1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/SSAUpdater.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 97 cl::init(false), 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> DupRet( 117 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 118 cl::desc("Duplicate return instructions into unconditional branches")); 119 120 static cl::opt<bool> 121 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 122 cl::desc("Hoist common instructions up to the parent block")); 123 124 static cl::opt<bool> 125 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 126 cl::desc("Sink common instructions down to the end block")); 127 128 static cl::opt<bool> HoistCondStores( 129 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 130 cl::desc("Hoist conditional stores if an unconditional store precedes")); 131 132 static cl::opt<bool> MergeCondStores( 133 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 134 cl::desc("Hoist conditional stores even if an unconditional store does not " 135 "precede - hoist multiple conditional stores into a single " 136 "predicated store")); 137 138 static cl::opt<bool> MergeCondStoresAggressively( 139 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 140 cl::desc("When merging conditional stores, do so even if the resultant " 141 "basic blocks are unlikely to be if-converted as a result")); 142 143 static cl::opt<bool> SpeculateOneExpensiveInst( 144 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 145 cl::desc("Allow exactly one expensive instruction to be speculatively " 146 "executed")); 147 148 static cl::opt<unsigned> MaxSpeculationDepth( 149 "max-speculation-depth", cl::Hidden, cl::init(10), 150 cl::desc("Limit maximum recursion depth when calculating costs of " 151 "speculatively executed instructions")); 152 153 static cl::opt<int> 154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 155 cl::desc("Max size of a block which is still considered " 156 "small enough to thread through")); 157 158 // Two is chosen to allow one negation and a logical combine. 159 static cl::opt<unsigned> 160 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 161 cl::init(2), 162 cl::desc("Maximum cost of combining conditions when " 163 "folding branches")); 164 165 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 166 STATISTIC(NumLinearMaps, 167 "Number of switch instructions turned into linear mapping"); 168 STATISTIC(NumLookupTables, 169 "Number of switch instructions turned into lookup tables"); 170 STATISTIC( 171 NumLookupTablesHoles, 172 "Number of switch instructions turned into lookup tables (holes checked)"); 173 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 174 STATISTIC(NumFoldValueComparisonIntoPredecessors, 175 "Number of value comparisons folded into predecessor basic blocks"); 176 STATISTIC(NumFoldBranchToCommonDest, 177 "Number of branches folded into predecessor basic block"); 178 STATISTIC( 179 NumHoistCommonCode, 180 "Number of common instruction 'blocks' hoisted up to the begin block"); 181 STATISTIC(NumHoistCommonInstrs, 182 "Number of common instructions hoisted up to the begin block"); 183 STATISTIC(NumSinkCommonCode, 184 "Number of common instruction 'blocks' sunk down to the end block"); 185 STATISTIC(NumSinkCommonInstrs, 186 "Number of common instructions sunk down to the end block"); 187 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 188 STATISTIC(NumInvokes, 189 "Number of invokes with empty resume blocks simplified into calls"); 190 191 namespace { 192 193 // The first field contains the value that the switch produces when a certain 194 // case group is selected, and the second field is a vector containing the 195 // cases composing the case group. 196 using SwitchCaseResultVectorTy = 197 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 198 199 // The first field contains the phi node that generates a result of the switch 200 // and the second field contains the value generated for a certain case in the 201 // switch for that PHI. 202 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 203 204 /// ValueEqualityComparisonCase - Represents a case of a switch. 205 struct ValueEqualityComparisonCase { 206 ConstantInt *Value; 207 BasicBlock *Dest; 208 209 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 210 : Value(Value), Dest(Dest) {} 211 212 bool operator<(ValueEqualityComparisonCase RHS) const { 213 // Comparing pointers is ok as we only rely on the order for uniquing. 214 return Value < RHS.Value; 215 } 216 217 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 218 }; 219 220 class SimplifyCFGOpt { 221 const TargetTransformInfo &TTI; 222 DomTreeUpdater *DTU; 223 const DataLayout &DL; 224 ArrayRef<WeakVH> LoopHeaders; 225 const SimplifyCFGOptions &Options; 226 bool Resimplify; 227 228 Value *isValueEqualityComparison(Instruction *TI); 229 BasicBlock *GetValueEqualityComparisonCases( 230 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 231 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 232 BasicBlock *Pred, 233 IRBuilder<> &Builder); 234 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 235 Instruction *PTI, 236 IRBuilder<> &Builder); 237 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 238 IRBuilder<> &Builder); 239 240 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 241 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 242 bool simplifySingleResume(ResumeInst *RI); 243 bool simplifyCommonResume(ResumeInst *RI); 244 bool simplifyCleanupReturn(CleanupReturnInst *RI); 245 bool simplifyUnreachable(UnreachableInst *UI); 246 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 247 bool simplifyIndirectBr(IndirectBrInst *IBI); 248 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 249 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 250 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 251 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 252 253 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 254 IRBuilder<> &Builder); 255 256 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 257 bool EqTermsOnly); 258 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 259 const TargetTransformInfo &TTI); 260 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 261 BasicBlock *TrueBB, BasicBlock *FalseBB, 262 uint32_t TrueWeight, uint32_t FalseWeight); 263 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 264 const DataLayout &DL); 265 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 266 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 267 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 268 269 public: 270 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 271 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 272 const SimplifyCFGOptions &Opts) 273 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 274 assert((!DTU || !DTU->hasPostDomTree()) && 275 "SimplifyCFG is not yet capable of maintaining validity of a " 276 "PostDomTree, so don't ask for it."); 277 } 278 279 bool simplifyOnce(BasicBlock *BB); 280 bool simplifyOnceImpl(BasicBlock *BB); 281 bool run(BasicBlock *BB); 282 283 // Helper to set Resimplify and return change indication. 284 bool requestResimplify() { 285 Resimplify = true; 286 return true; 287 } 288 }; 289 290 } // end anonymous namespace 291 292 /// Return true if it is safe to merge these two 293 /// terminator instructions together. 294 static bool 295 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 296 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 297 if (SI1 == SI2) 298 return false; // Can't merge with self! 299 300 // It is not safe to merge these two switch instructions if they have a common 301 // successor, and if that successor has a PHI node, and if *that* PHI node has 302 // conflicting incoming values from the two switch blocks. 303 BasicBlock *SI1BB = SI1->getParent(); 304 BasicBlock *SI2BB = SI2->getParent(); 305 306 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 307 bool Fail = false; 308 for (BasicBlock *Succ : successors(SI2BB)) 309 if (SI1Succs.count(Succ)) 310 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 311 PHINode *PN = cast<PHINode>(BBI); 312 if (PN->getIncomingValueForBlock(SI1BB) != 313 PN->getIncomingValueForBlock(SI2BB)) { 314 if (FailBlocks) 315 FailBlocks->insert(Succ); 316 Fail = true; 317 } 318 } 319 320 return !Fail; 321 } 322 323 /// Update PHI nodes in Succ to indicate that there will now be entries in it 324 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 325 /// will be the same as those coming in from ExistPred, an existing predecessor 326 /// of Succ. 327 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 328 BasicBlock *ExistPred, 329 MemorySSAUpdater *MSSAU = nullptr) { 330 for (PHINode &PN : Succ->phis()) 331 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 332 if (MSSAU) 333 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 334 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 335 } 336 337 /// Compute an abstract "cost" of speculating the given instruction, 338 /// which is assumed to be safe to speculate. TCC_Free means cheap, 339 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 340 /// expensive. 341 static InstructionCost computeSpeculationCost(const User *I, 342 const TargetTransformInfo &TTI) { 343 assert(isSafeToSpeculativelyExecute(I) && 344 "Instruction is not safe to speculatively execute!"); 345 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 346 } 347 348 /// If we have a merge point of an "if condition" as accepted above, 349 /// return true if the specified value dominates the block. We 350 /// don't handle the true generality of domination here, just a special case 351 /// which works well enough for us. 352 /// 353 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 354 /// see if V (which must be an instruction) and its recursive operands 355 /// that do not dominate BB have a combined cost lower than Budget and 356 /// are non-trapping. If both are true, the instruction is inserted into the 357 /// set and true is returned. 358 /// 359 /// The cost for most non-trapping instructions is defined as 1 except for 360 /// Select whose cost is 2. 361 /// 362 /// After this function returns, Cost is increased by the cost of 363 /// V plus its non-dominating operands. If that cost is greater than 364 /// Budget, false is returned and Cost is undefined. 365 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 366 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 367 InstructionCost &Cost, 368 InstructionCost Budget, 369 const TargetTransformInfo &TTI, 370 unsigned Depth = 0) { 371 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 372 // so limit the recursion depth. 373 // TODO: While this recursion limit does prevent pathological behavior, it 374 // would be better to track visited instructions to avoid cycles. 375 if (Depth == MaxSpeculationDepth) 376 return false; 377 378 Instruction *I = dyn_cast<Instruction>(V); 379 if (!I) { 380 // Non-instructions all dominate instructions, but not all constantexprs 381 // can be executed unconditionally. 382 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 383 if (C->canTrap()) 384 return false; 385 return true; 386 } 387 BasicBlock *PBB = I->getParent(); 388 389 // We don't want to allow weird loops that might have the "if condition" in 390 // the bottom of this block. 391 if (PBB == BB) 392 return false; 393 394 // If this instruction is defined in a block that contains an unconditional 395 // branch to BB, then it must be in the 'conditional' part of the "if 396 // statement". If not, it definitely dominates the region. 397 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 398 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 399 return true; 400 401 // If we have seen this instruction before, don't count it again. 402 if (AggressiveInsts.count(I)) 403 return true; 404 405 // Okay, it looks like the instruction IS in the "condition". Check to 406 // see if it's a cheap instruction to unconditionally compute, and if it 407 // only uses stuff defined outside of the condition. If so, hoist it out. 408 if (!isSafeToSpeculativelyExecute(I)) 409 return false; 410 411 Cost += computeSpeculationCost(I, TTI); 412 413 // Allow exactly one instruction to be speculated regardless of its cost 414 // (as long as it is safe to do so). 415 // This is intended to flatten the CFG even if the instruction is a division 416 // or other expensive operation. The speculation of an expensive instruction 417 // is expected to be undone in CodeGenPrepare if the speculation has not 418 // enabled further IR optimizations. 419 if (Cost > Budget && 420 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 421 !Cost.isValid())) 422 return false; 423 424 // Okay, we can only really hoist these out if their operands do 425 // not take us over the cost threshold. 426 for (Use &Op : I->operands()) 427 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 428 Depth + 1)) 429 return false; 430 // Okay, it's safe to do this! Remember this instruction. 431 AggressiveInsts.insert(I); 432 return true; 433 } 434 435 /// Extract ConstantInt from value, looking through IntToPtr 436 /// and PointerNullValue. Return NULL if value is not a constant int. 437 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 438 // Normal constant int. 439 ConstantInt *CI = dyn_cast<ConstantInt>(V); 440 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 441 return CI; 442 443 // This is some kind of pointer constant. Turn it into a pointer-sized 444 // ConstantInt if possible. 445 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 446 447 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 448 if (isa<ConstantPointerNull>(V)) 449 return ConstantInt::get(PtrTy, 0); 450 451 // IntToPtr const int. 452 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 453 if (CE->getOpcode() == Instruction::IntToPtr) 454 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 455 // The constant is very likely to have the right type already. 456 if (CI->getType() == PtrTy) 457 return CI; 458 else 459 return cast<ConstantInt>( 460 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 461 } 462 return nullptr; 463 } 464 465 namespace { 466 467 /// Given a chain of or (||) or and (&&) comparison of a value against a 468 /// constant, this will try to recover the information required for a switch 469 /// structure. 470 /// It will depth-first traverse the chain of comparison, seeking for patterns 471 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 472 /// representing the different cases for the switch. 473 /// Note that if the chain is composed of '||' it will build the set of elements 474 /// that matches the comparisons (i.e. any of this value validate the chain) 475 /// while for a chain of '&&' it will build the set elements that make the test 476 /// fail. 477 struct ConstantComparesGatherer { 478 const DataLayout &DL; 479 480 /// Value found for the switch comparison 481 Value *CompValue = nullptr; 482 483 /// Extra clause to be checked before the switch 484 Value *Extra = nullptr; 485 486 /// Set of integers to match in switch 487 SmallVector<ConstantInt *, 8> Vals; 488 489 /// Number of comparisons matched in the and/or chain 490 unsigned UsedICmps = 0; 491 492 /// Construct and compute the result for the comparison instruction Cond 493 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 494 gather(Cond); 495 } 496 497 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 498 ConstantComparesGatherer & 499 operator=(const ConstantComparesGatherer &) = delete; 500 501 private: 502 /// Try to set the current value used for the comparison, it succeeds only if 503 /// it wasn't set before or if the new value is the same as the old one 504 bool setValueOnce(Value *NewVal) { 505 if (CompValue && CompValue != NewVal) 506 return false; 507 CompValue = NewVal; 508 return (CompValue != nullptr); 509 } 510 511 /// Try to match Instruction "I" as a comparison against a constant and 512 /// populates the array Vals with the set of values that match (or do not 513 /// match depending on isEQ). 514 /// Return false on failure. On success, the Value the comparison matched 515 /// against is placed in CompValue. 516 /// If CompValue is already set, the function is expected to fail if a match 517 /// is found but the value compared to is different. 518 bool matchInstruction(Instruction *I, bool isEQ) { 519 // If this is an icmp against a constant, handle this as one of the cases. 520 ICmpInst *ICI; 521 ConstantInt *C; 522 if (!((ICI = dyn_cast<ICmpInst>(I)) && 523 (C = GetConstantInt(I->getOperand(1), DL)))) { 524 return false; 525 } 526 527 Value *RHSVal; 528 const APInt *RHSC; 529 530 // Pattern match a special case 531 // (x & ~2^z) == y --> x == y || x == y|2^z 532 // This undoes a transformation done by instcombine to fuse 2 compares. 533 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 534 // It's a little bit hard to see why the following transformations are 535 // correct. Here is a CVC3 program to verify them for 64-bit values: 536 537 /* 538 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 539 x : BITVECTOR(64); 540 y : BITVECTOR(64); 541 z : BITVECTOR(64); 542 mask : BITVECTOR(64) = BVSHL(ONE, z); 543 QUERY( (y & ~mask = y) => 544 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 545 ); 546 QUERY( (y | mask = y) => 547 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 548 ); 549 */ 550 551 // Please note that each pattern must be a dual implication (<--> or 552 // iff). One directional implication can create spurious matches. If the 553 // implication is only one-way, an unsatisfiable condition on the left 554 // side can imply a satisfiable condition on the right side. Dual 555 // implication ensures that satisfiable conditions are transformed to 556 // other satisfiable conditions and unsatisfiable conditions are 557 // transformed to other unsatisfiable conditions. 558 559 // Here is a concrete example of a unsatisfiable condition on the left 560 // implying a satisfiable condition on the right: 561 // 562 // mask = (1 << z) 563 // (x & ~mask) == y --> (x == y || x == (y | mask)) 564 // 565 // Substituting y = 3, z = 0 yields: 566 // (x & -2) == 3 --> (x == 3 || x == 2) 567 568 // Pattern match a special case: 569 /* 570 QUERY( (y & ~mask = y) => 571 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 572 ); 573 */ 574 if (match(ICI->getOperand(0), 575 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 576 APInt Mask = ~*RHSC; 577 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 578 // If we already have a value for the switch, it has to match! 579 if (!setValueOnce(RHSVal)) 580 return false; 581 582 Vals.push_back(C); 583 Vals.push_back( 584 ConstantInt::get(C->getContext(), 585 C->getValue() | Mask)); 586 UsedICmps++; 587 return true; 588 } 589 } 590 591 // Pattern match a special case: 592 /* 593 QUERY( (y | mask = y) => 594 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 595 ); 596 */ 597 if (match(ICI->getOperand(0), 598 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 599 APInt Mask = *RHSC; 600 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 601 // If we already have a value for the switch, it has to match! 602 if (!setValueOnce(RHSVal)) 603 return false; 604 605 Vals.push_back(C); 606 Vals.push_back(ConstantInt::get(C->getContext(), 607 C->getValue() & ~Mask)); 608 UsedICmps++; 609 return true; 610 } 611 } 612 613 // If we already have a value for the switch, it has to match! 614 if (!setValueOnce(ICI->getOperand(0))) 615 return false; 616 617 UsedICmps++; 618 Vals.push_back(C); 619 return ICI->getOperand(0); 620 } 621 622 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 623 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 624 ICI->getPredicate(), C->getValue()); 625 626 // Shift the range if the compare is fed by an add. This is the range 627 // compare idiom as emitted by instcombine. 628 Value *CandidateVal = I->getOperand(0); 629 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 630 Span = Span.subtract(*RHSC); 631 CandidateVal = RHSVal; 632 } 633 634 // If this is an and/!= check, then we are looking to build the set of 635 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 636 // x != 0 && x != 1. 637 if (!isEQ) 638 Span = Span.inverse(); 639 640 // If there are a ton of values, we don't want to make a ginormous switch. 641 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 642 return false; 643 } 644 645 // If we already have a value for the switch, it has to match! 646 if (!setValueOnce(CandidateVal)) 647 return false; 648 649 // Add all values from the range to the set 650 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 651 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 652 653 UsedICmps++; 654 return true; 655 } 656 657 /// Given a potentially 'or'd or 'and'd together collection of icmp 658 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 659 /// the value being compared, and stick the list constants into the Vals 660 /// vector. 661 /// One "Extra" case is allowed to differ from the other. 662 void gather(Value *V) { 663 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 664 665 // Keep a stack (SmallVector for efficiency) for depth-first traversal 666 SmallVector<Value *, 8> DFT; 667 SmallPtrSet<Value *, 8> Visited; 668 669 // Initialize 670 Visited.insert(V); 671 DFT.push_back(V); 672 673 while (!DFT.empty()) { 674 V = DFT.pop_back_val(); 675 676 if (Instruction *I = dyn_cast<Instruction>(V)) { 677 // If it is a || (or && depending on isEQ), process the operands. 678 Value *Op0, *Op1; 679 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 680 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 681 if (Visited.insert(Op1).second) 682 DFT.push_back(Op1); 683 if (Visited.insert(Op0).second) 684 DFT.push_back(Op0); 685 686 continue; 687 } 688 689 // Try to match the current instruction 690 if (matchInstruction(I, isEQ)) 691 // Match succeed, continue the loop 692 continue; 693 } 694 695 // One element of the sequence of || (or &&) could not be match as a 696 // comparison against the same value as the others. 697 // We allow only one "Extra" case to be checked before the switch 698 if (!Extra) { 699 Extra = V; 700 continue; 701 } 702 // Failed to parse a proper sequence, abort now 703 CompValue = nullptr; 704 break; 705 } 706 } 707 }; 708 709 } // end anonymous namespace 710 711 static void EraseTerminatorAndDCECond(Instruction *TI, 712 MemorySSAUpdater *MSSAU = nullptr) { 713 Instruction *Cond = nullptr; 714 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 715 Cond = dyn_cast<Instruction>(SI->getCondition()); 716 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 717 if (BI->isConditional()) 718 Cond = dyn_cast<Instruction>(BI->getCondition()); 719 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 720 Cond = dyn_cast<Instruction>(IBI->getAddress()); 721 } 722 723 TI->eraseFromParent(); 724 if (Cond) 725 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 726 } 727 728 /// Return true if the specified terminator checks 729 /// to see if a value is equal to constant integer value. 730 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 731 Value *CV = nullptr; 732 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 733 // Do not permit merging of large switch instructions into their 734 // predecessors unless there is only one predecessor. 735 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 736 CV = SI->getCondition(); 737 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 738 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 739 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 740 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 741 CV = ICI->getOperand(0); 742 } 743 744 // Unwrap any lossless ptrtoint cast. 745 if (CV) { 746 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 747 Value *Ptr = PTII->getPointerOperand(); 748 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 749 CV = Ptr; 750 } 751 } 752 return CV; 753 } 754 755 /// Given a value comparison instruction, 756 /// decode all of the 'cases' that it represents and return the 'default' block. 757 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 758 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 759 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 760 Cases.reserve(SI->getNumCases()); 761 for (auto Case : SI->cases()) 762 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 763 Case.getCaseSuccessor())); 764 return SI->getDefaultDest(); 765 } 766 767 BranchInst *BI = cast<BranchInst>(TI); 768 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 769 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 770 Cases.push_back(ValueEqualityComparisonCase( 771 GetConstantInt(ICI->getOperand(1), DL), Succ)); 772 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 773 } 774 775 /// Given a vector of bb/value pairs, remove any entries 776 /// in the list that match the specified block. 777 static void 778 EliminateBlockCases(BasicBlock *BB, 779 std::vector<ValueEqualityComparisonCase> &Cases) { 780 llvm::erase_value(Cases, BB); 781 } 782 783 /// Return true if there are any keys in C1 that exist in C2 as well. 784 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 785 std::vector<ValueEqualityComparisonCase> &C2) { 786 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 787 788 // Make V1 be smaller than V2. 789 if (V1->size() > V2->size()) 790 std::swap(V1, V2); 791 792 if (V1->empty()) 793 return false; 794 if (V1->size() == 1) { 795 // Just scan V2. 796 ConstantInt *TheVal = (*V1)[0].Value; 797 for (unsigned i = 0, e = V2->size(); i != e; ++i) 798 if (TheVal == (*V2)[i].Value) 799 return true; 800 } 801 802 // Otherwise, just sort both lists and compare element by element. 803 array_pod_sort(V1->begin(), V1->end()); 804 array_pod_sort(V2->begin(), V2->end()); 805 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 806 while (i1 != e1 && i2 != e2) { 807 if ((*V1)[i1].Value == (*V2)[i2].Value) 808 return true; 809 if ((*V1)[i1].Value < (*V2)[i2].Value) 810 ++i1; 811 else 812 ++i2; 813 } 814 return false; 815 } 816 817 // Set branch weights on SwitchInst. This sets the metadata if there is at 818 // least one non-zero weight. 819 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 820 // Check that there is at least one non-zero weight. Otherwise, pass 821 // nullptr to setMetadata which will erase the existing metadata. 822 MDNode *N = nullptr; 823 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 824 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 825 SI->setMetadata(LLVMContext::MD_prof, N); 826 } 827 828 // Similar to the above, but for branch and select instructions that take 829 // exactly 2 weights. 830 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 831 uint32_t FalseWeight) { 832 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 833 // Check that there is at least one non-zero weight. Otherwise, pass 834 // nullptr to setMetadata which will erase the existing metadata. 835 MDNode *N = nullptr; 836 if (TrueWeight || FalseWeight) 837 N = MDBuilder(I->getParent()->getContext()) 838 .createBranchWeights(TrueWeight, FalseWeight); 839 I->setMetadata(LLVMContext::MD_prof, N); 840 } 841 842 /// If TI is known to be a terminator instruction and its block is known to 843 /// only have a single predecessor block, check to see if that predecessor is 844 /// also a value comparison with the same value, and if that comparison 845 /// determines the outcome of this comparison. If so, simplify TI. This does a 846 /// very limited form of jump threading. 847 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 848 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 849 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 850 if (!PredVal) 851 return false; // Not a value comparison in predecessor. 852 853 Value *ThisVal = isValueEqualityComparison(TI); 854 assert(ThisVal && "This isn't a value comparison!!"); 855 if (ThisVal != PredVal) 856 return false; // Different predicates. 857 858 // TODO: Preserve branch weight metadata, similarly to how 859 // FoldValueComparisonIntoPredecessors preserves it. 860 861 // Find out information about when control will move from Pred to TI's block. 862 std::vector<ValueEqualityComparisonCase> PredCases; 863 BasicBlock *PredDef = 864 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 865 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 866 867 // Find information about how control leaves this block. 868 std::vector<ValueEqualityComparisonCase> ThisCases; 869 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 870 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 871 872 // If TI's block is the default block from Pred's comparison, potentially 873 // simplify TI based on this knowledge. 874 if (PredDef == TI->getParent()) { 875 // If we are here, we know that the value is none of those cases listed in 876 // PredCases. If there are any cases in ThisCases that are in PredCases, we 877 // can simplify TI. 878 if (!ValuesOverlap(PredCases, ThisCases)) 879 return false; 880 881 if (isa<BranchInst>(TI)) { 882 // Okay, one of the successors of this condbr is dead. Convert it to a 883 // uncond br. 884 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 885 // Insert the new branch. 886 Instruction *NI = Builder.CreateBr(ThisDef); 887 (void)NI; 888 889 // Remove PHI node entries for the dead edge. 890 ThisCases[0].Dest->removePredecessor(PredDef); 891 892 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 893 << "Through successor TI: " << *TI << "Leaving: " << *NI 894 << "\n"); 895 896 EraseTerminatorAndDCECond(TI); 897 898 if (DTU) 899 DTU->applyUpdates( 900 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 901 902 return true; 903 } 904 905 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 906 // Okay, TI has cases that are statically dead, prune them away. 907 SmallPtrSet<Constant *, 16> DeadCases; 908 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 909 DeadCases.insert(PredCases[i].Value); 910 911 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 912 << "Through successor TI: " << *TI); 913 914 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 915 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 916 --i; 917 auto *Successor = i->getCaseSuccessor(); 918 if (DTU) 919 ++NumPerSuccessorCases[Successor]; 920 if (DeadCases.count(i->getCaseValue())) { 921 Successor->removePredecessor(PredDef); 922 SI.removeCase(i); 923 if (DTU) 924 --NumPerSuccessorCases[Successor]; 925 } 926 } 927 928 if (DTU) { 929 std::vector<DominatorTree::UpdateType> Updates; 930 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 931 if (I.second == 0) 932 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 933 DTU->applyUpdates(Updates); 934 } 935 936 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 937 return true; 938 } 939 940 // Otherwise, TI's block must correspond to some matched value. Find out 941 // which value (or set of values) this is. 942 ConstantInt *TIV = nullptr; 943 BasicBlock *TIBB = TI->getParent(); 944 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 945 if (PredCases[i].Dest == TIBB) { 946 if (TIV) 947 return false; // Cannot handle multiple values coming to this block. 948 TIV = PredCases[i].Value; 949 } 950 assert(TIV && "No edge from pred to succ?"); 951 952 // Okay, we found the one constant that our value can be if we get into TI's 953 // BB. Find out which successor will unconditionally be branched to. 954 BasicBlock *TheRealDest = nullptr; 955 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 956 if (ThisCases[i].Value == TIV) { 957 TheRealDest = ThisCases[i].Dest; 958 break; 959 } 960 961 // If not handled by any explicit cases, it is handled by the default case. 962 if (!TheRealDest) 963 TheRealDest = ThisDef; 964 965 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 966 967 // Remove PHI node entries for dead edges. 968 BasicBlock *CheckEdge = TheRealDest; 969 for (BasicBlock *Succ : successors(TIBB)) 970 if (Succ != CheckEdge) { 971 if (Succ != TheRealDest) 972 RemovedSuccs.insert(Succ); 973 Succ->removePredecessor(TIBB); 974 } else 975 CheckEdge = nullptr; 976 977 // Insert the new branch. 978 Instruction *NI = Builder.CreateBr(TheRealDest); 979 (void)NI; 980 981 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 982 << "Through successor TI: " << *TI << "Leaving: " << *NI 983 << "\n"); 984 985 EraseTerminatorAndDCECond(TI); 986 if (DTU) { 987 SmallVector<DominatorTree::UpdateType, 2> Updates; 988 Updates.reserve(RemovedSuccs.size()); 989 for (auto *RemovedSucc : RemovedSuccs) 990 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 991 DTU->applyUpdates(Updates); 992 } 993 return true; 994 } 995 996 namespace { 997 998 /// This class implements a stable ordering of constant 999 /// integers that does not depend on their address. This is important for 1000 /// applications that sort ConstantInt's to ensure uniqueness. 1001 struct ConstantIntOrdering { 1002 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1003 return LHS->getValue().ult(RHS->getValue()); 1004 } 1005 }; 1006 1007 } // end anonymous namespace 1008 1009 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1010 ConstantInt *const *P2) { 1011 const ConstantInt *LHS = *P1; 1012 const ConstantInt *RHS = *P2; 1013 if (LHS == RHS) 1014 return 0; 1015 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1016 } 1017 1018 static inline bool HasBranchWeights(const Instruction *I) { 1019 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1020 if (ProfMD && ProfMD->getOperand(0)) 1021 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1022 return MDS->getString().equals("branch_weights"); 1023 1024 return false; 1025 } 1026 1027 /// Get Weights of a given terminator, the default weight is at the front 1028 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1029 /// metadata. 1030 static void GetBranchWeights(Instruction *TI, 1031 SmallVectorImpl<uint64_t> &Weights) { 1032 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1033 assert(MD); 1034 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1035 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1036 Weights.push_back(CI->getValue().getZExtValue()); 1037 } 1038 1039 // If TI is a conditional eq, the default case is the false case, 1040 // and the corresponding branch-weight data is at index 2. We swap the 1041 // default weight to be the first entry. 1042 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1043 assert(Weights.size() == 2); 1044 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1045 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1046 std::swap(Weights.front(), Weights.back()); 1047 } 1048 } 1049 1050 /// Keep halving the weights until all can fit in uint32_t. 1051 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1052 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1053 if (Max > UINT_MAX) { 1054 unsigned Offset = 32 - countLeadingZeros(Max); 1055 for (uint64_t &I : Weights) 1056 I >>= Offset; 1057 } 1058 } 1059 1060 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1061 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1062 Instruction *PTI = PredBlock->getTerminator(); 1063 1064 // If we have bonus instructions, clone them into the predecessor block. 1065 // Note that there may be multiple predecessor blocks, so we cannot move 1066 // bonus instructions to a predecessor block. 1067 for (Instruction &BonusInst : *BB) { 1068 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1069 continue; 1070 1071 Instruction *NewBonusInst = BonusInst.clone(); 1072 1073 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1074 // Unless the instruction has the same !dbg location as the original 1075 // branch, drop it. When we fold the bonus instructions we want to make 1076 // sure we reset their debug locations in order to avoid stepping on 1077 // dead code caused by folding dead branches. 1078 NewBonusInst->setDebugLoc(DebugLoc()); 1079 } 1080 1081 RemapInstruction(NewBonusInst, VMap, 1082 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1083 VMap[&BonusInst] = NewBonusInst; 1084 1085 // If we moved a load, we cannot any longer claim any knowledge about 1086 // its potential value. The previous information might have been valid 1087 // only given the branch precondition. 1088 // For an analogous reason, we must also drop all the metadata whose 1089 // semantics we don't understand. We *can* preserve !annotation, because 1090 // it is tied to the instruction itself, not the value or position. 1091 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1092 1093 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1094 NewBonusInst->takeName(&BonusInst); 1095 BonusInst.setName(NewBonusInst->getName() + ".old"); 1096 1097 // Update (liveout) uses of bonus instructions, 1098 // now that the bonus instruction has been cloned into predecessor. 1099 SSAUpdater SSAUpdate; 1100 SSAUpdate.Initialize(BonusInst.getType(), 1101 (NewBonusInst->getName() + ".merge").str()); 1102 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1103 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1104 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1105 auto *UI = cast<Instruction>(U.getUser()); 1106 if (UI->getParent() != PredBlock) 1107 SSAUpdate.RewriteUseAfterInsertions(U); 1108 else // Use is in the same block as, and comes before, NewBonusInst. 1109 SSAUpdate.RewriteUse(U); 1110 } 1111 } 1112 } 1113 1114 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1115 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1116 BasicBlock *BB = TI->getParent(); 1117 BasicBlock *Pred = PTI->getParent(); 1118 1119 SmallVector<DominatorTree::UpdateType, 32> Updates; 1120 1121 // Figure out which 'cases' to copy from SI to PSI. 1122 std::vector<ValueEqualityComparisonCase> BBCases; 1123 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1124 1125 std::vector<ValueEqualityComparisonCase> PredCases; 1126 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1127 1128 // Based on whether the default edge from PTI goes to BB or not, fill in 1129 // PredCases and PredDefault with the new switch cases we would like to 1130 // build. 1131 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1132 1133 // Update the branch weight metadata along the way 1134 SmallVector<uint64_t, 8> Weights; 1135 bool PredHasWeights = HasBranchWeights(PTI); 1136 bool SuccHasWeights = HasBranchWeights(TI); 1137 1138 if (PredHasWeights) { 1139 GetBranchWeights(PTI, Weights); 1140 // branch-weight metadata is inconsistent here. 1141 if (Weights.size() != 1 + PredCases.size()) 1142 PredHasWeights = SuccHasWeights = false; 1143 } else if (SuccHasWeights) 1144 // If there are no predecessor weights but there are successor weights, 1145 // populate Weights with 1, which will later be scaled to the sum of 1146 // successor's weights 1147 Weights.assign(1 + PredCases.size(), 1); 1148 1149 SmallVector<uint64_t, 8> SuccWeights; 1150 if (SuccHasWeights) { 1151 GetBranchWeights(TI, SuccWeights); 1152 // branch-weight metadata is inconsistent here. 1153 if (SuccWeights.size() != 1 + BBCases.size()) 1154 PredHasWeights = SuccHasWeights = false; 1155 } else if (PredHasWeights) 1156 SuccWeights.assign(1 + BBCases.size(), 1); 1157 1158 if (PredDefault == BB) { 1159 // If this is the default destination from PTI, only the edges in TI 1160 // that don't occur in PTI, or that branch to BB will be activated. 1161 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1162 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1163 if (PredCases[i].Dest != BB) 1164 PTIHandled.insert(PredCases[i].Value); 1165 else { 1166 // The default destination is BB, we don't need explicit targets. 1167 std::swap(PredCases[i], PredCases.back()); 1168 1169 if (PredHasWeights || SuccHasWeights) { 1170 // Increase weight for the default case. 1171 Weights[0] += Weights[i + 1]; 1172 std::swap(Weights[i + 1], Weights.back()); 1173 Weights.pop_back(); 1174 } 1175 1176 PredCases.pop_back(); 1177 --i; 1178 --e; 1179 } 1180 1181 // Reconstruct the new switch statement we will be building. 1182 if (PredDefault != BBDefault) { 1183 PredDefault->removePredecessor(Pred); 1184 if (DTU && PredDefault != BB) 1185 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1186 PredDefault = BBDefault; 1187 ++NewSuccessors[BBDefault]; 1188 } 1189 1190 unsigned CasesFromPred = Weights.size(); 1191 uint64_t ValidTotalSuccWeight = 0; 1192 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1193 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1194 PredCases.push_back(BBCases[i]); 1195 ++NewSuccessors[BBCases[i].Dest]; 1196 if (SuccHasWeights || PredHasWeights) { 1197 // The default weight is at index 0, so weight for the ith case 1198 // should be at index i+1. Scale the cases from successor by 1199 // PredDefaultWeight (Weights[0]). 1200 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1201 ValidTotalSuccWeight += SuccWeights[i + 1]; 1202 } 1203 } 1204 1205 if (SuccHasWeights || PredHasWeights) { 1206 ValidTotalSuccWeight += SuccWeights[0]; 1207 // Scale the cases from predecessor by ValidTotalSuccWeight. 1208 for (unsigned i = 1; i < CasesFromPred; ++i) 1209 Weights[i] *= ValidTotalSuccWeight; 1210 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1211 Weights[0] *= SuccWeights[0]; 1212 } 1213 } else { 1214 // If this is not the default destination from PSI, only the edges 1215 // in SI that occur in PSI with a destination of BB will be 1216 // activated. 1217 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1218 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1219 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1220 if (PredCases[i].Dest == BB) { 1221 PTIHandled.insert(PredCases[i].Value); 1222 1223 if (PredHasWeights || SuccHasWeights) { 1224 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1225 std::swap(Weights[i + 1], Weights.back()); 1226 Weights.pop_back(); 1227 } 1228 1229 std::swap(PredCases[i], PredCases.back()); 1230 PredCases.pop_back(); 1231 --i; 1232 --e; 1233 } 1234 1235 // Okay, now we know which constants were sent to BB from the 1236 // predecessor. Figure out where they will all go now. 1237 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1238 if (PTIHandled.count(BBCases[i].Value)) { 1239 // If this is one we are capable of getting... 1240 if (PredHasWeights || SuccHasWeights) 1241 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1242 PredCases.push_back(BBCases[i]); 1243 ++NewSuccessors[BBCases[i].Dest]; 1244 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1245 } 1246 1247 // If there are any constants vectored to BB that TI doesn't handle, 1248 // they must go to the default destination of TI. 1249 for (ConstantInt *I : PTIHandled) { 1250 if (PredHasWeights || SuccHasWeights) 1251 Weights.push_back(WeightsForHandled[I]); 1252 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1253 ++NewSuccessors[BBDefault]; 1254 } 1255 } 1256 1257 // Okay, at this point, we know which new successor Pred will get. Make 1258 // sure we update the number of entries in the PHI nodes for these 1259 // successors. 1260 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1261 if (DTU) { 1262 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1263 Updates.reserve(Updates.size() + NewSuccessors.size()); 1264 } 1265 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1266 NewSuccessors) { 1267 for (auto I : seq(0, NewSuccessor.second)) { 1268 (void)I; 1269 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1270 } 1271 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1272 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1273 } 1274 1275 Builder.SetInsertPoint(PTI); 1276 // Convert pointer to int before we switch. 1277 if (CV->getType()->isPointerTy()) { 1278 CV = 1279 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1280 } 1281 1282 // Now that the successors are updated, create the new Switch instruction. 1283 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1284 NewSI->setDebugLoc(PTI->getDebugLoc()); 1285 for (ValueEqualityComparisonCase &V : PredCases) 1286 NewSI->addCase(V.Value, V.Dest); 1287 1288 if (PredHasWeights || SuccHasWeights) { 1289 // Halve the weights if any of them cannot fit in an uint32_t 1290 FitWeights(Weights); 1291 1292 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1293 1294 setBranchWeights(NewSI, MDWeights); 1295 } 1296 1297 EraseTerminatorAndDCECond(PTI); 1298 1299 // Okay, last check. If BB is still a successor of PSI, then we must 1300 // have an infinite loop case. If so, add an infinitely looping block 1301 // to handle the case to preserve the behavior of the code. 1302 BasicBlock *InfLoopBlock = nullptr; 1303 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1304 if (NewSI->getSuccessor(i) == BB) { 1305 if (!InfLoopBlock) { 1306 // Insert it at the end of the function, because it's either code, 1307 // or it won't matter if it's hot. :) 1308 InfLoopBlock = 1309 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1310 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1311 if (DTU) 1312 Updates.push_back( 1313 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1314 } 1315 NewSI->setSuccessor(i, InfLoopBlock); 1316 } 1317 1318 if (DTU) { 1319 if (InfLoopBlock) 1320 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1321 1322 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1323 1324 DTU->applyUpdates(Updates); 1325 } 1326 1327 ++NumFoldValueComparisonIntoPredecessors; 1328 return true; 1329 } 1330 1331 /// The specified terminator is a value equality comparison instruction 1332 /// (either a switch or a branch on "X == c"). 1333 /// See if any of the predecessors of the terminator block are value comparisons 1334 /// on the same value. If so, and if safe to do so, fold them together. 1335 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1336 IRBuilder<> &Builder) { 1337 BasicBlock *BB = TI->getParent(); 1338 Value *CV = isValueEqualityComparison(TI); // CondVal 1339 assert(CV && "Not a comparison?"); 1340 1341 bool Changed = false; 1342 1343 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1344 while (!Preds.empty()) { 1345 BasicBlock *Pred = Preds.pop_back_val(); 1346 Instruction *PTI = Pred->getTerminator(); 1347 1348 // Don't try to fold into itself. 1349 if (Pred == BB) 1350 continue; 1351 1352 // See if the predecessor is a comparison with the same value. 1353 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1354 if (PCV != CV) 1355 continue; 1356 1357 SmallSetVector<BasicBlock *, 4> FailBlocks; 1358 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1359 for (auto *Succ : FailBlocks) { 1360 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1361 return false; 1362 } 1363 } 1364 1365 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1366 Changed = true; 1367 } 1368 return Changed; 1369 } 1370 1371 // If we would need to insert a select that uses the value of this invoke 1372 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1373 // can't hoist the invoke, as there is nowhere to put the select in this case. 1374 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1375 Instruction *I1, Instruction *I2) { 1376 for (BasicBlock *Succ : successors(BB1)) { 1377 for (const PHINode &PN : Succ->phis()) { 1378 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1379 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1380 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1381 return false; 1382 } 1383 } 1384 } 1385 return true; 1386 } 1387 1388 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1389 1390 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1391 /// in the two blocks up into the branch block. The caller of this function 1392 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1393 /// only perform hoisting in case both blocks only contain a terminator. In that 1394 /// case, only the original BI will be replaced and selects for PHIs are added. 1395 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1396 const TargetTransformInfo &TTI, 1397 bool EqTermsOnly) { 1398 // This does very trivial matching, with limited scanning, to find identical 1399 // instructions in the two blocks. In particular, we don't want to get into 1400 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1401 // such, we currently just scan for obviously identical instructions in an 1402 // identical order. 1403 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1404 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1405 1406 BasicBlock::iterator BB1_Itr = BB1->begin(); 1407 BasicBlock::iterator BB2_Itr = BB2->begin(); 1408 1409 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1410 // Skip debug info if it is not identical. 1411 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1412 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1413 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1414 while (isa<DbgInfoIntrinsic>(I1)) 1415 I1 = &*BB1_Itr++; 1416 while (isa<DbgInfoIntrinsic>(I2)) 1417 I2 = &*BB2_Itr++; 1418 } 1419 // FIXME: Can we define a safety predicate for CallBr? 1420 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1421 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1422 isa<CallBrInst>(I1)) 1423 return false; 1424 1425 BasicBlock *BIParent = BI->getParent(); 1426 1427 bool Changed = false; 1428 1429 auto _ = make_scope_exit([&]() { 1430 if (Changed) 1431 ++NumHoistCommonCode; 1432 }); 1433 1434 // Check if only hoisting terminators is allowed. This does not add new 1435 // instructions to the hoist location. 1436 if (EqTermsOnly) { 1437 if (!I1->isIdenticalToWhenDefined(I2)) 1438 return false; 1439 if (!I1->isTerminator()) 1440 return false; 1441 goto HoistTerminator; 1442 } 1443 1444 do { 1445 // If we are hoisting the terminator instruction, don't move one (making a 1446 // broken BB), instead clone it, and remove BI. 1447 if (I1->isTerminator()) 1448 goto HoistTerminator; 1449 1450 // If we're going to hoist a call, make sure that the two instructions we're 1451 // commoning/hoisting are both marked with musttail, or neither of them is 1452 // marked as such. Otherwise, we might end up in a situation where we hoist 1453 // from a block where the terminator is a `ret` to a block where the terminator 1454 // is a `br`, and `musttail` calls expect to be followed by a return. 1455 auto *C1 = dyn_cast<CallInst>(I1); 1456 auto *C2 = dyn_cast<CallInst>(I2); 1457 if (C1 && C2) 1458 if (C1->isMustTailCall() != C2->isMustTailCall()) 1459 return Changed; 1460 1461 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1462 return Changed; 1463 1464 // If any of the two call sites has nomerge attribute, stop hoisting. 1465 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1466 if (CB1->cannotMerge()) 1467 return Changed; 1468 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1469 if (CB2->cannotMerge()) 1470 return Changed; 1471 1472 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1473 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1474 // The debug location is an integral part of a debug info intrinsic 1475 // and can't be separated from it or replaced. Instead of attempting 1476 // to merge locations, simply hoist both copies of the intrinsic. 1477 BIParent->getInstList().splice(BI->getIterator(), 1478 BB1->getInstList(), I1); 1479 BIParent->getInstList().splice(BI->getIterator(), 1480 BB2->getInstList(), I2); 1481 Changed = true; 1482 } else { 1483 // For a normal instruction, we just move one to right before the branch, 1484 // then replace all uses of the other with the first. Finally, we remove 1485 // the now redundant second instruction. 1486 BIParent->getInstList().splice(BI->getIterator(), 1487 BB1->getInstList(), I1); 1488 if (!I2->use_empty()) 1489 I2->replaceAllUsesWith(I1); 1490 I1->andIRFlags(I2); 1491 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1492 LLVMContext::MD_range, 1493 LLVMContext::MD_fpmath, 1494 LLVMContext::MD_invariant_load, 1495 LLVMContext::MD_nonnull, 1496 LLVMContext::MD_invariant_group, 1497 LLVMContext::MD_align, 1498 LLVMContext::MD_dereferenceable, 1499 LLVMContext::MD_dereferenceable_or_null, 1500 LLVMContext::MD_mem_parallel_loop_access, 1501 LLVMContext::MD_access_group, 1502 LLVMContext::MD_preserve_access_index}; 1503 combineMetadata(I1, I2, KnownIDs, true); 1504 1505 // I1 and I2 are being combined into a single instruction. Its debug 1506 // location is the merged locations of the original instructions. 1507 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1508 1509 I2->eraseFromParent(); 1510 Changed = true; 1511 } 1512 ++NumHoistCommonInstrs; 1513 1514 I1 = &*BB1_Itr++; 1515 I2 = &*BB2_Itr++; 1516 // Skip debug info if it is not identical. 1517 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1518 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1519 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1520 while (isa<DbgInfoIntrinsic>(I1)) 1521 I1 = &*BB1_Itr++; 1522 while (isa<DbgInfoIntrinsic>(I2)) 1523 I2 = &*BB2_Itr++; 1524 } 1525 } while (I1->isIdenticalToWhenDefined(I2)); 1526 1527 return true; 1528 1529 HoistTerminator: 1530 // It may not be possible to hoist an invoke. 1531 // FIXME: Can we define a safety predicate for CallBr? 1532 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1533 return Changed; 1534 1535 // TODO: callbr hoisting currently disabled pending further study. 1536 if (isa<CallBrInst>(I1)) 1537 return Changed; 1538 1539 for (BasicBlock *Succ : successors(BB1)) { 1540 for (PHINode &PN : Succ->phis()) { 1541 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1542 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1543 if (BB1V == BB2V) 1544 continue; 1545 1546 // Check for passingValueIsAlwaysUndefined here because we would rather 1547 // eliminate undefined control flow then converting it to a select. 1548 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1549 passingValueIsAlwaysUndefined(BB2V, &PN)) 1550 return Changed; 1551 1552 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1553 return Changed; 1554 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1555 return Changed; 1556 } 1557 } 1558 1559 // Okay, it is safe to hoist the terminator. 1560 Instruction *NT = I1->clone(); 1561 BIParent->getInstList().insert(BI->getIterator(), NT); 1562 if (!NT->getType()->isVoidTy()) { 1563 I1->replaceAllUsesWith(NT); 1564 I2->replaceAllUsesWith(NT); 1565 NT->takeName(I1); 1566 } 1567 Changed = true; 1568 ++NumHoistCommonInstrs; 1569 1570 // Ensure terminator gets a debug location, even an unknown one, in case 1571 // it involves inlinable calls. 1572 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1573 1574 // PHIs created below will adopt NT's merged DebugLoc. 1575 IRBuilder<NoFolder> Builder(NT); 1576 1577 // Hoisting one of the terminators from our successor is a great thing. 1578 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1579 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1580 // nodes, so we insert select instruction to compute the final result. 1581 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1582 for (BasicBlock *Succ : successors(BB1)) { 1583 for (PHINode &PN : Succ->phis()) { 1584 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1585 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1586 if (BB1V == BB2V) 1587 continue; 1588 1589 // These values do not agree. Insert a select instruction before NT 1590 // that determines the right value. 1591 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1592 if (!SI) { 1593 // Propagate fast-math-flags from phi node to its replacement select. 1594 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1595 if (isa<FPMathOperator>(PN)) 1596 Builder.setFastMathFlags(PN.getFastMathFlags()); 1597 1598 SI = cast<SelectInst>( 1599 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1600 BB1V->getName() + "." + BB2V->getName(), BI)); 1601 } 1602 1603 // Make the PHI node use the select for all incoming values for BB1/BB2 1604 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1605 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1606 PN.setIncomingValue(i, SI); 1607 } 1608 } 1609 1610 SmallVector<DominatorTree::UpdateType, 4> Updates; 1611 1612 // Update any PHI nodes in our new successors. 1613 for (BasicBlock *Succ : successors(BB1)) { 1614 AddPredecessorToBlock(Succ, BIParent, BB1); 1615 if (DTU) 1616 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1617 } 1618 1619 if (DTU) 1620 for (BasicBlock *Succ : successors(BI)) 1621 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1622 1623 EraseTerminatorAndDCECond(BI); 1624 if (DTU) 1625 DTU->applyUpdates(Updates); 1626 return Changed; 1627 } 1628 1629 // Check lifetime markers. 1630 static bool isLifeTimeMarker(const Instruction *I) { 1631 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1632 switch (II->getIntrinsicID()) { 1633 default: 1634 break; 1635 case Intrinsic::lifetime_start: 1636 case Intrinsic::lifetime_end: 1637 return true; 1638 } 1639 } 1640 return false; 1641 } 1642 1643 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1644 // into variables. 1645 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1646 int OpIdx) { 1647 return !isa<IntrinsicInst>(I); 1648 } 1649 1650 // All instructions in Insts belong to different blocks that all unconditionally 1651 // branch to a common successor. Analyze each instruction and return true if it 1652 // would be possible to sink them into their successor, creating one common 1653 // instruction instead. For every value that would be required to be provided by 1654 // PHI node (because an operand varies in each input block), add to PHIOperands. 1655 static bool canSinkInstructions( 1656 ArrayRef<Instruction *> Insts, 1657 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1658 // Prune out obviously bad instructions to move. Each instruction must have 1659 // exactly zero or one use, and we check later that use is by a single, common 1660 // PHI instruction in the successor. 1661 bool HasUse = !Insts.front()->user_empty(); 1662 for (auto *I : Insts) { 1663 // These instructions may change or break semantics if moved. 1664 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1665 I->getType()->isTokenTy()) 1666 return false; 1667 1668 // Do not try to sink an instruction in an infinite loop - it can cause 1669 // this algorithm to infinite loop. 1670 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1671 return false; 1672 1673 // Conservatively return false if I is an inline-asm instruction. Sinking 1674 // and merging inline-asm instructions can potentially create arguments 1675 // that cannot satisfy the inline-asm constraints. 1676 // If the instruction has nomerge attribute, return false. 1677 if (const auto *C = dyn_cast<CallBase>(I)) 1678 if (C->isInlineAsm() || C->cannotMerge()) 1679 return false; 1680 1681 // Each instruction must have zero or one use. 1682 if (HasUse && !I->hasOneUse()) 1683 return false; 1684 if (!HasUse && !I->user_empty()) 1685 return false; 1686 } 1687 1688 const Instruction *I0 = Insts.front(); 1689 for (auto *I : Insts) 1690 if (!I->isSameOperationAs(I0)) 1691 return false; 1692 1693 // All instructions in Insts are known to be the same opcode. If they have a 1694 // use, check that the only user is a PHI or in the same block as the 1695 // instruction, because if a user is in the same block as an instruction we're 1696 // contemplating sinking, it must already be determined to be sinkable. 1697 if (HasUse) { 1698 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1699 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1700 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1701 auto *U = cast<Instruction>(*I->user_begin()); 1702 return (PNUse && 1703 PNUse->getParent() == Succ && 1704 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1705 U->getParent() == I->getParent(); 1706 })) 1707 return false; 1708 } 1709 1710 // Because SROA can't handle speculating stores of selects, try not to sink 1711 // loads, stores or lifetime markers of allocas when we'd have to create a 1712 // PHI for the address operand. Also, because it is likely that loads or 1713 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1714 // them. 1715 // This can cause code churn which can have unintended consequences down 1716 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1717 // FIXME: This is a workaround for a deficiency in SROA - see 1718 // https://llvm.org/bugs/show_bug.cgi?id=30188 1719 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1720 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1721 })) 1722 return false; 1723 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1724 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1725 })) 1726 return false; 1727 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1728 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1729 })) 1730 return false; 1731 1732 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1733 Value *Op = I0->getOperand(OI); 1734 if (Op->getType()->isTokenTy()) 1735 // Don't touch any operand of token type. 1736 return false; 1737 1738 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1739 assert(I->getNumOperands() == I0->getNumOperands()); 1740 return I->getOperand(OI) == I0->getOperand(OI); 1741 }; 1742 if (!all_of(Insts, SameAsI0)) { 1743 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1744 !canReplaceOperandWithVariable(I0, OI)) 1745 // We can't create a PHI from this GEP. 1746 return false; 1747 // Don't create indirect calls! The called value is the final operand. 1748 if (isa<CallBase>(I0) && OI == OE - 1) { 1749 // FIXME: if the call was *already* indirect, we should do this. 1750 return false; 1751 } 1752 for (auto *I : Insts) 1753 PHIOperands[I].push_back(I->getOperand(OI)); 1754 } 1755 } 1756 return true; 1757 } 1758 1759 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1760 // instruction of every block in Blocks to their common successor, commoning 1761 // into one instruction. 1762 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1763 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1764 1765 // canSinkInstructions returning true guarantees that every block has at 1766 // least one non-terminator instruction. 1767 SmallVector<Instruction*,4> Insts; 1768 for (auto *BB : Blocks) { 1769 Instruction *I = BB->getTerminator(); 1770 do { 1771 I = I->getPrevNode(); 1772 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1773 if (!isa<DbgInfoIntrinsic>(I)) 1774 Insts.push_back(I); 1775 } 1776 1777 // The only checking we need to do now is that all users of all instructions 1778 // are the same PHI node. canSinkInstructions should have checked this but 1779 // it is slightly over-aggressive - it gets confused by commutative 1780 // instructions so double-check it here. 1781 Instruction *I0 = Insts.front(); 1782 if (!I0->user_empty()) { 1783 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1784 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1785 auto *U = cast<Instruction>(*I->user_begin()); 1786 return U == PNUse; 1787 })) 1788 return false; 1789 } 1790 1791 // We don't need to do any more checking here; canSinkInstructions should 1792 // have done it all for us. 1793 SmallVector<Value*, 4> NewOperands; 1794 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1795 // This check is different to that in canSinkInstructions. There, we 1796 // cared about the global view once simplifycfg (and instcombine) have 1797 // completed - it takes into account PHIs that become trivially 1798 // simplifiable. However here we need a more local view; if an operand 1799 // differs we create a PHI and rely on instcombine to clean up the very 1800 // small mess we may make. 1801 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1802 return I->getOperand(O) != I0->getOperand(O); 1803 }); 1804 if (!NeedPHI) { 1805 NewOperands.push_back(I0->getOperand(O)); 1806 continue; 1807 } 1808 1809 // Create a new PHI in the successor block and populate it. 1810 auto *Op = I0->getOperand(O); 1811 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1812 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1813 Op->getName() + ".sink", &BBEnd->front()); 1814 for (auto *I : Insts) 1815 PN->addIncoming(I->getOperand(O), I->getParent()); 1816 NewOperands.push_back(PN); 1817 } 1818 1819 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1820 // and move it to the start of the successor block. 1821 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1822 I0->getOperandUse(O).set(NewOperands[O]); 1823 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1824 1825 // Update metadata and IR flags, and merge debug locations. 1826 for (auto *I : Insts) 1827 if (I != I0) { 1828 // The debug location for the "common" instruction is the merged locations 1829 // of all the commoned instructions. We start with the original location 1830 // of the "common" instruction and iteratively merge each location in the 1831 // loop below. 1832 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1833 // However, as N-way merge for CallInst is rare, so we use simplified API 1834 // instead of using complex API for N-way merge. 1835 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1836 combineMetadataForCSE(I0, I, true); 1837 I0->andIRFlags(I); 1838 } 1839 1840 if (!I0->user_empty()) { 1841 // canSinkLastInstruction checked that all instructions were used by 1842 // one and only one PHI node. Find that now, RAUW it to our common 1843 // instruction and nuke it. 1844 auto *PN = cast<PHINode>(*I0->user_begin()); 1845 PN->replaceAllUsesWith(I0); 1846 PN->eraseFromParent(); 1847 } 1848 1849 // Finally nuke all instructions apart from the common instruction. 1850 for (auto *I : Insts) 1851 if (I != I0) 1852 I->eraseFromParent(); 1853 1854 return true; 1855 } 1856 1857 namespace { 1858 1859 // LockstepReverseIterator - Iterates through instructions 1860 // in a set of blocks in reverse order from the first non-terminator. 1861 // For example (assume all blocks have size n): 1862 // LockstepReverseIterator I([B1, B2, B3]); 1863 // *I-- = [B1[n], B2[n], B3[n]]; 1864 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1865 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1866 // ... 1867 class LockstepReverseIterator { 1868 ArrayRef<BasicBlock*> Blocks; 1869 SmallVector<Instruction*,4> Insts; 1870 bool Fail; 1871 1872 public: 1873 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1874 reset(); 1875 } 1876 1877 void reset() { 1878 Fail = false; 1879 Insts.clear(); 1880 for (auto *BB : Blocks) { 1881 Instruction *Inst = BB->getTerminator(); 1882 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1883 Inst = Inst->getPrevNode(); 1884 if (!Inst) { 1885 // Block wasn't big enough. 1886 Fail = true; 1887 return; 1888 } 1889 Insts.push_back(Inst); 1890 } 1891 } 1892 1893 bool isValid() const { 1894 return !Fail; 1895 } 1896 1897 void operator--() { 1898 if (Fail) 1899 return; 1900 for (auto *&Inst : Insts) { 1901 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1902 Inst = Inst->getPrevNode(); 1903 // Already at beginning of block. 1904 if (!Inst) { 1905 Fail = true; 1906 return; 1907 } 1908 } 1909 } 1910 1911 ArrayRef<Instruction*> operator * () const { 1912 return Insts; 1913 } 1914 }; 1915 1916 } // end anonymous namespace 1917 1918 /// Check whether BB's predecessors end with unconditional branches. If it is 1919 /// true, sink any common code from the predecessors to BB. 1920 /// We also allow one predecessor to end with conditional branch (but no more 1921 /// than one). 1922 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1923 DomTreeUpdater *DTU) { 1924 // We support two situations: 1925 // (1) all incoming arcs are unconditional 1926 // (2) one incoming arc is conditional 1927 // 1928 // (2) is very common in switch defaults and 1929 // else-if patterns; 1930 // 1931 // if (a) f(1); 1932 // else if (b) f(2); 1933 // 1934 // produces: 1935 // 1936 // [if] 1937 // / \ 1938 // [f(1)] [if] 1939 // | | \ 1940 // | | | 1941 // | [f(2)]| 1942 // \ | / 1943 // [ end ] 1944 // 1945 // [end] has two unconditional predecessor arcs and one conditional. The 1946 // conditional refers to the implicit empty 'else' arc. This conditional 1947 // arc can also be caused by an empty default block in a switch. 1948 // 1949 // In this case, we attempt to sink code from all *unconditional* arcs. 1950 // If we can sink instructions from these arcs (determined during the scan 1951 // phase below) we insert a common successor for all unconditional arcs and 1952 // connect that to [end], to enable sinking: 1953 // 1954 // [if] 1955 // / \ 1956 // [x(1)] [if] 1957 // | | \ 1958 // | | \ 1959 // | [x(2)] | 1960 // \ / | 1961 // [sink.split] | 1962 // \ / 1963 // [ end ] 1964 // 1965 SmallVector<BasicBlock*,4> UnconditionalPreds; 1966 Instruction *Cond = nullptr; 1967 for (auto *B : predecessors(BB)) { 1968 auto *T = B->getTerminator(); 1969 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1970 UnconditionalPreds.push_back(B); 1971 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1972 Cond = T; 1973 else 1974 return false; 1975 } 1976 if (UnconditionalPreds.size() < 2) 1977 return false; 1978 1979 // We take a two-step approach to tail sinking. First we scan from the end of 1980 // each block upwards in lockstep. If the n'th instruction from the end of each 1981 // block can be sunk, those instructions are added to ValuesToSink and we 1982 // carry on. If we can sink an instruction but need to PHI-merge some operands 1983 // (because they're not identical in each instruction) we add these to 1984 // PHIOperands. 1985 unsigned ScanIdx = 0; 1986 SmallPtrSet<Value*,4> InstructionsToSink; 1987 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1988 LockstepReverseIterator LRI(UnconditionalPreds); 1989 while (LRI.isValid() && 1990 canSinkInstructions(*LRI, PHIOperands)) { 1991 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1992 << "\n"); 1993 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1994 ++ScanIdx; 1995 --LRI; 1996 } 1997 1998 // If no instructions can be sunk, early-return. 1999 if (ScanIdx == 0) 2000 return false; 2001 2002 bool Changed = false; 2003 2004 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2005 unsigned NumPHIdValues = 0; 2006 for (auto *I : *LRI) 2007 for (auto *V : PHIOperands[I]) 2008 if (InstructionsToSink.count(V) == 0) 2009 ++NumPHIdValues; 2010 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2011 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2012 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2013 NumPHIInsts++; 2014 2015 return NumPHIInsts <= 1; 2016 }; 2017 2018 if (Cond) { 2019 // Check if we would actually sink anything first! This mutates the CFG and 2020 // adds an extra block. The goal in doing this is to allow instructions that 2021 // couldn't be sunk before to be sunk - obviously, speculatable instructions 2022 // (such as trunc, add) can be sunk and predicated already. So we check that 2023 // we're going to sink at least one non-speculatable instruction. 2024 LRI.reset(); 2025 unsigned Idx = 0; 2026 bool Profitable = false; 2027 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 2028 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2029 Profitable = true; 2030 break; 2031 } 2032 --LRI; 2033 ++Idx; 2034 } 2035 if (!Profitable) 2036 return false; 2037 2038 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2039 // We have a conditional edge and we're going to sink some instructions. 2040 // Insert a new block postdominating all blocks we're going to sink from. 2041 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2042 // Edges couldn't be split. 2043 return false; 2044 Changed = true; 2045 } 2046 2047 // Now that we've analyzed all potential sinking candidates, perform the 2048 // actual sink. We iteratively sink the last non-terminator of the source 2049 // blocks into their common successor unless doing so would require too 2050 // many PHI instructions to be generated (currently only one PHI is allowed 2051 // per sunk instruction). 2052 // 2053 // We can use InstructionsToSink to discount values needing PHI-merging that will 2054 // actually be sunk in a later iteration. This allows us to be more 2055 // aggressive in what we sink. This does allow a false positive where we 2056 // sink presuming a later value will also be sunk, but stop half way through 2057 // and never actually sink it which means we produce more PHIs than intended. 2058 // This is unlikely in practice though. 2059 unsigned SinkIdx = 0; 2060 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2061 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2062 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2063 << "\n"); 2064 2065 // Because we've sunk every instruction in turn, the current instruction to 2066 // sink is always at index 0. 2067 LRI.reset(); 2068 if (!ProfitableToSinkInstruction(LRI)) { 2069 // Too many PHIs would be created. 2070 LLVM_DEBUG( 2071 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2072 break; 2073 } 2074 2075 if (!sinkLastInstruction(UnconditionalPreds)) { 2076 LLVM_DEBUG( 2077 dbgs() 2078 << "SINK: stopping here, failed to actually sink instruction!\n"); 2079 break; 2080 } 2081 2082 NumSinkCommonInstrs++; 2083 Changed = true; 2084 } 2085 if (SinkIdx != 0) 2086 ++NumSinkCommonCode; 2087 return Changed; 2088 } 2089 2090 /// Determine if we can hoist sink a sole store instruction out of a 2091 /// conditional block. 2092 /// 2093 /// We are looking for code like the following: 2094 /// BrBB: 2095 /// store i32 %add, i32* %arrayidx2 2096 /// ... // No other stores or function calls (we could be calling a memory 2097 /// ... // function). 2098 /// %cmp = icmp ult %x, %y 2099 /// br i1 %cmp, label %EndBB, label %ThenBB 2100 /// ThenBB: 2101 /// store i32 %add5, i32* %arrayidx2 2102 /// br label EndBB 2103 /// EndBB: 2104 /// ... 2105 /// We are going to transform this into: 2106 /// BrBB: 2107 /// store i32 %add, i32* %arrayidx2 2108 /// ... // 2109 /// %cmp = icmp ult %x, %y 2110 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2111 /// store i32 %add.add5, i32* %arrayidx2 2112 /// ... 2113 /// 2114 /// \return The pointer to the value of the previous store if the store can be 2115 /// hoisted into the predecessor block. 0 otherwise. 2116 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2117 BasicBlock *StoreBB, BasicBlock *EndBB) { 2118 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2119 if (!StoreToHoist) 2120 return nullptr; 2121 2122 // Volatile or atomic. 2123 if (!StoreToHoist->isSimple()) 2124 return nullptr; 2125 2126 Value *StorePtr = StoreToHoist->getPointerOperand(); 2127 2128 // Look for a store to the same pointer in BrBB. 2129 unsigned MaxNumInstToLookAt = 9; 2130 // Skip pseudo probe intrinsic calls which are not really killing any memory 2131 // accesses. 2132 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2133 if (!MaxNumInstToLookAt) 2134 break; 2135 --MaxNumInstToLookAt; 2136 2137 // Could be calling an instruction that affects memory like free(). 2138 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2139 return nullptr; 2140 2141 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2142 // Found the previous store make sure it stores to the same location. 2143 if (SI->getPointerOperand() == StorePtr) 2144 // Found the previous store, return its value operand. 2145 return SI->getValueOperand(); 2146 return nullptr; // Unknown store. 2147 } 2148 } 2149 2150 return nullptr; 2151 } 2152 2153 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2154 /// converted to selects. 2155 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2156 BasicBlock *EndBB, 2157 unsigned &SpeculatedInstructions, 2158 InstructionCost &Cost, 2159 const TargetTransformInfo &TTI) { 2160 TargetTransformInfo::TargetCostKind CostKind = 2161 BB->getParent()->hasMinSize() 2162 ? TargetTransformInfo::TCK_CodeSize 2163 : TargetTransformInfo::TCK_SizeAndLatency; 2164 2165 bool HaveRewritablePHIs = false; 2166 for (PHINode &PN : EndBB->phis()) { 2167 Value *OrigV = PN.getIncomingValueForBlock(BB); 2168 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2169 2170 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2171 // Skip PHIs which are trivial. 2172 if (ThenV == OrigV) 2173 continue; 2174 2175 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2176 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2177 2178 // Don't convert to selects if we could remove undefined behavior instead. 2179 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2180 passingValueIsAlwaysUndefined(ThenV, &PN)) 2181 return false; 2182 2183 HaveRewritablePHIs = true; 2184 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2185 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2186 if (!OrigCE && !ThenCE) 2187 continue; // Known safe and cheap. 2188 2189 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2190 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2191 return false; 2192 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2193 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2194 InstructionCost MaxCost = 2195 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2196 if (OrigCost + ThenCost > MaxCost) 2197 return false; 2198 2199 // Account for the cost of an unfolded ConstantExpr which could end up 2200 // getting expanded into Instructions. 2201 // FIXME: This doesn't account for how many operations are combined in the 2202 // constant expression. 2203 ++SpeculatedInstructions; 2204 if (SpeculatedInstructions > 1) 2205 return false; 2206 } 2207 2208 return HaveRewritablePHIs; 2209 } 2210 2211 /// Speculate a conditional basic block flattening the CFG. 2212 /// 2213 /// Note that this is a very risky transform currently. Speculating 2214 /// instructions like this is most often not desirable. Instead, there is an MI 2215 /// pass which can do it with full awareness of the resource constraints. 2216 /// However, some cases are "obvious" and we should do directly. An example of 2217 /// this is speculating a single, reasonably cheap instruction. 2218 /// 2219 /// There is only one distinct advantage to flattening the CFG at the IR level: 2220 /// it makes very common but simplistic optimizations such as are common in 2221 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2222 /// modeling their effects with easier to reason about SSA value graphs. 2223 /// 2224 /// 2225 /// An illustration of this transform is turning this IR: 2226 /// \code 2227 /// BB: 2228 /// %cmp = icmp ult %x, %y 2229 /// br i1 %cmp, label %EndBB, label %ThenBB 2230 /// ThenBB: 2231 /// %sub = sub %x, %y 2232 /// br label BB2 2233 /// EndBB: 2234 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2235 /// ... 2236 /// \endcode 2237 /// 2238 /// Into this IR: 2239 /// \code 2240 /// BB: 2241 /// %cmp = icmp ult %x, %y 2242 /// %sub = sub %x, %y 2243 /// %cond = select i1 %cmp, 0, %sub 2244 /// ... 2245 /// \endcode 2246 /// 2247 /// \returns true if the conditional block is removed. 2248 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2249 const TargetTransformInfo &TTI) { 2250 // Be conservative for now. FP select instruction can often be expensive. 2251 Value *BrCond = BI->getCondition(); 2252 if (isa<FCmpInst>(BrCond)) 2253 return false; 2254 2255 BasicBlock *BB = BI->getParent(); 2256 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2257 InstructionCost Budget = 2258 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2259 2260 // If ThenBB is actually on the false edge of the conditional branch, remember 2261 // to swap the select operands later. 2262 bool Invert = false; 2263 if (ThenBB != BI->getSuccessor(0)) { 2264 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2265 Invert = true; 2266 } 2267 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2268 2269 // Keep a count of how many times instructions are used within ThenBB when 2270 // they are candidates for sinking into ThenBB. Specifically: 2271 // - They are defined in BB, and 2272 // - They have no side effects, and 2273 // - All of their uses are in ThenBB. 2274 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2275 2276 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2277 2278 unsigned SpeculatedInstructions = 0; 2279 Value *SpeculatedStoreValue = nullptr; 2280 StoreInst *SpeculatedStore = nullptr; 2281 for (BasicBlock::iterator BBI = ThenBB->begin(), 2282 BBE = std::prev(ThenBB->end()); 2283 BBI != BBE; ++BBI) { 2284 Instruction *I = &*BBI; 2285 // Skip debug info. 2286 if (isa<DbgInfoIntrinsic>(I)) { 2287 SpeculatedDbgIntrinsics.push_back(I); 2288 continue; 2289 } 2290 2291 // Skip pseudo probes. The consequence is we lose track of the branch 2292 // probability for ThenBB, which is fine since the optimization here takes 2293 // place regardless of the branch probability. 2294 if (isa<PseudoProbeInst>(I)) { 2295 continue; 2296 } 2297 2298 // Only speculatively execute a single instruction (not counting the 2299 // terminator) for now. 2300 ++SpeculatedInstructions; 2301 if (SpeculatedInstructions > 1) 2302 return false; 2303 2304 // Don't hoist the instruction if it's unsafe or expensive. 2305 if (!isSafeToSpeculativelyExecute(I) && 2306 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2307 I, BB, ThenBB, EndBB)))) 2308 return false; 2309 if (!SpeculatedStoreValue && 2310 computeSpeculationCost(I, TTI) > 2311 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2312 return false; 2313 2314 // Store the store speculation candidate. 2315 if (SpeculatedStoreValue) 2316 SpeculatedStore = cast<StoreInst>(I); 2317 2318 // Do not hoist the instruction if any of its operands are defined but not 2319 // used in BB. The transformation will prevent the operand from 2320 // being sunk into the use block. 2321 for (Use &Op : I->operands()) { 2322 Instruction *OpI = dyn_cast<Instruction>(Op); 2323 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2324 continue; // Not a candidate for sinking. 2325 2326 ++SinkCandidateUseCounts[OpI]; 2327 } 2328 } 2329 2330 // Consider any sink candidates which are only used in ThenBB as costs for 2331 // speculation. Note, while we iterate over a DenseMap here, we are summing 2332 // and so iteration order isn't significant. 2333 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2334 I = SinkCandidateUseCounts.begin(), 2335 E = SinkCandidateUseCounts.end(); 2336 I != E; ++I) 2337 if (I->first->hasNUses(I->second)) { 2338 ++SpeculatedInstructions; 2339 if (SpeculatedInstructions > 1) 2340 return false; 2341 } 2342 2343 // Check that we can insert the selects and that it's not too expensive to do 2344 // so. 2345 bool Convert = SpeculatedStore != nullptr; 2346 InstructionCost Cost = 0; 2347 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2348 SpeculatedInstructions, 2349 Cost, TTI); 2350 if (!Convert || Cost > Budget) 2351 return false; 2352 2353 // If we get here, we can hoist the instruction and if-convert. 2354 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2355 2356 // Insert a select of the value of the speculated store. 2357 if (SpeculatedStoreValue) { 2358 IRBuilder<NoFolder> Builder(BI); 2359 Value *TrueV = SpeculatedStore->getValueOperand(); 2360 Value *FalseV = SpeculatedStoreValue; 2361 if (Invert) 2362 std::swap(TrueV, FalseV); 2363 Value *S = Builder.CreateSelect( 2364 BrCond, TrueV, FalseV, "spec.store.select", BI); 2365 SpeculatedStore->setOperand(0, S); 2366 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2367 SpeculatedStore->getDebugLoc()); 2368 } 2369 2370 // Metadata can be dependent on the condition we are hoisting above. 2371 // Conservatively strip all metadata on the instruction. Drop the debug loc 2372 // to avoid making it appear as if the condition is a constant, which would 2373 // be misleading while debugging. 2374 for (auto &I : *ThenBB) { 2375 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2376 I.setDebugLoc(DebugLoc()); 2377 I.dropUnknownNonDebugMetadata(); 2378 } 2379 2380 // A hoisted conditional probe should be treated as dangling so that it will 2381 // not be over-counted when the samples collected on the non-conditional path 2382 // are counted towards the conditional path. We leave it for the counts 2383 // inference algorithm to figure out a proper count for a danglng probe. 2384 moveAndDanglePseudoProbes(ThenBB, BI); 2385 2386 // Hoist the instructions. 2387 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2388 ThenBB->begin(), std::prev(ThenBB->end())); 2389 2390 // Insert selects and rewrite the PHI operands. 2391 IRBuilder<NoFolder> Builder(BI); 2392 for (PHINode &PN : EndBB->phis()) { 2393 unsigned OrigI = PN.getBasicBlockIndex(BB); 2394 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2395 Value *OrigV = PN.getIncomingValue(OrigI); 2396 Value *ThenV = PN.getIncomingValue(ThenI); 2397 2398 // Skip PHIs which are trivial. 2399 if (OrigV == ThenV) 2400 continue; 2401 2402 // Create a select whose true value is the speculatively executed value and 2403 // false value is the pre-existing value. Swap them if the branch 2404 // destinations were inverted. 2405 Value *TrueV = ThenV, *FalseV = OrigV; 2406 if (Invert) 2407 std::swap(TrueV, FalseV); 2408 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2409 PN.setIncomingValue(OrigI, V); 2410 PN.setIncomingValue(ThenI, V); 2411 } 2412 2413 // Remove speculated dbg intrinsics. 2414 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2415 // dbg value for the different flows and inserting it after the select. 2416 for (Instruction *I : SpeculatedDbgIntrinsics) 2417 I->eraseFromParent(); 2418 2419 ++NumSpeculations; 2420 return true; 2421 } 2422 2423 /// Return true if we can thread a branch across this block. 2424 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2425 int Size = 0; 2426 2427 for (Instruction &I : BB->instructionsWithoutDebug()) { 2428 if (Size > MaxSmallBlockSize) 2429 return false; // Don't clone large BB's. 2430 2431 // Can't fold blocks that contain noduplicate or convergent calls. 2432 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2433 if (CI->cannotDuplicate() || CI->isConvergent()) 2434 return false; 2435 2436 // We will delete Phis while threading, so Phis should not be accounted in 2437 // block's size 2438 if (!isa<PHINode>(I)) 2439 ++Size; 2440 2441 // We can only support instructions that do not define values that are 2442 // live outside of the current basic block. 2443 for (User *U : I.users()) { 2444 Instruction *UI = cast<Instruction>(U); 2445 if (UI->getParent() != BB || isa<PHINode>(UI)) 2446 return false; 2447 } 2448 2449 // Looks ok, continue checking. 2450 } 2451 2452 return true; 2453 } 2454 2455 /// If we have a conditional branch on a PHI node value that is defined in the 2456 /// same block as the branch and if any PHI entries are constants, thread edges 2457 /// corresponding to that entry to be branches to their ultimate destination. 2458 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2459 const DataLayout &DL, AssumptionCache *AC) { 2460 BasicBlock *BB = BI->getParent(); 2461 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2462 // NOTE: we currently cannot transform this case if the PHI node is used 2463 // outside of the block. 2464 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2465 return false; 2466 2467 // Degenerate case of a single entry PHI. 2468 if (PN->getNumIncomingValues() == 1) { 2469 FoldSingleEntryPHINodes(PN->getParent()); 2470 return true; 2471 } 2472 2473 // Now we know that this block has multiple preds and two succs. 2474 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2475 return false; 2476 2477 // Okay, this is a simple enough basic block. See if any phi values are 2478 // constants. 2479 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2480 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2481 if (!CB || !CB->getType()->isIntegerTy(1)) 2482 continue; 2483 2484 // Okay, we now know that all edges from PredBB should be revectored to 2485 // branch to RealDest. 2486 BasicBlock *PredBB = PN->getIncomingBlock(i); 2487 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2488 2489 if (RealDest == BB) 2490 continue; // Skip self loops. 2491 // Skip if the predecessor's terminator is an indirect branch. 2492 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2493 continue; 2494 2495 SmallVector<DominatorTree::UpdateType, 3> Updates; 2496 2497 // The dest block might have PHI nodes, other predecessors and other 2498 // difficult cases. Instead of being smart about this, just insert a new 2499 // block that jumps to the destination block, effectively splitting 2500 // the edge we are about to create. 2501 BasicBlock *EdgeBB = 2502 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2503 RealDest->getParent(), RealDest); 2504 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2505 if (DTU) 2506 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2507 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2508 2509 // Update PHI nodes. 2510 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2511 2512 // BB may have instructions that are being threaded over. Clone these 2513 // instructions into EdgeBB. We know that there will be no uses of the 2514 // cloned instructions outside of EdgeBB. 2515 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2516 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2517 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2518 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2519 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2520 continue; 2521 } 2522 // Clone the instruction. 2523 Instruction *N = BBI->clone(); 2524 if (BBI->hasName()) 2525 N->setName(BBI->getName() + ".c"); 2526 2527 // Update operands due to translation. 2528 for (Use &Op : N->operands()) { 2529 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2530 if (PI != TranslateMap.end()) 2531 Op = PI->second; 2532 } 2533 2534 // Check for trivial simplification. 2535 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2536 if (!BBI->use_empty()) 2537 TranslateMap[&*BBI] = V; 2538 if (!N->mayHaveSideEffects()) { 2539 N->deleteValue(); // Instruction folded away, don't need actual inst 2540 N = nullptr; 2541 } 2542 } else { 2543 if (!BBI->use_empty()) 2544 TranslateMap[&*BBI] = N; 2545 } 2546 if (N) { 2547 // Insert the new instruction into its new home. 2548 EdgeBB->getInstList().insert(InsertPt, N); 2549 2550 // Register the new instruction with the assumption cache if necessary. 2551 if (auto *Assume = dyn_cast<AssumeInst>(N)) 2552 if (AC) 2553 AC->registerAssumption(Assume); 2554 } 2555 } 2556 2557 // Loop over all of the edges from PredBB to BB, changing them to branch 2558 // to EdgeBB instead. 2559 Instruction *PredBBTI = PredBB->getTerminator(); 2560 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2561 if (PredBBTI->getSuccessor(i) == BB) { 2562 BB->removePredecessor(PredBB); 2563 PredBBTI->setSuccessor(i, EdgeBB); 2564 } 2565 2566 if (DTU) { 2567 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2568 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2569 2570 DTU->applyUpdates(Updates); 2571 } 2572 2573 // Recurse, simplifying any other constants. 2574 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2575 } 2576 2577 return false; 2578 } 2579 2580 /// Given a BB that starts with the specified two-entry PHI node, 2581 /// see if we can eliminate it. 2582 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2583 DomTreeUpdater *DTU, const DataLayout &DL) { 2584 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2585 // statement", which has a very simple dominance structure. Basically, we 2586 // are trying to find the condition that is being branched on, which 2587 // subsequently causes this merge to happen. We really want control 2588 // dependence information for this check, but simplifycfg can't keep it up 2589 // to date, and this catches most of the cases we care about anyway. 2590 BasicBlock *BB = PN->getParent(); 2591 2592 BasicBlock *IfTrue, *IfFalse; 2593 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2594 if (!IfCond || 2595 // Don't bother if the branch will be constant folded trivially. 2596 isa<ConstantInt>(IfCond)) 2597 return false; 2598 2599 // Okay, we found that we can merge this two-entry phi node into a select. 2600 // Doing so would require us to fold *all* two entry phi nodes in this block. 2601 // At some point this becomes non-profitable (particularly if the target 2602 // doesn't support cmov's). Only do this transformation if there are two or 2603 // fewer PHI nodes in this block. 2604 unsigned NumPhis = 0; 2605 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2606 if (NumPhis > 2) 2607 return false; 2608 2609 // Loop over the PHI's seeing if we can promote them all to select 2610 // instructions. While we are at it, keep track of the instructions 2611 // that need to be moved to the dominating block. 2612 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2613 InstructionCost Cost = 0; 2614 InstructionCost Budget = 2615 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2616 2617 bool Changed = false; 2618 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2619 PHINode *PN = cast<PHINode>(II++); 2620 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2621 PN->replaceAllUsesWith(V); 2622 PN->eraseFromParent(); 2623 Changed = true; 2624 continue; 2625 } 2626 2627 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2628 Cost, Budget, TTI) || 2629 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2630 Cost, Budget, TTI)) 2631 return Changed; 2632 } 2633 2634 // If we folded the first phi, PN dangles at this point. Refresh it. If 2635 // we ran out of PHIs then we simplified them all. 2636 PN = dyn_cast<PHINode>(BB->begin()); 2637 if (!PN) 2638 return true; 2639 2640 // Return true if at least one of these is a 'not', and another is either 2641 // a 'not' too, or a constant. 2642 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2643 if (!match(V0, m_Not(m_Value()))) 2644 std::swap(V0, V1); 2645 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2646 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2647 }; 2648 2649 // Don't fold i1 branches on PHIs which contain binary operators or 2650 // select form of or/ands, unless one of the incoming values is an 'not' and 2651 // another one is freely invertible. 2652 // These can often be turned into switches and other things. 2653 auto IsBinOpOrAnd = [](Value *V) { 2654 return match( 2655 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2656 }; 2657 if (PN->getType()->isIntegerTy(1) && 2658 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2659 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2660 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2661 PN->getIncomingValue(1))) 2662 return Changed; 2663 2664 // If all PHI nodes are promotable, check to make sure that all instructions 2665 // in the predecessor blocks can be promoted as well. If not, we won't be able 2666 // to get rid of the control flow, so it's not worth promoting to select 2667 // instructions. 2668 BasicBlock *DomBlock = nullptr; 2669 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2670 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2671 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2672 IfBlock1 = nullptr; 2673 } else { 2674 DomBlock = *pred_begin(IfBlock1); 2675 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2676 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2677 !isa<PseudoProbeInst>(I)) { 2678 // This is not an aggressive instruction that we can promote. 2679 // Because of this, we won't be able to get rid of the control flow, so 2680 // the xform is not worth it. 2681 return Changed; 2682 } 2683 } 2684 2685 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2686 IfBlock2 = nullptr; 2687 } else { 2688 DomBlock = *pred_begin(IfBlock2); 2689 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2690 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2691 !isa<PseudoProbeInst>(I)) { 2692 // This is not an aggressive instruction that we can promote. 2693 // Because of this, we won't be able to get rid of the control flow, so 2694 // the xform is not worth it. 2695 return Changed; 2696 } 2697 } 2698 assert(DomBlock && "Failed to find root DomBlock"); 2699 2700 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2701 << " T: " << IfTrue->getName() 2702 << " F: " << IfFalse->getName() << "\n"); 2703 2704 // If we can still promote the PHI nodes after this gauntlet of tests, 2705 // do all of the PHI's now. 2706 Instruction *InsertPt = DomBlock->getTerminator(); 2707 IRBuilder<NoFolder> Builder(InsertPt); 2708 2709 // Move all 'aggressive' instructions, which are defined in the 2710 // conditional parts of the if's up to the dominating block. 2711 if (IfBlock1) 2712 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2713 if (IfBlock2) 2714 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2715 2716 // Propagate fast-math-flags from phi nodes to replacement selects. 2717 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2718 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2719 if (isa<FPMathOperator>(PN)) 2720 Builder.setFastMathFlags(PN->getFastMathFlags()); 2721 2722 // Change the PHI node into a select instruction. 2723 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2724 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2725 2726 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2727 PN->replaceAllUsesWith(Sel); 2728 Sel->takeName(PN); 2729 PN->eraseFromParent(); 2730 } 2731 2732 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2733 // has been flattened. Change DomBlock to jump directly to our new block to 2734 // avoid other simplifycfg's kicking in on the diamond. 2735 Instruction *OldTI = DomBlock->getTerminator(); 2736 Builder.SetInsertPoint(OldTI); 2737 Builder.CreateBr(BB); 2738 2739 SmallVector<DominatorTree::UpdateType, 3> Updates; 2740 if (DTU) { 2741 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2742 for (auto *Successor : successors(DomBlock)) 2743 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2744 } 2745 2746 OldTI->eraseFromParent(); 2747 if (DTU) 2748 DTU->applyUpdates(Updates); 2749 2750 return true; 2751 } 2752 2753 /// If we found a conditional branch that goes to two returning blocks, 2754 /// try to merge them together into one return, 2755 /// introducing a select if the return values disagree. 2756 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2757 IRBuilder<> &Builder) { 2758 auto *BB = BI->getParent(); 2759 assert(BI->isConditional() && "Must be a conditional branch"); 2760 BasicBlock *TrueSucc = BI->getSuccessor(0); 2761 BasicBlock *FalseSucc = BI->getSuccessor(1); 2762 // NOTE: destinations may match, this could be degenerate uncond branch. 2763 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2764 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2765 2766 // Check to ensure both blocks are empty (just a return) or optionally empty 2767 // with PHI nodes. If there are other instructions, merging would cause extra 2768 // computation on one path or the other. 2769 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2770 return false; 2771 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2772 return false; 2773 2774 Builder.SetInsertPoint(BI); 2775 // Okay, we found a branch that is going to two return nodes. If 2776 // there is no return value for this function, just change the 2777 // branch into a return. 2778 if (FalseRet->getNumOperands() == 0) { 2779 TrueSucc->removePredecessor(BB); 2780 FalseSucc->removePredecessor(BB); 2781 Builder.CreateRetVoid(); 2782 EraseTerminatorAndDCECond(BI); 2783 if (DTU) { 2784 SmallVector<DominatorTree::UpdateType, 2> Updates; 2785 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2786 if (TrueSucc != FalseSucc) 2787 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2788 DTU->applyUpdates(Updates); 2789 } 2790 return true; 2791 } 2792 2793 // Otherwise, figure out what the true and false return values are 2794 // so we can insert a new select instruction. 2795 Value *TrueValue = TrueRet->getReturnValue(); 2796 Value *FalseValue = FalseRet->getReturnValue(); 2797 2798 // Unwrap any PHI nodes in the return blocks. 2799 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2800 if (TVPN->getParent() == TrueSucc) 2801 TrueValue = TVPN->getIncomingValueForBlock(BB); 2802 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2803 if (FVPN->getParent() == FalseSucc) 2804 FalseValue = FVPN->getIncomingValueForBlock(BB); 2805 2806 // In order for this transformation to be safe, we must be able to 2807 // unconditionally execute both operands to the return. This is 2808 // normally the case, but we could have a potentially-trapping 2809 // constant expression that prevents this transformation from being 2810 // safe. 2811 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2812 if (TCV->canTrap()) 2813 return false; 2814 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2815 if (FCV->canTrap()) 2816 return false; 2817 2818 // Okay, we collected all the mapped values and checked them for sanity, and 2819 // defined to really do this transformation. First, update the CFG. 2820 TrueSucc->removePredecessor(BB); 2821 FalseSucc->removePredecessor(BB); 2822 2823 // Insert select instructions where needed. 2824 Value *BrCond = BI->getCondition(); 2825 if (TrueValue) { 2826 // Insert a select if the results differ. 2827 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2828 } else if (isa<UndefValue>(TrueValue)) { 2829 TrueValue = FalseValue; 2830 } else { 2831 TrueValue = 2832 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2833 } 2834 } 2835 2836 Value *RI = 2837 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2838 2839 (void)RI; 2840 2841 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2842 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2843 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2844 2845 EraseTerminatorAndDCECond(BI); 2846 if (DTU) { 2847 SmallVector<DominatorTree::UpdateType, 2> Updates; 2848 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2849 if (TrueSucc != FalseSucc) 2850 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2851 DTU->applyUpdates(Updates); 2852 } 2853 2854 return true; 2855 } 2856 2857 /// Return true if either PBI or BI has branch weight available, and store 2858 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2859 /// not have branch weight, use 1:1 as its weight. 2860 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2861 uint64_t &PredTrueWeight, 2862 uint64_t &PredFalseWeight, 2863 uint64_t &SuccTrueWeight, 2864 uint64_t &SuccFalseWeight) { 2865 bool PredHasWeights = 2866 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2867 bool SuccHasWeights = 2868 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2869 if (PredHasWeights || SuccHasWeights) { 2870 if (!PredHasWeights) 2871 PredTrueWeight = PredFalseWeight = 1; 2872 if (!SuccHasWeights) 2873 SuccTrueWeight = SuccFalseWeight = 1; 2874 return true; 2875 } else { 2876 return false; 2877 } 2878 } 2879 2880 /// Determine if the two branches share a common destination and deduce a glue 2881 /// that joins the branches' conditions to arrive at the common destination if 2882 /// that would be profitable. 2883 static Optional<std::pair<Instruction::BinaryOps, bool>> 2884 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 2885 const TargetTransformInfo *TTI) { 2886 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 2887 "Both blocks must end with a conditional branches."); 2888 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 2889 "PredBB must be a predecessor of BB."); 2890 2891 // We have the potential to fold the conditions together, but if the 2892 // predecessor branch is predictable, we may not want to merge them. 2893 uint64_t PTWeight, PFWeight; 2894 BranchProbability PBITrueProb, Likely; 2895 if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) && 2896 (PTWeight + PFWeight) != 0) { 2897 PBITrueProb = 2898 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 2899 Likely = TTI->getPredictableBranchThreshold(); 2900 } 2901 2902 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 2903 // Speculate the 2nd condition unless the 1st is probably true. 2904 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 2905 return {{Instruction::Or, false}}; 2906 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 2907 // Speculate the 2nd condition unless the 1st is probably false. 2908 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 2909 return {{Instruction::And, false}}; 2910 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 2911 // Speculate the 2nd condition unless the 1st is probably true. 2912 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 2913 return {{Instruction::And, true}}; 2914 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 2915 // Speculate the 2nd condition unless the 1st is probably false. 2916 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 2917 return {{Instruction::Or, true}}; 2918 } 2919 return None; 2920 } 2921 2922 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 2923 DomTreeUpdater *DTU, 2924 MemorySSAUpdater *MSSAU, 2925 const TargetTransformInfo *TTI) { 2926 BasicBlock *BB = BI->getParent(); 2927 BasicBlock *PredBlock = PBI->getParent(); 2928 2929 // Determine if the two branches share a common destination. 2930 Instruction::BinaryOps Opc; 2931 bool InvertPredCond; 2932 std::tie(Opc, InvertPredCond) = 2933 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 2934 2935 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2936 2937 IRBuilder<> Builder(PBI); 2938 // The builder is used to create instructions to eliminate the branch in BB. 2939 // If BB's terminator has !annotation metadata, add it to the new 2940 // instructions. 2941 Builder.CollectMetadataToCopy(BB->getTerminator(), 2942 {LLVMContext::MD_annotation}); 2943 2944 // If we need to invert the condition in the pred block to match, do so now. 2945 if (InvertPredCond) { 2946 Value *NewCond = PBI->getCondition(); 2947 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2948 CmpInst *CI = cast<CmpInst>(NewCond); 2949 CI->setPredicate(CI->getInversePredicate()); 2950 } else { 2951 NewCond = 2952 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2953 } 2954 2955 PBI->setCondition(NewCond); 2956 PBI->swapSuccessors(); 2957 } 2958 2959 BasicBlock *UniqueSucc = 2960 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 2961 2962 // Before cloning instructions, notify the successor basic block that it 2963 // is about to have a new predecessor. This will update PHI nodes, 2964 // which will allow us to update live-out uses of bonus instructions. 2965 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 2966 2967 // Try to update branch weights. 2968 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2969 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2970 SuccTrueWeight, SuccFalseWeight)) { 2971 SmallVector<uint64_t, 8> NewWeights; 2972 2973 if (PBI->getSuccessor(0) == BB) { 2974 // PBI: br i1 %x, BB, FalseDest 2975 // BI: br i1 %y, UniqueSucc, FalseDest 2976 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2977 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2978 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2979 // TrueWeight for PBI * FalseWeight for BI. 2980 // We assume that total weights of a BranchInst can fit into 32 bits. 2981 // Therefore, we will not have overflow using 64-bit arithmetic. 2982 NewWeights.push_back(PredFalseWeight * 2983 (SuccFalseWeight + SuccTrueWeight) + 2984 PredTrueWeight * SuccFalseWeight); 2985 } else { 2986 // PBI: br i1 %x, TrueDest, BB 2987 // BI: br i1 %y, TrueDest, UniqueSucc 2988 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2989 // FalseWeight for PBI * TrueWeight for BI. 2990 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 2991 PredFalseWeight * SuccTrueWeight); 2992 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2993 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2994 } 2995 2996 // Halve the weights if any of them cannot fit in an uint32_t 2997 FitWeights(NewWeights); 2998 2999 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3000 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3001 3002 // TODO: If BB is reachable from all paths through PredBlock, then we 3003 // could replace PBI's branch probabilities with BI's. 3004 } else 3005 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3006 3007 // Now, update the CFG. 3008 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3009 3010 if (DTU) 3011 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3012 {DominatorTree::Delete, PredBlock, BB}}); 3013 3014 // If BI was a loop latch, it may have had associated loop metadata. 3015 // We need to copy it to the new latch, that is, PBI. 3016 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3017 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3018 3019 ValueToValueMapTy VMap; // maps original values to cloned values 3020 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3021 3022 // Now that the Cond was cloned into the predecessor basic block, 3023 // or/and the two conditions together. 3024 Value *NewCond = nullptr; 3025 Value *BICond = VMap[BI->getCondition()]; 3026 3027 if (impliesPoison(BICond, PBI->getCondition())) 3028 NewCond = Builder.CreateBinOp(Opc, PBI->getCondition(), BICond, "or.cond"); 3029 else 3030 NewCond = 3031 Opc == Instruction::And 3032 ? Builder.CreateLogicalAnd(PBI->getCondition(), BICond, "or.cond") 3033 : Builder.CreateLogicalOr(PBI->getCondition(), BICond, "or.cond"); 3034 PBI->setCondition(NewCond); 3035 3036 // Copy any debug value intrinsics into the end of PredBlock. 3037 for (Instruction &I : *BB) { 3038 if (isa<DbgInfoIntrinsic>(I)) { 3039 Instruction *NewI = I.clone(); 3040 RemapInstruction(NewI, VMap, 3041 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3042 NewI->insertBefore(PBI); 3043 } 3044 } 3045 3046 ++NumFoldBranchToCommonDest; 3047 return true; 3048 } 3049 3050 /// If this basic block is simple enough, and if a predecessor branches to us 3051 /// and one of our successors, fold the block into the predecessor and use 3052 /// logical operations to pick the right destination. 3053 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3054 MemorySSAUpdater *MSSAU, 3055 const TargetTransformInfo *TTI, 3056 unsigned BonusInstThreshold) { 3057 // If this block ends with an unconditional branch, 3058 // let SpeculativelyExecuteBB() deal with it. 3059 if (!BI->isConditional()) 3060 return false; 3061 3062 BasicBlock *BB = BI->getParent(); 3063 3064 bool Changed = false; 3065 3066 TargetTransformInfo::TargetCostKind CostKind = 3067 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3068 : TargetTransformInfo::TCK_SizeAndLatency; 3069 3070 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3071 3072 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3073 Cond->getParent() != BB || !Cond->hasOneUse()) 3074 return Changed; 3075 3076 // Cond is known to be a compare or binary operator. Check to make sure that 3077 // neither operand is a potentially-trapping constant expression. 3078 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3079 if (CE->canTrap()) 3080 return Changed; 3081 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3082 if (CE->canTrap()) 3083 return Changed; 3084 3085 // Finally, don't infinitely unroll conditional loops. 3086 if (is_contained(successors(BB), BB)) 3087 return Changed; 3088 3089 // With which predecessors will we want to deal with? 3090 SmallVector<BasicBlock *, 8> Preds; 3091 for (BasicBlock *PredBlock : predecessors(BB)) { 3092 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3093 3094 // Check that we have two conditional branches. If there is a PHI node in 3095 // the common successor, verify that the same value flows in from both 3096 // blocks. 3097 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3098 continue; 3099 3100 // Determine if the two branches share a common destination. 3101 Instruction::BinaryOps Opc; 3102 bool InvertPredCond; 3103 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3104 std::tie(Opc, InvertPredCond) = *Recipe; 3105 else 3106 continue; 3107 3108 // Check the cost of inserting the necessary logic before performing the 3109 // transformation. 3110 if (TTI) { 3111 Type *Ty = BI->getCondition()->getType(); 3112 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3113 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3114 !isa<CmpInst>(PBI->getCondition()))) 3115 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3116 3117 if (Cost > BranchFoldThreshold) 3118 continue; 3119 } 3120 3121 // Ok, we do want to deal with this predecessor. Record it. 3122 Preds.emplace_back(PredBlock); 3123 } 3124 3125 // If there aren't any predecessors into which we can fold, 3126 // don't bother checking the cost. 3127 if (Preds.empty()) 3128 return Changed; 3129 3130 // Only allow this transformation if computing the condition doesn't involve 3131 // too many instructions and these involved instructions can be executed 3132 // unconditionally. We denote all involved instructions except the condition 3133 // as "bonus instructions", and only allow this transformation when the 3134 // number of the bonus instructions we'll need to create when cloning into 3135 // each predecessor does not exceed a certain threshold. 3136 unsigned NumBonusInsts = 0; 3137 const unsigned PredCount = Preds.size(); 3138 for (Instruction &I : *BB) { 3139 // Don't check the branch condition comparison itself. 3140 if (&I == Cond) 3141 continue; 3142 // Ignore dbg intrinsics, and the terminator. 3143 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3144 continue; 3145 // I must be safe to execute unconditionally. 3146 if (!isSafeToSpeculativelyExecute(&I)) 3147 return Changed; 3148 3149 // Account for the cost of duplicating this instruction into each 3150 // predecessor. 3151 NumBonusInsts += PredCount; 3152 // Early exits once we reach the limit. 3153 if (NumBonusInsts > BonusInstThreshold) 3154 return Changed; 3155 } 3156 3157 // Ok, we have the budget. Perform the transformation. 3158 for (BasicBlock *PredBlock : Preds) { 3159 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3160 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3161 } 3162 return Changed; 3163 } 3164 3165 // If there is only one store in BB1 and BB2, return it, otherwise return 3166 // nullptr. 3167 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3168 StoreInst *S = nullptr; 3169 for (auto *BB : {BB1, BB2}) { 3170 if (!BB) 3171 continue; 3172 for (auto &I : *BB) 3173 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3174 if (S) 3175 // Multiple stores seen. 3176 return nullptr; 3177 else 3178 S = SI; 3179 } 3180 } 3181 return S; 3182 } 3183 3184 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3185 Value *AlternativeV = nullptr) { 3186 // PHI is going to be a PHI node that allows the value V that is defined in 3187 // BB to be referenced in BB's only successor. 3188 // 3189 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3190 // doesn't matter to us what the other operand is (it'll never get used). We 3191 // could just create a new PHI with an undef incoming value, but that could 3192 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3193 // other PHI. So here we directly look for some PHI in BB's successor with V 3194 // as an incoming operand. If we find one, we use it, else we create a new 3195 // one. 3196 // 3197 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3198 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3199 // where OtherBB is the single other predecessor of BB's only successor. 3200 PHINode *PHI = nullptr; 3201 BasicBlock *Succ = BB->getSingleSuccessor(); 3202 3203 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3204 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3205 PHI = cast<PHINode>(I); 3206 if (!AlternativeV) 3207 break; 3208 3209 assert(Succ->hasNPredecessors(2)); 3210 auto PredI = pred_begin(Succ); 3211 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3212 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3213 break; 3214 PHI = nullptr; 3215 } 3216 if (PHI) 3217 return PHI; 3218 3219 // If V is not an instruction defined in BB, just return it. 3220 if (!AlternativeV && 3221 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3222 return V; 3223 3224 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3225 PHI->addIncoming(V, BB); 3226 for (BasicBlock *PredBB : predecessors(Succ)) 3227 if (PredBB != BB) 3228 PHI->addIncoming( 3229 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3230 return PHI; 3231 } 3232 3233 static bool mergeConditionalStoreToAddress( 3234 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3235 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3236 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3237 // For every pointer, there must be exactly two stores, one coming from 3238 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3239 // store (to any address) in PTB,PFB or QTB,QFB. 3240 // FIXME: We could relax this restriction with a bit more work and performance 3241 // testing. 3242 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3243 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3244 if (!PStore || !QStore) 3245 return false; 3246 3247 // Now check the stores are compatible. 3248 if (!QStore->isUnordered() || !PStore->isUnordered()) 3249 return false; 3250 3251 // Check that sinking the store won't cause program behavior changes. Sinking 3252 // the store out of the Q blocks won't change any behavior as we're sinking 3253 // from a block to its unconditional successor. But we're moving a store from 3254 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3255 // So we need to check that there are no aliasing loads or stores in 3256 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3257 // operations between PStore and the end of its parent block. 3258 // 3259 // The ideal way to do this is to query AliasAnalysis, but we don't 3260 // preserve AA currently so that is dangerous. Be super safe and just 3261 // check there are no other memory operations at all. 3262 for (auto &I : *QFB->getSinglePredecessor()) 3263 if (I.mayReadOrWriteMemory()) 3264 return false; 3265 for (auto &I : *QFB) 3266 if (&I != QStore && I.mayReadOrWriteMemory()) 3267 return false; 3268 if (QTB) 3269 for (auto &I : *QTB) 3270 if (&I != QStore && I.mayReadOrWriteMemory()) 3271 return false; 3272 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3273 I != E; ++I) 3274 if (&*I != PStore && I->mayReadOrWriteMemory()) 3275 return false; 3276 3277 // If we're not in aggressive mode, we only optimize if we have some 3278 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3279 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3280 if (!BB) 3281 return true; 3282 // Heuristic: if the block can be if-converted/phi-folded and the 3283 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3284 // thread this store. 3285 InstructionCost Cost = 0; 3286 InstructionCost Budget = 3287 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3288 for (auto &I : BB->instructionsWithoutDebug()) { 3289 // Consider terminator instruction to be free. 3290 if (I.isTerminator()) 3291 continue; 3292 // If this is one the stores that we want to speculate out of this BB, 3293 // then don't count it's cost, consider it to be free. 3294 if (auto *S = dyn_cast<StoreInst>(&I)) 3295 if (llvm::find(FreeStores, S)) 3296 continue; 3297 // Else, we have a white-list of instructions that we are ak speculating. 3298 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3299 return false; // Not in white-list - not worthwhile folding. 3300 // And finally, if this is a non-free instruction that we are okay 3301 // speculating, ensure that we consider the speculation budget. 3302 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3303 if (Cost > Budget) 3304 return false; // Eagerly refuse to fold as soon as we're out of budget. 3305 } 3306 assert(Cost <= Budget && 3307 "When we run out of budget we will eagerly return from within the " 3308 "per-instruction loop."); 3309 return true; 3310 }; 3311 3312 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3313 if (!MergeCondStoresAggressively && 3314 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3315 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3316 return false; 3317 3318 // If PostBB has more than two predecessors, we need to split it so we can 3319 // sink the store. 3320 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3321 // We know that QFB's only successor is PostBB. And QFB has a single 3322 // predecessor. If QTB exists, then its only successor is also PostBB. 3323 // If QTB does not exist, then QFB's only predecessor has a conditional 3324 // branch to QFB and PostBB. 3325 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3326 BasicBlock *NewBB = 3327 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3328 if (!NewBB) 3329 return false; 3330 PostBB = NewBB; 3331 } 3332 3333 // OK, we're going to sink the stores to PostBB. The store has to be 3334 // conditional though, so first create the predicate. 3335 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3336 ->getCondition(); 3337 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3338 ->getCondition(); 3339 3340 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3341 PStore->getParent()); 3342 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3343 QStore->getParent(), PPHI); 3344 3345 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3346 3347 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3348 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3349 3350 if (InvertPCond) 3351 PPred = QB.CreateNot(PPred); 3352 if (InvertQCond) 3353 QPred = QB.CreateNot(QPred); 3354 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3355 3356 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3357 /*Unreachable=*/false, 3358 /*BranchWeights=*/nullptr, DTU); 3359 QB.SetInsertPoint(T); 3360 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3361 AAMDNodes AAMD; 3362 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3363 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3364 SI->setAAMetadata(AAMD); 3365 // Choose the minimum alignment. If we could prove both stores execute, we 3366 // could use biggest one. In this case, though, we only know that one of the 3367 // stores executes. And we don't know it's safe to take the alignment from a 3368 // store that doesn't execute. 3369 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3370 3371 QStore->eraseFromParent(); 3372 PStore->eraseFromParent(); 3373 3374 return true; 3375 } 3376 3377 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3378 DomTreeUpdater *DTU, const DataLayout &DL, 3379 const TargetTransformInfo &TTI) { 3380 // The intention here is to find diamonds or triangles (see below) where each 3381 // conditional block contains a store to the same address. Both of these 3382 // stores are conditional, so they can't be unconditionally sunk. But it may 3383 // be profitable to speculatively sink the stores into one merged store at the 3384 // end, and predicate the merged store on the union of the two conditions of 3385 // PBI and QBI. 3386 // 3387 // This can reduce the number of stores executed if both of the conditions are 3388 // true, and can allow the blocks to become small enough to be if-converted. 3389 // This optimization will also chain, so that ladders of test-and-set 3390 // sequences can be if-converted away. 3391 // 3392 // We only deal with simple diamonds or triangles: 3393 // 3394 // PBI or PBI or a combination of the two 3395 // / \ | \ 3396 // PTB PFB | PFB 3397 // \ / | / 3398 // QBI QBI 3399 // / \ | \ 3400 // QTB QFB | QFB 3401 // \ / | / 3402 // PostBB PostBB 3403 // 3404 // We model triangles as a type of diamond with a nullptr "true" block. 3405 // Triangles are canonicalized so that the fallthrough edge is represented by 3406 // a true condition, as in the diagram above. 3407 BasicBlock *PTB = PBI->getSuccessor(0); 3408 BasicBlock *PFB = PBI->getSuccessor(1); 3409 BasicBlock *QTB = QBI->getSuccessor(0); 3410 BasicBlock *QFB = QBI->getSuccessor(1); 3411 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3412 3413 // Make sure we have a good guess for PostBB. If QTB's only successor is 3414 // QFB, then QFB is a better PostBB. 3415 if (QTB->getSingleSuccessor() == QFB) 3416 PostBB = QFB; 3417 3418 // If we couldn't find a good PostBB, stop. 3419 if (!PostBB) 3420 return false; 3421 3422 bool InvertPCond = false, InvertQCond = false; 3423 // Canonicalize fallthroughs to the true branches. 3424 if (PFB == QBI->getParent()) { 3425 std::swap(PFB, PTB); 3426 InvertPCond = true; 3427 } 3428 if (QFB == PostBB) { 3429 std::swap(QFB, QTB); 3430 InvertQCond = true; 3431 } 3432 3433 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3434 // and QFB may not. Model fallthroughs as a nullptr block. 3435 if (PTB == QBI->getParent()) 3436 PTB = nullptr; 3437 if (QTB == PostBB) 3438 QTB = nullptr; 3439 3440 // Legality bailouts. We must have at least the non-fallthrough blocks and 3441 // the post-dominating block, and the non-fallthroughs must only have one 3442 // predecessor. 3443 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3444 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3445 }; 3446 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3447 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3448 return false; 3449 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3450 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3451 return false; 3452 if (!QBI->getParent()->hasNUses(2)) 3453 return false; 3454 3455 // OK, this is a sequence of two diamonds or triangles. 3456 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3457 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3458 for (auto *BB : {PTB, PFB}) { 3459 if (!BB) 3460 continue; 3461 for (auto &I : *BB) 3462 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3463 PStoreAddresses.insert(SI->getPointerOperand()); 3464 } 3465 for (auto *BB : {QTB, QFB}) { 3466 if (!BB) 3467 continue; 3468 for (auto &I : *BB) 3469 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3470 QStoreAddresses.insert(SI->getPointerOperand()); 3471 } 3472 3473 set_intersect(PStoreAddresses, QStoreAddresses); 3474 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3475 // clear what it contains. 3476 auto &CommonAddresses = PStoreAddresses; 3477 3478 bool Changed = false; 3479 for (auto *Address : CommonAddresses) 3480 Changed |= 3481 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3482 InvertPCond, InvertQCond, DTU, DL, TTI); 3483 return Changed; 3484 } 3485 3486 /// If the previous block ended with a widenable branch, determine if reusing 3487 /// the target block is profitable and legal. This will have the effect of 3488 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3489 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3490 DomTreeUpdater *DTU) { 3491 // TODO: This can be generalized in two important ways: 3492 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3493 // values from the PBI edge. 3494 // 2) We can sink side effecting instructions into BI's fallthrough 3495 // successor provided they doesn't contribute to computation of 3496 // BI's condition. 3497 Value *CondWB, *WC; 3498 BasicBlock *IfTrueBB, *IfFalseBB; 3499 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3500 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3501 return false; 3502 if (!IfFalseBB->phis().empty()) 3503 return false; // TODO 3504 // Use lambda to lazily compute expensive condition after cheap ones. 3505 auto NoSideEffects = [](BasicBlock &BB) { 3506 return !llvm::any_of(BB, [](const Instruction &I) { 3507 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3508 }); 3509 }; 3510 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3511 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3512 NoSideEffects(*BI->getParent())) { 3513 auto *OldSuccessor = BI->getSuccessor(1); 3514 OldSuccessor->removePredecessor(BI->getParent()); 3515 BI->setSuccessor(1, IfFalseBB); 3516 if (DTU) 3517 DTU->applyUpdates( 3518 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3519 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3520 return true; 3521 } 3522 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3523 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3524 NoSideEffects(*BI->getParent())) { 3525 auto *OldSuccessor = BI->getSuccessor(0); 3526 OldSuccessor->removePredecessor(BI->getParent()); 3527 BI->setSuccessor(0, IfFalseBB); 3528 if (DTU) 3529 DTU->applyUpdates( 3530 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3531 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3532 return true; 3533 } 3534 return false; 3535 } 3536 3537 /// If we have a conditional branch as a predecessor of another block, 3538 /// this function tries to simplify it. We know 3539 /// that PBI and BI are both conditional branches, and BI is in one of the 3540 /// successor blocks of PBI - PBI branches to BI. 3541 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3542 DomTreeUpdater *DTU, 3543 const DataLayout &DL, 3544 const TargetTransformInfo &TTI) { 3545 assert(PBI->isConditional() && BI->isConditional()); 3546 BasicBlock *BB = BI->getParent(); 3547 3548 // If this block ends with a branch instruction, and if there is a 3549 // predecessor that ends on a branch of the same condition, make 3550 // this conditional branch redundant. 3551 if (PBI->getCondition() == BI->getCondition() && 3552 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3553 // Okay, the outcome of this conditional branch is statically 3554 // knowable. If this block had a single pred, handle specially. 3555 if (BB->getSinglePredecessor()) { 3556 // Turn this into a branch on constant. 3557 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3558 BI->setCondition( 3559 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3560 return true; // Nuke the branch on constant. 3561 } 3562 3563 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3564 // in the constant and simplify the block result. Subsequent passes of 3565 // simplifycfg will thread the block. 3566 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3567 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3568 PHINode *NewPN = PHINode::Create( 3569 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3570 BI->getCondition()->getName() + ".pr", &BB->front()); 3571 // Okay, we're going to insert the PHI node. Since PBI is not the only 3572 // predecessor, compute the PHI'd conditional value for all of the preds. 3573 // Any predecessor where the condition is not computable we keep symbolic. 3574 for (pred_iterator PI = PB; PI != PE; ++PI) { 3575 BasicBlock *P = *PI; 3576 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3577 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3578 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3579 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3580 NewPN->addIncoming( 3581 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3582 P); 3583 } else { 3584 NewPN->addIncoming(BI->getCondition(), P); 3585 } 3586 } 3587 3588 BI->setCondition(NewPN); 3589 return true; 3590 } 3591 } 3592 3593 // If the previous block ended with a widenable branch, determine if reusing 3594 // the target block is profitable and legal. This will have the effect of 3595 // "widening" PBI, but doesn't require us to reason about hosting safety. 3596 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3597 return true; 3598 3599 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3600 if (CE->canTrap()) 3601 return false; 3602 3603 // If both branches are conditional and both contain stores to the same 3604 // address, remove the stores from the conditionals and create a conditional 3605 // merged store at the end. 3606 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3607 return true; 3608 3609 // If this is a conditional branch in an empty block, and if any 3610 // predecessors are a conditional branch to one of our destinations, 3611 // fold the conditions into logical ops and one cond br. 3612 3613 // Ignore dbg intrinsics. 3614 if (&*BB->instructionsWithoutDebug().begin() != BI) 3615 return false; 3616 3617 int PBIOp, BIOp; 3618 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3619 PBIOp = 0; 3620 BIOp = 0; 3621 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3622 PBIOp = 0; 3623 BIOp = 1; 3624 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3625 PBIOp = 1; 3626 BIOp = 0; 3627 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3628 PBIOp = 1; 3629 BIOp = 1; 3630 } else { 3631 return false; 3632 } 3633 3634 // Check to make sure that the other destination of this branch 3635 // isn't BB itself. If so, this is an infinite loop that will 3636 // keep getting unwound. 3637 if (PBI->getSuccessor(PBIOp) == BB) 3638 return false; 3639 3640 // Do not perform this transformation if it would require 3641 // insertion of a large number of select instructions. For targets 3642 // without predication/cmovs, this is a big pessimization. 3643 3644 // Also do not perform this transformation if any phi node in the common 3645 // destination block can trap when reached by BB or PBB (PR17073). In that 3646 // case, it would be unsafe to hoist the operation into a select instruction. 3647 3648 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3649 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3650 unsigned NumPhis = 0; 3651 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3652 ++II, ++NumPhis) { 3653 if (NumPhis > 2) // Disable this xform. 3654 return false; 3655 3656 PHINode *PN = cast<PHINode>(II); 3657 Value *BIV = PN->getIncomingValueForBlock(BB); 3658 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3659 if (CE->canTrap()) 3660 return false; 3661 3662 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3663 Value *PBIV = PN->getIncomingValue(PBBIdx); 3664 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3665 if (CE->canTrap()) 3666 return false; 3667 } 3668 3669 // Finally, if everything is ok, fold the branches to logical ops. 3670 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3671 3672 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3673 << "AND: " << *BI->getParent()); 3674 3675 SmallVector<DominatorTree::UpdateType, 5> Updates; 3676 3677 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3678 // branch in it, where one edge (OtherDest) goes back to itself but the other 3679 // exits. We don't *know* that the program avoids the infinite loop 3680 // (even though that seems likely). If we do this xform naively, we'll end up 3681 // recursively unpeeling the loop. Since we know that (after the xform is 3682 // done) that the block *is* infinite if reached, we just make it an obviously 3683 // infinite loop with no cond branch. 3684 if (OtherDest == BB) { 3685 // Insert it at the end of the function, because it's either code, 3686 // or it won't matter if it's hot. :) 3687 BasicBlock *InfLoopBlock = 3688 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3689 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3690 if (DTU) 3691 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3692 OtherDest = InfLoopBlock; 3693 } 3694 3695 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3696 3697 // BI may have other predecessors. Because of this, we leave 3698 // it alone, but modify PBI. 3699 3700 // Make sure we get to CommonDest on True&True directions. 3701 Value *PBICond = PBI->getCondition(); 3702 IRBuilder<NoFolder> Builder(PBI); 3703 if (PBIOp) 3704 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3705 3706 Value *BICond = BI->getCondition(); 3707 if (BIOp) 3708 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3709 3710 // Merge the conditions. 3711 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3712 3713 // Modify PBI to branch on the new condition to the new dests. 3714 PBI->setCondition(Cond); 3715 PBI->setSuccessor(0, CommonDest); 3716 PBI->setSuccessor(1, OtherDest); 3717 3718 if (DTU) { 3719 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3720 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3721 3722 DTU->applyUpdates(Updates); 3723 } 3724 3725 // Update branch weight for PBI. 3726 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3727 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3728 bool HasWeights = 3729 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3730 SuccTrueWeight, SuccFalseWeight); 3731 if (HasWeights) { 3732 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3733 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3734 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3735 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3736 // The weight to CommonDest should be PredCommon * SuccTotal + 3737 // PredOther * SuccCommon. 3738 // The weight to OtherDest should be PredOther * SuccOther. 3739 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3740 PredOther * SuccCommon, 3741 PredOther * SuccOther}; 3742 // Halve the weights if any of them cannot fit in an uint32_t 3743 FitWeights(NewWeights); 3744 3745 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3746 } 3747 3748 // OtherDest may have phi nodes. If so, add an entry from PBI's 3749 // block that are identical to the entries for BI's block. 3750 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3751 3752 // We know that the CommonDest already had an edge from PBI to 3753 // it. If it has PHIs though, the PHIs may have different 3754 // entries for BB and PBI's BB. If so, insert a select to make 3755 // them agree. 3756 for (PHINode &PN : CommonDest->phis()) { 3757 Value *BIV = PN.getIncomingValueForBlock(BB); 3758 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3759 Value *PBIV = PN.getIncomingValue(PBBIdx); 3760 if (BIV != PBIV) { 3761 // Insert a select in PBI to pick the right value. 3762 SelectInst *NV = cast<SelectInst>( 3763 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3764 PN.setIncomingValue(PBBIdx, NV); 3765 // Although the select has the same condition as PBI, the original branch 3766 // weights for PBI do not apply to the new select because the select's 3767 // 'logical' edges are incoming edges of the phi that is eliminated, not 3768 // the outgoing edges of PBI. 3769 if (HasWeights) { 3770 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3771 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3772 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3773 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3774 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3775 // The weight to PredOtherDest should be PredOther * SuccCommon. 3776 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3777 PredOther * SuccCommon}; 3778 3779 FitWeights(NewWeights); 3780 3781 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3782 } 3783 } 3784 } 3785 3786 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3787 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3788 3789 // This basic block is probably dead. We know it has at least 3790 // one fewer predecessor. 3791 return true; 3792 } 3793 3794 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3795 // true or to FalseBB if Cond is false. 3796 // Takes care of updating the successors and removing the old terminator. 3797 // Also makes sure not to introduce new successors by assuming that edges to 3798 // non-successor TrueBBs and FalseBBs aren't reachable. 3799 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3800 Value *Cond, BasicBlock *TrueBB, 3801 BasicBlock *FalseBB, 3802 uint32_t TrueWeight, 3803 uint32_t FalseWeight) { 3804 auto *BB = OldTerm->getParent(); 3805 // Remove any superfluous successor edges from the CFG. 3806 // First, figure out which successors to preserve. 3807 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3808 // successor. 3809 BasicBlock *KeepEdge1 = TrueBB; 3810 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3811 3812 SmallPtrSet<BasicBlock *, 2> RemovedSuccessors; 3813 3814 // Then remove the rest. 3815 for (BasicBlock *Succ : successors(OldTerm)) { 3816 // Make sure only to keep exactly one copy of each edge. 3817 if (Succ == KeepEdge1) 3818 KeepEdge1 = nullptr; 3819 else if (Succ == KeepEdge2) 3820 KeepEdge2 = nullptr; 3821 else { 3822 Succ->removePredecessor(BB, 3823 /*KeepOneInputPHIs=*/true); 3824 3825 if (Succ != TrueBB && Succ != FalseBB) 3826 RemovedSuccessors.insert(Succ); 3827 } 3828 } 3829 3830 IRBuilder<> Builder(OldTerm); 3831 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3832 3833 // Insert an appropriate new terminator. 3834 if (!KeepEdge1 && !KeepEdge2) { 3835 if (TrueBB == FalseBB) { 3836 // We were only looking for one successor, and it was present. 3837 // Create an unconditional branch to it. 3838 Builder.CreateBr(TrueBB); 3839 } else { 3840 // We found both of the successors we were looking for. 3841 // Create a conditional branch sharing the condition of the select. 3842 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3843 if (TrueWeight != FalseWeight) 3844 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3845 } 3846 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3847 // Neither of the selected blocks were successors, so this 3848 // terminator must be unreachable. 3849 new UnreachableInst(OldTerm->getContext(), OldTerm); 3850 } else { 3851 // One of the selected values was a successor, but the other wasn't. 3852 // Insert an unconditional branch to the one that was found; 3853 // the edge to the one that wasn't must be unreachable. 3854 if (!KeepEdge1) { 3855 // Only TrueBB was found. 3856 Builder.CreateBr(TrueBB); 3857 } else { 3858 // Only FalseBB was found. 3859 Builder.CreateBr(FalseBB); 3860 } 3861 } 3862 3863 EraseTerminatorAndDCECond(OldTerm); 3864 3865 if (DTU) { 3866 SmallVector<DominatorTree::UpdateType, 2> Updates; 3867 Updates.reserve(RemovedSuccessors.size()); 3868 for (auto *RemovedSuccessor : RemovedSuccessors) 3869 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3870 DTU->applyUpdates(Updates); 3871 } 3872 3873 return true; 3874 } 3875 3876 // Replaces 3877 // (switch (select cond, X, Y)) on constant X, Y 3878 // with a branch - conditional if X and Y lead to distinct BBs, 3879 // unconditional otherwise. 3880 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3881 SelectInst *Select) { 3882 // Check for constant integer values in the select. 3883 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3884 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3885 if (!TrueVal || !FalseVal) 3886 return false; 3887 3888 // Find the relevant condition and destinations. 3889 Value *Condition = Select->getCondition(); 3890 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3891 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3892 3893 // Get weight for TrueBB and FalseBB. 3894 uint32_t TrueWeight = 0, FalseWeight = 0; 3895 SmallVector<uint64_t, 8> Weights; 3896 bool HasWeights = HasBranchWeights(SI); 3897 if (HasWeights) { 3898 GetBranchWeights(SI, Weights); 3899 if (Weights.size() == 1 + SI->getNumCases()) { 3900 TrueWeight = 3901 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3902 FalseWeight = 3903 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3904 } 3905 } 3906 3907 // Perform the actual simplification. 3908 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3909 FalseWeight); 3910 } 3911 3912 // Replaces 3913 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3914 // blockaddress(@fn, BlockB))) 3915 // with 3916 // (br cond, BlockA, BlockB). 3917 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3918 SelectInst *SI) { 3919 // Check that both operands of the select are block addresses. 3920 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3921 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3922 if (!TBA || !FBA) 3923 return false; 3924 3925 // Extract the actual blocks. 3926 BasicBlock *TrueBB = TBA->getBasicBlock(); 3927 BasicBlock *FalseBB = FBA->getBasicBlock(); 3928 3929 // Perform the actual simplification. 3930 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3931 0); 3932 } 3933 3934 /// This is called when we find an icmp instruction 3935 /// (a seteq/setne with a constant) as the only instruction in a 3936 /// block that ends with an uncond branch. We are looking for a very specific 3937 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3938 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3939 /// default value goes to an uncond block with a seteq in it, we get something 3940 /// like: 3941 /// 3942 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3943 /// DEFAULT: 3944 /// %tmp = icmp eq i8 %A, 92 3945 /// br label %end 3946 /// end: 3947 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3948 /// 3949 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3950 /// the PHI, merging the third icmp into the switch. 3951 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3952 ICmpInst *ICI, IRBuilder<> &Builder) { 3953 BasicBlock *BB = ICI->getParent(); 3954 3955 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3956 // complex. 3957 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3958 return false; 3959 3960 Value *V = ICI->getOperand(0); 3961 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3962 3963 // The pattern we're looking for is where our only predecessor is a switch on 3964 // 'V' and this block is the default case for the switch. In this case we can 3965 // fold the compared value into the switch to simplify things. 3966 BasicBlock *Pred = BB->getSinglePredecessor(); 3967 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3968 return false; 3969 3970 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3971 if (SI->getCondition() != V) 3972 return false; 3973 3974 // If BB is reachable on a non-default case, then we simply know the value of 3975 // V in this block. Substitute it and constant fold the icmp instruction 3976 // away. 3977 if (SI->getDefaultDest() != BB) { 3978 ConstantInt *VVal = SI->findCaseDest(BB); 3979 assert(VVal && "Should have a unique destination value"); 3980 ICI->setOperand(0, VVal); 3981 3982 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3983 ICI->replaceAllUsesWith(V); 3984 ICI->eraseFromParent(); 3985 } 3986 // BB is now empty, so it is likely to simplify away. 3987 return requestResimplify(); 3988 } 3989 3990 // Ok, the block is reachable from the default dest. If the constant we're 3991 // comparing exists in one of the other edges, then we can constant fold ICI 3992 // and zap it. 3993 if (SI->findCaseValue(Cst) != SI->case_default()) { 3994 Value *V; 3995 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3996 V = ConstantInt::getFalse(BB->getContext()); 3997 else 3998 V = ConstantInt::getTrue(BB->getContext()); 3999 4000 ICI->replaceAllUsesWith(V); 4001 ICI->eraseFromParent(); 4002 // BB is now empty, so it is likely to simplify away. 4003 return requestResimplify(); 4004 } 4005 4006 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4007 // the block. 4008 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4009 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4010 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4011 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4012 return false; 4013 4014 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4015 // true in the PHI. 4016 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4017 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4018 4019 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4020 std::swap(DefaultCst, NewCst); 4021 4022 // Replace ICI (which is used by the PHI for the default value) with true or 4023 // false depending on if it is EQ or NE. 4024 ICI->replaceAllUsesWith(DefaultCst); 4025 ICI->eraseFromParent(); 4026 4027 SmallVector<DominatorTree::UpdateType, 2> Updates; 4028 4029 // Okay, the switch goes to this block on a default value. Add an edge from 4030 // the switch to the merge point on the compared value. 4031 BasicBlock *NewBB = 4032 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4033 { 4034 SwitchInstProfUpdateWrapper SIW(*SI); 4035 auto W0 = SIW.getSuccessorWeight(0); 4036 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4037 if (W0) { 4038 NewW = ((uint64_t(*W0) + 1) >> 1); 4039 SIW.setSuccessorWeight(0, *NewW); 4040 } 4041 SIW.addCase(Cst, NewBB, NewW); 4042 if (DTU) 4043 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4044 } 4045 4046 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4047 Builder.SetInsertPoint(NewBB); 4048 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4049 Builder.CreateBr(SuccBlock); 4050 PHIUse->addIncoming(NewCst, NewBB); 4051 if (DTU) { 4052 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4053 DTU->applyUpdates(Updates); 4054 } 4055 return true; 4056 } 4057 4058 /// The specified branch is a conditional branch. 4059 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4060 /// fold it into a switch instruction if so. 4061 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4062 IRBuilder<> &Builder, 4063 const DataLayout &DL) { 4064 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4065 if (!Cond) 4066 return false; 4067 4068 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4069 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4070 // 'setne's and'ed together, collect them. 4071 4072 // Try to gather values from a chain of and/or to be turned into a switch 4073 ConstantComparesGatherer ConstantCompare(Cond, DL); 4074 // Unpack the result 4075 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4076 Value *CompVal = ConstantCompare.CompValue; 4077 unsigned UsedICmps = ConstantCompare.UsedICmps; 4078 Value *ExtraCase = ConstantCompare.Extra; 4079 4080 // If we didn't have a multiply compared value, fail. 4081 if (!CompVal) 4082 return false; 4083 4084 // Avoid turning single icmps into a switch. 4085 if (UsedICmps <= 1) 4086 return false; 4087 4088 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4089 4090 // There might be duplicate constants in the list, which the switch 4091 // instruction can't handle, remove them now. 4092 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4093 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4094 4095 // If Extra was used, we require at least two switch values to do the 4096 // transformation. A switch with one value is just a conditional branch. 4097 if (ExtraCase && Values.size() < 2) 4098 return false; 4099 4100 // TODO: Preserve branch weight metadata, similarly to how 4101 // FoldValueComparisonIntoPredecessors preserves it. 4102 4103 // Figure out which block is which destination. 4104 BasicBlock *DefaultBB = BI->getSuccessor(1); 4105 BasicBlock *EdgeBB = BI->getSuccessor(0); 4106 if (!TrueWhenEqual) 4107 std::swap(DefaultBB, EdgeBB); 4108 4109 BasicBlock *BB = BI->getParent(); 4110 4111 // MSAN does not like undefs as branch condition which can be introduced 4112 // with "explicit branch". 4113 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4114 return false; 4115 4116 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4117 << " cases into SWITCH. BB is:\n" 4118 << *BB); 4119 4120 SmallVector<DominatorTree::UpdateType, 2> Updates; 4121 4122 // If there are any extra values that couldn't be folded into the switch 4123 // then we evaluate them with an explicit branch first. Split the block 4124 // right before the condbr to handle it. 4125 if (ExtraCase) { 4126 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4127 /*MSSAU=*/nullptr, "switch.early.test"); 4128 4129 // Remove the uncond branch added to the old block. 4130 Instruction *OldTI = BB->getTerminator(); 4131 Builder.SetInsertPoint(OldTI); 4132 4133 if (TrueWhenEqual) 4134 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4135 else 4136 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4137 4138 OldTI->eraseFromParent(); 4139 4140 if (DTU) 4141 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4142 4143 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4144 // for the edge we just added. 4145 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4146 4147 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4148 << "\nEXTRABB = " << *BB); 4149 BB = NewBB; 4150 } 4151 4152 Builder.SetInsertPoint(BI); 4153 // Convert pointer to int before we switch. 4154 if (CompVal->getType()->isPointerTy()) { 4155 CompVal = Builder.CreatePtrToInt( 4156 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4157 } 4158 4159 // Create the new switch instruction now. 4160 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4161 4162 // Add all of the 'cases' to the switch instruction. 4163 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4164 New->addCase(Values[i], EdgeBB); 4165 4166 // We added edges from PI to the EdgeBB. As such, if there were any 4167 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4168 // the number of edges added. 4169 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4170 PHINode *PN = cast<PHINode>(BBI); 4171 Value *InVal = PN->getIncomingValueForBlock(BB); 4172 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4173 PN->addIncoming(InVal, BB); 4174 } 4175 4176 // Erase the old branch instruction. 4177 EraseTerminatorAndDCECond(BI); 4178 if (DTU) 4179 DTU->applyUpdates(Updates); 4180 4181 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4182 return true; 4183 } 4184 4185 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4186 if (isa<PHINode>(RI->getValue())) 4187 return simplifyCommonResume(RI); 4188 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4189 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4190 // The resume must unwind the exception that caused control to branch here. 4191 return simplifySingleResume(RI); 4192 4193 return false; 4194 } 4195 4196 // Check if cleanup block is empty 4197 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4198 for (Instruction &I : R) { 4199 auto *II = dyn_cast<IntrinsicInst>(&I); 4200 if (!II) 4201 return false; 4202 4203 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4204 switch (IntrinsicID) { 4205 case Intrinsic::dbg_declare: 4206 case Intrinsic::dbg_value: 4207 case Intrinsic::dbg_label: 4208 case Intrinsic::lifetime_end: 4209 break; 4210 default: 4211 return false; 4212 } 4213 } 4214 return true; 4215 } 4216 4217 // Simplify resume that is shared by several landing pads (phi of landing pad). 4218 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4219 BasicBlock *BB = RI->getParent(); 4220 4221 // Check that there are no other instructions except for debug and lifetime 4222 // intrinsics between the phi's and resume instruction. 4223 if (!isCleanupBlockEmpty( 4224 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4225 return false; 4226 4227 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4228 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4229 4230 // Check incoming blocks to see if any of them are trivial. 4231 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4232 Idx++) { 4233 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4234 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4235 4236 // If the block has other successors, we can not delete it because 4237 // it has other dependents. 4238 if (IncomingBB->getUniqueSuccessor() != BB) 4239 continue; 4240 4241 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4242 // Not the landing pad that caused the control to branch here. 4243 if (IncomingValue != LandingPad) 4244 continue; 4245 4246 if (isCleanupBlockEmpty( 4247 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4248 TrivialUnwindBlocks.insert(IncomingBB); 4249 } 4250 4251 // If no trivial unwind blocks, don't do any simplifications. 4252 if (TrivialUnwindBlocks.empty()) 4253 return false; 4254 4255 // Turn all invokes that unwind here into calls. 4256 for (auto *TrivialBB : TrivialUnwindBlocks) { 4257 // Blocks that will be simplified should be removed from the phi node. 4258 // Note there could be multiple edges to the resume block, and we need 4259 // to remove them all. 4260 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4261 BB->removePredecessor(TrivialBB, true); 4262 4263 for (BasicBlock *Pred : 4264 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4265 removeUnwindEdge(Pred, DTU); 4266 ++NumInvokes; 4267 } 4268 4269 // In each SimplifyCFG run, only the current processed block can be erased. 4270 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4271 // of erasing TrivialBB, we only remove the branch to the common resume 4272 // block so that we can later erase the resume block since it has no 4273 // predecessors. 4274 TrivialBB->getTerminator()->eraseFromParent(); 4275 new UnreachableInst(RI->getContext(), TrivialBB); 4276 if (DTU) 4277 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4278 } 4279 4280 // Delete the resume block if all its predecessors have been removed. 4281 if (pred_empty(BB)) { 4282 if (DTU) 4283 DTU->deleteBB(BB); 4284 else 4285 BB->eraseFromParent(); 4286 } 4287 4288 return !TrivialUnwindBlocks.empty(); 4289 } 4290 4291 // Simplify resume that is only used by a single (non-phi) landing pad. 4292 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4293 BasicBlock *BB = RI->getParent(); 4294 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4295 assert(RI->getValue() == LPInst && 4296 "Resume must unwind the exception that caused control to here"); 4297 4298 // Check that there are no other instructions except for debug intrinsics. 4299 if (!isCleanupBlockEmpty( 4300 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4301 return false; 4302 4303 // Turn all invokes that unwind here into calls and delete the basic block. 4304 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4305 removeUnwindEdge(Pred, DTU); 4306 ++NumInvokes; 4307 } 4308 4309 // The landingpad is now unreachable. Zap it. 4310 if (DTU) 4311 DTU->deleteBB(BB); 4312 else 4313 BB->eraseFromParent(); 4314 return true; 4315 } 4316 4317 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4318 // If this is a trivial cleanup pad that executes no instructions, it can be 4319 // eliminated. If the cleanup pad continues to the caller, any predecessor 4320 // that is an EH pad will be updated to continue to the caller and any 4321 // predecessor that terminates with an invoke instruction will have its invoke 4322 // instruction converted to a call instruction. If the cleanup pad being 4323 // simplified does not continue to the caller, each predecessor will be 4324 // updated to continue to the unwind destination of the cleanup pad being 4325 // simplified. 4326 BasicBlock *BB = RI->getParent(); 4327 CleanupPadInst *CPInst = RI->getCleanupPad(); 4328 if (CPInst->getParent() != BB) 4329 // This isn't an empty cleanup. 4330 return false; 4331 4332 // We cannot kill the pad if it has multiple uses. This typically arises 4333 // from unreachable basic blocks. 4334 if (!CPInst->hasOneUse()) 4335 return false; 4336 4337 // Check that there are no other instructions except for benign intrinsics. 4338 if (!isCleanupBlockEmpty( 4339 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4340 return false; 4341 4342 // If the cleanup return we are simplifying unwinds to the caller, this will 4343 // set UnwindDest to nullptr. 4344 BasicBlock *UnwindDest = RI->getUnwindDest(); 4345 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4346 4347 // We're about to remove BB from the control flow. Before we do, sink any 4348 // PHINodes into the unwind destination. Doing this before changing the 4349 // control flow avoids some potentially slow checks, since we can currently 4350 // be certain that UnwindDest and BB have no common predecessors (since they 4351 // are both EH pads). 4352 if (UnwindDest) { 4353 // First, go through the PHI nodes in UnwindDest and update any nodes that 4354 // reference the block we are removing 4355 for (BasicBlock::iterator I = UnwindDest->begin(), 4356 IE = DestEHPad->getIterator(); 4357 I != IE; ++I) { 4358 PHINode *DestPN = cast<PHINode>(I); 4359 4360 int Idx = DestPN->getBasicBlockIndex(BB); 4361 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4362 assert(Idx != -1); 4363 // This PHI node has an incoming value that corresponds to a control 4364 // path through the cleanup pad we are removing. If the incoming 4365 // value is in the cleanup pad, it must be a PHINode (because we 4366 // verified above that the block is otherwise empty). Otherwise, the 4367 // value is either a constant or a value that dominates the cleanup 4368 // pad being removed. 4369 // 4370 // Because BB and UnwindDest are both EH pads, all of their 4371 // predecessors must unwind to these blocks, and since no instruction 4372 // can have multiple unwind destinations, there will be no overlap in 4373 // incoming blocks between SrcPN and DestPN. 4374 Value *SrcVal = DestPN->getIncomingValue(Idx); 4375 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4376 4377 // Remove the entry for the block we are deleting. 4378 DestPN->removeIncomingValue(Idx, false); 4379 4380 if (SrcPN && SrcPN->getParent() == BB) { 4381 // If the incoming value was a PHI node in the cleanup pad we are 4382 // removing, we need to merge that PHI node's incoming values into 4383 // DestPN. 4384 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4385 SrcIdx != SrcE; ++SrcIdx) { 4386 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4387 SrcPN->getIncomingBlock(SrcIdx)); 4388 } 4389 } else { 4390 // Otherwise, the incoming value came from above BB and 4391 // so we can just reuse it. We must associate all of BB's 4392 // predecessors with this value. 4393 for (auto *pred : predecessors(BB)) { 4394 DestPN->addIncoming(SrcVal, pred); 4395 } 4396 } 4397 } 4398 4399 // Sink any remaining PHI nodes directly into UnwindDest. 4400 Instruction *InsertPt = DestEHPad; 4401 for (BasicBlock::iterator I = BB->begin(), 4402 IE = BB->getFirstNonPHI()->getIterator(); 4403 I != IE;) { 4404 // The iterator must be incremented here because the instructions are 4405 // being moved to another block. 4406 PHINode *PN = cast<PHINode>(I++); 4407 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4408 // If the PHI node has no uses or all of its uses are in this basic 4409 // block (meaning they are debug or lifetime intrinsics), just leave 4410 // it. It will be erased when we erase BB below. 4411 continue; 4412 4413 // Otherwise, sink this PHI node into UnwindDest. 4414 // Any predecessors to UnwindDest which are not already represented 4415 // must be back edges which inherit the value from the path through 4416 // BB. In this case, the PHI value must reference itself. 4417 for (auto *pred : predecessors(UnwindDest)) 4418 if (pred != BB) 4419 PN->addIncoming(PN, pred); 4420 PN->moveBefore(InsertPt); 4421 } 4422 } 4423 4424 std::vector<DominatorTree::UpdateType> Updates; 4425 4426 // We use make_early_inc_range here because we may remove some predecessors. 4427 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4428 if (UnwindDest == nullptr) { 4429 if (DTU) { 4430 DTU->applyUpdates(Updates); 4431 Updates.clear(); 4432 } 4433 removeUnwindEdge(PredBB, DTU); 4434 ++NumInvokes; 4435 } else { 4436 Instruction *TI = PredBB->getTerminator(); 4437 TI->replaceUsesOfWith(BB, UnwindDest); 4438 if (DTU) { 4439 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4440 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4441 } 4442 } 4443 } 4444 4445 if (DTU) { 4446 DTU->applyUpdates(Updates); 4447 DTU->deleteBB(BB); 4448 } else 4449 // The cleanup pad is now unreachable. Zap it. 4450 BB->eraseFromParent(); 4451 4452 return true; 4453 } 4454 4455 // Try to merge two cleanuppads together. 4456 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4457 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4458 // with. 4459 BasicBlock *UnwindDest = RI->getUnwindDest(); 4460 if (!UnwindDest) 4461 return false; 4462 4463 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4464 // be safe to merge without code duplication. 4465 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4466 return false; 4467 4468 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4469 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4470 if (!SuccessorCleanupPad) 4471 return false; 4472 4473 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4474 // Replace any uses of the successor cleanupad with the predecessor pad 4475 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4476 // funclet bundle operands. 4477 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4478 // Remove the old cleanuppad. 4479 SuccessorCleanupPad->eraseFromParent(); 4480 // Now, we simply replace the cleanupret with a branch to the unwind 4481 // destination. 4482 BranchInst::Create(UnwindDest, RI->getParent()); 4483 RI->eraseFromParent(); 4484 4485 return true; 4486 } 4487 4488 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4489 // It is possible to transiantly have an undef cleanuppad operand because we 4490 // have deleted some, but not all, dead blocks. 4491 // Eventually, this block will be deleted. 4492 if (isa<UndefValue>(RI->getOperand(0))) 4493 return false; 4494 4495 if (mergeCleanupPad(RI)) 4496 return true; 4497 4498 if (removeEmptyCleanup(RI, DTU)) 4499 return true; 4500 4501 return false; 4502 } 4503 4504 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4505 BasicBlock *BB = RI->getParent(); 4506 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4507 return false; 4508 4509 // Find predecessors that end with branches. 4510 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4511 SmallVector<BranchInst *, 8> CondBranchPreds; 4512 for (BasicBlock *P : predecessors(BB)) { 4513 Instruction *PTI = P->getTerminator(); 4514 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4515 if (BI->isUnconditional()) 4516 UncondBranchPreds.push_back(P); 4517 else 4518 CondBranchPreds.push_back(BI); 4519 } 4520 } 4521 4522 // If we found some, do the transformation! 4523 if (!UncondBranchPreds.empty() && DupRet) { 4524 while (!UncondBranchPreds.empty()) { 4525 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4526 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4527 << "INTO UNCOND BRANCH PRED: " << *Pred); 4528 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4529 } 4530 4531 // If we eliminated all predecessors of the block, delete the block now. 4532 if (pred_empty(BB)) { 4533 // We know there are no successors, so just nuke the block. 4534 if (DTU) 4535 DTU->deleteBB(BB); 4536 else 4537 BB->eraseFromParent(); 4538 } 4539 4540 return true; 4541 } 4542 4543 // Check out all of the conditional branches going to this return 4544 // instruction. If any of them just select between returns, change the 4545 // branch itself into a select/return pair. 4546 while (!CondBranchPreds.empty()) { 4547 BranchInst *BI = CondBranchPreds.pop_back_val(); 4548 4549 // Check to see if the non-BB successor is also a return block. 4550 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4551 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4552 SimplifyCondBranchToTwoReturns(BI, Builder)) 4553 return true; 4554 } 4555 return false; 4556 } 4557 4558 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4559 BasicBlock *BB = UI->getParent(); 4560 4561 bool Changed = false; 4562 4563 // If there are any instructions immediately before the unreachable that can 4564 // be removed, do so. 4565 while (UI->getIterator() != BB->begin()) { 4566 BasicBlock::iterator BBI = UI->getIterator(); 4567 --BBI; 4568 // Do not delete instructions that can have side effects which might cause 4569 // the unreachable to not be reachable; specifically, calls and volatile 4570 // operations may have this effect. 4571 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4572 break; 4573 4574 if (BBI->mayHaveSideEffects()) { 4575 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4576 if (SI->isVolatile()) 4577 break; 4578 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4579 if (LI->isVolatile()) 4580 break; 4581 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4582 if (RMWI->isVolatile()) 4583 break; 4584 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4585 if (CXI->isVolatile()) 4586 break; 4587 } else if (isa<CatchPadInst>(BBI)) { 4588 // A catchpad may invoke exception object constructors and such, which 4589 // in some languages can be arbitrary code, so be conservative by 4590 // default. 4591 // For CoreCLR, it just involves a type test, so can be removed. 4592 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4593 EHPersonality::CoreCLR) 4594 break; 4595 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4596 !isa<LandingPadInst>(BBI)) { 4597 break; 4598 } 4599 // Note that deleting LandingPad's here is in fact okay, although it 4600 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4601 // all the predecessors of this block will be the unwind edges of Invokes, 4602 // and we can therefore guarantee this block will be erased. 4603 } 4604 4605 // Delete this instruction (any uses are guaranteed to be dead) 4606 if (!BBI->use_empty()) 4607 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4608 BBI->eraseFromParent(); 4609 Changed = true; 4610 } 4611 4612 // If the unreachable instruction is the first in the block, take a gander 4613 // at all of the predecessors of this instruction, and simplify them. 4614 if (&BB->front() != UI) 4615 return Changed; 4616 4617 std::vector<DominatorTree::UpdateType> Updates; 4618 4619 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4620 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4621 auto *Predecessor = Preds[i]; 4622 Instruction *TI = Predecessor->getTerminator(); 4623 IRBuilder<> Builder(TI); 4624 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4625 // We could either have a proper unconditional branch, 4626 // or a degenerate conditional branch with matching destinations. 4627 if (all_of(BI->successors(), 4628 [BB](auto *Successor) { return Successor == BB; })) { 4629 new UnreachableInst(TI->getContext(), TI); 4630 TI->eraseFromParent(); 4631 Changed = true; 4632 } else { 4633 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4634 Value* Cond = BI->getCondition(); 4635 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4636 "The destinations are guaranteed to be different here."); 4637 if (BI->getSuccessor(0) == BB) { 4638 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4639 Builder.CreateBr(BI->getSuccessor(1)); 4640 } else { 4641 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4642 Builder.CreateAssumption(Cond); 4643 Builder.CreateBr(BI->getSuccessor(0)); 4644 } 4645 EraseTerminatorAndDCECond(BI); 4646 Changed = true; 4647 } 4648 if (DTU) 4649 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4650 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4651 SwitchInstProfUpdateWrapper SU(*SI); 4652 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4653 if (i->getCaseSuccessor() != BB) { 4654 ++i; 4655 continue; 4656 } 4657 BB->removePredecessor(SU->getParent()); 4658 i = SU.removeCase(i); 4659 e = SU->case_end(); 4660 Changed = true; 4661 } 4662 // Note that the default destination can't be removed! 4663 if (DTU && SI->getDefaultDest() != BB) 4664 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4665 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4666 if (II->getUnwindDest() == BB) { 4667 if (DTU) { 4668 DTU->applyUpdates(Updates); 4669 Updates.clear(); 4670 } 4671 removeUnwindEdge(TI->getParent(), DTU); 4672 Changed = true; 4673 } 4674 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4675 if (CSI->getUnwindDest() == BB) { 4676 if (DTU) { 4677 DTU->applyUpdates(Updates); 4678 Updates.clear(); 4679 } 4680 removeUnwindEdge(TI->getParent(), DTU); 4681 Changed = true; 4682 continue; 4683 } 4684 4685 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4686 E = CSI->handler_end(); 4687 I != E; ++I) { 4688 if (*I == BB) { 4689 CSI->removeHandler(I); 4690 --I; 4691 --E; 4692 Changed = true; 4693 } 4694 } 4695 if (DTU) 4696 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4697 if (CSI->getNumHandlers() == 0) { 4698 if (CSI->hasUnwindDest()) { 4699 // Redirect all predecessors of the block containing CatchSwitchInst 4700 // to instead branch to the CatchSwitchInst's unwind destination. 4701 if (DTU) { 4702 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4703 Updates.push_back({DominatorTree::Insert, 4704 PredecessorOfPredecessor, 4705 CSI->getUnwindDest()}); 4706 Updates.push_back({DominatorTree::Delete, 4707 PredecessorOfPredecessor, Predecessor}); 4708 } 4709 } 4710 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4711 } else { 4712 // Rewrite all preds to unwind to caller (or from invoke to call). 4713 if (DTU) { 4714 DTU->applyUpdates(Updates); 4715 Updates.clear(); 4716 } 4717 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4718 for (BasicBlock *EHPred : EHPreds) 4719 removeUnwindEdge(EHPred, DTU); 4720 } 4721 // The catchswitch is no longer reachable. 4722 new UnreachableInst(CSI->getContext(), CSI); 4723 CSI->eraseFromParent(); 4724 Changed = true; 4725 } 4726 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4727 (void)CRI; 4728 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4729 "Expected to always have an unwind to BB."); 4730 if (DTU) 4731 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4732 new UnreachableInst(TI->getContext(), TI); 4733 TI->eraseFromParent(); 4734 Changed = true; 4735 } 4736 } 4737 4738 if (DTU) 4739 DTU->applyUpdates(Updates); 4740 4741 // If this block is now dead, remove it. 4742 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4743 // We know there are no successors, so just nuke the block. 4744 if (DTU) 4745 DTU->deleteBB(BB); 4746 else 4747 BB->eraseFromParent(); 4748 return true; 4749 } 4750 4751 return Changed; 4752 } 4753 4754 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4755 assert(Cases.size() >= 1); 4756 4757 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4758 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4759 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4760 return false; 4761 } 4762 return true; 4763 } 4764 4765 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4766 DomTreeUpdater *DTU) { 4767 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4768 auto *BB = Switch->getParent(); 4769 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4770 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4771 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4772 Switch->setDefaultDest(&*NewDefaultBlock); 4773 if (DTU) 4774 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4775 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4776 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4777 SmallVector<DominatorTree::UpdateType, 2> Updates; 4778 if (DTU) 4779 for (auto *Successor : successors(NewDefaultBlock)) 4780 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4781 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4782 new UnreachableInst(Switch->getContext(), NewTerminator); 4783 EraseTerminatorAndDCECond(NewTerminator); 4784 if (DTU) 4785 DTU->applyUpdates(Updates); 4786 } 4787 4788 /// Turn a switch with two reachable destinations into an integer range 4789 /// comparison and branch. 4790 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4791 IRBuilder<> &Builder) { 4792 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4793 4794 bool HasDefault = 4795 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4796 4797 auto *BB = SI->getParent(); 4798 4799 // Partition the cases into two sets with different destinations. 4800 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4801 BasicBlock *DestB = nullptr; 4802 SmallVector<ConstantInt *, 16> CasesA; 4803 SmallVector<ConstantInt *, 16> CasesB; 4804 4805 for (auto Case : SI->cases()) { 4806 BasicBlock *Dest = Case.getCaseSuccessor(); 4807 if (!DestA) 4808 DestA = Dest; 4809 if (Dest == DestA) { 4810 CasesA.push_back(Case.getCaseValue()); 4811 continue; 4812 } 4813 if (!DestB) 4814 DestB = Dest; 4815 if (Dest == DestB) { 4816 CasesB.push_back(Case.getCaseValue()); 4817 continue; 4818 } 4819 return false; // More than two destinations. 4820 } 4821 4822 assert(DestA && DestB && 4823 "Single-destination switch should have been folded."); 4824 assert(DestA != DestB); 4825 assert(DestB != SI->getDefaultDest()); 4826 assert(!CasesB.empty() && "There must be non-default cases."); 4827 assert(!CasesA.empty() || HasDefault); 4828 4829 // Figure out if one of the sets of cases form a contiguous range. 4830 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4831 BasicBlock *ContiguousDest = nullptr; 4832 BasicBlock *OtherDest = nullptr; 4833 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4834 ContiguousCases = &CasesA; 4835 ContiguousDest = DestA; 4836 OtherDest = DestB; 4837 } else if (CasesAreContiguous(CasesB)) { 4838 ContiguousCases = &CasesB; 4839 ContiguousDest = DestB; 4840 OtherDest = DestA; 4841 } else 4842 return false; 4843 4844 // Start building the compare and branch. 4845 4846 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4847 Constant *NumCases = 4848 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4849 4850 Value *Sub = SI->getCondition(); 4851 if (!Offset->isNullValue()) 4852 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4853 4854 Value *Cmp; 4855 // If NumCases overflowed, then all possible values jump to the successor. 4856 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4857 Cmp = ConstantInt::getTrue(SI->getContext()); 4858 else 4859 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4860 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4861 4862 // Update weight for the newly-created conditional branch. 4863 if (HasBranchWeights(SI)) { 4864 SmallVector<uint64_t, 8> Weights; 4865 GetBranchWeights(SI, Weights); 4866 if (Weights.size() == 1 + SI->getNumCases()) { 4867 uint64_t TrueWeight = 0; 4868 uint64_t FalseWeight = 0; 4869 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4870 if (SI->getSuccessor(I) == ContiguousDest) 4871 TrueWeight += Weights[I]; 4872 else 4873 FalseWeight += Weights[I]; 4874 } 4875 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4876 TrueWeight /= 2; 4877 FalseWeight /= 2; 4878 } 4879 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4880 } 4881 } 4882 4883 // Prune obsolete incoming values off the successors' PHI nodes. 4884 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4885 unsigned PreviousEdges = ContiguousCases->size(); 4886 if (ContiguousDest == SI->getDefaultDest()) 4887 ++PreviousEdges; 4888 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4889 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4890 } 4891 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4892 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4893 if (OtherDest == SI->getDefaultDest()) 4894 ++PreviousEdges; 4895 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4896 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4897 } 4898 4899 // Clean up the default block - it may have phis or other instructions before 4900 // the unreachable terminator. 4901 if (!HasDefault) 4902 createUnreachableSwitchDefault(SI, DTU); 4903 4904 auto *UnreachableDefault = SI->getDefaultDest(); 4905 4906 // Drop the switch. 4907 SI->eraseFromParent(); 4908 4909 if (!HasDefault && DTU) 4910 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4911 4912 return true; 4913 } 4914 4915 /// Compute masked bits for the condition of a switch 4916 /// and use it to remove dead cases. 4917 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 4918 AssumptionCache *AC, 4919 const DataLayout &DL) { 4920 Value *Cond = SI->getCondition(); 4921 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4922 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4923 4924 // We can also eliminate cases by determining that their values are outside of 4925 // the limited range of the condition based on how many significant (non-sign) 4926 // bits are in the condition value. 4927 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4928 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4929 4930 // Gather dead cases. 4931 SmallVector<ConstantInt *, 8> DeadCases; 4932 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 4933 for (auto &Case : SI->cases()) { 4934 auto *Successor = Case.getCaseSuccessor(); 4935 if (DTU) 4936 ++NumPerSuccessorCases[Successor]; 4937 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4938 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4939 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4940 DeadCases.push_back(Case.getCaseValue()); 4941 if (DTU) 4942 --NumPerSuccessorCases[Successor]; 4943 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4944 << " is dead.\n"); 4945 } 4946 } 4947 4948 // If we can prove that the cases must cover all possible values, the 4949 // default destination becomes dead and we can remove it. If we know some 4950 // of the bits in the value, we can use that to more precisely compute the 4951 // number of possible unique case values. 4952 bool HasDefault = 4953 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4954 const unsigned NumUnknownBits = 4955 Bits - (Known.Zero | Known.One).countPopulation(); 4956 assert(NumUnknownBits <= Bits); 4957 if (HasDefault && DeadCases.empty() && 4958 NumUnknownBits < 64 /* avoid overflow */ && 4959 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4960 createUnreachableSwitchDefault(SI, DTU); 4961 return true; 4962 } 4963 4964 if (DeadCases.empty()) 4965 return false; 4966 4967 SwitchInstProfUpdateWrapper SIW(*SI); 4968 for (ConstantInt *DeadCase : DeadCases) { 4969 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4970 assert(CaseI != SI->case_default() && 4971 "Case was not found. Probably mistake in DeadCases forming."); 4972 // Prune unused values from PHI nodes. 4973 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4974 SIW.removeCase(CaseI); 4975 } 4976 4977 if (DTU) { 4978 std::vector<DominatorTree::UpdateType> Updates; 4979 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 4980 if (I.second == 0) 4981 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 4982 DTU->applyUpdates(Updates); 4983 } 4984 4985 return true; 4986 } 4987 4988 /// If BB would be eligible for simplification by 4989 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4990 /// by an unconditional branch), look at the phi node for BB in the successor 4991 /// block and see if the incoming value is equal to CaseValue. If so, return 4992 /// the phi node, and set PhiIndex to BB's index in the phi node. 4993 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4994 BasicBlock *BB, int *PhiIndex) { 4995 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4996 return nullptr; // BB must be empty to be a candidate for simplification. 4997 if (!BB->getSinglePredecessor()) 4998 return nullptr; // BB must be dominated by the switch. 4999 5000 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5001 if (!Branch || !Branch->isUnconditional()) 5002 return nullptr; // Terminator must be unconditional branch. 5003 5004 BasicBlock *Succ = Branch->getSuccessor(0); 5005 5006 for (PHINode &PHI : Succ->phis()) { 5007 int Idx = PHI.getBasicBlockIndex(BB); 5008 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5009 5010 Value *InValue = PHI.getIncomingValue(Idx); 5011 if (InValue != CaseValue) 5012 continue; 5013 5014 *PhiIndex = Idx; 5015 return &PHI; 5016 } 5017 5018 return nullptr; 5019 } 5020 5021 /// Try to forward the condition of a switch instruction to a phi node 5022 /// dominated by the switch, if that would mean that some of the destination 5023 /// blocks of the switch can be folded away. Return true if a change is made. 5024 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5025 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5026 5027 ForwardingNodesMap ForwardingNodes; 5028 BasicBlock *SwitchBlock = SI->getParent(); 5029 bool Changed = false; 5030 for (auto &Case : SI->cases()) { 5031 ConstantInt *CaseValue = Case.getCaseValue(); 5032 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5033 5034 // Replace phi operands in successor blocks that are using the constant case 5035 // value rather than the switch condition variable: 5036 // switchbb: 5037 // switch i32 %x, label %default [ 5038 // i32 17, label %succ 5039 // ... 5040 // succ: 5041 // %r = phi i32 ... [ 17, %switchbb ] ... 5042 // --> 5043 // %r = phi i32 ... [ %x, %switchbb ] ... 5044 5045 for (PHINode &Phi : CaseDest->phis()) { 5046 // This only works if there is exactly 1 incoming edge from the switch to 5047 // a phi. If there is >1, that means multiple cases of the switch map to 1 5048 // value in the phi, and that phi value is not the switch condition. Thus, 5049 // this transform would not make sense (the phi would be invalid because 5050 // a phi can't have different incoming values from the same block). 5051 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5052 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5053 count(Phi.blocks(), SwitchBlock) == 1) { 5054 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5055 Changed = true; 5056 } 5057 } 5058 5059 // Collect phi nodes that are indirectly using this switch's case constants. 5060 int PhiIdx; 5061 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5062 ForwardingNodes[Phi].push_back(PhiIdx); 5063 } 5064 5065 for (auto &ForwardingNode : ForwardingNodes) { 5066 PHINode *Phi = ForwardingNode.first; 5067 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5068 if (Indexes.size() < 2) 5069 continue; 5070 5071 for (int Index : Indexes) 5072 Phi->setIncomingValue(Index, SI->getCondition()); 5073 Changed = true; 5074 } 5075 5076 return Changed; 5077 } 5078 5079 /// Return true if the backend will be able to handle 5080 /// initializing an array of constants like C. 5081 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5082 if (C->isThreadDependent()) 5083 return false; 5084 if (C->isDLLImportDependent()) 5085 return false; 5086 5087 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5088 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5089 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5090 return false; 5091 5092 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5093 if (!CE->isGEPWithNoNotionalOverIndexing()) 5094 return false; 5095 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5096 return false; 5097 } 5098 5099 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5100 return false; 5101 5102 return true; 5103 } 5104 5105 /// If V is a Constant, return it. Otherwise, try to look up 5106 /// its constant value in ConstantPool, returning 0 if it's not there. 5107 static Constant * 5108 LookupConstant(Value *V, 5109 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5110 if (Constant *C = dyn_cast<Constant>(V)) 5111 return C; 5112 return ConstantPool.lookup(V); 5113 } 5114 5115 /// Try to fold instruction I into a constant. This works for 5116 /// simple instructions such as binary operations where both operands are 5117 /// constant or can be replaced by constants from the ConstantPool. Returns the 5118 /// resulting constant on success, 0 otherwise. 5119 static Constant * 5120 ConstantFold(Instruction *I, const DataLayout &DL, 5121 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5122 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5123 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5124 if (!A) 5125 return nullptr; 5126 if (A->isAllOnesValue()) 5127 return LookupConstant(Select->getTrueValue(), ConstantPool); 5128 if (A->isNullValue()) 5129 return LookupConstant(Select->getFalseValue(), ConstantPool); 5130 return nullptr; 5131 } 5132 5133 SmallVector<Constant *, 4> COps; 5134 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5135 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5136 COps.push_back(A); 5137 else 5138 return nullptr; 5139 } 5140 5141 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5142 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5143 COps[1], DL); 5144 } 5145 5146 return ConstantFoldInstOperands(I, COps, DL); 5147 } 5148 5149 /// Try to determine the resulting constant values in phi nodes 5150 /// at the common destination basic block, *CommonDest, for one of the case 5151 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5152 /// case), of a switch instruction SI. 5153 static bool 5154 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5155 BasicBlock **CommonDest, 5156 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5157 const DataLayout &DL, const TargetTransformInfo &TTI) { 5158 // The block from which we enter the common destination. 5159 BasicBlock *Pred = SI->getParent(); 5160 5161 // If CaseDest is empty except for some side-effect free instructions through 5162 // which we can constant-propagate the CaseVal, continue to its successor. 5163 SmallDenseMap<Value *, Constant *> ConstantPool; 5164 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5165 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5166 if (I.isTerminator()) { 5167 // If the terminator is a simple branch, continue to the next block. 5168 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5169 return false; 5170 Pred = CaseDest; 5171 CaseDest = I.getSuccessor(0); 5172 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5173 // Instruction is side-effect free and constant. 5174 5175 // If the instruction has uses outside this block or a phi node slot for 5176 // the block, it is not safe to bypass the instruction since it would then 5177 // no longer dominate all its uses. 5178 for (auto &Use : I.uses()) { 5179 User *User = Use.getUser(); 5180 if (Instruction *I = dyn_cast<Instruction>(User)) 5181 if (I->getParent() == CaseDest) 5182 continue; 5183 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5184 if (Phi->getIncomingBlock(Use) == CaseDest) 5185 continue; 5186 return false; 5187 } 5188 5189 ConstantPool.insert(std::make_pair(&I, C)); 5190 } else { 5191 break; 5192 } 5193 } 5194 5195 // If we did not have a CommonDest before, use the current one. 5196 if (!*CommonDest) 5197 *CommonDest = CaseDest; 5198 // If the destination isn't the common one, abort. 5199 if (CaseDest != *CommonDest) 5200 return false; 5201 5202 // Get the values for this case from phi nodes in the destination block. 5203 for (PHINode &PHI : (*CommonDest)->phis()) { 5204 int Idx = PHI.getBasicBlockIndex(Pred); 5205 if (Idx == -1) 5206 continue; 5207 5208 Constant *ConstVal = 5209 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5210 if (!ConstVal) 5211 return false; 5212 5213 // Be conservative about which kinds of constants we support. 5214 if (!ValidLookupTableConstant(ConstVal, TTI)) 5215 return false; 5216 5217 Res.push_back(std::make_pair(&PHI, ConstVal)); 5218 } 5219 5220 return Res.size() > 0; 5221 } 5222 5223 // Helper function used to add CaseVal to the list of cases that generate 5224 // Result. Returns the updated number of cases that generate this result. 5225 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5226 SwitchCaseResultVectorTy &UniqueResults, 5227 Constant *Result) { 5228 for (auto &I : UniqueResults) { 5229 if (I.first == Result) { 5230 I.second.push_back(CaseVal); 5231 return I.second.size(); 5232 } 5233 } 5234 UniqueResults.push_back( 5235 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5236 return 1; 5237 } 5238 5239 // Helper function that initializes a map containing 5240 // results for the PHI node of the common destination block for a switch 5241 // instruction. Returns false if multiple PHI nodes have been found or if 5242 // there is not a common destination block for the switch. 5243 static bool 5244 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5245 SwitchCaseResultVectorTy &UniqueResults, 5246 Constant *&DefaultResult, const DataLayout &DL, 5247 const TargetTransformInfo &TTI, 5248 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5249 for (auto &I : SI->cases()) { 5250 ConstantInt *CaseVal = I.getCaseValue(); 5251 5252 // Resulting value at phi nodes for this case value. 5253 SwitchCaseResultsTy Results; 5254 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5255 DL, TTI)) 5256 return false; 5257 5258 // Only one value per case is permitted. 5259 if (Results.size() > 1) 5260 return false; 5261 5262 // Add the case->result mapping to UniqueResults. 5263 const uintptr_t NumCasesForResult = 5264 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5265 5266 // Early out if there are too many cases for this result. 5267 if (NumCasesForResult > MaxCasesPerResult) 5268 return false; 5269 5270 // Early out if there are too many unique results. 5271 if (UniqueResults.size() > MaxUniqueResults) 5272 return false; 5273 5274 // Check the PHI consistency. 5275 if (!PHI) 5276 PHI = Results[0].first; 5277 else if (PHI != Results[0].first) 5278 return false; 5279 } 5280 // Find the default result value. 5281 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5282 BasicBlock *DefaultDest = SI->getDefaultDest(); 5283 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5284 DL, TTI); 5285 // If the default value is not found abort unless the default destination 5286 // is unreachable. 5287 DefaultResult = 5288 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5289 if ((!DefaultResult && 5290 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5291 return false; 5292 5293 return true; 5294 } 5295 5296 // Helper function that checks if it is possible to transform a switch with only 5297 // two cases (or two cases + default) that produces a result into a select. 5298 // Example: 5299 // switch (a) { 5300 // case 10: %0 = icmp eq i32 %a, 10 5301 // return 10; %1 = select i1 %0, i32 10, i32 4 5302 // case 20: ----> %2 = icmp eq i32 %a, 20 5303 // return 2; %3 = select i1 %2, i32 2, i32 %1 5304 // default: 5305 // return 4; 5306 // } 5307 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5308 Constant *DefaultResult, Value *Condition, 5309 IRBuilder<> &Builder) { 5310 // If we are selecting between only two cases transform into a simple 5311 // select or a two-way select if default is possible. 5312 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5313 ResultVector[1].second.size() == 1) { 5314 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5315 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5316 5317 bool DefaultCanTrigger = DefaultResult; 5318 Value *SelectValue = ResultVector[1].first; 5319 if (DefaultCanTrigger) { 5320 Value *const ValueCompare = 5321 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5322 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5323 DefaultResult, "switch.select"); 5324 } 5325 Value *const ValueCompare = 5326 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5327 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5328 SelectValue, "switch.select"); 5329 } 5330 5331 // Handle the degenerate case where two cases have the same value. 5332 if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 && 5333 DefaultResult) { 5334 Value *Cmp1 = Builder.CreateICmpEQ( 5335 Condition, ResultVector[0].second[0], "switch.selectcmp.case1"); 5336 Value *Cmp2 = Builder.CreateICmpEQ( 5337 Condition, ResultVector[0].second[1], "switch.selectcmp.case2"); 5338 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5339 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5340 } 5341 5342 return nullptr; 5343 } 5344 5345 // Helper function to cleanup a switch instruction that has been converted into 5346 // a select, fixing up PHI nodes and basic blocks. 5347 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5348 Value *SelectValue, 5349 IRBuilder<> &Builder, 5350 DomTreeUpdater *DTU) { 5351 std::vector<DominatorTree::UpdateType> Updates; 5352 5353 BasicBlock *SelectBB = SI->getParent(); 5354 BasicBlock *DestBB = PHI->getParent(); 5355 5356 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5357 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5358 Builder.CreateBr(DestBB); 5359 5360 // Remove the switch. 5361 5362 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5363 PHI->removeIncomingValue(SelectBB); 5364 PHI->addIncoming(SelectValue, SelectBB); 5365 5366 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5367 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5368 BasicBlock *Succ = SI->getSuccessor(i); 5369 5370 if (Succ == DestBB) 5371 continue; 5372 Succ->removePredecessor(SelectBB); 5373 if (DTU && RemovedSuccessors.insert(Succ).second) 5374 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5375 } 5376 SI->eraseFromParent(); 5377 if (DTU) 5378 DTU->applyUpdates(Updates); 5379 } 5380 5381 /// If the switch is only used to initialize one or more 5382 /// phi nodes in a common successor block with only two different 5383 /// constant values, replace the switch with select. 5384 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5385 DomTreeUpdater *DTU, const DataLayout &DL, 5386 const TargetTransformInfo &TTI) { 5387 Value *const Cond = SI->getCondition(); 5388 PHINode *PHI = nullptr; 5389 BasicBlock *CommonDest = nullptr; 5390 Constant *DefaultResult; 5391 SwitchCaseResultVectorTy UniqueResults; 5392 // Collect all the cases that will deliver the same value from the switch. 5393 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5394 DL, TTI, /*MaxUniqueResults*/2, 5395 /*MaxCasesPerResult*/2)) 5396 return false; 5397 assert(PHI != nullptr && "PHI for value select not found"); 5398 5399 Builder.SetInsertPoint(SI); 5400 Value *SelectValue = 5401 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5402 if (SelectValue) { 5403 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5404 return true; 5405 } 5406 // The switch couldn't be converted into a select. 5407 return false; 5408 } 5409 5410 namespace { 5411 5412 /// This class represents a lookup table that can be used to replace a switch. 5413 class SwitchLookupTable { 5414 public: 5415 /// Create a lookup table to use as a switch replacement with the contents 5416 /// of Values, using DefaultValue to fill any holes in the table. 5417 SwitchLookupTable( 5418 Module &M, uint64_t TableSize, ConstantInt *Offset, 5419 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5420 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5421 5422 /// Build instructions with Builder to retrieve the value at 5423 /// the position given by Index in the lookup table. 5424 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5425 5426 /// Return true if a table with TableSize elements of 5427 /// type ElementType would fit in a target-legal register. 5428 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5429 Type *ElementType); 5430 5431 private: 5432 // Depending on the contents of the table, it can be represented in 5433 // different ways. 5434 enum { 5435 // For tables where each element contains the same value, we just have to 5436 // store that single value and return it for each lookup. 5437 SingleValueKind, 5438 5439 // For tables where there is a linear relationship between table index 5440 // and values. We calculate the result with a simple multiplication 5441 // and addition instead of a table lookup. 5442 LinearMapKind, 5443 5444 // For small tables with integer elements, we can pack them into a bitmap 5445 // that fits into a target-legal register. Values are retrieved by 5446 // shift and mask operations. 5447 BitMapKind, 5448 5449 // The table is stored as an array of values. Values are retrieved by load 5450 // instructions from the table. 5451 ArrayKind 5452 } Kind; 5453 5454 // For SingleValueKind, this is the single value. 5455 Constant *SingleValue = nullptr; 5456 5457 // For BitMapKind, this is the bitmap. 5458 ConstantInt *BitMap = nullptr; 5459 IntegerType *BitMapElementTy = nullptr; 5460 5461 // For LinearMapKind, these are the constants used to derive the value. 5462 ConstantInt *LinearOffset = nullptr; 5463 ConstantInt *LinearMultiplier = nullptr; 5464 5465 // For ArrayKind, this is the array. 5466 GlobalVariable *Array = nullptr; 5467 }; 5468 5469 } // end anonymous namespace 5470 5471 SwitchLookupTable::SwitchLookupTable( 5472 Module &M, uint64_t TableSize, ConstantInt *Offset, 5473 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5474 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5475 assert(Values.size() && "Can't build lookup table without values!"); 5476 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5477 5478 // If all values in the table are equal, this is that value. 5479 SingleValue = Values.begin()->second; 5480 5481 Type *ValueType = Values.begin()->second->getType(); 5482 5483 // Build up the table contents. 5484 SmallVector<Constant *, 64> TableContents(TableSize); 5485 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5486 ConstantInt *CaseVal = Values[I].first; 5487 Constant *CaseRes = Values[I].second; 5488 assert(CaseRes->getType() == ValueType); 5489 5490 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5491 TableContents[Idx] = CaseRes; 5492 5493 if (CaseRes != SingleValue) 5494 SingleValue = nullptr; 5495 } 5496 5497 // Fill in any holes in the table with the default result. 5498 if (Values.size() < TableSize) { 5499 assert(DefaultValue && 5500 "Need a default value to fill the lookup table holes."); 5501 assert(DefaultValue->getType() == ValueType); 5502 for (uint64_t I = 0; I < TableSize; ++I) { 5503 if (!TableContents[I]) 5504 TableContents[I] = DefaultValue; 5505 } 5506 5507 if (DefaultValue != SingleValue) 5508 SingleValue = nullptr; 5509 } 5510 5511 // If each element in the table contains the same value, we only need to store 5512 // that single value. 5513 if (SingleValue) { 5514 Kind = SingleValueKind; 5515 return; 5516 } 5517 5518 // Check if we can derive the value with a linear transformation from the 5519 // table index. 5520 if (isa<IntegerType>(ValueType)) { 5521 bool LinearMappingPossible = true; 5522 APInt PrevVal; 5523 APInt DistToPrev; 5524 assert(TableSize >= 2 && "Should be a SingleValue table."); 5525 // Check if there is the same distance between two consecutive values. 5526 for (uint64_t I = 0; I < TableSize; ++I) { 5527 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5528 if (!ConstVal) { 5529 // This is an undef. We could deal with it, but undefs in lookup tables 5530 // are very seldom. It's probably not worth the additional complexity. 5531 LinearMappingPossible = false; 5532 break; 5533 } 5534 const APInt &Val = ConstVal->getValue(); 5535 if (I != 0) { 5536 APInt Dist = Val - PrevVal; 5537 if (I == 1) { 5538 DistToPrev = Dist; 5539 } else if (Dist != DistToPrev) { 5540 LinearMappingPossible = false; 5541 break; 5542 } 5543 } 5544 PrevVal = Val; 5545 } 5546 if (LinearMappingPossible) { 5547 LinearOffset = cast<ConstantInt>(TableContents[0]); 5548 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5549 Kind = LinearMapKind; 5550 ++NumLinearMaps; 5551 return; 5552 } 5553 } 5554 5555 // If the type is integer and the table fits in a register, build a bitmap. 5556 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5557 IntegerType *IT = cast<IntegerType>(ValueType); 5558 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5559 for (uint64_t I = TableSize; I > 0; --I) { 5560 TableInt <<= IT->getBitWidth(); 5561 // Insert values into the bitmap. Undef values are set to zero. 5562 if (!isa<UndefValue>(TableContents[I - 1])) { 5563 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5564 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5565 } 5566 } 5567 BitMap = ConstantInt::get(M.getContext(), TableInt); 5568 BitMapElementTy = IT; 5569 Kind = BitMapKind; 5570 ++NumBitMaps; 5571 return; 5572 } 5573 5574 // Store the table in an array. 5575 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5576 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5577 5578 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5579 GlobalVariable::PrivateLinkage, Initializer, 5580 "switch.table." + FuncName); 5581 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5582 // Set the alignment to that of an array items. We will be only loading one 5583 // value out of it. 5584 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5585 Kind = ArrayKind; 5586 } 5587 5588 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5589 switch (Kind) { 5590 case SingleValueKind: 5591 return SingleValue; 5592 case LinearMapKind: { 5593 // Derive the result value from the input value. 5594 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5595 false, "switch.idx.cast"); 5596 if (!LinearMultiplier->isOne()) 5597 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5598 if (!LinearOffset->isZero()) 5599 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5600 return Result; 5601 } 5602 case BitMapKind: { 5603 // Type of the bitmap (e.g. i59). 5604 IntegerType *MapTy = BitMap->getType(); 5605 5606 // Cast Index to the same type as the bitmap. 5607 // Note: The Index is <= the number of elements in the table, so 5608 // truncating it to the width of the bitmask is safe. 5609 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5610 5611 // Multiply the shift amount by the element width. 5612 ShiftAmt = Builder.CreateMul( 5613 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5614 "switch.shiftamt"); 5615 5616 // Shift down. 5617 Value *DownShifted = 5618 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5619 // Mask off. 5620 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5621 } 5622 case ArrayKind: { 5623 // Make sure the table index will not overflow when treated as signed. 5624 IntegerType *IT = cast<IntegerType>(Index->getType()); 5625 uint64_t TableSize = 5626 Array->getInitializer()->getType()->getArrayNumElements(); 5627 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5628 Index = Builder.CreateZExt( 5629 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5630 "switch.tableidx.zext"); 5631 5632 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5633 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5634 GEPIndices, "switch.gep"); 5635 return Builder.CreateLoad( 5636 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5637 "switch.load"); 5638 } 5639 } 5640 llvm_unreachable("Unknown lookup table kind!"); 5641 } 5642 5643 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5644 uint64_t TableSize, 5645 Type *ElementType) { 5646 auto *IT = dyn_cast<IntegerType>(ElementType); 5647 if (!IT) 5648 return false; 5649 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5650 // are <= 15, we could try to narrow the type. 5651 5652 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5653 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5654 return false; 5655 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5656 } 5657 5658 /// Determine whether a lookup table should be built for this switch, based on 5659 /// the number of cases, size of the table, and the types of the results. 5660 static bool 5661 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5662 const TargetTransformInfo &TTI, const DataLayout &DL, 5663 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5664 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5665 return false; // TableSize overflowed, or mul below might overflow. 5666 5667 bool AllTablesFitInRegister = true; 5668 bool HasIllegalType = false; 5669 for (const auto &I : ResultTypes) { 5670 Type *Ty = I.second; 5671 5672 // Saturate this flag to true. 5673 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5674 5675 // Saturate this flag to false. 5676 AllTablesFitInRegister = 5677 AllTablesFitInRegister && 5678 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5679 5680 // If both flags saturate, we're done. NOTE: This *only* works with 5681 // saturating flags, and all flags have to saturate first due to the 5682 // non-deterministic behavior of iterating over a dense map. 5683 if (HasIllegalType && !AllTablesFitInRegister) 5684 break; 5685 } 5686 5687 // If each table would fit in a register, we should build it anyway. 5688 if (AllTablesFitInRegister) 5689 return true; 5690 5691 // Don't build a table that doesn't fit in-register if it has illegal types. 5692 if (HasIllegalType) 5693 return false; 5694 5695 // The table density should be at least 40%. This is the same criterion as for 5696 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5697 // FIXME: Find the best cut-off. 5698 return SI->getNumCases() * 10 >= TableSize * 4; 5699 } 5700 5701 /// Try to reuse the switch table index compare. Following pattern: 5702 /// \code 5703 /// if (idx < tablesize) 5704 /// r = table[idx]; // table does not contain default_value 5705 /// else 5706 /// r = default_value; 5707 /// if (r != default_value) 5708 /// ... 5709 /// \endcode 5710 /// Is optimized to: 5711 /// \code 5712 /// cond = idx < tablesize; 5713 /// if (cond) 5714 /// r = table[idx]; 5715 /// else 5716 /// r = default_value; 5717 /// if (cond) 5718 /// ... 5719 /// \endcode 5720 /// Jump threading will then eliminate the second if(cond). 5721 static void reuseTableCompare( 5722 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5723 Constant *DefaultValue, 5724 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5725 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5726 if (!CmpInst) 5727 return; 5728 5729 // We require that the compare is in the same block as the phi so that jump 5730 // threading can do its work afterwards. 5731 if (CmpInst->getParent() != PhiBlock) 5732 return; 5733 5734 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5735 if (!CmpOp1) 5736 return; 5737 5738 Value *RangeCmp = RangeCheckBranch->getCondition(); 5739 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5740 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5741 5742 // Check if the compare with the default value is constant true or false. 5743 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5744 DefaultValue, CmpOp1, true); 5745 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5746 return; 5747 5748 // Check if the compare with the case values is distinct from the default 5749 // compare result. 5750 for (auto ValuePair : Values) { 5751 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5752 ValuePair.second, CmpOp1, true); 5753 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5754 return; 5755 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5756 "Expect true or false as compare result."); 5757 } 5758 5759 // Check if the branch instruction dominates the phi node. It's a simple 5760 // dominance check, but sufficient for our needs. 5761 // Although this check is invariant in the calling loops, it's better to do it 5762 // at this late stage. Practically we do it at most once for a switch. 5763 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5764 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5765 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5766 return; 5767 } 5768 5769 if (DefaultConst == FalseConst) { 5770 // The compare yields the same result. We can replace it. 5771 CmpInst->replaceAllUsesWith(RangeCmp); 5772 ++NumTableCmpReuses; 5773 } else { 5774 // The compare yields the same result, just inverted. We can replace it. 5775 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5776 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5777 RangeCheckBranch); 5778 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5779 ++NumTableCmpReuses; 5780 } 5781 } 5782 5783 /// If the switch is only used to initialize one or more phi nodes in a common 5784 /// successor block with different constant values, replace the switch with 5785 /// lookup tables. 5786 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5787 DomTreeUpdater *DTU, const DataLayout &DL, 5788 const TargetTransformInfo &TTI) { 5789 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5790 5791 BasicBlock *BB = SI->getParent(); 5792 Function *Fn = BB->getParent(); 5793 // Only build lookup table when we have a target that supports it or the 5794 // attribute is not set. 5795 if (!TTI.shouldBuildLookupTables() || 5796 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5797 return false; 5798 5799 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5800 // split off a dense part and build a lookup table for that. 5801 5802 // FIXME: This creates arrays of GEPs to constant strings, which means each 5803 // GEP needs a runtime relocation in PIC code. We should just build one big 5804 // string and lookup indices into that. 5805 5806 // Ignore switches with less than three cases. Lookup tables will not make 5807 // them faster, so we don't analyze them. 5808 if (SI->getNumCases() < 3) 5809 return false; 5810 5811 // Figure out the corresponding result for each case value and phi node in the 5812 // common destination, as well as the min and max case values. 5813 assert(!SI->cases().empty()); 5814 SwitchInst::CaseIt CI = SI->case_begin(); 5815 ConstantInt *MinCaseVal = CI->getCaseValue(); 5816 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5817 5818 BasicBlock *CommonDest = nullptr; 5819 5820 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5821 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5822 5823 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5824 SmallDenseMap<PHINode *, Type *> ResultTypes; 5825 SmallVector<PHINode *, 4> PHIs; 5826 5827 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5828 ConstantInt *CaseVal = CI->getCaseValue(); 5829 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5830 MinCaseVal = CaseVal; 5831 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5832 MaxCaseVal = CaseVal; 5833 5834 // Resulting value at phi nodes for this case value. 5835 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5836 ResultsTy Results; 5837 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5838 Results, DL, TTI)) 5839 return false; 5840 5841 // Append the result from this case to the list for each phi. 5842 for (const auto &I : Results) { 5843 PHINode *PHI = I.first; 5844 Constant *Value = I.second; 5845 if (!ResultLists.count(PHI)) 5846 PHIs.push_back(PHI); 5847 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5848 } 5849 } 5850 5851 // Keep track of the result types. 5852 for (PHINode *PHI : PHIs) { 5853 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5854 } 5855 5856 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5857 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5858 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5859 bool TableHasHoles = (NumResults < TableSize); 5860 5861 // If the table has holes, we need a constant result for the default case 5862 // or a bitmask that fits in a register. 5863 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5864 bool HasDefaultResults = 5865 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5866 DefaultResultsList, DL, TTI); 5867 5868 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5869 if (NeedMask) { 5870 // As an extra penalty for the validity test we require more cases. 5871 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5872 return false; 5873 if (!DL.fitsInLegalInteger(TableSize)) 5874 return false; 5875 } 5876 5877 for (const auto &I : DefaultResultsList) { 5878 PHINode *PHI = I.first; 5879 Constant *Result = I.second; 5880 DefaultResults[PHI] = Result; 5881 } 5882 5883 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5884 return false; 5885 5886 std::vector<DominatorTree::UpdateType> Updates; 5887 5888 // Create the BB that does the lookups. 5889 Module &Mod = *CommonDest->getParent()->getParent(); 5890 BasicBlock *LookupBB = BasicBlock::Create( 5891 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5892 5893 // Compute the table index value. 5894 Builder.SetInsertPoint(SI); 5895 Value *TableIndex; 5896 if (MinCaseVal->isNullValue()) 5897 TableIndex = SI->getCondition(); 5898 else 5899 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5900 "switch.tableidx"); 5901 5902 // Compute the maximum table size representable by the integer type we are 5903 // switching upon. 5904 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5905 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5906 assert(MaxTableSize >= TableSize && 5907 "It is impossible for a switch to have more entries than the max " 5908 "representable value of its input integer type's size."); 5909 5910 // If the default destination is unreachable, or if the lookup table covers 5911 // all values of the conditional variable, branch directly to the lookup table 5912 // BB. Otherwise, check that the condition is within the case range. 5913 const bool DefaultIsReachable = 5914 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5915 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5916 BranchInst *RangeCheckBranch = nullptr; 5917 5918 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5919 Builder.CreateBr(LookupBB); 5920 if (DTU) 5921 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5922 // Note: We call removeProdecessor later since we need to be able to get the 5923 // PHI value for the default case in case we're using a bit mask. 5924 } else { 5925 Value *Cmp = Builder.CreateICmpULT( 5926 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5927 RangeCheckBranch = 5928 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5929 if (DTU) 5930 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5931 } 5932 5933 // Populate the BB that does the lookups. 5934 Builder.SetInsertPoint(LookupBB); 5935 5936 if (NeedMask) { 5937 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5938 // re-purposed to do the hole check, and we create a new LookupBB. 5939 BasicBlock *MaskBB = LookupBB; 5940 MaskBB->setName("switch.hole_check"); 5941 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5942 CommonDest->getParent(), CommonDest); 5943 5944 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5945 // unnecessary illegal types. 5946 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5947 APInt MaskInt(TableSizePowOf2, 0); 5948 APInt One(TableSizePowOf2, 1); 5949 // Build bitmask; fill in a 1 bit for every case. 5950 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5951 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5952 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5953 .getLimitedValue(); 5954 MaskInt |= One << Idx; 5955 } 5956 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5957 5958 // Get the TableIndex'th bit of the bitmask. 5959 // If this bit is 0 (meaning hole) jump to the default destination, 5960 // else continue with table lookup. 5961 IntegerType *MapTy = TableMask->getType(); 5962 Value *MaskIndex = 5963 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5964 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5965 Value *LoBit = Builder.CreateTrunc( 5966 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5967 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5968 if (DTU) { 5969 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 5970 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 5971 } 5972 Builder.SetInsertPoint(LookupBB); 5973 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 5974 } 5975 5976 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5977 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5978 // do not delete PHINodes here. 5979 SI->getDefaultDest()->removePredecessor(BB, 5980 /*KeepOneInputPHIs=*/true); 5981 if (DTU) 5982 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 5983 } 5984 5985 bool ReturnedEarly = false; 5986 for (PHINode *PHI : PHIs) { 5987 const ResultListTy &ResultList = ResultLists[PHI]; 5988 5989 // If using a bitmask, use any value to fill the lookup table holes. 5990 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5991 StringRef FuncName = Fn->getName(); 5992 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5993 FuncName); 5994 5995 Value *Result = Table.BuildLookup(TableIndex, Builder); 5996 5997 // If the result is used to return immediately from the function, we want to 5998 // do that right here. 5999 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 6000 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 6001 Builder.CreateRet(Result); 6002 ReturnedEarly = true; 6003 break; 6004 } 6005 6006 // Do a small peephole optimization: re-use the switch table compare if 6007 // possible. 6008 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6009 BasicBlock *PhiBlock = PHI->getParent(); 6010 // Search for compare instructions which use the phi. 6011 for (auto *User : PHI->users()) { 6012 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6013 } 6014 } 6015 6016 PHI->addIncoming(Result, LookupBB); 6017 } 6018 6019 if (!ReturnedEarly) { 6020 Builder.CreateBr(CommonDest); 6021 if (DTU) 6022 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6023 } 6024 6025 // Remove the switch. 6026 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6027 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6028 BasicBlock *Succ = SI->getSuccessor(i); 6029 6030 if (Succ == SI->getDefaultDest()) 6031 continue; 6032 Succ->removePredecessor(BB); 6033 RemovedSuccessors.insert(Succ); 6034 } 6035 SI->eraseFromParent(); 6036 6037 if (DTU) { 6038 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 6039 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 6040 DTU->applyUpdates(Updates); 6041 } 6042 6043 ++NumLookupTables; 6044 if (NeedMask) 6045 ++NumLookupTablesHoles; 6046 return true; 6047 } 6048 6049 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6050 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6051 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6052 uint64_t Range = Diff + 1; 6053 uint64_t NumCases = Values.size(); 6054 // 40% is the default density for building a jump table in optsize/minsize mode. 6055 uint64_t MinDensity = 40; 6056 6057 return NumCases * 100 >= Range * MinDensity; 6058 } 6059 6060 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6061 /// of cases. 6062 /// 6063 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6064 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6065 /// 6066 /// This converts a sparse switch into a dense switch which allows better 6067 /// lowering and could also allow transforming into a lookup table. 6068 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6069 const DataLayout &DL, 6070 const TargetTransformInfo &TTI) { 6071 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6072 if (CondTy->getIntegerBitWidth() > 64 || 6073 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6074 return false; 6075 // Only bother with this optimization if there are more than 3 switch cases; 6076 // SDAG will only bother creating jump tables for 4 or more cases. 6077 if (SI->getNumCases() < 4) 6078 return false; 6079 6080 // This transform is agnostic to the signedness of the input or case values. We 6081 // can treat the case values as signed or unsigned. We can optimize more common 6082 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6083 // as signed. 6084 SmallVector<int64_t,4> Values; 6085 for (auto &C : SI->cases()) 6086 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6087 llvm::sort(Values); 6088 6089 // If the switch is already dense, there's nothing useful to do here. 6090 if (isSwitchDense(Values)) 6091 return false; 6092 6093 // First, transform the values such that they start at zero and ascend. 6094 int64_t Base = Values[0]; 6095 for (auto &V : Values) 6096 V -= (uint64_t)(Base); 6097 6098 // Now we have signed numbers that have been shifted so that, given enough 6099 // precision, there are no negative values. Since the rest of the transform 6100 // is bitwise only, we switch now to an unsigned representation. 6101 6102 // This transform can be done speculatively because it is so cheap - it 6103 // results in a single rotate operation being inserted. 6104 // FIXME: It's possible that optimizing a switch on powers of two might also 6105 // be beneficial - flag values are often powers of two and we could use a CLZ 6106 // as the key function. 6107 6108 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6109 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6110 // less than 64. 6111 unsigned Shift = 64; 6112 for (auto &V : Values) 6113 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6114 assert(Shift < 64); 6115 if (Shift > 0) 6116 for (auto &V : Values) 6117 V = (int64_t)((uint64_t)V >> Shift); 6118 6119 if (!isSwitchDense(Values)) 6120 // Transform didn't create a dense switch. 6121 return false; 6122 6123 // The obvious transform is to shift the switch condition right and emit a 6124 // check that the condition actually cleanly divided by GCD, i.e. 6125 // C & (1 << Shift - 1) == 0 6126 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6127 // 6128 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6129 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6130 // are nonzero then the switch condition will be very large and will hit the 6131 // default case. 6132 6133 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6134 Builder.SetInsertPoint(SI); 6135 auto *ShiftC = ConstantInt::get(Ty, Shift); 6136 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6137 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6138 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6139 auto *Rot = Builder.CreateOr(LShr, Shl); 6140 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6141 6142 for (auto Case : SI->cases()) { 6143 auto *Orig = Case.getCaseValue(); 6144 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6145 Case.setValue( 6146 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6147 } 6148 return true; 6149 } 6150 6151 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6152 BasicBlock *BB = SI->getParent(); 6153 6154 if (isValueEqualityComparison(SI)) { 6155 // If we only have one predecessor, and if it is a branch on this value, 6156 // see if that predecessor totally determines the outcome of this switch. 6157 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6158 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6159 return requestResimplify(); 6160 6161 Value *Cond = SI->getCondition(); 6162 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6163 if (SimplifySwitchOnSelect(SI, Select)) 6164 return requestResimplify(); 6165 6166 // If the block only contains the switch, see if we can fold the block 6167 // away into any preds. 6168 if (SI == &*BB->instructionsWithoutDebug().begin()) 6169 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6170 return requestResimplify(); 6171 } 6172 6173 // Try to transform the switch into an icmp and a branch. 6174 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6175 return requestResimplify(); 6176 6177 // Remove unreachable cases. 6178 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6179 return requestResimplify(); 6180 6181 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6182 return requestResimplify(); 6183 6184 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6185 return requestResimplify(); 6186 6187 // The conversion from switch to lookup tables results in difficult-to-analyze 6188 // code and makes pruning branches much harder. This is a problem if the 6189 // switch expression itself can still be restricted as a result of inlining or 6190 // CVP. Therefore, only apply this transformation during late stages of the 6191 // optimisation pipeline. 6192 if (Options.ConvertSwitchToLookupTable && 6193 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6194 return requestResimplify(); 6195 6196 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6197 return requestResimplify(); 6198 6199 return false; 6200 } 6201 6202 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6203 BasicBlock *BB = IBI->getParent(); 6204 bool Changed = false; 6205 6206 // Eliminate redundant destinations. 6207 SmallPtrSet<Value *, 8> Succs; 6208 SmallPtrSet<BasicBlock *, 8> RemovedSuccs; 6209 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6210 BasicBlock *Dest = IBI->getDestination(i); 6211 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6212 if (!Dest->hasAddressTaken()) 6213 RemovedSuccs.insert(Dest); 6214 Dest->removePredecessor(BB); 6215 IBI->removeDestination(i); 6216 --i; 6217 --e; 6218 Changed = true; 6219 } 6220 } 6221 6222 if (DTU) { 6223 std::vector<DominatorTree::UpdateType> Updates; 6224 Updates.reserve(RemovedSuccs.size()); 6225 for (auto *RemovedSucc : RemovedSuccs) 6226 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6227 DTU->applyUpdates(Updates); 6228 } 6229 6230 if (IBI->getNumDestinations() == 0) { 6231 // If the indirectbr has no successors, change it to unreachable. 6232 new UnreachableInst(IBI->getContext(), IBI); 6233 EraseTerminatorAndDCECond(IBI); 6234 return true; 6235 } 6236 6237 if (IBI->getNumDestinations() == 1) { 6238 // If the indirectbr has one successor, change it to a direct branch. 6239 BranchInst::Create(IBI->getDestination(0), IBI); 6240 EraseTerminatorAndDCECond(IBI); 6241 return true; 6242 } 6243 6244 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6245 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6246 return requestResimplify(); 6247 } 6248 return Changed; 6249 } 6250 6251 /// Given an block with only a single landing pad and a unconditional branch 6252 /// try to find another basic block which this one can be merged with. This 6253 /// handles cases where we have multiple invokes with unique landing pads, but 6254 /// a shared handler. 6255 /// 6256 /// We specifically choose to not worry about merging non-empty blocks 6257 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6258 /// practice, the optimizer produces empty landing pad blocks quite frequently 6259 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6260 /// sinking in this file) 6261 /// 6262 /// This is primarily a code size optimization. We need to avoid performing 6263 /// any transform which might inhibit optimization (such as our ability to 6264 /// specialize a particular handler via tail commoning). We do this by not 6265 /// merging any blocks which require us to introduce a phi. Since the same 6266 /// values are flowing through both blocks, we don't lose any ability to 6267 /// specialize. If anything, we make such specialization more likely. 6268 /// 6269 /// TODO - This transformation could remove entries from a phi in the target 6270 /// block when the inputs in the phi are the same for the two blocks being 6271 /// merged. In some cases, this could result in removal of the PHI entirely. 6272 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6273 BasicBlock *BB, DomTreeUpdater *DTU) { 6274 auto Succ = BB->getUniqueSuccessor(); 6275 assert(Succ); 6276 // If there's a phi in the successor block, we'd likely have to introduce 6277 // a phi into the merged landing pad block. 6278 if (isa<PHINode>(*Succ->begin())) 6279 return false; 6280 6281 for (BasicBlock *OtherPred : predecessors(Succ)) { 6282 if (BB == OtherPred) 6283 continue; 6284 BasicBlock::iterator I = OtherPred->begin(); 6285 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6286 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6287 continue; 6288 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6289 ; 6290 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6291 if (!BI2 || !BI2->isIdenticalTo(BI)) 6292 continue; 6293 6294 std::vector<DominatorTree::UpdateType> Updates; 6295 6296 // We've found an identical block. Update our predecessors to take that 6297 // path instead and make ourselves dead. 6298 SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 6299 for (BasicBlock *Pred : Preds) { 6300 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6301 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6302 "unexpected successor"); 6303 II->setUnwindDest(OtherPred); 6304 if (DTU) { 6305 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6306 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6307 } 6308 } 6309 6310 // The debug info in OtherPred doesn't cover the merged control flow that 6311 // used to go through BB. We need to delete it or update it. 6312 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6313 Instruction &Inst = *I; 6314 I++; 6315 if (isa<DbgInfoIntrinsic>(Inst)) 6316 Inst.eraseFromParent(); 6317 } 6318 6319 SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB)); 6320 for (BasicBlock *Succ : Succs) { 6321 Succ->removePredecessor(BB); 6322 if (DTU) 6323 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6324 } 6325 6326 IRBuilder<> Builder(BI); 6327 Builder.CreateUnreachable(); 6328 BI->eraseFromParent(); 6329 if (DTU) 6330 DTU->applyUpdates(Updates); 6331 return true; 6332 } 6333 return false; 6334 } 6335 6336 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6337 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6338 : simplifyCondBranch(Branch, Builder); 6339 } 6340 6341 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6342 IRBuilder<> &Builder) { 6343 BasicBlock *BB = BI->getParent(); 6344 BasicBlock *Succ = BI->getSuccessor(0); 6345 6346 // If the Terminator is the only non-phi instruction, simplify the block. 6347 // If LoopHeader is provided, check if the block or its successor is a loop 6348 // header. (This is for early invocations before loop simplify and 6349 // vectorization to keep canonical loop forms for nested loops. These blocks 6350 // can be eliminated when the pass is invoked later in the back-end.) 6351 // Note that if BB has only one predecessor then we do not introduce new 6352 // backedge, so we can eliminate BB. 6353 bool NeedCanonicalLoop = 6354 Options.NeedCanonicalLoop && 6355 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6356 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6357 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6358 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6359 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6360 return true; 6361 6362 // If the only instruction in the block is a seteq/setne comparison against a 6363 // constant, try to simplify the block. 6364 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6365 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6366 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6367 ; 6368 if (I->isTerminator() && 6369 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6370 return true; 6371 } 6372 6373 // See if we can merge an empty landing pad block with another which is 6374 // equivalent. 6375 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6376 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6377 ; 6378 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6379 return true; 6380 } 6381 6382 // If this basic block is ONLY a compare and a branch, and if a predecessor 6383 // branches to us and our successor, fold the comparison into the 6384 // predecessor and use logical operations to update the incoming value 6385 // for PHI nodes in common successor. 6386 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6387 Options.BonusInstThreshold)) 6388 return requestResimplify(); 6389 return false; 6390 } 6391 6392 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6393 BasicBlock *PredPred = nullptr; 6394 for (auto *P : predecessors(BB)) { 6395 BasicBlock *PPred = P->getSinglePredecessor(); 6396 if (!PPred || (PredPred && PredPred != PPred)) 6397 return nullptr; 6398 PredPred = PPred; 6399 } 6400 return PredPred; 6401 } 6402 6403 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6404 BasicBlock *BB = BI->getParent(); 6405 if (!Options.SimplifyCondBranch) 6406 return false; 6407 6408 // Conditional branch 6409 if (isValueEqualityComparison(BI)) { 6410 // If we only have one predecessor, and if it is a branch on this value, 6411 // see if that predecessor totally determines the outcome of this 6412 // switch. 6413 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6414 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6415 return requestResimplify(); 6416 6417 // This block must be empty, except for the setcond inst, if it exists. 6418 // Ignore dbg and pseudo intrinsics. 6419 auto I = BB->instructionsWithoutDebug(true).begin(); 6420 if (&*I == BI) { 6421 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6422 return requestResimplify(); 6423 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6424 ++I; 6425 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6426 return requestResimplify(); 6427 } 6428 } 6429 6430 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6431 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6432 return true; 6433 6434 // If this basic block has dominating predecessor blocks and the dominating 6435 // blocks' conditions imply BI's condition, we know the direction of BI. 6436 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6437 if (Imp) { 6438 // Turn this into a branch on constant. 6439 auto *OldCond = BI->getCondition(); 6440 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6441 : ConstantInt::getFalse(BB->getContext()); 6442 BI->setCondition(TorF); 6443 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6444 return requestResimplify(); 6445 } 6446 6447 // If this basic block is ONLY a compare and a branch, and if a predecessor 6448 // branches to us and one of our successors, fold the comparison into the 6449 // predecessor and use logical operations to pick the right destination. 6450 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6451 Options.BonusInstThreshold)) 6452 return requestResimplify(); 6453 6454 // We have a conditional branch to two blocks that are only reachable 6455 // from BI. We know that the condbr dominates the two blocks, so see if 6456 // there is any identical code in the "then" and "else" blocks. If so, we 6457 // can hoist it up to the branching block. 6458 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6459 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6460 if (HoistCommon && 6461 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6462 return requestResimplify(); 6463 } else { 6464 // If Successor #1 has multiple preds, we may be able to conditionally 6465 // execute Successor #0 if it branches to Successor #1. 6466 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6467 if (Succ0TI->getNumSuccessors() == 1 && 6468 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6469 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6470 return requestResimplify(); 6471 } 6472 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6473 // If Successor #0 has multiple preds, we may be able to conditionally 6474 // execute Successor #1 if it branches to Successor #0. 6475 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6476 if (Succ1TI->getNumSuccessors() == 1 && 6477 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6478 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6479 return requestResimplify(); 6480 } 6481 6482 // If this is a branch on a phi node in the current block, thread control 6483 // through this block if any PHI node entries are constants. 6484 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6485 if (PN->getParent() == BI->getParent()) 6486 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6487 return requestResimplify(); 6488 6489 // Scan predecessor blocks for conditional branches. 6490 for (BasicBlock *Pred : predecessors(BB)) 6491 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6492 if (PBI != BI && PBI->isConditional()) 6493 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6494 return requestResimplify(); 6495 6496 // Look for diamond patterns. 6497 if (MergeCondStores) 6498 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6499 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6500 if (PBI != BI && PBI->isConditional()) 6501 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6502 return requestResimplify(); 6503 6504 return false; 6505 } 6506 6507 /// Check if passing a value to an instruction will cause undefined behavior. 6508 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6509 Constant *C = dyn_cast<Constant>(V); 6510 if (!C) 6511 return false; 6512 6513 if (I->use_empty()) 6514 return false; 6515 6516 if (C->isNullValue() || isa<UndefValue>(C)) { 6517 // Only look at the first use, avoid hurting compile time with long uselists 6518 User *Use = *I->user_begin(); 6519 6520 // Now make sure that there are no instructions in between that can alter 6521 // control flow (eg. calls) 6522 for (BasicBlock::iterator 6523 i = ++BasicBlock::iterator(I), 6524 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6525 i != UI; ++i) 6526 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6527 return false; 6528 6529 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6530 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6531 if (GEP->getPointerOperand() == I) { 6532 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6533 PtrValueMayBeModified = true; 6534 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6535 } 6536 6537 // Look through bitcasts. 6538 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6539 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6540 6541 // Load from null is undefined. 6542 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6543 if (!LI->isVolatile()) 6544 return !NullPointerIsDefined(LI->getFunction(), 6545 LI->getPointerAddressSpace()); 6546 6547 // Store to null is undefined. 6548 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6549 if (!SI->isVolatile()) 6550 return (!NullPointerIsDefined(SI->getFunction(), 6551 SI->getPointerAddressSpace())) && 6552 SI->getPointerOperand() == I; 6553 6554 if (auto *CB = dyn_cast<CallBase>(Use)) { 6555 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6556 return false; 6557 // A call to null is undefined. 6558 if (CB->getCalledOperand() == I) 6559 return true; 6560 6561 if (C->isNullValue()) { 6562 for (const llvm::Use &Arg : CB->args()) 6563 if (Arg == I) { 6564 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6565 if (CB->isPassingUndefUB(ArgIdx) && 6566 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6567 // Passing null to a nonnnull+noundef argument is undefined. 6568 return !PtrValueMayBeModified; 6569 } 6570 } 6571 } else if (isa<UndefValue>(C)) { 6572 // Passing undef to a noundef argument is undefined. 6573 for (const llvm::Use &Arg : CB->args()) 6574 if (Arg == I) { 6575 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6576 if (CB->isPassingUndefUB(ArgIdx)) { 6577 // Passing undef to a noundef argument is undefined. 6578 return true; 6579 } 6580 } 6581 } 6582 } 6583 } 6584 return false; 6585 } 6586 6587 /// If BB has an incoming value that will always trigger undefined behavior 6588 /// (eg. null pointer dereference), remove the branch leading here. 6589 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6590 DomTreeUpdater *DTU) { 6591 for (PHINode &PHI : BB->phis()) 6592 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6593 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6594 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6595 Instruction *T = Predecessor->getTerminator(); 6596 IRBuilder<> Builder(T); 6597 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6598 BB->removePredecessor(Predecessor); 6599 // Turn uncoditional branches into unreachables and remove the dead 6600 // destination from conditional branches. 6601 if (BI->isUnconditional()) 6602 Builder.CreateUnreachable(); 6603 else 6604 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6605 : BI->getSuccessor(0)); 6606 BI->eraseFromParent(); 6607 if (DTU) 6608 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6609 return true; 6610 } 6611 // TODO: SwitchInst. 6612 } 6613 6614 return false; 6615 } 6616 6617 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6618 bool Changed = false; 6619 6620 assert(BB && BB->getParent() && "Block not embedded in function!"); 6621 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6622 6623 // Remove basic blocks that have no predecessors (except the entry block)... 6624 // or that just have themself as a predecessor. These are unreachable. 6625 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6626 BB->getSinglePredecessor() == BB) { 6627 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6628 DeleteDeadBlock(BB, DTU); 6629 return true; 6630 } 6631 6632 // Check to see if we can constant propagate this terminator instruction 6633 // away... 6634 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6635 /*TLI=*/nullptr, DTU); 6636 6637 // Check for and eliminate duplicate PHI nodes in this block. 6638 Changed |= EliminateDuplicatePHINodes(BB); 6639 6640 // Check for and remove branches that will always cause undefined behavior. 6641 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6642 6643 // Merge basic blocks into their predecessor if there is only one distinct 6644 // pred, and if there is only one distinct successor of the predecessor, and 6645 // if there are no PHI nodes. 6646 if (MergeBlockIntoPredecessor(BB, DTU)) 6647 return true; 6648 6649 if (SinkCommon && Options.SinkCommonInsts) 6650 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6651 6652 IRBuilder<> Builder(BB); 6653 6654 if (Options.FoldTwoEntryPHINode) { 6655 // If there is a trivial two-entry PHI node in this basic block, and we can 6656 // eliminate it, do so now. 6657 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6658 if (PN->getNumIncomingValues() == 2) 6659 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6660 } 6661 6662 Instruction *Terminator = BB->getTerminator(); 6663 Builder.SetInsertPoint(Terminator); 6664 switch (Terminator->getOpcode()) { 6665 case Instruction::Br: 6666 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6667 break; 6668 case Instruction::Ret: 6669 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6670 break; 6671 case Instruction::Resume: 6672 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6673 break; 6674 case Instruction::CleanupRet: 6675 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6676 break; 6677 case Instruction::Switch: 6678 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6679 break; 6680 case Instruction::Unreachable: 6681 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6682 break; 6683 case Instruction::IndirectBr: 6684 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6685 break; 6686 } 6687 6688 return Changed; 6689 } 6690 6691 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6692 bool Changed = simplifyOnceImpl(BB); 6693 6694 return Changed; 6695 } 6696 6697 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6698 bool Changed = false; 6699 6700 // Repeated simplify BB as long as resimplification is requested. 6701 do { 6702 Resimplify = false; 6703 6704 // Perform one round of simplifcation. Resimplify flag will be set if 6705 // another iteration is requested. 6706 Changed |= simplifyOnce(BB); 6707 } while (Resimplify); 6708 6709 return Changed; 6710 } 6711 6712 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6713 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6714 ArrayRef<WeakVH> LoopHeaders) { 6715 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6716 Options) 6717 .run(BB); 6718 } 6719