1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/GuardUtils.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/MemorySSA.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/ConstantRange.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/ValueHandle.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/ValueMapper.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <climits> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <set> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 using namespace PatternMatch; 90 91 #define DEBUG_TYPE "simplifycfg" 92 93 cl::opt<bool> llvm::RequireAndPreserveDomTree( 94 "simplifycfg-require-and-preserve-domtree", cl::Hidden, 95 96 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 97 "into preserving DomTree,")); 98 99 // Chosen as 2 so as to be cheap, but still to have enough power to fold 100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 101 // To catch this, we need to fold a compare and a select, hence '2' being the 102 // minimum reasonable default. 103 static cl::opt<unsigned> PHINodeFoldingThreshold( 104 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 105 cl::desc( 106 "Control the amount of phi node folding to perform (default = 2)")); 107 108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 109 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 110 cl::desc("Control the maximal total instruction cost that we are willing " 111 "to speculatively execute to fold a 2-entry PHI node into a " 112 "select (default = 4)")); 113 114 static cl::opt<bool> 115 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 116 cl::desc("Hoist common instructions up to the parent block")); 117 118 static cl::opt<bool> 119 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 120 cl::desc("Sink common instructions down to the end block")); 121 122 static cl::opt<bool> HoistCondStores( 123 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 124 cl::desc("Hoist conditional stores if an unconditional store precedes")); 125 126 static cl::opt<bool> MergeCondStores( 127 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 128 cl::desc("Hoist conditional stores even if an unconditional store does not " 129 "precede - hoist multiple conditional stores into a single " 130 "predicated store")); 131 132 static cl::opt<bool> MergeCondStoresAggressively( 133 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 134 cl::desc("When merging conditional stores, do so even if the resultant " 135 "basic blocks are unlikely to be if-converted as a result")); 136 137 static cl::opt<bool> SpeculateOneExpensiveInst( 138 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 139 cl::desc("Allow exactly one expensive instruction to be speculatively " 140 "executed")); 141 142 static cl::opt<unsigned> MaxSpeculationDepth( 143 "max-speculation-depth", cl::Hidden, cl::init(10), 144 cl::desc("Limit maximum recursion depth when calculating costs of " 145 "speculatively executed instructions")); 146 147 static cl::opt<int> 148 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 149 cl::init(10), 150 cl::desc("Max size of a block which is still considered " 151 "small enough to thread through")); 152 153 // Two is chosen to allow one negation and a logical combine. 154 static cl::opt<unsigned> 155 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 156 cl::init(2), 157 cl::desc("Maximum cost of combining conditions when " 158 "folding branches")); 159 160 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( 161 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, 162 cl::init(2), 163 cl::desc("Multiplier to apply to threshold when determining whether or not " 164 "to fold branch to common destination when vector operations are " 165 "present")); 166 167 static cl::opt<bool> EnableMergeCompatibleInvokes( 168 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true), 169 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate")); 170 171 static cl::opt<unsigned> MaxSwitchCasesPerResult( 172 "max-switch-cases-per-result", cl::Hidden, cl::init(16), 173 cl::desc("Limit cases to analyze when converting a switch to select")); 174 175 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 176 STATISTIC(NumLinearMaps, 177 "Number of switch instructions turned into linear mapping"); 178 STATISTIC(NumLookupTables, 179 "Number of switch instructions turned into lookup tables"); 180 STATISTIC( 181 NumLookupTablesHoles, 182 "Number of switch instructions turned into lookup tables (holes checked)"); 183 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 184 STATISTIC(NumFoldValueComparisonIntoPredecessors, 185 "Number of value comparisons folded into predecessor basic blocks"); 186 STATISTIC(NumFoldBranchToCommonDest, 187 "Number of branches folded into predecessor basic block"); 188 STATISTIC( 189 NumHoistCommonCode, 190 "Number of common instruction 'blocks' hoisted up to the begin block"); 191 STATISTIC(NumHoistCommonInstrs, 192 "Number of common instructions hoisted up to the begin block"); 193 STATISTIC(NumSinkCommonCode, 194 "Number of common instruction 'blocks' sunk down to the end block"); 195 STATISTIC(NumSinkCommonInstrs, 196 "Number of common instructions sunk down to the end block"); 197 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 198 STATISTIC(NumInvokes, 199 "Number of invokes with empty resume blocks simplified into calls"); 200 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); 201 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); 202 203 namespace { 204 205 // The first field contains the value that the switch produces when a certain 206 // case group is selected, and the second field is a vector containing the 207 // cases composing the case group. 208 using SwitchCaseResultVectorTy = 209 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 210 211 // The first field contains the phi node that generates a result of the switch 212 // and the second field contains the value generated for a certain case in the 213 // switch for that PHI. 214 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 215 216 /// ValueEqualityComparisonCase - Represents a case of a switch. 217 struct ValueEqualityComparisonCase { 218 ConstantInt *Value; 219 BasicBlock *Dest; 220 221 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 222 : Value(Value), Dest(Dest) {} 223 224 bool operator<(ValueEqualityComparisonCase RHS) const { 225 // Comparing pointers is ok as we only rely on the order for uniquing. 226 return Value < RHS.Value; 227 } 228 229 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 230 }; 231 232 class SimplifyCFGOpt { 233 const TargetTransformInfo &TTI; 234 DomTreeUpdater *DTU; 235 const DataLayout &DL; 236 ArrayRef<WeakVH> LoopHeaders; 237 const SimplifyCFGOptions &Options; 238 bool Resimplify; 239 240 Value *isValueEqualityComparison(Instruction *TI); 241 BasicBlock *GetValueEqualityComparisonCases( 242 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 243 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 244 BasicBlock *Pred, 245 IRBuilder<> &Builder); 246 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 247 Instruction *PTI, 248 IRBuilder<> &Builder); 249 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 250 IRBuilder<> &Builder); 251 252 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 253 bool simplifySingleResume(ResumeInst *RI); 254 bool simplifyCommonResume(ResumeInst *RI); 255 bool simplifyCleanupReturn(CleanupReturnInst *RI); 256 bool simplifyUnreachable(UnreachableInst *UI); 257 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 258 bool simplifyIndirectBr(IndirectBrInst *IBI); 259 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 260 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 261 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 262 263 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 264 IRBuilder<> &Builder); 265 266 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 267 bool EqTermsOnly); 268 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 269 const TargetTransformInfo &TTI); 270 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 271 BasicBlock *TrueBB, BasicBlock *FalseBB, 272 uint32_t TrueWeight, uint32_t FalseWeight); 273 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 274 const DataLayout &DL); 275 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 276 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 277 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 278 279 public: 280 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 281 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 282 const SimplifyCFGOptions &Opts) 283 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 284 assert((!DTU || !DTU->hasPostDomTree()) && 285 "SimplifyCFG is not yet capable of maintaining validity of a " 286 "PostDomTree, so don't ask for it."); 287 } 288 289 bool simplifyOnce(BasicBlock *BB); 290 bool run(BasicBlock *BB); 291 292 // Helper to set Resimplify and return change indication. 293 bool requestResimplify() { 294 Resimplify = true; 295 return true; 296 } 297 }; 298 299 } // end anonymous namespace 300 301 /// Return true if all the PHI nodes in the basic block \p BB 302 /// receive compatible (identical) incoming values when coming from 303 /// all of the predecessor blocks that are specified in \p IncomingBlocks. 304 /// 305 /// Note that if the values aren't exactly identical, but \p EquivalenceSet 306 /// is provided, and *both* of the values are present in the set, 307 /// then they are considered equal. 308 static bool IncomingValuesAreCompatible( 309 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, 310 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { 311 assert(IncomingBlocks.size() == 2 && 312 "Only for a pair of incoming blocks at the time!"); 313 314 // FIXME: it is okay if one of the incoming values is an `undef` value, 315 // iff the other incoming value is guaranteed to be a non-poison value. 316 // FIXME: it is okay if one of the incoming values is a `poison` value. 317 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { 318 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); 319 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); 320 if (IV0 == IV1) 321 return true; 322 if (EquivalenceSet && EquivalenceSet->contains(IV0) && 323 EquivalenceSet->contains(IV1)) 324 return true; 325 return false; 326 }); 327 } 328 329 /// Return true if it is safe to merge these two 330 /// terminator instructions together. 331 static bool 332 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 333 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 334 if (SI1 == SI2) 335 return false; // Can't merge with self! 336 337 // It is not safe to merge these two switch instructions if they have a common 338 // successor, and if that successor has a PHI node, and if *that* PHI node has 339 // conflicting incoming values from the two switch blocks. 340 BasicBlock *SI1BB = SI1->getParent(); 341 BasicBlock *SI2BB = SI2->getParent(); 342 343 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 344 bool Fail = false; 345 for (BasicBlock *Succ : successors(SI2BB)) { 346 if (!SI1Succs.count(Succ)) 347 continue; 348 if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) 349 continue; 350 Fail = true; 351 if (FailBlocks) 352 FailBlocks->insert(Succ); 353 else 354 break; 355 } 356 357 return !Fail; 358 } 359 360 /// Update PHI nodes in Succ to indicate that there will now be entries in it 361 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 362 /// will be the same as those coming in from ExistPred, an existing predecessor 363 /// of Succ. 364 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 365 BasicBlock *ExistPred, 366 MemorySSAUpdater *MSSAU = nullptr) { 367 for (PHINode &PN : Succ->phis()) 368 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 369 if (MSSAU) 370 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 371 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 372 } 373 374 /// Compute an abstract "cost" of speculating the given instruction, 375 /// which is assumed to be safe to speculate. TCC_Free means cheap, 376 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 377 /// expensive. 378 static InstructionCost computeSpeculationCost(const User *I, 379 const TargetTransformInfo &TTI) { 380 assert(isSafeToSpeculativelyExecute(I) && 381 "Instruction is not safe to speculatively execute!"); 382 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 383 } 384 385 /// Check whether this is a potentially trapping constant. 386 static bool canTrap(const Value *V) { 387 if (auto *C = dyn_cast<Constant>(V)) 388 return C->canTrap(); 389 return false; 390 } 391 392 /// If we have a merge point of an "if condition" as accepted above, 393 /// return true if the specified value dominates the block. We 394 /// don't handle the true generality of domination here, just a special case 395 /// which works well enough for us. 396 /// 397 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 398 /// see if V (which must be an instruction) and its recursive operands 399 /// that do not dominate BB have a combined cost lower than Budget and 400 /// are non-trapping. If both are true, the instruction is inserted into the 401 /// set and true is returned. 402 /// 403 /// The cost for most non-trapping instructions is defined as 1 except for 404 /// Select whose cost is 2. 405 /// 406 /// After this function returns, Cost is increased by the cost of 407 /// V plus its non-dominating operands. If that cost is greater than 408 /// Budget, false is returned and Cost is undefined. 409 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 410 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 411 InstructionCost &Cost, 412 InstructionCost Budget, 413 const TargetTransformInfo &TTI, 414 unsigned Depth = 0) { 415 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 416 // so limit the recursion depth. 417 // TODO: While this recursion limit does prevent pathological behavior, it 418 // would be better to track visited instructions to avoid cycles. 419 if (Depth == MaxSpeculationDepth) 420 return false; 421 422 Instruction *I = dyn_cast<Instruction>(V); 423 if (!I) { 424 // Non-instructions all dominate instructions, but not all constantexprs 425 // can be executed unconditionally. 426 return !canTrap(V); 427 } 428 BasicBlock *PBB = I->getParent(); 429 430 // We don't want to allow weird loops that might have the "if condition" in 431 // the bottom of this block. 432 if (PBB == BB) 433 return false; 434 435 // If this instruction is defined in a block that contains an unconditional 436 // branch to BB, then it must be in the 'conditional' part of the "if 437 // statement". If not, it definitely dominates the region. 438 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 439 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 440 return true; 441 442 // If we have seen this instruction before, don't count it again. 443 if (AggressiveInsts.count(I)) 444 return true; 445 446 // Okay, it looks like the instruction IS in the "condition". Check to 447 // see if it's a cheap instruction to unconditionally compute, and if it 448 // only uses stuff defined outside of the condition. If so, hoist it out. 449 if (!isSafeToSpeculativelyExecute(I)) 450 return false; 451 452 Cost += computeSpeculationCost(I, TTI); 453 454 // Allow exactly one instruction to be speculated regardless of its cost 455 // (as long as it is safe to do so). 456 // This is intended to flatten the CFG even if the instruction is a division 457 // or other expensive operation. The speculation of an expensive instruction 458 // is expected to be undone in CodeGenPrepare if the speculation has not 459 // enabled further IR optimizations. 460 if (Cost > Budget && 461 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 462 !Cost.isValid())) 463 return false; 464 465 // Okay, we can only really hoist these out if their operands do 466 // not take us over the cost threshold. 467 for (Use &Op : I->operands()) 468 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 469 Depth + 1)) 470 return false; 471 // Okay, it's safe to do this! Remember this instruction. 472 AggressiveInsts.insert(I); 473 return true; 474 } 475 476 /// Extract ConstantInt from value, looking through IntToPtr 477 /// and PointerNullValue. Return NULL if value is not a constant int. 478 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 479 // Normal constant int. 480 ConstantInt *CI = dyn_cast<ConstantInt>(V); 481 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 482 return CI; 483 484 // This is some kind of pointer constant. Turn it into a pointer-sized 485 // ConstantInt if possible. 486 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 487 488 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 489 if (isa<ConstantPointerNull>(V)) 490 return ConstantInt::get(PtrTy, 0); 491 492 // IntToPtr const int. 493 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 494 if (CE->getOpcode() == Instruction::IntToPtr) 495 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 496 // The constant is very likely to have the right type already. 497 if (CI->getType() == PtrTy) 498 return CI; 499 else 500 return cast<ConstantInt>( 501 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 502 } 503 return nullptr; 504 } 505 506 namespace { 507 508 /// Given a chain of or (||) or and (&&) comparison of a value against a 509 /// constant, this will try to recover the information required for a switch 510 /// structure. 511 /// It will depth-first traverse the chain of comparison, seeking for patterns 512 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 513 /// representing the different cases for the switch. 514 /// Note that if the chain is composed of '||' it will build the set of elements 515 /// that matches the comparisons (i.e. any of this value validate the chain) 516 /// while for a chain of '&&' it will build the set elements that make the test 517 /// fail. 518 struct ConstantComparesGatherer { 519 const DataLayout &DL; 520 521 /// Value found for the switch comparison 522 Value *CompValue = nullptr; 523 524 /// Extra clause to be checked before the switch 525 Value *Extra = nullptr; 526 527 /// Set of integers to match in switch 528 SmallVector<ConstantInt *, 8> Vals; 529 530 /// Number of comparisons matched in the and/or chain 531 unsigned UsedICmps = 0; 532 533 /// Construct and compute the result for the comparison instruction Cond 534 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 535 gather(Cond); 536 } 537 538 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 539 ConstantComparesGatherer & 540 operator=(const ConstantComparesGatherer &) = delete; 541 542 private: 543 /// Try to set the current value used for the comparison, it succeeds only if 544 /// it wasn't set before or if the new value is the same as the old one 545 bool setValueOnce(Value *NewVal) { 546 if (CompValue && CompValue != NewVal) 547 return false; 548 CompValue = NewVal; 549 return (CompValue != nullptr); 550 } 551 552 /// Try to match Instruction "I" as a comparison against a constant and 553 /// populates the array Vals with the set of values that match (or do not 554 /// match depending on isEQ). 555 /// Return false on failure. On success, the Value the comparison matched 556 /// against is placed in CompValue. 557 /// If CompValue is already set, the function is expected to fail if a match 558 /// is found but the value compared to is different. 559 bool matchInstruction(Instruction *I, bool isEQ) { 560 // If this is an icmp against a constant, handle this as one of the cases. 561 ICmpInst *ICI; 562 ConstantInt *C; 563 if (!((ICI = dyn_cast<ICmpInst>(I)) && 564 (C = GetConstantInt(I->getOperand(1), DL)))) { 565 return false; 566 } 567 568 Value *RHSVal; 569 const APInt *RHSC; 570 571 // Pattern match a special case 572 // (x & ~2^z) == y --> x == y || x == y|2^z 573 // This undoes a transformation done by instcombine to fuse 2 compares. 574 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 575 // It's a little bit hard to see why the following transformations are 576 // correct. Here is a CVC3 program to verify them for 64-bit values: 577 578 /* 579 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 580 x : BITVECTOR(64); 581 y : BITVECTOR(64); 582 z : BITVECTOR(64); 583 mask : BITVECTOR(64) = BVSHL(ONE, z); 584 QUERY( (y & ~mask = y) => 585 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 586 ); 587 QUERY( (y | mask = y) => 588 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 589 ); 590 */ 591 592 // Please note that each pattern must be a dual implication (<--> or 593 // iff). One directional implication can create spurious matches. If the 594 // implication is only one-way, an unsatisfiable condition on the left 595 // side can imply a satisfiable condition on the right side. Dual 596 // implication ensures that satisfiable conditions are transformed to 597 // other satisfiable conditions and unsatisfiable conditions are 598 // transformed to other unsatisfiable conditions. 599 600 // Here is a concrete example of a unsatisfiable condition on the left 601 // implying a satisfiable condition on the right: 602 // 603 // mask = (1 << z) 604 // (x & ~mask) == y --> (x == y || x == (y | mask)) 605 // 606 // Substituting y = 3, z = 0 yields: 607 // (x & -2) == 3 --> (x == 3 || x == 2) 608 609 // Pattern match a special case: 610 /* 611 QUERY( (y & ~mask = y) => 612 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 613 ); 614 */ 615 if (match(ICI->getOperand(0), 616 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 617 APInt Mask = ~*RHSC; 618 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 619 // If we already have a value for the switch, it has to match! 620 if (!setValueOnce(RHSVal)) 621 return false; 622 623 Vals.push_back(C); 624 Vals.push_back( 625 ConstantInt::get(C->getContext(), 626 C->getValue() | Mask)); 627 UsedICmps++; 628 return true; 629 } 630 } 631 632 // Pattern match a special case: 633 /* 634 QUERY( (y | mask = y) => 635 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 636 ); 637 */ 638 if (match(ICI->getOperand(0), 639 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 640 APInt Mask = *RHSC; 641 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 642 // If we already have a value for the switch, it has to match! 643 if (!setValueOnce(RHSVal)) 644 return false; 645 646 Vals.push_back(C); 647 Vals.push_back(ConstantInt::get(C->getContext(), 648 C->getValue() & ~Mask)); 649 UsedICmps++; 650 return true; 651 } 652 } 653 654 // If we already have a value for the switch, it has to match! 655 if (!setValueOnce(ICI->getOperand(0))) 656 return false; 657 658 UsedICmps++; 659 Vals.push_back(C); 660 return ICI->getOperand(0); 661 } 662 663 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 664 ConstantRange Span = 665 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 666 667 // Shift the range if the compare is fed by an add. This is the range 668 // compare idiom as emitted by instcombine. 669 Value *CandidateVal = I->getOperand(0); 670 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 671 Span = Span.subtract(*RHSC); 672 CandidateVal = RHSVal; 673 } 674 675 // If this is an and/!= check, then we are looking to build the set of 676 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 677 // x != 0 && x != 1. 678 if (!isEQ) 679 Span = Span.inverse(); 680 681 // If there are a ton of values, we don't want to make a ginormous switch. 682 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 683 return false; 684 } 685 686 // If we already have a value for the switch, it has to match! 687 if (!setValueOnce(CandidateVal)) 688 return false; 689 690 // Add all values from the range to the set 691 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 692 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 693 694 UsedICmps++; 695 return true; 696 } 697 698 /// Given a potentially 'or'd or 'and'd together collection of icmp 699 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 700 /// the value being compared, and stick the list constants into the Vals 701 /// vector. 702 /// One "Extra" case is allowed to differ from the other. 703 void gather(Value *V) { 704 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 705 706 // Keep a stack (SmallVector for efficiency) for depth-first traversal 707 SmallVector<Value *, 8> DFT; 708 SmallPtrSet<Value *, 8> Visited; 709 710 // Initialize 711 Visited.insert(V); 712 DFT.push_back(V); 713 714 while (!DFT.empty()) { 715 V = DFT.pop_back_val(); 716 717 if (Instruction *I = dyn_cast<Instruction>(V)) { 718 // If it is a || (or && depending on isEQ), process the operands. 719 Value *Op0, *Op1; 720 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 721 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 722 if (Visited.insert(Op1).second) 723 DFT.push_back(Op1); 724 if (Visited.insert(Op0).second) 725 DFT.push_back(Op0); 726 727 continue; 728 } 729 730 // Try to match the current instruction 731 if (matchInstruction(I, isEQ)) 732 // Match succeed, continue the loop 733 continue; 734 } 735 736 // One element of the sequence of || (or &&) could not be match as a 737 // comparison against the same value as the others. 738 // We allow only one "Extra" case to be checked before the switch 739 if (!Extra) { 740 Extra = V; 741 continue; 742 } 743 // Failed to parse a proper sequence, abort now 744 CompValue = nullptr; 745 break; 746 } 747 } 748 }; 749 750 } // end anonymous namespace 751 752 static void EraseTerminatorAndDCECond(Instruction *TI, 753 MemorySSAUpdater *MSSAU = nullptr) { 754 Instruction *Cond = nullptr; 755 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 756 Cond = dyn_cast<Instruction>(SI->getCondition()); 757 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 758 if (BI->isConditional()) 759 Cond = dyn_cast<Instruction>(BI->getCondition()); 760 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 761 Cond = dyn_cast<Instruction>(IBI->getAddress()); 762 } 763 764 TI->eraseFromParent(); 765 if (Cond) 766 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 767 } 768 769 /// Return true if the specified terminator checks 770 /// to see if a value is equal to constant integer value. 771 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 772 Value *CV = nullptr; 773 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 774 // Do not permit merging of large switch instructions into their 775 // predecessors unless there is only one predecessor. 776 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 777 CV = SI->getCondition(); 778 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 779 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 780 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 781 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 782 CV = ICI->getOperand(0); 783 } 784 785 // Unwrap any lossless ptrtoint cast. 786 if (CV) { 787 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 788 Value *Ptr = PTII->getPointerOperand(); 789 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 790 CV = Ptr; 791 } 792 } 793 return CV; 794 } 795 796 /// Given a value comparison instruction, 797 /// decode all of the 'cases' that it represents and return the 'default' block. 798 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 799 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 800 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 801 Cases.reserve(SI->getNumCases()); 802 for (auto Case : SI->cases()) 803 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 804 Case.getCaseSuccessor())); 805 return SI->getDefaultDest(); 806 } 807 808 BranchInst *BI = cast<BranchInst>(TI); 809 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 810 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 811 Cases.push_back(ValueEqualityComparisonCase( 812 GetConstantInt(ICI->getOperand(1), DL), Succ)); 813 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 814 } 815 816 /// Given a vector of bb/value pairs, remove any entries 817 /// in the list that match the specified block. 818 static void 819 EliminateBlockCases(BasicBlock *BB, 820 std::vector<ValueEqualityComparisonCase> &Cases) { 821 llvm::erase_value(Cases, BB); 822 } 823 824 /// Return true if there are any keys in C1 that exist in C2 as well. 825 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 826 std::vector<ValueEqualityComparisonCase> &C2) { 827 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 828 829 // Make V1 be smaller than V2. 830 if (V1->size() > V2->size()) 831 std::swap(V1, V2); 832 833 if (V1->empty()) 834 return false; 835 if (V1->size() == 1) { 836 // Just scan V2. 837 ConstantInt *TheVal = (*V1)[0].Value; 838 for (unsigned i = 0, e = V2->size(); i != e; ++i) 839 if (TheVal == (*V2)[i].Value) 840 return true; 841 } 842 843 // Otherwise, just sort both lists and compare element by element. 844 array_pod_sort(V1->begin(), V1->end()); 845 array_pod_sort(V2->begin(), V2->end()); 846 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 847 while (i1 != e1 && i2 != e2) { 848 if ((*V1)[i1].Value == (*V2)[i2].Value) 849 return true; 850 if ((*V1)[i1].Value < (*V2)[i2].Value) 851 ++i1; 852 else 853 ++i2; 854 } 855 return false; 856 } 857 858 // Set branch weights on SwitchInst. This sets the metadata if there is at 859 // least one non-zero weight. 860 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 861 // Check that there is at least one non-zero weight. Otherwise, pass 862 // nullptr to setMetadata which will erase the existing metadata. 863 MDNode *N = nullptr; 864 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 865 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 866 SI->setMetadata(LLVMContext::MD_prof, N); 867 } 868 869 // Similar to the above, but for branch and select instructions that take 870 // exactly 2 weights. 871 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 872 uint32_t FalseWeight) { 873 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 874 // Check that there is at least one non-zero weight. Otherwise, pass 875 // nullptr to setMetadata which will erase the existing metadata. 876 MDNode *N = nullptr; 877 if (TrueWeight || FalseWeight) 878 N = MDBuilder(I->getParent()->getContext()) 879 .createBranchWeights(TrueWeight, FalseWeight); 880 I->setMetadata(LLVMContext::MD_prof, N); 881 } 882 883 /// If TI is known to be a terminator instruction and its block is known to 884 /// only have a single predecessor block, check to see if that predecessor is 885 /// also a value comparison with the same value, and if that comparison 886 /// determines the outcome of this comparison. If so, simplify TI. This does a 887 /// very limited form of jump threading. 888 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 889 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 890 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 891 if (!PredVal) 892 return false; // Not a value comparison in predecessor. 893 894 Value *ThisVal = isValueEqualityComparison(TI); 895 assert(ThisVal && "This isn't a value comparison!!"); 896 if (ThisVal != PredVal) 897 return false; // Different predicates. 898 899 // TODO: Preserve branch weight metadata, similarly to how 900 // FoldValueComparisonIntoPredecessors preserves it. 901 902 // Find out information about when control will move from Pred to TI's block. 903 std::vector<ValueEqualityComparisonCase> PredCases; 904 BasicBlock *PredDef = 905 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 906 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 907 908 // Find information about how control leaves this block. 909 std::vector<ValueEqualityComparisonCase> ThisCases; 910 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 911 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 912 913 // If TI's block is the default block from Pred's comparison, potentially 914 // simplify TI based on this knowledge. 915 if (PredDef == TI->getParent()) { 916 // If we are here, we know that the value is none of those cases listed in 917 // PredCases. If there are any cases in ThisCases that are in PredCases, we 918 // can simplify TI. 919 if (!ValuesOverlap(PredCases, ThisCases)) 920 return false; 921 922 if (isa<BranchInst>(TI)) { 923 // Okay, one of the successors of this condbr is dead. Convert it to a 924 // uncond br. 925 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 926 // Insert the new branch. 927 Instruction *NI = Builder.CreateBr(ThisDef); 928 (void)NI; 929 930 // Remove PHI node entries for the dead edge. 931 ThisCases[0].Dest->removePredecessor(PredDef); 932 933 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 934 << "Through successor TI: " << *TI << "Leaving: " << *NI 935 << "\n"); 936 937 EraseTerminatorAndDCECond(TI); 938 939 if (DTU) 940 DTU->applyUpdates( 941 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 942 943 return true; 944 } 945 946 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 947 // Okay, TI has cases that are statically dead, prune them away. 948 SmallPtrSet<Constant *, 16> DeadCases; 949 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 950 DeadCases.insert(PredCases[i].Value); 951 952 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 953 << "Through successor TI: " << *TI); 954 955 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 956 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 957 --i; 958 auto *Successor = i->getCaseSuccessor(); 959 if (DTU) 960 ++NumPerSuccessorCases[Successor]; 961 if (DeadCases.count(i->getCaseValue())) { 962 Successor->removePredecessor(PredDef); 963 SI.removeCase(i); 964 if (DTU) 965 --NumPerSuccessorCases[Successor]; 966 } 967 } 968 969 if (DTU) { 970 std::vector<DominatorTree::UpdateType> Updates; 971 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 972 if (I.second == 0) 973 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 974 DTU->applyUpdates(Updates); 975 } 976 977 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 978 return true; 979 } 980 981 // Otherwise, TI's block must correspond to some matched value. Find out 982 // which value (or set of values) this is. 983 ConstantInt *TIV = nullptr; 984 BasicBlock *TIBB = TI->getParent(); 985 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 986 if (PredCases[i].Dest == TIBB) { 987 if (TIV) 988 return false; // Cannot handle multiple values coming to this block. 989 TIV = PredCases[i].Value; 990 } 991 assert(TIV && "No edge from pred to succ?"); 992 993 // Okay, we found the one constant that our value can be if we get into TI's 994 // BB. Find out which successor will unconditionally be branched to. 995 BasicBlock *TheRealDest = nullptr; 996 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 997 if (ThisCases[i].Value == TIV) { 998 TheRealDest = ThisCases[i].Dest; 999 break; 1000 } 1001 1002 // If not handled by any explicit cases, it is handled by the default case. 1003 if (!TheRealDest) 1004 TheRealDest = ThisDef; 1005 1006 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 1007 1008 // Remove PHI node entries for dead edges. 1009 BasicBlock *CheckEdge = TheRealDest; 1010 for (BasicBlock *Succ : successors(TIBB)) 1011 if (Succ != CheckEdge) { 1012 if (Succ != TheRealDest) 1013 RemovedSuccs.insert(Succ); 1014 Succ->removePredecessor(TIBB); 1015 } else 1016 CheckEdge = nullptr; 1017 1018 // Insert the new branch. 1019 Instruction *NI = Builder.CreateBr(TheRealDest); 1020 (void)NI; 1021 1022 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1023 << "Through successor TI: " << *TI << "Leaving: " << *NI 1024 << "\n"); 1025 1026 EraseTerminatorAndDCECond(TI); 1027 if (DTU) { 1028 SmallVector<DominatorTree::UpdateType, 2> Updates; 1029 Updates.reserve(RemovedSuccs.size()); 1030 for (auto *RemovedSucc : RemovedSuccs) 1031 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1032 DTU->applyUpdates(Updates); 1033 } 1034 return true; 1035 } 1036 1037 namespace { 1038 1039 /// This class implements a stable ordering of constant 1040 /// integers that does not depend on their address. This is important for 1041 /// applications that sort ConstantInt's to ensure uniqueness. 1042 struct ConstantIntOrdering { 1043 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1044 return LHS->getValue().ult(RHS->getValue()); 1045 } 1046 }; 1047 1048 } // end anonymous namespace 1049 1050 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1051 ConstantInt *const *P2) { 1052 const ConstantInt *LHS = *P1; 1053 const ConstantInt *RHS = *P2; 1054 if (LHS == RHS) 1055 return 0; 1056 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1057 } 1058 1059 static inline bool HasBranchWeights(const Instruction *I) { 1060 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1061 if (ProfMD && ProfMD->getOperand(0)) 1062 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1063 return MDS->getString().equals("branch_weights"); 1064 1065 return false; 1066 } 1067 1068 /// Get Weights of a given terminator, the default weight is at the front 1069 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1070 /// metadata. 1071 static void GetBranchWeights(Instruction *TI, 1072 SmallVectorImpl<uint64_t> &Weights) { 1073 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1074 assert(MD); 1075 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1076 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1077 Weights.push_back(CI->getValue().getZExtValue()); 1078 } 1079 1080 // If TI is a conditional eq, the default case is the false case, 1081 // and the corresponding branch-weight data is at index 2. We swap the 1082 // default weight to be the first entry. 1083 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1084 assert(Weights.size() == 2); 1085 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1086 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1087 std::swap(Weights.front(), Weights.back()); 1088 } 1089 } 1090 1091 /// Keep halving the weights until all can fit in uint32_t. 1092 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1093 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1094 if (Max > UINT_MAX) { 1095 unsigned Offset = 32 - countLeadingZeros(Max); 1096 for (uint64_t &I : Weights) 1097 I >>= Offset; 1098 } 1099 } 1100 1101 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1102 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1103 Instruction *PTI = PredBlock->getTerminator(); 1104 1105 // If we have bonus instructions, clone them into the predecessor block. 1106 // Note that there may be multiple predecessor blocks, so we cannot move 1107 // bonus instructions to a predecessor block. 1108 for (Instruction &BonusInst : *BB) { 1109 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1110 continue; 1111 1112 Instruction *NewBonusInst = BonusInst.clone(); 1113 1114 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1115 // Unless the instruction has the same !dbg location as the original 1116 // branch, drop it. When we fold the bonus instructions we want to make 1117 // sure we reset their debug locations in order to avoid stepping on 1118 // dead code caused by folding dead branches. 1119 NewBonusInst->setDebugLoc(DebugLoc()); 1120 } 1121 1122 RemapInstruction(NewBonusInst, VMap, 1123 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1124 VMap[&BonusInst] = NewBonusInst; 1125 1126 // If we moved a load, we cannot any longer claim any knowledge about 1127 // its potential value. The previous information might have been valid 1128 // only given the branch precondition. 1129 // For an analogous reason, we must also drop all the metadata whose 1130 // semantics we don't understand. We *can* preserve !annotation, because 1131 // it is tied to the instruction itself, not the value or position. 1132 // Similarly strip attributes on call parameters that may cause UB in 1133 // location the call is moved to. 1134 NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata( 1135 LLVMContext::MD_annotation); 1136 1137 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1138 NewBonusInst->takeName(&BonusInst); 1139 BonusInst.setName(NewBonusInst->getName() + ".old"); 1140 1141 // Update (liveout) uses of bonus instructions, 1142 // now that the bonus instruction has been cloned into predecessor. 1143 // Note that we expect to be in a block-closed SSA form for this to work! 1144 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1145 auto *UI = cast<Instruction>(U.getUser()); 1146 auto *PN = dyn_cast<PHINode>(UI); 1147 if (!PN) { 1148 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && 1149 "If the user is not a PHI node, then it should be in the same " 1150 "block as, and come after, the original bonus instruction."); 1151 continue; // Keep using the original bonus instruction. 1152 } 1153 // Is this the block-closed SSA form PHI node? 1154 if (PN->getIncomingBlock(U) == BB) 1155 continue; // Great, keep using the original bonus instruction. 1156 // The only other alternative is an "use" when coming from 1157 // the predecessor block - here we should refer to the cloned bonus instr. 1158 assert(PN->getIncomingBlock(U) == PredBlock && 1159 "Not in block-closed SSA form?"); 1160 U.set(NewBonusInst); 1161 } 1162 } 1163 } 1164 1165 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1166 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1167 BasicBlock *BB = TI->getParent(); 1168 BasicBlock *Pred = PTI->getParent(); 1169 1170 SmallVector<DominatorTree::UpdateType, 32> Updates; 1171 1172 // Figure out which 'cases' to copy from SI to PSI. 1173 std::vector<ValueEqualityComparisonCase> BBCases; 1174 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1175 1176 std::vector<ValueEqualityComparisonCase> PredCases; 1177 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1178 1179 // Based on whether the default edge from PTI goes to BB or not, fill in 1180 // PredCases and PredDefault with the new switch cases we would like to 1181 // build. 1182 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1183 1184 // Update the branch weight metadata along the way 1185 SmallVector<uint64_t, 8> Weights; 1186 bool PredHasWeights = HasBranchWeights(PTI); 1187 bool SuccHasWeights = HasBranchWeights(TI); 1188 1189 if (PredHasWeights) { 1190 GetBranchWeights(PTI, Weights); 1191 // branch-weight metadata is inconsistent here. 1192 if (Weights.size() != 1 + PredCases.size()) 1193 PredHasWeights = SuccHasWeights = false; 1194 } else if (SuccHasWeights) 1195 // If there are no predecessor weights but there are successor weights, 1196 // populate Weights with 1, which will later be scaled to the sum of 1197 // successor's weights 1198 Weights.assign(1 + PredCases.size(), 1); 1199 1200 SmallVector<uint64_t, 8> SuccWeights; 1201 if (SuccHasWeights) { 1202 GetBranchWeights(TI, SuccWeights); 1203 // branch-weight metadata is inconsistent here. 1204 if (SuccWeights.size() != 1 + BBCases.size()) 1205 PredHasWeights = SuccHasWeights = false; 1206 } else if (PredHasWeights) 1207 SuccWeights.assign(1 + BBCases.size(), 1); 1208 1209 if (PredDefault == BB) { 1210 // If this is the default destination from PTI, only the edges in TI 1211 // that don't occur in PTI, or that branch to BB will be activated. 1212 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1213 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1214 if (PredCases[i].Dest != BB) 1215 PTIHandled.insert(PredCases[i].Value); 1216 else { 1217 // The default destination is BB, we don't need explicit targets. 1218 std::swap(PredCases[i], PredCases.back()); 1219 1220 if (PredHasWeights || SuccHasWeights) { 1221 // Increase weight for the default case. 1222 Weights[0] += Weights[i + 1]; 1223 std::swap(Weights[i + 1], Weights.back()); 1224 Weights.pop_back(); 1225 } 1226 1227 PredCases.pop_back(); 1228 --i; 1229 --e; 1230 } 1231 1232 // Reconstruct the new switch statement we will be building. 1233 if (PredDefault != BBDefault) { 1234 PredDefault->removePredecessor(Pred); 1235 if (DTU && PredDefault != BB) 1236 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1237 PredDefault = BBDefault; 1238 ++NewSuccessors[BBDefault]; 1239 } 1240 1241 unsigned CasesFromPred = Weights.size(); 1242 uint64_t ValidTotalSuccWeight = 0; 1243 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1244 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1245 PredCases.push_back(BBCases[i]); 1246 ++NewSuccessors[BBCases[i].Dest]; 1247 if (SuccHasWeights || PredHasWeights) { 1248 // The default weight is at index 0, so weight for the ith case 1249 // should be at index i+1. Scale the cases from successor by 1250 // PredDefaultWeight (Weights[0]). 1251 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1252 ValidTotalSuccWeight += SuccWeights[i + 1]; 1253 } 1254 } 1255 1256 if (SuccHasWeights || PredHasWeights) { 1257 ValidTotalSuccWeight += SuccWeights[0]; 1258 // Scale the cases from predecessor by ValidTotalSuccWeight. 1259 for (unsigned i = 1; i < CasesFromPred; ++i) 1260 Weights[i] *= ValidTotalSuccWeight; 1261 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1262 Weights[0] *= SuccWeights[0]; 1263 } 1264 } else { 1265 // If this is not the default destination from PSI, only the edges 1266 // in SI that occur in PSI with a destination of BB will be 1267 // activated. 1268 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1269 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1270 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1271 if (PredCases[i].Dest == BB) { 1272 PTIHandled.insert(PredCases[i].Value); 1273 1274 if (PredHasWeights || SuccHasWeights) { 1275 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1276 std::swap(Weights[i + 1], Weights.back()); 1277 Weights.pop_back(); 1278 } 1279 1280 std::swap(PredCases[i], PredCases.back()); 1281 PredCases.pop_back(); 1282 --i; 1283 --e; 1284 } 1285 1286 // Okay, now we know which constants were sent to BB from the 1287 // predecessor. Figure out where they will all go now. 1288 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1289 if (PTIHandled.count(BBCases[i].Value)) { 1290 // If this is one we are capable of getting... 1291 if (PredHasWeights || SuccHasWeights) 1292 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1293 PredCases.push_back(BBCases[i]); 1294 ++NewSuccessors[BBCases[i].Dest]; 1295 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1296 } 1297 1298 // If there are any constants vectored to BB that TI doesn't handle, 1299 // they must go to the default destination of TI. 1300 for (ConstantInt *I : PTIHandled) { 1301 if (PredHasWeights || SuccHasWeights) 1302 Weights.push_back(WeightsForHandled[I]); 1303 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1304 ++NewSuccessors[BBDefault]; 1305 } 1306 } 1307 1308 // Okay, at this point, we know which new successor Pred will get. Make 1309 // sure we update the number of entries in the PHI nodes for these 1310 // successors. 1311 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1312 if (DTU) { 1313 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1314 Updates.reserve(Updates.size() + NewSuccessors.size()); 1315 } 1316 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1317 NewSuccessors) { 1318 for (auto I : seq(0, NewSuccessor.second)) { 1319 (void)I; 1320 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1321 } 1322 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1323 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1324 } 1325 1326 Builder.SetInsertPoint(PTI); 1327 // Convert pointer to int before we switch. 1328 if (CV->getType()->isPointerTy()) { 1329 CV = 1330 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1331 } 1332 1333 // Now that the successors are updated, create the new Switch instruction. 1334 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1335 NewSI->setDebugLoc(PTI->getDebugLoc()); 1336 for (ValueEqualityComparisonCase &V : PredCases) 1337 NewSI->addCase(V.Value, V.Dest); 1338 1339 if (PredHasWeights || SuccHasWeights) { 1340 // Halve the weights if any of them cannot fit in an uint32_t 1341 FitWeights(Weights); 1342 1343 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1344 1345 setBranchWeights(NewSI, MDWeights); 1346 } 1347 1348 EraseTerminatorAndDCECond(PTI); 1349 1350 // Okay, last check. If BB is still a successor of PSI, then we must 1351 // have an infinite loop case. If so, add an infinitely looping block 1352 // to handle the case to preserve the behavior of the code. 1353 BasicBlock *InfLoopBlock = nullptr; 1354 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1355 if (NewSI->getSuccessor(i) == BB) { 1356 if (!InfLoopBlock) { 1357 // Insert it at the end of the function, because it's either code, 1358 // or it won't matter if it's hot. :) 1359 InfLoopBlock = 1360 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1361 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1362 if (DTU) 1363 Updates.push_back( 1364 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1365 } 1366 NewSI->setSuccessor(i, InfLoopBlock); 1367 } 1368 1369 if (DTU) { 1370 if (InfLoopBlock) 1371 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1372 1373 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1374 1375 DTU->applyUpdates(Updates); 1376 } 1377 1378 ++NumFoldValueComparisonIntoPredecessors; 1379 return true; 1380 } 1381 1382 /// The specified terminator is a value equality comparison instruction 1383 /// (either a switch or a branch on "X == c"). 1384 /// See if any of the predecessors of the terminator block are value comparisons 1385 /// on the same value. If so, and if safe to do so, fold them together. 1386 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1387 IRBuilder<> &Builder) { 1388 BasicBlock *BB = TI->getParent(); 1389 Value *CV = isValueEqualityComparison(TI); // CondVal 1390 assert(CV && "Not a comparison?"); 1391 1392 bool Changed = false; 1393 1394 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1395 while (!Preds.empty()) { 1396 BasicBlock *Pred = Preds.pop_back_val(); 1397 Instruction *PTI = Pred->getTerminator(); 1398 1399 // Don't try to fold into itself. 1400 if (Pred == BB) 1401 continue; 1402 1403 // See if the predecessor is a comparison with the same value. 1404 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1405 if (PCV != CV) 1406 continue; 1407 1408 SmallSetVector<BasicBlock *, 4> FailBlocks; 1409 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1410 for (auto *Succ : FailBlocks) { 1411 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1412 return false; 1413 } 1414 } 1415 1416 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1417 Changed = true; 1418 } 1419 return Changed; 1420 } 1421 1422 // If we would need to insert a select that uses the value of this invoke 1423 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1424 // can't hoist the invoke, as there is nowhere to put the select in this case. 1425 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1426 Instruction *I1, Instruction *I2) { 1427 for (BasicBlock *Succ : successors(BB1)) { 1428 for (const PHINode &PN : Succ->phis()) { 1429 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1430 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1431 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1432 return false; 1433 } 1434 } 1435 } 1436 return true; 1437 } 1438 1439 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1440 1441 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1442 /// in the two blocks up into the branch block. The caller of this function 1443 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1444 /// only perform hoisting in case both blocks only contain a terminator. In that 1445 /// case, only the original BI will be replaced and selects for PHIs are added. 1446 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1447 const TargetTransformInfo &TTI, 1448 bool EqTermsOnly) { 1449 // This does very trivial matching, with limited scanning, to find identical 1450 // instructions in the two blocks. In particular, we don't want to get into 1451 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1452 // such, we currently just scan for obviously identical instructions in an 1453 // identical order. 1454 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1455 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1456 1457 // If either of the blocks has it's address taken, then we can't do this fold, 1458 // because the code we'd hoist would no longer run when we jump into the block 1459 // by it's address. 1460 if (BB1->hasAddressTaken() || BB2->hasAddressTaken()) 1461 return false; 1462 1463 BasicBlock::iterator BB1_Itr = BB1->begin(); 1464 BasicBlock::iterator BB2_Itr = BB2->begin(); 1465 1466 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1467 // Skip debug info if it is not identical. 1468 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1469 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1470 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1471 while (isa<DbgInfoIntrinsic>(I1)) 1472 I1 = &*BB1_Itr++; 1473 while (isa<DbgInfoIntrinsic>(I2)) 1474 I2 = &*BB2_Itr++; 1475 } 1476 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2)) 1477 return false; 1478 1479 BasicBlock *BIParent = BI->getParent(); 1480 1481 bool Changed = false; 1482 1483 auto _ = make_scope_exit([&]() { 1484 if (Changed) 1485 ++NumHoistCommonCode; 1486 }); 1487 1488 // Check if only hoisting terminators is allowed. This does not add new 1489 // instructions to the hoist location. 1490 if (EqTermsOnly) { 1491 // Skip any debug intrinsics, as they are free to hoist. 1492 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1493 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1494 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1495 return false; 1496 if (!I1NonDbg->isTerminator()) 1497 return false; 1498 // Now we know that we only need to hoist debug intrinsics and the 1499 // terminator. Let the loop below handle those 2 cases. 1500 } 1501 1502 do { 1503 // If we are hoisting the terminator instruction, don't move one (making a 1504 // broken BB), instead clone it, and remove BI. 1505 if (I1->isTerminator()) 1506 goto HoistTerminator; 1507 1508 // Hoisting token-returning instructions would obscure the origin. 1509 if (I1->getType()->isTokenTy()) 1510 return Changed; 1511 1512 // If we're going to hoist a call, make sure that the two instructions we're 1513 // commoning/hoisting are both marked with musttail, or neither of them is 1514 // marked as such. Otherwise, we might end up in a situation where we hoist 1515 // from a block where the terminator is a `ret` to a block where the terminator 1516 // is a `br`, and `musttail` calls expect to be followed by a return. 1517 auto *C1 = dyn_cast<CallInst>(I1); 1518 auto *C2 = dyn_cast<CallInst>(I2); 1519 if (C1 && C2) 1520 if (C1->isMustTailCall() != C2->isMustTailCall()) 1521 return Changed; 1522 1523 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1524 return Changed; 1525 1526 // If any of the two call sites has nomerge attribute, stop hoisting. 1527 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1528 if (CB1->cannotMerge()) 1529 return Changed; 1530 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1531 if (CB2->cannotMerge()) 1532 return Changed; 1533 1534 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1535 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1536 // The debug location is an integral part of a debug info intrinsic 1537 // and can't be separated from it or replaced. Instead of attempting 1538 // to merge locations, simply hoist both copies of the intrinsic. 1539 BIParent->getInstList().splice(BI->getIterator(), 1540 BB1->getInstList(), I1); 1541 BIParent->getInstList().splice(BI->getIterator(), 1542 BB2->getInstList(), I2); 1543 Changed = true; 1544 } else { 1545 // For a normal instruction, we just move one to right before the branch, 1546 // then replace all uses of the other with the first. Finally, we remove 1547 // the now redundant second instruction. 1548 BIParent->getInstList().splice(BI->getIterator(), 1549 BB1->getInstList(), I1); 1550 if (!I2->use_empty()) 1551 I2->replaceAllUsesWith(I1); 1552 I1->andIRFlags(I2); 1553 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1554 LLVMContext::MD_range, 1555 LLVMContext::MD_fpmath, 1556 LLVMContext::MD_invariant_load, 1557 LLVMContext::MD_nonnull, 1558 LLVMContext::MD_invariant_group, 1559 LLVMContext::MD_align, 1560 LLVMContext::MD_dereferenceable, 1561 LLVMContext::MD_dereferenceable_or_null, 1562 LLVMContext::MD_mem_parallel_loop_access, 1563 LLVMContext::MD_access_group, 1564 LLVMContext::MD_preserve_access_index}; 1565 combineMetadata(I1, I2, KnownIDs, true); 1566 1567 // I1 and I2 are being combined into a single instruction. Its debug 1568 // location is the merged locations of the original instructions. 1569 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1570 1571 I2->eraseFromParent(); 1572 Changed = true; 1573 } 1574 ++NumHoistCommonInstrs; 1575 1576 I1 = &*BB1_Itr++; 1577 I2 = &*BB2_Itr++; 1578 // Skip debug info if it is not identical. 1579 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1580 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1581 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1582 while (isa<DbgInfoIntrinsic>(I1)) 1583 I1 = &*BB1_Itr++; 1584 while (isa<DbgInfoIntrinsic>(I2)) 1585 I2 = &*BB2_Itr++; 1586 } 1587 } while (I1->isIdenticalToWhenDefined(I2)); 1588 1589 return true; 1590 1591 HoistTerminator: 1592 // It may not be possible to hoist an invoke. 1593 // FIXME: Can we define a safety predicate for CallBr? 1594 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1595 return Changed; 1596 1597 // TODO: callbr hoisting currently disabled pending further study. 1598 if (isa<CallBrInst>(I1)) 1599 return Changed; 1600 1601 for (BasicBlock *Succ : successors(BB1)) { 1602 for (PHINode &PN : Succ->phis()) { 1603 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1604 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1605 if (BB1V == BB2V) 1606 continue; 1607 1608 // Check for passingValueIsAlwaysUndefined here because we would rather 1609 // eliminate undefined control flow then converting it to a select. 1610 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1611 passingValueIsAlwaysUndefined(BB2V, &PN)) 1612 return Changed; 1613 1614 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1615 return Changed; 1616 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1617 return Changed; 1618 } 1619 } 1620 1621 // Okay, it is safe to hoist the terminator. 1622 Instruction *NT = I1->clone(); 1623 BIParent->getInstList().insert(BI->getIterator(), NT); 1624 if (!NT->getType()->isVoidTy()) { 1625 I1->replaceAllUsesWith(NT); 1626 I2->replaceAllUsesWith(NT); 1627 NT->takeName(I1); 1628 } 1629 Changed = true; 1630 ++NumHoistCommonInstrs; 1631 1632 // Ensure terminator gets a debug location, even an unknown one, in case 1633 // it involves inlinable calls. 1634 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1635 1636 // PHIs created below will adopt NT's merged DebugLoc. 1637 IRBuilder<NoFolder> Builder(NT); 1638 1639 // Hoisting one of the terminators from our successor is a great thing. 1640 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1641 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1642 // nodes, so we insert select instruction to compute the final result. 1643 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1644 for (BasicBlock *Succ : successors(BB1)) { 1645 for (PHINode &PN : Succ->phis()) { 1646 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1647 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1648 if (BB1V == BB2V) 1649 continue; 1650 1651 // These values do not agree. Insert a select instruction before NT 1652 // that determines the right value. 1653 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1654 if (!SI) { 1655 // Propagate fast-math-flags from phi node to its replacement select. 1656 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1657 if (isa<FPMathOperator>(PN)) 1658 Builder.setFastMathFlags(PN.getFastMathFlags()); 1659 1660 SI = cast<SelectInst>( 1661 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1662 BB1V->getName() + "." + BB2V->getName(), BI)); 1663 } 1664 1665 // Make the PHI node use the select for all incoming values for BB1/BB2 1666 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1667 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1668 PN.setIncomingValue(i, SI); 1669 } 1670 } 1671 1672 SmallVector<DominatorTree::UpdateType, 4> Updates; 1673 1674 // Update any PHI nodes in our new successors. 1675 for (BasicBlock *Succ : successors(BB1)) { 1676 AddPredecessorToBlock(Succ, BIParent, BB1); 1677 if (DTU) 1678 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1679 } 1680 1681 if (DTU) 1682 for (BasicBlock *Succ : successors(BI)) 1683 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1684 1685 EraseTerminatorAndDCECond(BI); 1686 if (DTU) 1687 DTU->applyUpdates(Updates); 1688 return Changed; 1689 } 1690 1691 // Check lifetime markers. 1692 static bool isLifeTimeMarker(const Instruction *I) { 1693 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1694 switch (II->getIntrinsicID()) { 1695 default: 1696 break; 1697 case Intrinsic::lifetime_start: 1698 case Intrinsic::lifetime_end: 1699 return true; 1700 } 1701 } 1702 return false; 1703 } 1704 1705 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1706 // into variables. 1707 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1708 int OpIdx) { 1709 return !isa<IntrinsicInst>(I); 1710 } 1711 1712 // All instructions in Insts belong to different blocks that all unconditionally 1713 // branch to a common successor. Analyze each instruction and return true if it 1714 // would be possible to sink them into their successor, creating one common 1715 // instruction instead. For every value that would be required to be provided by 1716 // PHI node (because an operand varies in each input block), add to PHIOperands. 1717 static bool canSinkInstructions( 1718 ArrayRef<Instruction *> Insts, 1719 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1720 // Prune out obviously bad instructions to move. Each instruction must have 1721 // exactly zero or one use, and we check later that use is by a single, common 1722 // PHI instruction in the successor. 1723 bool HasUse = !Insts.front()->user_empty(); 1724 for (auto *I : Insts) { 1725 // These instructions may change or break semantics if moved. 1726 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1727 I->getType()->isTokenTy()) 1728 return false; 1729 1730 // Do not try to sink an instruction in an infinite loop - it can cause 1731 // this algorithm to infinite loop. 1732 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1733 return false; 1734 1735 // Conservatively return false if I is an inline-asm instruction. Sinking 1736 // and merging inline-asm instructions can potentially create arguments 1737 // that cannot satisfy the inline-asm constraints. 1738 // If the instruction has nomerge attribute, return false. 1739 if (const auto *C = dyn_cast<CallBase>(I)) 1740 if (C->isInlineAsm() || C->cannotMerge()) 1741 return false; 1742 1743 // Each instruction must have zero or one use. 1744 if (HasUse && !I->hasOneUse()) 1745 return false; 1746 if (!HasUse && !I->user_empty()) 1747 return false; 1748 } 1749 1750 const Instruction *I0 = Insts.front(); 1751 for (auto *I : Insts) 1752 if (!I->isSameOperationAs(I0)) 1753 return false; 1754 1755 // All instructions in Insts are known to be the same opcode. If they have a 1756 // use, check that the only user is a PHI or in the same block as the 1757 // instruction, because if a user is in the same block as an instruction we're 1758 // contemplating sinking, it must already be determined to be sinkable. 1759 if (HasUse) { 1760 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1761 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1762 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1763 auto *U = cast<Instruction>(*I->user_begin()); 1764 return (PNUse && 1765 PNUse->getParent() == Succ && 1766 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1767 U->getParent() == I->getParent(); 1768 })) 1769 return false; 1770 } 1771 1772 // Because SROA can't handle speculating stores of selects, try not to sink 1773 // loads, stores or lifetime markers of allocas when we'd have to create a 1774 // PHI for the address operand. Also, because it is likely that loads or 1775 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1776 // them. 1777 // This can cause code churn which can have unintended consequences down 1778 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1779 // FIXME: This is a workaround for a deficiency in SROA - see 1780 // https://llvm.org/bugs/show_bug.cgi?id=30188 1781 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1782 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1783 })) 1784 return false; 1785 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1786 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1787 })) 1788 return false; 1789 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1790 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1791 })) 1792 return false; 1793 1794 // For calls to be sinkable, they must all be indirect, or have same callee. 1795 // I.e. if we have two direct calls to different callees, we don't want to 1796 // turn that into an indirect call. Likewise, if we have an indirect call, 1797 // and a direct call, we don't actually want to have a single indirect call. 1798 if (isa<CallBase>(I0)) { 1799 auto IsIndirectCall = [](const Instruction *I) { 1800 return cast<CallBase>(I)->isIndirectCall(); 1801 }; 1802 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1803 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1804 if (HaveIndirectCalls) { 1805 if (!AllCallsAreIndirect) 1806 return false; 1807 } else { 1808 // All callees must be identical. 1809 Value *Callee = nullptr; 1810 for (const Instruction *I : Insts) { 1811 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1812 if (!Callee) 1813 Callee = CurrCallee; 1814 else if (Callee != CurrCallee) 1815 return false; 1816 } 1817 } 1818 } 1819 1820 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1821 Value *Op = I0->getOperand(OI); 1822 if (Op->getType()->isTokenTy()) 1823 // Don't touch any operand of token type. 1824 return false; 1825 1826 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1827 assert(I->getNumOperands() == I0->getNumOperands()); 1828 return I->getOperand(OI) == I0->getOperand(OI); 1829 }; 1830 if (!all_of(Insts, SameAsI0)) { 1831 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1832 !canReplaceOperandWithVariable(I0, OI)) 1833 // We can't create a PHI from this GEP. 1834 return false; 1835 for (auto *I : Insts) 1836 PHIOperands[I].push_back(I->getOperand(OI)); 1837 } 1838 } 1839 return true; 1840 } 1841 1842 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1843 // instruction of every block in Blocks to their common successor, commoning 1844 // into one instruction. 1845 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1846 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1847 1848 // canSinkInstructions returning true guarantees that every block has at 1849 // least one non-terminator instruction. 1850 SmallVector<Instruction*,4> Insts; 1851 for (auto *BB : Blocks) { 1852 Instruction *I = BB->getTerminator(); 1853 do { 1854 I = I->getPrevNode(); 1855 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1856 if (!isa<DbgInfoIntrinsic>(I)) 1857 Insts.push_back(I); 1858 } 1859 1860 // The only checking we need to do now is that all users of all instructions 1861 // are the same PHI node. canSinkInstructions should have checked this but 1862 // it is slightly over-aggressive - it gets confused by commutative 1863 // instructions so double-check it here. 1864 Instruction *I0 = Insts.front(); 1865 if (!I0->user_empty()) { 1866 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1867 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1868 auto *U = cast<Instruction>(*I->user_begin()); 1869 return U == PNUse; 1870 })) 1871 return false; 1872 } 1873 1874 // We don't need to do any more checking here; canSinkInstructions should 1875 // have done it all for us. 1876 SmallVector<Value*, 4> NewOperands; 1877 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1878 // This check is different to that in canSinkInstructions. There, we 1879 // cared about the global view once simplifycfg (and instcombine) have 1880 // completed - it takes into account PHIs that become trivially 1881 // simplifiable. However here we need a more local view; if an operand 1882 // differs we create a PHI and rely on instcombine to clean up the very 1883 // small mess we may make. 1884 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1885 return I->getOperand(O) != I0->getOperand(O); 1886 }); 1887 if (!NeedPHI) { 1888 NewOperands.push_back(I0->getOperand(O)); 1889 continue; 1890 } 1891 1892 // Create a new PHI in the successor block and populate it. 1893 auto *Op = I0->getOperand(O); 1894 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1895 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1896 Op->getName() + ".sink", &BBEnd->front()); 1897 for (auto *I : Insts) 1898 PN->addIncoming(I->getOperand(O), I->getParent()); 1899 NewOperands.push_back(PN); 1900 } 1901 1902 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1903 // and move it to the start of the successor block. 1904 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1905 I0->getOperandUse(O).set(NewOperands[O]); 1906 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1907 1908 // Update metadata and IR flags, and merge debug locations. 1909 for (auto *I : Insts) 1910 if (I != I0) { 1911 // The debug location for the "common" instruction is the merged locations 1912 // of all the commoned instructions. We start with the original location 1913 // of the "common" instruction and iteratively merge each location in the 1914 // loop below. 1915 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1916 // However, as N-way merge for CallInst is rare, so we use simplified API 1917 // instead of using complex API for N-way merge. 1918 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1919 combineMetadataForCSE(I0, I, true); 1920 I0->andIRFlags(I); 1921 } 1922 1923 if (!I0->user_empty()) { 1924 // canSinkLastInstruction checked that all instructions were used by 1925 // one and only one PHI node. Find that now, RAUW it to our common 1926 // instruction and nuke it. 1927 auto *PN = cast<PHINode>(*I0->user_begin()); 1928 PN->replaceAllUsesWith(I0); 1929 PN->eraseFromParent(); 1930 } 1931 1932 // Finally nuke all instructions apart from the common instruction. 1933 for (auto *I : Insts) 1934 if (I != I0) 1935 I->eraseFromParent(); 1936 1937 return true; 1938 } 1939 1940 namespace { 1941 1942 // LockstepReverseIterator - Iterates through instructions 1943 // in a set of blocks in reverse order from the first non-terminator. 1944 // For example (assume all blocks have size n): 1945 // LockstepReverseIterator I([B1, B2, B3]); 1946 // *I-- = [B1[n], B2[n], B3[n]]; 1947 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1948 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1949 // ... 1950 class LockstepReverseIterator { 1951 ArrayRef<BasicBlock*> Blocks; 1952 SmallVector<Instruction*,4> Insts; 1953 bool Fail; 1954 1955 public: 1956 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1957 reset(); 1958 } 1959 1960 void reset() { 1961 Fail = false; 1962 Insts.clear(); 1963 for (auto *BB : Blocks) { 1964 Instruction *Inst = BB->getTerminator(); 1965 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1966 Inst = Inst->getPrevNode(); 1967 if (!Inst) { 1968 // Block wasn't big enough. 1969 Fail = true; 1970 return; 1971 } 1972 Insts.push_back(Inst); 1973 } 1974 } 1975 1976 bool isValid() const { 1977 return !Fail; 1978 } 1979 1980 void operator--() { 1981 if (Fail) 1982 return; 1983 for (auto *&Inst : Insts) { 1984 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1985 Inst = Inst->getPrevNode(); 1986 // Already at beginning of block. 1987 if (!Inst) { 1988 Fail = true; 1989 return; 1990 } 1991 } 1992 } 1993 1994 void operator++() { 1995 if (Fail) 1996 return; 1997 for (auto *&Inst : Insts) { 1998 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1999 Inst = Inst->getNextNode(); 2000 // Already at end of block. 2001 if (!Inst) { 2002 Fail = true; 2003 return; 2004 } 2005 } 2006 } 2007 2008 ArrayRef<Instruction*> operator * () const { 2009 return Insts; 2010 } 2011 }; 2012 2013 } // end anonymous namespace 2014 2015 /// Check whether BB's predecessors end with unconditional branches. If it is 2016 /// true, sink any common code from the predecessors to BB. 2017 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 2018 DomTreeUpdater *DTU) { 2019 // We support two situations: 2020 // (1) all incoming arcs are unconditional 2021 // (2) there are non-unconditional incoming arcs 2022 // 2023 // (2) is very common in switch defaults and 2024 // else-if patterns; 2025 // 2026 // if (a) f(1); 2027 // else if (b) f(2); 2028 // 2029 // produces: 2030 // 2031 // [if] 2032 // / \ 2033 // [f(1)] [if] 2034 // | | \ 2035 // | | | 2036 // | [f(2)]| 2037 // \ | / 2038 // [ end ] 2039 // 2040 // [end] has two unconditional predecessor arcs and one conditional. The 2041 // conditional refers to the implicit empty 'else' arc. This conditional 2042 // arc can also be caused by an empty default block in a switch. 2043 // 2044 // In this case, we attempt to sink code from all *unconditional* arcs. 2045 // If we can sink instructions from these arcs (determined during the scan 2046 // phase below) we insert a common successor for all unconditional arcs and 2047 // connect that to [end], to enable sinking: 2048 // 2049 // [if] 2050 // / \ 2051 // [x(1)] [if] 2052 // | | \ 2053 // | | \ 2054 // | [x(2)] | 2055 // \ / | 2056 // [sink.split] | 2057 // \ / 2058 // [ end ] 2059 // 2060 SmallVector<BasicBlock*,4> UnconditionalPreds; 2061 bool HaveNonUnconditionalPredecessors = false; 2062 for (auto *PredBB : predecessors(BB)) { 2063 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2064 if (PredBr && PredBr->isUnconditional()) 2065 UnconditionalPreds.push_back(PredBB); 2066 else 2067 HaveNonUnconditionalPredecessors = true; 2068 } 2069 if (UnconditionalPreds.size() < 2) 2070 return false; 2071 2072 // We take a two-step approach to tail sinking. First we scan from the end of 2073 // each block upwards in lockstep. If the n'th instruction from the end of each 2074 // block can be sunk, those instructions are added to ValuesToSink and we 2075 // carry on. If we can sink an instruction but need to PHI-merge some operands 2076 // (because they're not identical in each instruction) we add these to 2077 // PHIOperands. 2078 int ScanIdx = 0; 2079 SmallPtrSet<Value*,4> InstructionsToSink; 2080 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2081 LockstepReverseIterator LRI(UnconditionalPreds); 2082 while (LRI.isValid() && 2083 canSinkInstructions(*LRI, PHIOperands)) { 2084 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2085 << "\n"); 2086 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2087 ++ScanIdx; 2088 --LRI; 2089 } 2090 2091 // If no instructions can be sunk, early-return. 2092 if (ScanIdx == 0) 2093 return false; 2094 2095 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); 2096 2097 if (!followedByDeoptOrUnreachable) { 2098 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2099 // actually sink before encountering instruction that is unprofitable to 2100 // sink? 2101 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2102 unsigned NumPHIdValues = 0; 2103 for (auto *I : *LRI) 2104 for (auto *V : PHIOperands[I]) { 2105 if (!InstructionsToSink.contains(V)) 2106 ++NumPHIdValues; 2107 // FIXME: this check is overly optimistic. We may end up not sinking 2108 // said instruction, due to the very same profitability check. 2109 // See @creating_too_many_phis in sink-common-code.ll. 2110 } 2111 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2112 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2113 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2114 NumPHIInsts++; 2115 2116 return NumPHIInsts <= 1; 2117 }; 2118 2119 // We've determined that we are going to sink last ScanIdx instructions, 2120 // and recorded them in InstructionsToSink. Now, some instructions may be 2121 // unprofitable to sink. But that determination depends on the instructions 2122 // that we are going to sink. 2123 2124 // First, forward scan: find the first instruction unprofitable to sink, 2125 // recording all the ones that are profitable to sink. 2126 // FIXME: would it be better, after we detect that not all are profitable. 2127 // to either record the profitable ones, or erase the unprofitable ones? 2128 // Maybe we need to choose (at runtime) the one that will touch least 2129 // instrs? 2130 LRI.reset(); 2131 int Idx = 0; 2132 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2133 while (Idx < ScanIdx) { 2134 if (!ProfitableToSinkInstruction(LRI)) { 2135 // Too many PHIs would be created. 2136 LLVM_DEBUG( 2137 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2138 break; 2139 } 2140 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2141 --LRI; 2142 ++Idx; 2143 } 2144 2145 // If no instructions can be sunk, early-return. 2146 if (Idx == 0) 2147 return false; 2148 2149 // Did we determine that (only) some instructions are unprofitable to sink? 2150 if (Idx < ScanIdx) { 2151 // Okay, some instructions are unprofitable. 2152 ScanIdx = Idx; 2153 InstructionsToSink = InstructionsProfitableToSink; 2154 2155 // But, that may make other instructions unprofitable, too. 2156 // So, do a backward scan, do any earlier instructions become 2157 // unprofitable? 2158 assert( 2159 !ProfitableToSinkInstruction(LRI) && 2160 "We already know that the last instruction is unprofitable to sink"); 2161 ++LRI; 2162 --Idx; 2163 while (Idx >= 0) { 2164 // If we detect that an instruction becomes unprofitable to sink, 2165 // all earlier instructions won't be sunk either, 2166 // so preemptively keep InstructionsProfitableToSink in sync. 2167 // FIXME: is this the most performant approach? 2168 for (auto *I : *LRI) 2169 InstructionsProfitableToSink.erase(I); 2170 if (!ProfitableToSinkInstruction(LRI)) { 2171 // Everything starting with this instruction won't be sunk. 2172 ScanIdx = Idx; 2173 InstructionsToSink = InstructionsProfitableToSink; 2174 } 2175 ++LRI; 2176 --Idx; 2177 } 2178 } 2179 2180 // If no instructions can be sunk, early-return. 2181 if (ScanIdx == 0) 2182 return false; 2183 } 2184 2185 bool Changed = false; 2186 2187 if (HaveNonUnconditionalPredecessors) { 2188 if (!followedByDeoptOrUnreachable) { 2189 // It is always legal to sink common instructions from unconditional 2190 // predecessors. However, if not all predecessors are unconditional, 2191 // this transformation might be pessimizing. So as a rule of thumb, 2192 // don't do it unless we'd sink at least one non-speculatable instruction. 2193 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2194 LRI.reset(); 2195 int Idx = 0; 2196 bool Profitable = false; 2197 while (Idx < ScanIdx) { 2198 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2199 Profitable = true; 2200 break; 2201 } 2202 --LRI; 2203 ++Idx; 2204 } 2205 if (!Profitable) 2206 return false; 2207 } 2208 2209 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2210 // We have a conditional edge and we're going to sink some instructions. 2211 // Insert a new block postdominating all blocks we're going to sink from. 2212 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2213 // Edges couldn't be split. 2214 return false; 2215 Changed = true; 2216 } 2217 2218 // Now that we've analyzed all potential sinking candidates, perform the 2219 // actual sink. We iteratively sink the last non-terminator of the source 2220 // blocks into their common successor unless doing so would require too 2221 // many PHI instructions to be generated (currently only one PHI is allowed 2222 // per sunk instruction). 2223 // 2224 // We can use InstructionsToSink to discount values needing PHI-merging that will 2225 // actually be sunk in a later iteration. This allows us to be more 2226 // aggressive in what we sink. This does allow a false positive where we 2227 // sink presuming a later value will also be sunk, but stop half way through 2228 // and never actually sink it which means we produce more PHIs than intended. 2229 // This is unlikely in practice though. 2230 int SinkIdx = 0; 2231 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2232 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2233 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2234 << "\n"); 2235 2236 // Because we've sunk every instruction in turn, the current instruction to 2237 // sink is always at index 0. 2238 LRI.reset(); 2239 2240 if (!sinkLastInstruction(UnconditionalPreds)) { 2241 LLVM_DEBUG( 2242 dbgs() 2243 << "SINK: stopping here, failed to actually sink instruction!\n"); 2244 break; 2245 } 2246 2247 NumSinkCommonInstrs++; 2248 Changed = true; 2249 } 2250 if (SinkIdx != 0) 2251 ++NumSinkCommonCode; 2252 return Changed; 2253 } 2254 2255 namespace { 2256 2257 struct CompatibleSets { 2258 using SetTy = SmallVector<InvokeInst *, 2>; 2259 2260 SmallVector<SetTy, 1> Sets; 2261 2262 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); 2263 2264 SetTy &getCompatibleSet(InvokeInst *II); 2265 2266 void insert(InvokeInst *II); 2267 }; 2268 2269 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { 2270 // Perform a linear scan over all the existing sets, see if the new `invoke` 2271 // is compatible with any particular set. Since we know that all the `invokes` 2272 // within a set are compatible, only check the first `invoke` in each set. 2273 // WARNING: at worst, this has quadratic complexity. 2274 for (CompatibleSets::SetTy &Set : Sets) { 2275 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) 2276 return Set; 2277 } 2278 2279 // Otherwise, we either had no sets yet, or this invoke forms a new set. 2280 return Sets.emplace_back(); 2281 } 2282 2283 void CompatibleSets::insert(InvokeInst *II) { 2284 getCompatibleSet(II).emplace_back(II); 2285 } 2286 2287 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { 2288 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2289 2290 // Can we theoretically merge these `invoke`s? 2291 auto IsIllegalToMerge = [](InvokeInst *II) { 2292 return II->cannotMerge() || II->isInlineAsm(); 2293 }; 2294 if (any_of(Invokes, IsIllegalToMerge)) 2295 return false; 2296 2297 // Either both `invoke`s must be direct, 2298 // or both `invoke`s must be indirect. 2299 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; 2300 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); 2301 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); 2302 if (HaveIndirectCalls) { 2303 if (!AllCallsAreIndirect) 2304 return false; 2305 } else { 2306 // All callees must be identical. 2307 Value *Callee = nullptr; 2308 for (InvokeInst *II : Invokes) { 2309 Value *CurrCallee = II->getCalledOperand(); 2310 assert(CurrCallee && "There is always a called operand."); 2311 if (!Callee) 2312 Callee = CurrCallee; 2313 else if (Callee != CurrCallee) 2314 return false; 2315 } 2316 } 2317 2318 // Either both `invoke`s must not have a normal destination, 2319 // or both `invoke`s must have a normal destination, 2320 auto HasNormalDest = [](InvokeInst *II) { 2321 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); 2322 }; 2323 if (any_of(Invokes, HasNormalDest)) { 2324 // Do not merge `invoke` that does not have a normal destination with one 2325 // that does have a normal destination, even though doing so would be legal. 2326 if (!all_of(Invokes, HasNormalDest)) 2327 return false; 2328 2329 // All normal destinations must be identical. 2330 BasicBlock *NormalBB = nullptr; 2331 for (InvokeInst *II : Invokes) { 2332 BasicBlock *CurrNormalBB = II->getNormalDest(); 2333 assert(CurrNormalBB && "There is always a 'continue to' basic block."); 2334 if (!NormalBB) 2335 NormalBB = CurrNormalBB; 2336 else if (NormalBB != CurrNormalBB) 2337 return false; 2338 } 2339 2340 // In the normal destination, the incoming values for these two `invoke`s 2341 // must be compatible. 2342 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); 2343 if (!IncomingValuesAreCompatible( 2344 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, 2345 &EquivalenceSet)) 2346 return false; 2347 } 2348 2349 #ifndef NDEBUG 2350 // All unwind destinations must be identical. 2351 // We know that because we have started from said unwind destination. 2352 BasicBlock *UnwindBB = nullptr; 2353 for (InvokeInst *II : Invokes) { 2354 BasicBlock *CurrUnwindBB = II->getUnwindDest(); 2355 assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); 2356 if (!UnwindBB) 2357 UnwindBB = CurrUnwindBB; 2358 else 2359 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); 2360 } 2361 #endif 2362 2363 // In the unwind destination, the incoming values for these two `invoke`s 2364 // must be compatible. 2365 if (!IncomingValuesAreCompatible( 2366 Invokes.front()->getUnwindDest(), 2367 {Invokes[0]->getParent(), Invokes[1]->getParent()})) 2368 return false; 2369 2370 // Ignoring arguments, these `invoke`s must be identical, 2371 // including operand bundles. 2372 const InvokeInst *II0 = Invokes.front(); 2373 for (auto *II : Invokes.drop_front()) 2374 if (!II->isSameOperationAs(II0)) 2375 return false; 2376 2377 // Can we theoretically form the data operands for the merged `invoke`? 2378 auto IsIllegalToMergeArguments = [](auto Ops) { 2379 Type *Ty = std::get<0>(Ops)->getType(); 2380 assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?"); 2381 return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops); 2382 }; 2383 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2384 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), 2385 IsIllegalToMergeArguments)) 2386 return false; 2387 2388 return true; 2389 } 2390 2391 } // namespace 2392 2393 // Merge all invokes in the provided set, all of which are compatible 2394 // as per the `CompatibleSets::shouldBelongToSameSet()`. 2395 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, 2396 DomTreeUpdater *DTU) { 2397 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); 2398 2399 SmallVector<DominatorTree::UpdateType, 8> Updates; 2400 if (DTU) 2401 Updates.reserve(2 + 3 * Invokes.size()); 2402 2403 bool HasNormalDest = 2404 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); 2405 2406 // Clone one of the invokes into a new basic block. 2407 // Since they are all compatible, it doesn't matter which invoke is cloned. 2408 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { 2409 InvokeInst *II0 = Invokes.front(); 2410 BasicBlock *II0BB = II0->getParent(); 2411 BasicBlock *InsertBeforeBlock = 2412 II0->getParent()->getIterator()->getNextNode(); 2413 Function *Func = II0BB->getParent(); 2414 LLVMContext &Ctx = II0->getContext(); 2415 2416 BasicBlock *MergedInvokeBB = BasicBlock::Create( 2417 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); 2418 2419 auto *MergedInvoke = cast<InvokeInst>(II0->clone()); 2420 // NOTE: all invokes have the same attributes, so no handling needed. 2421 MergedInvokeBB->getInstList().push_back(MergedInvoke); 2422 2423 if (!HasNormalDest) { 2424 // This set does not have a normal destination, 2425 // so just form a new block with unreachable terminator. 2426 BasicBlock *MergedNormalDest = BasicBlock::Create( 2427 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); 2428 new UnreachableInst(Ctx, MergedNormalDest); 2429 MergedInvoke->setNormalDest(MergedNormalDest); 2430 } 2431 2432 // The unwind destination, however, remainds identical for all invokes here. 2433 2434 return MergedInvoke; 2435 }(); 2436 2437 if (DTU) { 2438 // Predecessor blocks that contained these invokes will now branch to 2439 // the new block that contains the merged invoke, ... 2440 for (InvokeInst *II : Invokes) 2441 Updates.push_back( 2442 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); 2443 2444 // ... which has the new `unreachable` block as normal destination, 2445 // or unwinds to the (same for all `invoke`s in this set) `landingpad`, 2446 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) 2447 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), 2448 SuccBBOfMergedInvoke}); 2449 2450 // Since predecessor blocks now unconditionally branch to a new block, 2451 // they no longer branch to their original successors. 2452 for (InvokeInst *II : Invokes) 2453 for (BasicBlock *SuccOfPredBB : successors(II->getParent())) 2454 Updates.push_back( 2455 {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); 2456 } 2457 2458 bool IsIndirectCall = Invokes[0]->isIndirectCall(); 2459 2460 // Form the merged operands for the merged invoke. 2461 for (Use &U : MergedInvoke->operands()) { 2462 // Only PHI together the indirect callees and data operands. 2463 if (MergedInvoke->isCallee(&U)) { 2464 if (!IsIndirectCall) 2465 continue; 2466 } else if (!MergedInvoke->isDataOperand(&U)) 2467 continue; 2468 2469 // Don't create trivial PHI's with all-identical incoming values. 2470 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { 2471 return II->getOperand(U.getOperandNo()) != U.get(); 2472 }); 2473 if (!NeedPHI) 2474 continue; 2475 2476 // Form a PHI out of all the data ops under this index. 2477 PHINode *PN = PHINode::Create( 2478 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke); 2479 for (InvokeInst *II : Invokes) 2480 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); 2481 2482 U.set(PN); 2483 } 2484 2485 // We've ensured that each PHI node has compatible (identical) incoming values 2486 // when coming from each of the `invoke`s in the current merge set, 2487 // so update the PHI nodes accordingly. 2488 for (BasicBlock *Succ : successors(MergedInvoke)) 2489 AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), 2490 /*ExistPred=*/Invokes.front()->getParent()); 2491 2492 // And finally, replace the original `invoke`s with an unconditional branch 2493 // to the block with the merged `invoke`. Also, give that merged `invoke` 2494 // the merged debugloc of all the original `invoke`s. 2495 const DILocation *MergedDebugLoc = nullptr; 2496 for (InvokeInst *II : Invokes) { 2497 // Compute the debug location common to all the original `invoke`s. 2498 if (!MergedDebugLoc) 2499 MergedDebugLoc = II->getDebugLoc(); 2500 else 2501 MergedDebugLoc = 2502 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); 2503 2504 // And replace the old `invoke` with an unconditionally branch 2505 // to the block with the merged `invoke`. 2506 for (BasicBlock *OrigSuccBB : successors(II->getParent())) 2507 OrigSuccBB->removePredecessor(II->getParent()); 2508 BranchInst::Create(MergedInvoke->getParent(), II->getParent()); 2509 II->replaceAllUsesWith(MergedInvoke); 2510 II->eraseFromParent(); 2511 ++NumInvokesMerged; 2512 } 2513 MergedInvoke->setDebugLoc(MergedDebugLoc); 2514 ++NumInvokeSetsFormed; 2515 2516 if (DTU) 2517 DTU->applyUpdates(Updates); 2518 } 2519 2520 /// If this block is a `landingpad` exception handling block, categorize all 2521 /// the predecessor `invoke`s into sets, with all `invoke`s in each set 2522 /// being "mergeable" together, and then merge invokes in each set together. 2523 /// 2524 /// This is a weird mix of hoisting and sinking. Visually, it goes from: 2525 /// [...] [...] 2526 /// | | 2527 /// [invoke0] [invoke1] 2528 /// / \ / \ 2529 /// [cont0] [landingpad] [cont1] 2530 /// to: 2531 /// [...] [...] 2532 /// \ / 2533 /// [invoke] 2534 /// / \ 2535 /// [cont] [landingpad] 2536 /// 2537 /// But of course we can only do that if the invokes share the `landingpad`, 2538 /// edges invoke0->cont0 and invoke1->cont1 are "compatible", 2539 /// and the invoked functions are "compatible". 2540 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { 2541 if (!EnableMergeCompatibleInvokes) 2542 return false; 2543 2544 bool Changed = false; 2545 2546 // FIXME: generalize to all exception handling blocks? 2547 if (!BB->isLandingPad()) 2548 return Changed; 2549 2550 CompatibleSets Grouper; 2551 2552 // Record all the predecessors of this `landingpad`. As per verifier, 2553 // the only allowed predecessor is the unwind edge of an `invoke`. 2554 // We want to group "compatible" `invokes` into the same set to be merged. 2555 for (BasicBlock *PredBB : predecessors(BB)) 2556 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); 2557 2558 // And now, merge `invoke`s that were grouped togeter. 2559 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { 2560 if (Invokes.size() < 2) 2561 continue; 2562 Changed = true; 2563 MergeCompatibleInvokesImpl(Invokes, DTU); 2564 } 2565 2566 return Changed; 2567 } 2568 2569 /// Determine if we can hoist sink a sole store instruction out of a 2570 /// conditional block. 2571 /// 2572 /// We are looking for code like the following: 2573 /// BrBB: 2574 /// store i32 %add, i32* %arrayidx2 2575 /// ... // No other stores or function calls (we could be calling a memory 2576 /// ... // function). 2577 /// %cmp = icmp ult %x, %y 2578 /// br i1 %cmp, label %EndBB, label %ThenBB 2579 /// ThenBB: 2580 /// store i32 %add5, i32* %arrayidx2 2581 /// br label EndBB 2582 /// EndBB: 2583 /// ... 2584 /// We are going to transform this into: 2585 /// BrBB: 2586 /// store i32 %add, i32* %arrayidx2 2587 /// ... // 2588 /// %cmp = icmp ult %x, %y 2589 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2590 /// store i32 %add.add5, i32* %arrayidx2 2591 /// ... 2592 /// 2593 /// \return The pointer to the value of the previous store if the store can be 2594 /// hoisted into the predecessor block. 0 otherwise. 2595 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2596 BasicBlock *StoreBB, BasicBlock *EndBB) { 2597 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2598 if (!StoreToHoist) 2599 return nullptr; 2600 2601 // Volatile or atomic. 2602 if (!StoreToHoist->isSimple()) 2603 return nullptr; 2604 2605 Value *StorePtr = StoreToHoist->getPointerOperand(); 2606 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 2607 2608 // Look for a store to the same pointer in BrBB. 2609 unsigned MaxNumInstToLookAt = 9; 2610 // Skip pseudo probe intrinsic calls which are not really killing any memory 2611 // accesses. 2612 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2613 if (!MaxNumInstToLookAt) 2614 break; 2615 --MaxNumInstToLookAt; 2616 2617 // Could be calling an instruction that affects memory like free(). 2618 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 2619 return nullptr; 2620 2621 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2622 // Found the previous store to same location and type. Make sure it is 2623 // simple, to avoid introducing a spurious non-atomic write after an 2624 // atomic write. 2625 if (SI->getPointerOperand() == StorePtr && 2626 SI->getValueOperand()->getType() == StoreTy && SI->isSimple()) 2627 // Found the previous store, return its value operand. 2628 return SI->getValueOperand(); 2629 return nullptr; // Unknown store. 2630 } 2631 2632 if (auto *LI = dyn_cast<LoadInst>(&CurI)) { 2633 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && 2634 LI->isSimple()) { 2635 // Local objects (created by an `alloca` instruction) are always 2636 // writable, so once we are past a read from a location it is valid to 2637 // also write to that same location. 2638 // If the address of the local object never escapes the function, that 2639 // means it's never concurrently read or written, hence moving the store 2640 // from under the condition will not introduce a data race. 2641 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr)); 2642 if (AI && !PointerMayBeCaptured(AI, false, true)) 2643 // Found a previous load, return it. 2644 return LI; 2645 } 2646 // The load didn't work out, but we may still find a store. 2647 } 2648 } 2649 2650 return nullptr; 2651 } 2652 2653 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2654 /// converted to selects. 2655 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2656 BasicBlock *EndBB, 2657 unsigned &SpeculatedInstructions, 2658 InstructionCost &Cost, 2659 const TargetTransformInfo &TTI) { 2660 TargetTransformInfo::TargetCostKind CostKind = 2661 BB->getParent()->hasMinSize() 2662 ? TargetTransformInfo::TCK_CodeSize 2663 : TargetTransformInfo::TCK_SizeAndLatency; 2664 2665 bool HaveRewritablePHIs = false; 2666 for (PHINode &PN : EndBB->phis()) { 2667 Value *OrigV = PN.getIncomingValueForBlock(BB); 2668 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2669 2670 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2671 // Skip PHIs which are trivial. 2672 if (ThenV == OrigV) 2673 continue; 2674 2675 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2676 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2677 2678 // Don't convert to selects if we could remove undefined behavior instead. 2679 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2680 passingValueIsAlwaysUndefined(ThenV, &PN)) 2681 return false; 2682 2683 if (canTrap(OrigV) || canTrap(ThenV)) 2684 return false; 2685 2686 HaveRewritablePHIs = true; 2687 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2688 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2689 if (!OrigCE && !ThenCE) 2690 continue; // Known cheap (FIXME: Maybe not true for aggregates). 2691 2692 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2693 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2694 InstructionCost MaxCost = 2695 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2696 if (OrigCost + ThenCost > MaxCost) 2697 return false; 2698 2699 // Account for the cost of an unfolded ConstantExpr which could end up 2700 // getting expanded into Instructions. 2701 // FIXME: This doesn't account for how many operations are combined in the 2702 // constant expression. 2703 ++SpeculatedInstructions; 2704 if (SpeculatedInstructions > 1) 2705 return false; 2706 } 2707 2708 return HaveRewritablePHIs; 2709 } 2710 2711 /// Speculate a conditional basic block flattening the CFG. 2712 /// 2713 /// Note that this is a very risky transform currently. Speculating 2714 /// instructions like this is most often not desirable. Instead, there is an MI 2715 /// pass which can do it with full awareness of the resource constraints. 2716 /// However, some cases are "obvious" and we should do directly. An example of 2717 /// this is speculating a single, reasonably cheap instruction. 2718 /// 2719 /// There is only one distinct advantage to flattening the CFG at the IR level: 2720 /// it makes very common but simplistic optimizations such as are common in 2721 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2722 /// modeling their effects with easier to reason about SSA value graphs. 2723 /// 2724 /// 2725 /// An illustration of this transform is turning this IR: 2726 /// \code 2727 /// BB: 2728 /// %cmp = icmp ult %x, %y 2729 /// br i1 %cmp, label %EndBB, label %ThenBB 2730 /// ThenBB: 2731 /// %sub = sub %x, %y 2732 /// br label BB2 2733 /// EndBB: 2734 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2735 /// ... 2736 /// \endcode 2737 /// 2738 /// Into this IR: 2739 /// \code 2740 /// BB: 2741 /// %cmp = icmp ult %x, %y 2742 /// %sub = sub %x, %y 2743 /// %cond = select i1 %cmp, 0, %sub 2744 /// ... 2745 /// \endcode 2746 /// 2747 /// \returns true if the conditional block is removed. 2748 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2749 const TargetTransformInfo &TTI) { 2750 // Be conservative for now. FP select instruction can often be expensive. 2751 Value *BrCond = BI->getCondition(); 2752 if (isa<FCmpInst>(BrCond)) 2753 return false; 2754 2755 BasicBlock *BB = BI->getParent(); 2756 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2757 InstructionCost Budget = 2758 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2759 2760 // If ThenBB is actually on the false edge of the conditional branch, remember 2761 // to swap the select operands later. 2762 bool Invert = false; 2763 if (ThenBB != BI->getSuccessor(0)) { 2764 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2765 Invert = true; 2766 } 2767 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2768 2769 // If the branch is non-unpredictable, and is predicted to *not* branch to 2770 // the `then` block, then avoid speculating it. 2771 if (!BI->getMetadata(LLVMContext::MD_unpredictable)) { 2772 uint64_t TWeight, FWeight; 2773 if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) { 2774 uint64_t EndWeight = Invert ? TWeight : FWeight; 2775 BranchProbability BIEndProb = 2776 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 2777 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 2778 if (BIEndProb >= Likely) 2779 return false; 2780 } 2781 } 2782 2783 // Keep a count of how many times instructions are used within ThenBB when 2784 // they are candidates for sinking into ThenBB. Specifically: 2785 // - They are defined in BB, and 2786 // - They have no side effects, and 2787 // - All of their uses are in ThenBB. 2788 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2789 2790 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2791 2792 unsigned SpeculatedInstructions = 0; 2793 Value *SpeculatedStoreValue = nullptr; 2794 StoreInst *SpeculatedStore = nullptr; 2795 for (BasicBlock::iterator BBI = ThenBB->begin(), 2796 BBE = std::prev(ThenBB->end()); 2797 BBI != BBE; ++BBI) { 2798 Instruction *I = &*BBI; 2799 // Skip debug info. 2800 if (isa<DbgInfoIntrinsic>(I)) { 2801 SpeculatedDbgIntrinsics.push_back(I); 2802 continue; 2803 } 2804 2805 // Skip pseudo probes. The consequence is we lose track of the branch 2806 // probability for ThenBB, which is fine since the optimization here takes 2807 // place regardless of the branch probability. 2808 if (isa<PseudoProbeInst>(I)) { 2809 // The probe should be deleted so that it will not be over-counted when 2810 // the samples collected on the non-conditional path are counted towards 2811 // the conditional path. We leave it for the counts inference algorithm to 2812 // figure out a proper count for an unknown probe. 2813 SpeculatedDbgIntrinsics.push_back(I); 2814 continue; 2815 } 2816 2817 // Only speculatively execute a single instruction (not counting the 2818 // terminator) for now. 2819 ++SpeculatedInstructions; 2820 if (SpeculatedInstructions > 1) 2821 return false; 2822 2823 // Don't hoist the instruction if it's unsafe or expensive. 2824 if (!isSafeToSpeculativelyExecute(I) && 2825 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2826 I, BB, ThenBB, EndBB)))) 2827 return false; 2828 if (!SpeculatedStoreValue && 2829 computeSpeculationCost(I, TTI) > 2830 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2831 return false; 2832 2833 // Store the store speculation candidate. 2834 if (SpeculatedStoreValue) 2835 SpeculatedStore = cast<StoreInst>(I); 2836 2837 // Do not hoist the instruction if any of its operands are defined but not 2838 // used in BB. The transformation will prevent the operand from 2839 // being sunk into the use block. 2840 for (Use &Op : I->operands()) { 2841 Instruction *OpI = dyn_cast<Instruction>(Op); 2842 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2843 continue; // Not a candidate for sinking. 2844 2845 ++SinkCandidateUseCounts[OpI]; 2846 } 2847 } 2848 2849 // Consider any sink candidates which are only used in ThenBB as costs for 2850 // speculation. Note, while we iterate over a DenseMap here, we are summing 2851 // and so iteration order isn't significant. 2852 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2853 I = SinkCandidateUseCounts.begin(), 2854 E = SinkCandidateUseCounts.end(); 2855 I != E; ++I) 2856 if (I->first->hasNUses(I->second)) { 2857 ++SpeculatedInstructions; 2858 if (SpeculatedInstructions > 1) 2859 return false; 2860 } 2861 2862 // Check that we can insert the selects and that it's not too expensive to do 2863 // so. 2864 bool Convert = SpeculatedStore != nullptr; 2865 InstructionCost Cost = 0; 2866 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2867 SpeculatedInstructions, 2868 Cost, TTI); 2869 if (!Convert || Cost > Budget) 2870 return false; 2871 2872 // If we get here, we can hoist the instruction and if-convert. 2873 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2874 2875 // Insert a select of the value of the speculated store. 2876 if (SpeculatedStoreValue) { 2877 IRBuilder<NoFolder> Builder(BI); 2878 Value *TrueV = SpeculatedStore->getValueOperand(); 2879 Value *FalseV = SpeculatedStoreValue; 2880 if (Invert) 2881 std::swap(TrueV, FalseV); 2882 Value *S = Builder.CreateSelect( 2883 BrCond, TrueV, FalseV, "spec.store.select", BI); 2884 SpeculatedStore->setOperand(0, S); 2885 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2886 SpeculatedStore->getDebugLoc()); 2887 } 2888 2889 // Metadata can be dependent on the condition we are hoisting above. 2890 // Conservatively strip all metadata on the instruction. Drop the debug loc 2891 // to avoid making it appear as if the condition is a constant, which would 2892 // be misleading while debugging. 2893 // Similarly strip attributes that maybe dependent on condition we are 2894 // hoisting above. 2895 for (auto &I : *ThenBB) { 2896 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2897 I.setDebugLoc(DebugLoc()); 2898 I.dropUndefImplyingAttrsAndUnknownMetadata(); 2899 } 2900 2901 // Hoist the instructions. 2902 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2903 ThenBB->begin(), std::prev(ThenBB->end())); 2904 2905 // Insert selects and rewrite the PHI operands. 2906 IRBuilder<NoFolder> Builder(BI); 2907 for (PHINode &PN : EndBB->phis()) { 2908 unsigned OrigI = PN.getBasicBlockIndex(BB); 2909 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2910 Value *OrigV = PN.getIncomingValue(OrigI); 2911 Value *ThenV = PN.getIncomingValue(ThenI); 2912 2913 // Skip PHIs which are trivial. 2914 if (OrigV == ThenV) 2915 continue; 2916 2917 // Create a select whose true value is the speculatively executed value and 2918 // false value is the pre-existing value. Swap them if the branch 2919 // destinations were inverted. 2920 Value *TrueV = ThenV, *FalseV = OrigV; 2921 if (Invert) 2922 std::swap(TrueV, FalseV); 2923 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2924 PN.setIncomingValue(OrigI, V); 2925 PN.setIncomingValue(ThenI, V); 2926 } 2927 2928 // Remove speculated dbg intrinsics. 2929 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2930 // dbg value for the different flows and inserting it after the select. 2931 for (Instruction *I : SpeculatedDbgIntrinsics) 2932 I->eraseFromParent(); 2933 2934 ++NumSpeculations; 2935 return true; 2936 } 2937 2938 /// Return true if we can thread a branch across this block. 2939 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2940 int Size = 0; 2941 2942 SmallPtrSet<const Value *, 32> EphValues; 2943 auto IsEphemeral = [&](const Instruction *I) { 2944 if (isa<AssumeInst>(I)) 2945 return true; 2946 return !I->mayHaveSideEffects() && !I->isTerminator() && 2947 all_of(I->users(), 2948 [&](const User *U) { return EphValues.count(U); }); 2949 }; 2950 2951 // Walk the loop in reverse so that we can identify ephemeral values properly 2952 // (values only feeding assumes). 2953 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { 2954 // Can't fold blocks that contain noduplicate or convergent calls. 2955 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2956 if (CI->cannotDuplicate() || CI->isConvergent()) 2957 return false; 2958 2959 // Ignore ephemeral values which are deleted during codegen. 2960 if (IsEphemeral(&I)) 2961 EphValues.insert(&I); 2962 // We will delete Phis while threading, so Phis should not be accounted in 2963 // block's size. 2964 else if (!isa<PHINode>(I)) { 2965 if (Size++ > MaxSmallBlockSize) 2966 return false; // Don't clone large BB's. 2967 } 2968 2969 // We can only support instructions that do not define values that are 2970 // live outside of the current basic block. 2971 for (User *U : I.users()) { 2972 Instruction *UI = cast<Instruction>(U); 2973 if (UI->getParent() != BB || isa<PHINode>(UI)) 2974 return false; 2975 } 2976 2977 // Looks ok, continue checking. 2978 } 2979 2980 return true; 2981 } 2982 2983 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From, 2984 BasicBlock *To) { 2985 // Don't look past the block defining the value, we might get the value from 2986 // a previous loop iteration. 2987 auto *I = dyn_cast<Instruction>(V); 2988 if (I && I->getParent() == To) 2989 return nullptr; 2990 2991 // We know the value if the From block branches on it. 2992 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 2993 if (BI && BI->isConditional() && BI->getCondition() == V && 2994 BI->getSuccessor(0) != BI->getSuccessor(1)) 2995 return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext()) 2996 : ConstantInt::getFalse(BI->getContext()); 2997 2998 return nullptr; 2999 } 3000 3001 /// If we have a conditional branch on something for which we know the constant 3002 /// value in predecessors (e.g. a phi node in the current block), thread edges 3003 /// from the predecessor to their ultimate destination. 3004 static Optional<bool> 3005 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU, 3006 const DataLayout &DL, 3007 AssumptionCache *AC) { 3008 SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues; 3009 BasicBlock *BB = BI->getParent(); 3010 Value *Cond = BI->getCondition(); 3011 PHINode *PN = dyn_cast<PHINode>(Cond); 3012 if (PN && PN->getParent() == BB) { 3013 // Degenerate case of a single entry PHI. 3014 if (PN->getNumIncomingValues() == 1) { 3015 FoldSingleEntryPHINodes(PN->getParent()); 3016 return true; 3017 } 3018 3019 for (Use &U : PN->incoming_values()) 3020 if (auto *CB = dyn_cast<ConstantInt>(U)) 3021 KnownValues[CB].insert(PN->getIncomingBlock(U)); 3022 } else { 3023 for (BasicBlock *Pred : predecessors(BB)) { 3024 if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB)) 3025 KnownValues[CB].insert(Pred); 3026 } 3027 } 3028 3029 if (KnownValues.empty()) 3030 return false; 3031 3032 // Now we know that this block has multiple preds and two succs. 3033 // Check that the block is small enough and values defined in the block are 3034 // not used outside of it. 3035 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 3036 return false; 3037 3038 for (const auto &Pair : KnownValues) { 3039 // Okay, we now know that all edges from PredBB should be revectored to 3040 // branch to RealDest. 3041 ConstantInt *CB = Pair.first; 3042 ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef(); 3043 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 3044 3045 if (RealDest == BB) 3046 continue; // Skip self loops. 3047 3048 // Skip if the predecessor's terminator is an indirect branch. 3049 if (any_of(PredBBs, [](BasicBlock *PredBB) { 3050 return isa<IndirectBrInst>(PredBB->getTerminator()); 3051 })) 3052 continue; 3053 3054 LLVM_DEBUG({ 3055 dbgs() << "Condition " << *Cond << " in " << BB->getName() 3056 << " has value " << *Pair.first << " in predecessors:\n"; 3057 for (const BasicBlock *PredBB : Pair.second) 3058 dbgs() << " " << PredBB->getName() << "\n"; 3059 dbgs() << "Threading to destination " << RealDest->getName() << ".\n"; 3060 }); 3061 3062 // Split the predecessors we are threading into a new edge block. We'll 3063 // clone the instructions into this block, and then redirect it to RealDest. 3064 BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU); 3065 3066 // TODO: These just exist to reduce test diff, we can drop them if we like. 3067 EdgeBB->setName(RealDest->getName() + ".critedge"); 3068 EdgeBB->moveBefore(RealDest); 3069 3070 // Update PHI nodes. 3071 AddPredecessorToBlock(RealDest, EdgeBB, BB); 3072 3073 // BB may have instructions that are being threaded over. Clone these 3074 // instructions into EdgeBB. We know that there will be no uses of the 3075 // cloned instructions outside of EdgeBB. 3076 BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt(); 3077 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 3078 TranslateMap[Cond] = CB; 3079 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 3080 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 3081 TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB); 3082 continue; 3083 } 3084 // Clone the instruction. 3085 Instruction *N = BBI->clone(); 3086 if (BBI->hasName()) 3087 N->setName(BBI->getName() + ".c"); 3088 3089 // Update operands due to translation. 3090 for (Use &Op : N->operands()) { 3091 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 3092 if (PI != TranslateMap.end()) 3093 Op = PI->second; 3094 } 3095 3096 // Check for trivial simplification. 3097 if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 3098 if (!BBI->use_empty()) 3099 TranslateMap[&*BBI] = V; 3100 if (!N->mayHaveSideEffects()) { 3101 N->deleteValue(); // Instruction folded away, don't need actual inst 3102 N = nullptr; 3103 } 3104 } else { 3105 if (!BBI->use_empty()) 3106 TranslateMap[&*BBI] = N; 3107 } 3108 if (N) { 3109 // Insert the new instruction into its new home. 3110 EdgeBB->getInstList().insert(InsertPt, N); 3111 3112 // Register the new instruction with the assumption cache if necessary. 3113 if (auto *Assume = dyn_cast<AssumeInst>(N)) 3114 if (AC) 3115 AC->registerAssumption(Assume); 3116 } 3117 } 3118 3119 BB->removePredecessor(EdgeBB); 3120 BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator()); 3121 EdgeBI->setSuccessor(0, RealDest); 3122 EdgeBI->setDebugLoc(BI->getDebugLoc()); 3123 3124 if (DTU) { 3125 SmallVector<DominatorTree::UpdateType, 2> Updates; 3126 Updates.push_back({DominatorTree::Delete, EdgeBB, BB}); 3127 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 3128 DTU->applyUpdates(Updates); 3129 } 3130 3131 // For simplicity, we created a separate basic block for the edge. Merge 3132 // it back into the predecessor if possible. This not only avoids 3133 // unnecessary SimplifyCFG iterations, but also makes sure that we don't 3134 // bypass the check for trivial cycles above. 3135 MergeBlockIntoPredecessor(EdgeBB, DTU); 3136 3137 // Signal repeat, simplifying any other constants. 3138 return None; 3139 } 3140 3141 return false; 3142 } 3143 3144 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI, 3145 DomTreeUpdater *DTU, 3146 const DataLayout &DL, 3147 AssumptionCache *AC) { 3148 Optional<bool> Result; 3149 bool EverChanged = false; 3150 do { 3151 // Note that None means "we changed things, but recurse further." 3152 Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC); 3153 EverChanged |= Result == None || *Result; 3154 } while (Result == None); 3155 return EverChanged; 3156 } 3157 3158 /// Given a BB that starts with the specified two-entry PHI node, 3159 /// see if we can eliminate it. 3160 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 3161 DomTreeUpdater *DTU, const DataLayout &DL) { 3162 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 3163 // statement", which has a very simple dominance structure. Basically, we 3164 // are trying to find the condition that is being branched on, which 3165 // subsequently causes this merge to happen. We really want control 3166 // dependence information for this check, but simplifycfg can't keep it up 3167 // to date, and this catches most of the cases we care about anyway. 3168 BasicBlock *BB = PN->getParent(); 3169 3170 BasicBlock *IfTrue, *IfFalse; 3171 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 3172 if (!DomBI) 3173 return false; 3174 Value *IfCond = DomBI->getCondition(); 3175 // Don't bother if the branch will be constant folded trivially. 3176 if (isa<ConstantInt>(IfCond)) 3177 return false; 3178 3179 BasicBlock *DomBlock = DomBI->getParent(); 3180 SmallVector<BasicBlock *, 2> IfBlocks; 3181 llvm::copy_if( 3182 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 3183 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 3184 }); 3185 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 3186 "Will have either one or two blocks to speculate."); 3187 3188 // If the branch is non-unpredictable, see if we either predictably jump to 3189 // the merge bb (if we have only a single 'then' block), or if we predictably 3190 // jump to one specific 'then' block (if we have two of them). 3191 // It isn't beneficial to speculatively execute the code 3192 // from the block that we know is predictably not entered. 3193 if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) { 3194 uint64_t TWeight, FWeight; 3195 if (DomBI->extractProfMetadata(TWeight, FWeight) && 3196 (TWeight + FWeight) != 0) { 3197 BranchProbability BITrueProb = 3198 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 3199 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3200 BranchProbability BIFalseProb = BITrueProb.getCompl(); 3201 if (IfBlocks.size() == 1) { 3202 BranchProbability BIBBProb = 3203 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 3204 if (BIBBProb >= Likely) 3205 return false; 3206 } else { 3207 if (BITrueProb >= Likely || BIFalseProb >= Likely) 3208 return false; 3209 } 3210 } 3211 } 3212 3213 // Don't try to fold an unreachable block. For example, the phi node itself 3214 // can't be the candidate if-condition for a select that we want to form. 3215 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 3216 if (IfCondPhiInst->getParent() == BB) 3217 return false; 3218 3219 // Okay, we found that we can merge this two-entry phi node into a select. 3220 // Doing so would require us to fold *all* two entry phi nodes in this block. 3221 // At some point this becomes non-profitable (particularly if the target 3222 // doesn't support cmov's). Only do this transformation if there are two or 3223 // fewer PHI nodes in this block. 3224 unsigned NumPhis = 0; 3225 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 3226 if (NumPhis > 2) 3227 return false; 3228 3229 // Loop over the PHI's seeing if we can promote them all to select 3230 // instructions. While we are at it, keep track of the instructions 3231 // that need to be moved to the dominating block. 3232 SmallPtrSet<Instruction *, 4> AggressiveInsts; 3233 InstructionCost Cost = 0; 3234 InstructionCost Budget = 3235 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3236 3237 bool Changed = false; 3238 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 3239 PHINode *PN = cast<PHINode>(II++); 3240 if (Value *V = simplifyInstruction(PN, {DL, PN})) { 3241 PN->replaceAllUsesWith(V); 3242 PN->eraseFromParent(); 3243 Changed = true; 3244 continue; 3245 } 3246 3247 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 3248 Cost, Budget, TTI) || 3249 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 3250 Cost, Budget, TTI)) 3251 return Changed; 3252 } 3253 3254 // If we folded the first phi, PN dangles at this point. Refresh it. If 3255 // we ran out of PHIs then we simplified them all. 3256 PN = dyn_cast<PHINode>(BB->begin()); 3257 if (!PN) 3258 return true; 3259 3260 // Return true if at least one of these is a 'not', and another is either 3261 // a 'not' too, or a constant. 3262 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 3263 if (!match(V0, m_Not(m_Value()))) 3264 std::swap(V0, V1); 3265 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 3266 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 3267 }; 3268 3269 // Don't fold i1 branches on PHIs which contain binary operators or 3270 // (possibly inverted) select form of or/ands, unless one of 3271 // the incoming values is an 'not' and another one is freely invertible. 3272 // These can often be turned into switches and other things. 3273 auto IsBinOpOrAnd = [](Value *V) { 3274 return match( 3275 V, m_CombineOr( 3276 m_BinOp(), 3277 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()), 3278 m_Select(m_Value(), m_Value(), m_ImmConstant())))); 3279 }; 3280 if (PN->getType()->isIntegerTy(1) && 3281 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 3282 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 3283 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 3284 PN->getIncomingValue(1))) 3285 return Changed; 3286 3287 // If all PHI nodes are promotable, check to make sure that all instructions 3288 // in the predecessor blocks can be promoted as well. If not, we won't be able 3289 // to get rid of the control flow, so it's not worth promoting to select 3290 // instructions. 3291 for (BasicBlock *IfBlock : IfBlocks) 3292 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 3293 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { 3294 // This is not an aggressive instruction that we can promote. 3295 // Because of this, we won't be able to get rid of the control flow, so 3296 // the xform is not worth it. 3297 return Changed; 3298 } 3299 3300 // If either of the blocks has it's address taken, we can't do this fold. 3301 if (any_of(IfBlocks, 3302 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 3303 return Changed; 3304 3305 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 3306 << " T: " << IfTrue->getName() 3307 << " F: " << IfFalse->getName() << "\n"); 3308 3309 // If we can still promote the PHI nodes after this gauntlet of tests, 3310 // do all of the PHI's now. 3311 3312 // Move all 'aggressive' instructions, which are defined in the 3313 // conditional parts of the if's up to the dominating block. 3314 for (BasicBlock *IfBlock : IfBlocks) 3315 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 3316 3317 IRBuilder<NoFolder> Builder(DomBI); 3318 // Propagate fast-math-flags from phi nodes to replacement selects. 3319 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 3320 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 3321 if (isa<FPMathOperator>(PN)) 3322 Builder.setFastMathFlags(PN->getFastMathFlags()); 3323 3324 // Change the PHI node into a select instruction. 3325 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 3326 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 3327 3328 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI); 3329 PN->replaceAllUsesWith(Sel); 3330 Sel->takeName(PN); 3331 PN->eraseFromParent(); 3332 } 3333 3334 // At this point, all IfBlocks are empty, so our if statement 3335 // has been flattened. Change DomBlock to jump directly to our new block to 3336 // avoid other simplifycfg's kicking in on the diamond. 3337 Builder.CreateBr(BB); 3338 3339 SmallVector<DominatorTree::UpdateType, 3> Updates; 3340 if (DTU) { 3341 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 3342 for (auto *Successor : successors(DomBlock)) 3343 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 3344 } 3345 3346 DomBI->eraseFromParent(); 3347 if (DTU) 3348 DTU->applyUpdates(Updates); 3349 3350 return true; 3351 } 3352 3353 static Value *createLogicalOp(IRBuilderBase &Builder, 3354 Instruction::BinaryOps Opc, Value *LHS, 3355 Value *RHS, const Twine &Name = "") { 3356 // Try to relax logical op to binary op. 3357 if (impliesPoison(RHS, LHS)) 3358 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 3359 if (Opc == Instruction::And) 3360 return Builder.CreateLogicalAnd(LHS, RHS, Name); 3361 if (Opc == Instruction::Or) 3362 return Builder.CreateLogicalOr(LHS, RHS, Name); 3363 llvm_unreachable("Invalid logical opcode"); 3364 } 3365 3366 /// Return true if either PBI or BI has branch weight available, and store 3367 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3368 /// not have branch weight, use 1:1 as its weight. 3369 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3370 uint64_t &PredTrueWeight, 3371 uint64_t &PredFalseWeight, 3372 uint64_t &SuccTrueWeight, 3373 uint64_t &SuccFalseWeight) { 3374 bool PredHasWeights = 3375 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 3376 bool SuccHasWeights = 3377 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 3378 if (PredHasWeights || SuccHasWeights) { 3379 if (!PredHasWeights) 3380 PredTrueWeight = PredFalseWeight = 1; 3381 if (!SuccHasWeights) 3382 SuccTrueWeight = SuccFalseWeight = 1; 3383 return true; 3384 } else { 3385 return false; 3386 } 3387 } 3388 3389 /// Determine if the two branches share a common destination and deduce a glue 3390 /// that joins the branches' conditions to arrive at the common destination if 3391 /// that would be profitable. 3392 static Optional<std::pair<Instruction::BinaryOps, bool>> 3393 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3394 const TargetTransformInfo *TTI) { 3395 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3396 "Both blocks must end with a conditional branches."); 3397 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3398 "PredBB must be a predecessor of BB."); 3399 3400 // We have the potential to fold the conditions together, but if the 3401 // predecessor branch is predictable, we may not want to merge them. 3402 uint64_t PTWeight, PFWeight; 3403 BranchProbability PBITrueProb, Likely; 3404 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 3405 PBI->extractProfMetadata(PTWeight, PFWeight) && 3406 (PTWeight + PFWeight) != 0) { 3407 PBITrueProb = 3408 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3409 Likely = TTI->getPredictableBranchThreshold(); 3410 } 3411 3412 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3413 // Speculate the 2nd condition unless the 1st is probably true. 3414 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3415 return {{Instruction::Or, false}}; 3416 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3417 // Speculate the 2nd condition unless the 1st is probably false. 3418 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3419 return {{Instruction::And, false}}; 3420 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3421 // Speculate the 2nd condition unless the 1st is probably true. 3422 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3423 return {{Instruction::And, true}}; 3424 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3425 // Speculate the 2nd condition unless the 1st is probably false. 3426 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3427 return {{Instruction::Or, true}}; 3428 } 3429 return None; 3430 } 3431 3432 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3433 DomTreeUpdater *DTU, 3434 MemorySSAUpdater *MSSAU, 3435 const TargetTransformInfo *TTI) { 3436 BasicBlock *BB = BI->getParent(); 3437 BasicBlock *PredBlock = PBI->getParent(); 3438 3439 // Determine if the two branches share a common destination. 3440 Instruction::BinaryOps Opc; 3441 bool InvertPredCond; 3442 std::tie(Opc, InvertPredCond) = 3443 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3444 3445 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3446 3447 IRBuilder<> Builder(PBI); 3448 // The builder is used to create instructions to eliminate the branch in BB. 3449 // If BB's terminator has !annotation metadata, add it to the new 3450 // instructions. 3451 Builder.CollectMetadataToCopy(BB->getTerminator(), 3452 {LLVMContext::MD_annotation}); 3453 3454 // If we need to invert the condition in the pred block to match, do so now. 3455 if (InvertPredCond) { 3456 Value *NewCond = PBI->getCondition(); 3457 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3458 CmpInst *CI = cast<CmpInst>(NewCond); 3459 CI->setPredicate(CI->getInversePredicate()); 3460 } else { 3461 NewCond = 3462 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3463 } 3464 3465 PBI->setCondition(NewCond); 3466 PBI->swapSuccessors(); 3467 } 3468 3469 BasicBlock *UniqueSucc = 3470 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3471 3472 // Before cloning instructions, notify the successor basic block that it 3473 // is about to have a new predecessor. This will update PHI nodes, 3474 // which will allow us to update live-out uses of bonus instructions. 3475 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3476 3477 // Try to update branch weights. 3478 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3479 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3480 SuccTrueWeight, SuccFalseWeight)) { 3481 SmallVector<uint64_t, 8> NewWeights; 3482 3483 if (PBI->getSuccessor(0) == BB) { 3484 // PBI: br i1 %x, BB, FalseDest 3485 // BI: br i1 %y, UniqueSucc, FalseDest 3486 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3487 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3488 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3489 // TrueWeight for PBI * FalseWeight for BI. 3490 // We assume that total weights of a BranchInst can fit into 32 bits. 3491 // Therefore, we will not have overflow using 64-bit arithmetic. 3492 NewWeights.push_back(PredFalseWeight * 3493 (SuccFalseWeight + SuccTrueWeight) + 3494 PredTrueWeight * SuccFalseWeight); 3495 } else { 3496 // PBI: br i1 %x, TrueDest, BB 3497 // BI: br i1 %y, TrueDest, UniqueSucc 3498 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3499 // FalseWeight for PBI * TrueWeight for BI. 3500 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3501 PredFalseWeight * SuccTrueWeight); 3502 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3503 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3504 } 3505 3506 // Halve the weights if any of them cannot fit in an uint32_t 3507 FitWeights(NewWeights); 3508 3509 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3510 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3511 3512 // TODO: If BB is reachable from all paths through PredBlock, then we 3513 // could replace PBI's branch probabilities with BI's. 3514 } else 3515 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3516 3517 // Now, update the CFG. 3518 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3519 3520 if (DTU) 3521 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3522 {DominatorTree::Delete, PredBlock, BB}}); 3523 3524 // If BI was a loop latch, it may have had associated loop metadata. 3525 // We need to copy it to the new latch, that is, PBI. 3526 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3527 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3528 3529 ValueToValueMapTy VMap; // maps original values to cloned values 3530 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3531 3532 // Now that the Cond was cloned into the predecessor basic block, 3533 // or/and the two conditions together. 3534 Value *BICond = VMap[BI->getCondition()]; 3535 PBI->setCondition( 3536 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3537 3538 // Copy any debug value intrinsics into the end of PredBlock. 3539 for (Instruction &I : *BB) { 3540 if (isa<DbgInfoIntrinsic>(I)) { 3541 Instruction *NewI = I.clone(); 3542 RemapInstruction(NewI, VMap, 3543 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3544 NewI->insertBefore(PBI); 3545 } 3546 } 3547 3548 ++NumFoldBranchToCommonDest; 3549 return true; 3550 } 3551 3552 /// Return if an instruction's type or any of its operands' types are a vector 3553 /// type. 3554 static bool isVectorOp(Instruction &I) { 3555 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { 3556 return U->getType()->isVectorTy(); 3557 }); 3558 } 3559 3560 /// If this basic block is simple enough, and if a predecessor branches to us 3561 /// and one of our successors, fold the block into the predecessor and use 3562 /// logical operations to pick the right destination. 3563 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3564 MemorySSAUpdater *MSSAU, 3565 const TargetTransformInfo *TTI, 3566 unsigned BonusInstThreshold) { 3567 // If this block ends with an unconditional branch, 3568 // let SpeculativelyExecuteBB() deal with it. 3569 if (!BI->isConditional()) 3570 return false; 3571 3572 BasicBlock *BB = BI->getParent(); 3573 TargetTransformInfo::TargetCostKind CostKind = 3574 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3575 : TargetTransformInfo::TCK_SizeAndLatency; 3576 3577 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3578 3579 if (!Cond || 3580 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) && 3581 !isa<SelectInst>(Cond)) || 3582 Cond->getParent() != BB || !Cond->hasOneUse()) 3583 return false; 3584 3585 // Cond is known to be a compare or binary operator. Check to make sure that 3586 // neither operand is a potentially-trapping constant expression. 3587 if (canTrap(Cond->getOperand(0))) 3588 return false; 3589 if (canTrap(Cond->getOperand(1))) 3590 return false; 3591 3592 // Finally, don't infinitely unroll conditional loops. 3593 if (is_contained(successors(BB), BB)) 3594 return false; 3595 3596 // With which predecessors will we want to deal with? 3597 SmallVector<BasicBlock *, 8> Preds; 3598 for (BasicBlock *PredBlock : predecessors(BB)) { 3599 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3600 3601 // Check that we have two conditional branches. If there is a PHI node in 3602 // the common successor, verify that the same value flows in from both 3603 // blocks. 3604 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3605 continue; 3606 3607 // Determine if the two branches share a common destination. 3608 Instruction::BinaryOps Opc; 3609 bool InvertPredCond; 3610 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3611 std::tie(Opc, InvertPredCond) = *Recipe; 3612 else 3613 continue; 3614 3615 // Check the cost of inserting the necessary logic before performing the 3616 // transformation. 3617 if (TTI) { 3618 Type *Ty = BI->getCondition()->getType(); 3619 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3620 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3621 !isa<CmpInst>(PBI->getCondition()))) 3622 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3623 3624 if (Cost > BranchFoldThreshold) 3625 continue; 3626 } 3627 3628 // Ok, we do want to deal with this predecessor. Record it. 3629 Preds.emplace_back(PredBlock); 3630 } 3631 3632 // If there aren't any predecessors into which we can fold, 3633 // don't bother checking the cost. 3634 if (Preds.empty()) 3635 return false; 3636 3637 // Only allow this transformation if computing the condition doesn't involve 3638 // too many instructions and these involved instructions can be executed 3639 // unconditionally. We denote all involved instructions except the condition 3640 // as "bonus instructions", and only allow this transformation when the 3641 // number of the bonus instructions we'll need to create when cloning into 3642 // each predecessor does not exceed a certain threshold. 3643 unsigned NumBonusInsts = 0; 3644 bool SawVectorOp = false; 3645 const unsigned PredCount = Preds.size(); 3646 for (Instruction &I : *BB) { 3647 // Don't check the branch condition comparison itself. 3648 if (&I == Cond) 3649 continue; 3650 // Ignore dbg intrinsics, and the terminator. 3651 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3652 continue; 3653 // I must be safe to execute unconditionally. 3654 if (!isSafeToSpeculativelyExecute(&I)) 3655 return false; 3656 SawVectorOp |= isVectorOp(I); 3657 3658 // Account for the cost of duplicating this instruction into each 3659 // predecessor. Ignore free instructions. 3660 if (!TTI || 3661 TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) { 3662 NumBonusInsts += PredCount; 3663 3664 // Early exits once we reach the limit. 3665 if (NumBonusInsts > 3666 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) 3667 return false; 3668 } 3669 3670 auto IsBCSSAUse = [BB, &I](Use &U) { 3671 auto *UI = cast<Instruction>(U.getUser()); 3672 if (auto *PN = dyn_cast<PHINode>(UI)) 3673 return PN->getIncomingBlock(U) == BB; 3674 return UI->getParent() == BB && I.comesBefore(UI); 3675 }; 3676 3677 // Does this instruction require rewriting of uses? 3678 if (!all_of(I.uses(), IsBCSSAUse)) 3679 return false; 3680 } 3681 if (NumBonusInsts > 3682 BonusInstThreshold * 3683 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) 3684 return false; 3685 3686 // Ok, we have the budget. Perform the transformation. 3687 for (BasicBlock *PredBlock : Preds) { 3688 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3689 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3690 } 3691 return false; 3692 } 3693 3694 // If there is only one store in BB1 and BB2, return it, otherwise return 3695 // nullptr. 3696 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3697 StoreInst *S = nullptr; 3698 for (auto *BB : {BB1, BB2}) { 3699 if (!BB) 3700 continue; 3701 for (auto &I : *BB) 3702 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3703 if (S) 3704 // Multiple stores seen. 3705 return nullptr; 3706 else 3707 S = SI; 3708 } 3709 } 3710 return S; 3711 } 3712 3713 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3714 Value *AlternativeV = nullptr) { 3715 // PHI is going to be a PHI node that allows the value V that is defined in 3716 // BB to be referenced in BB's only successor. 3717 // 3718 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3719 // doesn't matter to us what the other operand is (it'll never get used). We 3720 // could just create a new PHI with an undef incoming value, but that could 3721 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3722 // other PHI. So here we directly look for some PHI in BB's successor with V 3723 // as an incoming operand. If we find one, we use it, else we create a new 3724 // one. 3725 // 3726 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3727 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3728 // where OtherBB is the single other predecessor of BB's only successor. 3729 PHINode *PHI = nullptr; 3730 BasicBlock *Succ = BB->getSingleSuccessor(); 3731 3732 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3733 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3734 PHI = cast<PHINode>(I); 3735 if (!AlternativeV) 3736 break; 3737 3738 assert(Succ->hasNPredecessors(2)); 3739 auto PredI = pred_begin(Succ); 3740 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3741 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3742 break; 3743 PHI = nullptr; 3744 } 3745 if (PHI) 3746 return PHI; 3747 3748 // If V is not an instruction defined in BB, just return it. 3749 if (!AlternativeV && 3750 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3751 return V; 3752 3753 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3754 PHI->addIncoming(V, BB); 3755 for (BasicBlock *PredBB : predecessors(Succ)) 3756 if (PredBB != BB) 3757 PHI->addIncoming( 3758 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3759 return PHI; 3760 } 3761 3762 static bool mergeConditionalStoreToAddress( 3763 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3764 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3765 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3766 // For every pointer, there must be exactly two stores, one coming from 3767 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3768 // store (to any address) in PTB,PFB or QTB,QFB. 3769 // FIXME: We could relax this restriction with a bit more work and performance 3770 // testing. 3771 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3772 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3773 if (!PStore || !QStore) 3774 return false; 3775 3776 // Now check the stores are compatible. 3777 if (!QStore->isUnordered() || !PStore->isUnordered() || 3778 PStore->getValueOperand()->getType() != 3779 QStore->getValueOperand()->getType()) 3780 return false; 3781 3782 // Check that sinking the store won't cause program behavior changes. Sinking 3783 // the store out of the Q blocks won't change any behavior as we're sinking 3784 // from a block to its unconditional successor. But we're moving a store from 3785 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3786 // So we need to check that there are no aliasing loads or stores in 3787 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3788 // operations between PStore and the end of its parent block. 3789 // 3790 // The ideal way to do this is to query AliasAnalysis, but we don't 3791 // preserve AA currently so that is dangerous. Be super safe and just 3792 // check there are no other memory operations at all. 3793 for (auto &I : *QFB->getSinglePredecessor()) 3794 if (I.mayReadOrWriteMemory()) 3795 return false; 3796 for (auto &I : *QFB) 3797 if (&I != QStore && I.mayReadOrWriteMemory()) 3798 return false; 3799 if (QTB) 3800 for (auto &I : *QTB) 3801 if (&I != QStore && I.mayReadOrWriteMemory()) 3802 return false; 3803 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3804 I != E; ++I) 3805 if (&*I != PStore && I->mayReadOrWriteMemory()) 3806 return false; 3807 3808 // If we're not in aggressive mode, we only optimize if we have some 3809 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3810 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3811 if (!BB) 3812 return true; 3813 // Heuristic: if the block can be if-converted/phi-folded and the 3814 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3815 // thread this store. 3816 InstructionCost Cost = 0; 3817 InstructionCost Budget = 3818 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3819 for (auto &I : BB->instructionsWithoutDebug(false)) { 3820 // Consider terminator instruction to be free. 3821 if (I.isTerminator()) 3822 continue; 3823 // If this is one the stores that we want to speculate out of this BB, 3824 // then don't count it's cost, consider it to be free. 3825 if (auto *S = dyn_cast<StoreInst>(&I)) 3826 if (llvm::find(FreeStores, S)) 3827 continue; 3828 // Else, we have a white-list of instructions that we are ak speculating. 3829 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3830 return false; // Not in white-list - not worthwhile folding. 3831 // And finally, if this is a non-free instruction that we are okay 3832 // speculating, ensure that we consider the speculation budget. 3833 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3834 if (Cost > Budget) 3835 return false; // Eagerly refuse to fold as soon as we're out of budget. 3836 } 3837 assert(Cost <= Budget && 3838 "When we run out of budget we will eagerly return from within the " 3839 "per-instruction loop."); 3840 return true; 3841 }; 3842 3843 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3844 if (!MergeCondStoresAggressively && 3845 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3846 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3847 return false; 3848 3849 // If PostBB has more than two predecessors, we need to split it so we can 3850 // sink the store. 3851 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3852 // We know that QFB's only successor is PostBB. And QFB has a single 3853 // predecessor. If QTB exists, then its only successor is also PostBB. 3854 // If QTB does not exist, then QFB's only predecessor has a conditional 3855 // branch to QFB and PostBB. 3856 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3857 BasicBlock *NewBB = 3858 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3859 if (!NewBB) 3860 return false; 3861 PostBB = NewBB; 3862 } 3863 3864 // OK, we're going to sink the stores to PostBB. The store has to be 3865 // conditional though, so first create the predicate. 3866 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3867 ->getCondition(); 3868 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3869 ->getCondition(); 3870 3871 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3872 PStore->getParent()); 3873 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3874 QStore->getParent(), PPHI); 3875 3876 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3877 3878 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3879 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3880 3881 if (InvertPCond) 3882 PPred = QB.CreateNot(PPred); 3883 if (InvertQCond) 3884 QPred = QB.CreateNot(QPred); 3885 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3886 3887 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3888 /*Unreachable=*/false, 3889 /*BranchWeights=*/nullptr, DTU); 3890 QB.SetInsertPoint(T); 3891 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3892 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); 3893 // Choose the minimum alignment. If we could prove both stores execute, we 3894 // could use biggest one. In this case, though, we only know that one of the 3895 // stores executes. And we don't know it's safe to take the alignment from a 3896 // store that doesn't execute. 3897 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3898 3899 QStore->eraseFromParent(); 3900 PStore->eraseFromParent(); 3901 3902 return true; 3903 } 3904 3905 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3906 DomTreeUpdater *DTU, const DataLayout &DL, 3907 const TargetTransformInfo &TTI) { 3908 // The intention here is to find diamonds or triangles (see below) where each 3909 // conditional block contains a store to the same address. Both of these 3910 // stores are conditional, so they can't be unconditionally sunk. But it may 3911 // be profitable to speculatively sink the stores into one merged store at the 3912 // end, and predicate the merged store on the union of the two conditions of 3913 // PBI and QBI. 3914 // 3915 // This can reduce the number of stores executed if both of the conditions are 3916 // true, and can allow the blocks to become small enough to be if-converted. 3917 // This optimization will also chain, so that ladders of test-and-set 3918 // sequences can be if-converted away. 3919 // 3920 // We only deal with simple diamonds or triangles: 3921 // 3922 // PBI or PBI or a combination of the two 3923 // / \ | \ 3924 // PTB PFB | PFB 3925 // \ / | / 3926 // QBI QBI 3927 // / \ | \ 3928 // QTB QFB | QFB 3929 // \ / | / 3930 // PostBB PostBB 3931 // 3932 // We model triangles as a type of diamond with a nullptr "true" block. 3933 // Triangles are canonicalized so that the fallthrough edge is represented by 3934 // a true condition, as in the diagram above. 3935 BasicBlock *PTB = PBI->getSuccessor(0); 3936 BasicBlock *PFB = PBI->getSuccessor(1); 3937 BasicBlock *QTB = QBI->getSuccessor(0); 3938 BasicBlock *QFB = QBI->getSuccessor(1); 3939 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3940 3941 // Make sure we have a good guess for PostBB. If QTB's only successor is 3942 // QFB, then QFB is a better PostBB. 3943 if (QTB->getSingleSuccessor() == QFB) 3944 PostBB = QFB; 3945 3946 // If we couldn't find a good PostBB, stop. 3947 if (!PostBB) 3948 return false; 3949 3950 bool InvertPCond = false, InvertQCond = false; 3951 // Canonicalize fallthroughs to the true branches. 3952 if (PFB == QBI->getParent()) { 3953 std::swap(PFB, PTB); 3954 InvertPCond = true; 3955 } 3956 if (QFB == PostBB) { 3957 std::swap(QFB, QTB); 3958 InvertQCond = true; 3959 } 3960 3961 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3962 // and QFB may not. Model fallthroughs as a nullptr block. 3963 if (PTB == QBI->getParent()) 3964 PTB = nullptr; 3965 if (QTB == PostBB) 3966 QTB = nullptr; 3967 3968 // Legality bailouts. We must have at least the non-fallthrough blocks and 3969 // the post-dominating block, and the non-fallthroughs must only have one 3970 // predecessor. 3971 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3972 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3973 }; 3974 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3975 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3976 return false; 3977 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3978 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3979 return false; 3980 if (!QBI->getParent()->hasNUses(2)) 3981 return false; 3982 3983 // OK, this is a sequence of two diamonds or triangles. 3984 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3985 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3986 for (auto *BB : {PTB, PFB}) { 3987 if (!BB) 3988 continue; 3989 for (auto &I : *BB) 3990 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3991 PStoreAddresses.insert(SI->getPointerOperand()); 3992 } 3993 for (auto *BB : {QTB, QFB}) { 3994 if (!BB) 3995 continue; 3996 for (auto &I : *BB) 3997 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3998 QStoreAddresses.insert(SI->getPointerOperand()); 3999 } 4000 4001 set_intersect(PStoreAddresses, QStoreAddresses); 4002 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 4003 // clear what it contains. 4004 auto &CommonAddresses = PStoreAddresses; 4005 4006 bool Changed = false; 4007 for (auto *Address : CommonAddresses) 4008 Changed |= 4009 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 4010 InvertPCond, InvertQCond, DTU, DL, TTI); 4011 return Changed; 4012 } 4013 4014 /// If the previous block ended with a widenable branch, determine if reusing 4015 /// the target block is profitable and legal. This will have the effect of 4016 /// "widening" PBI, but doesn't require us to reason about hosting safety. 4017 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4018 DomTreeUpdater *DTU) { 4019 // TODO: This can be generalized in two important ways: 4020 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 4021 // values from the PBI edge. 4022 // 2) We can sink side effecting instructions into BI's fallthrough 4023 // successor provided they doesn't contribute to computation of 4024 // BI's condition. 4025 Value *CondWB, *WC; 4026 BasicBlock *IfTrueBB, *IfFalseBB; 4027 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 4028 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 4029 return false; 4030 if (!IfFalseBB->phis().empty()) 4031 return false; // TODO 4032 // Use lambda to lazily compute expensive condition after cheap ones. 4033 auto NoSideEffects = [](BasicBlock &BB) { 4034 return llvm::none_of(BB, [](const Instruction &I) { 4035 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 4036 }); 4037 }; 4038 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 4039 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 4040 NoSideEffects(*BI->getParent())) { 4041 auto *OldSuccessor = BI->getSuccessor(1); 4042 OldSuccessor->removePredecessor(BI->getParent()); 4043 BI->setSuccessor(1, IfFalseBB); 4044 if (DTU) 4045 DTU->applyUpdates( 4046 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4047 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4048 return true; 4049 } 4050 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 4051 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 4052 NoSideEffects(*BI->getParent())) { 4053 auto *OldSuccessor = BI->getSuccessor(0); 4054 OldSuccessor->removePredecessor(BI->getParent()); 4055 BI->setSuccessor(0, IfFalseBB); 4056 if (DTU) 4057 DTU->applyUpdates( 4058 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4059 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4060 return true; 4061 } 4062 return false; 4063 } 4064 4065 /// If we have a conditional branch as a predecessor of another block, 4066 /// this function tries to simplify it. We know 4067 /// that PBI and BI are both conditional branches, and BI is in one of the 4068 /// successor blocks of PBI - PBI branches to BI. 4069 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4070 DomTreeUpdater *DTU, 4071 const DataLayout &DL, 4072 const TargetTransformInfo &TTI) { 4073 assert(PBI->isConditional() && BI->isConditional()); 4074 BasicBlock *BB = BI->getParent(); 4075 4076 // If this block ends with a branch instruction, and if there is a 4077 // predecessor that ends on a branch of the same condition, make 4078 // this conditional branch redundant. 4079 if (PBI->getCondition() == BI->getCondition() && 4080 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4081 // Okay, the outcome of this conditional branch is statically 4082 // knowable. If this block had a single pred, handle specially, otherwise 4083 // FoldCondBranchOnValueKnownInPredecessor() will handle it. 4084 if (BB->getSinglePredecessor()) { 4085 // Turn this into a branch on constant. 4086 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4087 BI->setCondition( 4088 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 4089 return true; // Nuke the branch on constant. 4090 } 4091 } 4092 4093 // If the previous block ended with a widenable branch, determine if reusing 4094 // the target block is profitable and legal. This will have the effect of 4095 // "widening" PBI, but doesn't require us to reason about hosting safety. 4096 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 4097 return true; 4098 4099 if (canTrap(BI->getCondition())) 4100 return false; 4101 4102 // If both branches are conditional and both contain stores to the same 4103 // address, remove the stores from the conditionals and create a conditional 4104 // merged store at the end. 4105 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 4106 return true; 4107 4108 // If this is a conditional branch in an empty block, and if any 4109 // predecessors are a conditional branch to one of our destinations, 4110 // fold the conditions into logical ops and one cond br. 4111 4112 // Ignore dbg intrinsics. 4113 if (&*BB->instructionsWithoutDebug(false).begin() != BI) 4114 return false; 4115 4116 int PBIOp, BIOp; 4117 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 4118 PBIOp = 0; 4119 BIOp = 0; 4120 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 4121 PBIOp = 0; 4122 BIOp = 1; 4123 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4124 PBIOp = 1; 4125 BIOp = 0; 4126 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 4127 PBIOp = 1; 4128 BIOp = 1; 4129 } else { 4130 return false; 4131 } 4132 4133 // Check to make sure that the other destination of this branch 4134 // isn't BB itself. If so, this is an infinite loop that will 4135 // keep getting unwound. 4136 if (PBI->getSuccessor(PBIOp) == BB) 4137 return false; 4138 4139 // Do not perform this transformation if it would require 4140 // insertion of a large number of select instructions. For targets 4141 // without predication/cmovs, this is a big pessimization. 4142 4143 // Also do not perform this transformation if any phi node in the common 4144 // destination block can trap when reached by BB or PBB (PR17073). In that 4145 // case, it would be unsafe to hoist the operation into a select instruction. 4146 4147 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 4148 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 4149 unsigned NumPhis = 0; 4150 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 4151 ++II, ++NumPhis) { 4152 if (NumPhis > 2) // Disable this xform. 4153 return false; 4154 4155 PHINode *PN = cast<PHINode>(II); 4156 Value *BIV = PN->getIncomingValueForBlock(BB); 4157 if (canTrap(BIV)) 4158 return false; 4159 4160 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 4161 Value *PBIV = PN->getIncomingValue(PBBIdx); 4162 if (canTrap(PBIV)) 4163 return false; 4164 } 4165 4166 // Finally, if everything is ok, fold the branches to logical ops. 4167 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 4168 4169 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 4170 << "AND: " << *BI->getParent()); 4171 4172 SmallVector<DominatorTree::UpdateType, 5> Updates; 4173 4174 // If OtherDest *is* BB, then BB is a basic block with a single conditional 4175 // branch in it, where one edge (OtherDest) goes back to itself but the other 4176 // exits. We don't *know* that the program avoids the infinite loop 4177 // (even though that seems likely). If we do this xform naively, we'll end up 4178 // recursively unpeeling the loop. Since we know that (after the xform is 4179 // done) that the block *is* infinite if reached, we just make it an obviously 4180 // infinite loop with no cond branch. 4181 if (OtherDest == BB) { 4182 // Insert it at the end of the function, because it's either code, 4183 // or it won't matter if it's hot. :) 4184 BasicBlock *InfLoopBlock = 4185 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 4186 BranchInst::Create(InfLoopBlock, InfLoopBlock); 4187 if (DTU) 4188 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 4189 OtherDest = InfLoopBlock; 4190 } 4191 4192 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4193 4194 // BI may have other predecessors. Because of this, we leave 4195 // it alone, but modify PBI. 4196 4197 // Make sure we get to CommonDest on True&True directions. 4198 Value *PBICond = PBI->getCondition(); 4199 IRBuilder<NoFolder> Builder(PBI); 4200 if (PBIOp) 4201 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 4202 4203 Value *BICond = BI->getCondition(); 4204 if (BIOp) 4205 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 4206 4207 // Merge the conditions. 4208 Value *Cond = 4209 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 4210 4211 // Modify PBI to branch on the new condition to the new dests. 4212 PBI->setCondition(Cond); 4213 PBI->setSuccessor(0, CommonDest); 4214 PBI->setSuccessor(1, OtherDest); 4215 4216 if (DTU) { 4217 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 4218 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 4219 4220 DTU->applyUpdates(Updates); 4221 } 4222 4223 // Update branch weight for PBI. 4224 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4225 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 4226 bool HasWeights = 4227 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4228 SuccTrueWeight, SuccFalseWeight); 4229 if (HasWeights) { 4230 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4231 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4232 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4233 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4234 // The weight to CommonDest should be PredCommon * SuccTotal + 4235 // PredOther * SuccCommon. 4236 // The weight to OtherDest should be PredOther * SuccOther. 4237 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 4238 PredOther * SuccCommon, 4239 PredOther * SuccOther}; 4240 // Halve the weights if any of them cannot fit in an uint32_t 4241 FitWeights(NewWeights); 4242 4243 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 4244 } 4245 4246 // OtherDest may have phi nodes. If so, add an entry from PBI's 4247 // block that are identical to the entries for BI's block. 4248 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 4249 4250 // We know that the CommonDest already had an edge from PBI to 4251 // it. If it has PHIs though, the PHIs may have different 4252 // entries for BB and PBI's BB. If so, insert a select to make 4253 // them agree. 4254 for (PHINode &PN : CommonDest->phis()) { 4255 Value *BIV = PN.getIncomingValueForBlock(BB); 4256 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 4257 Value *PBIV = PN.getIncomingValue(PBBIdx); 4258 if (BIV != PBIV) { 4259 // Insert a select in PBI to pick the right value. 4260 SelectInst *NV = cast<SelectInst>( 4261 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 4262 PN.setIncomingValue(PBBIdx, NV); 4263 // Although the select has the same condition as PBI, the original branch 4264 // weights for PBI do not apply to the new select because the select's 4265 // 'logical' edges are incoming edges of the phi that is eliminated, not 4266 // the outgoing edges of PBI. 4267 if (HasWeights) { 4268 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4269 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4270 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4271 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4272 // The weight to PredCommonDest should be PredCommon * SuccTotal. 4273 // The weight to PredOtherDest should be PredOther * SuccCommon. 4274 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 4275 PredOther * SuccCommon}; 4276 4277 FitWeights(NewWeights); 4278 4279 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 4280 } 4281 } 4282 } 4283 4284 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 4285 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4286 4287 // This basic block is probably dead. We know it has at least 4288 // one fewer predecessor. 4289 return true; 4290 } 4291 4292 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 4293 // true or to FalseBB if Cond is false. 4294 // Takes care of updating the successors and removing the old terminator. 4295 // Also makes sure not to introduce new successors by assuming that edges to 4296 // non-successor TrueBBs and FalseBBs aren't reachable. 4297 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 4298 Value *Cond, BasicBlock *TrueBB, 4299 BasicBlock *FalseBB, 4300 uint32_t TrueWeight, 4301 uint32_t FalseWeight) { 4302 auto *BB = OldTerm->getParent(); 4303 // Remove any superfluous successor edges from the CFG. 4304 // First, figure out which successors to preserve. 4305 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 4306 // successor. 4307 BasicBlock *KeepEdge1 = TrueBB; 4308 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 4309 4310 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 4311 4312 // Then remove the rest. 4313 for (BasicBlock *Succ : successors(OldTerm)) { 4314 // Make sure only to keep exactly one copy of each edge. 4315 if (Succ == KeepEdge1) 4316 KeepEdge1 = nullptr; 4317 else if (Succ == KeepEdge2) 4318 KeepEdge2 = nullptr; 4319 else { 4320 Succ->removePredecessor(BB, 4321 /*KeepOneInputPHIs=*/true); 4322 4323 if (Succ != TrueBB && Succ != FalseBB) 4324 RemovedSuccessors.insert(Succ); 4325 } 4326 } 4327 4328 IRBuilder<> Builder(OldTerm); 4329 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 4330 4331 // Insert an appropriate new terminator. 4332 if (!KeepEdge1 && !KeepEdge2) { 4333 if (TrueBB == FalseBB) { 4334 // We were only looking for one successor, and it was present. 4335 // Create an unconditional branch to it. 4336 Builder.CreateBr(TrueBB); 4337 } else { 4338 // We found both of the successors we were looking for. 4339 // Create a conditional branch sharing the condition of the select. 4340 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 4341 if (TrueWeight != FalseWeight) 4342 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4343 } 4344 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 4345 // Neither of the selected blocks were successors, so this 4346 // terminator must be unreachable. 4347 new UnreachableInst(OldTerm->getContext(), OldTerm); 4348 } else { 4349 // One of the selected values was a successor, but the other wasn't. 4350 // Insert an unconditional branch to the one that was found; 4351 // the edge to the one that wasn't must be unreachable. 4352 if (!KeepEdge1) { 4353 // Only TrueBB was found. 4354 Builder.CreateBr(TrueBB); 4355 } else { 4356 // Only FalseBB was found. 4357 Builder.CreateBr(FalseBB); 4358 } 4359 } 4360 4361 EraseTerminatorAndDCECond(OldTerm); 4362 4363 if (DTU) { 4364 SmallVector<DominatorTree::UpdateType, 2> Updates; 4365 Updates.reserve(RemovedSuccessors.size()); 4366 for (auto *RemovedSuccessor : RemovedSuccessors) 4367 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4368 DTU->applyUpdates(Updates); 4369 } 4370 4371 return true; 4372 } 4373 4374 // Replaces 4375 // (switch (select cond, X, Y)) on constant X, Y 4376 // with a branch - conditional if X and Y lead to distinct BBs, 4377 // unconditional otherwise. 4378 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4379 SelectInst *Select) { 4380 // Check for constant integer values in the select. 4381 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4382 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4383 if (!TrueVal || !FalseVal) 4384 return false; 4385 4386 // Find the relevant condition and destinations. 4387 Value *Condition = Select->getCondition(); 4388 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4389 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4390 4391 // Get weight for TrueBB and FalseBB. 4392 uint32_t TrueWeight = 0, FalseWeight = 0; 4393 SmallVector<uint64_t, 8> Weights; 4394 bool HasWeights = HasBranchWeights(SI); 4395 if (HasWeights) { 4396 GetBranchWeights(SI, Weights); 4397 if (Weights.size() == 1 + SI->getNumCases()) { 4398 TrueWeight = 4399 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4400 FalseWeight = 4401 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4402 } 4403 } 4404 4405 // Perform the actual simplification. 4406 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4407 FalseWeight); 4408 } 4409 4410 // Replaces 4411 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4412 // blockaddress(@fn, BlockB))) 4413 // with 4414 // (br cond, BlockA, BlockB). 4415 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4416 SelectInst *SI) { 4417 // Check that both operands of the select are block addresses. 4418 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4419 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4420 if (!TBA || !FBA) 4421 return false; 4422 4423 // Extract the actual blocks. 4424 BasicBlock *TrueBB = TBA->getBasicBlock(); 4425 BasicBlock *FalseBB = FBA->getBasicBlock(); 4426 4427 // Perform the actual simplification. 4428 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4429 0); 4430 } 4431 4432 /// This is called when we find an icmp instruction 4433 /// (a seteq/setne with a constant) as the only instruction in a 4434 /// block that ends with an uncond branch. We are looking for a very specific 4435 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4436 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4437 /// default value goes to an uncond block with a seteq in it, we get something 4438 /// like: 4439 /// 4440 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4441 /// DEFAULT: 4442 /// %tmp = icmp eq i8 %A, 92 4443 /// br label %end 4444 /// end: 4445 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4446 /// 4447 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4448 /// the PHI, merging the third icmp into the switch. 4449 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4450 ICmpInst *ICI, IRBuilder<> &Builder) { 4451 BasicBlock *BB = ICI->getParent(); 4452 4453 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4454 // complex. 4455 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4456 return false; 4457 4458 Value *V = ICI->getOperand(0); 4459 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4460 4461 // The pattern we're looking for is where our only predecessor is a switch on 4462 // 'V' and this block is the default case for the switch. In this case we can 4463 // fold the compared value into the switch to simplify things. 4464 BasicBlock *Pred = BB->getSinglePredecessor(); 4465 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4466 return false; 4467 4468 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4469 if (SI->getCondition() != V) 4470 return false; 4471 4472 // If BB is reachable on a non-default case, then we simply know the value of 4473 // V in this block. Substitute it and constant fold the icmp instruction 4474 // away. 4475 if (SI->getDefaultDest() != BB) { 4476 ConstantInt *VVal = SI->findCaseDest(BB); 4477 assert(VVal && "Should have a unique destination value"); 4478 ICI->setOperand(0, VVal); 4479 4480 if (Value *V = simplifyInstruction(ICI, {DL, ICI})) { 4481 ICI->replaceAllUsesWith(V); 4482 ICI->eraseFromParent(); 4483 } 4484 // BB is now empty, so it is likely to simplify away. 4485 return requestResimplify(); 4486 } 4487 4488 // Ok, the block is reachable from the default dest. If the constant we're 4489 // comparing exists in one of the other edges, then we can constant fold ICI 4490 // and zap it. 4491 if (SI->findCaseValue(Cst) != SI->case_default()) { 4492 Value *V; 4493 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4494 V = ConstantInt::getFalse(BB->getContext()); 4495 else 4496 V = ConstantInt::getTrue(BB->getContext()); 4497 4498 ICI->replaceAllUsesWith(V); 4499 ICI->eraseFromParent(); 4500 // BB is now empty, so it is likely to simplify away. 4501 return requestResimplify(); 4502 } 4503 4504 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4505 // the block. 4506 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4507 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4508 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4509 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4510 return false; 4511 4512 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4513 // true in the PHI. 4514 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4515 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4516 4517 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4518 std::swap(DefaultCst, NewCst); 4519 4520 // Replace ICI (which is used by the PHI for the default value) with true or 4521 // false depending on if it is EQ or NE. 4522 ICI->replaceAllUsesWith(DefaultCst); 4523 ICI->eraseFromParent(); 4524 4525 SmallVector<DominatorTree::UpdateType, 2> Updates; 4526 4527 // Okay, the switch goes to this block on a default value. Add an edge from 4528 // the switch to the merge point on the compared value. 4529 BasicBlock *NewBB = 4530 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4531 { 4532 SwitchInstProfUpdateWrapper SIW(*SI); 4533 auto W0 = SIW.getSuccessorWeight(0); 4534 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4535 if (W0) { 4536 NewW = ((uint64_t(*W0) + 1) >> 1); 4537 SIW.setSuccessorWeight(0, *NewW); 4538 } 4539 SIW.addCase(Cst, NewBB, NewW); 4540 if (DTU) 4541 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4542 } 4543 4544 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4545 Builder.SetInsertPoint(NewBB); 4546 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4547 Builder.CreateBr(SuccBlock); 4548 PHIUse->addIncoming(NewCst, NewBB); 4549 if (DTU) { 4550 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4551 DTU->applyUpdates(Updates); 4552 } 4553 return true; 4554 } 4555 4556 /// The specified branch is a conditional branch. 4557 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4558 /// fold it into a switch instruction if so. 4559 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4560 IRBuilder<> &Builder, 4561 const DataLayout &DL) { 4562 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4563 if (!Cond) 4564 return false; 4565 4566 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4567 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4568 // 'setne's and'ed together, collect them. 4569 4570 // Try to gather values from a chain of and/or to be turned into a switch 4571 ConstantComparesGatherer ConstantCompare(Cond, DL); 4572 // Unpack the result 4573 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4574 Value *CompVal = ConstantCompare.CompValue; 4575 unsigned UsedICmps = ConstantCompare.UsedICmps; 4576 Value *ExtraCase = ConstantCompare.Extra; 4577 4578 // If we didn't have a multiply compared value, fail. 4579 if (!CompVal) 4580 return false; 4581 4582 // Avoid turning single icmps into a switch. 4583 if (UsedICmps <= 1) 4584 return false; 4585 4586 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4587 4588 // There might be duplicate constants in the list, which the switch 4589 // instruction can't handle, remove them now. 4590 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4591 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4592 4593 // If Extra was used, we require at least two switch values to do the 4594 // transformation. A switch with one value is just a conditional branch. 4595 if (ExtraCase && Values.size() < 2) 4596 return false; 4597 4598 // TODO: Preserve branch weight metadata, similarly to how 4599 // FoldValueComparisonIntoPredecessors preserves it. 4600 4601 // Figure out which block is which destination. 4602 BasicBlock *DefaultBB = BI->getSuccessor(1); 4603 BasicBlock *EdgeBB = BI->getSuccessor(0); 4604 if (!TrueWhenEqual) 4605 std::swap(DefaultBB, EdgeBB); 4606 4607 BasicBlock *BB = BI->getParent(); 4608 4609 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4610 << " cases into SWITCH. BB is:\n" 4611 << *BB); 4612 4613 SmallVector<DominatorTree::UpdateType, 2> Updates; 4614 4615 // If there are any extra values that couldn't be folded into the switch 4616 // then we evaluate them with an explicit branch first. Split the block 4617 // right before the condbr to handle it. 4618 if (ExtraCase) { 4619 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4620 /*MSSAU=*/nullptr, "switch.early.test"); 4621 4622 // Remove the uncond branch added to the old block. 4623 Instruction *OldTI = BB->getTerminator(); 4624 Builder.SetInsertPoint(OldTI); 4625 4626 // There can be an unintended UB if extra values are Poison. Before the 4627 // transformation, extra values may not be evaluated according to the 4628 // condition, and it will not raise UB. But after transformation, we are 4629 // evaluating extra values before checking the condition, and it will raise 4630 // UB. It can be solved by adding freeze instruction to extra values. 4631 AssumptionCache *AC = Options.AC; 4632 4633 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 4634 ExtraCase = Builder.CreateFreeze(ExtraCase); 4635 4636 if (TrueWhenEqual) 4637 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4638 else 4639 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4640 4641 OldTI->eraseFromParent(); 4642 4643 if (DTU) 4644 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4645 4646 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4647 // for the edge we just added. 4648 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4649 4650 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4651 << "\nEXTRABB = " << *BB); 4652 BB = NewBB; 4653 } 4654 4655 Builder.SetInsertPoint(BI); 4656 // Convert pointer to int before we switch. 4657 if (CompVal->getType()->isPointerTy()) { 4658 CompVal = Builder.CreatePtrToInt( 4659 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4660 } 4661 4662 // Create the new switch instruction now. 4663 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4664 4665 // Add all of the 'cases' to the switch instruction. 4666 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4667 New->addCase(Values[i], EdgeBB); 4668 4669 // We added edges from PI to the EdgeBB. As such, if there were any 4670 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4671 // the number of edges added. 4672 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4673 PHINode *PN = cast<PHINode>(BBI); 4674 Value *InVal = PN->getIncomingValueForBlock(BB); 4675 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4676 PN->addIncoming(InVal, BB); 4677 } 4678 4679 // Erase the old branch instruction. 4680 EraseTerminatorAndDCECond(BI); 4681 if (DTU) 4682 DTU->applyUpdates(Updates); 4683 4684 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4685 return true; 4686 } 4687 4688 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4689 if (isa<PHINode>(RI->getValue())) 4690 return simplifyCommonResume(RI); 4691 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4692 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4693 // The resume must unwind the exception that caused control to branch here. 4694 return simplifySingleResume(RI); 4695 4696 return false; 4697 } 4698 4699 // Check if cleanup block is empty 4700 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4701 for (Instruction &I : R) { 4702 auto *II = dyn_cast<IntrinsicInst>(&I); 4703 if (!II) 4704 return false; 4705 4706 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4707 switch (IntrinsicID) { 4708 case Intrinsic::dbg_declare: 4709 case Intrinsic::dbg_value: 4710 case Intrinsic::dbg_label: 4711 case Intrinsic::lifetime_end: 4712 break; 4713 default: 4714 return false; 4715 } 4716 } 4717 return true; 4718 } 4719 4720 // Simplify resume that is shared by several landing pads (phi of landing pad). 4721 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4722 BasicBlock *BB = RI->getParent(); 4723 4724 // Check that there are no other instructions except for debug and lifetime 4725 // intrinsics between the phi's and resume instruction. 4726 if (!isCleanupBlockEmpty( 4727 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4728 return false; 4729 4730 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4731 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4732 4733 // Check incoming blocks to see if any of them are trivial. 4734 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4735 Idx++) { 4736 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4737 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4738 4739 // If the block has other successors, we can not delete it because 4740 // it has other dependents. 4741 if (IncomingBB->getUniqueSuccessor() != BB) 4742 continue; 4743 4744 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4745 // Not the landing pad that caused the control to branch here. 4746 if (IncomingValue != LandingPad) 4747 continue; 4748 4749 if (isCleanupBlockEmpty( 4750 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4751 TrivialUnwindBlocks.insert(IncomingBB); 4752 } 4753 4754 // If no trivial unwind blocks, don't do any simplifications. 4755 if (TrivialUnwindBlocks.empty()) 4756 return false; 4757 4758 // Turn all invokes that unwind here into calls. 4759 for (auto *TrivialBB : TrivialUnwindBlocks) { 4760 // Blocks that will be simplified should be removed from the phi node. 4761 // Note there could be multiple edges to the resume block, and we need 4762 // to remove them all. 4763 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4764 BB->removePredecessor(TrivialBB, true); 4765 4766 for (BasicBlock *Pred : 4767 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4768 removeUnwindEdge(Pred, DTU); 4769 ++NumInvokes; 4770 } 4771 4772 // In each SimplifyCFG run, only the current processed block can be erased. 4773 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4774 // of erasing TrivialBB, we only remove the branch to the common resume 4775 // block so that we can later erase the resume block since it has no 4776 // predecessors. 4777 TrivialBB->getTerminator()->eraseFromParent(); 4778 new UnreachableInst(RI->getContext(), TrivialBB); 4779 if (DTU) 4780 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4781 } 4782 4783 // Delete the resume block if all its predecessors have been removed. 4784 if (pred_empty(BB)) 4785 DeleteDeadBlock(BB, DTU); 4786 4787 return !TrivialUnwindBlocks.empty(); 4788 } 4789 4790 // Simplify resume that is only used by a single (non-phi) landing pad. 4791 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4792 BasicBlock *BB = RI->getParent(); 4793 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4794 assert(RI->getValue() == LPInst && 4795 "Resume must unwind the exception that caused control to here"); 4796 4797 // Check that there are no other instructions except for debug intrinsics. 4798 if (!isCleanupBlockEmpty( 4799 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4800 return false; 4801 4802 // Turn all invokes that unwind here into calls and delete the basic block. 4803 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4804 removeUnwindEdge(Pred, DTU); 4805 ++NumInvokes; 4806 } 4807 4808 // The landingpad is now unreachable. Zap it. 4809 DeleteDeadBlock(BB, DTU); 4810 return true; 4811 } 4812 4813 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4814 // If this is a trivial cleanup pad that executes no instructions, it can be 4815 // eliminated. If the cleanup pad continues to the caller, any predecessor 4816 // that is an EH pad will be updated to continue to the caller and any 4817 // predecessor that terminates with an invoke instruction will have its invoke 4818 // instruction converted to a call instruction. If the cleanup pad being 4819 // simplified does not continue to the caller, each predecessor will be 4820 // updated to continue to the unwind destination of the cleanup pad being 4821 // simplified. 4822 BasicBlock *BB = RI->getParent(); 4823 CleanupPadInst *CPInst = RI->getCleanupPad(); 4824 if (CPInst->getParent() != BB) 4825 // This isn't an empty cleanup. 4826 return false; 4827 4828 // We cannot kill the pad if it has multiple uses. This typically arises 4829 // from unreachable basic blocks. 4830 if (!CPInst->hasOneUse()) 4831 return false; 4832 4833 // Check that there are no other instructions except for benign intrinsics. 4834 if (!isCleanupBlockEmpty( 4835 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4836 return false; 4837 4838 // If the cleanup return we are simplifying unwinds to the caller, this will 4839 // set UnwindDest to nullptr. 4840 BasicBlock *UnwindDest = RI->getUnwindDest(); 4841 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4842 4843 // We're about to remove BB from the control flow. Before we do, sink any 4844 // PHINodes into the unwind destination. Doing this before changing the 4845 // control flow avoids some potentially slow checks, since we can currently 4846 // be certain that UnwindDest and BB have no common predecessors (since they 4847 // are both EH pads). 4848 if (UnwindDest) { 4849 // First, go through the PHI nodes in UnwindDest and update any nodes that 4850 // reference the block we are removing 4851 for (PHINode &DestPN : UnwindDest->phis()) { 4852 int Idx = DestPN.getBasicBlockIndex(BB); 4853 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4854 assert(Idx != -1); 4855 // This PHI node has an incoming value that corresponds to a control 4856 // path through the cleanup pad we are removing. If the incoming 4857 // value is in the cleanup pad, it must be a PHINode (because we 4858 // verified above that the block is otherwise empty). Otherwise, the 4859 // value is either a constant or a value that dominates the cleanup 4860 // pad being removed. 4861 // 4862 // Because BB and UnwindDest are both EH pads, all of their 4863 // predecessors must unwind to these blocks, and since no instruction 4864 // can have multiple unwind destinations, there will be no overlap in 4865 // incoming blocks between SrcPN and DestPN. 4866 Value *SrcVal = DestPN.getIncomingValue(Idx); 4867 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4868 4869 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 4870 for (auto *Pred : predecessors(BB)) { 4871 Value *Incoming = 4872 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 4873 DestPN.addIncoming(Incoming, Pred); 4874 } 4875 } 4876 4877 // Sink any remaining PHI nodes directly into UnwindDest. 4878 Instruction *InsertPt = DestEHPad; 4879 for (PHINode &PN : make_early_inc_range(BB->phis())) { 4880 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 4881 // If the PHI node has no uses or all of its uses are in this basic 4882 // block (meaning they are debug or lifetime intrinsics), just leave 4883 // it. It will be erased when we erase BB below. 4884 continue; 4885 4886 // Otherwise, sink this PHI node into UnwindDest. 4887 // Any predecessors to UnwindDest which are not already represented 4888 // must be back edges which inherit the value from the path through 4889 // BB. In this case, the PHI value must reference itself. 4890 for (auto *pred : predecessors(UnwindDest)) 4891 if (pred != BB) 4892 PN.addIncoming(&PN, pred); 4893 PN.moveBefore(InsertPt); 4894 // Also, add a dummy incoming value for the original BB itself, 4895 // so that the PHI is well-formed until we drop said predecessor. 4896 PN.addIncoming(UndefValue::get(PN.getType()), BB); 4897 } 4898 } 4899 4900 std::vector<DominatorTree::UpdateType> Updates; 4901 4902 // We use make_early_inc_range here because we will remove all predecessors. 4903 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4904 if (UnwindDest == nullptr) { 4905 if (DTU) { 4906 DTU->applyUpdates(Updates); 4907 Updates.clear(); 4908 } 4909 removeUnwindEdge(PredBB, DTU); 4910 ++NumInvokes; 4911 } else { 4912 BB->removePredecessor(PredBB); 4913 Instruction *TI = PredBB->getTerminator(); 4914 TI->replaceUsesOfWith(BB, UnwindDest); 4915 if (DTU) { 4916 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4917 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4918 } 4919 } 4920 } 4921 4922 if (DTU) 4923 DTU->applyUpdates(Updates); 4924 4925 DeleteDeadBlock(BB, DTU); 4926 4927 return true; 4928 } 4929 4930 // Try to merge two cleanuppads together. 4931 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4932 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4933 // with. 4934 BasicBlock *UnwindDest = RI->getUnwindDest(); 4935 if (!UnwindDest) 4936 return false; 4937 4938 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4939 // be safe to merge without code duplication. 4940 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4941 return false; 4942 4943 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4944 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4945 if (!SuccessorCleanupPad) 4946 return false; 4947 4948 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4949 // Replace any uses of the successor cleanupad with the predecessor pad 4950 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4951 // funclet bundle operands. 4952 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4953 // Remove the old cleanuppad. 4954 SuccessorCleanupPad->eraseFromParent(); 4955 // Now, we simply replace the cleanupret with a branch to the unwind 4956 // destination. 4957 BranchInst::Create(UnwindDest, RI->getParent()); 4958 RI->eraseFromParent(); 4959 4960 return true; 4961 } 4962 4963 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4964 // It is possible to transiantly have an undef cleanuppad operand because we 4965 // have deleted some, but not all, dead blocks. 4966 // Eventually, this block will be deleted. 4967 if (isa<UndefValue>(RI->getOperand(0))) 4968 return false; 4969 4970 if (mergeCleanupPad(RI)) 4971 return true; 4972 4973 if (removeEmptyCleanup(RI, DTU)) 4974 return true; 4975 4976 return false; 4977 } 4978 4979 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 4980 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4981 BasicBlock *BB = UI->getParent(); 4982 4983 bool Changed = false; 4984 4985 // If there are any instructions immediately before the unreachable that can 4986 // be removed, do so. 4987 while (UI->getIterator() != BB->begin()) { 4988 BasicBlock::iterator BBI = UI->getIterator(); 4989 --BBI; 4990 4991 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 4992 break; // Can not drop any more instructions. We're done here. 4993 // Otherwise, this instruction can be freely erased, 4994 // even if it is not side-effect free. 4995 4996 // Note that deleting EH's here is in fact okay, although it involves a bit 4997 // of subtle reasoning. If this inst is an EH, all the predecessors of this 4998 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 4999 // and we can therefore guarantee this block will be erased. 5000 5001 // Delete this instruction (any uses are guaranteed to be dead) 5002 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 5003 BBI->eraseFromParent(); 5004 Changed = true; 5005 } 5006 5007 // If the unreachable instruction is the first in the block, take a gander 5008 // at all of the predecessors of this instruction, and simplify them. 5009 if (&BB->front() != UI) 5010 return Changed; 5011 5012 std::vector<DominatorTree::UpdateType> Updates; 5013 5014 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 5015 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 5016 auto *Predecessor = Preds[i]; 5017 Instruction *TI = Predecessor->getTerminator(); 5018 IRBuilder<> Builder(TI); 5019 if (auto *BI = dyn_cast<BranchInst>(TI)) { 5020 // We could either have a proper unconditional branch, 5021 // or a degenerate conditional branch with matching destinations. 5022 if (all_of(BI->successors(), 5023 [BB](auto *Successor) { return Successor == BB; })) { 5024 new UnreachableInst(TI->getContext(), TI); 5025 TI->eraseFromParent(); 5026 Changed = true; 5027 } else { 5028 assert(BI->isConditional() && "Can't get here with an uncond branch."); 5029 Value* Cond = BI->getCondition(); 5030 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 5031 "The destinations are guaranteed to be different here."); 5032 if (BI->getSuccessor(0) == BB) { 5033 Builder.CreateAssumption(Builder.CreateNot(Cond)); 5034 Builder.CreateBr(BI->getSuccessor(1)); 5035 } else { 5036 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 5037 Builder.CreateAssumption(Cond); 5038 Builder.CreateBr(BI->getSuccessor(0)); 5039 } 5040 EraseTerminatorAndDCECond(BI); 5041 Changed = true; 5042 } 5043 if (DTU) 5044 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5045 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 5046 SwitchInstProfUpdateWrapper SU(*SI); 5047 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 5048 if (i->getCaseSuccessor() != BB) { 5049 ++i; 5050 continue; 5051 } 5052 BB->removePredecessor(SU->getParent()); 5053 i = SU.removeCase(i); 5054 e = SU->case_end(); 5055 Changed = true; 5056 } 5057 // Note that the default destination can't be removed! 5058 if (DTU && SI->getDefaultDest() != BB) 5059 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5060 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 5061 if (II->getUnwindDest() == BB) { 5062 if (DTU) { 5063 DTU->applyUpdates(Updates); 5064 Updates.clear(); 5065 } 5066 removeUnwindEdge(TI->getParent(), DTU); 5067 Changed = true; 5068 } 5069 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 5070 if (CSI->getUnwindDest() == BB) { 5071 if (DTU) { 5072 DTU->applyUpdates(Updates); 5073 Updates.clear(); 5074 } 5075 removeUnwindEdge(TI->getParent(), DTU); 5076 Changed = true; 5077 continue; 5078 } 5079 5080 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 5081 E = CSI->handler_end(); 5082 I != E; ++I) { 5083 if (*I == BB) { 5084 CSI->removeHandler(I); 5085 --I; 5086 --E; 5087 Changed = true; 5088 } 5089 } 5090 if (DTU) 5091 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5092 if (CSI->getNumHandlers() == 0) { 5093 if (CSI->hasUnwindDest()) { 5094 // Redirect all predecessors of the block containing CatchSwitchInst 5095 // to instead branch to the CatchSwitchInst's unwind destination. 5096 if (DTU) { 5097 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 5098 Updates.push_back({DominatorTree::Insert, 5099 PredecessorOfPredecessor, 5100 CSI->getUnwindDest()}); 5101 Updates.push_back({DominatorTree::Delete, 5102 PredecessorOfPredecessor, Predecessor}); 5103 } 5104 } 5105 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 5106 } else { 5107 // Rewrite all preds to unwind to caller (or from invoke to call). 5108 if (DTU) { 5109 DTU->applyUpdates(Updates); 5110 Updates.clear(); 5111 } 5112 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 5113 for (BasicBlock *EHPred : EHPreds) 5114 removeUnwindEdge(EHPred, DTU); 5115 } 5116 // The catchswitch is no longer reachable. 5117 new UnreachableInst(CSI->getContext(), CSI); 5118 CSI->eraseFromParent(); 5119 Changed = true; 5120 } 5121 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 5122 (void)CRI; 5123 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 5124 "Expected to always have an unwind to BB."); 5125 if (DTU) 5126 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5127 new UnreachableInst(TI->getContext(), TI); 5128 TI->eraseFromParent(); 5129 Changed = true; 5130 } 5131 } 5132 5133 if (DTU) 5134 DTU->applyUpdates(Updates); 5135 5136 // If this block is now dead, remove it. 5137 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 5138 DeleteDeadBlock(BB, DTU); 5139 return true; 5140 } 5141 5142 return Changed; 5143 } 5144 5145 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 5146 assert(Cases.size() >= 1); 5147 5148 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 5149 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 5150 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 5151 return false; 5152 } 5153 return true; 5154 } 5155 5156 static void createUnreachableSwitchDefault(SwitchInst *Switch, 5157 DomTreeUpdater *DTU) { 5158 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 5159 auto *BB = Switch->getParent(); 5160 auto *OrigDefaultBlock = Switch->getDefaultDest(); 5161 OrigDefaultBlock->removePredecessor(BB); 5162 BasicBlock *NewDefaultBlock = BasicBlock::Create( 5163 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), 5164 OrigDefaultBlock); 5165 new UnreachableInst(Switch->getContext(), NewDefaultBlock); 5166 Switch->setDefaultDest(&*NewDefaultBlock); 5167 if (DTU) { 5168 SmallVector<DominatorTree::UpdateType, 2> Updates; 5169 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); 5170 if (!is_contained(successors(BB), OrigDefaultBlock)) 5171 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); 5172 DTU->applyUpdates(Updates); 5173 } 5174 } 5175 5176 /// Turn a switch into an integer range comparison and branch. 5177 /// Switches with more than 2 destinations are ignored. 5178 /// Switches with 1 destination are also ignored. 5179 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 5180 IRBuilder<> &Builder) { 5181 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5182 5183 bool HasDefault = 5184 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5185 5186 auto *BB = SI->getParent(); 5187 5188 // Partition the cases into two sets with different destinations. 5189 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 5190 BasicBlock *DestB = nullptr; 5191 SmallVector<ConstantInt *, 16> CasesA; 5192 SmallVector<ConstantInt *, 16> CasesB; 5193 5194 for (auto Case : SI->cases()) { 5195 BasicBlock *Dest = Case.getCaseSuccessor(); 5196 if (!DestA) 5197 DestA = Dest; 5198 if (Dest == DestA) { 5199 CasesA.push_back(Case.getCaseValue()); 5200 continue; 5201 } 5202 if (!DestB) 5203 DestB = Dest; 5204 if (Dest == DestB) { 5205 CasesB.push_back(Case.getCaseValue()); 5206 continue; 5207 } 5208 return false; // More than two destinations. 5209 } 5210 if (!DestB) 5211 return false; // All destinations are the same and the default is unreachable 5212 5213 assert(DestA && DestB && 5214 "Single-destination switch should have been folded."); 5215 assert(DestA != DestB); 5216 assert(DestB != SI->getDefaultDest()); 5217 assert(!CasesB.empty() && "There must be non-default cases."); 5218 assert(!CasesA.empty() || HasDefault); 5219 5220 // Figure out if one of the sets of cases form a contiguous range. 5221 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 5222 BasicBlock *ContiguousDest = nullptr; 5223 BasicBlock *OtherDest = nullptr; 5224 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 5225 ContiguousCases = &CasesA; 5226 ContiguousDest = DestA; 5227 OtherDest = DestB; 5228 } else if (CasesAreContiguous(CasesB)) { 5229 ContiguousCases = &CasesB; 5230 ContiguousDest = DestB; 5231 OtherDest = DestA; 5232 } else 5233 return false; 5234 5235 // Start building the compare and branch. 5236 5237 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 5238 Constant *NumCases = 5239 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 5240 5241 Value *Sub = SI->getCondition(); 5242 if (!Offset->isNullValue()) 5243 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 5244 5245 Value *Cmp; 5246 // If NumCases overflowed, then all possible values jump to the successor. 5247 if (NumCases->isNullValue() && !ContiguousCases->empty()) 5248 Cmp = ConstantInt::getTrue(SI->getContext()); 5249 else 5250 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 5251 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 5252 5253 // Update weight for the newly-created conditional branch. 5254 if (HasBranchWeights(SI)) { 5255 SmallVector<uint64_t, 8> Weights; 5256 GetBranchWeights(SI, Weights); 5257 if (Weights.size() == 1 + SI->getNumCases()) { 5258 uint64_t TrueWeight = 0; 5259 uint64_t FalseWeight = 0; 5260 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 5261 if (SI->getSuccessor(I) == ContiguousDest) 5262 TrueWeight += Weights[I]; 5263 else 5264 FalseWeight += Weights[I]; 5265 } 5266 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 5267 TrueWeight /= 2; 5268 FalseWeight /= 2; 5269 } 5270 setBranchWeights(NewBI, TrueWeight, FalseWeight); 5271 } 5272 } 5273 5274 // Prune obsolete incoming values off the successors' PHI nodes. 5275 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 5276 unsigned PreviousEdges = ContiguousCases->size(); 5277 if (ContiguousDest == SI->getDefaultDest()) 5278 ++PreviousEdges; 5279 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5280 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5281 } 5282 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5283 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5284 if (OtherDest == SI->getDefaultDest()) 5285 ++PreviousEdges; 5286 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5287 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5288 } 5289 5290 // Clean up the default block - it may have phis or other instructions before 5291 // the unreachable terminator. 5292 if (!HasDefault) 5293 createUnreachableSwitchDefault(SI, DTU); 5294 5295 auto *UnreachableDefault = SI->getDefaultDest(); 5296 5297 // Drop the switch. 5298 SI->eraseFromParent(); 5299 5300 if (!HasDefault && DTU) 5301 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5302 5303 return true; 5304 } 5305 5306 /// Compute masked bits for the condition of a switch 5307 /// and use it to remove dead cases. 5308 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5309 AssumptionCache *AC, 5310 const DataLayout &DL) { 5311 Value *Cond = SI->getCondition(); 5312 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5313 5314 // We can also eliminate cases by determining that their values are outside of 5315 // the limited range of the condition based on how many significant (non-sign) 5316 // bits are in the condition value. 5317 unsigned MaxSignificantBitsInCond = 5318 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); 5319 5320 // Gather dead cases. 5321 SmallVector<ConstantInt *, 8> DeadCases; 5322 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5323 SmallVector<BasicBlock *, 8> UniqueSuccessors; 5324 for (auto &Case : SI->cases()) { 5325 auto *Successor = Case.getCaseSuccessor(); 5326 if (DTU) { 5327 if (!NumPerSuccessorCases.count(Successor)) 5328 UniqueSuccessors.push_back(Successor); 5329 ++NumPerSuccessorCases[Successor]; 5330 } 5331 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5332 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5333 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5334 DeadCases.push_back(Case.getCaseValue()); 5335 if (DTU) 5336 --NumPerSuccessorCases[Successor]; 5337 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5338 << " is dead.\n"); 5339 } 5340 } 5341 5342 // If we can prove that the cases must cover all possible values, the 5343 // default destination becomes dead and we can remove it. If we know some 5344 // of the bits in the value, we can use that to more precisely compute the 5345 // number of possible unique case values. 5346 bool HasDefault = 5347 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5348 const unsigned NumUnknownBits = 5349 Known.getBitWidth() - (Known.Zero | Known.One).countPopulation(); 5350 assert(NumUnknownBits <= Known.getBitWidth()); 5351 if (HasDefault && DeadCases.empty() && 5352 NumUnknownBits < 64 /* avoid overflow */ && 5353 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5354 createUnreachableSwitchDefault(SI, DTU); 5355 return true; 5356 } 5357 5358 if (DeadCases.empty()) 5359 return false; 5360 5361 SwitchInstProfUpdateWrapper SIW(*SI); 5362 for (ConstantInt *DeadCase : DeadCases) { 5363 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5364 assert(CaseI != SI->case_default() && 5365 "Case was not found. Probably mistake in DeadCases forming."); 5366 // Prune unused values from PHI nodes. 5367 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5368 SIW.removeCase(CaseI); 5369 } 5370 5371 if (DTU) { 5372 std::vector<DominatorTree::UpdateType> Updates; 5373 for (auto *Successor : UniqueSuccessors) 5374 if (NumPerSuccessorCases[Successor] == 0) 5375 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); 5376 DTU->applyUpdates(Updates); 5377 } 5378 5379 return true; 5380 } 5381 5382 /// If BB would be eligible for simplification by 5383 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5384 /// by an unconditional branch), look at the phi node for BB in the successor 5385 /// block and see if the incoming value is equal to CaseValue. If so, return 5386 /// the phi node, and set PhiIndex to BB's index in the phi node. 5387 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5388 BasicBlock *BB, int *PhiIndex) { 5389 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5390 return nullptr; // BB must be empty to be a candidate for simplification. 5391 if (!BB->getSinglePredecessor()) 5392 return nullptr; // BB must be dominated by the switch. 5393 5394 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5395 if (!Branch || !Branch->isUnconditional()) 5396 return nullptr; // Terminator must be unconditional branch. 5397 5398 BasicBlock *Succ = Branch->getSuccessor(0); 5399 5400 for (PHINode &PHI : Succ->phis()) { 5401 int Idx = PHI.getBasicBlockIndex(BB); 5402 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5403 5404 Value *InValue = PHI.getIncomingValue(Idx); 5405 if (InValue != CaseValue) 5406 continue; 5407 5408 *PhiIndex = Idx; 5409 return &PHI; 5410 } 5411 5412 return nullptr; 5413 } 5414 5415 /// Try to forward the condition of a switch instruction to a phi node 5416 /// dominated by the switch, if that would mean that some of the destination 5417 /// blocks of the switch can be folded away. Return true if a change is made. 5418 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5419 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5420 5421 ForwardingNodesMap ForwardingNodes; 5422 BasicBlock *SwitchBlock = SI->getParent(); 5423 bool Changed = false; 5424 for (auto &Case : SI->cases()) { 5425 ConstantInt *CaseValue = Case.getCaseValue(); 5426 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5427 5428 // Replace phi operands in successor blocks that are using the constant case 5429 // value rather than the switch condition variable: 5430 // switchbb: 5431 // switch i32 %x, label %default [ 5432 // i32 17, label %succ 5433 // ... 5434 // succ: 5435 // %r = phi i32 ... [ 17, %switchbb ] ... 5436 // --> 5437 // %r = phi i32 ... [ %x, %switchbb ] ... 5438 5439 for (PHINode &Phi : CaseDest->phis()) { 5440 // This only works if there is exactly 1 incoming edge from the switch to 5441 // a phi. If there is >1, that means multiple cases of the switch map to 1 5442 // value in the phi, and that phi value is not the switch condition. Thus, 5443 // this transform would not make sense (the phi would be invalid because 5444 // a phi can't have different incoming values from the same block). 5445 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5446 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5447 count(Phi.blocks(), SwitchBlock) == 1) { 5448 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5449 Changed = true; 5450 } 5451 } 5452 5453 // Collect phi nodes that are indirectly using this switch's case constants. 5454 int PhiIdx; 5455 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5456 ForwardingNodes[Phi].push_back(PhiIdx); 5457 } 5458 5459 for (auto &ForwardingNode : ForwardingNodes) { 5460 PHINode *Phi = ForwardingNode.first; 5461 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5462 if (Indexes.size() < 2) 5463 continue; 5464 5465 for (int Index : Indexes) 5466 Phi->setIncomingValue(Index, SI->getCondition()); 5467 Changed = true; 5468 } 5469 5470 return Changed; 5471 } 5472 5473 /// Return true if the backend will be able to handle 5474 /// initializing an array of constants like C. 5475 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5476 if (C->isThreadDependent()) 5477 return false; 5478 if (C->isDLLImportDependent()) 5479 return false; 5480 5481 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5482 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5483 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5484 return false; 5485 5486 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5487 // Pointer casts and in-bounds GEPs will not prohibit the backend from 5488 // materializing the array of constants. 5489 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); 5490 if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI)) 5491 return false; 5492 } 5493 5494 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5495 return false; 5496 5497 return true; 5498 } 5499 5500 /// If V is a Constant, return it. Otherwise, try to look up 5501 /// its constant value in ConstantPool, returning 0 if it's not there. 5502 static Constant * 5503 LookupConstant(Value *V, 5504 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5505 if (Constant *C = dyn_cast<Constant>(V)) 5506 return C; 5507 return ConstantPool.lookup(V); 5508 } 5509 5510 /// Try to fold instruction I into a constant. This works for 5511 /// simple instructions such as binary operations where both operands are 5512 /// constant or can be replaced by constants from the ConstantPool. Returns the 5513 /// resulting constant on success, 0 otherwise. 5514 static Constant * 5515 ConstantFold(Instruction *I, const DataLayout &DL, 5516 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5517 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5518 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5519 if (!A) 5520 return nullptr; 5521 if (A->isAllOnesValue()) 5522 return LookupConstant(Select->getTrueValue(), ConstantPool); 5523 if (A->isNullValue()) 5524 return LookupConstant(Select->getFalseValue(), ConstantPool); 5525 return nullptr; 5526 } 5527 5528 SmallVector<Constant *, 4> COps; 5529 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5530 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5531 COps.push_back(A); 5532 else 5533 return nullptr; 5534 } 5535 5536 return ConstantFoldInstOperands(I, COps, DL); 5537 } 5538 5539 /// Try to determine the resulting constant values in phi nodes 5540 /// at the common destination basic block, *CommonDest, for one of the case 5541 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5542 /// case), of a switch instruction SI. 5543 static bool 5544 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5545 BasicBlock **CommonDest, 5546 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5547 const DataLayout &DL, const TargetTransformInfo &TTI) { 5548 // The block from which we enter the common destination. 5549 BasicBlock *Pred = SI->getParent(); 5550 5551 // If CaseDest is empty except for some side-effect free instructions through 5552 // which we can constant-propagate the CaseVal, continue to its successor. 5553 SmallDenseMap<Value *, Constant *> ConstantPool; 5554 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5555 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { 5556 if (I.isTerminator()) { 5557 // If the terminator is a simple branch, continue to the next block. 5558 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5559 return false; 5560 Pred = CaseDest; 5561 CaseDest = I.getSuccessor(0); 5562 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5563 // Instruction is side-effect free and constant. 5564 5565 // If the instruction has uses outside this block or a phi node slot for 5566 // the block, it is not safe to bypass the instruction since it would then 5567 // no longer dominate all its uses. 5568 for (auto &Use : I.uses()) { 5569 User *User = Use.getUser(); 5570 if (Instruction *I = dyn_cast<Instruction>(User)) 5571 if (I->getParent() == CaseDest) 5572 continue; 5573 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5574 if (Phi->getIncomingBlock(Use) == CaseDest) 5575 continue; 5576 return false; 5577 } 5578 5579 ConstantPool.insert(std::make_pair(&I, C)); 5580 } else { 5581 break; 5582 } 5583 } 5584 5585 // If we did not have a CommonDest before, use the current one. 5586 if (!*CommonDest) 5587 *CommonDest = CaseDest; 5588 // If the destination isn't the common one, abort. 5589 if (CaseDest != *CommonDest) 5590 return false; 5591 5592 // Get the values for this case from phi nodes in the destination block. 5593 for (PHINode &PHI : (*CommonDest)->phis()) { 5594 int Idx = PHI.getBasicBlockIndex(Pred); 5595 if (Idx == -1) 5596 continue; 5597 5598 Constant *ConstVal = 5599 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5600 if (!ConstVal) 5601 return false; 5602 5603 // Be conservative about which kinds of constants we support. 5604 if (!ValidLookupTableConstant(ConstVal, TTI)) 5605 return false; 5606 5607 Res.push_back(std::make_pair(&PHI, ConstVal)); 5608 } 5609 5610 return Res.size() > 0; 5611 } 5612 5613 // Helper function used to add CaseVal to the list of cases that generate 5614 // Result. Returns the updated number of cases that generate this result. 5615 static size_t mapCaseToResult(ConstantInt *CaseVal, 5616 SwitchCaseResultVectorTy &UniqueResults, 5617 Constant *Result) { 5618 for (auto &I : UniqueResults) { 5619 if (I.first == Result) { 5620 I.second.push_back(CaseVal); 5621 return I.second.size(); 5622 } 5623 } 5624 UniqueResults.push_back( 5625 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5626 return 1; 5627 } 5628 5629 // Helper function that initializes a map containing 5630 // results for the PHI node of the common destination block for a switch 5631 // instruction. Returns false if multiple PHI nodes have been found or if 5632 // there is not a common destination block for the switch. 5633 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 5634 BasicBlock *&CommonDest, 5635 SwitchCaseResultVectorTy &UniqueResults, 5636 Constant *&DefaultResult, 5637 const DataLayout &DL, 5638 const TargetTransformInfo &TTI, 5639 uintptr_t MaxUniqueResults) { 5640 for (auto &I : SI->cases()) { 5641 ConstantInt *CaseVal = I.getCaseValue(); 5642 5643 // Resulting value at phi nodes for this case value. 5644 SwitchCaseResultsTy Results; 5645 if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5646 DL, TTI)) 5647 return false; 5648 5649 // Only one value per case is permitted. 5650 if (Results.size() > 1) 5651 return false; 5652 5653 // Add the case->result mapping to UniqueResults. 5654 const size_t NumCasesForResult = 5655 mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5656 5657 // Early out if there are too many cases for this result. 5658 if (NumCasesForResult > MaxSwitchCasesPerResult) 5659 return false; 5660 5661 // Early out if there are too many unique results. 5662 if (UniqueResults.size() > MaxUniqueResults) 5663 return false; 5664 5665 // Check the PHI consistency. 5666 if (!PHI) 5667 PHI = Results[0].first; 5668 else if (PHI != Results[0].first) 5669 return false; 5670 } 5671 // Find the default result value. 5672 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5673 BasicBlock *DefaultDest = SI->getDefaultDest(); 5674 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5675 DL, TTI); 5676 // If the default value is not found abort unless the default destination 5677 // is unreachable. 5678 DefaultResult = 5679 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5680 if ((!DefaultResult && 5681 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5682 return false; 5683 5684 return true; 5685 } 5686 5687 // Helper function that checks if it is possible to transform a switch with only 5688 // two cases (or two cases + default) that produces a result into a select. 5689 // TODO: Handle switches with more than 2 cases that map to the same result. 5690 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector, 5691 Constant *DefaultResult, Value *Condition, 5692 IRBuilder<> &Builder) { 5693 // If we are selecting between only two cases transform into a simple 5694 // select or a two-way select if default is possible. 5695 // Example: 5696 // switch (a) { %0 = icmp eq i32 %a, 10 5697 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4 5698 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20 5699 // default: return 4; %3 = select i1 %2, i32 2, i32 %1 5700 // } 5701 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5702 ResultVector[1].second.size() == 1) { 5703 ConstantInt *FirstCase = ResultVector[0].second[0]; 5704 ConstantInt *SecondCase = ResultVector[1].second[0]; 5705 Value *SelectValue = ResultVector[1].first; 5706 if (DefaultResult) { 5707 Value *ValueCompare = 5708 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5709 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5710 DefaultResult, "switch.select"); 5711 } 5712 Value *ValueCompare = 5713 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5714 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5715 SelectValue, "switch.select"); 5716 } 5717 5718 // Handle the degenerate case where two cases have the same result value. 5719 if (ResultVector.size() == 1 && DefaultResult) { 5720 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second; 5721 unsigned CaseCount = CaseValues.size(); 5722 // n bits group cases map to the same result: 5723 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default 5724 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default 5725 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default 5726 if (isPowerOf2_32(CaseCount)) { 5727 ConstantInt *MinCaseVal = CaseValues[0]; 5728 // Find mininal value. 5729 for (auto Case : CaseValues) 5730 if (Case->getValue().slt(MinCaseVal->getValue())) 5731 MinCaseVal = Case; 5732 5733 // Mark the bits case number touched. 5734 APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth()); 5735 for (auto Case : CaseValues) 5736 BitMask |= (Case->getValue() - MinCaseVal->getValue()); 5737 5738 // Check if cases with the same result can cover all number 5739 // in touched bits. 5740 if (BitMask.countPopulation() == Log2_32(CaseCount)) { 5741 if (!MinCaseVal->isNullValue()) 5742 Condition = Builder.CreateSub(Condition, MinCaseVal); 5743 Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and"); 5744 Value *Cmp = Builder.CreateICmpEQ( 5745 And, Constant::getNullValue(And->getType()), "switch.selectcmp"); 5746 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5747 } 5748 } 5749 5750 // Handle the degenerate case where two cases have the same value. 5751 if (CaseValues.size() == 2) { 5752 Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0], 5753 "switch.selectcmp.case1"); 5754 Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1], 5755 "switch.selectcmp.case2"); 5756 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5757 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5758 } 5759 } 5760 5761 return nullptr; 5762 } 5763 5764 // Helper function to cleanup a switch instruction that has been converted into 5765 // a select, fixing up PHI nodes and basic blocks. 5766 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI, 5767 Value *SelectValue, 5768 IRBuilder<> &Builder, 5769 DomTreeUpdater *DTU) { 5770 std::vector<DominatorTree::UpdateType> Updates; 5771 5772 BasicBlock *SelectBB = SI->getParent(); 5773 BasicBlock *DestBB = PHI->getParent(); 5774 5775 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5776 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5777 Builder.CreateBr(DestBB); 5778 5779 // Remove the switch. 5780 5781 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5782 PHI->removeIncomingValue(SelectBB); 5783 PHI->addIncoming(SelectValue, SelectBB); 5784 5785 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5786 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5787 BasicBlock *Succ = SI->getSuccessor(i); 5788 5789 if (Succ == DestBB) 5790 continue; 5791 Succ->removePredecessor(SelectBB); 5792 if (DTU && RemovedSuccessors.insert(Succ).second) 5793 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5794 } 5795 SI->eraseFromParent(); 5796 if (DTU) 5797 DTU->applyUpdates(Updates); 5798 } 5799 5800 /// If a switch is only used to initialize one or more phi nodes in a common 5801 /// successor block with only two different constant values, try to replace the 5802 /// switch with a select. Returns true if the fold was made. 5803 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5804 DomTreeUpdater *DTU, const DataLayout &DL, 5805 const TargetTransformInfo &TTI) { 5806 Value *const Cond = SI->getCondition(); 5807 PHINode *PHI = nullptr; 5808 BasicBlock *CommonDest = nullptr; 5809 Constant *DefaultResult; 5810 SwitchCaseResultVectorTy UniqueResults; 5811 // Collect all the cases that will deliver the same value from the switch. 5812 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5813 DL, TTI, /*MaxUniqueResults*/ 2)) 5814 return false; 5815 5816 assert(PHI != nullptr && "PHI for value select not found"); 5817 Builder.SetInsertPoint(SI); 5818 Value *SelectValue = 5819 foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder); 5820 if (!SelectValue) 5821 return false; 5822 5823 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU); 5824 return true; 5825 } 5826 5827 namespace { 5828 5829 /// This class represents a lookup table that can be used to replace a switch. 5830 class SwitchLookupTable { 5831 public: 5832 /// Create a lookup table to use as a switch replacement with the contents 5833 /// of Values, using DefaultValue to fill any holes in the table. 5834 SwitchLookupTable( 5835 Module &M, uint64_t TableSize, ConstantInt *Offset, 5836 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5837 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5838 5839 /// Build instructions with Builder to retrieve the value at 5840 /// the position given by Index in the lookup table. 5841 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5842 5843 /// Return true if a table with TableSize elements of 5844 /// type ElementType would fit in a target-legal register. 5845 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5846 Type *ElementType); 5847 5848 private: 5849 // Depending on the contents of the table, it can be represented in 5850 // different ways. 5851 enum { 5852 // For tables where each element contains the same value, we just have to 5853 // store that single value and return it for each lookup. 5854 SingleValueKind, 5855 5856 // For tables where there is a linear relationship between table index 5857 // and values. We calculate the result with a simple multiplication 5858 // and addition instead of a table lookup. 5859 LinearMapKind, 5860 5861 // For small tables with integer elements, we can pack them into a bitmap 5862 // that fits into a target-legal register. Values are retrieved by 5863 // shift and mask operations. 5864 BitMapKind, 5865 5866 // The table is stored as an array of values. Values are retrieved by load 5867 // instructions from the table. 5868 ArrayKind 5869 } Kind; 5870 5871 // For SingleValueKind, this is the single value. 5872 Constant *SingleValue = nullptr; 5873 5874 // For BitMapKind, this is the bitmap. 5875 ConstantInt *BitMap = nullptr; 5876 IntegerType *BitMapElementTy = nullptr; 5877 5878 // For LinearMapKind, these are the constants used to derive the value. 5879 ConstantInt *LinearOffset = nullptr; 5880 ConstantInt *LinearMultiplier = nullptr; 5881 5882 // For ArrayKind, this is the array. 5883 GlobalVariable *Array = nullptr; 5884 }; 5885 5886 } // end anonymous namespace 5887 5888 SwitchLookupTable::SwitchLookupTable( 5889 Module &M, uint64_t TableSize, ConstantInt *Offset, 5890 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5891 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5892 assert(Values.size() && "Can't build lookup table without values!"); 5893 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5894 5895 // If all values in the table are equal, this is that value. 5896 SingleValue = Values.begin()->second; 5897 5898 Type *ValueType = Values.begin()->second->getType(); 5899 5900 // Build up the table contents. 5901 SmallVector<Constant *, 64> TableContents(TableSize); 5902 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5903 ConstantInt *CaseVal = Values[I].first; 5904 Constant *CaseRes = Values[I].second; 5905 assert(CaseRes->getType() == ValueType); 5906 5907 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5908 TableContents[Idx] = CaseRes; 5909 5910 if (CaseRes != SingleValue) 5911 SingleValue = nullptr; 5912 } 5913 5914 // Fill in any holes in the table with the default result. 5915 if (Values.size() < TableSize) { 5916 assert(DefaultValue && 5917 "Need a default value to fill the lookup table holes."); 5918 assert(DefaultValue->getType() == ValueType); 5919 for (uint64_t I = 0; I < TableSize; ++I) { 5920 if (!TableContents[I]) 5921 TableContents[I] = DefaultValue; 5922 } 5923 5924 if (DefaultValue != SingleValue) 5925 SingleValue = nullptr; 5926 } 5927 5928 // If each element in the table contains the same value, we only need to store 5929 // that single value. 5930 if (SingleValue) { 5931 Kind = SingleValueKind; 5932 return; 5933 } 5934 5935 // Check if we can derive the value with a linear transformation from the 5936 // table index. 5937 if (isa<IntegerType>(ValueType)) { 5938 bool LinearMappingPossible = true; 5939 APInt PrevVal; 5940 APInt DistToPrev; 5941 assert(TableSize >= 2 && "Should be a SingleValue table."); 5942 // Check if there is the same distance between two consecutive values. 5943 for (uint64_t I = 0; I < TableSize; ++I) { 5944 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5945 if (!ConstVal) { 5946 // This is an undef. We could deal with it, but undefs in lookup tables 5947 // are very seldom. It's probably not worth the additional complexity. 5948 LinearMappingPossible = false; 5949 break; 5950 } 5951 const APInt &Val = ConstVal->getValue(); 5952 if (I != 0) { 5953 APInt Dist = Val - PrevVal; 5954 if (I == 1) { 5955 DistToPrev = Dist; 5956 } else if (Dist != DistToPrev) { 5957 LinearMappingPossible = false; 5958 break; 5959 } 5960 } 5961 PrevVal = Val; 5962 } 5963 if (LinearMappingPossible) { 5964 LinearOffset = cast<ConstantInt>(TableContents[0]); 5965 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5966 Kind = LinearMapKind; 5967 ++NumLinearMaps; 5968 return; 5969 } 5970 } 5971 5972 // If the type is integer and the table fits in a register, build a bitmap. 5973 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5974 IntegerType *IT = cast<IntegerType>(ValueType); 5975 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5976 for (uint64_t I = TableSize; I > 0; --I) { 5977 TableInt <<= IT->getBitWidth(); 5978 // Insert values into the bitmap. Undef values are set to zero. 5979 if (!isa<UndefValue>(TableContents[I - 1])) { 5980 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5981 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5982 } 5983 } 5984 BitMap = ConstantInt::get(M.getContext(), TableInt); 5985 BitMapElementTy = IT; 5986 Kind = BitMapKind; 5987 ++NumBitMaps; 5988 return; 5989 } 5990 5991 // Store the table in an array. 5992 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5993 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5994 5995 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5996 GlobalVariable::PrivateLinkage, Initializer, 5997 "switch.table." + FuncName); 5998 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5999 // Set the alignment to that of an array items. We will be only loading one 6000 // value out of it. 6001 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 6002 Kind = ArrayKind; 6003 } 6004 6005 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 6006 switch (Kind) { 6007 case SingleValueKind: 6008 return SingleValue; 6009 case LinearMapKind: { 6010 // Derive the result value from the input value. 6011 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 6012 false, "switch.idx.cast"); 6013 if (!LinearMultiplier->isOne()) 6014 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 6015 if (!LinearOffset->isZero()) 6016 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 6017 return Result; 6018 } 6019 case BitMapKind: { 6020 // Type of the bitmap (e.g. i59). 6021 IntegerType *MapTy = BitMap->getType(); 6022 6023 // Cast Index to the same type as the bitmap. 6024 // Note: The Index is <= the number of elements in the table, so 6025 // truncating it to the width of the bitmask is safe. 6026 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 6027 6028 // Multiply the shift amount by the element width. 6029 ShiftAmt = Builder.CreateMul( 6030 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 6031 "switch.shiftamt"); 6032 6033 // Shift down. 6034 Value *DownShifted = 6035 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 6036 // Mask off. 6037 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 6038 } 6039 case ArrayKind: { 6040 // Make sure the table index will not overflow when treated as signed. 6041 IntegerType *IT = cast<IntegerType>(Index->getType()); 6042 uint64_t TableSize = 6043 Array->getInitializer()->getType()->getArrayNumElements(); 6044 if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u))) 6045 Index = Builder.CreateZExt( 6046 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 6047 "switch.tableidx.zext"); 6048 6049 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 6050 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 6051 GEPIndices, "switch.gep"); 6052 return Builder.CreateLoad( 6053 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 6054 "switch.load"); 6055 } 6056 } 6057 llvm_unreachable("Unknown lookup table kind!"); 6058 } 6059 6060 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 6061 uint64_t TableSize, 6062 Type *ElementType) { 6063 auto *IT = dyn_cast<IntegerType>(ElementType); 6064 if (!IT) 6065 return false; 6066 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 6067 // are <= 15, we could try to narrow the type. 6068 6069 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 6070 if (TableSize >= UINT_MAX / IT->getBitWidth()) 6071 return false; 6072 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 6073 } 6074 6075 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, 6076 const DataLayout &DL) { 6077 // Allow any legal type. 6078 if (TTI.isTypeLegal(Ty)) 6079 return true; 6080 6081 auto *IT = dyn_cast<IntegerType>(Ty); 6082 if (!IT) 6083 return false; 6084 6085 // Also allow power of 2 integer types that have at least 8 bits and fit in 6086 // a register. These types are common in frontend languages and targets 6087 // usually support loads of these types. 6088 // TODO: We could relax this to any integer that fits in a register and rely 6089 // on ABI alignment and padding in the table to allow the load to be widened. 6090 // Or we could widen the constants and truncate the load. 6091 unsigned BitWidth = IT->getBitWidth(); 6092 return BitWidth >= 8 && isPowerOf2_32(BitWidth) && 6093 DL.fitsInLegalInteger(IT->getBitWidth()); 6094 } 6095 6096 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) { 6097 // 40% is the default density for building a jump table in optsize/minsize 6098 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this 6099 // function was based on. 6100 const uint64_t MinDensity = 40; 6101 6102 if (CaseRange >= UINT64_MAX / 100) 6103 return false; // Avoid multiplication overflows below. 6104 6105 return NumCases * 100 >= CaseRange * MinDensity; 6106 } 6107 6108 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6109 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6110 uint64_t Range = Diff + 1; 6111 if (Range < Diff) 6112 return false; // Overflow. 6113 6114 return isSwitchDense(Values.size(), Range); 6115 } 6116 6117 /// Determine whether a lookup table should be built for this switch, based on 6118 /// the number of cases, size of the table, and the types of the results. 6119 // TODO: We could support larger than legal types by limiting based on the 6120 // number of loads required and/or table size. If the constants are small we 6121 // could use smaller table entries and extend after the load. 6122 static bool 6123 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 6124 const TargetTransformInfo &TTI, const DataLayout &DL, 6125 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 6126 if (SI->getNumCases() > TableSize) 6127 return false; // TableSize overflowed. 6128 6129 bool AllTablesFitInRegister = true; 6130 bool HasIllegalType = false; 6131 for (const auto &I : ResultTypes) { 6132 Type *Ty = I.second; 6133 6134 // Saturate this flag to true. 6135 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); 6136 6137 // Saturate this flag to false. 6138 AllTablesFitInRegister = 6139 AllTablesFitInRegister && 6140 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 6141 6142 // If both flags saturate, we're done. NOTE: This *only* works with 6143 // saturating flags, and all flags have to saturate first due to the 6144 // non-deterministic behavior of iterating over a dense map. 6145 if (HasIllegalType && !AllTablesFitInRegister) 6146 break; 6147 } 6148 6149 // If each table would fit in a register, we should build it anyway. 6150 if (AllTablesFitInRegister) 6151 return true; 6152 6153 // Don't build a table that doesn't fit in-register if it has illegal types. 6154 if (HasIllegalType) 6155 return false; 6156 6157 return isSwitchDense(SI->getNumCases(), TableSize); 6158 } 6159 6160 /// Try to reuse the switch table index compare. Following pattern: 6161 /// \code 6162 /// if (idx < tablesize) 6163 /// r = table[idx]; // table does not contain default_value 6164 /// else 6165 /// r = default_value; 6166 /// if (r != default_value) 6167 /// ... 6168 /// \endcode 6169 /// Is optimized to: 6170 /// \code 6171 /// cond = idx < tablesize; 6172 /// if (cond) 6173 /// r = table[idx]; 6174 /// else 6175 /// r = default_value; 6176 /// if (cond) 6177 /// ... 6178 /// \endcode 6179 /// Jump threading will then eliminate the second if(cond). 6180 static void reuseTableCompare( 6181 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 6182 Constant *DefaultValue, 6183 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 6184 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 6185 if (!CmpInst) 6186 return; 6187 6188 // We require that the compare is in the same block as the phi so that jump 6189 // threading can do its work afterwards. 6190 if (CmpInst->getParent() != PhiBlock) 6191 return; 6192 6193 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 6194 if (!CmpOp1) 6195 return; 6196 6197 Value *RangeCmp = RangeCheckBranch->getCondition(); 6198 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 6199 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 6200 6201 // Check if the compare with the default value is constant true or false. 6202 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6203 DefaultValue, CmpOp1, true); 6204 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 6205 return; 6206 6207 // Check if the compare with the case values is distinct from the default 6208 // compare result. 6209 for (auto ValuePair : Values) { 6210 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 6211 ValuePair.second, CmpOp1, true); 6212 if (!CaseConst || CaseConst == DefaultConst || 6213 (CaseConst != TrueConst && CaseConst != FalseConst)) 6214 return; 6215 } 6216 6217 // Check if the branch instruction dominates the phi node. It's a simple 6218 // dominance check, but sufficient for our needs. 6219 // Although this check is invariant in the calling loops, it's better to do it 6220 // at this late stage. Practically we do it at most once for a switch. 6221 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 6222 for (BasicBlock *Pred : predecessors(PhiBlock)) { 6223 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 6224 return; 6225 } 6226 6227 if (DefaultConst == FalseConst) { 6228 // The compare yields the same result. We can replace it. 6229 CmpInst->replaceAllUsesWith(RangeCmp); 6230 ++NumTableCmpReuses; 6231 } else { 6232 // The compare yields the same result, just inverted. We can replace it. 6233 Value *InvertedTableCmp = BinaryOperator::CreateXor( 6234 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 6235 RangeCheckBranch); 6236 CmpInst->replaceAllUsesWith(InvertedTableCmp); 6237 ++NumTableCmpReuses; 6238 } 6239 } 6240 6241 /// If the switch is only used to initialize one or more phi nodes in a common 6242 /// successor block with different constant values, replace the switch with 6243 /// lookup tables. 6244 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 6245 DomTreeUpdater *DTU, const DataLayout &DL, 6246 const TargetTransformInfo &TTI) { 6247 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 6248 6249 BasicBlock *BB = SI->getParent(); 6250 Function *Fn = BB->getParent(); 6251 // Only build lookup table when we have a target that supports it or the 6252 // attribute is not set. 6253 if (!TTI.shouldBuildLookupTables() || 6254 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 6255 return false; 6256 6257 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 6258 // split off a dense part and build a lookup table for that. 6259 6260 // FIXME: This creates arrays of GEPs to constant strings, which means each 6261 // GEP needs a runtime relocation in PIC code. We should just build one big 6262 // string and lookup indices into that. 6263 6264 // Ignore switches with less than three cases. Lookup tables will not make 6265 // them faster, so we don't analyze them. 6266 if (SI->getNumCases() < 3) 6267 return false; 6268 6269 // Figure out the corresponding result for each case value and phi node in the 6270 // common destination, as well as the min and max case values. 6271 assert(!SI->cases().empty()); 6272 SwitchInst::CaseIt CI = SI->case_begin(); 6273 ConstantInt *MinCaseVal = CI->getCaseValue(); 6274 ConstantInt *MaxCaseVal = CI->getCaseValue(); 6275 6276 BasicBlock *CommonDest = nullptr; 6277 6278 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 6279 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 6280 6281 SmallDenseMap<PHINode *, Constant *> DefaultResults; 6282 SmallDenseMap<PHINode *, Type *> ResultTypes; 6283 SmallVector<PHINode *, 4> PHIs; 6284 6285 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 6286 ConstantInt *CaseVal = CI->getCaseValue(); 6287 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 6288 MinCaseVal = CaseVal; 6289 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 6290 MaxCaseVal = CaseVal; 6291 6292 // Resulting value at phi nodes for this case value. 6293 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 6294 ResultsTy Results; 6295 if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 6296 Results, DL, TTI)) 6297 return false; 6298 6299 // Append the result from this case to the list for each phi. 6300 for (const auto &I : Results) { 6301 PHINode *PHI = I.first; 6302 Constant *Value = I.second; 6303 if (!ResultLists.count(PHI)) 6304 PHIs.push_back(PHI); 6305 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 6306 } 6307 } 6308 6309 // Keep track of the result types. 6310 for (PHINode *PHI : PHIs) { 6311 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 6312 } 6313 6314 uint64_t NumResults = ResultLists[PHIs[0]].size(); 6315 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 6316 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 6317 bool TableHasHoles = (NumResults < TableSize); 6318 6319 // If the table has holes, we need a constant result for the default case 6320 // or a bitmask that fits in a register. 6321 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 6322 bool HasDefaultResults = 6323 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 6324 DefaultResultsList, DL, TTI); 6325 6326 bool NeedMask = (TableHasHoles && !HasDefaultResults); 6327 if (NeedMask) { 6328 // As an extra penalty for the validity test we require more cases. 6329 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 6330 return false; 6331 if (!DL.fitsInLegalInteger(TableSize)) 6332 return false; 6333 } 6334 6335 for (const auto &I : DefaultResultsList) { 6336 PHINode *PHI = I.first; 6337 Constant *Result = I.second; 6338 DefaultResults[PHI] = Result; 6339 } 6340 6341 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 6342 return false; 6343 6344 std::vector<DominatorTree::UpdateType> Updates; 6345 6346 // Create the BB that does the lookups. 6347 Module &Mod = *CommonDest->getParent()->getParent(); 6348 BasicBlock *LookupBB = BasicBlock::Create( 6349 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 6350 6351 // Compute the table index value. 6352 Builder.SetInsertPoint(SI); 6353 Value *TableIndex; 6354 if (MinCaseVal->isNullValue()) 6355 TableIndex = SI->getCondition(); 6356 else 6357 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 6358 "switch.tableidx"); 6359 6360 // Compute the maximum table size representable by the integer type we are 6361 // switching upon. 6362 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 6363 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 6364 assert(MaxTableSize >= TableSize && 6365 "It is impossible for a switch to have more entries than the max " 6366 "representable value of its input integer type's size."); 6367 6368 // If the default destination is unreachable, or if the lookup table covers 6369 // all values of the conditional variable, branch directly to the lookup table 6370 // BB. Otherwise, check that the condition is within the case range. 6371 const bool DefaultIsReachable = 6372 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6373 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6374 BranchInst *RangeCheckBranch = nullptr; 6375 6376 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6377 Builder.CreateBr(LookupBB); 6378 if (DTU) 6379 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6380 // Note: We call removeProdecessor later since we need to be able to get the 6381 // PHI value for the default case in case we're using a bit mask. 6382 } else { 6383 Value *Cmp = Builder.CreateICmpULT( 6384 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6385 RangeCheckBranch = 6386 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6387 if (DTU) 6388 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6389 } 6390 6391 // Populate the BB that does the lookups. 6392 Builder.SetInsertPoint(LookupBB); 6393 6394 if (NeedMask) { 6395 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6396 // re-purposed to do the hole check, and we create a new LookupBB. 6397 BasicBlock *MaskBB = LookupBB; 6398 MaskBB->setName("switch.hole_check"); 6399 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6400 CommonDest->getParent(), CommonDest); 6401 6402 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6403 // unnecessary illegal types. 6404 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6405 APInt MaskInt(TableSizePowOf2, 0); 6406 APInt One(TableSizePowOf2, 1); 6407 // Build bitmask; fill in a 1 bit for every case. 6408 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6409 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6410 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6411 .getLimitedValue(); 6412 MaskInt |= One << Idx; 6413 } 6414 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6415 6416 // Get the TableIndex'th bit of the bitmask. 6417 // If this bit is 0 (meaning hole) jump to the default destination, 6418 // else continue with table lookup. 6419 IntegerType *MapTy = TableMask->getType(); 6420 Value *MaskIndex = 6421 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6422 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6423 Value *LoBit = Builder.CreateTrunc( 6424 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6425 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6426 if (DTU) { 6427 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6428 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6429 } 6430 Builder.SetInsertPoint(LookupBB); 6431 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6432 } 6433 6434 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6435 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6436 // do not delete PHINodes here. 6437 SI->getDefaultDest()->removePredecessor(BB, 6438 /*KeepOneInputPHIs=*/true); 6439 if (DTU) 6440 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6441 } 6442 6443 for (PHINode *PHI : PHIs) { 6444 const ResultListTy &ResultList = ResultLists[PHI]; 6445 6446 // If using a bitmask, use any value to fill the lookup table holes. 6447 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6448 StringRef FuncName = Fn->getName(); 6449 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6450 FuncName); 6451 6452 Value *Result = Table.BuildLookup(TableIndex, Builder); 6453 6454 // Do a small peephole optimization: re-use the switch table compare if 6455 // possible. 6456 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6457 BasicBlock *PhiBlock = PHI->getParent(); 6458 // Search for compare instructions which use the phi. 6459 for (auto *User : PHI->users()) { 6460 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6461 } 6462 } 6463 6464 PHI->addIncoming(Result, LookupBB); 6465 } 6466 6467 Builder.CreateBr(CommonDest); 6468 if (DTU) 6469 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6470 6471 // Remove the switch. 6472 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6473 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6474 BasicBlock *Succ = SI->getSuccessor(i); 6475 6476 if (Succ == SI->getDefaultDest()) 6477 continue; 6478 Succ->removePredecessor(BB); 6479 if (DTU && RemovedSuccessors.insert(Succ).second) 6480 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6481 } 6482 SI->eraseFromParent(); 6483 6484 if (DTU) 6485 DTU->applyUpdates(Updates); 6486 6487 ++NumLookupTables; 6488 if (NeedMask) 6489 ++NumLookupTablesHoles; 6490 return true; 6491 } 6492 6493 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6494 /// of cases. 6495 /// 6496 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6497 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6498 /// 6499 /// This converts a sparse switch into a dense switch which allows better 6500 /// lowering and could also allow transforming into a lookup table. 6501 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6502 const DataLayout &DL, 6503 const TargetTransformInfo &TTI) { 6504 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6505 if (CondTy->getIntegerBitWidth() > 64 || 6506 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6507 return false; 6508 // Only bother with this optimization if there are more than 3 switch cases; 6509 // SDAG will only bother creating jump tables for 4 or more cases. 6510 if (SI->getNumCases() < 4) 6511 return false; 6512 6513 // This transform is agnostic to the signedness of the input or case values. We 6514 // can treat the case values as signed or unsigned. We can optimize more common 6515 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6516 // as signed. 6517 SmallVector<int64_t,4> Values; 6518 for (auto &C : SI->cases()) 6519 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6520 llvm::sort(Values); 6521 6522 // If the switch is already dense, there's nothing useful to do here. 6523 if (isSwitchDense(Values)) 6524 return false; 6525 6526 // First, transform the values such that they start at zero and ascend. 6527 int64_t Base = Values[0]; 6528 for (auto &V : Values) 6529 V -= (uint64_t)(Base); 6530 6531 // Now we have signed numbers that have been shifted so that, given enough 6532 // precision, there are no negative values. Since the rest of the transform 6533 // is bitwise only, we switch now to an unsigned representation. 6534 6535 // This transform can be done speculatively because it is so cheap - it 6536 // results in a single rotate operation being inserted. 6537 // FIXME: It's possible that optimizing a switch on powers of two might also 6538 // be beneficial - flag values are often powers of two and we could use a CLZ 6539 // as the key function. 6540 6541 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6542 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6543 // less than 64. 6544 unsigned Shift = 64; 6545 for (auto &V : Values) 6546 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6547 assert(Shift < 64); 6548 if (Shift > 0) 6549 for (auto &V : Values) 6550 V = (int64_t)((uint64_t)V >> Shift); 6551 6552 if (!isSwitchDense(Values)) 6553 // Transform didn't create a dense switch. 6554 return false; 6555 6556 // The obvious transform is to shift the switch condition right and emit a 6557 // check that the condition actually cleanly divided by GCD, i.e. 6558 // C & (1 << Shift - 1) == 0 6559 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6560 // 6561 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6562 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6563 // are nonzero then the switch condition will be very large and will hit the 6564 // default case. 6565 6566 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6567 Builder.SetInsertPoint(SI); 6568 auto *ShiftC = ConstantInt::get(Ty, Shift); 6569 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6570 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6571 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6572 auto *Rot = Builder.CreateOr(LShr, Shl); 6573 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6574 6575 for (auto Case : SI->cases()) { 6576 auto *Orig = Case.getCaseValue(); 6577 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6578 Case.setValue( 6579 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6580 } 6581 return true; 6582 } 6583 6584 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6585 BasicBlock *BB = SI->getParent(); 6586 6587 if (isValueEqualityComparison(SI)) { 6588 // If we only have one predecessor, and if it is a branch on this value, 6589 // see if that predecessor totally determines the outcome of this switch. 6590 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6591 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6592 return requestResimplify(); 6593 6594 Value *Cond = SI->getCondition(); 6595 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6596 if (SimplifySwitchOnSelect(SI, Select)) 6597 return requestResimplify(); 6598 6599 // If the block only contains the switch, see if we can fold the block 6600 // away into any preds. 6601 if (SI == &*BB->instructionsWithoutDebug(false).begin()) 6602 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6603 return requestResimplify(); 6604 } 6605 6606 // Try to transform the switch into an icmp and a branch. 6607 // The conversion from switch to comparison may lose information on 6608 // impossible switch values, so disable it early in the pipeline. 6609 if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder)) 6610 return requestResimplify(); 6611 6612 // Remove unreachable cases. 6613 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6614 return requestResimplify(); 6615 6616 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI)) 6617 return requestResimplify(); 6618 6619 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6620 return requestResimplify(); 6621 6622 // The conversion from switch to lookup tables results in difficult-to-analyze 6623 // code and makes pruning branches much harder. This is a problem if the 6624 // switch expression itself can still be restricted as a result of inlining or 6625 // CVP. Therefore, only apply this transformation during late stages of the 6626 // optimisation pipeline. 6627 if (Options.ConvertSwitchToLookupTable && 6628 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6629 return requestResimplify(); 6630 6631 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6632 return requestResimplify(); 6633 6634 return false; 6635 } 6636 6637 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6638 BasicBlock *BB = IBI->getParent(); 6639 bool Changed = false; 6640 6641 // Eliminate redundant destinations. 6642 SmallPtrSet<Value *, 8> Succs; 6643 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6644 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6645 BasicBlock *Dest = IBI->getDestination(i); 6646 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6647 if (!Dest->hasAddressTaken()) 6648 RemovedSuccs.insert(Dest); 6649 Dest->removePredecessor(BB); 6650 IBI->removeDestination(i); 6651 --i; 6652 --e; 6653 Changed = true; 6654 } 6655 } 6656 6657 if (DTU) { 6658 std::vector<DominatorTree::UpdateType> Updates; 6659 Updates.reserve(RemovedSuccs.size()); 6660 for (auto *RemovedSucc : RemovedSuccs) 6661 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6662 DTU->applyUpdates(Updates); 6663 } 6664 6665 if (IBI->getNumDestinations() == 0) { 6666 // If the indirectbr has no successors, change it to unreachable. 6667 new UnreachableInst(IBI->getContext(), IBI); 6668 EraseTerminatorAndDCECond(IBI); 6669 return true; 6670 } 6671 6672 if (IBI->getNumDestinations() == 1) { 6673 // If the indirectbr has one successor, change it to a direct branch. 6674 BranchInst::Create(IBI->getDestination(0), IBI); 6675 EraseTerminatorAndDCECond(IBI); 6676 return true; 6677 } 6678 6679 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6680 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6681 return requestResimplify(); 6682 } 6683 return Changed; 6684 } 6685 6686 /// Given an block with only a single landing pad and a unconditional branch 6687 /// try to find another basic block which this one can be merged with. This 6688 /// handles cases where we have multiple invokes with unique landing pads, but 6689 /// a shared handler. 6690 /// 6691 /// We specifically choose to not worry about merging non-empty blocks 6692 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6693 /// practice, the optimizer produces empty landing pad blocks quite frequently 6694 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6695 /// sinking in this file) 6696 /// 6697 /// This is primarily a code size optimization. We need to avoid performing 6698 /// any transform which might inhibit optimization (such as our ability to 6699 /// specialize a particular handler via tail commoning). We do this by not 6700 /// merging any blocks which require us to introduce a phi. Since the same 6701 /// values are flowing through both blocks, we don't lose any ability to 6702 /// specialize. If anything, we make such specialization more likely. 6703 /// 6704 /// TODO - This transformation could remove entries from a phi in the target 6705 /// block when the inputs in the phi are the same for the two blocks being 6706 /// merged. In some cases, this could result in removal of the PHI entirely. 6707 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6708 BasicBlock *BB, DomTreeUpdater *DTU) { 6709 auto Succ = BB->getUniqueSuccessor(); 6710 assert(Succ); 6711 // If there's a phi in the successor block, we'd likely have to introduce 6712 // a phi into the merged landing pad block. 6713 if (isa<PHINode>(*Succ->begin())) 6714 return false; 6715 6716 for (BasicBlock *OtherPred : predecessors(Succ)) { 6717 if (BB == OtherPred) 6718 continue; 6719 BasicBlock::iterator I = OtherPred->begin(); 6720 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6721 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6722 continue; 6723 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6724 ; 6725 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6726 if (!BI2 || !BI2->isIdenticalTo(BI)) 6727 continue; 6728 6729 std::vector<DominatorTree::UpdateType> Updates; 6730 6731 // We've found an identical block. Update our predecessors to take that 6732 // path instead and make ourselves dead. 6733 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); 6734 for (BasicBlock *Pred : UniquePreds) { 6735 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6736 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6737 "unexpected successor"); 6738 II->setUnwindDest(OtherPred); 6739 if (DTU) { 6740 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6741 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6742 } 6743 } 6744 6745 // The debug info in OtherPred doesn't cover the merged control flow that 6746 // used to go through BB. We need to delete it or update it. 6747 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) 6748 if (isa<DbgInfoIntrinsic>(Inst)) 6749 Inst.eraseFromParent(); 6750 6751 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); 6752 for (BasicBlock *Succ : UniqueSuccs) { 6753 Succ->removePredecessor(BB); 6754 if (DTU) 6755 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6756 } 6757 6758 IRBuilder<> Builder(BI); 6759 Builder.CreateUnreachable(); 6760 BI->eraseFromParent(); 6761 if (DTU) 6762 DTU->applyUpdates(Updates); 6763 return true; 6764 } 6765 return false; 6766 } 6767 6768 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6769 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6770 : simplifyCondBranch(Branch, Builder); 6771 } 6772 6773 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6774 IRBuilder<> &Builder) { 6775 BasicBlock *BB = BI->getParent(); 6776 BasicBlock *Succ = BI->getSuccessor(0); 6777 6778 // If the Terminator is the only non-phi instruction, simplify the block. 6779 // If LoopHeader is provided, check if the block or its successor is a loop 6780 // header. (This is for early invocations before loop simplify and 6781 // vectorization to keep canonical loop forms for nested loops. These blocks 6782 // can be eliminated when the pass is invoked later in the back-end.) 6783 // Note that if BB has only one predecessor then we do not introduce new 6784 // backedge, so we can eliminate BB. 6785 bool NeedCanonicalLoop = 6786 Options.NeedCanonicalLoop && 6787 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6788 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6789 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6790 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6791 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6792 return true; 6793 6794 // If the only instruction in the block is a seteq/setne comparison against a 6795 // constant, try to simplify the block. 6796 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6797 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6798 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6799 ; 6800 if (I->isTerminator() && 6801 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6802 return true; 6803 } 6804 6805 // See if we can merge an empty landing pad block with another which is 6806 // equivalent. 6807 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6808 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6809 ; 6810 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6811 return true; 6812 } 6813 6814 // If this basic block is ONLY a compare and a branch, and if a predecessor 6815 // branches to us and our successor, fold the comparison into the 6816 // predecessor and use logical operations to update the incoming value 6817 // for PHI nodes in common successor. 6818 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6819 Options.BonusInstThreshold)) 6820 return requestResimplify(); 6821 return false; 6822 } 6823 6824 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6825 BasicBlock *PredPred = nullptr; 6826 for (auto *P : predecessors(BB)) { 6827 BasicBlock *PPred = P->getSinglePredecessor(); 6828 if (!PPred || (PredPred && PredPred != PPred)) 6829 return nullptr; 6830 PredPred = PPred; 6831 } 6832 return PredPred; 6833 } 6834 6835 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6836 assert( 6837 !isa<ConstantInt>(BI->getCondition()) && 6838 BI->getSuccessor(0) != BI->getSuccessor(1) && 6839 "Tautological conditional branch should have been eliminated already."); 6840 6841 BasicBlock *BB = BI->getParent(); 6842 if (!Options.SimplifyCondBranch) 6843 return false; 6844 6845 // Conditional branch 6846 if (isValueEqualityComparison(BI)) { 6847 // If we only have one predecessor, and if it is a branch on this value, 6848 // see if that predecessor totally determines the outcome of this 6849 // switch. 6850 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6851 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6852 return requestResimplify(); 6853 6854 // This block must be empty, except for the setcond inst, if it exists. 6855 // Ignore dbg and pseudo intrinsics. 6856 auto I = BB->instructionsWithoutDebug(true).begin(); 6857 if (&*I == BI) { 6858 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6859 return requestResimplify(); 6860 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6861 ++I; 6862 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6863 return requestResimplify(); 6864 } 6865 } 6866 6867 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6868 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6869 return true; 6870 6871 // If this basic block has dominating predecessor blocks and the dominating 6872 // blocks' conditions imply BI's condition, we know the direction of BI. 6873 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6874 if (Imp) { 6875 // Turn this into a branch on constant. 6876 auto *OldCond = BI->getCondition(); 6877 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6878 : ConstantInt::getFalse(BB->getContext()); 6879 BI->setCondition(TorF); 6880 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6881 return requestResimplify(); 6882 } 6883 6884 // If this basic block is ONLY a compare and a branch, and if a predecessor 6885 // branches to us and one of our successors, fold the comparison into the 6886 // predecessor and use logical operations to pick the right destination. 6887 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6888 Options.BonusInstThreshold)) 6889 return requestResimplify(); 6890 6891 // We have a conditional branch to two blocks that are only reachable 6892 // from BI. We know that the condbr dominates the two blocks, so see if 6893 // there is any identical code in the "then" and "else" blocks. If so, we 6894 // can hoist it up to the branching block. 6895 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6896 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6897 if (HoistCommon && 6898 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6899 return requestResimplify(); 6900 } else { 6901 // If Successor #1 has multiple preds, we may be able to conditionally 6902 // execute Successor #0 if it branches to Successor #1. 6903 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6904 if (Succ0TI->getNumSuccessors() == 1 && 6905 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6906 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6907 return requestResimplify(); 6908 } 6909 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6910 // If Successor #0 has multiple preds, we may be able to conditionally 6911 // execute Successor #1 if it branches to Successor #0. 6912 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6913 if (Succ1TI->getNumSuccessors() == 1 && 6914 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6915 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6916 return requestResimplify(); 6917 } 6918 6919 // If this is a branch on something for which we know the constant value in 6920 // predecessors (e.g. a phi node in the current block), thread control 6921 // through this block. 6922 if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC)) 6923 return requestResimplify(); 6924 6925 // Scan predecessor blocks for conditional branches. 6926 for (BasicBlock *Pred : predecessors(BB)) 6927 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6928 if (PBI != BI && PBI->isConditional()) 6929 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6930 return requestResimplify(); 6931 6932 // Look for diamond patterns. 6933 if (MergeCondStores) 6934 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6935 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6936 if (PBI != BI && PBI->isConditional()) 6937 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6938 return requestResimplify(); 6939 6940 return false; 6941 } 6942 6943 /// Check if passing a value to an instruction will cause undefined behavior. 6944 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6945 Constant *C = dyn_cast<Constant>(V); 6946 if (!C) 6947 return false; 6948 6949 if (I->use_empty()) 6950 return false; 6951 6952 if (C->isNullValue() || isa<UndefValue>(C)) { 6953 // Only look at the first use, avoid hurting compile time with long uselists 6954 auto *Use = cast<Instruction>(*I->user_begin()); 6955 // Bail out if Use is not in the same BB as I or Use == I or Use comes 6956 // before I in the block. The latter two can be the case if Use is a PHI 6957 // node. 6958 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) 6959 return false; 6960 6961 // Now make sure that there are no instructions in between that can alter 6962 // control flow (eg. calls) 6963 auto InstrRange = 6964 make_range(std::next(I->getIterator()), Use->getIterator()); 6965 if (any_of(InstrRange, [](Instruction &I) { 6966 return !isGuaranteedToTransferExecutionToSuccessor(&I); 6967 })) 6968 return false; 6969 6970 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6971 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6972 if (GEP->getPointerOperand() == I) { 6973 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6974 PtrValueMayBeModified = true; 6975 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6976 } 6977 6978 // Look through bitcasts. 6979 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6980 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6981 6982 // Load from null is undefined. 6983 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6984 if (!LI->isVolatile()) 6985 return !NullPointerIsDefined(LI->getFunction(), 6986 LI->getPointerAddressSpace()); 6987 6988 // Store to null is undefined. 6989 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6990 if (!SI->isVolatile()) 6991 return (!NullPointerIsDefined(SI->getFunction(), 6992 SI->getPointerAddressSpace())) && 6993 SI->getPointerOperand() == I; 6994 6995 if (auto *CB = dyn_cast<CallBase>(Use)) { 6996 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6997 return false; 6998 // A call to null is undefined. 6999 if (CB->getCalledOperand() == I) 7000 return true; 7001 7002 if (C->isNullValue()) { 7003 for (const llvm::Use &Arg : CB->args()) 7004 if (Arg == I) { 7005 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7006 if (CB->isPassingUndefUB(ArgIdx) && 7007 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 7008 // Passing null to a nonnnull+noundef argument is undefined. 7009 return !PtrValueMayBeModified; 7010 } 7011 } 7012 } else if (isa<UndefValue>(C)) { 7013 // Passing undef to a noundef argument is undefined. 7014 for (const llvm::Use &Arg : CB->args()) 7015 if (Arg == I) { 7016 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7017 if (CB->isPassingUndefUB(ArgIdx)) { 7018 // Passing undef to a noundef argument is undefined. 7019 return true; 7020 } 7021 } 7022 } 7023 } 7024 } 7025 return false; 7026 } 7027 7028 /// If BB has an incoming value that will always trigger undefined behavior 7029 /// (eg. null pointer dereference), remove the branch leading here. 7030 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 7031 DomTreeUpdater *DTU) { 7032 for (PHINode &PHI : BB->phis()) 7033 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 7034 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 7035 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 7036 Instruction *T = Predecessor->getTerminator(); 7037 IRBuilder<> Builder(T); 7038 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 7039 BB->removePredecessor(Predecessor); 7040 // Turn uncoditional branches into unreachables and remove the dead 7041 // destination from conditional branches. 7042 if (BI->isUnconditional()) 7043 Builder.CreateUnreachable(); 7044 else { 7045 // Preserve guarding condition in assume, because it might not be 7046 // inferrable from any dominating condition. 7047 Value *Cond = BI->getCondition(); 7048 if (BI->getSuccessor(0) == BB) 7049 Builder.CreateAssumption(Builder.CreateNot(Cond)); 7050 else 7051 Builder.CreateAssumption(Cond); 7052 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 7053 : BI->getSuccessor(0)); 7054 } 7055 BI->eraseFromParent(); 7056 if (DTU) 7057 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 7058 return true; 7059 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 7060 // Redirect all branches leading to UB into 7061 // a newly created unreachable block. 7062 BasicBlock *Unreachable = BasicBlock::Create( 7063 Predecessor->getContext(), "unreachable", BB->getParent(), BB); 7064 Builder.SetInsertPoint(Unreachable); 7065 // The new block contains only one instruction: Unreachable 7066 Builder.CreateUnreachable(); 7067 for (auto &Case : SI->cases()) 7068 if (Case.getCaseSuccessor() == BB) { 7069 BB->removePredecessor(Predecessor); 7070 Case.setSuccessor(Unreachable); 7071 } 7072 if (SI->getDefaultDest() == BB) { 7073 BB->removePredecessor(Predecessor); 7074 SI->setDefaultDest(Unreachable); 7075 } 7076 7077 if (DTU) 7078 DTU->applyUpdates( 7079 { { DominatorTree::Insert, Predecessor, Unreachable }, 7080 { DominatorTree::Delete, Predecessor, BB } }); 7081 return true; 7082 } 7083 } 7084 7085 return false; 7086 } 7087 7088 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 7089 bool Changed = false; 7090 7091 assert(BB && BB->getParent() && "Block not embedded in function!"); 7092 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 7093 7094 // Remove basic blocks that have no predecessors (except the entry block)... 7095 // or that just have themself as a predecessor. These are unreachable. 7096 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 7097 BB->getSinglePredecessor() == BB) { 7098 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 7099 DeleteDeadBlock(BB, DTU); 7100 return true; 7101 } 7102 7103 // Check to see if we can constant propagate this terminator instruction 7104 // away... 7105 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 7106 /*TLI=*/nullptr, DTU); 7107 7108 // Check for and eliminate duplicate PHI nodes in this block. 7109 Changed |= EliminateDuplicatePHINodes(BB); 7110 7111 // Check for and remove branches that will always cause undefined behavior. 7112 if (removeUndefIntroducingPredecessor(BB, DTU)) 7113 return requestResimplify(); 7114 7115 // Merge basic blocks into their predecessor if there is only one distinct 7116 // pred, and if there is only one distinct successor of the predecessor, and 7117 // if there are no PHI nodes. 7118 if (MergeBlockIntoPredecessor(BB, DTU)) 7119 return true; 7120 7121 if (SinkCommon && Options.SinkCommonInsts) 7122 if (SinkCommonCodeFromPredecessors(BB, DTU) || 7123 MergeCompatibleInvokes(BB, DTU)) { 7124 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 7125 // so we may now how duplicate PHI's. 7126 // Let's rerun EliminateDuplicatePHINodes() first, 7127 // before FoldTwoEntryPHINode() potentially converts them into select's, 7128 // after which we'd need a whole EarlyCSE pass run to cleanup them. 7129 return true; 7130 } 7131 7132 IRBuilder<> Builder(BB); 7133 7134 if (Options.FoldTwoEntryPHINode) { 7135 // If there is a trivial two-entry PHI node in this basic block, and we can 7136 // eliminate it, do so now. 7137 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 7138 if (PN->getNumIncomingValues() == 2) 7139 if (FoldTwoEntryPHINode(PN, TTI, DTU, DL)) 7140 return true; 7141 } 7142 7143 Instruction *Terminator = BB->getTerminator(); 7144 Builder.SetInsertPoint(Terminator); 7145 switch (Terminator->getOpcode()) { 7146 case Instruction::Br: 7147 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 7148 break; 7149 case Instruction::Resume: 7150 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 7151 break; 7152 case Instruction::CleanupRet: 7153 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 7154 break; 7155 case Instruction::Switch: 7156 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 7157 break; 7158 case Instruction::Unreachable: 7159 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 7160 break; 7161 case Instruction::IndirectBr: 7162 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 7163 break; 7164 } 7165 7166 return Changed; 7167 } 7168 7169 bool SimplifyCFGOpt::run(BasicBlock *BB) { 7170 bool Changed = false; 7171 7172 // Repeated simplify BB as long as resimplification is requested. 7173 do { 7174 Resimplify = false; 7175 7176 // Perform one round of simplifcation. Resimplify flag will be set if 7177 // another iteration is requested. 7178 Changed |= simplifyOnce(BB); 7179 } while (Resimplify); 7180 7181 return Changed; 7182 } 7183 7184 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 7185 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 7186 ArrayRef<WeakVH> LoopHeaders) { 7187 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 7188 Options) 7189 .run(BB); 7190 } 7191