1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/ValueHandle.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/KnownBits.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ValueMapper.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <climits>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <set>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 using namespace PatternMatch;
90 
91 #define DEBUG_TYPE "simplifycfg"
92 
93 cl::opt<bool> llvm::RequireAndPreserveDomTree(
94     "simplifycfg-require-and-preserve-domtree", cl::Hidden,
95 
96     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
97              "into preserving DomTree,"));
98 
99 // Chosen as 2 so as to be cheap, but still to have enough power to fold
100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
101 // To catch this, we need to fold a compare and a select, hence '2' being the
102 // minimum reasonable default.
103 static cl::opt<unsigned> PHINodeFoldingThreshold(
104     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
105     cl::desc(
106         "Control the amount of phi node folding to perform (default = 2)"));
107 
108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
109     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
110     cl::desc("Control the maximal total instruction cost that we are willing "
111              "to speculatively execute to fold a 2-entry PHI node into a "
112              "select (default = 4)"));
113 
114 static cl::opt<bool>
115     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
116                 cl::desc("Hoist common instructions up to the parent block"));
117 
118 static cl::opt<bool>
119     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
120                cl::desc("Sink common instructions down to the end block"));
121 
122 static cl::opt<bool> HoistCondStores(
123     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
124     cl::desc("Hoist conditional stores if an unconditional store precedes"));
125 
126 static cl::opt<bool> MergeCondStores(
127     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
128     cl::desc("Hoist conditional stores even if an unconditional store does not "
129              "precede - hoist multiple conditional stores into a single "
130              "predicated store"));
131 
132 static cl::opt<bool> MergeCondStoresAggressively(
133     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
134     cl::desc("When merging conditional stores, do so even if the resultant "
135              "basic blocks are unlikely to be if-converted as a result"));
136 
137 static cl::opt<bool> SpeculateOneExpensiveInst(
138     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
139     cl::desc("Allow exactly one expensive instruction to be speculatively "
140              "executed"));
141 
142 static cl::opt<unsigned> MaxSpeculationDepth(
143     "max-speculation-depth", cl::Hidden, cl::init(10),
144     cl::desc("Limit maximum recursion depth when calculating costs of "
145              "speculatively executed instructions"));
146 
147 static cl::opt<int>
148     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
149                       cl::init(10),
150                       cl::desc("Max size of a block which is still considered "
151                                "small enough to thread through"));
152 
153 // Two is chosen to allow one negation and a logical combine.
154 static cl::opt<unsigned>
155     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
156                         cl::init(2),
157                         cl::desc("Maximum cost of combining conditions when "
158                                  "folding branches"));
159 
160 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
161     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
162     cl::init(2),
163     cl::desc("Multiplier to apply to threshold when determining whether or not "
164              "to fold branch to common destination when vector operations are "
165              "present"));
166 
167 static cl::opt<bool> EnableMergeCompatibleInvokes(
168     "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
169     cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
170 
171 static cl::opt<unsigned> MaxSwitchCasesPerResult(
172     "max-switch-cases-per-result", cl::Hidden, cl::init(16),
173     cl::desc("Limit cases to analyze when converting a switch to select"));
174 
175 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
176 STATISTIC(NumLinearMaps,
177           "Number of switch instructions turned into linear mapping");
178 STATISTIC(NumLookupTables,
179           "Number of switch instructions turned into lookup tables");
180 STATISTIC(
181     NumLookupTablesHoles,
182     "Number of switch instructions turned into lookup tables (holes checked)");
183 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
184 STATISTIC(NumFoldValueComparisonIntoPredecessors,
185           "Number of value comparisons folded into predecessor basic blocks");
186 STATISTIC(NumFoldBranchToCommonDest,
187           "Number of branches folded into predecessor basic block");
188 STATISTIC(
189     NumHoistCommonCode,
190     "Number of common instruction 'blocks' hoisted up to the begin block");
191 STATISTIC(NumHoistCommonInstrs,
192           "Number of common instructions hoisted up to the begin block");
193 STATISTIC(NumSinkCommonCode,
194           "Number of common instruction 'blocks' sunk down to the end block");
195 STATISTIC(NumSinkCommonInstrs,
196           "Number of common instructions sunk down to the end block");
197 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
198 STATISTIC(NumInvokes,
199           "Number of invokes with empty resume blocks simplified into calls");
200 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
201 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
202 
203 namespace {
204 
205 // The first field contains the value that the switch produces when a certain
206 // case group is selected, and the second field is a vector containing the
207 // cases composing the case group.
208 using SwitchCaseResultVectorTy =
209     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
210 
211 // The first field contains the phi node that generates a result of the switch
212 // and the second field contains the value generated for a certain case in the
213 // switch for that PHI.
214 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
215 
216 /// ValueEqualityComparisonCase - Represents a case of a switch.
217 struct ValueEqualityComparisonCase {
218   ConstantInt *Value;
219   BasicBlock *Dest;
220 
221   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
222       : Value(Value), Dest(Dest) {}
223 
224   bool operator<(ValueEqualityComparisonCase RHS) const {
225     // Comparing pointers is ok as we only rely on the order for uniquing.
226     return Value < RHS.Value;
227   }
228 
229   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
230 };
231 
232 class SimplifyCFGOpt {
233   const TargetTransformInfo &TTI;
234   DomTreeUpdater *DTU;
235   const DataLayout &DL;
236   ArrayRef<WeakVH> LoopHeaders;
237   const SimplifyCFGOptions &Options;
238   bool Resimplify;
239 
240   Value *isValueEqualityComparison(Instruction *TI);
241   BasicBlock *GetValueEqualityComparisonCases(
242       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
243   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
244                                                      BasicBlock *Pred,
245                                                      IRBuilder<> &Builder);
246   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
247                                                     Instruction *PTI,
248                                                     IRBuilder<> &Builder);
249   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
250                                            IRBuilder<> &Builder);
251 
252   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
253   bool simplifySingleResume(ResumeInst *RI);
254   bool simplifyCommonResume(ResumeInst *RI);
255   bool simplifyCleanupReturn(CleanupReturnInst *RI);
256   bool simplifyUnreachable(UnreachableInst *UI);
257   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
258   bool simplifyIndirectBr(IndirectBrInst *IBI);
259   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
260   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
261   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
262 
263   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
264                                              IRBuilder<> &Builder);
265 
266   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
267                              bool EqTermsOnly);
268   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
269                               const TargetTransformInfo &TTI);
270   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
271                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
272                                   uint32_t TrueWeight, uint32_t FalseWeight);
273   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
274                                  const DataLayout &DL);
275   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
276   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
277   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
278 
279 public:
280   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
281                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
282                  const SimplifyCFGOptions &Opts)
283       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
284     assert((!DTU || !DTU->hasPostDomTree()) &&
285            "SimplifyCFG is not yet capable of maintaining validity of a "
286            "PostDomTree, so don't ask for it.");
287   }
288 
289   bool simplifyOnce(BasicBlock *BB);
290   bool run(BasicBlock *BB);
291 
292   // Helper to set Resimplify and return change indication.
293   bool requestResimplify() {
294     Resimplify = true;
295     return true;
296   }
297 };
298 
299 } // end anonymous namespace
300 
301 /// Return true if all the PHI nodes in the basic block \p BB
302 /// receive compatible (identical) incoming values when coming from
303 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
304 ///
305 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
306 /// is provided, and *both* of the values are present in the set,
307 /// then they are considered equal.
308 static bool IncomingValuesAreCompatible(
309     BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
310     SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
311   assert(IncomingBlocks.size() == 2 &&
312          "Only for a pair of incoming blocks at the time!");
313 
314   // FIXME: it is okay if one of the incoming values is an `undef` value,
315   //        iff the other incoming value is guaranteed to be a non-poison value.
316   // FIXME: it is okay if one of the incoming values is a `poison` value.
317   return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
318     Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
319     Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
320     if (IV0 == IV1)
321       return true;
322     if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
323         EquivalenceSet->contains(IV1))
324       return true;
325     return false;
326   });
327 }
328 
329 /// Return true if it is safe to merge these two
330 /// terminator instructions together.
331 static bool
332 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
333                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
334   if (SI1 == SI2)
335     return false; // Can't merge with self!
336 
337   // It is not safe to merge these two switch instructions if they have a common
338   // successor, and if that successor has a PHI node, and if *that* PHI node has
339   // conflicting incoming values from the two switch blocks.
340   BasicBlock *SI1BB = SI1->getParent();
341   BasicBlock *SI2BB = SI2->getParent();
342 
343   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
344   bool Fail = false;
345   for (BasicBlock *Succ : successors(SI2BB)) {
346     if (!SI1Succs.count(Succ))
347       continue;
348     if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
349       continue;
350     Fail = true;
351     if (FailBlocks)
352       FailBlocks->insert(Succ);
353     else
354       break;
355   }
356 
357   return !Fail;
358 }
359 
360 /// Update PHI nodes in Succ to indicate that there will now be entries in it
361 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
362 /// will be the same as those coming in from ExistPred, an existing predecessor
363 /// of Succ.
364 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
365                                   BasicBlock *ExistPred,
366                                   MemorySSAUpdater *MSSAU = nullptr) {
367   for (PHINode &PN : Succ->phis())
368     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
369   if (MSSAU)
370     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
371       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
372 }
373 
374 /// Compute an abstract "cost" of speculating the given instruction,
375 /// which is assumed to be safe to speculate. TCC_Free means cheap,
376 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
377 /// expensive.
378 static InstructionCost computeSpeculationCost(const User *I,
379                                               const TargetTransformInfo &TTI) {
380   assert(isSafeToSpeculativelyExecute(I) &&
381          "Instruction is not safe to speculatively execute!");
382   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
383 }
384 
385 /// Check whether this is a potentially trapping constant.
386 static bool canTrap(const Value *V) {
387   if (auto *C = dyn_cast<Constant>(V))
388     return C->canTrap();
389   return false;
390 }
391 
392 /// If we have a merge point of an "if condition" as accepted above,
393 /// return true if the specified value dominates the block.  We
394 /// don't handle the true generality of domination here, just a special case
395 /// which works well enough for us.
396 ///
397 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
398 /// see if V (which must be an instruction) and its recursive operands
399 /// that do not dominate BB have a combined cost lower than Budget and
400 /// are non-trapping.  If both are true, the instruction is inserted into the
401 /// set and true is returned.
402 ///
403 /// The cost for most non-trapping instructions is defined as 1 except for
404 /// Select whose cost is 2.
405 ///
406 /// After this function returns, Cost is increased by the cost of
407 /// V plus its non-dominating operands.  If that cost is greater than
408 /// Budget, false is returned and Cost is undefined.
409 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
410                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
411                                 InstructionCost &Cost,
412                                 InstructionCost Budget,
413                                 const TargetTransformInfo &TTI,
414                                 unsigned Depth = 0) {
415   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
416   // so limit the recursion depth.
417   // TODO: While this recursion limit does prevent pathological behavior, it
418   // would be better to track visited instructions to avoid cycles.
419   if (Depth == MaxSpeculationDepth)
420     return false;
421 
422   Instruction *I = dyn_cast<Instruction>(V);
423   if (!I) {
424     // Non-instructions all dominate instructions, but not all constantexprs
425     // can be executed unconditionally.
426     return !canTrap(V);
427   }
428   BasicBlock *PBB = I->getParent();
429 
430   // We don't want to allow weird loops that might have the "if condition" in
431   // the bottom of this block.
432   if (PBB == BB)
433     return false;
434 
435   // If this instruction is defined in a block that contains an unconditional
436   // branch to BB, then it must be in the 'conditional' part of the "if
437   // statement".  If not, it definitely dominates the region.
438   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
439   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
440     return true;
441 
442   // If we have seen this instruction before, don't count it again.
443   if (AggressiveInsts.count(I))
444     return true;
445 
446   // Okay, it looks like the instruction IS in the "condition".  Check to
447   // see if it's a cheap instruction to unconditionally compute, and if it
448   // only uses stuff defined outside of the condition.  If so, hoist it out.
449   if (!isSafeToSpeculativelyExecute(I))
450     return false;
451 
452   Cost += computeSpeculationCost(I, TTI);
453 
454   // Allow exactly one instruction to be speculated regardless of its cost
455   // (as long as it is safe to do so).
456   // This is intended to flatten the CFG even if the instruction is a division
457   // or other expensive operation. The speculation of an expensive instruction
458   // is expected to be undone in CodeGenPrepare if the speculation has not
459   // enabled further IR optimizations.
460   if (Cost > Budget &&
461       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
462        !Cost.isValid()))
463     return false;
464 
465   // Okay, we can only really hoist these out if their operands do
466   // not take us over the cost threshold.
467   for (Use &Op : I->operands())
468     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
469                              Depth + 1))
470       return false;
471   // Okay, it's safe to do this!  Remember this instruction.
472   AggressiveInsts.insert(I);
473   return true;
474 }
475 
476 /// Extract ConstantInt from value, looking through IntToPtr
477 /// and PointerNullValue. Return NULL if value is not a constant int.
478 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
479   // Normal constant int.
480   ConstantInt *CI = dyn_cast<ConstantInt>(V);
481   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
482     return CI;
483 
484   // This is some kind of pointer constant. Turn it into a pointer-sized
485   // ConstantInt if possible.
486   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
487 
488   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
489   if (isa<ConstantPointerNull>(V))
490     return ConstantInt::get(PtrTy, 0);
491 
492   // IntToPtr const int.
493   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
494     if (CE->getOpcode() == Instruction::IntToPtr)
495       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
496         // The constant is very likely to have the right type already.
497         if (CI->getType() == PtrTy)
498           return CI;
499         else
500           return cast<ConstantInt>(
501               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
502       }
503   return nullptr;
504 }
505 
506 namespace {
507 
508 /// Given a chain of or (||) or and (&&) comparison of a value against a
509 /// constant, this will try to recover the information required for a switch
510 /// structure.
511 /// It will depth-first traverse the chain of comparison, seeking for patterns
512 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
513 /// representing the different cases for the switch.
514 /// Note that if the chain is composed of '||' it will build the set of elements
515 /// that matches the comparisons (i.e. any of this value validate the chain)
516 /// while for a chain of '&&' it will build the set elements that make the test
517 /// fail.
518 struct ConstantComparesGatherer {
519   const DataLayout &DL;
520 
521   /// Value found for the switch comparison
522   Value *CompValue = nullptr;
523 
524   /// Extra clause to be checked before the switch
525   Value *Extra = nullptr;
526 
527   /// Set of integers to match in switch
528   SmallVector<ConstantInt *, 8> Vals;
529 
530   /// Number of comparisons matched in the and/or chain
531   unsigned UsedICmps = 0;
532 
533   /// Construct and compute the result for the comparison instruction Cond
534   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
535     gather(Cond);
536   }
537 
538   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
539   ConstantComparesGatherer &
540   operator=(const ConstantComparesGatherer &) = delete;
541 
542 private:
543   /// Try to set the current value used for the comparison, it succeeds only if
544   /// it wasn't set before or if the new value is the same as the old one
545   bool setValueOnce(Value *NewVal) {
546     if (CompValue && CompValue != NewVal)
547       return false;
548     CompValue = NewVal;
549     return (CompValue != nullptr);
550   }
551 
552   /// Try to match Instruction "I" as a comparison against a constant and
553   /// populates the array Vals with the set of values that match (or do not
554   /// match depending on isEQ).
555   /// Return false on failure. On success, the Value the comparison matched
556   /// against is placed in CompValue.
557   /// If CompValue is already set, the function is expected to fail if a match
558   /// is found but the value compared to is different.
559   bool matchInstruction(Instruction *I, bool isEQ) {
560     // If this is an icmp against a constant, handle this as one of the cases.
561     ICmpInst *ICI;
562     ConstantInt *C;
563     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
564           (C = GetConstantInt(I->getOperand(1), DL)))) {
565       return false;
566     }
567 
568     Value *RHSVal;
569     const APInt *RHSC;
570 
571     // Pattern match a special case
572     // (x & ~2^z) == y --> x == y || x == y|2^z
573     // This undoes a transformation done by instcombine to fuse 2 compares.
574     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
575       // It's a little bit hard to see why the following transformations are
576       // correct. Here is a CVC3 program to verify them for 64-bit values:
577 
578       /*
579          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
580          x    : BITVECTOR(64);
581          y    : BITVECTOR(64);
582          z    : BITVECTOR(64);
583          mask : BITVECTOR(64) = BVSHL(ONE, z);
584          QUERY( (y & ~mask = y) =>
585                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
586          );
587          QUERY( (y |  mask = y) =>
588                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
589          );
590       */
591 
592       // Please note that each pattern must be a dual implication (<--> or
593       // iff). One directional implication can create spurious matches. If the
594       // implication is only one-way, an unsatisfiable condition on the left
595       // side can imply a satisfiable condition on the right side. Dual
596       // implication ensures that satisfiable conditions are transformed to
597       // other satisfiable conditions and unsatisfiable conditions are
598       // transformed to other unsatisfiable conditions.
599 
600       // Here is a concrete example of a unsatisfiable condition on the left
601       // implying a satisfiable condition on the right:
602       //
603       // mask = (1 << z)
604       // (x & ~mask) == y  --> (x == y || x == (y | mask))
605       //
606       // Substituting y = 3, z = 0 yields:
607       // (x & -2) == 3 --> (x == 3 || x == 2)
608 
609       // Pattern match a special case:
610       /*
611         QUERY( (y & ~mask = y) =>
612                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
613         );
614       */
615       if (match(ICI->getOperand(0),
616                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
617         APInt Mask = ~*RHSC;
618         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
619           // If we already have a value for the switch, it has to match!
620           if (!setValueOnce(RHSVal))
621             return false;
622 
623           Vals.push_back(C);
624           Vals.push_back(
625               ConstantInt::get(C->getContext(),
626                                C->getValue() | Mask));
627           UsedICmps++;
628           return true;
629         }
630       }
631 
632       // Pattern match a special case:
633       /*
634         QUERY( (y |  mask = y) =>
635                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
636         );
637       */
638       if (match(ICI->getOperand(0),
639                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
640         APInt Mask = *RHSC;
641         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
642           // If we already have a value for the switch, it has to match!
643           if (!setValueOnce(RHSVal))
644             return false;
645 
646           Vals.push_back(C);
647           Vals.push_back(ConstantInt::get(C->getContext(),
648                                           C->getValue() & ~Mask));
649           UsedICmps++;
650           return true;
651         }
652       }
653 
654       // If we already have a value for the switch, it has to match!
655       if (!setValueOnce(ICI->getOperand(0)))
656         return false;
657 
658       UsedICmps++;
659       Vals.push_back(C);
660       return ICI->getOperand(0);
661     }
662 
663     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
664     ConstantRange Span =
665         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
666 
667     // Shift the range if the compare is fed by an add. This is the range
668     // compare idiom as emitted by instcombine.
669     Value *CandidateVal = I->getOperand(0);
670     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
671       Span = Span.subtract(*RHSC);
672       CandidateVal = RHSVal;
673     }
674 
675     // If this is an and/!= check, then we are looking to build the set of
676     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
677     // x != 0 && x != 1.
678     if (!isEQ)
679       Span = Span.inverse();
680 
681     // If there are a ton of values, we don't want to make a ginormous switch.
682     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
683       return false;
684     }
685 
686     // If we already have a value for the switch, it has to match!
687     if (!setValueOnce(CandidateVal))
688       return false;
689 
690     // Add all values from the range to the set
691     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
692       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
693 
694     UsedICmps++;
695     return true;
696   }
697 
698   /// Given a potentially 'or'd or 'and'd together collection of icmp
699   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
700   /// the value being compared, and stick the list constants into the Vals
701   /// vector.
702   /// One "Extra" case is allowed to differ from the other.
703   void gather(Value *V) {
704     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
705 
706     // Keep a stack (SmallVector for efficiency) for depth-first traversal
707     SmallVector<Value *, 8> DFT;
708     SmallPtrSet<Value *, 8> Visited;
709 
710     // Initialize
711     Visited.insert(V);
712     DFT.push_back(V);
713 
714     while (!DFT.empty()) {
715       V = DFT.pop_back_val();
716 
717       if (Instruction *I = dyn_cast<Instruction>(V)) {
718         // If it is a || (or && depending on isEQ), process the operands.
719         Value *Op0, *Op1;
720         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
721                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
722           if (Visited.insert(Op1).second)
723             DFT.push_back(Op1);
724           if (Visited.insert(Op0).second)
725             DFT.push_back(Op0);
726 
727           continue;
728         }
729 
730         // Try to match the current instruction
731         if (matchInstruction(I, isEQ))
732           // Match succeed, continue the loop
733           continue;
734       }
735 
736       // One element of the sequence of || (or &&) could not be match as a
737       // comparison against the same value as the others.
738       // We allow only one "Extra" case to be checked before the switch
739       if (!Extra) {
740         Extra = V;
741         continue;
742       }
743       // Failed to parse a proper sequence, abort now
744       CompValue = nullptr;
745       break;
746     }
747   }
748 };
749 
750 } // end anonymous namespace
751 
752 static void EraseTerminatorAndDCECond(Instruction *TI,
753                                       MemorySSAUpdater *MSSAU = nullptr) {
754   Instruction *Cond = nullptr;
755   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
756     Cond = dyn_cast<Instruction>(SI->getCondition());
757   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
758     if (BI->isConditional())
759       Cond = dyn_cast<Instruction>(BI->getCondition());
760   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
761     Cond = dyn_cast<Instruction>(IBI->getAddress());
762   }
763 
764   TI->eraseFromParent();
765   if (Cond)
766     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
767 }
768 
769 /// Return true if the specified terminator checks
770 /// to see if a value is equal to constant integer value.
771 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
772   Value *CV = nullptr;
773   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
774     // Do not permit merging of large switch instructions into their
775     // predecessors unless there is only one predecessor.
776     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
777       CV = SI->getCondition();
778   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
779     if (BI->isConditional() && BI->getCondition()->hasOneUse())
780       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
781         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
782           CV = ICI->getOperand(0);
783       }
784 
785   // Unwrap any lossless ptrtoint cast.
786   if (CV) {
787     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
788       Value *Ptr = PTII->getPointerOperand();
789       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
790         CV = Ptr;
791     }
792   }
793   return CV;
794 }
795 
796 /// Given a value comparison instruction,
797 /// decode all of the 'cases' that it represents and return the 'default' block.
798 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
799     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
800   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
801     Cases.reserve(SI->getNumCases());
802     for (auto Case : SI->cases())
803       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
804                                                   Case.getCaseSuccessor()));
805     return SI->getDefaultDest();
806   }
807 
808   BranchInst *BI = cast<BranchInst>(TI);
809   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
810   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
811   Cases.push_back(ValueEqualityComparisonCase(
812       GetConstantInt(ICI->getOperand(1), DL), Succ));
813   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
814 }
815 
816 /// Given a vector of bb/value pairs, remove any entries
817 /// in the list that match the specified block.
818 static void
819 EliminateBlockCases(BasicBlock *BB,
820                     std::vector<ValueEqualityComparisonCase> &Cases) {
821   llvm::erase_value(Cases, BB);
822 }
823 
824 /// Return true if there are any keys in C1 that exist in C2 as well.
825 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
826                           std::vector<ValueEqualityComparisonCase> &C2) {
827   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
828 
829   // Make V1 be smaller than V2.
830   if (V1->size() > V2->size())
831     std::swap(V1, V2);
832 
833   if (V1->empty())
834     return false;
835   if (V1->size() == 1) {
836     // Just scan V2.
837     ConstantInt *TheVal = (*V1)[0].Value;
838     for (unsigned i = 0, e = V2->size(); i != e; ++i)
839       if (TheVal == (*V2)[i].Value)
840         return true;
841   }
842 
843   // Otherwise, just sort both lists and compare element by element.
844   array_pod_sort(V1->begin(), V1->end());
845   array_pod_sort(V2->begin(), V2->end());
846   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
847   while (i1 != e1 && i2 != e2) {
848     if ((*V1)[i1].Value == (*V2)[i2].Value)
849       return true;
850     if ((*V1)[i1].Value < (*V2)[i2].Value)
851       ++i1;
852     else
853       ++i2;
854   }
855   return false;
856 }
857 
858 // Set branch weights on SwitchInst. This sets the metadata if there is at
859 // least one non-zero weight.
860 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
861   // Check that there is at least one non-zero weight. Otherwise, pass
862   // nullptr to setMetadata which will erase the existing metadata.
863   MDNode *N = nullptr;
864   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
865     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
866   SI->setMetadata(LLVMContext::MD_prof, N);
867 }
868 
869 // Similar to the above, but for branch and select instructions that take
870 // exactly 2 weights.
871 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
872                              uint32_t FalseWeight) {
873   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
874   // Check that there is at least one non-zero weight. Otherwise, pass
875   // nullptr to setMetadata which will erase the existing metadata.
876   MDNode *N = nullptr;
877   if (TrueWeight || FalseWeight)
878     N = MDBuilder(I->getParent()->getContext())
879             .createBranchWeights(TrueWeight, FalseWeight);
880   I->setMetadata(LLVMContext::MD_prof, N);
881 }
882 
883 /// If TI is known to be a terminator instruction and its block is known to
884 /// only have a single predecessor block, check to see if that predecessor is
885 /// also a value comparison with the same value, and if that comparison
886 /// determines the outcome of this comparison. If so, simplify TI. This does a
887 /// very limited form of jump threading.
888 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
889     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
890   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
891   if (!PredVal)
892     return false; // Not a value comparison in predecessor.
893 
894   Value *ThisVal = isValueEqualityComparison(TI);
895   assert(ThisVal && "This isn't a value comparison!!");
896   if (ThisVal != PredVal)
897     return false; // Different predicates.
898 
899   // TODO: Preserve branch weight metadata, similarly to how
900   // FoldValueComparisonIntoPredecessors preserves it.
901 
902   // Find out information about when control will move from Pred to TI's block.
903   std::vector<ValueEqualityComparisonCase> PredCases;
904   BasicBlock *PredDef =
905       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
906   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
907 
908   // Find information about how control leaves this block.
909   std::vector<ValueEqualityComparisonCase> ThisCases;
910   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
911   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
912 
913   // If TI's block is the default block from Pred's comparison, potentially
914   // simplify TI based on this knowledge.
915   if (PredDef == TI->getParent()) {
916     // If we are here, we know that the value is none of those cases listed in
917     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
918     // can simplify TI.
919     if (!ValuesOverlap(PredCases, ThisCases))
920       return false;
921 
922     if (isa<BranchInst>(TI)) {
923       // Okay, one of the successors of this condbr is dead.  Convert it to a
924       // uncond br.
925       assert(ThisCases.size() == 1 && "Branch can only have one case!");
926       // Insert the new branch.
927       Instruction *NI = Builder.CreateBr(ThisDef);
928       (void)NI;
929 
930       // Remove PHI node entries for the dead edge.
931       ThisCases[0].Dest->removePredecessor(PredDef);
932 
933       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
934                         << "Through successor TI: " << *TI << "Leaving: " << *NI
935                         << "\n");
936 
937       EraseTerminatorAndDCECond(TI);
938 
939       if (DTU)
940         DTU->applyUpdates(
941             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
942 
943       return true;
944     }
945 
946     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
947     // Okay, TI has cases that are statically dead, prune them away.
948     SmallPtrSet<Constant *, 16> DeadCases;
949     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
950       DeadCases.insert(PredCases[i].Value);
951 
952     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
953                       << "Through successor TI: " << *TI);
954 
955     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
956     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
957       --i;
958       auto *Successor = i->getCaseSuccessor();
959       if (DTU)
960         ++NumPerSuccessorCases[Successor];
961       if (DeadCases.count(i->getCaseValue())) {
962         Successor->removePredecessor(PredDef);
963         SI.removeCase(i);
964         if (DTU)
965           --NumPerSuccessorCases[Successor];
966       }
967     }
968 
969     if (DTU) {
970       std::vector<DominatorTree::UpdateType> Updates;
971       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
972         if (I.second == 0)
973           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
974       DTU->applyUpdates(Updates);
975     }
976 
977     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
978     return true;
979   }
980 
981   // Otherwise, TI's block must correspond to some matched value.  Find out
982   // which value (or set of values) this is.
983   ConstantInt *TIV = nullptr;
984   BasicBlock *TIBB = TI->getParent();
985   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
986     if (PredCases[i].Dest == TIBB) {
987       if (TIV)
988         return false; // Cannot handle multiple values coming to this block.
989       TIV = PredCases[i].Value;
990     }
991   assert(TIV && "No edge from pred to succ?");
992 
993   // Okay, we found the one constant that our value can be if we get into TI's
994   // BB.  Find out which successor will unconditionally be branched to.
995   BasicBlock *TheRealDest = nullptr;
996   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
997     if (ThisCases[i].Value == TIV) {
998       TheRealDest = ThisCases[i].Dest;
999       break;
1000     }
1001 
1002   // If not handled by any explicit cases, it is handled by the default case.
1003   if (!TheRealDest)
1004     TheRealDest = ThisDef;
1005 
1006   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1007 
1008   // Remove PHI node entries for dead edges.
1009   BasicBlock *CheckEdge = TheRealDest;
1010   for (BasicBlock *Succ : successors(TIBB))
1011     if (Succ != CheckEdge) {
1012       if (Succ != TheRealDest)
1013         RemovedSuccs.insert(Succ);
1014       Succ->removePredecessor(TIBB);
1015     } else
1016       CheckEdge = nullptr;
1017 
1018   // Insert the new branch.
1019   Instruction *NI = Builder.CreateBr(TheRealDest);
1020   (void)NI;
1021 
1022   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1023                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1024                     << "\n");
1025 
1026   EraseTerminatorAndDCECond(TI);
1027   if (DTU) {
1028     SmallVector<DominatorTree::UpdateType, 2> Updates;
1029     Updates.reserve(RemovedSuccs.size());
1030     for (auto *RemovedSucc : RemovedSuccs)
1031       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1032     DTU->applyUpdates(Updates);
1033   }
1034   return true;
1035 }
1036 
1037 namespace {
1038 
1039 /// This class implements a stable ordering of constant
1040 /// integers that does not depend on their address.  This is important for
1041 /// applications that sort ConstantInt's to ensure uniqueness.
1042 struct ConstantIntOrdering {
1043   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1044     return LHS->getValue().ult(RHS->getValue());
1045   }
1046 };
1047 
1048 } // end anonymous namespace
1049 
1050 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1051                                     ConstantInt *const *P2) {
1052   const ConstantInt *LHS = *P1;
1053   const ConstantInt *RHS = *P2;
1054   if (LHS == RHS)
1055     return 0;
1056   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1057 }
1058 
1059 static inline bool HasBranchWeights(const Instruction *I) {
1060   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1061   if (ProfMD && ProfMD->getOperand(0))
1062     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1063       return MDS->getString().equals("branch_weights");
1064 
1065   return false;
1066 }
1067 
1068 /// Get Weights of a given terminator, the default weight is at the front
1069 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1070 /// metadata.
1071 static void GetBranchWeights(Instruction *TI,
1072                              SmallVectorImpl<uint64_t> &Weights) {
1073   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1074   assert(MD);
1075   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1076     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1077     Weights.push_back(CI->getValue().getZExtValue());
1078   }
1079 
1080   // If TI is a conditional eq, the default case is the false case,
1081   // and the corresponding branch-weight data is at index 2. We swap the
1082   // default weight to be the first entry.
1083   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1084     assert(Weights.size() == 2);
1085     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1086     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1087       std::swap(Weights.front(), Weights.back());
1088   }
1089 }
1090 
1091 /// Keep halving the weights until all can fit in uint32_t.
1092 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1093   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1094   if (Max > UINT_MAX) {
1095     unsigned Offset = 32 - countLeadingZeros(Max);
1096     for (uint64_t &I : Weights)
1097       I >>= Offset;
1098   }
1099 }
1100 
1101 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1102     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1103   Instruction *PTI = PredBlock->getTerminator();
1104 
1105   // If we have bonus instructions, clone them into the predecessor block.
1106   // Note that there may be multiple predecessor blocks, so we cannot move
1107   // bonus instructions to a predecessor block.
1108   for (Instruction &BonusInst : *BB) {
1109     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1110       continue;
1111 
1112     Instruction *NewBonusInst = BonusInst.clone();
1113 
1114     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1115       // Unless the instruction has the same !dbg location as the original
1116       // branch, drop it. When we fold the bonus instructions we want to make
1117       // sure we reset their debug locations in order to avoid stepping on
1118       // dead code caused by folding dead branches.
1119       NewBonusInst->setDebugLoc(DebugLoc());
1120     }
1121 
1122     RemapInstruction(NewBonusInst, VMap,
1123                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1124     VMap[&BonusInst] = NewBonusInst;
1125 
1126     // If we moved a load, we cannot any longer claim any knowledge about
1127     // its potential value. The previous information might have been valid
1128     // only given the branch precondition.
1129     // For an analogous reason, we must also drop all the metadata whose
1130     // semantics we don't understand. We *can* preserve !annotation, because
1131     // it is tied to the instruction itself, not the value or position.
1132     // Similarly strip attributes on call parameters that may cause UB in
1133     // location the call is moved to.
1134     NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1135         LLVMContext::MD_annotation);
1136 
1137     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1138     NewBonusInst->takeName(&BonusInst);
1139     BonusInst.setName(NewBonusInst->getName() + ".old");
1140 
1141     // Update (liveout) uses of bonus instructions,
1142     // now that the bonus instruction has been cloned into predecessor.
1143     // Note that we expect to be in a block-closed SSA form for this to work!
1144     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1145       auto *UI = cast<Instruction>(U.getUser());
1146       auto *PN = dyn_cast<PHINode>(UI);
1147       if (!PN) {
1148         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1149                "If the user is not a PHI node, then it should be in the same "
1150                "block as, and come after, the original bonus instruction.");
1151         continue; // Keep using the original bonus instruction.
1152       }
1153       // Is this the block-closed SSA form PHI node?
1154       if (PN->getIncomingBlock(U) == BB)
1155         continue; // Great, keep using the original bonus instruction.
1156       // The only other alternative is an "use" when coming from
1157       // the predecessor block - here we should refer to the cloned bonus instr.
1158       assert(PN->getIncomingBlock(U) == PredBlock &&
1159              "Not in block-closed SSA form?");
1160       U.set(NewBonusInst);
1161     }
1162   }
1163 }
1164 
1165 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1166     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1167   BasicBlock *BB = TI->getParent();
1168   BasicBlock *Pred = PTI->getParent();
1169 
1170   SmallVector<DominatorTree::UpdateType, 32> Updates;
1171 
1172   // Figure out which 'cases' to copy from SI to PSI.
1173   std::vector<ValueEqualityComparisonCase> BBCases;
1174   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1175 
1176   std::vector<ValueEqualityComparisonCase> PredCases;
1177   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1178 
1179   // Based on whether the default edge from PTI goes to BB or not, fill in
1180   // PredCases and PredDefault with the new switch cases we would like to
1181   // build.
1182   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1183 
1184   // Update the branch weight metadata along the way
1185   SmallVector<uint64_t, 8> Weights;
1186   bool PredHasWeights = HasBranchWeights(PTI);
1187   bool SuccHasWeights = HasBranchWeights(TI);
1188 
1189   if (PredHasWeights) {
1190     GetBranchWeights(PTI, Weights);
1191     // branch-weight metadata is inconsistent here.
1192     if (Weights.size() != 1 + PredCases.size())
1193       PredHasWeights = SuccHasWeights = false;
1194   } else if (SuccHasWeights)
1195     // If there are no predecessor weights but there are successor weights,
1196     // populate Weights with 1, which will later be scaled to the sum of
1197     // successor's weights
1198     Weights.assign(1 + PredCases.size(), 1);
1199 
1200   SmallVector<uint64_t, 8> SuccWeights;
1201   if (SuccHasWeights) {
1202     GetBranchWeights(TI, SuccWeights);
1203     // branch-weight metadata is inconsistent here.
1204     if (SuccWeights.size() != 1 + BBCases.size())
1205       PredHasWeights = SuccHasWeights = false;
1206   } else if (PredHasWeights)
1207     SuccWeights.assign(1 + BBCases.size(), 1);
1208 
1209   if (PredDefault == BB) {
1210     // If this is the default destination from PTI, only the edges in TI
1211     // that don't occur in PTI, or that branch to BB will be activated.
1212     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1213     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1214       if (PredCases[i].Dest != BB)
1215         PTIHandled.insert(PredCases[i].Value);
1216       else {
1217         // The default destination is BB, we don't need explicit targets.
1218         std::swap(PredCases[i], PredCases.back());
1219 
1220         if (PredHasWeights || SuccHasWeights) {
1221           // Increase weight for the default case.
1222           Weights[0] += Weights[i + 1];
1223           std::swap(Weights[i + 1], Weights.back());
1224           Weights.pop_back();
1225         }
1226 
1227         PredCases.pop_back();
1228         --i;
1229         --e;
1230       }
1231 
1232     // Reconstruct the new switch statement we will be building.
1233     if (PredDefault != BBDefault) {
1234       PredDefault->removePredecessor(Pred);
1235       if (DTU && PredDefault != BB)
1236         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1237       PredDefault = BBDefault;
1238       ++NewSuccessors[BBDefault];
1239     }
1240 
1241     unsigned CasesFromPred = Weights.size();
1242     uint64_t ValidTotalSuccWeight = 0;
1243     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1244       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1245         PredCases.push_back(BBCases[i]);
1246         ++NewSuccessors[BBCases[i].Dest];
1247         if (SuccHasWeights || PredHasWeights) {
1248           // The default weight is at index 0, so weight for the ith case
1249           // should be at index i+1. Scale the cases from successor by
1250           // PredDefaultWeight (Weights[0]).
1251           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1252           ValidTotalSuccWeight += SuccWeights[i + 1];
1253         }
1254       }
1255 
1256     if (SuccHasWeights || PredHasWeights) {
1257       ValidTotalSuccWeight += SuccWeights[0];
1258       // Scale the cases from predecessor by ValidTotalSuccWeight.
1259       for (unsigned i = 1; i < CasesFromPred; ++i)
1260         Weights[i] *= ValidTotalSuccWeight;
1261       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1262       Weights[0] *= SuccWeights[0];
1263     }
1264   } else {
1265     // If this is not the default destination from PSI, only the edges
1266     // in SI that occur in PSI with a destination of BB will be
1267     // activated.
1268     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1269     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1270     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1271       if (PredCases[i].Dest == BB) {
1272         PTIHandled.insert(PredCases[i].Value);
1273 
1274         if (PredHasWeights || SuccHasWeights) {
1275           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1276           std::swap(Weights[i + 1], Weights.back());
1277           Weights.pop_back();
1278         }
1279 
1280         std::swap(PredCases[i], PredCases.back());
1281         PredCases.pop_back();
1282         --i;
1283         --e;
1284       }
1285 
1286     // Okay, now we know which constants were sent to BB from the
1287     // predecessor.  Figure out where they will all go now.
1288     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1289       if (PTIHandled.count(BBCases[i].Value)) {
1290         // If this is one we are capable of getting...
1291         if (PredHasWeights || SuccHasWeights)
1292           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1293         PredCases.push_back(BBCases[i]);
1294         ++NewSuccessors[BBCases[i].Dest];
1295         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1296       }
1297 
1298     // If there are any constants vectored to BB that TI doesn't handle,
1299     // they must go to the default destination of TI.
1300     for (ConstantInt *I : PTIHandled) {
1301       if (PredHasWeights || SuccHasWeights)
1302         Weights.push_back(WeightsForHandled[I]);
1303       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1304       ++NewSuccessors[BBDefault];
1305     }
1306   }
1307 
1308   // Okay, at this point, we know which new successor Pred will get.  Make
1309   // sure we update the number of entries in the PHI nodes for these
1310   // successors.
1311   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1312   if (DTU) {
1313     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1314     Updates.reserve(Updates.size() + NewSuccessors.size());
1315   }
1316   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1317        NewSuccessors) {
1318     for (auto I : seq(0, NewSuccessor.second)) {
1319       (void)I;
1320       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1321     }
1322     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1323       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1324   }
1325 
1326   Builder.SetInsertPoint(PTI);
1327   // Convert pointer to int before we switch.
1328   if (CV->getType()->isPointerTy()) {
1329     CV =
1330         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1331   }
1332 
1333   // Now that the successors are updated, create the new Switch instruction.
1334   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1335   NewSI->setDebugLoc(PTI->getDebugLoc());
1336   for (ValueEqualityComparisonCase &V : PredCases)
1337     NewSI->addCase(V.Value, V.Dest);
1338 
1339   if (PredHasWeights || SuccHasWeights) {
1340     // Halve the weights if any of them cannot fit in an uint32_t
1341     FitWeights(Weights);
1342 
1343     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1344 
1345     setBranchWeights(NewSI, MDWeights);
1346   }
1347 
1348   EraseTerminatorAndDCECond(PTI);
1349 
1350   // Okay, last check.  If BB is still a successor of PSI, then we must
1351   // have an infinite loop case.  If so, add an infinitely looping block
1352   // to handle the case to preserve the behavior of the code.
1353   BasicBlock *InfLoopBlock = nullptr;
1354   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1355     if (NewSI->getSuccessor(i) == BB) {
1356       if (!InfLoopBlock) {
1357         // Insert it at the end of the function, because it's either code,
1358         // or it won't matter if it's hot. :)
1359         InfLoopBlock =
1360             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1361         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1362         if (DTU)
1363           Updates.push_back(
1364               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1365       }
1366       NewSI->setSuccessor(i, InfLoopBlock);
1367     }
1368 
1369   if (DTU) {
1370     if (InfLoopBlock)
1371       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1372 
1373     Updates.push_back({DominatorTree::Delete, Pred, BB});
1374 
1375     DTU->applyUpdates(Updates);
1376   }
1377 
1378   ++NumFoldValueComparisonIntoPredecessors;
1379   return true;
1380 }
1381 
1382 /// The specified terminator is a value equality comparison instruction
1383 /// (either a switch or a branch on "X == c").
1384 /// See if any of the predecessors of the terminator block are value comparisons
1385 /// on the same value.  If so, and if safe to do so, fold them together.
1386 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1387                                                          IRBuilder<> &Builder) {
1388   BasicBlock *BB = TI->getParent();
1389   Value *CV = isValueEqualityComparison(TI); // CondVal
1390   assert(CV && "Not a comparison?");
1391 
1392   bool Changed = false;
1393 
1394   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1395   while (!Preds.empty()) {
1396     BasicBlock *Pred = Preds.pop_back_val();
1397     Instruction *PTI = Pred->getTerminator();
1398 
1399     // Don't try to fold into itself.
1400     if (Pred == BB)
1401       continue;
1402 
1403     // See if the predecessor is a comparison with the same value.
1404     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1405     if (PCV != CV)
1406       continue;
1407 
1408     SmallSetVector<BasicBlock *, 4> FailBlocks;
1409     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1410       for (auto *Succ : FailBlocks) {
1411         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1412           return false;
1413       }
1414     }
1415 
1416     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1417     Changed = true;
1418   }
1419   return Changed;
1420 }
1421 
1422 // If we would need to insert a select that uses the value of this invoke
1423 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1424 // can't hoist the invoke, as there is nowhere to put the select in this case.
1425 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1426                                 Instruction *I1, Instruction *I2) {
1427   for (BasicBlock *Succ : successors(BB1)) {
1428     for (const PHINode &PN : Succ->phis()) {
1429       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1430       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1431       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1432         return false;
1433       }
1434     }
1435   }
1436   return true;
1437 }
1438 
1439 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1440 
1441 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1442 /// in the two blocks up into the branch block. The caller of this function
1443 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1444 /// only perform hoisting in case both blocks only contain a terminator. In that
1445 /// case, only the original BI will be replaced and selects for PHIs are added.
1446 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1447                                            const TargetTransformInfo &TTI,
1448                                            bool EqTermsOnly) {
1449   // This does very trivial matching, with limited scanning, to find identical
1450   // instructions in the two blocks.  In particular, we don't want to get into
1451   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1452   // such, we currently just scan for obviously identical instructions in an
1453   // identical order.
1454   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1455   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1456 
1457   // If either of the blocks has it's address taken, then we can't do this fold,
1458   // because the code we'd hoist would no longer run when we jump into the block
1459   // by it's address.
1460   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1461     return false;
1462 
1463   BasicBlock::iterator BB1_Itr = BB1->begin();
1464   BasicBlock::iterator BB2_Itr = BB2->begin();
1465 
1466   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1467   // Skip debug info if it is not identical.
1468   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1469   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1470   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1471     while (isa<DbgInfoIntrinsic>(I1))
1472       I1 = &*BB1_Itr++;
1473     while (isa<DbgInfoIntrinsic>(I2))
1474       I2 = &*BB2_Itr++;
1475   }
1476   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2))
1477     return false;
1478 
1479   BasicBlock *BIParent = BI->getParent();
1480 
1481   bool Changed = false;
1482 
1483   auto _ = make_scope_exit([&]() {
1484     if (Changed)
1485       ++NumHoistCommonCode;
1486   });
1487 
1488   // Check if only hoisting terminators is allowed. This does not add new
1489   // instructions to the hoist location.
1490   if (EqTermsOnly) {
1491     // Skip any debug intrinsics, as they are free to hoist.
1492     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1493     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1494     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1495       return false;
1496     if (!I1NonDbg->isTerminator())
1497       return false;
1498     // Now we know that we only need to hoist debug intrinsics and the
1499     // terminator. Let the loop below handle those 2 cases.
1500   }
1501 
1502   do {
1503     // If we are hoisting the terminator instruction, don't move one (making a
1504     // broken BB), instead clone it, and remove BI.
1505     if (I1->isTerminator())
1506       goto HoistTerminator;
1507 
1508     // Hoisting token-returning instructions would obscure the origin.
1509     if (I1->getType()->isTokenTy())
1510       return Changed;
1511 
1512     // If we're going to hoist a call, make sure that the two instructions we're
1513     // commoning/hoisting are both marked with musttail, or neither of them is
1514     // marked as such. Otherwise, we might end up in a situation where we hoist
1515     // from a block where the terminator is a `ret` to a block where the terminator
1516     // is a `br`, and `musttail` calls expect to be followed by a return.
1517     auto *C1 = dyn_cast<CallInst>(I1);
1518     auto *C2 = dyn_cast<CallInst>(I2);
1519     if (C1 && C2)
1520       if (C1->isMustTailCall() != C2->isMustTailCall())
1521         return Changed;
1522 
1523     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1524       return Changed;
1525 
1526     // If any of the two call sites has nomerge attribute, stop hoisting.
1527     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1528       if (CB1->cannotMerge())
1529         return Changed;
1530     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1531       if (CB2->cannotMerge())
1532         return Changed;
1533 
1534     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1535       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1536       // The debug location is an integral part of a debug info intrinsic
1537       // and can't be separated from it or replaced.  Instead of attempting
1538       // to merge locations, simply hoist both copies of the intrinsic.
1539       BIParent->getInstList().splice(BI->getIterator(),
1540                                      BB1->getInstList(), I1);
1541       BIParent->getInstList().splice(BI->getIterator(),
1542                                      BB2->getInstList(), I2);
1543       Changed = true;
1544     } else {
1545       // For a normal instruction, we just move one to right before the branch,
1546       // then replace all uses of the other with the first.  Finally, we remove
1547       // the now redundant second instruction.
1548       BIParent->getInstList().splice(BI->getIterator(),
1549                                      BB1->getInstList(), I1);
1550       if (!I2->use_empty())
1551         I2->replaceAllUsesWith(I1);
1552       I1->andIRFlags(I2);
1553       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1554                              LLVMContext::MD_range,
1555                              LLVMContext::MD_fpmath,
1556                              LLVMContext::MD_invariant_load,
1557                              LLVMContext::MD_nonnull,
1558                              LLVMContext::MD_invariant_group,
1559                              LLVMContext::MD_align,
1560                              LLVMContext::MD_dereferenceable,
1561                              LLVMContext::MD_dereferenceable_or_null,
1562                              LLVMContext::MD_mem_parallel_loop_access,
1563                              LLVMContext::MD_access_group,
1564                              LLVMContext::MD_preserve_access_index};
1565       combineMetadata(I1, I2, KnownIDs, true);
1566 
1567       // I1 and I2 are being combined into a single instruction.  Its debug
1568       // location is the merged locations of the original instructions.
1569       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1570 
1571       I2->eraseFromParent();
1572       Changed = true;
1573     }
1574     ++NumHoistCommonInstrs;
1575 
1576     I1 = &*BB1_Itr++;
1577     I2 = &*BB2_Itr++;
1578     // Skip debug info if it is not identical.
1579     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1580     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1581     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1582       while (isa<DbgInfoIntrinsic>(I1))
1583         I1 = &*BB1_Itr++;
1584       while (isa<DbgInfoIntrinsic>(I2))
1585         I2 = &*BB2_Itr++;
1586     }
1587   } while (I1->isIdenticalToWhenDefined(I2));
1588 
1589   return true;
1590 
1591 HoistTerminator:
1592   // It may not be possible to hoist an invoke.
1593   // FIXME: Can we define a safety predicate for CallBr?
1594   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1595     return Changed;
1596 
1597   // TODO: callbr hoisting currently disabled pending further study.
1598   if (isa<CallBrInst>(I1))
1599     return Changed;
1600 
1601   for (BasicBlock *Succ : successors(BB1)) {
1602     for (PHINode &PN : Succ->phis()) {
1603       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1604       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1605       if (BB1V == BB2V)
1606         continue;
1607 
1608       // Check for passingValueIsAlwaysUndefined here because we would rather
1609       // eliminate undefined control flow then converting it to a select.
1610       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1611           passingValueIsAlwaysUndefined(BB2V, &PN))
1612         return Changed;
1613 
1614       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1615         return Changed;
1616       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1617         return Changed;
1618     }
1619   }
1620 
1621   // Okay, it is safe to hoist the terminator.
1622   Instruction *NT = I1->clone();
1623   BIParent->getInstList().insert(BI->getIterator(), NT);
1624   if (!NT->getType()->isVoidTy()) {
1625     I1->replaceAllUsesWith(NT);
1626     I2->replaceAllUsesWith(NT);
1627     NT->takeName(I1);
1628   }
1629   Changed = true;
1630   ++NumHoistCommonInstrs;
1631 
1632   // Ensure terminator gets a debug location, even an unknown one, in case
1633   // it involves inlinable calls.
1634   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1635 
1636   // PHIs created below will adopt NT's merged DebugLoc.
1637   IRBuilder<NoFolder> Builder(NT);
1638 
1639   // Hoisting one of the terminators from our successor is a great thing.
1640   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1641   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1642   // nodes, so we insert select instruction to compute the final result.
1643   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1644   for (BasicBlock *Succ : successors(BB1)) {
1645     for (PHINode &PN : Succ->phis()) {
1646       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1647       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1648       if (BB1V == BB2V)
1649         continue;
1650 
1651       // These values do not agree.  Insert a select instruction before NT
1652       // that determines the right value.
1653       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1654       if (!SI) {
1655         // Propagate fast-math-flags from phi node to its replacement select.
1656         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1657         if (isa<FPMathOperator>(PN))
1658           Builder.setFastMathFlags(PN.getFastMathFlags());
1659 
1660         SI = cast<SelectInst>(
1661             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1662                                  BB1V->getName() + "." + BB2V->getName(), BI));
1663       }
1664 
1665       // Make the PHI node use the select for all incoming values for BB1/BB2
1666       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1667         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1668           PN.setIncomingValue(i, SI);
1669     }
1670   }
1671 
1672   SmallVector<DominatorTree::UpdateType, 4> Updates;
1673 
1674   // Update any PHI nodes in our new successors.
1675   for (BasicBlock *Succ : successors(BB1)) {
1676     AddPredecessorToBlock(Succ, BIParent, BB1);
1677     if (DTU)
1678       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1679   }
1680 
1681   if (DTU)
1682     for (BasicBlock *Succ : successors(BI))
1683       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1684 
1685   EraseTerminatorAndDCECond(BI);
1686   if (DTU)
1687     DTU->applyUpdates(Updates);
1688   return Changed;
1689 }
1690 
1691 // Check lifetime markers.
1692 static bool isLifeTimeMarker(const Instruction *I) {
1693   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1694     switch (II->getIntrinsicID()) {
1695     default:
1696       break;
1697     case Intrinsic::lifetime_start:
1698     case Intrinsic::lifetime_end:
1699       return true;
1700     }
1701   }
1702   return false;
1703 }
1704 
1705 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1706 // into variables.
1707 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1708                                                 int OpIdx) {
1709   return !isa<IntrinsicInst>(I);
1710 }
1711 
1712 // All instructions in Insts belong to different blocks that all unconditionally
1713 // branch to a common successor. Analyze each instruction and return true if it
1714 // would be possible to sink them into their successor, creating one common
1715 // instruction instead. For every value that would be required to be provided by
1716 // PHI node (because an operand varies in each input block), add to PHIOperands.
1717 static bool canSinkInstructions(
1718     ArrayRef<Instruction *> Insts,
1719     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1720   // Prune out obviously bad instructions to move. Each instruction must have
1721   // exactly zero or one use, and we check later that use is by a single, common
1722   // PHI instruction in the successor.
1723   bool HasUse = !Insts.front()->user_empty();
1724   for (auto *I : Insts) {
1725     // These instructions may change or break semantics if moved.
1726     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1727         I->getType()->isTokenTy())
1728       return false;
1729 
1730     // Do not try to sink an instruction in an infinite loop - it can cause
1731     // this algorithm to infinite loop.
1732     if (I->getParent()->getSingleSuccessor() == I->getParent())
1733       return false;
1734 
1735     // Conservatively return false if I is an inline-asm instruction. Sinking
1736     // and merging inline-asm instructions can potentially create arguments
1737     // that cannot satisfy the inline-asm constraints.
1738     // If the instruction has nomerge attribute, return false.
1739     if (const auto *C = dyn_cast<CallBase>(I))
1740       if (C->isInlineAsm() || C->cannotMerge())
1741         return false;
1742 
1743     // Each instruction must have zero or one use.
1744     if (HasUse && !I->hasOneUse())
1745       return false;
1746     if (!HasUse && !I->user_empty())
1747       return false;
1748   }
1749 
1750   const Instruction *I0 = Insts.front();
1751   for (auto *I : Insts)
1752     if (!I->isSameOperationAs(I0))
1753       return false;
1754 
1755   // All instructions in Insts are known to be the same opcode. If they have a
1756   // use, check that the only user is a PHI or in the same block as the
1757   // instruction, because if a user is in the same block as an instruction we're
1758   // contemplating sinking, it must already be determined to be sinkable.
1759   if (HasUse) {
1760     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1761     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1762     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1763           auto *U = cast<Instruction>(*I->user_begin());
1764           return (PNUse &&
1765                   PNUse->getParent() == Succ &&
1766                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1767                  U->getParent() == I->getParent();
1768         }))
1769       return false;
1770   }
1771 
1772   // Because SROA can't handle speculating stores of selects, try not to sink
1773   // loads, stores or lifetime markers of allocas when we'd have to create a
1774   // PHI for the address operand. Also, because it is likely that loads or
1775   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1776   // them.
1777   // This can cause code churn which can have unintended consequences down
1778   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1779   // FIXME: This is a workaround for a deficiency in SROA - see
1780   // https://llvm.org/bugs/show_bug.cgi?id=30188
1781   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1782         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1783       }))
1784     return false;
1785   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1786         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1787       }))
1788     return false;
1789   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1790         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1791       }))
1792     return false;
1793 
1794   // For calls to be sinkable, they must all be indirect, or have same callee.
1795   // I.e. if we have two direct calls to different callees, we don't want to
1796   // turn that into an indirect call. Likewise, if we have an indirect call,
1797   // and a direct call, we don't actually want to have a single indirect call.
1798   if (isa<CallBase>(I0)) {
1799     auto IsIndirectCall = [](const Instruction *I) {
1800       return cast<CallBase>(I)->isIndirectCall();
1801     };
1802     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1803     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1804     if (HaveIndirectCalls) {
1805       if (!AllCallsAreIndirect)
1806         return false;
1807     } else {
1808       // All callees must be identical.
1809       Value *Callee = nullptr;
1810       for (const Instruction *I : Insts) {
1811         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1812         if (!Callee)
1813           Callee = CurrCallee;
1814         else if (Callee != CurrCallee)
1815           return false;
1816       }
1817     }
1818   }
1819 
1820   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1821     Value *Op = I0->getOperand(OI);
1822     if (Op->getType()->isTokenTy())
1823       // Don't touch any operand of token type.
1824       return false;
1825 
1826     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1827       assert(I->getNumOperands() == I0->getNumOperands());
1828       return I->getOperand(OI) == I0->getOperand(OI);
1829     };
1830     if (!all_of(Insts, SameAsI0)) {
1831       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1832           !canReplaceOperandWithVariable(I0, OI))
1833         // We can't create a PHI from this GEP.
1834         return false;
1835       for (auto *I : Insts)
1836         PHIOperands[I].push_back(I->getOperand(OI));
1837     }
1838   }
1839   return true;
1840 }
1841 
1842 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1843 // instruction of every block in Blocks to their common successor, commoning
1844 // into one instruction.
1845 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1846   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1847 
1848   // canSinkInstructions returning true guarantees that every block has at
1849   // least one non-terminator instruction.
1850   SmallVector<Instruction*,4> Insts;
1851   for (auto *BB : Blocks) {
1852     Instruction *I = BB->getTerminator();
1853     do {
1854       I = I->getPrevNode();
1855     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1856     if (!isa<DbgInfoIntrinsic>(I))
1857       Insts.push_back(I);
1858   }
1859 
1860   // The only checking we need to do now is that all users of all instructions
1861   // are the same PHI node. canSinkInstructions should have checked this but
1862   // it is slightly over-aggressive - it gets confused by commutative
1863   // instructions so double-check it here.
1864   Instruction *I0 = Insts.front();
1865   if (!I0->user_empty()) {
1866     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1867     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1868           auto *U = cast<Instruction>(*I->user_begin());
1869           return U == PNUse;
1870         }))
1871       return false;
1872   }
1873 
1874   // We don't need to do any more checking here; canSinkInstructions should
1875   // have done it all for us.
1876   SmallVector<Value*, 4> NewOperands;
1877   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1878     // This check is different to that in canSinkInstructions. There, we
1879     // cared about the global view once simplifycfg (and instcombine) have
1880     // completed - it takes into account PHIs that become trivially
1881     // simplifiable.  However here we need a more local view; if an operand
1882     // differs we create a PHI and rely on instcombine to clean up the very
1883     // small mess we may make.
1884     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1885       return I->getOperand(O) != I0->getOperand(O);
1886     });
1887     if (!NeedPHI) {
1888       NewOperands.push_back(I0->getOperand(O));
1889       continue;
1890     }
1891 
1892     // Create a new PHI in the successor block and populate it.
1893     auto *Op = I0->getOperand(O);
1894     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1895     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1896                                Op->getName() + ".sink", &BBEnd->front());
1897     for (auto *I : Insts)
1898       PN->addIncoming(I->getOperand(O), I->getParent());
1899     NewOperands.push_back(PN);
1900   }
1901 
1902   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1903   // and move it to the start of the successor block.
1904   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1905     I0->getOperandUse(O).set(NewOperands[O]);
1906   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1907 
1908   // Update metadata and IR flags, and merge debug locations.
1909   for (auto *I : Insts)
1910     if (I != I0) {
1911       // The debug location for the "common" instruction is the merged locations
1912       // of all the commoned instructions.  We start with the original location
1913       // of the "common" instruction and iteratively merge each location in the
1914       // loop below.
1915       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1916       // However, as N-way merge for CallInst is rare, so we use simplified API
1917       // instead of using complex API for N-way merge.
1918       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1919       combineMetadataForCSE(I0, I, true);
1920       I0->andIRFlags(I);
1921     }
1922 
1923   if (!I0->user_empty()) {
1924     // canSinkLastInstruction checked that all instructions were used by
1925     // one and only one PHI node. Find that now, RAUW it to our common
1926     // instruction and nuke it.
1927     auto *PN = cast<PHINode>(*I0->user_begin());
1928     PN->replaceAllUsesWith(I0);
1929     PN->eraseFromParent();
1930   }
1931 
1932   // Finally nuke all instructions apart from the common instruction.
1933   for (auto *I : Insts)
1934     if (I != I0)
1935       I->eraseFromParent();
1936 
1937   return true;
1938 }
1939 
1940 namespace {
1941 
1942   // LockstepReverseIterator - Iterates through instructions
1943   // in a set of blocks in reverse order from the first non-terminator.
1944   // For example (assume all blocks have size n):
1945   //   LockstepReverseIterator I([B1, B2, B3]);
1946   //   *I-- = [B1[n], B2[n], B3[n]];
1947   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1948   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1949   //   ...
1950   class LockstepReverseIterator {
1951     ArrayRef<BasicBlock*> Blocks;
1952     SmallVector<Instruction*,4> Insts;
1953     bool Fail;
1954 
1955   public:
1956     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1957       reset();
1958     }
1959 
1960     void reset() {
1961       Fail = false;
1962       Insts.clear();
1963       for (auto *BB : Blocks) {
1964         Instruction *Inst = BB->getTerminator();
1965         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1966           Inst = Inst->getPrevNode();
1967         if (!Inst) {
1968           // Block wasn't big enough.
1969           Fail = true;
1970           return;
1971         }
1972         Insts.push_back(Inst);
1973       }
1974     }
1975 
1976     bool isValid() const {
1977       return !Fail;
1978     }
1979 
1980     void operator--() {
1981       if (Fail)
1982         return;
1983       for (auto *&Inst : Insts) {
1984         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1985           Inst = Inst->getPrevNode();
1986         // Already at beginning of block.
1987         if (!Inst) {
1988           Fail = true;
1989           return;
1990         }
1991       }
1992     }
1993 
1994     void operator++() {
1995       if (Fail)
1996         return;
1997       for (auto *&Inst : Insts) {
1998         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1999           Inst = Inst->getNextNode();
2000         // Already at end of block.
2001         if (!Inst) {
2002           Fail = true;
2003           return;
2004         }
2005       }
2006     }
2007 
2008     ArrayRef<Instruction*> operator * () const {
2009       return Insts;
2010     }
2011   };
2012 
2013 } // end anonymous namespace
2014 
2015 /// Check whether BB's predecessors end with unconditional branches. If it is
2016 /// true, sink any common code from the predecessors to BB.
2017 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
2018                                            DomTreeUpdater *DTU) {
2019   // We support two situations:
2020   //   (1) all incoming arcs are unconditional
2021   //   (2) there are non-unconditional incoming arcs
2022   //
2023   // (2) is very common in switch defaults and
2024   // else-if patterns;
2025   //
2026   //   if (a) f(1);
2027   //   else if (b) f(2);
2028   //
2029   // produces:
2030   //
2031   //       [if]
2032   //      /    \
2033   //    [f(1)] [if]
2034   //      |     | \
2035   //      |     |  |
2036   //      |  [f(2)]|
2037   //       \    | /
2038   //        [ end ]
2039   //
2040   // [end] has two unconditional predecessor arcs and one conditional. The
2041   // conditional refers to the implicit empty 'else' arc. This conditional
2042   // arc can also be caused by an empty default block in a switch.
2043   //
2044   // In this case, we attempt to sink code from all *unconditional* arcs.
2045   // If we can sink instructions from these arcs (determined during the scan
2046   // phase below) we insert a common successor for all unconditional arcs and
2047   // connect that to [end], to enable sinking:
2048   //
2049   //       [if]
2050   //      /    \
2051   //    [x(1)] [if]
2052   //      |     | \
2053   //      |     |  \
2054   //      |  [x(2)] |
2055   //       \   /    |
2056   //   [sink.split] |
2057   //         \     /
2058   //         [ end ]
2059   //
2060   SmallVector<BasicBlock*,4> UnconditionalPreds;
2061   bool HaveNonUnconditionalPredecessors = false;
2062   for (auto *PredBB : predecessors(BB)) {
2063     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2064     if (PredBr && PredBr->isUnconditional())
2065       UnconditionalPreds.push_back(PredBB);
2066     else
2067       HaveNonUnconditionalPredecessors = true;
2068   }
2069   if (UnconditionalPreds.size() < 2)
2070     return false;
2071 
2072   // We take a two-step approach to tail sinking. First we scan from the end of
2073   // each block upwards in lockstep. If the n'th instruction from the end of each
2074   // block can be sunk, those instructions are added to ValuesToSink and we
2075   // carry on. If we can sink an instruction but need to PHI-merge some operands
2076   // (because they're not identical in each instruction) we add these to
2077   // PHIOperands.
2078   int ScanIdx = 0;
2079   SmallPtrSet<Value*,4> InstructionsToSink;
2080   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2081   LockstepReverseIterator LRI(UnconditionalPreds);
2082   while (LRI.isValid() &&
2083          canSinkInstructions(*LRI, PHIOperands)) {
2084     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2085                       << "\n");
2086     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2087     ++ScanIdx;
2088     --LRI;
2089   }
2090 
2091   // If no instructions can be sunk, early-return.
2092   if (ScanIdx == 0)
2093     return false;
2094 
2095   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2096 
2097   if (!followedByDeoptOrUnreachable) {
2098     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2099     // actually sink before encountering instruction that is unprofitable to
2100     // sink?
2101     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2102       unsigned NumPHIdValues = 0;
2103       for (auto *I : *LRI)
2104         for (auto *V : PHIOperands[I]) {
2105           if (!InstructionsToSink.contains(V))
2106             ++NumPHIdValues;
2107           // FIXME: this check is overly optimistic. We may end up not sinking
2108           // said instruction, due to the very same profitability check.
2109           // See @creating_too_many_phis in sink-common-code.ll.
2110         }
2111       LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2112       unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2113       if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2114         NumPHIInsts++;
2115 
2116       return NumPHIInsts <= 1;
2117     };
2118 
2119     // We've determined that we are going to sink last ScanIdx instructions,
2120     // and recorded them in InstructionsToSink. Now, some instructions may be
2121     // unprofitable to sink. But that determination depends on the instructions
2122     // that we are going to sink.
2123 
2124     // First, forward scan: find the first instruction unprofitable to sink,
2125     // recording all the ones that are profitable to sink.
2126     // FIXME: would it be better, after we detect that not all are profitable.
2127     // to either record the profitable ones, or erase the unprofitable ones?
2128     // Maybe we need to choose (at runtime) the one that will touch least
2129     // instrs?
2130     LRI.reset();
2131     int Idx = 0;
2132     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2133     while (Idx < ScanIdx) {
2134       if (!ProfitableToSinkInstruction(LRI)) {
2135         // Too many PHIs would be created.
2136         LLVM_DEBUG(
2137             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2138         break;
2139       }
2140       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2141       --LRI;
2142       ++Idx;
2143     }
2144 
2145     // If no instructions can be sunk, early-return.
2146     if (Idx == 0)
2147       return false;
2148 
2149     // Did we determine that (only) some instructions are unprofitable to sink?
2150     if (Idx < ScanIdx) {
2151       // Okay, some instructions are unprofitable.
2152       ScanIdx = Idx;
2153       InstructionsToSink = InstructionsProfitableToSink;
2154 
2155       // But, that may make other instructions unprofitable, too.
2156       // So, do a backward scan, do any earlier instructions become
2157       // unprofitable?
2158       assert(
2159           !ProfitableToSinkInstruction(LRI) &&
2160           "We already know that the last instruction is unprofitable to sink");
2161       ++LRI;
2162       --Idx;
2163       while (Idx >= 0) {
2164         // If we detect that an instruction becomes unprofitable to sink,
2165         // all earlier instructions won't be sunk either,
2166         // so preemptively keep InstructionsProfitableToSink in sync.
2167         // FIXME: is this the most performant approach?
2168         for (auto *I : *LRI)
2169           InstructionsProfitableToSink.erase(I);
2170         if (!ProfitableToSinkInstruction(LRI)) {
2171           // Everything starting with this instruction won't be sunk.
2172           ScanIdx = Idx;
2173           InstructionsToSink = InstructionsProfitableToSink;
2174         }
2175         ++LRI;
2176         --Idx;
2177       }
2178     }
2179 
2180     // If no instructions can be sunk, early-return.
2181     if (ScanIdx == 0)
2182       return false;
2183   }
2184 
2185   bool Changed = false;
2186 
2187   if (HaveNonUnconditionalPredecessors) {
2188     if (!followedByDeoptOrUnreachable) {
2189       // It is always legal to sink common instructions from unconditional
2190       // predecessors. However, if not all predecessors are unconditional,
2191       // this transformation might be pessimizing. So as a rule of thumb,
2192       // don't do it unless we'd sink at least one non-speculatable instruction.
2193       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2194       LRI.reset();
2195       int Idx = 0;
2196       bool Profitable = false;
2197       while (Idx < ScanIdx) {
2198         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2199           Profitable = true;
2200           break;
2201         }
2202         --LRI;
2203         ++Idx;
2204       }
2205       if (!Profitable)
2206         return false;
2207     }
2208 
2209     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2210     // We have a conditional edge and we're going to sink some instructions.
2211     // Insert a new block postdominating all blocks we're going to sink from.
2212     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2213       // Edges couldn't be split.
2214       return false;
2215     Changed = true;
2216   }
2217 
2218   // Now that we've analyzed all potential sinking candidates, perform the
2219   // actual sink. We iteratively sink the last non-terminator of the source
2220   // blocks into their common successor unless doing so would require too
2221   // many PHI instructions to be generated (currently only one PHI is allowed
2222   // per sunk instruction).
2223   //
2224   // We can use InstructionsToSink to discount values needing PHI-merging that will
2225   // actually be sunk in a later iteration. This allows us to be more
2226   // aggressive in what we sink. This does allow a false positive where we
2227   // sink presuming a later value will also be sunk, but stop half way through
2228   // and never actually sink it which means we produce more PHIs than intended.
2229   // This is unlikely in practice though.
2230   int SinkIdx = 0;
2231   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2232     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2233                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2234                       << "\n");
2235 
2236     // Because we've sunk every instruction in turn, the current instruction to
2237     // sink is always at index 0.
2238     LRI.reset();
2239 
2240     if (!sinkLastInstruction(UnconditionalPreds)) {
2241       LLVM_DEBUG(
2242           dbgs()
2243           << "SINK: stopping here, failed to actually sink instruction!\n");
2244       break;
2245     }
2246 
2247     NumSinkCommonInstrs++;
2248     Changed = true;
2249   }
2250   if (SinkIdx != 0)
2251     ++NumSinkCommonCode;
2252   return Changed;
2253 }
2254 
2255 namespace {
2256 
2257 struct CompatibleSets {
2258   using SetTy = SmallVector<InvokeInst *, 2>;
2259 
2260   SmallVector<SetTy, 1> Sets;
2261 
2262   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2263 
2264   SetTy &getCompatibleSet(InvokeInst *II);
2265 
2266   void insert(InvokeInst *II);
2267 };
2268 
2269 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2270   // Perform a linear scan over all the existing sets, see if the new `invoke`
2271   // is compatible with any particular set. Since we know that all the `invokes`
2272   // within a set are compatible, only check the first `invoke` in each set.
2273   // WARNING: at worst, this has quadratic complexity.
2274   for (CompatibleSets::SetTy &Set : Sets) {
2275     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2276       return Set;
2277   }
2278 
2279   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2280   return Sets.emplace_back();
2281 }
2282 
2283 void CompatibleSets::insert(InvokeInst *II) {
2284   getCompatibleSet(II).emplace_back(II);
2285 }
2286 
2287 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2288   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2289 
2290   // Can we theoretically merge these `invoke`s?
2291   auto IsIllegalToMerge = [](InvokeInst *II) {
2292     return II->cannotMerge() || II->isInlineAsm();
2293   };
2294   if (any_of(Invokes, IsIllegalToMerge))
2295     return false;
2296 
2297   // Either both `invoke`s must be   direct,
2298   // or     both `invoke`s must be indirect.
2299   auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2300   bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2301   bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2302   if (HaveIndirectCalls) {
2303     if (!AllCallsAreIndirect)
2304       return false;
2305   } else {
2306     // All callees must be identical.
2307     Value *Callee = nullptr;
2308     for (InvokeInst *II : Invokes) {
2309       Value *CurrCallee = II->getCalledOperand();
2310       assert(CurrCallee && "There is always a called operand.");
2311       if (!Callee)
2312         Callee = CurrCallee;
2313       else if (Callee != CurrCallee)
2314         return false;
2315     }
2316   }
2317 
2318   // Either both `invoke`s must not have a normal destination,
2319   // or     both `invoke`s must     have a normal destination,
2320   auto HasNormalDest = [](InvokeInst *II) {
2321     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2322   };
2323   if (any_of(Invokes, HasNormalDest)) {
2324     // Do not merge `invoke` that does not have a normal destination with one
2325     // that does have a normal destination, even though doing so would be legal.
2326     if (!all_of(Invokes, HasNormalDest))
2327       return false;
2328 
2329     // All normal destinations must be identical.
2330     BasicBlock *NormalBB = nullptr;
2331     for (InvokeInst *II : Invokes) {
2332       BasicBlock *CurrNormalBB = II->getNormalDest();
2333       assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2334       if (!NormalBB)
2335         NormalBB = CurrNormalBB;
2336       else if (NormalBB != CurrNormalBB)
2337         return false;
2338     }
2339 
2340     // In the normal destination, the incoming values for these two `invoke`s
2341     // must be compatible.
2342     SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2343     if (!IncomingValuesAreCompatible(
2344             NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2345             &EquivalenceSet))
2346       return false;
2347   }
2348 
2349 #ifndef NDEBUG
2350   // All unwind destinations must be identical.
2351   // We know that because we have started from said unwind destination.
2352   BasicBlock *UnwindBB = nullptr;
2353   for (InvokeInst *II : Invokes) {
2354     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2355     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2356     if (!UnwindBB)
2357       UnwindBB = CurrUnwindBB;
2358     else
2359       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2360   }
2361 #endif
2362 
2363   // In the unwind destination, the incoming values for these two `invoke`s
2364   // must be compatible.
2365   if (!IncomingValuesAreCompatible(
2366           Invokes.front()->getUnwindDest(),
2367           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2368     return false;
2369 
2370   // Ignoring arguments, these `invoke`s must be identical,
2371   // including operand bundles.
2372   const InvokeInst *II0 = Invokes.front();
2373   for (auto *II : Invokes.drop_front())
2374     if (!II->isSameOperationAs(II0))
2375       return false;
2376 
2377   // Can we theoretically form the data operands for the merged `invoke`?
2378   auto IsIllegalToMergeArguments = [](auto Ops) {
2379     Type *Ty = std::get<0>(Ops)->getType();
2380     assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?");
2381     return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops);
2382   };
2383   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2384   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2385              IsIllegalToMergeArguments))
2386     return false;
2387 
2388   return true;
2389 }
2390 
2391 } // namespace
2392 
2393 // Merge all invokes in the provided set, all of which are compatible
2394 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2395 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2396                                        DomTreeUpdater *DTU) {
2397   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2398 
2399   SmallVector<DominatorTree::UpdateType, 8> Updates;
2400   if (DTU)
2401     Updates.reserve(2 + 3 * Invokes.size());
2402 
2403   bool HasNormalDest =
2404       !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2405 
2406   // Clone one of the invokes into a new basic block.
2407   // Since they are all compatible, it doesn't matter which invoke is cloned.
2408   InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2409     InvokeInst *II0 = Invokes.front();
2410     BasicBlock *II0BB = II0->getParent();
2411     BasicBlock *InsertBeforeBlock =
2412         II0->getParent()->getIterator()->getNextNode();
2413     Function *Func = II0BB->getParent();
2414     LLVMContext &Ctx = II0->getContext();
2415 
2416     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2417         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2418 
2419     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2420     // NOTE: all invokes have the same attributes, so no handling needed.
2421     MergedInvokeBB->getInstList().push_back(MergedInvoke);
2422 
2423     if (!HasNormalDest) {
2424       // This set does not have a normal destination,
2425       // so just form a new block with unreachable terminator.
2426       BasicBlock *MergedNormalDest = BasicBlock::Create(
2427           Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2428       new UnreachableInst(Ctx, MergedNormalDest);
2429       MergedInvoke->setNormalDest(MergedNormalDest);
2430     }
2431 
2432     // The unwind destination, however, remainds identical for all invokes here.
2433 
2434     return MergedInvoke;
2435   }();
2436 
2437   if (DTU) {
2438     // Predecessor blocks that contained these invokes will now branch to
2439     // the new block that contains the merged invoke, ...
2440     for (InvokeInst *II : Invokes)
2441       Updates.push_back(
2442           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2443 
2444     // ... which has the new `unreachable` block as normal destination,
2445     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2446     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2447       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2448                          SuccBBOfMergedInvoke});
2449 
2450     // Since predecessor blocks now unconditionally branch to a new block,
2451     // they no longer branch to their original successors.
2452     for (InvokeInst *II : Invokes)
2453       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2454         Updates.push_back(
2455             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2456   }
2457 
2458   bool IsIndirectCall = Invokes[0]->isIndirectCall();
2459 
2460   // Form the merged operands for the merged invoke.
2461   for (Use &U : MergedInvoke->operands()) {
2462     // Only PHI together the indirect callees and data operands.
2463     if (MergedInvoke->isCallee(&U)) {
2464       if (!IsIndirectCall)
2465         continue;
2466     } else if (!MergedInvoke->isDataOperand(&U))
2467       continue;
2468 
2469     // Don't create trivial PHI's with all-identical incoming values.
2470     bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2471       return II->getOperand(U.getOperandNo()) != U.get();
2472     });
2473     if (!NeedPHI)
2474       continue;
2475 
2476     // Form a PHI out of all the data ops under this index.
2477     PHINode *PN = PHINode::Create(
2478         U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke);
2479     for (InvokeInst *II : Invokes)
2480       PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2481 
2482     U.set(PN);
2483   }
2484 
2485   // We've ensured that each PHI node has compatible (identical) incoming values
2486   // when coming from each of the `invoke`s in the current merge set,
2487   // so update the PHI nodes accordingly.
2488   for (BasicBlock *Succ : successors(MergedInvoke))
2489     AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2490                           /*ExistPred=*/Invokes.front()->getParent());
2491 
2492   // And finally, replace the original `invoke`s with an unconditional branch
2493   // to the block with the merged `invoke`. Also, give that merged `invoke`
2494   // the merged debugloc of all the original `invoke`s.
2495   const DILocation *MergedDebugLoc = nullptr;
2496   for (InvokeInst *II : Invokes) {
2497     // Compute the debug location common to all the original `invoke`s.
2498     if (!MergedDebugLoc)
2499       MergedDebugLoc = II->getDebugLoc();
2500     else
2501       MergedDebugLoc =
2502           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2503 
2504     // And replace the old `invoke` with an unconditionally branch
2505     // to the block with the merged `invoke`.
2506     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2507       OrigSuccBB->removePredecessor(II->getParent());
2508     BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2509     II->replaceAllUsesWith(MergedInvoke);
2510     II->eraseFromParent();
2511     ++NumInvokesMerged;
2512   }
2513   MergedInvoke->setDebugLoc(MergedDebugLoc);
2514   ++NumInvokeSetsFormed;
2515 
2516   if (DTU)
2517     DTU->applyUpdates(Updates);
2518 }
2519 
2520 /// If this block is a `landingpad` exception handling block, categorize all
2521 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2522 /// being "mergeable" together, and then merge invokes in each set together.
2523 ///
2524 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2525 ///          [...]        [...]
2526 ///            |            |
2527 ///        [invoke0]    [invoke1]
2528 ///           / \          / \
2529 ///     [cont0] [landingpad] [cont1]
2530 /// to:
2531 ///      [...] [...]
2532 ///          \ /
2533 ///       [invoke]
2534 ///          / \
2535 ///     [cont] [landingpad]
2536 ///
2537 /// But of course we can only do that if the invokes share the `landingpad`,
2538 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2539 /// and the invoked functions are "compatible".
2540 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2541   if (!EnableMergeCompatibleInvokes)
2542     return false;
2543 
2544   bool Changed = false;
2545 
2546   // FIXME: generalize to all exception handling blocks?
2547   if (!BB->isLandingPad())
2548     return Changed;
2549 
2550   CompatibleSets Grouper;
2551 
2552   // Record all the predecessors of this `landingpad`. As per verifier,
2553   // the only allowed predecessor is the unwind edge of an `invoke`.
2554   // We want to group "compatible" `invokes` into the same set to be merged.
2555   for (BasicBlock *PredBB : predecessors(BB))
2556     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2557 
2558   // And now, merge `invoke`s that were grouped togeter.
2559   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2560     if (Invokes.size() < 2)
2561       continue;
2562     Changed = true;
2563     MergeCompatibleInvokesImpl(Invokes, DTU);
2564   }
2565 
2566   return Changed;
2567 }
2568 
2569 /// Determine if we can hoist sink a sole store instruction out of a
2570 /// conditional block.
2571 ///
2572 /// We are looking for code like the following:
2573 ///   BrBB:
2574 ///     store i32 %add, i32* %arrayidx2
2575 ///     ... // No other stores or function calls (we could be calling a memory
2576 ///     ... // function).
2577 ///     %cmp = icmp ult %x, %y
2578 ///     br i1 %cmp, label %EndBB, label %ThenBB
2579 ///   ThenBB:
2580 ///     store i32 %add5, i32* %arrayidx2
2581 ///     br label EndBB
2582 ///   EndBB:
2583 ///     ...
2584 ///   We are going to transform this into:
2585 ///   BrBB:
2586 ///     store i32 %add, i32* %arrayidx2
2587 ///     ... //
2588 ///     %cmp = icmp ult %x, %y
2589 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2590 ///     store i32 %add.add5, i32* %arrayidx2
2591 ///     ...
2592 ///
2593 /// \return The pointer to the value of the previous store if the store can be
2594 ///         hoisted into the predecessor block. 0 otherwise.
2595 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2596                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2597   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2598   if (!StoreToHoist)
2599     return nullptr;
2600 
2601   // Volatile or atomic.
2602   if (!StoreToHoist->isSimple())
2603     return nullptr;
2604 
2605   Value *StorePtr = StoreToHoist->getPointerOperand();
2606   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2607 
2608   // Look for a store to the same pointer in BrBB.
2609   unsigned MaxNumInstToLookAt = 9;
2610   // Skip pseudo probe intrinsic calls which are not really killing any memory
2611   // accesses.
2612   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2613     if (!MaxNumInstToLookAt)
2614       break;
2615     --MaxNumInstToLookAt;
2616 
2617     // Could be calling an instruction that affects memory like free().
2618     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2619       return nullptr;
2620 
2621     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2622       // Found the previous store to same location and type. Make sure it is
2623       // simple, to avoid introducing a spurious non-atomic write after an
2624       // atomic write.
2625       if (SI->getPointerOperand() == StorePtr &&
2626           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2627         // Found the previous store, return its value operand.
2628         return SI->getValueOperand();
2629       return nullptr; // Unknown store.
2630     }
2631 
2632     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2633       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2634           LI->isSimple()) {
2635         // Local objects (created by an `alloca` instruction) are always
2636         // writable, so once we are past a read from a location it is valid to
2637         // also write to that same location.
2638         // If the address of the local object never escapes the function, that
2639         // means it's never concurrently read or written, hence moving the store
2640         // from under the condition will not introduce a data race.
2641         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2642         if (AI && !PointerMayBeCaptured(AI, false, true))
2643           // Found a previous load, return it.
2644           return LI;
2645       }
2646       // The load didn't work out, but we may still find a store.
2647     }
2648   }
2649 
2650   return nullptr;
2651 }
2652 
2653 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2654 /// converted to selects.
2655 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2656                                            BasicBlock *EndBB,
2657                                            unsigned &SpeculatedInstructions,
2658                                            InstructionCost &Cost,
2659                                            const TargetTransformInfo &TTI) {
2660   TargetTransformInfo::TargetCostKind CostKind =
2661     BB->getParent()->hasMinSize()
2662     ? TargetTransformInfo::TCK_CodeSize
2663     : TargetTransformInfo::TCK_SizeAndLatency;
2664 
2665   bool HaveRewritablePHIs = false;
2666   for (PHINode &PN : EndBB->phis()) {
2667     Value *OrigV = PN.getIncomingValueForBlock(BB);
2668     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2669 
2670     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2671     // Skip PHIs which are trivial.
2672     if (ThenV == OrigV)
2673       continue;
2674 
2675     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2676                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2677 
2678     // Don't convert to selects if we could remove undefined behavior instead.
2679     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2680         passingValueIsAlwaysUndefined(ThenV, &PN))
2681       return false;
2682 
2683     if (canTrap(OrigV) || canTrap(ThenV))
2684       return false;
2685 
2686     HaveRewritablePHIs = true;
2687     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2688     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2689     if (!OrigCE && !ThenCE)
2690       continue; // Known cheap (FIXME: Maybe not true for aggregates).
2691 
2692     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2693     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2694     InstructionCost MaxCost =
2695         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2696     if (OrigCost + ThenCost > MaxCost)
2697       return false;
2698 
2699     // Account for the cost of an unfolded ConstantExpr which could end up
2700     // getting expanded into Instructions.
2701     // FIXME: This doesn't account for how many operations are combined in the
2702     // constant expression.
2703     ++SpeculatedInstructions;
2704     if (SpeculatedInstructions > 1)
2705       return false;
2706   }
2707 
2708   return HaveRewritablePHIs;
2709 }
2710 
2711 /// Speculate a conditional basic block flattening the CFG.
2712 ///
2713 /// Note that this is a very risky transform currently. Speculating
2714 /// instructions like this is most often not desirable. Instead, there is an MI
2715 /// pass which can do it with full awareness of the resource constraints.
2716 /// However, some cases are "obvious" and we should do directly. An example of
2717 /// this is speculating a single, reasonably cheap instruction.
2718 ///
2719 /// There is only one distinct advantage to flattening the CFG at the IR level:
2720 /// it makes very common but simplistic optimizations such as are common in
2721 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2722 /// modeling their effects with easier to reason about SSA value graphs.
2723 ///
2724 ///
2725 /// An illustration of this transform is turning this IR:
2726 /// \code
2727 ///   BB:
2728 ///     %cmp = icmp ult %x, %y
2729 ///     br i1 %cmp, label %EndBB, label %ThenBB
2730 ///   ThenBB:
2731 ///     %sub = sub %x, %y
2732 ///     br label BB2
2733 ///   EndBB:
2734 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2735 ///     ...
2736 /// \endcode
2737 ///
2738 /// Into this IR:
2739 /// \code
2740 ///   BB:
2741 ///     %cmp = icmp ult %x, %y
2742 ///     %sub = sub %x, %y
2743 ///     %cond = select i1 %cmp, 0, %sub
2744 ///     ...
2745 /// \endcode
2746 ///
2747 /// \returns true if the conditional block is removed.
2748 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2749                                             const TargetTransformInfo &TTI) {
2750   // Be conservative for now. FP select instruction can often be expensive.
2751   Value *BrCond = BI->getCondition();
2752   if (isa<FCmpInst>(BrCond))
2753     return false;
2754 
2755   BasicBlock *BB = BI->getParent();
2756   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2757   InstructionCost Budget =
2758       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2759 
2760   // If ThenBB is actually on the false edge of the conditional branch, remember
2761   // to swap the select operands later.
2762   bool Invert = false;
2763   if (ThenBB != BI->getSuccessor(0)) {
2764     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2765     Invert = true;
2766   }
2767   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2768 
2769   // If the branch is non-unpredictable, and is predicted to *not* branch to
2770   // the `then` block, then avoid speculating it.
2771   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2772     uint64_t TWeight, FWeight;
2773     if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
2774       uint64_t EndWeight = Invert ? TWeight : FWeight;
2775       BranchProbability BIEndProb =
2776           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2777       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2778       if (BIEndProb >= Likely)
2779         return false;
2780     }
2781   }
2782 
2783   // Keep a count of how many times instructions are used within ThenBB when
2784   // they are candidates for sinking into ThenBB. Specifically:
2785   // - They are defined in BB, and
2786   // - They have no side effects, and
2787   // - All of their uses are in ThenBB.
2788   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2789 
2790   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2791 
2792   unsigned SpeculatedInstructions = 0;
2793   Value *SpeculatedStoreValue = nullptr;
2794   StoreInst *SpeculatedStore = nullptr;
2795   for (BasicBlock::iterator BBI = ThenBB->begin(),
2796                             BBE = std::prev(ThenBB->end());
2797        BBI != BBE; ++BBI) {
2798     Instruction *I = &*BBI;
2799     // Skip debug info.
2800     if (isa<DbgInfoIntrinsic>(I)) {
2801       SpeculatedDbgIntrinsics.push_back(I);
2802       continue;
2803     }
2804 
2805     // Skip pseudo probes. The consequence is we lose track of the branch
2806     // probability for ThenBB, which is fine since the optimization here takes
2807     // place regardless of the branch probability.
2808     if (isa<PseudoProbeInst>(I)) {
2809       // The probe should be deleted so that it will not be over-counted when
2810       // the samples collected on the non-conditional path are counted towards
2811       // the conditional path. We leave it for the counts inference algorithm to
2812       // figure out a proper count for an unknown probe.
2813       SpeculatedDbgIntrinsics.push_back(I);
2814       continue;
2815     }
2816 
2817     // Only speculatively execute a single instruction (not counting the
2818     // terminator) for now.
2819     ++SpeculatedInstructions;
2820     if (SpeculatedInstructions > 1)
2821       return false;
2822 
2823     // Don't hoist the instruction if it's unsafe or expensive.
2824     if (!isSafeToSpeculativelyExecute(I) &&
2825         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2826                                   I, BB, ThenBB, EndBB))))
2827       return false;
2828     if (!SpeculatedStoreValue &&
2829         computeSpeculationCost(I, TTI) >
2830             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2831       return false;
2832 
2833     // Store the store speculation candidate.
2834     if (SpeculatedStoreValue)
2835       SpeculatedStore = cast<StoreInst>(I);
2836 
2837     // Do not hoist the instruction if any of its operands are defined but not
2838     // used in BB. The transformation will prevent the operand from
2839     // being sunk into the use block.
2840     for (Use &Op : I->operands()) {
2841       Instruction *OpI = dyn_cast<Instruction>(Op);
2842       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2843         continue; // Not a candidate for sinking.
2844 
2845       ++SinkCandidateUseCounts[OpI];
2846     }
2847   }
2848 
2849   // Consider any sink candidates which are only used in ThenBB as costs for
2850   // speculation. Note, while we iterate over a DenseMap here, we are summing
2851   // and so iteration order isn't significant.
2852   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2853            I = SinkCandidateUseCounts.begin(),
2854            E = SinkCandidateUseCounts.end();
2855        I != E; ++I)
2856     if (I->first->hasNUses(I->second)) {
2857       ++SpeculatedInstructions;
2858       if (SpeculatedInstructions > 1)
2859         return false;
2860     }
2861 
2862   // Check that we can insert the selects and that it's not too expensive to do
2863   // so.
2864   bool Convert = SpeculatedStore != nullptr;
2865   InstructionCost Cost = 0;
2866   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2867                                             SpeculatedInstructions,
2868                                             Cost, TTI);
2869   if (!Convert || Cost > Budget)
2870     return false;
2871 
2872   // If we get here, we can hoist the instruction and if-convert.
2873   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2874 
2875   // Insert a select of the value of the speculated store.
2876   if (SpeculatedStoreValue) {
2877     IRBuilder<NoFolder> Builder(BI);
2878     Value *TrueV = SpeculatedStore->getValueOperand();
2879     Value *FalseV = SpeculatedStoreValue;
2880     if (Invert)
2881       std::swap(TrueV, FalseV);
2882     Value *S = Builder.CreateSelect(
2883         BrCond, TrueV, FalseV, "spec.store.select", BI);
2884     SpeculatedStore->setOperand(0, S);
2885     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2886                                          SpeculatedStore->getDebugLoc());
2887   }
2888 
2889   // Metadata can be dependent on the condition we are hoisting above.
2890   // Conservatively strip all metadata on the instruction. Drop the debug loc
2891   // to avoid making it appear as if the condition is a constant, which would
2892   // be misleading while debugging.
2893   // Similarly strip attributes that maybe dependent on condition we are
2894   // hoisting above.
2895   for (auto &I : *ThenBB) {
2896     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2897       I.setDebugLoc(DebugLoc());
2898     I.dropUndefImplyingAttrsAndUnknownMetadata();
2899   }
2900 
2901   // Hoist the instructions.
2902   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2903                            ThenBB->begin(), std::prev(ThenBB->end()));
2904 
2905   // Insert selects and rewrite the PHI operands.
2906   IRBuilder<NoFolder> Builder(BI);
2907   for (PHINode &PN : EndBB->phis()) {
2908     unsigned OrigI = PN.getBasicBlockIndex(BB);
2909     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2910     Value *OrigV = PN.getIncomingValue(OrigI);
2911     Value *ThenV = PN.getIncomingValue(ThenI);
2912 
2913     // Skip PHIs which are trivial.
2914     if (OrigV == ThenV)
2915       continue;
2916 
2917     // Create a select whose true value is the speculatively executed value and
2918     // false value is the pre-existing value. Swap them if the branch
2919     // destinations were inverted.
2920     Value *TrueV = ThenV, *FalseV = OrigV;
2921     if (Invert)
2922       std::swap(TrueV, FalseV);
2923     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2924     PN.setIncomingValue(OrigI, V);
2925     PN.setIncomingValue(ThenI, V);
2926   }
2927 
2928   // Remove speculated dbg intrinsics.
2929   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2930   // dbg value for the different flows and inserting it after the select.
2931   for (Instruction *I : SpeculatedDbgIntrinsics)
2932     I->eraseFromParent();
2933 
2934   ++NumSpeculations;
2935   return true;
2936 }
2937 
2938 /// Return true if we can thread a branch across this block.
2939 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2940   int Size = 0;
2941 
2942   SmallPtrSet<const Value *, 32> EphValues;
2943   auto IsEphemeral = [&](const Instruction *I) {
2944     if (isa<AssumeInst>(I))
2945       return true;
2946     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2947            all_of(I->users(),
2948                   [&](const User *U) { return EphValues.count(U); });
2949   };
2950 
2951   // Walk the loop in reverse so that we can identify ephemeral values properly
2952   // (values only feeding assumes).
2953   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
2954     // Can't fold blocks that contain noduplicate or convergent calls.
2955     if (CallInst *CI = dyn_cast<CallInst>(&I))
2956       if (CI->cannotDuplicate() || CI->isConvergent())
2957         return false;
2958 
2959     // Ignore ephemeral values which are deleted during codegen.
2960     if (IsEphemeral(&I))
2961       EphValues.insert(&I);
2962     // We will delete Phis while threading, so Phis should not be accounted in
2963     // block's size.
2964     else if (!isa<PHINode>(I)) {
2965       if (Size++ > MaxSmallBlockSize)
2966         return false; // Don't clone large BB's.
2967     }
2968 
2969     // We can only support instructions that do not define values that are
2970     // live outside of the current basic block.
2971     for (User *U : I.users()) {
2972       Instruction *UI = cast<Instruction>(U);
2973       if (UI->getParent() != BB || isa<PHINode>(UI))
2974         return false;
2975     }
2976 
2977     // Looks ok, continue checking.
2978   }
2979 
2980   return true;
2981 }
2982 
2983 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
2984                                         BasicBlock *To) {
2985   // Don't look past the block defining the value, we might get the value from
2986   // a previous loop iteration.
2987   auto *I = dyn_cast<Instruction>(V);
2988   if (I && I->getParent() == To)
2989     return nullptr;
2990 
2991   // We know the value if the From block branches on it.
2992   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
2993   if (BI && BI->isConditional() && BI->getCondition() == V &&
2994       BI->getSuccessor(0) != BI->getSuccessor(1))
2995     return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
2996                                      : ConstantInt::getFalse(BI->getContext());
2997 
2998   return nullptr;
2999 }
3000 
3001 /// If we have a conditional branch on something for which we know the constant
3002 /// value in predecessors (e.g. a phi node in the current block), thread edges
3003 /// from the predecessor to their ultimate destination.
3004 static Optional<bool>
3005 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
3006                                             const DataLayout &DL,
3007                                             AssumptionCache *AC) {
3008   SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
3009   BasicBlock *BB = BI->getParent();
3010   Value *Cond = BI->getCondition();
3011   PHINode *PN = dyn_cast<PHINode>(Cond);
3012   if (PN && PN->getParent() == BB) {
3013     // Degenerate case of a single entry PHI.
3014     if (PN->getNumIncomingValues() == 1) {
3015       FoldSingleEntryPHINodes(PN->getParent());
3016       return true;
3017     }
3018 
3019     for (Use &U : PN->incoming_values())
3020       if (auto *CB = dyn_cast<ConstantInt>(U))
3021         KnownValues[CB].insert(PN->getIncomingBlock(U));
3022   } else {
3023     for (BasicBlock *Pred : predecessors(BB)) {
3024       if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3025         KnownValues[CB].insert(Pred);
3026     }
3027   }
3028 
3029   if (KnownValues.empty())
3030     return false;
3031 
3032   // Now we know that this block has multiple preds and two succs.
3033   // Check that the block is small enough and values defined in the block are
3034   // not used outside of it.
3035   if (!BlockIsSimpleEnoughToThreadThrough(BB))
3036     return false;
3037 
3038   for (const auto &Pair : KnownValues) {
3039     // Okay, we now know that all edges from PredBB should be revectored to
3040     // branch to RealDest.
3041     ConstantInt *CB = Pair.first;
3042     ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3043     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3044 
3045     if (RealDest == BB)
3046       continue; // Skip self loops.
3047 
3048     // Skip if the predecessor's terminator is an indirect branch.
3049     if (any_of(PredBBs, [](BasicBlock *PredBB) {
3050           return isa<IndirectBrInst>(PredBB->getTerminator());
3051         }))
3052       continue;
3053 
3054     LLVM_DEBUG({
3055       dbgs() << "Condition " << *Cond << " in " << BB->getName()
3056              << " has value " << *Pair.first << " in predecessors:\n";
3057       for (const BasicBlock *PredBB : Pair.second)
3058         dbgs() << "  " << PredBB->getName() << "\n";
3059       dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3060     });
3061 
3062     // Split the predecessors we are threading into a new edge block. We'll
3063     // clone the instructions into this block, and then redirect it to RealDest.
3064     BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3065 
3066     // TODO: These just exist to reduce test diff, we can drop them if we like.
3067     EdgeBB->setName(RealDest->getName() + ".critedge");
3068     EdgeBB->moveBefore(RealDest);
3069 
3070     // Update PHI nodes.
3071     AddPredecessorToBlock(RealDest, EdgeBB, BB);
3072 
3073     // BB may have instructions that are being threaded over.  Clone these
3074     // instructions into EdgeBB.  We know that there will be no uses of the
3075     // cloned instructions outside of EdgeBB.
3076     BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3077     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3078     TranslateMap[Cond] = CB;
3079     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3080       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3081         TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3082         continue;
3083       }
3084       // Clone the instruction.
3085       Instruction *N = BBI->clone();
3086       if (BBI->hasName())
3087         N->setName(BBI->getName() + ".c");
3088 
3089       // Update operands due to translation.
3090       for (Use &Op : N->operands()) {
3091         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3092         if (PI != TranslateMap.end())
3093           Op = PI->second;
3094       }
3095 
3096       // Check for trivial simplification.
3097       if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3098         if (!BBI->use_empty())
3099           TranslateMap[&*BBI] = V;
3100         if (!N->mayHaveSideEffects()) {
3101           N->deleteValue(); // Instruction folded away, don't need actual inst
3102           N = nullptr;
3103         }
3104       } else {
3105         if (!BBI->use_empty())
3106           TranslateMap[&*BBI] = N;
3107       }
3108       if (N) {
3109         // Insert the new instruction into its new home.
3110         EdgeBB->getInstList().insert(InsertPt, N);
3111 
3112         // Register the new instruction with the assumption cache if necessary.
3113         if (auto *Assume = dyn_cast<AssumeInst>(N))
3114           if (AC)
3115             AC->registerAssumption(Assume);
3116       }
3117     }
3118 
3119     BB->removePredecessor(EdgeBB);
3120     BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3121     EdgeBI->setSuccessor(0, RealDest);
3122     EdgeBI->setDebugLoc(BI->getDebugLoc());
3123 
3124     if (DTU) {
3125       SmallVector<DominatorTree::UpdateType, 2> Updates;
3126       Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3127       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3128       DTU->applyUpdates(Updates);
3129     }
3130 
3131     // For simplicity, we created a separate basic block for the edge. Merge
3132     // it back into the predecessor if possible. This not only avoids
3133     // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3134     // bypass the check for trivial cycles above.
3135     MergeBlockIntoPredecessor(EdgeBB, DTU);
3136 
3137     // Signal repeat, simplifying any other constants.
3138     return None;
3139   }
3140 
3141   return false;
3142 }
3143 
3144 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3145                                                     DomTreeUpdater *DTU,
3146                                                     const DataLayout &DL,
3147                                                     AssumptionCache *AC) {
3148   Optional<bool> Result;
3149   bool EverChanged = false;
3150   do {
3151     // Note that None means "we changed things, but recurse further."
3152     Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3153     EverChanged |= Result == None || *Result;
3154   } while (Result == None);
3155   return EverChanged;
3156 }
3157 
3158 /// Given a BB that starts with the specified two-entry PHI node,
3159 /// see if we can eliminate it.
3160 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3161                                 DomTreeUpdater *DTU, const DataLayout &DL) {
3162   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3163   // statement", which has a very simple dominance structure.  Basically, we
3164   // are trying to find the condition that is being branched on, which
3165   // subsequently causes this merge to happen.  We really want control
3166   // dependence information for this check, but simplifycfg can't keep it up
3167   // to date, and this catches most of the cases we care about anyway.
3168   BasicBlock *BB = PN->getParent();
3169 
3170   BasicBlock *IfTrue, *IfFalse;
3171   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3172   if (!DomBI)
3173     return false;
3174   Value *IfCond = DomBI->getCondition();
3175   // Don't bother if the branch will be constant folded trivially.
3176   if (isa<ConstantInt>(IfCond))
3177     return false;
3178 
3179   BasicBlock *DomBlock = DomBI->getParent();
3180   SmallVector<BasicBlock *, 2> IfBlocks;
3181   llvm::copy_if(
3182       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3183         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3184       });
3185   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3186          "Will have either one or two blocks to speculate.");
3187 
3188   // If the branch is non-unpredictable, see if we either predictably jump to
3189   // the merge bb (if we have only a single 'then' block), or if we predictably
3190   // jump to one specific 'then' block (if we have two of them).
3191   // It isn't beneficial to speculatively execute the code
3192   // from the block that we know is predictably not entered.
3193   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
3194     uint64_t TWeight, FWeight;
3195     if (DomBI->extractProfMetadata(TWeight, FWeight) &&
3196         (TWeight + FWeight) != 0) {
3197       BranchProbability BITrueProb =
3198           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3199       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3200       BranchProbability BIFalseProb = BITrueProb.getCompl();
3201       if (IfBlocks.size() == 1) {
3202         BranchProbability BIBBProb =
3203             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3204         if (BIBBProb >= Likely)
3205           return false;
3206       } else {
3207         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3208           return false;
3209       }
3210     }
3211   }
3212 
3213   // Don't try to fold an unreachable block. For example, the phi node itself
3214   // can't be the candidate if-condition for a select that we want to form.
3215   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3216     if (IfCondPhiInst->getParent() == BB)
3217       return false;
3218 
3219   // Okay, we found that we can merge this two-entry phi node into a select.
3220   // Doing so would require us to fold *all* two entry phi nodes in this block.
3221   // At some point this becomes non-profitable (particularly if the target
3222   // doesn't support cmov's).  Only do this transformation if there are two or
3223   // fewer PHI nodes in this block.
3224   unsigned NumPhis = 0;
3225   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3226     if (NumPhis > 2)
3227       return false;
3228 
3229   // Loop over the PHI's seeing if we can promote them all to select
3230   // instructions.  While we are at it, keep track of the instructions
3231   // that need to be moved to the dominating block.
3232   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3233   InstructionCost Cost = 0;
3234   InstructionCost Budget =
3235       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3236 
3237   bool Changed = false;
3238   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3239     PHINode *PN = cast<PHINode>(II++);
3240     if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3241       PN->replaceAllUsesWith(V);
3242       PN->eraseFromParent();
3243       Changed = true;
3244       continue;
3245     }
3246 
3247     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
3248                              Cost, Budget, TTI) ||
3249         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
3250                              Cost, Budget, TTI))
3251       return Changed;
3252   }
3253 
3254   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3255   // we ran out of PHIs then we simplified them all.
3256   PN = dyn_cast<PHINode>(BB->begin());
3257   if (!PN)
3258     return true;
3259 
3260   // Return true if at least one of these is a 'not', and another is either
3261   // a 'not' too, or a constant.
3262   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3263     if (!match(V0, m_Not(m_Value())))
3264       std::swap(V0, V1);
3265     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3266     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3267   };
3268 
3269   // Don't fold i1 branches on PHIs which contain binary operators or
3270   // (possibly inverted) select form of or/ands,  unless one of
3271   // the incoming values is an 'not' and another one is freely invertible.
3272   // These can often be turned into switches and other things.
3273   auto IsBinOpOrAnd = [](Value *V) {
3274     return match(
3275         V, m_CombineOr(
3276                m_BinOp(),
3277                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3278                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3279   };
3280   if (PN->getType()->isIntegerTy(1) &&
3281       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3282        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3283       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3284                                  PN->getIncomingValue(1)))
3285     return Changed;
3286 
3287   // If all PHI nodes are promotable, check to make sure that all instructions
3288   // in the predecessor blocks can be promoted as well. If not, we won't be able
3289   // to get rid of the control flow, so it's not worth promoting to select
3290   // instructions.
3291   for (BasicBlock *IfBlock : IfBlocks)
3292     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3293       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3294         // This is not an aggressive instruction that we can promote.
3295         // Because of this, we won't be able to get rid of the control flow, so
3296         // the xform is not worth it.
3297         return Changed;
3298       }
3299 
3300   // If either of the blocks has it's address taken, we can't do this fold.
3301   if (any_of(IfBlocks,
3302              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3303     return Changed;
3304 
3305   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
3306                     << "  T: " << IfTrue->getName()
3307                     << "  F: " << IfFalse->getName() << "\n");
3308 
3309   // If we can still promote the PHI nodes after this gauntlet of tests,
3310   // do all of the PHI's now.
3311 
3312   // Move all 'aggressive' instructions, which are defined in the
3313   // conditional parts of the if's up to the dominating block.
3314   for (BasicBlock *IfBlock : IfBlocks)
3315       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3316 
3317   IRBuilder<NoFolder> Builder(DomBI);
3318   // Propagate fast-math-flags from phi nodes to replacement selects.
3319   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3320   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3321     if (isa<FPMathOperator>(PN))
3322       Builder.setFastMathFlags(PN->getFastMathFlags());
3323 
3324     // Change the PHI node into a select instruction.
3325     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3326     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3327 
3328     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3329     PN->replaceAllUsesWith(Sel);
3330     Sel->takeName(PN);
3331     PN->eraseFromParent();
3332   }
3333 
3334   // At this point, all IfBlocks are empty, so our if statement
3335   // has been flattened.  Change DomBlock to jump directly to our new block to
3336   // avoid other simplifycfg's kicking in on the diamond.
3337   Builder.CreateBr(BB);
3338 
3339   SmallVector<DominatorTree::UpdateType, 3> Updates;
3340   if (DTU) {
3341     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3342     for (auto *Successor : successors(DomBlock))
3343       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3344   }
3345 
3346   DomBI->eraseFromParent();
3347   if (DTU)
3348     DTU->applyUpdates(Updates);
3349 
3350   return true;
3351 }
3352 
3353 static Value *createLogicalOp(IRBuilderBase &Builder,
3354                               Instruction::BinaryOps Opc, Value *LHS,
3355                               Value *RHS, const Twine &Name = "") {
3356   // Try to relax logical op to binary op.
3357   if (impliesPoison(RHS, LHS))
3358     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3359   if (Opc == Instruction::And)
3360     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3361   if (Opc == Instruction::Or)
3362     return Builder.CreateLogicalOr(LHS, RHS, Name);
3363   llvm_unreachable("Invalid logical opcode");
3364 }
3365 
3366 /// Return true if either PBI or BI has branch weight available, and store
3367 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3368 /// not have branch weight, use 1:1 as its weight.
3369 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3370                                    uint64_t &PredTrueWeight,
3371                                    uint64_t &PredFalseWeight,
3372                                    uint64_t &SuccTrueWeight,
3373                                    uint64_t &SuccFalseWeight) {
3374   bool PredHasWeights =
3375       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
3376   bool SuccHasWeights =
3377       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
3378   if (PredHasWeights || SuccHasWeights) {
3379     if (!PredHasWeights)
3380       PredTrueWeight = PredFalseWeight = 1;
3381     if (!SuccHasWeights)
3382       SuccTrueWeight = SuccFalseWeight = 1;
3383     return true;
3384   } else {
3385     return false;
3386   }
3387 }
3388 
3389 /// Determine if the two branches share a common destination and deduce a glue
3390 /// that joins the branches' conditions to arrive at the common destination if
3391 /// that would be profitable.
3392 static Optional<std::pair<Instruction::BinaryOps, bool>>
3393 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3394                                           const TargetTransformInfo *TTI) {
3395   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3396          "Both blocks must end with a conditional branches.");
3397   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3398          "PredBB must be a predecessor of BB.");
3399 
3400   // We have the potential to fold the conditions together, but if the
3401   // predecessor branch is predictable, we may not want to merge them.
3402   uint64_t PTWeight, PFWeight;
3403   BranchProbability PBITrueProb, Likely;
3404   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3405       PBI->extractProfMetadata(PTWeight, PFWeight) &&
3406       (PTWeight + PFWeight) != 0) {
3407     PBITrueProb =
3408         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3409     Likely = TTI->getPredictableBranchThreshold();
3410   }
3411 
3412   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3413     // Speculate the 2nd condition unless the 1st is probably true.
3414     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3415       return {{Instruction::Or, false}};
3416   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3417     // Speculate the 2nd condition unless the 1st is probably false.
3418     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3419       return {{Instruction::And, false}};
3420   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3421     // Speculate the 2nd condition unless the 1st is probably true.
3422     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3423       return {{Instruction::And, true}};
3424   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3425     // Speculate the 2nd condition unless the 1st is probably false.
3426     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3427       return {{Instruction::Or, true}};
3428   }
3429   return None;
3430 }
3431 
3432 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3433                                              DomTreeUpdater *DTU,
3434                                              MemorySSAUpdater *MSSAU,
3435                                              const TargetTransformInfo *TTI) {
3436   BasicBlock *BB = BI->getParent();
3437   BasicBlock *PredBlock = PBI->getParent();
3438 
3439   // Determine if the two branches share a common destination.
3440   Instruction::BinaryOps Opc;
3441   bool InvertPredCond;
3442   std::tie(Opc, InvertPredCond) =
3443       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3444 
3445   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3446 
3447   IRBuilder<> Builder(PBI);
3448   // The builder is used to create instructions to eliminate the branch in BB.
3449   // If BB's terminator has !annotation metadata, add it to the new
3450   // instructions.
3451   Builder.CollectMetadataToCopy(BB->getTerminator(),
3452                                 {LLVMContext::MD_annotation});
3453 
3454   // If we need to invert the condition in the pred block to match, do so now.
3455   if (InvertPredCond) {
3456     Value *NewCond = PBI->getCondition();
3457     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3458       CmpInst *CI = cast<CmpInst>(NewCond);
3459       CI->setPredicate(CI->getInversePredicate());
3460     } else {
3461       NewCond =
3462           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3463     }
3464 
3465     PBI->setCondition(NewCond);
3466     PBI->swapSuccessors();
3467   }
3468 
3469   BasicBlock *UniqueSucc =
3470       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3471 
3472   // Before cloning instructions, notify the successor basic block that it
3473   // is about to have a new predecessor. This will update PHI nodes,
3474   // which will allow us to update live-out uses of bonus instructions.
3475   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3476 
3477   // Try to update branch weights.
3478   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3479   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3480                              SuccTrueWeight, SuccFalseWeight)) {
3481     SmallVector<uint64_t, 8> NewWeights;
3482 
3483     if (PBI->getSuccessor(0) == BB) {
3484       // PBI: br i1 %x, BB, FalseDest
3485       // BI:  br i1 %y, UniqueSucc, FalseDest
3486       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3487       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3488       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3489       //               TrueWeight for PBI * FalseWeight for BI.
3490       // We assume that total weights of a BranchInst can fit into 32 bits.
3491       // Therefore, we will not have overflow using 64-bit arithmetic.
3492       NewWeights.push_back(PredFalseWeight *
3493                                (SuccFalseWeight + SuccTrueWeight) +
3494                            PredTrueWeight * SuccFalseWeight);
3495     } else {
3496       // PBI: br i1 %x, TrueDest, BB
3497       // BI:  br i1 %y, TrueDest, UniqueSucc
3498       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3499       //              FalseWeight for PBI * TrueWeight for BI.
3500       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3501                            PredFalseWeight * SuccTrueWeight);
3502       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3503       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3504     }
3505 
3506     // Halve the weights if any of them cannot fit in an uint32_t
3507     FitWeights(NewWeights);
3508 
3509     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3510     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3511 
3512     // TODO: If BB is reachable from all paths through PredBlock, then we
3513     // could replace PBI's branch probabilities with BI's.
3514   } else
3515     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3516 
3517   // Now, update the CFG.
3518   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3519 
3520   if (DTU)
3521     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3522                        {DominatorTree::Delete, PredBlock, BB}});
3523 
3524   // If BI was a loop latch, it may have had associated loop metadata.
3525   // We need to copy it to the new latch, that is, PBI.
3526   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3527     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3528 
3529   ValueToValueMapTy VMap; // maps original values to cloned values
3530   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3531 
3532   // Now that the Cond was cloned into the predecessor basic block,
3533   // or/and the two conditions together.
3534   Value *BICond = VMap[BI->getCondition()];
3535   PBI->setCondition(
3536       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3537 
3538   // Copy any debug value intrinsics into the end of PredBlock.
3539   for (Instruction &I : *BB) {
3540     if (isa<DbgInfoIntrinsic>(I)) {
3541       Instruction *NewI = I.clone();
3542       RemapInstruction(NewI, VMap,
3543                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3544       NewI->insertBefore(PBI);
3545     }
3546   }
3547 
3548   ++NumFoldBranchToCommonDest;
3549   return true;
3550 }
3551 
3552 /// Return if an instruction's type or any of its operands' types are a vector
3553 /// type.
3554 static bool isVectorOp(Instruction &I) {
3555   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3556            return U->getType()->isVectorTy();
3557          });
3558 }
3559 
3560 /// If this basic block is simple enough, and if a predecessor branches to us
3561 /// and one of our successors, fold the block into the predecessor and use
3562 /// logical operations to pick the right destination.
3563 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3564                                   MemorySSAUpdater *MSSAU,
3565                                   const TargetTransformInfo *TTI,
3566                                   unsigned BonusInstThreshold) {
3567   // If this block ends with an unconditional branch,
3568   // let SpeculativelyExecuteBB() deal with it.
3569   if (!BI->isConditional())
3570     return false;
3571 
3572   BasicBlock *BB = BI->getParent();
3573   TargetTransformInfo::TargetCostKind CostKind =
3574     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3575                                   : TargetTransformInfo::TCK_SizeAndLatency;
3576 
3577   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3578 
3579   if (!Cond ||
3580       (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
3581        !isa<SelectInst>(Cond)) ||
3582       Cond->getParent() != BB || !Cond->hasOneUse())
3583     return false;
3584 
3585   // Cond is known to be a compare or binary operator.  Check to make sure that
3586   // neither operand is a potentially-trapping constant expression.
3587   if (canTrap(Cond->getOperand(0)))
3588     return false;
3589   if (canTrap(Cond->getOperand(1)))
3590     return false;
3591 
3592   // Finally, don't infinitely unroll conditional loops.
3593   if (is_contained(successors(BB), BB))
3594     return false;
3595 
3596   // With which predecessors will we want to deal with?
3597   SmallVector<BasicBlock *, 8> Preds;
3598   for (BasicBlock *PredBlock : predecessors(BB)) {
3599     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3600 
3601     // Check that we have two conditional branches.  If there is a PHI node in
3602     // the common successor, verify that the same value flows in from both
3603     // blocks.
3604     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3605       continue;
3606 
3607     // Determine if the two branches share a common destination.
3608     Instruction::BinaryOps Opc;
3609     bool InvertPredCond;
3610     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3611       std::tie(Opc, InvertPredCond) = *Recipe;
3612     else
3613       continue;
3614 
3615     // Check the cost of inserting the necessary logic before performing the
3616     // transformation.
3617     if (TTI) {
3618       Type *Ty = BI->getCondition()->getType();
3619       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3620       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3621           !isa<CmpInst>(PBI->getCondition())))
3622         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3623 
3624       if (Cost > BranchFoldThreshold)
3625         continue;
3626     }
3627 
3628     // Ok, we do want to deal with this predecessor. Record it.
3629     Preds.emplace_back(PredBlock);
3630   }
3631 
3632   // If there aren't any predecessors into which we can fold,
3633   // don't bother checking the cost.
3634   if (Preds.empty())
3635     return false;
3636 
3637   // Only allow this transformation if computing the condition doesn't involve
3638   // too many instructions and these involved instructions can be executed
3639   // unconditionally. We denote all involved instructions except the condition
3640   // as "bonus instructions", and only allow this transformation when the
3641   // number of the bonus instructions we'll need to create when cloning into
3642   // each predecessor does not exceed a certain threshold.
3643   unsigned NumBonusInsts = 0;
3644   bool SawVectorOp = false;
3645   const unsigned PredCount = Preds.size();
3646   for (Instruction &I : *BB) {
3647     // Don't check the branch condition comparison itself.
3648     if (&I == Cond)
3649       continue;
3650     // Ignore dbg intrinsics, and the terminator.
3651     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3652       continue;
3653     // I must be safe to execute unconditionally.
3654     if (!isSafeToSpeculativelyExecute(&I))
3655       return false;
3656     SawVectorOp |= isVectorOp(I);
3657 
3658     // Account for the cost of duplicating this instruction into each
3659     // predecessor. Ignore free instructions.
3660     if (!TTI ||
3661         TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) {
3662       NumBonusInsts += PredCount;
3663 
3664       // Early exits once we reach the limit.
3665       if (NumBonusInsts >
3666           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3667         return false;
3668     }
3669 
3670     auto IsBCSSAUse = [BB, &I](Use &U) {
3671       auto *UI = cast<Instruction>(U.getUser());
3672       if (auto *PN = dyn_cast<PHINode>(UI))
3673         return PN->getIncomingBlock(U) == BB;
3674       return UI->getParent() == BB && I.comesBefore(UI);
3675     };
3676 
3677     // Does this instruction require rewriting of uses?
3678     if (!all_of(I.uses(), IsBCSSAUse))
3679       return false;
3680   }
3681   if (NumBonusInsts >
3682       BonusInstThreshold *
3683           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3684     return false;
3685 
3686   // Ok, we have the budget. Perform the transformation.
3687   for (BasicBlock *PredBlock : Preds) {
3688     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3689     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3690   }
3691   return false;
3692 }
3693 
3694 // If there is only one store in BB1 and BB2, return it, otherwise return
3695 // nullptr.
3696 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3697   StoreInst *S = nullptr;
3698   for (auto *BB : {BB1, BB2}) {
3699     if (!BB)
3700       continue;
3701     for (auto &I : *BB)
3702       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3703         if (S)
3704           // Multiple stores seen.
3705           return nullptr;
3706         else
3707           S = SI;
3708       }
3709   }
3710   return S;
3711 }
3712 
3713 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3714                                               Value *AlternativeV = nullptr) {
3715   // PHI is going to be a PHI node that allows the value V that is defined in
3716   // BB to be referenced in BB's only successor.
3717   //
3718   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3719   // doesn't matter to us what the other operand is (it'll never get used). We
3720   // could just create a new PHI with an undef incoming value, but that could
3721   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3722   // other PHI. So here we directly look for some PHI in BB's successor with V
3723   // as an incoming operand. If we find one, we use it, else we create a new
3724   // one.
3725   //
3726   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3727   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3728   // where OtherBB is the single other predecessor of BB's only successor.
3729   PHINode *PHI = nullptr;
3730   BasicBlock *Succ = BB->getSingleSuccessor();
3731 
3732   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3733     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3734       PHI = cast<PHINode>(I);
3735       if (!AlternativeV)
3736         break;
3737 
3738       assert(Succ->hasNPredecessors(2));
3739       auto PredI = pred_begin(Succ);
3740       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3741       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3742         break;
3743       PHI = nullptr;
3744     }
3745   if (PHI)
3746     return PHI;
3747 
3748   // If V is not an instruction defined in BB, just return it.
3749   if (!AlternativeV &&
3750       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3751     return V;
3752 
3753   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3754   PHI->addIncoming(V, BB);
3755   for (BasicBlock *PredBB : predecessors(Succ))
3756     if (PredBB != BB)
3757       PHI->addIncoming(
3758           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3759   return PHI;
3760 }
3761 
3762 static bool mergeConditionalStoreToAddress(
3763     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3764     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3765     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3766   // For every pointer, there must be exactly two stores, one coming from
3767   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3768   // store (to any address) in PTB,PFB or QTB,QFB.
3769   // FIXME: We could relax this restriction with a bit more work and performance
3770   // testing.
3771   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3772   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3773   if (!PStore || !QStore)
3774     return false;
3775 
3776   // Now check the stores are compatible.
3777   if (!QStore->isUnordered() || !PStore->isUnordered() ||
3778       PStore->getValueOperand()->getType() !=
3779           QStore->getValueOperand()->getType())
3780     return false;
3781 
3782   // Check that sinking the store won't cause program behavior changes. Sinking
3783   // the store out of the Q blocks won't change any behavior as we're sinking
3784   // from a block to its unconditional successor. But we're moving a store from
3785   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3786   // So we need to check that there are no aliasing loads or stores in
3787   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3788   // operations between PStore and the end of its parent block.
3789   //
3790   // The ideal way to do this is to query AliasAnalysis, but we don't
3791   // preserve AA currently so that is dangerous. Be super safe and just
3792   // check there are no other memory operations at all.
3793   for (auto &I : *QFB->getSinglePredecessor())
3794     if (I.mayReadOrWriteMemory())
3795       return false;
3796   for (auto &I : *QFB)
3797     if (&I != QStore && I.mayReadOrWriteMemory())
3798       return false;
3799   if (QTB)
3800     for (auto &I : *QTB)
3801       if (&I != QStore && I.mayReadOrWriteMemory())
3802         return false;
3803   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3804        I != E; ++I)
3805     if (&*I != PStore && I->mayReadOrWriteMemory())
3806       return false;
3807 
3808   // If we're not in aggressive mode, we only optimize if we have some
3809   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3810   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3811     if (!BB)
3812       return true;
3813     // Heuristic: if the block can be if-converted/phi-folded and the
3814     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3815     // thread this store.
3816     InstructionCost Cost = 0;
3817     InstructionCost Budget =
3818         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3819     for (auto &I : BB->instructionsWithoutDebug(false)) {
3820       // Consider terminator instruction to be free.
3821       if (I.isTerminator())
3822         continue;
3823       // If this is one the stores that we want to speculate out of this BB,
3824       // then don't count it's cost, consider it to be free.
3825       if (auto *S = dyn_cast<StoreInst>(&I))
3826         if (llvm::find(FreeStores, S))
3827           continue;
3828       // Else, we have a white-list of instructions that we are ak speculating.
3829       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3830         return false; // Not in white-list - not worthwhile folding.
3831       // And finally, if this is a non-free instruction that we are okay
3832       // speculating, ensure that we consider the speculation budget.
3833       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3834       if (Cost > Budget)
3835         return false; // Eagerly refuse to fold as soon as we're out of budget.
3836     }
3837     assert(Cost <= Budget &&
3838            "When we run out of budget we will eagerly return from within the "
3839            "per-instruction loop.");
3840     return true;
3841   };
3842 
3843   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3844   if (!MergeCondStoresAggressively &&
3845       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3846        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3847     return false;
3848 
3849   // If PostBB has more than two predecessors, we need to split it so we can
3850   // sink the store.
3851   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3852     // We know that QFB's only successor is PostBB. And QFB has a single
3853     // predecessor. If QTB exists, then its only successor is also PostBB.
3854     // If QTB does not exist, then QFB's only predecessor has a conditional
3855     // branch to QFB and PostBB.
3856     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3857     BasicBlock *NewBB =
3858         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3859     if (!NewBB)
3860       return false;
3861     PostBB = NewBB;
3862   }
3863 
3864   // OK, we're going to sink the stores to PostBB. The store has to be
3865   // conditional though, so first create the predicate.
3866   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3867                      ->getCondition();
3868   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3869                      ->getCondition();
3870 
3871   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3872                                                 PStore->getParent());
3873   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3874                                                 QStore->getParent(), PPHI);
3875 
3876   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3877 
3878   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3879   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3880 
3881   if (InvertPCond)
3882     PPred = QB.CreateNot(PPred);
3883   if (InvertQCond)
3884     QPred = QB.CreateNot(QPred);
3885   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3886 
3887   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3888                                       /*Unreachable=*/false,
3889                                       /*BranchWeights=*/nullptr, DTU);
3890   QB.SetInsertPoint(T);
3891   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3892   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
3893   // Choose the minimum alignment. If we could prove both stores execute, we
3894   // could use biggest one.  In this case, though, we only know that one of the
3895   // stores executes.  And we don't know it's safe to take the alignment from a
3896   // store that doesn't execute.
3897   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3898 
3899   QStore->eraseFromParent();
3900   PStore->eraseFromParent();
3901 
3902   return true;
3903 }
3904 
3905 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3906                                    DomTreeUpdater *DTU, const DataLayout &DL,
3907                                    const TargetTransformInfo &TTI) {
3908   // The intention here is to find diamonds or triangles (see below) where each
3909   // conditional block contains a store to the same address. Both of these
3910   // stores are conditional, so they can't be unconditionally sunk. But it may
3911   // be profitable to speculatively sink the stores into one merged store at the
3912   // end, and predicate the merged store on the union of the two conditions of
3913   // PBI and QBI.
3914   //
3915   // This can reduce the number of stores executed if both of the conditions are
3916   // true, and can allow the blocks to become small enough to be if-converted.
3917   // This optimization will also chain, so that ladders of test-and-set
3918   // sequences can be if-converted away.
3919   //
3920   // We only deal with simple diamonds or triangles:
3921   //
3922   //     PBI       or      PBI        or a combination of the two
3923   //    /   \               | \
3924   //   PTB  PFB             |  PFB
3925   //    \   /               | /
3926   //     QBI                QBI
3927   //    /  \                | \
3928   //   QTB  QFB             |  QFB
3929   //    \  /                | /
3930   //    PostBB            PostBB
3931   //
3932   // We model triangles as a type of diamond with a nullptr "true" block.
3933   // Triangles are canonicalized so that the fallthrough edge is represented by
3934   // a true condition, as in the diagram above.
3935   BasicBlock *PTB = PBI->getSuccessor(0);
3936   BasicBlock *PFB = PBI->getSuccessor(1);
3937   BasicBlock *QTB = QBI->getSuccessor(0);
3938   BasicBlock *QFB = QBI->getSuccessor(1);
3939   BasicBlock *PostBB = QFB->getSingleSuccessor();
3940 
3941   // Make sure we have a good guess for PostBB. If QTB's only successor is
3942   // QFB, then QFB is a better PostBB.
3943   if (QTB->getSingleSuccessor() == QFB)
3944     PostBB = QFB;
3945 
3946   // If we couldn't find a good PostBB, stop.
3947   if (!PostBB)
3948     return false;
3949 
3950   bool InvertPCond = false, InvertQCond = false;
3951   // Canonicalize fallthroughs to the true branches.
3952   if (PFB == QBI->getParent()) {
3953     std::swap(PFB, PTB);
3954     InvertPCond = true;
3955   }
3956   if (QFB == PostBB) {
3957     std::swap(QFB, QTB);
3958     InvertQCond = true;
3959   }
3960 
3961   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3962   // and QFB may not. Model fallthroughs as a nullptr block.
3963   if (PTB == QBI->getParent())
3964     PTB = nullptr;
3965   if (QTB == PostBB)
3966     QTB = nullptr;
3967 
3968   // Legality bailouts. We must have at least the non-fallthrough blocks and
3969   // the post-dominating block, and the non-fallthroughs must only have one
3970   // predecessor.
3971   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3972     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3973   };
3974   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3975       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3976     return false;
3977   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3978       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3979     return false;
3980   if (!QBI->getParent()->hasNUses(2))
3981     return false;
3982 
3983   // OK, this is a sequence of two diamonds or triangles.
3984   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3985   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3986   for (auto *BB : {PTB, PFB}) {
3987     if (!BB)
3988       continue;
3989     for (auto &I : *BB)
3990       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3991         PStoreAddresses.insert(SI->getPointerOperand());
3992   }
3993   for (auto *BB : {QTB, QFB}) {
3994     if (!BB)
3995       continue;
3996     for (auto &I : *BB)
3997       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3998         QStoreAddresses.insert(SI->getPointerOperand());
3999   }
4000 
4001   set_intersect(PStoreAddresses, QStoreAddresses);
4002   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
4003   // clear what it contains.
4004   auto &CommonAddresses = PStoreAddresses;
4005 
4006   bool Changed = false;
4007   for (auto *Address : CommonAddresses)
4008     Changed |=
4009         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
4010                                        InvertPCond, InvertQCond, DTU, DL, TTI);
4011   return Changed;
4012 }
4013 
4014 /// If the previous block ended with a widenable branch, determine if reusing
4015 /// the target block is profitable and legal.  This will have the effect of
4016 /// "widening" PBI, but doesn't require us to reason about hosting safety.
4017 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4018                                            DomTreeUpdater *DTU) {
4019   // TODO: This can be generalized in two important ways:
4020   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4021   //    values from the PBI edge.
4022   // 2) We can sink side effecting instructions into BI's fallthrough
4023   //    successor provided they doesn't contribute to computation of
4024   //    BI's condition.
4025   Value *CondWB, *WC;
4026   BasicBlock *IfTrueBB, *IfFalseBB;
4027   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
4028       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
4029     return false;
4030   if (!IfFalseBB->phis().empty())
4031     return false; // TODO
4032   // Use lambda to lazily compute expensive condition after cheap ones.
4033   auto NoSideEffects = [](BasicBlock &BB) {
4034     return llvm::none_of(BB, [](const Instruction &I) {
4035         return I.mayWriteToMemory() || I.mayHaveSideEffects();
4036       });
4037   };
4038   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4039       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4040       NoSideEffects(*BI->getParent())) {
4041     auto *OldSuccessor = BI->getSuccessor(1);
4042     OldSuccessor->removePredecessor(BI->getParent());
4043     BI->setSuccessor(1, IfFalseBB);
4044     if (DTU)
4045       DTU->applyUpdates(
4046           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4047            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4048     return true;
4049   }
4050   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4051       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4052       NoSideEffects(*BI->getParent())) {
4053     auto *OldSuccessor = BI->getSuccessor(0);
4054     OldSuccessor->removePredecessor(BI->getParent());
4055     BI->setSuccessor(0, IfFalseBB);
4056     if (DTU)
4057       DTU->applyUpdates(
4058           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4059            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4060     return true;
4061   }
4062   return false;
4063 }
4064 
4065 /// If we have a conditional branch as a predecessor of another block,
4066 /// this function tries to simplify it.  We know
4067 /// that PBI and BI are both conditional branches, and BI is in one of the
4068 /// successor blocks of PBI - PBI branches to BI.
4069 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4070                                            DomTreeUpdater *DTU,
4071                                            const DataLayout &DL,
4072                                            const TargetTransformInfo &TTI) {
4073   assert(PBI->isConditional() && BI->isConditional());
4074   BasicBlock *BB = BI->getParent();
4075 
4076   // If this block ends with a branch instruction, and if there is a
4077   // predecessor that ends on a branch of the same condition, make
4078   // this conditional branch redundant.
4079   if (PBI->getCondition() == BI->getCondition() &&
4080       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4081     // Okay, the outcome of this conditional branch is statically
4082     // knowable.  If this block had a single pred, handle specially, otherwise
4083     // FoldCondBranchOnValueKnownInPredecessor() will handle it.
4084     if (BB->getSinglePredecessor()) {
4085       // Turn this into a branch on constant.
4086       bool CondIsTrue = PBI->getSuccessor(0) == BB;
4087       BI->setCondition(
4088           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4089       return true; // Nuke the branch on constant.
4090     }
4091   }
4092 
4093   // If the previous block ended with a widenable branch, determine if reusing
4094   // the target block is profitable and legal.  This will have the effect of
4095   // "widening" PBI, but doesn't require us to reason about hosting safety.
4096   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4097     return true;
4098 
4099   if (canTrap(BI->getCondition()))
4100     return false;
4101 
4102   // If both branches are conditional and both contain stores to the same
4103   // address, remove the stores from the conditionals and create a conditional
4104   // merged store at the end.
4105   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4106     return true;
4107 
4108   // If this is a conditional branch in an empty block, and if any
4109   // predecessors are a conditional branch to one of our destinations,
4110   // fold the conditions into logical ops and one cond br.
4111 
4112   // Ignore dbg intrinsics.
4113   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4114     return false;
4115 
4116   int PBIOp, BIOp;
4117   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4118     PBIOp = 0;
4119     BIOp = 0;
4120   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4121     PBIOp = 0;
4122     BIOp = 1;
4123   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4124     PBIOp = 1;
4125     BIOp = 0;
4126   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4127     PBIOp = 1;
4128     BIOp = 1;
4129   } else {
4130     return false;
4131   }
4132 
4133   // Check to make sure that the other destination of this branch
4134   // isn't BB itself.  If so, this is an infinite loop that will
4135   // keep getting unwound.
4136   if (PBI->getSuccessor(PBIOp) == BB)
4137     return false;
4138 
4139   // Do not perform this transformation if it would require
4140   // insertion of a large number of select instructions. For targets
4141   // without predication/cmovs, this is a big pessimization.
4142 
4143   // Also do not perform this transformation if any phi node in the common
4144   // destination block can trap when reached by BB or PBB (PR17073). In that
4145   // case, it would be unsafe to hoist the operation into a select instruction.
4146 
4147   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4148   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4149   unsigned NumPhis = 0;
4150   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4151        ++II, ++NumPhis) {
4152     if (NumPhis > 2) // Disable this xform.
4153       return false;
4154 
4155     PHINode *PN = cast<PHINode>(II);
4156     Value *BIV = PN->getIncomingValueForBlock(BB);
4157     if (canTrap(BIV))
4158       return false;
4159 
4160     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
4161     Value *PBIV = PN->getIncomingValue(PBBIdx);
4162     if (canTrap(PBIV))
4163       return false;
4164   }
4165 
4166   // Finally, if everything is ok, fold the branches to logical ops.
4167   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4168 
4169   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4170                     << "AND: " << *BI->getParent());
4171 
4172   SmallVector<DominatorTree::UpdateType, 5> Updates;
4173 
4174   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4175   // branch in it, where one edge (OtherDest) goes back to itself but the other
4176   // exits.  We don't *know* that the program avoids the infinite loop
4177   // (even though that seems likely).  If we do this xform naively, we'll end up
4178   // recursively unpeeling the loop.  Since we know that (after the xform is
4179   // done) that the block *is* infinite if reached, we just make it an obviously
4180   // infinite loop with no cond branch.
4181   if (OtherDest == BB) {
4182     // Insert it at the end of the function, because it's either code,
4183     // or it won't matter if it's hot. :)
4184     BasicBlock *InfLoopBlock =
4185         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4186     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4187     if (DTU)
4188       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4189     OtherDest = InfLoopBlock;
4190   }
4191 
4192   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4193 
4194   // BI may have other predecessors.  Because of this, we leave
4195   // it alone, but modify PBI.
4196 
4197   // Make sure we get to CommonDest on True&True directions.
4198   Value *PBICond = PBI->getCondition();
4199   IRBuilder<NoFolder> Builder(PBI);
4200   if (PBIOp)
4201     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4202 
4203   Value *BICond = BI->getCondition();
4204   if (BIOp)
4205     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4206 
4207   // Merge the conditions.
4208   Value *Cond =
4209       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4210 
4211   // Modify PBI to branch on the new condition to the new dests.
4212   PBI->setCondition(Cond);
4213   PBI->setSuccessor(0, CommonDest);
4214   PBI->setSuccessor(1, OtherDest);
4215 
4216   if (DTU) {
4217     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4218     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4219 
4220     DTU->applyUpdates(Updates);
4221   }
4222 
4223   // Update branch weight for PBI.
4224   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4225   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4226   bool HasWeights =
4227       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4228                              SuccTrueWeight, SuccFalseWeight);
4229   if (HasWeights) {
4230     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4231     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4232     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4233     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4234     // The weight to CommonDest should be PredCommon * SuccTotal +
4235     //                                    PredOther * SuccCommon.
4236     // The weight to OtherDest should be PredOther * SuccOther.
4237     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4238                                   PredOther * SuccCommon,
4239                               PredOther * SuccOther};
4240     // Halve the weights if any of them cannot fit in an uint32_t
4241     FitWeights(NewWeights);
4242 
4243     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
4244   }
4245 
4246   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4247   // block that are identical to the entries for BI's block.
4248   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4249 
4250   // We know that the CommonDest already had an edge from PBI to
4251   // it.  If it has PHIs though, the PHIs may have different
4252   // entries for BB and PBI's BB.  If so, insert a select to make
4253   // them agree.
4254   for (PHINode &PN : CommonDest->phis()) {
4255     Value *BIV = PN.getIncomingValueForBlock(BB);
4256     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4257     Value *PBIV = PN.getIncomingValue(PBBIdx);
4258     if (BIV != PBIV) {
4259       // Insert a select in PBI to pick the right value.
4260       SelectInst *NV = cast<SelectInst>(
4261           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4262       PN.setIncomingValue(PBBIdx, NV);
4263       // Although the select has the same condition as PBI, the original branch
4264       // weights for PBI do not apply to the new select because the select's
4265       // 'logical' edges are incoming edges of the phi that is eliminated, not
4266       // the outgoing edges of PBI.
4267       if (HasWeights) {
4268         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4269         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4270         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4271         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4272         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4273         // The weight to PredOtherDest should be PredOther * SuccCommon.
4274         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4275                                   PredOther * SuccCommon};
4276 
4277         FitWeights(NewWeights);
4278 
4279         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
4280       }
4281     }
4282   }
4283 
4284   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4285   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4286 
4287   // This basic block is probably dead.  We know it has at least
4288   // one fewer predecessor.
4289   return true;
4290 }
4291 
4292 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4293 // true or to FalseBB if Cond is false.
4294 // Takes care of updating the successors and removing the old terminator.
4295 // Also makes sure not to introduce new successors by assuming that edges to
4296 // non-successor TrueBBs and FalseBBs aren't reachable.
4297 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
4298                                                 Value *Cond, BasicBlock *TrueBB,
4299                                                 BasicBlock *FalseBB,
4300                                                 uint32_t TrueWeight,
4301                                                 uint32_t FalseWeight) {
4302   auto *BB = OldTerm->getParent();
4303   // Remove any superfluous successor edges from the CFG.
4304   // First, figure out which successors to preserve.
4305   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4306   // successor.
4307   BasicBlock *KeepEdge1 = TrueBB;
4308   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4309 
4310   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4311 
4312   // Then remove the rest.
4313   for (BasicBlock *Succ : successors(OldTerm)) {
4314     // Make sure only to keep exactly one copy of each edge.
4315     if (Succ == KeepEdge1)
4316       KeepEdge1 = nullptr;
4317     else if (Succ == KeepEdge2)
4318       KeepEdge2 = nullptr;
4319     else {
4320       Succ->removePredecessor(BB,
4321                               /*KeepOneInputPHIs=*/true);
4322 
4323       if (Succ != TrueBB && Succ != FalseBB)
4324         RemovedSuccessors.insert(Succ);
4325     }
4326   }
4327 
4328   IRBuilder<> Builder(OldTerm);
4329   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4330 
4331   // Insert an appropriate new terminator.
4332   if (!KeepEdge1 && !KeepEdge2) {
4333     if (TrueBB == FalseBB) {
4334       // We were only looking for one successor, and it was present.
4335       // Create an unconditional branch to it.
4336       Builder.CreateBr(TrueBB);
4337     } else {
4338       // We found both of the successors we were looking for.
4339       // Create a conditional branch sharing the condition of the select.
4340       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4341       if (TrueWeight != FalseWeight)
4342         setBranchWeights(NewBI, TrueWeight, FalseWeight);
4343     }
4344   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4345     // Neither of the selected blocks were successors, so this
4346     // terminator must be unreachable.
4347     new UnreachableInst(OldTerm->getContext(), OldTerm);
4348   } else {
4349     // One of the selected values was a successor, but the other wasn't.
4350     // Insert an unconditional branch to the one that was found;
4351     // the edge to the one that wasn't must be unreachable.
4352     if (!KeepEdge1) {
4353       // Only TrueBB was found.
4354       Builder.CreateBr(TrueBB);
4355     } else {
4356       // Only FalseBB was found.
4357       Builder.CreateBr(FalseBB);
4358     }
4359   }
4360 
4361   EraseTerminatorAndDCECond(OldTerm);
4362 
4363   if (DTU) {
4364     SmallVector<DominatorTree::UpdateType, 2> Updates;
4365     Updates.reserve(RemovedSuccessors.size());
4366     for (auto *RemovedSuccessor : RemovedSuccessors)
4367       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4368     DTU->applyUpdates(Updates);
4369   }
4370 
4371   return true;
4372 }
4373 
4374 // Replaces
4375 //   (switch (select cond, X, Y)) on constant X, Y
4376 // with a branch - conditional if X and Y lead to distinct BBs,
4377 // unconditional otherwise.
4378 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4379                                             SelectInst *Select) {
4380   // Check for constant integer values in the select.
4381   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4382   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4383   if (!TrueVal || !FalseVal)
4384     return false;
4385 
4386   // Find the relevant condition and destinations.
4387   Value *Condition = Select->getCondition();
4388   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4389   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4390 
4391   // Get weight for TrueBB and FalseBB.
4392   uint32_t TrueWeight = 0, FalseWeight = 0;
4393   SmallVector<uint64_t, 8> Weights;
4394   bool HasWeights = HasBranchWeights(SI);
4395   if (HasWeights) {
4396     GetBranchWeights(SI, Weights);
4397     if (Weights.size() == 1 + SI->getNumCases()) {
4398       TrueWeight =
4399           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4400       FalseWeight =
4401           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4402     }
4403   }
4404 
4405   // Perform the actual simplification.
4406   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4407                                     FalseWeight);
4408 }
4409 
4410 // Replaces
4411 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4412 //                             blockaddress(@fn, BlockB)))
4413 // with
4414 //   (br cond, BlockA, BlockB).
4415 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4416                                                 SelectInst *SI) {
4417   // Check that both operands of the select are block addresses.
4418   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4419   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4420   if (!TBA || !FBA)
4421     return false;
4422 
4423   // Extract the actual blocks.
4424   BasicBlock *TrueBB = TBA->getBasicBlock();
4425   BasicBlock *FalseBB = FBA->getBasicBlock();
4426 
4427   // Perform the actual simplification.
4428   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4429                                     0);
4430 }
4431 
4432 /// This is called when we find an icmp instruction
4433 /// (a seteq/setne with a constant) as the only instruction in a
4434 /// block that ends with an uncond branch.  We are looking for a very specific
4435 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4436 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4437 /// default value goes to an uncond block with a seteq in it, we get something
4438 /// like:
4439 ///
4440 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4441 /// DEFAULT:
4442 ///   %tmp = icmp eq i8 %A, 92
4443 ///   br label %end
4444 /// end:
4445 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4446 ///
4447 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4448 /// the PHI, merging the third icmp into the switch.
4449 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4450     ICmpInst *ICI, IRBuilder<> &Builder) {
4451   BasicBlock *BB = ICI->getParent();
4452 
4453   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4454   // complex.
4455   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4456     return false;
4457 
4458   Value *V = ICI->getOperand(0);
4459   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4460 
4461   // The pattern we're looking for is where our only predecessor is a switch on
4462   // 'V' and this block is the default case for the switch.  In this case we can
4463   // fold the compared value into the switch to simplify things.
4464   BasicBlock *Pred = BB->getSinglePredecessor();
4465   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4466     return false;
4467 
4468   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4469   if (SI->getCondition() != V)
4470     return false;
4471 
4472   // If BB is reachable on a non-default case, then we simply know the value of
4473   // V in this block.  Substitute it and constant fold the icmp instruction
4474   // away.
4475   if (SI->getDefaultDest() != BB) {
4476     ConstantInt *VVal = SI->findCaseDest(BB);
4477     assert(VVal && "Should have a unique destination value");
4478     ICI->setOperand(0, VVal);
4479 
4480     if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
4481       ICI->replaceAllUsesWith(V);
4482       ICI->eraseFromParent();
4483     }
4484     // BB is now empty, so it is likely to simplify away.
4485     return requestResimplify();
4486   }
4487 
4488   // Ok, the block is reachable from the default dest.  If the constant we're
4489   // comparing exists in one of the other edges, then we can constant fold ICI
4490   // and zap it.
4491   if (SI->findCaseValue(Cst) != SI->case_default()) {
4492     Value *V;
4493     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4494       V = ConstantInt::getFalse(BB->getContext());
4495     else
4496       V = ConstantInt::getTrue(BB->getContext());
4497 
4498     ICI->replaceAllUsesWith(V);
4499     ICI->eraseFromParent();
4500     // BB is now empty, so it is likely to simplify away.
4501     return requestResimplify();
4502   }
4503 
4504   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4505   // the block.
4506   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4507   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4508   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4509       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4510     return false;
4511 
4512   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4513   // true in the PHI.
4514   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4515   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4516 
4517   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4518     std::swap(DefaultCst, NewCst);
4519 
4520   // Replace ICI (which is used by the PHI for the default value) with true or
4521   // false depending on if it is EQ or NE.
4522   ICI->replaceAllUsesWith(DefaultCst);
4523   ICI->eraseFromParent();
4524 
4525   SmallVector<DominatorTree::UpdateType, 2> Updates;
4526 
4527   // Okay, the switch goes to this block on a default value.  Add an edge from
4528   // the switch to the merge point on the compared value.
4529   BasicBlock *NewBB =
4530       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4531   {
4532     SwitchInstProfUpdateWrapper SIW(*SI);
4533     auto W0 = SIW.getSuccessorWeight(0);
4534     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4535     if (W0) {
4536       NewW = ((uint64_t(*W0) + 1) >> 1);
4537       SIW.setSuccessorWeight(0, *NewW);
4538     }
4539     SIW.addCase(Cst, NewBB, NewW);
4540     if (DTU)
4541       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4542   }
4543 
4544   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4545   Builder.SetInsertPoint(NewBB);
4546   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4547   Builder.CreateBr(SuccBlock);
4548   PHIUse->addIncoming(NewCst, NewBB);
4549   if (DTU) {
4550     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4551     DTU->applyUpdates(Updates);
4552   }
4553   return true;
4554 }
4555 
4556 /// The specified branch is a conditional branch.
4557 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4558 /// fold it into a switch instruction if so.
4559 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4560                                                IRBuilder<> &Builder,
4561                                                const DataLayout &DL) {
4562   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4563   if (!Cond)
4564     return false;
4565 
4566   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4567   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4568   // 'setne's and'ed together, collect them.
4569 
4570   // Try to gather values from a chain of and/or to be turned into a switch
4571   ConstantComparesGatherer ConstantCompare(Cond, DL);
4572   // Unpack the result
4573   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4574   Value *CompVal = ConstantCompare.CompValue;
4575   unsigned UsedICmps = ConstantCompare.UsedICmps;
4576   Value *ExtraCase = ConstantCompare.Extra;
4577 
4578   // If we didn't have a multiply compared value, fail.
4579   if (!CompVal)
4580     return false;
4581 
4582   // Avoid turning single icmps into a switch.
4583   if (UsedICmps <= 1)
4584     return false;
4585 
4586   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4587 
4588   // There might be duplicate constants in the list, which the switch
4589   // instruction can't handle, remove them now.
4590   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4591   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4592 
4593   // If Extra was used, we require at least two switch values to do the
4594   // transformation.  A switch with one value is just a conditional branch.
4595   if (ExtraCase && Values.size() < 2)
4596     return false;
4597 
4598   // TODO: Preserve branch weight metadata, similarly to how
4599   // FoldValueComparisonIntoPredecessors preserves it.
4600 
4601   // Figure out which block is which destination.
4602   BasicBlock *DefaultBB = BI->getSuccessor(1);
4603   BasicBlock *EdgeBB = BI->getSuccessor(0);
4604   if (!TrueWhenEqual)
4605     std::swap(DefaultBB, EdgeBB);
4606 
4607   BasicBlock *BB = BI->getParent();
4608 
4609   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4610                     << " cases into SWITCH.  BB is:\n"
4611                     << *BB);
4612 
4613   SmallVector<DominatorTree::UpdateType, 2> Updates;
4614 
4615   // If there are any extra values that couldn't be folded into the switch
4616   // then we evaluate them with an explicit branch first. Split the block
4617   // right before the condbr to handle it.
4618   if (ExtraCase) {
4619     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4620                                    /*MSSAU=*/nullptr, "switch.early.test");
4621 
4622     // Remove the uncond branch added to the old block.
4623     Instruction *OldTI = BB->getTerminator();
4624     Builder.SetInsertPoint(OldTI);
4625 
4626     // There can be an unintended UB if extra values are Poison. Before the
4627     // transformation, extra values may not be evaluated according to the
4628     // condition, and it will not raise UB. But after transformation, we are
4629     // evaluating extra values before checking the condition, and it will raise
4630     // UB. It can be solved by adding freeze instruction to extra values.
4631     AssumptionCache *AC = Options.AC;
4632 
4633     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4634       ExtraCase = Builder.CreateFreeze(ExtraCase);
4635 
4636     if (TrueWhenEqual)
4637       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4638     else
4639       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4640 
4641     OldTI->eraseFromParent();
4642 
4643     if (DTU)
4644       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4645 
4646     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4647     // for the edge we just added.
4648     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4649 
4650     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4651                       << "\nEXTRABB = " << *BB);
4652     BB = NewBB;
4653   }
4654 
4655   Builder.SetInsertPoint(BI);
4656   // Convert pointer to int before we switch.
4657   if (CompVal->getType()->isPointerTy()) {
4658     CompVal = Builder.CreatePtrToInt(
4659         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4660   }
4661 
4662   // Create the new switch instruction now.
4663   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4664 
4665   // Add all of the 'cases' to the switch instruction.
4666   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4667     New->addCase(Values[i], EdgeBB);
4668 
4669   // We added edges from PI to the EdgeBB.  As such, if there were any
4670   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4671   // the number of edges added.
4672   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4673     PHINode *PN = cast<PHINode>(BBI);
4674     Value *InVal = PN->getIncomingValueForBlock(BB);
4675     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4676       PN->addIncoming(InVal, BB);
4677   }
4678 
4679   // Erase the old branch instruction.
4680   EraseTerminatorAndDCECond(BI);
4681   if (DTU)
4682     DTU->applyUpdates(Updates);
4683 
4684   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4685   return true;
4686 }
4687 
4688 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4689   if (isa<PHINode>(RI->getValue()))
4690     return simplifyCommonResume(RI);
4691   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4692            RI->getValue() == RI->getParent()->getFirstNonPHI())
4693     // The resume must unwind the exception that caused control to branch here.
4694     return simplifySingleResume(RI);
4695 
4696   return false;
4697 }
4698 
4699 // Check if cleanup block is empty
4700 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4701   for (Instruction &I : R) {
4702     auto *II = dyn_cast<IntrinsicInst>(&I);
4703     if (!II)
4704       return false;
4705 
4706     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4707     switch (IntrinsicID) {
4708     case Intrinsic::dbg_declare:
4709     case Intrinsic::dbg_value:
4710     case Intrinsic::dbg_label:
4711     case Intrinsic::lifetime_end:
4712       break;
4713     default:
4714       return false;
4715     }
4716   }
4717   return true;
4718 }
4719 
4720 // Simplify resume that is shared by several landing pads (phi of landing pad).
4721 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4722   BasicBlock *BB = RI->getParent();
4723 
4724   // Check that there are no other instructions except for debug and lifetime
4725   // intrinsics between the phi's and resume instruction.
4726   if (!isCleanupBlockEmpty(
4727           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4728     return false;
4729 
4730   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4731   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4732 
4733   // Check incoming blocks to see if any of them are trivial.
4734   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4735        Idx++) {
4736     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4737     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4738 
4739     // If the block has other successors, we can not delete it because
4740     // it has other dependents.
4741     if (IncomingBB->getUniqueSuccessor() != BB)
4742       continue;
4743 
4744     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4745     // Not the landing pad that caused the control to branch here.
4746     if (IncomingValue != LandingPad)
4747       continue;
4748 
4749     if (isCleanupBlockEmpty(
4750             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4751       TrivialUnwindBlocks.insert(IncomingBB);
4752   }
4753 
4754   // If no trivial unwind blocks, don't do any simplifications.
4755   if (TrivialUnwindBlocks.empty())
4756     return false;
4757 
4758   // Turn all invokes that unwind here into calls.
4759   for (auto *TrivialBB : TrivialUnwindBlocks) {
4760     // Blocks that will be simplified should be removed from the phi node.
4761     // Note there could be multiple edges to the resume block, and we need
4762     // to remove them all.
4763     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4764       BB->removePredecessor(TrivialBB, true);
4765 
4766     for (BasicBlock *Pred :
4767          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4768       removeUnwindEdge(Pred, DTU);
4769       ++NumInvokes;
4770     }
4771 
4772     // In each SimplifyCFG run, only the current processed block can be erased.
4773     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4774     // of erasing TrivialBB, we only remove the branch to the common resume
4775     // block so that we can later erase the resume block since it has no
4776     // predecessors.
4777     TrivialBB->getTerminator()->eraseFromParent();
4778     new UnreachableInst(RI->getContext(), TrivialBB);
4779     if (DTU)
4780       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4781   }
4782 
4783   // Delete the resume block if all its predecessors have been removed.
4784   if (pred_empty(BB))
4785     DeleteDeadBlock(BB, DTU);
4786 
4787   return !TrivialUnwindBlocks.empty();
4788 }
4789 
4790 // Simplify resume that is only used by a single (non-phi) landing pad.
4791 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4792   BasicBlock *BB = RI->getParent();
4793   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4794   assert(RI->getValue() == LPInst &&
4795          "Resume must unwind the exception that caused control to here");
4796 
4797   // Check that there are no other instructions except for debug intrinsics.
4798   if (!isCleanupBlockEmpty(
4799           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4800     return false;
4801 
4802   // Turn all invokes that unwind here into calls and delete the basic block.
4803   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4804     removeUnwindEdge(Pred, DTU);
4805     ++NumInvokes;
4806   }
4807 
4808   // The landingpad is now unreachable.  Zap it.
4809   DeleteDeadBlock(BB, DTU);
4810   return true;
4811 }
4812 
4813 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4814   // If this is a trivial cleanup pad that executes no instructions, it can be
4815   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4816   // that is an EH pad will be updated to continue to the caller and any
4817   // predecessor that terminates with an invoke instruction will have its invoke
4818   // instruction converted to a call instruction.  If the cleanup pad being
4819   // simplified does not continue to the caller, each predecessor will be
4820   // updated to continue to the unwind destination of the cleanup pad being
4821   // simplified.
4822   BasicBlock *BB = RI->getParent();
4823   CleanupPadInst *CPInst = RI->getCleanupPad();
4824   if (CPInst->getParent() != BB)
4825     // This isn't an empty cleanup.
4826     return false;
4827 
4828   // We cannot kill the pad if it has multiple uses.  This typically arises
4829   // from unreachable basic blocks.
4830   if (!CPInst->hasOneUse())
4831     return false;
4832 
4833   // Check that there are no other instructions except for benign intrinsics.
4834   if (!isCleanupBlockEmpty(
4835           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4836     return false;
4837 
4838   // If the cleanup return we are simplifying unwinds to the caller, this will
4839   // set UnwindDest to nullptr.
4840   BasicBlock *UnwindDest = RI->getUnwindDest();
4841   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4842 
4843   // We're about to remove BB from the control flow.  Before we do, sink any
4844   // PHINodes into the unwind destination.  Doing this before changing the
4845   // control flow avoids some potentially slow checks, since we can currently
4846   // be certain that UnwindDest and BB have no common predecessors (since they
4847   // are both EH pads).
4848   if (UnwindDest) {
4849     // First, go through the PHI nodes in UnwindDest and update any nodes that
4850     // reference the block we are removing
4851     for (PHINode &DestPN : UnwindDest->phis()) {
4852       int Idx = DestPN.getBasicBlockIndex(BB);
4853       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4854       assert(Idx != -1);
4855       // This PHI node has an incoming value that corresponds to a control
4856       // path through the cleanup pad we are removing.  If the incoming
4857       // value is in the cleanup pad, it must be a PHINode (because we
4858       // verified above that the block is otherwise empty).  Otherwise, the
4859       // value is either a constant or a value that dominates the cleanup
4860       // pad being removed.
4861       //
4862       // Because BB and UnwindDest are both EH pads, all of their
4863       // predecessors must unwind to these blocks, and since no instruction
4864       // can have multiple unwind destinations, there will be no overlap in
4865       // incoming blocks between SrcPN and DestPN.
4866       Value *SrcVal = DestPN.getIncomingValue(Idx);
4867       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4868 
4869       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4870       for (auto *Pred : predecessors(BB)) {
4871         Value *Incoming =
4872             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4873         DestPN.addIncoming(Incoming, Pred);
4874       }
4875     }
4876 
4877     // Sink any remaining PHI nodes directly into UnwindDest.
4878     Instruction *InsertPt = DestEHPad;
4879     for (PHINode &PN : make_early_inc_range(BB->phis())) {
4880       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4881         // If the PHI node has no uses or all of its uses are in this basic
4882         // block (meaning they are debug or lifetime intrinsics), just leave
4883         // it.  It will be erased when we erase BB below.
4884         continue;
4885 
4886       // Otherwise, sink this PHI node into UnwindDest.
4887       // Any predecessors to UnwindDest which are not already represented
4888       // must be back edges which inherit the value from the path through
4889       // BB.  In this case, the PHI value must reference itself.
4890       for (auto *pred : predecessors(UnwindDest))
4891         if (pred != BB)
4892           PN.addIncoming(&PN, pred);
4893       PN.moveBefore(InsertPt);
4894       // Also, add a dummy incoming value for the original BB itself,
4895       // so that the PHI is well-formed until we drop said predecessor.
4896       PN.addIncoming(UndefValue::get(PN.getType()), BB);
4897     }
4898   }
4899 
4900   std::vector<DominatorTree::UpdateType> Updates;
4901 
4902   // We use make_early_inc_range here because we will remove all predecessors.
4903   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4904     if (UnwindDest == nullptr) {
4905       if (DTU) {
4906         DTU->applyUpdates(Updates);
4907         Updates.clear();
4908       }
4909       removeUnwindEdge(PredBB, DTU);
4910       ++NumInvokes;
4911     } else {
4912       BB->removePredecessor(PredBB);
4913       Instruction *TI = PredBB->getTerminator();
4914       TI->replaceUsesOfWith(BB, UnwindDest);
4915       if (DTU) {
4916         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4917         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4918       }
4919     }
4920   }
4921 
4922   if (DTU)
4923     DTU->applyUpdates(Updates);
4924 
4925   DeleteDeadBlock(BB, DTU);
4926 
4927   return true;
4928 }
4929 
4930 // Try to merge two cleanuppads together.
4931 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4932   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4933   // with.
4934   BasicBlock *UnwindDest = RI->getUnwindDest();
4935   if (!UnwindDest)
4936     return false;
4937 
4938   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4939   // be safe to merge without code duplication.
4940   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4941     return false;
4942 
4943   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4944   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4945   if (!SuccessorCleanupPad)
4946     return false;
4947 
4948   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4949   // Replace any uses of the successor cleanupad with the predecessor pad
4950   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4951   // funclet bundle operands.
4952   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4953   // Remove the old cleanuppad.
4954   SuccessorCleanupPad->eraseFromParent();
4955   // Now, we simply replace the cleanupret with a branch to the unwind
4956   // destination.
4957   BranchInst::Create(UnwindDest, RI->getParent());
4958   RI->eraseFromParent();
4959 
4960   return true;
4961 }
4962 
4963 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4964   // It is possible to transiantly have an undef cleanuppad operand because we
4965   // have deleted some, but not all, dead blocks.
4966   // Eventually, this block will be deleted.
4967   if (isa<UndefValue>(RI->getOperand(0)))
4968     return false;
4969 
4970   if (mergeCleanupPad(RI))
4971     return true;
4972 
4973   if (removeEmptyCleanup(RI, DTU))
4974     return true;
4975 
4976   return false;
4977 }
4978 
4979 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4980 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4981   BasicBlock *BB = UI->getParent();
4982 
4983   bool Changed = false;
4984 
4985   // If there are any instructions immediately before the unreachable that can
4986   // be removed, do so.
4987   while (UI->getIterator() != BB->begin()) {
4988     BasicBlock::iterator BBI = UI->getIterator();
4989     --BBI;
4990 
4991     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
4992       break; // Can not drop any more instructions. We're done here.
4993     // Otherwise, this instruction can be freely erased,
4994     // even if it is not side-effect free.
4995 
4996     // Note that deleting EH's here is in fact okay, although it involves a bit
4997     // of subtle reasoning. If this inst is an EH, all the predecessors of this
4998     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4999     // and we can therefore guarantee this block will be erased.
5000 
5001     // Delete this instruction (any uses are guaranteed to be dead)
5002     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
5003     BBI->eraseFromParent();
5004     Changed = true;
5005   }
5006 
5007   // If the unreachable instruction is the first in the block, take a gander
5008   // at all of the predecessors of this instruction, and simplify them.
5009   if (&BB->front() != UI)
5010     return Changed;
5011 
5012   std::vector<DominatorTree::UpdateType> Updates;
5013 
5014   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
5015   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
5016     auto *Predecessor = Preds[i];
5017     Instruction *TI = Predecessor->getTerminator();
5018     IRBuilder<> Builder(TI);
5019     if (auto *BI = dyn_cast<BranchInst>(TI)) {
5020       // We could either have a proper unconditional branch,
5021       // or a degenerate conditional branch with matching destinations.
5022       if (all_of(BI->successors(),
5023                  [BB](auto *Successor) { return Successor == BB; })) {
5024         new UnreachableInst(TI->getContext(), TI);
5025         TI->eraseFromParent();
5026         Changed = true;
5027       } else {
5028         assert(BI->isConditional() && "Can't get here with an uncond branch.");
5029         Value* Cond = BI->getCondition();
5030         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
5031                "The destinations are guaranteed to be different here.");
5032         if (BI->getSuccessor(0) == BB) {
5033           Builder.CreateAssumption(Builder.CreateNot(Cond));
5034           Builder.CreateBr(BI->getSuccessor(1));
5035         } else {
5036           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
5037           Builder.CreateAssumption(Cond);
5038           Builder.CreateBr(BI->getSuccessor(0));
5039         }
5040         EraseTerminatorAndDCECond(BI);
5041         Changed = true;
5042       }
5043       if (DTU)
5044         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5045     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5046       SwitchInstProfUpdateWrapper SU(*SI);
5047       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5048         if (i->getCaseSuccessor() != BB) {
5049           ++i;
5050           continue;
5051         }
5052         BB->removePredecessor(SU->getParent());
5053         i = SU.removeCase(i);
5054         e = SU->case_end();
5055         Changed = true;
5056       }
5057       // Note that the default destination can't be removed!
5058       if (DTU && SI->getDefaultDest() != BB)
5059         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5060     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5061       if (II->getUnwindDest() == BB) {
5062         if (DTU) {
5063           DTU->applyUpdates(Updates);
5064           Updates.clear();
5065         }
5066         removeUnwindEdge(TI->getParent(), DTU);
5067         Changed = true;
5068       }
5069     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5070       if (CSI->getUnwindDest() == BB) {
5071         if (DTU) {
5072           DTU->applyUpdates(Updates);
5073           Updates.clear();
5074         }
5075         removeUnwindEdge(TI->getParent(), DTU);
5076         Changed = true;
5077         continue;
5078       }
5079 
5080       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5081                                              E = CSI->handler_end();
5082            I != E; ++I) {
5083         if (*I == BB) {
5084           CSI->removeHandler(I);
5085           --I;
5086           --E;
5087           Changed = true;
5088         }
5089       }
5090       if (DTU)
5091         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5092       if (CSI->getNumHandlers() == 0) {
5093         if (CSI->hasUnwindDest()) {
5094           // Redirect all predecessors of the block containing CatchSwitchInst
5095           // to instead branch to the CatchSwitchInst's unwind destination.
5096           if (DTU) {
5097             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5098               Updates.push_back({DominatorTree::Insert,
5099                                  PredecessorOfPredecessor,
5100                                  CSI->getUnwindDest()});
5101               Updates.push_back({DominatorTree::Delete,
5102                                  PredecessorOfPredecessor, Predecessor});
5103             }
5104           }
5105           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5106         } else {
5107           // Rewrite all preds to unwind to caller (or from invoke to call).
5108           if (DTU) {
5109             DTU->applyUpdates(Updates);
5110             Updates.clear();
5111           }
5112           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5113           for (BasicBlock *EHPred : EHPreds)
5114             removeUnwindEdge(EHPred, DTU);
5115         }
5116         // The catchswitch is no longer reachable.
5117         new UnreachableInst(CSI->getContext(), CSI);
5118         CSI->eraseFromParent();
5119         Changed = true;
5120       }
5121     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5122       (void)CRI;
5123       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5124              "Expected to always have an unwind to BB.");
5125       if (DTU)
5126         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5127       new UnreachableInst(TI->getContext(), TI);
5128       TI->eraseFromParent();
5129       Changed = true;
5130     }
5131   }
5132 
5133   if (DTU)
5134     DTU->applyUpdates(Updates);
5135 
5136   // If this block is now dead, remove it.
5137   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5138     DeleteDeadBlock(BB, DTU);
5139     return true;
5140   }
5141 
5142   return Changed;
5143 }
5144 
5145 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5146   assert(Cases.size() >= 1);
5147 
5148   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
5149   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5150     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5151       return false;
5152   }
5153   return true;
5154 }
5155 
5156 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5157                                            DomTreeUpdater *DTU) {
5158   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5159   auto *BB = Switch->getParent();
5160   auto *OrigDefaultBlock = Switch->getDefaultDest();
5161   OrigDefaultBlock->removePredecessor(BB);
5162   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5163       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5164       OrigDefaultBlock);
5165   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5166   Switch->setDefaultDest(&*NewDefaultBlock);
5167   if (DTU) {
5168     SmallVector<DominatorTree::UpdateType, 2> Updates;
5169     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5170     if (!is_contained(successors(BB), OrigDefaultBlock))
5171       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5172     DTU->applyUpdates(Updates);
5173   }
5174 }
5175 
5176 /// Turn a switch into an integer range comparison and branch.
5177 /// Switches with more than 2 destinations are ignored.
5178 /// Switches with 1 destination are also ignored.
5179 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
5180                                              IRBuilder<> &Builder) {
5181   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5182 
5183   bool HasDefault =
5184       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5185 
5186   auto *BB = SI->getParent();
5187 
5188   // Partition the cases into two sets with different destinations.
5189   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5190   BasicBlock *DestB = nullptr;
5191   SmallVector<ConstantInt *, 16> CasesA;
5192   SmallVector<ConstantInt *, 16> CasesB;
5193 
5194   for (auto Case : SI->cases()) {
5195     BasicBlock *Dest = Case.getCaseSuccessor();
5196     if (!DestA)
5197       DestA = Dest;
5198     if (Dest == DestA) {
5199       CasesA.push_back(Case.getCaseValue());
5200       continue;
5201     }
5202     if (!DestB)
5203       DestB = Dest;
5204     if (Dest == DestB) {
5205       CasesB.push_back(Case.getCaseValue());
5206       continue;
5207     }
5208     return false; // More than two destinations.
5209   }
5210   if (!DestB)
5211     return false; // All destinations are the same and the default is unreachable
5212 
5213   assert(DestA && DestB &&
5214          "Single-destination switch should have been folded.");
5215   assert(DestA != DestB);
5216   assert(DestB != SI->getDefaultDest());
5217   assert(!CasesB.empty() && "There must be non-default cases.");
5218   assert(!CasesA.empty() || HasDefault);
5219 
5220   // Figure out if one of the sets of cases form a contiguous range.
5221   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5222   BasicBlock *ContiguousDest = nullptr;
5223   BasicBlock *OtherDest = nullptr;
5224   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
5225     ContiguousCases = &CasesA;
5226     ContiguousDest = DestA;
5227     OtherDest = DestB;
5228   } else if (CasesAreContiguous(CasesB)) {
5229     ContiguousCases = &CasesB;
5230     ContiguousDest = DestB;
5231     OtherDest = DestA;
5232   } else
5233     return false;
5234 
5235   // Start building the compare and branch.
5236 
5237   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5238   Constant *NumCases =
5239       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5240 
5241   Value *Sub = SI->getCondition();
5242   if (!Offset->isNullValue())
5243     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5244 
5245   Value *Cmp;
5246   // If NumCases overflowed, then all possible values jump to the successor.
5247   if (NumCases->isNullValue() && !ContiguousCases->empty())
5248     Cmp = ConstantInt::getTrue(SI->getContext());
5249   else
5250     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5251   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5252 
5253   // Update weight for the newly-created conditional branch.
5254   if (HasBranchWeights(SI)) {
5255     SmallVector<uint64_t, 8> Weights;
5256     GetBranchWeights(SI, Weights);
5257     if (Weights.size() == 1 + SI->getNumCases()) {
5258       uint64_t TrueWeight = 0;
5259       uint64_t FalseWeight = 0;
5260       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5261         if (SI->getSuccessor(I) == ContiguousDest)
5262           TrueWeight += Weights[I];
5263         else
5264           FalseWeight += Weights[I];
5265       }
5266       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5267         TrueWeight /= 2;
5268         FalseWeight /= 2;
5269       }
5270       setBranchWeights(NewBI, TrueWeight, FalseWeight);
5271     }
5272   }
5273 
5274   // Prune obsolete incoming values off the successors' PHI nodes.
5275   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5276     unsigned PreviousEdges = ContiguousCases->size();
5277     if (ContiguousDest == SI->getDefaultDest())
5278       ++PreviousEdges;
5279     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5280       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5281   }
5282   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5283     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5284     if (OtherDest == SI->getDefaultDest())
5285       ++PreviousEdges;
5286     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5287       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5288   }
5289 
5290   // Clean up the default block - it may have phis or other instructions before
5291   // the unreachable terminator.
5292   if (!HasDefault)
5293     createUnreachableSwitchDefault(SI, DTU);
5294 
5295   auto *UnreachableDefault = SI->getDefaultDest();
5296 
5297   // Drop the switch.
5298   SI->eraseFromParent();
5299 
5300   if (!HasDefault && DTU)
5301     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5302 
5303   return true;
5304 }
5305 
5306 /// Compute masked bits for the condition of a switch
5307 /// and use it to remove dead cases.
5308 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5309                                      AssumptionCache *AC,
5310                                      const DataLayout &DL) {
5311   Value *Cond = SI->getCondition();
5312   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5313 
5314   // We can also eliminate cases by determining that their values are outside of
5315   // the limited range of the condition based on how many significant (non-sign)
5316   // bits are in the condition value.
5317   unsigned MaxSignificantBitsInCond =
5318       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5319 
5320   // Gather dead cases.
5321   SmallVector<ConstantInt *, 8> DeadCases;
5322   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5323   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5324   for (auto &Case : SI->cases()) {
5325     auto *Successor = Case.getCaseSuccessor();
5326     if (DTU) {
5327       if (!NumPerSuccessorCases.count(Successor))
5328         UniqueSuccessors.push_back(Successor);
5329       ++NumPerSuccessorCases[Successor];
5330     }
5331     const APInt &CaseVal = Case.getCaseValue()->getValue();
5332     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5333         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5334       DeadCases.push_back(Case.getCaseValue());
5335       if (DTU)
5336         --NumPerSuccessorCases[Successor];
5337       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5338                         << " is dead.\n");
5339     }
5340   }
5341 
5342   // If we can prove that the cases must cover all possible values, the
5343   // default destination becomes dead and we can remove it.  If we know some
5344   // of the bits in the value, we can use that to more precisely compute the
5345   // number of possible unique case values.
5346   bool HasDefault =
5347       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5348   const unsigned NumUnknownBits =
5349       Known.getBitWidth() - (Known.Zero | Known.One).countPopulation();
5350   assert(NumUnknownBits <= Known.getBitWidth());
5351   if (HasDefault && DeadCases.empty() &&
5352       NumUnknownBits < 64 /* avoid overflow */ &&
5353       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5354     createUnreachableSwitchDefault(SI, DTU);
5355     return true;
5356   }
5357 
5358   if (DeadCases.empty())
5359     return false;
5360 
5361   SwitchInstProfUpdateWrapper SIW(*SI);
5362   for (ConstantInt *DeadCase : DeadCases) {
5363     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5364     assert(CaseI != SI->case_default() &&
5365            "Case was not found. Probably mistake in DeadCases forming.");
5366     // Prune unused values from PHI nodes.
5367     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5368     SIW.removeCase(CaseI);
5369   }
5370 
5371   if (DTU) {
5372     std::vector<DominatorTree::UpdateType> Updates;
5373     for (auto *Successor : UniqueSuccessors)
5374       if (NumPerSuccessorCases[Successor] == 0)
5375         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5376     DTU->applyUpdates(Updates);
5377   }
5378 
5379   return true;
5380 }
5381 
5382 /// If BB would be eligible for simplification by
5383 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5384 /// by an unconditional branch), look at the phi node for BB in the successor
5385 /// block and see if the incoming value is equal to CaseValue. If so, return
5386 /// the phi node, and set PhiIndex to BB's index in the phi node.
5387 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5388                                               BasicBlock *BB, int *PhiIndex) {
5389   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5390     return nullptr; // BB must be empty to be a candidate for simplification.
5391   if (!BB->getSinglePredecessor())
5392     return nullptr; // BB must be dominated by the switch.
5393 
5394   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5395   if (!Branch || !Branch->isUnconditional())
5396     return nullptr; // Terminator must be unconditional branch.
5397 
5398   BasicBlock *Succ = Branch->getSuccessor(0);
5399 
5400   for (PHINode &PHI : Succ->phis()) {
5401     int Idx = PHI.getBasicBlockIndex(BB);
5402     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5403 
5404     Value *InValue = PHI.getIncomingValue(Idx);
5405     if (InValue != CaseValue)
5406       continue;
5407 
5408     *PhiIndex = Idx;
5409     return &PHI;
5410   }
5411 
5412   return nullptr;
5413 }
5414 
5415 /// Try to forward the condition of a switch instruction to a phi node
5416 /// dominated by the switch, if that would mean that some of the destination
5417 /// blocks of the switch can be folded away. Return true if a change is made.
5418 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5419   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5420 
5421   ForwardingNodesMap ForwardingNodes;
5422   BasicBlock *SwitchBlock = SI->getParent();
5423   bool Changed = false;
5424   for (auto &Case : SI->cases()) {
5425     ConstantInt *CaseValue = Case.getCaseValue();
5426     BasicBlock *CaseDest = Case.getCaseSuccessor();
5427 
5428     // Replace phi operands in successor blocks that are using the constant case
5429     // value rather than the switch condition variable:
5430     //   switchbb:
5431     //   switch i32 %x, label %default [
5432     //     i32 17, label %succ
5433     //   ...
5434     //   succ:
5435     //     %r = phi i32 ... [ 17, %switchbb ] ...
5436     // -->
5437     //     %r = phi i32 ... [ %x, %switchbb ] ...
5438 
5439     for (PHINode &Phi : CaseDest->phis()) {
5440       // This only works if there is exactly 1 incoming edge from the switch to
5441       // a phi. If there is >1, that means multiple cases of the switch map to 1
5442       // value in the phi, and that phi value is not the switch condition. Thus,
5443       // this transform would not make sense (the phi would be invalid because
5444       // a phi can't have different incoming values from the same block).
5445       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5446       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5447           count(Phi.blocks(), SwitchBlock) == 1) {
5448         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5449         Changed = true;
5450       }
5451     }
5452 
5453     // Collect phi nodes that are indirectly using this switch's case constants.
5454     int PhiIdx;
5455     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5456       ForwardingNodes[Phi].push_back(PhiIdx);
5457   }
5458 
5459   for (auto &ForwardingNode : ForwardingNodes) {
5460     PHINode *Phi = ForwardingNode.first;
5461     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5462     if (Indexes.size() < 2)
5463       continue;
5464 
5465     for (int Index : Indexes)
5466       Phi->setIncomingValue(Index, SI->getCondition());
5467     Changed = true;
5468   }
5469 
5470   return Changed;
5471 }
5472 
5473 /// Return true if the backend will be able to handle
5474 /// initializing an array of constants like C.
5475 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5476   if (C->isThreadDependent())
5477     return false;
5478   if (C->isDLLImportDependent())
5479     return false;
5480 
5481   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5482       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5483       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5484     return false;
5485 
5486   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5487     // Pointer casts and in-bounds GEPs will not prohibit the backend from
5488     // materializing the array of constants.
5489     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5490     if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5491       return false;
5492   }
5493 
5494   if (!TTI.shouldBuildLookupTablesForConstant(C))
5495     return false;
5496 
5497   return true;
5498 }
5499 
5500 /// If V is a Constant, return it. Otherwise, try to look up
5501 /// its constant value in ConstantPool, returning 0 if it's not there.
5502 static Constant *
5503 LookupConstant(Value *V,
5504                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5505   if (Constant *C = dyn_cast<Constant>(V))
5506     return C;
5507   return ConstantPool.lookup(V);
5508 }
5509 
5510 /// Try to fold instruction I into a constant. This works for
5511 /// simple instructions such as binary operations where both operands are
5512 /// constant or can be replaced by constants from the ConstantPool. Returns the
5513 /// resulting constant on success, 0 otherwise.
5514 static Constant *
5515 ConstantFold(Instruction *I, const DataLayout &DL,
5516              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5517   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5518     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5519     if (!A)
5520       return nullptr;
5521     if (A->isAllOnesValue())
5522       return LookupConstant(Select->getTrueValue(), ConstantPool);
5523     if (A->isNullValue())
5524       return LookupConstant(Select->getFalseValue(), ConstantPool);
5525     return nullptr;
5526   }
5527 
5528   SmallVector<Constant *, 4> COps;
5529   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5530     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5531       COps.push_back(A);
5532     else
5533       return nullptr;
5534   }
5535 
5536   return ConstantFoldInstOperands(I, COps, DL);
5537 }
5538 
5539 /// Try to determine the resulting constant values in phi nodes
5540 /// at the common destination basic block, *CommonDest, for one of the case
5541 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5542 /// case), of a switch instruction SI.
5543 static bool
5544 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5545                BasicBlock **CommonDest,
5546                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5547                const DataLayout &DL, const TargetTransformInfo &TTI) {
5548   // The block from which we enter the common destination.
5549   BasicBlock *Pred = SI->getParent();
5550 
5551   // If CaseDest is empty except for some side-effect free instructions through
5552   // which we can constant-propagate the CaseVal, continue to its successor.
5553   SmallDenseMap<Value *, Constant *> ConstantPool;
5554   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5555   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
5556     if (I.isTerminator()) {
5557       // If the terminator is a simple branch, continue to the next block.
5558       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5559         return false;
5560       Pred = CaseDest;
5561       CaseDest = I.getSuccessor(0);
5562     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5563       // Instruction is side-effect free and constant.
5564 
5565       // If the instruction has uses outside this block or a phi node slot for
5566       // the block, it is not safe to bypass the instruction since it would then
5567       // no longer dominate all its uses.
5568       for (auto &Use : I.uses()) {
5569         User *User = Use.getUser();
5570         if (Instruction *I = dyn_cast<Instruction>(User))
5571           if (I->getParent() == CaseDest)
5572             continue;
5573         if (PHINode *Phi = dyn_cast<PHINode>(User))
5574           if (Phi->getIncomingBlock(Use) == CaseDest)
5575             continue;
5576         return false;
5577       }
5578 
5579       ConstantPool.insert(std::make_pair(&I, C));
5580     } else {
5581       break;
5582     }
5583   }
5584 
5585   // If we did not have a CommonDest before, use the current one.
5586   if (!*CommonDest)
5587     *CommonDest = CaseDest;
5588   // If the destination isn't the common one, abort.
5589   if (CaseDest != *CommonDest)
5590     return false;
5591 
5592   // Get the values for this case from phi nodes in the destination block.
5593   for (PHINode &PHI : (*CommonDest)->phis()) {
5594     int Idx = PHI.getBasicBlockIndex(Pred);
5595     if (Idx == -1)
5596       continue;
5597 
5598     Constant *ConstVal =
5599         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5600     if (!ConstVal)
5601       return false;
5602 
5603     // Be conservative about which kinds of constants we support.
5604     if (!ValidLookupTableConstant(ConstVal, TTI))
5605       return false;
5606 
5607     Res.push_back(std::make_pair(&PHI, ConstVal));
5608   }
5609 
5610   return Res.size() > 0;
5611 }
5612 
5613 // Helper function used to add CaseVal to the list of cases that generate
5614 // Result. Returns the updated number of cases that generate this result.
5615 static size_t mapCaseToResult(ConstantInt *CaseVal,
5616                               SwitchCaseResultVectorTy &UniqueResults,
5617                               Constant *Result) {
5618   for (auto &I : UniqueResults) {
5619     if (I.first == Result) {
5620       I.second.push_back(CaseVal);
5621       return I.second.size();
5622     }
5623   }
5624   UniqueResults.push_back(
5625       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5626   return 1;
5627 }
5628 
5629 // Helper function that initializes a map containing
5630 // results for the PHI node of the common destination block for a switch
5631 // instruction. Returns false if multiple PHI nodes have been found or if
5632 // there is not a common destination block for the switch.
5633 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
5634                                   BasicBlock *&CommonDest,
5635                                   SwitchCaseResultVectorTy &UniqueResults,
5636                                   Constant *&DefaultResult,
5637                                   const DataLayout &DL,
5638                                   const TargetTransformInfo &TTI,
5639                                   uintptr_t MaxUniqueResults) {
5640   for (auto &I : SI->cases()) {
5641     ConstantInt *CaseVal = I.getCaseValue();
5642 
5643     // Resulting value at phi nodes for this case value.
5644     SwitchCaseResultsTy Results;
5645     if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5646                         DL, TTI))
5647       return false;
5648 
5649     // Only one value per case is permitted.
5650     if (Results.size() > 1)
5651       return false;
5652 
5653     // Add the case->result mapping to UniqueResults.
5654     const size_t NumCasesForResult =
5655         mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5656 
5657     // Early out if there are too many cases for this result.
5658     if (NumCasesForResult > MaxSwitchCasesPerResult)
5659       return false;
5660 
5661     // Early out if there are too many unique results.
5662     if (UniqueResults.size() > MaxUniqueResults)
5663       return false;
5664 
5665     // Check the PHI consistency.
5666     if (!PHI)
5667       PHI = Results[0].first;
5668     else if (PHI != Results[0].first)
5669       return false;
5670   }
5671   // Find the default result value.
5672   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5673   BasicBlock *DefaultDest = SI->getDefaultDest();
5674   getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5675                  DL, TTI);
5676   // If the default value is not found abort unless the default destination
5677   // is unreachable.
5678   DefaultResult =
5679       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5680   if ((!DefaultResult &&
5681        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5682     return false;
5683 
5684   return true;
5685 }
5686 
5687 // Helper function that checks if it is possible to transform a switch with only
5688 // two cases (or two cases + default) that produces a result into a select.
5689 // TODO: Handle switches with more than 2 cases that map to the same result.
5690 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
5691                                  Constant *DefaultResult, Value *Condition,
5692                                  IRBuilder<> &Builder) {
5693   // If we are selecting between only two cases transform into a simple
5694   // select or a two-way select if default is possible.
5695   // Example:
5696   // switch (a) {                  %0 = icmp eq i32 %a, 10
5697   //   case 10: return 42;         %1 = select i1 %0, i32 42, i32 4
5698   //   case 20: return 2;   ---->  %2 = icmp eq i32 %a, 20
5699   //   default: return 4;          %3 = select i1 %2, i32 2, i32 %1
5700   // }
5701   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5702       ResultVector[1].second.size() == 1) {
5703     ConstantInt *FirstCase = ResultVector[0].second[0];
5704     ConstantInt *SecondCase = ResultVector[1].second[0];
5705     Value *SelectValue = ResultVector[1].first;
5706     if (DefaultResult) {
5707       Value *ValueCompare =
5708           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5709       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5710                                          DefaultResult, "switch.select");
5711     }
5712     Value *ValueCompare =
5713         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5714     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5715                                 SelectValue, "switch.select");
5716   }
5717 
5718   // Handle the degenerate case where two cases have the same result value.
5719   if (ResultVector.size() == 1 && DefaultResult) {
5720     ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
5721     unsigned CaseCount = CaseValues.size();
5722     // n bits group cases map to the same result:
5723     // case 0,4      -> Cond & 0b1..1011 == 0 ? result : default
5724     // case 0,2,4,6  -> Cond & 0b1..1001 == 0 ? result : default
5725     // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
5726     if (isPowerOf2_32(CaseCount)) {
5727       ConstantInt *MinCaseVal = CaseValues[0];
5728       // Find mininal value.
5729       for (auto Case : CaseValues)
5730         if (Case->getValue().slt(MinCaseVal->getValue()))
5731           MinCaseVal = Case;
5732 
5733       // Mark the bits case number touched.
5734       APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
5735       for (auto Case : CaseValues)
5736         BitMask |= (Case->getValue() - MinCaseVal->getValue());
5737 
5738       // Check if cases with the same result can cover all number
5739       // in touched bits.
5740       if (BitMask.countPopulation() == Log2_32(CaseCount)) {
5741         if (!MinCaseVal->isNullValue())
5742           Condition = Builder.CreateSub(Condition, MinCaseVal);
5743         Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
5744         Value *Cmp = Builder.CreateICmpEQ(
5745             And, Constant::getNullValue(And->getType()), "switch.selectcmp");
5746         return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5747       }
5748     }
5749 
5750     // Handle the degenerate case where two cases have the same value.
5751     if (CaseValues.size() == 2) {
5752       Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
5753                                          "switch.selectcmp.case1");
5754       Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
5755                                          "switch.selectcmp.case2");
5756       Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5757       return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5758     }
5759   }
5760 
5761   return nullptr;
5762 }
5763 
5764 // Helper function to cleanup a switch instruction that has been converted into
5765 // a select, fixing up PHI nodes and basic blocks.
5766 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
5767                                         Value *SelectValue,
5768                                         IRBuilder<> &Builder,
5769                                         DomTreeUpdater *DTU) {
5770   std::vector<DominatorTree::UpdateType> Updates;
5771 
5772   BasicBlock *SelectBB = SI->getParent();
5773   BasicBlock *DestBB = PHI->getParent();
5774 
5775   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5776     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5777   Builder.CreateBr(DestBB);
5778 
5779   // Remove the switch.
5780 
5781   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5782     PHI->removeIncomingValue(SelectBB);
5783   PHI->addIncoming(SelectValue, SelectBB);
5784 
5785   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5786   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5787     BasicBlock *Succ = SI->getSuccessor(i);
5788 
5789     if (Succ == DestBB)
5790       continue;
5791     Succ->removePredecessor(SelectBB);
5792     if (DTU && RemovedSuccessors.insert(Succ).second)
5793       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5794   }
5795   SI->eraseFromParent();
5796   if (DTU)
5797     DTU->applyUpdates(Updates);
5798 }
5799 
5800 /// If a switch is only used to initialize one or more phi nodes in a common
5801 /// successor block with only two different constant values, try to replace the
5802 /// switch with a select. Returns true if the fold was made.
5803 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5804                               DomTreeUpdater *DTU, const DataLayout &DL,
5805                               const TargetTransformInfo &TTI) {
5806   Value *const Cond = SI->getCondition();
5807   PHINode *PHI = nullptr;
5808   BasicBlock *CommonDest = nullptr;
5809   Constant *DefaultResult;
5810   SwitchCaseResultVectorTy UniqueResults;
5811   // Collect all the cases that will deliver the same value from the switch.
5812   if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5813                              DL, TTI, /*MaxUniqueResults*/ 2))
5814     return false;
5815 
5816   assert(PHI != nullptr && "PHI for value select not found");
5817   Builder.SetInsertPoint(SI);
5818   Value *SelectValue =
5819       foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
5820   if (!SelectValue)
5821     return false;
5822 
5823   removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
5824   return true;
5825 }
5826 
5827 namespace {
5828 
5829 /// This class represents a lookup table that can be used to replace a switch.
5830 class SwitchLookupTable {
5831 public:
5832   /// Create a lookup table to use as a switch replacement with the contents
5833   /// of Values, using DefaultValue to fill any holes in the table.
5834   SwitchLookupTable(
5835       Module &M, uint64_t TableSize, ConstantInt *Offset,
5836       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5837       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5838 
5839   /// Build instructions with Builder to retrieve the value at
5840   /// the position given by Index in the lookup table.
5841   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5842 
5843   /// Return true if a table with TableSize elements of
5844   /// type ElementType would fit in a target-legal register.
5845   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5846                                  Type *ElementType);
5847 
5848 private:
5849   // Depending on the contents of the table, it can be represented in
5850   // different ways.
5851   enum {
5852     // For tables where each element contains the same value, we just have to
5853     // store that single value and return it for each lookup.
5854     SingleValueKind,
5855 
5856     // For tables where there is a linear relationship between table index
5857     // and values. We calculate the result with a simple multiplication
5858     // and addition instead of a table lookup.
5859     LinearMapKind,
5860 
5861     // For small tables with integer elements, we can pack them into a bitmap
5862     // that fits into a target-legal register. Values are retrieved by
5863     // shift and mask operations.
5864     BitMapKind,
5865 
5866     // The table is stored as an array of values. Values are retrieved by load
5867     // instructions from the table.
5868     ArrayKind
5869   } Kind;
5870 
5871   // For SingleValueKind, this is the single value.
5872   Constant *SingleValue = nullptr;
5873 
5874   // For BitMapKind, this is the bitmap.
5875   ConstantInt *BitMap = nullptr;
5876   IntegerType *BitMapElementTy = nullptr;
5877 
5878   // For LinearMapKind, these are the constants used to derive the value.
5879   ConstantInt *LinearOffset = nullptr;
5880   ConstantInt *LinearMultiplier = nullptr;
5881 
5882   // For ArrayKind, this is the array.
5883   GlobalVariable *Array = nullptr;
5884 };
5885 
5886 } // end anonymous namespace
5887 
5888 SwitchLookupTable::SwitchLookupTable(
5889     Module &M, uint64_t TableSize, ConstantInt *Offset,
5890     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5891     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5892   assert(Values.size() && "Can't build lookup table without values!");
5893   assert(TableSize >= Values.size() && "Can't fit values in table!");
5894 
5895   // If all values in the table are equal, this is that value.
5896   SingleValue = Values.begin()->second;
5897 
5898   Type *ValueType = Values.begin()->second->getType();
5899 
5900   // Build up the table contents.
5901   SmallVector<Constant *, 64> TableContents(TableSize);
5902   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5903     ConstantInt *CaseVal = Values[I].first;
5904     Constant *CaseRes = Values[I].second;
5905     assert(CaseRes->getType() == ValueType);
5906 
5907     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5908     TableContents[Idx] = CaseRes;
5909 
5910     if (CaseRes != SingleValue)
5911       SingleValue = nullptr;
5912   }
5913 
5914   // Fill in any holes in the table with the default result.
5915   if (Values.size() < TableSize) {
5916     assert(DefaultValue &&
5917            "Need a default value to fill the lookup table holes.");
5918     assert(DefaultValue->getType() == ValueType);
5919     for (uint64_t I = 0; I < TableSize; ++I) {
5920       if (!TableContents[I])
5921         TableContents[I] = DefaultValue;
5922     }
5923 
5924     if (DefaultValue != SingleValue)
5925       SingleValue = nullptr;
5926   }
5927 
5928   // If each element in the table contains the same value, we only need to store
5929   // that single value.
5930   if (SingleValue) {
5931     Kind = SingleValueKind;
5932     return;
5933   }
5934 
5935   // Check if we can derive the value with a linear transformation from the
5936   // table index.
5937   if (isa<IntegerType>(ValueType)) {
5938     bool LinearMappingPossible = true;
5939     APInt PrevVal;
5940     APInt DistToPrev;
5941     assert(TableSize >= 2 && "Should be a SingleValue table.");
5942     // Check if there is the same distance between two consecutive values.
5943     for (uint64_t I = 0; I < TableSize; ++I) {
5944       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5945       if (!ConstVal) {
5946         // This is an undef. We could deal with it, but undefs in lookup tables
5947         // are very seldom. It's probably not worth the additional complexity.
5948         LinearMappingPossible = false;
5949         break;
5950       }
5951       const APInt &Val = ConstVal->getValue();
5952       if (I != 0) {
5953         APInt Dist = Val - PrevVal;
5954         if (I == 1) {
5955           DistToPrev = Dist;
5956         } else if (Dist != DistToPrev) {
5957           LinearMappingPossible = false;
5958           break;
5959         }
5960       }
5961       PrevVal = Val;
5962     }
5963     if (LinearMappingPossible) {
5964       LinearOffset = cast<ConstantInt>(TableContents[0]);
5965       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5966       Kind = LinearMapKind;
5967       ++NumLinearMaps;
5968       return;
5969     }
5970   }
5971 
5972   // If the type is integer and the table fits in a register, build a bitmap.
5973   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5974     IntegerType *IT = cast<IntegerType>(ValueType);
5975     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5976     for (uint64_t I = TableSize; I > 0; --I) {
5977       TableInt <<= IT->getBitWidth();
5978       // Insert values into the bitmap. Undef values are set to zero.
5979       if (!isa<UndefValue>(TableContents[I - 1])) {
5980         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5981         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5982       }
5983     }
5984     BitMap = ConstantInt::get(M.getContext(), TableInt);
5985     BitMapElementTy = IT;
5986     Kind = BitMapKind;
5987     ++NumBitMaps;
5988     return;
5989   }
5990 
5991   // Store the table in an array.
5992   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5993   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5994 
5995   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5996                              GlobalVariable::PrivateLinkage, Initializer,
5997                              "switch.table." + FuncName);
5998   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5999   // Set the alignment to that of an array items. We will be only loading one
6000   // value out of it.
6001   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
6002   Kind = ArrayKind;
6003 }
6004 
6005 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
6006   switch (Kind) {
6007   case SingleValueKind:
6008     return SingleValue;
6009   case LinearMapKind: {
6010     // Derive the result value from the input value.
6011     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
6012                                           false, "switch.idx.cast");
6013     if (!LinearMultiplier->isOne())
6014       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
6015     if (!LinearOffset->isZero())
6016       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
6017     return Result;
6018   }
6019   case BitMapKind: {
6020     // Type of the bitmap (e.g. i59).
6021     IntegerType *MapTy = BitMap->getType();
6022 
6023     // Cast Index to the same type as the bitmap.
6024     // Note: The Index is <= the number of elements in the table, so
6025     // truncating it to the width of the bitmask is safe.
6026     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
6027 
6028     // Multiply the shift amount by the element width.
6029     ShiftAmt = Builder.CreateMul(
6030         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
6031         "switch.shiftamt");
6032 
6033     // Shift down.
6034     Value *DownShifted =
6035         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
6036     // Mask off.
6037     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
6038   }
6039   case ArrayKind: {
6040     // Make sure the table index will not overflow when treated as signed.
6041     IntegerType *IT = cast<IntegerType>(Index->getType());
6042     uint64_t TableSize =
6043         Array->getInitializer()->getType()->getArrayNumElements();
6044     if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6045       Index = Builder.CreateZExt(
6046           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6047           "switch.tableidx.zext");
6048 
6049     Value *GEPIndices[] = {Builder.getInt32(0), Index};
6050     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6051                                            GEPIndices, "switch.gep");
6052     return Builder.CreateLoad(
6053         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6054         "switch.load");
6055   }
6056   }
6057   llvm_unreachable("Unknown lookup table kind!");
6058 }
6059 
6060 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
6061                                            uint64_t TableSize,
6062                                            Type *ElementType) {
6063   auto *IT = dyn_cast<IntegerType>(ElementType);
6064   if (!IT)
6065     return false;
6066   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6067   // are <= 15, we could try to narrow the type.
6068 
6069   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6070   if (TableSize >= UINT_MAX / IT->getBitWidth())
6071     return false;
6072   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6073 }
6074 
6075 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6076                                       const DataLayout &DL) {
6077   // Allow any legal type.
6078   if (TTI.isTypeLegal(Ty))
6079     return true;
6080 
6081   auto *IT = dyn_cast<IntegerType>(Ty);
6082   if (!IT)
6083     return false;
6084 
6085   // Also allow power of 2 integer types that have at least 8 bits and fit in
6086   // a register. These types are common in frontend languages and targets
6087   // usually support loads of these types.
6088   // TODO: We could relax this to any integer that fits in a register and rely
6089   // on ABI alignment and padding in the table to allow the load to be widened.
6090   // Or we could widen the constants and truncate the load.
6091   unsigned BitWidth = IT->getBitWidth();
6092   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6093          DL.fitsInLegalInteger(IT->getBitWidth());
6094 }
6095 
6096 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6097   // 40% is the default density for building a jump table in optsize/minsize
6098   // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6099   // function was based on.
6100   const uint64_t MinDensity = 40;
6101 
6102   if (CaseRange >= UINT64_MAX / 100)
6103     return false; // Avoid multiplication overflows below.
6104 
6105   return NumCases * 100 >= CaseRange * MinDensity;
6106 }
6107 
6108 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6109   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6110   uint64_t Range = Diff + 1;
6111   if (Range < Diff)
6112     return false; // Overflow.
6113 
6114   return isSwitchDense(Values.size(), Range);
6115 }
6116 
6117 /// Determine whether a lookup table should be built for this switch, based on
6118 /// the number of cases, size of the table, and the types of the results.
6119 // TODO: We could support larger than legal types by limiting based on the
6120 // number of loads required and/or table size. If the constants are small we
6121 // could use smaller table entries and extend after the load.
6122 static bool
6123 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6124                        const TargetTransformInfo &TTI, const DataLayout &DL,
6125                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6126   if (SI->getNumCases() > TableSize)
6127     return false; // TableSize overflowed.
6128 
6129   bool AllTablesFitInRegister = true;
6130   bool HasIllegalType = false;
6131   for (const auto &I : ResultTypes) {
6132     Type *Ty = I.second;
6133 
6134     // Saturate this flag to true.
6135     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6136 
6137     // Saturate this flag to false.
6138     AllTablesFitInRegister =
6139         AllTablesFitInRegister &&
6140         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
6141 
6142     // If both flags saturate, we're done. NOTE: This *only* works with
6143     // saturating flags, and all flags have to saturate first due to the
6144     // non-deterministic behavior of iterating over a dense map.
6145     if (HasIllegalType && !AllTablesFitInRegister)
6146       break;
6147   }
6148 
6149   // If each table would fit in a register, we should build it anyway.
6150   if (AllTablesFitInRegister)
6151     return true;
6152 
6153   // Don't build a table that doesn't fit in-register if it has illegal types.
6154   if (HasIllegalType)
6155     return false;
6156 
6157   return isSwitchDense(SI->getNumCases(), TableSize);
6158 }
6159 
6160 /// Try to reuse the switch table index compare. Following pattern:
6161 /// \code
6162 ///     if (idx < tablesize)
6163 ///        r = table[idx]; // table does not contain default_value
6164 ///     else
6165 ///        r = default_value;
6166 ///     if (r != default_value)
6167 ///        ...
6168 /// \endcode
6169 /// Is optimized to:
6170 /// \code
6171 ///     cond = idx < tablesize;
6172 ///     if (cond)
6173 ///        r = table[idx];
6174 ///     else
6175 ///        r = default_value;
6176 ///     if (cond)
6177 ///        ...
6178 /// \endcode
6179 /// Jump threading will then eliminate the second if(cond).
6180 static void reuseTableCompare(
6181     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6182     Constant *DefaultValue,
6183     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6184   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6185   if (!CmpInst)
6186     return;
6187 
6188   // We require that the compare is in the same block as the phi so that jump
6189   // threading can do its work afterwards.
6190   if (CmpInst->getParent() != PhiBlock)
6191     return;
6192 
6193   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6194   if (!CmpOp1)
6195     return;
6196 
6197   Value *RangeCmp = RangeCheckBranch->getCondition();
6198   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6199   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6200 
6201   // Check if the compare with the default value is constant true or false.
6202   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6203                                                  DefaultValue, CmpOp1, true);
6204   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6205     return;
6206 
6207   // Check if the compare with the case values is distinct from the default
6208   // compare result.
6209   for (auto ValuePair : Values) {
6210     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6211                                                 ValuePair.second, CmpOp1, true);
6212     if (!CaseConst || CaseConst == DefaultConst ||
6213         (CaseConst != TrueConst && CaseConst != FalseConst))
6214       return;
6215   }
6216 
6217   // Check if the branch instruction dominates the phi node. It's a simple
6218   // dominance check, but sufficient for our needs.
6219   // Although this check is invariant in the calling loops, it's better to do it
6220   // at this late stage. Practically we do it at most once for a switch.
6221   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6222   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6223     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6224       return;
6225   }
6226 
6227   if (DefaultConst == FalseConst) {
6228     // The compare yields the same result. We can replace it.
6229     CmpInst->replaceAllUsesWith(RangeCmp);
6230     ++NumTableCmpReuses;
6231   } else {
6232     // The compare yields the same result, just inverted. We can replace it.
6233     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6234         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6235         RangeCheckBranch);
6236     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6237     ++NumTableCmpReuses;
6238   }
6239 }
6240 
6241 /// If the switch is only used to initialize one or more phi nodes in a common
6242 /// successor block with different constant values, replace the switch with
6243 /// lookup tables.
6244 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6245                                 DomTreeUpdater *DTU, const DataLayout &DL,
6246                                 const TargetTransformInfo &TTI) {
6247   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6248 
6249   BasicBlock *BB = SI->getParent();
6250   Function *Fn = BB->getParent();
6251   // Only build lookup table when we have a target that supports it or the
6252   // attribute is not set.
6253   if (!TTI.shouldBuildLookupTables() ||
6254       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6255     return false;
6256 
6257   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6258   // split off a dense part and build a lookup table for that.
6259 
6260   // FIXME: This creates arrays of GEPs to constant strings, which means each
6261   // GEP needs a runtime relocation in PIC code. We should just build one big
6262   // string and lookup indices into that.
6263 
6264   // Ignore switches with less than three cases. Lookup tables will not make
6265   // them faster, so we don't analyze them.
6266   if (SI->getNumCases() < 3)
6267     return false;
6268 
6269   // Figure out the corresponding result for each case value and phi node in the
6270   // common destination, as well as the min and max case values.
6271   assert(!SI->cases().empty());
6272   SwitchInst::CaseIt CI = SI->case_begin();
6273   ConstantInt *MinCaseVal = CI->getCaseValue();
6274   ConstantInt *MaxCaseVal = CI->getCaseValue();
6275 
6276   BasicBlock *CommonDest = nullptr;
6277 
6278   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6279   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6280 
6281   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6282   SmallDenseMap<PHINode *, Type *> ResultTypes;
6283   SmallVector<PHINode *, 4> PHIs;
6284 
6285   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6286     ConstantInt *CaseVal = CI->getCaseValue();
6287     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6288       MinCaseVal = CaseVal;
6289     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6290       MaxCaseVal = CaseVal;
6291 
6292     // Resulting value at phi nodes for this case value.
6293     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6294     ResultsTy Results;
6295     if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6296                         Results, DL, TTI))
6297       return false;
6298 
6299     // Append the result from this case to the list for each phi.
6300     for (const auto &I : Results) {
6301       PHINode *PHI = I.first;
6302       Constant *Value = I.second;
6303       if (!ResultLists.count(PHI))
6304         PHIs.push_back(PHI);
6305       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6306     }
6307   }
6308 
6309   // Keep track of the result types.
6310   for (PHINode *PHI : PHIs) {
6311     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6312   }
6313 
6314   uint64_t NumResults = ResultLists[PHIs[0]].size();
6315   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
6316   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
6317   bool TableHasHoles = (NumResults < TableSize);
6318 
6319   // If the table has holes, we need a constant result for the default case
6320   // or a bitmask that fits in a register.
6321   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6322   bool HasDefaultResults =
6323       getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6324                      DefaultResultsList, DL, TTI);
6325 
6326   bool NeedMask = (TableHasHoles && !HasDefaultResults);
6327   if (NeedMask) {
6328     // As an extra penalty for the validity test we require more cases.
6329     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6330       return false;
6331     if (!DL.fitsInLegalInteger(TableSize))
6332       return false;
6333   }
6334 
6335   for (const auto &I : DefaultResultsList) {
6336     PHINode *PHI = I.first;
6337     Constant *Result = I.second;
6338     DefaultResults[PHI] = Result;
6339   }
6340 
6341   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6342     return false;
6343 
6344   std::vector<DominatorTree::UpdateType> Updates;
6345 
6346   // Create the BB that does the lookups.
6347   Module &Mod = *CommonDest->getParent()->getParent();
6348   BasicBlock *LookupBB = BasicBlock::Create(
6349       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6350 
6351   // Compute the table index value.
6352   Builder.SetInsertPoint(SI);
6353   Value *TableIndex;
6354   if (MinCaseVal->isNullValue())
6355     TableIndex = SI->getCondition();
6356   else
6357     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
6358                                    "switch.tableidx");
6359 
6360   // Compute the maximum table size representable by the integer type we are
6361   // switching upon.
6362   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6363   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6364   assert(MaxTableSize >= TableSize &&
6365          "It is impossible for a switch to have more entries than the max "
6366          "representable value of its input integer type's size.");
6367 
6368   // If the default destination is unreachable, or if the lookup table covers
6369   // all values of the conditional variable, branch directly to the lookup table
6370   // BB. Otherwise, check that the condition is within the case range.
6371   const bool DefaultIsReachable =
6372       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6373   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6374   BranchInst *RangeCheckBranch = nullptr;
6375 
6376   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6377     Builder.CreateBr(LookupBB);
6378     if (DTU)
6379       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6380     // Note: We call removeProdecessor later since we need to be able to get the
6381     // PHI value for the default case in case we're using a bit mask.
6382   } else {
6383     Value *Cmp = Builder.CreateICmpULT(
6384         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6385     RangeCheckBranch =
6386         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6387     if (DTU)
6388       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6389   }
6390 
6391   // Populate the BB that does the lookups.
6392   Builder.SetInsertPoint(LookupBB);
6393 
6394   if (NeedMask) {
6395     // Before doing the lookup, we do the hole check. The LookupBB is therefore
6396     // re-purposed to do the hole check, and we create a new LookupBB.
6397     BasicBlock *MaskBB = LookupBB;
6398     MaskBB->setName("switch.hole_check");
6399     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6400                                   CommonDest->getParent(), CommonDest);
6401 
6402     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6403     // unnecessary illegal types.
6404     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6405     APInt MaskInt(TableSizePowOf2, 0);
6406     APInt One(TableSizePowOf2, 1);
6407     // Build bitmask; fill in a 1 bit for every case.
6408     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6409     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6410       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
6411                          .getLimitedValue();
6412       MaskInt |= One << Idx;
6413     }
6414     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6415 
6416     // Get the TableIndex'th bit of the bitmask.
6417     // If this bit is 0 (meaning hole) jump to the default destination,
6418     // else continue with table lookup.
6419     IntegerType *MapTy = TableMask->getType();
6420     Value *MaskIndex =
6421         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6422     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6423     Value *LoBit = Builder.CreateTrunc(
6424         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6425     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6426     if (DTU) {
6427       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6428       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6429     }
6430     Builder.SetInsertPoint(LookupBB);
6431     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6432   }
6433 
6434   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6435     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6436     // do not delete PHINodes here.
6437     SI->getDefaultDest()->removePredecessor(BB,
6438                                             /*KeepOneInputPHIs=*/true);
6439     if (DTU)
6440       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6441   }
6442 
6443   for (PHINode *PHI : PHIs) {
6444     const ResultListTy &ResultList = ResultLists[PHI];
6445 
6446     // If using a bitmask, use any value to fill the lookup table holes.
6447     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6448     StringRef FuncName = Fn->getName();
6449     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6450                             FuncName);
6451 
6452     Value *Result = Table.BuildLookup(TableIndex, Builder);
6453 
6454     // Do a small peephole optimization: re-use the switch table compare if
6455     // possible.
6456     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6457       BasicBlock *PhiBlock = PHI->getParent();
6458       // Search for compare instructions which use the phi.
6459       for (auto *User : PHI->users()) {
6460         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6461       }
6462     }
6463 
6464     PHI->addIncoming(Result, LookupBB);
6465   }
6466 
6467   Builder.CreateBr(CommonDest);
6468   if (DTU)
6469     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6470 
6471   // Remove the switch.
6472   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6473   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6474     BasicBlock *Succ = SI->getSuccessor(i);
6475 
6476     if (Succ == SI->getDefaultDest())
6477       continue;
6478     Succ->removePredecessor(BB);
6479     if (DTU && RemovedSuccessors.insert(Succ).second)
6480       Updates.push_back({DominatorTree::Delete, BB, Succ});
6481   }
6482   SI->eraseFromParent();
6483 
6484   if (DTU)
6485     DTU->applyUpdates(Updates);
6486 
6487   ++NumLookupTables;
6488   if (NeedMask)
6489     ++NumLookupTablesHoles;
6490   return true;
6491 }
6492 
6493 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6494 /// of cases.
6495 ///
6496 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6497 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6498 ///
6499 /// This converts a sparse switch into a dense switch which allows better
6500 /// lowering and could also allow transforming into a lookup table.
6501 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6502                               const DataLayout &DL,
6503                               const TargetTransformInfo &TTI) {
6504   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6505   if (CondTy->getIntegerBitWidth() > 64 ||
6506       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6507     return false;
6508   // Only bother with this optimization if there are more than 3 switch cases;
6509   // SDAG will only bother creating jump tables for 4 or more cases.
6510   if (SI->getNumCases() < 4)
6511     return false;
6512 
6513   // This transform is agnostic to the signedness of the input or case values. We
6514   // can treat the case values as signed or unsigned. We can optimize more common
6515   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6516   // as signed.
6517   SmallVector<int64_t,4> Values;
6518   for (auto &C : SI->cases())
6519     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6520   llvm::sort(Values);
6521 
6522   // If the switch is already dense, there's nothing useful to do here.
6523   if (isSwitchDense(Values))
6524     return false;
6525 
6526   // First, transform the values such that they start at zero and ascend.
6527   int64_t Base = Values[0];
6528   for (auto &V : Values)
6529     V -= (uint64_t)(Base);
6530 
6531   // Now we have signed numbers that have been shifted so that, given enough
6532   // precision, there are no negative values. Since the rest of the transform
6533   // is bitwise only, we switch now to an unsigned representation.
6534 
6535   // This transform can be done speculatively because it is so cheap - it
6536   // results in a single rotate operation being inserted.
6537   // FIXME: It's possible that optimizing a switch on powers of two might also
6538   // be beneficial - flag values are often powers of two and we could use a CLZ
6539   // as the key function.
6540 
6541   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6542   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6543   // less than 64.
6544   unsigned Shift = 64;
6545   for (auto &V : Values)
6546     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6547   assert(Shift < 64);
6548   if (Shift > 0)
6549     for (auto &V : Values)
6550       V = (int64_t)((uint64_t)V >> Shift);
6551 
6552   if (!isSwitchDense(Values))
6553     // Transform didn't create a dense switch.
6554     return false;
6555 
6556   // The obvious transform is to shift the switch condition right and emit a
6557   // check that the condition actually cleanly divided by GCD, i.e.
6558   //   C & (1 << Shift - 1) == 0
6559   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6560   //
6561   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6562   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6563   // are nonzero then the switch condition will be very large and will hit the
6564   // default case.
6565 
6566   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6567   Builder.SetInsertPoint(SI);
6568   auto *ShiftC = ConstantInt::get(Ty, Shift);
6569   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6570   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6571   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6572   auto *Rot = Builder.CreateOr(LShr, Shl);
6573   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6574 
6575   for (auto Case : SI->cases()) {
6576     auto *Orig = Case.getCaseValue();
6577     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6578     Case.setValue(
6579         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6580   }
6581   return true;
6582 }
6583 
6584 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6585   BasicBlock *BB = SI->getParent();
6586 
6587   if (isValueEqualityComparison(SI)) {
6588     // If we only have one predecessor, and if it is a branch on this value,
6589     // see if that predecessor totally determines the outcome of this switch.
6590     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6591       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6592         return requestResimplify();
6593 
6594     Value *Cond = SI->getCondition();
6595     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6596       if (SimplifySwitchOnSelect(SI, Select))
6597         return requestResimplify();
6598 
6599     // If the block only contains the switch, see if we can fold the block
6600     // away into any preds.
6601     if (SI == &*BB->instructionsWithoutDebug(false).begin())
6602       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6603         return requestResimplify();
6604   }
6605 
6606   // Try to transform the switch into an icmp and a branch.
6607   // The conversion from switch to comparison may lose information on
6608   // impossible switch values, so disable it early in the pipeline.
6609   if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder))
6610     return requestResimplify();
6611 
6612   // Remove unreachable cases.
6613   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6614     return requestResimplify();
6615 
6616   if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
6617     return requestResimplify();
6618 
6619   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6620     return requestResimplify();
6621 
6622   // The conversion from switch to lookup tables results in difficult-to-analyze
6623   // code and makes pruning branches much harder. This is a problem if the
6624   // switch expression itself can still be restricted as a result of inlining or
6625   // CVP. Therefore, only apply this transformation during late stages of the
6626   // optimisation pipeline.
6627   if (Options.ConvertSwitchToLookupTable &&
6628       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6629     return requestResimplify();
6630 
6631   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6632     return requestResimplify();
6633 
6634   return false;
6635 }
6636 
6637 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6638   BasicBlock *BB = IBI->getParent();
6639   bool Changed = false;
6640 
6641   // Eliminate redundant destinations.
6642   SmallPtrSet<Value *, 8> Succs;
6643   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6644   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6645     BasicBlock *Dest = IBI->getDestination(i);
6646     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6647       if (!Dest->hasAddressTaken())
6648         RemovedSuccs.insert(Dest);
6649       Dest->removePredecessor(BB);
6650       IBI->removeDestination(i);
6651       --i;
6652       --e;
6653       Changed = true;
6654     }
6655   }
6656 
6657   if (DTU) {
6658     std::vector<DominatorTree::UpdateType> Updates;
6659     Updates.reserve(RemovedSuccs.size());
6660     for (auto *RemovedSucc : RemovedSuccs)
6661       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6662     DTU->applyUpdates(Updates);
6663   }
6664 
6665   if (IBI->getNumDestinations() == 0) {
6666     // If the indirectbr has no successors, change it to unreachable.
6667     new UnreachableInst(IBI->getContext(), IBI);
6668     EraseTerminatorAndDCECond(IBI);
6669     return true;
6670   }
6671 
6672   if (IBI->getNumDestinations() == 1) {
6673     // If the indirectbr has one successor, change it to a direct branch.
6674     BranchInst::Create(IBI->getDestination(0), IBI);
6675     EraseTerminatorAndDCECond(IBI);
6676     return true;
6677   }
6678 
6679   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6680     if (SimplifyIndirectBrOnSelect(IBI, SI))
6681       return requestResimplify();
6682   }
6683   return Changed;
6684 }
6685 
6686 /// Given an block with only a single landing pad and a unconditional branch
6687 /// try to find another basic block which this one can be merged with.  This
6688 /// handles cases where we have multiple invokes with unique landing pads, but
6689 /// a shared handler.
6690 ///
6691 /// We specifically choose to not worry about merging non-empty blocks
6692 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6693 /// practice, the optimizer produces empty landing pad blocks quite frequently
6694 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6695 /// sinking in this file)
6696 ///
6697 /// This is primarily a code size optimization.  We need to avoid performing
6698 /// any transform which might inhibit optimization (such as our ability to
6699 /// specialize a particular handler via tail commoning).  We do this by not
6700 /// merging any blocks which require us to introduce a phi.  Since the same
6701 /// values are flowing through both blocks, we don't lose any ability to
6702 /// specialize.  If anything, we make such specialization more likely.
6703 ///
6704 /// TODO - This transformation could remove entries from a phi in the target
6705 /// block when the inputs in the phi are the same for the two blocks being
6706 /// merged.  In some cases, this could result in removal of the PHI entirely.
6707 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6708                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6709   auto Succ = BB->getUniqueSuccessor();
6710   assert(Succ);
6711   // If there's a phi in the successor block, we'd likely have to introduce
6712   // a phi into the merged landing pad block.
6713   if (isa<PHINode>(*Succ->begin()))
6714     return false;
6715 
6716   for (BasicBlock *OtherPred : predecessors(Succ)) {
6717     if (BB == OtherPred)
6718       continue;
6719     BasicBlock::iterator I = OtherPred->begin();
6720     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6721     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6722       continue;
6723     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6724       ;
6725     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6726     if (!BI2 || !BI2->isIdenticalTo(BI))
6727       continue;
6728 
6729     std::vector<DominatorTree::UpdateType> Updates;
6730 
6731     // We've found an identical block.  Update our predecessors to take that
6732     // path instead and make ourselves dead.
6733     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
6734     for (BasicBlock *Pred : UniquePreds) {
6735       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6736       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6737              "unexpected successor");
6738       II->setUnwindDest(OtherPred);
6739       if (DTU) {
6740         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6741         Updates.push_back({DominatorTree::Delete, Pred, BB});
6742       }
6743     }
6744 
6745     // The debug info in OtherPred doesn't cover the merged control flow that
6746     // used to go through BB.  We need to delete it or update it.
6747     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
6748       if (isa<DbgInfoIntrinsic>(Inst))
6749         Inst.eraseFromParent();
6750 
6751     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
6752     for (BasicBlock *Succ : UniqueSuccs) {
6753       Succ->removePredecessor(BB);
6754       if (DTU)
6755         Updates.push_back({DominatorTree::Delete, BB, Succ});
6756     }
6757 
6758     IRBuilder<> Builder(BI);
6759     Builder.CreateUnreachable();
6760     BI->eraseFromParent();
6761     if (DTU)
6762       DTU->applyUpdates(Updates);
6763     return true;
6764   }
6765   return false;
6766 }
6767 
6768 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6769   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6770                                    : simplifyCondBranch(Branch, Builder);
6771 }
6772 
6773 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6774                                           IRBuilder<> &Builder) {
6775   BasicBlock *BB = BI->getParent();
6776   BasicBlock *Succ = BI->getSuccessor(0);
6777 
6778   // If the Terminator is the only non-phi instruction, simplify the block.
6779   // If LoopHeader is provided, check if the block or its successor is a loop
6780   // header. (This is for early invocations before loop simplify and
6781   // vectorization to keep canonical loop forms for nested loops. These blocks
6782   // can be eliminated when the pass is invoked later in the back-end.)
6783   // Note that if BB has only one predecessor then we do not introduce new
6784   // backedge, so we can eliminate BB.
6785   bool NeedCanonicalLoop =
6786       Options.NeedCanonicalLoop &&
6787       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6788        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6789   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6790   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6791       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6792     return true;
6793 
6794   // If the only instruction in the block is a seteq/setne comparison against a
6795   // constant, try to simplify the block.
6796   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6797     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6798       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6799         ;
6800       if (I->isTerminator() &&
6801           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6802         return true;
6803     }
6804 
6805   // See if we can merge an empty landing pad block with another which is
6806   // equivalent.
6807   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6808     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6809       ;
6810     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6811       return true;
6812   }
6813 
6814   // If this basic block is ONLY a compare and a branch, and if a predecessor
6815   // branches to us and our successor, fold the comparison into the
6816   // predecessor and use logical operations to update the incoming value
6817   // for PHI nodes in common successor.
6818   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6819                              Options.BonusInstThreshold))
6820     return requestResimplify();
6821   return false;
6822 }
6823 
6824 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6825   BasicBlock *PredPred = nullptr;
6826   for (auto *P : predecessors(BB)) {
6827     BasicBlock *PPred = P->getSinglePredecessor();
6828     if (!PPred || (PredPred && PredPred != PPred))
6829       return nullptr;
6830     PredPred = PPred;
6831   }
6832   return PredPred;
6833 }
6834 
6835 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6836   assert(
6837       !isa<ConstantInt>(BI->getCondition()) &&
6838       BI->getSuccessor(0) != BI->getSuccessor(1) &&
6839       "Tautological conditional branch should have been eliminated already.");
6840 
6841   BasicBlock *BB = BI->getParent();
6842   if (!Options.SimplifyCondBranch)
6843     return false;
6844 
6845   // Conditional branch
6846   if (isValueEqualityComparison(BI)) {
6847     // If we only have one predecessor, and if it is a branch on this value,
6848     // see if that predecessor totally determines the outcome of this
6849     // switch.
6850     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6851       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6852         return requestResimplify();
6853 
6854     // This block must be empty, except for the setcond inst, if it exists.
6855     // Ignore dbg and pseudo intrinsics.
6856     auto I = BB->instructionsWithoutDebug(true).begin();
6857     if (&*I == BI) {
6858       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6859         return requestResimplify();
6860     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6861       ++I;
6862       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6863         return requestResimplify();
6864     }
6865   }
6866 
6867   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6868   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6869     return true;
6870 
6871   // If this basic block has dominating predecessor blocks and the dominating
6872   // blocks' conditions imply BI's condition, we know the direction of BI.
6873   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6874   if (Imp) {
6875     // Turn this into a branch on constant.
6876     auto *OldCond = BI->getCondition();
6877     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6878                              : ConstantInt::getFalse(BB->getContext());
6879     BI->setCondition(TorF);
6880     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6881     return requestResimplify();
6882   }
6883 
6884   // If this basic block is ONLY a compare and a branch, and if a predecessor
6885   // branches to us and one of our successors, fold the comparison into the
6886   // predecessor and use logical operations to pick the right destination.
6887   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6888                              Options.BonusInstThreshold))
6889     return requestResimplify();
6890 
6891   // We have a conditional branch to two blocks that are only reachable
6892   // from BI.  We know that the condbr dominates the two blocks, so see if
6893   // there is any identical code in the "then" and "else" blocks.  If so, we
6894   // can hoist it up to the branching block.
6895   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6896     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6897       if (HoistCommon &&
6898           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6899         return requestResimplify();
6900     } else {
6901       // If Successor #1 has multiple preds, we may be able to conditionally
6902       // execute Successor #0 if it branches to Successor #1.
6903       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6904       if (Succ0TI->getNumSuccessors() == 1 &&
6905           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6906         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6907           return requestResimplify();
6908     }
6909   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6910     // If Successor #0 has multiple preds, we may be able to conditionally
6911     // execute Successor #1 if it branches to Successor #0.
6912     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6913     if (Succ1TI->getNumSuccessors() == 1 &&
6914         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6915       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6916         return requestResimplify();
6917   }
6918 
6919   // If this is a branch on something for which we know the constant value in
6920   // predecessors (e.g. a phi node in the current block), thread control
6921   // through this block.
6922   if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
6923     return requestResimplify();
6924 
6925   // Scan predecessor blocks for conditional branches.
6926   for (BasicBlock *Pred : predecessors(BB))
6927     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6928       if (PBI != BI && PBI->isConditional())
6929         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6930           return requestResimplify();
6931 
6932   // Look for diamond patterns.
6933   if (MergeCondStores)
6934     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6935       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6936         if (PBI != BI && PBI->isConditional())
6937           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6938             return requestResimplify();
6939 
6940   return false;
6941 }
6942 
6943 /// Check if passing a value to an instruction will cause undefined behavior.
6944 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6945   Constant *C = dyn_cast<Constant>(V);
6946   if (!C)
6947     return false;
6948 
6949   if (I->use_empty())
6950     return false;
6951 
6952   if (C->isNullValue() || isa<UndefValue>(C)) {
6953     // Only look at the first use, avoid hurting compile time with long uselists
6954     auto *Use = cast<Instruction>(*I->user_begin());
6955     // Bail out if Use is not in the same BB as I or Use == I or Use comes
6956     // before I in the block. The latter two can be the case if Use is a PHI
6957     // node.
6958     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
6959       return false;
6960 
6961     // Now make sure that there are no instructions in between that can alter
6962     // control flow (eg. calls)
6963     auto InstrRange =
6964         make_range(std::next(I->getIterator()), Use->getIterator());
6965     if (any_of(InstrRange, [](Instruction &I) {
6966           return !isGuaranteedToTransferExecutionToSuccessor(&I);
6967         }))
6968       return false;
6969 
6970     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6971     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6972       if (GEP->getPointerOperand() == I) {
6973         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6974           PtrValueMayBeModified = true;
6975         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6976       }
6977 
6978     // Look through bitcasts.
6979     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6980       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6981 
6982     // Load from null is undefined.
6983     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6984       if (!LI->isVolatile())
6985         return !NullPointerIsDefined(LI->getFunction(),
6986                                      LI->getPointerAddressSpace());
6987 
6988     // Store to null is undefined.
6989     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6990       if (!SI->isVolatile())
6991         return (!NullPointerIsDefined(SI->getFunction(),
6992                                       SI->getPointerAddressSpace())) &&
6993                SI->getPointerOperand() == I;
6994 
6995     if (auto *CB = dyn_cast<CallBase>(Use)) {
6996       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6997         return false;
6998       // A call to null is undefined.
6999       if (CB->getCalledOperand() == I)
7000         return true;
7001 
7002       if (C->isNullValue()) {
7003         for (const llvm::Use &Arg : CB->args())
7004           if (Arg == I) {
7005             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7006             if (CB->isPassingUndefUB(ArgIdx) &&
7007                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
7008               // Passing null to a nonnnull+noundef argument is undefined.
7009               return !PtrValueMayBeModified;
7010             }
7011           }
7012       } else if (isa<UndefValue>(C)) {
7013         // Passing undef to a noundef argument is undefined.
7014         for (const llvm::Use &Arg : CB->args())
7015           if (Arg == I) {
7016             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7017             if (CB->isPassingUndefUB(ArgIdx)) {
7018               // Passing undef to a noundef argument is undefined.
7019               return true;
7020             }
7021           }
7022       }
7023     }
7024   }
7025   return false;
7026 }
7027 
7028 /// If BB has an incoming value that will always trigger undefined behavior
7029 /// (eg. null pointer dereference), remove the branch leading here.
7030 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
7031                                               DomTreeUpdater *DTU) {
7032   for (PHINode &PHI : BB->phis())
7033     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
7034       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
7035         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
7036         Instruction *T = Predecessor->getTerminator();
7037         IRBuilder<> Builder(T);
7038         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
7039           BB->removePredecessor(Predecessor);
7040           // Turn uncoditional branches into unreachables and remove the dead
7041           // destination from conditional branches.
7042           if (BI->isUnconditional())
7043             Builder.CreateUnreachable();
7044           else {
7045             // Preserve guarding condition in assume, because it might not be
7046             // inferrable from any dominating condition.
7047             Value *Cond = BI->getCondition();
7048             if (BI->getSuccessor(0) == BB)
7049               Builder.CreateAssumption(Builder.CreateNot(Cond));
7050             else
7051               Builder.CreateAssumption(Cond);
7052             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
7053                                                        : BI->getSuccessor(0));
7054           }
7055           BI->eraseFromParent();
7056           if (DTU)
7057             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
7058           return true;
7059         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
7060           // Redirect all branches leading to UB into
7061           // a newly created unreachable block.
7062           BasicBlock *Unreachable = BasicBlock::Create(
7063               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
7064           Builder.SetInsertPoint(Unreachable);
7065           // The new block contains only one instruction: Unreachable
7066           Builder.CreateUnreachable();
7067           for (auto &Case : SI->cases())
7068             if (Case.getCaseSuccessor() == BB) {
7069               BB->removePredecessor(Predecessor);
7070               Case.setSuccessor(Unreachable);
7071             }
7072           if (SI->getDefaultDest() == BB) {
7073             BB->removePredecessor(Predecessor);
7074             SI->setDefaultDest(Unreachable);
7075           }
7076 
7077           if (DTU)
7078             DTU->applyUpdates(
7079                 { { DominatorTree::Insert, Predecessor, Unreachable },
7080                   { DominatorTree::Delete, Predecessor, BB } });
7081           return true;
7082         }
7083       }
7084 
7085   return false;
7086 }
7087 
7088 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
7089   bool Changed = false;
7090 
7091   assert(BB && BB->getParent() && "Block not embedded in function!");
7092   assert(BB->getTerminator() && "Degenerate basic block encountered!");
7093 
7094   // Remove basic blocks that have no predecessors (except the entry block)...
7095   // or that just have themself as a predecessor.  These are unreachable.
7096   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
7097       BB->getSinglePredecessor() == BB) {
7098     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
7099     DeleteDeadBlock(BB, DTU);
7100     return true;
7101   }
7102 
7103   // Check to see if we can constant propagate this terminator instruction
7104   // away...
7105   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
7106                                     /*TLI=*/nullptr, DTU);
7107 
7108   // Check for and eliminate duplicate PHI nodes in this block.
7109   Changed |= EliminateDuplicatePHINodes(BB);
7110 
7111   // Check for and remove branches that will always cause undefined behavior.
7112   if (removeUndefIntroducingPredecessor(BB, DTU))
7113     return requestResimplify();
7114 
7115   // Merge basic blocks into their predecessor if there is only one distinct
7116   // pred, and if there is only one distinct successor of the predecessor, and
7117   // if there are no PHI nodes.
7118   if (MergeBlockIntoPredecessor(BB, DTU))
7119     return true;
7120 
7121   if (SinkCommon && Options.SinkCommonInsts)
7122     if (SinkCommonCodeFromPredecessors(BB, DTU) ||
7123         MergeCompatibleInvokes(BB, DTU)) {
7124       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
7125       // so we may now how duplicate PHI's.
7126       // Let's rerun EliminateDuplicatePHINodes() first,
7127       // before FoldTwoEntryPHINode() potentially converts them into select's,
7128       // after which we'd need a whole EarlyCSE pass run to cleanup them.
7129       return true;
7130     }
7131 
7132   IRBuilder<> Builder(BB);
7133 
7134   if (Options.FoldTwoEntryPHINode) {
7135     // If there is a trivial two-entry PHI node in this basic block, and we can
7136     // eliminate it, do so now.
7137     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
7138       if (PN->getNumIncomingValues() == 2)
7139         if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
7140           return true;
7141   }
7142 
7143   Instruction *Terminator = BB->getTerminator();
7144   Builder.SetInsertPoint(Terminator);
7145   switch (Terminator->getOpcode()) {
7146   case Instruction::Br:
7147     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
7148     break;
7149   case Instruction::Resume:
7150     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
7151     break;
7152   case Instruction::CleanupRet:
7153     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
7154     break;
7155   case Instruction::Switch:
7156     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
7157     break;
7158   case Instruction::Unreachable:
7159     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
7160     break;
7161   case Instruction::IndirectBr:
7162     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
7163     break;
7164   }
7165 
7166   return Changed;
7167 }
7168 
7169 bool SimplifyCFGOpt::run(BasicBlock *BB) {
7170   bool Changed = false;
7171 
7172   // Repeated simplify BB as long as resimplification is requested.
7173   do {
7174     Resimplify = false;
7175 
7176     // Perform one round of simplifcation. Resimplify flag will be set if
7177     // another iteration is requested.
7178     Changed |= simplifyOnce(BB);
7179   } while (Resimplify);
7180 
7181   return Changed;
7182 }
7183 
7184 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
7185                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
7186                        ArrayRef<WeakVH> LoopHeaders) {
7187   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
7188                         Options)
7189       .run(BB);
7190 }
7191