1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/PseudoProbe.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/SSAUpdater.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "simplifycfg"
94 
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
97     cl::init(false),
98     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99              "into preserving DomTree,"));
100 
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107     cl::desc(
108         "Control the amount of phi node folding to perform (default = 2)"));
109 
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Control the maximal total instruction cost that we are willing "
113              "to speculatively execute to fold a 2-entry PHI node into a "
114              "select (default = 4)"));
115 
116 static cl::opt<bool> DupRet(
117     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
118     cl::desc("Duplicate return instructions into unconditional branches"));
119 
120 static cl::opt<bool>
121     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
122                 cl::desc("Hoist common instructions up to the parent block"));
123 
124 static cl::opt<bool>
125     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
126                cl::desc("Sink common instructions down to the end block"));
127 
128 static cl::opt<bool> HoistCondStores(
129     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
130     cl::desc("Hoist conditional stores if an unconditional store precedes"));
131 
132 static cl::opt<bool> MergeCondStores(
133     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
134     cl::desc("Hoist conditional stores even if an unconditional store does not "
135              "precede - hoist multiple conditional stores into a single "
136              "predicated store"));
137 
138 static cl::opt<bool> MergeCondStoresAggressively(
139     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
140     cl::desc("When merging conditional stores, do so even if the resultant "
141              "basic blocks are unlikely to be if-converted as a result"));
142 
143 static cl::opt<bool> SpeculateOneExpensiveInst(
144     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
145     cl::desc("Allow exactly one expensive instruction to be speculatively "
146              "executed"));
147 
148 static cl::opt<unsigned> MaxSpeculationDepth(
149     "max-speculation-depth", cl::Hidden, cl::init(10),
150     cl::desc("Limit maximum recursion depth when calculating costs of "
151              "speculatively executed instructions"));
152 
153 static cl::opt<int>
154     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
155                       cl::init(10),
156                       cl::desc("Max size of a block which is still considered "
157                                "small enough to thread through"));
158 
159 // Two is chosen to allow one negation and a logical combine.
160 static cl::opt<unsigned>
161     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
162                         cl::init(2),
163                         cl::desc("Maximum cost of combining conditions when "
164                                  "folding branches"));
165 
166 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
167 STATISTIC(NumLinearMaps,
168           "Number of switch instructions turned into linear mapping");
169 STATISTIC(NumLookupTables,
170           "Number of switch instructions turned into lookup tables");
171 STATISTIC(
172     NumLookupTablesHoles,
173     "Number of switch instructions turned into lookup tables (holes checked)");
174 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
175 STATISTIC(NumFoldValueComparisonIntoPredecessors,
176           "Number of value comparisons folded into predecessor basic blocks");
177 STATISTIC(NumFoldBranchToCommonDest,
178           "Number of branches folded into predecessor basic block");
179 STATISTIC(
180     NumHoistCommonCode,
181     "Number of common instruction 'blocks' hoisted up to the begin block");
182 STATISTIC(NumHoistCommonInstrs,
183           "Number of common instructions hoisted up to the begin block");
184 STATISTIC(NumSinkCommonCode,
185           "Number of common instruction 'blocks' sunk down to the end block");
186 STATISTIC(NumSinkCommonInstrs,
187           "Number of common instructions sunk down to the end block");
188 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
189 STATISTIC(NumInvokes,
190           "Number of invokes with empty resume blocks simplified into calls");
191 
192 namespace {
193 
194 // The first field contains the value that the switch produces when a certain
195 // case group is selected, and the second field is a vector containing the
196 // cases composing the case group.
197 using SwitchCaseResultVectorTy =
198     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
199 
200 // The first field contains the phi node that generates a result of the switch
201 // and the second field contains the value generated for a certain case in the
202 // switch for that PHI.
203 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
204 
205 /// ValueEqualityComparisonCase - Represents a case of a switch.
206 struct ValueEqualityComparisonCase {
207   ConstantInt *Value;
208   BasicBlock *Dest;
209 
210   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
211       : Value(Value), Dest(Dest) {}
212 
213   bool operator<(ValueEqualityComparisonCase RHS) const {
214     // Comparing pointers is ok as we only rely on the order for uniquing.
215     return Value < RHS.Value;
216   }
217 
218   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
219 };
220 
221 class SimplifyCFGOpt {
222   const TargetTransformInfo &TTI;
223   DomTreeUpdater *DTU;
224   const DataLayout &DL;
225   ArrayRef<WeakVH> LoopHeaders;
226   const SimplifyCFGOptions &Options;
227   bool Resimplify;
228 
229   Value *isValueEqualityComparison(Instruction *TI);
230   BasicBlock *GetValueEqualityComparisonCases(
231       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
232   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
233                                                      BasicBlock *Pred,
234                                                      IRBuilder<> &Builder);
235   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
236                                                     Instruction *PTI,
237                                                     IRBuilder<> &Builder);
238   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
239                                            IRBuilder<> &Builder);
240 
241   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
242   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
243   bool simplifySingleResume(ResumeInst *RI);
244   bool simplifyCommonResume(ResumeInst *RI);
245   bool simplifyCleanupReturn(CleanupReturnInst *RI);
246   bool simplifyUnreachable(UnreachableInst *UI);
247   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
248   bool simplifyIndirectBr(IndirectBrInst *IBI);
249   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
250   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
251   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
252   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
253 
254   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
255                                              IRBuilder<> &Builder);
256 
257   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
258                              bool EqTermsOnly);
259   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
260                               const TargetTransformInfo &TTI);
261   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
262                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
263                                   uint32_t TrueWeight, uint32_t FalseWeight);
264   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
265                                  const DataLayout &DL);
266   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
267   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
268   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
269 
270 public:
271   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
272                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
273                  const SimplifyCFGOptions &Opts)
274       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
275     assert((!DTU || !DTU->hasPostDomTree()) &&
276            "SimplifyCFG is not yet capable of maintaining validity of a "
277            "PostDomTree, so don't ask for it.");
278   }
279 
280   bool simplifyOnce(BasicBlock *BB);
281   bool simplifyOnceImpl(BasicBlock *BB);
282   bool run(BasicBlock *BB);
283 
284   // Helper to set Resimplify and return change indication.
285   bool requestResimplify() {
286     Resimplify = true;
287     return true;
288   }
289 };
290 
291 } // end anonymous namespace
292 
293 /// Return true if it is safe to merge these two
294 /// terminator instructions together.
295 static bool
296 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
297                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
298   if (SI1 == SI2)
299     return false; // Can't merge with self!
300 
301   // It is not safe to merge these two switch instructions if they have a common
302   // successor, and if that successor has a PHI node, and if *that* PHI node has
303   // conflicting incoming values from the two switch blocks.
304   BasicBlock *SI1BB = SI1->getParent();
305   BasicBlock *SI2BB = SI2->getParent();
306 
307   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
308   bool Fail = false;
309   for (BasicBlock *Succ : successors(SI2BB))
310     if (SI1Succs.count(Succ))
311       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
312         PHINode *PN = cast<PHINode>(BBI);
313         if (PN->getIncomingValueForBlock(SI1BB) !=
314             PN->getIncomingValueForBlock(SI2BB)) {
315           if (FailBlocks)
316             FailBlocks->insert(Succ);
317           Fail = true;
318         }
319       }
320 
321   return !Fail;
322 }
323 
324 /// Update PHI nodes in Succ to indicate that there will now be entries in it
325 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
326 /// will be the same as those coming in from ExistPred, an existing predecessor
327 /// of Succ.
328 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
329                                   BasicBlock *ExistPred,
330                                   MemorySSAUpdater *MSSAU = nullptr) {
331   for (PHINode &PN : Succ->phis())
332     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
333   if (MSSAU)
334     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
335       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
336 }
337 
338 /// Compute an abstract "cost" of speculating the given instruction,
339 /// which is assumed to be safe to speculate. TCC_Free means cheap,
340 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
341 /// expensive.
342 static InstructionCost computeSpeculationCost(const User *I,
343                                               const TargetTransformInfo &TTI) {
344   assert(isSafeToSpeculativelyExecute(I) &&
345          "Instruction is not safe to speculatively execute!");
346   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
347 }
348 
349 /// If we have a merge point of an "if condition" as accepted above,
350 /// return true if the specified value dominates the block.  We
351 /// don't handle the true generality of domination here, just a special case
352 /// which works well enough for us.
353 ///
354 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
355 /// see if V (which must be an instruction) and its recursive operands
356 /// that do not dominate BB have a combined cost lower than Budget and
357 /// are non-trapping.  If both are true, the instruction is inserted into the
358 /// set and true is returned.
359 ///
360 /// The cost for most non-trapping instructions is defined as 1 except for
361 /// Select whose cost is 2.
362 ///
363 /// After this function returns, Cost is increased by the cost of
364 /// V plus its non-dominating operands.  If that cost is greater than
365 /// Budget, false is returned and Cost is undefined.
366 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
367                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
368                                 InstructionCost &Cost,
369                                 InstructionCost Budget,
370                                 const TargetTransformInfo &TTI,
371                                 unsigned Depth = 0) {
372   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
373   // so limit the recursion depth.
374   // TODO: While this recursion limit does prevent pathological behavior, it
375   // would be better to track visited instructions to avoid cycles.
376   if (Depth == MaxSpeculationDepth)
377     return false;
378 
379   Instruction *I = dyn_cast<Instruction>(V);
380   if (!I) {
381     // Non-instructions all dominate instructions, but not all constantexprs
382     // can be executed unconditionally.
383     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
384       if (C->canTrap())
385         return false;
386     return true;
387   }
388   BasicBlock *PBB = I->getParent();
389 
390   // We don't want to allow weird loops that might have the "if condition" in
391   // the bottom of this block.
392   if (PBB == BB)
393     return false;
394 
395   // If this instruction is defined in a block that contains an unconditional
396   // branch to BB, then it must be in the 'conditional' part of the "if
397   // statement".  If not, it definitely dominates the region.
398   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
399   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
400     return true;
401 
402   // If we have seen this instruction before, don't count it again.
403   if (AggressiveInsts.count(I))
404     return true;
405 
406   // Okay, it looks like the instruction IS in the "condition".  Check to
407   // see if it's a cheap instruction to unconditionally compute, and if it
408   // only uses stuff defined outside of the condition.  If so, hoist it out.
409   if (!isSafeToSpeculativelyExecute(I))
410     return false;
411 
412   Cost += computeSpeculationCost(I, TTI);
413 
414   // Allow exactly one instruction to be speculated regardless of its cost
415   // (as long as it is safe to do so).
416   // This is intended to flatten the CFG even if the instruction is a division
417   // or other expensive operation. The speculation of an expensive instruction
418   // is expected to be undone in CodeGenPrepare if the speculation has not
419   // enabled further IR optimizations.
420   if (Cost > Budget &&
421       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
422        !Cost.isValid()))
423     return false;
424 
425   // Okay, we can only really hoist these out if their operands do
426   // not take us over the cost threshold.
427   for (Use &Op : I->operands())
428     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
429                              Depth + 1))
430       return false;
431   // Okay, it's safe to do this!  Remember this instruction.
432   AggressiveInsts.insert(I);
433   return true;
434 }
435 
436 /// Extract ConstantInt from value, looking through IntToPtr
437 /// and PointerNullValue. Return NULL if value is not a constant int.
438 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
439   // Normal constant int.
440   ConstantInt *CI = dyn_cast<ConstantInt>(V);
441   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
442     return CI;
443 
444   // This is some kind of pointer constant. Turn it into a pointer-sized
445   // ConstantInt if possible.
446   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
447 
448   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
449   if (isa<ConstantPointerNull>(V))
450     return ConstantInt::get(PtrTy, 0);
451 
452   // IntToPtr const int.
453   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
454     if (CE->getOpcode() == Instruction::IntToPtr)
455       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
456         // The constant is very likely to have the right type already.
457         if (CI->getType() == PtrTy)
458           return CI;
459         else
460           return cast<ConstantInt>(
461               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
462       }
463   return nullptr;
464 }
465 
466 namespace {
467 
468 /// Given a chain of or (||) or and (&&) comparison of a value against a
469 /// constant, this will try to recover the information required for a switch
470 /// structure.
471 /// It will depth-first traverse the chain of comparison, seeking for patterns
472 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
473 /// representing the different cases for the switch.
474 /// Note that if the chain is composed of '||' it will build the set of elements
475 /// that matches the comparisons (i.e. any of this value validate the chain)
476 /// while for a chain of '&&' it will build the set elements that make the test
477 /// fail.
478 struct ConstantComparesGatherer {
479   const DataLayout &DL;
480 
481   /// Value found for the switch comparison
482   Value *CompValue = nullptr;
483 
484   /// Extra clause to be checked before the switch
485   Value *Extra = nullptr;
486 
487   /// Set of integers to match in switch
488   SmallVector<ConstantInt *, 8> Vals;
489 
490   /// Number of comparisons matched in the and/or chain
491   unsigned UsedICmps = 0;
492 
493   /// Construct and compute the result for the comparison instruction Cond
494   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
495     gather(Cond);
496   }
497 
498   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
499   ConstantComparesGatherer &
500   operator=(const ConstantComparesGatherer &) = delete;
501 
502 private:
503   /// Try to set the current value used for the comparison, it succeeds only if
504   /// it wasn't set before or if the new value is the same as the old one
505   bool setValueOnce(Value *NewVal) {
506     if (CompValue && CompValue != NewVal)
507       return false;
508     CompValue = NewVal;
509     return (CompValue != nullptr);
510   }
511 
512   /// Try to match Instruction "I" as a comparison against a constant and
513   /// populates the array Vals with the set of values that match (or do not
514   /// match depending on isEQ).
515   /// Return false on failure. On success, the Value the comparison matched
516   /// against is placed in CompValue.
517   /// If CompValue is already set, the function is expected to fail if a match
518   /// is found but the value compared to is different.
519   bool matchInstruction(Instruction *I, bool isEQ) {
520     // If this is an icmp against a constant, handle this as one of the cases.
521     ICmpInst *ICI;
522     ConstantInt *C;
523     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
524           (C = GetConstantInt(I->getOperand(1), DL)))) {
525       return false;
526     }
527 
528     Value *RHSVal;
529     const APInt *RHSC;
530 
531     // Pattern match a special case
532     // (x & ~2^z) == y --> x == y || x == y|2^z
533     // This undoes a transformation done by instcombine to fuse 2 compares.
534     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
535       // It's a little bit hard to see why the following transformations are
536       // correct. Here is a CVC3 program to verify them for 64-bit values:
537 
538       /*
539          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
540          x    : BITVECTOR(64);
541          y    : BITVECTOR(64);
542          z    : BITVECTOR(64);
543          mask : BITVECTOR(64) = BVSHL(ONE, z);
544          QUERY( (y & ~mask = y) =>
545                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
546          );
547          QUERY( (y |  mask = y) =>
548                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
549          );
550       */
551 
552       // Please note that each pattern must be a dual implication (<--> or
553       // iff). One directional implication can create spurious matches. If the
554       // implication is only one-way, an unsatisfiable condition on the left
555       // side can imply a satisfiable condition on the right side. Dual
556       // implication ensures that satisfiable conditions are transformed to
557       // other satisfiable conditions and unsatisfiable conditions are
558       // transformed to other unsatisfiable conditions.
559 
560       // Here is a concrete example of a unsatisfiable condition on the left
561       // implying a satisfiable condition on the right:
562       //
563       // mask = (1 << z)
564       // (x & ~mask) == y  --> (x == y || x == (y | mask))
565       //
566       // Substituting y = 3, z = 0 yields:
567       // (x & -2) == 3 --> (x == 3 || x == 2)
568 
569       // Pattern match a special case:
570       /*
571         QUERY( (y & ~mask = y) =>
572                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
573         );
574       */
575       if (match(ICI->getOperand(0),
576                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
577         APInt Mask = ~*RHSC;
578         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
579           // If we already have a value for the switch, it has to match!
580           if (!setValueOnce(RHSVal))
581             return false;
582 
583           Vals.push_back(C);
584           Vals.push_back(
585               ConstantInt::get(C->getContext(),
586                                C->getValue() | Mask));
587           UsedICmps++;
588           return true;
589         }
590       }
591 
592       // Pattern match a special case:
593       /*
594         QUERY( (y |  mask = y) =>
595                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
596         );
597       */
598       if (match(ICI->getOperand(0),
599                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
600         APInt Mask = *RHSC;
601         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
602           // If we already have a value for the switch, it has to match!
603           if (!setValueOnce(RHSVal))
604             return false;
605 
606           Vals.push_back(C);
607           Vals.push_back(ConstantInt::get(C->getContext(),
608                                           C->getValue() & ~Mask));
609           UsedICmps++;
610           return true;
611         }
612       }
613 
614       // If we already have a value for the switch, it has to match!
615       if (!setValueOnce(ICI->getOperand(0)))
616         return false;
617 
618       UsedICmps++;
619       Vals.push_back(C);
620       return ICI->getOperand(0);
621     }
622 
623     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
624     ConstantRange Span =
625         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
626 
627     // Shift the range if the compare is fed by an add. This is the range
628     // compare idiom as emitted by instcombine.
629     Value *CandidateVal = I->getOperand(0);
630     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
631       Span = Span.subtract(*RHSC);
632       CandidateVal = RHSVal;
633     }
634 
635     // If this is an and/!= check, then we are looking to build the set of
636     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
637     // x != 0 && x != 1.
638     if (!isEQ)
639       Span = Span.inverse();
640 
641     // If there are a ton of values, we don't want to make a ginormous switch.
642     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
643       return false;
644     }
645 
646     // If we already have a value for the switch, it has to match!
647     if (!setValueOnce(CandidateVal))
648       return false;
649 
650     // Add all values from the range to the set
651     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
652       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
653 
654     UsedICmps++;
655     return true;
656   }
657 
658   /// Given a potentially 'or'd or 'and'd together collection of icmp
659   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
660   /// the value being compared, and stick the list constants into the Vals
661   /// vector.
662   /// One "Extra" case is allowed to differ from the other.
663   void gather(Value *V) {
664     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
665 
666     // Keep a stack (SmallVector for efficiency) for depth-first traversal
667     SmallVector<Value *, 8> DFT;
668     SmallPtrSet<Value *, 8> Visited;
669 
670     // Initialize
671     Visited.insert(V);
672     DFT.push_back(V);
673 
674     while (!DFT.empty()) {
675       V = DFT.pop_back_val();
676 
677       if (Instruction *I = dyn_cast<Instruction>(V)) {
678         // If it is a || (or && depending on isEQ), process the operands.
679         Value *Op0, *Op1;
680         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
681                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
682           if (Visited.insert(Op1).second)
683             DFT.push_back(Op1);
684           if (Visited.insert(Op0).second)
685             DFT.push_back(Op0);
686 
687           continue;
688         }
689 
690         // Try to match the current instruction
691         if (matchInstruction(I, isEQ))
692           // Match succeed, continue the loop
693           continue;
694       }
695 
696       // One element of the sequence of || (or &&) could not be match as a
697       // comparison against the same value as the others.
698       // We allow only one "Extra" case to be checked before the switch
699       if (!Extra) {
700         Extra = V;
701         continue;
702       }
703       // Failed to parse a proper sequence, abort now
704       CompValue = nullptr;
705       break;
706     }
707   }
708 };
709 
710 } // end anonymous namespace
711 
712 static void EraseTerminatorAndDCECond(Instruction *TI,
713                                       MemorySSAUpdater *MSSAU = nullptr) {
714   Instruction *Cond = nullptr;
715   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
716     Cond = dyn_cast<Instruction>(SI->getCondition());
717   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
718     if (BI->isConditional())
719       Cond = dyn_cast<Instruction>(BI->getCondition());
720   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
721     Cond = dyn_cast<Instruction>(IBI->getAddress());
722   }
723 
724   TI->eraseFromParent();
725   if (Cond)
726     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
727 }
728 
729 /// Return true if the specified terminator checks
730 /// to see if a value is equal to constant integer value.
731 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
732   Value *CV = nullptr;
733   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
734     // Do not permit merging of large switch instructions into their
735     // predecessors unless there is only one predecessor.
736     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
737       CV = SI->getCondition();
738   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
739     if (BI->isConditional() && BI->getCondition()->hasOneUse())
740       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
741         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
742           CV = ICI->getOperand(0);
743       }
744 
745   // Unwrap any lossless ptrtoint cast.
746   if (CV) {
747     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
748       Value *Ptr = PTII->getPointerOperand();
749       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
750         CV = Ptr;
751     }
752   }
753   return CV;
754 }
755 
756 /// Given a value comparison instruction,
757 /// decode all of the 'cases' that it represents and return the 'default' block.
758 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
759     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
760   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
761     Cases.reserve(SI->getNumCases());
762     for (auto Case : SI->cases())
763       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
764                                                   Case.getCaseSuccessor()));
765     return SI->getDefaultDest();
766   }
767 
768   BranchInst *BI = cast<BranchInst>(TI);
769   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
770   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
771   Cases.push_back(ValueEqualityComparisonCase(
772       GetConstantInt(ICI->getOperand(1), DL), Succ));
773   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
774 }
775 
776 /// Given a vector of bb/value pairs, remove any entries
777 /// in the list that match the specified block.
778 static void
779 EliminateBlockCases(BasicBlock *BB,
780                     std::vector<ValueEqualityComparisonCase> &Cases) {
781   llvm::erase_value(Cases, BB);
782 }
783 
784 /// Return true if there are any keys in C1 that exist in C2 as well.
785 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
786                           std::vector<ValueEqualityComparisonCase> &C2) {
787   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
788 
789   // Make V1 be smaller than V2.
790   if (V1->size() > V2->size())
791     std::swap(V1, V2);
792 
793   if (V1->empty())
794     return false;
795   if (V1->size() == 1) {
796     // Just scan V2.
797     ConstantInt *TheVal = (*V1)[0].Value;
798     for (unsigned i = 0, e = V2->size(); i != e; ++i)
799       if (TheVal == (*V2)[i].Value)
800         return true;
801   }
802 
803   // Otherwise, just sort both lists and compare element by element.
804   array_pod_sort(V1->begin(), V1->end());
805   array_pod_sort(V2->begin(), V2->end());
806   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
807   while (i1 != e1 && i2 != e2) {
808     if ((*V1)[i1].Value == (*V2)[i2].Value)
809       return true;
810     if ((*V1)[i1].Value < (*V2)[i2].Value)
811       ++i1;
812     else
813       ++i2;
814   }
815   return false;
816 }
817 
818 // Set branch weights on SwitchInst. This sets the metadata if there is at
819 // least one non-zero weight.
820 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
821   // Check that there is at least one non-zero weight. Otherwise, pass
822   // nullptr to setMetadata which will erase the existing metadata.
823   MDNode *N = nullptr;
824   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
825     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
826   SI->setMetadata(LLVMContext::MD_prof, N);
827 }
828 
829 // Similar to the above, but for branch and select instructions that take
830 // exactly 2 weights.
831 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
832                              uint32_t FalseWeight) {
833   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
834   // Check that there is at least one non-zero weight. Otherwise, pass
835   // nullptr to setMetadata which will erase the existing metadata.
836   MDNode *N = nullptr;
837   if (TrueWeight || FalseWeight)
838     N = MDBuilder(I->getParent()->getContext())
839             .createBranchWeights(TrueWeight, FalseWeight);
840   I->setMetadata(LLVMContext::MD_prof, N);
841 }
842 
843 /// If TI is known to be a terminator instruction and its block is known to
844 /// only have a single predecessor block, check to see if that predecessor is
845 /// also a value comparison with the same value, and if that comparison
846 /// determines the outcome of this comparison. If so, simplify TI. This does a
847 /// very limited form of jump threading.
848 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
849     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
850   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
851   if (!PredVal)
852     return false; // Not a value comparison in predecessor.
853 
854   Value *ThisVal = isValueEqualityComparison(TI);
855   assert(ThisVal && "This isn't a value comparison!!");
856   if (ThisVal != PredVal)
857     return false; // Different predicates.
858 
859   // TODO: Preserve branch weight metadata, similarly to how
860   // FoldValueComparisonIntoPredecessors preserves it.
861 
862   // Find out information about when control will move from Pred to TI's block.
863   std::vector<ValueEqualityComparisonCase> PredCases;
864   BasicBlock *PredDef =
865       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
866   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
867 
868   // Find information about how control leaves this block.
869   std::vector<ValueEqualityComparisonCase> ThisCases;
870   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
871   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
872 
873   // If TI's block is the default block from Pred's comparison, potentially
874   // simplify TI based on this knowledge.
875   if (PredDef == TI->getParent()) {
876     // If we are here, we know that the value is none of those cases listed in
877     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
878     // can simplify TI.
879     if (!ValuesOverlap(PredCases, ThisCases))
880       return false;
881 
882     if (isa<BranchInst>(TI)) {
883       // Okay, one of the successors of this condbr is dead.  Convert it to a
884       // uncond br.
885       assert(ThisCases.size() == 1 && "Branch can only have one case!");
886       // Insert the new branch.
887       Instruction *NI = Builder.CreateBr(ThisDef);
888       (void)NI;
889 
890       // Remove PHI node entries for the dead edge.
891       ThisCases[0].Dest->removePredecessor(PredDef);
892 
893       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
894                         << "Through successor TI: " << *TI << "Leaving: " << *NI
895                         << "\n");
896 
897       EraseTerminatorAndDCECond(TI);
898 
899       if (DTU)
900         DTU->applyUpdates(
901             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
902 
903       return true;
904     }
905 
906     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
907     // Okay, TI has cases that are statically dead, prune them away.
908     SmallPtrSet<Constant *, 16> DeadCases;
909     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
910       DeadCases.insert(PredCases[i].Value);
911 
912     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
913                       << "Through successor TI: " << *TI);
914 
915     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
916     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
917       --i;
918       auto *Successor = i->getCaseSuccessor();
919       if (DTU)
920         ++NumPerSuccessorCases[Successor];
921       if (DeadCases.count(i->getCaseValue())) {
922         Successor->removePredecessor(PredDef);
923         SI.removeCase(i);
924         if (DTU)
925           --NumPerSuccessorCases[Successor];
926       }
927     }
928 
929     if (DTU) {
930       std::vector<DominatorTree::UpdateType> Updates;
931       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
932         if (I.second == 0)
933           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
934       DTU->applyUpdates(Updates);
935     }
936 
937     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
938     return true;
939   }
940 
941   // Otherwise, TI's block must correspond to some matched value.  Find out
942   // which value (or set of values) this is.
943   ConstantInt *TIV = nullptr;
944   BasicBlock *TIBB = TI->getParent();
945   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
946     if (PredCases[i].Dest == TIBB) {
947       if (TIV)
948         return false; // Cannot handle multiple values coming to this block.
949       TIV = PredCases[i].Value;
950     }
951   assert(TIV && "No edge from pred to succ?");
952 
953   // Okay, we found the one constant that our value can be if we get into TI's
954   // BB.  Find out which successor will unconditionally be branched to.
955   BasicBlock *TheRealDest = nullptr;
956   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
957     if (ThisCases[i].Value == TIV) {
958       TheRealDest = ThisCases[i].Dest;
959       break;
960     }
961 
962   // If not handled by any explicit cases, it is handled by the default case.
963   if (!TheRealDest)
964     TheRealDest = ThisDef;
965 
966   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
967 
968   // Remove PHI node entries for dead edges.
969   BasicBlock *CheckEdge = TheRealDest;
970   for (BasicBlock *Succ : successors(TIBB))
971     if (Succ != CheckEdge) {
972       if (Succ != TheRealDest)
973         RemovedSuccs.insert(Succ);
974       Succ->removePredecessor(TIBB);
975     } else
976       CheckEdge = nullptr;
977 
978   // Insert the new branch.
979   Instruction *NI = Builder.CreateBr(TheRealDest);
980   (void)NI;
981 
982   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
983                     << "Through successor TI: " << *TI << "Leaving: " << *NI
984                     << "\n");
985 
986   EraseTerminatorAndDCECond(TI);
987   if (DTU) {
988     SmallVector<DominatorTree::UpdateType, 2> Updates;
989     Updates.reserve(RemovedSuccs.size());
990     for (auto *RemovedSucc : RemovedSuccs)
991       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
992     DTU->applyUpdates(Updates);
993   }
994   return true;
995 }
996 
997 namespace {
998 
999 /// This class implements a stable ordering of constant
1000 /// integers that does not depend on their address.  This is important for
1001 /// applications that sort ConstantInt's to ensure uniqueness.
1002 struct ConstantIntOrdering {
1003   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1004     return LHS->getValue().ult(RHS->getValue());
1005   }
1006 };
1007 
1008 } // end anonymous namespace
1009 
1010 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1011                                     ConstantInt *const *P2) {
1012   const ConstantInt *LHS = *P1;
1013   const ConstantInt *RHS = *P2;
1014   if (LHS == RHS)
1015     return 0;
1016   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1017 }
1018 
1019 static inline bool HasBranchWeights(const Instruction *I) {
1020   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1021   if (ProfMD && ProfMD->getOperand(0))
1022     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1023       return MDS->getString().equals("branch_weights");
1024 
1025   return false;
1026 }
1027 
1028 /// Get Weights of a given terminator, the default weight is at the front
1029 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1030 /// metadata.
1031 static void GetBranchWeights(Instruction *TI,
1032                              SmallVectorImpl<uint64_t> &Weights) {
1033   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1034   assert(MD);
1035   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1036     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1037     Weights.push_back(CI->getValue().getZExtValue());
1038   }
1039 
1040   // If TI is a conditional eq, the default case is the false case,
1041   // and the corresponding branch-weight data is at index 2. We swap the
1042   // default weight to be the first entry.
1043   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1044     assert(Weights.size() == 2);
1045     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1046     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1047       std::swap(Weights.front(), Weights.back());
1048   }
1049 }
1050 
1051 /// Keep halving the weights until all can fit in uint32_t.
1052 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1053   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1054   if (Max > UINT_MAX) {
1055     unsigned Offset = 32 - countLeadingZeros(Max);
1056     for (uint64_t &I : Weights)
1057       I >>= Offset;
1058   }
1059 }
1060 
1061 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1062     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1063   Instruction *PTI = PredBlock->getTerminator();
1064 
1065   // If we have bonus instructions, clone them into the predecessor block.
1066   // Note that there may be multiple predecessor blocks, so we cannot move
1067   // bonus instructions to a predecessor block.
1068   for (Instruction &BonusInst : *BB) {
1069     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1070       continue;
1071 
1072     Instruction *NewBonusInst = BonusInst.clone();
1073 
1074     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1075       // Unless the instruction has the same !dbg location as the original
1076       // branch, drop it. When we fold the bonus instructions we want to make
1077       // sure we reset their debug locations in order to avoid stepping on
1078       // dead code caused by folding dead branches.
1079       NewBonusInst->setDebugLoc(DebugLoc());
1080     }
1081 
1082     RemapInstruction(NewBonusInst, VMap,
1083                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1084     VMap[&BonusInst] = NewBonusInst;
1085 
1086     // If we moved a load, we cannot any longer claim any knowledge about
1087     // its potential value. The previous information might have been valid
1088     // only given the branch precondition.
1089     // For an analogous reason, we must also drop all the metadata whose
1090     // semantics we don't understand. We *can* preserve !annotation, because
1091     // it is tied to the instruction itself, not the value or position.
1092     NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
1093 
1094     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1095     NewBonusInst->takeName(&BonusInst);
1096     BonusInst.setName(NewBonusInst->getName() + ".old");
1097 
1098     // Update (liveout) uses of bonus instructions,
1099     // now that the bonus instruction has been cloned into predecessor.
1100     SSAUpdater SSAUpdate;
1101     SSAUpdate.Initialize(BonusInst.getType(),
1102                          (NewBonusInst->getName() + ".merge").str());
1103     SSAUpdate.AddAvailableValue(BB, &BonusInst);
1104     SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst);
1105     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1106       auto *UI = cast<Instruction>(U.getUser());
1107       if (UI->getParent() != PredBlock)
1108         SSAUpdate.RewriteUseAfterInsertions(U);
1109       else // Use is in the same block as, and comes before, NewBonusInst.
1110         SSAUpdate.RewriteUse(U);
1111     }
1112   }
1113 }
1114 
1115 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1116     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1117   BasicBlock *BB = TI->getParent();
1118   BasicBlock *Pred = PTI->getParent();
1119 
1120   SmallVector<DominatorTree::UpdateType, 32> Updates;
1121 
1122   // Figure out which 'cases' to copy from SI to PSI.
1123   std::vector<ValueEqualityComparisonCase> BBCases;
1124   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1125 
1126   std::vector<ValueEqualityComparisonCase> PredCases;
1127   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1128 
1129   // Based on whether the default edge from PTI goes to BB or not, fill in
1130   // PredCases and PredDefault with the new switch cases we would like to
1131   // build.
1132   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1133 
1134   // Update the branch weight metadata along the way
1135   SmallVector<uint64_t, 8> Weights;
1136   bool PredHasWeights = HasBranchWeights(PTI);
1137   bool SuccHasWeights = HasBranchWeights(TI);
1138 
1139   if (PredHasWeights) {
1140     GetBranchWeights(PTI, Weights);
1141     // branch-weight metadata is inconsistent here.
1142     if (Weights.size() != 1 + PredCases.size())
1143       PredHasWeights = SuccHasWeights = false;
1144   } else if (SuccHasWeights)
1145     // If there are no predecessor weights but there are successor weights,
1146     // populate Weights with 1, which will later be scaled to the sum of
1147     // successor's weights
1148     Weights.assign(1 + PredCases.size(), 1);
1149 
1150   SmallVector<uint64_t, 8> SuccWeights;
1151   if (SuccHasWeights) {
1152     GetBranchWeights(TI, SuccWeights);
1153     // branch-weight metadata is inconsistent here.
1154     if (SuccWeights.size() != 1 + BBCases.size())
1155       PredHasWeights = SuccHasWeights = false;
1156   } else if (PredHasWeights)
1157     SuccWeights.assign(1 + BBCases.size(), 1);
1158 
1159   if (PredDefault == BB) {
1160     // If this is the default destination from PTI, only the edges in TI
1161     // that don't occur in PTI, or that branch to BB will be activated.
1162     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1163     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1164       if (PredCases[i].Dest != BB)
1165         PTIHandled.insert(PredCases[i].Value);
1166       else {
1167         // The default destination is BB, we don't need explicit targets.
1168         std::swap(PredCases[i], PredCases.back());
1169 
1170         if (PredHasWeights || SuccHasWeights) {
1171           // Increase weight for the default case.
1172           Weights[0] += Weights[i + 1];
1173           std::swap(Weights[i + 1], Weights.back());
1174           Weights.pop_back();
1175         }
1176 
1177         PredCases.pop_back();
1178         --i;
1179         --e;
1180       }
1181 
1182     // Reconstruct the new switch statement we will be building.
1183     if (PredDefault != BBDefault) {
1184       PredDefault->removePredecessor(Pred);
1185       if (DTU && PredDefault != BB)
1186         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1187       PredDefault = BBDefault;
1188       ++NewSuccessors[BBDefault];
1189     }
1190 
1191     unsigned CasesFromPred = Weights.size();
1192     uint64_t ValidTotalSuccWeight = 0;
1193     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1194       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1195         PredCases.push_back(BBCases[i]);
1196         ++NewSuccessors[BBCases[i].Dest];
1197         if (SuccHasWeights || PredHasWeights) {
1198           // The default weight is at index 0, so weight for the ith case
1199           // should be at index i+1. Scale the cases from successor by
1200           // PredDefaultWeight (Weights[0]).
1201           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1202           ValidTotalSuccWeight += SuccWeights[i + 1];
1203         }
1204       }
1205 
1206     if (SuccHasWeights || PredHasWeights) {
1207       ValidTotalSuccWeight += SuccWeights[0];
1208       // Scale the cases from predecessor by ValidTotalSuccWeight.
1209       for (unsigned i = 1; i < CasesFromPred; ++i)
1210         Weights[i] *= ValidTotalSuccWeight;
1211       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1212       Weights[0] *= SuccWeights[0];
1213     }
1214   } else {
1215     // If this is not the default destination from PSI, only the edges
1216     // in SI that occur in PSI with a destination of BB will be
1217     // activated.
1218     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1219     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1220     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1221       if (PredCases[i].Dest == BB) {
1222         PTIHandled.insert(PredCases[i].Value);
1223 
1224         if (PredHasWeights || SuccHasWeights) {
1225           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1226           std::swap(Weights[i + 1], Weights.back());
1227           Weights.pop_back();
1228         }
1229 
1230         std::swap(PredCases[i], PredCases.back());
1231         PredCases.pop_back();
1232         --i;
1233         --e;
1234       }
1235 
1236     // Okay, now we know which constants were sent to BB from the
1237     // predecessor.  Figure out where they will all go now.
1238     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1239       if (PTIHandled.count(BBCases[i].Value)) {
1240         // If this is one we are capable of getting...
1241         if (PredHasWeights || SuccHasWeights)
1242           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1243         PredCases.push_back(BBCases[i]);
1244         ++NewSuccessors[BBCases[i].Dest];
1245         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1246       }
1247 
1248     // If there are any constants vectored to BB that TI doesn't handle,
1249     // they must go to the default destination of TI.
1250     for (ConstantInt *I : PTIHandled) {
1251       if (PredHasWeights || SuccHasWeights)
1252         Weights.push_back(WeightsForHandled[I]);
1253       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1254       ++NewSuccessors[BBDefault];
1255     }
1256   }
1257 
1258   // Okay, at this point, we know which new successor Pred will get.  Make
1259   // sure we update the number of entries in the PHI nodes for these
1260   // successors.
1261   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1262   if (DTU) {
1263     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1264     Updates.reserve(Updates.size() + NewSuccessors.size());
1265   }
1266   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1267        NewSuccessors) {
1268     for (auto I : seq(0, NewSuccessor.second)) {
1269       (void)I;
1270       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1271     }
1272     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1273       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1274   }
1275 
1276   Builder.SetInsertPoint(PTI);
1277   // Convert pointer to int before we switch.
1278   if (CV->getType()->isPointerTy()) {
1279     CV =
1280         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1281   }
1282 
1283   // Now that the successors are updated, create the new Switch instruction.
1284   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1285   NewSI->setDebugLoc(PTI->getDebugLoc());
1286   for (ValueEqualityComparisonCase &V : PredCases)
1287     NewSI->addCase(V.Value, V.Dest);
1288 
1289   if (PredHasWeights || SuccHasWeights) {
1290     // Halve the weights if any of them cannot fit in an uint32_t
1291     FitWeights(Weights);
1292 
1293     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1294 
1295     setBranchWeights(NewSI, MDWeights);
1296   }
1297 
1298   EraseTerminatorAndDCECond(PTI);
1299 
1300   // Okay, last check.  If BB is still a successor of PSI, then we must
1301   // have an infinite loop case.  If so, add an infinitely looping block
1302   // to handle the case to preserve the behavior of the code.
1303   BasicBlock *InfLoopBlock = nullptr;
1304   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1305     if (NewSI->getSuccessor(i) == BB) {
1306       if (!InfLoopBlock) {
1307         // Insert it at the end of the function, because it's either code,
1308         // or it won't matter if it's hot. :)
1309         InfLoopBlock =
1310             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1311         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1312         if (DTU)
1313           Updates.push_back(
1314               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1315       }
1316       NewSI->setSuccessor(i, InfLoopBlock);
1317     }
1318 
1319   if (DTU) {
1320     if (InfLoopBlock)
1321       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1322 
1323     Updates.push_back({DominatorTree::Delete, Pred, BB});
1324 
1325     DTU->applyUpdates(Updates);
1326   }
1327 
1328   ++NumFoldValueComparisonIntoPredecessors;
1329   return true;
1330 }
1331 
1332 /// The specified terminator is a value equality comparison instruction
1333 /// (either a switch or a branch on "X == c").
1334 /// See if any of the predecessors of the terminator block are value comparisons
1335 /// on the same value.  If so, and if safe to do so, fold them together.
1336 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1337                                                          IRBuilder<> &Builder) {
1338   BasicBlock *BB = TI->getParent();
1339   Value *CV = isValueEqualityComparison(TI); // CondVal
1340   assert(CV && "Not a comparison?");
1341 
1342   bool Changed = false;
1343 
1344   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1345   while (!Preds.empty()) {
1346     BasicBlock *Pred = Preds.pop_back_val();
1347     Instruction *PTI = Pred->getTerminator();
1348 
1349     // Don't try to fold into itself.
1350     if (Pred == BB)
1351       continue;
1352 
1353     // See if the predecessor is a comparison with the same value.
1354     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1355     if (PCV != CV)
1356       continue;
1357 
1358     SmallSetVector<BasicBlock *, 4> FailBlocks;
1359     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1360       for (auto *Succ : FailBlocks) {
1361         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1362           return false;
1363       }
1364     }
1365 
1366     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1367     Changed = true;
1368   }
1369   return Changed;
1370 }
1371 
1372 // If we would need to insert a select that uses the value of this invoke
1373 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1374 // can't hoist the invoke, as there is nowhere to put the select in this case.
1375 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1376                                 Instruction *I1, Instruction *I2) {
1377   for (BasicBlock *Succ : successors(BB1)) {
1378     for (const PHINode &PN : Succ->phis()) {
1379       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1380       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1381       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1382         return false;
1383       }
1384     }
1385   }
1386   return true;
1387 }
1388 
1389 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1390 
1391 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1392 /// in the two blocks up into the branch block. The caller of this function
1393 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1394 /// only perform hoisting in case both blocks only contain a terminator. In that
1395 /// case, only the original BI will be replaced and selects for PHIs are added.
1396 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1397                                            const TargetTransformInfo &TTI,
1398                                            bool EqTermsOnly) {
1399   // This does very trivial matching, with limited scanning, to find identical
1400   // instructions in the two blocks.  In particular, we don't want to get into
1401   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1402   // such, we currently just scan for obviously identical instructions in an
1403   // identical order.
1404   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1405   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1406 
1407   // If either of the blocks has it's address taken, then we can't do this fold,
1408   // because the code we'd hoist would no longer run when we jump into the block
1409   // by it's address.
1410   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1411     return false;
1412 
1413   BasicBlock::iterator BB1_Itr = BB1->begin();
1414   BasicBlock::iterator BB2_Itr = BB2->begin();
1415 
1416   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1417   // Skip debug info if it is not identical.
1418   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1419   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1420   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1421     while (isa<DbgInfoIntrinsic>(I1))
1422       I1 = &*BB1_Itr++;
1423     while (isa<DbgInfoIntrinsic>(I2))
1424       I2 = &*BB2_Itr++;
1425   }
1426   // FIXME: Can we define a safety predicate for CallBr?
1427   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1428       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1429       isa<CallBrInst>(I1))
1430     return false;
1431 
1432   BasicBlock *BIParent = BI->getParent();
1433 
1434   bool Changed = false;
1435 
1436   auto _ = make_scope_exit([&]() {
1437     if (Changed)
1438       ++NumHoistCommonCode;
1439   });
1440 
1441   // Check if only hoisting terminators is allowed. This does not add new
1442   // instructions to the hoist location.
1443   if (EqTermsOnly) {
1444     // Skip any debug intrinsics, as they are free to hoist.
1445     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1446     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1447     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1448       return false;
1449     if (!I1NonDbg->isTerminator())
1450       return false;
1451     // Now we know that we only need to hoist debug instrinsics and the
1452     // terminator. Let the loop below handle those 2 cases.
1453   }
1454 
1455   do {
1456     // If we are hoisting the terminator instruction, don't move one (making a
1457     // broken BB), instead clone it, and remove BI.
1458     if (I1->isTerminator())
1459       goto HoistTerminator;
1460 
1461     // If we're going to hoist a call, make sure that the two instructions we're
1462     // commoning/hoisting are both marked with musttail, or neither of them is
1463     // marked as such. Otherwise, we might end up in a situation where we hoist
1464     // from a block where the terminator is a `ret` to a block where the terminator
1465     // is a `br`, and `musttail` calls expect to be followed by a return.
1466     auto *C1 = dyn_cast<CallInst>(I1);
1467     auto *C2 = dyn_cast<CallInst>(I2);
1468     if (C1 && C2)
1469       if (C1->isMustTailCall() != C2->isMustTailCall())
1470         return Changed;
1471 
1472     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1473       return Changed;
1474 
1475     // If any of the two call sites has nomerge attribute, stop hoisting.
1476     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1477       if (CB1->cannotMerge())
1478         return Changed;
1479     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1480       if (CB2->cannotMerge())
1481         return Changed;
1482 
1483     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1484       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1485       // The debug location is an integral part of a debug info intrinsic
1486       // and can't be separated from it or replaced.  Instead of attempting
1487       // to merge locations, simply hoist both copies of the intrinsic.
1488       BIParent->getInstList().splice(BI->getIterator(),
1489                                      BB1->getInstList(), I1);
1490       BIParent->getInstList().splice(BI->getIterator(),
1491                                      BB2->getInstList(), I2);
1492       Changed = true;
1493     } else {
1494       // For a normal instruction, we just move one to right before the branch,
1495       // then replace all uses of the other with the first.  Finally, we remove
1496       // the now redundant second instruction.
1497       BIParent->getInstList().splice(BI->getIterator(),
1498                                      BB1->getInstList(), I1);
1499       if (!I2->use_empty())
1500         I2->replaceAllUsesWith(I1);
1501       I1->andIRFlags(I2);
1502       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1503                              LLVMContext::MD_range,
1504                              LLVMContext::MD_fpmath,
1505                              LLVMContext::MD_invariant_load,
1506                              LLVMContext::MD_nonnull,
1507                              LLVMContext::MD_invariant_group,
1508                              LLVMContext::MD_align,
1509                              LLVMContext::MD_dereferenceable,
1510                              LLVMContext::MD_dereferenceable_or_null,
1511                              LLVMContext::MD_mem_parallel_loop_access,
1512                              LLVMContext::MD_access_group,
1513                              LLVMContext::MD_preserve_access_index};
1514       combineMetadata(I1, I2, KnownIDs, true);
1515 
1516       // I1 and I2 are being combined into a single instruction.  Its debug
1517       // location is the merged locations of the original instructions.
1518       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1519 
1520       I2->eraseFromParent();
1521       Changed = true;
1522     }
1523     ++NumHoistCommonInstrs;
1524 
1525     I1 = &*BB1_Itr++;
1526     I2 = &*BB2_Itr++;
1527     // Skip debug info if it is not identical.
1528     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1529     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1530     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1531       while (isa<DbgInfoIntrinsic>(I1))
1532         I1 = &*BB1_Itr++;
1533       while (isa<DbgInfoIntrinsic>(I2))
1534         I2 = &*BB2_Itr++;
1535     }
1536   } while (I1->isIdenticalToWhenDefined(I2));
1537 
1538   return true;
1539 
1540 HoistTerminator:
1541   // It may not be possible to hoist an invoke.
1542   // FIXME: Can we define a safety predicate for CallBr?
1543   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1544     return Changed;
1545 
1546   // TODO: callbr hoisting currently disabled pending further study.
1547   if (isa<CallBrInst>(I1))
1548     return Changed;
1549 
1550   for (BasicBlock *Succ : successors(BB1)) {
1551     for (PHINode &PN : Succ->phis()) {
1552       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1553       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1554       if (BB1V == BB2V)
1555         continue;
1556 
1557       // Check for passingValueIsAlwaysUndefined here because we would rather
1558       // eliminate undefined control flow then converting it to a select.
1559       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1560           passingValueIsAlwaysUndefined(BB2V, &PN))
1561         return Changed;
1562 
1563       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1564         return Changed;
1565       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1566         return Changed;
1567     }
1568   }
1569 
1570   // Okay, it is safe to hoist the terminator.
1571   Instruction *NT = I1->clone();
1572   BIParent->getInstList().insert(BI->getIterator(), NT);
1573   if (!NT->getType()->isVoidTy()) {
1574     I1->replaceAllUsesWith(NT);
1575     I2->replaceAllUsesWith(NT);
1576     NT->takeName(I1);
1577   }
1578   Changed = true;
1579   ++NumHoistCommonInstrs;
1580 
1581   // Ensure terminator gets a debug location, even an unknown one, in case
1582   // it involves inlinable calls.
1583   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1584 
1585   // PHIs created below will adopt NT's merged DebugLoc.
1586   IRBuilder<NoFolder> Builder(NT);
1587 
1588   // Hoisting one of the terminators from our successor is a great thing.
1589   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1590   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1591   // nodes, so we insert select instruction to compute the final result.
1592   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1593   for (BasicBlock *Succ : successors(BB1)) {
1594     for (PHINode &PN : Succ->phis()) {
1595       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1596       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1597       if (BB1V == BB2V)
1598         continue;
1599 
1600       // These values do not agree.  Insert a select instruction before NT
1601       // that determines the right value.
1602       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1603       if (!SI) {
1604         // Propagate fast-math-flags from phi node to its replacement select.
1605         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1606         if (isa<FPMathOperator>(PN))
1607           Builder.setFastMathFlags(PN.getFastMathFlags());
1608 
1609         SI = cast<SelectInst>(
1610             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1611                                  BB1V->getName() + "." + BB2V->getName(), BI));
1612       }
1613 
1614       // Make the PHI node use the select for all incoming values for BB1/BB2
1615       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1616         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1617           PN.setIncomingValue(i, SI);
1618     }
1619   }
1620 
1621   SmallVector<DominatorTree::UpdateType, 4> Updates;
1622 
1623   // Update any PHI nodes in our new successors.
1624   for (BasicBlock *Succ : successors(BB1)) {
1625     AddPredecessorToBlock(Succ, BIParent, BB1);
1626     if (DTU)
1627       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1628   }
1629 
1630   if (DTU)
1631     for (BasicBlock *Succ : successors(BI))
1632       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1633 
1634   EraseTerminatorAndDCECond(BI);
1635   if (DTU)
1636     DTU->applyUpdates(Updates);
1637   return Changed;
1638 }
1639 
1640 // Check lifetime markers.
1641 static bool isLifeTimeMarker(const Instruction *I) {
1642   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1643     switch (II->getIntrinsicID()) {
1644     default:
1645       break;
1646     case Intrinsic::lifetime_start:
1647     case Intrinsic::lifetime_end:
1648       return true;
1649     }
1650   }
1651   return false;
1652 }
1653 
1654 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1655 // into variables.
1656 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1657                                                 int OpIdx) {
1658   return !isa<IntrinsicInst>(I);
1659 }
1660 
1661 // All instructions in Insts belong to different blocks that all unconditionally
1662 // branch to a common successor. Analyze each instruction and return true if it
1663 // would be possible to sink them into their successor, creating one common
1664 // instruction instead. For every value that would be required to be provided by
1665 // PHI node (because an operand varies in each input block), add to PHIOperands.
1666 static bool canSinkInstructions(
1667     ArrayRef<Instruction *> Insts,
1668     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1669   // Prune out obviously bad instructions to move. Each instruction must have
1670   // exactly zero or one use, and we check later that use is by a single, common
1671   // PHI instruction in the successor.
1672   bool HasUse = !Insts.front()->user_empty();
1673   for (auto *I : Insts) {
1674     // These instructions may change or break semantics if moved.
1675     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1676         I->getType()->isTokenTy())
1677       return false;
1678 
1679     // Do not try to sink an instruction in an infinite loop - it can cause
1680     // this algorithm to infinite loop.
1681     if (I->getParent()->getSingleSuccessor() == I->getParent())
1682       return false;
1683 
1684     // Conservatively return false if I is an inline-asm instruction. Sinking
1685     // and merging inline-asm instructions can potentially create arguments
1686     // that cannot satisfy the inline-asm constraints.
1687     // If the instruction has nomerge attribute, return false.
1688     if (const auto *C = dyn_cast<CallBase>(I))
1689       if (C->isInlineAsm() || C->cannotMerge())
1690         return false;
1691 
1692     // Each instruction must have zero or one use.
1693     if (HasUse && !I->hasOneUse())
1694       return false;
1695     if (!HasUse && !I->user_empty())
1696       return false;
1697   }
1698 
1699   const Instruction *I0 = Insts.front();
1700   for (auto *I : Insts)
1701     if (!I->isSameOperationAs(I0))
1702       return false;
1703 
1704   // All instructions in Insts are known to be the same opcode. If they have a
1705   // use, check that the only user is a PHI or in the same block as the
1706   // instruction, because if a user is in the same block as an instruction we're
1707   // contemplating sinking, it must already be determined to be sinkable.
1708   if (HasUse) {
1709     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1710     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1711     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1712           auto *U = cast<Instruction>(*I->user_begin());
1713           return (PNUse &&
1714                   PNUse->getParent() == Succ &&
1715                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1716                  U->getParent() == I->getParent();
1717         }))
1718       return false;
1719   }
1720 
1721   // Because SROA can't handle speculating stores of selects, try not to sink
1722   // loads, stores or lifetime markers of allocas when we'd have to create a
1723   // PHI for the address operand. Also, because it is likely that loads or
1724   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1725   // them.
1726   // This can cause code churn which can have unintended consequences down
1727   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1728   // FIXME: This is a workaround for a deficiency in SROA - see
1729   // https://llvm.org/bugs/show_bug.cgi?id=30188
1730   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1731         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1732       }))
1733     return false;
1734   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1735         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1736       }))
1737     return false;
1738   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1739         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1740       }))
1741     return false;
1742 
1743   // For calls to be sinkable, they must all be indirect, or have same callee.
1744   // I.e. if we have two direct calls to different callees, we don't want to
1745   // turn that into an indirect call. Likewise, if we have an indirect call,
1746   // and a direct call, we don't actually want to have a single indirect call.
1747   if (isa<CallBase>(I0)) {
1748     auto IsIndirectCall = [](const Instruction *I) {
1749       return cast<CallBase>(I)->isIndirectCall();
1750     };
1751     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1752     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1753     if (HaveIndirectCalls) {
1754       if (!AllCallsAreIndirect)
1755         return false;
1756     } else {
1757       // All callees must be identical.
1758       Value *Callee = nullptr;
1759       for (const Instruction *I : Insts) {
1760         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1761         if (!Callee)
1762           Callee = CurrCallee;
1763         else if (Callee != CurrCallee)
1764           return false;
1765       }
1766     }
1767   }
1768 
1769   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1770     Value *Op = I0->getOperand(OI);
1771     if (Op->getType()->isTokenTy())
1772       // Don't touch any operand of token type.
1773       return false;
1774 
1775     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1776       assert(I->getNumOperands() == I0->getNumOperands());
1777       return I->getOperand(OI) == I0->getOperand(OI);
1778     };
1779     if (!all_of(Insts, SameAsI0)) {
1780       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1781           !canReplaceOperandWithVariable(I0, OI))
1782         // We can't create a PHI from this GEP.
1783         return false;
1784       for (auto *I : Insts)
1785         PHIOperands[I].push_back(I->getOperand(OI));
1786     }
1787   }
1788   return true;
1789 }
1790 
1791 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1792 // instruction of every block in Blocks to their common successor, commoning
1793 // into one instruction.
1794 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1795   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1796 
1797   // canSinkInstructions returning true guarantees that every block has at
1798   // least one non-terminator instruction.
1799   SmallVector<Instruction*,4> Insts;
1800   for (auto *BB : Blocks) {
1801     Instruction *I = BB->getTerminator();
1802     do {
1803       I = I->getPrevNode();
1804     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1805     if (!isa<DbgInfoIntrinsic>(I))
1806       Insts.push_back(I);
1807   }
1808 
1809   // The only checking we need to do now is that all users of all instructions
1810   // are the same PHI node. canSinkInstructions should have checked this but
1811   // it is slightly over-aggressive - it gets confused by commutative
1812   // instructions so double-check it here.
1813   Instruction *I0 = Insts.front();
1814   if (!I0->user_empty()) {
1815     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1816     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1817           auto *U = cast<Instruction>(*I->user_begin());
1818           return U == PNUse;
1819         }))
1820       return false;
1821   }
1822 
1823   // We don't need to do any more checking here; canSinkInstructions should
1824   // have done it all for us.
1825   SmallVector<Value*, 4> NewOperands;
1826   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1827     // This check is different to that in canSinkInstructions. There, we
1828     // cared about the global view once simplifycfg (and instcombine) have
1829     // completed - it takes into account PHIs that become trivially
1830     // simplifiable.  However here we need a more local view; if an operand
1831     // differs we create a PHI and rely on instcombine to clean up the very
1832     // small mess we may make.
1833     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1834       return I->getOperand(O) != I0->getOperand(O);
1835     });
1836     if (!NeedPHI) {
1837       NewOperands.push_back(I0->getOperand(O));
1838       continue;
1839     }
1840 
1841     // Create a new PHI in the successor block and populate it.
1842     auto *Op = I0->getOperand(O);
1843     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1844     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1845                                Op->getName() + ".sink", &BBEnd->front());
1846     for (auto *I : Insts)
1847       PN->addIncoming(I->getOperand(O), I->getParent());
1848     NewOperands.push_back(PN);
1849   }
1850 
1851   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1852   // and move it to the start of the successor block.
1853   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1854     I0->getOperandUse(O).set(NewOperands[O]);
1855   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1856 
1857   // Update metadata and IR flags, and merge debug locations.
1858   for (auto *I : Insts)
1859     if (I != I0) {
1860       // The debug location for the "common" instruction is the merged locations
1861       // of all the commoned instructions.  We start with the original location
1862       // of the "common" instruction and iteratively merge each location in the
1863       // loop below.
1864       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1865       // However, as N-way merge for CallInst is rare, so we use simplified API
1866       // instead of using complex API for N-way merge.
1867       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1868       combineMetadataForCSE(I0, I, true);
1869       I0->andIRFlags(I);
1870     }
1871 
1872   if (!I0->user_empty()) {
1873     // canSinkLastInstruction checked that all instructions were used by
1874     // one and only one PHI node. Find that now, RAUW it to our common
1875     // instruction and nuke it.
1876     auto *PN = cast<PHINode>(*I0->user_begin());
1877     PN->replaceAllUsesWith(I0);
1878     PN->eraseFromParent();
1879   }
1880 
1881   // Finally nuke all instructions apart from the common instruction.
1882   for (auto *I : Insts)
1883     if (I != I0)
1884       I->eraseFromParent();
1885 
1886   return true;
1887 }
1888 
1889 namespace {
1890 
1891   // LockstepReverseIterator - Iterates through instructions
1892   // in a set of blocks in reverse order from the first non-terminator.
1893   // For example (assume all blocks have size n):
1894   //   LockstepReverseIterator I([B1, B2, B3]);
1895   //   *I-- = [B1[n], B2[n], B3[n]];
1896   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1897   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1898   //   ...
1899   class LockstepReverseIterator {
1900     ArrayRef<BasicBlock*> Blocks;
1901     SmallVector<Instruction*,4> Insts;
1902     bool Fail;
1903 
1904   public:
1905     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1906       reset();
1907     }
1908 
1909     void reset() {
1910       Fail = false;
1911       Insts.clear();
1912       for (auto *BB : Blocks) {
1913         Instruction *Inst = BB->getTerminator();
1914         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1915           Inst = Inst->getPrevNode();
1916         if (!Inst) {
1917           // Block wasn't big enough.
1918           Fail = true;
1919           return;
1920         }
1921         Insts.push_back(Inst);
1922       }
1923     }
1924 
1925     bool isValid() const {
1926       return !Fail;
1927     }
1928 
1929     void operator--() {
1930       if (Fail)
1931         return;
1932       for (auto *&Inst : Insts) {
1933         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1934           Inst = Inst->getPrevNode();
1935         // Already at beginning of block.
1936         if (!Inst) {
1937           Fail = true;
1938           return;
1939         }
1940       }
1941     }
1942 
1943     void operator++() {
1944       if (Fail)
1945         return;
1946       for (auto *&Inst : Insts) {
1947         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1948           Inst = Inst->getNextNode();
1949         // Already at end of block.
1950         if (!Inst) {
1951           Fail = true;
1952           return;
1953         }
1954       }
1955     }
1956 
1957     ArrayRef<Instruction*> operator * () const {
1958       return Insts;
1959     }
1960   };
1961 
1962 } // end anonymous namespace
1963 
1964 /// Check whether BB's predecessors end with unconditional branches. If it is
1965 /// true, sink any common code from the predecessors to BB.
1966 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1967                                            DomTreeUpdater *DTU) {
1968   // We support two situations:
1969   //   (1) all incoming arcs are unconditional
1970   //   (2) there are non-unconditional incoming arcs
1971   //
1972   // (2) is very common in switch defaults and
1973   // else-if patterns;
1974   //
1975   //   if (a) f(1);
1976   //   else if (b) f(2);
1977   //
1978   // produces:
1979   //
1980   //       [if]
1981   //      /    \
1982   //    [f(1)] [if]
1983   //      |     | \
1984   //      |     |  |
1985   //      |  [f(2)]|
1986   //       \    | /
1987   //        [ end ]
1988   //
1989   // [end] has two unconditional predecessor arcs and one conditional. The
1990   // conditional refers to the implicit empty 'else' arc. This conditional
1991   // arc can also be caused by an empty default block in a switch.
1992   //
1993   // In this case, we attempt to sink code from all *unconditional* arcs.
1994   // If we can sink instructions from these arcs (determined during the scan
1995   // phase below) we insert a common successor for all unconditional arcs and
1996   // connect that to [end], to enable sinking:
1997   //
1998   //       [if]
1999   //      /    \
2000   //    [x(1)] [if]
2001   //      |     | \
2002   //      |     |  \
2003   //      |  [x(2)] |
2004   //       \   /    |
2005   //   [sink.split] |
2006   //         \     /
2007   //         [ end ]
2008   //
2009   SmallVector<BasicBlock*,4> UnconditionalPreds;
2010   bool HaveNonUnconditionalPredecessors = false;
2011   for (auto *PredBB : predecessors(BB)) {
2012     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2013     if (PredBr && PredBr->isUnconditional())
2014       UnconditionalPreds.push_back(PredBB);
2015     else
2016       HaveNonUnconditionalPredecessors = true;
2017   }
2018   if (UnconditionalPreds.size() < 2)
2019     return false;
2020 
2021   // We take a two-step approach to tail sinking. First we scan from the end of
2022   // each block upwards in lockstep. If the n'th instruction from the end of each
2023   // block can be sunk, those instructions are added to ValuesToSink and we
2024   // carry on. If we can sink an instruction but need to PHI-merge some operands
2025   // (because they're not identical in each instruction) we add these to
2026   // PHIOperands.
2027   int ScanIdx = 0;
2028   SmallPtrSet<Value*,4> InstructionsToSink;
2029   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2030   LockstepReverseIterator LRI(UnconditionalPreds);
2031   while (LRI.isValid() &&
2032          canSinkInstructions(*LRI, PHIOperands)) {
2033     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2034                       << "\n");
2035     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2036     ++ScanIdx;
2037     --LRI;
2038   }
2039 
2040   // If no instructions can be sunk, early-return.
2041   if (ScanIdx == 0)
2042     return false;
2043 
2044   // Okay, we *could* sink last ScanIdx instructions. But how many can we
2045   // actually sink before encountering instruction that is unprofitable to sink?
2046   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2047     unsigned NumPHIdValues = 0;
2048     for (auto *I : *LRI)
2049       for (auto *V : PHIOperands[I]) {
2050         if (InstructionsToSink.count(V) == 0)
2051           ++NumPHIdValues;
2052         // FIXME: this check is overly optimistic. We may end up not sinking
2053         // said instruction, due to the very same profitability check.
2054         // See @creating_too_many_phis in sink-common-code.ll.
2055       }
2056     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2057     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2058     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2059         NumPHIInsts++;
2060 
2061     return NumPHIInsts <= 1;
2062   };
2063 
2064   // We've determined that we are going to sink last ScanIdx instructions,
2065   // and recorded them in InstructionsToSink. Now, some instructions may be
2066   // unprofitable to sink. But that determination depends on the instructions
2067   // that we are going to sink.
2068 
2069   // First, forward scan: find the first instruction unprofitable to sink,
2070   // recording all the ones that are profitable to sink.
2071   // FIXME: would it be better, after we detect that not all are profitable.
2072   // to either record the profitable ones, or erase the unprofitable ones?
2073   // Maybe we need to choose (at runtime) the one that will touch least instrs?
2074   LRI.reset();
2075   int Idx = 0;
2076   SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2077   while (Idx < ScanIdx) {
2078     if (!ProfitableToSinkInstruction(LRI)) {
2079       // Too many PHIs would be created.
2080       LLVM_DEBUG(
2081           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2082       break;
2083     }
2084     InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2085     --LRI;
2086     ++Idx;
2087   }
2088 
2089   // If no instructions can be sunk, early-return.
2090   if (Idx == 0)
2091     return false;
2092 
2093   // Did we determine that (only) some instructions are unprofitable to sink?
2094   if (Idx < ScanIdx) {
2095     // Okay, some instructions are unprofitable.
2096     ScanIdx = Idx;
2097     InstructionsToSink = InstructionsProfitableToSink;
2098 
2099     // But, that may make other instructions unprofitable, too.
2100     // So, do a backward scan, do any earlier instructions become unprofitable?
2101     assert(!ProfitableToSinkInstruction(LRI) &&
2102            "We already know that the last instruction is unprofitable to sink");
2103     ++LRI;
2104     --Idx;
2105     while (Idx >= 0) {
2106       // If we detect that an instruction becomes unprofitable to sink,
2107       // all earlier instructions won't be sunk either,
2108       // so preemptively keep InstructionsProfitableToSink in sync.
2109       // FIXME: is this the most performant approach?
2110       for (auto *I : *LRI)
2111         InstructionsProfitableToSink.erase(I);
2112       if (!ProfitableToSinkInstruction(LRI)) {
2113         // Everything starting with this instruction won't be sunk.
2114         ScanIdx = Idx;
2115         InstructionsToSink = InstructionsProfitableToSink;
2116       }
2117       ++LRI;
2118       --Idx;
2119     }
2120   }
2121 
2122   // If no instructions can be sunk, early-return.
2123   if (ScanIdx == 0)
2124     return false;
2125 
2126   bool Changed = false;
2127 
2128   if (HaveNonUnconditionalPredecessors) {
2129     // It is always legal to sink common instructions from unconditional
2130     // predecessors. However, if not all predecessors are unconditional,
2131     // this transformation might be pessimizing. So as a rule of thumb,
2132     // don't do it unless we'd sink at least one non-speculatable instruction.
2133     // See https://bugs.llvm.org/show_bug.cgi?id=30244
2134     LRI.reset();
2135     int Idx = 0;
2136     bool Profitable = false;
2137     while (Idx < ScanIdx) {
2138       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2139         Profitable = true;
2140         break;
2141       }
2142       --LRI;
2143       ++Idx;
2144     }
2145     if (!Profitable)
2146       return false;
2147 
2148     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2149     // We have a conditional edge and we're going to sink some instructions.
2150     // Insert a new block postdominating all blocks we're going to sink from.
2151     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2152       // Edges couldn't be split.
2153       return false;
2154     Changed = true;
2155   }
2156 
2157   // Now that we've analyzed all potential sinking candidates, perform the
2158   // actual sink. We iteratively sink the last non-terminator of the source
2159   // blocks into their common successor unless doing so would require too
2160   // many PHI instructions to be generated (currently only one PHI is allowed
2161   // per sunk instruction).
2162   //
2163   // We can use InstructionsToSink to discount values needing PHI-merging that will
2164   // actually be sunk in a later iteration. This allows us to be more
2165   // aggressive in what we sink. This does allow a false positive where we
2166   // sink presuming a later value will also be sunk, but stop half way through
2167   // and never actually sink it which means we produce more PHIs than intended.
2168   // This is unlikely in practice though.
2169   int SinkIdx = 0;
2170   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2171     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2172                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2173                       << "\n");
2174 
2175     // Because we've sunk every instruction in turn, the current instruction to
2176     // sink is always at index 0.
2177     LRI.reset();
2178 
2179     if (!sinkLastInstruction(UnconditionalPreds)) {
2180       LLVM_DEBUG(
2181           dbgs()
2182           << "SINK: stopping here, failed to actually sink instruction!\n");
2183       break;
2184     }
2185 
2186     NumSinkCommonInstrs++;
2187     Changed = true;
2188   }
2189   if (SinkIdx != 0)
2190     ++NumSinkCommonCode;
2191   return Changed;
2192 }
2193 
2194 /// Determine if we can hoist sink a sole store instruction out of a
2195 /// conditional block.
2196 ///
2197 /// We are looking for code like the following:
2198 ///   BrBB:
2199 ///     store i32 %add, i32* %arrayidx2
2200 ///     ... // No other stores or function calls (we could be calling a memory
2201 ///     ... // function).
2202 ///     %cmp = icmp ult %x, %y
2203 ///     br i1 %cmp, label %EndBB, label %ThenBB
2204 ///   ThenBB:
2205 ///     store i32 %add5, i32* %arrayidx2
2206 ///     br label EndBB
2207 ///   EndBB:
2208 ///     ...
2209 ///   We are going to transform this into:
2210 ///   BrBB:
2211 ///     store i32 %add, i32* %arrayidx2
2212 ///     ... //
2213 ///     %cmp = icmp ult %x, %y
2214 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2215 ///     store i32 %add.add5, i32* %arrayidx2
2216 ///     ...
2217 ///
2218 /// \return The pointer to the value of the previous store if the store can be
2219 ///         hoisted into the predecessor block. 0 otherwise.
2220 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2221                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2222   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2223   if (!StoreToHoist)
2224     return nullptr;
2225 
2226   // Volatile or atomic.
2227   if (!StoreToHoist->isSimple())
2228     return nullptr;
2229 
2230   Value *StorePtr = StoreToHoist->getPointerOperand();
2231   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2232 
2233   // Look for a store to the same pointer in BrBB.
2234   unsigned MaxNumInstToLookAt = 9;
2235   // Skip pseudo probe intrinsic calls which are not really killing any memory
2236   // accesses.
2237   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2238     if (!MaxNumInstToLookAt)
2239       break;
2240     --MaxNumInstToLookAt;
2241 
2242     // Could be calling an instruction that affects memory like free().
2243     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2244       return nullptr;
2245 
2246     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2247       // Found the previous store to same location and type. Make sure it is
2248       // simple, to avoid introducing a spurious non-atomic write after an
2249       // atomic write.
2250       if (SI->getPointerOperand() == StorePtr &&
2251           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2252         // Found the previous store, return its value operand.
2253         return SI->getValueOperand();
2254       return nullptr; // Unknown store.
2255     }
2256   }
2257 
2258   return nullptr;
2259 }
2260 
2261 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2262 /// converted to selects.
2263 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2264                                            BasicBlock *EndBB,
2265                                            unsigned &SpeculatedInstructions,
2266                                            InstructionCost &Cost,
2267                                            const TargetTransformInfo &TTI) {
2268   TargetTransformInfo::TargetCostKind CostKind =
2269     BB->getParent()->hasMinSize()
2270     ? TargetTransformInfo::TCK_CodeSize
2271     : TargetTransformInfo::TCK_SizeAndLatency;
2272 
2273   bool HaveRewritablePHIs = false;
2274   for (PHINode &PN : EndBB->phis()) {
2275     Value *OrigV = PN.getIncomingValueForBlock(BB);
2276     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2277 
2278     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2279     // Skip PHIs which are trivial.
2280     if (ThenV == OrigV)
2281       continue;
2282 
2283     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2284                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2285 
2286     // Don't convert to selects if we could remove undefined behavior instead.
2287     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2288         passingValueIsAlwaysUndefined(ThenV, &PN))
2289       return false;
2290 
2291     HaveRewritablePHIs = true;
2292     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2293     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2294     if (!OrigCE && !ThenCE)
2295       continue; // Known safe and cheap.
2296 
2297     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2298         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2299       return false;
2300     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2301     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2302     InstructionCost MaxCost =
2303         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2304     if (OrigCost + ThenCost > MaxCost)
2305       return false;
2306 
2307     // Account for the cost of an unfolded ConstantExpr which could end up
2308     // getting expanded into Instructions.
2309     // FIXME: This doesn't account for how many operations are combined in the
2310     // constant expression.
2311     ++SpeculatedInstructions;
2312     if (SpeculatedInstructions > 1)
2313       return false;
2314   }
2315 
2316   return HaveRewritablePHIs;
2317 }
2318 
2319 /// Speculate a conditional basic block flattening the CFG.
2320 ///
2321 /// Note that this is a very risky transform currently. Speculating
2322 /// instructions like this is most often not desirable. Instead, there is an MI
2323 /// pass which can do it with full awareness of the resource constraints.
2324 /// However, some cases are "obvious" and we should do directly. An example of
2325 /// this is speculating a single, reasonably cheap instruction.
2326 ///
2327 /// There is only one distinct advantage to flattening the CFG at the IR level:
2328 /// it makes very common but simplistic optimizations such as are common in
2329 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2330 /// modeling their effects with easier to reason about SSA value graphs.
2331 ///
2332 ///
2333 /// An illustration of this transform is turning this IR:
2334 /// \code
2335 ///   BB:
2336 ///     %cmp = icmp ult %x, %y
2337 ///     br i1 %cmp, label %EndBB, label %ThenBB
2338 ///   ThenBB:
2339 ///     %sub = sub %x, %y
2340 ///     br label BB2
2341 ///   EndBB:
2342 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2343 ///     ...
2344 /// \endcode
2345 ///
2346 /// Into this IR:
2347 /// \code
2348 ///   BB:
2349 ///     %cmp = icmp ult %x, %y
2350 ///     %sub = sub %x, %y
2351 ///     %cond = select i1 %cmp, 0, %sub
2352 ///     ...
2353 /// \endcode
2354 ///
2355 /// \returns true if the conditional block is removed.
2356 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2357                                             const TargetTransformInfo &TTI) {
2358   // Be conservative for now. FP select instruction can often be expensive.
2359   Value *BrCond = BI->getCondition();
2360   if (isa<FCmpInst>(BrCond))
2361     return false;
2362 
2363   BasicBlock *BB = BI->getParent();
2364   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2365   InstructionCost Budget =
2366       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2367 
2368   // If ThenBB is actually on the false edge of the conditional branch, remember
2369   // to swap the select operands later.
2370   bool Invert = false;
2371   if (ThenBB != BI->getSuccessor(0)) {
2372     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2373     Invert = true;
2374   }
2375   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2376 
2377   // If the branch is non-unpredictable, and is predicted to *not* branch to
2378   // the `then` block, then avoid speculating it.
2379   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2380     uint64_t TWeight, FWeight;
2381     if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
2382       uint64_t EndWeight = Invert ? TWeight : FWeight;
2383       BranchProbability BIEndProb =
2384           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2385       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2386       if (BIEndProb >= Likely)
2387         return false;
2388     }
2389   }
2390 
2391   // Keep a count of how many times instructions are used within ThenBB when
2392   // they are candidates for sinking into ThenBB. Specifically:
2393   // - They are defined in BB, and
2394   // - They have no side effects, and
2395   // - All of their uses are in ThenBB.
2396   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2397 
2398   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2399 
2400   unsigned SpeculatedInstructions = 0;
2401   Value *SpeculatedStoreValue = nullptr;
2402   StoreInst *SpeculatedStore = nullptr;
2403   for (BasicBlock::iterator BBI = ThenBB->begin(),
2404                             BBE = std::prev(ThenBB->end());
2405        BBI != BBE; ++BBI) {
2406     Instruction *I = &*BBI;
2407     // Skip debug info.
2408     if (isa<DbgInfoIntrinsic>(I)) {
2409       SpeculatedDbgIntrinsics.push_back(I);
2410       continue;
2411     }
2412 
2413     // Skip pseudo probes. The consequence is we lose track of the branch
2414     // probability for ThenBB, which is fine since the optimization here takes
2415     // place regardless of the branch probability.
2416     if (isa<PseudoProbeInst>(I)) {
2417       // The probe should be deleted so that it will not be over-counted when
2418       // the samples collected on the non-conditional path are counted towards
2419       // the conditional path. We leave it for the counts inference algorithm to
2420       // figure out a proper count for an unknown probe.
2421       SpeculatedDbgIntrinsics.push_back(I);
2422       continue;
2423     }
2424 
2425     // Only speculatively execute a single instruction (not counting the
2426     // terminator) for now.
2427     ++SpeculatedInstructions;
2428     if (SpeculatedInstructions > 1)
2429       return false;
2430 
2431     // Don't hoist the instruction if it's unsafe or expensive.
2432     if (!isSafeToSpeculativelyExecute(I) &&
2433         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2434                                   I, BB, ThenBB, EndBB))))
2435       return false;
2436     if (!SpeculatedStoreValue &&
2437         computeSpeculationCost(I, TTI) >
2438             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2439       return false;
2440 
2441     // Store the store speculation candidate.
2442     if (SpeculatedStoreValue)
2443       SpeculatedStore = cast<StoreInst>(I);
2444 
2445     // Do not hoist the instruction if any of its operands are defined but not
2446     // used in BB. The transformation will prevent the operand from
2447     // being sunk into the use block.
2448     for (Use &Op : I->operands()) {
2449       Instruction *OpI = dyn_cast<Instruction>(Op);
2450       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2451         continue; // Not a candidate for sinking.
2452 
2453       ++SinkCandidateUseCounts[OpI];
2454     }
2455   }
2456 
2457   // Consider any sink candidates which are only used in ThenBB as costs for
2458   // speculation. Note, while we iterate over a DenseMap here, we are summing
2459   // and so iteration order isn't significant.
2460   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2461            I = SinkCandidateUseCounts.begin(),
2462            E = SinkCandidateUseCounts.end();
2463        I != E; ++I)
2464     if (I->first->hasNUses(I->second)) {
2465       ++SpeculatedInstructions;
2466       if (SpeculatedInstructions > 1)
2467         return false;
2468     }
2469 
2470   // Check that we can insert the selects and that it's not too expensive to do
2471   // so.
2472   bool Convert = SpeculatedStore != nullptr;
2473   InstructionCost Cost = 0;
2474   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2475                                             SpeculatedInstructions,
2476                                             Cost, TTI);
2477   if (!Convert || Cost > Budget)
2478     return false;
2479 
2480   // If we get here, we can hoist the instruction and if-convert.
2481   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2482 
2483   // Insert a select of the value of the speculated store.
2484   if (SpeculatedStoreValue) {
2485     IRBuilder<NoFolder> Builder(BI);
2486     Value *TrueV = SpeculatedStore->getValueOperand();
2487     Value *FalseV = SpeculatedStoreValue;
2488     if (Invert)
2489       std::swap(TrueV, FalseV);
2490     Value *S = Builder.CreateSelect(
2491         BrCond, TrueV, FalseV, "spec.store.select", BI);
2492     SpeculatedStore->setOperand(0, S);
2493     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2494                                          SpeculatedStore->getDebugLoc());
2495   }
2496 
2497   // Metadata can be dependent on the condition we are hoisting above.
2498   // Conservatively strip all metadata on the instruction. Drop the debug loc
2499   // to avoid making it appear as if the condition is a constant, which would
2500   // be misleading while debugging.
2501   for (auto &I : *ThenBB) {
2502     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2503       I.setDebugLoc(DebugLoc());
2504     I.dropUnknownNonDebugMetadata();
2505   }
2506 
2507   // Hoist the instructions.
2508   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2509                            ThenBB->begin(), std::prev(ThenBB->end()));
2510 
2511   // Insert selects and rewrite the PHI operands.
2512   IRBuilder<NoFolder> Builder(BI);
2513   for (PHINode &PN : EndBB->phis()) {
2514     unsigned OrigI = PN.getBasicBlockIndex(BB);
2515     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2516     Value *OrigV = PN.getIncomingValue(OrigI);
2517     Value *ThenV = PN.getIncomingValue(ThenI);
2518 
2519     // Skip PHIs which are trivial.
2520     if (OrigV == ThenV)
2521       continue;
2522 
2523     // Create a select whose true value is the speculatively executed value and
2524     // false value is the pre-existing value. Swap them if the branch
2525     // destinations were inverted.
2526     Value *TrueV = ThenV, *FalseV = OrigV;
2527     if (Invert)
2528       std::swap(TrueV, FalseV);
2529     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2530     PN.setIncomingValue(OrigI, V);
2531     PN.setIncomingValue(ThenI, V);
2532   }
2533 
2534   // Remove speculated dbg intrinsics.
2535   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2536   // dbg value for the different flows and inserting it after the select.
2537   for (Instruction *I : SpeculatedDbgIntrinsics)
2538     I->eraseFromParent();
2539 
2540   ++NumSpeculations;
2541   return true;
2542 }
2543 
2544 /// Return true if we can thread a branch across this block.
2545 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2546   int Size = 0;
2547 
2548   SmallPtrSet<const Value *, 32> EphValues;
2549   auto IsEphemeral = [&](const Value *V) {
2550     if (isa<AssumeInst>(V))
2551       return true;
2552     return isSafeToSpeculativelyExecute(V) &&
2553            all_of(V->users(),
2554                   [&](const User *U) { return EphValues.count(U); });
2555   };
2556 
2557   // Walk the loop in reverse so that we can identify ephemeral values properly
2558   // (values only feeding assumes).
2559   for (Instruction &I : reverse(BB->instructionsWithoutDebug())) {
2560     // Can't fold blocks that contain noduplicate or convergent calls.
2561     if (CallInst *CI = dyn_cast<CallInst>(&I))
2562       if (CI->cannotDuplicate() || CI->isConvergent())
2563         return false;
2564 
2565     // Ignore ephemeral values which are deleted during codegen.
2566     if (IsEphemeral(&I))
2567       EphValues.insert(&I);
2568     // We will delete Phis while threading, so Phis should not be accounted in
2569     // block's size.
2570     else if (!isa<PHINode>(I)) {
2571       if (Size++ > MaxSmallBlockSize)
2572         return false; // Don't clone large BB's.
2573     }
2574 
2575     // We can only support instructions that do not define values that are
2576     // live outside of the current basic block.
2577     for (User *U : I.users()) {
2578       Instruction *UI = cast<Instruction>(U);
2579       if (UI->getParent() != BB || isa<PHINode>(UI))
2580         return false;
2581     }
2582 
2583     // Looks ok, continue checking.
2584   }
2585 
2586   return true;
2587 }
2588 
2589 /// If we have a conditional branch on a PHI node value that is defined in the
2590 /// same block as the branch and if any PHI entries are constants, thread edges
2591 /// corresponding to that entry to be branches to their ultimate destination.
2592 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2593                                 const DataLayout &DL, AssumptionCache *AC) {
2594   BasicBlock *BB = BI->getParent();
2595   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2596   // NOTE: we currently cannot transform this case if the PHI node is used
2597   // outside of the block.
2598   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2599     return false;
2600 
2601   // Degenerate case of a single entry PHI.
2602   if (PN->getNumIncomingValues() == 1) {
2603     FoldSingleEntryPHINodes(PN->getParent());
2604     return true;
2605   }
2606 
2607   // Now we know that this block has multiple preds and two succs.
2608   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2609     return false;
2610 
2611   // Okay, this is a simple enough basic block.  See if any phi values are
2612   // constants.
2613   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2614     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2615     if (!CB || !CB->getType()->isIntegerTy(1))
2616       continue;
2617 
2618     // Okay, we now know that all edges from PredBB should be revectored to
2619     // branch to RealDest.
2620     BasicBlock *PredBB = PN->getIncomingBlock(i);
2621     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2622 
2623     if (RealDest == BB)
2624       continue; // Skip self loops.
2625     // Skip if the predecessor's terminator is an indirect branch.
2626     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2627       continue;
2628 
2629     SmallVector<DominatorTree::UpdateType, 3> Updates;
2630 
2631     // The dest block might have PHI nodes, other predecessors and other
2632     // difficult cases.  Instead of being smart about this, just insert a new
2633     // block that jumps to the destination block, effectively splitting
2634     // the edge we are about to create.
2635     BasicBlock *EdgeBB =
2636         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2637                            RealDest->getParent(), RealDest);
2638     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2639     if (DTU)
2640       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2641     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2642 
2643     // Update PHI nodes.
2644     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2645 
2646     // BB may have instructions that are being threaded over.  Clone these
2647     // instructions into EdgeBB.  We know that there will be no uses of the
2648     // cloned instructions outside of EdgeBB.
2649     BasicBlock::iterator InsertPt = EdgeBB->begin();
2650     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2651     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2652       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2653         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2654         continue;
2655       }
2656       // Clone the instruction.
2657       Instruction *N = BBI->clone();
2658       if (BBI->hasName())
2659         N->setName(BBI->getName() + ".c");
2660 
2661       // Update operands due to translation.
2662       for (Use &Op : N->operands()) {
2663         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2664         if (PI != TranslateMap.end())
2665           Op = PI->second;
2666       }
2667 
2668       // Check for trivial simplification.
2669       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2670         if (!BBI->use_empty())
2671           TranslateMap[&*BBI] = V;
2672         if (!N->mayHaveSideEffects()) {
2673           N->deleteValue(); // Instruction folded away, don't need actual inst
2674           N = nullptr;
2675         }
2676       } else {
2677         if (!BBI->use_empty())
2678           TranslateMap[&*BBI] = N;
2679       }
2680       if (N) {
2681         // Insert the new instruction into its new home.
2682         EdgeBB->getInstList().insert(InsertPt, N);
2683 
2684         // Register the new instruction with the assumption cache if necessary.
2685         if (auto *Assume = dyn_cast<AssumeInst>(N))
2686           if (AC)
2687             AC->registerAssumption(Assume);
2688       }
2689     }
2690 
2691     // Loop over all of the edges from PredBB to BB, changing them to branch
2692     // to EdgeBB instead.
2693     Instruction *PredBBTI = PredBB->getTerminator();
2694     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2695       if (PredBBTI->getSuccessor(i) == BB) {
2696         BB->removePredecessor(PredBB);
2697         PredBBTI->setSuccessor(i, EdgeBB);
2698       }
2699 
2700     if (DTU) {
2701       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2702       Updates.push_back({DominatorTree::Delete, PredBB, BB});
2703 
2704       DTU->applyUpdates(Updates);
2705     }
2706 
2707     // Recurse, simplifying any other constants.
2708     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2709   }
2710 
2711   return false;
2712 }
2713 
2714 /// Given a BB that starts with the specified two-entry PHI node,
2715 /// see if we can eliminate it.
2716 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2717                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2718   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2719   // statement", which has a very simple dominance structure.  Basically, we
2720   // are trying to find the condition that is being branched on, which
2721   // subsequently causes this merge to happen.  We really want control
2722   // dependence information for this check, but simplifycfg can't keep it up
2723   // to date, and this catches most of the cases we care about anyway.
2724   BasicBlock *BB = PN->getParent();
2725 
2726   BasicBlock *IfTrue, *IfFalse;
2727   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
2728   if (!DomBI)
2729     return false;
2730   Value *IfCond = DomBI->getCondition();
2731   // Don't bother if the branch will be constant folded trivially.
2732   if (isa<ConstantInt>(IfCond))
2733     return false;
2734 
2735   BasicBlock *DomBlock = DomBI->getParent();
2736   SmallVector<BasicBlock *, 2> IfBlocks;
2737   llvm::copy_if(
2738       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
2739         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
2740       });
2741   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
2742          "Will have either one or two blocks to speculate.");
2743 
2744   // If the branch is non-unpredictable, see if we either predictably jump to
2745   // the merge bb (if we have only a single 'then' block), or if we predictably
2746   // jump to one specific 'then' block (if we have two of them).
2747   // It isn't beneficial to speculatively execute the code
2748   // from the block that we know is predictably not entered.
2749   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
2750     uint64_t TWeight, FWeight;
2751     if (DomBI->extractProfMetadata(TWeight, FWeight) &&
2752         (TWeight + FWeight) != 0) {
2753       BranchProbability BITrueProb =
2754           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
2755       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2756       BranchProbability BIFalseProb = BITrueProb.getCompl();
2757       if (IfBlocks.size() == 1) {
2758         BranchProbability BIBBProb =
2759             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
2760         if (BIBBProb >= Likely)
2761           return false;
2762       } else {
2763         if (BITrueProb >= Likely || BIFalseProb >= Likely)
2764           return false;
2765       }
2766     }
2767   }
2768 
2769   // Don't try to fold an unreachable block. For example, the phi node itself
2770   // can't be the candidate if-condition for a select that we want to form.
2771   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
2772     if (IfCondPhiInst->getParent() == BB)
2773       return false;
2774 
2775   // Okay, we found that we can merge this two-entry phi node into a select.
2776   // Doing so would require us to fold *all* two entry phi nodes in this block.
2777   // At some point this becomes non-profitable (particularly if the target
2778   // doesn't support cmov's).  Only do this transformation if there are two or
2779   // fewer PHI nodes in this block.
2780   unsigned NumPhis = 0;
2781   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2782     if (NumPhis > 2)
2783       return false;
2784 
2785   // Loop over the PHI's seeing if we can promote them all to select
2786   // instructions.  While we are at it, keep track of the instructions
2787   // that need to be moved to the dominating block.
2788   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2789   InstructionCost Cost = 0;
2790   InstructionCost Budget =
2791       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2792 
2793   bool Changed = false;
2794   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2795     PHINode *PN = cast<PHINode>(II++);
2796     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2797       PN->replaceAllUsesWith(V);
2798       PN->eraseFromParent();
2799       Changed = true;
2800       continue;
2801     }
2802 
2803     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2804                              Cost, Budget, TTI) ||
2805         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2806                              Cost, Budget, TTI))
2807       return Changed;
2808   }
2809 
2810   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2811   // we ran out of PHIs then we simplified them all.
2812   PN = dyn_cast<PHINode>(BB->begin());
2813   if (!PN)
2814     return true;
2815 
2816   // Return true if at least one of these is a 'not', and another is either
2817   // a 'not' too, or a constant.
2818   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2819     if (!match(V0, m_Not(m_Value())))
2820       std::swap(V0, V1);
2821     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2822     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2823   };
2824 
2825   // Don't fold i1 branches on PHIs which contain binary operators or
2826   // (possibly inverted) select form of or/ands,  unless one of
2827   // the incoming values is an 'not' and another one is freely invertible.
2828   // These can often be turned into switches and other things.
2829   auto IsBinOpOrAnd = [](Value *V) {
2830     return match(
2831         V, m_CombineOr(
2832                m_BinOp(),
2833                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
2834                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
2835   };
2836   if (PN->getType()->isIntegerTy(1) &&
2837       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2838        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2839       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2840                                  PN->getIncomingValue(1)))
2841     return Changed;
2842 
2843   // If all PHI nodes are promotable, check to make sure that all instructions
2844   // in the predecessor blocks can be promoted as well. If not, we won't be able
2845   // to get rid of the control flow, so it's not worth promoting to select
2846   // instructions.
2847   for (BasicBlock *IfBlock : IfBlocks)
2848     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
2849       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2850           !isa<PseudoProbeInst>(I)) {
2851         // This is not an aggressive instruction that we can promote.
2852         // Because of this, we won't be able to get rid of the control flow, so
2853         // the xform is not worth it.
2854         return Changed;
2855       }
2856 
2857   // If either of the blocks has it's address taken, we can't do this fold.
2858   if (any_of(IfBlocks,
2859              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
2860     return Changed;
2861 
2862   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2863                     << "  T: " << IfTrue->getName()
2864                     << "  F: " << IfFalse->getName() << "\n");
2865 
2866   // If we can still promote the PHI nodes after this gauntlet of tests,
2867   // do all of the PHI's now.
2868 
2869   // Move all 'aggressive' instructions, which are defined in the
2870   // conditional parts of the if's up to the dominating block.
2871   for (BasicBlock *IfBlock : IfBlocks)
2872       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
2873 
2874   IRBuilder<NoFolder> Builder(DomBI);
2875   // Propagate fast-math-flags from phi nodes to replacement selects.
2876   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2877   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2878     if (isa<FPMathOperator>(PN))
2879       Builder.setFastMathFlags(PN->getFastMathFlags());
2880 
2881     // Change the PHI node into a select instruction.
2882     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
2883     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
2884 
2885     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
2886     PN->replaceAllUsesWith(Sel);
2887     Sel->takeName(PN);
2888     PN->eraseFromParent();
2889   }
2890 
2891   // At this point, all IfBlocks are empty, so our if statement
2892   // has been flattened.  Change DomBlock to jump directly to our new block to
2893   // avoid other simplifycfg's kicking in on the diamond.
2894   Builder.CreateBr(BB);
2895 
2896   SmallVector<DominatorTree::UpdateType, 3> Updates;
2897   if (DTU) {
2898     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2899     for (auto *Successor : successors(DomBlock))
2900       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2901   }
2902 
2903   DomBI->eraseFromParent();
2904   if (DTU)
2905     DTU->applyUpdates(Updates);
2906 
2907   return true;
2908 }
2909 
2910 /// If we found a conditional branch that goes to two returning blocks,
2911 /// try to merge them together into one return,
2912 /// introducing a select if the return values disagree.
2913 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2914                                                     IRBuilder<> &Builder) {
2915   auto *BB = BI->getParent();
2916   assert(BI->isConditional() && "Must be a conditional branch");
2917   BasicBlock *TrueSucc = BI->getSuccessor(0);
2918   BasicBlock *FalseSucc = BI->getSuccessor(1);
2919   if (TrueSucc == FalseSucc)
2920     return false;
2921   // NOTE: destinations may match, this could be degenerate uncond branch.
2922   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2923   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2924 
2925   // Check to ensure both blocks are empty (just a return) or optionally empty
2926   // with PHI nodes.  If there are other instructions, merging would cause extra
2927   // computation on one path or the other.
2928   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2929     return false;
2930   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2931     return false;
2932 
2933   Builder.SetInsertPoint(BI);
2934   // Okay, we found a branch that is going to two return nodes.  If
2935   // there is no return value for this function, just change the
2936   // branch into a return.
2937   if (FalseRet->getNumOperands() == 0) {
2938     TrueSucc->removePredecessor(BB);
2939     FalseSucc->removePredecessor(BB);
2940     Builder.CreateRetVoid();
2941     EraseTerminatorAndDCECond(BI);
2942     if (DTU)
2943       DTU->applyUpdates({{DominatorTree::Delete, BB, TrueSucc},
2944                          {DominatorTree::Delete, BB, FalseSucc}});
2945     return true;
2946   }
2947 
2948   // Otherwise, figure out what the true and false return values are
2949   // so we can insert a new select instruction.
2950   Value *TrueValue = TrueRet->getReturnValue();
2951   Value *FalseValue = FalseRet->getReturnValue();
2952 
2953   // Unwrap any PHI nodes in the return blocks.
2954   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2955     if (TVPN->getParent() == TrueSucc)
2956       TrueValue = TVPN->getIncomingValueForBlock(BB);
2957   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2958     if (FVPN->getParent() == FalseSucc)
2959       FalseValue = FVPN->getIncomingValueForBlock(BB);
2960 
2961   // In order for this transformation to be safe, we must be able to
2962   // unconditionally execute both operands to the return.  This is
2963   // normally the case, but we could have a potentially-trapping
2964   // constant expression that prevents this transformation from being
2965   // safe.
2966   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2967     if (TCV->canTrap())
2968       return false;
2969   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2970     if (FCV->canTrap())
2971       return false;
2972 
2973   // Okay, we collected all the mapped values and checked them for sanity, and
2974   // defined to really do this transformation.  First, update the CFG.
2975   TrueSucc->removePredecessor(BB);
2976   FalseSucc->removePredecessor(BB);
2977 
2978   // Insert select instructions where needed.
2979   Value *BrCond = BI->getCondition();
2980   if (TrueValue) {
2981     // Insert a select if the results differ.
2982     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2983     } else if (isa<UndefValue>(TrueValue)) {
2984       TrueValue = FalseValue;
2985     } else {
2986       TrueValue =
2987           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2988     }
2989   }
2990 
2991   Value *RI =
2992       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2993 
2994   (void)RI;
2995 
2996   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2997                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2998                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2999 
3000   EraseTerminatorAndDCECond(BI);
3001   if (DTU)
3002     DTU->applyUpdates({{DominatorTree::Delete, BB, TrueSucc},
3003                        {DominatorTree::Delete, BB, FalseSucc}});
3004 
3005   return true;
3006 }
3007 
3008 static Value *createLogicalOp(IRBuilderBase &Builder,
3009                               Instruction::BinaryOps Opc, Value *LHS,
3010                               Value *RHS, const Twine &Name = "") {
3011   // Try to relax logical op to binary op.
3012   if (impliesPoison(RHS, LHS))
3013     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3014   if (Opc == Instruction::And)
3015     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3016   if (Opc == Instruction::Or)
3017     return Builder.CreateLogicalOr(LHS, RHS, Name);
3018   llvm_unreachable("Invalid logical opcode");
3019 }
3020 
3021 /// Return true if either PBI or BI has branch weight available, and store
3022 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3023 /// not have branch weight, use 1:1 as its weight.
3024 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3025                                    uint64_t &PredTrueWeight,
3026                                    uint64_t &PredFalseWeight,
3027                                    uint64_t &SuccTrueWeight,
3028                                    uint64_t &SuccFalseWeight) {
3029   bool PredHasWeights =
3030       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
3031   bool SuccHasWeights =
3032       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
3033   if (PredHasWeights || SuccHasWeights) {
3034     if (!PredHasWeights)
3035       PredTrueWeight = PredFalseWeight = 1;
3036     if (!SuccHasWeights)
3037       SuccTrueWeight = SuccFalseWeight = 1;
3038     return true;
3039   } else {
3040     return false;
3041   }
3042 }
3043 
3044 /// Determine if the two branches share a common destination and deduce a glue
3045 /// that joins the branches' conditions to arrive at the common destination if
3046 /// that would be profitable.
3047 static Optional<std::pair<Instruction::BinaryOps, bool>>
3048 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3049                                           const TargetTransformInfo *TTI) {
3050   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3051          "Both blocks must end with a conditional branches.");
3052   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3053          "PredBB must be a predecessor of BB.");
3054 
3055   // We have the potential to fold the conditions together, but if the
3056   // predecessor branch is predictable, we may not want to merge them.
3057   uint64_t PTWeight, PFWeight;
3058   BranchProbability PBITrueProb, Likely;
3059   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3060       PBI->extractProfMetadata(PTWeight, PFWeight) &&
3061       (PTWeight + PFWeight) != 0) {
3062     PBITrueProb =
3063         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3064     Likely = TTI->getPredictableBranchThreshold();
3065   }
3066 
3067   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3068     // Speculate the 2nd condition unless the 1st is probably true.
3069     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3070       return {{Instruction::Or, false}};
3071   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3072     // Speculate the 2nd condition unless the 1st is probably false.
3073     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3074       return {{Instruction::And, false}};
3075   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3076     // Speculate the 2nd condition unless the 1st is probably true.
3077     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3078       return {{Instruction::And, true}};
3079   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3080     // Speculate the 2nd condition unless the 1st is probably false.
3081     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3082       return {{Instruction::Or, true}};
3083   }
3084   return None;
3085 }
3086 
3087 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3088                                              DomTreeUpdater *DTU,
3089                                              MemorySSAUpdater *MSSAU,
3090                                              const TargetTransformInfo *TTI) {
3091   BasicBlock *BB = BI->getParent();
3092   BasicBlock *PredBlock = PBI->getParent();
3093 
3094   // Determine if the two branches share a common destination.
3095   Instruction::BinaryOps Opc;
3096   bool InvertPredCond;
3097   std::tie(Opc, InvertPredCond) =
3098       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3099 
3100   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3101 
3102   IRBuilder<> Builder(PBI);
3103   // The builder is used to create instructions to eliminate the branch in BB.
3104   // If BB's terminator has !annotation metadata, add it to the new
3105   // instructions.
3106   Builder.CollectMetadataToCopy(BB->getTerminator(),
3107                                 {LLVMContext::MD_annotation});
3108 
3109   // If we need to invert the condition in the pred block to match, do so now.
3110   if (InvertPredCond) {
3111     Value *NewCond = PBI->getCondition();
3112     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3113       CmpInst *CI = cast<CmpInst>(NewCond);
3114       CI->setPredicate(CI->getInversePredicate());
3115     } else {
3116       NewCond =
3117           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3118     }
3119 
3120     PBI->setCondition(NewCond);
3121     PBI->swapSuccessors();
3122   }
3123 
3124   BasicBlock *UniqueSucc =
3125       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3126 
3127   // Before cloning instructions, notify the successor basic block that it
3128   // is about to have a new predecessor. This will update PHI nodes,
3129   // which will allow us to update live-out uses of bonus instructions.
3130   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3131 
3132   // Try to update branch weights.
3133   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3134   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3135                              SuccTrueWeight, SuccFalseWeight)) {
3136     SmallVector<uint64_t, 8> NewWeights;
3137 
3138     if (PBI->getSuccessor(0) == BB) {
3139       // PBI: br i1 %x, BB, FalseDest
3140       // BI:  br i1 %y, UniqueSucc, FalseDest
3141       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3142       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3143       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3144       //               TrueWeight for PBI * FalseWeight for BI.
3145       // We assume that total weights of a BranchInst can fit into 32 bits.
3146       // Therefore, we will not have overflow using 64-bit arithmetic.
3147       NewWeights.push_back(PredFalseWeight *
3148                                (SuccFalseWeight + SuccTrueWeight) +
3149                            PredTrueWeight * SuccFalseWeight);
3150     } else {
3151       // PBI: br i1 %x, TrueDest, BB
3152       // BI:  br i1 %y, TrueDest, UniqueSucc
3153       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3154       //              FalseWeight for PBI * TrueWeight for BI.
3155       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3156                            PredFalseWeight * SuccTrueWeight);
3157       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3158       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3159     }
3160 
3161     // Halve the weights if any of them cannot fit in an uint32_t
3162     FitWeights(NewWeights);
3163 
3164     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3165     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3166 
3167     // TODO: If BB is reachable from all paths through PredBlock, then we
3168     // could replace PBI's branch probabilities with BI's.
3169   } else
3170     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3171 
3172   // Now, update the CFG.
3173   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3174 
3175   if (DTU)
3176     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3177                        {DominatorTree::Delete, PredBlock, BB}});
3178 
3179   // If BI was a loop latch, it may have had associated loop metadata.
3180   // We need to copy it to the new latch, that is, PBI.
3181   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3182     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3183 
3184   ValueToValueMapTy VMap; // maps original values to cloned values
3185   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3186 
3187   // Now that the Cond was cloned into the predecessor basic block,
3188   // or/and the two conditions together.
3189   Value *BICond = VMap[BI->getCondition()];
3190   PBI->setCondition(
3191       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3192 
3193   // Copy any debug value intrinsics into the end of PredBlock.
3194   for (Instruction &I : *BB) {
3195     if (isa<DbgInfoIntrinsic>(I)) {
3196       Instruction *NewI = I.clone();
3197       RemapInstruction(NewI, VMap,
3198                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3199       NewI->insertBefore(PBI);
3200     }
3201   }
3202 
3203   ++NumFoldBranchToCommonDest;
3204   return true;
3205 }
3206 
3207 /// If this basic block is simple enough, and if a predecessor branches to us
3208 /// and one of our successors, fold the block into the predecessor and use
3209 /// logical operations to pick the right destination.
3210 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3211                                   MemorySSAUpdater *MSSAU,
3212                                   const TargetTransformInfo *TTI,
3213                                   unsigned BonusInstThreshold) {
3214   // If this block ends with an unconditional branch,
3215   // let SpeculativelyExecuteBB() deal with it.
3216   if (!BI->isConditional())
3217     return false;
3218 
3219   BasicBlock *BB = BI->getParent();
3220   TargetTransformInfo::TargetCostKind CostKind =
3221     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3222                                   : TargetTransformInfo::TCK_SizeAndLatency;
3223 
3224   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3225 
3226   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3227       Cond->getParent() != BB || !Cond->hasOneUse())
3228     return false;
3229 
3230   // Cond is known to be a compare or binary operator.  Check to make sure that
3231   // neither operand is a potentially-trapping constant expression.
3232   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3233     if (CE->canTrap())
3234       return false;
3235   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3236     if (CE->canTrap())
3237       return false;
3238 
3239   // Finally, don't infinitely unroll conditional loops.
3240   if (is_contained(successors(BB), BB))
3241     return false;
3242 
3243   // With which predecessors will we want to deal with?
3244   SmallVector<BasicBlock *, 8> Preds;
3245   for (BasicBlock *PredBlock : predecessors(BB)) {
3246     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3247 
3248     // Check that we have two conditional branches.  If there is a PHI node in
3249     // the common successor, verify that the same value flows in from both
3250     // blocks.
3251     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3252       continue;
3253 
3254     // Determine if the two branches share a common destination.
3255     Instruction::BinaryOps Opc;
3256     bool InvertPredCond;
3257     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3258       std::tie(Opc, InvertPredCond) = *Recipe;
3259     else
3260       continue;
3261 
3262     // Check the cost of inserting the necessary logic before performing the
3263     // transformation.
3264     if (TTI) {
3265       Type *Ty = BI->getCondition()->getType();
3266       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3267       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3268           !isa<CmpInst>(PBI->getCondition())))
3269         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3270 
3271       if (Cost > BranchFoldThreshold)
3272         continue;
3273     }
3274 
3275     // Ok, we do want to deal with this predecessor. Record it.
3276     Preds.emplace_back(PredBlock);
3277   }
3278 
3279   // If there aren't any predecessors into which we can fold,
3280   // don't bother checking the cost.
3281   if (Preds.empty())
3282     return false;
3283 
3284   // Only allow this transformation if computing the condition doesn't involve
3285   // too many instructions and these involved instructions can be executed
3286   // unconditionally. We denote all involved instructions except the condition
3287   // as "bonus instructions", and only allow this transformation when the
3288   // number of the bonus instructions we'll need to create when cloning into
3289   // each predecessor does not exceed a certain threshold.
3290   unsigned NumBonusInsts = 0;
3291   const unsigned PredCount = Preds.size();
3292   for (Instruction &I : *BB) {
3293     // Don't check the branch condition comparison itself.
3294     if (&I == Cond)
3295       continue;
3296     // Ignore dbg intrinsics, and the terminator.
3297     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3298       continue;
3299     // I must be safe to execute unconditionally.
3300     if (!isSafeToSpeculativelyExecute(&I))
3301       return false;
3302 
3303     // Account for the cost of duplicating this instruction into each
3304     // predecessor.
3305     NumBonusInsts += PredCount;
3306     // Early exits once we reach the limit.
3307     if (NumBonusInsts > BonusInstThreshold)
3308       return false;
3309   }
3310 
3311   // Ok, we have the budget. Perform the transformation.
3312   for (BasicBlock *PredBlock : Preds) {
3313     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3314     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3315   }
3316   return false;
3317 }
3318 
3319 // If there is only one store in BB1 and BB2, return it, otherwise return
3320 // nullptr.
3321 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3322   StoreInst *S = nullptr;
3323   for (auto *BB : {BB1, BB2}) {
3324     if (!BB)
3325       continue;
3326     for (auto &I : *BB)
3327       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3328         if (S)
3329           // Multiple stores seen.
3330           return nullptr;
3331         else
3332           S = SI;
3333       }
3334   }
3335   return S;
3336 }
3337 
3338 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3339                                               Value *AlternativeV = nullptr) {
3340   // PHI is going to be a PHI node that allows the value V that is defined in
3341   // BB to be referenced in BB's only successor.
3342   //
3343   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3344   // doesn't matter to us what the other operand is (it'll never get used). We
3345   // could just create a new PHI with an undef incoming value, but that could
3346   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3347   // other PHI. So here we directly look for some PHI in BB's successor with V
3348   // as an incoming operand. If we find one, we use it, else we create a new
3349   // one.
3350   //
3351   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3352   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3353   // where OtherBB is the single other predecessor of BB's only successor.
3354   PHINode *PHI = nullptr;
3355   BasicBlock *Succ = BB->getSingleSuccessor();
3356 
3357   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3358     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3359       PHI = cast<PHINode>(I);
3360       if (!AlternativeV)
3361         break;
3362 
3363       assert(Succ->hasNPredecessors(2));
3364       auto PredI = pred_begin(Succ);
3365       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3366       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3367         break;
3368       PHI = nullptr;
3369     }
3370   if (PHI)
3371     return PHI;
3372 
3373   // If V is not an instruction defined in BB, just return it.
3374   if (!AlternativeV &&
3375       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3376     return V;
3377 
3378   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3379   PHI->addIncoming(V, BB);
3380   for (BasicBlock *PredBB : predecessors(Succ))
3381     if (PredBB != BB)
3382       PHI->addIncoming(
3383           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3384   return PHI;
3385 }
3386 
3387 static bool mergeConditionalStoreToAddress(
3388     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3389     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3390     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3391   // For every pointer, there must be exactly two stores, one coming from
3392   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3393   // store (to any address) in PTB,PFB or QTB,QFB.
3394   // FIXME: We could relax this restriction with a bit more work and performance
3395   // testing.
3396   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3397   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3398   if (!PStore || !QStore)
3399     return false;
3400 
3401   // Now check the stores are compatible.
3402   if (!QStore->isUnordered() || !PStore->isUnordered())
3403     return false;
3404 
3405   // Check that sinking the store won't cause program behavior changes. Sinking
3406   // the store out of the Q blocks won't change any behavior as we're sinking
3407   // from a block to its unconditional successor. But we're moving a store from
3408   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3409   // So we need to check that there are no aliasing loads or stores in
3410   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3411   // operations between PStore and the end of its parent block.
3412   //
3413   // The ideal way to do this is to query AliasAnalysis, but we don't
3414   // preserve AA currently so that is dangerous. Be super safe and just
3415   // check there are no other memory operations at all.
3416   for (auto &I : *QFB->getSinglePredecessor())
3417     if (I.mayReadOrWriteMemory())
3418       return false;
3419   for (auto &I : *QFB)
3420     if (&I != QStore && I.mayReadOrWriteMemory())
3421       return false;
3422   if (QTB)
3423     for (auto &I : *QTB)
3424       if (&I != QStore && I.mayReadOrWriteMemory())
3425         return false;
3426   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3427        I != E; ++I)
3428     if (&*I != PStore && I->mayReadOrWriteMemory())
3429       return false;
3430 
3431   // If we're not in aggressive mode, we only optimize if we have some
3432   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3433   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3434     if (!BB)
3435       return true;
3436     // Heuristic: if the block can be if-converted/phi-folded and the
3437     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3438     // thread this store.
3439     InstructionCost Cost = 0;
3440     InstructionCost Budget =
3441         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3442     for (auto &I : BB->instructionsWithoutDebug()) {
3443       // Consider terminator instruction to be free.
3444       if (I.isTerminator())
3445         continue;
3446       // If this is one the stores that we want to speculate out of this BB,
3447       // then don't count it's cost, consider it to be free.
3448       if (auto *S = dyn_cast<StoreInst>(&I))
3449         if (llvm::find(FreeStores, S))
3450           continue;
3451       // Else, we have a white-list of instructions that we are ak speculating.
3452       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3453         return false; // Not in white-list - not worthwhile folding.
3454       // And finally, if this is a non-free instruction that we are okay
3455       // speculating, ensure that we consider the speculation budget.
3456       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3457       if (Cost > Budget)
3458         return false; // Eagerly refuse to fold as soon as we're out of budget.
3459     }
3460     assert(Cost <= Budget &&
3461            "When we run out of budget we will eagerly return from within the "
3462            "per-instruction loop.");
3463     return true;
3464   };
3465 
3466   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3467   if (!MergeCondStoresAggressively &&
3468       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3469        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3470     return false;
3471 
3472   // If PostBB has more than two predecessors, we need to split it so we can
3473   // sink the store.
3474   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3475     // We know that QFB's only successor is PostBB. And QFB has a single
3476     // predecessor. If QTB exists, then its only successor is also PostBB.
3477     // If QTB does not exist, then QFB's only predecessor has a conditional
3478     // branch to QFB and PostBB.
3479     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3480     BasicBlock *NewBB =
3481         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3482     if (!NewBB)
3483       return false;
3484     PostBB = NewBB;
3485   }
3486 
3487   // OK, we're going to sink the stores to PostBB. The store has to be
3488   // conditional though, so first create the predicate.
3489   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3490                      ->getCondition();
3491   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3492                      ->getCondition();
3493 
3494   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3495                                                 PStore->getParent());
3496   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3497                                                 QStore->getParent(), PPHI);
3498 
3499   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3500 
3501   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3502   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3503 
3504   if (InvertPCond)
3505     PPred = QB.CreateNot(PPred);
3506   if (InvertQCond)
3507     QPred = QB.CreateNot(QPred);
3508   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3509 
3510   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3511                                       /*Unreachable=*/false,
3512                                       /*BranchWeights=*/nullptr, DTU);
3513   QB.SetInsertPoint(T);
3514   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3515   AAMDNodes AAMD;
3516   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3517   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3518   SI->setAAMetadata(AAMD);
3519   // Choose the minimum alignment. If we could prove both stores execute, we
3520   // could use biggest one.  In this case, though, we only know that one of the
3521   // stores executes.  And we don't know it's safe to take the alignment from a
3522   // store that doesn't execute.
3523   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3524 
3525   QStore->eraseFromParent();
3526   PStore->eraseFromParent();
3527 
3528   return true;
3529 }
3530 
3531 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3532                                    DomTreeUpdater *DTU, const DataLayout &DL,
3533                                    const TargetTransformInfo &TTI) {
3534   // The intention here is to find diamonds or triangles (see below) where each
3535   // conditional block contains a store to the same address. Both of these
3536   // stores are conditional, so they can't be unconditionally sunk. But it may
3537   // be profitable to speculatively sink the stores into one merged store at the
3538   // end, and predicate the merged store on the union of the two conditions of
3539   // PBI and QBI.
3540   //
3541   // This can reduce the number of stores executed if both of the conditions are
3542   // true, and can allow the blocks to become small enough to be if-converted.
3543   // This optimization will also chain, so that ladders of test-and-set
3544   // sequences can be if-converted away.
3545   //
3546   // We only deal with simple diamonds or triangles:
3547   //
3548   //     PBI       or      PBI        or a combination of the two
3549   //    /   \               | \
3550   //   PTB  PFB             |  PFB
3551   //    \   /               | /
3552   //     QBI                QBI
3553   //    /  \                | \
3554   //   QTB  QFB             |  QFB
3555   //    \  /                | /
3556   //    PostBB            PostBB
3557   //
3558   // We model triangles as a type of diamond with a nullptr "true" block.
3559   // Triangles are canonicalized so that the fallthrough edge is represented by
3560   // a true condition, as in the diagram above.
3561   BasicBlock *PTB = PBI->getSuccessor(0);
3562   BasicBlock *PFB = PBI->getSuccessor(1);
3563   BasicBlock *QTB = QBI->getSuccessor(0);
3564   BasicBlock *QFB = QBI->getSuccessor(1);
3565   BasicBlock *PostBB = QFB->getSingleSuccessor();
3566 
3567   // Make sure we have a good guess for PostBB. If QTB's only successor is
3568   // QFB, then QFB is a better PostBB.
3569   if (QTB->getSingleSuccessor() == QFB)
3570     PostBB = QFB;
3571 
3572   // If we couldn't find a good PostBB, stop.
3573   if (!PostBB)
3574     return false;
3575 
3576   bool InvertPCond = false, InvertQCond = false;
3577   // Canonicalize fallthroughs to the true branches.
3578   if (PFB == QBI->getParent()) {
3579     std::swap(PFB, PTB);
3580     InvertPCond = true;
3581   }
3582   if (QFB == PostBB) {
3583     std::swap(QFB, QTB);
3584     InvertQCond = true;
3585   }
3586 
3587   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3588   // and QFB may not. Model fallthroughs as a nullptr block.
3589   if (PTB == QBI->getParent())
3590     PTB = nullptr;
3591   if (QTB == PostBB)
3592     QTB = nullptr;
3593 
3594   // Legality bailouts. We must have at least the non-fallthrough blocks and
3595   // the post-dominating block, and the non-fallthroughs must only have one
3596   // predecessor.
3597   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3598     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3599   };
3600   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3601       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3602     return false;
3603   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3604       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3605     return false;
3606   if (!QBI->getParent()->hasNUses(2))
3607     return false;
3608 
3609   // OK, this is a sequence of two diamonds or triangles.
3610   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3611   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3612   for (auto *BB : {PTB, PFB}) {
3613     if (!BB)
3614       continue;
3615     for (auto &I : *BB)
3616       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3617         PStoreAddresses.insert(SI->getPointerOperand());
3618   }
3619   for (auto *BB : {QTB, QFB}) {
3620     if (!BB)
3621       continue;
3622     for (auto &I : *BB)
3623       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3624         QStoreAddresses.insert(SI->getPointerOperand());
3625   }
3626 
3627   set_intersect(PStoreAddresses, QStoreAddresses);
3628   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3629   // clear what it contains.
3630   auto &CommonAddresses = PStoreAddresses;
3631 
3632   bool Changed = false;
3633   for (auto *Address : CommonAddresses)
3634     Changed |=
3635         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3636                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3637   return Changed;
3638 }
3639 
3640 /// If the previous block ended with a widenable branch, determine if reusing
3641 /// the target block is profitable and legal.  This will have the effect of
3642 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3643 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3644                                            DomTreeUpdater *DTU) {
3645   // TODO: This can be generalized in two important ways:
3646   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3647   //    values from the PBI edge.
3648   // 2) We can sink side effecting instructions into BI's fallthrough
3649   //    successor provided they doesn't contribute to computation of
3650   //    BI's condition.
3651   Value *CondWB, *WC;
3652   BasicBlock *IfTrueBB, *IfFalseBB;
3653   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3654       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3655     return false;
3656   if (!IfFalseBB->phis().empty())
3657     return false; // TODO
3658   // Use lambda to lazily compute expensive condition after cheap ones.
3659   auto NoSideEffects = [](BasicBlock &BB) {
3660     return !llvm::any_of(BB, [](const Instruction &I) {
3661         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3662       });
3663   };
3664   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3665       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3666       NoSideEffects(*BI->getParent())) {
3667     auto *OldSuccessor = BI->getSuccessor(1);
3668     OldSuccessor->removePredecessor(BI->getParent());
3669     BI->setSuccessor(1, IfFalseBB);
3670     if (DTU)
3671       DTU->applyUpdates(
3672           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3673            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3674     return true;
3675   }
3676   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3677       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3678       NoSideEffects(*BI->getParent())) {
3679     auto *OldSuccessor = BI->getSuccessor(0);
3680     OldSuccessor->removePredecessor(BI->getParent());
3681     BI->setSuccessor(0, IfFalseBB);
3682     if (DTU)
3683       DTU->applyUpdates(
3684           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3685            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3686     return true;
3687   }
3688   return false;
3689 }
3690 
3691 /// If we have a conditional branch as a predecessor of another block,
3692 /// this function tries to simplify it.  We know
3693 /// that PBI and BI are both conditional branches, and BI is in one of the
3694 /// successor blocks of PBI - PBI branches to BI.
3695 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3696                                            DomTreeUpdater *DTU,
3697                                            const DataLayout &DL,
3698                                            const TargetTransformInfo &TTI) {
3699   assert(PBI->isConditional() && BI->isConditional());
3700   BasicBlock *BB = BI->getParent();
3701 
3702   // If this block ends with a branch instruction, and if there is a
3703   // predecessor that ends on a branch of the same condition, make
3704   // this conditional branch redundant.
3705   if (PBI->getCondition() == BI->getCondition() &&
3706       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3707     // Okay, the outcome of this conditional branch is statically
3708     // knowable.  If this block had a single pred, handle specially.
3709     if (BB->getSinglePredecessor()) {
3710       // Turn this into a branch on constant.
3711       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3712       BI->setCondition(
3713           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3714       return true; // Nuke the branch on constant.
3715     }
3716 
3717     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3718     // in the constant and simplify the block result.  Subsequent passes of
3719     // simplifycfg will thread the block.
3720     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3721       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3722       PHINode *NewPN = PHINode::Create(
3723           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3724           BI->getCondition()->getName() + ".pr", &BB->front());
3725       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3726       // predecessor, compute the PHI'd conditional value for all of the preds.
3727       // Any predecessor where the condition is not computable we keep symbolic.
3728       for (pred_iterator PI = PB; PI != PE; ++PI) {
3729         BasicBlock *P = *PI;
3730         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3731             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3732             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3733           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3734           NewPN->addIncoming(
3735               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3736               P);
3737         } else {
3738           NewPN->addIncoming(BI->getCondition(), P);
3739         }
3740       }
3741 
3742       BI->setCondition(NewPN);
3743       return true;
3744     }
3745   }
3746 
3747   // If the previous block ended with a widenable branch, determine if reusing
3748   // the target block is profitable and legal.  This will have the effect of
3749   // "widening" PBI, but doesn't require us to reason about hosting safety.
3750   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3751     return true;
3752 
3753   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3754     if (CE->canTrap())
3755       return false;
3756 
3757   // If both branches are conditional and both contain stores to the same
3758   // address, remove the stores from the conditionals and create a conditional
3759   // merged store at the end.
3760   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3761     return true;
3762 
3763   // If this is a conditional branch in an empty block, and if any
3764   // predecessors are a conditional branch to one of our destinations,
3765   // fold the conditions into logical ops and one cond br.
3766 
3767   // Ignore dbg intrinsics.
3768   if (&*BB->instructionsWithoutDebug().begin() != BI)
3769     return false;
3770 
3771   int PBIOp, BIOp;
3772   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3773     PBIOp = 0;
3774     BIOp = 0;
3775   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3776     PBIOp = 0;
3777     BIOp = 1;
3778   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3779     PBIOp = 1;
3780     BIOp = 0;
3781   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3782     PBIOp = 1;
3783     BIOp = 1;
3784   } else {
3785     return false;
3786   }
3787 
3788   // Check to make sure that the other destination of this branch
3789   // isn't BB itself.  If so, this is an infinite loop that will
3790   // keep getting unwound.
3791   if (PBI->getSuccessor(PBIOp) == BB)
3792     return false;
3793 
3794   // Do not perform this transformation if it would require
3795   // insertion of a large number of select instructions. For targets
3796   // without predication/cmovs, this is a big pessimization.
3797 
3798   // Also do not perform this transformation if any phi node in the common
3799   // destination block can trap when reached by BB or PBB (PR17073). In that
3800   // case, it would be unsafe to hoist the operation into a select instruction.
3801 
3802   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3803   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3804   unsigned NumPhis = 0;
3805   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3806        ++II, ++NumPhis) {
3807     if (NumPhis > 2) // Disable this xform.
3808       return false;
3809 
3810     PHINode *PN = cast<PHINode>(II);
3811     Value *BIV = PN->getIncomingValueForBlock(BB);
3812     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3813       if (CE->canTrap())
3814         return false;
3815 
3816     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3817     Value *PBIV = PN->getIncomingValue(PBBIdx);
3818     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3819       if (CE->canTrap())
3820         return false;
3821   }
3822 
3823   // Finally, if everything is ok, fold the branches to logical ops.
3824   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3825 
3826   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3827                     << "AND: " << *BI->getParent());
3828 
3829   SmallVector<DominatorTree::UpdateType, 5> Updates;
3830 
3831   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3832   // branch in it, where one edge (OtherDest) goes back to itself but the other
3833   // exits.  We don't *know* that the program avoids the infinite loop
3834   // (even though that seems likely).  If we do this xform naively, we'll end up
3835   // recursively unpeeling the loop.  Since we know that (after the xform is
3836   // done) that the block *is* infinite if reached, we just make it an obviously
3837   // infinite loop with no cond branch.
3838   if (OtherDest == BB) {
3839     // Insert it at the end of the function, because it's either code,
3840     // or it won't matter if it's hot. :)
3841     BasicBlock *InfLoopBlock =
3842         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3843     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3844     if (DTU)
3845       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3846     OtherDest = InfLoopBlock;
3847   }
3848 
3849   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3850 
3851   // BI may have other predecessors.  Because of this, we leave
3852   // it alone, but modify PBI.
3853 
3854   // Make sure we get to CommonDest on True&True directions.
3855   Value *PBICond = PBI->getCondition();
3856   IRBuilder<NoFolder> Builder(PBI);
3857   if (PBIOp)
3858     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3859 
3860   Value *BICond = BI->getCondition();
3861   if (BIOp)
3862     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3863 
3864   // Merge the conditions.
3865   Value *Cond =
3866       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
3867 
3868   // Modify PBI to branch on the new condition to the new dests.
3869   PBI->setCondition(Cond);
3870   PBI->setSuccessor(0, CommonDest);
3871   PBI->setSuccessor(1, OtherDest);
3872 
3873   if (DTU) {
3874     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3875     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3876 
3877     DTU->applyUpdates(Updates);
3878   }
3879 
3880   // Update branch weight for PBI.
3881   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3882   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3883   bool HasWeights =
3884       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3885                              SuccTrueWeight, SuccFalseWeight);
3886   if (HasWeights) {
3887     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3888     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3889     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3890     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3891     // The weight to CommonDest should be PredCommon * SuccTotal +
3892     //                                    PredOther * SuccCommon.
3893     // The weight to OtherDest should be PredOther * SuccOther.
3894     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3895                                   PredOther * SuccCommon,
3896                               PredOther * SuccOther};
3897     // Halve the weights if any of them cannot fit in an uint32_t
3898     FitWeights(NewWeights);
3899 
3900     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3901   }
3902 
3903   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3904   // block that are identical to the entries for BI's block.
3905   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3906 
3907   // We know that the CommonDest already had an edge from PBI to
3908   // it.  If it has PHIs though, the PHIs may have different
3909   // entries for BB and PBI's BB.  If so, insert a select to make
3910   // them agree.
3911   for (PHINode &PN : CommonDest->phis()) {
3912     Value *BIV = PN.getIncomingValueForBlock(BB);
3913     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3914     Value *PBIV = PN.getIncomingValue(PBBIdx);
3915     if (BIV != PBIV) {
3916       // Insert a select in PBI to pick the right value.
3917       SelectInst *NV = cast<SelectInst>(
3918           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3919       PN.setIncomingValue(PBBIdx, NV);
3920       // Although the select has the same condition as PBI, the original branch
3921       // weights for PBI do not apply to the new select because the select's
3922       // 'logical' edges are incoming edges of the phi that is eliminated, not
3923       // the outgoing edges of PBI.
3924       if (HasWeights) {
3925         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3926         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3927         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3928         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3929         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3930         // The weight to PredOtherDest should be PredOther * SuccCommon.
3931         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3932                                   PredOther * SuccCommon};
3933 
3934         FitWeights(NewWeights);
3935 
3936         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3937       }
3938     }
3939   }
3940 
3941   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3942   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3943 
3944   // This basic block is probably dead.  We know it has at least
3945   // one fewer predecessor.
3946   return true;
3947 }
3948 
3949 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3950 // true or to FalseBB if Cond is false.
3951 // Takes care of updating the successors and removing the old terminator.
3952 // Also makes sure not to introduce new successors by assuming that edges to
3953 // non-successor TrueBBs and FalseBBs aren't reachable.
3954 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3955                                                 Value *Cond, BasicBlock *TrueBB,
3956                                                 BasicBlock *FalseBB,
3957                                                 uint32_t TrueWeight,
3958                                                 uint32_t FalseWeight) {
3959   auto *BB = OldTerm->getParent();
3960   // Remove any superfluous successor edges from the CFG.
3961   // First, figure out which successors to preserve.
3962   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3963   // successor.
3964   BasicBlock *KeepEdge1 = TrueBB;
3965   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3966 
3967   SmallPtrSet<BasicBlock *, 2> RemovedSuccessors;
3968 
3969   // Then remove the rest.
3970   for (BasicBlock *Succ : successors(OldTerm)) {
3971     // Make sure only to keep exactly one copy of each edge.
3972     if (Succ == KeepEdge1)
3973       KeepEdge1 = nullptr;
3974     else if (Succ == KeepEdge2)
3975       KeepEdge2 = nullptr;
3976     else {
3977       Succ->removePredecessor(BB,
3978                               /*KeepOneInputPHIs=*/true);
3979 
3980       if (Succ != TrueBB && Succ != FalseBB)
3981         RemovedSuccessors.insert(Succ);
3982     }
3983   }
3984 
3985   IRBuilder<> Builder(OldTerm);
3986   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3987 
3988   // Insert an appropriate new terminator.
3989   if (!KeepEdge1 && !KeepEdge2) {
3990     if (TrueBB == FalseBB) {
3991       // We were only looking for one successor, and it was present.
3992       // Create an unconditional branch to it.
3993       Builder.CreateBr(TrueBB);
3994     } else {
3995       // We found both of the successors we were looking for.
3996       // Create a conditional branch sharing the condition of the select.
3997       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3998       if (TrueWeight != FalseWeight)
3999         setBranchWeights(NewBI, TrueWeight, FalseWeight);
4000     }
4001   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4002     // Neither of the selected blocks were successors, so this
4003     // terminator must be unreachable.
4004     new UnreachableInst(OldTerm->getContext(), OldTerm);
4005   } else {
4006     // One of the selected values was a successor, but the other wasn't.
4007     // Insert an unconditional branch to the one that was found;
4008     // the edge to the one that wasn't must be unreachable.
4009     if (!KeepEdge1) {
4010       // Only TrueBB was found.
4011       Builder.CreateBr(TrueBB);
4012     } else {
4013       // Only FalseBB was found.
4014       Builder.CreateBr(FalseBB);
4015     }
4016   }
4017 
4018   EraseTerminatorAndDCECond(OldTerm);
4019 
4020   if (DTU) {
4021     SmallVector<DominatorTree::UpdateType, 2> Updates;
4022     Updates.reserve(RemovedSuccessors.size());
4023     for (auto *RemovedSuccessor : RemovedSuccessors)
4024       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4025     DTU->applyUpdates(Updates);
4026   }
4027 
4028   return true;
4029 }
4030 
4031 // Replaces
4032 //   (switch (select cond, X, Y)) on constant X, Y
4033 // with a branch - conditional if X and Y lead to distinct BBs,
4034 // unconditional otherwise.
4035 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4036                                             SelectInst *Select) {
4037   // Check for constant integer values in the select.
4038   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4039   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4040   if (!TrueVal || !FalseVal)
4041     return false;
4042 
4043   // Find the relevant condition and destinations.
4044   Value *Condition = Select->getCondition();
4045   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4046   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4047 
4048   // Get weight for TrueBB and FalseBB.
4049   uint32_t TrueWeight = 0, FalseWeight = 0;
4050   SmallVector<uint64_t, 8> Weights;
4051   bool HasWeights = HasBranchWeights(SI);
4052   if (HasWeights) {
4053     GetBranchWeights(SI, Weights);
4054     if (Weights.size() == 1 + SI->getNumCases()) {
4055       TrueWeight =
4056           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4057       FalseWeight =
4058           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4059     }
4060   }
4061 
4062   // Perform the actual simplification.
4063   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4064                                     FalseWeight);
4065 }
4066 
4067 // Replaces
4068 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4069 //                             blockaddress(@fn, BlockB)))
4070 // with
4071 //   (br cond, BlockA, BlockB).
4072 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4073                                                 SelectInst *SI) {
4074   // Check that both operands of the select are block addresses.
4075   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4076   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4077   if (!TBA || !FBA)
4078     return false;
4079 
4080   // Extract the actual blocks.
4081   BasicBlock *TrueBB = TBA->getBasicBlock();
4082   BasicBlock *FalseBB = FBA->getBasicBlock();
4083 
4084   // Perform the actual simplification.
4085   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4086                                     0);
4087 }
4088 
4089 /// This is called when we find an icmp instruction
4090 /// (a seteq/setne with a constant) as the only instruction in a
4091 /// block that ends with an uncond branch.  We are looking for a very specific
4092 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4093 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4094 /// default value goes to an uncond block with a seteq in it, we get something
4095 /// like:
4096 ///
4097 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4098 /// DEFAULT:
4099 ///   %tmp = icmp eq i8 %A, 92
4100 ///   br label %end
4101 /// end:
4102 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4103 ///
4104 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4105 /// the PHI, merging the third icmp into the switch.
4106 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4107     ICmpInst *ICI, IRBuilder<> &Builder) {
4108   BasicBlock *BB = ICI->getParent();
4109 
4110   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4111   // complex.
4112   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4113     return false;
4114 
4115   Value *V = ICI->getOperand(0);
4116   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4117 
4118   // The pattern we're looking for is where our only predecessor is a switch on
4119   // 'V' and this block is the default case for the switch.  In this case we can
4120   // fold the compared value into the switch to simplify things.
4121   BasicBlock *Pred = BB->getSinglePredecessor();
4122   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4123     return false;
4124 
4125   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4126   if (SI->getCondition() != V)
4127     return false;
4128 
4129   // If BB is reachable on a non-default case, then we simply know the value of
4130   // V in this block.  Substitute it and constant fold the icmp instruction
4131   // away.
4132   if (SI->getDefaultDest() != BB) {
4133     ConstantInt *VVal = SI->findCaseDest(BB);
4134     assert(VVal && "Should have a unique destination value");
4135     ICI->setOperand(0, VVal);
4136 
4137     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4138       ICI->replaceAllUsesWith(V);
4139       ICI->eraseFromParent();
4140     }
4141     // BB is now empty, so it is likely to simplify away.
4142     return requestResimplify();
4143   }
4144 
4145   // Ok, the block is reachable from the default dest.  If the constant we're
4146   // comparing exists in one of the other edges, then we can constant fold ICI
4147   // and zap it.
4148   if (SI->findCaseValue(Cst) != SI->case_default()) {
4149     Value *V;
4150     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4151       V = ConstantInt::getFalse(BB->getContext());
4152     else
4153       V = ConstantInt::getTrue(BB->getContext());
4154 
4155     ICI->replaceAllUsesWith(V);
4156     ICI->eraseFromParent();
4157     // BB is now empty, so it is likely to simplify away.
4158     return requestResimplify();
4159   }
4160 
4161   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4162   // the block.
4163   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4164   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4165   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4166       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4167     return false;
4168 
4169   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4170   // true in the PHI.
4171   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4172   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4173 
4174   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4175     std::swap(DefaultCst, NewCst);
4176 
4177   // Replace ICI (which is used by the PHI for the default value) with true or
4178   // false depending on if it is EQ or NE.
4179   ICI->replaceAllUsesWith(DefaultCst);
4180   ICI->eraseFromParent();
4181 
4182   SmallVector<DominatorTree::UpdateType, 2> Updates;
4183 
4184   // Okay, the switch goes to this block on a default value.  Add an edge from
4185   // the switch to the merge point on the compared value.
4186   BasicBlock *NewBB =
4187       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4188   {
4189     SwitchInstProfUpdateWrapper SIW(*SI);
4190     auto W0 = SIW.getSuccessorWeight(0);
4191     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4192     if (W0) {
4193       NewW = ((uint64_t(*W0) + 1) >> 1);
4194       SIW.setSuccessorWeight(0, *NewW);
4195     }
4196     SIW.addCase(Cst, NewBB, NewW);
4197     if (DTU)
4198       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4199   }
4200 
4201   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4202   Builder.SetInsertPoint(NewBB);
4203   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4204   Builder.CreateBr(SuccBlock);
4205   PHIUse->addIncoming(NewCst, NewBB);
4206   if (DTU) {
4207     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4208     DTU->applyUpdates(Updates);
4209   }
4210   return true;
4211 }
4212 
4213 /// The specified branch is a conditional branch.
4214 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4215 /// fold it into a switch instruction if so.
4216 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4217                                                IRBuilder<> &Builder,
4218                                                const DataLayout &DL) {
4219   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4220   if (!Cond)
4221     return false;
4222 
4223   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4224   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4225   // 'setne's and'ed together, collect them.
4226 
4227   // Try to gather values from a chain of and/or to be turned into a switch
4228   ConstantComparesGatherer ConstantCompare(Cond, DL);
4229   // Unpack the result
4230   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4231   Value *CompVal = ConstantCompare.CompValue;
4232   unsigned UsedICmps = ConstantCompare.UsedICmps;
4233   Value *ExtraCase = ConstantCompare.Extra;
4234 
4235   // If we didn't have a multiply compared value, fail.
4236   if (!CompVal)
4237     return false;
4238 
4239   // Avoid turning single icmps into a switch.
4240   if (UsedICmps <= 1)
4241     return false;
4242 
4243   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4244 
4245   // There might be duplicate constants in the list, which the switch
4246   // instruction can't handle, remove them now.
4247   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4248   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4249 
4250   // If Extra was used, we require at least two switch values to do the
4251   // transformation.  A switch with one value is just a conditional branch.
4252   if (ExtraCase && Values.size() < 2)
4253     return false;
4254 
4255   // TODO: Preserve branch weight metadata, similarly to how
4256   // FoldValueComparisonIntoPredecessors preserves it.
4257 
4258   // Figure out which block is which destination.
4259   BasicBlock *DefaultBB = BI->getSuccessor(1);
4260   BasicBlock *EdgeBB = BI->getSuccessor(0);
4261   if (!TrueWhenEqual)
4262     std::swap(DefaultBB, EdgeBB);
4263 
4264   BasicBlock *BB = BI->getParent();
4265 
4266   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4267                     << " cases into SWITCH.  BB is:\n"
4268                     << *BB);
4269 
4270   SmallVector<DominatorTree::UpdateType, 2> Updates;
4271 
4272   // If there are any extra values that couldn't be folded into the switch
4273   // then we evaluate them with an explicit branch first. Split the block
4274   // right before the condbr to handle it.
4275   if (ExtraCase) {
4276     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4277                                    /*MSSAU=*/nullptr, "switch.early.test");
4278 
4279     // Remove the uncond branch added to the old block.
4280     Instruction *OldTI = BB->getTerminator();
4281     Builder.SetInsertPoint(OldTI);
4282 
4283     // There can be an unintended UB if extra values are Poison. Before the
4284     // transformation, extra values may not be evaluated according to the
4285     // condition, and it will not raise UB. But after transformation, we are
4286     // evaluating extra values before checking the condition, and it will raise
4287     // UB. It can be solved by adding freeze instruction to extra values.
4288     AssumptionCache *AC = Options.AC;
4289 
4290     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4291       ExtraCase = Builder.CreateFreeze(ExtraCase);
4292 
4293     if (TrueWhenEqual)
4294       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4295     else
4296       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4297 
4298     OldTI->eraseFromParent();
4299 
4300     if (DTU)
4301       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4302 
4303     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4304     // for the edge we just added.
4305     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4306 
4307     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4308                       << "\nEXTRABB = " << *BB);
4309     BB = NewBB;
4310   }
4311 
4312   Builder.SetInsertPoint(BI);
4313   // Convert pointer to int before we switch.
4314   if (CompVal->getType()->isPointerTy()) {
4315     CompVal = Builder.CreatePtrToInt(
4316         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4317   }
4318 
4319   // Create the new switch instruction now.
4320   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4321 
4322   // Add all of the 'cases' to the switch instruction.
4323   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4324     New->addCase(Values[i], EdgeBB);
4325 
4326   // We added edges from PI to the EdgeBB.  As such, if there were any
4327   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4328   // the number of edges added.
4329   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4330     PHINode *PN = cast<PHINode>(BBI);
4331     Value *InVal = PN->getIncomingValueForBlock(BB);
4332     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4333       PN->addIncoming(InVal, BB);
4334   }
4335 
4336   // Erase the old branch instruction.
4337   EraseTerminatorAndDCECond(BI);
4338   if (DTU)
4339     DTU->applyUpdates(Updates);
4340 
4341   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4342   return true;
4343 }
4344 
4345 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4346   if (isa<PHINode>(RI->getValue()))
4347     return simplifyCommonResume(RI);
4348   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4349            RI->getValue() == RI->getParent()->getFirstNonPHI())
4350     // The resume must unwind the exception that caused control to branch here.
4351     return simplifySingleResume(RI);
4352 
4353   return false;
4354 }
4355 
4356 // Check if cleanup block is empty
4357 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4358   for (Instruction &I : R) {
4359     auto *II = dyn_cast<IntrinsicInst>(&I);
4360     if (!II)
4361       return false;
4362 
4363     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4364     switch (IntrinsicID) {
4365     case Intrinsic::dbg_declare:
4366     case Intrinsic::dbg_value:
4367     case Intrinsic::dbg_label:
4368     case Intrinsic::lifetime_end:
4369       break;
4370     default:
4371       return false;
4372     }
4373   }
4374   return true;
4375 }
4376 
4377 // Simplify resume that is shared by several landing pads (phi of landing pad).
4378 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4379   BasicBlock *BB = RI->getParent();
4380 
4381   // Check that there are no other instructions except for debug and lifetime
4382   // intrinsics between the phi's and resume instruction.
4383   if (!isCleanupBlockEmpty(
4384           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4385     return false;
4386 
4387   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4388   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4389 
4390   // Check incoming blocks to see if any of them are trivial.
4391   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4392        Idx++) {
4393     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4394     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4395 
4396     // If the block has other successors, we can not delete it because
4397     // it has other dependents.
4398     if (IncomingBB->getUniqueSuccessor() != BB)
4399       continue;
4400 
4401     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4402     // Not the landing pad that caused the control to branch here.
4403     if (IncomingValue != LandingPad)
4404       continue;
4405 
4406     if (isCleanupBlockEmpty(
4407             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4408       TrivialUnwindBlocks.insert(IncomingBB);
4409   }
4410 
4411   // If no trivial unwind blocks, don't do any simplifications.
4412   if (TrivialUnwindBlocks.empty())
4413     return false;
4414 
4415   // Turn all invokes that unwind here into calls.
4416   for (auto *TrivialBB : TrivialUnwindBlocks) {
4417     // Blocks that will be simplified should be removed from the phi node.
4418     // Note there could be multiple edges to the resume block, and we need
4419     // to remove them all.
4420     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4421       BB->removePredecessor(TrivialBB, true);
4422 
4423     for (BasicBlock *Pred :
4424          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4425       removeUnwindEdge(Pred, DTU);
4426       ++NumInvokes;
4427     }
4428 
4429     // In each SimplifyCFG run, only the current processed block can be erased.
4430     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4431     // of erasing TrivialBB, we only remove the branch to the common resume
4432     // block so that we can later erase the resume block since it has no
4433     // predecessors.
4434     TrivialBB->getTerminator()->eraseFromParent();
4435     new UnreachableInst(RI->getContext(), TrivialBB);
4436     if (DTU)
4437       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4438   }
4439 
4440   // Delete the resume block if all its predecessors have been removed.
4441   if (pred_empty(BB))
4442     DeleteDeadBlock(BB, DTU);
4443 
4444   return !TrivialUnwindBlocks.empty();
4445 }
4446 
4447 // Simplify resume that is only used by a single (non-phi) landing pad.
4448 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4449   BasicBlock *BB = RI->getParent();
4450   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4451   assert(RI->getValue() == LPInst &&
4452          "Resume must unwind the exception that caused control to here");
4453 
4454   // Check that there are no other instructions except for debug intrinsics.
4455   if (!isCleanupBlockEmpty(
4456           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4457     return false;
4458 
4459   // Turn all invokes that unwind here into calls and delete the basic block.
4460   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4461     removeUnwindEdge(Pred, DTU);
4462     ++NumInvokes;
4463   }
4464 
4465   // The landingpad is now unreachable.  Zap it.
4466   DeleteDeadBlock(BB, DTU);
4467   return true;
4468 }
4469 
4470 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4471   // If this is a trivial cleanup pad that executes no instructions, it can be
4472   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4473   // that is an EH pad will be updated to continue to the caller and any
4474   // predecessor that terminates with an invoke instruction will have its invoke
4475   // instruction converted to a call instruction.  If the cleanup pad being
4476   // simplified does not continue to the caller, each predecessor will be
4477   // updated to continue to the unwind destination of the cleanup pad being
4478   // simplified.
4479   BasicBlock *BB = RI->getParent();
4480   CleanupPadInst *CPInst = RI->getCleanupPad();
4481   if (CPInst->getParent() != BB)
4482     // This isn't an empty cleanup.
4483     return false;
4484 
4485   // We cannot kill the pad if it has multiple uses.  This typically arises
4486   // from unreachable basic blocks.
4487   if (!CPInst->hasOneUse())
4488     return false;
4489 
4490   // Check that there are no other instructions except for benign intrinsics.
4491   if (!isCleanupBlockEmpty(
4492           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4493     return false;
4494 
4495   // If the cleanup return we are simplifying unwinds to the caller, this will
4496   // set UnwindDest to nullptr.
4497   BasicBlock *UnwindDest = RI->getUnwindDest();
4498   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4499 
4500   // We're about to remove BB from the control flow.  Before we do, sink any
4501   // PHINodes into the unwind destination.  Doing this before changing the
4502   // control flow avoids some potentially slow checks, since we can currently
4503   // be certain that UnwindDest and BB have no common predecessors (since they
4504   // are both EH pads).
4505   if (UnwindDest) {
4506     // First, go through the PHI nodes in UnwindDest and update any nodes that
4507     // reference the block we are removing
4508     for (PHINode &DestPN : UnwindDest->phis()) {
4509       int Idx = DestPN.getBasicBlockIndex(BB);
4510       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4511       assert(Idx != -1);
4512       // This PHI node has an incoming value that corresponds to a control
4513       // path through the cleanup pad we are removing.  If the incoming
4514       // value is in the cleanup pad, it must be a PHINode (because we
4515       // verified above that the block is otherwise empty).  Otherwise, the
4516       // value is either a constant or a value that dominates the cleanup
4517       // pad being removed.
4518       //
4519       // Because BB and UnwindDest are both EH pads, all of their
4520       // predecessors must unwind to these blocks, and since no instruction
4521       // can have multiple unwind destinations, there will be no overlap in
4522       // incoming blocks between SrcPN and DestPN.
4523       Value *SrcVal = DestPN.getIncomingValue(Idx);
4524       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4525 
4526       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4527       for (auto *Pred : predecessors(BB)) {
4528         Value *Incoming =
4529             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4530         DestPN.addIncoming(Incoming, Pred);
4531       }
4532     }
4533 
4534     // Sink any remaining PHI nodes directly into UnwindDest.
4535     Instruction *InsertPt = DestEHPad;
4536     for (PHINode &PN : make_early_inc_range(BB->phis())) {
4537       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4538         // If the PHI node has no uses or all of its uses are in this basic
4539         // block (meaning they are debug or lifetime intrinsics), just leave
4540         // it.  It will be erased when we erase BB below.
4541         continue;
4542 
4543       // Otherwise, sink this PHI node into UnwindDest.
4544       // Any predecessors to UnwindDest which are not already represented
4545       // must be back edges which inherit the value from the path through
4546       // BB.  In this case, the PHI value must reference itself.
4547       for (auto *pred : predecessors(UnwindDest))
4548         if (pred != BB)
4549           PN.addIncoming(&PN, pred);
4550       PN.moveBefore(InsertPt);
4551       // Also, add a dummy incoming value for the original BB itself,
4552       // so that the PHI is well-formed until we drop said predecessor.
4553       PN.addIncoming(UndefValue::get(PN.getType()), BB);
4554     }
4555   }
4556 
4557   std::vector<DominatorTree::UpdateType> Updates;
4558 
4559   // We use make_early_inc_range here because we will remove all predecessors.
4560   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4561     if (UnwindDest == nullptr) {
4562       if (DTU) {
4563         DTU->applyUpdates(Updates);
4564         Updates.clear();
4565       }
4566       removeUnwindEdge(PredBB, DTU);
4567       ++NumInvokes;
4568     } else {
4569       BB->removePredecessor(PredBB);
4570       Instruction *TI = PredBB->getTerminator();
4571       TI->replaceUsesOfWith(BB, UnwindDest);
4572       if (DTU) {
4573         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4574         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4575       }
4576     }
4577   }
4578 
4579   if (DTU)
4580     DTU->applyUpdates(Updates);
4581 
4582   DeleteDeadBlock(BB, DTU);
4583 
4584   return true;
4585 }
4586 
4587 // Try to merge two cleanuppads together.
4588 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4589   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4590   // with.
4591   BasicBlock *UnwindDest = RI->getUnwindDest();
4592   if (!UnwindDest)
4593     return false;
4594 
4595   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4596   // be safe to merge without code duplication.
4597   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4598     return false;
4599 
4600   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4601   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4602   if (!SuccessorCleanupPad)
4603     return false;
4604 
4605   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4606   // Replace any uses of the successor cleanupad with the predecessor pad
4607   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4608   // funclet bundle operands.
4609   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4610   // Remove the old cleanuppad.
4611   SuccessorCleanupPad->eraseFromParent();
4612   // Now, we simply replace the cleanupret with a branch to the unwind
4613   // destination.
4614   BranchInst::Create(UnwindDest, RI->getParent());
4615   RI->eraseFromParent();
4616 
4617   return true;
4618 }
4619 
4620 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4621   // It is possible to transiantly have an undef cleanuppad operand because we
4622   // have deleted some, but not all, dead blocks.
4623   // Eventually, this block will be deleted.
4624   if (isa<UndefValue>(RI->getOperand(0)))
4625     return false;
4626 
4627   if (mergeCleanupPad(RI))
4628     return true;
4629 
4630   if (removeEmptyCleanup(RI, DTU))
4631     return true;
4632 
4633   return false;
4634 }
4635 
4636 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4637   BasicBlock *BB = RI->getParent();
4638   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4639     return false;
4640 
4641   // Find predecessors that end with branches.
4642   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4643   SmallVector<BranchInst *, 8> CondBranchPreds;
4644   for (BasicBlock *P : predecessors(BB)) {
4645     Instruction *PTI = P->getTerminator();
4646     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4647       if (BI->isUnconditional())
4648         UncondBranchPreds.push_back(P);
4649       else
4650         CondBranchPreds.push_back(BI);
4651     }
4652   }
4653 
4654   // If we found some, do the transformation!
4655   if (!UncondBranchPreds.empty() && DupRet) {
4656     while (!UncondBranchPreds.empty()) {
4657       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4658       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4659                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4660       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4661     }
4662 
4663     // If we eliminated all predecessors of the block, delete the block now.
4664     if (pred_empty(BB))
4665       DeleteDeadBlock(BB, DTU);
4666 
4667     return true;
4668   }
4669 
4670   // Check out all of the conditional branches going to this return
4671   // instruction.  If any of them just select between returns, change the
4672   // branch itself into a select/return pair.
4673   while (!CondBranchPreds.empty()) {
4674     BranchInst *BI = CondBranchPreds.pop_back_val();
4675 
4676     // Check to see if the non-BB successor is also a return block.
4677     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4678         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4679         SimplifyCondBranchToTwoReturns(BI, Builder))
4680       return true;
4681   }
4682   return false;
4683 }
4684 
4685 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4686 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4687   BasicBlock *BB = UI->getParent();
4688 
4689   bool Changed = false;
4690 
4691   // If there are any instructions immediately before the unreachable that can
4692   // be removed, do so.
4693   while (UI->getIterator() != BB->begin()) {
4694     BasicBlock::iterator BBI = UI->getIterator();
4695     --BBI;
4696 
4697     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
4698       break; // Can not drop any more instructions. We're done here.
4699     // Otherwise, this instruction can be freely erased,
4700     // even if it is not side-effect free.
4701 
4702     // Temporarily disable removal of volatile stores preceding unreachable,
4703     // pending a potential LangRef change permitting volatile stores to trap.
4704     // TODO: Either remove this code, or properly integrate the check into
4705     // isGuaranteedToTransferExecutionToSuccessor().
4706     if (auto *SI = dyn_cast<StoreInst>(&*BBI))
4707       if (SI->isVolatile())
4708         break; // Can not drop this instruction. We're done here.
4709 
4710     // Note that deleting EH's here is in fact okay, although it involves a bit
4711     // of subtle reasoning. If this inst is an EH, all the predecessors of this
4712     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4713     // and we can therefore guarantee this block will be erased.
4714 
4715     // Delete this instruction (any uses are guaranteed to be dead)
4716     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
4717     BBI->eraseFromParent();
4718     Changed = true;
4719   }
4720 
4721   // If the unreachable instruction is the first in the block, take a gander
4722   // at all of the predecessors of this instruction, and simplify them.
4723   if (&BB->front() != UI)
4724     return Changed;
4725 
4726   std::vector<DominatorTree::UpdateType> Updates;
4727 
4728   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4729   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4730     auto *Predecessor = Preds[i];
4731     Instruction *TI = Predecessor->getTerminator();
4732     IRBuilder<> Builder(TI);
4733     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4734       // We could either have a proper unconditional branch,
4735       // or a degenerate conditional branch with matching destinations.
4736       if (all_of(BI->successors(),
4737                  [BB](auto *Successor) { return Successor == BB; })) {
4738         new UnreachableInst(TI->getContext(), TI);
4739         TI->eraseFromParent();
4740         Changed = true;
4741       } else {
4742         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4743         Value* Cond = BI->getCondition();
4744         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4745                "The destinations are guaranteed to be different here.");
4746         if (BI->getSuccessor(0) == BB) {
4747           Builder.CreateAssumption(Builder.CreateNot(Cond));
4748           Builder.CreateBr(BI->getSuccessor(1));
4749         } else {
4750           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4751           Builder.CreateAssumption(Cond);
4752           Builder.CreateBr(BI->getSuccessor(0));
4753         }
4754         EraseTerminatorAndDCECond(BI);
4755         Changed = true;
4756       }
4757       if (DTU)
4758         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4759     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4760       SwitchInstProfUpdateWrapper SU(*SI);
4761       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4762         if (i->getCaseSuccessor() != BB) {
4763           ++i;
4764           continue;
4765         }
4766         BB->removePredecessor(SU->getParent());
4767         i = SU.removeCase(i);
4768         e = SU->case_end();
4769         Changed = true;
4770       }
4771       // Note that the default destination can't be removed!
4772       if (DTU && SI->getDefaultDest() != BB)
4773         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4774     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4775       if (II->getUnwindDest() == BB) {
4776         if (DTU) {
4777           DTU->applyUpdates(Updates);
4778           Updates.clear();
4779         }
4780         removeUnwindEdge(TI->getParent(), DTU);
4781         Changed = true;
4782       }
4783     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4784       if (CSI->getUnwindDest() == BB) {
4785         if (DTU) {
4786           DTU->applyUpdates(Updates);
4787           Updates.clear();
4788         }
4789         removeUnwindEdge(TI->getParent(), DTU);
4790         Changed = true;
4791         continue;
4792       }
4793 
4794       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4795                                              E = CSI->handler_end();
4796            I != E; ++I) {
4797         if (*I == BB) {
4798           CSI->removeHandler(I);
4799           --I;
4800           --E;
4801           Changed = true;
4802         }
4803       }
4804       if (DTU)
4805         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4806       if (CSI->getNumHandlers() == 0) {
4807         if (CSI->hasUnwindDest()) {
4808           // Redirect all predecessors of the block containing CatchSwitchInst
4809           // to instead branch to the CatchSwitchInst's unwind destination.
4810           if (DTU) {
4811             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4812               Updates.push_back({DominatorTree::Insert,
4813                                  PredecessorOfPredecessor,
4814                                  CSI->getUnwindDest()});
4815               Updates.push_back({DominatorTree::Delete,
4816                                  PredecessorOfPredecessor, Predecessor});
4817             }
4818           }
4819           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4820         } else {
4821           // Rewrite all preds to unwind to caller (or from invoke to call).
4822           if (DTU) {
4823             DTU->applyUpdates(Updates);
4824             Updates.clear();
4825           }
4826           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4827           for (BasicBlock *EHPred : EHPreds)
4828             removeUnwindEdge(EHPred, DTU);
4829         }
4830         // The catchswitch is no longer reachable.
4831         new UnreachableInst(CSI->getContext(), CSI);
4832         CSI->eraseFromParent();
4833         Changed = true;
4834       }
4835     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4836       (void)CRI;
4837       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4838              "Expected to always have an unwind to BB.");
4839       if (DTU)
4840         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4841       new UnreachableInst(TI->getContext(), TI);
4842       TI->eraseFromParent();
4843       Changed = true;
4844     }
4845   }
4846 
4847   if (DTU)
4848     DTU->applyUpdates(Updates);
4849 
4850   // If this block is now dead, remove it.
4851   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4852     DeleteDeadBlock(BB, DTU);
4853     return true;
4854   }
4855 
4856   return Changed;
4857 }
4858 
4859 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4860   assert(Cases.size() >= 1);
4861 
4862   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4863   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4864     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4865       return false;
4866   }
4867   return true;
4868 }
4869 
4870 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4871                                            DomTreeUpdater *DTU) {
4872   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4873   auto *BB = Switch->getParent();
4874   BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
4875       Switch->getDefaultDest(), Switch->getParent(), "", DTU);
4876   auto *OrigDefaultBlock = Switch->getDefaultDest();
4877   Switch->setDefaultDest(&*NewDefaultBlock);
4878   if (DTU)
4879     DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
4880                        {DominatorTree::Delete, BB, OrigDefaultBlock}});
4881   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
4882   SmallVector<DominatorTree::UpdateType, 2> Updates;
4883   if (DTU)
4884     for (auto *Successor : successors(NewDefaultBlock))
4885       Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4886   auto *NewTerminator = NewDefaultBlock->getTerminator();
4887   new UnreachableInst(Switch->getContext(), NewTerminator);
4888   EraseTerminatorAndDCECond(NewTerminator);
4889   if (DTU)
4890     DTU->applyUpdates(Updates);
4891 }
4892 
4893 /// Turn a switch with two reachable destinations into an integer range
4894 /// comparison and branch.
4895 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4896                                              IRBuilder<> &Builder) {
4897   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4898 
4899   bool HasDefault =
4900       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4901 
4902   auto *BB = SI->getParent();
4903 
4904   // Partition the cases into two sets with different destinations.
4905   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4906   BasicBlock *DestB = nullptr;
4907   SmallVector<ConstantInt *, 16> CasesA;
4908   SmallVector<ConstantInt *, 16> CasesB;
4909 
4910   for (auto Case : SI->cases()) {
4911     BasicBlock *Dest = Case.getCaseSuccessor();
4912     if (!DestA)
4913       DestA = Dest;
4914     if (Dest == DestA) {
4915       CasesA.push_back(Case.getCaseValue());
4916       continue;
4917     }
4918     if (!DestB)
4919       DestB = Dest;
4920     if (Dest == DestB) {
4921       CasesB.push_back(Case.getCaseValue());
4922       continue;
4923     }
4924     return false; // More than two destinations.
4925   }
4926 
4927   assert(DestA && DestB &&
4928          "Single-destination switch should have been folded.");
4929   assert(DestA != DestB);
4930   assert(DestB != SI->getDefaultDest());
4931   assert(!CasesB.empty() && "There must be non-default cases.");
4932   assert(!CasesA.empty() || HasDefault);
4933 
4934   // Figure out if one of the sets of cases form a contiguous range.
4935   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4936   BasicBlock *ContiguousDest = nullptr;
4937   BasicBlock *OtherDest = nullptr;
4938   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4939     ContiguousCases = &CasesA;
4940     ContiguousDest = DestA;
4941     OtherDest = DestB;
4942   } else if (CasesAreContiguous(CasesB)) {
4943     ContiguousCases = &CasesB;
4944     ContiguousDest = DestB;
4945     OtherDest = DestA;
4946   } else
4947     return false;
4948 
4949   // Start building the compare and branch.
4950 
4951   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4952   Constant *NumCases =
4953       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4954 
4955   Value *Sub = SI->getCondition();
4956   if (!Offset->isNullValue())
4957     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4958 
4959   Value *Cmp;
4960   // If NumCases overflowed, then all possible values jump to the successor.
4961   if (NumCases->isNullValue() && !ContiguousCases->empty())
4962     Cmp = ConstantInt::getTrue(SI->getContext());
4963   else
4964     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4965   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4966 
4967   // Update weight for the newly-created conditional branch.
4968   if (HasBranchWeights(SI)) {
4969     SmallVector<uint64_t, 8> Weights;
4970     GetBranchWeights(SI, Weights);
4971     if (Weights.size() == 1 + SI->getNumCases()) {
4972       uint64_t TrueWeight = 0;
4973       uint64_t FalseWeight = 0;
4974       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4975         if (SI->getSuccessor(I) == ContiguousDest)
4976           TrueWeight += Weights[I];
4977         else
4978           FalseWeight += Weights[I];
4979       }
4980       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4981         TrueWeight /= 2;
4982         FalseWeight /= 2;
4983       }
4984       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4985     }
4986   }
4987 
4988   // Prune obsolete incoming values off the successors' PHI nodes.
4989   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4990     unsigned PreviousEdges = ContiguousCases->size();
4991     if (ContiguousDest == SI->getDefaultDest())
4992       ++PreviousEdges;
4993     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4994       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4995   }
4996   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4997     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4998     if (OtherDest == SI->getDefaultDest())
4999       ++PreviousEdges;
5000     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5001       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5002   }
5003 
5004   // Clean up the default block - it may have phis or other instructions before
5005   // the unreachable terminator.
5006   if (!HasDefault)
5007     createUnreachableSwitchDefault(SI, DTU);
5008 
5009   auto *UnreachableDefault = SI->getDefaultDest();
5010 
5011   // Drop the switch.
5012   SI->eraseFromParent();
5013 
5014   if (!HasDefault && DTU)
5015     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5016 
5017   return true;
5018 }
5019 
5020 /// Compute masked bits for the condition of a switch
5021 /// and use it to remove dead cases.
5022 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5023                                      AssumptionCache *AC,
5024                                      const DataLayout &DL) {
5025   Value *Cond = SI->getCondition();
5026   unsigned Bits = Cond->getType()->getIntegerBitWidth();
5027   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5028 
5029   // We can also eliminate cases by determining that their values are outside of
5030   // the limited range of the condition based on how many significant (non-sign)
5031   // bits are in the condition value.
5032   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
5033   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
5034 
5035   // Gather dead cases.
5036   SmallVector<ConstantInt *, 8> DeadCases;
5037   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5038   for (auto &Case : SI->cases()) {
5039     auto *Successor = Case.getCaseSuccessor();
5040     if (DTU)
5041       ++NumPerSuccessorCases[Successor];
5042     const APInt &CaseVal = Case.getCaseValue()->getValue();
5043     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5044         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5045       DeadCases.push_back(Case.getCaseValue());
5046       if (DTU)
5047         --NumPerSuccessorCases[Successor];
5048       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5049                         << " is dead.\n");
5050     }
5051   }
5052 
5053   // If we can prove that the cases must cover all possible values, the
5054   // default destination becomes dead and we can remove it.  If we know some
5055   // of the bits in the value, we can use that to more precisely compute the
5056   // number of possible unique case values.
5057   bool HasDefault =
5058       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5059   const unsigned NumUnknownBits =
5060       Bits - (Known.Zero | Known.One).countPopulation();
5061   assert(NumUnknownBits <= Bits);
5062   if (HasDefault && DeadCases.empty() &&
5063       NumUnknownBits < 64 /* avoid overflow */ &&
5064       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5065     createUnreachableSwitchDefault(SI, DTU);
5066     return true;
5067   }
5068 
5069   if (DeadCases.empty())
5070     return false;
5071 
5072   SwitchInstProfUpdateWrapper SIW(*SI);
5073   for (ConstantInt *DeadCase : DeadCases) {
5074     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5075     assert(CaseI != SI->case_default() &&
5076            "Case was not found. Probably mistake in DeadCases forming.");
5077     // Prune unused values from PHI nodes.
5078     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5079     SIW.removeCase(CaseI);
5080   }
5081 
5082   if (DTU) {
5083     std::vector<DominatorTree::UpdateType> Updates;
5084     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
5085       if (I.second == 0)
5086         Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
5087     DTU->applyUpdates(Updates);
5088   }
5089 
5090   return true;
5091 }
5092 
5093 /// If BB would be eligible for simplification by
5094 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5095 /// by an unconditional branch), look at the phi node for BB in the successor
5096 /// block and see if the incoming value is equal to CaseValue. If so, return
5097 /// the phi node, and set PhiIndex to BB's index in the phi node.
5098 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5099                                               BasicBlock *BB, int *PhiIndex) {
5100   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5101     return nullptr; // BB must be empty to be a candidate for simplification.
5102   if (!BB->getSinglePredecessor())
5103     return nullptr; // BB must be dominated by the switch.
5104 
5105   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5106   if (!Branch || !Branch->isUnconditional())
5107     return nullptr; // Terminator must be unconditional branch.
5108 
5109   BasicBlock *Succ = Branch->getSuccessor(0);
5110 
5111   for (PHINode &PHI : Succ->phis()) {
5112     int Idx = PHI.getBasicBlockIndex(BB);
5113     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5114 
5115     Value *InValue = PHI.getIncomingValue(Idx);
5116     if (InValue != CaseValue)
5117       continue;
5118 
5119     *PhiIndex = Idx;
5120     return &PHI;
5121   }
5122 
5123   return nullptr;
5124 }
5125 
5126 /// Try to forward the condition of a switch instruction to a phi node
5127 /// dominated by the switch, if that would mean that some of the destination
5128 /// blocks of the switch can be folded away. Return true if a change is made.
5129 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5130   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5131 
5132   ForwardingNodesMap ForwardingNodes;
5133   BasicBlock *SwitchBlock = SI->getParent();
5134   bool Changed = false;
5135   for (auto &Case : SI->cases()) {
5136     ConstantInt *CaseValue = Case.getCaseValue();
5137     BasicBlock *CaseDest = Case.getCaseSuccessor();
5138 
5139     // Replace phi operands in successor blocks that are using the constant case
5140     // value rather than the switch condition variable:
5141     //   switchbb:
5142     //   switch i32 %x, label %default [
5143     //     i32 17, label %succ
5144     //   ...
5145     //   succ:
5146     //     %r = phi i32 ... [ 17, %switchbb ] ...
5147     // -->
5148     //     %r = phi i32 ... [ %x, %switchbb ] ...
5149 
5150     for (PHINode &Phi : CaseDest->phis()) {
5151       // This only works if there is exactly 1 incoming edge from the switch to
5152       // a phi. If there is >1, that means multiple cases of the switch map to 1
5153       // value in the phi, and that phi value is not the switch condition. Thus,
5154       // this transform would not make sense (the phi would be invalid because
5155       // a phi can't have different incoming values from the same block).
5156       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5157       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5158           count(Phi.blocks(), SwitchBlock) == 1) {
5159         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5160         Changed = true;
5161       }
5162     }
5163 
5164     // Collect phi nodes that are indirectly using this switch's case constants.
5165     int PhiIdx;
5166     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5167       ForwardingNodes[Phi].push_back(PhiIdx);
5168   }
5169 
5170   for (auto &ForwardingNode : ForwardingNodes) {
5171     PHINode *Phi = ForwardingNode.first;
5172     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5173     if (Indexes.size() < 2)
5174       continue;
5175 
5176     for (int Index : Indexes)
5177       Phi->setIncomingValue(Index, SI->getCondition());
5178     Changed = true;
5179   }
5180 
5181   return Changed;
5182 }
5183 
5184 /// Return true if the backend will be able to handle
5185 /// initializing an array of constants like C.
5186 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5187   if (C->isThreadDependent())
5188     return false;
5189   if (C->isDLLImportDependent())
5190     return false;
5191 
5192   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5193       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5194       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5195     return false;
5196 
5197   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5198     if (!CE->isGEPWithNoNotionalOverIndexing())
5199       return false;
5200     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5201       return false;
5202   }
5203 
5204   if (!TTI.shouldBuildLookupTablesForConstant(C))
5205     return false;
5206 
5207   return true;
5208 }
5209 
5210 /// If V is a Constant, return it. Otherwise, try to look up
5211 /// its constant value in ConstantPool, returning 0 if it's not there.
5212 static Constant *
5213 LookupConstant(Value *V,
5214                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5215   if (Constant *C = dyn_cast<Constant>(V))
5216     return C;
5217   return ConstantPool.lookup(V);
5218 }
5219 
5220 /// Try to fold instruction I into a constant. This works for
5221 /// simple instructions such as binary operations where both operands are
5222 /// constant or can be replaced by constants from the ConstantPool. Returns the
5223 /// resulting constant on success, 0 otherwise.
5224 static Constant *
5225 ConstantFold(Instruction *I, const DataLayout &DL,
5226              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5227   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5228     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5229     if (!A)
5230       return nullptr;
5231     if (A->isAllOnesValue())
5232       return LookupConstant(Select->getTrueValue(), ConstantPool);
5233     if (A->isNullValue())
5234       return LookupConstant(Select->getFalseValue(), ConstantPool);
5235     return nullptr;
5236   }
5237 
5238   SmallVector<Constant *, 4> COps;
5239   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5240     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5241       COps.push_back(A);
5242     else
5243       return nullptr;
5244   }
5245 
5246   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5247     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5248                                            COps[1], DL);
5249   }
5250 
5251   return ConstantFoldInstOperands(I, COps, DL);
5252 }
5253 
5254 /// Try to determine the resulting constant values in phi nodes
5255 /// at the common destination basic block, *CommonDest, for one of the case
5256 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5257 /// case), of a switch instruction SI.
5258 static bool
5259 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5260                BasicBlock **CommonDest,
5261                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5262                const DataLayout &DL, const TargetTransformInfo &TTI) {
5263   // The block from which we enter the common destination.
5264   BasicBlock *Pred = SI->getParent();
5265 
5266   // If CaseDest is empty except for some side-effect free instructions through
5267   // which we can constant-propagate the CaseVal, continue to its successor.
5268   SmallDenseMap<Value *, Constant *> ConstantPool;
5269   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5270   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5271     if (I.isTerminator()) {
5272       // If the terminator is a simple branch, continue to the next block.
5273       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5274         return false;
5275       Pred = CaseDest;
5276       CaseDest = I.getSuccessor(0);
5277     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5278       // Instruction is side-effect free and constant.
5279 
5280       // If the instruction has uses outside this block or a phi node slot for
5281       // the block, it is not safe to bypass the instruction since it would then
5282       // no longer dominate all its uses.
5283       for (auto &Use : I.uses()) {
5284         User *User = Use.getUser();
5285         if (Instruction *I = dyn_cast<Instruction>(User))
5286           if (I->getParent() == CaseDest)
5287             continue;
5288         if (PHINode *Phi = dyn_cast<PHINode>(User))
5289           if (Phi->getIncomingBlock(Use) == CaseDest)
5290             continue;
5291         return false;
5292       }
5293 
5294       ConstantPool.insert(std::make_pair(&I, C));
5295     } else {
5296       break;
5297     }
5298   }
5299 
5300   // If we did not have a CommonDest before, use the current one.
5301   if (!*CommonDest)
5302     *CommonDest = CaseDest;
5303   // If the destination isn't the common one, abort.
5304   if (CaseDest != *CommonDest)
5305     return false;
5306 
5307   // Get the values for this case from phi nodes in the destination block.
5308   for (PHINode &PHI : (*CommonDest)->phis()) {
5309     int Idx = PHI.getBasicBlockIndex(Pred);
5310     if (Idx == -1)
5311       continue;
5312 
5313     Constant *ConstVal =
5314         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5315     if (!ConstVal)
5316       return false;
5317 
5318     // Be conservative about which kinds of constants we support.
5319     if (!ValidLookupTableConstant(ConstVal, TTI))
5320       return false;
5321 
5322     Res.push_back(std::make_pair(&PHI, ConstVal));
5323   }
5324 
5325   return Res.size() > 0;
5326 }
5327 
5328 // Helper function used to add CaseVal to the list of cases that generate
5329 // Result. Returns the updated number of cases that generate this result.
5330 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5331                                  SwitchCaseResultVectorTy &UniqueResults,
5332                                  Constant *Result) {
5333   for (auto &I : UniqueResults) {
5334     if (I.first == Result) {
5335       I.second.push_back(CaseVal);
5336       return I.second.size();
5337     }
5338   }
5339   UniqueResults.push_back(
5340       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5341   return 1;
5342 }
5343 
5344 // Helper function that initializes a map containing
5345 // results for the PHI node of the common destination block for a switch
5346 // instruction. Returns false if multiple PHI nodes have been found or if
5347 // there is not a common destination block for the switch.
5348 static bool
5349 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5350                       SwitchCaseResultVectorTy &UniqueResults,
5351                       Constant *&DefaultResult, const DataLayout &DL,
5352                       const TargetTransformInfo &TTI,
5353                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5354   for (auto &I : SI->cases()) {
5355     ConstantInt *CaseVal = I.getCaseValue();
5356 
5357     // Resulting value at phi nodes for this case value.
5358     SwitchCaseResultsTy Results;
5359     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5360                         DL, TTI))
5361       return false;
5362 
5363     // Only one value per case is permitted.
5364     if (Results.size() > 1)
5365       return false;
5366 
5367     // Add the case->result mapping to UniqueResults.
5368     const uintptr_t NumCasesForResult =
5369         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5370 
5371     // Early out if there are too many cases for this result.
5372     if (NumCasesForResult > MaxCasesPerResult)
5373       return false;
5374 
5375     // Early out if there are too many unique results.
5376     if (UniqueResults.size() > MaxUniqueResults)
5377       return false;
5378 
5379     // Check the PHI consistency.
5380     if (!PHI)
5381       PHI = Results[0].first;
5382     else if (PHI != Results[0].first)
5383       return false;
5384   }
5385   // Find the default result value.
5386   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5387   BasicBlock *DefaultDest = SI->getDefaultDest();
5388   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5389                  DL, TTI);
5390   // If the default value is not found abort unless the default destination
5391   // is unreachable.
5392   DefaultResult =
5393       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5394   if ((!DefaultResult &&
5395        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5396     return false;
5397 
5398   return true;
5399 }
5400 
5401 // Helper function that checks if it is possible to transform a switch with only
5402 // two cases (or two cases + default) that produces a result into a select.
5403 // Example:
5404 // switch (a) {
5405 //   case 10:                %0 = icmp eq i32 %a, 10
5406 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5407 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5408 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5409 //   default:
5410 //     return 4;
5411 // }
5412 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5413                                    Constant *DefaultResult, Value *Condition,
5414                                    IRBuilder<> &Builder) {
5415   // If we are selecting between only two cases transform into a simple
5416   // select or a two-way select if default is possible.
5417   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5418       ResultVector[1].second.size() == 1) {
5419     ConstantInt *const FirstCase = ResultVector[0].second[0];
5420     ConstantInt *const SecondCase = ResultVector[1].second[0];
5421 
5422     bool DefaultCanTrigger = DefaultResult;
5423     Value *SelectValue = ResultVector[1].first;
5424     if (DefaultCanTrigger) {
5425       Value *const ValueCompare =
5426           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5427       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5428                                          DefaultResult, "switch.select");
5429     }
5430     Value *const ValueCompare =
5431         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5432     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5433                                 SelectValue, "switch.select");
5434   }
5435 
5436   // Handle the degenerate case where two cases have the same value.
5437   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5438       DefaultResult) {
5439     Value *Cmp1 = Builder.CreateICmpEQ(
5440         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5441     Value *Cmp2 = Builder.CreateICmpEQ(
5442         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5443     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5444     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5445   }
5446 
5447   return nullptr;
5448 }
5449 
5450 // Helper function to cleanup a switch instruction that has been converted into
5451 // a select, fixing up PHI nodes and basic blocks.
5452 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5453                                               Value *SelectValue,
5454                                               IRBuilder<> &Builder,
5455                                               DomTreeUpdater *DTU) {
5456   std::vector<DominatorTree::UpdateType> Updates;
5457 
5458   BasicBlock *SelectBB = SI->getParent();
5459   BasicBlock *DestBB = PHI->getParent();
5460 
5461   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5462     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5463   Builder.CreateBr(DestBB);
5464 
5465   // Remove the switch.
5466 
5467   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5468     PHI->removeIncomingValue(SelectBB);
5469   PHI->addIncoming(SelectValue, SelectBB);
5470 
5471   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5472   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5473     BasicBlock *Succ = SI->getSuccessor(i);
5474 
5475     if (Succ == DestBB)
5476       continue;
5477     Succ->removePredecessor(SelectBB);
5478     if (DTU && RemovedSuccessors.insert(Succ).second)
5479       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5480   }
5481   SI->eraseFromParent();
5482   if (DTU)
5483     DTU->applyUpdates(Updates);
5484 }
5485 
5486 /// If the switch is only used to initialize one or more
5487 /// phi nodes in a common successor block with only two different
5488 /// constant values, replace the switch with select.
5489 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5490                            DomTreeUpdater *DTU, const DataLayout &DL,
5491                            const TargetTransformInfo &TTI) {
5492   Value *const Cond = SI->getCondition();
5493   PHINode *PHI = nullptr;
5494   BasicBlock *CommonDest = nullptr;
5495   Constant *DefaultResult;
5496   SwitchCaseResultVectorTy UniqueResults;
5497   // Collect all the cases that will deliver the same value from the switch.
5498   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5499                              DL, TTI, /*MaxUniqueResults*/2,
5500                              /*MaxCasesPerResult*/2))
5501     return false;
5502   assert(PHI != nullptr && "PHI for value select not found");
5503 
5504   Builder.SetInsertPoint(SI);
5505   Value *SelectValue =
5506       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5507   if (SelectValue) {
5508     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5509     return true;
5510   }
5511   // The switch couldn't be converted into a select.
5512   return false;
5513 }
5514 
5515 namespace {
5516 
5517 /// This class represents a lookup table that can be used to replace a switch.
5518 class SwitchLookupTable {
5519 public:
5520   /// Create a lookup table to use as a switch replacement with the contents
5521   /// of Values, using DefaultValue to fill any holes in the table.
5522   SwitchLookupTable(
5523       Module &M, uint64_t TableSize, ConstantInt *Offset,
5524       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5525       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5526 
5527   /// Build instructions with Builder to retrieve the value at
5528   /// the position given by Index in the lookup table.
5529   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5530 
5531   /// Return true if a table with TableSize elements of
5532   /// type ElementType would fit in a target-legal register.
5533   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5534                                  Type *ElementType);
5535 
5536 private:
5537   // Depending on the contents of the table, it can be represented in
5538   // different ways.
5539   enum {
5540     // For tables where each element contains the same value, we just have to
5541     // store that single value and return it for each lookup.
5542     SingleValueKind,
5543 
5544     // For tables where there is a linear relationship between table index
5545     // and values. We calculate the result with a simple multiplication
5546     // and addition instead of a table lookup.
5547     LinearMapKind,
5548 
5549     // For small tables with integer elements, we can pack them into a bitmap
5550     // that fits into a target-legal register. Values are retrieved by
5551     // shift and mask operations.
5552     BitMapKind,
5553 
5554     // The table is stored as an array of values. Values are retrieved by load
5555     // instructions from the table.
5556     ArrayKind
5557   } Kind;
5558 
5559   // For SingleValueKind, this is the single value.
5560   Constant *SingleValue = nullptr;
5561 
5562   // For BitMapKind, this is the bitmap.
5563   ConstantInt *BitMap = nullptr;
5564   IntegerType *BitMapElementTy = nullptr;
5565 
5566   // For LinearMapKind, these are the constants used to derive the value.
5567   ConstantInt *LinearOffset = nullptr;
5568   ConstantInt *LinearMultiplier = nullptr;
5569 
5570   // For ArrayKind, this is the array.
5571   GlobalVariable *Array = nullptr;
5572 };
5573 
5574 } // end anonymous namespace
5575 
5576 SwitchLookupTable::SwitchLookupTable(
5577     Module &M, uint64_t TableSize, ConstantInt *Offset,
5578     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5579     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5580   assert(Values.size() && "Can't build lookup table without values!");
5581   assert(TableSize >= Values.size() && "Can't fit values in table!");
5582 
5583   // If all values in the table are equal, this is that value.
5584   SingleValue = Values.begin()->second;
5585 
5586   Type *ValueType = Values.begin()->second->getType();
5587 
5588   // Build up the table contents.
5589   SmallVector<Constant *, 64> TableContents(TableSize);
5590   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5591     ConstantInt *CaseVal = Values[I].first;
5592     Constant *CaseRes = Values[I].second;
5593     assert(CaseRes->getType() == ValueType);
5594 
5595     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5596     TableContents[Idx] = CaseRes;
5597 
5598     if (CaseRes != SingleValue)
5599       SingleValue = nullptr;
5600   }
5601 
5602   // Fill in any holes in the table with the default result.
5603   if (Values.size() < TableSize) {
5604     assert(DefaultValue &&
5605            "Need a default value to fill the lookup table holes.");
5606     assert(DefaultValue->getType() == ValueType);
5607     for (uint64_t I = 0; I < TableSize; ++I) {
5608       if (!TableContents[I])
5609         TableContents[I] = DefaultValue;
5610     }
5611 
5612     if (DefaultValue != SingleValue)
5613       SingleValue = nullptr;
5614   }
5615 
5616   // If each element in the table contains the same value, we only need to store
5617   // that single value.
5618   if (SingleValue) {
5619     Kind = SingleValueKind;
5620     return;
5621   }
5622 
5623   // Check if we can derive the value with a linear transformation from the
5624   // table index.
5625   if (isa<IntegerType>(ValueType)) {
5626     bool LinearMappingPossible = true;
5627     APInt PrevVal;
5628     APInt DistToPrev;
5629     assert(TableSize >= 2 && "Should be a SingleValue table.");
5630     // Check if there is the same distance between two consecutive values.
5631     for (uint64_t I = 0; I < TableSize; ++I) {
5632       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5633       if (!ConstVal) {
5634         // This is an undef. We could deal with it, but undefs in lookup tables
5635         // are very seldom. It's probably not worth the additional complexity.
5636         LinearMappingPossible = false;
5637         break;
5638       }
5639       const APInt &Val = ConstVal->getValue();
5640       if (I != 0) {
5641         APInt Dist = Val - PrevVal;
5642         if (I == 1) {
5643           DistToPrev = Dist;
5644         } else if (Dist != DistToPrev) {
5645           LinearMappingPossible = false;
5646           break;
5647         }
5648       }
5649       PrevVal = Val;
5650     }
5651     if (LinearMappingPossible) {
5652       LinearOffset = cast<ConstantInt>(TableContents[0]);
5653       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5654       Kind = LinearMapKind;
5655       ++NumLinearMaps;
5656       return;
5657     }
5658   }
5659 
5660   // If the type is integer and the table fits in a register, build a bitmap.
5661   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5662     IntegerType *IT = cast<IntegerType>(ValueType);
5663     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5664     for (uint64_t I = TableSize; I > 0; --I) {
5665       TableInt <<= IT->getBitWidth();
5666       // Insert values into the bitmap. Undef values are set to zero.
5667       if (!isa<UndefValue>(TableContents[I - 1])) {
5668         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5669         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5670       }
5671     }
5672     BitMap = ConstantInt::get(M.getContext(), TableInt);
5673     BitMapElementTy = IT;
5674     Kind = BitMapKind;
5675     ++NumBitMaps;
5676     return;
5677   }
5678 
5679   // Store the table in an array.
5680   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5681   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5682 
5683   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5684                              GlobalVariable::PrivateLinkage, Initializer,
5685                              "switch.table." + FuncName);
5686   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5687   // Set the alignment to that of an array items. We will be only loading one
5688   // value out of it.
5689   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5690   Kind = ArrayKind;
5691 }
5692 
5693 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5694   switch (Kind) {
5695   case SingleValueKind:
5696     return SingleValue;
5697   case LinearMapKind: {
5698     // Derive the result value from the input value.
5699     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5700                                           false, "switch.idx.cast");
5701     if (!LinearMultiplier->isOne())
5702       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5703     if (!LinearOffset->isZero())
5704       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5705     return Result;
5706   }
5707   case BitMapKind: {
5708     // Type of the bitmap (e.g. i59).
5709     IntegerType *MapTy = BitMap->getType();
5710 
5711     // Cast Index to the same type as the bitmap.
5712     // Note: The Index is <= the number of elements in the table, so
5713     // truncating it to the width of the bitmask is safe.
5714     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5715 
5716     // Multiply the shift amount by the element width.
5717     ShiftAmt = Builder.CreateMul(
5718         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5719         "switch.shiftamt");
5720 
5721     // Shift down.
5722     Value *DownShifted =
5723         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5724     // Mask off.
5725     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5726   }
5727   case ArrayKind: {
5728     // Make sure the table index will not overflow when treated as signed.
5729     IntegerType *IT = cast<IntegerType>(Index->getType());
5730     uint64_t TableSize =
5731         Array->getInitializer()->getType()->getArrayNumElements();
5732     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5733       Index = Builder.CreateZExt(
5734           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5735           "switch.tableidx.zext");
5736 
5737     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5738     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5739                                            GEPIndices, "switch.gep");
5740     return Builder.CreateLoad(
5741         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5742         "switch.load");
5743   }
5744   }
5745   llvm_unreachable("Unknown lookup table kind!");
5746 }
5747 
5748 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5749                                            uint64_t TableSize,
5750                                            Type *ElementType) {
5751   auto *IT = dyn_cast<IntegerType>(ElementType);
5752   if (!IT)
5753     return false;
5754   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5755   // are <= 15, we could try to narrow the type.
5756 
5757   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5758   if (TableSize >= UINT_MAX / IT->getBitWidth())
5759     return false;
5760   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5761 }
5762 
5763 /// Determine whether a lookup table should be built for this switch, based on
5764 /// the number of cases, size of the table, and the types of the results.
5765 static bool
5766 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5767                        const TargetTransformInfo &TTI, const DataLayout &DL,
5768                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5769   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5770     return false; // TableSize overflowed, or mul below might overflow.
5771 
5772   bool AllTablesFitInRegister = true;
5773   bool HasIllegalType = false;
5774   for (const auto &I : ResultTypes) {
5775     Type *Ty = I.second;
5776 
5777     // Saturate this flag to true.
5778     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5779 
5780     // Saturate this flag to false.
5781     AllTablesFitInRegister =
5782         AllTablesFitInRegister &&
5783         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5784 
5785     // If both flags saturate, we're done. NOTE: This *only* works with
5786     // saturating flags, and all flags have to saturate first due to the
5787     // non-deterministic behavior of iterating over a dense map.
5788     if (HasIllegalType && !AllTablesFitInRegister)
5789       break;
5790   }
5791 
5792   // If each table would fit in a register, we should build it anyway.
5793   if (AllTablesFitInRegister)
5794     return true;
5795 
5796   // Don't build a table that doesn't fit in-register if it has illegal types.
5797   if (HasIllegalType)
5798     return false;
5799 
5800   // The table density should be at least 40%. This is the same criterion as for
5801   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5802   // FIXME: Find the best cut-off.
5803   return SI->getNumCases() * 10 >= TableSize * 4;
5804 }
5805 
5806 /// Try to reuse the switch table index compare. Following pattern:
5807 /// \code
5808 ///     if (idx < tablesize)
5809 ///        r = table[idx]; // table does not contain default_value
5810 ///     else
5811 ///        r = default_value;
5812 ///     if (r != default_value)
5813 ///        ...
5814 /// \endcode
5815 /// Is optimized to:
5816 /// \code
5817 ///     cond = idx < tablesize;
5818 ///     if (cond)
5819 ///        r = table[idx];
5820 ///     else
5821 ///        r = default_value;
5822 ///     if (cond)
5823 ///        ...
5824 /// \endcode
5825 /// Jump threading will then eliminate the second if(cond).
5826 static void reuseTableCompare(
5827     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5828     Constant *DefaultValue,
5829     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5830   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5831   if (!CmpInst)
5832     return;
5833 
5834   // We require that the compare is in the same block as the phi so that jump
5835   // threading can do its work afterwards.
5836   if (CmpInst->getParent() != PhiBlock)
5837     return;
5838 
5839   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5840   if (!CmpOp1)
5841     return;
5842 
5843   Value *RangeCmp = RangeCheckBranch->getCondition();
5844   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5845   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5846 
5847   // Check if the compare with the default value is constant true or false.
5848   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5849                                                  DefaultValue, CmpOp1, true);
5850   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5851     return;
5852 
5853   // Check if the compare with the case values is distinct from the default
5854   // compare result.
5855   for (auto ValuePair : Values) {
5856     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5857                                                 ValuePair.second, CmpOp1, true);
5858     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5859       return;
5860     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5861            "Expect true or false as compare result.");
5862   }
5863 
5864   // Check if the branch instruction dominates the phi node. It's a simple
5865   // dominance check, but sufficient for our needs.
5866   // Although this check is invariant in the calling loops, it's better to do it
5867   // at this late stage. Practically we do it at most once for a switch.
5868   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5869   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5870     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5871       return;
5872   }
5873 
5874   if (DefaultConst == FalseConst) {
5875     // The compare yields the same result. We can replace it.
5876     CmpInst->replaceAllUsesWith(RangeCmp);
5877     ++NumTableCmpReuses;
5878   } else {
5879     // The compare yields the same result, just inverted. We can replace it.
5880     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5881         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5882         RangeCheckBranch);
5883     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5884     ++NumTableCmpReuses;
5885   }
5886 }
5887 
5888 /// If the switch is only used to initialize one or more phi nodes in a common
5889 /// successor block with different constant values, replace the switch with
5890 /// lookup tables.
5891 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5892                                 DomTreeUpdater *DTU, const DataLayout &DL,
5893                                 const TargetTransformInfo &TTI) {
5894   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5895 
5896   BasicBlock *BB = SI->getParent();
5897   Function *Fn = BB->getParent();
5898   // Only build lookup table when we have a target that supports it or the
5899   // attribute is not set.
5900   if (!TTI.shouldBuildLookupTables() ||
5901       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
5902     return false;
5903 
5904   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5905   // split off a dense part and build a lookup table for that.
5906 
5907   // FIXME: This creates arrays of GEPs to constant strings, which means each
5908   // GEP needs a runtime relocation in PIC code. We should just build one big
5909   // string and lookup indices into that.
5910 
5911   // Ignore switches with less than three cases. Lookup tables will not make
5912   // them faster, so we don't analyze them.
5913   if (SI->getNumCases() < 3)
5914     return false;
5915 
5916   // Figure out the corresponding result for each case value and phi node in the
5917   // common destination, as well as the min and max case values.
5918   assert(!SI->cases().empty());
5919   SwitchInst::CaseIt CI = SI->case_begin();
5920   ConstantInt *MinCaseVal = CI->getCaseValue();
5921   ConstantInt *MaxCaseVal = CI->getCaseValue();
5922 
5923   BasicBlock *CommonDest = nullptr;
5924 
5925   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5926   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5927 
5928   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5929   SmallDenseMap<PHINode *, Type *> ResultTypes;
5930   SmallVector<PHINode *, 4> PHIs;
5931 
5932   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5933     ConstantInt *CaseVal = CI->getCaseValue();
5934     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5935       MinCaseVal = CaseVal;
5936     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5937       MaxCaseVal = CaseVal;
5938 
5939     // Resulting value at phi nodes for this case value.
5940     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5941     ResultsTy Results;
5942     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5943                         Results, DL, TTI))
5944       return false;
5945 
5946     // Append the result from this case to the list for each phi.
5947     for (const auto &I : Results) {
5948       PHINode *PHI = I.first;
5949       Constant *Value = I.second;
5950       if (!ResultLists.count(PHI))
5951         PHIs.push_back(PHI);
5952       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5953     }
5954   }
5955 
5956   // Keep track of the result types.
5957   for (PHINode *PHI : PHIs) {
5958     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5959   }
5960 
5961   uint64_t NumResults = ResultLists[PHIs[0]].size();
5962   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5963   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5964   bool TableHasHoles = (NumResults < TableSize);
5965 
5966   // If the table has holes, we need a constant result for the default case
5967   // or a bitmask that fits in a register.
5968   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5969   bool HasDefaultResults =
5970       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5971                      DefaultResultsList, DL, TTI);
5972 
5973   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5974   if (NeedMask) {
5975     // As an extra penalty for the validity test we require more cases.
5976     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5977       return false;
5978     if (!DL.fitsInLegalInteger(TableSize))
5979       return false;
5980   }
5981 
5982   for (const auto &I : DefaultResultsList) {
5983     PHINode *PHI = I.first;
5984     Constant *Result = I.second;
5985     DefaultResults[PHI] = Result;
5986   }
5987 
5988   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5989     return false;
5990 
5991   std::vector<DominatorTree::UpdateType> Updates;
5992 
5993   // Create the BB that does the lookups.
5994   Module &Mod = *CommonDest->getParent()->getParent();
5995   BasicBlock *LookupBB = BasicBlock::Create(
5996       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5997 
5998   // Compute the table index value.
5999   Builder.SetInsertPoint(SI);
6000   Value *TableIndex;
6001   if (MinCaseVal->isNullValue())
6002     TableIndex = SI->getCondition();
6003   else
6004     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
6005                                    "switch.tableidx");
6006 
6007   // Compute the maximum table size representable by the integer type we are
6008   // switching upon.
6009   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6010   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6011   assert(MaxTableSize >= TableSize &&
6012          "It is impossible for a switch to have more entries than the max "
6013          "representable value of its input integer type's size.");
6014 
6015   // If the default destination is unreachable, or if the lookup table covers
6016   // all values of the conditional variable, branch directly to the lookup table
6017   // BB. Otherwise, check that the condition is within the case range.
6018   const bool DefaultIsReachable =
6019       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6020   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6021   BranchInst *RangeCheckBranch = nullptr;
6022 
6023   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6024     Builder.CreateBr(LookupBB);
6025     if (DTU)
6026       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6027     // Note: We call removeProdecessor later since we need to be able to get the
6028     // PHI value for the default case in case we're using a bit mask.
6029   } else {
6030     Value *Cmp = Builder.CreateICmpULT(
6031         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6032     RangeCheckBranch =
6033         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6034     if (DTU)
6035       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6036   }
6037 
6038   // Populate the BB that does the lookups.
6039   Builder.SetInsertPoint(LookupBB);
6040 
6041   if (NeedMask) {
6042     // Before doing the lookup, we do the hole check. The LookupBB is therefore
6043     // re-purposed to do the hole check, and we create a new LookupBB.
6044     BasicBlock *MaskBB = LookupBB;
6045     MaskBB->setName("switch.hole_check");
6046     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6047                                   CommonDest->getParent(), CommonDest);
6048 
6049     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6050     // unnecessary illegal types.
6051     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6052     APInt MaskInt(TableSizePowOf2, 0);
6053     APInt One(TableSizePowOf2, 1);
6054     // Build bitmask; fill in a 1 bit for every case.
6055     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6056     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6057       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
6058                          .getLimitedValue();
6059       MaskInt |= One << Idx;
6060     }
6061     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6062 
6063     // Get the TableIndex'th bit of the bitmask.
6064     // If this bit is 0 (meaning hole) jump to the default destination,
6065     // else continue with table lookup.
6066     IntegerType *MapTy = TableMask->getType();
6067     Value *MaskIndex =
6068         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6069     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6070     Value *LoBit = Builder.CreateTrunc(
6071         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6072     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6073     if (DTU) {
6074       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6075       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6076     }
6077     Builder.SetInsertPoint(LookupBB);
6078     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6079   }
6080 
6081   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6082     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6083     // do not delete PHINodes here.
6084     SI->getDefaultDest()->removePredecessor(BB,
6085                                             /*KeepOneInputPHIs=*/true);
6086     if (DTU)
6087       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6088   }
6089 
6090   bool ReturnedEarly = false;
6091   for (PHINode *PHI : PHIs) {
6092     const ResultListTy &ResultList = ResultLists[PHI];
6093 
6094     // If using a bitmask, use any value to fill the lookup table holes.
6095     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6096     StringRef FuncName = Fn->getName();
6097     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6098                             FuncName);
6099 
6100     Value *Result = Table.BuildLookup(TableIndex, Builder);
6101 
6102     // If the result is used to return immediately from the function, we want to
6103     // do that right here.
6104     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
6105         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
6106       Builder.CreateRet(Result);
6107       ReturnedEarly = true;
6108       break;
6109     }
6110 
6111     // Do a small peephole optimization: re-use the switch table compare if
6112     // possible.
6113     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6114       BasicBlock *PhiBlock = PHI->getParent();
6115       // Search for compare instructions which use the phi.
6116       for (auto *User : PHI->users()) {
6117         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6118       }
6119     }
6120 
6121     PHI->addIncoming(Result, LookupBB);
6122   }
6123 
6124   if (!ReturnedEarly) {
6125     Builder.CreateBr(CommonDest);
6126     if (DTU)
6127       Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6128   }
6129 
6130   // Remove the switch.
6131   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6132   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6133     BasicBlock *Succ = SI->getSuccessor(i);
6134 
6135     if (Succ == SI->getDefaultDest())
6136       continue;
6137     Succ->removePredecessor(BB);
6138     RemovedSuccessors.insert(Succ);
6139   }
6140   SI->eraseFromParent();
6141 
6142   if (DTU) {
6143     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
6144       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
6145     DTU->applyUpdates(Updates);
6146   }
6147 
6148   ++NumLookupTables;
6149   if (NeedMask)
6150     ++NumLookupTablesHoles;
6151   return true;
6152 }
6153 
6154 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6155   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6156   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6157   uint64_t Range = Diff + 1;
6158   uint64_t NumCases = Values.size();
6159   // 40% is the default density for building a jump table in optsize/minsize mode.
6160   uint64_t MinDensity = 40;
6161 
6162   return NumCases * 100 >= Range * MinDensity;
6163 }
6164 
6165 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6166 /// of cases.
6167 ///
6168 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6169 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6170 ///
6171 /// This converts a sparse switch into a dense switch which allows better
6172 /// lowering and could also allow transforming into a lookup table.
6173 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6174                               const DataLayout &DL,
6175                               const TargetTransformInfo &TTI) {
6176   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6177   if (CondTy->getIntegerBitWidth() > 64 ||
6178       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6179     return false;
6180   // Only bother with this optimization if there are more than 3 switch cases;
6181   // SDAG will only bother creating jump tables for 4 or more cases.
6182   if (SI->getNumCases() < 4)
6183     return false;
6184 
6185   // This transform is agnostic to the signedness of the input or case values. We
6186   // can treat the case values as signed or unsigned. We can optimize more common
6187   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6188   // as signed.
6189   SmallVector<int64_t,4> Values;
6190   for (auto &C : SI->cases())
6191     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6192   llvm::sort(Values);
6193 
6194   // If the switch is already dense, there's nothing useful to do here.
6195   if (isSwitchDense(Values))
6196     return false;
6197 
6198   // First, transform the values such that they start at zero and ascend.
6199   int64_t Base = Values[0];
6200   for (auto &V : Values)
6201     V -= (uint64_t)(Base);
6202 
6203   // Now we have signed numbers that have been shifted so that, given enough
6204   // precision, there are no negative values. Since the rest of the transform
6205   // is bitwise only, we switch now to an unsigned representation.
6206 
6207   // This transform can be done speculatively because it is so cheap - it
6208   // results in a single rotate operation being inserted.
6209   // FIXME: It's possible that optimizing a switch on powers of two might also
6210   // be beneficial - flag values are often powers of two and we could use a CLZ
6211   // as the key function.
6212 
6213   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6214   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6215   // less than 64.
6216   unsigned Shift = 64;
6217   for (auto &V : Values)
6218     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6219   assert(Shift < 64);
6220   if (Shift > 0)
6221     for (auto &V : Values)
6222       V = (int64_t)((uint64_t)V >> Shift);
6223 
6224   if (!isSwitchDense(Values))
6225     // Transform didn't create a dense switch.
6226     return false;
6227 
6228   // The obvious transform is to shift the switch condition right and emit a
6229   // check that the condition actually cleanly divided by GCD, i.e.
6230   //   C & (1 << Shift - 1) == 0
6231   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6232   //
6233   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6234   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6235   // are nonzero then the switch condition will be very large and will hit the
6236   // default case.
6237 
6238   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6239   Builder.SetInsertPoint(SI);
6240   auto *ShiftC = ConstantInt::get(Ty, Shift);
6241   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6242   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6243   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6244   auto *Rot = Builder.CreateOr(LShr, Shl);
6245   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6246 
6247   for (auto Case : SI->cases()) {
6248     auto *Orig = Case.getCaseValue();
6249     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6250     Case.setValue(
6251         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6252   }
6253   return true;
6254 }
6255 
6256 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6257   BasicBlock *BB = SI->getParent();
6258 
6259   if (isValueEqualityComparison(SI)) {
6260     // If we only have one predecessor, and if it is a branch on this value,
6261     // see if that predecessor totally determines the outcome of this switch.
6262     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6263       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6264         return requestResimplify();
6265 
6266     Value *Cond = SI->getCondition();
6267     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6268       if (SimplifySwitchOnSelect(SI, Select))
6269         return requestResimplify();
6270 
6271     // If the block only contains the switch, see if we can fold the block
6272     // away into any preds.
6273     if (SI == &*BB->instructionsWithoutDebug().begin())
6274       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6275         return requestResimplify();
6276   }
6277 
6278   // Try to transform the switch into an icmp and a branch.
6279   if (TurnSwitchRangeIntoICmp(SI, Builder))
6280     return requestResimplify();
6281 
6282   // Remove unreachable cases.
6283   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6284     return requestResimplify();
6285 
6286   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6287     return requestResimplify();
6288 
6289   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6290     return requestResimplify();
6291 
6292   // The conversion from switch to lookup tables results in difficult-to-analyze
6293   // code and makes pruning branches much harder. This is a problem if the
6294   // switch expression itself can still be restricted as a result of inlining or
6295   // CVP. Therefore, only apply this transformation during late stages of the
6296   // optimisation pipeline.
6297   if (Options.ConvertSwitchToLookupTable &&
6298       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6299     return requestResimplify();
6300 
6301   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6302     return requestResimplify();
6303 
6304   return false;
6305 }
6306 
6307 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6308   BasicBlock *BB = IBI->getParent();
6309   bool Changed = false;
6310 
6311   // Eliminate redundant destinations.
6312   SmallPtrSet<Value *, 8> Succs;
6313   SmallPtrSet<BasicBlock *, 8> RemovedSuccs;
6314   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6315     BasicBlock *Dest = IBI->getDestination(i);
6316     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6317       if (!Dest->hasAddressTaken())
6318         RemovedSuccs.insert(Dest);
6319       Dest->removePredecessor(BB);
6320       IBI->removeDestination(i);
6321       --i;
6322       --e;
6323       Changed = true;
6324     }
6325   }
6326 
6327   if (DTU) {
6328     std::vector<DominatorTree::UpdateType> Updates;
6329     Updates.reserve(RemovedSuccs.size());
6330     for (auto *RemovedSucc : RemovedSuccs)
6331       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6332     DTU->applyUpdates(Updates);
6333   }
6334 
6335   if (IBI->getNumDestinations() == 0) {
6336     // If the indirectbr has no successors, change it to unreachable.
6337     new UnreachableInst(IBI->getContext(), IBI);
6338     EraseTerminatorAndDCECond(IBI);
6339     return true;
6340   }
6341 
6342   if (IBI->getNumDestinations() == 1) {
6343     // If the indirectbr has one successor, change it to a direct branch.
6344     BranchInst::Create(IBI->getDestination(0), IBI);
6345     EraseTerminatorAndDCECond(IBI);
6346     return true;
6347   }
6348 
6349   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6350     if (SimplifyIndirectBrOnSelect(IBI, SI))
6351       return requestResimplify();
6352   }
6353   return Changed;
6354 }
6355 
6356 /// Given an block with only a single landing pad and a unconditional branch
6357 /// try to find another basic block which this one can be merged with.  This
6358 /// handles cases where we have multiple invokes with unique landing pads, but
6359 /// a shared handler.
6360 ///
6361 /// We specifically choose to not worry about merging non-empty blocks
6362 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6363 /// practice, the optimizer produces empty landing pad blocks quite frequently
6364 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6365 /// sinking in this file)
6366 ///
6367 /// This is primarily a code size optimization.  We need to avoid performing
6368 /// any transform which might inhibit optimization (such as our ability to
6369 /// specialize a particular handler via tail commoning).  We do this by not
6370 /// merging any blocks which require us to introduce a phi.  Since the same
6371 /// values are flowing through both blocks, we don't lose any ability to
6372 /// specialize.  If anything, we make such specialization more likely.
6373 ///
6374 /// TODO - This transformation could remove entries from a phi in the target
6375 /// block when the inputs in the phi are the same for the two blocks being
6376 /// merged.  In some cases, this could result in removal of the PHI entirely.
6377 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6378                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6379   auto Succ = BB->getUniqueSuccessor();
6380   assert(Succ);
6381   // If there's a phi in the successor block, we'd likely have to introduce
6382   // a phi into the merged landing pad block.
6383   if (isa<PHINode>(*Succ->begin()))
6384     return false;
6385 
6386   for (BasicBlock *OtherPred : predecessors(Succ)) {
6387     if (BB == OtherPred)
6388       continue;
6389     BasicBlock::iterator I = OtherPred->begin();
6390     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6391     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6392       continue;
6393     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6394       ;
6395     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6396     if (!BI2 || !BI2->isIdenticalTo(BI))
6397       continue;
6398 
6399     std::vector<DominatorTree::UpdateType> Updates;
6400 
6401     // We've found an identical block.  Update our predecessors to take that
6402     // path instead and make ourselves dead.
6403     SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
6404     for (BasicBlock *Pred : Preds) {
6405       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6406       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6407              "unexpected successor");
6408       II->setUnwindDest(OtherPred);
6409       if (DTU) {
6410         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6411         Updates.push_back({DominatorTree::Delete, Pred, BB});
6412       }
6413     }
6414 
6415     // The debug info in OtherPred doesn't cover the merged control flow that
6416     // used to go through BB.  We need to delete it or update it.
6417     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6418       Instruction &Inst = *I;
6419       I++;
6420       if (isa<DbgInfoIntrinsic>(Inst))
6421         Inst.eraseFromParent();
6422     }
6423 
6424     SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB));
6425     for (BasicBlock *Succ : Succs) {
6426       Succ->removePredecessor(BB);
6427       if (DTU)
6428         Updates.push_back({DominatorTree::Delete, BB, Succ});
6429     }
6430 
6431     IRBuilder<> Builder(BI);
6432     Builder.CreateUnreachable();
6433     BI->eraseFromParent();
6434     if (DTU)
6435       DTU->applyUpdates(Updates);
6436     return true;
6437   }
6438   return false;
6439 }
6440 
6441 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6442   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6443                                    : simplifyCondBranch(Branch, Builder);
6444 }
6445 
6446 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6447                                           IRBuilder<> &Builder) {
6448   BasicBlock *BB = BI->getParent();
6449   BasicBlock *Succ = BI->getSuccessor(0);
6450 
6451   // If the Terminator is the only non-phi instruction, simplify the block.
6452   // If LoopHeader is provided, check if the block or its successor is a loop
6453   // header. (This is for early invocations before loop simplify and
6454   // vectorization to keep canonical loop forms for nested loops. These blocks
6455   // can be eliminated when the pass is invoked later in the back-end.)
6456   // Note that if BB has only one predecessor then we do not introduce new
6457   // backedge, so we can eliminate BB.
6458   bool NeedCanonicalLoop =
6459       Options.NeedCanonicalLoop &&
6460       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6461        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6462   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6463   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6464       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6465     return true;
6466 
6467   // If the only instruction in the block is a seteq/setne comparison against a
6468   // constant, try to simplify the block.
6469   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6470     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6471       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6472         ;
6473       if (I->isTerminator() &&
6474           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6475         return true;
6476     }
6477 
6478   // See if we can merge an empty landing pad block with another which is
6479   // equivalent.
6480   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6481     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6482       ;
6483     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6484       return true;
6485   }
6486 
6487   // If this basic block is ONLY a compare and a branch, and if a predecessor
6488   // branches to us and our successor, fold the comparison into the
6489   // predecessor and use logical operations to update the incoming value
6490   // for PHI nodes in common successor.
6491   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6492                              Options.BonusInstThreshold))
6493     return requestResimplify();
6494   return false;
6495 }
6496 
6497 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6498   BasicBlock *PredPred = nullptr;
6499   for (auto *P : predecessors(BB)) {
6500     BasicBlock *PPred = P->getSinglePredecessor();
6501     if (!PPred || (PredPred && PredPred != PPred))
6502       return nullptr;
6503     PredPred = PPred;
6504   }
6505   return PredPred;
6506 }
6507 
6508 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6509   BasicBlock *BB = BI->getParent();
6510   if (!Options.SimplifyCondBranch)
6511     return false;
6512 
6513   // Conditional branch
6514   if (isValueEqualityComparison(BI)) {
6515     // If we only have one predecessor, and if it is a branch on this value,
6516     // see if that predecessor totally determines the outcome of this
6517     // switch.
6518     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6519       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6520         return requestResimplify();
6521 
6522     // This block must be empty, except for the setcond inst, if it exists.
6523     // Ignore dbg and pseudo intrinsics.
6524     auto I = BB->instructionsWithoutDebug(true).begin();
6525     if (&*I == BI) {
6526       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6527         return requestResimplify();
6528     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6529       ++I;
6530       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6531         return requestResimplify();
6532     }
6533   }
6534 
6535   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6536   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6537     return true;
6538 
6539   // If this basic block has dominating predecessor blocks and the dominating
6540   // blocks' conditions imply BI's condition, we know the direction of BI.
6541   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6542   if (Imp) {
6543     // Turn this into a branch on constant.
6544     auto *OldCond = BI->getCondition();
6545     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6546                              : ConstantInt::getFalse(BB->getContext());
6547     BI->setCondition(TorF);
6548     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6549     return requestResimplify();
6550   }
6551 
6552   // If this basic block is ONLY a compare and a branch, and if a predecessor
6553   // branches to us and one of our successors, fold the comparison into the
6554   // predecessor and use logical operations to pick the right destination.
6555   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6556                              Options.BonusInstThreshold))
6557     return requestResimplify();
6558 
6559   // We have a conditional branch to two blocks that are only reachable
6560   // from BI.  We know that the condbr dominates the two blocks, so see if
6561   // there is any identical code in the "then" and "else" blocks.  If so, we
6562   // can hoist it up to the branching block.
6563   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6564     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6565       if (HoistCommon &&
6566           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6567         return requestResimplify();
6568     } else {
6569       // If Successor #1 has multiple preds, we may be able to conditionally
6570       // execute Successor #0 if it branches to Successor #1.
6571       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6572       if (Succ0TI->getNumSuccessors() == 1 &&
6573           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6574         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6575           return requestResimplify();
6576     }
6577   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6578     // If Successor #0 has multiple preds, we may be able to conditionally
6579     // execute Successor #1 if it branches to Successor #0.
6580     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6581     if (Succ1TI->getNumSuccessors() == 1 &&
6582         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6583       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6584         return requestResimplify();
6585   }
6586 
6587   // If this is a branch on a phi node in the current block, thread control
6588   // through this block if any PHI node entries are constants.
6589   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6590     if (PN->getParent() == BI->getParent())
6591       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6592         return requestResimplify();
6593 
6594   // Scan predecessor blocks for conditional branches.
6595   for (BasicBlock *Pred : predecessors(BB))
6596     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6597       if (PBI != BI && PBI->isConditional())
6598         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6599           return requestResimplify();
6600 
6601   // Look for diamond patterns.
6602   if (MergeCondStores)
6603     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6604       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6605         if (PBI != BI && PBI->isConditional())
6606           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6607             return requestResimplify();
6608 
6609   return false;
6610 }
6611 
6612 /// Check if passing a value to an instruction will cause undefined behavior.
6613 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6614   Constant *C = dyn_cast<Constant>(V);
6615   if (!C)
6616     return false;
6617 
6618   if (I->use_empty())
6619     return false;
6620 
6621   if (C->isNullValue() || isa<UndefValue>(C)) {
6622     // Only look at the first use, avoid hurting compile time with long uselists
6623     User *Use = *I->user_begin();
6624 
6625     // Now make sure that there are no instructions in between that can alter
6626     // control flow (eg. calls)
6627     for (BasicBlock::iterator
6628              i = ++BasicBlock::iterator(I),
6629              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6630          i != UI; ++i) {
6631       if (i == I->getParent()->end())
6632         return false;
6633       if (!isGuaranteedToTransferExecutionToSuccessor(&*i))
6634         return false;
6635     }
6636 
6637     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6638     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6639       if (GEP->getPointerOperand() == I) {
6640         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6641           PtrValueMayBeModified = true;
6642         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6643       }
6644 
6645     // Look through bitcasts.
6646     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6647       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6648 
6649     // Load from null is undefined.
6650     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6651       if (!LI->isVolatile())
6652         return !NullPointerIsDefined(LI->getFunction(),
6653                                      LI->getPointerAddressSpace());
6654 
6655     // Store to null is undefined.
6656     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6657       if (!SI->isVolatile())
6658         return (!NullPointerIsDefined(SI->getFunction(),
6659                                       SI->getPointerAddressSpace())) &&
6660                SI->getPointerOperand() == I;
6661 
6662     if (auto *CB = dyn_cast<CallBase>(Use)) {
6663       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6664         return false;
6665       // A call to null is undefined.
6666       if (CB->getCalledOperand() == I)
6667         return true;
6668 
6669       if (C->isNullValue()) {
6670         for (const llvm::Use &Arg : CB->args())
6671           if (Arg == I) {
6672             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6673             if (CB->isPassingUndefUB(ArgIdx) &&
6674                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6675               // Passing null to a nonnnull+noundef argument is undefined.
6676               return !PtrValueMayBeModified;
6677             }
6678           }
6679       } else if (isa<UndefValue>(C)) {
6680         // Passing undef to a noundef argument is undefined.
6681         for (const llvm::Use &Arg : CB->args())
6682           if (Arg == I) {
6683             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6684             if (CB->isPassingUndefUB(ArgIdx)) {
6685               // Passing undef to a noundef argument is undefined.
6686               return true;
6687             }
6688           }
6689       }
6690     }
6691   }
6692   return false;
6693 }
6694 
6695 /// If BB has an incoming value that will always trigger undefined behavior
6696 /// (eg. null pointer dereference), remove the branch leading here.
6697 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6698                                               DomTreeUpdater *DTU) {
6699   for (PHINode &PHI : BB->phis())
6700     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6701       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6702         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6703         Instruction *T = Predecessor->getTerminator();
6704         IRBuilder<> Builder(T);
6705         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6706           BB->removePredecessor(Predecessor);
6707           // Turn uncoditional branches into unreachables and remove the dead
6708           // destination from conditional branches.
6709           if (BI->isUnconditional())
6710             Builder.CreateUnreachable();
6711           else
6712             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6713                                                        : BI->getSuccessor(0));
6714           BI->eraseFromParent();
6715           if (DTU)
6716             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6717           return true;
6718         }
6719         // TODO: SwitchInst.
6720       }
6721 
6722   return false;
6723 }
6724 
6725 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6726   bool Changed = false;
6727 
6728   assert(BB && BB->getParent() && "Block not embedded in function!");
6729   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6730 
6731   // Remove basic blocks that have no predecessors (except the entry block)...
6732   // or that just have themself as a predecessor.  These are unreachable.
6733   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6734       BB->getSinglePredecessor() == BB) {
6735     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6736     DeleteDeadBlock(BB, DTU);
6737     return true;
6738   }
6739 
6740   // Check to see if we can constant propagate this terminator instruction
6741   // away...
6742   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6743                                     /*TLI=*/nullptr, DTU);
6744 
6745   // Check for and eliminate duplicate PHI nodes in this block.
6746   Changed |= EliminateDuplicatePHINodes(BB);
6747 
6748   // Check for and remove branches that will always cause undefined behavior.
6749   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6750 
6751   // Merge basic blocks into their predecessor if there is only one distinct
6752   // pred, and if there is only one distinct successor of the predecessor, and
6753   // if there are no PHI nodes.
6754   if (MergeBlockIntoPredecessor(BB, DTU))
6755     return true;
6756 
6757   if (SinkCommon && Options.SinkCommonInsts)
6758     if (SinkCommonCodeFromPredecessors(BB, DTU)) {
6759       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
6760       // so we may now how duplicate PHI's.
6761       // Let's rerun EliminateDuplicatePHINodes() first,
6762       // before FoldTwoEntryPHINode() potentially converts them into select's,
6763       // after which we'd need a whole EarlyCSE pass run to cleanup them.
6764       return true;
6765     }
6766 
6767   IRBuilder<> Builder(BB);
6768 
6769   if (Options.FoldTwoEntryPHINode) {
6770     // If there is a trivial two-entry PHI node in this basic block, and we can
6771     // eliminate it, do so now.
6772     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6773       if (PN->getNumIncomingValues() == 2)
6774         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6775   }
6776 
6777   Instruction *Terminator = BB->getTerminator();
6778   Builder.SetInsertPoint(Terminator);
6779   switch (Terminator->getOpcode()) {
6780   case Instruction::Br:
6781     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6782     break;
6783   case Instruction::Ret:
6784     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6785     break;
6786   case Instruction::Resume:
6787     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6788     break;
6789   case Instruction::CleanupRet:
6790     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6791     break;
6792   case Instruction::Switch:
6793     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6794     break;
6795   case Instruction::Unreachable:
6796     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6797     break;
6798   case Instruction::IndirectBr:
6799     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6800     break;
6801   }
6802 
6803   return Changed;
6804 }
6805 
6806 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6807   bool Changed = simplifyOnceImpl(BB);
6808 
6809   return Changed;
6810 }
6811 
6812 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6813   bool Changed = false;
6814 
6815   // Repeated simplify BB as long as resimplification is requested.
6816   do {
6817     Resimplify = false;
6818 
6819     // Perform one round of simplifcation. Resimplify flag will be set if
6820     // another iteration is requested.
6821     Changed |= simplifyOnce(BB);
6822   } while (Resimplify);
6823 
6824   return Changed;
6825 }
6826 
6827 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6828                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6829                        ArrayRef<WeakVH> LoopHeaders) {
6830   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6831                         Options)
6832       .run(BB);
6833 }
6834