1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "simplifycfg" 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/GlobalVariable.h" 19 #include "llvm/IRBuilder.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/MDBuilder.h" 24 #include "llvm/Metadata.h" 25 #include "llvm/Module.h" 26 #include "llvm/Operator.h" 27 #include "llvm/Type.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Analysis/InstructionSimplify.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Support/CFG.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ConstantRange.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/NoFolder.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetData.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include <algorithm> 45 #include <set> 46 #include <map> 47 using namespace llvm; 48 49 static cl::opt<unsigned> 50 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 51 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 52 53 static cl::opt<bool> 54 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 55 cl::desc("Duplicate return instructions into unconditional branches")); 56 57 static cl::opt<bool> 58 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 59 cl::desc("Sink common instructions down to the end block")); 60 61 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 62 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 63 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 64 65 namespace { 66 /// ValueEqualityComparisonCase - Represents a case of a switch. 67 struct ValueEqualityComparisonCase { 68 ConstantInt *Value; 69 BasicBlock *Dest; 70 71 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 72 : Value(Value), Dest(Dest) {} 73 74 bool operator<(ValueEqualityComparisonCase RHS) const { 75 // Comparing pointers is ok as we only rely on the order for uniquing. 76 return Value < RHS.Value; 77 } 78 }; 79 80 class SimplifyCFGOpt { 81 const TargetData *const TD; 82 83 Value *isValueEqualityComparison(TerminatorInst *TI); 84 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 85 std::vector<ValueEqualityComparisonCase> &Cases); 86 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 87 BasicBlock *Pred, 88 IRBuilder<> &Builder); 89 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 90 IRBuilder<> &Builder); 91 92 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 93 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 94 bool SimplifyUnreachable(UnreachableInst *UI); 95 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 96 bool SimplifyIndirectBr(IndirectBrInst *IBI); 97 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 98 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 99 100 public: 101 explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {} 102 bool run(BasicBlock *BB); 103 }; 104 } 105 106 /// SafeToMergeTerminators - Return true if it is safe to merge these two 107 /// terminator instructions together. 108 /// 109 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 110 if (SI1 == SI2) return false; // Can't merge with self! 111 112 // It is not safe to merge these two switch instructions if they have a common 113 // successor, and if that successor has a PHI node, and if *that* PHI node has 114 // conflicting incoming values from the two switch blocks. 115 BasicBlock *SI1BB = SI1->getParent(); 116 BasicBlock *SI2BB = SI2->getParent(); 117 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 118 119 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 120 if (SI1Succs.count(*I)) 121 for (BasicBlock::iterator BBI = (*I)->begin(); 122 isa<PHINode>(BBI); ++BBI) { 123 PHINode *PN = cast<PHINode>(BBI); 124 if (PN->getIncomingValueForBlock(SI1BB) != 125 PN->getIncomingValueForBlock(SI2BB)) 126 return false; 127 } 128 129 return true; 130 } 131 132 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 133 /// to merge these two terminator instructions together, where SI1 is an 134 /// unconditional branch. PhiNodes will store all PHI nodes in common 135 /// successors. 136 /// 137 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 138 BranchInst *SI2, 139 Instruction *Cond, 140 SmallVectorImpl<PHINode*> &PhiNodes) { 141 if (SI1 == SI2) return false; // Can't merge with self! 142 assert(SI1->isUnconditional() && SI2->isConditional()); 143 144 // We fold the unconditional branch if we can easily update all PHI nodes in 145 // common successors: 146 // 1> We have a constant incoming value for the conditional branch; 147 // 2> We have "Cond" as the incoming value for the unconditional branch; 148 // 3> SI2->getCondition() and Cond have same operands. 149 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 150 if (!Ci2) return false; 151 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 152 Cond->getOperand(1) == Ci2->getOperand(1)) && 153 !(Cond->getOperand(0) == Ci2->getOperand(1) && 154 Cond->getOperand(1) == Ci2->getOperand(0))) 155 return false; 156 157 BasicBlock *SI1BB = SI1->getParent(); 158 BasicBlock *SI2BB = SI2->getParent(); 159 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 160 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 161 if (SI1Succs.count(*I)) 162 for (BasicBlock::iterator BBI = (*I)->begin(); 163 isa<PHINode>(BBI); ++BBI) { 164 PHINode *PN = cast<PHINode>(BBI); 165 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 166 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 167 return false; 168 PhiNodes.push_back(PN); 169 } 170 return true; 171 } 172 173 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 174 /// now be entries in it from the 'NewPred' block. The values that will be 175 /// flowing into the PHI nodes will be the same as those coming in from 176 /// ExistPred, an existing predecessor of Succ. 177 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 178 BasicBlock *ExistPred) { 179 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 180 181 PHINode *PN; 182 for (BasicBlock::iterator I = Succ->begin(); 183 (PN = dyn_cast<PHINode>(I)); ++I) 184 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 185 } 186 187 188 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at 189 /// least one PHI node in it), check to see if the merge at this block is due 190 /// to an "if condition". If so, return the boolean condition that determines 191 /// which entry into BB will be taken. Also, return by references the block 192 /// that will be entered from if the condition is true, and the block that will 193 /// be entered if the condition is false. 194 /// 195 /// This does no checking to see if the true/false blocks have large or unsavory 196 /// instructions in them. 197 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 198 BasicBlock *&IfFalse) { 199 PHINode *SomePHI = cast<PHINode>(BB->begin()); 200 assert(SomePHI->getNumIncomingValues() == 2 && 201 "Function can only handle blocks with 2 predecessors!"); 202 BasicBlock *Pred1 = SomePHI->getIncomingBlock(0); 203 BasicBlock *Pred2 = SomePHI->getIncomingBlock(1); 204 205 // We can only handle branches. Other control flow will be lowered to 206 // branches if possible anyway. 207 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 208 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 209 if (Pred1Br == 0 || Pred2Br == 0) 210 return 0; 211 212 // Eliminate code duplication by ensuring that Pred1Br is conditional if 213 // either are. 214 if (Pred2Br->isConditional()) { 215 // If both branches are conditional, we don't have an "if statement". In 216 // reality, we could transform this case, but since the condition will be 217 // required anyway, we stand no chance of eliminating it, so the xform is 218 // probably not profitable. 219 if (Pred1Br->isConditional()) 220 return 0; 221 222 std::swap(Pred1, Pred2); 223 std::swap(Pred1Br, Pred2Br); 224 } 225 226 if (Pred1Br->isConditional()) { 227 // The only thing we have to watch out for here is to make sure that Pred2 228 // doesn't have incoming edges from other blocks. If it does, the condition 229 // doesn't dominate BB. 230 if (Pred2->getSinglePredecessor() == 0) 231 return 0; 232 233 // If we found a conditional branch predecessor, make sure that it branches 234 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 235 if (Pred1Br->getSuccessor(0) == BB && 236 Pred1Br->getSuccessor(1) == Pred2) { 237 IfTrue = Pred1; 238 IfFalse = Pred2; 239 } else if (Pred1Br->getSuccessor(0) == Pred2 && 240 Pred1Br->getSuccessor(1) == BB) { 241 IfTrue = Pred2; 242 IfFalse = Pred1; 243 } else { 244 // We know that one arm of the conditional goes to BB, so the other must 245 // go somewhere unrelated, and this must not be an "if statement". 246 return 0; 247 } 248 249 return Pred1Br->getCondition(); 250 } 251 252 // Ok, if we got here, both predecessors end with an unconditional branch to 253 // BB. Don't panic! If both blocks only have a single (identical) 254 // predecessor, and THAT is a conditional branch, then we're all ok! 255 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 256 if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor()) 257 return 0; 258 259 // Otherwise, if this is a conditional branch, then we can use it! 260 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 261 if (BI == 0) return 0; 262 263 assert(BI->isConditional() && "Two successors but not conditional?"); 264 if (BI->getSuccessor(0) == Pred1) { 265 IfTrue = Pred1; 266 IfFalse = Pred2; 267 } else { 268 IfTrue = Pred2; 269 IfFalse = Pred1; 270 } 271 return BI->getCondition(); 272 } 273 274 /// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the 275 /// given instruction, which is assumed to be safe to speculate. 1 means 276 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 277 static unsigned ComputeSpeculationCost(const User *I) { 278 assert(isSafeToSpeculativelyExecute(I) && 279 "Instruction is not safe to speculatively execute!"); 280 switch (Operator::getOpcode(I)) { 281 default: 282 // In doubt, be conservative. 283 return UINT_MAX; 284 case Instruction::GetElementPtr: 285 // GEPs are cheap if all indices are constant. 286 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 287 return UINT_MAX; 288 return 1; 289 case Instruction::Load: 290 case Instruction::Add: 291 case Instruction::Sub: 292 case Instruction::And: 293 case Instruction::Or: 294 case Instruction::Xor: 295 case Instruction::Shl: 296 case Instruction::LShr: 297 case Instruction::AShr: 298 case Instruction::ICmp: 299 case Instruction::Trunc: 300 case Instruction::ZExt: 301 case Instruction::SExt: 302 return 1; // These are all cheap. 303 304 case Instruction::Call: 305 case Instruction::Select: 306 return 2; 307 } 308 } 309 310 /// DominatesMergePoint - If we have a merge point of an "if condition" as 311 /// accepted above, return true if the specified value dominates the block. We 312 /// don't handle the true generality of domination here, just a special case 313 /// which works well enough for us. 314 /// 315 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 316 /// see if V (which must be an instruction) and its recursive operands 317 /// that do not dominate BB have a combined cost lower than CostRemaining and 318 /// are non-trapping. If both are true, the instruction is inserted into the 319 /// set and true is returned. 320 /// 321 /// The cost for most non-trapping instructions is defined as 1 except for 322 /// Select whose cost is 2. 323 /// 324 /// After this function returns, CostRemaining is decreased by the cost of 325 /// V plus its non-dominating operands. If that cost is greater than 326 /// CostRemaining, false is returned and CostRemaining is undefined. 327 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 328 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 329 unsigned &CostRemaining) { 330 Instruction *I = dyn_cast<Instruction>(V); 331 if (!I) { 332 // Non-instructions all dominate instructions, but not all constantexprs 333 // can be executed unconditionally. 334 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 335 if (C->canTrap()) 336 return false; 337 return true; 338 } 339 BasicBlock *PBB = I->getParent(); 340 341 // We don't want to allow weird loops that might have the "if condition" in 342 // the bottom of this block. 343 if (PBB == BB) return false; 344 345 // If this instruction is defined in a block that contains an unconditional 346 // branch to BB, then it must be in the 'conditional' part of the "if 347 // statement". If not, it definitely dominates the region. 348 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 349 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB) 350 return true; 351 352 // If we aren't allowing aggressive promotion anymore, then don't consider 353 // instructions in the 'if region'. 354 if (AggressiveInsts == 0) return false; 355 356 // If we have seen this instruction before, don't count it again. 357 if (AggressiveInsts->count(I)) return true; 358 359 // Okay, it looks like the instruction IS in the "condition". Check to 360 // see if it's a cheap instruction to unconditionally compute, and if it 361 // only uses stuff defined outside of the condition. If so, hoist it out. 362 if (!isSafeToSpeculativelyExecute(I)) 363 return false; 364 365 unsigned Cost = ComputeSpeculationCost(I); 366 367 if (Cost > CostRemaining) 368 return false; 369 370 CostRemaining -= Cost; 371 372 // Okay, we can only really hoist these out if their operands do 373 // not take us over the cost threshold. 374 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 375 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 376 return false; 377 // Okay, it's safe to do this! Remember this instruction. 378 AggressiveInsts->insert(I); 379 return true; 380 } 381 382 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 383 /// and PointerNullValue. Return NULL if value is not a constant int. 384 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) { 385 // Normal constant int. 386 ConstantInt *CI = dyn_cast<ConstantInt>(V); 387 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy()) 388 return CI; 389 390 // This is some kind of pointer constant. Turn it into a pointer-sized 391 // ConstantInt if possible. 392 IntegerType *PtrTy = TD->getIntPtrType(V->getContext()); 393 394 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 395 if (isa<ConstantPointerNull>(V)) 396 return ConstantInt::get(PtrTy, 0); 397 398 // IntToPtr const int. 399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 400 if (CE->getOpcode() == Instruction::IntToPtr) 401 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 402 // The constant is very likely to have the right type already. 403 if (CI->getType() == PtrTy) 404 return CI; 405 else 406 return cast<ConstantInt> 407 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 408 } 409 return 0; 410 } 411 412 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 413 /// collection of icmp eq/ne instructions that compare a value against a 414 /// constant, return the value being compared, and stick the constant into the 415 /// Values vector. 416 static Value * 417 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 418 const TargetData *TD, bool isEQ, unsigned &UsedICmps) { 419 Instruction *I = dyn_cast<Instruction>(V); 420 if (I == 0) return 0; 421 422 // If this is an icmp against a constant, handle this as one of the cases. 423 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 424 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) { 425 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 426 UsedICmps++; 427 Vals.push_back(C); 428 return I->getOperand(0); 429 } 430 431 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 432 // the set. 433 ConstantRange Span = 434 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 435 436 // If this is an and/!= check then we want to optimize "x ugt 2" into 437 // x != 0 && x != 1. 438 if (!isEQ) 439 Span = Span.inverse(); 440 441 // If there are a ton of values, we don't want to make a ginormous switch. 442 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) 443 return 0; 444 445 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 446 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 447 UsedICmps++; 448 return I->getOperand(0); 449 } 450 return 0; 451 } 452 453 // Otherwise, we can only handle an | or &, depending on isEQ. 454 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 455 return 0; 456 457 unsigned NumValsBeforeLHS = Vals.size(); 458 unsigned UsedICmpsBeforeLHS = UsedICmps; 459 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD, 460 isEQ, UsedICmps)) { 461 unsigned NumVals = Vals.size(); 462 unsigned UsedICmpsBeforeRHS = UsedICmps; 463 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 464 isEQ, UsedICmps)) { 465 if (LHS == RHS) 466 return LHS; 467 Vals.resize(NumVals); 468 UsedICmps = UsedICmpsBeforeRHS; 469 } 470 471 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 472 // set it and return success. 473 if (Extra == 0 || Extra == I->getOperand(1)) { 474 Extra = I->getOperand(1); 475 return LHS; 476 } 477 478 Vals.resize(NumValsBeforeLHS); 479 UsedICmps = UsedICmpsBeforeLHS; 480 return 0; 481 } 482 483 // If the LHS can't be folded in, but Extra is available and RHS can, try to 484 // use LHS as Extra. 485 if (Extra == 0 || Extra == I->getOperand(0)) { 486 Value *OldExtra = Extra; 487 Extra = I->getOperand(0); 488 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 489 isEQ, UsedICmps)) 490 return RHS; 491 assert(Vals.size() == NumValsBeforeLHS); 492 Extra = OldExtra; 493 } 494 495 return 0; 496 } 497 498 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 499 Instruction *Cond = 0; 500 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 501 Cond = dyn_cast<Instruction>(SI->getCondition()); 502 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 503 if (BI->isConditional()) 504 Cond = dyn_cast<Instruction>(BI->getCondition()); 505 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 506 Cond = dyn_cast<Instruction>(IBI->getAddress()); 507 } 508 509 TI->eraseFromParent(); 510 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 511 } 512 513 /// isValueEqualityComparison - Return true if the specified terminator checks 514 /// to see if a value is equal to constant integer value. 515 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 516 Value *CV = 0; 517 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 518 // Do not permit merging of large switch instructions into their 519 // predecessors unless there is only one predecessor. 520 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 521 pred_end(SI->getParent())) <= 128) 522 CV = SI->getCondition(); 523 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 524 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 525 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 526 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ || 527 ICI->getPredicate() == ICmpInst::ICMP_NE) && 528 GetConstantInt(ICI->getOperand(1), TD)) 529 CV = ICI->getOperand(0); 530 531 // Unwrap any lossless ptrtoint cast. 532 if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext())) 533 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) 534 CV = PTII->getOperand(0); 535 return CV; 536 } 537 538 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 539 /// decode all of the 'cases' that it represents and return the 'default' block. 540 BasicBlock *SimplifyCFGOpt:: 541 GetValueEqualityComparisonCases(TerminatorInst *TI, 542 std::vector<ValueEqualityComparisonCase> 543 &Cases) { 544 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 545 Cases.reserve(SI->getNumCases()); 546 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 547 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 548 i.getCaseSuccessor())); 549 return SI->getDefaultDest(); 550 } 551 552 BranchInst *BI = cast<BranchInst>(TI); 553 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 554 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 555 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 556 TD), 557 Succ)); 558 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 559 } 560 561 562 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 563 /// in the list that match the specified block. 564 static void EliminateBlockCases(BasicBlock *BB, 565 std::vector<ValueEqualityComparisonCase> &Cases) { 566 for (unsigned i = 0, e = Cases.size(); i != e; ++i) 567 if (Cases[i].Dest == BB) { 568 Cases.erase(Cases.begin()+i); 569 --i; --e; 570 } 571 } 572 573 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 574 /// well. 575 static bool 576 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 577 std::vector<ValueEqualityComparisonCase > &C2) { 578 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 579 580 // Make V1 be smaller than V2. 581 if (V1->size() > V2->size()) 582 std::swap(V1, V2); 583 584 if (V1->size() == 0) return false; 585 if (V1->size() == 1) { 586 // Just scan V2. 587 ConstantInt *TheVal = (*V1)[0].Value; 588 for (unsigned i = 0, e = V2->size(); i != e; ++i) 589 if (TheVal == (*V2)[i].Value) 590 return true; 591 } 592 593 // Otherwise, just sort both lists and compare element by element. 594 array_pod_sort(V1->begin(), V1->end()); 595 array_pod_sort(V2->begin(), V2->end()); 596 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 597 while (i1 != e1 && i2 != e2) { 598 if ((*V1)[i1].Value == (*V2)[i2].Value) 599 return true; 600 if ((*V1)[i1].Value < (*V2)[i2].Value) 601 ++i1; 602 else 603 ++i2; 604 } 605 return false; 606 } 607 608 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 609 /// terminator instruction and its block is known to only have a single 610 /// predecessor block, check to see if that predecessor is also a value 611 /// comparison with the same value, and if that comparison determines the 612 /// outcome of this comparison. If so, simplify TI. This does a very limited 613 /// form of jump threading. 614 bool SimplifyCFGOpt:: 615 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 616 BasicBlock *Pred, 617 IRBuilder<> &Builder) { 618 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 619 if (!PredVal) return false; // Not a value comparison in predecessor. 620 621 Value *ThisVal = isValueEqualityComparison(TI); 622 assert(ThisVal && "This isn't a value comparison!!"); 623 if (ThisVal != PredVal) return false; // Different predicates. 624 625 // TODO: Preserve branch weight metadata, similarly to how 626 // FoldValueComparisonIntoPredecessors preserves it. 627 628 // Find out information about when control will move from Pred to TI's block. 629 std::vector<ValueEqualityComparisonCase> PredCases; 630 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 631 PredCases); 632 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 633 634 // Find information about how control leaves this block. 635 std::vector<ValueEqualityComparisonCase> ThisCases; 636 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 637 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 638 639 // If TI's block is the default block from Pred's comparison, potentially 640 // simplify TI based on this knowledge. 641 if (PredDef == TI->getParent()) { 642 // If we are here, we know that the value is none of those cases listed in 643 // PredCases. If there are any cases in ThisCases that are in PredCases, we 644 // can simplify TI. 645 if (!ValuesOverlap(PredCases, ThisCases)) 646 return false; 647 648 if (isa<BranchInst>(TI)) { 649 // Okay, one of the successors of this condbr is dead. Convert it to a 650 // uncond br. 651 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 652 // Insert the new branch. 653 Instruction *NI = Builder.CreateBr(ThisDef); 654 (void) NI; 655 656 // Remove PHI node entries for the dead edge. 657 ThisCases[0].Dest->removePredecessor(TI->getParent()); 658 659 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 660 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 661 662 EraseTerminatorInstAndDCECond(TI); 663 return true; 664 } 665 666 SwitchInst *SI = cast<SwitchInst>(TI); 667 // Okay, TI has cases that are statically dead, prune them away. 668 SmallPtrSet<Constant*, 16> DeadCases; 669 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 670 DeadCases.insert(PredCases[i].Value); 671 672 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 673 << "Through successor TI: " << *TI); 674 675 // Collect branch weights into a vector. 676 SmallVector<uint32_t, 8> Weights; 677 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 678 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 679 if (HasWeight) 680 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 681 ++MD_i) { 682 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 683 assert(CI); 684 Weights.push_back(CI->getValue().getZExtValue()); 685 } 686 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 687 --i; 688 if (DeadCases.count(i.getCaseValue())) { 689 if (HasWeight) { 690 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 691 Weights.pop_back(); 692 } 693 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 694 SI->removeCase(i); 695 } 696 } 697 if (HasWeight) 698 SI->setMetadata(LLVMContext::MD_prof, 699 MDBuilder(SI->getParent()->getContext()). 700 createBranchWeights(Weights)); 701 702 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 703 return true; 704 } 705 706 // Otherwise, TI's block must correspond to some matched value. Find out 707 // which value (or set of values) this is. 708 ConstantInt *TIV = 0; 709 BasicBlock *TIBB = TI->getParent(); 710 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 711 if (PredCases[i].Dest == TIBB) { 712 if (TIV != 0) 713 return false; // Cannot handle multiple values coming to this block. 714 TIV = PredCases[i].Value; 715 } 716 assert(TIV && "No edge from pred to succ?"); 717 718 // Okay, we found the one constant that our value can be if we get into TI's 719 // BB. Find out which successor will unconditionally be branched to. 720 BasicBlock *TheRealDest = 0; 721 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 722 if (ThisCases[i].Value == TIV) { 723 TheRealDest = ThisCases[i].Dest; 724 break; 725 } 726 727 // If not handled by any explicit cases, it is handled by the default case. 728 if (TheRealDest == 0) TheRealDest = ThisDef; 729 730 // Remove PHI node entries for dead edges. 731 BasicBlock *CheckEdge = TheRealDest; 732 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 733 if (*SI != CheckEdge) 734 (*SI)->removePredecessor(TIBB); 735 else 736 CheckEdge = 0; 737 738 // Insert the new branch. 739 Instruction *NI = Builder.CreateBr(TheRealDest); 740 (void) NI; 741 742 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 743 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 744 745 EraseTerminatorInstAndDCECond(TI); 746 return true; 747 } 748 749 namespace { 750 /// ConstantIntOrdering - This class implements a stable ordering of constant 751 /// integers that does not depend on their address. This is important for 752 /// applications that sort ConstantInt's to ensure uniqueness. 753 struct ConstantIntOrdering { 754 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 755 return LHS->getValue().ult(RHS->getValue()); 756 } 757 }; 758 } 759 760 static int ConstantIntSortPredicate(const void *P1, const void *P2) { 761 const ConstantInt *LHS = *(const ConstantInt*const*)P1; 762 const ConstantInt *RHS = *(const ConstantInt*const*)P2; 763 if (LHS->getValue().ult(RHS->getValue())) 764 return 1; 765 if (LHS->getValue() == RHS->getValue()) 766 return 0; 767 return -1; 768 } 769 770 static inline bool HasBranchWeights(const Instruction* I) { 771 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof); 772 if (ProfMD && ProfMD->getOperand(0)) 773 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 774 return MDS->getString().equals("branch_weights"); 775 776 return false; 777 } 778 779 /// Get Weights of a given TerminatorInst, the default weight is at the front 780 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 781 /// metadata. 782 static void GetBranchWeights(TerminatorInst *TI, 783 SmallVectorImpl<uint64_t> &Weights) { 784 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof); 785 assert(MD); 786 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 787 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i)); 788 assert(CI); 789 Weights.push_back(CI->getValue().getZExtValue()); 790 } 791 792 // If TI is a conditional eq, the default case is the false case, 793 // and the corresponding branch-weight data is at index 2. We swap the 794 // default weight to be the first entry. 795 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 796 assert(Weights.size() == 2); 797 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 798 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 799 std::swap(Weights.front(), Weights.back()); 800 } 801 } 802 803 /// Sees if any of the weights are too big for a uint32_t, and halves all the 804 /// weights if any are. 805 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 806 bool Halve = false; 807 for (unsigned i = 0; i < Weights.size(); ++i) 808 if (Weights[i] > UINT_MAX) { 809 Halve = true; 810 break; 811 } 812 813 if (! Halve) 814 return; 815 816 for (unsigned i = 0; i < Weights.size(); ++i) 817 Weights[i] /= 2; 818 } 819 820 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 821 /// equality comparison instruction (either a switch or a branch on "X == c"). 822 /// See if any of the predecessors of the terminator block are value comparisons 823 /// on the same value. If so, and if safe to do so, fold them together. 824 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 825 IRBuilder<> &Builder) { 826 BasicBlock *BB = TI->getParent(); 827 Value *CV = isValueEqualityComparison(TI); // CondVal 828 assert(CV && "Not a comparison?"); 829 bool Changed = false; 830 831 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 832 while (!Preds.empty()) { 833 BasicBlock *Pred = Preds.pop_back_val(); 834 835 // See if the predecessor is a comparison with the same value. 836 TerminatorInst *PTI = Pred->getTerminator(); 837 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 838 839 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 840 // Figure out which 'cases' to copy from SI to PSI. 841 std::vector<ValueEqualityComparisonCase> BBCases; 842 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 843 844 std::vector<ValueEqualityComparisonCase> PredCases; 845 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 846 847 // Based on whether the default edge from PTI goes to BB or not, fill in 848 // PredCases and PredDefault with the new switch cases we would like to 849 // build. 850 SmallVector<BasicBlock*, 8> NewSuccessors; 851 852 // Update the branch weight metadata along the way 853 SmallVector<uint64_t, 8> Weights; 854 bool PredHasWeights = HasBranchWeights(PTI); 855 bool SuccHasWeights = HasBranchWeights(TI); 856 857 if (PredHasWeights) { 858 GetBranchWeights(PTI, Weights); 859 // branch-weight metadata is inconsistant here. 860 if (Weights.size() != 1 + PredCases.size()) 861 PredHasWeights = SuccHasWeights = false; 862 } else if (SuccHasWeights) 863 // If there are no predecessor weights but there are successor weights, 864 // populate Weights with 1, which will later be scaled to the sum of 865 // successor's weights 866 Weights.assign(1 + PredCases.size(), 1); 867 868 SmallVector<uint64_t, 8> SuccWeights; 869 if (SuccHasWeights) { 870 GetBranchWeights(TI, SuccWeights); 871 // branch-weight metadata is inconsistant here. 872 if (SuccWeights.size() != 1 + BBCases.size()) 873 PredHasWeights = SuccHasWeights = false; 874 } else if (PredHasWeights) 875 SuccWeights.assign(1 + BBCases.size(), 1); 876 877 if (PredDefault == BB) { 878 // If this is the default destination from PTI, only the edges in TI 879 // that don't occur in PTI, or that branch to BB will be activated. 880 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 881 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 882 if (PredCases[i].Dest != BB) 883 PTIHandled.insert(PredCases[i].Value); 884 else { 885 // The default destination is BB, we don't need explicit targets. 886 std::swap(PredCases[i], PredCases.back()); 887 888 if (PredHasWeights || SuccHasWeights) { 889 // Increase weight for the default case. 890 Weights[0] += Weights[i+1]; 891 std::swap(Weights[i+1], Weights.back()); 892 Weights.pop_back(); 893 } 894 895 PredCases.pop_back(); 896 --i; --e; 897 } 898 899 // Reconstruct the new switch statement we will be building. 900 if (PredDefault != BBDefault) { 901 PredDefault->removePredecessor(Pred); 902 PredDefault = BBDefault; 903 NewSuccessors.push_back(BBDefault); 904 } 905 906 unsigned CasesFromPred = Weights.size(); 907 uint64_t ValidTotalSuccWeight = 0; 908 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 909 if (!PTIHandled.count(BBCases[i].Value) && 910 BBCases[i].Dest != BBDefault) { 911 PredCases.push_back(BBCases[i]); 912 NewSuccessors.push_back(BBCases[i].Dest); 913 if (SuccHasWeights || PredHasWeights) { 914 // The default weight is at index 0, so weight for the ith case 915 // should be at index i+1. Scale the cases from successor by 916 // PredDefaultWeight (Weights[0]). 917 Weights.push_back(Weights[0] * SuccWeights[i+1]); 918 ValidTotalSuccWeight += SuccWeights[i+1]; 919 } 920 } 921 922 if (SuccHasWeights || PredHasWeights) { 923 ValidTotalSuccWeight += SuccWeights[0]; 924 // Scale the cases from predecessor by ValidTotalSuccWeight. 925 for (unsigned i = 1; i < CasesFromPred; ++i) 926 Weights[i] *= ValidTotalSuccWeight; 927 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 928 Weights[0] *= SuccWeights[0]; 929 } 930 } else { 931 // If this is not the default destination from PSI, only the edges 932 // in SI that occur in PSI with a destination of BB will be 933 // activated. 934 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 935 std::map<ConstantInt*, uint64_t> WeightsForHandled; 936 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 937 if (PredCases[i].Dest == BB) { 938 PTIHandled.insert(PredCases[i].Value); 939 940 if (PredHasWeights || SuccHasWeights) { 941 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 942 std::swap(Weights[i+1], Weights.back()); 943 Weights.pop_back(); 944 } 945 946 std::swap(PredCases[i], PredCases.back()); 947 PredCases.pop_back(); 948 --i; --e; 949 } 950 951 // Okay, now we know which constants were sent to BB from the 952 // predecessor. Figure out where they will all go now. 953 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 954 if (PTIHandled.count(BBCases[i].Value)) { 955 // If this is one we are capable of getting... 956 if (PredHasWeights || SuccHasWeights) 957 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 958 PredCases.push_back(BBCases[i]); 959 NewSuccessors.push_back(BBCases[i].Dest); 960 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 961 } 962 963 // If there are any constants vectored to BB that TI doesn't handle, 964 // they must go to the default destination of TI. 965 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 966 PTIHandled.begin(), 967 E = PTIHandled.end(); I != E; ++I) { 968 if (PredHasWeights || SuccHasWeights) 969 Weights.push_back(WeightsForHandled[*I]); 970 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 971 NewSuccessors.push_back(BBDefault); 972 } 973 } 974 975 // Okay, at this point, we know which new successor Pred will get. Make 976 // sure we update the number of entries in the PHI nodes for these 977 // successors. 978 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 979 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 980 981 Builder.SetInsertPoint(PTI); 982 // Convert pointer to int before we switch. 983 if (CV->getType()->isPointerTy()) { 984 assert(TD && "Cannot switch on pointer without TargetData"); 985 CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()), 986 "magicptr"); 987 } 988 989 // Now that the successors are updated, create the new Switch instruction. 990 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 991 PredCases.size()); 992 NewSI->setDebugLoc(PTI->getDebugLoc()); 993 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 994 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 995 996 if (PredHasWeights || SuccHasWeights) { 997 // Halve the weights if any of them cannot fit in an uint32_t 998 FitWeights(Weights); 999 1000 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1001 1002 NewSI->setMetadata(LLVMContext::MD_prof, 1003 MDBuilder(BB->getContext()). 1004 createBranchWeights(MDWeights)); 1005 } 1006 1007 EraseTerminatorInstAndDCECond(PTI); 1008 1009 // Okay, last check. If BB is still a successor of PSI, then we must 1010 // have an infinite loop case. If so, add an infinitely looping block 1011 // to handle the case to preserve the behavior of the code. 1012 BasicBlock *InfLoopBlock = 0; 1013 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1014 if (NewSI->getSuccessor(i) == BB) { 1015 if (InfLoopBlock == 0) { 1016 // Insert it at the end of the function, because it's either code, 1017 // or it won't matter if it's hot. :) 1018 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1019 "infloop", BB->getParent()); 1020 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1021 } 1022 NewSI->setSuccessor(i, InfLoopBlock); 1023 } 1024 1025 Changed = true; 1026 } 1027 } 1028 return Changed; 1029 } 1030 1031 // isSafeToHoistInvoke - If we would need to insert a select that uses the 1032 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 1033 // would need to do this), we can't hoist the invoke, as there is nowhere 1034 // to put the select in this case. 1035 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1036 Instruction *I1, Instruction *I2) { 1037 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1038 PHINode *PN; 1039 for (BasicBlock::iterator BBI = SI->begin(); 1040 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1041 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1042 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1043 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1044 return false; 1045 } 1046 } 1047 } 1048 return true; 1049 } 1050 1051 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 1052 /// BB2, hoist any common code in the two blocks up into the branch block. The 1053 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 1054 static bool HoistThenElseCodeToIf(BranchInst *BI) { 1055 // This does very trivial matching, with limited scanning, to find identical 1056 // instructions in the two blocks. In particular, we don't want to get into 1057 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1058 // such, we currently just scan for obviously identical instructions in an 1059 // identical order. 1060 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1061 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1062 1063 BasicBlock::iterator BB1_Itr = BB1->begin(); 1064 BasicBlock::iterator BB2_Itr = BB2->begin(); 1065 1066 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1067 // Skip debug info if it is not identical. 1068 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1069 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1070 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1071 while (isa<DbgInfoIntrinsic>(I1)) 1072 I1 = BB1_Itr++; 1073 while (isa<DbgInfoIntrinsic>(I2)) 1074 I2 = BB2_Itr++; 1075 } 1076 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1077 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1078 return false; 1079 1080 // If we get here, we can hoist at least one instruction. 1081 BasicBlock *BIParent = BI->getParent(); 1082 1083 do { 1084 // If we are hoisting the terminator instruction, don't move one (making a 1085 // broken BB), instead clone it, and remove BI. 1086 if (isa<TerminatorInst>(I1)) 1087 goto HoistTerminator; 1088 1089 // For a normal instruction, we just move one to right before the branch, 1090 // then replace all uses of the other with the first. Finally, we remove 1091 // the now redundant second instruction. 1092 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1093 if (!I2->use_empty()) 1094 I2->replaceAllUsesWith(I1); 1095 I1->intersectOptionalDataWith(I2); 1096 I2->eraseFromParent(); 1097 1098 I1 = BB1_Itr++; 1099 I2 = BB2_Itr++; 1100 // Skip debug info if it is not identical. 1101 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1102 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1103 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1104 while (isa<DbgInfoIntrinsic>(I1)) 1105 I1 = BB1_Itr++; 1106 while (isa<DbgInfoIntrinsic>(I2)) 1107 I2 = BB2_Itr++; 1108 } 1109 } while (I1->isIdenticalToWhenDefined(I2)); 1110 1111 return true; 1112 1113 HoistTerminator: 1114 // It may not be possible to hoist an invoke. 1115 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1116 return true; 1117 1118 // Okay, it is safe to hoist the terminator. 1119 Instruction *NT = I1->clone(); 1120 BIParent->getInstList().insert(BI, NT); 1121 if (!NT->getType()->isVoidTy()) { 1122 I1->replaceAllUsesWith(NT); 1123 I2->replaceAllUsesWith(NT); 1124 NT->takeName(I1); 1125 } 1126 1127 IRBuilder<true, NoFolder> Builder(NT); 1128 // Hoisting one of the terminators from our successor is a great thing. 1129 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1130 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1131 // nodes, so we insert select instruction to compute the final result. 1132 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1133 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1134 PHINode *PN; 1135 for (BasicBlock::iterator BBI = SI->begin(); 1136 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1137 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1138 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1139 if (BB1V == BB2V) continue; 1140 1141 // These values do not agree. Insert a select instruction before NT 1142 // that determines the right value. 1143 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1144 if (SI == 0) 1145 SI = cast<SelectInst> 1146 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1147 BB1V->getName()+"."+BB2V->getName())); 1148 1149 // Make the PHI node use the select for all incoming values for BB1/BB2 1150 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1151 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1152 PN->setIncomingValue(i, SI); 1153 } 1154 } 1155 1156 // Update any PHI nodes in our new successors. 1157 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1158 AddPredecessorToBlock(*SI, BIParent, BB1); 1159 1160 EraseTerminatorInstAndDCECond(BI); 1161 return true; 1162 } 1163 1164 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1165 /// check whether BBEnd has only two predecessors and the other predecessor 1166 /// ends with an unconditional branch. If it is true, sink any common code 1167 /// in the two predecessors to BBEnd. 1168 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1169 assert(BI1->isUnconditional()); 1170 BasicBlock *BB1 = BI1->getParent(); 1171 BasicBlock *BBEnd = BI1->getSuccessor(0); 1172 1173 // Check that BBEnd has two predecessors and the other predecessor ends with 1174 // an unconditional branch. 1175 SmallVector<BasicBlock*, 16> Preds(pred_begin(BBEnd), pred_end(BBEnd)); 1176 if (Preds.size() != 2) 1177 return false; 1178 BasicBlock *BB2 = (Preds[0] == BB1) ? Preds[1] : Preds[0]; 1179 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1180 if (!BI2 || !BI2->isUnconditional()) 1181 return false; 1182 1183 // Gather the PHI nodes in BBEnd. 1184 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2; 1185 Instruction *FirstNonPhiInBBEnd = 0; 1186 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); 1187 I != E; ++I) { 1188 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1189 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1190 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1191 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN); 1192 } else { 1193 FirstNonPhiInBBEnd = &*I; 1194 break; 1195 } 1196 } 1197 if (!FirstNonPhiInBBEnd) 1198 return false; 1199 1200 1201 // This does very trivial matching, with limited scanning, to find identical 1202 // instructions in the two blocks. We scan backward for obviously identical 1203 // instructions in an identical order. 1204 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1205 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(), 1206 RE2 = BB2->getInstList().rend(); 1207 // Skip debug info. 1208 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1209 if (RI1 == RE1) 1210 return false; 1211 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1212 if (RI2 == RE2) 1213 return false; 1214 // Skip the unconditional branches. 1215 ++RI1; 1216 ++RI2; 1217 1218 bool Changed = false; 1219 while (RI1 != RE1 && RI2 != RE2) { 1220 // Skip debug info. 1221 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1222 if (RI1 == RE1) 1223 return Changed; 1224 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1225 if (RI2 == RE2) 1226 return Changed; 1227 1228 Instruction *I1 = &*RI1, *I2 = &*RI2; 1229 // I1 and I2 should have a single use in the same PHI node, and they 1230 // perform the same operation. 1231 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1232 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1233 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1234 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1235 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1236 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1237 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1238 !I1->hasOneUse() || !I2->hasOneUse() || 1239 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() || 1240 MapValueFromBB1ToBB2[I1].first != I2) 1241 return Changed; 1242 1243 // Check whether we should swap the operands of ICmpInst. 1244 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1245 bool SwapOpnds = false; 1246 if (ICmp1 && ICmp2 && 1247 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1248 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1249 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1250 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1251 ICmp2->swapOperands(); 1252 SwapOpnds = true; 1253 } 1254 if (!I1->isSameOperationAs(I2)) { 1255 if (SwapOpnds) 1256 ICmp2->swapOperands(); 1257 return Changed; 1258 } 1259 1260 // The operands should be either the same or they need to be generated 1261 // with a PHI node after sinking. We only handle the case where there is 1262 // a single pair of different operands. 1263 Value *DifferentOp1 = 0, *DifferentOp2 = 0; 1264 unsigned Op1Idx = 0; 1265 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1266 if (I1->getOperand(I) == I2->getOperand(I)) 1267 continue; 1268 // Early exit if we have more-than one pair of different operands or 1269 // the different operand is already in MapValueFromBB1ToBB2. 1270 // Early exit if we need a PHI node to replace a constant. 1271 if (DifferentOp1 || 1272 MapValueFromBB1ToBB2.find(I1->getOperand(I)) != 1273 MapValueFromBB1ToBB2.end() || 1274 isa<Constant>(I1->getOperand(I)) || 1275 isa<Constant>(I2->getOperand(I))) { 1276 // If we can't sink the instructions, undo the swapping. 1277 if (SwapOpnds) 1278 ICmp2->swapOperands(); 1279 return Changed; 1280 } 1281 DifferentOp1 = I1->getOperand(I); 1282 Op1Idx = I; 1283 DifferentOp2 = I2->getOperand(I); 1284 } 1285 1286 // We insert the pair of different operands to MapValueFromBB1ToBB2 and 1287 // remove (I1, I2) from MapValueFromBB1ToBB2. 1288 if (DifferentOp1) { 1289 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2, 1290 DifferentOp1->getName() + ".sink", 1291 BBEnd->begin()); 1292 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN); 1293 // I1 should use NewPN instead of DifferentOp1. 1294 I1->setOperand(Op1Idx, NewPN); 1295 NewPN->addIncoming(DifferentOp1, BB1); 1296 NewPN->addIncoming(DifferentOp2, BB2); 1297 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1298 } 1299 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second; 1300 MapValueFromBB1ToBB2.erase(I1); 1301 1302 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";); 1303 DEBUG(dbgs() << " " << *I2 << "\n";); 1304 // We need to update RE1 and RE2 if we are going to sink the first 1305 // instruction in the basic block down. 1306 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1307 // Sink the instruction. 1308 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1309 if (!OldPN->use_empty()) 1310 OldPN->replaceAllUsesWith(I1); 1311 OldPN->eraseFromParent(); 1312 1313 if (!I2->use_empty()) 1314 I2->replaceAllUsesWith(I1); 1315 I1->intersectOptionalDataWith(I2); 1316 I2->eraseFromParent(); 1317 1318 if (UpdateRE1) 1319 RE1 = BB1->getInstList().rend(); 1320 if (UpdateRE2) 1321 RE2 = BB2->getInstList().rend(); 1322 FirstNonPhiInBBEnd = I1; 1323 NumSinkCommons++; 1324 Changed = true; 1325 } 1326 return Changed; 1327 } 1328 1329 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1 1330 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code 1331 /// (for now, restricted to a single instruction that's side effect free) from 1332 /// the BB1 into the branch block to speculatively execute it. 1333 /// 1334 /// Turn 1335 /// BB: 1336 /// %t1 = icmp 1337 /// br i1 %t1, label %BB1, label %BB2 1338 /// BB1: 1339 /// %t3 = add %t2, c 1340 /// br label BB2 1341 /// BB2: 1342 /// => 1343 /// BB: 1344 /// %t1 = icmp 1345 /// %t4 = add %t2, c 1346 /// %t3 = select i1 %t1, %t2, %t3 1347 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) { 1348 // Only speculatively execution a single instruction (not counting the 1349 // terminator) for now. 1350 Instruction *HInst = NULL; 1351 Instruction *Term = BB1->getTerminator(); 1352 for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end(); 1353 BBI != BBE; ++BBI) { 1354 Instruction *I = BBI; 1355 // Skip debug info. 1356 if (isa<DbgInfoIntrinsic>(I)) continue; 1357 if (I == Term) break; 1358 1359 if (HInst) 1360 return false; 1361 HInst = I; 1362 } 1363 1364 BasicBlock *BIParent = BI->getParent(); 1365 1366 // Check the instruction to be hoisted, if there is one. 1367 if (HInst) { 1368 // Don't hoist the instruction if it's unsafe or expensive. 1369 if (!isSafeToSpeculativelyExecute(HInst)) 1370 return false; 1371 if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold) 1372 return false; 1373 1374 // Do not hoist the instruction if any of its operands are defined but not 1375 // used in this BB. The transformation will prevent the operand from 1376 // being sunk into the use block. 1377 for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end(); 1378 i != e; ++i) { 1379 Instruction *OpI = dyn_cast<Instruction>(*i); 1380 if (OpI && OpI->getParent() == BIParent && 1381 !OpI->mayHaveSideEffects() && 1382 !OpI->isUsedInBasicBlock(BIParent)) 1383 return false; 1384 } 1385 } 1386 1387 // Be conservative for now. FP select instruction can often be expensive. 1388 Value *BrCond = BI->getCondition(); 1389 if (isa<FCmpInst>(BrCond)) 1390 return false; 1391 1392 // If BB1 is actually on the false edge of the conditional branch, remember 1393 // to swap the select operands later. 1394 bool Invert = false; 1395 if (BB1 != BI->getSuccessor(0)) { 1396 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?"); 1397 Invert = true; 1398 } 1399 1400 // Collect interesting PHIs, and scan for hazards. 1401 SmallSetVector<std::pair<Value *, Value *>, 4> PHIs; 1402 BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0); 1403 for (BasicBlock::iterator I = BB2->begin(); 1404 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1405 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1406 Value *BIParentV = PN->getIncomingValueForBlock(BIParent); 1407 1408 // Skip PHIs which are trivial. 1409 if (BB1V == BIParentV) 1410 continue; 1411 1412 // Check for saftey. 1413 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) { 1414 // An unfolded ConstantExpr could end up getting expanded into 1415 // Instructions. Don't speculate this and another instruction at 1416 // the same time. 1417 if (HInst) 1418 return false; 1419 if (!isSafeToSpeculativelyExecute(CE)) 1420 return false; 1421 if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold) 1422 return false; 1423 } 1424 1425 // Ok, we may insert a select for this PHI. 1426 PHIs.insert(std::make_pair(BB1V, BIParentV)); 1427 } 1428 1429 // If there are no PHIs to process, bail early. This helps ensure idempotence 1430 // as well. 1431 if (PHIs.empty()) 1432 return false; 1433 1434 // If we get here, we can hoist the instruction and if-convert. 1435 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";); 1436 1437 // Hoist the instruction. 1438 if (HInst) 1439 BIParent->getInstList().splice(BI, BB1->getInstList(), HInst); 1440 1441 // Insert selects and rewrite the PHI operands. 1442 IRBuilder<true, NoFolder> Builder(BI); 1443 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 1444 Value *TrueV = PHIs[i].first; 1445 Value *FalseV = PHIs[i].second; 1446 1447 // Create a select whose true value is the speculatively executed value and 1448 // false value is the previously determined FalseV. 1449 SelectInst *SI; 1450 if (Invert) 1451 SI = cast<SelectInst> 1452 (Builder.CreateSelect(BrCond, FalseV, TrueV, 1453 FalseV->getName() + "." + TrueV->getName())); 1454 else 1455 SI = cast<SelectInst> 1456 (Builder.CreateSelect(BrCond, TrueV, FalseV, 1457 TrueV->getName() + "." + FalseV->getName())); 1458 1459 // Make the PHI node use the select for all incoming values for "then" and 1460 // "if" blocks. 1461 for (BasicBlock::iterator I = BB2->begin(); 1462 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1463 unsigned BB1I = PN->getBasicBlockIndex(BB1); 1464 unsigned BIParentI = PN->getBasicBlockIndex(BIParent); 1465 Value *BB1V = PN->getIncomingValue(BB1I); 1466 Value *BIParentV = PN->getIncomingValue(BIParentI); 1467 if (TrueV == BB1V && FalseV == BIParentV) { 1468 PN->setIncomingValue(BB1I, SI); 1469 PN->setIncomingValue(BIParentI, SI); 1470 } 1471 } 1472 } 1473 1474 ++NumSpeculations; 1475 return true; 1476 } 1477 1478 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1479 /// across this block. 1480 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1481 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1482 unsigned Size = 0; 1483 1484 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1485 if (isa<DbgInfoIntrinsic>(BBI)) 1486 continue; 1487 if (Size > 10) return false; // Don't clone large BB's. 1488 ++Size; 1489 1490 // We can only support instructions that do not define values that are 1491 // live outside of the current basic block. 1492 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 1493 UI != E; ++UI) { 1494 Instruction *U = cast<Instruction>(*UI); 1495 if (U->getParent() != BB || isa<PHINode>(U)) return false; 1496 } 1497 1498 // Looks ok, continue checking. 1499 } 1500 1501 return true; 1502 } 1503 1504 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1505 /// that is defined in the same block as the branch and if any PHI entries are 1506 /// constants, thread edges corresponding to that entry to be branches to their 1507 /// ultimate destination. 1508 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) { 1509 BasicBlock *BB = BI->getParent(); 1510 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1511 // NOTE: we currently cannot transform this case if the PHI node is used 1512 // outside of the block. 1513 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1514 return false; 1515 1516 // Degenerate case of a single entry PHI. 1517 if (PN->getNumIncomingValues() == 1) { 1518 FoldSingleEntryPHINodes(PN->getParent()); 1519 return true; 1520 } 1521 1522 // Now we know that this block has multiple preds and two succs. 1523 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1524 1525 // Okay, this is a simple enough basic block. See if any phi values are 1526 // constants. 1527 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1528 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1529 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue; 1530 1531 // Okay, we now know that all edges from PredBB should be revectored to 1532 // branch to RealDest. 1533 BasicBlock *PredBB = PN->getIncomingBlock(i); 1534 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1535 1536 if (RealDest == BB) continue; // Skip self loops. 1537 // Skip if the predecessor's terminator is an indirect branch. 1538 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1539 1540 // The dest block might have PHI nodes, other predecessors and other 1541 // difficult cases. Instead of being smart about this, just insert a new 1542 // block that jumps to the destination block, effectively splitting 1543 // the edge we are about to create. 1544 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1545 RealDest->getName()+".critedge", 1546 RealDest->getParent(), RealDest); 1547 BranchInst::Create(RealDest, EdgeBB); 1548 1549 // Update PHI nodes. 1550 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1551 1552 // BB may have instructions that are being threaded over. Clone these 1553 // instructions into EdgeBB. We know that there will be no uses of the 1554 // cloned instructions outside of EdgeBB. 1555 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1556 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1557 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1558 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1559 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1560 continue; 1561 } 1562 // Clone the instruction. 1563 Instruction *N = BBI->clone(); 1564 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1565 1566 // Update operands due to translation. 1567 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1568 i != e; ++i) { 1569 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1570 if (PI != TranslateMap.end()) 1571 *i = PI->second; 1572 } 1573 1574 // Check for trivial simplification. 1575 if (Value *V = SimplifyInstruction(N, TD)) { 1576 TranslateMap[BBI] = V; 1577 delete N; // Instruction folded away, don't need actual inst 1578 } else { 1579 // Insert the new instruction into its new home. 1580 EdgeBB->getInstList().insert(InsertPt, N); 1581 if (!BBI->use_empty()) 1582 TranslateMap[BBI] = N; 1583 } 1584 } 1585 1586 // Loop over all of the edges from PredBB to BB, changing them to branch 1587 // to EdgeBB instead. 1588 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1589 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1590 if (PredBBTI->getSuccessor(i) == BB) { 1591 BB->removePredecessor(PredBB); 1592 PredBBTI->setSuccessor(i, EdgeBB); 1593 } 1594 1595 // Recurse, simplifying any other constants. 1596 return FoldCondBranchOnPHI(BI, TD) | true; 1597 } 1598 1599 return false; 1600 } 1601 1602 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1603 /// PHI node, see if we can eliminate it. 1604 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) { 1605 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1606 // statement", which has a very simple dominance structure. Basically, we 1607 // are trying to find the condition that is being branched on, which 1608 // subsequently causes this merge to happen. We really want control 1609 // dependence information for this check, but simplifycfg can't keep it up 1610 // to date, and this catches most of the cases we care about anyway. 1611 BasicBlock *BB = PN->getParent(); 1612 BasicBlock *IfTrue, *IfFalse; 1613 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1614 if (!IfCond || 1615 // Don't bother if the branch will be constant folded trivially. 1616 isa<ConstantInt>(IfCond)) 1617 return false; 1618 1619 // Okay, we found that we can merge this two-entry phi node into a select. 1620 // Doing so would require us to fold *all* two entry phi nodes in this block. 1621 // At some point this becomes non-profitable (particularly if the target 1622 // doesn't support cmov's). Only do this transformation if there are two or 1623 // fewer PHI nodes in this block. 1624 unsigned NumPhis = 0; 1625 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1626 if (NumPhis > 2) 1627 return false; 1628 1629 // Loop over the PHI's seeing if we can promote them all to select 1630 // instructions. While we are at it, keep track of the instructions 1631 // that need to be moved to the dominating block. 1632 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1633 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1634 MaxCostVal1 = PHINodeFoldingThreshold; 1635 1636 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1637 PHINode *PN = cast<PHINode>(II++); 1638 if (Value *V = SimplifyInstruction(PN, TD)) { 1639 PN->replaceAllUsesWith(V); 1640 PN->eraseFromParent(); 1641 continue; 1642 } 1643 1644 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1645 MaxCostVal0) || 1646 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1647 MaxCostVal1)) 1648 return false; 1649 } 1650 1651 // If we folded the first phi, PN dangles at this point. Refresh it. If 1652 // we ran out of PHIs then we simplified them all. 1653 PN = dyn_cast<PHINode>(BB->begin()); 1654 if (PN == 0) return true; 1655 1656 // Don't fold i1 branches on PHIs which contain binary operators. These can 1657 // often be turned into switches and other things. 1658 if (PN->getType()->isIntegerTy(1) && 1659 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1660 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1661 isa<BinaryOperator>(IfCond))) 1662 return false; 1663 1664 // If we all PHI nodes are promotable, check to make sure that all 1665 // instructions in the predecessor blocks can be promoted as well. If 1666 // not, we won't be able to get rid of the control flow, so it's not 1667 // worth promoting to select instructions. 1668 BasicBlock *DomBlock = 0; 1669 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1670 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1671 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1672 IfBlock1 = 0; 1673 } else { 1674 DomBlock = *pred_begin(IfBlock1); 1675 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1676 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1677 // This is not an aggressive instruction that we can promote. 1678 // Because of this, we won't be able to get rid of the control 1679 // flow, so the xform is not worth it. 1680 return false; 1681 } 1682 } 1683 1684 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1685 IfBlock2 = 0; 1686 } else { 1687 DomBlock = *pred_begin(IfBlock2); 1688 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1689 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1690 // This is not an aggressive instruction that we can promote. 1691 // Because of this, we won't be able to get rid of the control 1692 // flow, so the xform is not worth it. 1693 return false; 1694 } 1695 } 1696 1697 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1698 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1699 1700 // If we can still promote the PHI nodes after this gauntlet of tests, 1701 // do all of the PHI's now. 1702 Instruction *InsertPt = DomBlock->getTerminator(); 1703 IRBuilder<true, NoFolder> Builder(InsertPt); 1704 1705 // Move all 'aggressive' instructions, which are defined in the 1706 // conditional parts of the if's up to the dominating block. 1707 if (IfBlock1) 1708 DomBlock->getInstList().splice(InsertPt, 1709 IfBlock1->getInstList(), IfBlock1->begin(), 1710 IfBlock1->getTerminator()); 1711 if (IfBlock2) 1712 DomBlock->getInstList().splice(InsertPt, 1713 IfBlock2->getInstList(), IfBlock2->begin(), 1714 IfBlock2->getTerminator()); 1715 1716 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1717 // Change the PHI node into a select instruction. 1718 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1719 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1720 1721 SelectInst *NV = 1722 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1723 PN->replaceAllUsesWith(NV); 1724 NV->takeName(PN); 1725 PN->eraseFromParent(); 1726 } 1727 1728 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1729 // has been flattened. Change DomBlock to jump directly to our new block to 1730 // avoid other simplifycfg's kicking in on the diamond. 1731 TerminatorInst *OldTI = DomBlock->getTerminator(); 1732 Builder.SetInsertPoint(OldTI); 1733 Builder.CreateBr(BB); 1734 OldTI->eraseFromParent(); 1735 return true; 1736 } 1737 1738 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1739 /// to two returning blocks, try to merge them together into one return, 1740 /// introducing a select if the return values disagree. 1741 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1742 IRBuilder<> &Builder) { 1743 assert(BI->isConditional() && "Must be a conditional branch"); 1744 BasicBlock *TrueSucc = BI->getSuccessor(0); 1745 BasicBlock *FalseSucc = BI->getSuccessor(1); 1746 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1747 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1748 1749 // Check to ensure both blocks are empty (just a return) or optionally empty 1750 // with PHI nodes. If there are other instructions, merging would cause extra 1751 // computation on one path or the other. 1752 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1753 return false; 1754 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1755 return false; 1756 1757 Builder.SetInsertPoint(BI); 1758 // Okay, we found a branch that is going to two return nodes. If 1759 // there is no return value for this function, just change the 1760 // branch into a return. 1761 if (FalseRet->getNumOperands() == 0) { 1762 TrueSucc->removePredecessor(BI->getParent()); 1763 FalseSucc->removePredecessor(BI->getParent()); 1764 Builder.CreateRetVoid(); 1765 EraseTerminatorInstAndDCECond(BI); 1766 return true; 1767 } 1768 1769 // Otherwise, figure out what the true and false return values are 1770 // so we can insert a new select instruction. 1771 Value *TrueValue = TrueRet->getReturnValue(); 1772 Value *FalseValue = FalseRet->getReturnValue(); 1773 1774 // Unwrap any PHI nodes in the return blocks. 1775 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1776 if (TVPN->getParent() == TrueSucc) 1777 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1778 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1779 if (FVPN->getParent() == FalseSucc) 1780 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1781 1782 // In order for this transformation to be safe, we must be able to 1783 // unconditionally execute both operands to the return. This is 1784 // normally the case, but we could have a potentially-trapping 1785 // constant expression that prevents this transformation from being 1786 // safe. 1787 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1788 if (TCV->canTrap()) 1789 return false; 1790 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1791 if (FCV->canTrap()) 1792 return false; 1793 1794 // Okay, we collected all the mapped values and checked them for sanity, and 1795 // defined to really do this transformation. First, update the CFG. 1796 TrueSucc->removePredecessor(BI->getParent()); 1797 FalseSucc->removePredecessor(BI->getParent()); 1798 1799 // Insert select instructions where needed. 1800 Value *BrCond = BI->getCondition(); 1801 if (TrueValue) { 1802 // Insert a select if the results differ. 1803 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1804 } else if (isa<UndefValue>(TrueValue)) { 1805 TrueValue = FalseValue; 1806 } else { 1807 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1808 FalseValue, "retval"); 1809 } 1810 } 1811 1812 Value *RI = !TrueValue ? 1813 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1814 1815 (void) RI; 1816 1817 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1818 << "\n " << *BI << "NewRet = " << *RI 1819 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1820 1821 EraseTerminatorInstAndDCECond(BI); 1822 1823 return true; 1824 } 1825 1826 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 1827 /// probabilities of the branch taking each edge. Fills in the two APInt 1828 /// parameters and return true, or returns false if no or invalid metadata was 1829 /// found. 1830 static bool ExtractBranchMetadata(BranchInst *BI, 1831 uint64_t &ProbTrue, uint64_t &ProbFalse) { 1832 assert(BI->isConditional() && 1833 "Looking for probabilities on unconditional branch?"); 1834 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 1835 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 1836 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1)); 1837 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2)); 1838 if (!CITrue || !CIFalse) return false; 1839 ProbTrue = CITrue->getValue().getZExtValue(); 1840 ProbFalse = CIFalse->getValue().getZExtValue(); 1841 return true; 1842 } 1843 1844 /// checkCSEInPredecessor - Return true if the given instruction is available 1845 /// in its predecessor block. If yes, the instruction will be removed. 1846 /// 1847 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 1848 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 1849 return false; 1850 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 1851 Instruction *PBI = &*I; 1852 // Check whether Inst and PBI generate the same value. 1853 if (Inst->isIdenticalTo(PBI)) { 1854 Inst->replaceAllUsesWith(PBI); 1855 Inst->eraseFromParent(); 1856 return true; 1857 } 1858 } 1859 return false; 1860 } 1861 1862 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1863 /// predecessor branches to us and one of our successors, fold the block into 1864 /// the predecessor and use logical operations to pick the right destination. 1865 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 1866 BasicBlock *BB = BI->getParent(); 1867 1868 Instruction *Cond = 0; 1869 if (BI->isConditional()) 1870 Cond = dyn_cast<Instruction>(BI->getCondition()); 1871 else { 1872 // For unconditional branch, check for a simple CFG pattern, where 1873 // BB has a single predecessor and BB's successor is also its predecessor's 1874 // successor. If such pattern exisits, check for CSE between BB and its 1875 // predecessor. 1876 if (BasicBlock *PB = BB->getSinglePredecessor()) 1877 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 1878 if (PBI->isConditional() && 1879 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 1880 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 1881 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 1882 I != E; ) { 1883 Instruction *Curr = I++; 1884 if (isa<CmpInst>(Curr)) { 1885 Cond = Curr; 1886 break; 1887 } 1888 // Quit if we can't remove this instruction. 1889 if (!checkCSEInPredecessor(Curr, PB)) 1890 return false; 1891 } 1892 } 1893 1894 if (Cond == 0) 1895 return false; 1896 } 1897 1898 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 1899 Cond->getParent() != BB || !Cond->hasOneUse()) 1900 return false; 1901 1902 // Only allow this if the condition is a simple instruction that can be 1903 // executed unconditionally. It must be in the same block as the branch, and 1904 // must be at the front of the block. 1905 BasicBlock::iterator FrontIt = BB->front(); 1906 1907 // Ignore dbg intrinsics. 1908 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1909 1910 // Allow a single instruction to be hoisted in addition to the compare 1911 // that feeds the branch. We later ensure that any values that _it_ uses 1912 // were also live in the predecessor, so that we don't unnecessarily create 1913 // register pressure or inhibit out-of-order execution. 1914 Instruction *BonusInst = 0; 1915 if (&*FrontIt != Cond && 1916 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond && 1917 isSafeToSpeculativelyExecute(FrontIt)) { 1918 BonusInst = &*FrontIt; 1919 ++FrontIt; 1920 1921 // Ignore dbg intrinsics. 1922 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1923 } 1924 1925 // Only a single bonus inst is allowed. 1926 if (&*FrontIt != Cond) 1927 return false; 1928 1929 // Make sure the instruction after the condition is the cond branch. 1930 BasicBlock::iterator CondIt = Cond; ++CondIt; 1931 1932 // Ingore dbg intrinsics. 1933 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 1934 1935 if (&*CondIt != BI) 1936 return false; 1937 1938 // Cond is known to be a compare or binary operator. Check to make sure that 1939 // neither operand is a potentially-trapping constant expression. 1940 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 1941 if (CE->canTrap()) 1942 return false; 1943 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 1944 if (CE->canTrap()) 1945 return false; 1946 1947 // Finally, don't infinitely unroll conditional loops. 1948 BasicBlock *TrueDest = BI->getSuccessor(0); 1949 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0; 1950 if (TrueDest == BB || FalseDest == BB) 1951 return false; 1952 1953 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1954 BasicBlock *PredBlock = *PI; 1955 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 1956 1957 // Check that we have two conditional branches. If there is a PHI node in 1958 // the common successor, verify that the same value flows in from both 1959 // blocks. 1960 SmallVector<PHINode*, 4> PHIs; 1961 if (PBI == 0 || PBI->isUnconditional() || 1962 (BI->isConditional() && 1963 !SafeToMergeTerminators(BI, PBI)) || 1964 (!BI->isConditional() && 1965 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 1966 continue; 1967 1968 // Determine if the two branches share a common destination. 1969 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 1970 bool InvertPredCond = false; 1971 1972 if (BI->isConditional()) { 1973 if (PBI->getSuccessor(0) == TrueDest) 1974 Opc = Instruction::Or; 1975 else if (PBI->getSuccessor(1) == FalseDest) 1976 Opc = Instruction::And; 1977 else if (PBI->getSuccessor(0) == FalseDest) 1978 Opc = Instruction::And, InvertPredCond = true; 1979 else if (PBI->getSuccessor(1) == TrueDest) 1980 Opc = Instruction::Or, InvertPredCond = true; 1981 else 1982 continue; 1983 } else { 1984 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 1985 continue; 1986 } 1987 1988 // Ensure that any values used in the bonus instruction are also used 1989 // by the terminator of the predecessor. This means that those values 1990 // must already have been resolved, so we won't be inhibiting the 1991 // out-of-order core by speculating them earlier. 1992 if (BonusInst) { 1993 // Collect the values used by the bonus inst 1994 SmallPtrSet<Value*, 4> UsedValues; 1995 for (Instruction::op_iterator OI = BonusInst->op_begin(), 1996 OE = BonusInst->op_end(); OI != OE; ++OI) { 1997 Value *V = *OI; 1998 if (!isa<Constant>(V)) 1999 UsedValues.insert(V); 2000 } 2001 2002 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 2003 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 2004 2005 // Walk up to four levels back up the use-def chain of the predecessor's 2006 // terminator to see if all those values were used. The choice of four 2007 // levels is arbitrary, to provide a compile-time-cost bound. 2008 while (!Worklist.empty()) { 2009 std::pair<Value*, unsigned> Pair = Worklist.back(); 2010 Worklist.pop_back(); 2011 2012 if (Pair.second >= 4) continue; 2013 UsedValues.erase(Pair.first); 2014 if (UsedValues.empty()) break; 2015 2016 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 2017 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 2018 OI != OE; ++OI) 2019 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 2020 } 2021 } 2022 2023 if (!UsedValues.empty()) return false; 2024 } 2025 2026 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2027 IRBuilder<> Builder(PBI); 2028 2029 // If we need to invert the condition in the pred block to match, do so now. 2030 if (InvertPredCond) { 2031 Value *NewCond = PBI->getCondition(); 2032 2033 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2034 CmpInst *CI = cast<CmpInst>(NewCond); 2035 CI->setPredicate(CI->getInversePredicate()); 2036 } else { 2037 NewCond = Builder.CreateNot(NewCond, 2038 PBI->getCondition()->getName()+".not"); 2039 } 2040 2041 PBI->setCondition(NewCond); 2042 PBI->swapSuccessors(); 2043 } 2044 2045 // If we have a bonus inst, clone it into the predecessor block. 2046 Instruction *NewBonus = 0; 2047 if (BonusInst) { 2048 NewBonus = BonusInst->clone(); 2049 PredBlock->getInstList().insert(PBI, NewBonus); 2050 NewBonus->takeName(BonusInst); 2051 BonusInst->setName(BonusInst->getName()+".old"); 2052 } 2053 2054 // Clone Cond into the predecessor basic block, and or/and the 2055 // two conditions together. 2056 Instruction *New = Cond->clone(); 2057 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 2058 PredBlock->getInstList().insert(PBI, New); 2059 New->takeName(Cond); 2060 Cond->setName(New->getName()+".old"); 2061 2062 if (BI->isConditional()) { 2063 Instruction *NewCond = 2064 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2065 New, "or.cond")); 2066 PBI->setCondition(NewCond); 2067 2068 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2069 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2070 PredFalseWeight); 2071 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2072 SuccFalseWeight); 2073 SmallVector<uint64_t, 8> NewWeights; 2074 2075 if (PBI->getSuccessor(0) == BB) { 2076 if (PredHasWeights && SuccHasWeights) { 2077 // PBI: br i1 %x, BB, FalseDest 2078 // BI: br i1 %y, TrueDest, FalseDest 2079 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2080 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2081 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2082 // TrueWeight for PBI * FalseWeight for BI. 2083 // We assume that total weights of a BranchInst can fit into 32 bits. 2084 // Therefore, we will not have overflow using 64-bit arithmetic. 2085 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2086 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2087 } 2088 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2089 PBI->setSuccessor(0, TrueDest); 2090 } 2091 if (PBI->getSuccessor(1) == BB) { 2092 if (PredHasWeights && SuccHasWeights) { 2093 // PBI: br i1 %x, TrueDest, BB 2094 // BI: br i1 %y, TrueDest, FalseDest 2095 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2096 // FalseWeight for PBI * TrueWeight for BI. 2097 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2098 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2099 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2100 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2101 } 2102 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2103 PBI->setSuccessor(1, FalseDest); 2104 } 2105 if (NewWeights.size() == 2) { 2106 // Halve the weights if any of them cannot fit in an uint32_t 2107 FitWeights(NewWeights); 2108 2109 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2110 PBI->setMetadata(LLVMContext::MD_prof, 2111 MDBuilder(BI->getContext()). 2112 createBranchWeights(MDWeights)); 2113 } else 2114 PBI->setMetadata(LLVMContext::MD_prof, NULL); 2115 } else { 2116 // Update PHI nodes in the common successors. 2117 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2118 ConstantInt *PBI_C = cast<ConstantInt>( 2119 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2120 assert(PBI_C->getType()->isIntegerTy(1)); 2121 Instruction *MergedCond = 0; 2122 if (PBI->getSuccessor(0) == TrueDest) { 2123 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2124 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2125 // is false: !PBI_Cond and BI_Value 2126 Instruction *NotCond = 2127 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2128 "not.cond")); 2129 MergedCond = 2130 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2131 NotCond, New, 2132 "and.cond")); 2133 if (PBI_C->isOne()) 2134 MergedCond = 2135 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2136 PBI->getCondition(), MergedCond, 2137 "or.cond")); 2138 } else { 2139 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2140 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2141 // is false: PBI_Cond and BI_Value 2142 MergedCond = 2143 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2144 PBI->getCondition(), New, 2145 "and.cond")); 2146 if (PBI_C->isOne()) { 2147 Instruction *NotCond = 2148 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2149 "not.cond")); 2150 MergedCond = 2151 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2152 NotCond, MergedCond, 2153 "or.cond")); 2154 } 2155 } 2156 // Update PHI Node. 2157 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2158 MergedCond); 2159 } 2160 // Change PBI from Conditional to Unconditional. 2161 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2162 EraseTerminatorInstAndDCECond(PBI); 2163 PBI = New_PBI; 2164 } 2165 2166 // TODO: If BB is reachable from all paths through PredBlock, then we 2167 // could replace PBI's branch probabilities with BI's. 2168 2169 // Copy any debug value intrinsics into the end of PredBlock. 2170 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2171 if (isa<DbgInfoIntrinsic>(*I)) 2172 I->clone()->insertBefore(PBI); 2173 2174 return true; 2175 } 2176 return false; 2177 } 2178 2179 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2180 /// predecessor of another block, this function tries to simplify it. We know 2181 /// that PBI and BI are both conditional branches, and BI is in one of the 2182 /// successor blocks of PBI - PBI branches to BI. 2183 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2184 assert(PBI->isConditional() && BI->isConditional()); 2185 BasicBlock *BB = BI->getParent(); 2186 2187 // If this block ends with a branch instruction, and if there is a 2188 // predecessor that ends on a branch of the same condition, make 2189 // this conditional branch redundant. 2190 if (PBI->getCondition() == BI->getCondition() && 2191 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2192 // Okay, the outcome of this conditional branch is statically 2193 // knowable. If this block had a single pred, handle specially. 2194 if (BB->getSinglePredecessor()) { 2195 // Turn this into a branch on constant. 2196 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2197 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2198 CondIsTrue)); 2199 return true; // Nuke the branch on constant. 2200 } 2201 2202 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2203 // in the constant and simplify the block result. Subsequent passes of 2204 // simplifycfg will thread the block. 2205 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2206 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2207 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2208 std::distance(PB, PE), 2209 BI->getCondition()->getName() + ".pr", 2210 BB->begin()); 2211 // Okay, we're going to insert the PHI node. Since PBI is not the only 2212 // predecessor, compute the PHI'd conditional value for all of the preds. 2213 // Any predecessor where the condition is not computable we keep symbolic. 2214 for (pred_iterator PI = PB; PI != PE; ++PI) { 2215 BasicBlock *P = *PI; 2216 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2217 PBI != BI && PBI->isConditional() && 2218 PBI->getCondition() == BI->getCondition() && 2219 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2220 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2221 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2222 CondIsTrue), P); 2223 } else { 2224 NewPN->addIncoming(BI->getCondition(), P); 2225 } 2226 } 2227 2228 BI->setCondition(NewPN); 2229 return true; 2230 } 2231 } 2232 2233 // If this is a conditional branch in an empty block, and if any 2234 // predecessors is a conditional branch to one of our destinations, 2235 // fold the conditions into logical ops and one cond br. 2236 BasicBlock::iterator BBI = BB->begin(); 2237 // Ignore dbg intrinsics. 2238 while (isa<DbgInfoIntrinsic>(BBI)) 2239 ++BBI; 2240 if (&*BBI != BI) 2241 return false; 2242 2243 2244 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2245 if (CE->canTrap()) 2246 return false; 2247 2248 int PBIOp, BIOp; 2249 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2250 PBIOp = BIOp = 0; 2251 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2252 PBIOp = 0, BIOp = 1; 2253 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2254 PBIOp = 1, BIOp = 0; 2255 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2256 PBIOp = BIOp = 1; 2257 else 2258 return false; 2259 2260 // Check to make sure that the other destination of this branch 2261 // isn't BB itself. If so, this is an infinite loop that will 2262 // keep getting unwound. 2263 if (PBI->getSuccessor(PBIOp) == BB) 2264 return false; 2265 2266 // Do not perform this transformation if it would require 2267 // insertion of a large number of select instructions. For targets 2268 // without predication/cmovs, this is a big pessimization. 2269 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2270 2271 unsigned NumPhis = 0; 2272 for (BasicBlock::iterator II = CommonDest->begin(); 2273 isa<PHINode>(II); ++II, ++NumPhis) 2274 if (NumPhis > 2) // Disable this xform. 2275 return false; 2276 2277 // Finally, if everything is ok, fold the branches to logical ops. 2278 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2279 2280 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2281 << "AND: " << *BI->getParent()); 2282 2283 2284 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2285 // branch in it, where one edge (OtherDest) goes back to itself but the other 2286 // exits. We don't *know* that the program avoids the infinite loop 2287 // (even though that seems likely). If we do this xform naively, we'll end up 2288 // recursively unpeeling the loop. Since we know that (after the xform is 2289 // done) that the block *is* infinite if reached, we just make it an obviously 2290 // infinite loop with no cond branch. 2291 if (OtherDest == BB) { 2292 // Insert it at the end of the function, because it's either code, 2293 // or it won't matter if it's hot. :) 2294 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2295 "infloop", BB->getParent()); 2296 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2297 OtherDest = InfLoopBlock; 2298 } 2299 2300 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2301 2302 // BI may have other predecessors. Because of this, we leave 2303 // it alone, but modify PBI. 2304 2305 // Make sure we get to CommonDest on True&True directions. 2306 Value *PBICond = PBI->getCondition(); 2307 IRBuilder<true, NoFolder> Builder(PBI); 2308 if (PBIOp) 2309 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2310 2311 Value *BICond = BI->getCondition(); 2312 if (BIOp) 2313 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2314 2315 // Merge the conditions. 2316 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2317 2318 // Modify PBI to branch on the new condition to the new dests. 2319 PBI->setCondition(Cond); 2320 PBI->setSuccessor(0, CommonDest); 2321 PBI->setSuccessor(1, OtherDest); 2322 2323 // Update branch weight for PBI. 2324 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2325 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2326 PredFalseWeight); 2327 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2328 SuccFalseWeight); 2329 if (PredHasWeights && SuccHasWeights) { 2330 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2331 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2332 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2333 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2334 // The weight to CommonDest should be PredCommon * SuccTotal + 2335 // PredOther * SuccCommon. 2336 // The weight to OtherDest should be PredOther * SuccOther. 2337 SmallVector<uint64_t, 2> NewWeights; 2338 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2339 PredOther * SuccCommon); 2340 NewWeights.push_back(PredOther * SuccOther); 2341 // Halve the weights if any of them cannot fit in an uint32_t 2342 FitWeights(NewWeights); 2343 2344 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2345 PBI->setMetadata(LLVMContext::MD_prof, 2346 MDBuilder(BI->getContext()). 2347 createBranchWeights(MDWeights)); 2348 } 2349 2350 // OtherDest may have phi nodes. If so, add an entry from PBI's 2351 // block that are identical to the entries for BI's block. 2352 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2353 2354 // We know that the CommonDest already had an edge from PBI to 2355 // it. If it has PHIs though, the PHIs may have different 2356 // entries for BB and PBI's BB. If so, insert a select to make 2357 // them agree. 2358 PHINode *PN; 2359 for (BasicBlock::iterator II = CommonDest->begin(); 2360 (PN = dyn_cast<PHINode>(II)); ++II) { 2361 Value *BIV = PN->getIncomingValueForBlock(BB); 2362 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2363 Value *PBIV = PN->getIncomingValue(PBBIdx); 2364 if (BIV != PBIV) { 2365 // Insert a select in PBI to pick the right value. 2366 Value *NV = cast<SelectInst> 2367 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2368 PN->setIncomingValue(PBBIdx, NV); 2369 } 2370 } 2371 2372 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2373 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2374 2375 // This basic block is probably dead. We know it has at least 2376 // one fewer predecessor. 2377 return true; 2378 } 2379 2380 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2381 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2382 // Takes care of updating the successors and removing the old terminator. 2383 // Also makes sure not to introduce new successors by assuming that edges to 2384 // non-successor TrueBBs and FalseBBs aren't reachable. 2385 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2386 BasicBlock *TrueBB, BasicBlock *FalseBB, 2387 uint32_t TrueWeight, 2388 uint32_t FalseWeight){ 2389 // Remove any superfluous successor edges from the CFG. 2390 // First, figure out which successors to preserve. 2391 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2392 // successor. 2393 BasicBlock *KeepEdge1 = TrueBB; 2394 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0; 2395 2396 // Then remove the rest. 2397 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2398 BasicBlock *Succ = OldTerm->getSuccessor(I); 2399 // Make sure only to keep exactly one copy of each edge. 2400 if (Succ == KeepEdge1) 2401 KeepEdge1 = 0; 2402 else if (Succ == KeepEdge2) 2403 KeepEdge2 = 0; 2404 else 2405 Succ->removePredecessor(OldTerm->getParent()); 2406 } 2407 2408 IRBuilder<> Builder(OldTerm); 2409 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2410 2411 // Insert an appropriate new terminator. 2412 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) { 2413 if (TrueBB == FalseBB) 2414 // We were only looking for one successor, and it was present. 2415 // Create an unconditional branch to it. 2416 Builder.CreateBr(TrueBB); 2417 else { 2418 // We found both of the successors we were looking for. 2419 // Create a conditional branch sharing the condition of the select. 2420 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2421 if (TrueWeight != FalseWeight) 2422 NewBI->setMetadata(LLVMContext::MD_prof, 2423 MDBuilder(OldTerm->getContext()). 2424 createBranchWeights(TrueWeight, FalseWeight)); 2425 } 2426 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2427 // Neither of the selected blocks were successors, so this 2428 // terminator must be unreachable. 2429 new UnreachableInst(OldTerm->getContext(), OldTerm); 2430 } else { 2431 // One of the selected values was a successor, but the other wasn't. 2432 // Insert an unconditional branch to the one that was found; 2433 // the edge to the one that wasn't must be unreachable. 2434 if (KeepEdge1 == 0) 2435 // Only TrueBB was found. 2436 Builder.CreateBr(TrueBB); 2437 else 2438 // Only FalseBB was found. 2439 Builder.CreateBr(FalseBB); 2440 } 2441 2442 EraseTerminatorInstAndDCECond(OldTerm); 2443 return true; 2444 } 2445 2446 // SimplifySwitchOnSelect - Replaces 2447 // (switch (select cond, X, Y)) on constant X, Y 2448 // with a branch - conditional if X and Y lead to distinct BBs, 2449 // unconditional otherwise. 2450 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2451 // Check for constant integer values in the select. 2452 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2453 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2454 if (!TrueVal || !FalseVal) 2455 return false; 2456 2457 // Find the relevant condition and destinations. 2458 Value *Condition = Select->getCondition(); 2459 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2460 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2461 2462 // Get weight for TrueBB and FalseBB. 2463 uint32_t TrueWeight = 0, FalseWeight = 0; 2464 SmallVector<uint64_t, 8> Weights; 2465 bool HasWeights = HasBranchWeights(SI); 2466 if (HasWeights) { 2467 GetBranchWeights(SI, Weights); 2468 if (Weights.size() == 1 + SI->getNumCases()) { 2469 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2470 getSuccessorIndex()]; 2471 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2472 getSuccessorIndex()]; 2473 } 2474 } 2475 2476 // Perform the actual simplification. 2477 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2478 TrueWeight, FalseWeight); 2479 } 2480 2481 // SimplifyIndirectBrOnSelect - Replaces 2482 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2483 // blockaddress(@fn, BlockB))) 2484 // with 2485 // (br cond, BlockA, BlockB). 2486 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2487 // Check that both operands of the select are block addresses. 2488 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2489 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2490 if (!TBA || !FBA) 2491 return false; 2492 2493 // Extract the actual blocks. 2494 BasicBlock *TrueBB = TBA->getBasicBlock(); 2495 BasicBlock *FalseBB = FBA->getBasicBlock(); 2496 2497 // Perform the actual simplification. 2498 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2499 0, 0); 2500 } 2501 2502 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2503 /// instruction (a seteq/setne with a constant) as the only instruction in a 2504 /// block that ends with an uncond branch. We are looking for a very specific 2505 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2506 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2507 /// default value goes to an uncond block with a seteq in it, we get something 2508 /// like: 2509 /// 2510 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2511 /// DEFAULT: 2512 /// %tmp = icmp eq i8 %A, 92 2513 /// br label %end 2514 /// end: 2515 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2516 /// 2517 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2518 /// the PHI, merging the third icmp into the switch. 2519 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 2520 const TargetData *TD, 2521 IRBuilder<> &Builder) { 2522 BasicBlock *BB = ICI->getParent(); 2523 2524 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2525 // complex. 2526 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2527 2528 Value *V = ICI->getOperand(0); 2529 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2530 2531 // The pattern we're looking for is where our only predecessor is a switch on 2532 // 'V' and this block is the default case for the switch. In this case we can 2533 // fold the compared value into the switch to simplify things. 2534 BasicBlock *Pred = BB->getSinglePredecessor(); 2535 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false; 2536 2537 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2538 if (SI->getCondition() != V) 2539 return false; 2540 2541 // If BB is reachable on a non-default case, then we simply know the value of 2542 // V in this block. Substitute it and constant fold the icmp instruction 2543 // away. 2544 if (SI->getDefaultDest() != BB) { 2545 ConstantInt *VVal = SI->findCaseDest(BB); 2546 assert(VVal && "Should have a unique destination value"); 2547 ICI->setOperand(0, VVal); 2548 2549 if (Value *V = SimplifyInstruction(ICI, TD)) { 2550 ICI->replaceAllUsesWith(V); 2551 ICI->eraseFromParent(); 2552 } 2553 // BB is now empty, so it is likely to simplify away. 2554 return SimplifyCFG(BB) | true; 2555 } 2556 2557 // Ok, the block is reachable from the default dest. If the constant we're 2558 // comparing exists in one of the other edges, then we can constant fold ICI 2559 // and zap it. 2560 if (SI->findCaseValue(Cst) != SI->case_default()) { 2561 Value *V; 2562 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2563 V = ConstantInt::getFalse(BB->getContext()); 2564 else 2565 V = ConstantInt::getTrue(BB->getContext()); 2566 2567 ICI->replaceAllUsesWith(V); 2568 ICI->eraseFromParent(); 2569 // BB is now empty, so it is likely to simplify away. 2570 return SimplifyCFG(BB) | true; 2571 } 2572 2573 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2574 // the block. 2575 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2576 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back()); 2577 if (PHIUse == 0 || PHIUse != &SuccBlock->front() || 2578 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2579 return false; 2580 2581 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2582 // true in the PHI. 2583 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2584 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2585 2586 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2587 std::swap(DefaultCst, NewCst); 2588 2589 // Replace ICI (which is used by the PHI for the default value) with true or 2590 // false depending on if it is EQ or NE. 2591 ICI->replaceAllUsesWith(DefaultCst); 2592 ICI->eraseFromParent(); 2593 2594 // Okay, the switch goes to this block on a default value. Add an edge from 2595 // the switch to the merge point on the compared value. 2596 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2597 BB->getParent(), BB); 2598 SmallVector<uint64_t, 8> Weights; 2599 bool HasWeights = HasBranchWeights(SI); 2600 if (HasWeights) { 2601 GetBranchWeights(SI, Weights); 2602 if (Weights.size() == 1 + SI->getNumCases()) { 2603 // Split weight for default case to case for "Cst". 2604 Weights[0] = (Weights[0]+1) >> 1; 2605 Weights.push_back(Weights[0]); 2606 2607 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2608 SI->setMetadata(LLVMContext::MD_prof, 2609 MDBuilder(SI->getContext()). 2610 createBranchWeights(MDWeights)); 2611 } 2612 } 2613 SI->addCase(Cst, NewBB); 2614 2615 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2616 Builder.SetInsertPoint(NewBB); 2617 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2618 Builder.CreateBr(SuccBlock); 2619 PHIUse->addIncoming(NewCst, NewBB); 2620 return true; 2621 } 2622 2623 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2624 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2625 /// fold it into a switch instruction if so. 2626 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD, 2627 IRBuilder<> &Builder) { 2628 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2629 if (Cond == 0) return false; 2630 2631 2632 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2633 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2634 // 'setne's and'ed together, collect them. 2635 Value *CompVal = 0; 2636 std::vector<ConstantInt*> Values; 2637 bool TrueWhenEqual = true; 2638 Value *ExtraCase = 0; 2639 unsigned UsedICmps = 0; 2640 2641 if (Cond->getOpcode() == Instruction::Or) { 2642 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true, 2643 UsedICmps); 2644 } else if (Cond->getOpcode() == Instruction::And) { 2645 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false, 2646 UsedICmps); 2647 TrueWhenEqual = false; 2648 } 2649 2650 // If we didn't have a multiply compared value, fail. 2651 if (CompVal == 0) return false; 2652 2653 // Avoid turning single icmps into a switch. 2654 if (UsedICmps <= 1) 2655 return false; 2656 2657 // There might be duplicate constants in the list, which the switch 2658 // instruction can't handle, remove them now. 2659 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2660 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2661 2662 // If Extra was used, we require at least two switch values to do the 2663 // transformation. A switch with one value is just an cond branch. 2664 if (ExtraCase && Values.size() < 2) return false; 2665 2666 // TODO: Preserve branch weight metadata, similarly to how 2667 // FoldValueComparisonIntoPredecessors preserves it. 2668 2669 // Figure out which block is which destination. 2670 BasicBlock *DefaultBB = BI->getSuccessor(1); 2671 BasicBlock *EdgeBB = BI->getSuccessor(0); 2672 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2673 2674 BasicBlock *BB = BI->getParent(); 2675 2676 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2677 << " cases into SWITCH. BB is:\n" << *BB); 2678 2679 // If there are any extra values that couldn't be folded into the switch 2680 // then we evaluate them with an explicit branch first. Split the block 2681 // right before the condbr to handle it. 2682 if (ExtraCase) { 2683 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2684 // Remove the uncond branch added to the old block. 2685 TerminatorInst *OldTI = BB->getTerminator(); 2686 Builder.SetInsertPoint(OldTI); 2687 2688 if (TrueWhenEqual) 2689 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2690 else 2691 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2692 2693 OldTI->eraseFromParent(); 2694 2695 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2696 // for the edge we just added. 2697 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2698 2699 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2700 << "\nEXTRABB = " << *BB); 2701 BB = NewBB; 2702 } 2703 2704 Builder.SetInsertPoint(BI); 2705 // Convert pointer to int before we switch. 2706 if (CompVal->getType()->isPointerTy()) { 2707 assert(TD && "Cannot switch on pointer without TargetData"); 2708 CompVal = Builder.CreatePtrToInt(CompVal, 2709 TD->getIntPtrType(CompVal->getContext()), 2710 "magicptr"); 2711 } 2712 2713 // Create the new switch instruction now. 2714 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2715 2716 // Add all of the 'cases' to the switch instruction. 2717 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2718 New->addCase(Values[i], EdgeBB); 2719 2720 // We added edges from PI to the EdgeBB. As such, if there were any 2721 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2722 // the number of edges added. 2723 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2724 isa<PHINode>(BBI); ++BBI) { 2725 PHINode *PN = cast<PHINode>(BBI); 2726 Value *InVal = PN->getIncomingValueForBlock(BB); 2727 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2728 PN->addIncoming(InVal, BB); 2729 } 2730 2731 // Erase the old branch instruction. 2732 EraseTerminatorInstAndDCECond(BI); 2733 2734 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2735 return true; 2736 } 2737 2738 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2739 // If this is a trivial landing pad that just continues unwinding the caught 2740 // exception then zap the landing pad, turning its invokes into calls. 2741 BasicBlock *BB = RI->getParent(); 2742 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2743 if (RI->getValue() != LPInst) 2744 // Not a landing pad, or the resume is not unwinding the exception that 2745 // caused control to branch here. 2746 return false; 2747 2748 // Check that there are no other instructions except for debug intrinsics. 2749 BasicBlock::iterator I = LPInst, E = RI; 2750 while (++I != E) 2751 if (!isa<DbgInfoIntrinsic>(I)) 2752 return false; 2753 2754 // Turn all invokes that unwind here into calls and delete the basic block. 2755 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2756 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2757 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2758 // Insert a call instruction before the invoke. 2759 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2760 Call->takeName(II); 2761 Call->setCallingConv(II->getCallingConv()); 2762 Call->setAttributes(II->getAttributes()); 2763 Call->setDebugLoc(II->getDebugLoc()); 2764 2765 // Anything that used the value produced by the invoke instruction now uses 2766 // the value produced by the call instruction. Note that we do this even 2767 // for void functions and calls with no uses so that the callgraph edge is 2768 // updated. 2769 II->replaceAllUsesWith(Call); 2770 BB->removePredecessor(II->getParent()); 2771 2772 // Insert a branch to the normal destination right before the invoke. 2773 BranchInst::Create(II->getNormalDest(), II); 2774 2775 // Finally, delete the invoke instruction! 2776 II->eraseFromParent(); 2777 } 2778 2779 // The landingpad is now unreachable. Zap it. 2780 BB->eraseFromParent(); 2781 return true; 2782 } 2783 2784 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2785 BasicBlock *BB = RI->getParent(); 2786 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2787 2788 // Find predecessors that end with branches. 2789 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2790 SmallVector<BranchInst*, 8> CondBranchPreds; 2791 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2792 BasicBlock *P = *PI; 2793 TerminatorInst *PTI = P->getTerminator(); 2794 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2795 if (BI->isUnconditional()) 2796 UncondBranchPreds.push_back(P); 2797 else 2798 CondBranchPreds.push_back(BI); 2799 } 2800 } 2801 2802 // If we found some, do the transformation! 2803 if (!UncondBranchPreds.empty() && DupRet) { 2804 while (!UncondBranchPreds.empty()) { 2805 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2806 DEBUG(dbgs() << "FOLDING: " << *BB 2807 << "INTO UNCOND BRANCH PRED: " << *Pred); 2808 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2809 } 2810 2811 // If we eliminated all predecessors of the block, delete the block now. 2812 if (pred_begin(BB) == pred_end(BB)) 2813 // We know there are no successors, so just nuke the block. 2814 BB->eraseFromParent(); 2815 2816 return true; 2817 } 2818 2819 // Check out all of the conditional branches going to this return 2820 // instruction. If any of them just select between returns, change the 2821 // branch itself into a select/return pair. 2822 while (!CondBranchPreds.empty()) { 2823 BranchInst *BI = CondBranchPreds.pop_back_val(); 2824 2825 // Check to see if the non-BB successor is also a return block. 2826 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2827 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2828 SimplifyCondBranchToTwoReturns(BI, Builder)) 2829 return true; 2830 } 2831 return false; 2832 } 2833 2834 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2835 BasicBlock *BB = UI->getParent(); 2836 2837 bool Changed = false; 2838 2839 // If there are any instructions immediately before the unreachable that can 2840 // be removed, do so. 2841 while (UI != BB->begin()) { 2842 BasicBlock::iterator BBI = UI; 2843 --BBI; 2844 // Do not delete instructions that can have side effects which might cause 2845 // the unreachable to not be reachable; specifically, calls and volatile 2846 // operations may have this effect. 2847 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2848 2849 if (BBI->mayHaveSideEffects()) { 2850 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 2851 if (SI->isVolatile()) 2852 break; 2853 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 2854 if (LI->isVolatile()) 2855 break; 2856 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 2857 if (RMWI->isVolatile()) 2858 break; 2859 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 2860 if (CXI->isVolatile()) 2861 break; 2862 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 2863 !isa<LandingPadInst>(BBI)) { 2864 break; 2865 } 2866 // Note that deleting LandingPad's here is in fact okay, although it 2867 // involves a bit of subtle reasoning. If this inst is a LandingPad, 2868 // all the predecessors of this block will be the unwind edges of Invokes, 2869 // and we can therefore guarantee this block will be erased. 2870 } 2871 2872 // Delete this instruction (any uses are guaranteed to be dead) 2873 if (!BBI->use_empty()) 2874 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2875 BBI->eraseFromParent(); 2876 Changed = true; 2877 } 2878 2879 // If the unreachable instruction is the first in the block, take a gander 2880 // at all of the predecessors of this instruction, and simplify them. 2881 if (&BB->front() != UI) return Changed; 2882 2883 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 2884 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 2885 TerminatorInst *TI = Preds[i]->getTerminator(); 2886 IRBuilder<> Builder(TI); 2887 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2888 if (BI->isUnconditional()) { 2889 if (BI->getSuccessor(0) == BB) { 2890 new UnreachableInst(TI->getContext(), TI); 2891 TI->eraseFromParent(); 2892 Changed = true; 2893 } 2894 } else { 2895 if (BI->getSuccessor(0) == BB) { 2896 Builder.CreateBr(BI->getSuccessor(1)); 2897 EraseTerminatorInstAndDCECond(BI); 2898 } else if (BI->getSuccessor(1) == BB) { 2899 Builder.CreateBr(BI->getSuccessor(0)); 2900 EraseTerminatorInstAndDCECond(BI); 2901 Changed = true; 2902 } 2903 } 2904 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2905 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2906 i != e; ++i) 2907 if (i.getCaseSuccessor() == BB) { 2908 BB->removePredecessor(SI->getParent()); 2909 SI->removeCase(i); 2910 --i; --e; 2911 Changed = true; 2912 } 2913 // If the default value is unreachable, figure out the most popular 2914 // destination and make it the default. 2915 if (SI->getDefaultDest() == BB) { 2916 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 2917 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2918 i != e; ++i) { 2919 std::pair<unsigned, unsigned> &entry = 2920 Popularity[i.getCaseSuccessor()]; 2921 if (entry.first == 0) { 2922 entry.first = 1; 2923 entry.second = i.getCaseIndex(); 2924 } else { 2925 entry.first++; 2926 } 2927 } 2928 2929 // Find the most popular block. 2930 unsigned MaxPop = 0; 2931 unsigned MaxIndex = 0; 2932 BasicBlock *MaxBlock = 0; 2933 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 2934 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 2935 if (I->second.first > MaxPop || 2936 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 2937 MaxPop = I->second.first; 2938 MaxIndex = I->second.second; 2939 MaxBlock = I->first; 2940 } 2941 } 2942 if (MaxBlock) { 2943 // Make this the new default, allowing us to delete any explicit 2944 // edges to it. 2945 SI->setDefaultDest(MaxBlock); 2946 Changed = true; 2947 2948 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 2949 // it. 2950 if (isa<PHINode>(MaxBlock->begin())) 2951 for (unsigned i = 0; i != MaxPop-1; ++i) 2952 MaxBlock->removePredecessor(SI->getParent()); 2953 2954 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2955 i != e; ++i) 2956 if (i.getCaseSuccessor() == MaxBlock) { 2957 SI->removeCase(i); 2958 --i; --e; 2959 } 2960 } 2961 } 2962 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 2963 if (II->getUnwindDest() == BB) { 2964 // Convert the invoke to a call instruction. This would be a good 2965 // place to note that the call does not throw though. 2966 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 2967 II->removeFromParent(); // Take out of symbol table 2968 2969 // Insert the call now... 2970 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 2971 Builder.SetInsertPoint(BI); 2972 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 2973 Args, II->getName()); 2974 CI->setCallingConv(II->getCallingConv()); 2975 CI->setAttributes(II->getAttributes()); 2976 // If the invoke produced a value, the call does now instead. 2977 II->replaceAllUsesWith(CI); 2978 delete II; 2979 Changed = true; 2980 } 2981 } 2982 } 2983 2984 // If this block is now dead, remove it. 2985 if (pred_begin(BB) == pred_end(BB) && 2986 BB != &BB->getParent()->getEntryBlock()) { 2987 // We know there are no successors, so just nuke the block. 2988 BB->eraseFromParent(); 2989 return true; 2990 } 2991 2992 return Changed; 2993 } 2994 2995 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 2996 /// integer range comparison into a sub, an icmp and a branch. 2997 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 2998 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 2999 3000 // Make sure all cases point to the same destination and gather the values. 3001 SmallVector<ConstantInt *, 16> Cases; 3002 SwitchInst::CaseIt I = SI->case_begin(); 3003 Cases.push_back(I.getCaseValue()); 3004 SwitchInst::CaseIt PrevI = I++; 3005 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) { 3006 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor()) 3007 return false; 3008 Cases.push_back(I.getCaseValue()); 3009 } 3010 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered"); 3011 3012 // Sort the case values, then check if they form a range we can transform. 3013 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3014 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 3015 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 3016 return false; 3017 } 3018 3019 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 3020 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()); 3021 3022 Value *Sub = SI->getCondition(); 3023 if (!Offset->isNullValue()) 3024 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 3025 Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3026 BranchInst *NewBI = Builder.CreateCondBr( 3027 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest()); 3028 3029 // Update weight for the newly-created conditional branch. 3030 SmallVector<uint64_t, 8> Weights; 3031 bool HasWeights = HasBranchWeights(SI); 3032 if (HasWeights) { 3033 GetBranchWeights(SI, Weights); 3034 if (Weights.size() == 1 + SI->getNumCases()) { 3035 // Combine all weights for the cases to be the true weight of NewBI. 3036 // We assume that the sum of all weights for a Terminator can fit into 32 3037 // bits. 3038 uint32_t NewTrueWeight = 0; 3039 for (unsigned I = 1, E = Weights.size(); I != E; ++I) 3040 NewTrueWeight += (uint32_t)Weights[I]; 3041 NewBI->setMetadata(LLVMContext::MD_prof, 3042 MDBuilder(SI->getContext()). 3043 createBranchWeights(NewTrueWeight, 3044 (uint32_t)Weights[0])); 3045 } 3046 } 3047 3048 // Prune obsolete incoming values off the successor's PHI nodes. 3049 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin(); 3050 isa<PHINode>(BBI); ++BBI) { 3051 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I) 3052 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3053 } 3054 SI->eraseFromParent(); 3055 3056 return true; 3057 } 3058 3059 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3060 /// and use it to remove dead cases. 3061 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 3062 Value *Cond = SI->getCondition(); 3063 unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth(); 3064 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3065 ComputeMaskedBits(Cond, KnownZero, KnownOne); 3066 3067 // Gather dead cases. 3068 SmallVector<ConstantInt*, 8> DeadCases; 3069 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3070 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3071 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3072 DeadCases.push_back(I.getCaseValue()); 3073 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3074 << I.getCaseValue() << "' is dead.\n"); 3075 } 3076 } 3077 3078 SmallVector<uint64_t, 8> Weights; 3079 bool HasWeight = HasBranchWeights(SI); 3080 if (HasWeight) { 3081 GetBranchWeights(SI, Weights); 3082 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3083 } 3084 3085 // Remove dead cases from the switch. 3086 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3087 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3088 assert(Case != SI->case_default() && 3089 "Case was not found. Probably mistake in DeadCases forming."); 3090 if (HasWeight) { 3091 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3092 Weights.pop_back(); 3093 } 3094 3095 // Prune unused values from PHI nodes. 3096 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3097 SI->removeCase(Case); 3098 } 3099 if (HasWeight) { 3100 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3101 SI->setMetadata(LLVMContext::MD_prof, 3102 MDBuilder(SI->getParent()->getContext()). 3103 createBranchWeights(MDWeights)); 3104 } 3105 3106 return !DeadCases.empty(); 3107 } 3108 3109 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3110 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3111 /// by an unconditional branch), look at the phi node for BB in the successor 3112 /// block and see if the incoming value is equal to CaseValue. If so, return 3113 /// the phi node, and set PhiIndex to BB's index in the phi node. 3114 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3115 BasicBlock *BB, 3116 int *PhiIndex) { 3117 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3118 return NULL; // BB must be empty to be a candidate for simplification. 3119 if (!BB->getSinglePredecessor()) 3120 return NULL; // BB must be dominated by the switch. 3121 3122 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3123 if (!Branch || !Branch->isUnconditional()) 3124 return NULL; // Terminator must be unconditional branch. 3125 3126 BasicBlock *Succ = Branch->getSuccessor(0); 3127 3128 BasicBlock::iterator I = Succ->begin(); 3129 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3130 int Idx = PHI->getBasicBlockIndex(BB); 3131 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3132 3133 Value *InValue = PHI->getIncomingValue(Idx); 3134 if (InValue != CaseValue) continue; 3135 3136 *PhiIndex = Idx; 3137 return PHI; 3138 } 3139 3140 return NULL; 3141 } 3142 3143 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3144 /// instruction to a phi node dominated by the switch, if that would mean that 3145 /// some of the destination blocks of the switch can be folded away. 3146 /// Returns true if a change is made. 3147 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3148 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3149 ForwardingNodesMap ForwardingNodes; 3150 3151 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3152 ConstantInt *CaseValue = I.getCaseValue(); 3153 BasicBlock *CaseDest = I.getCaseSuccessor(); 3154 3155 int PhiIndex; 3156 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3157 &PhiIndex); 3158 if (!PHI) continue; 3159 3160 ForwardingNodes[PHI].push_back(PhiIndex); 3161 } 3162 3163 bool Changed = false; 3164 3165 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3166 E = ForwardingNodes.end(); I != E; ++I) { 3167 PHINode *Phi = I->first; 3168 SmallVector<int,4> &Indexes = I->second; 3169 3170 if (Indexes.size() < 2) continue; 3171 3172 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3173 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3174 Changed = true; 3175 } 3176 3177 return Changed; 3178 } 3179 3180 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3181 /// initializing an array of constants like C. 3182 static bool ValidLookupTableConstant(Constant *C) { 3183 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3184 return CE->isGEPWithNoNotionalOverIndexing(); 3185 3186 return isa<ConstantFP>(C) || 3187 isa<ConstantInt>(C) || 3188 isa<ConstantPointerNull>(C) || 3189 isa<GlobalValue>(C) || 3190 isa<UndefValue>(C); 3191 } 3192 3193 /// GetCaseResulsts - Try to determine the resulting constant values in phi 3194 /// nodes at the common destination basic block for one of the case 3195 /// destinations of a switch instruction. 3196 static bool GetCaseResults(SwitchInst *SI, 3197 BasicBlock *CaseDest, 3198 BasicBlock **CommonDest, 3199 SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) { 3200 // The block from which we enter the common destination. 3201 BasicBlock *Pred = SI->getParent(); 3202 3203 // If CaseDest is empty, continue to its successor. 3204 if (CaseDest->getFirstNonPHIOrDbg() == CaseDest->getTerminator() && 3205 !isa<PHINode>(CaseDest->begin())) { 3206 3207 TerminatorInst *Terminator = CaseDest->getTerminator(); 3208 if (Terminator->getNumSuccessors() != 1) 3209 return false; 3210 3211 Pred = CaseDest; 3212 CaseDest = Terminator->getSuccessor(0); 3213 } 3214 3215 // If we did not have a CommonDest before, use the current one. 3216 if (!*CommonDest) 3217 *CommonDest = CaseDest; 3218 // If the destination isn't the common one, abort. 3219 if (CaseDest != *CommonDest) 3220 return false; 3221 3222 // Get the values for this case from phi nodes in the destination block. 3223 BasicBlock::iterator I = (*CommonDest)->begin(); 3224 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3225 int Idx = PHI->getBasicBlockIndex(Pred); 3226 if (Idx == -1) 3227 continue; 3228 3229 Constant *ConstVal = dyn_cast<Constant>(PHI->getIncomingValue(Idx)); 3230 if (!ConstVal) 3231 return false; 3232 3233 // Be conservative about which kinds of constants we support. 3234 if (!ValidLookupTableConstant(ConstVal)) 3235 return false; 3236 3237 Res.push_back(std::make_pair(PHI, ConstVal)); 3238 } 3239 3240 return true; 3241 } 3242 3243 /// BuildLookupTable - Build a lookup table with the contents of Results, using 3244 /// DefaultResult to fill the holes in the table. If the table ends up 3245 /// containing the same result in each element, set *SingleResult to that value 3246 /// and return NULL. 3247 static GlobalVariable *BuildLookupTable(Module &M, 3248 uint64_t TableSize, 3249 ConstantInt *Offset, 3250 const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Results, 3251 Constant *DefaultResult, 3252 Constant **SingleResult) { 3253 assert(Results.size() && "Need values to build lookup table"); 3254 assert(TableSize >= Results.size() && "Table needs to hold all values"); 3255 3256 // If all values in the table are equal, this is that value. 3257 Constant *SameResult = Results.begin()->second; 3258 3259 // Build up the table contents. 3260 std::vector<Constant*> TableContents(TableSize); 3261 for (size_t I = 0, E = Results.size(); I != E; ++I) { 3262 ConstantInt *CaseVal = Results[I].first; 3263 Constant *CaseRes = Results[I].second; 3264 3265 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 3266 TableContents[Idx] = CaseRes; 3267 3268 if (CaseRes != SameResult) 3269 SameResult = NULL; 3270 } 3271 3272 // Fill in any holes in the table with the default result. 3273 if (Results.size() < TableSize) { 3274 for (unsigned i = 0; i < TableSize; ++i) { 3275 if (!TableContents[i]) 3276 TableContents[i] = DefaultResult; 3277 } 3278 3279 if (DefaultResult != SameResult) 3280 SameResult = NULL; 3281 } 3282 3283 // Same result was used in the entire table; just return that. 3284 if (SameResult) { 3285 *SingleResult = SameResult; 3286 return NULL; 3287 } 3288 3289 ArrayType *ArrayTy = ArrayType::get(DefaultResult->getType(), TableSize); 3290 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3291 3292 GlobalVariable *GV = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3293 GlobalVariable::PrivateLinkage, 3294 Initializer, 3295 "switch.table"); 3296 GV->setUnnamedAddr(true); 3297 return GV; 3298 } 3299 3300 /// SwitchToLookupTable - If the switch is only used to initialize one or more 3301 /// phi nodes in a common successor block with different constant values, 3302 /// replace the switch with lookup tables. 3303 static bool SwitchToLookupTable(SwitchInst *SI, 3304 IRBuilder<> &Builder) { 3305 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3306 // FIXME: Handle unreachable cases. 3307 3308 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 3309 // split off a dense part and build a lookup table for that. 3310 3311 // FIXME: If the results are all integers and the lookup table would fit in a 3312 // target-legal register, we should store them as a bitmap and use shift/mask 3313 // to look up the result. 3314 3315 // FIXME: This creates arrays of GEPs to constant strings, which means each 3316 // GEP needs a runtime relocation in PIC code. We should just build one big 3317 // string and lookup indices into that. 3318 3319 // Ignore the switch if the number of cases are too small. 3320 // This is similar to the check when building jump tables in 3321 // SelectionDAGBuilder::handleJTSwitchCase. 3322 // FIXME: Determine the best cut-off. 3323 if (SI->getNumCases() < 4) 3324 return false; 3325 3326 // Figure out the corresponding result for each case value and phi node in the 3327 // common destination, as well as the the min and max case values. 3328 assert(SI->case_begin() != SI->case_end()); 3329 SwitchInst::CaseIt CI = SI->case_begin(); 3330 ConstantInt *MinCaseVal = CI.getCaseValue(); 3331 ConstantInt *MaxCaseVal = CI.getCaseValue(); 3332 3333 BasicBlock *CommonDest = NULL; 3334 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 3335 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 3336 SmallDenseMap<PHINode*, Constant*> DefaultResults; 3337 SmallDenseMap<PHINode*, Type*> ResultTypes; 3338 SmallVector<PHINode*, 4> PHIs; 3339 3340 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 3341 ConstantInt *CaseVal = CI.getCaseValue(); 3342 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 3343 MinCaseVal = CaseVal; 3344 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 3345 MaxCaseVal = CaseVal; 3346 3347 // Resulting value at phi nodes for this case value. 3348 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 3349 ResultsTy Results; 3350 if (!GetCaseResults(SI, CI.getCaseSuccessor(), &CommonDest, Results)) 3351 return false; 3352 3353 // Append the result from this case to the list for each phi. 3354 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) { 3355 if (!ResultLists.count(I->first)) 3356 PHIs.push_back(I->first); 3357 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second)); 3358 } 3359 } 3360 3361 // Get the resulting values for the default case. 3362 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 3363 if (!GetCaseResults(SI, SI->getDefaultDest(), &CommonDest, DefaultResultsList)) 3364 return false; 3365 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) { 3366 PHINode *PHI = DefaultResultsList[I].first; 3367 Constant *Result = DefaultResultsList[I].second; 3368 DefaultResults[PHI] = Result; 3369 ResultTypes[PHI] = Result->getType(); 3370 } 3371 3372 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 3373 // The table density should be at lest 40%. This is the same criterion as for 3374 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3375 // FIXME: Find the best cut-off. 3376 // Be careful to avoid overlow in the density computation. 3377 if (RangeSpread.zextOrSelf(64).ugt(UINT64_MAX / 4 - 1)) 3378 return false; 3379 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 3380 if (SI->getNumCases() * 10 < TableSize * 4) 3381 return false; 3382 3383 // Build the lookup tables. 3384 SmallDenseMap<PHINode*, GlobalVariable*> LookupTables; 3385 SmallDenseMap<PHINode*, Constant*> SingleResults; 3386 3387 Module &Mod = *CommonDest->getParent()->getParent(); 3388 for (SmallVector<PHINode*, 4>::iterator I = PHIs.begin(), E = PHIs.end(); 3389 I != E; ++I) { 3390 PHINode *PHI = *I; 3391 3392 Constant *SingleResult = NULL; 3393 LookupTables[PHI] = BuildLookupTable(Mod, TableSize, MinCaseVal, 3394 ResultLists[PHI], DefaultResults[PHI], 3395 &SingleResult); 3396 SingleResults[PHI] = SingleResult; 3397 } 3398 3399 // Create the BB that does the lookups. 3400 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 3401 "switch.lookup", 3402 CommonDest->getParent(), 3403 CommonDest); 3404 3405 // Check whether the condition value is within the case range, and branch to 3406 // the new BB. 3407 Builder.SetInsertPoint(SI); 3408 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 3409 "switch.tableidx"); 3410 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 3411 MinCaseVal->getType(), TableSize)); 3412 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 3413 3414 // Populate the BB that does the lookups. 3415 Builder.SetInsertPoint(LookupBB); 3416 bool ReturnedEarly = false; 3417 for (SmallVector<PHINode*, 4>::iterator I = PHIs.begin(), E = PHIs.end(); 3418 I != E; ++I) { 3419 PHINode *PHI = *I; 3420 // There was a single result for this phi; just use that. 3421 if (Constant *SingleResult = SingleResults[PHI]) { 3422 PHI->addIncoming(SingleResult, LookupBB); 3423 continue; 3424 } 3425 3426 Value *GEPIndices[] = { Builder.getInt32(0), TableIndex }; 3427 Value *GEP = Builder.CreateInBoundsGEP(LookupTables[PHI], GEPIndices, 3428 "switch.gep"); 3429 Value *Result = Builder.CreateLoad(GEP, "switch.load"); 3430 3431 // If the result is used to return immediately from the function, we want to 3432 // do that right here. 3433 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) && 3434 *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) { 3435 Builder.CreateRet(Result); 3436 ReturnedEarly = true; 3437 break; 3438 } 3439 3440 PHI->addIncoming(Result, LookupBB); 3441 } 3442 3443 if (!ReturnedEarly) 3444 Builder.CreateBr(CommonDest); 3445 3446 // Remove the switch. 3447 for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) { 3448 BasicBlock *Succ = SI->getSuccessor(i); 3449 if (Succ == SI->getDefaultDest()) continue; 3450 Succ->removePredecessor(SI->getParent()); 3451 } 3452 SI->eraseFromParent(); 3453 3454 ++NumLookupTables; 3455 return true; 3456 } 3457 3458 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 3459 // If this switch is too complex to want to look at, ignore it. 3460 if (!isValueEqualityComparison(SI)) 3461 return false; 3462 3463 BasicBlock *BB = SI->getParent(); 3464 3465 // If we only have one predecessor, and if it is a branch on this value, 3466 // see if that predecessor totally determines the outcome of this switch. 3467 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3468 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 3469 return SimplifyCFG(BB) | true; 3470 3471 Value *Cond = SI->getCondition(); 3472 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 3473 if (SimplifySwitchOnSelect(SI, Select)) 3474 return SimplifyCFG(BB) | true; 3475 3476 // If the block only contains the switch, see if we can fold the block 3477 // away into any preds. 3478 BasicBlock::iterator BBI = BB->begin(); 3479 // Ignore dbg intrinsics. 3480 while (isa<DbgInfoIntrinsic>(BBI)) 3481 ++BBI; 3482 if (SI == &*BBI) 3483 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 3484 return SimplifyCFG(BB) | true; 3485 3486 // Try to transform the switch into an icmp and a branch. 3487 if (TurnSwitchRangeIntoICmp(SI, Builder)) 3488 return SimplifyCFG(BB) | true; 3489 3490 // Remove unreachable cases. 3491 if (EliminateDeadSwitchCases(SI)) 3492 return SimplifyCFG(BB) | true; 3493 3494 if (ForwardSwitchConditionToPHI(SI)) 3495 return SimplifyCFG(BB) | true; 3496 3497 if (SwitchToLookupTable(SI, Builder)) 3498 return SimplifyCFG(BB) | true; 3499 3500 return false; 3501 } 3502 3503 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 3504 BasicBlock *BB = IBI->getParent(); 3505 bool Changed = false; 3506 3507 // Eliminate redundant destinations. 3508 SmallPtrSet<Value *, 8> Succs; 3509 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 3510 BasicBlock *Dest = IBI->getDestination(i); 3511 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 3512 Dest->removePredecessor(BB); 3513 IBI->removeDestination(i); 3514 --i; --e; 3515 Changed = true; 3516 } 3517 } 3518 3519 if (IBI->getNumDestinations() == 0) { 3520 // If the indirectbr has no successors, change it to unreachable. 3521 new UnreachableInst(IBI->getContext(), IBI); 3522 EraseTerminatorInstAndDCECond(IBI); 3523 return true; 3524 } 3525 3526 if (IBI->getNumDestinations() == 1) { 3527 // If the indirectbr has one successor, change it to a direct branch. 3528 BranchInst::Create(IBI->getDestination(0), IBI); 3529 EraseTerminatorInstAndDCECond(IBI); 3530 return true; 3531 } 3532 3533 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 3534 if (SimplifyIndirectBrOnSelect(IBI, SI)) 3535 return SimplifyCFG(BB) | true; 3536 } 3537 return Changed; 3538 } 3539 3540 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 3541 BasicBlock *BB = BI->getParent(); 3542 3543 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 3544 return true; 3545 3546 // If the Terminator is the only non-phi instruction, simplify the block. 3547 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 3548 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 3549 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 3550 return true; 3551 3552 // If the only instruction in the block is a seteq/setne comparison 3553 // against a constant, try to simplify the block. 3554 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 3555 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 3556 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 3557 ; 3558 if (I->isTerminator() && 3559 TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder)) 3560 return true; 3561 } 3562 3563 // If this basic block is ONLY a compare and a branch, and if a predecessor 3564 // branches to us and our successor, fold the comparison into the 3565 // predecessor and use logical operations to update the incoming value 3566 // for PHI nodes in common successor. 3567 if (FoldBranchToCommonDest(BI)) 3568 return SimplifyCFG(BB) | true; 3569 return false; 3570 } 3571 3572 3573 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 3574 BasicBlock *BB = BI->getParent(); 3575 3576 // Conditional branch 3577 if (isValueEqualityComparison(BI)) { 3578 // If we only have one predecessor, and if it is a branch on this value, 3579 // see if that predecessor totally determines the outcome of this 3580 // switch. 3581 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3582 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 3583 return SimplifyCFG(BB) | true; 3584 3585 // This block must be empty, except for the setcond inst, if it exists. 3586 // Ignore dbg intrinsics. 3587 BasicBlock::iterator I = BB->begin(); 3588 // Ignore dbg intrinsics. 3589 while (isa<DbgInfoIntrinsic>(I)) 3590 ++I; 3591 if (&*I == BI) { 3592 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 3593 return SimplifyCFG(BB) | true; 3594 } else if (&*I == cast<Instruction>(BI->getCondition())){ 3595 ++I; 3596 // Ignore dbg intrinsics. 3597 while (isa<DbgInfoIntrinsic>(I)) 3598 ++I; 3599 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 3600 return SimplifyCFG(BB) | true; 3601 } 3602 } 3603 3604 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 3605 if (SimplifyBranchOnICmpChain(BI, TD, Builder)) 3606 return true; 3607 3608 // If this basic block is ONLY a compare and a branch, and if a predecessor 3609 // branches to us and one of our successors, fold the comparison into the 3610 // predecessor and use logical operations to pick the right destination. 3611 if (FoldBranchToCommonDest(BI)) 3612 return SimplifyCFG(BB) | true; 3613 3614 // We have a conditional branch to two blocks that are only reachable 3615 // from BI. We know that the condbr dominates the two blocks, so see if 3616 // there is any identical code in the "then" and "else" blocks. If so, we 3617 // can hoist it up to the branching block. 3618 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) { 3619 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 3620 if (HoistThenElseCodeToIf(BI)) 3621 return SimplifyCFG(BB) | true; 3622 } else { 3623 // If Successor #1 has multiple preds, we may be able to conditionally 3624 // execute Successor #0 if it branches to successor #1. 3625 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 3626 if (Succ0TI->getNumSuccessors() == 1 && 3627 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 3628 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 3629 return SimplifyCFG(BB) | true; 3630 } 3631 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 3632 // If Successor #0 has multiple preds, we may be able to conditionally 3633 // execute Successor #1 if it branches to successor #0. 3634 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 3635 if (Succ1TI->getNumSuccessors() == 1 && 3636 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 3637 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 3638 return SimplifyCFG(BB) | true; 3639 } 3640 3641 // If this is a branch on a phi node in the current block, thread control 3642 // through this block if any PHI node entries are constants. 3643 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 3644 if (PN->getParent() == BI->getParent()) 3645 if (FoldCondBranchOnPHI(BI, TD)) 3646 return SimplifyCFG(BB) | true; 3647 3648 // Scan predecessor blocks for conditional branches. 3649 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 3650 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 3651 if (PBI != BI && PBI->isConditional()) 3652 if (SimplifyCondBranchToCondBranch(PBI, BI)) 3653 return SimplifyCFG(BB) | true; 3654 3655 return false; 3656 } 3657 3658 /// Check if passing a value to an instruction will cause undefined behavior. 3659 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 3660 Constant *C = dyn_cast<Constant>(V); 3661 if (!C) 3662 return false; 3663 3664 if (!I->hasOneUse()) // Only look at single-use instructions, for compile time 3665 return false; 3666 3667 if (C->isNullValue()) { 3668 Instruction *Use = I->use_back(); 3669 3670 // Now make sure that there are no instructions in between that can alter 3671 // control flow (eg. calls) 3672 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 3673 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 3674 return false; 3675 3676 // Look through GEPs. A load from a GEP derived from NULL is still undefined 3677 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 3678 if (GEP->getPointerOperand() == I) 3679 return passingValueIsAlwaysUndefined(V, GEP); 3680 3681 // Look through bitcasts. 3682 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 3683 return passingValueIsAlwaysUndefined(V, BC); 3684 3685 // Load from null is undefined. 3686 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 3687 return LI->getPointerAddressSpace() == 0; 3688 3689 // Store to null is undefined. 3690 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 3691 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 3692 } 3693 return false; 3694 } 3695 3696 /// If BB has an incoming value that will always trigger undefined behavior 3697 /// (eg. null pointer dereference), remove the branch leading here. 3698 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 3699 for (BasicBlock::iterator i = BB->begin(); 3700 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 3701 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 3702 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 3703 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 3704 IRBuilder<> Builder(T); 3705 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 3706 BB->removePredecessor(PHI->getIncomingBlock(i)); 3707 // Turn uncoditional branches into unreachables and remove the dead 3708 // destination from conditional branches. 3709 if (BI->isUnconditional()) 3710 Builder.CreateUnreachable(); 3711 else 3712 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 3713 BI->getSuccessor(0)); 3714 BI->eraseFromParent(); 3715 return true; 3716 } 3717 // TODO: SwitchInst. 3718 } 3719 3720 return false; 3721 } 3722 3723 bool SimplifyCFGOpt::run(BasicBlock *BB) { 3724 bool Changed = false; 3725 3726 assert(BB && BB->getParent() && "Block not embedded in function!"); 3727 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 3728 3729 // Remove basic blocks that have no predecessors (except the entry block)... 3730 // or that just have themself as a predecessor. These are unreachable. 3731 if ((pred_begin(BB) == pred_end(BB) && 3732 BB != &BB->getParent()->getEntryBlock()) || 3733 BB->getSinglePredecessor() == BB) { 3734 DEBUG(dbgs() << "Removing BB: \n" << *BB); 3735 DeleteDeadBlock(BB); 3736 return true; 3737 } 3738 3739 // Check to see if we can constant propagate this terminator instruction 3740 // away... 3741 Changed |= ConstantFoldTerminator(BB, true); 3742 3743 // Check for and eliminate duplicate PHI nodes in this block. 3744 Changed |= EliminateDuplicatePHINodes(BB); 3745 3746 // Check for and remove branches that will always cause undefined behavior. 3747 Changed |= removeUndefIntroducingPredecessor(BB); 3748 3749 // Merge basic blocks into their predecessor if there is only one distinct 3750 // pred, and if there is only one distinct successor of the predecessor, and 3751 // if there are no PHI nodes. 3752 // 3753 if (MergeBlockIntoPredecessor(BB)) 3754 return true; 3755 3756 IRBuilder<> Builder(BB); 3757 3758 // If there is a trivial two-entry PHI node in this basic block, and we can 3759 // eliminate it, do so now. 3760 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 3761 if (PN->getNumIncomingValues() == 2) 3762 Changed |= FoldTwoEntryPHINode(PN, TD); 3763 3764 Builder.SetInsertPoint(BB->getTerminator()); 3765 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 3766 if (BI->isUnconditional()) { 3767 if (SimplifyUncondBranch(BI, Builder)) return true; 3768 } else { 3769 if (SimplifyCondBranch(BI, Builder)) return true; 3770 } 3771 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 3772 if (SimplifyReturn(RI, Builder)) return true; 3773 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 3774 if (SimplifyResume(RI, Builder)) return true; 3775 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 3776 if (SimplifySwitch(SI, Builder)) return true; 3777 } else if (UnreachableInst *UI = 3778 dyn_cast<UnreachableInst>(BB->getTerminator())) { 3779 if (SimplifyUnreachable(UI)) return true; 3780 } else if (IndirectBrInst *IBI = 3781 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 3782 if (SimplifyIndirectBr(IBI)) return true; 3783 } 3784 3785 return Changed; 3786 } 3787 3788 /// SimplifyCFG - This function is used to do simplification of a CFG. For 3789 /// example, it adjusts branches to branches to eliminate the extra hop, it 3790 /// eliminates unreachable basic blocks, and does other "peephole" optimization 3791 /// of the CFG. It returns true if a modification was made. 3792 /// 3793 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) { 3794 return SimplifyCFGOpt(TD).run(BB); 3795 } 3796