1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/SSAUpdater.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 97 cl::init(false), 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> DupRet( 117 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 118 cl::desc("Duplicate return instructions into unconditional branches")); 119 120 static cl::opt<bool> 121 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 122 cl::desc("Hoist common instructions up to the parent block")); 123 124 static cl::opt<bool> 125 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 126 cl::desc("Sink common instructions down to the end block")); 127 128 static cl::opt<bool> HoistCondStores( 129 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 130 cl::desc("Hoist conditional stores if an unconditional store precedes")); 131 132 static cl::opt<bool> MergeCondStores( 133 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 134 cl::desc("Hoist conditional stores even if an unconditional store does not " 135 "precede - hoist multiple conditional stores into a single " 136 "predicated store")); 137 138 static cl::opt<bool> MergeCondStoresAggressively( 139 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 140 cl::desc("When merging conditional stores, do so even if the resultant " 141 "basic blocks are unlikely to be if-converted as a result")); 142 143 static cl::opt<bool> SpeculateOneExpensiveInst( 144 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 145 cl::desc("Allow exactly one expensive instruction to be speculatively " 146 "executed")); 147 148 static cl::opt<unsigned> MaxSpeculationDepth( 149 "max-speculation-depth", cl::Hidden, cl::init(10), 150 cl::desc("Limit maximum recursion depth when calculating costs of " 151 "speculatively executed instructions")); 152 153 static cl::opt<int> 154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 155 cl::init(10), 156 cl::desc("Max size of a block which is still considered " 157 "small enough to thread through")); 158 159 // Two is chosen to allow one negation and a logical combine. 160 static cl::opt<unsigned> 161 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 162 cl::init(2), 163 cl::desc("Maximum cost of combining conditions when " 164 "folding branches")); 165 166 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 167 STATISTIC(NumLinearMaps, 168 "Number of switch instructions turned into linear mapping"); 169 STATISTIC(NumLookupTables, 170 "Number of switch instructions turned into lookup tables"); 171 STATISTIC( 172 NumLookupTablesHoles, 173 "Number of switch instructions turned into lookup tables (holes checked)"); 174 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 175 STATISTIC(NumFoldValueComparisonIntoPredecessors, 176 "Number of value comparisons folded into predecessor basic blocks"); 177 STATISTIC(NumFoldBranchToCommonDest, 178 "Number of branches folded into predecessor basic block"); 179 STATISTIC( 180 NumHoistCommonCode, 181 "Number of common instruction 'blocks' hoisted up to the begin block"); 182 STATISTIC(NumHoistCommonInstrs, 183 "Number of common instructions hoisted up to the begin block"); 184 STATISTIC(NumSinkCommonCode, 185 "Number of common instruction 'blocks' sunk down to the end block"); 186 STATISTIC(NumSinkCommonInstrs, 187 "Number of common instructions sunk down to the end block"); 188 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 189 STATISTIC(NumInvokes, 190 "Number of invokes with empty resume blocks simplified into calls"); 191 192 namespace { 193 194 // The first field contains the value that the switch produces when a certain 195 // case group is selected, and the second field is a vector containing the 196 // cases composing the case group. 197 using SwitchCaseResultVectorTy = 198 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 199 200 // The first field contains the phi node that generates a result of the switch 201 // and the second field contains the value generated for a certain case in the 202 // switch for that PHI. 203 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 204 205 /// ValueEqualityComparisonCase - Represents a case of a switch. 206 struct ValueEqualityComparisonCase { 207 ConstantInt *Value; 208 BasicBlock *Dest; 209 210 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 211 : Value(Value), Dest(Dest) {} 212 213 bool operator<(ValueEqualityComparisonCase RHS) const { 214 // Comparing pointers is ok as we only rely on the order for uniquing. 215 return Value < RHS.Value; 216 } 217 218 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 219 }; 220 221 class SimplifyCFGOpt { 222 const TargetTransformInfo &TTI; 223 DomTreeUpdater *DTU; 224 const DataLayout &DL; 225 ArrayRef<WeakVH> LoopHeaders; 226 const SimplifyCFGOptions &Options; 227 bool Resimplify; 228 229 Value *isValueEqualityComparison(Instruction *TI); 230 BasicBlock *GetValueEqualityComparisonCases( 231 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 232 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 233 BasicBlock *Pred, 234 IRBuilder<> &Builder); 235 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 236 Instruction *PTI, 237 IRBuilder<> &Builder); 238 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 239 IRBuilder<> &Builder); 240 241 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 242 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 243 bool simplifySingleResume(ResumeInst *RI); 244 bool simplifyCommonResume(ResumeInst *RI); 245 bool simplifyCleanupReturn(CleanupReturnInst *RI); 246 bool simplifyUnreachable(UnreachableInst *UI); 247 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 248 bool simplifyIndirectBr(IndirectBrInst *IBI); 249 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 250 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 251 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 252 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 253 254 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 255 IRBuilder<> &Builder); 256 257 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 258 bool EqTermsOnly); 259 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 260 const TargetTransformInfo &TTI); 261 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 262 BasicBlock *TrueBB, BasicBlock *FalseBB, 263 uint32_t TrueWeight, uint32_t FalseWeight); 264 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 265 const DataLayout &DL); 266 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 267 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 268 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 269 270 public: 271 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 272 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 273 const SimplifyCFGOptions &Opts) 274 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 275 assert((!DTU || !DTU->hasPostDomTree()) && 276 "SimplifyCFG is not yet capable of maintaining validity of a " 277 "PostDomTree, so don't ask for it."); 278 } 279 280 bool simplifyOnce(BasicBlock *BB); 281 bool simplifyOnceImpl(BasicBlock *BB); 282 bool run(BasicBlock *BB); 283 284 // Helper to set Resimplify and return change indication. 285 bool requestResimplify() { 286 Resimplify = true; 287 return true; 288 } 289 }; 290 291 } // end anonymous namespace 292 293 /// Return true if it is safe to merge these two 294 /// terminator instructions together. 295 static bool 296 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 297 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 298 if (SI1 == SI2) 299 return false; // Can't merge with self! 300 301 // It is not safe to merge these two switch instructions if they have a common 302 // successor, and if that successor has a PHI node, and if *that* PHI node has 303 // conflicting incoming values from the two switch blocks. 304 BasicBlock *SI1BB = SI1->getParent(); 305 BasicBlock *SI2BB = SI2->getParent(); 306 307 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 308 bool Fail = false; 309 for (BasicBlock *Succ : successors(SI2BB)) 310 if (SI1Succs.count(Succ)) 311 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 312 PHINode *PN = cast<PHINode>(BBI); 313 if (PN->getIncomingValueForBlock(SI1BB) != 314 PN->getIncomingValueForBlock(SI2BB)) { 315 if (FailBlocks) 316 FailBlocks->insert(Succ); 317 Fail = true; 318 } 319 } 320 321 return !Fail; 322 } 323 324 /// Update PHI nodes in Succ to indicate that there will now be entries in it 325 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 326 /// will be the same as those coming in from ExistPred, an existing predecessor 327 /// of Succ. 328 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 329 BasicBlock *ExistPred, 330 MemorySSAUpdater *MSSAU = nullptr) { 331 for (PHINode &PN : Succ->phis()) 332 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 333 if (MSSAU) 334 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 335 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 336 } 337 338 /// Compute an abstract "cost" of speculating the given instruction, 339 /// which is assumed to be safe to speculate. TCC_Free means cheap, 340 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 341 /// expensive. 342 static InstructionCost computeSpeculationCost(const User *I, 343 const TargetTransformInfo &TTI) { 344 assert(isSafeToSpeculativelyExecute(I) && 345 "Instruction is not safe to speculatively execute!"); 346 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 347 } 348 349 /// If we have a merge point of an "if condition" as accepted above, 350 /// return true if the specified value dominates the block. We 351 /// don't handle the true generality of domination here, just a special case 352 /// which works well enough for us. 353 /// 354 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 355 /// see if V (which must be an instruction) and its recursive operands 356 /// that do not dominate BB have a combined cost lower than Budget and 357 /// are non-trapping. If both are true, the instruction is inserted into the 358 /// set and true is returned. 359 /// 360 /// The cost for most non-trapping instructions is defined as 1 except for 361 /// Select whose cost is 2. 362 /// 363 /// After this function returns, Cost is increased by the cost of 364 /// V plus its non-dominating operands. If that cost is greater than 365 /// Budget, false is returned and Cost is undefined. 366 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 367 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 368 InstructionCost &Cost, 369 InstructionCost Budget, 370 const TargetTransformInfo &TTI, 371 unsigned Depth = 0) { 372 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 373 // so limit the recursion depth. 374 // TODO: While this recursion limit does prevent pathological behavior, it 375 // would be better to track visited instructions to avoid cycles. 376 if (Depth == MaxSpeculationDepth) 377 return false; 378 379 Instruction *I = dyn_cast<Instruction>(V); 380 if (!I) { 381 // Non-instructions all dominate instructions, but not all constantexprs 382 // can be executed unconditionally. 383 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 384 if (C->canTrap()) 385 return false; 386 return true; 387 } 388 BasicBlock *PBB = I->getParent(); 389 390 // We don't want to allow weird loops that might have the "if condition" in 391 // the bottom of this block. 392 if (PBB == BB) 393 return false; 394 395 // If this instruction is defined in a block that contains an unconditional 396 // branch to BB, then it must be in the 'conditional' part of the "if 397 // statement". If not, it definitely dominates the region. 398 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 399 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 400 return true; 401 402 // If we have seen this instruction before, don't count it again. 403 if (AggressiveInsts.count(I)) 404 return true; 405 406 // Okay, it looks like the instruction IS in the "condition". Check to 407 // see if it's a cheap instruction to unconditionally compute, and if it 408 // only uses stuff defined outside of the condition. If so, hoist it out. 409 if (!isSafeToSpeculativelyExecute(I)) 410 return false; 411 412 Cost += computeSpeculationCost(I, TTI); 413 414 // Allow exactly one instruction to be speculated regardless of its cost 415 // (as long as it is safe to do so). 416 // This is intended to flatten the CFG even if the instruction is a division 417 // or other expensive operation. The speculation of an expensive instruction 418 // is expected to be undone in CodeGenPrepare if the speculation has not 419 // enabled further IR optimizations. 420 if (Cost > Budget && 421 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 422 !Cost.isValid())) 423 return false; 424 425 // Okay, we can only really hoist these out if their operands do 426 // not take us over the cost threshold. 427 for (Use &Op : I->operands()) 428 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 429 Depth + 1)) 430 return false; 431 // Okay, it's safe to do this! Remember this instruction. 432 AggressiveInsts.insert(I); 433 return true; 434 } 435 436 /// Extract ConstantInt from value, looking through IntToPtr 437 /// and PointerNullValue. Return NULL if value is not a constant int. 438 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 439 // Normal constant int. 440 ConstantInt *CI = dyn_cast<ConstantInt>(V); 441 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 442 return CI; 443 444 // This is some kind of pointer constant. Turn it into a pointer-sized 445 // ConstantInt if possible. 446 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 447 448 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 449 if (isa<ConstantPointerNull>(V)) 450 return ConstantInt::get(PtrTy, 0); 451 452 // IntToPtr const int. 453 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 454 if (CE->getOpcode() == Instruction::IntToPtr) 455 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 456 // The constant is very likely to have the right type already. 457 if (CI->getType() == PtrTy) 458 return CI; 459 else 460 return cast<ConstantInt>( 461 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 462 } 463 return nullptr; 464 } 465 466 namespace { 467 468 /// Given a chain of or (||) or and (&&) comparison of a value against a 469 /// constant, this will try to recover the information required for a switch 470 /// structure. 471 /// It will depth-first traverse the chain of comparison, seeking for patterns 472 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 473 /// representing the different cases for the switch. 474 /// Note that if the chain is composed of '||' it will build the set of elements 475 /// that matches the comparisons (i.e. any of this value validate the chain) 476 /// while for a chain of '&&' it will build the set elements that make the test 477 /// fail. 478 struct ConstantComparesGatherer { 479 const DataLayout &DL; 480 481 /// Value found for the switch comparison 482 Value *CompValue = nullptr; 483 484 /// Extra clause to be checked before the switch 485 Value *Extra = nullptr; 486 487 /// Set of integers to match in switch 488 SmallVector<ConstantInt *, 8> Vals; 489 490 /// Number of comparisons matched in the and/or chain 491 unsigned UsedICmps = 0; 492 493 /// Construct and compute the result for the comparison instruction Cond 494 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 495 gather(Cond); 496 } 497 498 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 499 ConstantComparesGatherer & 500 operator=(const ConstantComparesGatherer &) = delete; 501 502 private: 503 /// Try to set the current value used for the comparison, it succeeds only if 504 /// it wasn't set before or if the new value is the same as the old one 505 bool setValueOnce(Value *NewVal) { 506 if (CompValue && CompValue != NewVal) 507 return false; 508 CompValue = NewVal; 509 return (CompValue != nullptr); 510 } 511 512 /// Try to match Instruction "I" as a comparison against a constant and 513 /// populates the array Vals with the set of values that match (or do not 514 /// match depending on isEQ). 515 /// Return false on failure. On success, the Value the comparison matched 516 /// against is placed in CompValue. 517 /// If CompValue is already set, the function is expected to fail if a match 518 /// is found but the value compared to is different. 519 bool matchInstruction(Instruction *I, bool isEQ) { 520 // If this is an icmp against a constant, handle this as one of the cases. 521 ICmpInst *ICI; 522 ConstantInt *C; 523 if (!((ICI = dyn_cast<ICmpInst>(I)) && 524 (C = GetConstantInt(I->getOperand(1), DL)))) { 525 return false; 526 } 527 528 Value *RHSVal; 529 const APInt *RHSC; 530 531 // Pattern match a special case 532 // (x & ~2^z) == y --> x == y || x == y|2^z 533 // This undoes a transformation done by instcombine to fuse 2 compares. 534 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 535 // It's a little bit hard to see why the following transformations are 536 // correct. Here is a CVC3 program to verify them for 64-bit values: 537 538 /* 539 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 540 x : BITVECTOR(64); 541 y : BITVECTOR(64); 542 z : BITVECTOR(64); 543 mask : BITVECTOR(64) = BVSHL(ONE, z); 544 QUERY( (y & ~mask = y) => 545 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 546 ); 547 QUERY( (y | mask = y) => 548 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 549 ); 550 */ 551 552 // Please note that each pattern must be a dual implication (<--> or 553 // iff). One directional implication can create spurious matches. If the 554 // implication is only one-way, an unsatisfiable condition on the left 555 // side can imply a satisfiable condition on the right side. Dual 556 // implication ensures that satisfiable conditions are transformed to 557 // other satisfiable conditions and unsatisfiable conditions are 558 // transformed to other unsatisfiable conditions. 559 560 // Here is a concrete example of a unsatisfiable condition on the left 561 // implying a satisfiable condition on the right: 562 // 563 // mask = (1 << z) 564 // (x & ~mask) == y --> (x == y || x == (y | mask)) 565 // 566 // Substituting y = 3, z = 0 yields: 567 // (x & -2) == 3 --> (x == 3 || x == 2) 568 569 // Pattern match a special case: 570 /* 571 QUERY( (y & ~mask = y) => 572 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 573 ); 574 */ 575 if (match(ICI->getOperand(0), 576 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 577 APInt Mask = ~*RHSC; 578 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 579 // If we already have a value for the switch, it has to match! 580 if (!setValueOnce(RHSVal)) 581 return false; 582 583 Vals.push_back(C); 584 Vals.push_back( 585 ConstantInt::get(C->getContext(), 586 C->getValue() | Mask)); 587 UsedICmps++; 588 return true; 589 } 590 } 591 592 // Pattern match a special case: 593 /* 594 QUERY( (y | mask = y) => 595 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 596 ); 597 */ 598 if (match(ICI->getOperand(0), 599 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 600 APInt Mask = *RHSC; 601 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 602 // If we already have a value for the switch, it has to match! 603 if (!setValueOnce(RHSVal)) 604 return false; 605 606 Vals.push_back(C); 607 Vals.push_back(ConstantInt::get(C->getContext(), 608 C->getValue() & ~Mask)); 609 UsedICmps++; 610 return true; 611 } 612 } 613 614 // If we already have a value for the switch, it has to match! 615 if (!setValueOnce(ICI->getOperand(0))) 616 return false; 617 618 UsedICmps++; 619 Vals.push_back(C); 620 return ICI->getOperand(0); 621 } 622 623 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 624 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 625 ICI->getPredicate(), C->getValue()); 626 627 // Shift the range if the compare is fed by an add. This is the range 628 // compare idiom as emitted by instcombine. 629 Value *CandidateVal = I->getOperand(0); 630 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 631 Span = Span.subtract(*RHSC); 632 CandidateVal = RHSVal; 633 } 634 635 // If this is an and/!= check, then we are looking to build the set of 636 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 637 // x != 0 && x != 1. 638 if (!isEQ) 639 Span = Span.inverse(); 640 641 // If there are a ton of values, we don't want to make a ginormous switch. 642 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 643 return false; 644 } 645 646 // If we already have a value for the switch, it has to match! 647 if (!setValueOnce(CandidateVal)) 648 return false; 649 650 // Add all values from the range to the set 651 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 652 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 653 654 UsedICmps++; 655 return true; 656 } 657 658 /// Given a potentially 'or'd or 'and'd together collection of icmp 659 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 660 /// the value being compared, and stick the list constants into the Vals 661 /// vector. 662 /// One "Extra" case is allowed to differ from the other. 663 void gather(Value *V) { 664 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 665 666 // Keep a stack (SmallVector for efficiency) for depth-first traversal 667 SmallVector<Value *, 8> DFT; 668 SmallPtrSet<Value *, 8> Visited; 669 670 // Initialize 671 Visited.insert(V); 672 DFT.push_back(V); 673 674 while (!DFT.empty()) { 675 V = DFT.pop_back_val(); 676 677 if (Instruction *I = dyn_cast<Instruction>(V)) { 678 // If it is a || (or && depending on isEQ), process the operands. 679 Value *Op0, *Op1; 680 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 681 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 682 if (Visited.insert(Op1).second) 683 DFT.push_back(Op1); 684 if (Visited.insert(Op0).second) 685 DFT.push_back(Op0); 686 687 continue; 688 } 689 690 // Try to match the current instruction 691 if (matchInstruction(I, isEQ)) 692 // Match succeed, continue the loop 693 continue; 694 } 695 696 // One element of the sequence of || (or &&) could not be match as a 697 // comparison against the same value as the others. 698 // We allow only one "Extra" case to be checked before the switch 699 if (!Extra) { 700 Extra = V; 701 continue; 702 } 703 // Failed to parse a proper sequence, abort now 704 CompValue = nullptr; 705 break; 706 } 707 } 708 }; 709 710 } // end anonymous namespace 711 712 static void EraseTerminatorAndDCECond(Instruction *TI, 713 MemorySSAUpdater *MSSAU = nullptr) { 714 Instruction *Cond = nullptr; 715 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 716 Cond = dyn_cast<Instruction>(SI->getCondition()); 717 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 718 if (BI->isConditional()) 719 Cond = dyn_cast<Instruction>(BI->getCondition()); 720 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 721 Cond = dyn_cast<Instruction>(IBI->getAddress()); 722 } 723 724 TI->eraseFromParent(); 725 if (Cond) 726 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 727 } 728 729 /// Return true if the specified terminator checks 730 /// to see if a value is equal to constant integer value. 731 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 732 Value *CV = nullptr; 733 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 734 // Do not permit merging of large switch instructions into their 735 // predecessors unless there is only one predecessor. 736 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 737 CV = SI->getCondition(); 738 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 739 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 740 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 741 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 742 CV = ICI->getOperand(0); 743 } 744 745 // Unwrap any lossless ptrtoint cast. 746 if (CV) { 747 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 748 Value *Ptr = PTII->getPointerOperand(); 749 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 750 CV = Ptr; 751 } 752 } 753 return CV; 754 } 755 756 /// Given a value comparison instruction, 757 /// decode all of the 'cases' that it represents and return the 'default' block. 758 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 759 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 760 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 761 Cases.reserve(SI->getNumCases()); 762 for (auto Case : SI->cases()) 763 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 764 Case.getCaseSuccessor())); 765 return SI->getDefaultDest(); 766 } 767 768 BranchInst *BI = cast<BranchInst>(TI); 769 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 770 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 771 Cases.push_back(ValueEqualityComparisonCase( 772 GetConstantInt(ICI->getOperand(1), DL), Succ)); 773 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 774 } 775 776 /// Given a vector of bb/value pairs, remove any entries 777 /// in the list that match the specified block. 778 static void 779 EliminateBlockCases(BasicBlock *BB, 780 std::vector<ValueEqualityComparisonCase> &Cases) { 781 llvm::erase_value(Cases, BB); 782 } 783 784 /// Return true if there are any keys in C1 that exist in C2 as well. 785 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 786 std::vector<ValueEqualityComparisonCase> &C2) { 787 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 788 789 // Make V1 be smaller than V2. 790 if (V1->size() > V2->size()) 791 std::swap(V1, V2); 792 793 if (V1->empty()) 794 return false; 795 if (V1->size() == 1) { 796 // Just scan V2. 797 ConstantInt *TheVal = (*V1)[0].Value; 798 for (unsigned i = 0, e = V2->size(); i != e; ++i) 799 if (TheVal == (*V2)[i].Value) 800 return true; 801 } 802 803 // Otherwise, just sort both lists and compare element by element. 804 array_pod_sort(V1->begin(), V1->end()); 805 array_pod_sort(V2->begin(), V2->end()); 806 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 807 while (i1 != e1 && i2 != e2) { 808 if ((*V1)[i1].Value == (*V2)[i2].Value) 809 return true; 810 if ((*V1)[i1].Value < (*V2)[i2].Value) 811 ++i1; 812 else 813 ++i2; 814 } 815 return false; 816 } 817 818 // Set branch weights on SwitchInst. This sets the metadata if there is at 819 // least one non-zero weight. 820 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 821 // Check that there is at least one non-zero weight. Otherwise, pass 822 // nullptr to setMetadata which will erase the existing metadata. 823 MDNode *N = nullptr; 824 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 825 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 826 SI->setMetadata(LLVMContext::MD_prof, N); 827 } 828 829 // Similar to the above, but for branch and select instructions that take 830 // exactly 2 weights. 831 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 832 uint32_t FalseWeight) { 833 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 834 // Check that there is at least one non-zero weight. Otherwise, pass 835 // nullptr to setMetadata which will erase the existing metadata. 836 MDNode *N = nullptr; 837 if (TrueWeight || FalseWeight) 838 N = MDBuilder(I->getParent()->getContext()) 839 .createBranchWeights(TrueWeight, FalseWeight); 840 I->setMetadata(LLVMContext::MD_prof, N); 841 } 842 843 /// If TI is known to be a terminator instruction and its block is known to 844 /// only have a single predecessor block, check to see if that predecessor is 845 /// also a value comparison with the same value, and if that comparison 846 /// determines the outcome of this comparison. If so, simplify TI. This does a 847 /// very limited form of jump threading. 848 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 849 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 850 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 851 if (!PredVal) 852 return false; // Not a value comparison in predecessor. 853 854 Value *ThisVal = isValueEqualityComparison(TI); 855 assert(ThisVal && "This isn't a value comparison!!"); 856 if (ThisVal != PredVal) 857 return false; // Different predicates. 858 859 // TODO: Preserve branch weight metadata, similarly to how 860 // FoldValueComparisonIntoPredecessors preserves it. 861 862 // Find out information about when control will move from Pred to TI's block. 863 std::vector<ValueEqualityComparisonCase> PredCases; 864 BasicBlock *PredDef = 865 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 866 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 867 868 // Find information about how control leaves this block. 869 std::vector<ValueEqualityComparisonCase> ThisCases; 870 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 871 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 872 873 // If TI's block is the default block from Pred's comparison, potentially 874 // simplify TI based on this knowledge. 875 if (PredDef == TI->getParent()) { 876 // If we are here, we know that the value is none of those cases listed in 877 // PredCases. If there are any cases in ThisCases that are in PredCases, we 878 // can simplify TI. 879 if (!ValuesOverlap(PredCases, ThisCases)) 880 return false; 881 882 if (isa<BranchInst>(TI)) { 883 // Okay, one of the successors of this condbr is dead. Convert it to a 884 // uncond br. 885 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 886 // Insert the new branch. 887 Instruction *NI = Builder.CreateBr(ThisDef); 888 (void)NI; 889 890 // Remove PHI node entries for the dead edge. 891 ThisCases[0].Dest->removePredecessor(PredDef); 892 893 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 894 << "Through successor TI: " << *TI << "Leaving: " << *NI 895 << "\n"); 896 897 EraseTerminatorAndDCECond(TI); 898 899 if (DTU) 900 DTU->applyUpdates( 901 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 902 903 return true; 904 } 905 906 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 907 // Okay, TI has cases that are statically dead, prune them away. 908 SmallPtrSet<Constant *, 16> DeadCases; 909 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 910 DeadCases.insert(PredCases[i].Value); 911 912 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 913 << "Through successor TI: " << *TI); 914 915 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 916 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 917 --i; 918 auto *Successor = i->getCaseSuccessor(); 919 if (DTU) 920 ++NumPerSuccessorCases[Successor]; 921 if (DeadCases.count(i->getCaseValue())) { 922 Successor->removePredecessor(PredDef); 923 SI.removeCase(i); 924 if (DTU) 925 --NumPerSuccessorCases[Successor]; 926 } 927 } 928 929 if (DTU) { 930 std::vector<DominatorTree::UpdateType> Updates; 931 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 932 if (I.second == 0) 933 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 934 DTU->applyUpdates(Updates); 935 } 936 937 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 938 return true; 939 } 940 941 // Otherwise, TI's block must correspond to some matched value. Find out 942 // which value (or set of values) this is. 943 ConstantInt *TIV = nullptr; 944 BasicBlock *TIBB = TI->getParent(); 945 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 946 if (PredCases[i].Dest == TIBB) { 947 if (TIV) 948 return false; // Cannot handle multiple values coming to this block. 949 TIV = PredCases[i].Value; 950 } 951 assert(TIV && "No edge from pred to succ?"); 952 953 // Okay, we found the one constant that our value can be if we get into TI's 954 // BB. Find out which successor will unconditionally be branched to. 955 BasicBlock *TheRealDest = nullptr; 956 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 957 if (ThisCases[i].Value == TIV) { 958 TheRealDest = ThisCases[i].Dest; 959 break; 960 } 961 962 // If not handled by any explicit cases, it is handled by the default case. 963 if (!TheRealDest) 964 TheRealDest = ThisDef; 965 966 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 967 968 // Remove PHI node entries for dead edges. 969 BasicBlock *CheckEdge = TheRealDest; 970 for (BasicBlock *Succ : successors(TIBB)) 971 if (Succ != CheckEdge) { 972 if (Succ != TheRealDest) 973 RemovedSuccs.insert(Succ); 974 Succ->removePredecessor(TIBB); 975 } else 976 CheckEdge = nullptr; 977 978 // Insert the new branch. 979 Instruction *NI = Builder.CreateBr(TheRealDest); 980 (void)NI; 981 982 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 983 << "Through successor TI: " << *TI << "Leaving: " << *NI 984 << "\n"); 985 986 EraseTerminatorAndDCECond(TI); 987 if (DTU) { 988 SmallVector<DominatorTree::UpdateType, 2> Updates; 989 Updates.reserve(RemovedSuccs.size()); 990 for (auto *RemovedSucc : RemovedSuccs) 991 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 992 DTU->applyUpdates(Updates); 993 } 994 return true; 995 } 996 997 namespace { 998 999 /// This class implements a stable ordering of constant 1000 /// integers that does not depend on their address. This is important for 1001 /// applications that sort ConstantInt's to ensure uniqueness. 1002 struct ConstantIntOrdering { 1003 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1004 return LHS->getValue().ult(RHS->getValue()); 1005 } 1006 }; 1007 1008 } // end anonymous namespace 1009 1010 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1011 ConstantInt *const *P2) { 1012 const ConstantInt *LHS = *P1; 1013 const ConstantInt *RHS = *P2; 1014 if (LHS == RHS) 1015 return 0; 1016 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1017 } 1018 1019 static inline bool HasBranchWeights(const Instruction *I) { 1020 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1021 if (ProfMD && ProfMD->getOperand(0)) 1022 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1023 return MDS->getString().equals("branch_weights"); 1024 1025 return false; 1026 } 1027 1028 /// Get Weights of a given terminator, the default weight is at the front 1029 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1030 /// metadata. 1031 static void GetBranchWeights(Instruction *TI, 1032 SmallVectorImpl<uint64_t> &Weights) { 1033 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1034 assert(MD); 1035 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1036 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1037 Weights.push_back(CI->getValue().getZExtValue()); 1038 } 1039 1040 // If TI is a conditional eq, the default case is the false case, 1041 // and the corresponding branch-weight data is at index 2. We swap the 1042 // default weight to be the first entry. 1043 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1044 assert(Weights.size() == 2); 1045 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1046 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1047 std::swap(Weights.front(), Weights.back()); 1048 } 1049 } 1050 1051 /// Keep halving the weights until all can fit in uint32_t. 1052 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1053 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1054 if (Max > UINT_MAX) { 1055 unsigned Offset = 32 - countLeadingZeros(Max); 1056 for (uint64_t &I : Weights) 1057 I >>= Offset; 1058 } 1059 } 1060 1061 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1062 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1063 Instruction *PTI = PredBlock->getTerminator(); 1064 1065 // If we have bonus instructions, clone them into the predecessor block. 1066 // Note that there may be multiple predecessor blocks, so we cannot move 1067 // bonus instructions to a predecessor block. 1068 for (Instruction &BonusInst : *BB) { 1069 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1070 continue; 1071 1072 Instruction *NewBonusInst = BonusInst.clone(); 1073 1074 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1075 // Unless the instruction has the same !dbg location as the original 1076 // branch, drop it. When we fold the bonus instructions we want to make 1077 // sure we reset their debug locations in order to avoid stepping on 1078 // dead code caused by folding dead branches. 1079 NewBonusInst->setDebugLoc(DebugLoc()); 1080 } 1081 1082 RemapInstruction(NewBonusInst, VMap, 1083 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1084 VMap[&BonusInst] = NewBonusInst; 1085 1086 // If we moved a load, we cannot any longer claim any knowledge about 1087 // its potential value. The previous information might have been valid 1088 // only given the branch precondition. 1089 // For an analogous reason, we must also drop all the metadata whose 1090 // semantics we don't understand. We *can* preserve !annotation, because 1091 // it is tied to the instruction itself, not the value or position. 1092 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1093 1094 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1095 NewBonusInst->takeName(&BonusInst); 1096 BonusInst.setName(NewBonusInst->getName() + ".old"); 1097 1098 // Update (liveout) uses of bonus instructions, 1099 // now that the bonus instruction has been cloned into predecessor. 1100 SSAUpdater SSAUpdate; 1101 SSAUpdate.Initialize(BonusInst.getType(), 1102 (NewBonusInst->getName() + ".merge").str()); 1103 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1104 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1105 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1106 auto *UI = cast<Instruction>(U.getUser()); 1107 if (UI->getParent() != PredBlock) 1108 SSAUpdate.RewriteUseAfterInsertions(U); 1109 else // Use is in the same block as, and comes before, NewBonusInst. 1110 SSAUpdate.RewriteUse(U); 1111 } 1112 } 1113 } 1114 1115 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1116 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1117 BasicBlock *BB = TI->getParent(); 1118 BasicBlock *Pred = PTI->getParent(); 1119 1120 SmallVector<DominatorTree::UpdateType, 32> Updates; 1121 1122 // Figure out which 'cases' to copy from SI to PSI. 1123 std::vector<ValueEqualityComparisonCase> BBCases; 1124 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1125 1126 std::vector<ValueEqualityComparisonCase> PredCases; 1127 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1128 1129 // Based on whether the default edge from PTI goes to BB or not, fill in 1130 // PredCases and PredDefault with the new switch cases we would like to 1131 // build. 1132 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1133 1134 // Update the branch weight metadata along the way 1135 SmallVector<uint64_t, 8> Weights; 1136 bool PredHasWeights = HasBranchWeights(PTI); 1137 bool SuccHasWeights = HasBranchWeights(TI); 1138 1139 if (PredHasWeights) { 1140 GetBranchWeights(PTI, Weights); 1141 // branch-weight metadata is inconsistent here. 1142 if (Weights.size() != 1 + PredCases.size()) 1143 PredHasWeights = SuccHasWeights = false; 1144 } else if (SuccHasWeights) 1145 // If there are no predecessor weights but there are successor weights, 1146 // populate Weights with 1, which will later be scaled to the sum of 1147 // successor's weights 1148 Weights.assign(1 + PredCases.size(), 1); 1149 1150 SmallVector<uint64_t, 8> SuccWeights; 1151 if (SuccHasWeights) { 1152 GetBranchWeights(TI, SuccWeights); 1153 // branch-weight metadata is inconsistent here. 1154 if (SuccWeights.size() != 1 + BBCases.size()) 1155 PredHasWeights = SuccHasWeights = false; 1156 } else if (PredHasWeights) 1157 SuccWeights.assign(1 + BBCases.size(), 1); 1158 1159 if (PredDefault == BB) { 1160 // If this is the default destination from PTI, only the edges in TI 1161 // that don't occur in PTI, or that branch to BB will be activated. 1162 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1163 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1164 if (PredCases[i].Dest != BB) 1165 PTIHandled.insert(PredCases[i].Value); 1166 else { 1167 // The default destination is BB, we don't need explicit targets. 1168 std::swap(PredCases[i], PredCases.back()); 1169 1170 if (PredHasWeights || SuccHasWeights) { 1171 // Increase weight for the default case. 1172 Weights[0] += Weights[i + 1]; 1173 std::swap(Weights[i + 1], Weights.back()); 1174 Weights.pop_back(); 1175 } 1176 1177 PredCases.pop_back(); 1178 --i; 1179 --e; 1180 } 1181 1182 // Reconstruct the new switch statement we will be building. 1183 if (PredDefault != BBDefault) { 1184 PredDefault->removePredecessor(Pred); 1185 if (DTU && PredDefault != BB) 1186 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1187 PredDefault = BBDefault; 1188 ++NewSuccessors[BBDefault]; 1189 } 1190 1191 unsigned CasesFromPred = Weights.size(); 1192 uint64_t ValidTotalSuccWeight = 0; 1193 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1194 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1195 PredCases.push_back(BBCases[i]); 1196 ++NewSuccessors[BBCases[i].Dest]; 1197 if (SuccHasWeights || PredHasWeights) { 1198 // The default weight is at index 0, so weight for the ith case 1199 // should be at index i+1. Scale the cases from successor by 1200 // PredDefaultWeight (Weights[0]). 1201 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1202 ValidTotalSuccWeight += SuccWeights[i + 1]; 1203 } 1204 } 1205 1206 if (SuccHasWeights || PredHasWeights) { 1207 ValidTotalSuccWeight += SuccWeights[0]; 1208 // Scale the cases from predecessor by ValidTotalSuccWeight. 1209 for (unsigned i = 1; i < CasesFromPred; ++i) 1210 Weights[i] *= ValidTotalSuccWeight; 1211 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1212 Weights[0] *= SuccWeights[0]; 1213 } 1214 } else { 1215 // If this is not the default destination from PSI, only the edges 1216 // in SI that occur in PSI with a destination of BB will be 1217 // activated. 1218 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1219 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1220 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1221 if (PredCases[i].Dest == BB) { 1222 PTIHandled.insert(PredCases[i].Value); 1223 1224 if (PredHasWeights || SuccHasWeights) { 1225 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1226 std::swap(Weights[i + 1], Weights.back()); 1227 Weights.pop_back(); 1228 } 1229 1230 std::swap(PredCases[i], PredCases.back()); 1231 PredCases.pop_back(); 1232 --i; 1233 --e; 1234 } 1235 1236 // Okay, now we know which constants were sent to BB from the 1237 // predecessor. Figure out where they will all go now. 1238 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1239 if (PTIHandled.count(BBCases[i].Value)) { 1240 // If this is one we are capable of getting... 1241 if (PredHasWeights || SuccHasWeights) 1242 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1243 PredCases.push_back(BBCases[i]); 1244 ++NewSuccessors[BBCases[i].Dest]; 1245 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1246 } 1247 1248 // If there are any constants vectored to BB that TI doesn't handle, 1249 // they must go to the default destination of TI. 1250 for (ConstantInt *I : PTIHandled) { 1251 if (PredHasWeights || SuccHasWeights) 1252 Weights.push_back(WeightsForHandled[I]); 1253 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1254 ++NewSuccessors[BBDefault]; 1255 } 1256 } 1257 1258 // Okay, at this point, we know which new successor Pred will get. Make 1259 // sure we update the number of entries in the PHI nodes for these 1260 // successors. 1261 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1262 if (DTU) { 1263 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1264 Updates.reserve(Updates.size() + NewSuccessors.size()); 1265 } 1266 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1267 NewSuccessors) { 1268 for (auto I : seq(0, NewSuccessor.second)) { 1269 (void)I; 1270 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1271 } 1272 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1273 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1274 } 1275 1276 Builder.SetInsertPoint(PTI); 1277 // Convert pointer to int before we switch. 1278 if (CV->getType()->isPointerTy()) { 1279 CV = 1280 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1281 } 1282 1283 // Now that the successors are updated, create the new Switch instruction. 1284 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1285 NewSI->setDebugLoc(PTI->getDebugLoc()); 1286 for (ValueEqualityComparisonCase &V : PredCases) 1287 NewSI->addCase(V.Value, V.Dest); 1288 1289 if (PredHasWeights || SuccHasWeights) { 1290 // Halve the weights if any of them cannot fit in an uint32_t 1291 FitWeights(Weights); 1292 1293 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1294 1295 setBranchWeights(NewSI, MDWeights); 1296 } 1297 1298 EraseTerminatorAndDCECond(PTI); 1299 1300 // Okay, last check. If BB is still a successor of PSI, then we must 1301 // have an infinite loop case. If so, add an infinitely looping block 1302 // to handle the case to preserve the behavior of the code. 1303 BasicBlock *InfLoopBlock = nullptr; 1304 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1305 if (NewSI->getSuccessor(i) == BB) { 1306 if (!InfLoopBlock) { 1307 // Insert it at the end of the function, because it's either code, 1308 // or it won't matter if it's hot. :) 1309 InfLoopBlock = 1310 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1311 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1312 if (DTU) 1313 Updates.push_back( 1314 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1315 } 1316 NewSI->setSuccessor(i, InfLoopBlock); 1317 } 1318 1319 if (DTU) { 1320 if (InfLoopBlock) 1321 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1322 1323 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1324 1325 DTU->applyUpdates(Updates); 1326 } 1327 1328 // Here the BB is not a dead block but folded into its predecessors, so move 1329 // the probe and mark it as dangling. 1330 moveAndDanglePseudoProbes(BB, NewSI); 1331 1332 ++NumFoldValueComparisonIntoPredecessors; 1333 return true; 1334 } 1335 1336 /// The specified terminator is a value equality comparison instruction 1337 /// (either a switch or a branch on "X == c"). 1338 /// See if any of the predecessors of the terminator block are value comparisons 1339 /// on the same value. If so, and if safe to do so, fold them together. 1340 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1341 IRBuilder<> &Builder) { 1342 BasicBlock *BB = TI->getParent(); 1343 Value *CV = isValueEqualityComparison(TI); // CondVal 1344 assert(CV && "Not a comparison?"); 1345 1346 bool Changed = false; 1347 1348 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1349 while (!Preds.empty()) { 1350 BasicBlock *Pred = Preds.pop_back_val(); 1351 Instruction *PTI = Pred->getTerminator(); 1352 1353 // Don't try to fold into itself. 1354 if (Pred == BB) 1355 continue; 1356 1357 // See if the predecessor is a comparison with the same value. 1358 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1359 if (PCV != CV) 1360 continue; 1361 1362 SmallSetVector<BasicBlock *, 4> FailBlocks; 1363 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1364 for (auto *Succ : FailBlocks) { 1365 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1366 return false; 1367 } 1368 } 1369 1370 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1371 Changed = true; 1372 } 1373 return Changed; 1374 } 1375 1376 // If we would need to insert a select that uses the value of this invoke 1377 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1378 // can't hoist the invoke, as there is nowhere to put the select in this case. 1379 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1380 Instruction *I1, Instruction *I2) { 1381 for (BasicBlock *Succ : successors(BB1)) { 1382 for (const PHINode &PN : Succ->phis()) { 1383 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1384 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1385 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1386 return false; 1387 } 1388 } 1389 } 1390 return true; 1391 } 1392 1393 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1394 1395 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1396 /// in the two blocks up into the branch block. The caller of this function 1397 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1398 /// only perform hoisting in case both blocks only contain a terminator. In that 1399 /// case, only the original BI will be replaced and selects for PHIs are added. 1400 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1401 const TargetTransformInfo &TTI, 1402 bool EqTermsOnly) { 1403 // This does very trivial matching, with limited scanning, to find identical 1404 // instructions in the two blocks. In particular, we don't want to get into 1405 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1406 // such, we currently just scan for obviously identical instructions in an 1407 // identical order. 1408 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1409 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1410 1411 BasicBlock::iterator BB1_Itr = BB1->begin(); 1412 BasicBlock::iterator BB2_Itr = BB2->begin(); 1413 1414 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1415 // Skip debug info if it is not identical. 1416 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1417 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1418 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1419 while (isa<DbgInfoIntrinsic>(I1)) 1420 I1 = &*BB1_Itr++; 1421 while (isa<DbgInfoIntrinsic>(I2)) 1422 I2 = &*BB2_Itr++; 1423 } 1424 // FIXME: Can we define a safety predicate for CallBr? 1425 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1426 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1427 isa<CallBrInst>(I1)) 1428 return false; 1429 1430 BasicBlock *BIParent = BI->getParent(); 1431 1432 bool Changed = false; 1433 1434 auto _ = make_scope_exit([&]() { 1435 if (Changed) 1436 ++NumHoistCommonCode; 1437 }); 1438 1439 // Check if only hoisting terminators is allowed. This does not add new 1440 // instructions to the hoist location. 1441 if (EqTermsOnly) { 1442 // Skip any debug intrinsics, as they are free to hoist. 1443 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1444 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1445 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1446 return false; 1447 if (!I1NonDbg->isTerminator()) 1448 return false; 1449 // Now we know that we only need to hoist debug instrinsics and the 1450 // terminator. Let the loop below handle those 2 cases. 1451 } 1452 1453 do { 1454 // If we are hoisting the terminator instruction, don't move one (making a 1455 // broken BB), instead clone it, and remove BI. 1456 if (I1->isTerminator()) 1457 goto HoistTerminator; 1458 1459 // If we're going to hoist a call, make sure that the two instructions we're 1460 // commoning/hoisting are both marked with musttail, or neither of them is 1461 // marked as such. Otherwise, we might end up in a situation where we hoist 1462 // from a block where the terminator is a `ret` to a block where the terminator 1463 // is a `br`, and `musttail` calls expect to be followed by a return. 1464 auto *C1 = dyn_cast<CallInst>(I1); 1465 auto *C2 = dyn_cast<CallInst>(I2); 1466 if (C1 && C2) 1467 if (C1->isMustTailCall() != C2->isMustTailCall()) 1468 return Changed; 1469 1470 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1471 return Changed; 1472 1473 // If any of the two call sites has nomerge attribute, stop hoisting. 1474 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1475 if (CB1->cannotMerge()) 1476 return Changed; 1477 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1478 if (CB2->cannotMerge()) 1479 return Changed; 1480 1481 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1482 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1483 // The debug location is an integral part of a debug info intrinsic 1484 // and can't be separated from it or replaced. Instead of attempting 1485 // to merge locations, simply hoist both copies of the intrinsic. 1486 BIParent->getInstList().splice(BI->getIterator(), 1487 BB1->getInstList(), I1); 1488 BIParent->getInstList().splice(BI->getIterator(), 1489 BB2->getInstList(), I2); 1490 Changed = true; 1491 } else { 1492 // For a normal instruction, we just move one to right before the branch, 1493 // then replace all uses of the other with the first. Finally, we remove 1494 // the now redundant second instruction. 1495 BIParent->getInstList().splice(BI->getIterator(), 1496 BB1->getInstList(), I1); 1497 if (!I2->use_empty()) 1498 I2->replaceAllUsesWith(I1); 1499 I1->andIRFlags(I2); 1500 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1501 LLVMContext::MD_range, 1502 LLVMContext::MD_fpmath, 1503 LLVMContext::MD_invariant_load, 1504 LLVMContext::MD_nonnull, 1505 LLVMContext::MD_invariant_group, 1506 LLVMContext::MD_align, 1507 LLVMContext::MD_dereferenceable, 1508 LLVMContext::MD_dereferenceable_or_null, 1509 LLVMContext::MD_mem_parallel_loop_access, 1510 LLVMContext::MD_access_group, 1511 LLVMContext::MD_preserve_access_index}; 1512 combineMetadata(I1, I2, KnownIDs, true); 1513 1514 // I1 and I2 are being combined into a single instruction. Its debug 1515 // location is the merged locations of the original instructions. 1516 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1517 1518 I2->eraseFromParent(); 1519 Changed = true; 1520 } 1521 ++NumHoistCommonInstrs; 1522 1523 I1 = &*BB1_Itr++; 1524 I2 = &*BB2_Itr++; 1525 // Skip debug info if it is not identical. 1526 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1527 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1528 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1529 while (isa<DbgInfoIntrinsic>(I1)) 1530 I1 = &*BB1_Itr++; 1531 while (isa<DbgInfoIntrinsic>(I2)) 1532 I2 = &*BB2_Itr++; 1533 } 1534 } while (I1->isIdenticalToWhenDefined(I2)); 1535 1536 return true; 1537 1538 HoistTerminator: 1539 // It may not be possible to hoist an invoke. 1540 // FIXME: Can we define a safety predicate for CallBr? 1541 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1542 return Changed; 1543 1544 // TODO: callbr hoisting currently disabled pending further study. 1545 if (isa<CallBrInst>(I1)) 1546 return Changed; 1547 1548 for (BasicBlock *Succ : successors(BB1)) { 1549 for (PHINode &PN : Succ->phis()) { 1550 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1551 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1552 if (BB1V == BB2V) 1553 continue; 1554 1555 // Check for passingValueIsAlwaysUndefined here because we would rather 1556 // eliminate undefined control flow then converting it to a select. 1557 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1558 passingValueIsAlwaysUndefined(BB2V, &PN)) 1559 return Changed; 1560 1561 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1562 return Changed; 1563 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1564 return Changed; 1565 } 1566 } 1567 1568 // Okay, it is safe to hoist the terminator. 1569 Instruction *NT = I1->clone(); 1570 BIParent->getInstList().insert(BI->getIterator(), NT); 1571 if (!NT->getType()->isVoidTy()) { 1572 I1->replaceAllUsesWith(NT); 1573 I2->replaceAllUsesWith(NT); 1574 NT->takeName(I1); 1575 } 1576 Changed = true; 1577 ++NumHoistCommonInstrs; 1578 1579 // Ensure terminator gets a debug location, even an unknown one, in case 1580 // it involves inlinable calls. 1581 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1582 1583 // PHIs created below will adopt NT's merged DebugLoc. 1584 IRBuilder<NoFolder> Builder(NT); 1585 1586 // Hoisting one of the terminators from our successor is a great thing. 1587 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1588 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1589 // nodes, so we insert select instruction to compute the final result. 1590 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1591 for (BasicBlock *Succ : successors(BB1)) { 1592 for (PHINode &PN : Succ->phis()) { 1593 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1594 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1595 if (BB1V == BB2V) 1596 continue; 1597 1598 // These values do not agree. Insert a select instruction before NT 1599 // that determines the right value. 1600 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1601 if (!SI) { 1602 // Propagate fast-math-flags from phi node to its replacement select. 1603 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1604 if (isa<FPMathOperator>(PN)) 1605 Builder.setFastMathFlags(PN.getFastMathFlags()); 1606 1607 SI = cast<SelectInst>( 1608 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1609 BB1V->getName() + "." + BB2V->getName(), BI)); 1610 } 1611 1612 // Make the PHI node use the select for all incoming values for BB1/BB2 1613 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1614 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1615 PN.setIncomingValue(i, SI); 1616 } 1617 } 1618 1619 SmallVector<DominatorTree::UpdateType, 4> Updates; 1620 1621 // Update any PHI nodes in our new successors. 1622 for (BasicBlock *Succ : successors(BB1)) { 1623 AddPredecessorToBlock(Succ, BIParent, BB1); 1624 if (DTU) 1625 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1626 } 1627 1628 if (DTU) 1629 for (BasicBlock *Succ : successors(BI)) 1630 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1631 1632 EraseTerminatorAndDCECond(BI); 1633 if (DTU) 1634 DTU->applyUpdates(Updates); 1635 return Changed; 1636 } 1637 1638 // Check lifetime markers. 1639 static bool isLifeTimeMarker(const Instruction *I) { 1640 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1641 switch (II->getIntrinsicID()) { 1642 default: 1643 break; 1644 case Intrinsic::lifetime_start: 1645 case Intrinsic::lifetime_end: 1646 return true; 1647 } 1648 } 1649 return false; 1650 } 1651 1652 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1653 // into variables. 1654 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1655 int OpIdx) { 1656 return !isa<IntrinsicInst>(I); 1657 } 1658 1659 // All instructions in Insts belong to different blocks that all unconditionally 1660 // branch to a common successor. Analyze each instruction and return true if it 1661 // would be possible to sink them into their successor, creating one common 1662 // instruction instead. For every value that would be required to be provided by 1663 // PHI node (because an operand varies in each input block), add to PHIOperands. 1664 static bool canSinkInstructions( 1665 ArrayRef<Instruction *> Insts, 1666 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1667 // Prune out obviously bad instructions to move. Each instruction must have 1668 // exactly zero or one use, and we check later that use is by a single, common 1669 // PHI instruction in the successor. 1670 bool HasUse = !Insts.front()->user_empty(); 1671 for (auto *I : Insts) { 1672 // These instructions may change or break semantics if moved. 1673 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1674 I->getType()->isTokenTy()) 1675 return false; 1676 1677 // Do not try to sink an instruction in an infinite loop - it can cause 1678 // this algorithm to infinite loop. 1679 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1680 return false; 1681 1682 // Conservatively return false if I is an inline-asm instruction. Sinking 1683 // and merging inline-asm instructions can potentially create arguments 1684 // that cannot satisfy the inline-asm constraints. 1685 // If the instruction has nomerge attribute, return false. 1686 if (const auto *C = dyn_cast<CallBase>(I)) 1687 if (C->isInlineAsm() || C->cannotMerge()) 1688 return false; 1689 1690 // Each instruction must have zero or one use. 1691 if (HasUse && !I->hasOneUse()) 1692 return false; 1693 if (!HasUse && !I->user_empty()) 1694 return false; 1695 } 1696 1697 const Instruction *I0 = Insts.front(); 1698 for (auto *I : Insts) 1699 if (!I->isSameOperationAs(I0)) 1700 return false; 1701 1702 // All instructions in Insts are known to be the same opcode. If they have a 1703 // use, check that the only user is a PHI or in the same block as the 1704 // instruction, because if a user is in the same block as an instruction we're 1705 // contemplating sinking, it must already be determined to be sinkable. 1706 if (HasUse) { 1707 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1708 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1709 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1710 auto *U = cast<Instruction>(*I->user_begin()); 1711 return (PNUse && 1712 PNUse->getParent() == Succ && 1713 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1714 U->getParent() == I->getParent(); 1715 })) 1716 return false; 1717 } 1718 1719 // Because SROA can't handle speculating stores of selects, try not to sink 1720 // loads, stores or lifetime markers of allocas when we'd have to create a 1721 // PHI for the address operand. Also, because it is likely that loads or 1722 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1723 // them. 1724 // This can cause code churn which can have unintended consequences down 1725 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1726 // FIXME: This is a workaround for a deficiency in SROA - see 1727 // https://llvm.org/bugs/show_bug.cgi?id=30188 1728 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1729 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1730 })) 1731 return false; 1732 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1733 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1734 })) 1735 return false; 1736 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1737 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1738 })) 1739 return false; 1740 1741 // For calls to be sinkable, they must all be indirect, or have same callee. 1742 // I.e. if we have two direct calls to different callees, we don't want to 1743 // turn that into an indirect call. Likewise, if we have an indirect call, 1744 // and a direct call, we don't actually want to have a single indirect call. 1745 if (isa<CallBase>(I0)) { 1746 auto IsIndirectCall = [](const Instruction *I) { 1747 return cast<CallBase>(I)->isIndirectCall(); 1748 }; 1749 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1750 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1751 if (HaveIndirectCalls) { 1752 if (!AllCallsAreIndirect) 1753 return false; 1754 } else { 1755 // All callees must be identical. 1756 Value *Callee = nullptr; 1757 for (const Instruction *I : Insts) { 1758 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1759 if (!Callee) 1760 Callee = CurrCallee; 1761 else if (Callee != CurrCallee) 1762 return false; 1763 } 1764 } 1765 } 1766 1767 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1768 Value *Op = I0->getOperand(OI); 1769 if (Op->getType()->isTokenTy()) 1770 // Don't touch any operand of token type. 1771 return false; 1772 1773 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1774 assert(I->getNumOperands() == I0->getNumOperands()); 1775 return I->getOperand(OI) == I0->getOperand(OI); 1776 }; 1777 if (!all_of(Insts, SameAsI0)) { 1778 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1779 !canReplaceOperandWithVariable(I0, OI)) 1780 // We can't create a PHI from this GEP. 1781 return false; 1782 for (auto *I : Insts) 1783 PHIOperands[I].push_back(I->getOperand(OI)); 1784 } 1785 } 1786 return true; 1787 } 1788 1789 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1790 // instruction of every block in Blocks to their common successor, commoning 1791 // into one instruction. 1792 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1793 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1794 1795 // canSinkInstructions returning true guarantees that every block has at 1796 // least one non-terminator instruction. 1797 SmallVector<Instruction*,4> Insts; 1798 for (auto *BB : Blocks) { 1799 Instruction *I = BB->getTerminator(); 1800 do { 1801 I = I->getPrevNode(); 1802 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1803 if (!isa<DbgInfoIntrinsic>(I)) 1804 Insts.push_back(I); 1805 } 1806 1807 // The only checking we need to do now is that all users of all instructions 1808 // are the same PHI node. canSinkInstructions should have checked this but 1809 // it is slightly over-aggressive - it gets confused by commutative 1810 // instructions so double-check it here. 1811 Instruction *I0 = Insts.front(); 1812 if (!I0->user_empty()) { 1813 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1814 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1815 auto *U = cast<Instruction>(*I->user_begin()); 1816 return U == PNUse; 1817 })) 1818 return false; 1819 } 1820 1821 // We don't need to do any more checking here; canSinkInstructions should 1822 // have done it all for us. 1823 SmallVector<Value*, 4> NewOperands; 1824 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1825 // This check is different to that in canSinkInstructions. There, we 1826 // cared about the global view once simplifycfg (and instcombine) have 1827 // completed - it takes into account PHIs that become trivially 1828 // simplifiable. However here we need a more local view; if an operand 1829 // differs we create a PHI and rely on instcombine to clean up the very 1830 // small mess we may make. 1831 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1832 return I->getOperand(O) != I0->getOperand(O); 1833 }); 1834 if (!NeedPHI) { 1835 NewOperands.push_back(I0->getOperand(O)); 1836 continue; 1837 } 1838 1839 // Create a new PHI in the successor block and populate it. 1840 auto *Op = I0->getOperand(O); 1841 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1842 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1843 Op->getName() + ".sink", &BBEnd->front()); 1844 for (auto *I : Insts) 1845 PN->addIncoming(I->getOperand(O), I->getParent()); 1846 NewOperands.push_back(PN); 1847 } 1848 1849 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1850 // and move it to the start of the successor block. 1851 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1852 I0->getOperandUse(O).set(NewOperands[O]); 1853 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1854 1855 // Update metadata and IR flags, and merge debug locations. 1856 for (auto *I : Insts) 1857 if (I != I0) { 1858 // The debug location for the "common" instruction is the merged locations 1859 // of all the commoned instructions. We start with the original location 1860 // of the "common" instruction and iteratively merge each location in the 1861 // loop below. 1862 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1863 // However, as N-way merge for CallInst is rare, so we use simplified API 1864 // instead of using complex API for N-way merge. 1865 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1866 combineMetadataForCSE(I0, I, true); 1867 I0->andIRFlags(I); 1868 } 1869 1870 if (!I0->user_empty()) { 1871 // canSinkLastInstruction checked that all instructions were used by 1872 // one and only one PHI node. Find that now, RAUW it to our common 1873 // instruction and nuke it. 1874 auto *PN = cast<PHINode>(*I0->user_begin()); 1875 PN->replaceAllUsesWith(I0); 1876 PN->eraseFromParent(); 1877 } 1878 1879 // Finally nuke all instructions apart from the common instruction. 1880 for (auto *I : Insts) 1881 if (I != I0) 1882 I->eraseFromParent(); 1883 1884 return true; 1885 } 1886 1887 namespace { 1888 1889 // LockstepReverseIterator - Iterates through instructions 1890 // in a set of blocks in reverse order from the first non-terminator. 1891 // For example (assume all blocks have size n): 1892 // LockstepReverseIterator I([B1, B2, B3]); 1893 // *I-- = [B1[n], B2[n], B3[n]]; 1894 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1895 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1896 // ... 1897 class LockstepReverseIterator { 1898 ArrayRef<BasicBlock*> Blocks; 1899 SmallVector<Instruction*,4> Insts; 1900 bool Fail; 1901 1902 public: 1903 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1904 reset(); 1905 } 1906 1907 void reset() { 1908 Fail = false; 1909 Insts.clear(); 1910 for (auto *BB : Blocks) { 1911 Instruction *Inst = BB->getTerminator(); 1912 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1913 Inst = Inst->getPrevNode(); 1914 if (!Inst) { 1915 // Block wasn't big enough. 1916 Fail = true; 1917 return; 1918 } 1919 Insts.push_back(Inst); 1920 } 1921 } 1922 1923 bool isValid() const { 1924 return !Fail; 1925 } 1926 1927 void operator--() { 1928 if (Fail) 1929 return; 1930 for (auto *&Inst : Insts) { 1931 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1932 Inst = Inst->getPrevNode(); 1933 // Already at beginning of block. 1934 if (!Inst) { 1935 Fail = true; 1936 return; 1937 } 1938 } 1939 } 1940 1941 void operator++() { 1942 if (Fail) 1943 return; 1944 for (auto *&Inst : Insts) { 1945 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1946 Inst = Inst->getNextNode(); 1947 // Already at end of block. 1948 if (!Inst) { 1949 Fail = true; 1950 return; 1951 } 1952 } 1953 } 1954 1955 ArrayRef<Instruction*> operator * () const { 1956 return Insts; 1957 } 1958 }; 1959 1960 } // end anonymous namespace 1961 1962 /// Check whether BB's predecessors end with unconditional branches. If it is 1963 /// true, sink any common code from the predecessors to BB. 1964 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1965 DomTreeUpdater *DTU) { 1966 // We support two situations: 1967 // (1) all incoming arcs are unconditional 1968 // (2) there are non-unconditional incoming arcs 1969 // 1970 // (2) is very common in switch defaults and 1971 // else-if patterns; 1972 // 1973 // if (a) f(1); 1974 // else if (b) f(2); 1975 // 1976 // produces: 1977 // 1978 // [if] 1979 // / \ 1980 // [f(1)] [if] 1981 // | | \ 1982 // | | | 1983 // | [f(2)]| 1984 // \ | / 1985 // [ end ] 1986 // 1987 // [end] has two unconditional predecessor arcs and one conditional. The 1988 // conditional refers to the implicit empty 'else' arc. This conditional 1989 // arc can also be caused by an empty default block in a switch. 1990 // 1991 // In this case, we attempt to sink code from all *unconditional* arcs. 1992 // If we can sink instructions from these arcs (determined during the scan 1993 // phase below) we insert a common successor for all unconditional arcs and 1994 // connect that to [end], to enable sinking: 1995 // 1996 // [if] 1997 // / \ 1998 // [x(1)] [if] 1999 // | | \ 2000 // | | \ 2001 // | [x(2)] | 2002 // \ / | 2003 // [sink.split] | 2004 // \ / 2005 // [ end ] 2006 // 2007 SmallVector<BasicBlock*,4> UnconditionalPreds; 2008 bool HaveNonUnconditionalPredecessors = false; 2009 for (auto *PredBB : predecessors(BB)) { 2010 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2011 if (PredBr && PredBr->isUnconditional()) 2012 UnconditionalPreds.push_back(PredBB); 2013 else 2014 HaveNonUnconditionalPredecessors = true; 2015 } 2016 if (UnconditionalPreds.size() < 2) 2017 return false; 2018 2019 // We take a two-step approach to tail sinking. First we scan from the end of 2020 // each block upwards in lockstep. If the n'th instruction from the end of each 2021 // block can be sunk, those instructions are added to ValuesToSink and we 2022 // carry on. If we can sink an instruction but need to PHI-merge some operands 2023 // (because they're not identical in each instruction) we add these to 2024 // PHIOperands. 2025 int ScanIdx = 0; 2026 SmallPtrSet<Value*,4> InstructionsToSink; 2027 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2028 LockstepReverseIterator LRI(UnconditionalPreds); 2029 while (LRI.isValid() && 2030 canSinkInstructions(*LRI, PHIOperands)) { 2031 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2032 << "\n"); 2033 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2034 ++ScanIdx; 2035 --LRI; 2036 } 2037 2038 // If no instructions can be sunk, early-return. 2039 if (ScanIdx == 0) 2040 return false; 2041 2042 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2043 // actually sink before encountering instruction that is unprofitable to sink? 2044 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2045 unsigned NumPHIdValues = 0; 2046 for (auto *I : *LRI) 2047 for (auto *V : PHIOperands[I]) { 2048 if (InstructionsToSink.count(V) == 0) 2049 ++NumPHIdValues; 2050 // FIXME: this check is overly optimistic. We may end up not sinking 2051 // said instruction, due to the very same profitability check. 2052 // See @creating_too_many_phis in sink-common-code.ll. 2053 } 2054 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2055 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2056 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2057 NumPHIInsts++; 2058 2059 return NumPHIInsts <= 1; 2060 }; 2061 2062 // If no instructions can be sunk, early-return. 2063 if (ScanIdx == 0) 2064 return false; 2065 2066 // We've determined that we are going to sink last ScanIdx instructions, 2067 // and recorded them in InstructionsToSink. Now, some instructions may be 2068 // unprofitable to sink. But that determination depends on the instructions 2069 // that we are going to sink. 2070 2071 // First, forward scan: find the first instruction unprofitable to sink, 2072 // recording all the ones that are profitable to sink. 2073 // FIXME: would it be better, after we detect that not all are profitable. 2074 // to either record the profitable ones, or erase the unprofitable ones? 2075 // Maybe we need to choose (at runtime) the one that will touch least instrs? 2076 LRI.reset(); 2077 int Idx = 0; 2078 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2079 while (Idx < ScanIdx) { 2080 if (!ProfitableToSinkInstruction(LRI)) { 2081 // Too many PHIs would be created. 2082 LLVM_DEBUG( 2083 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2084 break; 2085 } 2086 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2087 --LRI; 2088 ++Idx; 2089 } 2090 2091 // If no instructions can be sunk, early-return. 2092 if (Idx == 0) 2093 return false; 2094 2095 // Did we determine that (only) some instructions are unprofitable to sink? 2096 if (Idx < ScanIdx) { 2097 // Okay, some instructions are unprofitable. 2098 ScanIdx = Idx; 2099 InstructionsToSink = InstructionsProfitableToSink; 2100 2101 // But, that may make other instructions unprofitable, too. 2102 // So, do a backward scan, do any earlier instructions become unprofitable? 2103 assert(!ProfitableToSinkInstruction(LRI) && 2104 "We already know that the last instruction is unprofitable to sink"); 2105 ++LRI; 2106 --Idx; 2107 while (Idx >= 0) { 2108 // If we detect that an instruction becomes unprofitable to sink, 2109 // all earlier instructions won't be sunk either, 2110 // so preemptively keep InstructionsProfitableToSink in sync. 2111 // FIXME: is this the most performant approach? 2112 for (auto *I : *LRI) 2113 InstructionsProfitableToSink.erase(I); 2114 if (!ProfitableToSinkInstruction(LRI)) { 2115 // Everything starting with this instruction won't be sunk. 2116 ScanIdx = Idx; 2117 InstructionsToSink = InstructionsProfitableToSink; 2118 } 2119 ++LRI; 2120 --Idx; 2121 } 2122 } 2123 2124 // If no instructions can be sunk, early-return. 2125 if (ScanIdx == 0) 2126 return false; 2127 2128 bool Changed = false; 2129 2130 if (HaveNonUnconditionalPredecessors) { 2131 // It is always legal to sink common instructions from unconditional 2132 // predecessors. However, if not all predecessors are unconditional, 2133 // this transformation might be pessimizing. So as a rule of thumb, 2134 // don't do it unless we'd sink at least one non-speculatable instruction. 2135 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2136 LRI.reset(); 2137 int Idx = 0; 2138 bool Profitable = false; 2139 while (Idx < ScanIdx) { 2140 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2141 Profitable = true; 2142 break; 2143 } 2144 --LRI; 2145 ++Idx; 2146 } 2147 if (!Profitable) 2148 return false; 2149 2150 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2151 // We have a conditional edge and we're going to sink some instructions. 2152 // Insert a new block postdominating all blocks we're going to sink from. 2153 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2154 // Edges couldn't be split. 2155 return false; 2156 Changed = true; 2157 } 2158 2159 // Now that we've analyzed all potential sinking candidates, perform the 2160 // actual sink. We iteratively sink the last non-terminator of the source 2161 // blocks into their common successor unless doing so would require too 2162 // many PHI instructions to be generated (currently only one PHI is allowed 2163 // per sunk instruction). 2164 // 2165 // We can use InstructionsToSink to discount values needing PHI-merging that will 2166 // actually be sunk in a later iteration. This allows us to be more 2167 // aggressive in what we sink. This does allow a false positive where we 2168 // sink presuming a later value will also be sunk, but stop half way through 2169 // and never actually sink it which means we produce more PHIs than intended. 2170 // This is unlikely in practice though. 2171 int SinkIdx = 0; 2172 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2173 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2174 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2175 << "\n"); 2176 2177 // Because we've sunk every instruction in turn, the current instruction to 2178 // sink is always at index 0. 2179 LRI.reset(); 2180 2181 if (!sinkLastInstruction(UnconditionalPreds)) { 2182 LLVM_DEBUG( 2183 dbgs() 2184 << "SINK: stopping here, failed to actually sink instruction!\n"); 2185 break; 2186 } 2187 2188 NumSinkCommonInstrs++; 2189 Changed = true; 2190 } 2191 if (SinkIdx != 0) 2192 ++NumSinkCommonCode; 2193 return Changed; 2194 } 2195 2196 /// Determine if we can hoist sink a sole store instruction out of a 2197 /// conditional block. 2198 /// 2199 /// We are looking for code like the following: 2200 /// BrBB: 2201 /// store i32 %add, i32* %arrayidx2 2202 /// ... // No other stores or function calls (we could be calling a memory 2203 /// ... // function). 2204 /// %cmp = icmp ult %x, %y 2205 /// br i1 %cmp, label %EndBB, label %ThenBB 2206 /// ThenBB: 2207 /// store i32 %add5, i32* %arrayidx2 2208 /// br label EndBB 2209 /// EndBB: 2210 /// ... 2211 /// We are going to transform this into: 2212 /// BrBB: 2213 /// store i32 %add, i32* %arrayidx2 2214 /// ... // 2215 /// %cmp = icmp ult %x, %y 2216 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2217 /// store i32 %add.add5, i32* %arrayidx2 2218 /// ... 2219 /// 2220 /// \return The pointer to the value of the previous store if the store can be 2221 /// hoisted into the predecessor block. 0 otherwise. 2222 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2223 BasicBlock *StoreBB, BasicBlock *EndBB) { 2224 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2225 if (!StoreToHoist) 2226 return nullptr; 2227 2228 // Volatile or atomic. 2229 if (!StoreToHoist->isSimple()) 2230 return nullptr; 2231 2232 Value *StorePtr = StoreToHoist->getPointerOperand(); 2233 2234 // Look for a store to the same pointer in BrBB. 2235 unsigned MaxNumInstToLookAt = 9; 2236 // Skip pseudo probe intrinsic calls which are not really killing any memory 2237 // accesses. 2238 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2239 if (!MaxNumInstToLookAt) 2240 break; 2241 --MaxNumInstToLookAt; 2242 2243 // Could be calling an instruction that affects memory like free(). 2244 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2245 return nullptr; 2246 2247 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2248 // Found the previous store make sure it stores to the same location. 2249 if (SI->getPointerOperand() == StorePtr) 2250 // Found the previous store, return its value operand. 2251 return SI->getValueOperand(); 2252 return nullptr; // Unknown store. 2253 } 2254 } 2255 2256 return nullptr; 2257 } 2258 2259 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2260 /// converted to selects. 2261 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2262 BasicBlock *EndBB, 2263 unsigned &SpeculatedInstructions, 2264 InstructionCost &Cost, 2265 const TargetTransformInfo &TTI) { 2266 TargetTransformInfo::TargetCostKind CostKind = 2267 BB->getParent()->hasMinSize() 2268 ? TargetTransformInfo::TCK_CodeSize 2269 : TargetTransformInfo::TCK_SizeAndLatency; 2270 2271 bool HaveRewritablePHIs = false; 2272 for (PHINode &PN : EndBB->phis()) { 2273 Value *OrigV = PN.getIncomingValueForBlock(BB); 2274 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2275 2276 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2277 // Skip PHIs which are trivial. 2278 if (ThenV == OrigV) 2279 continue; 2280 2281 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2282 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2283 2284 // Don't convert to selects if we could remove undefined behavior instead. 2285 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2286 passingValueIsAlwaysUndefined(ThenV, &PN)) 2287 return false; 2288 2289 HaveRewritablePHIs = true; 2290 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2291 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2292 if (!OrigCE && !ThenCE) 2293 continue; // Known safe and cheap. 2294 2295 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2296 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2297 return false; 2298 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2299 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2300 InstructionCost MaxCost = 2301 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2302 if (OrigCost + ThenCost > MaxCost) 2303 return false; 2304 2305 // Account for the cost of an unfolded ConstantExpr which could end up 2306 // getting expanded into Instructions. 2307 // FIXME: This doesn't account for how many operations are combined in the 2308 // constant expression. 2309 ++SpeculatedInstructions; 2310 if (SpeculatedInstructions > 1) 2311 return false; 2312 } 2313 2314 return HaveRewritablePHIs; 2315 } 2316 2317 /// Speculate a conditional basic block flattening the CFG. 2318 /// 2319 /// Note that this is a very risky transform currently. Speculating 2320 /// instructions like this is most often not desirable. Instead, there is an MI 2321 /// pass which can do it with full awareness of the resource constraints. 2322 /// However, some cases are "obvious" and we should do directly. An example of 2323 /// this is speculating a single, reasonably cheap instruction. 2324 /// 2325 /// There is only one distinct advantage to flattening the CFG at the IR level: 2326 /// it makes very common but simplistic optimizations such as are common in 2327 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2328 /// modeling their effects with easier to reason about SSA value graphs. 2329 /// 2330 /// 2331 /// An illustration of this transform is turning this IR: 2332 /// \code 2333 /// BB: 2334 /// %cmp = icmp ult %x, %y 2335 /// br i1 %cmp, label %EndBB, label %ThenBB 2336 /// ThenBB: 2337 /// %sub = sub %x, %y 2338 /// br label BB2 2339 /// EndBB: 2340 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2341 /// ... 2342 /// \endcode 2343 /// 2344 /// Into this IR: 2345 /// \code 2346 /// BB: 2347 /// %cmp = icmp ult %x, %y 2348 /// %sub = sub %x, %y 2349 /// %cond = select i1 %cmp, 0, %sub 2350 /// ... 2351 /// \endcode 2352 /// 2353 /// \returns true if the conditional block is removed. 2354 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2355 const TargetTransformInfo &TTI) { 2356 // Be conservative for now. FP select instruction can often be expensive. 2357 Value *BrCond = BI->getCondition(); 2358 if (isa<FCmpInst>(BrCond)) 2359 return false; 2360 2361 BasicBlock *BB = BI->getParent(); 2362 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2363 InstructionCost Budget = 2364 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2365 2366 // If ThenBB is actually on the false edge of the conditional branch, remember 2367 // to swap the select operands later. 2368 bool Invert = false; 2369 if (ThenBB != BI->getSuccessor(0)) { 2370 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2371 Invert = true; 2372 } 2373 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2374 2375 // Keep a count of how many times instructions are used within ThenBB when 2376 // they are candidates for sinking into ThenBB. Specifically: 2377 // - They are defined in BB, and 2378 // - They have no side effects, and 2379 // - All of their uses are in ThenBB. 2380 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2381 2382 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2383 2384 unsigned SpeculatedInstructions = 0; 2385 Value *SpeculatedStoreValue = nullptr; 2386 StoreInst *SpeculatedStore = nullptr; 2387 for (BasicBlock::iterator BBI = ThenBB->begin(), 2388 BBE = std::prev(ThenBB->end()); 2389 BBI != BBE; ++BBI) { 2390 Instruction *I = &*BBI; 2391 // Skip debug info. 2392 if (isa<DbgInfoIntrinsic>(I)) { 2393 SpeculatedDbgIntrinsics.push_back(I); 2394 continue; 2395 } 2396 2397 // Skip pseudo probes. The consequence is we lose track of the branch 2398 // probability for ThenBB, which is fine since the optimization here takes 2399 // place regardless of the branch probability. 2400 if (isa<PseudoProbeInst>(I)) { 2401 continue; 2402 } 2403 2404 // Only speculatively execute a single instruction (not counting the 2405 // terminator) for now. 2406 ++SpeculatedInstructions; 2407 if (SpeculatedInstructions > 1) 2408 return false; 2409 2410 // Don't hoist the instruction if it's unsafe or expensive. 2411 if (!isSafeToSpeculativelyExecute(I) && 2412 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2413 I, BB, ThenBB, EndBB)))) 2414 return false; 2415 if (!SpeculatedStoreValue && 2416 computeSpeculationCost(I, TTI) > 2417 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2418 return false; 2419 2420 // Store the store speculation candidate. 2421 if (SpeculatedStoreValue) 2422 SpeculatedStore = cast<StoreInst>(I); 2423 2424 // Do not hoist the instruction if any of its operands are defined but not 2425 // used in BB. The transformation will prevent the operand from 2426 // being sunk into the use block. 2427 for (Use &Op : I->operands()) { 2428 Instruction *OpI = dyn_cast<Instruction>(Op); 2429 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2430 continue; // Not a candidate for sinking. 2431 2432 ++SinkCandidateUseCounts[OpI]; 2433 } 2434 } 2435 2436 // Consider any sink candidates which are only used in ThenBB as costs for 2437 // speculation. Note, while we iterate over a DenseMap here, we are summing 2438 // and so iteration order isn't significant. 2439 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2440 I = SinkCandidateUseCounts.begin(), 2441 E = SinkCandidateUseCounts.end(); 2442 I != E; ++I) 2443 if (I->first->hasNUses(I->second)) { 2444 ++SpeculatedInstructions; 2445 if (SpeculatedInstructions > 1) 2446 return false; 2447 } 2448 2449 // Check that we can insert the selects and that it's not too expensive to do 2450 // so. 2451 bool Convert = SpeculatedStore != nullptr; 2452 InstructionCost Cost = 0; 2453 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2454 SpeculatedInstructions, 2455 Cost, TTI); 2456 if (!Convert || Cost > Budget) 2457 return false; 2458 2459 // If we get here, we can hoist the instruction and if-convert. 2460 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2461 2462 // Insert a select of the value of the speculated store. 2463 if (SpeculatedStoreValue) { 2464 IRBuilder<NoFolder> Builder(BI); 2465 Value *TrueV = SpeculatedStore->getValueOperand(); 2466 Value *FalseV = SpeculatedStoreValue; 2467 if (Invert) 2468 std::swap(TrueV, FalseV); 2469 Value *S = Builder.CreateSelect( 2470 BrCond, TrueV, FalseV, "spec.store.select", BI); 2471 SpeculatedStore->setOperand(0, S); 2472 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2473 SpeculatedStore->getDebugLoc()); 2474 } 2475 2476 // A hoisted conditional probe should be treated as dangling so that it will 2477 // not be over-counted when the samples collected on the non-conditional path 2478 // are counted towards the conditional path. We leave it for the counts 2479 // inference algorithm to figure out a proper count for a danglng probe. 2480 moveAndDanglePseudoProbes(ThenBB, BI); 2481 2482 // Metadata can be dependent on the condition we are hoisting above. 2483 // Conservatively strip all metadata on the instruction. Drop the debug loc 2484 // to avoid making it appear as if the condition is a constant, which would 2485 // be misleading while debugging. 2486 for (auto &I : *ThenBB) { 2487 assert(!isa<PseudoProbeInst>(I) && 2488 "Should not drop debug info from any pseudo probes."); 2489 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2490 I.setDebugLoc(DebugLoc()); 2491 I.dropUnknownNonDebugMetadata(); 2492 } 2493 2494 // Hoist the instructions. 2495 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2496 ThenBB->begin(), std::prev(ThenBB->end())); 2497 2498 // Insert selects and rewrite the PHI operands. 2499 IRBuilder<NoFolder> Builder(BI); 2500 for (PHINode &PN : EndBB->phis()) { 2501 unsigned OrigI = PN.getBasicBlockIndex(BB); 2502 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2503 Value *OrigV = PN.getIncomingValue(OrigI); 2504 Value *ThenV = PN.getIncomingValue(ThenI); 2505 2506 // Skip PHIs which are trivial. 2507 if (OrigV == ThenV) 2508 continue; 2509 2510 // Create a select whose true value is the speculatively executed value and 2511 // false value is the pre-existing value. Swap them if the branch 2512 // destinations were inverted. 2513 Value *TrueV = ThenV, *FalseV = OrigV; 2514 if (Invert) 2515 std::swap(TrueV, FalseV); 2516 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2517 PN.setIncomingValue(OrigI, V); 2518 PN.setIncomingValue(ThenI, V); 2519 } 2520 2521 // Remove speculated dbg intrinsics. 2522 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2523 // dbg value for the different flows and inserting it after the select. 2524 for (Instruction *I : SpeculatedDbgIntrinsics) 2525 I->eraseFromParent(); 2526 2527 ++NumSpeculations; 2528 return true; 2529 } 2530 2531 /// Return true if we can thread a branch across this block. 2532 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2533 int Size = 0; 2534 2535 SmallPtrSet<const Value *, 32> EphValues; 2536 auto IsEphemeral = [&](const Value *V) { 2537 if (isa<AssumeInst>(V)) 2538 return true; 2539 return isSafeToSpeculativelyExecute(V) && 2540 all_of(V->users(), 2541 [&](const User *U) { return EphValues.count(U); }); 2542 }; 2543 2544 // Walk the loop in reverse so that we can identify ephemeral values properly 2545 // (values only feeding assumes). 2546 for (Instruction &I : reverse(BB->instructionsWithoutDebug())) { 2547 // Can't fold blocks that contain noduplicate or convergent calls. 2548 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2549 if (CI->cannotDuplicate() || CI->isConvergent()) 2550 return false; 2551 2552 // Ignore ephemeral values which are deleted during codegen. 2553 if (IsEphemeral(&I)) 2554 EphValues.insert(&I); 2555 // We will delete Phis while threading, so Phis should not be accounted in 2556 // block's size. 2557 else if (!isa<PHINode>(I)) { 2558 if (Size++ > MaxSmallBlockSize) 2559 return false; // Don't clone large BB's. 2560 } 2561 2562 // We can only support instructions that do not define values that are 2563 // live outside of the current basic block. 2564 for (User *U : I.users()) { 2565 Instruction *UI = cast<Instruction>(U); 2566 if (UI->getParent() != BB || isa<PHINode>(UI)) 2567 return false; 2568 } 2569 2570 // Looks ok, continue checking. 2571 } 2572 2573 return true; 2574 } 2575 2576 /// If we have a conditional branch on a PHI node value that is defined in the 2577 /// same block as the branch and if any PHI entries are constants, thread edges 2578 /// corresponding to that entry to be branches to their ultimate destination. 2579 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2580 const DataLayout &DL, AssumptionCache *AC) { 2581 BasicBlock *BB = BI->getParent(); 2582 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2583 // NOTE: we currently cannot transform this case if the PHI node is used 2584 // outside of the block. 2585 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2586 return false; 2587 2588 // Degenerate case of a single entry PHI. 2589 if (PN->getNumIncomingValues() == 1) { 2590 FoldSingleEntryPHINodes(PN->getParent()); 2591 return true; 2592 } 2593 2594 // Now we know that this block has multiple preds and two succs. 2595 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2596 return false; 2597 2598 // Okay, this is a simple enough basic block. See if any phi values are 2599 // constants. 2600 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2601 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2602 if (!CB || !CB->getType()->isIntegerTy(1)) 2603 continue; 2604 2605 // Okay, we now know that all edges from PredBB should be revectored to 2606 // branch to RealDest. 2607 BasicBlock *PredBB = PN->getIncomingBlock(i); 2608 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2609 2610 if (RealDest == BB) 2611 continue; // Skip self loops. 2612 // Skip if the predecessor's terminator is an indirect branch. 2613 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2614 continue; 2615 2616 SmallVector<DominatorTree::UpdateType, 3> Updates; 2617 2618 // The dest block might have PHI nodes, other predecessors and other 2619 // difficult cases. Instead of being smart about this, just insert a new 2620 // block that jumps to the destination block, effectively splitting 2621 // the edge we are about to create. 2622 BasicBlock *EdgeBB = 2623 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2624 RealDest->getParent(), RealDest); 2625 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2626 if (DTU) 2627 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2628 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2629 2630 // Update PHI nodes. 2631 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2632 2633 // BB may have instructions that are being threaded over. Clone these 2634 // instructions into EdgeBB. We know that there will be no uses of the 2635 // cloned instructions outside of EdgeBB. 2636 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2637 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2638 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2639 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2640 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2641 continue; 2642 } 2643 // Clone the instruction. 2644 Instruction *N = BBI->clone(); 2645 if (BBI->hasName()) 2646 N->setName(BBI->getName() + ".c"); 2647 2648 // Update operands due to translation. 2649 for (Use &Op : N->operands()) { 2650 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2651 if (PI != TranslateMap.end()) 2652 Op = PI->second; 2653 } 2654 2655 // Check for trivial simplification. 2656 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2657 if (!BBI->use_empty()) 2658 TranslateMap[&*BBI] = V; 2659 if (!N->mayHaveSideEffects()) { 2660 N->deleteValue(); // Instruction folded away, don't need actual inst 2661 N = nullptr; 2662 } 2663 } else { 2664 if (!BBI->use_empty()) 2665 TranslateMap[&*BBI] = N; 2666 } 2667 if (N) { 2668 // Insert the new instruction into its new home. 2669 EdgeBB->getInstList().insert(InsertPt, N); 2670 2671 // Register the new instruction with the assumption cache if necessary. 2672 if (auto *Assume = dyn_cast<AssumeInst>(N)) 2673 if (AC) 2674 AC->registerAssumption(Assume); 2675 } 2676 } 2677 2678 // Loop over all of the edges from PredBB to BB, changing them to branch 2679 // to EdgeBB instead. 2680 Instruction *PredBBTI = PredBB->getTerminator(); 2681 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2682 if (PredBBTI->getSuccessor(i) == BB) { 2683 BB->removePredecessor(PredBB); 2684 PredBBTI->setSuccessor(i, EdgeBB); 2685 } 2686 2687 if (DTU) { 2688 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2689 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2690 2691 DTU->applyUpdates(Updates); 2692 } 2693 2694 // Recurse, simplifying any other constants. 2695 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2696 } 2697 2698 return false; 2699 } 2700 2701 /// Given a BB that starts with the specified two-entry PHI node, 2702 /// see if we can eliminate it. 2703 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2704 DomTreeUpdater *DTU, const DataLayout &DL) { 2705 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2706 // statement", which has a very simple dominance structure. Basically, we 2707 // are trying to find the condition that is being branched on, which 2708 // subsequently causes this merge to happen. We really want control 2709 // dependence information for this check, but simplifycfg can't keep it up 2710 // to date, and this catches most of the cases we care about anyway. 2711 BasicBlock *BB = PN->getParent(); 2712 2713 BasicBlock *IfTrue, *IfFalse; 2714 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2715 if (!IfCond || 2716 // Don't bother if the branch will be constant folded trivially. 2717 isa<ConstantInt>(IfCond)) 2718 return false; 2719 2720 // Okay, we found that we can merge this two-entry phi node into a select. 2721 // Doing so would require us to fold *all* two entry phi nodes in this block. 2722 // At some point this becomes non-profitable (particularly if the target 2723 // doesn't support cmov's). Only do this transformation if there are two or 2724 // fewer PHI nodes in this block. 2725 unsigned NumPhis = 0; 2726 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2727 if (NumPhis > 2) 2728 return false; 2729 2730 // Loop over the PHI's seeing if we can promote them all to select 2731 // instructions. While we are at it, keep track of the instructions 2732 // that need to be moved to the dominating block. 2733 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2734 InstructionCost Cost = 0; 2735 InstructionCost Budget = 2736 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2737 2738 bool Changed = false; 2739 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2740 PHINode *PN = cast<PHINode>(II++); 2741 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2742 PN->replaceAllUsesWith(V); 2743 PN->eraseFromParent(); 2744 Changed = true; 2745 continue; 2746 } 2747 2748 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2749 Cost, Budget, TTI) || 2750 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2751 Cost, Budget, TTI)) 2752 return Changed; 2753 } 2754 2755 // If we folded the first phi, PN dangles at this point. Refresh it. If 2756 // we ran out of PHIs then we simplified them all. 2757 PN = dyn_cast<PHINode>(BB->begin()); 2758 if (!PN) 2759 return true; 2760 2761 // Return true if at least one of these is a 'not', and another is either 2762 // a 'not' too, or a constant. 2763 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2764 if (!match(V0, m_Not(m_Value()))) 2765 std::swap(V0, V1); 2766 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2767 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2768 }; 2769 2770 // Don't fold i1 branches on PHIs which contain binary operators or 2771 // select form of or/ands, unless one of the incoming values is an 'not' and 2772 // another one is freely invertible. 2773 // These can often be turned into switches and other things. 2774 auto IsBinOpOrAnd = [](Value *V) { 2775 return match( 2776 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2777 }; 2778 if (PN->getType()->isIntegerTy(1) && 2779 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2780 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2781 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2782 PN->getIncomingValue(1))) 2783 return Changed; 2784 2785 // If all PHI nodes are promotable, check to make sure that all instructions 2786 // in the predecessor blocks can be promoted as well. If not, we won't be able 2787 // to get rid of the control flow, so it's not worth promoting to select 2788 // instructions. 2789 BasicBlock *DomBlock = nullptr; 2790 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2791 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2792 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2793 IfBlock1 = nullptr; 2794 } else { 2795 DomBlock = *pred_begin(IfBlock1); 2796 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2797 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2798 !isa<PseudoProbeInst>(I)) { 2799 // This is not an aggressive instruction that we can promote. 2800 // Because of this, we won't be able to get rid of the control flow, so 2801 // the xform is not worth it. 2802 return Changed; 2803 } 2804 } 2805 2806 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2807 IfBlock2 = nullptr; 2808 } else { 2809 DomBlock = *pred_begin(IfBlock2); 2810 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2811 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2812 !isa<PseudoProbeInst>(I)) { 2813 // This is not an aggressive instruction that we can promote. 2814 // Because of this, we won't be able to get rid of the control flow, so 2815 // the xform is not worth it. 2816 return Changed; 2817 } 2818 } 2819 assert(DomBlock && "Failed to find root DomBlock"); 2820 2821 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2822 << " T: " << IfTrue->getName() 2823 << " F: " << IfFalse->getName() << "\n"); 2824 2825 // If we can still promote the PHI nodes after this gauntlet of tests, 2826 // do all of the PHI's now. 2827 Instruction *InsertPt = DomBlock->getTerminator(); 2828 IRBuilder<NoFolder> Builder(InsertPt); 2829 2830 // Move all 'aggressive' instructions, which are defined in the 2831 // conditional parts of the if's up to the dominating block. 2832 if (IfBlock1) 2833 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2834 if (IfBlock2) 2835 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2836 2837 // Propagate fast-math-flags from phi nodes to replacement selects. 2838 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2839 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2840 if (isa<FPMathOperator>(PN)) 2841 Builder.setFastMathFlags(PN->getFastMathFlags()); 2842 2843 // Change the PHI node into a select instruction. 2844 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2845 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2846 2847 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2848 PN->replaceAllUsesWith(Sel); 2849 Sel->takeName(PN); 2850 PN->eraseFromParent(); 2851 } 2852 2853 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2854 // has been flattened. Change DomBlock to jump directly to our new block to 2855 // avoid other simplifycfg's kicking in on the diamond. 2856 Instruction *OldTI = DomBlock->getTerminator(); 2857 Builder.SetInsertPoint(OldTI); 2858 Builder.CreateBr(BB); 2859 2860 SmallVector<DominatorTree::UpdateType, 3> Updates; 2861 if (DTU) { 2862 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2863 for (auto *Successor : successors(DomBlock)) 2864 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2865 } 2866 2867 OldTI->eraseFromParent(); 2868 if (DTU) 2869 DTU->applyUpdates(Updates); 2870 2871 return true; 2872 } 2873 2874 /// If we found a conditional branch that goes to two returning blocks, 2875 /// try to merge them together into one return, 2876 /// introducing a select if the return values disagree. 2877 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2878 IRBuilder<> &Builder) { 2879 auto *BB = BI->getParent(); 2880 assert(BI->isConditional() && "Must be a conditional branch"); 2881 BasicBlock *TrueSucc = BI->getSuccessor(0); 2882 BasicBlock *FalseSucc = BI->getSuccessor(1); 2883 // NOTE: destinations may match, this could be degenerate uncond branch. 2884 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2885 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2886 2887 // Check to ensure both blocks are empty (just a return) or optionally empty 2888 // with PHI nodes. If there are other instructions, merging would cause extra 2889 // computation on one path or the other. 2890 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2891 return false; 2892 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2893 return false; 2894 2895 Builder.SetInsertPoint(BI); 2896 // Okay, we found a branch that is going to two return nodes. If 2897 // there is no return value for this function, just change the 2898 // branch into a return. 2899 if (FalseRet->getNumOperands() == 0) { 2900 TrueSucc->removePredecessor(BB); 2901 FalseSucc->removePredecessor(BB); 2902 Builder.CreateRetVoid(); 2903 EraseTerminatorAndDCECond(BI); 2904 if (DTU) { 2905 SmallVector<DominatorTree::UpdateType, 2> Updates; 2906 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2907 if (TrueSucc != FalseSucc) 2908 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2909 DTU->applyUpdates(Updates); 2910 } 2911 return true; 2912 } 2913 2914 // Otherwise, figure out what the true and false return values are 2915 // so we can insert a new select instruction. 2916 Value *TrueValue = TrueRet->getReturnValue(); 2917 Value *FalseValue = FalseRet->getReturnValue(); 2918 2919 // Unwrap any PHI nodes in the return blocks. 2920 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2921 if (TVPN->getParent() == TrueSucc) 2922 TrueValue = TVPN->getIncomingValueForBlock(BB); 2923 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2924 if (FVPN->getParent() == FalseSucc) 2925 FalseValue = FVPN->getIncomingValueForBlock(BB); 2926 2927 // In order for this transformation to be safe, we must be able to 2928 // unconditionally execute both operands to the return. This is 2929 // normally the case, but we could have a potentially-trapping 2930 // constant expression that prevents this transformation from being 2931 // safe. 2932 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2933 if (TCV->canTrap()) 2934 return false; 2935 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2936 if (FCV->canTrap()) 2937 return false; 2938 2939 // Okay, we collected all the mapped values and checked them for sanity, and 2940 // defined to really do this transformation. First, update the CFG. 2941 TrueSucc->removePredecessor(BB); 2942 FalseSucc->removePredecessor(BB); 2943 2944 // Insert select instructions where needed. 2945 Value *BrCond = BI->getCondition(); 2946 if (TrueValue) { 2947 // Insert a select if the results differ. 2948 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2949 } else if (isa<UndefValue>(TrueValue)) { 2950 TrueValue = FalseValue; 2951 } else { 2952 TrueValue = 2953 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2954 } 2955 } 2956 2957 Value *RI = 2958 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2959 2960 (void)RI; 2961 2962 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2963 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2964 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2965 2966 EraseTerminatorAndDCECond(BI); 2967 if (DTU) { 2968 SmallVector<DominatorTree::UpdateType, 2> Updates; 2969 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2970 if (TrueSucc != FalseSucc) 2971 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2972 DTU->applyUpdates(Updates); 2973 } 2974 2975 return true; 2976 } 2977 2978 static Value *createLogicalOp(IRBuilderBase &Builder, 2979 Instruction::BinaryOps Opc, Value *LHS, 2980 Value *RHS, const Twine &Name = "") { 2981 // Try to relax logical op to binary op. 2982 if (impliesPoison(RHS, LHS)) 2983 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 2984 if (Opc == Instruction::And) 2985 return Builder.CreateLogicalAnd(LHS, RHS, Name); 2986 if (Opc == Instruction::Or) 2987 return Builder.CreateLogicalOr(LHS, RHS, Name); 2988 llvm_unreachable("Invalid logical opcode"); 2989 } 2990 2991 /// Return true if either PBI or BI has branch weight available, and store 2992 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2993 /// not have branch weight, use 1:1 as its weight. 2994 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2995 uint64_t &PredTrueWeight, 2996 uint64_t &PredFalseWeight, 2997 uint64_t &SuccTrueWeight, 2998 uint64_t &SuccFalseWeight) { 2999 bool PredHasWeights = 3000 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 3001 bool SuccHasWeights = 3002 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 3003 if (PredHasWeights || SuccHasWeights) { 3004 if (!PredHasWeights) 3005 PredTrueWeight = PredFalseWeight = 1; 3006 if (!SuccHasWeights) 3007 SuccTrueWeight = SuccFalseWeight = 1; 3008 return true; 3009 } else { 3010 return false; 3011 } 3012 } 3013 3014 /// Determine if the two branches share a common destination and deduce a glue 3015 /// that joins the branches' conditions to arrive at the common destination if 3016 /// that would be profitable. 3017 static Optional<std::pair<Instruction::BinaryOps, bool>> 3018 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3019 const TargetTransformInfo *TTI) { 3020 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3021 "Both blocks must end with a conditional branches."); 3022 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3023 "PredBB must be a predecessor of BB."); 3024 3025 // We have the potential to fold the conditions together, but if the 3026 // predecessor branch is predictable, we may not want to merge them. 3027 uint64_t PTWeight, PFWeight; 3028 BranchProbability PBITrueProb, Likely; 3029 if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) && 3030 (PTWeight + PFWeight) != 0) { 3031 PBITrueProb = 3032 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3033 Likely = TTI->getPredictableBranchThreshold(); 3034 } 3035 3036 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3037 // Speculate the 2nd condition unless the 1st is probably true. 3038 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3039 return {{Instruction::Or, false}}; 3040 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3041 // Speculate the 2nd condition unless the 1st is probably false. 3042 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3043 return {{Instruction::And, false}}; 3044 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3045 // Speculate the 2nd condition unless the 1st is probably true. 3046 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3047 return {{Instruction::And, true}}; 3048 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3049 // Speculate the 2nd condition unless the 1st is probably false. 3050 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3051 return {{Instruction::Or, true}}; 3052 } 3053 return None; 3054 } 3055 3056 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3057 DomTreeUpdater *DTU, 3058 MemorySSAUpdater *MSSAU, 3059 const TargetTransformInfo *TTI) { 3060 BasicBlock *BB = BI->getParent(); 3061 BasicBlock *PredBlock = PBI->getParent(); 3062 3063 // Determine if the two branches share a common destination. 3064 Instruction::BinaryOps Opc; 3065 bool InvertPredCond; 3066 std::tie(Opc, InvertPredCond) = 3067 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3068 3069 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3070 3071 IRBuilder<> Builder(PBI); 3072 // The builder is used to create instructions to eliminate the branch in BB. 3073 // If BB's terminator has !annotation metadata, add it to the new 3074 // instructions. 3075 Builder.CollectMetadataToCopy(BB->getTerminator(), 3076 {LLVMContext::MD_annotation}); 3077 3078 // If we need to invert the condition in the pred block to match, do so now. 3079 if (InvertPredCond) { 3080 Value *NewCond = PBI->getCondition(); 3081 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3082 CmpInst *CI = cast<CmpInst>(NewCond); 3083 CI->setPredicate(CI->getInversePredicate()); 3084 } else { 3085 NewCond = 3086 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3087 } 3088 3089 PBI->setCondition(NewCond); 3090 PBI->swapSuccessors(); 3091 } 3092 3093 BasicBlock *UniqueSucc = 3094 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3095 3096 // Before cloning instructions, notify the successor basic block that it 3097 // is about to have a new predecessor. This will update PHI nodes, 3098 // which will allow us to update live-out uses of bonus instructions. 3099 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3100 3101 // Try to update branch weights. 3102 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3103 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3104 SuccTrueWeight, SuccFalseWeight)) { 3105 SmallVector<uint64_t, 8> NewWeights; 3106 3107 if (PBI->getSuccessor(0) == BB) { 3108 // PBI: br i1 %x, BB, FalseDest 3109 // BI: br i1 %y, UniqueSucc, FalseDest 3110 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3111 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3112 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3113 // TrueWeight for PBI * FalseWeight for BI. 3114 // We assume that total weights of a BranchInst can fit into 32 bits. 3115 // Therefore, we will not have overflow using 64-bit arithmetic. 3116 NewWeights.push_back(PredFalseWeight * 3117 (SuccFalseWeight + SuccTrueWeight) + 3118 PredTrueWeight * SuccFalseWeight); 3119 } else { 3120 // PBI: br i1 %x, TrueDest, BB 3121 // BI: br i1 %y, TrueDest, UniqueSucc 3122 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3123 // FalseWeight for PBI * TrueWeight for BI. 3124 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3125 PredFalseWeight * SuccTrueWeight); 3126 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3127 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3128 } 3129 3130 // Halve the weights if any of them cannot fit in an uint32_t 3131 FitWeights(NewWeights); 3132 3133 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3134 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3135 3136 // TODO: If BB is reachable from all paths through PredBlock, then we 3137 // could replace PBI's branch probabilities with BI's. 3138 } else 3139 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3140 3141 // Now, update the CFG. 3142 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3143 3144 if (DTU) 3145 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3146 {DominatorTree::Delete, PredBlock, BB}}); 3147 3148 // If BI was a loop latch, it may have had associated loop metadata. 3149 // We need to copy it to the new latch, that is, PBI. 3150 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3151 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3152 3153 ValueToValueMapTy VMap; // maps original values to cloned values 3154 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3155 3156 // Now that the Cond was cloned into the predecessor basic block, 3157 // or/and the two conditions together. 3158 Value *BICond = VMap[BI->getCondition()]; 3159 PBI->setCondition( 3160 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3161 3162 // Copy any debug value intrinsics into the end of PredBlock. 3163 for (Instruction &I : *BB) { 3164 if (isa<DbgInfoIntrinsic>(I)) { 3165 Instruction *NewI = I.clone(); 3166 RemapInstruction(NewI, VMap, 3167 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3168 NewI->insertBefore(PBI); 3169 } 3170 } 3171 3172 ++NumFoldBranchToCommonDest; 3173 return true; 3174 } 3175 3176 /// If this basic block is simple enough, and if a predecessor branches to us 3177 /// and one of our successors, fold the block into the predecessor and use 3178 /// logical operations to pick the right destination. 3179 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3180 MemorySSAUpdater *MSSAU, 3181 const TargetTransformInfo *TTI, 3182 unsigned BonusInstThreshold) { 3183 // If this block ends with an unconditional branch, 3184 // let SpeculativelyExecuteBB() deal with it. 3185 if (!BI->isConditional()) 3186 return false; 3187 3188 BasicBlock *BB = BI->getParent(); 3189 3190 bool Changed = false; 3191 3192 TargetTransformInfo::TargetCostKind CostKind = 3193 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3194 : TargetTransformInfo::TCK_SizeAndLatency; 3195 3196 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3197 3198 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3199 Cond->getParent() != BB || !Cond->hasOneUse()) 3200 return Changed; 3201 3202 // Cond is known to be a compare or binary operator. Check to make sure that 3203 // neither operand is a potentially-trapping constant expression. 3204 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3205 if (CE->canTrap()) 3206 return Changed; 3207 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3208 if (CE->canTrap()) 3209 return Changed; 3210 3211 // Finally, don't infinitely unroll conditional loops. 3212 if (is_contained(successors(BB), BB)) 3213 return Changed; 3214 3215 // With which predecessors will we want to deal with? 3216 SmallVector<BasicBlock *, 8> Preds; 3217 for (BasicBlock *PredBlock : predecessors(BB)) { 3218 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3219 3220 // Check that we have two conditional branches. If there is a PHI node in 3221 // the common successor, verify that the same value flows in from both 3222 // blocks. 3223 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3224 continue; 3225 3226 // Determine if the two branches share a common destination. 3227 Instruction::BinaryOps Opc; 3228 bool InvertPredCond; 3229 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3230 std::tie(Opc, InvertPredCond) = *Recipe; 3231 else 3232 continue; 3233 3234 // Check the cost of inserting the necessary logic before performing the 3235 // transformation. 3236 if (TTI) { 3237 Type *Ty = BI->getCondition()->getType(); 3238 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3239 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3240 !isa<CmpInst>(PBI->getCondition()))) 3241 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3242 3243 if (Cost > BranchFoldThreshold) 3244 continue; 3245 } 3246 3247 // Ok, we do want to deal with this predecessor. Record it. 3248 Preds.emplace_back(PredBlock); 3249 } 3250 3251 // If there aren't any predecessors into which we can fold, 3252 // don't bother checking the cost. 3253 if (Preds.empty()) 3254 return Changed; 3255 3256 // Only allow this transformation if computing the condition doesn't involve 3257 // too many instructions and these involved instructions can be executed 3258 // unconditionally. We denote all involved instructions except the condition 3259 // as "bonus instructions", and only allow this transformation when the 3260 // number of the bonus instructions we'll need to create when cloning into 3261 // each predecessor does not exceed a certain threshold. 3262 unsigned NumBonusInsts = 0; 3263 const unsigned PredCount = Preds.size(); 3264 for (Instruction &I : *BB) { 3265 // Don't check the branch condition comparison itself. 3266 if (&I == Cond) 3267 continue; 3268 // Ignore dbg intrinsics, and the terminator. 3269 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3270 continue; 3271 // I must be safe to execute unconditionally. 3272 if (!isSafeToSpeculativelyExecute(&I)) 3273 return Changed; 3274 3275 // Account for the cost of duplicating this instruction into each 3276 // predecessor. 3277 NumBonusInsts += PredCount; 3278 // Early exits once we reach the limit. 3279 if (NumBonusInsts > BonusInstThreshold) 3280 return Changed; 3281 } 3282 3283 // Ok, we have the budget. Perform the transformation. 3284 for (BasicBlock *PredBlock : Preds) { 3285 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3286 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3287 } 3288 return Changed; 3289 } 3290 3291 // If there is only one store in BB1 and BB2, return it, otherwise return 3292 // nullptr. 3293 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3294 StoreInst *S = nullptr; 3295 for (auto *BB : {BB1, BB2}) { 3296 if (!BB) 3297 continue; 3298 for (auto &I : *BB) 3299 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3300 if (S) 3301 // Multiple stores seen. 3302 return nullptr; 3303 else 3304 S = SI; 3305 } 3306 } 3307 return S; 3308 } 3309 3310 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3311 Value *AlternativeV = nullptr) { 3312 // PHI is going to be a PHI node that allows the value V that is defined in 3313 // BB to be referenced in BB's only successor. 3314 // 3315 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3316 // doesn't matter to us what the other operand is (it'll never get used). We 3317 // could just create a new PHI with an undef incoming value, but that could 3318 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3319 // other PHI. So here we directly look for some PHI in BB's successor with V 3320 // as an incoming operand. If we find one, we use it, else we create a new 3321 // one. 3322 // 3323 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3324 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3325 // where OtherBB is the single other predecessor of BB's only successor. 3326 PHINode *PHI = nullptr; 3327 BasicBlock *Succ = BB->getSingleSuccessor(); 3328 3329 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3330 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3331 PHI = cast<PHINode>(I); 3332 if (!AlternativeV) 3333 break; 3334 3335 assert(Succ->hasNPredecessors(2)); 3336 auto PredI = pred_begin(Succ); 3337 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3338 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3339 break; 3340 PHI = nullptr; 3341 } 3342 if (PHI) 3343 return PHI; 3344 3345 // If V is not an instruction defined in BB, just return it. 3346 if (!AlternativeV && 3347 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3348 return V; 3349 3350 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3351 PHI->addIncoming(V, BB); 3352 for (BasicBlock *PredBB : predecessors(Succ)) 3353 if (PredBB != BB) 3354 PHI->addIncoming( 3355 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3356 return PHI; 3357 } 3358 3359 static bool mergeConditionalStoreToAddress( 3360 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3361 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3362 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3363 // For every pointer, there must be exactly two stores, one coming from 3364 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3365 // store (to any address) in PTB,PFB or QTB,QFB. 3366 // FIXME: We could relax this restriction with a bit more work and performance 3367 // testing. 3368 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3369 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3370 if (!PStore || !QStore) 3371 return false; 3372 3373 // Now check the stores are compatible. 3374 if (!QStore->isUnordered() || !PStore->isUnordered()) 3375 return false; 3376 3377 // Check that sinking the store won't cause program behavior changes. Sinking 3378 // the store out of the Q blocks won't change any behavior as we're sinking 3379 // from a block to its unconditional successor. But we're moving a store from 3380 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3381 // So we need to check that there are no aliasing loads or stores in 3382 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3383 // operations between PStore and the end of its parent block. 3384 // 3385 // The ideal way to do this is to query AliasAnalysis, but we don't 3386 // preserve AA currently so that is dangerous. Be super safe and just 3387 // check there are no other memory operations at all. 3388 for (auto &I : *QFB->getSinglePredecessor()) 3389 if (I.mayReadOrWriteMemory()) 3390 return false; 3391 for (auto &I : *QFB) 3392 if (&I != QStore && I.mayReadOrWriteMemory()) 3393 return false; 3394 if (QTB) 3395 for (auto &I : *QTB) 3396 if (&I != QStore && I.mayReadOrWriteMemory()) 3397 return false; 3398 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3399 I != E; ++I) 3400 if (&*I != PStore && I->mayReadOrWriteMemory()) 3401 return false; 3402 3403 // If we're not in aggressive mode, we only optimize if we have some 3404 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3405 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3406 if (!BB) 3407 return true; 3408 // Heuristic: if the block can be if-converted/phi-folded and the 3409 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3410 // thread this store. 3411 InstructionCost Cost = 0; 3412 InstructionCost Budget = 3413 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3414 for (auto &I : BB->instructionsWithoutDebug()) { 3415 // Consider terminator instruction to be free. 3416 if (I.isTerminator()) 3417 continue; 3418 // If this is one the stores that we want to speculate out of this BB, 3419 // then don't count it's cost, consider it to be free. 3420 if (auto *S = dyn_cast<StoreInst>(&I)) 3421 if (llvm::find(FreeStores, S)) 3422 continue; 3423 // Else, we have a white-list of instructions that we are ak speculating. 3424 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3425 return false; // Not in white-list - not worthwhile folding. 3426 // And finally, if this is a non-free instruction that we are okay 3427 // speculating, ensure that we consider the speculation budget. 3428 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3429 if (Cost > Budget) 3430 return false; // Eagerly refuse to fold as soon as we're out of budget. 3431 } 3432 assert(Cost <= Budget && 3433 "When we run out of budget we will eagerly return from within the " 3434 "per-instruction loop."); 3435 return true; 3436 }; 3437 3438 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3439 if (!MergeCondStoresAggressively && 3440 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3441 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3442 return false; 3443 3444 // If PostBB has more than two predecessors, we need to split it so we can 3445 // sink the store. 3446 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3447 // We know that QFB's only successor is PostBB. And QFB has a single 3448 // predecessor. If QTB exists, then its only successor is also PostBB. 3449 // If QTB does not exist, then QFB's only predecessor has a conditional 3450 // branch to QFB and PostBB. 3451 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3452 BasicBlock *NewBB = 3453 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3454 if (!NewBB) 3455 return false; 3456 PostBB = NewBB; 3457 } 3458 3459 // OK, we're going to sink the stores to PostBB. The store has to be 3460 // conditional though, so first create the predicate. 3461 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3462 ->getCondition(); 3463 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3464 ->getCondition(); 3465 3466 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3467 PStore->getParent()); 3468 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3469 QStore->getParent(), PPHI); 3470 3471 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3472 3473 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3474 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3475 3476 if (InvertPCond) 3477 PPred = QB.CreateNot(PPred); 3478 if (InvertQCond) 3479 QPred = QB.CreateNot(QPred); 3480 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3481 3482 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3483 /*Unreachable=*/false, 3484 /*BranchWeights=*/nullptr, DTU); 3485 QB.SetInsertPoint(T); 3486 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3487 AAMDNodes AAMD; 3488 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3489 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3490 SI->setAAMetadata(AAMD); 3491 // Choose the minimum alignment. If we could prove both stores execute, we 3492 // could use biggest one. In this case, though, we only know that one of the 3493 // stores executes. And we don't know it's safe to take the alignment from a 3494 // store that doesn't execute. 3495 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3496 3497 QStore->eraseFromParent(); 3498 PStore->eraseFromParent(); 3499 3500 return true; 3501 } 3502 3503 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3504 DomTreeUpdater *DTU, const DataLayout &DL, 3505 const TargetTransformInfo &TTI) { 3506 // The intention here is to find diamonds or triangles (see below) where each 3507 // conditional block contains a store to the same address. Both of these 3508 // stores are conditional, so they can't be unconditionally sunk. But it may 3509 // be profitable to speculatively sink the stores into one merged store at the 3510 // end, and predicate the merged store on the union of the two conditions of 3511 // PBI and QBI. 3512 // 3513 // This can reduce the number of stores executed if both of the conditions are 3514 // true, and can allow the blocks to become small enough to be if-converted. 3515 // This optimization will also chain, so that ladders of test-and-set 3516 // sequences can be if-converted away. 3517 // 3518 // We only deal with simple diamonds or triangles: 3519 // 3520 // PBI or PBI or a combination of the two 3521 // / \ | \ 3522 // PTB PFB | PFB 3523 // \ / | / 3524 // QBI QBI 3525 // / \ | \ 3526 // QTB QFB | QFB 3527 // \ / | / 3528 // PostBB PostBB 3529 // 3530 // We model triangles as a type of diamond with a nullptr "true" block. 3531 // Triangles are canonicalized so that the fallthrough edge is represented by 3532 // a true condition, as in the diagram above. 3533 BasicBlock *PTB = PBI->getSuccessor(0); 3534 BasicBlock *PFB = PBI->getSuccessor(1); 3535 BasicBlock *QTB = QBI->getSuccessor(0); 3536 BasicBlock *QFB = QBI->getSuccessor(1); 3537 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3538 3539 // Make sure we have a good guess for PostBB. If QTB's only successor is 3540 // QFB, then QFB is a better PostBB. 3541 if (QTB->getSingleSuccessor() == QFB) 3542 PostBB = QFB; 3543 3544 // If we couldn't find a good PostBB, stop. 3545 if (!PostBB) 3546 return false; 3547 3548 bool InvertPCond = false, InvertQCond = false; 3549 // Canonicalize fallthroughs to the true branches. 3550 if (PFB == QBI->getParent()) { 3551 std::swap(PFB, PTB); 3552 InvertPCond = true; 3553 } 3554 if (QFB == PostBB) { 3555 std::swap(QFB, QTB); 3556 InvertQCond = true; 3557 } 3558 3559 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3560 // and QFB may not. Model fallthroughs as a nullptr block. 3561 if (PTB == QBI->getParent()) 3562 PTB = nullptr; 3563 if (QTB == PostBB) 3564 QTB = nullptr; 3565 3566 // Legality bailouts. We must have at least the non-fallthrough blocks and 3567 // the post-dominating block, and the non-fallthroughs must only have one 3568 // predecessor. 3569 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3570 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3571 }; 3572 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3573 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3574 return false; 3575 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3576 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3577 return false; 3578 if (!QBI->getParent()->hasNUses(2)) 3579 return false; 3580 3581 // OK, this is a sequence of two diamonds or triangles. 3582 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3583 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3584 for (auto *BB : {PTB, PFB}) { 3585 if (!BB) 3586 continue; 3587 for (auto &I : *BB) 3588 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3589 PStoreAddresses.insert(SI->getPointerOperand()); 3590 } 3591 for (auto *BB : {QTB, QFB}) { 3592 if (!BB) 3593 continue; 3594 for (auto &I : *BB) 3595 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3596 QStoreAddresses.insert(SI->getPointerOperand()); 3597 } 3598 3599 set_intersect(PStoreAddresses, QStoreAddresses); 3600 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3601 // clear what it contains. 3602 auto &CommonAddresses = PStoreAddresses; 3603 3604 bool Changed = false; 3605 for (auto *Address : CommonAddresses) 3606 Changed |= 3607 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3608 InvertPCond, InvertQCond, DTU, DL, TTI); 3609 return Changed; 3610 } 3611 3612 /// If the previous block ended with a widenable branch, determine if reusing 3613 /// the target block is profitable and legal. This will have the effect of 3614 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3615 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3616 DomTreeUpdater *DTU) { 3617 // TODO: This can be generalized in two important ways: 3618 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3619 // values from the PBI edge. 3620 // 2) We can sink side effecting instructions into BI's fallthrough 3621 // successor provided they doesn't contribute to computation of 3622 // BI's condition. 3623 Value *CondWB, *WC; 3624 BasicBlock *IfTrueBB, *IfFalseBB; 3625 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3626 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3627 return false; 3628 if (!IfFalseBB->phis().empty()) 3629 return false; // TODO 3630 // Use lambda to lazily compute expensive condition after cheap ones. 3631 auto NoSideEffects = [](BasicBlock &BB) { 3632 return !llvm::any_of(BB, [](const Instruction &I) { 3633 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3634 }); 3635 }; 3636 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3637 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3638 NoSideEffects(*BI->getParent())) { 3639 auto *OldSuccessor = BI->getSuccessor(1); 3640 OldSuccessor->removePredecessor(BI->getParent()); 3641 BI->setSuccessor(1, IfFalseBB); 3642 if (DTU) 3643 DTU->applyUpdates( 3644 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3645 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3646 return true; 3647 } 3648 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3649 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3650 NoSideEffects(*BI->getParent())) { 3651 auto *OldSuccessor = BI->getSuccessor(0); 3652 OldSuccessor->removePredecessor(BI->getParent()); 3653 BI->setSuccessor(0, IfFalseBB); 3654 if (DTU) 3655 DTU->applyUpdates( 3656 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3657 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3658 return true; 3659 } 3660 return false; 3661 } 3662 3663 /// If we have a conditional branch as a predecessor of another block, 3664 /// this function tries to simplify it. We know 3665 /// that PBI and BI are both conditional branches, and BI is in one of the 3666 /// successor blocks of PBI - PBI branches to BI. 3667 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3668 DomTreeUpdater *DTU, 3669 const DataLayout &DL, 3670 const TargetTransformInfo &TTI) { 3671 assert(PBI->isConditional() && BI->isConditional()); 3672 BasicBlock *BB = BI->getParent(); 3673 3674 // If this block ends with a branch instruction, and if there is a 3675 // predecessor that ends on a branch of the same condition, make 3676 // this conditional branch redundant. 3677 if (PBI->getCondition() == BI->getCondition() && 3678 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3679 // Okay, the outcome of this conditional branch is statically 3680 // knowable. If this block had a single pred, handle specially. 3681 if (BB->getSinglePredecessor()) { 3682 // Turn this into a branch on constant. 3683 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3684 BI->setCondition( 3685 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3686 return true; // Nuke the branch on constant. 3687 } 3688 3689 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3690 // in the constant and simplify the block result. Subsequent passes of 3691 // simplifycfg will thread the block. 3692 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3693 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3694 PHINode *NewPN = PHINode::Create( 3695 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3696 BI->getCondition()->getName() + ".pr", &BB->front()); 3697 // Okay, we're going to insert the PHI node. Since PBI is not the only 3698 // predecessor, compute the PHI'd conditional value for all of the preds. 3699 // Any predecessor where the condition is not computable we keep symbolic. 3700 for (pred_iterator PI = PB; PI != PE; ++PI) { 3701 BasicBlock *P = *PI; 3702 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3703 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3704 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3705 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3706 NewPN->addIncoming( 3707 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3708 P); 3709 } else { 3710 NewPN->addIncoming(BI->getCondition(), P); 3711 } 3712 } 3713 3714 BI->setCondition(NewPN); 3715 return true; 3716 } 3717 } 3718 3719 // If the previous block ended with a widenable branch, determine if reusing 3720 // the target block is profitable and legal. This will have the effect of 3721 // "widening" PBI, but doesn't require us to reason about hosting safety. 3722 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3723 return true; 3724 3725 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3726 if (CE->canTrap()) 3727 return false; 3728 3729 // If both branches are conditional and both contain stores to the same 3730 // address, remove the stores from the conditionals and create a conditional 3731 // merged store at the end. 3732 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3733 return true; 3734 3735 // If this is a conditional branch in an empty block, and if any 3736 // predecessors are a conditional branch to one of our destinations, 3737 // fold the conditions into logical ops and one cond br. 3738 3739 // Ignore dbg intrinsics. 3740 if (&*BB->instructionsWithoutDebug().begin() != BI) 3741 return false; 3742 3743 int PBIOp, BIOp; 3744 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3745 PBIOp = 0; 3746 BIOp = 0; 3747 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3748 PBIOp = 0; 3749 BIOp = 1; 3750 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3751 PBIOp = 1; 3752 BIOp = 0; 3753 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3754 PBIOp = 1; 3755 BIOp = 1; 3756 } else { 3757 return false; 3758 } 3759 3760 // Check to make sure that the other destination of this branch 3761 // isn't BB itself. If so, this is an infinite loop that will 3762 // keep getting unwound. 3763 if (PBI->getSuccessor(PBIOp) == BB) 3764 return false; 3765 3766 // Do not perform this transformation if it would require 3767 // insertion of a large number of select instructions. For targets 3768 // without predication/cmovs, this is a big pessimization. 3769 3770 // Also do not perform this transformation if any phi node in the common 3771 // destination block can trap when reached by BB or PBB (PR17073). In that 3772 // case, it would be unsafe to hoist the operation into a select instruction. 3773 3774 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3775 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3776 unsigned NumPhis = 0; 3777 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3778 ++II, ++NumPhis) { 3779 if (NumPhis > 2) // Disable this xform. 3780 return false; 3781 3782 PHINode *PN = cast<PHINode>(II); 3783 Value *BIV = PN->getIncomingValueForBlock(BB); 3784 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3785 if (CE->canTrap()) 3786 return false; 3787 3788 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3789 Value *PBIV = PN->getIncomingValue(PBBIdx); 3790 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3791 if (CE->canTrap()) 3792 return false; 3793 } 3794 3795 // Finally, if everything is ok, fold the branches to logical ops. 3796 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3797 3798 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3799 << "AND: " << *BI->getParent()); 3800 3801 SmallVector<DominatorTree::UpdateType, 5> Updates; 3802 3803 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3804 // branch in it, where one edge (OtherDest) goes back to itself but the other 3805 // exits. We don't *know* that the program avoids the infinite loop 3806 // (even though that seems likely). If we do this xform naively, we'll end up 3807 // recursively unpeeling the loop. Since we know that (after the xform is 3808 // done) that the block *is* infinite if reached, we just make it an obviously 3809 // infinite loop with no cond branch. 3810 if (OtherDest == BB) { 3811 // Insert it at the end of the function, because it's either code, 3812 // or it won't matter if it's hot. :) 3813 BasicBlock *InfLoopBlock = 3814 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3815 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3816 if (DTU) 3817 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3818 OtherDest = InfLoopBlock; 3819 } 3820 3821 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3822 3823 // BI may have other predecessors. Because of this, we leave 3824 // it alone, but modify PBI. 3825 3826 // Make sure we get to CommonDest on True&True directions. 3827 Value *PBICond = PBI->getCondition(); 3828 IRBuilder<NoFolder> Builder(PBI); 3829 if (PBIOp) 3830 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3831 3832 Value *BICond = BI->getCondition(); 3833 if (BIOp) 3834 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3835 3836 // Merge the conditions. 3837 Value *Cond = 3838 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 3839 3840 // Modify PBI to branch on the new condition to the new dests. 3841 PBI->setCondition(Cond); 3842 PBI->setSuccessor(0, CommonDest); 3843 PBI->setSuccessor(1, OtherDest); 3844 3845 if (DTU) { 3846 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3847 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3848 3849 DTU->applyUpdates(Updates); 3850 } 3851 3852 // Update branch weight for PBI. 3853 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3854 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3855 bool HasWeights = 3856 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3857 SuccTrueWeight, SuccFalseWeight); 3858 if (HasWeights) { 3859 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3860 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3861 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3862 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3863 // The weight to CommonDest should be PredCommon * SuccTotal + 3864 // PredOther * SuccCommon. 3865 // The weight to OtherDest should be PredOther * SuccOther. 3866 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3867 PredOther * SuccCommon, 3868 PredOther * SuccOther}; 3869 // Halve the weights if any of them cannot fit in an uint32_t 3870 FitWeights(NewWeights); 3871 3872 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3873 } 3874 3875 // OtherDest may have phi nodes. If so, add an entry from PBI's 3876 // block that are identical to the entries for BI's block. 3877 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3878 3879 // We know that the CommonDest already had an edge from PBI to 3880 // it. If it has PHIs though, the PHIs may have different 3881 // entries for BB and PBI's BB. If so, insert a select to make 3882 // them agree. 3883 for (PHINode &PN : CommonDest->phis()) { 3884 Value *BIV = PN.getIncomingValueForBlock(BB); 3885 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3886 Value *PBIV = PN.getIncomingValue(PBBIdx); 3887 if (BIV != PBIV) { 3888 // Insert a select in PBI to pick the right value. 3889 SelectInst *NV = cast<SelectInst>( 3890 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3891 PN.setIncomingValue(PBBIdx, NV); 3892 // Although the select has the same condition as PBI, the original branch 3893 // weights for PBI do not apply to the new select because the select's 3894 // 'logical' edges are incoming edges of the phi that is eliminated, not 3895 // the outgoing edges of PBI. 3896 if (HasWeights) { 3897 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3898 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3899 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3900 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3901 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3902 // The weight to PredOtherDest should be PredOther * SuccCommon. 3903 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3904 PredOther * SuccCommon}; 3905 3906 FitWeights(NewWeights); 3907 3908 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3909 } 3910 } 3911 } 3912 3913 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3914 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3915 3916 // This basic block is probably dead. We know it has at least 3917 // one fewer predecessor. 3918 return true; 3919 } 3920 3921 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3922 // true or to FalseBB if Cond is false. 3923 // Takes care of updating the successors and removing the old terminator. 3924 // Also makes sure not to introduce new successors by assuming that edges to 3925 // non-successor TrueBBs and FalseBBs aren't reachable. 3926 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3927 Value *Cond, BasicBlock *TrueBB, 3928 BasicBlock *FalseBB, 3929 uint32_t TrueWeight, 3930 uint32_t FalseWeight) { 3931 auto *BB = OldTerm->getParent(); 3932 // Remove any superfluous successor edges from the CFG. 3933 // First, figure out which successors to preserve. 3934 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3935 // successor. 3936 BasicBlock *KeepEdge1 = TrueBB; 3937 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3938 3939 SmallPtrSet<BasicBlock *, 2> RemovedSuccessors; 3940 3941 // Then remove the rest. 3942 for (BasicBlock *Succ : successors(OldTerm)) { 3943 // Make sure only to keep exactly one copy of each edge. 3944 if (Succ == KeepEdge1) 3945 KeepEdge1 = nullptr; 3946 else if (Succ == KeepEdge2) 3947 KeepEdge2 = nullptr; 3948 else { 3949 Succ->removePredecessor(BB, 3950 /*KeepOneInputPHIs=*/true); 3951 3952 if (Succ != TrueBB && Succ != FalseBB) 3953 RemovedSuccessors.insert(Succ); 3954 } 3955 } 3956 3957 IRBuilder<> Builder(OldTerm); 3958 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3959 3960 // Insert an appropriate new terminator. 3961 if (!KeepEdge1 && !KeepEdge2) { 3962 if (TrueBB == FalseBB) { 3963 // We were only looking for one successor, and it was present. 3964 // Create an unconditional branch to it. 3965 Builder.CreateBr(TrueBB); 3966 } else { 3967 // We found both of the successors we were looking for. 3968 // Create a conditional branch sharing the condition of the select. 3969 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3970 if (TrueWeight != FalseWeight) 3971 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3972 } 3973 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3974 // Neither of the selected blocks were successors, so this 3975 // terminator must be unreachable. 3976 new UnreachableInst(OldTerm->getContext(), OldTerm); 3977 } else { 3978 // One of the selected values was a successor, but the other wasn't. 3979 // Insert an unconditional branch to the one that was found; 3980 // the edge to the one that wasn't must be unreachable. 3981 if (!KeepEdge1) { 3982 // Only TrueBB was found. 3983 Builder.CreateBr(TrueBB); 3984 } else { 3985 // Only FalseBB was found. 3986 Builder.CreateBr(FalseBB); 3987 } 3988 } 3989 3990 EraseTerminatorAndDCECond(OldTerm); 3991 3992 if (DTU) { 3993 SmallVector<DominatorTree::UpdateType, 2> Updates; 3994 Updates.reserve(RemovedSuccessors.size()); 3995 for (auto *RemovedSuccessor : RemovedSuccessors) 3996 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3997 DTU->applyUpdates(Updates); 3998 } 3999 4000 return true; 4001 } 4002 4003 // Replaces 4004 // (switch (select cond, X, Y)) on constant X, Y 4005 // with a branch - conditional if X and Y lead to distinct BBs, 4006 // unconditional otherwise. 4007 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4008 SelectInst *Select) { 4009 // Check for constant integer values in the select. 4010 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4011 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4012 if (!TrueVal || !FalseVal) 4013 return false; 4014 4015 // Find the relevant condition and destinations. 4016 Value *Condition = Select->getCondition(); 4017 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4018 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4019 4020 // Get weight for TrueBB and FalseBB. 4021 uint32_t TrueWeight = 0, FalseWeight = 0; 4022 SmallVector<uint64_t, 8> Weights; 4023 bool HasWeights = HasBranchWeights(SI); 4024 if (HasWeights) { 4025 GetBranchWeights(SI, Weights); 4026 if (Weights.size() == 1 + SI->getNumCases()) { 4027 TrueWeight = 4028 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4029 FalseWeight = 4030 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4031 } 4032 } 4033 4034 // Perform the actual simplification. 4035 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4036 FalseWeight); 4037 } 4038 4039 // Replaces 4040 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4041 // blockaddress(@fn, BlockB))) 4042 // with 4043 // (br cond, BlockA, BlockB). 4044 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4045 SelectInst *SI) { 4046 // Check that both operands of the select are block addresses. 4047 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4048 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4049 if (!TBA || !FBA) 4050 return false; 4051 4052 // Extract the actual blocks. 4053 BasicBlock *TrueBB = TBA->getBasicBlock(); 4054 BasicBlock *FalseBB = FBA->getBasicBlock(); 4055 4056 // Perform the actual simplification. 4057 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4058 0); 4059 } 4060 4061 /// This is called when we find an icmp instruction 4062 /// (a seteq/setne with a constant) as the only instruction in a 4063 /// block that ends with an uncond branch. We are looking for a very specific 4064 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4065 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4066 /// default value goes to an uncond block with a seteq in it, we get something 4067 /// like: 4068 /// 4069 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4070 /// DEFAULT: 4071 /// %tmp = icmp eq i8 %A, 92 4072 /// br label %end 4073 /// end: 4074 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4075 /// 4076 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4077 /// the PHI, merging the third icmp into the switch. 4078 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4079 ICmpInst *ICI, IRBuilder<> &Builder) { 4080 BasicBlock *BB = ICI->getParent(); 4081 4082 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4083 // complex. 4084 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4085 return false; 4086 4087 Value *V = ICI->getOperand(0); 4088 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4089 4090 // The pattern we're looking for is where our only predecessor is a switch on 4091 // 'V' and this block is the default case for the switch. In this case we can 4092 // fold the compared value into the switch to simplify things. 4093 BasicBlock *Pred = BB->getSinglePredecessor(); 4094 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4095 return false; 4096 4097 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4098 if (SI->getCondition() != V) 4099 return false; 4100 4101 // If BB is reachable on a non-default case, then we simply know the value of 4102 // V in this block. Substitute it and constant fold the icmp instruction 4103 // away. 4104 if (SI->getDefaultDest() != BB) { 4105 ConstantInt *VVal = SI->findCaseDest(BB); 4106 assert(VVal && "Should have a unique destination value"); 4107 ICI->setOperand(0, VVal); 4108 4109 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 4110 ICI->replaceAllUsesWith(V); 4111 ICI->eraseFromParent(); 4112 } 4113 // BB is now empty, so it is likely to simplify away. 4114 return requestResimplify(); 4115 } 4116 4117 // Ok, the block is reachable from the default dest. If the constant we're 4118 // comparing exists in one of the other edges, then we can constant fold ICI 4119 // and zap it. 4120 if (SI->findCaseValue(Cst) != SI->case_default()) { 4121 Value *V; 4122 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4123 V = ConstantInt::getFalse(BB->getContext()); 4124 else 4125 V = ConstantInt::getTrue(BB->getContext()); 4126 4127 ICI->replaceAllUsesWith(V); 4128 ICI->eraseFromParent(); 4129 // BB is now empty, so it is likely to simplify away. 4130 return requestResimplify(); 4131 } 4132 4133 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4134 // the block. 4135 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4136 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4137 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4138 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4139 return false; 4140 4141 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4142 // true in the PHI. 4143 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4144 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4145 4146 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4147 std::swap(DefaultCst, NewCst); 4148 4149 // Replace ICI (which is used by the PHI for the default value) with true or 4150 // false depending on if it is EQ or NE. 4151 ICI->replaceAllUsesWith(DefaultCst); 4152 ICI->eraseFromParent(); 4153 4154 SmallVector<DominatorTree::UpdateType, 2> Updates; 4155 4156 // Okay, the switch goes to this block on a default value. Add an edge from 4157 // the switch to the merge point on the compared value. 4158 BasicBlock *NewBB = 4159 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4160 { 4161 SwitchInstProfUpdateWrapper SIW(*SI); 4162 auto W0 = SIW.getSuccessorWeight(0); 4163 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4164 if (W0) { 4165 NewW = ((uint64_t(*W0) + 1) >> 1); 4166 SIW.setSuccessorWeight(0, *NewW); 4167 } 4168 SIW.addCase(Cst, NewBB, NewW); 4169 if (DTU) 4170 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4171 } 4172 4173 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4174 Builder.SetInsertPoint(NewBB); 4175 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4176 Builder.CreateBr(SuccBlock); 4177 PHIUse->addIncoming(NewCst, NewBB); 4178 if (DTU) { 4179 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4180 DTU->applyUpdates(Updates); 4181 } 4182 return true; 4183 } 4184 4185 /// The specified branch is a conditional branch. 4186 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4187 /// fold it into a switch instruction if so. 4188 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4189 IRBuilder<> &Builder, 4190 const DataLayout &DL) { 4191 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4192 if (!Cond) 4193 return false; 4194 4195 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4196 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4197 // 'setne's and'ed together, collect them. 4198 4199 // Try to gather values from a chain of and/or to be turned into a switch 4200 ConstantComparesGatherer ConstantCompare(Cond, DL); 4201 // Unpack the result 4202 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4203 Value *CompVal = ConstantCompare.CompValue; 4204 unsigned UsedICmps = ConstantCompare.UsedICmps; 4205 Value *ExtraCase = ConstantCompare.Extra; 4206 4207 // If we didn't have a multiply compared value, fail. 4208 if (!CompVal) 4209 return false; 4210 4211 // Avoid turning single icmps into a switch. 4212 if (UsedICmps <= 1) 4213 return false; 4214 4215 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4216 4217 // There might be duplicate constants in the list, which the switch 4218 // instruction can't handle, remove them now. 4219 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4220 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4221 4222 // If Extra was used, we require at least two switch values to do the 4223 // transformation. A switch with one value is just a conditional branch. 4224 if (ExtraCase && Values.size() < 2) 4225 return false; 4226 4227 // TODO: Preserve branch weight metadata, similarly to how 4228 // FoldValueComparisonIntoPredecessors preserves it. 4229 4230 // Figure out which block is which destination. 4231 BasicBlock *DefaultBB = BI->getSuccessor(1); 4232 BasicBlock *EdgeBB = BI->getSuccessor(0); 4233 if (!TrueWhenEqual) 4234 std::swap(DefaultBB, EdgeBB); 4235 4236 BasicBlock *BB = BI->getParent(); 4237 4238 // MSAN does not like undefs as branch condition which can be introduced 4239 // with "explicit branch". 4240 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4241 return false; 4242 4243 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4244 << " cases into SWITCH. BB is:\n" 4245 << *BB); 4246 4247 SmallVector<DominatorTree::UpdateType, 2> Updates; 4248 4249 // If there are any extra values that couldn't be folded into the switch 4250 // then we evaluate them with an explicit branch first. Split the block 4251 // right before the condbr to handle it. 4252 if (ExtraCase) { 4253 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4254 /*MSSAU=*/nullptr, "switch.early.test"); 4255 4256 // Remove the uncond branch added to the old block. 4257 Instruction *OldTI = BB->getTerminator(); 4258 Builder.SetInsertPoint(OldTI); 4259 4260 if (TrueWhenEqual) 4261 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4262 else 4263 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4264 4265 OldTI->eraseFromParent(); 4266 4267 if (DTU) 4268 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4269 4270 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4271 // for the edge we just added. 4272 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4273 4274 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4275 << "\nEXTRABB = " << *BB); 4276 BB = NewBB; 4277 } 4278 4279 Builder.SetInsertPoint(BI); 4280 // Convert pointer to int before we switch. 4281 if (CompVal->getType()->isPointerTy()) { 4282 CompVal = Builder.CreatePtrToInt( 4283 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4284 } 4285 4286 // Create the new switch instruction now. 4287 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4288 4289 // Add all of the 'cases' to the switch instruction. 4290 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4291 New->addCase(Values[i], EdgeBB); 4292 4293 // We added edges from PI to the EdgeBB. As such, if there were any 4294 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4295 // the number of edges added. 4296 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4297 PHINode *PN = cast<PHINode>(BBI); 4298 Value *InVal = PN->getIncomingValueForBlock(BB); 4299 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4300 PN->addIncoming(InVal, BB); 4301 } 4302 4303 // Erase the old branch instruction. 4304 EraseTerminatorAndDCECond(BI); 4305 if (DTU) 4306 DTU->applyUpdates(Updates); 4307 4308 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4309 return true; 4310 } 4311 4312 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4313 if (isa<PHINode>(RI->getValue())) 4314 return simplifyCommonResume(RI); 4315 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4316 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4317 // The resume must unwind the exception that caused control to branch here. 4318 return simplifySingleResume(RI); 4319 4320 return false; 4321 } 4322 4323 // Check if cleanup block is empty 4324 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4325 for (Instruction &I : R) { 4326 auto *II = dyn_cast<IntrinsicInst>(&I); 4327 if (!II) 4328 return false; 4329 4330 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4331 switch (IntrinsicID) { 4332 case Intrinsic::dbg_declare: 4333 case Intrinsic::dbg_value: 4334 case Intrinsic::dbg_label: 4335 case Intrinsic::lifetime_end: 4336 break; 4337 default: 4338 return false; 4339 } 4340 } 4341 return true; 4342 } 4343 4344 // Simplify resume that is shared by several landing pads (phi of landing pad). 4345 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4346 BasicBlock *BB = RI->getParent(); 4347 4348 // Check that there are no other instructions except for debug and lifetime 4349 // intrinsics between the phi's and resume instruction. 4350 if (!isCleanupBlockEmpty( 4351 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4352 return false; 4353 4354 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4355 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4356 4357 // Check incoming blocks to see if any of them are trivial. 4358 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4359 Idx++) { 4360 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4361 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4362 4363 // If the block has other successors, we can not delete it because 4364 // it has other dependents. 4365 if (IncomingBB->getUniqueSuccessor() != BB) 4366 continue; 4367 4368 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4369 // Not the landing pad that caused the control to branch here. 4370 if (IncomingValue != LandingPad) 4371 continue; 4372 4373 if (isCleanupBlockEmpty( 4374 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4375 TrivialUnwindBlocks.insert(IncomingBB); 4376 } 4377 4378 // If no trivial unwind blocks, don't do any simplifications. 4379 if (TrivialUnwindBlocks.empty()) 4380 return false; 4381 4382 // Turn all invokes that unwind here into calls. 4383 for (auto *TrivialBB : TrivialUnwindBlocks) { 4384 // Blocks that will be simplified should be removed from the phi node. 4385 // Note there could be multiple edges to the resume block, and we need 4386 // to remove them all. 4387 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4388 BB->removePredecessor(TrivialBB, true); 4389 4390 for (BasicBlock *Pred : 4391 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4392 removeUnwindEdge(Pred, DTU); 4393 ++NumInvokes; 4394 } 4395 4396 // In each SimplifyCFG run, only the current processed block can be erased. 4397 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4398 // of erasing TrivialBB, we only remove the branch to the common resume 4399 // block so that we can later erase the resume block since it has no 4400 // predecessors. 4401 TrivialBB->getTerminator()->eraseFromParent(); 4402 new UnreachableInst(RI->getContext(), TrivialBB); 4403 if (DTU) 4404 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4405 } 4406 4407 // Delete the resume block if all its predecessors have been removed. 4408 if (pred_empty(BB)) 4409 DeleteDeadBlock(BB, DTU); 4410 4411 return !TrivialUnwindBlocks.empty(); 4412 } 4413 4414 // Simplify resume that is only used by a single (non-phi) landing pad. 4415 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4416 BasicBlock *BB = RI->getParent(); 4417 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4418 assert(RI->getValue() == LPInst && 4419 "Resume must unwind the exception that caused control to here"); 4420 4421 // Check that there are no other instructions except for debug intrinsics. 4422 if (!isCleanupBlockEmpty( 4423 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4424 return false; 4425 4426 // Turn all invokes that unwind here into calls and delete the basic block. 4427 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4428 removeUnwindEdge(Pred, DTU); 4429 ++NumInvokes; 4430 } 4431 4432 // The landingpad is now unreachable. Zap it. 4433 DeleteDeadBlock(BB, DTU); 4434 return true; 4435 } 4436 4437 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4438 // If this is a trivial cleanup pad that executes no instructions, it can be 4439 // eliminated. If the cleanup pad continues to the caller, any predecessor 4440 // that is an EH pad will be updated to continue to the caller and any 4441 // predecessor that terminates with an invoke instruction will have its invoke 4442 // instruction converted to a call instruction. If the cleanup pad being 4443 // simplified does not continue to the caller, each predecessor will be 4444 // updated to continue to the unwind destination of the cleanup pad being 4445 // simplified. 4446 BasicBlock *BB = RI->getParent(); 4447 CleanupPadInst *CPInst = RI->getCleanupPad(); 4448 if (CPInst->getParent() != BB) 4449 // This isn't an empty cleanup. 4450 return false; 4451 4452 // We cannot kill the pad if it has multiple uses. This typically arises 4453 // from unreachable basic blocks. 4454 if (!CPInst->hasOneUse()) 4455 return false; 4456 4457 // Check that there are no other instructions except for benign intrinsics. 4458 if (!isCleanupBlockEmpty( 4459 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4460 return false; 4461 4462 // If the cleanup return we are simplifying unwinds to the caller, this will 4463 // set UnwindDest to nullptr. 4464 BasicBlock *UnwindDest = RI->getUnwindDest(); 4465 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4466 4467 // We're about to remove BB from the control flow. Before we do, sink any 4468 // PHINodes into the unwind destination. Doing this before changing the 4469 // control flow avoids some potentially slow checks, since we can currently 4470 // be certain that UnwindDest and BB have no common predecessors (since they 4471 // are both EH pads). 4472 if (UnwindDest) { 4473 // First, go through the PHI nodes in UnwindDest and update any nodes that 4474 // reference the block we are removing 4475 for (PHINode &DestPN : UnwindDest->phis()) { 4476 int Idx = DestPN.getBasicBlockIndex(BB); 4477 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4478 assert(Idx != -1); 4479 // This PHI node has an incoming value that corresponds to a control 4480 // path through the cleanup pad we are removing. If the incoming 4481 // value is in the cleanup pad, it must be a PHINode (because we 4482 // verified above that the block is otherwise empty). Otherwise, the 4483 // value is either a constant or a value that dominates the cleanup 4484 // pad being removed. 4485 // 4486 // Because BB and UnwindDest are both EH pads, all of their 4487 // predecessors must unwind to these blocks, and since no instruction 4488 // can have multiple unwind destinations, there will be no overlap in 4489 // incoming blocks between SrcPN and DestPN. 4490 Value *SrcVal = DestPN.getIncomingValue(Idx); 4491 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4492 4493 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 4494 for (auto *Pred : predecessors(BB)) { 4495 Value *Incoming = 4496 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 4497 DestPN.addIncoming(Incoming, Pred); 4498 } 4499 } 4500 4501 // Sink any remaining PHI nodes directly into UnwindDest. 4502 Instruction *InsertPt = DestEHPad; 4503 for (PHINode &PN : make_early_inc_range(BB->phis())) { 4504 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 4505 // If the PHI node has no uses or all of its uses are in this basic 4506 // block (meaning they are debug or lifetime intrinsics), just leave 4507 // it. It will be erased when we erase BB below. 4508 continue; 4509 4510 // Otherwise, sink this PHI node into UnwindDest. 4511 // Any predecessors to UnwindDest which are not already represented 4512 // must be back edges which inherit the value from the path through 4513 // BB. In this case, the PHI value must reference itself. 4514 for (auto *pred : predecessors(UnwindDest)) 4515 if (pred != BB) 4516 PN.addIncoming(&PN, pred); 4517 PN.moveBefore(InsertPt); 4518 // Also, add a dummy incoming value for the original BB itself, 4519 // so that the PHI is well-formed until we drop said predecessor. 4520 PN.addIncoming(UndefValue::get(PN.getType()), BB); 4521 } 4522 } 4523 4524 std::vector<DominatorTree::UpdateType> Updates; 4525 4526 // We use make_early_inc_range here because we will remove all predecessors. 4527 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4528 if (UnwindDest == nullptr) { 4529 if (DTU) { 4530 DTU->applyUpdates(Updates); 4531 Updates.clear(); 4532 } 4533 removeUnwindEdge(PredBB, DTU); 4534 ++NumInvokes; 4535 } else { 4536 BB->removePredecessor(PredBB); 4537 Instruction *TI = PredBB->getTerminator(); 4538 TI->replaceUsesOfWith(BB, UnwindDest); 4539 if (DTU) { 4540 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4541 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4542 } 4543 } 4544 } 4545 4546 if (DTU) 4547 DTU->applyUpdates(Updates); 4548 4549 DeleteDeadBlock(BB, DTU); 4550 4551 return true; 4552 } 4553 4554 // Try to merge two cleanuppads together. 4555 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4556 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4557 // with. 4558 BasicBlock *UnwindDest = RI->getUnwindDest(); 4559 if (!UnwindDest) 4560 return false; 4561 4562 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4563 // be safe to merge without code duplication. 4564 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4565 return false; 4566 4567 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4568 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4569 if (!SuccessorCleanupPad) 4570 return false; 4571 4572 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4573 // Replace any uses of the successor cleanupad with the predecessor pad 4574 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4575 // funclet bundle operands. 4576 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4577 // Remove the old cleanuppad. 4578 SuccessorCleanupPad->eraseFromParent(); 4579 // Now, we simply replace the cleanupret with a branch to the unwind 4580 // destination. 4581 BranchInst::Create(UnwindDest, RI->getParent()); 4582 RI->eraseFromParent(); 4583 4584 return true; 4585 } 4586 4587 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4588 // It is possible to transiantly have an undef cleanuppad operand because we 4589 // have deleted some, but not all, dead blocks. 4590 // Eventually, this block will be deleted. 4591 if (isa<UndefValue>(RI->getOperand(0))) 4592 return false; 4593 4594 if (mergeCleanupPad(RI)) 4595 return true; 4596 4597 if (removeEmptyCleanup(RI, DTU)) 4598 return true; 4599 4600 return false; 4601 } 4602 4603 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4604 BasicBlock *BB = RI->getParent(); 4605 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4606 return false; 4607 4608 // Find predecessors that end with branches. 4609 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4610 SmallVector<BranchInst *, 8> CondBranchPreds; 4611 for (BasicBlock *P : predecessors(BB)) { 4612 Instruction *PTI = P->getTerminator(); 4613 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4614 if (BI->isUnconditional()) 4615 UncondBranchPreds.push_back(P); 4616 else 4617 CondBranchPreds.push_back(BI); 4618 } 4619 } 4620 4621 // If we found some, do the transformation! 4622 if (!UncondBranchPreds.empty() && DupRet) { 4623 while (!UncondBranchPreds.empty()) { 4624 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4625 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4626 << "INTO UNCOND BRANCH PRED: " << *Pred); 4627 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4628 } 4629 4630 // If we eliminated all predecessors of the block, delete the block now. 4631 if (pred_empty(BB)) 4632 DeleteDeadBlock(BB, DTU); 4633 4634 return true; 4635 } 4636 4637 // Check out all of the conditional branches going to this return 4638 // instruction. If any of them just select between returns, change the 4639 // branch itself into a select/return pair. 4640 while (!CondBranchPreds.empty()) { 4641 BranchInst *BI = CondBranchPreds.pop_back_val(); 4642 4643 // Check to see if the non-BB successor is also a return block. 4644 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4645 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4646 SimplifyCondBranchToTwoReturns(BI, Builder)) 4647 return true; 4648 } 4649 return false; 4650 } 4651 4652 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4653 BasicBlock *BB = UI->getParent(); 4654 4655 bool Changed = false; 4656 4657 // If there are any instructions immediately before the unreachable that can 4658 // be removed, do so. 4659 while (UI->getIterator() != BB->begin()) { 4660 BasicBlock::iterator BBI = UI->getIterator(); 4661 --BBI; 4662 // Do not delete instructions that can have side effects which might cause 4663 // the unreachable to not be reachable; specifically, calls and volatile 4664 // operations may have this effect. 4665 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4666 break; 4667 4668 if (BBI->mayHaveSideEffects()) { 4669 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4670 if (SI->isVolatile()) 4671 break; 4672 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4673 if (LI->isVolatile()) 4674 break; 4675 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4676 if (RMWI->isVolatile()) 4677 break; 4678 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4679 if (CXI->isVolatile()) 4680 break; 4681 } else if (isa<CatchPadInst>(BBI)) { 4682 // A catchpad may invoke exception object constructors and such, which 4683 // in some languages can be arbitrary code, so be conservative by 4684 // default. 4685 // For CoreCLR, it just involves a type test, so can be removed. 4686 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4687 EHPersonality::CoreCLR) 4688 break; 4689 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4690 !isa<LandingPadInst>(BBI)) { 4691 break; 4692 } 4693 // Note that deleting LandingPad's here is in fact okay, although it 4694 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4695 // all the predecessors of this block will be the unwind edges of Invokes, 4696 // and we can therefore guarantee this block will be erased. 4697 } 4698 4699 // Delete this instruction (any uses are guaranteed to be dead) 4700 if (!BBI->use_empty()) 4701 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4702 BBI->eraseFromParent(); 4703 Changed = true; 4704 } 4705 4706 // If the unreachable instruction is the first in the block, take a gander 4707 // at all of the predecessors of this instruction, and simplify them. 4708 if (&BB->front() != UI) 4709 return Changed; 4710 4711 std::vector<DominatorTree::UpdateType> Updates; 4712 4713 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4714 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4715 auto *Predecessor = Preds[i]; 4716 Instruction *TI = Predecessor->getTerminator(); 4717 IRBuilder<> Builder(TI); 4718 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4719 // We could either have a proper unconditional branch, 4720 // or a degenerate conditional branch with matching destinations. 4721 if (all_of(BI->successors(), 4722 [BB](auto *Successor) { return Successor == BB; })) { 4723 new UnreachableInst(TI->getContext(), TI); 4724 TI->eraseFromParent(); 4725 Changed = true; 4726 } else { 4727 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4728 Value* Cond = BI->getCondition(); 4729 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4730 "The destinations are guaranteed to be different here."); 4731 if (BI->getSuccessor(0) == BB) { 4732 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4733 Builder.CreateBr(BI->getSuccessor(1)); 4734 } else { 4735 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4736 Builder.CreateAssumption(Cond); 4737 Builder.CreateBr(BI->getSuccessor(0)); 4738 } 4739 EraseTerminatorAndDCECond(BI); 4740 Changed = true; 4741 } 4742 if (DTU) 4743 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4744 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4745 SwitchInstProfUpdateWrapper SU(*SI); 4746 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4747 if (i->getCaseSuccessor() != BB) { 4748 ++i; 4749 continue; 4750 } 4751 BB->removePredecessor(SU->getParent()); 4752 i = SU.removeCase(i); 4753 e = SU->case_end(); 4754 Changed = true; 4755 } 4756 // Note that the default destination can't be removed! 4757 if (DTU && SI->getDefaultDest() != BB) 4758 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4759 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4760 if (II->getUnwindDest() == BB) { 4761 if (DTU) { 4762 DTU->applyUpdates(Updates); 4763 Updates.clear(); 4764 } 4765 removeUnwindEdge(TI->getParent(), DTU); 4766 Changed = true; 4767 } 4768 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4769 if (CSI->getUnwindDest() == BB) { 4770 if (DTU) { 4771 DTU->applyUpdates(Updates); 4772 Updates.clear(); 4773 } 4774 removeUnwindEdge(TI->getParent(), DTU); 4775 Changed = true; 4776 continue; 4777 } 4778 4779 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4780 E = CSI->handler_end(); 4781 I != E; ++I) { 4782 if (*I == BB) { 4783 CSI->removeHandler(I); 4784 --I; 4785 --E; 4786 Changed = true; 4787 } 4788 } 4789 if (DTU) 4790 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4791 if (CSI->getNumHandlers() == 0) { 4792 if (CSI->hasUnwindDest()) { 4793 // Redirect all predecessors of the block containing CatchSwitchInst 4794 // to instead branch to the CatchSwitchInst's unwind destination. 4795 if (DTU) { 4796 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4797 Updates.push_back({DominatorTree::Insert, 4798 PredecessorOfPredecessor, 4799 CSI->getUnwindDest()}); 4800 Updates.push_back({DominatorTree::Delete, 4801 PredecessorOfPredecessor, Predecessor}); 4802 } 4803 } 4804 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4805 } else { 4806 // Rewrite all preds to unwind to caller (or from invoke to call). 4807 if (DTU) { 4808 DTU->applyUpdates(Updates); 4809 Updates.clear(); 4810 } 4811 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4812 for (BasicBlock *EHPred : EHPreds) 4813 removeUnwindEdge(EHPred, DTU); 4814 } 4815 // The catchswitch is no longer reachable. 4816 new UnreachableInst(CSI->getContext(), CSI); 4817 CSI->eraseFromParent(); 4818 Changed = true; 4819 } 4820 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4821 (void)CRI; 4822 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4823 "Expected to always have an unwind to BB."); 4824 if (DTU) 4825 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4826 new UnreachableInst(TI->getContext(), TI); 4827 TI->eraseFromParent(); 4828 Changed = true; 4829 } 4830 } 4831 4832 if (DTU) 4833 DTU->applyUpdates(Updates); 4834 4835 // If this block is now dead, remove it. 4836 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4837 DeleteDeadBlock(BB, DTU); 4838 return true; 4839 } 4840 4841 return Changed; 4842 } 4843 4844 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4845 assert(Cases.size() >= 1); 4846 4847 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4848 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4849 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4850 return false; 4851 } 4852 return true; 4853 } 4854 4855 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4856 DomTreeUpdater *DTU) { 4857 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4858 auto *BB = Switch->getParent(); 4859 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4860 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4861 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4862 Switch->setDefaultDest(&*NewDefaultBlock); 4863 if (DTU) 4864 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4865 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4866 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4867 SmallVector<DominatorTree::UpdateType, 2> Updates; 4868 if (DTU) 4869 for (auto *Successor : successors(NewDefaultBlock)) 4870 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4871 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4872 new UnreachableInst(Switch->getContext(), NewTerminator); 4873 EraseTerminatorAndDCECond(NewTerminator); 4874 if (DTU) 4875 DTU->applyUpdates(Updates); 4876 } 4877 4878 /// Turn a switch with two reachable destinations into an integer range 4879 /// comparison and branch. 4880 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4881 IRBuilder<> &Builder) { 4882 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4883 4884 bool HasDefault = 4885 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4886 4887 auto *BB = SI->getParent(); 4888 4889 // Partition the cases into two sets with different destinations. 4890 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4891 BasicBlock *DestB = nullptr; 4892 SmallVector<ConstantInt *, 16> CasesA; 4893 SmallVector<ConstantInt *, 16> CasesB; 4894 4895 for (auto Case : SI->cases()) { 4896 BasicBlock *Dest = Case.getCaseSuccessor(); 4897 if (!DestA) 4898 DestA = Dest; 4899 if (Dest == DestA) { 4900 CasesA.push_back(Case.getCaseValue()); 4901 continue; 4902 } 4903 if (!DestB) 4904 DestB = Dest; 4905 if (Dest == DestB) { 4906 CasesB.push_back(Case.getCaseValue()); 4907 continue; 4908 } 4909 return false; // More than two destinations. 4910 } 4911 4912 assert(DestA && DestB && 4913 "Single-destination switch should have been folded."); 4914 assert(DestA != DestB); 4915 assert(DestB != SI->getDefaultDest()); 4916 assert(!CasesB.empty() && "There must be non-default cases."); 4917 assert(!CasesA.empty() || HasDefault); 4918 4919 // Figure out if one of the sets of cases form a contiguous range. 4920 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4921 BasicBlock *ContiguousDest = nullptr; 4922 BasicBlock *OtherDest = nullptr; 4923 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4924 ContiguousCases = &CasesA; 4925 ContiguousDest = DestA; 4926 OtherDest = DestB; 4927 } else if (CasesAreContiguous(CasesB)) { 4928 ContiguousCases = &CasesB; 4929 ContiguousDest = DestB; 4930 OtherDest = DestA; 4931 } else 4932 return false; 4933 4934 // Start building the compare and branch. 4935 4936 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4937 Constant *NumCases = 4938 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4939 4940 Value *Sub = SI->getCondition(); 4941 if (!Offset->isNullValue()) 4942 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4943 4944 Value *Cmp; 4945 // If NumCases overflowed, then all possible values jump to the successor. 4946 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4947 Cmp = ConstantInt::getTrue(SI->getContext()); 4948 else 4949 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4950 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4951 4952 // Update weight for the newly-created conditional branch. 4953 if (HasBranchWeights(SI)) { 4954 SmallVector<uint64_t, 8> Weights; 4955 GetBranchWeights(SI, Weights); 4956 if (Weights.size() == 1 + SI->getNumCases()) { 4957 uint64_t TrueWeight = 0; 4958 uint64_t FalseWeight = 0; 4959 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4960 if (SI->getSuccessor(I) == ContiguousDest) 4961 TrueWeight += Weights[I]; 4962 else 4963 FalseWeight += Weights[I]; 4964 } 4965 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4966 TrueWeight /= 2; 4967 FalseWeight /= 2; 4968 } 4969 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4970 } 4971 } 4972 4973 // Prune obsolete incoming values off the successors' PHI nodes. 4974 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4975 unsigned PreviousEdges = ContiguousCases->size(); 4976 if (ContiguousDest == SI->getDefaultDest()) 4977 ++PreviousEdges; 4978 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4979 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4980 } 4981 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4982 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4983 if (OtherDest == SI->getDefaultDest()) 4984 ++PreviousEdges; 4985 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4986 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4987 } 4988 4989 // Clean up the default block - it may have phis or other instructions before 4990 // the unreachable terminator. 4991 if (!HasDefault) 4992 createUnreachableSwitchDefault(SI, DTU); 4993 4994 auto *UnreachableDefault = SI->getDefaultDest(); 4995 4996 // Drop the switch. 4997 SI->eraseFromParent(); 4998 4999 if (!HasDefault && DTU) 5000 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5001 5002 return true; 5003 } 5004 5005 /// Compute masked bits for the condition of a switch 5006 /// and use it to remove dead cases. 5007 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5008 AssumptionCache *AC, 5009 const DataLayout &DL) { 5010 Value *Cond = SI->getCondition(); 5011 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 5012 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5013 5014 // We can also eliminate cases by determining that their values are outside of 5015 // the limited range of the condition based on how many significant (non-sign) 5016 // bits are in the condition value. 5017 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 5018 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 5019 5020 // Gather dead cases. 5021 SmallVector<ConstantInt *, 8> DeadCases; 5022 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5023 for (auto &Case : SI->cases()) { 5024 auto *Successor = Case.getCaseSuccessor(); 5025 if (DTU) 5026 ++NumPerSuccessorCases[Successor]; 5027 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5028 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5029 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5030 DeadCases.push_back(Case.getCaseValue()); 5031 if (DTU) 5032 --NumPerSuccessorCases[Successor]; 5033 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5034 << " is dead.\n"); 5035 } 5036 } 5037 5038 // If we can prove that the cases must cover all possible values, the 5039 // default destination becomes dead and we can remove it. If we know some 5040 // of the bits in the value, we can use that to more precisely compute the 5041 // number of possible unique case values. 5042 bool HasDefault = 5043 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5044 const unsigned NumUnknownBits = 5045 Bits - (Known.Zero | Known.One).countPopulation(); 5046 assert(NumUnknownBits <= Bits); 5047 if (HasDefault && DeadCases.empty() && 5048 NumUnknownBits < 64 /* avoid overflow */ && 5049 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5050 createUnreachableSwitchDefault(SI, DTU); 5051 return true; 5052 } 5053 5054 if (DeadCases.empty()) 5055 return false; 5056 5057 SwitchInstProfUpdateWrapper SIW(*SI); 5058 for (ConstantInt *DeadCase : DeadCases) { 5059 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5060 assert(CaseI != SI->case_default() && 5061 "Case was not found. Probably mistake in DeadCases forming."); 5062 // Prune unused values from PHI nodes. 5063 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5064 SIW.removeCase(CaseI); 5065 } 5066 5067 if (DTU) { 5068 std::vector<DominatorTree::UpdateType> Updates; 5069 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 5070 if (I.second == 0) 5071 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 5072 DTU->applyUpdates(Updates); 5073 } 5074 5075 return true; 5076 } 5077 5078 /// If BB would be eligible for simplification by 5079 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5080 /// by an unconditional branch), look at the phi node for BB in the successor 5081 /// block and see if the incoming value is equal to CaseValue. If so, return 5082 /// the phi node, and set PhiIndex to BB's index in the phi node. 5083 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5084 BasicBlock *BB, int *PhiIndex) { 5085 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5086 return nullptr; // BB must be empty to be a candidate for simplification. 5087 if (!BB->getSinglePredecessor()) 5088 return nullptr; // BB must be dominated by the switch. 5089 5090 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5091 if (!Branch || !Branch->isUnconditional()) 5092 return nullptr; // Terminator must be unconditional branch. 5093 5094 BasicBlock *Succ = Branch->getSuccessor(0); 5095 5096 for (PHINode &PHI : Succ->phis()) { 5097 int Idx = PHI.getBasicBlockIndex(BB); 5098 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5099 5100 Value *InValue = PHI.getIncomingValue(Idx); 5101 if (InValue != CaseValue) 5102 continue; 5103 5104 *PhiIndex = Idx; 5105 return &PHI; 5106 } 5107 5108 return nullptr; 5109 } 5110 5111 /// Try to forward the condition of a switch instruction to a phi node 5112 /// dominated by the switch, if that would mean that some of the destination 5113 /// blocks of the switch can be folded away. Return true if a change is made. 5114 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5115 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5116 5117 ForwardingNodesMap ForwardingNodes; 5118 BasicBlock *SwitchBlock = SI->getParent(); 5119 bool Changed = false; 5120 for (auto &Case : SI->cases()) { 5121 ConstantInt *CaseValue = Case.getCaseValue(); 5122 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5123 5124 // Replace phi operands in successor blocks that are using the constant case 5125 // value rather than the switch condition variable: 5126 // switchbb: 5127 // switch i32 %x, label %default [ 5128 // i32 17, label %succ 5129 // ... 5130 // succ: 5131 // %r = phi i32 ... [ 17, %switchbb ] ... 5132 // --> 5133 // %r = phi i32 ... [ %x, %switchbb ] ... 5134 5135 for (PHINode &Phi : CaseDest->phis()) { 5136 // This only works if there is exactly 1 incoming edge from the switch to 5137 // a phi. If there is >1, that means multiple cases of the switch map to 1 5138 // value in the phi, and that phi value is not the switch condition. Thus, 5139 // this transform would not make sense (the phi would be invalid because 5140 // a phi can't have different incoming values from the same block). 5141 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5142 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5143 count(Phi.blocks(), SwitchBlock) == 1) { 5144 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5145 Changed = true; 5146 } 5147 } 5148 5149 // Collect phi nodes that are indirectly using this switch's case constants. 5150 int PhiIdx; 5151 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5152 ForwardingNodes[Phi].push_back(PhiIdx); 5153 } 5154 5155 for (auto &ForwardingNode : ForwardingNodes) { 5156 PHINode *Phi = ForwardingNode.first; 5157 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5158 if (Indexes.size() < 2) 5159 continue; 5160 5161 for (int Index : Indexes) 5162 Phi->setIncomingValue(Index, SI->getCondition()); 5163 Changed = true; 5164 } 5165 5166 return Changed; 5167 } 5168 5169 /// Return true if the backend will be able to handle 5170 /// initializing an array of constants like C. 5171 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5172 if (C->isThreadDependent()) 5173 return false; 5174 if (C->isDLLImportDependent()) 5175 return false; 5176 5177 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5178 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5179 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5180 return false; 5181 5182 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5183 if (!CE->isGEPWithNoNotionalOverIndexing()) 5184 return false; 5185 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5186 return false; 5187 } 5188 5189 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5190 return false; 5191 5192 return true; 5193 } 5194 5195 /// If V is a Constant, return it. Otherwise, try to look up 5196 /// its constant value in ConstantPool, returning 0 if it's not there. 5197 static Constant * 5198 LookupConstant(Value *V, 5199 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5200 if (Constant *C = dyn_cast<Constant>(V)) 5201 return C; 5202 return ConstantPool.lookup(V); 5203 } 5204 5205 /// Try to fold instruction I into a constant. This works for 5206 /// simple instructions such as binary operations where both operands are 5207 /// constant or can be replaced by constants from the ConstantPool. Returns the 5208 /// resulting constant on success, 0 otherwise. 5209 static Constant * 5210 ConstantFold(Instruction *I, const DataLayout &DL, 5211 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5212 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5213 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5214 if (!A) 5215 return nullptr; 5216 if (A->isAllOnesValue()) 5217 return LookupConstant(Select->getTrueValue(), ConstantPool); 5218 if (A->isNullValue()) 5219 return LookupConstant(Select->getFalseValue(), ConstantPool); 5220 return nullptr; 5221 } 5222 5223 SmallVector<Constant *, 4> COps; 5224 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5225 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5226 COps.push_back(A); 5227 else 5228 return nullptr; 5229 } 5230 5231 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5232 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5233 COps[1], DL); 5234 } 5235 5236 return ConstantFoldInstOperands(I, COps, DL); 5237 } 5238 5239 /// Try to determine the resulting constant values in phi nodes 5240 /// at the common destination basic block, *CommonDest, for one of the case 5241 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5242 /// case), of a switch instruction SI. 5243 static bool 5244 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5245 BasicBlock **CommonDest, 5246 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5247 const DataLayout &DL, const TargetTransformInfo &TTI) { 5248 // The block from which we enter the common destination. 5249 BasicBlock *Pred = SI->getParent(); 5250 5251 // If CaseDest is empty except for some side-effect free instructions through 5252 // which we can constant-propagate the CaseVal, continue to its successor. 5253 SmallDenseMap<Value *, Constant *> ConstantPool; 5254 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5255 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5256 if (I.isTerminator()) { 5257 // If the terminator is a simple branch, continue to the next block. 5258 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5259 return false; 5260 Pred = CaseDest; 5261 CaseDest = I.getSuccessor(0); 5262 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5263 // Instruction is side-effect free and constant. 5264 5265 // If the instruction has uses outside this block or a phi node slot for 5266 // the block, it is not safe to bypass the instruction since it would then 5267 // no longer dominate all its uses. 5268 for (auto &Use : I.uses()) { 5269 User *User = Use.getUser(); 5270 if (Instruction *I = dyn_cast<Instruction>(User)) 5271 if (I->getParent() == CaseDest) 5272 continue; 5273 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5274 if (Phi->getIncomingBlock(Use) == CaseDest) 5275 continue; 5276 return false; 5277 } 5278 5279 ConstantPool.insert(std::make_pair(&I, C)); 5280 } else { 5281 break; 5282 } 5283 } 5284 5285 // If we did not have a CommonDest before, use the current one. 5286 if (!*CommonDest) 5287 *CommonDest = CaseDest; 5288 // If the destination isn't the common one, abort. 5289 if (CaseDest != *CommonDest) 5290 return false; 5291 5292 // Get the values for this case from phi nodes in the destination block. 5293 for (PHINode &PHI : (*CommonDest)->phis()) { 5294 int Idx = PHI.getBasicBlockIndex(Pred); 5295 if (Idx == -1) 5296 continue; 5297 5298 Constant *ConstVal = 5299 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5300 if (!ConstVal) 5301 return false; 5302 5303 // Be conservative about which kinds of constants we support. 5304 if (!ValidLookupTableConstant(ConstVal, TTI)) 5305 return false; 5306 5307 Res.push_back(std::make_pair(&PHI, ConstVal)); 5308 } 5309 5310 return Res.size() > 0; 5311 } 5312 5313 // Helper function used to add CaseVal to the list of cases that generate 5314 // Result. Returns the updated number of cases that generate this result. 5315 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5316 SwitchCaseResultVectorTy &UniqueResults, 5317 Constant *Result) { 5318 for (auto &I : UniqueResults) { 5319 if (I.first == Result) { 5320 I.second.push_back(CaseVal); 5321 return I.second.size(); 5322 } 5323 } 5324 UniqueResults.push_back( 5325 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5326 return 1; 5327 } 5328 5329 // Helper function that initializes a map containing 5330 // results for the PHI node of the common destination block for a switch 5331 // instruction. Returns false if multiple PHI nodes have been found or if 5332 // there is not a common destination block for the switch. 5333 static bool 5334 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5335 SwitchCaseResultVectorTy &UniqueResults, 5336 Constant *&DefaultResult, const DataLayout &DL, 5337 const TargetTransformInfo &TTI, 5338 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5339 for (auto &I : SI->cases()) { 5340 ConstantInt *CaseVal = I.getCaseValue(); 5341 5342 // Resulting value at phi nodes for this case value. 5343 SwitchCaseResultsTy Results; 5344 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5345 DL, TTI)) 5346 return false; 5347 5348 // Only one value per case is permitted. 5349 if (Results.size() > 1) 5350 return false; 5351 5352 // Add the case->result mapping to UniqueResults. 5353 const uintptr_t NumCasesForResult = 5354 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5355 5356 // Early out if there are too many cases for this result. 5357 if (NumCasesForResult > MaxCasesPerResult) 5358 return false; 5359 5360 // Early out if there are too many unique results. 5361 if (UniqueResults.size() > MaxUniqueResults) 5362 return false; 5363 5364 // Check the PHI consistency. 5365 if (!PHI) 5366 PHI = Results[0].first; 5367 else if (PHI != Results[0].first) 5368 return false; 5369 } 5370 // Find the default result value. 5371 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5372 BasicBlock *DefaultDest = SI->getDefaultDest(); 5373 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5374 DL, TTI); 5375 // If the default value is not found abort unless the default destination 5376 // is unreachable. 5377 DefaultResult = 5378 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5379 if ((!DefaultResult && 5380 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5381 return false; 5382 5383 return true; 5384 } 5385 5386 // Helper function that checks if it is possible to transform a switch with only 5387 // two cases (or two cases + default) that produces a result into a select. 5388 // Example: 5389 // switch (a) { 5390 // case 10: %0 = icmp eq i32 %a, 10 5391 // return 10; %1 = select i1 %0, i32 10, i32 4 5392 // case 20: ----> %2 = icmp eq i32 %a, 20 5393 // return 2; %3 = select i1 %2, i32 2, i32 %1 5394 // default: 5395 // return 4; 5396 // } 5397 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5398 Constant *DefaultResult, Value *Condition, 5399 IRBuilder<> &Builder) { 5400 // If we are selecting between only two cases transform into a simple 5401 // select or a two-way select if default is possible. 5402 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5403 ResultVector[1].second.size() == 1) { 5404 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5405 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5406 5407 bool DefaultCanTrigger = DefaultResult; 5408 Value *SelectValue = ResultVector[1].first; 5409 if (DefaultCanTrigger) { 5410 Value *const ValueCompare = 5411 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5412 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5413 DefaultResult, "switch.select"); 5414 } 5415 Value *const ValueCompare = 5416 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5417 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5418 SelectValue, "switch.select"); 5419 } 5420 5421 // Handle the degenerate case where two cases have the same value. 5422 if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 && 5423 DefaultResult) { 5424 Value *Cmp1 = Builder.CreateICmpEQ( 5425 Condition, ResultVector[0].second[0], "switch.selectcmp.case1"); 5426 Value *Cmp2 = Builder.CreateICmpEQ( 5427 Condition, ResultVector[0].second[1], "switch.selectcmp.case2"); 5428 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5429 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5430 } 5431 5432 return nullptr; 5433 } 5434 5435 // Helper function to cleanup a switch instruction that has been converted into 5436 // a select, fixing up PHI nodes and basic blocks. 5437 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5438 Value *SelectValue, 5439 IRBuilder<> &Builder, 5440 DomTreeUpdater *DTU) { 5441 std::vector<DominatorTree::UpdateType> Updates; 5442 5443 BasicBlock *SelectBB = SI->getParent(); 5444 BasicBlock *DestBB = PHI->getParent(); 5445 5446 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5447 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5448 Builder.CreateBr(DestBB); 5449 5450 // Remove the switch. 5451 5452 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5453 PHI->removeIncomingValue(SelectBB); 5454 PHI->addIncoming(SelectValue, SelectBB); 5455 5456 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5457 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5458 BasicBlock *Succ = SI->getSuccessor(i); 5459 5460 if (Succ == DestBB) 5461 continue; 5462 Succ->removePredecessor(SelectBB); 5463 if (DTU && RemovedSuccessors.insert(Succ).second) 5464 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5465 } 5466 SI->eraseFromParent(); 5467 if (DTU) 5468 DTU->applyUpdates(Updates); 5469 } 5470 5471 /// If the switch is only used to initialize one or more 5472 /// phi nodes in a common successor block with only two different 5473 /// constant values, replace the switch with select. 5474 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5475 DomTreeUpdater *DTU, const DataLayout &DL, 5476 const TargetTransformInfo &TTI) { 5477 Value *const Cond = SI->getCondition(); 5478 PHINode *PHI = nullptr; 5479 BasicBlock *CommonDest = nullptr; 5480 Constant *DefaultResult; 5481 SwitchCaseResultVectorTy UniqueResults; 5482 // Collect all the cases that will deliver the same value from the switch. 5483 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5484 DL, TTI, /*MaxUniqueResults*/2, 5485 /*MaxCasesPerResult*/2)) 5486 return false; 5487 assert(PHI != nullptr && "PHI for value select not found"); 5488 5489 Builder.SetInsertPoint(SI); 5490 Value *SelectValue = 5491 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5492 if (SelectValue) { 5493 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5494 return true; 5495 } 5496 // The switch couldn't be converted into a select. 5497 return false; 5498 } 5499 5500 namespace { 5501 5502 /// This class represents a lookup table that can be used to replace a switch. 5503 class SwitchLookupTable { 5504 public: 5505 /// Create a lookup table to use as a switch replacement with the contents 5506 /// of Values, using DefaultValue to fill any holes in the table. 5507 SwitchLookupTable( 5508 Module &M, uint64_t TableSize, ConstantInt *Offset, 5509 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5510 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5511 5512 /// Build instructions with Builder to retrieve the value at 5513 /// the position given by Index in the lookup table. 5514 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5515 5516 /// Return true if a table with TableSize elements of 5517 /// type ElementType would fit in a target-legal register. 5518 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5519 Type *ElementType); 5520 5521 private: 5522 // Depending on the contents of the table, it can be represented in 5523 // different ways. 5524 enum { 5525 // For tables where each element contains the same value, we just have to 5526 // store that single value and return it for each lookup. 5527 SingleValueKind, 5528 5529 // For tables where there is a linear relationship between table index 5530 // and values. We calculate the result with a simple multiplication 5531 // and addition instead of a table lookup. 5532 LinearMapKind, 5533 5534 // For small tables with integer elements, we can pack them into a bitmap 5535 // that fits into a target-legal register. Values are retrieved by 5536 // shift and mask operations. 5537 BitMapKind, 5538 5539 // The table is stored as an array of values. Values are retrieved by load 5540 // instructions from the table. 5541 ArrayKind 5542 } Kind; 5543 5544 // For SingleValueKind, this is the single value. 5545 Constant *SingleValue = nullptr; 5546 5547 // For BitMapKind, this is the bitmap. 5548 ConstantInt *BitMap = nullptr; 5549 IntegerType *BitMapElementTy = nullptr; 5550 5551 // For LinearMapKind, these are the constants used to derive the value. 5552 ConstantInt *LinearOffset = nullptr; 5553 ConstantInt *LinearMultiplier = nullptr; 5554 5555 // For ArrayKind, this is the array. 5556 GlobalVariable *Array = nullptr; 5557 }; 5558 5559 } // end anonymous namespace 5560 5561 SwitchLookupTable::SwitchLookupTable( 5562 Module &M, uint64_t TableSize, ConstantInt *Offset, 5563 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5564 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5565 assert(Values.size() && "Can't build lookup table without values!"); 5566 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5567 5568 // If all values in the table are equal, this is that value. 5569 SingleValue = Values.begin()->second; 5570 5571 Type *ValueType = Values.begin()->second->getType(); 5572 5573 // Build up the table contents. 5574 SmallVector<Constant *, 64> TableContents(TableSize); 5575 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5576 ConstantInt *CaseVal = Values[I].first; 5577 Constant *CaseRes = Values[I].second; 5578 assert(CaseRes->getType() == ValueType); 5579 5580 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5581 TableContents[Idx] = CaseRes; 5582 5583 if (CaseRes != SingleValue) 5584 SingleValue = nullptr; 5585 } 5586 5587 // Fill in any holes in the table with the default result. 5588 if (Values.size() < TableSize) { 5589 assert(DefaultValue && 5590 "Need a default value to fill the lookup table holes."); 5591 assert(DefaultValue->getType() == ValueType); 5592 for (uint64_t I = 0; I < TableSize; ++I) { 5593 if (!TableContents[I]) 5594 TableContents[I] = DefaultValue; 5595 } 5596 5597 if (DefaultValue != SingleValue) 5598 SingleValue = nullptr; 5599 } 5600 5601 // If each element in the table contains the same value, we only need to store 5602 // that single value. 5603 if (SingleValue) { 5604 Kind = SingleValueKind; 5605 return; 5606 } 5607 5608 // Check if we can derive the value with a linear transformation from the 5609 // table index. 5610 if (isa<IntegerType>(ValueType)) { 5611 bool LinearMappingPossible = true; 5612 APInt PrevVal; 5613 APInt DistToPrev; 5614 assert(TableSize >= 2 && "Should be a SingleValue table."); 5615 // Check if there is the same distance between two consecutive values. 5616 for (uint64_t I = 0; I < TableSize; ++I) { 5617 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5618 if (!ConstVal) { 5619 // This is an undef. We could deal with it, but undefs in lookup tables 5620 // are very seldom. It's probably not worth the additional complexity. 5621 LinearMappingPossible = false; 5622 break; 5623 } 5624 const APInt &Val = ConstVal->getValue(); 5625 if (I != 0) { 5626 APInt Dist = Val - PrevVal; 5627 if (I == 1) { 5628 DistToPrev = Dist; 5629 } else if (Dist != DistToPrev) { 5630 LinearMappingPossible = false; 5631 break; 5632 } 5633 } 5634 PrevVal = Val; 5635 } 5636 if (LinearMappingPossible) { 5637 LinearOffset = cast<ConstantInt>(TableContents[0]); 5638 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5639 Kind = LinearMapKind; 5640 ++NumLinearMaps; 5641 return; 5642 } 5643 } 5644 5645 // If the type is integer and the table fits in a register, build a bitmap. 5646 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5647 IntegerType *IT = cast<IntegerType>(ValueType); 5648 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5649 for (uint64_t I = TableSize; I > 0; --I) { 5650 TableInt <<= IT->getBitWidth(); 5651 // Insert values into the bitmap. Undef values are set to zero. 5652 if (!isa<UndefValue>(TableContents[I - 1])) { 5653 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5654 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5655 } 5656 } 5657 BitMap = ConstantInt::get(M.getContext(), TableInt); 5658 BitMapElementTy = IT; 5659 Kind = BitMapKind; 5660 ++NumBitMaps; 5661 return; 5662 } 5663 5664 // Store the table in an array. 5665 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5666 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5667 5668 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5669 GlobalVariable::PrivateLinkage, Initializer, 5670 "switch.table." + FuncName); 5671 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5672 // Set the alignment to that of an array items. We will be only loading one 5673 // value out of it. 5674 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5675 Kind = ArrayKind; 5676 } 5677 5678 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5679 switch (Kind) { 5680 case SingleValueKind: 5681 return SingleValue; 5682 case LinearMapKind: { 5683 // Derive the result value from the input value. 5684 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5685 false, "switch.idx.cast"); 5686 if (!LinearMultiplier->isOne()) 5687 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5688 if (!LinearOffset->isZero()) 5689 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5690 return Result; 5691 } 5692 case BitMapKind: { 5693 // Type of the bitmap (e.g. i59). 5694 IntegerType *MapTy = BitMap->getType(); 5695 5696 // Cast Index to the same type as the bitmap. 5697 // Note: The Index is <= the number of elements in the table, so 5698 // truncating it to the width of the bitmask is safe. 5699 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5700 5701 // Multiply the shift amount by the element width. 5702 ShiftAmt = Builder.CreateMul( 5703 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5704 "switch.shiftamt"); 5705 5706 // Shift down. 5707 Value *DownShifted = 5708 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5709 // Mask off. 5710 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5711 } 5712 case ArrayKind: { 5713 // Make sure the table index will not overflow when treated as signed. 5714 IntegerType *IT = cast<IntegerType>(Index->getType()); 5715 uint64_t TableSize = 5716 Array->getInitializer()->getType()->getArrayNumElements(); 5717 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5718 Index = Builder.CreateZExt( 5719 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5720 "switch.tableidx.zext"); 5721 5722 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5723 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5724 GEPIndices, "switch.gep"); 5725 return Builder.CreateLoad( 5726 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5727 "switch.load"); 5728 } 5729 } 5730 llvm_unreachable("Unknown lookup table kind!"); 5731 } 5732 5733 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5734 uint64_t TableSize, 5735 Type *ElementType) { 5736 auto *IT = dyn_cast<IntegerType>(ElementType); 5737 if (!IT) 5738 return false; 5739 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5740 // are <= 15, we could try to narrow the type. 5741 5742 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5743 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5744 return false; 5745 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5746 } 5747 5748 /// Determine whether a lookup table should be built for this switch, based on 5749 /// the number of cases, size of the table, and the types of the results. 5750 static bool 5751 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5752 const TargetTransformInfo &TTI, const DataLayout &DL, 5753 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5754 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5755 return false; // TableSize overflowed, or mul below might overflow. 5756 5757 bool AllTablesFitInRegister = true; 5758 bool HasIllegalType = false; 5759 for (const auto &I : ResultTypes) { 5760 Type *Ty = I.second; 5761 5762 // Saturate this flag to true. 5763 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5764 5765 // Saturate this flag to false. 5766 AllTablesFitInRegister = 5767 AllTablesFitInRegister && 5768 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5769 5770 // If both flags saturate, we're done. NOTE: This *only* works with 5771 // saturating flags, and all flags have to saturate first due to the 5772 // non-deterministic behavior of iterating over a dense map. 5773 if (HasIllegalType && !AllTablesFitInRegister) 5774 break; 5775 } 5776 5777 // If each table would fit in a register, we should build it anyway. 5778 if (AllTablesFitInRegister) 5779 return true; 5780 5781 // Don't build a table that doesn't fit in-register if it has illegal types. 5782 if (HasIllegalType) 5783 return false; 5784 5785 // The table density should be at least 40%. This is the same criterion as for 5786 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5787 // FIXME: Find the best cut-off. 5788 return SI->getNumCases() * 10 >= TableSize * 4; 5789 } 5790 5791 /// Try to reuse the switch table index compare. Following pattern: 5792 /// \code 5793 /// if (idx < tablesize) 5794 /// r = table[idx]; // table does not contain default_value 5795 /// else 5796 /// r = default_value; 5797 /// if (r != default_value) 5798 /// ... 5799 /// \endcode 5800 /// Is optimized to: 5801 /// \code 5802 /// cond = idx < tablesize; 5803 /// if (cond) 5804 /// r = table[idx]; 5805 /// else 5806 /// r = default_value; 5807 /// if (cond) 5808 /// ... 5809 /// \endcode 5810 /// Jump threading will then eliminate the second if(cond). 5811 static void reuseTableCompare( 5812 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5813 Constant *DefaultValue, 5814 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5815 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5816 if (!CmpInst) 5817 return; 5818 5819 // We require that the compare is in the same block as the phi so that jump 5820 // threading can do its work afterwards. 5821 if (CmpInst->getParent() != PhiBlock) 5822 return; 5823 5824 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5825 if (!CmpOp1) 5826 return; 5827 5828 Value *RangeCmp = RangeCheckBranch->getCondition(); 5829 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5830 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5831 5832 // Check if the compare with the default value is constant true or false. 5833 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5834 DefaultValue, CmpOp1, true); 5835 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5836 return; 5837 5838 // Check if the compare with the case values is distinct from the default 5839 // compare result. 5840 for (auto ValuePair : Values) { 5841 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5842 ValuePair.second, CmpOp1, true); 5843 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5844 return; 5845 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5846 "Expect true or false as compare result."); 5847 } 5848 5849 // Check if the branch instruction dominates the phi node. It's a simple 5850 // dominance check, but sufficient for our needs. 5851 // Although this check is invariant in the calling loops, it's better to do it 5852 // at this late stage. Practically we do it at most once for a switch. 5853 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5854 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5855 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5856 return; 5857 } 5858 5859 if (DefaultConst == FalseConst) { 5860 // The compare yields the same result. We can replace it. 5861 CmpInst->replaceAllUsesWith(RangeCmp); 5862 ++NumTableCmpReuses; 5863 } else { 5864 // The compare yields the same result, just inverted. We can replace it. 5865 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5866 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5867 RangeCheckBranch); 5868 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5869 ++NumTableCmpReuses; 5870 } 5871 } 5872 5873 /// If the switch is only used to initialize one or more phi nodes in a common 5874 /// successor block with different constant values, replace the switch with 5875 /// lookup tables. 5876 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5877 DomTreeUpdater *DTU, const DataLayout &DL, 5878 const TargetTransformInfo &TTI) { 5879 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5880 5881 BasicBlock *BB = SI->getParent(); 5882 Function *Fn = BB->getParent(); 5883 // Only build lookup table when we have a target that supports it or the 5884 // attribute is not set. 5885 if (!TTI.shouldBuildLookupTables() || 5886 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 5887 return false; 5888 5889 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5890 // split off a dense part and build a lookup table for that. 5891 5892 // FIXME: This creates arrays of GEPs to constant strings, which means each 5893 // GEP needs a runtime relocation in PIC code. We should just build one big 5894 // string and lookup indices into that. 5895 5896 // Ignore switches with less than three cases. Lookup tables will not make 5897 // them faster, so we don't analyze them. 5898 if (SI->getNumCases() < 3) 5899 return false; 5900 5901 // Figure out the corresponding result for each case value and phi node in the 5902 // common destination, as well as the min and max case values. 5903 assert(!SI->cases().empty()); 5904 SwitchInst::CaseIt CI = SI->case_begin(); 5905 ConstantInt *MinCaseVal = CI->getCaseValue(); 5906 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5907 5908 BasicBlock *CommonDest = nullptr; 5909 5910 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5911 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5912 5913 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5914 SmallDenseMap<PHINode *, Type *> ResultTypes; 5915 SmallVector<PHINode *, 4> PHIs; 5916 5917 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5918 ConstantInt *CaseVal = CI->getCaseValue(); 5919 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5920 MinCaseVal = CaseVal; 5921 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5922 MaxCaseVal = CaseVal; 5923 5924 // Resulting value at phi nodes for this case value. 5925 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5926 ResultsTy Results; 5927 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5928 Results, DL, TTI)) 5929 return false; 5930 5931 // Append the result from this case to the list for each phi. 5932 for (const auto &I : Results) { 5933 PHINode *PHI = I.first; 5934 Constant *Value = I.second; 5935 if (!ResultLists.count(PHI)) 5936 PHIs.push_back(PHI); 5937 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5938 } 5939 } 5940 5941 // Keep track of the result types. 5942 for (PHINode *PHI : PHIs) { 5943 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5944 } 5945 5946 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5947 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5948 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5949 bool TableHasHoles = (NumResults < TableSize); 5950 5951 // If the table has holes, we need a constant result for the default case 5952 // or a bitmask that fits in a register. 5953 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5954 bool HasDefaultResults = 5955 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5956 DefaultResultsList, DL, TTI); 5957 5958 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5959 if (NeedMask) { 5960 // As an extra penalty for the validity test we require more cases. 5961 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5962 return false; 5963 if (!DL.fitsInLegalInteger(TableSize)) 5964 return false; 5965 } 5966 5967 for (const auto &I : DefaultResultsList) { 5968 PHINode *PHI = I.first; 5969 Constant *Result = I.second; 5970 DefaultResults[PHI] = Result; 5971 } 5972 5973 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5974 return false; 5975 5976 std::vector<DominatorTree::UpdateType> Updates; 5977 5978 // Create the BB that does the lookups. 5979 Module &Mod = *CommonDest->getParent()->getParent(); 5980 BasicBlock *LookupBB = BasicBlock::Create( 5981 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5982 5983 // Compute the table index value. 5984 Builder.SetInsertPoint(SI); 5985 Value *TableIndex; 5986 if (MinCaseVal->isNullValue()) 5987 TableIndex = SI->getCondition(); 5988 else 5989 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5990 "switch.tableidx"); 5991 5992 // Compute the maximum table size representable by the integer type we are 5993 // switching upon. 5994 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5995 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5996 assert(MaxTableSize >= TableSize && 5997 "It is impossible for a switch to have more entries than the max " 5998 "representable value of its input integer type's size."); 5999 6000 // If the default destination is unreachable, or if the lookup table covers 6001 // all values of the conditional variable, branch directly to the lookup table 6002 // BB. Otherwise, check that the condition is within the case range. 6003 const bool DefaultIsReachable = 6004 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6005 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6006 BranchInst *RangeCheckBranch = nullptr; 6007 6008 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6009 Builder.CreateBr(LookupBB); 6010 if (DTU) 6011 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6012 // Note: We call removeProdecessor later since we need to be able to get the 6013 // PHI value for the default case in case we're using a bit mask. 6014 } else { 6015 Value *Cmp = Builder.CreateICmpULT( 6016 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6017 RangeCheckBranch = 6018 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6019 if (DTU) 6020 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6021 } 6022 6023 // Populate the BB that does the lookups. 6024 Builder.SetInsertPoint(LookupBB); 6025 6026 if (NeedMask) { 6027 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6028 // re-purposed to do the hole check, and we create a new LookupBB. 6029 BasicBlock *MaskBB = LookupBB; 6030 MaskBB->setName("switch.hole_check"); 6031 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6032 CommonDest->getParent(), CommonDest); 6033 6034 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6035 // unnecessary illegal types. 6036 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6037 APInt MaskInt(TableSizePowOf2, 0); 6038 APInt One(TableSizePowOf2, 1); 6039 // Build bitmask; fill in a 1 bit for every case. 6040 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6041 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6042 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6043 .getLimitedValue(); 6044 MaskInt |= One << Idx; 6045 } 6046 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6047 6048 // Get the TableIndex'th bit of the bitmask. 6049 // If this bit is 0 (meaning hole) jump to the default destination, 6050 // else continue with table lookup. 6051 IntegerType *MapTy = TableMask->getType(); 6052 Value *MaskIndex = 6053 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6054 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6055 Value *LoBit = Builder.CreateTrunc( 6056 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6057 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6058 if (DTU) { 6059 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6060 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6061 } 6062 Builder.SetInsertPoint(LookupBB); 6063 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6064 } 6065 6066 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6067 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6068 // do not delete PHINodes here. 6069 SI->getDefaultDest()->removePredecessor(BB, 6070 /*KeepOneInputPHIs=*/true); 6071 if (DTU) 6072 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6073 } 6074 6075 bool ReturnedEarly = false; 6076 for (PHINode *PHI : PHIs) { 6077 const ResultListTy &ResultList = ResultLists[PHI]; 6078 6079 // If using a bitmask, use any value to fill the lookup table holes. 6080 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6081 StringRef FuncName = Fn->getName(); 6082 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6083 FuncName); 6084 6085 Value *Result = Table.BuildLookup(TableIndex, Builder); 6086 6087 // If the result is used to return immediately from the function, we want to 6088 // do that right here. 6089 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 6090 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 6091 Builder.CreateRet(Result); 6092 ReturnedEarly = true; 6093 break; 6094 } 6095 6096 // Do a small peephole optimization: re-use the switch table compare if 6097 // possible. 6098 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6099 BasicBlock *PhiBlock = PHI->getParent(); 6100 // Search for compare instructions which use the phi. 6101 for (auto *User : PHI->users()) { 6102 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6103 } 6104 } 6105 6106 PHI->addIncoming(Result, LookupBB); 6107 } 6108 6109 if (!ReturnedEarly) { 6110 Builder.CreateBr(CommonDest); 6111 if (DTU) 6112 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6113 } 6114 6115 // Remove the switch. 6116 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6117 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6118 BasicBlock *Succ = SI->getSuccessor(i); 6119 6120 if (Succ == SI->getDefaultDest()) 6121 continue; 6122 Succ->removePredecessor(BB); 6123 RemovedSuccessors.insert(Succ); 6124 } 6125 SI->eraseFromParent(); 6126 6127 if (DTU) { 6128 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 6129 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 6130 DTU->applyUpdates(Updates); 6131 } 6132 6133 ++NumLookupTables; 6134 if (NeedMask) 6135 ++NumLookupTablesHoles; 6136 return true; 6137 } 6138 6139 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6140 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6141 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6142 uint64_t Range = Diff + 1; 6143 uint64_t NumCases = Values.size(); 6144 // 40% is the default density for building a jump table in optsize/minsize mode. 6145 uint64_t MinDensity = 40; 6146 6147 return NumCases * 100 >= Range * MinDensity; 6148 } 6149 6150 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6151 /// of cases. 6152 /// 6153 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6154 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6155 /// 6156 /// This converts a sparse switch into a dense switch which allows better 6157 /// lowering and could also allow transforming into a lookup table. 6158 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6159 const DataLayout &DL, 6160 const TargetTransformInfo &TTI) { 6161 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6162 if (CondTy->getIntegerBitWidth() > 64 || 6163 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6164 return false; 6165 // Only bother with this optimization if there are more than 3 switch cases; 6166 // SDAG will only bother creating jump tables for 4 or more cases. 6167 if (SI->getNumCases() < 4) 6168 return false; 6169 6170 // This transform is agnostic to the signedness of the input or case values. We 6171 // can treat the case values as signed or unsigned. We can optimize more common 6172 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6173 // as signed. 6174 SmallVector<int64_t,4> Values; 6175 for (auto &C : SI->cases()) 6176 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6177 llvm::sort(Values); 6178 6179 // If the switch is already dense, there's nothing useful to do here. 6180 if (isSwitchDense(Values)) 6181 return false; 6182 6183 // First, transform the values such that they start at zero and ascend. 6184 int64_t Base = Values[0]; 6185 for (auto &V : Values) 6186 V -= (uint64_t)(Base); 6187 6188 // Now we have signed numbers that have been shifted so that, given enough 6189 // precision, there are no negative values. Since the rest of the transform 6190 // is bitwise only, we switch now to an unsigned representation. 6191 6192 // This transform can be done speculatively because it is so cheap - it 6193 // results in a single rotate operation being inserted. 6194 // FIXME: It's possible that optimizing a switch on powers of two might also 6195 // be beneficial - flag values are often powers of two and we could use a CLZ 6196 // as the key function. 6197 6198 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6199 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6200 // less than 64. 6201 unsigned Shift = 64; 6202 for (auto &V : Values) 6203 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6204 assert(Shift < 64); 6205 if (Shift > 0) 6206 for (auto &V : Values) 6207 V = (int64_t)((uint64_t)V >> Shift); 6208 6209 if (!isSwitchDense(Values)) 6210 // Transform didn't create a dense switch. 6211 return false; 6212 6213 // The obvious transform is to shift the switch condition right and emit a 6214 // check that the condition actually cleanly divided by GCD, i.e. 6215 // C & (1 << Shift - 1) == 0 6216 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6217 // 6218 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6219 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6220 // are nonzero then the switch condition will be very large and will hit the 6221 // default case. 6222 6223 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6224 Builder.SetInsertPoint(SI); 6225 auto *ShiftC = ConstantInt::get(Ty, Shift); 6226 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6227 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6228 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6229 auto *Rot = Builder.CreateOr(LShr, Shl); 6230 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6231 6232 for (auto Case : SI->cases()) { 6233 auto *Orig = Case.getCaseValue(); 6234 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6235 Case.setValue( 6236 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6237 } 6238 return true; 6239 } 6240 6241 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6242 BasicBlock *BB = SI->getParent(); 6243 6244 if (isValueEqualityComparison(SI)) { 6245 // If we only have one predecessor, and if it is a branch on this value, 6246 // see if that predecessor totally determines the outcome of this switch. 6247 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6248 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6249 return requestResimplify(); 6250 6251 Value *Cond = SI->getCondition(); 6252 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6253 if (SimplifySwitchOnSelect(SI, Select)) 6254 return requestResimplify(); 6255 6256 // If the block only contains the switch, see if we can fold the block 6257 // away into any preds. 6258 if (SI == &*BB->instructionsWithoutDebug().begin()) 6259 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6260 return requestResimplify(); 6261 } 6262 6263 // Try to transform the switch into an icmp and a branch. 6264 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6265 return requestResimplify(); 6266 6267 // Remove unreachable cases. 6268 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6269 return requestResimplify(); 6270 6271 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6272 return requestResimplify(); 6273 6274 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6275 return requestResimplify(); 6276 6277 // The conversion from switch to lookup tables results in difficult-to-analyze 6278 // code and makes pruning branches much harder. This is a problem if the 6279 // switch expression itself can still be restricted as a result of inlining or 6280 // CVP. Therefore, only apply this transformation during late stages of the 6281 // optimisation pipeline. 6282 if (Options.ConvertSwitchToLookupTable && 6283 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6284 return requestResimplify(); 6285 6286 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6287 return requestResimplify(); 6288 6289 return false; 6290 } 6291 6292 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6293 BasicBlock *BB = IBI->getParent(); 6294 bool Changed = false; 6295 6296 // Eliminate redundant destinations. 6297 SmallPtrSet<Value *, 8> Succs; 6298 SmallPtrSet<BasicBlock *, 8> RemovedSuccs; 6299 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6300 BasicBlock *Dest = IBI->getDestination(i); 6301 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6302 if (!Dest->hasAddressTaken()) 6303 RemovedSuccs.insert(Dest); 6304 Dest->removePredecessor(BB); 6305 IBI->removeDestination(i); 6306 --i; 6307 --e; 6308 Changed = true; 6309 } 6310 } 6311 6312 if (DTU) { 6313 std::vector<DominatorTree::UpdateType> Updates; 6314 Updates.reserve(RemovedSuccs.size()); 6315 for (auto *RemovedSucc : RemovedSuccs) 6316 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6317 DTU->applyUpdates(Updates); 6318 } 6319 6320 if (IBI->getNumDestinations() == 0) { 6321 // If the indirectbr has no successors, change it to unreachable. 6322 new UnreachableInst(IBI->getContext(), IBI); 6323 EraseTerminatorAndDCECond(IBI); 6324 return true; 6325 } 6326 6327 if (IBI->getNumDestinations() == 1) { 6328 // If the indirectbr has one successor, change it to a direct branch. 6329 BranchInst::Create(IBI->getDestination(0), IBI); 6330 EraseTerminatorAndDCECond(IBI); 6331 return true; 6332 } 6333 6334 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6335 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6336 return requestResimplify(); 6337 } 6338 return Changed; 6339 } 6340 6341 /// Given an block with only a single landing pad and a unconditional branch 6342 /// try to find another basic block which this one can be merged with. This 6343 /// handles cases where we have multiple invokes with unique landing pads, but 6344 /// a shared handler. 6345 /// 6346 /// We specifically choose to not worry about merging non-empty blocks 6347 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6348 /// practice, the optimizer produces empty landing pad blocks quite frequently 6349 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6350 /// sinking in this file) 6351 /// 6352 /// This is primarily a code size optimization. We need to avoid performing 6353 /// any transform which might inhibit optimization (such as our ability to 6354 /// specialize a particular handler via tail commoning). We do this by not 6355 /// merging any blocks which require us to introduce a phi. Since the same 6356 /// values are flowing through both blocks, we don't lose any ability to 6357 /// specialize. If anything, we make such specialization more likely. 6358 /// 6359 /// TODO - This transformation could remove entries from a phi in the target 6360 /// block when the inputs in the phi are the same for the two blocks being 6361 /// merged. In some cases, this could result in removal of the PHI entirely. 6362 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6363 BasicBlock *BB, DomTreeUpdater *DTU) { 6364 auto Succ = BB->getUniqueSuccessor(); 6365 assert(Succ); 6366 // If there's a phi in the successor block, we'd likely have to introduce 6367 // a phi into the merged landing pad block. 6368 if (isa<PHINode>(*Succ->begin())) 6369 return false; 6370 6371 for (BasicBlock *OtherPred : predecessors(Succ)) { 6372 if (BB == OtherPred) 6373 continue; 6374 BasicBlock::iterator I = OtherPred->begin(); 6375 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6376 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6377 continue; 6378 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6379 ; 6380 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6381 if (!BI2 || !BI2->isIdenticalTo(BI)) 6382 continue; 6383 6384 std::vector<DominatorTree::UpdateType> Updates; 6385 6386 // We've found an identical block. Update our predecessors to take that 6387 // path instead and make ourselves dead. 6388 SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 6389 for (BasicBlock *Pred : Preds) { 6390 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6391 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6392 "unexpected successor"); 6393 II->setUnwindDest(OtherPred); 6394 if (DTU) { 6395 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6396 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6397 } 6398 } 6399 6400 // The debug info in OtherPred doesn't cover the merged control flow that 6401 // used to go through BB. We need to delete it or update it. 6402 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6403 Instruction &Inst = *I; 6404 I++; 6405 if (isa<DbgInfoIntrinsic>(Inst)) 6406 Inst.eraseFromParent(); 6407 } 6408 6409 SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB)); 6410 for (BasicBlock *Succ : Succs) { 6411 Succ->removePredecessor(BB); 6412 if (DTU) 6413 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6414 } 6415 6416 IRBuilder<> Builder(BI); 6417 Builder.CreateUnreachable(); 6418 BI->eraseFromParent(); 6419 if (DTU) 6420 DTU->applyUpdates(Updates); 6421 return true; 6422 } 6423 return false; 6424 } 6425 6426 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6427 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6428 : simplifyCondBranch(Branch, Builder); 6429 } 6430 6431 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6432 IRBuilder<> &Builder) { 6433 BasicBlock *BB = BI->getParent(); 6434 BasicBlock *Succ = BI->getSuccessor(0); 6435 6436 // If the Terminator is the only non-phi instruction, simplify the block. 6437 // If LoopHeader is provided, check if the block or its successor is a loop 6438 // header. (This is for early invocations before loop simplify and 6439 // vectorization to keep canonical loop forms for nested loops. These blocks 6440 // can be eliminated when the pass is invoked later in the back-end.) 6441 // Note that if BB has only one predecessor then we do not introduce new 6442 // backedge, so we can eliminate BB. 6443 bool NeedCanonicalLoop = 6444 Options.NeedCanonicalLoop && 6445 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6446 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6447 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6448 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6449 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6450 return true; 6451 6452 // If the only instruction in the block is a seteq/setne comparison against a 6453 // constant, try to simplify the block. 6454 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6455 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6456 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6457 ; 6458 if (I->isTerminator() && 6459 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6460 return true; 6461 } 6462 6463 // See if we can merge an empty landing pad block with another which is 6464 // equivalent. 6465 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6466 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6467 ; 6468 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6469 return true; 6470 } 6471 6472 // If this basic block is ONLY a compare and a branch, and if a predecessor 6473 // branches to us and our successor, fold the comparison into the 6474 // predecessor and use logical operations to update the incoming value 6475 // for PHI nodes in common successor. 6476 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6477 Options.BonusInstThreshold)) 6478 return requestResimplify(); 6479 return false; 6480 } 6481 6482 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6483 BasicBlock *PredPred = nullptr; 6484 for (auto *P : predecessors(BB)) { 6485 BasicBlock *PPred = P->getSinglePredecessor(); 6486 if (!PPred || (PredPred && PredPred != PPred)) 6487 return nullptr; 6488 PredPred = PPred; 6489 } 6490 return PredPred; 6491 } 6492 6493 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6494 BasicBlock *BB = BI->getParent(); 6495 if (!Options.SimplifyCondBranch) 6496 return false; 6497 6498 // Conditional branch 6499 if (isValueEqualityComparison(BI)) { 6500 // If we only have one predecessor, and if it is a branch on this value, 6501 // see if that predecessor totally determines the outcome of this 6502 // switch. 6503 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6504 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6505 return requestResimplify(); 6506 6507 // This block must be empty, except for the setcond inst, if it exists. 6508 // Ignore dbg and pseudo intrinsics. 6509 auto I = BB->instructionsWithoutDebug(true).begin(); 6510 if (&*I == BI) { 6511 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6512 return requestResimplify(); 6513 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6514 ++I; 6515 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6516 return requestResimplify(); 6517 } 6518 } 6519 6520 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6521 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6522 return true; 6523 6524 // If this basic block has dominating predecessor blocks and the dominating 6525 // blocks' conditions imply BI's condition, we know the direction of BI. 6526 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6527 if (Imp) { 6528 // Turn this into a branch on constant. 6529 auto *OldCond = BI->getCondition(); 6530 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6531 : ConstantInt::getFalse(BB->getContext()); 6532 BI->setCondition(TorF); 6533 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6534 return requestResimplify(); 6535 } 6536 6537 // If this basic block is ONLY a compare and a branch, and if a predecessor 6538 // branches to us and one of our successors, fold the comparison into the 6539 // predecessor and use logical operations to pick the right destination. 6540 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6541 Options.BonusInstThreshold)) 6542 return requestResimplify(); 6543 6544 // We have a conditional branch to two blocks that are only reachable 6545 // from BI. We know that the condbr dominates the two blocks, so see if 6546 // there is any identical code in the "then" and "else" blocks. If so, we 6547 // can hoist it up to the branching block. 6548 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6549 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6550 if (HoistCommon && 6551 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6552 return requestResimplify(); 6553 } else { 6554 // If Successor #1 has multiple preds, we may be able to conditionally 6555 // execute Successor #0 if it branches to Successor #1. 6556 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6557 if (Succ0TI->getNumSuccessors() == 1 && 6558 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6559 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6560 return requestResimplify(); 6561 } 6562 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6563 // If Successor #0 has multiple preds, we may be able to conditionally 6564 // execute Successor #1 if it branches to Successor #0. 6565 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6566 if (Succ1TI->getNumSuccessors() == 1 && 6567 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6568 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6569 return requestResimplify(); 6570 } 6571 6572 // If this is a branch on a phi node in the current block, thread control 6573 // through this block if any PHI node entries are constants. 6574 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6575 if (PN->getParent() == BI->getParent()) 6576 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6577 return requestResimplify(); 6578 6579 // Scan predecessor blocks for conditional branches. 6580 for (BasicBlock *Pred : predecessors(BB)) 6581 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6582 if (PBI != BI && PBI->isConditional()) 6583 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6584 return requestResimplify(); 6585 6586 // Look for diamond patterns. 6587 if (MergeCondStores) 6588 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6589 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6590 if (PBI != BI && PBI->isConditional()) 6591 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6592 return requestResimplify(); 6593 6594 return false; 6595 } 6596 6597 /// Check if passing a value to an instruction will cause undefined behavior. 6598 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6599 Constant *C = dyn_cast<Constant>(V); 6600 if (!C) 6601 return false; 6602 6603 if (I->use_empty()) 6604 return false; 6605 6606 if (C->isNullValue() || isa<UndefValue>(C)) { 6607 // Only look at the first use, avoid hurting compile time with long uselists 6608 User *Use = *I->user_begin(); 6609 6610 // Now make sure that there are no instructions in between that can alter 6611 // control flow (eg. calls) 6612 for (BasicBlock::iterator 6613 i = ++BasicBlock::iterator(I), 6614 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6615 i != UI; ++i) { 6616 if (i == I->getParent()->end()) 6617 return false; 6618 if (!isGuaranteedToTransferExecutionToSuccessor(&*i)) 6619 return false; 6620 } 6621 6622 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6623 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6624 if (GEP->getPointerOperand() == I) { 6625 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6626 PtrValueMayBeModified = true; 6627 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6628 } 6629 6630 // Look through bitcasts. 6631 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6632 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6633 6634 // Load from null is undefined. 6635 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6636 if (!LI->isVolatile()) 6637 return !NullPointerIsDefined(LI->getFunction(), 6638 LI->getPointerAddressSpace()); 6639 6640 // Store to null is undefined. 6641 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6642 if (!SI->isVolatile()) 6643 return (!NullPointerIsDefined(SI->getFunction(), 6644 SI->getPointerAddressSpace())) && 6645 SI->getPointerOperand() == I; 6646 6647 if (auto *CB = dyn_cast<CallBase>(Use)) { 6648 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6649 return false; 6650 // A call to null is undefined. 6651 if (CB->getCalledOperand() == I) 6652 return true; 6653 6654 if (C->isNullValue()) { 6655 for (const llvm::Use &Arg : CB->args()) 6656 if (Arg == I) { 6657 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6658 if (CB->isPassingUndefUB(ArgIdx) && 6659 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6660 // Passing null to a nonnnull+noundef argument is undefined. 6661 return !PtrValueMayBeModified; 6662 } 6663 } 6664 } else if (isa<UndefValue>(C)) { 6665 // Passing undef to a noundef argument is undefined. 6666 for (const llvm::Use &Arg : CB->args()) 6667 if (Arg == I) { 6668 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6669 if (CB->isPassingUndefUB(ArgIdx)) { 6670 // Passing undef to a noundef argument is undefined. 6671 return true; 6672 } 6673 } 6674 } 6675 } 6676 } 6677 return false; 6678 } 6679 6680 /// If BB has an incoming value that will always trigger undefined behavior 6681 /// (eg. null pointer dereference), remove the branch leading here. 6682 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6683 DomTreeUpdater *DTU) { 6684 for (PHINode &PHI : BB->phis()) 6685 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6686 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6687 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6688 Instruction *T = Predecessor->getTerminator(); 6689 IRBuilder<> Builder(T); 6690 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6691 BB->removePredecessor(Predecessor); 6692 // Turn uncoditional branches into unreachables and remove the dead 6693 // destination from conditional branches. 6694 if (BI->isUnconditional()) 6695 Builder.CreateUnreachable(); 6696 else 6697 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6698 : BI->getSuccessor(0)); 6699 BI->eraseFromParent(); 6700 if (DTU) 6701 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6702 return true; 6703 } 6704 // TODO: SwitchInst. 6705 } 6706 6707 return false; 6708 } 6709 6710 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6711 bool Changed = false; 6712 6713 assert(BB && BB->getParent() && "Block not embedded in function!"); 6714 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6715 6716 // Remove basic blocks that have no predecessors (except the entry block)... 6717 // or that just have themself as a predecessor. These are unreachable. 6718 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6719 BB->getSinglePredecessor() == BB) { 6720 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6721 DeleteDeadBlock(BB, DTU); 6722 return true; 6723 } 6724 6725 // Check to see if we can constant propagate this terminator instruction 6726 // away... 6727 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6728 /*TLI=*/nullptr, DTU); 6729 6730 // Check for and eliminate duplicate PHI nodes in this block. 6731 Changed |= EliminateDuplicatePHINodes(BB); 6732 6733 // Check for and remove branches that will always cause undefined behavior. 6734 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6735 6736 // Merge basic blocks into their predecessor if there is only one distinct 6737 // pred, and if there is only one distinct successor of the predecessor, and 6738 // if there are no PHI nodes. 6739 if (MergeBlockIntoPredecessor(BB, DTU)) 6740 return true; 6741 6742 if (SinkCommon && Options.SinkCommonInsts) 6743 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6744 6745 IRBuilder<> Builder(BB); 6746 6747 if (Options.FoldTwoEntryPHINode) { 6748 // If there is a trivial two-entry PHI node in this basic block, and we can 6749 // eliminate it, do so now. 6750 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6751 if (PN->getNumIncomingValues() == 2) 6752 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6753 } 6754 6755 Instruction *Terminator = BB->getTerminator(); 6756 Builder.SetInsertPoint(Terminator); 6757 switch (Terminator->getOpcode()) { 6758 case Instruction::Br: 6759 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6760 break; 6761 case Instruction::Ret: 6762 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6763 break; 6764 case Instruction::Resume: 6765 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6766 break; 6767 case Instruction::CleanupRet: 6768 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6769 break; 6770 case Instruction::Switch: 6771 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6772 break; 6773 case Instruction::Unreachable: 6774 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6775 break; 6776 case Instruction::IndirectBr: 6777 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6778 break; 6779 } 6780 6781 return Changed; 6782 } 6783 6784 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6785 bool Changed = simplifyOnceImpl(BB); 6786 6787 return Changed; 6788 } 6789 6790 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6791 bool Changed = false; 6792 6793 // Repeated simplify BB as long as resimplification is requested. 6794 do { 6795 Resimplify = false; 6796 6797 // Perform one round of simplifcation. Resimplify flag will be set if 6798 // another iteration is requested. 6799 Changed |= simplifyOnce(BB); 6800 } while (Resimplify); 6801 6802 return Changed; 6803 } 6804 6805 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6806 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6807 ArrayRef<WeakVH> LoopHeaders) { 6808 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6809 Options) 6810 .run(BB); 6811 } 6812