 } else { 2678 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2679 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2680 // is false: PBI_Cond and BI_Value 2681 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2682 Instruction::And, PBI->getCondition(), New, "and.cond")); 2683 if (PBI_C->isOne()) { 2684 Instruction *NotCond = cast<Instruction>( 2685 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2686 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2687 Instruction::Or, NotCond, MergedCond, "or.cond")); 2688 } 2689 } 2690 // Update PHI Node. 2691 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2692 MergedCond); 2693 } 2694 // Change PBI from Conditional to Unconditional. 2695 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2696 EraseTerminatorInstAndDCECond(PBI); 2697 PBI = New_PBI; 2698 } 2699 2700 // TODO: If BB is reachable from all paths through PredBlock, then we 2701 // could replace PBI's branch probabilities with BI's. 2702 2703 // Copy any debug value intrinsics into the end of PredBlock. 2704 for (Instruction &I : *BB) 2705 if (isa<DbgInfoIntrinsic>(I)) 2706 I.clone()->insertBefore(PBI); 2707 2708 return true; 2709 } 2710 return false; 2711 } 2712 2713 // If there is only one store in BB1 and BB2, return it, otherwise return 2714 // nullptr. 2715 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2716 StoreInst *S = nullptr; 2717 for (auto *BB : {BB1, BB2}) { 2718 if (!BB) 2719 continue; 2720 for (auto &I : *BB) 2721 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2722 if (S) 2723 // Multiple stores seen. 2724 return nullptr; 2725 else 2726 S = SI; 2727 } 2728 } 2729 return S; 2730 } 2731 2732 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2733 Value *AlternativeV = nullptr) { 2734 // PHI is going to be a PHI node that allows the value V that is defined in 2735 // BB to be referenced in BB's only successor. 2736 // 2737 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2738 // doesn't matter to us what the other operand is (it'll never get used). We 2739 // could just create a new PHI with an undef incoming value, but that could 2740 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2741 // other PHI. So here we directly look for some PHI in BB's successor with V 2742 // as an incoming operand. If we find one, we use it, else we create a new 2743 // one. 2744 // 2745 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2746 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2747 // where OtherBB is the single other predecessor of BB's only successor. 2748 PHINode *PHI = nullptr; 2749 BasicBlock *Succ = BB->getSingleSuccessor(); 2750 2751 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2752 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2753 PHI = cast<PHINode>(I); 2754 if (!AlternativeV) 2755 break; 2756 2757 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2758 auto PredI = pred_begin(Succ); 2759 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2760 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2761 break; 2762 PHI = nullptr; 2763 } 2764 if (PHI) 2765 return PHI; 2766 2767 // If V is not an instruction defined in BB, just return it. 2768 if (!AlternativeV && 2769 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2770 return V; 2771 2772 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2773 PHI->addIncoming(V, BB); 2774 for (BasicBlock *PredBB : predecessors(Succ)) 2775 if (PredBB != BB) 2776 PHI->addIncoming( 2777 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2778 return PHI; 2779 } 2780 2781 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2782 BasicBlock *QTB, BasicBlock *QFB, 2783 BasicBlock *PostBB, Value *Address, 2784 bool InvertPCond, bool InvertQCond) { 2785 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2786 return Operator::getOpcode(&I) == Instruction::BitCast && 2787 I.getType()->isPointerTy(); 2788 }; 2789 2790 // If we're not in aggressive mode, we only optimize if we have some 2791 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2792 auto IsWorthwhile = [&](BasicBlock *BB) { 2793 if (!BB) 2794 return true; 2795 // Heuristic: if the block can be if-converted/phi-folded and the 2796 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2797 // thread this store. 2798 unsigned N = 0; 2799 for (auto &I : *BB) { 2800 // Cheap instructions viable for folding. 2801 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2802 isa<StoreInst>(I)) 2803 ++N; 2804 // Free instructions. 2805 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2806 IsaBitcastOfPointerType(I)) 2807 continue; 2808 else 2809 return false; 2810 } 2811 return N <= PHINodeFoldingThreshold; 2812 }; 2813 2814 if (!MergeCondStoresAggressively && 2815 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2816 !IsWorthwhile(QFB))) 2817 return false; 2818 2819 // For every pointer, there must be exactly two stores, one coming from 2820 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2821 // store (to any address) in PTB,PFB or QTB,QFB. 2822 // FIXME: We could relax this restriction with a bit more work and performance 2823 // testing. 2824 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2825 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2826 if (!PStore || !QStore) 2827 return false; 2828 2829 // Now check the stores are compatible. 2830 if (!QStore->isUnordered() || !PStore->isUnordered()) 2831 return false; 2832 2833 // Check that sinking the store won't cause program behavior changes. Sinking 2834 // the store out of the Q blocks won't change any behavior as we're sinking 2835 // from a block to its unconditional successor. But we're moving a store from 2836 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2837 // So we need to check that there are no aliasing loads or stores in 2838 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2839 // operations between PStore and the end of its parent block. 2840 // 2841 // The ideal way to do this is to query AliasAnalysis, but we don't 2842 // preserve AA currently so that is dangerous. Be super safe and just 2843 // check there are no other memory operations at all. 2844 for (auto &I : *QFB->getSinglePredecessor()) 2845 if (I.mayReadOrWriteMemory()) 2846 return false; 2847 for (auto &I : *QFB) 2848 if (&I != QStore && I.mayReadOrWriteMemory()) 2849 return false; 2850 if (QTB) 2851 for (auto &I : *QTB) 2852 if (&I != QStore && I.mayReadOrWriteMemory()) 2853 return false; 2854 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2855 I != E; ++I) 2856 if (&*I != PStore && I->mayReadOrWriteMemory()) 2857 return false; 2858 2859 // OK, we're going to sink the stores to PostBB. The store has to be 2860 // conditional though, so first create the predicate. 2861 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2862 ->getCondition(); 2863 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2864 ->getCondition(); 2865 2866 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2867 PStore->getParent()); 2868 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2869 QStore->getParent(), PPHI); 2870 2871 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2872 2873 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2874 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2875 2876 if (InvertPCond) 2877 PPred = QB.CreateNot(PPred); 2878 if (InvertQCond) 2879 QPred = QB.CreateNot(QPred); 2880 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2881 2882 auto *T = 2883 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2884 QB.SetInsertPoint(T); 2885 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2886 AAMDNodes AAMD; 2887 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2888 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2889 SI->setAAMetadata(AAMD); 2890 2891 QStore->eraseFromParent(); 2892 PStore->eraseFromParent(); 2893 2894 return true; 2895 } 2896 2897 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2898 // The intention here is to find diamonds or triangles (see below) where each 2899 // conditional block contains a store to the same address. Both of these 2900 // stores are conditional, so they can't be unconditionally sunk. But it may 2901 // be profitable to speculatively sink the stores into one merged store at the 2902 // end, and predicate the merged store on the union of the two conditions of 2903 // PBI and QBI. 2904 // 2905 // This can reduce the number of stores executed if both of the conditions are 2906 // true, and can allow the blocks to become small enough to be if-converted. 2907 // This optimization will also chain, so that ladders of test-and-set 2908 // sequences can be if-converted away. 2909 // 2910 // We only deal with simple diamonds or triangles: 2911 // 2912 // PBI or PBI or a combination of the two 2913 // / \ | \ 2914 // PTB PFB | PFB 2915 // \ / | / 2916 // QBI QBI 2917 // / \ | \ 2918 // QTB QFB | QFB 2919 // \ / | / 2920 // PostBB PostBB 2921 // 2922 // We model triangles as a type of diamond with a nullptr "true" block. 2923 // Triangles are canonicalized so that the fallthrough edge is represented by 2924 // a true condition, as in the diagram above. 2925 // 2926 BasicBlock *PTB = PBI->getSuccessor(0); 2927 BasicBlock *PFB = PBI->getSuccessor(1); 2928 BasicBlock *QTB = QBI->getSuccessor(0); 2929 BasicBlock *QFB = QBI->getSuccessor(1); 2930 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2931 2932 bool InvertPCond = false, InvertQCond = false; 2933 // Canonicalize fallthroughs to the true branches. 2934 if (PFB == QBI->getParent()) { 2935 std::swap(PFB, PTB); 2936 InvertPCond = true; 2937 } 2938 if (QFB == PostBB) { 2939 std::swap(QFB, QTB); 2940 InvertQCond = true; 2941 } 2942 2943 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2944 // and QFB may not. Model fallthroughs as a nullptr block. 2945 if (PTB == QBI->getParent()) 2946 PTB = nullptr; 2947 if (QTB == PostBB) 2948 QTB = nullptr; 2949 2950 // Legality bailouts. We must have at least the non-fallthrough blocks and 2951 // the post-dominating block, and the non-fallthroughs must only have one 2952 // predecessor. 2953 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 2954 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 2955 }; 2956 if (!PostBB || 2957 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 2958 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 2959 return false; 2960 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 2961 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 2962 return false; 2963 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 2964 return false; 2965 2966 // OK, this is a sequence of two diamonds or triangles. 2967 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 2968 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 2969 for (auto *BB : {PTB, PFB}) { 2970 if (!BB) 2971 continue; 2972 for (auto &I : *BB) 2973 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2974 PStoreAddresses.insert(SI->getPointerOperand()); 2975 } 2976 for (auto *BB : {QTB, QFB}) { 2977 if (!BB) 2978 continue; 2979 for (auto &I : *BB) 2980 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2981 QStoreAddresses.insert(SI->getPointerOperand()); 2982 } 2983 2984 set_intersect(PStoreAddresses, QStoreAddresses); 2985 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 2986 // clear what it contains. 2987 auto &CommonAddresses = PStoreAddresses; 2988 2989 bool Changed = false; 2990 for (auto *Address : CommonAddresses) 2991 Changed |= mergeConditionalStoreToAddress( 2992 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 2993 return Changed; 2994 } 2995 2996 /// If we have a conditional branch as a predecessor of another block, 2997 /// this function tries to simplify it. We know 2998 /// that PBI and BI are both conditional branches, and BI is in one of the 2999 /// successor blocks of PBI - PBI branches to BI. 3000 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3001 const DataLayout &DL) { 3002 assert(PBI->isConditional() && BI->isConditional()); 3003 BasicBlock *BB = BI->getParent(); 3004 3005 // If this block ends with a branch instruction, and if there is a 3006 // predecessor that ends on a branch of the same condition, make 3007 // this conditional branch redundant. 3008 if (PBI->getCondition() == BI->getCondition() && 3009 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3010 // Okay, the outcome of this conditional branch is statically 3011 // knowable. If this block had a single pred, handle specially. 3012 if (BB->getSinglePredecessor()) { 3013 // Turn this into a branch on constant. 3014 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3015 BI->setCondition( 3016 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3017 return true; // Nuke the branch on constant. 3018 } 3019 3020 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3021 // in the constant and simplify the block result. Subsequent passes of 3022 // simplifycfg will thread the block. 3023 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3024 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3025 PHINode *NewPN = PHINode::Create( 3026 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3027 BI->getCondition()->getName() + ".pr", &BB->front()); 3028 // Okay, we're going to insert the PHI node. Since PBI is not the only 3029 // predecessor, compute the PHI'd conditional value for all of the preds. 3030 // Any predecessor where the condition is not computable we keep symbolic. 3031 for (pred_iterator PI = PB; PI != PE; ++PI) { 3032 BasicBlock *P = *PI; 3033 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3034 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3035 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3036 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3037 NewPN->addIncoming( 3038 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3039 P); 3040 } else { 3041 NewPN->addIncoming(BI->getCondition(), P); 3042 } 3043 } 3044 3045 BI->setCondition(NewPN); 3046 return true; 3047 } 3048 } 3049 3050 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3051 if (CE->canTrap()) 3052 return false; 3053 3054 // If both branches are conditional and both contain stores to the same 3055 // address, remove the stores from the conditionals and create a conditional 3056 // merged store at the end. 3057 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 3058 return true; 3059 3060 // If this is a conditional branch in an empty block, and if any 3061 // predecessors are a conditional branch to one of our destinations, 3062 // fold the conditions into logical ops and one cond br. 3063 BasicBlock::iterator BBI = BB->begin(); 3064 // Ignore dbg intrinsics. 3065 while (isa<DbgInfoIntrinsic>(BBI)) 3066 ++BBI; 3067 if (&*BBI != BI) 3068 return false; 3069 3070 int PBIOp, BIOp; 3071 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3072 PBIOp = 0; 3073 BIOp = 0; 3074 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3075 PBIOp = 0; 3076 BIOp = 1; 3077 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3078 PBIOp = 1; 3079 BIOp = 0; 3080 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3081 PBIOp = 1; 3082 BIOp = 1; 3083 } else { 3084 return false; 3085 } 3086 3087 // Check to make sure that the other destination of this branch 3088 // isn't BB itself. If so, this is an infinite loop that will 3089 // keep getting unwound. 3090 if (PBI->getSuccessor(PBIOp) == BB) 3091 return false; 3092 3093 // Do not perform this transformation if it would require 3094 // insertion of a large number of select instructions. For targets 3095 // without predication/cmovs, this is a big pessimization. 3096 3097 // Also do not perform this transformation if any phi node in the common 3098 // destination block can trap when reached by BB or PBB (PR17073). In that 3099 // case, it would be unsafe to hoist the operation into a select instruction. 3100 3101 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3102 unsigned NumPhis = 0; 3103 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3104 ++II, ++NumPhis) { 3105 if (NumPhis > 2) // Disable this xform. 3106 return false; 3107 3108 PHINode *PN = cast<PHINode>(II); 3109 Value *BIV = PN->getIncomingValueForBlock(BB); 3110 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3111 if (CE->canTrap()) 3112 return false; 3113 3114 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3115 Value *PBIV = PN->getIncomingValue(PBBIdx); 3116 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3117 if (CE->canTrap()) 3118 return false; 3119 } 3120 3121 // Finally, if everything is ok, fold the branches to logical ops. 3122 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3123 3124 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3125 << "AND: " << *BI->getParent()); 3126 3127 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3128 // branch in it, where one edge (OtherDest) goes back to itself but the other 3129 // exits. We don't *know* that the program avoids the infinite loop 3130 // (even though that seems likely). If we do this xform naively, we'll end up 3131 // recursively unpeeling the loop. Since we know that (after the xform is 3132 // done) that the block *is* infinite if reached, we just make it an obviously 3133 // infinite loop with no cond branch. 3134 if (OtherDest == BB) { 3135 // Insert it at the end of the function, because it's either code, 3136 // or it won't matter if it's hot. :) 3137 BasicBlock *InfLoopBlock = 3138 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3139 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3140 OtherDest = InfLoopBlock; 3141 } 3142 3143 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3144 3145 // BI may have other predecessors. Because of this, we leave 3146 // it alone, but modify PBI. 3147 3148 // Make sure we get to CommonDest on True&True directions. 3149 Value *PBICond = PBI->getCondition(); 3150 IRBuilder<NoFolder> Builder(PBI); 3151 if (PBIOp) 3152 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3153 3154 Value *BICond = BI->getCondition(); 3155 if (BIOp) 3156 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3157 3158 // Merge the conditions. 3159 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3160 3161 // Modify PBI to branch on the new condition to the new dests. 3162 PBI->setCondition(Cond); 3163 PBI->setSuccessor(0, CommonDest); 3164 PBI->setSuccessor(1, OtherDest); 3165 3166 // Update branch weight for PBI. 3167 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3168 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3169 bool HasWeights = 3170 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3171 SuccTrueWeight, SuccFalseWeight); 3172 if (HasWeights) { 3173 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3174 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3175 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3176 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3177 // The weight to CommonDest should be PredCommon * SuccTotal + 3178 // PredOther * SuccCommon. 3179 // The weight to OtherDest should be PredOther * SuccOther. 3180 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3181 PredOther * SuccCommon, 3182 PredOther * SuccOther}; 3183 // Halve the weights if any of them cannot fit in an uint32_t 3184 FitWeights(NewWeights); 3185 3186 PBI->setMetadata(LLVMContext::MD_prof, 3187 MDBuilder(BI->getContext()) 3188 .createBranchWeights(NewWeights[0], NewWeights[1])); 3189 } 3190 3191 // OtherDest may have phi nodes. If so, add an entry from PBI's 3192 // block that are identical to the entries for BI's block. 3193 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3194 3195 // We know that the CommonDest already had an edge from PBI to 3196 // it. If it has PHIs though, the PHIs may have different 3197 // entries for BB and PBI's BB. If so, insert a select to make 3198 // them agree. 3199 PHINode *PN; 3200 for (BasicBlock::iterator II = CommonDest->begin(); 3201 (PN = dyn_cast<PHINode>(II)); ++II) { 3202 Value *BIV = PN->getIncomingValueForBlock(BB); 3203 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3204 Value *PBIV = PN->getIncomingValue(PBBIdx); 3205 if (BIV != PBIV) { 3206 // Insert a select in PBI to pick the right value. 3207 SelectInst *NV = cast<SelectInst>( 3208 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3209 PN->setIncomingValue(PBBIdx, NV); 3210 // Although the select has the same condition as PBI, the original branch 3211 // weights for PBI do not apply to the new select because the select's 3212 // 'logical' edges are incoming edges of the phi that is eliminated, not 3213 // the outgoing edges of PBI. 3214 if (HasWeights) { 3215 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3216 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3217 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3218 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3219 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3220 // The weight to PredOtherDest should be PredOther * SuccCommon. 3221 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3222 PredOther * SuccCommon}; 3223 3224 FitWeights(NewWeights); 3225 3226 NV->setMetadata(LLVMContext::MD_prof, 3227 MDBuilder(BI->getContext()) 3228 .createBranchWeights(NewWeights[0], NewWeights[1])); 3229 } 3230 } 3231 } 3232 3233 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3234 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3235 3236 // This basic block is probably dead. We know it has at least 3237 // one fewer predecessor. 3238 return true; 3239 } 3240 3241 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3242 // true or to FalseBB if Cond is false. 3243 // Takes care of updating the successors and removing the old terminator. 3244 // Also makes sure not to introduce new successors by assuming that edges to 3245 // non-successor TrueBBs and FalseBBs aren't reachable. 3246 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3247 BasicBlock *TrueBB, BasicBlock *FalseBB, 3248 uint32_t TrueWeight, 3249 uint32_t FalseWeight) { 3250 // Remove any superfluous successor edges from the CFG. 3251 // First, figure out which successors to preserve. 3252 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3253 // successor. 3254 BasicBlock *KeepEdge1 = TrueBB; 3255 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3256 3257 // Then remove the rest. 3258 for (BasicBlock *Succ : OldTerm->successors()) { 3259 // Make sure only to keep exactly one copy of each edge. 3260 if (Succ == KeepEdge1) 3261 KeepEdge1 = nullptr; 3262 else if (Succ == KeepEdge2) 3263 KeepEdge2 = nullptr; 3264 else 3265 Succ->removePredecessor(OldTerm->getParent(), 3266 /*DontDeleteUselessPHIs=*/true); 3267 } 3268 3269 IRBuilder<> Builder(OldTerm); 3270 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3271 3272 // Insert an appropriate new terminator. 3273 if (!KeepEdge1 && !KeepEdge2) { 3274 if (TrueBB == FalseBB) 3275 // We were only looking for one successor, and it was present. 3276 // Create an unconditional branch to it. 3277 Builder.CreateBr(TrueBB); 3278 else { 3279 // We found both of the successors we were looking for. 3280 // Create a conditional branch sharing the condition of the select. 3281 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3282 if (TrueWeight != FalseWeight) 3283 NewBI->setMetadata(LLVMContext::MD_prof, 3284 MDBuilder(OldTerm->getContext()) 3285 .createBranchWeights(TrueWeight, FalseWeight)); 3286 } 3287 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3288 // Neither of the selected blocks were successors, so this 3289 // terminator must be unreachable. 3290 new UnreachableInst(OldTerm->getContext(), OldTerm); 3291 } else { 3292 // One of the selected values was a successor, but the other wasn't. 3293 // Insert an unconditional branch to the one that was found; 3294 // the edge to the one that wasn't must be unreachable. 3295 if (!KeepEdge1) 3296 // Only TrueBB was found. 3297 Builder.CreateBr(TrueBB); 3298 else 3299 // Only FalseBB was found. 3300 Builder.CreateBr(FalseBB); 3301 } 3302 3303 EraseTerminatorInstAndDCECond(OldTerm); 3304 return true; 3305 } 3306 3307 // Replaces 3308 // (switch (select cond, X, Y)) on constant X, Y 3309 // with a branch - conditional if X and Y lead to distinct BBs, 3310 // unconditional otherwise. 3311 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3312 // Check for constant integer values in the select. 3313 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3314 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3315 if (!TrueVal || !FalseVal) 3316 return false; 3317 3318 // Find the relevant condition and destinations. 3319 Value *Condition = Select->getCondition(); 3320 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 3321 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 3322 3323 // Get weight for TrueBB and FalseBB. 3324 uint32_t TrueWeight = 0, FalseWeight = 0; 3325 SmallVector<uint64_t, 8> Weights; 3326 bool HasWeights = HasBranchWeights(SI); 3327 if (HasWeights) { 3328 GetBranchWeights(SI, Weights); 3329 if (Weights.size() == 1 + SI->getNumCases()) { 3330 TrueWeight = 3331 (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()]; 3332 FalseWeight = 3333 (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()]; 3334 } 3335 } 3336 3337 // Perform the actual simplification. 3338 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3339 FalseWeight); 3340 } 3341 3342 // Replaces 3343 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3344 // blockaddress(@fn, BlockB))) 3345 // with 3346 // (br cond, BlockA, BlockB). 3347 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3348 // Check that both operands of the select are block addresses. 3349 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3350 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3351 if (!TBA || !FBA) 3352 return false; 3353 3354 // Extract the actual blocks. 3355 BasicBlock *TrueBB = TBA->getBasicBlock(); 3356 BasicBlock *FalseBB = FBA->getBasicBlock(); 3357 3358 // Perform the actual simplification. 3359 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3360 0); 3361 } 3362 3363 /// This is called when we find an icmp instruction 3364 /// (a seteq/setne with a constant) as the only instruction in a 3365 /// block that ends with an uncond branch. We are looking for a very specific 3366 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3367 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3368 /// default value goes to an uncond block with a seteq in it, we get something 3369 /// like: 3370 /// 3371 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3372 /// DEFAULT: 3373 /// %tmp = icmp eq i8 %A, 92 3374 /// br label %end 3375 /// end: 3376 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3377 /// 3378 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3379 /// the PHI, merging the third icmp into the switch. 3380 static bool TryToSimplifyUncondBranchWithICmpInIt( 3381 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3382 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3383 AssumptionCache *AC) { 3384 BasicBlock *BB = ICI->getParent(); 3385 3386 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3387 // complex. 3388 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3389 return false; 3390 3391 Value *V = ICI->getOperand(0); 3392 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3393 3394 // The pattern we're looking for is where our only predecessor is a switch on 3395 // 'V' and this block is the default case for the switch. In this case we can 3396 // fold the compared value into the switch to simplify things. 3397 BasicBlock *Pred = BB->getSinglePredecessor(); 3398 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3399 return false; 3400 3401 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3402 if (SI->getCondition() != V) 3403 return false; 3404 3405 // If BB is reachable on a non-default case, then we simply know the value of 3406 // V in this block. Substitute it and constant fold the icmp instruction 3407 // away. 3408 if (SI->getDefaultDest() != BB) { 3409 ConstantInt *VVal = SI->findCaseDest(BB); 3410 assert(VVal && "Should have a unique destination value"); 3411 ICI->setOperand(0, VVal); 3412 3413 if (Value *V = SimplifyInstruction(ICI, DL)) { 3414 ICI->replaceAllUsesWith(V); 3415 ICI->eraseFromParent(); 3416 } 3417 // BB is now empty, so it is likely to simplify away. 3418 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3419 } 3420 3421 // Ok, the block is reachable from the default dest. If the constant we're 3422 // comparing exists in one of the other edges, then we can constant fold ICI 3423 // and zap it. 3424 if (SI->findCaseValue(Cst) != SI->case_default()) { 3425 Value *V; 3426 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3427 V = ConstantInt::getFalse(BB->getContext()); 3428 else 3429 V = ConstantInt::getTrue(BB->getContext()); 3430 3431 ICI->replaceAllUsesWith(V); 3432 ICI->eraseFromParent(); 3433 // BB is now empty, so it is likely to simplify away. 3434 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3435 } 3436 3437 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3438 // the block. 3439 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3440 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3441 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3442 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3443 return false; 3444 3445 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3446 // true in the PHI. 3447 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3448 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3449 3450 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3451 std::swap(DefaultCst, NewCst); 3452 3453 // Replace ICI (which is used by the PHI for the default value) with true or 3454 // false depending on if it is EQ or NE. 3455 ICI->replaceAllUsesWith(DefaultCst); 3456 ICI->eraseFromParent(); 3457 3458 // Okay, the switch goes to this block on a default value. Add an edge from 3459 // the switch to the merge point on the compared value. 3460 BasicBlock *NewBB = 3461 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3462 SmallVector<uint64_t, 8> Weights; 3463 bool HasWeights = HasBranchWeights(SI); 3464 if (HasWeights) { 3465 GetBranchWeights(SI, Weights); 3466 if (Weights.size() == 1 + SI->getNumCases()) { 3467 // Split weight for default case to case for "Cst". 3468 Weights[0] = (Weights[0] + 1) >> 1; 3469 Weights.push_back(Weights[0]); 3470 3471 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3472 SI->setMetadata( 3473 LLVMContext::MD_prof, 3474 MDBuilder(SI->getContext()).createBranchWeights(MDWeights)); 3475 } 3476 } 3477 SI->addCase(Cst, NewBB); 3478 3479 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3480 Builder.SetInsertPoint(NewBB); 3481 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3482 Builder.CreateBr(SuccBlock); 3483 PHIUse->addIncoming(NewCst, NewBB); 3484 return true; 3485 } 3486 3487 /// The specified branch is a conditional branch. 3488 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3489 /// fold it into a switch instruction if so. 3490 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3491 const DataLayout &DL) { 3492 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3493 if (!Cond) 3494 return false; 3495 3496 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3497 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3498 // 'setne's and'ed together, collect them. 3499 3500 // Try to gather values from a chain of and/or to be turned into a switch 3501 ConstantComparesGatherer ConstantCompare(Cond, DL); 3502 // Unpack the result 3503 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3504 Value *CompVal = ConstantCompare.CompValue; 3505 unsigned UsedICmps = ConstantCompare.UsedICmps; 3506 Value *ExtraCase = ConstantCompare.Extra; 3507 3508 // If we didn't have a multiply compared value, fail. 3509 if (!CompVal) 3510 return false; 3511 3512 // Avoid turning single icmps into a switch. 3513 if (UsedICmps <= 1) 3514 return false; 3515 3516 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3517 3518 // There might be duplicate constants in the list, which the switch 3519 // instruction can't handle, remove them now. 3520 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3521 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3522 3523 // If Extra was used, we require at least two switch values to do the 3524 // transformation. A switch with one value is just a conditional branch. 3525 if (ExtraCase && Values.size() < 2) 3526 return false; 3527 3528 // TODO: Preserve branch weight metadata, similarly to how 3529 // FoldValueComparisonIntoPredecessors preserves it. 3530 3531 // Figure out which block is which destination. 3532 BasicBlock *DefaultBB = BI->getSuccessor(1); 3533 BasicBlock *EdgeBB = BI->getSuccessor(0); 3534 if (!TrueWhenEqual) 3535 std::swap(DefaultBB, EdgeBB); 3536 3537 BasicBlock *BB = BI->getParent(); 3538 3539 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3540 << " cases into SWITCH. BB is:\n" 3541 << *BB); 3542 3543 // If there are any extra values that couldn't be folded into the switch 3544 // then we evaluate them with an explicit branch first. Split the block 3545 // right before the condbr to handle it. 3546 if (ExtraCase) { 3547 BasicBlock *NewBB = 3548 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3549 // Remove the uncond branch added to the old block. 3550 TerminatorInst *OldTI = BB->getTerminator(); 3551 Builder.SetInsertPoint(OldTI); 3552 3553 if (TrueWhenEqual) 3554 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3555 else 3556 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3557 3558 OldTI->eraseFromParent(); 3559 3560 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3561 // for the edge we just added. 3562 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3563 3564 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3565 << "\nEXTRABB = " << *BB); 3566 BB = NewBB; 3567 } 3568 3569 Builder.SetInsertPoint(BI); 3570 // Convert pointer to int before we switch. 3571 if (CompVal->getType()->isPointerTy()) { 3572 CompVal = Builder.CreatePtrToInt( 3573 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3574 } 3575 3576 // Create the new switch instruction now. 3577 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3578 3579 // Add all of the 'cases' to the switch instruction. 3580 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3581 New->addCase(Values[i], EdgeBB); 3582 3583 // We added edges from PI to the EdgeBB. As such, if there were any 3584 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3585 // the number of edges added. 3586 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3587 PHINode *PN = cast<PHINode>(BBI); 3588 Value *InVal = PN->getIncomingValueForBlock(BB); 3589 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3590 PN->addIncoming(InVal, BB); 3591 } 3592 3593 // Erase the old branch instruction. 3594 EraseTerminatorInstAndDCECond(BI); 3595 3596 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3597 return true; 3598 } 3599 3600 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3601 if (isa<PHINode>(RI->getValue())) 3602 return SimplifyCommonResume(RI); 3603 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3604 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3605 // The resume must unwind the exception that caused control to branch here. 3606 return SimplifySingleResume(RI); 3607 3608 return false; 3609 } 3610 3611 // Simplify resume that is shared by several landing pads (phi of landing pad). 3612 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3613 BasicBlock *BB = RI->getParent(); 3614 3615 // Check that there are no other instructions except for debug intrinsics 3616 // between the phi of landing pads (RI->getValue()) and resume instruction. 3617 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3618 E = RI->getIterator(); 3619 while (++I != E) 3620 if (!isa<DbgInfoIntrinsic>(I)) 3621 return false; 3622 3623 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3624 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3625 3626 // Check incoming blocks to see if any of them are trivial. 3627 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3628 Idx++) { 3629 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3630 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3631 3632 // If the block has other successors, we can not delete it because 3633 // it has other dependents. 3634 if (IncomingBB->getUniqueSuccessor() != BB) 3635 continue; 3636 3637 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3638 // Not the landing pad that caused the control to branch here. 3639 if (IncomingValue != LandingPad) 3640 continue; 3641 3642 bool isTrivial = true; 3643 3644 I = IncomingBB->getFirstNonPHI()->getIterator(); 3645 E = IncomingBB->getTerminator()->getIterator(); 3646 while (++I != E) 3647 if (!isa<DbgInfoIntrinsic>(I)) { 3648 isTrivial = false; 3649 break; 3650 } 3651 3652 if (isTrivial) 3653 TrivialUnwindBlocks.insert(IncomingBB); 3654 } 3655 3656 // If no trivial unwind blocks, don't do any simplifications. 3657 if (TrivialUnwindBlocks.empty()) 3658 return false; 3659 3660 // Turn all invokes that unwind here into calls. 3661 for (auto *TrivialBB : TrivialUnwindBlocks) { 3662 // Blocks that will be simplified should be removed from the phi node. 3663 // Note there could be multiple edges to the resume block, and we need 3664 // to remove them all. 3665 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3666 BB->removePredecessor(TrivialBB, true); 3667 3668 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3669 PI != PE;) { 3670 BasicBlock *Pred = *PI++; 3671 removeUnwindEdge(Pred); 3672 } 3673 3674 // In each SimplifyCFG run, only the current processed block can be erased. 3675 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3676 // of erasing TrivialBB, we only remove the branch to the common resume 3677 // block so that we can later erase the resume block since it has no 3678 // predecessors. 3679 TrivialBB->getTerminator()->eraseFromParent(); 3680 new UnreachableInst(RI->getContext(), TrivialBB); 3681 } 3682 3683 // Delete the resume block if all its predecessors have been removed. 3684 if (pred_empty(BB)) 3685 BB->eraseFromParent(); 3686 3687 return !TrivialUnwindBlocks.empty(); 3688 } 3689 3690 // Simplify resume that is only used by a single (non-phi) landing pad. 3691 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3692 BasicBlock *BB = RI->getParent(); 3693 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3694 assert(RI->getValue() == LPInst && 3695 "Resume must unwind the exception that caused control to here"); 3696 3697 // Check that there are no other instructions except for debug intrinsics. 3698 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3699 while (++I != E) 3700 if (!isa<DbgInfoIntrinsic>(I)) 3701 return false; 3702 3703 // Turn all invokes that unwind here into calls and delete the basic block. 3704 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3705 BasicBlock *Pred = *PI++; 3706 removeUnwindEdge(Pred); 3707 } 3708 3709 // The landingpad is now unreachable. Zap it. 3710 BB->eraseFromParent(); 3711 if (LoopHeaders) 3712 LoopHeaders->erase(BB); 3713 return true; 3714 } 3715 3716 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3717 // If this is a trivial cleanup pad that executes no instructions, it can be 3718 // eliminated. If the cleanup pad continues to the caller, any predecessor 3719 // that is an EH pad will be updated to continue to the caller and any 3720 // predecessor that terminates with an invoke instruction will have its invoke 3721 // instruction converted to a call instruction. If the cleanup pad being 3722 // simplified does not continue to the caller, each predecessor will be 3723 // updated to continue to the unwind destination of the cleanup pad being 3724 // simplified. 3725 BasicBlock *BB = RI->getParent(); 3726 CleanupPadInst *CPInst = RI->getCleanupPad(); 3727 if (CPInst->getParent() != BB) 3728 // This isn't an empty cleanup. 3729 return false; 3730 3731 // We cannot kill the pad if it has multiple uses. This typically arises 3732 // from unreachable basic blocks. 3733 if (!CPInst->hasOneUse()) 3734 return false; 3735 3736 // Check that there are no other instructions except for benign intrinsics. 3737 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3738 while (++I != E) { 3739 auto *II = dyn_cast<IntrinsicInst>(I); 3740 if (!II) 3741 return false; 3742 3743 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3744 switch (IntrinsicID) { 3745 case Intrinsic::dbg_declare: 3746 case Intrinsic::dbg_value: 3747 case Intrinsic::lifetime_end: 3748 break; 3749 default: 3750 return false; 3751 } 3752 } 3753 3754 // If the cleanup return we are simplifying unwinds to the caller, this will 3755 // set UnwindDest to nullptr. 3756 BasicBlock *UnwindDest = RI->getUnwindDest(); 3757 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3758 3759 // We're about to remove BB from the control flow. Before we do, sink any 3760 // PHINodes into the unwind destination. Doing this before changing the 3761 // control flow avoids some potentially slow checks, since we can currently 3762 // be certain that UnwindDest and BB have no common predecessors (since they 3763 // are both EH pads). 3764 if (UnwindDest) { 3765 // First, go through the PHI nodes in UnwindDest and update any nodes that 3766 // reference the block we are removing 3767 for (BasicBlock::iterator I = UnwindDest->begin(), 3768 IE = DestEHPad->getIterator(); 3769 I != IE; ++I) { 3770 PHINode *DestPN = cast<PHINode>(I); 3771 3772 int Idx = DestPN->getBasicBlockIndex(BB); 3773 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3774 assert(Idx != -1); 3775 // This PHI node has an incoming value that corresponds to a control 3776 // path through the cleanup pad we are removing. If the incoming 3777 // value is in the cleanup pad, it must be a PHINode (because we 3778 // verified above that the block is otherwise empty). Otherwise, the 3779 // value is either a constant or a value that dominates the cleanup 3780 // pad being removed. 3781 // 3782 // Because BB and UnwindDest are both EH pads, all of their 3783 // predecessors must unwind to these blocks, and since no instruction 3784 // can have multiple unwind destinations, there will be no overlap in 3785 // incoming blocks between SrcPN and DestPN. 3786 Value *SrcVal = DestPN->getIncomingValue(Idx); 3787 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3788 3789 // Remove the entry for the block we are deleting. 3790 DestPN->removeIncomingValue(Idx, false); 3791 3792 if (SrcPN && SrcPN->getParent() == BB) { 3793 // If the incoming value was a PHI node in the cleanup pad we are 3794 // removing, we need to merge that PHI node's incoming values into 3795 // DestPN. 3796 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3797 SrcIdx != SrcE; ++SrcIdx) { 3798 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3799 SrcPN->getIncomingBlock(SrcIdx)); 3800 } 3801 } else { 3802 // Otherwise, the incoming value came from above BB and 3803 // so we can just reuse it. We must associate all of BB's 3804 // predecessors with this value. 3805 for (auto *pred : predecessors(BB)) { 3806 DestPN->addIncoming(SrcVal, pred); 3807 } 3808 } 3809 } 3810 3811 // Sink any remaining PHI nodes directly into UnwindDest. 3812 Instruction *InsertPt = DestEHPad; 3813 for (BasicBlock::iterator I = BB->begin(), 3814 IE = BB->getFirstNonPHI()->getIterator(); 3815 I != IE;) { 3816 // The iterator must be incremented here because the instructions are 3817 // being moved to another block. 3818 PHINode *PN = cast<PHINode>(I++); 3819 if (PN->use_empty()) 3820 // If the PHI node has no uses, just leave it. It will be erased 3821 // when we erase BB below. 3822 continue; 3823 3824 // Otherwise, sink this PHI node into UnwindDest. 3825 // Any predecessors to UnwindDest which are not already represented 3826 // must be back edges which inherit the value from the path through 3827 // BB. In this case, the PHI value must reference itself. 3828 for (auto *pred : predecessors(UnwindDest)) 3829 if (pred != BB) 3830 PN->addIncoming(PN, pred); 3831 PN->moveBefore(InsertPt); 3832 } 3833 } 3834 3835 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3836 // The iterator must be updated here because we are removing this pred. 3837 BasicBlock *PredBB = *PI++; 3838 if (UnwindDest == nullptr) { 3839 removeUnwindEdge(PredBB); 3840 } else { 3841 TerminatorInst *TI = PredBB->getTerminator(); 3842 TI->replaceUsesOfWith(BB, UnwindDest); 3843 } 3844 } 3845 3846 // The cleanup pad is now unreachable. Zap it. 3847 BB->eraseFromParent(); 3848 return true; 3849 } 3850 3851 // Try to merge two cleanuppads together. 3852 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3853 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3854 // with. 3855 BasicBlock *UnwindDest = RI->getUnwindDest(); 3856 if (!UnwindDest) 3857 return false; 3858 3859 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3860 // be safe to merge without code duplication. 3861 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3862 return false; 3863 3864 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3865 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3866 if (!SuccessorCleanupPad) 3867 return false; 3868 3869 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3870 // Replace any uses of the successor cleanupad with the predecessor pad 3871 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3872 // funclet bundle operands. 3873 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 3874 // Remove the old cleanuppad. 3875 SuccessorCleanupPad->eraseFromParent(); 3876 // Now, we simply replace the cleanupret with a branch to the unwind 3877 // destination. 3878 BranchInst::Create(UnwindDest, RI->getParent()); 3879 RI->eraseFromParent(); 3880 3881 return true; 3882 } 3883 3884 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3885 // It is possible to transiantly have an undef cleanuppad operand because we 3886 // have deleted some, but not all, dead blocks. 3887 // Eventually, this block will be deleted. 3888 if (isa<UndefValue>(RI->getOperand(0))) 3889 return false; 3890 3891 if (mergeCleanupPad(RI)) 3892 return true; 3893 3894 if (removeEmptyCleanup(RI)) 3895 return true; 3896 3897 return false; 3898 } 3899 3900 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3901 BasicBlock *BB = RI->getParent(); 3902 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 3903 return false; 3904 3905 // Find predecessors that end with branches. 3906 SmallVector<BasicBlock *, 8> UncondBranchPreds; 3907 SmallVector<BranchInst *, 8> CondBranchPreds; 3908 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3909 BasicBlock *P = *PI; 3910 TerminatorInst *PTI = P->getTerminator(); 3911 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3912 if (BI->isUnconditional()) 3913 UncondBranchPreds.push_back(P); 3914 else 3915 CondBranchPreds.push_back(BI); 3916 } 3917 } 3918 3919 // If we found some, do the transformation! 3920 if (!UncondBranchPreds.empty() && DupRet) { 3921 while (!UncondBranchPreds.empty()) { 3922 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3923 DEBUG(dbgs() << "FOLDING: " << *BB 3924 << "INTO UNCOND BRANCH PRED: " << *Pred); 3925 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3926 } 3927 3928 // If we eliminated all predecessors of the block, delete the block now. 3929 if (pred_empty(BB)) { 3930 // We know there are no successors, so just nuke the block. 3931 BB->eraseFromParent(); 3932 if (LoopHeaders) 3933 LoopHeaders->erase(BB); 3934 } 3935 3936 return true; 3937 } 3938 3939 // Check out all of the conditional branches going to this return 3940 // instruction. If any of them just select between returns, change the 3941 // branch itself into a select/return pair. 3942 while (!CondBranchPreds.empty()) { 3943 BranchInst *BI = CondBranchPreds.pop_back_val(); 3944 3945 // Check to see if the non-BB successor is also a return block. 3946 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3947 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3948 SimplifyCondBranchToTwoReturns(BI, Builder)) 3949 return true; 3950 } 3951 return false; 3952 } 3953 3954 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3955 BasicBlock *BB = UI->getParent(); 3956 3957 bool Changed = false; 3958 3959 // If there are any instructions immediately before the unreachable that can 3960 // be removed, do so. 3961 while (UI->getIterator() != BB->begin()) { 3962 BasicBlock::iterator BBI = UI->getIterator(); 3963 --BBI; 3964 // Do not delete instructions that can have side effects which might cause 3965 // the unreachable to not be reachable; specifically, calls and volatile 3966 // operations may have this effect. 3967 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 3968 break; 3969 3970 if (BBI->mayHaveSideEffects()) { 3971 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 3972 if (SI->isVolatile()) 3973 break; 3974 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 3975 if (LI->isVolatile()) 3976 break; 3977 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3978 if (RMWI->isVolatile()) 3979 break; 3980 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3981 if (CXI->isVolatile()) 3982 break; 3983 } else if (isa<CatchPadInst>(BBI)) { 3984 // A catchpad may invoke exception object constructors and such, which 3985 // in some languages can be arbitrary code, so be conservative by 3986 // default. 3987 // For CoreCLR, it just involves a type test, so can be removed. 3988 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 3989 EHPersonality::CoreCLR) 3990 break; 3991 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3992 !isa<LandingPadInst>(BBI)) { 3993 break; 3994 } 3995 // Note that deleting LandingPad's here is in fact okay, although it 3996 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3997 // all the predecessors of this block will be the unwind edges of Invokes, 3998 // and we can therefore guarantee this block will be erased. 3999 } 4000 4001 // Delete this instruction (any uses are guaranteed to be dead) 4002 if (!BBI->use_empty()) 4003 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4004 BBI->eraseFromParent(); 4005 Changed = true; 4006 } 4007 4008 // If the unreachable instruction is the first in the block, take a gander 4009 // at all of the predecessors of this instruction, and simplify them. 4010 if (&BB->front() != UI) 4011 return Changed; 4012 4013 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4014 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4015 TerminatorInst *TI = Preds[i]->getTerminator(); 4016 IRBuilder<> Builder(TI); 4017 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4018 if (BI->isUnconditional()) { 4019 if (BI->getSuccessor(0) == BB) { 4020 new UnreachableInst(TI->getContext(), TI); 4021 TI->eraseFromParent(); 4022 Changed = true; 4023 } 4024 } else { 4025 if (BI->getSuccessor(0) == BB) { 4026 Builder.CreateBr(BI->getSuccessor(1)); 4027 EraseTerminatorInstAndDCECond(BI); 4028 } else if (BI->getSuccessor(1) == BB) { 4029 Builder.CreateBr(BI->getSuccessor(0)); 4030 EraseTerminatorInstAndDCECond(BI); 4031 Changed = true; 4032 } 4033 } 4034 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4035 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 4036 ++i) 4037 if (i.getCaseSuccessor() == BB) { 4038 BB->removePredecessor(SI->getParent()); 4039 SI->removeCase(i); 4040 --i; 4041 --e; 4042 Changed = true; 4043 } 4044 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4045 if (II->getUnwindDest() == BB) { 4046 removeUnwindEdge(TI->getParent()); 4047 Changed = true; 4048 } 4049 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4050 if (CSI->getUnwindDest() == BB) { 4051 removeUnwindEdge(TI->getParent()); 4052 Changed = true; 4053 continue; 4054 } 4055 4056 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4057 E = CSI->handler_end(); 4058 I != E; ++I) { 4059 if (*I == BB) { 4060 CSI->removeHandler(I); 4061 --I; 4062 --E; 4063 Changed = true; 4064 } 4065 } 4066 if (CSI->getNumHandlers() == 0) { 4067 BasicBlock *CatchSwitchBB = CSI->getParent(); 4068 if (CSI->hasUnwindDest()) { 4069 // Redirect preds to the unwind dest 4070 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4071 } else { 4072 // Rewrite all preds to unwind to caller (or from invoke to call). 4073 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4074 for (BasicBlock *EHPred : EHPreds) 4075 removeUnwindEdge(EHPred); 4076 } 4077 // The catchswitch is no longer reachable. 4078 new UnreachableInst(CSI->getContext(), CSI); 4079 CSI->eraseFromParent(); 4080 Changed = true; 4081 } 4082 } else if (isa<CleanupReturnInst>(TI)) { 4083 new UnreachableInst(TI->getContext(), TI); 4084 TI->eraseFromParent(); 4085 Changed = true; 4086 } 4087 } 4088 4089 // If this block is now dead, remove it. 4090 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4091 // We know there are no successors, so just nuke the block. 4092 BB->eraseFromParent(); 4093 if (LoopHeaders) 4094 LoopHeaders->erase(BB); 4095 return true; 4096 } 4097 4098 return Changed; 4099 } 4100 4101 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4102 assert(Cases.size() >= 1); 4103 4104 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4105 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4106 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4107 return false; 4108 } 4109 return true; 4110 } 4111 4112 /// Turn a switch with two reachable destinations into an integer range 4113 /// comparison and branch. 4114 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4115 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4116 4117 bool HasDefault = 4118 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4119 4120 // Partition the cases into two sets with different destinations. 4121 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4122 BasicBlock *DestB = nullptr; 4123 SmallVector<ConstantInt *, 16> CasesA; 4124 SmallVector<ConstantInt *, 16> CasesB; 4125 4126 for (SwitchInst::CaseIt I : SI->cases()) { 4127 BasicBlock *Dest = I.getCaseSuccessor(); 4128 if (!DestA) 4129 DestA = Dest; 4130 if (Dest == DestA) { 4131 CasesA.push_back(I.getCaseValue()); 4132 continue; 4133 } 4134 if (!DestB) 4135 DestB = Dest; 4136 if (Dest == DestB) { 4137 CasesB.push_back(I.getCaseValue()); 4138 continue; 4139 } 4140 return false; // More than two destinations. 4141 } 4142 4143 assert(DestA && DestB && 4144 "Single-destination switch should have been folded."); 4145 assert(DestA != DestB); 4146 assert(DestB != SI->getDefaultDest()); 4147 assert(!CasesB.empty() && "There must be non-default cases."); 4148 assert(!CasesA.empty() || HasDefault); 4149 4150 // Figure out if one of the sets of cases form a contiguous range. 4151 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4152 BasicBlock *ContiguousDest = nullptr; 4153 BasicBlock *OtherDest = nullptr; 4154 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4155 ContiguousCases = &CasesA; 4156 ContiguousDest = DestA; 4157 OtherDest = DestB; 4158 } else if (CasesAreContiguous(CasesB)) { 4159 ContiguousCases = &CasesB; 4160 ContiguousDest = DestB; 4161 OtherDest = DestA; 4162 } else 4163 return false; 4164 4165 // Start building the compare and branch. 4166 4167 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4168 Constant *NumCases = 4169 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4170 4171 Value *Sub = SI->getCondition(); 4172 if (!Offset->isNullValue()) 4173 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4174 4175 Value *Cmp; 4176 // If NumCases overflowed, then all possible values jump to the successor. 4177 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4178 Cmp = ConstantInt::getTrue(SI->getContext()); 4179 else 4180 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4181 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4182 4183 // Update weight for the newly-created conditional branch. 4184 if (HasBranchWeights(SI)) { 4185 SmallVector<uint64_t, 8> Weights; 4186 GetBranchWeights(SI, Weights); 4187 if (Weights.size() == 1 + SI->getNumCases()) { 4188 uint64_t TrueWeight = 0; 4189 uint64_t FalseWeight = 0; 4190 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4191 if (SI->getSuccessor(I) == ContiguousDest) 4192 TrueWeight += Weights[I]; 4193 else 4194 FalseWeight += Weights[I]; 4195 } 4196 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4197 TrueWeight /= 2; 4198 FalseWeight /= 2; 4199 } 4200 NewBI->setMetadata(LLVMContext::MD_prof, 4201 MDBuilder(SI->getContext()) 4202 .createBranchWeights((uint32_t)TrueWeight, 4203 (uint32_t)FalseWeight)); 4204 } 4205 } 4206 4207 // Prune obsolete incoming values off the successors' PHI nodes. 4208 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4209 unsigned PreviousEdges = ContiguousCases->size(); 4210 if (ContiguousDest == SI->getDefaultDest()) 4211 ++PreviousEdges; 4212 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4213 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4214 } 4215 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4216 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4217 if (OtherDest == SI->getDefaultDest()) 4218 ++PreviousEdges; 4219 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4220 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4221 } 4222 4223 // Drop the switch. 4224 SI->eraseFromParent(); 4225 4226 return true; 4227 } 4228 4229 /// Compute masked bits for the condition of a switch 4230 /// and use it to remove dead cases. 4231 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4232 const DataLayout &DL) { 4233 Value *Cond = SI->getCondition(); 4234 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4235 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 4236 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 4237 4238 // We can also eliminate cases by determining that their values are outside of 4239 // the limited range of the condition based on how many significant (non-sign) 4240 // bits are in the condition value. 4241 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4242 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4243 4244 // Gather dead cases. 4245 SmallVector<ConstantInt *, 8> DeadCases; 4246 for (auto &Case : SI->cases()) { 4247 APInt CaseVal = Case.getCaseValue()->getValue(); 4248 if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne || 4249 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4250 DeadCases.push_back(Case.getCaseValue()); 4251 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4252 } 4253 } 4254 4255 // If we can prove that the cases must cover all possible values, the 4256 // default destination becomes dead and we can remove it. If we know some 4257 // of the bits in the value, we can use that to more precisely compute the 4258 // number of possible unique case values. 4259 bool HasDefault = 4260 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4261 const unsigned NumUnknownBits = 4262 Bits - (KnownZero.Or(KnownOne)).countPopulation(); 4263 assert(NumUnknownBits <= Bits); 4264 if (HasDefault && DeadCases.empty() && 4265 NumUnknownBits < 64 /* avoid overflow */ && 4266 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4267 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4268 BasicBlock *NewDefault = 4269 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4270 SI->setDefaultDest(&*NewDefault); 4271 SplitBlock(&*NewDefault, &NewDefault->front()); 4272 auto *OldTI = NewDefault->getTerminator(); 4273 new UnreachableInst(SI->getContext(), OldTI); 4274 EraseTerminatorInstAndDCECond(OldTI); 4275 return true; 4276 } 4277 4278 SmallVector<uint64_t, 8> Weights; 4279 bool HasWeight = HasBranchWeights(SI); 4280 if (HasWeight) { 4281 GetBranchWeights(SI, Weights); 4282 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4283 } 4284 4285 // Remove dead cases from the switch. 4286 for (ConstantInt *DeadCase : DeadCases) { 4287 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase); 4288 assert(Case != SI->case_default() && 4289 "Case was not found. Probably mistake in DeadCases forming."); 4290 if (HasWeight) { 4291 std::swap(Weights[Case.getCaseIndex() + 1], Weights.back()); 4292 Weights.pop_back(); 4293 } 4294 4295 // Prune unused values from PHI nodes. 4296 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 4297 SI->removeCase(Case); 4298 } 4299 if (HasWeight && Weights.size() >= 2) { 4300 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4301 SI->setMetadata(LLVMContext::MD_prof, 4302 MDBuilder(SI->getParent()->getContext()) 4303 .createBranchWeights(MDWeights)); 4304 } 4305 4306 return !DeadCases.empty(); 4307 } 4308 4309 /// If BB would be eligible for simplification by 4310 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4311 /// by an unconditional branch), look at the phi node for BB in the successor 4312 /// block and see if the incoming value is equal to CaseValue. If so, return 4313 /// the phi node, and set PhiIndex to BB's index in the phi node. 4314 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4315 BasicBlock *BB, int *PhiIndex) { 4316 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4317 return nullptr; // BB must be empty to be a candidate for simplification. 4318 if (!BB->getSinglePredecessor()) 4319 return nullptr; // BB must be dominated by the switch. 4320 4321 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4322 if (!Branch || !Branch->isUnconditional()) 4323 return nullptr; // Terminator must be unconditional branch. 4324 4325 BasicBlock *Succ = Branch->getSuccessor(0); 4326 4327 BasicBlock::iterator I = Succ->begin(); 4328 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4329 int Idx = PHI->getBasicBlockIndex(BB); 4330 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4331 4332 Value *InValue = PHI->getIncomingValue(Idx); 4333 if (InValue != CaseValue) 4334 continue; 4335 4336 *PhiIndex = Idx; 4337 return PHI; 4338 } 4339 4340 return nullptr; 4341 } 4342 4343 /// Try to forward the condition of a switch instruction to a phi node 4344 /// dominated by the switch, if that would mean that some of the destination 4345 /// blocks of the switch can be folded away. 4346 /// Returns true if a change is made. 4347 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4348 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap; 4349 ForwardingNodesMap ForwardingNodes; 4350 4351 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; 4352 ++I) { 4353 ConstantInt *CaseValue = I.getCaseValue(); 4354 BasicBlock *CaseDest = I.getCaseSuccessor(); 4355 4356 int PhiIndex; 4357 PHINode *PHI = 4358 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex); 4359 if (!PHI) 4360 continue; 4361 4362 ForwardingNodes[PHI].push_back(PhiIndex); 4363 } 4364 4365 bool Changed = false; 4366 4367 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 4368 E = ForwardingNodes.end(); 4369 I != E; ++I) { 4370 PHINode *Phi = I->first; 4371 SmallVectorImpl<int> &Indexes = I->second; 4372 4373 if (Indexes.size() < 2) 4374 continue; 4375 4376 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 4377 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 4378 Changed = true; 4379 } 4380 4381 return Changed; 4382 } 4383 4384 /// Return true if the backend will be able to handle 4385 /// initializing an array of constants like C. 4386 static bool ValidLookupTableConstant(Constant *C) { 4387 if (C->isThreadDependent()) 4388 return false; 4389 if (C->isDLLImportDependent()) 4390 return false; 4391 4392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 4393 return CE->isGEPWithNoNotionalOverIndexing(); 4394 4395 return isa<ConstantFP>(C) || isa<ConstantInt>(C) || 4396 isa<ConstantPointerNull>(C) || isa<GlobalValue>(C) || 4397 isa<UndefValue>(C); 4398 } 4399 4400 /// If V is a Constant, return it. Otherwise, try to look up 4401 /// its constant value in ConstantPool, returning 0 if it's not there. 4402 static Constant * 4403 LookupConstant(Value *V, 4404 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4405 if (Constant *C = dyn_cast<Constant>(V)) 4406 return C; 4407 return ConstantPool.lookup(V); 4408 } 4409 4410 /// Try to fold instruction I into a constant. This works for 4411 /// simple instructions such as binary operations where both operands are 4412 /// constant or can be replaced by constants from the ConstantPool. Returns the 4413 /// resulting constant on success, 0 otherwise. 4414 static Constant * 4415 ConstantFold(Instruction *I, const DataLayout &DL, 4416 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4417 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4418 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4419 if (!A) 4420 return nullptr; 4421 if (A->isAllOnesValue()) 4422 return LookupConstant(Select->getTrueValue(), ConstantPool); 4423 if (A->isNullValue()) 4424 return LookupConstant(Select->getFalseValue(), ConstantPool); 4425 return nullptr; 4426 } 4427 4428 SmallVector<Constant *, 4> COps; 4429 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4430 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4431 COps.push_back(A); 4432 else 4433 return nullptr; 4434 } 4435 4436 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4437 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4438 COps[1], DL); 4439 } 4440 4441 return ConstantFoldInstOperands(I, COps, DL); 4442 } 4443 4444 /// Try to determine the resulting constant values in phi nodes 4445 /// at the common destination basic block, *CommonDest, for one of the case 4446 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4447 /// case), of a switch instruction SI. 4448 static bool 4449 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4450 BasicBlock **CommonDest, 4451 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4452 const DataLayout &DL) { 4453 // The block from which we enter the common destination. 4454 BasicBlock *Pred = SI->getParent(); 4455 4456 // If CaseDest is empty except for some side-effect free instructions through 4457 // which we can constant-propagate the CaseVal, continue to its successor. 4458 SmallDenseMap<Value *, Constant *> ConstantPool; 4459 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4460 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4461 ++I) { 4462 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4463 // If the terminator is a simple branch, continue to the next block. 4464 if (T->getNumSuccessors() != 1) 4465 return false; 4466 Pred = CaseDest; 4467 CaseDest = T->getSuccessor(0); 4468 } else if (isa<DbgInfoIntrinsic>(I)) { 4469 // Skip debug intrinsic. 4470 continue; 4471 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4472 // Instruction is side-effect free and constant. 4473 4474 // If the instruction has uses outside this block or a phi node slot for 4475 // the block, it is not safe to bypass the instruction since it would then 4476 // no longer dominate all its uses. 4477 for (auto &Use : I->uses()) { 4478 User *User = Use.getUser(); 4479 if (Instruction *I = dyn_cast<Instruction>(User)) 4480 if (I->getParent() == CaseDest) 4481 continue; 4482 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4483 if (Phi->getIncomingBlock(Use) == CaseDest) 4484 continue; 4485 return false; 4486 } 4487 4488 ConstantPool.insert(std::make_pair(&*I, C)); 4489 } else { 4490 break; 4491 } 4492 } 4493 4494 // If we did not have a CommonDest before, use the current one. 4495 if (!*CommonDest) 4496 *CommonDest = CaseDest; 4497 // If the destination isn't the common one, abort. 4498 if (CaseDest != *CommonDest) 4499 return false; 4500 4501 // Get the values for this case from phi nodes in the destination block. 4502 BasicBlock::iterator I = (*CommonDest)->begin(); 4503 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4504 int Idx = PHI->getBasicBlockIndex(Pred); 4505 if (Idx == -1) 4506 continue; 4507 4508 Constant *ConstVal = 4509 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4510 if (!ConstVal) 4511 return false; 4512 4513 // Be conservative about which kinds of constants we support. 4514 if (!ValidLookupTableConstant(ConstVal)) 4515 return false; 4516 4517 Res.push_back(std::make_pair(PHI, ConstVal)); 4518 } 4519 4520 return Res.size() > 0; 4521 } 4522 4523 // Helper function used to add CaseVal to the list of cases that generate 4524 // Result. 4525 static void MapCaseToResult(ConstantInt *CaseVal, 4526 SwitchCaseResultVectorTy &UniqueResults, 4527 Constant *Result) { 4528 for (auto &I : UniqueResults) { 4529 if (I.first == Result) { 4530 I.second.push_back(CaseVal); 4531 return; 4532 } 4533 } 4534 UniqueResults.push_back( 4535 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4536 } 4537 4538 // Helper function that initializes a map containing 4539 // results for the PHI node of the common destination block for a switch 4540 // instruction. Returns false if multiple PHI nodes have been found or if 4541 // there is not a common destination block for the switch. 4542 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4543 BasicBlock *&CommonDest, 4544 SwitchCaseResultVectorTy &UniqueResults, 4545 Constant *&DefaultResult, 4546 const DataLayout &DL) { 4547 for (auto &I : SI->cases()) { 4548 ConstantInt *CaseVal = I.getCaseValue(); 4549 4550 // Resulting value at phi nodes for this case value. 4551 SwitchCaseResultsTy Results; 4552 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4553 DL)) 4554 return false; 4555 4556 // Only one value per case is permitted 4557 if (Results.size() > 1) 4558 return false; 4559 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4560 4561 // Check the PHI consistency. 4562 if (!PHI) 4563 PHI = Results[0].first; 4564 else if (PHI != Results[0].first) 4565 return false; 4566 } 4567 // Find the default result value. 4568 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4569 BasicBlock *DefaultDest = SI->getDefaultDest(); 4570 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4571 DL); 4572 // If the default value is not found abort unless the default destination 4573 // is unreachable. 4574 DefaultResult = 4575 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4576 if ((!DefaultResult && 4577 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4578 return false; 4579 4580 return true; 4581 } 4582 4583 // Helper function that checks if it is possible to transform a switch with only 4584 // two cases (or two cases + default) that produces a result into a select. 4585 // Example: 4586 // switch (a) { 4587 // case 10: %0 = icmp eq i32 %a, 10 4588 // return 10; %1 = select i1 %0, i32 10, i32 4 4589 // case 20: ----> %2 = icmp eq i32 %a, 20 4590 // return 2; %3 = select i1 %2, i32 2, i32 %1 4591 // default: 4592 // return 4; 4593 // } 4594 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4595 Constant *DefaultResult, Value *Condition, 4596 IRBuilder<> &Builder) { 4597 assert(ResultVector.size() == 2 && 4598 "We should have exactly two unique results at this point"); 4599 // If we are selecting between only two cases transform into a simple 4600 // select or a two-way select if default is possible. 4601 if (ResultVector[0].second.size() == 1 && 4602 ResultVector[1].second.size() == 1) { 4603 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4604 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4605 4606 bool DefaultCanTrigger = DefaultResult; 4607 Value *SelectValue = ResultVector[1].first; 4608 if (DefaultCanTrigger) { 4609 Value *const ValueCompare = 4610 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4611 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4612 DefaultResult, "switch.select"); 4613 } 4614 Value *const ValueCompare = 4615 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4616 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4617 SelectValue, "switch.select"); 4618 } 4619 4620 return nullptr; 4621 } 4622 4623 // Helper function to cleanup a switch instruction that has been converted into 4624 // a select, fixing up PHI nodes and basic blocks. 4625 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4626 Value *SelectValue, 4627 IRBuilder<> &Builder) { 4628 BasicBlock *SelectBB = SI->getParent(); 4629 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4630 PHI->removeIncomingValue(SelectBB); 4631 PHI->addIncoming(SelectValue, SelectBB); 4632 4633 Builder.CreateBr(PHI->getParent()); 4634 4635 // Remove the switch. 4636 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4637 BasicBlock *Succ = SI->getSuccessor(i); 4638 4639 if (Succ == PHI->getParent()) 4640 continue; 4641 Succ->removePredecessor(SelectBB); 4642 } 4643 SI->eraseFromParent(); 4644 } 4645 4646 /// If the switch is only used to initialize one or more 4647 /// phi nodes in a common successor block with only two different 4648 /// constant values, replace the switch with select. 4649 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4650 AssumptionCache *AC, const DataLayout &DL) { 4651 Value *const Cond = SI->getCondition(); 4652 PHINode *PHI = nullptr; 4653 BasicBlock *CommonDest = nullptr; 4654 Constant *DefaultResult; 4655 SwitchCaseResultVectorTy UniqueResults; 4656 // Collect all the cases that will deliver the same value from the switch. 4657 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4658 DL)) 4659 return false; 4660 // Selects choose between maximum two values. 4661 if (UniqueResults.size() != 2) 4662 return false; 4663 assert(PHI != nullptr && "PHI for value select not found"); 4664 4665 Builder.SetInsertPoint(SI); 4666 Value *SelectValue = 4667 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4668 if (SelectValue) { 4669 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4670 return true; 4671 } 4672 // The switch couldn't be converted into a select. 4673 return false; 4674 } 4675 4676 namespace { 4677 /// This class represents a lookup table that can be used to replace a switch. 4678 class SwitchLookupTable { 4679 public: 4680 /// Create a lookup table to use as a switch replacement with the contents 4681 /// of Values, using DefaultValue to fill any holes in the table. 4682 SwitchLookupTable( 4683 Module &M, uint64_t TableSize, ConstantInt *Offset, 4684 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4685 Constant *DefaultValue, const DataLayout &DL); 4686 4687 /// Build instructions with Builder to retrieve the value at 4688 /// the position given by Index in the lookup table. 4689 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4690 4691 /// Return true if a table with TableSize elements of 4692 /// type ElementType would fit in a target-legal register. 4693 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4694 Type *ElementType); 4695 4696 private: 4697 // Depending on the contents of the table, it can be represented in 4698 // different ways. 4699 enum { 4700 // For tables where each element contains the same value, we just have to 4701 // store that single value and return it for each lookup. 4702 SingleValueKind, 4703 4704 // For tables where there is a linear relationship between table index 4705 // and values. We calculate the result with a simple multiplication 4706 // and addition instead of a table lookup. 4707 LinearMapKind, 4708 4709 // For small tables with integer elements, we can pack them into a bitmap 4710 // that fits into a target-legal register. Values are retrieved by 4711 // shift and mask operations. 4712 BitMapKind, 4713 4714 // The table is stored as an array of values. Values are retrieved by load 4715 // instructions from the table. 4716 ArrayKind 4717 } Kind; 4718 4719 // For SingleValueKind, this is the single value. 4720 Constant *SingleValue; 4721 4722 // For BitMapKind, this is the bitmap. 4723 ConstantInt *BitMap; 4724 IntegerType *BitMapElementTy; 4725 4726 // For LinearMapKind, these are the constants used to derive the value. 4727 ConstantInt *LinearOffset; 4728 ConstantInt *LinearMultiplier; 4729 4730 // For ArrayKind, this is the array. 4731 GlobalVariable *Array; 4732 }; 4733 } 4734 4735 SwitchLookupTable::SwitchLookupTable( 4736 Module &M, uint64_t TableSize, ConstantInt *Offset, 4737 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4738 Constant *DefaultValue, const DataLayout &DL) 4739 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4740 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4741 assert(Values.size() && "Can't build lookup table without values!"); 4742 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4743 4744 // If all values in the table are equal, this is that value. 4745 SingleValue = Values.begin()->second; 4746 4747 Type *ValueType = Values.begin()->second->getType(); 4748 4749 // Build up the table contents. 4750 SmallVector<Constant *, 64> TableContents(TableSize); 4751 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4752 ConstantInt *CaseVal = Values[I].first; 4753 Constant *CaseRes = Values[I].second; 4754 assert(CaseRes->getType() == ValueType); 4755 4756 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4757 TableContents[Idx] = CaseRes; 4758 4759 if (CaseRes != SingleValue) 4760 SingleValue = nullptr; 4761 } 4762 4763 // Fill in any holes in the table with the default result. 4764 if (Values.size() < TableSize) { 4765 assert(DefaultValue && 4766 "Need a default value to fill the lookup table holes."); 4767 assert(DefaultValue->getType() == ValueType); 4768 for (uint64_t I = 0; I < TableSize; ++I) { 4769 if (!TableContents[I]) 4770 TableContents[I] = DefaultValue; 4771 } 4772 4773 if (DefaultValue != SingleValue) 4774 SingleValue = nullptr; 4775 } 4776 4777 // If each element in the table contains the same value, we only need to store 4778 // that single value. 4779 if (SingleValue) { 4780 Kind = SingleValueKind; 4781 return; 4782 } 4783 4784 // Check if we can derive the value with a linear transformation from the 4785 // table index. 4786 if (isa<IntegerType>(ValueType)) { 4787 bool LinearMappingPossible = true; 4788 APInt PrevVal; 4789 APInt DistToPrev; 4790 assert(TableSize >= 2 && "Should be a SingleValue table."); 4791 // Check if there is the same distance between two consecutive values. 4792 for (uint64_t I = 0; I < TableSize; ++I) { 4793 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4794 if (!ConstVal) { 4795 // This is an undef. We could deal with it, but undefs in lookup tables 4796 // are very seldom. It's probably not worth the additional complexity. 4797 LinearMappingPossible = false; 4798 break; 4799 } 4800 APInt Val = ConstVal->getValue(); 4801 if (I != 0) { 4802 APInt Dist = Val - PrevVal; 4803 if (I == 1) { 4804 DistToPrev = Dist; 4805 } else if (Dist != DistToPrev) { 4806 LinearMappingPossible = false; 4807 break; 4808 } 4809 } 4810 PrevVal = Val; 4811 } 4812 if (LinearMappingPossible) { 4813 LinearOffset = cast<ConstantInt>(TableContents[0]); 4814 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4815 Kind = LinearMapKind; 4816 ++NumLinearMaps; 4817 return; 4818 } 4819 } 4820 4821 // If the type is integer and the table fits in a register, build a bitmap. 4822 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4823 IntegerType *IT = cast<IntegerType>(ValueType); 4824 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4825 for (uint64_t I = TableSize; I > 0; --I) { 4826 TableInt <<= IT->getBitWidth(); 4827 // Insert values into the bitmap. Undef values are set to zero. 4828 if (!isa<UndefValue>(TableContents[I - 1])) { 4829 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4830 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4831 } 4832 } 4833 BitMap = ConstantInt::get(M.getContext(), TableInt); 4834 BitMapElementTy = IT; 4835 Kind = BitMapKind; 4836 ++NumBitMaps; 4837 return; 4838 } 4839 4840 // Store the table in an array. 4841 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4842 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4843 4844 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 4845 GlobalVariable::PrivateLinkage, Initializer, 4846 "switch.table"); 4847 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 4848 Kind = ArrayKind; 4849 } 4850 4851 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4852 switch (Kind) { 4853 case SingleValueKind: 4854 return SingleValue; 4855 case LinearMapKind: { 4856 // Derive the result value from the input value. 4857 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4858 false, "switch.idx.cast"); 4859 if (!LinearMultiplier->isOne()) 4860 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4861 if (!LinearOffset->isZero()) 4862 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4863 return Result; 4864 } 4865 case BitMapKind: { 4866 // Type of the bitmap (e.g. i59). 4867 IntegerType *MapTy = BitMap->getType(); 4868 4869 // Cast Index to the same type as the bitmap. 4870 // Note: The Index is <= the number of elements in the table, so 4871 // truncating it to the width of the bitmask is safe. 4872 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4873 4874 // Multiply the shift amount by the element width. 4875 ShiftAmt = Builder.CreateMul( 4876 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4877 "switch.shiftamt"); 4878 4879 // Shift down. 4880 Value *DownShifted = 4881 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 4882 // Mask off. 4883 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 4884 } 4885 case ArrayKind: { 4886 // Make sure the table index will not overflow when treated as signed. 4887 IntegerType *IT = cast<IntegerType>(Index->getType()); 4888 uint64_t TableSize = 4889 Array->getInitializer()->getType()->getArrayNumElements(); 4890 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4891 Index = Builder.CreateZExt( 4892 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 4893 "switch.tableidx.zext"); 4894 4895 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 4896 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4897 GEPIndices, "switch.gep"); 4898 return Builder.CreateLoad(GEP, "switch.load"); 4899 } 4900 } 4901 llvm_unreachable("Unknown lookup table kind!"); 4902 } 4903 4904 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4905 uint64_t TableSize, 4906 Type *ElementType) { 4907 auto *IT = dyn_cast<IntegerType>(ElementType); 4908 if (!IT) 4909 return false; 4910 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4911 // are <= 15, we could try to narrow the type. 4912 4913 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4914 if (TableSize >= UINT_MAX / IT->getBitWidth()) 4915 return false; 4916 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4917 } 4918 4919 /// Determine whether a lookup table should be built for this switch, based on 4920 /// the number of cases, size of the table, and the types of the results. 4921 static bool 4922 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4923 const TargetTransformInfo &TTI, const DataLayout &DL, 4924 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4925 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4926 return false; // TableSize overflowed, or mul below might overflow. 4927 4928 bool AllTablesFitInRegister = true; 4929 bool HasIllegalType = false; 4930 for (const auto &I : ResultTypes) { 4931 Type *Ty = I.second; 4932 4933 // Saturate this flag to true. 4934 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4935 4936 // Saturate this flag to false. 4937 AllTablesFitInRegister = 4938 AllTablesFitInRegister && 4939 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4940 4941 // If both flags saturate, we're done. NOTE: This *only* works with 4942 // saturating flags, and all flags have to saturate first due to the 4943 // non-deterministic behavior of iterating over a dense map. 4944 if (HasIllegalType && !AllTablesFitInRegister) 4945 break; 4946 } 4947 4948 // If each table would fit in a register, we should build it anyway. 4949 if (AllTablesFitInRegister) 4950 return true; 4951 4952 // Don't build a table that doesn't fit in-register if it has illegal types. 4953 if (HasIllegalType) 4954 return false; 4955 4956 // The table density should be at least 40%. This is the same criterion as for 4957 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4958 // FIXME: Find the best cut-off. 4959 return SI->getNumCases() * 10 >= TableSize * 4; 4960 } 4961 4962 /// Try to reuse the switch table index compare. Following pattern: 4963 /// \code 4964 /// if (idx < tablesize) 4965 /// r = table[idx]; // table does not contain default_value 4966 /// else 4967 /// r = default_value; 4968 /// if (r != default_value) 4969 /// ... 4970 /// \endcode 4971 /// Is optimized to: 4972 /// \code 4973 /// cond = idx < tablesize; 4974 /// if (cond) 4975 /// r = table[idx]; 4976 /// else 4977 /// r = default_value; 4978 /// if (cond) 4979 /// ... 4980 /// \endcode 4981 /// Jump threading will then eliminate the second if(cond). 4982 static void reuseTableCompare( 4983 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 4984 Constant *DefaultValue, 4985 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 4986 4987 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4988 if (!CmpInst) 4989 return; 4990 4991 // We require that the compare is in the same block as the phi so that jump 4992 // threading can do its work afterwards. 4993 if (CmpInst->getParent() != PhiBlock) 4994 return; 4995 4996 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4997 if (!CmpOp1) 4998 return; 4999 5000 Value *RangeCmp = RangeCheckBranch->getCondition(); 5001 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5002 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5003 5004 // Check if the compare with the default value is constant true or false. 5005 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5006 DefaultValue, CmpOp1, true); 5007 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5008 return; 5009 5010 // Check if the compare with the case values is distinct from the default 5011 // compare result. 5012 for (auto ValuePair : Values) { 5013 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5014 ValuePair.second, CmpOp1, true); 5015 if (!CaseConst || CaseConst == DefaultConst) 5016 return; 5017 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5018 "Expect true or false as compare result."); 5019 } 5020 5021 // Check if the branch instruction dominates the phi node. It's a simple 5022 // dominance check, but sufficient for our needs. 5023 // Although this check is invariant in the calling loops, it's better to do it 5024 // at this late stage. Practically we do it at most once for a switch. 5025 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5026 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5027 BasicBlock *Pred = *PI; 5028 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5029 return; 5030 } 5031 5032 if (DefaultConst == FalseConst) { 5033 // The compare yields the same result. We can replace it. 5034 CmpInst->replaceAllUsesWith(RangeCmp); 5035 ++NumTableCmpReuses; 5036 } else { 5037 // The compare yields the same result, just inverted. We can replace it. 5038 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5039 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5040 RangeCheckBranch); 5041 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5042 ++NumTableCmpReuses; 5043 } 5044 } 5045 5046 /// If the switch is only used to initialize one or more phi nodes in a common 5047 /// successor block with different constant values, replace the switch with 5048 /// lookup tables. 5049 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5050 const DataLayout &DL, 5051 const TargetTransformInfo &TTI) { 5052 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5053 5054 // Only build lookup table when we have a target that supports it. 5055 if (!TTI.shouldBuildLookupTables()) 5056 return false; 5057 5058 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5059 // split off a dense part and build a lookup table for that. 5060 5061 // FIXME: This creates arrays of GEPs to constant strings, which means each 5062 // GEP needs a runtime relocation in PIC code. We should just build one big 5063 // string and lookup indices into that. 5064 5065 // Ignore switches with less than three cases. Lookup tables will not make 5066 // them 5067 // faster, so we don't analyze them. 5068 if (SI->getNumCases() < 3) 5069 return false; 5070 5071 // Figure out the corresponding result for each case value and phi node in the 5072 // common destination, as well as the min and max case values. 5073 assert(SI->case_begin() != SI->case_end()); 5074 SwitchInst::CaseIt CI = SI->case_begin(); 5075 ConstantInt *MinCaseVal = CI.getCaseValue(); 5076 ConstantInt *MaxCaseVal = CI.getCaseValue(); 5077 5078 BasicBlock *CommonDest = nullptr; 5079 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy; 5080 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5081 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5082 SmallDenseMap<PHINode *, Type *> ResultTypes; 5083 SmallVector<PHINode *, 4> PHIs; 5084 5085 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5086 ConstantInt *CaseVal = CI.getCaseValue(); 5087 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5088 MinCaseVal = CaseVal; 5089 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5090 MaxCaseVal = CaseVal; 5091 5092 // Resulting value at phi nodes for this case value. 5093 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy; 5094 ResultsTy Results; 5095 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 5096 Results, DL)) 5097 return false; 5098 5099 // Append the result from this case to the list for each phi. 5100 for (const auto &I : Results) { 5101 PHINode *PHI = I.first; 5102 Constant *Value = I.second; 5103 if (!ResultLists.count(PHI)) 5104 PHIs.push_back(PHI); 5105 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5106 } 5107 } 5108 5109 // Keep track of the result types. 5110 for (PHINode *PHI : PHIs) { 5111 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5112 } 5113 5114 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5115 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5116 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5117 bool TableHasHoles = (NumResults < TableSize); 5118 5119 // If the table has holes, we need a constant result for the default case 5120 // or a bitmask that fits in a register. 5121 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5122 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 5123 &CommonDest, DefaultResultsList, DL); 5124 5125 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5126 if (NeedMask) { 5127 // As an extra penalty for the validity test we require more cases. 5128 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5129 return false; 5130 if (!DL.fitsInLegalInteger(TableSize)) 5131 return false; 5132 } 5133 5134 for (const auto &I : DefaultResultsList) { 5135 PHINode *PHI = I.first; 5136 Constant *Result = I.second; 5137 DefaultResults[PHI] = Result; 5138 } 5139 5140 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5141 return false; 5142 5143 // Create the BB that does the lookups. 5144 Module &Mod = *CommonDest->getParent()->getParent(); 5145 BasicBlock *LookupBB = BasicBlock::Create( 5146 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5147 5148 // Compute the table index value. 5149 Builder.SetInsertPoint(SI); 5150 Value *TableIndex = 5151 Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx"); 5152 5153 // Compute the maximum table size representable by the integer type we are 5154 // switching upon. 5155 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5156 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5157 assert(MaxTableSize >= TableSize && 5158 "It is impossible for a switch to have more entries than the max " 5159 "representable value of its input integer type's size."); 5160 5161 // If the default destination is unreachable, or if the lookup table covers 5162 // all values of the conditional variable, branch directly to the lookup table 5163 // BB. Otherwise, check that the condition is within the case range. 5164 const bool DefaultIsReachable = 5165 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5166 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5167 BranchInst *RangeCheckBranch = nullptr; 5168 5169 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5170 Builder.CreateBr(LookupBB); 5171 // Note: We call removeProdecessor later since we need to be able to get the 5172 // PHI value for the default case in case we're using a bit mask. 5173 } else { 5174 Value *Cmp = Builder.CreateICmpULT( 5175 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5176 RangeCheckBranch = 5177 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5178 } 5179 5180 // Populate the BB that does the lookups. 5181 Builder.SetInsertPoint(LookupBB); 5182 5183 if (NeedMask) { 5184 // Before doing the lookup we do the hole check. 5185 // The LookupBB is therefore re-purposed to do the hole check 5186 // and we create a new LookupBB. 5187 BasicBlock *MaskBB = LookupBB; 5188 MaskBB->setName("switch.hole_check"); 5189 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5190 CommonDest->getParent(), CommonDest); 5191 5192 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 5193 // unnecessary illegal types. 5194 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5195 APInt MaskInt(TableSizePowOf2, 0); 5196 APInt One(TableSizePowOf2, 1); 5197 // Build bitmask; fill in a 1 bit for every case. 5198 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5199 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5200 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5201 .getLimitedValue(); 5202 MaskInt |= One << Idx; 5203 } 5204 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5205 5206 // Get the TableIndex'th bit of the bitmask. 5207 // If this bit is 0 (meaning hole) jump to the default destination, 5208 // else continue with table lookup. 5209 IntegerType *MapTy = TableMask->getType(); 5210 Value *MaskIndex = 5211 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5212 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5213 Value *LoBit = Builder.CreateTrunc( 5214 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5215 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5216 5217 Builder.SetInsertPoint(LookupBB); 5218 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5219 } 5220 5221 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5222 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 5223 // do not delete PHINodes here. 5224 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5225 /*DontDeleteUselessPHIs=*/true); 5226 } 5227 5228 bool ReturnedEarly = false; 5229 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 5230 PHINode *PHI = PHIs[I]; 5231 const ResultListTy &ResultList = ResultLists[PHI]; 5232 5233 // If using a bitmask, use any value to fill the lookup table holes. 5234 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5235 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 5236 5237 Value *Result = Table.BuildLookup(TableIndex, Builder); 5238 5239 // If the result is used to return immediately from the function, we want to 5240 // do that right here. 5241 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5242 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5243 Builder.CreateRet(Result); 5244 ReturnedEarly = true; 5245 break; 5246 } 5247 5248 // Do a small peephole optimization: re-use the switch table compare if 5249 // possible. 5250 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5251 BasicBlock *PhiBlock = PHI->getParent(); 5252 // Search for compare instructions which use the phi. 5253 for (auto *User : PHI->users()) { 5254 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5255 } 5256 } 5257 5258 PHI->addIncoming(Result, LookupBB); 5259 } 5260 5261 if (!ReturnedEarly) 5262 Builder.CreateBr(CommonDest); 5263 5264 // Remove the switch. 5265 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5266 BasicBlock *Succ = SI->getSuccessor(i); 5267 5268 if (Succ == SI->getDefaultDest()) 5269 continue; 5270 Succ->removePredecessor(SI->getParent()); 5271 } 5272 SI->eraseFromParent(); 5273 5274 ++NumLookupTables; 5275 if (NeedMask) 5276 ++NumLookupTablesHoles; 5277 return true; 5278 } 5279 5280 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5281 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5282 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5283 uint64_t Range = Diff + 1; 5284 uint64_t NumCases = Values.size(); 5285 // 40% is the default density for building a jump table in optsize/minsize mode. 5286 uint64_t MinDensity = 40; 5287 5288 return NumCases * 100 >= Range * MinDensity; 5289 } 5290 5291 // Try and transform a switch that has "holes" in it to a contiguous sequence 5292 // of cases. 5293 // 5294 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5295 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5296 // 5297 // This converts a sparse switch into a dense switch which allows better 5298 // lowering and could also allow transforming into a lookup table. 5299 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5300 const DataLayout &DL, 5301 const TargetTransformInfo &TTI) { 5302 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5303 if (CondTy->getIntegerBitWidth() > 64 || 5304 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5305 return false; 5306 // Only bother with this optimization if there are more than 3 switch cases; 5307 // SDAG will only bother creating jump tables for 4 or more cases. 5308 if (SI->getNumCases() < 4) 5309 return false; 5310 5311 // This transform is agnostic to the signedness of the input or case values. We 5312 // can treat the case values as signed or unsigned. We can optimize more common 5313 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5314 // as signed. 5315 SmallVector<int64_t,4> Values; 5316 for (auto &C : SI->cases()) 5317 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5318 std::sort(Values.begin(), Values.end()); 5319 5320 // If the switch is already dense, there's nothing useful to do here. 5321 if (isSwitchDense(Values)) 5322 return false; 5323 5324 // First, transform the values such that they start at zero and ascend. 5325 int64_t Base = Values[0]; 5326 for (auto &V : Values) 5327 V -= Base; 5328 5329 // Now we have signed numbers that have been shifted so that, given enough 5330 // precision, there are no negative values. Since the rest of the transform 5331 // is bitwise only, we switch now to an unsigned representation. 5332 uint64_t GCD = 0; 5333 for (auto &V : Values) 5334 GCD = llvm::GreatestCommonDivisor64(GCD, (uint64_t)V); 5335 5336 // This transform can be done speculatively because it is so cheap - it results 5337 // in a single rotate operation being inserted. This can only happen if the 5338 // factor extracted is a power of 2. 5339 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5340 // inverse of GCD and then perform this transform. 5341 // FIXME: It's possible that optimizing a switch on powers of two might also 5342 // be beneficial - flag values are often powers of two and we could use a CLZ 5343 // as the key function. 5344 if (GCD <= 1 || !llvm::isPowerOf2_64(GCD)) 5345 // No common divisor found or too expensive to compute key function. 5346 return false; 5347 5348 unsigned Shift = llvm::Log2_64(GCD); 5349 for (auto &V : Values) 5350 V = (int64_t)((uint64_t)V >> Shift); 5351 5352 if (!isSwitchDense(Values)) 5353 // Transform didn't create a dense switch. 5354 return false; 5355 5356 // The obvious transform is to shift the switch condition right and emit a 5357 // check that the condition actually cleanly divided by GCD, i.e. 5358 // C & (1 << Shift - 1) == 0 5359 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5360 // 5361 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5362 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5363 // are nonzero then the switch condition will be very large and will hit the 5364 // default case. 5365 5366 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5367 Builder.SetInsertPoint(SI); 5368 auto *ShiftC = ConstantInt::get(Ty, Shift); 5369 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5370 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5371 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5372 auto *Rot = Builder.CreateOr(LShr, Shl); 5373 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5374 5375 for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E; 5376 ++C) { 5377 auto *Orig = C.getCaseValue(); 5378 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5379 C.setValue( 5380 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5381 } 5382 return true; 5383 } 5384 5385 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5386 BasicBlock *BB = SI->getParent(); 5387 5388 if (isValueEqualityComparison(SI)) { 5389 // If we only have one predecessor, and if it is a branch on this value, 5390 // see if that predecessor totally determines the outcome of this switch. 5391 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5392 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5393 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5394 5395 Value *Cond = SI->getCondition(); 5396 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5397 if (SimplifySwitchOnSelect(SI, Select)) 5398 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5399 5400 // If the block only contains the switch, see if we can fold the block 5401 // away into any preds. 5402 BasicBlock::iterator BBI = BB->begin(); 5403 // Ignore dbg intrinsics. 5404 while (isa<DbgInfoIntrinsic>(BBI)) 5405 ++BBI; 5406 if (SI == &*BBI) 5407 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5408 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5409 } 5410 5411 // Try to transform the switch into an icmp and a branch. 5412 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5413 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5414 5415 // Remove unreachable cases. 5416 if (EliminateDeadSwitchCases(SI, AC, DL)) 5417 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5418 5419 if (SwitchToSelect(SI, Builder, AC, DL)) 5420 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5421 5422 if (ForwardSwitchConditionToPHI(SI)) 5423 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5424 5425 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 5426 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5427 5428 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5429 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5430 5431 return false; 5432 } 5433 5434 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5435 BasicBlock *BB = IBI->getParent(); 5436 bool Changed = false; 5437 5438 // Eliminate redundant destinations. 5439 SmallPtrSet<Value *, 8> Succs; 5440 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5441 BasicBlock *Dest = IBI->getDestination(i); 5442 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5443 Dest->removePredecessor(BB); 5444 IBI->removeDestination(i); 5445 --i; 5446 --e; 5447 Changed = true; 5448 } 5449 } 5450 5451 if (IBI->getNumDestinations() == 0) { 5452 // If the indirectbr has no successors, change it to unreachable. 5453 new UnreachableInst(IBI->getContext(), IBI); 5454 EraseTerminatorInstAndDCECond(IBI); 5455 return true; 5456 } 5457 5458 if (IBI->getNumDestinations() == 1) { 5459 // If the indirectbr has one successor, change it to a direct branch. 5460 BranchInst::Create(IBI->getDestination(0), IBI); 5461 EraseTerminatorInstAndDCECond(IBI); 5462 return true; 5463 } 5464 5465 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5466 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5467 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5468 } 5469 return Changed; 5470 } 5471 5472 /// Given an block with only a single landing pad and a unconditional branch 5473 /// try to find another basic block which this one can be merged with. This 5474 /// handles cases where we have multiple invokes with unique landing pads, but 5475 /// a shared handler. 5476 /// 5477 /// We specifically choose to not worry about merging non-empty blocks 5478 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5479 /// practice, the optimizer produces empty landing pad blocks quite frequently 5480 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5481 /// sinking in this file) 5482 /// 5483 /// This is primarily a code size optimization. We need to avoid performing 5484 /// any transform which might inhibit optimization (such as our ability to 5485 /// specialize a particular handler via tail commoning). We do this by not 5486 /// merging any blocks which require us to introduce a phi. Since the same 5487 /// values are flowing through both blocks, we don't loose any ability to 5488 /// specialize. If anything, we make such specialization more likely. 5489 /// 5490 /// TODO - This transformation could remove entries from a phi in the target 5491 /// block when the inputs in the phi are the same for the two blocks being 5492 /// merged. In some cases, this could result in removal of the PHI entirely. 5493 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5494 BasicBlock *BB) { 5495 auto Succ = BB->getUniqueSuccessor(); 5496 assert(Succ); 5497 // If there's a phi in the successor block, we'd likely have to introduce 5498 // a phi into the merged landing pad block. 5499 if (isa<PHINode>(*Succ->begin())) 5500 return false; 5501 5502 for (BasicBlock *OtherPred : predecessors(Succ)) { 5503 if (BB == OtherPred) 5504 continue; 5505 BasicBlock::iterator I = OtherPred->begin(); 5506 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5507 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5508 continue; 5509 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5510 } 5511 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5512 if (!BI2 || !BI2->isIdenticalTo(BI)) 5513 continue; 5514 5515 // We've found an identical block. Update our predecessors to take that 5516 // path instead and make ourselves dead. 5517 SmallSet<BasicBlock *, 16> Preds; 5518 Preds.insert(pred_begin(BB), pred_end(BB)); 5519 for (BasicBlock *Pred : Preds) { 5520 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5521 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5522 "unexpected successor"); 5523 II->setUnwindDest(OtherPred); 5524 } 5525 5526 // The debug info in OtherPred doesn't cover the merged control flow that 5527 // used to go through BB. We need to delete it or update it. 5528 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5529 Instruction &Inst = *I; 5530 I++; 5531 if (isa<DbgInfoIntrinsic>(Inst)) 5532 Inst.eraseFromParent(); 5533 } 5534 5535 SmallSet<BasicBlock *, 16> Succs; 5536 Succs.insert(succ_begin(BB), succ_end(BB)); 5537 for (BasicBlock *Succ : Succs) { 5538 Succ->removePredecessor(BB); 5539 } 5540 5541 IRBuilder<> Builder(BI); 5542 Builder.CreateUnreachable(); 5543 BI->eraseFromParent(); 5544 return true; 5545 } 5546 return false; 5547 } 5548 5549 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5550 IRBuilder<> &Builder) { 5551 BasicBlock *BB = BI->getParent(); 5552 5553 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5554 return true; 5555 5556 // If the Terminator is the only non-phi instruction, simplify the block. 5557 // if LoopHeader is provided, check if the block is a loop header 5558 // (This is for early invocations before loop simplify and vectorization 5559 // to keep canonical loop forms for nested loops. 5560 // These blocks can be eliminated when the pass is invoked later 5561 // in the back-end.) 5562 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5563 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5564 (!LoopHeaders || !LoopHeaders->count(BB)) && 5565 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5566 return true; 5567 5568 // If the only instruction in the block is a seteq/setne comparison 5569 // against a constant, try to simplify the block. 5570 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5571 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5572 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5573 ; 5574 if (I->isTerminator() && 5575 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5576 BonusInstThreshold, AC)) 5577 return true; 5578 } 5579 5580 // See if we can merge an empty landing pad block with another which is 5581 // equivalent. 5582 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5583 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5584 } 5585 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5586 return true; 5587 } 5588 5589 // If this basic block is ONLY a compare and a branch, and if a predecessor 5590 // branches to us and our successor, fold the comparison into the 5591 // predecessor and use logical operations to update the incoming value 5592 // for PHI nodes in common successor. 5593 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5594 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5595 return false; 5596 } 5597 5598 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5599 BasicBlock *PredPred = nullptr; 5600 for (auto *P : predecessors(BB)) { 5601 BasicBlock *PPred = P->getSinglePredecessor(); 5602 if (!PPred || (PredPred && PredPred != PPred)) 5603 return nullptr; 5604 PredPred = PPred; 5605 } 5606 return PredPred; 5607 } 5608 5609 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5610 BasicBlock *BB = BI->getParent(); 5611 5612 // Conditional branch 5613 if (isValueEqualityComparison(BI)) { 5614 // If we only have one predecessor, and if it is a branch on this value, 5615 // see if that predecessor totally determines the outcome of this 5616 // switch. 5617 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5618 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5619 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5620 5621 // This block must be empty, except for the setcond inst, if it exists. 5622 // Ignore dbg intrinsics. 5623 BasicBlock::iterator I = BB->begin(); 5624 // Ignore dbg intrinsics. 5625 while (isa<DbgInfoIntrinsic>(I)) 5626 ++I; 5627 if (&*I == BI) { 5628 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5629 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5630 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5631 ++I; 5632 // Ignore dbg intrinsics. 5633 while (isa<DbgInfoIntrinsic>(I)) 5634 ++I; 5635 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5636 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5637 } 5638 } 5639 5640 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5641 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5642 return true; 5643 5644 // If this basic block has a single dominating predecessor block and the 5645 // dominating block's condition implies BI's condition, we know the direction 5646 // of the BI branch. 5647 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5648 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5649 if (PBI && PBI->isConditional() && 5650 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 5651 (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) { 5652 bool CondIsFalse = PBI->getSuccessor(1) == BB; 5653 Optional<bool> Implication = isImpliedCondition( 5654 PBI->getCondition(), BI->getCondition(), DL, CondIsFalse); 5655 if (Implication) { 5656 // Turn this into a branch on constant. 5657 auto *OldCond = BI->getCondition(); 5658 ConstantInt *CI = *Implication 5659 ? ConstantInt::getTrue(BB->getContext()) 5660 : ConstantInt::getFalse(BB->getContext()); 5661 BI->setCondition(CI); 5662 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5663 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5664 } 5665 } 5666 } 5667 5668 // If this basic block is ONLY a compare and a branch, and if a predecessor 5669 // branches to us and one of our successors, fold the comparison into the 5670 // predecessor and use logical operations to pick the right destination. 5671 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5672 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5673 5674 // We have a conditional branch to two blocks that are only reachable 5675 // from BI. We know that the condbr dominates the two blocks, so see if 5676 // there is any identical code in the "then" and "else" blocks. If so, we 5677 // can hoist it up to the branching block. 5678 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5679 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5680 if (HoistThenElseCodeToIf(BI, TTI)) 5681 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5682 } else { 5683 // If Successor #1 has multiple preds, we may be able to conditionally 5684 // execute Successor #0 if it branches to Successor #1. 5685 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5686 if (Succ0TI->getNumSuccessors() == 1 && 5687 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5688 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5689 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5690 } 5691 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5692 // If Successor #0 has multiple preds, we may be able to conditionally 5693 // execute Successor #1 if it branches to Successor #0. 5694 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5695 if (Succ1TI->getNumSuccessors() == 1 && 5696 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5697 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5698 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5699 } 5700 5701 // If this is a branch on a phi node in the current block, thread control 5702 // through this block if any PHI node entries are constants. 5703 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5704 if (PN->getParent() == BI->getParent()) 5705 if (FoldCondBranchOnPHI(BI, DL)) 5706 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5707 5708 // Scan predecessor blocks for conditional branches. 5709 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5710 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5711 if (PBI != BI && PBI->isConditional()) 5712 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5713 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5714 5715 // Look for diamond patterns. 5716 if (MergeCondStores) 5717 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5718 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5719 if (PBI != BI && PBI->isConditional()) 5720 if (mergeConditionalStores(PBI, BI)) 5721 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5722 5723 return false; 5724 } 5725 5726 /// Check if passing a value to an instruction will cause undefined behavior. 5727 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5728 Constant *C = dyn_cast<Constant>(V); 5729 if (!C) 5730 return false; 5731 5732 if (I->use_empty()) 5733 return false; 5734 5735 if (C->isNullValue() || isa<UndefValue>(C)) { 5736 // Only look at the first use, avoid hurting compile time with long uselists 5737 User *Use = *I->user_begin(); 5738 5739 // Now make sure that there are no instructions in between that can alter 5740 // control flow (eg. calls) 5741 for (BasicBlock::iterator 5742 i = ++BasicBlock::iterator(I), 5743 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5744 i != UI; ++i) 5745 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5746 return false; 5747 5748 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5749 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5750 if (GEP->getPointerOperand() == I) 5751 return passingValueIsAlwaysUndefined(V, GEP); 5752 5753 // Look through bitcasts. 5754 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5755 return passingValueIsAlwaysUndefined(V, BC); 5756 5757 // Load from null is undefined. 5758 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5759 if (!LI->isVolatile()) 5760 return LI->getPointerAddressSpace() == 0; 5761 5762 // Store to null is undefined. 5763 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5764 if (!SI->isVolatile()) 5765 return SI->getPointerAddressSpace() == 0 && 5766 SI->getPointerOperand() == I; 5767 5768 // A call to null is undefined. 5769 if (auto CS = CallSite(Use)) 5770 return CS.getCalledValue() == I; 5771 } 5772 return false; 5773 } 5774 5775 /// If BB has an incoming value that will always trigger undefined behavior 5776 /// (eg. null pointer dereference), remove the branch leading here. 5777 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5778 for (BasicBlock::iterator i = BB->begin(); 5779 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5780 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5781 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5782 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5783 IRBuilder<> Builder(T); 5784 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5785 BB->removePredecessor(PHI->getIncomingBlock(i)); 5786 // Turn uncoditional branches into unreachables and remove the dead 5787 // destination from conditional branches. 5788 if (BI->isUnconditional()) 5789 Builder.CreateUnreachable(); 5790 else 5791 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5792 : BI->getSuccessor(0)); 5793 BI->eraseFromParent(); 5794 return true; 5795 } 5796 // TODO: SwitchInst. 5797 } 5798 5799 return false; 5800 } 5801 5802 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5803 bool Changed = false; 5804 5805 assert(BB && BB->getParent() && "Block not embedded in function!"); 5806 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5807 5808 // Remove basic blocks that have no predecessors (except the entry block)... 5809 // or that just have themself as a predecessor. These are unreachable. 5810 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5811 BB->getSinglePredecessor() == BB) { 5812 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5813 DeleteDeadBlock(BB); 5814 return true; 5815 } 5816 5817 // Check to see if we can constant propagate this terminator instruction 5818 // away... 5819 Changed |= ConstantFoldTerminator(BB, true); 5820 5821 // Check for and eliminate duplicate PHI nodes in this block. 5822 Changed |= EliminateDuplicatePHINodes(BB); 5823 5824 // Check for and remove branches that will always cause undefined behavior. 5825 Changed |= removeUndefIntroducingPredecessor(BB); 5826 5827 // Merge basic blocks into their predecessor if there is only one distinct 5828 // pred, and if there is only one distinct successor of the predecessor, and 5829 // if there are no PHI nodes. 5830 // 5831 if (MergeBlockIntoPredecessor(BB)) 5832 return true; 5833 5834 IRBuilder<> Builder(BB); 5835 5836 // If there is a trivial two-entry PHI node in this basic block, and we can 5837 // eliminate it, do so now. 5838 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5839 if (PN->getNumIncomingValues() == 2) 5840 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5841 5842 Builder.SetInsertPoint(BB->getTerminator()); 5843 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5844 if (BI->isUnconditional()) { 5845 if (SimplifyUncondBranch(BI, Builder)) 5846 return true; 5847 } else { 5848 if (SimplifyCondBranch(BI, Builder)) 5849 return true; 5850 } 5851 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5852 if (SimplifyReturn(RI, Builder)) 5853 return true; 5854 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5855 if (SimplifyResume(RI, Builder)) 5856 return true; 5857 } else if (CleanupReturnInst *RI = 5858 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5859 if (SimplifyCleanupReturn(RI)) 5860 return true; 5861 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5862 if (SimplifySwitch(SI, Builder)) 5863 return true; 5864 } else if (UnreachableInst *UI = 5865 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5866 if (SimplifyUnreachable(UI)) 5867 return true; 5868 } else if (IndirectBrInst *IBI = 5869 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5870 if (SimplifyIndirectBr(IBI)) 5871 return true; 5872 } 5873 5874 return Changed; 5875 } 5876 5877 /// This function is used to do simplification of a CFG. 5878 /// For example, it adjusts branches to branches to eliminate the extra hop, 5879 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5880 /// of the CFG. It returns true if a modification was made. 5881 /// 5882 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5883 unsigned BonusInstThreshold, AssumptionCache *AC, 5884 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 5885 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5886 BonusInstThreshold, AC, LoopHeaders) 5887 .run(BB); 5888 } 5889