1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/MemorySSA.h"
31 #include "llvm/Analysis/MemorySSAUpdater.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/NoFolder.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/PatternMatch.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/SSAUpdater.h"
72 #include "llvm/Transforms/Utils/ValueMapper.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <climits>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <map>
80 #include <set>
81 #include <tuple>
82 #include <utility>
83 #include <vector>
84 
85 using namespace llvm;
86 using namespace PatternMatch;
87 
88 #define DEBUG_TYPE "simplifycfg"
89 
90 cl::opt<bool> llvm::RequireAndPreserveDomTree(
91     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
92     cl::init(false),
93     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
94              "into preserving DomTree,"));
95 
96 // Chosen as 2 so as to be cheap, but still to have enough power to fold
97 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
98 // To catch this, we need to fold a compare and a select, hence '2' being the
99 // minimum reasonable default.
100 static cl::opt<unsigned> PHINodeFoldingThreshold(
101     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
102     cl::desc(
103         "Control the amount of phi node folding to perform (default = 2)"));
104 
105 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
106     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
107     cl::desc("Control the maximal total instruction cost that we are willing "
108              "to speculatively execute to fold a 2-entry PHI node into a "
109              "select (default = 4)"));
110 
111 static cl::opt<bool> DupRet(
112     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
113     cl::desc("Duplicate return instructions into unconditional branches"));
114 
115 static cl::opt<bool>
116     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
117                 cl::desc("Hoist common instructions up to the parent block"));
118 
119 static cl::opt<bool>
120     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
121                cl::desc("Sink common instructions down to the end block"));
122 
123 static cl::opt<bool> HoistCondStores(
124     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
125     cl::desc("Hoist conditional stores if an unconditional store precedes"));
126 
127 static cl::opt<bool> MergeCondStores(
128     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
129     cl::desc("Hoist conditional stores even if an unconditional store does not "
130              "precede - hoist multiple conditional stores into a single "
131              "predicated store"));
132 
133 static cl::opt<bool> MergeCondStoresAggressively(
134     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
135     cl::desc("When merging conditional stores, do so even if the resultant "
136              "basic blocks are unlikely to be if-converted as a result"));
137 
138 static cl::opt<bool> SpeculateOneExpensiveInst(
139     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
140     cl::desc("Allow exactly one expensive instruction to be speculatively "
141              "executed"));
142 
143 static cl::opt<unsigned> MaxSpeculationDepth(
144     "max-speculation-depth", cl::Hidden, cl::init(10),
145     cl::desc("Limit maximum recursion depth when calculating costs of "
146              "speculatively executed instructions"));
147 
148 static cl::opt<int>
149 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
150                   cl::desc("Max size of a block which is still considered "
151                            "small enough to thread through"));
152 
153 // Two is chosen to allow one negation and a logical combine.
154 static cl::opt<unsigned>
155     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
156                         cl::init(2),
157                         cl::desc("Maximum cost of combining conditions when "
158                                  "folding branches"));
159 
160 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
161 STATISTIC(NumLinearMaps,
162           "Number of switch instructions turned into linear mapping");
163 STATISTIC(NumLookupTables,
164           "Number of switch instructions turned into lookup tables");
165 STATISTIC(
166     NumLookupTablesHoles,
167     "Number of switch instructions turned into lookup tables (holes checked)");
168 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
169 STATISTIC(NumFoldValueComparisonIntoPredecessors,
170           "Number of value comparisons folded into predecessor basic blocks");
171 STATISTIC(NumFoldBranchToCommonDest,
172           "Number of branches folded into predecessor basic block");
173 STATISTIC(
174     NumHoistCommonCode,
175     "Number of common instruction 'blocks' hoisted up to the begin block");
176 STATISTIC(NumHoistCommonInstrs,
177           "Number of common instructions hoisted up to the begin block");
178 STATISTIC(NumSinkCommonCode,
179           "Number of common instruction 'blocks' sunk down to the end block");
180 STATISTIC(NumSinkCommonInstrs,
181           "Number of common instructions sunk down to the end block");
182 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
183 STATISTIC(NumInvokes,
184           "Number of invokes with empty resume blocks simplified into calls");
185 
186 namespace {
187 
188 // The first field contains the value that the switch produces when a certain
189 // case group is selected, and the second field is a vector containing the
190 // cases composing the case group.
191 using SwitchCaseResultVectorTy =
192     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
193 
194 // The first field contains the phi node that generates a result of the switch
195 // and the second field contains the value generated for a certain case in the
196 // switch for that PHI.
197 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
198 
199 /// ValueEqualityComparisonCase - Represents a case of a switch.
200 struct ValueEqualityComparisonCase {
201   ConstantInt *Value;
202   BasicBlock *Dest;
203 
204   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
205       : Value(Value), Dest(Dest) {}
206 
207   bool operator<(ValueEqualityComparisonCase RHS) const {
208     // Comparing pointers is ok as we only rely on the order for uniquing.
209     return Value < RHS.Value;
210   }
211 
212   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
213 };
214 
215 class SimplifyCFGOpt {
216   const TargetTransformInfo &TTI;
217   DomTreeUpdater *DTU;
218   const DataLayout &DL;
219   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
220   const SimplifyCFGOptions &Options;
221   bool Resimplify;
222 
223   Value *isValueEqualityComparison(Instruction *TI);
224   BasicBlock *GetValueEqualityComparisonCases(
225       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
226   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
227                                                      BasicBlock *Pred,
228                                                      IRBuilder<> &Builder);
229   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
230                                            IRBuilder<> &Builder);
231 
232   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
233   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
234   bool simplifySingleResume(ResumeInst *RI);
235   bool simplifyCommonResume(ResumeInst *RI);
236   bool simplifyCleanupReturn(CleanupReturnInst *RI);
237   bool simplifyUnreachable(UnreachableInst *UI);
238   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
239   bool simplifyIndirectBr(IndirectBrInst *IBI);
240   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
241   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
242   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
243   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
244 
245   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
246                                              IRBuilder<> &Builder);
247 
248   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
249   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
250                               const TargetTransformInfo &TTI);
251   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
252                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
253                                   uint32_t TrueWeight, uint32_t FalseWeight);
254   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
255                                  const DataLayout &DL);
256   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
257   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
258   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
259 
260 public:
261   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
262                  const DataLayout &DL,
263                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
264                  const SimplifyCFGOptions &Opts)
265       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
266 
267   bool simplifyOnce(BasicBlock *BB);
268   bool simplifyOnceImpl(BasicBlock *BB);
269   bool run(BasicBlock *BB);
270 
271   // Helper to set Resimplify and return change indication.
272   bool requestResimplify() {
273     Resimplify = true;
274     return true;
275   }
276 };
277 
278 } // end anonymous namespace
279 
280 /// Return true if it is safe to merge these two
281 /// terminator instructions together.
282 static bool
283 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
284                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
285   if (SI1 == SI2)
286     return false; // Can't merge with self!
287 
288   // It is not safe to merge these two switch instructions if they have a common
289   // successor, and if that successor has a PHI node, and if *that* PHI node has
290   // conflicting incoming values from the two switch blocks.
291   BasicBlock *SI1BB = SI1->getParent();
292   BasicBlock *SI2BB = SI2->getParent();
293 
294   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
295   bool Fail = false;
296   for (BasicBlock *Succ : successors(SI2BB))
297     if (SI1Succs.count(Succ))
298       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
299         PHINode *PN = cast<PHINode>(BBI);
300         if (PN->getIncomingValueForBlock(SI1BB) !=
301             PN->getIncomingValueForBlock(SI2BB)) {
302           if (FailBlocks)
303             FailBlocks->insert(Succ);
304           Fail = true;
305         }
306       }
307 
308   return !Fail;
309 }
310 
311 /// Return true if it is safe and profitable to merge these two terminator
312 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
313 /// store all PHI nodes in common successors.
314 static bool
315 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
316                                 Instruction *Cond,
317                                 SmallVectorImpl<PHINode *> &PhiNodes) {
318   if (SI1 == SI2)
319     return false; // Can't merge with self!
320   assert(SI1->isUnconditional() && SI2->isConditional());
321 
322   // We fold the unconditional branch if we can easily update all PHI nodes in
323   // common successors:
324   // 1> We have a constant incoming value for the conditional branch;
325   // 2> We have "Cond" as the incoming value for the unconditional branch;
326   // 3> SI2->getCondition() and Cond have same operands.
327   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
328   if (!Ci2)
329     return false;
330   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
331         Cond->getOperand(1) == Ci2->getOperand(1)) &&
332       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
333         Cond->getOperand(1) == Ci2->getOperand(0)))
334     return false;
335 
336   BasicBlock *SI1BB = SI1->getParent();
337   BasicBlock *SI2BB = SI2->getParent();
338   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
339   for (BasicBlock *Succ : successors(SI2BB))
340     if (SI1Succs.count(Succ))
341       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
342         PHINode *PN = cast<PHINode>(BBI);
343         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
344             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
345           return false;
346         PhiNodes.push_back(PN);
347       }
348   return true;
349 }
350 
351 /// Update PHI nodes in Succ to indicate that there will now be entries in it
352 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
353 /// will be the same as those coming in from ExistPred, an existing predecessor
354 /// of Succ.
355 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
356                                   BasicBlock *ExistPred,
357                                   MemorySSAUpdater *MSSAU = nullptr) {
358   for (PHINode &PN : Succ->phis())
359     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
360   if (MSSAU)
361     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
362       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
363 }
364 
365 /// Compute an abstract "cost" of speculating the given instruction,
366 /// which is assumed to be safe to speculate. TCC_Free means cheap,
367 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
368 /// expensive.
369 static unsigned ComputeSpeculationCost(const User *I,
370                                        const TargetTransformInfo &TTI) {
371   assert(isSafeToSpeculativelyExecute(I) &&
372          "Instruction is not safe to speculatively execute!");
373   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
374 }
375 
376 /// If we have a merge point of an "if condition" as accepted above,
377 /// return true if the specified value dominates the block.  We
378 /// don't handle the true generality of domination here, just a special case
379 /// which works well enough for us.
380 ///
381 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
382 /// see if V (which must be an instruction) and its recursive operands
383 /// that do not dominate BB have a combined cost lower than CostRemaining and
384 /// are non-trapping.  If both are true, the instruction is inserted into the
385 /// set and true is returned.
386 ///
387 /// The cost for most non-trapping instructions is defined as 1 except for
388 /// Select whose cost is 2.
389 ///
390 /// After this function returns, CostRemaining is decreased by the cost of
391 /// V plus its non-dominating operands.  If that cost is greater than
392 /// CostRemaining, false is returned and CostRemaining is undefined.
393 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
394                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
395                                 int &BudgetRemaining,
396                                 const TargetTransformInfo &TTI,
397                                 unsigned Depth = 0) {
398   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
399   // so limit the recursion depth.
400   // TODO: While this recursion limit does prevent pathological behavior, it
401   // would be better to track visited instructions to avoid cycles.
402   if (Depth == MaxSpeculationDepth)
403     return false;
404 
405   Instruction *I = dyn_cast<Instruction>(V);
406   if (!I) {
407     // Non-instructions all dominate instructions, but not all constantexprs
408     // can be executed unconditionally.
409     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
410       if (C->canTrap())
411         return false;
412     return true;
413   }
414   BasicBlock *PBB = I->getParent();
415 
416   // We don't want to allow weird loops that might have the "if condition" in
417   // the bottom of this block.
418   if (PBB == BB)
419     return false;
420 
421   // If this instruction is defined in a block that contains an unconditional
422   // branch to BB, then it must be in the 'conditional' part of the "if
423   // statement".  If not, it definitely dominates the region.
424   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
425   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
426     return true;
427 
428   // If we have seen this instruction before, don't count it again.
429   if (AggressiveInsts.count(I))
430     return true;
431 
432   // Okay, it looks like the instruction IS in the "condition".  Check to
433   // see if it's a cheap instruction to unconditionally compute, and if it
434   // only uses stuff defined outside of the condition.  If so, hoist it out.
435   if (!isSafeToSpeculativelyExecute(I))
436     return false;
437 
438   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
439 
440   // Allow exactly one instruction to be speculated regardless of its cost
441   // (as long as it is safe to do so).
442   // This is intended to flatten the CFG even if the instruction is a division
443   // or other expensive operation. The speculation of an expensive instruction
444   // is expected to be undone in CodeGenPrepare if the speculation has not
445   // enabled further IR optimizations.
446   if (BudgetRemaining < 0 &&
447       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
448     return false;
449 
450   // Okay, we can only really hoist these out if their operands do
451   // not take us over the cost threshold.
452   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
453     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
454                              Depth + 1))
455       return false;
456   // Okay, it's safe to do this!  Remember this instruction.
457   AggressiveInsts.insert(I);
458   return true;
459 }
460 
461 /// Extract ConstantInt from value, looking through IntToPtr
462 /// and PointerNullValue. Return NULL if value is not a constant int.
463 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
464   // Normal constant int.
465   ConstantInt *CI = dyn_cast<ConstantInt>(V);
466   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
467     return CI;
468 
469   // This is some kind of pointer constant. Turn it into a pointer-sized
470   // ConstantInt if possible.
471   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
472 
473   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
474   if (isa<ConstantPointerNull>(V))
475     return ConstantInt::get(PtrTy, 0);
476 
477   // IntToPtr const int.
478   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
479     if (CE->getOpcode() == Instruction::IntToPtr)
480       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
481         // The constant is very likely to have the right type already.
482         if (CI->getType() == PtrTy)
483           return CI;
484         else
485           return cast<ConstantInt>(
486               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
487       }
488   return nullptr;
489 }
490 
491 namespace {
492 
493 /// Given a chain of or (||) or and (&&) comparison of a value against a
494 /// constant, this will try to recover the information required for a switch
495 /// structure.
496 /// It will depth-first traverse the chain of comparison, seeking for patterns
497 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
498 /// representing the different cases for the switch.
499 /// Note that if the chain is composed of '||' it will build the set of elements
500 /// that matches the comparisons (i.e. any of this value validate the chain)
501 /// while for a chain of '&&' it will build the set elements that make the test
502 /// fail.
503 struct ConstantComparesGatherer {
504   const DataLayout &DL;
505 
506   /// Value found for the switch comparison
507   Value *CompValue = nullptr;
508 
509   /// Extra clause to be checked before the switch
510   Value *Extra = nullptr;
511 
512   /// Set of integers to match in switch
513   SmallVector<ConstantInt *, 8> Vals;
514 
515   /// Number of comparisons matched in the and/or chain
516   unsigned UsedICmps = 0;
517 
518   /// Construct and compute the result for the comparison instruction Cond
519   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
520     gather(Cond);
521   }
522 
523   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
524   ConstantComparesGatherer &
525   operator=(const ConstantComparesGatherer &) = delete;
526 
527 private:
528   /// Try to set the current value used for the comparison, it succeeds only if
529   /// it wasn't set before or if the new value is the same as the old one
530   bool setValueOnce(Value *NewVal) {
531     if (CompValue && CompValue != NewVal)
532       return false;
533     CompValue = NewVal;
534     return (CompValue != nullptr);
535   }
536 
537   /// Try to match Instruction "I" as a comparison against a constant and
538   /// populates the array Vals with the set of values that match (or do not
539   /// match depending on isEQ).
540   /// Return false on failure. On success, the Value the comparison matched
541   /// against is placed in CompValue.
542   /// If CompValue is already set, the function is expected to fail if a match
543   /// is found but the value compared to is different.
544   bool matchInstruction(Instruction *I, bool isEQ) {
545     // If this is an icmp against a constant, handle this as one of the cases.
546     ICmpInst *ICI;
547     ConstantInt *C;
548     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
549           (C = GetConstantInt(I->getOperand(1), DL)))) {
550       return false;
551     }
552 
553     Value *RHSVal;
554     const APInt *RHSC;
555 
556     // Pattern match a special case
557     // (x & ~2^z) == y --> x == y || x == y|2^z
558     // This undoes a transformation done by instcombine to fuse 2 compares.
559     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
560       // It's a little bit hard to see why the following transformations are
561       // correct. Here is a CVC3 program to verify them for 64-bit values:
562 
563       /*
564          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
565          x    : BITVECTOR(64);
566          y    : BITVECTOR(64);
567          z    : BITVECTOR(64);
568          mask : BITVECTOR(64) = BVSHL(ONE, z);
569          QUERY( (y & ~mask = y) =>
570                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
571          );
572          QUERY( (y |  mask = y) =>
573                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
574          );
575       */
576 
577       // Please note that each pattern must be a dual implication (<--> or
578       // iff). One directional implication can create spurious matches. If the
579       // implication is only one-way, an unsatisfiable condition on the left
580       // side can imply a satisfiable condition on the right side. Dual
581       // implication ensures that satisfiable conditions are transformed to
582       // other satisfiable conditions and unsatisfiable conditions are
583       // transformed to other unsatisfiable conditions.
584 
585       // Here is a concrete example of a unsatisfiable condition on the left
586       // implying a satisfiable condition on the right:
587       //
588       // mask = (1 << z)
589       // (x & ~mask) == y  --> (x == y || x == (y | mask))
590       //
591       // Substituting y = 3, z = 0 yields:
592       // (x & -2) == 3 --> (x == 3 || x == 2)
593 
594       // Pattern match a special case:
595       /*
596         QUERY( (y & ~mask = y) =>
597                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
598         );
599       */
600       if (match(ICI->getOperand(0),
601                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
602         APInt Mask = ~*RHSC;
603         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
604           // If we already have a value for the switch, it has to match!
605           if (!setValueOnce(RHSVal))
606             return false;
607 
608           Vals.push_back(C);
609           Vals.push_back(
610               ConstantInt::get(C->getContext(),
611                                C->getValue() | Mask));
612           UsedICmps++;
613           return true;
614         }
615       }
616 
617       // Pattern match a special case:
618       /*
619         QUERY( (y |  mask = y) =>
620                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
621         );
622       */
623       if (match(ICI->getOperand(0),
624                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
625         APInt Mask = *RHSC;
626         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
627           // If we already have a value for the switch, it has to match!
628           if (!setValueOnce(RHSVal))
629             return false;
630 
631           Vals.push_back(C);
632           Vals.push_back(ConstantInt::get(C->getContext(),
633                                           C->getValue() & ~Mask));
634           UsedICmps++;
635           return true;
636         }
637       }
638 
639       // If we already have a value for the switch, it has to match!
640       if (!setValueOnce(ICI->getOperand(0)))
641         return false;
642 
643       UsedICmps++;
644       Vals.push_back(C);
645       return ICI->getOperand(0);
646     }
647 
648     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
649     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
650         ICI->getPredicate(), C->getValue());
651 
652     // Shift the range if the compare is fed by an add. This is the range
653     // compare idiom as emitted by instcombine.
654     Value *CandidateVal = I->getOperand(0);
655     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
656       Span = Span.subtract(*RHSC);
657       CandidateVal = RHSVal;
658     }
659 
660     // If this is an and/!= check, then we are looking to build the set of
661     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
662     // x != 0 && x != 1.
663     if (!isEQ)
664       Span = Span.inverse();
665 
666     // If there are a ton of values, we don't want to make a ginormous switch.
667     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
668       return false;
669     }
670 
671     // If we already have a value for the switch, it has to match!
672     if (!setValueOnce(CandidateVal))
673       return false;
674 
675     // Add all values from the range to the set
676     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
677       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
678 
679     UsedICmps++;
680     return true;
681   }
682 
683   /// Given a potentially 'or'd or 'and'd together collection of icmp
684   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
685   /// the value being compared, and stick the list constants into the Vals
686   /// vector.
687   /// One "Extra" case is allowed to differ from the other.
688   void gather(Value *V) {
689     bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
690 
691     // Keep a stack (SmallVector for efficiency) for depth-first traversal
692     SmallVector<Value *, 8> DFT;
693     SmallPtrSet<Value *, 8> Visited;
694 
695     // Initialize
696     Visited.insert(V);
697     DFT.push_back(V);
698 
699     while (!DFT.empty()) {
700       V = DFT.pop_back_val();
701 
702       if (Instruction *I = dyn_cast<Instruction>(V)) {
703         // If it is a || (or && depending on isEQ), process the operands.
704         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
705           if (Visited.insert(I->getOperand(1)).second)
706             DFT.push_back(I->getOperand(1));
707           if (Visited.insert(I->getOperand(0)).second)
708             DFT.push_back(I->getOperand(0));
709           continue;
710         }
711 
712         // Try to match the current instruction
713         if (matchInstruction(I, isEQ))
714           // Match succeed, continue the loop
715           continue;
716       }
717 
718       // One element of the sequence of || (or &&) could not be match as a
719       // comparison against the same value as the others.
720       // We allow only one "Extra" case to be checked before the switch
721       if (!Extra) {
722         Extra = V;
723         continue;
724       }
725       // Failed to parse a proper sequence, abort now
726       CompValue = nullptr;
727       break;
728     }
729   }
730 };
731 
732 } // end anonymous namespace
733 
734 static void EraseTerminatorAndDCECond(Instruction *TI,
735                                       MemorySSAUpdater *MSSAU = nullptr) {
736   Instruction *Cond = nullptr;
737   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
738     Cond = dyn_cast<Instruction>(SI->getCondition());
739   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
740     if (BI->isConditional())
741       Cond = dyn_cast<Instruction>(BI->getCondition());
742   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
743     Cond = dyn_cast<Instruction>(IBI->getAddress());
744   }
745 
746   TI->eraseFromParent();
747   if (Cond)
748     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
749 }
750 
751 /// Return true if the specified terminator checks
752 /// to see if a value is equal to constant integer value.
753 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
754   Value *CV = nullptr;
755   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
756     // Do not permit merging of large switch instructions into their
757     // predecessors unless there is only one predecessor.
758     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
759       CV = SI->getCondition();
760   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
761     if (BI->isConditional() && BI->getCondition()->hasOneUse())
762       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
763         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
764           CV = ICI->getOperand(0);
765       }
766 
767   // Unwrap any lossless ptrtoint cast.
768   if (CV) {
769     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
770       Value *Ptr = PTII->getPointerOperand();
771       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
772         CV = Ptr;
773     }
774   }
775   return CV;
776 }
777 
778 /// Given a value comparison instruction,
779 /// decode all of the 'cases' that it represents and return the 'default' block.
780 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
781     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
782   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
783     Cases.reserve(SI->getNumCases());
784     for (auto Case : SI->cases())
785       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
786                                                   Case.getCaseSuccessor()));
787     return SI->getDefaultDest();
788   }
789 
790   BranchInst *BI = cast<BranchInst>(TI);
791   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
792   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
793   Cases.push_back(ValueEqualityComparisonCase(
794       GetConstantInt(ICI->getOperand(1), DL), Succ));
795   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
796 }
797 
798 /// Given a vector of bb/value pairs, remove any entries
799 /// in the list that match the specified block.
800 static void
801 EliminateBlockCases(BasicBlock *BB,
802                     std::vector<ValueEqualityComparisonCase> &Cases) {
803   llvm::erase_value(Cases, BB);
804 }
805 
806 /// Return true if there are any keys in C1 that exist in C2 as well.
807 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
808                           std::vector<ValueEqualityComparisonCase> &C2) {
809   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
810 
811   // Make V1 be smaller than V2.
812   if (V1->size() > V2->size())
813     std::swap(V1, V2);
814 
815   if (V1->empty())
816     return false;
817   if (V1->size() == 1) {
818     // Just scan V2.
819     ConstantInt *TheVal = (*V1)[0].Value;
820     for (unsigned i = 0, e = V2->size(); i != e; ++i)
821       if (TheVal == (*V2)[i].Value)
822         return true;
823   }
824 
825   // Otherwise, just sort both lists and compare element by element.
826   array_pod_sort(V1->begin(), V1->end());
827   array_pod_sort(V2->begin(), V2->end());
828   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
829   while (i1 != e1 && i2 != e2) {
830     if ((*V1)[i1].Value == (*V2)[i2].Value)
831       return true;
832     if ((*V1)[i1].Value < (*V2)[i2].Value)
833       ++i1;
834     else
835       ++i2;
836   }
837   return false;
838 }
839 
840 // Set branch weights on SwitchInst. This sets the metadata if there is at
841 // least one non-zero weight.
842 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
843   // Check that there is at least one non-zero weight. Otherwise, pass
844   // nullptr to setMetadata which will erase the existing metadata.
845   MDNode *N = nullptr;
846   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
847     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
848   SI->setMetadata(LLVMContext::MD_prof, N);
849 }
850 
851 // Similar to the above, but for branch and select instructions that take
852 // exactly 2 weights.
853 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
854                              uint32_t FalseWeight) {
855   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
856   // Check that there is at least one non-zero weight. Otherwise, pass
857   // nullptr to setMetadata which will erase the existing metadata.
858   MDNode *N = nullptr;
859   if (TrueWeight || FalseWeight)
860     N = MDBuilder(I->getParent()->getContext())
861             .createBranchWeights(TrueWeight, FalseWeight);
862   I->setMetadata(LLVMContext::MD_prof, N);
863 }
864 
865 /// If TI is known to be a terminator instruction and its block is known to
866 /// only have a single predecessor block, check to see if that predecessor is
867 /// also a value comparison with the same value, and if that comparison
868 /// determines the outcome of this comparison. If so, simplify TI. This does a
869 /// very limited form of jump threading.
870 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
871     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
872   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
873   if (!PredVal)
874     return false; // Not a value comparison in predecessor.
875 
876   Value *ThisVal = isValueEqualityComparison(TI);
877   assert(ThisVal && "This isn't a value comparison!!");
878   if (ThisVal != PredVal)
879     return false; // Different predicates.
880 
881   // TODO: Preserve branch weight metadata, similarly to how
882   // FoldValueComparisonIntoPredecessors preserves it.
883 
884   // Find out information about when control will move from Pred to TI's block.
885   std::vector<ValueEqualityComparisonCase> PredCases;
886   BasicBlock *PredDef =
887       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
888   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
889 
890   // Find information about how control leaves this block.
891   std::vector<ValueEqualityComparisonCase> ThisCases;
892   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
893   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
894 
895   // If TI's block is the default block from Pred's comparison, potentially
896   // simplify TI based on this knowledge.
897   if (PredDef == TI->getParent()) {
898     // If we are here, we know that the value is none of those cases listed in
899     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
900     // can simplify TI.
901     if (!ValuesOverlap(PredCases, ThisCases))
902       return false;
903 
904     if (isa<BranchInst>(TI)) {
905       // Okay, one of the successors of this condbr is dead.  Convert it to a
906       // uncond br.
907       assert(ThisCases.size() == 1 && "Branch can only have one case!");
908       // Insert the new branch.
909       Instruction *NI = Builder.CreateBr(ThisDef);
910       (void)NI;
911 
912       // Remove PHI node entries for the dead edge.
913       ThisCases[0].Dest->removePredecessor(PredDef);
914 
915       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
916                         << "Through successor TI: " << *TI << "Leaving: " << *NI
917                         << "\n");
918 
919       EraseTerminatorAndDCECond(TI);
920 
921       if (DTU)
922         DTU->applyUpdatesPermissive(
923             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
924 
925       return true;
926     }
927 
928     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
929     // Okay, TI has cases that are statically dead, prune them away.
930     SmallPtrSet<Constant *, 16> DeadCases;
931     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
932       DeadCases.insert(PredCases[i].Value);
933 
934     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
935                       << "Through successor TI: " << *TI);
936 
937     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
938       --i;
939       if (DeadCases.count(i->getCaseValue())) {
940         i->getCaseSuccessor()->removePredecessor(TI->getParent());
941         SI.removeCase(i);
942       }
943     }
944     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
945     return true;
946   }
947 
948   // Otherwise, TI's block must correspond to some matched value.  Find out
949   // which value (or set of values) this is.
950   ConstantInt *TIV = nullptr;
951   BasicBlock *TIBB = TI->getParent();
952   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
953     if (PredCases[i].Dest == TIBB) {
954       if (TIV)
955         return false; // Cannot handle multiple values coming to this block.
956       TIV = PredCases[i].Value;
957     }
958   assert(TIV && "No edge from pred to succ?");
959 
960   // Okay, we found the one constant that our value can be if we get into TI's
961   // BB.  Find out which successor will unconditionally be branched to.
962   BasicBlock *TheRealDest = nullptr;
963   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
964     if (ThisCases[i].Value == TIV) {
965       TheRealDest = ThisCases[i].Dest;
966       break;
967     }
968 
969   // If not handled by any explicit cases, it is handled by the default case.
970   if (!TheRealDest)
971     TheRealDest = ThisDef;
972 
973   SmallVector<DominatorTree::UpdateType, 2> Updates;
974 
975   // Remove PHI node entries for dead edges.
976   BasicBlock *CheckEdge = TheRealDest;
977   for (BasicBlock *Succ : successors(TIBB))
978     if (Succ != CheckEdge) {
979       Succ->removePredecessor(TIBB);
980       Updates.push_back({DominatorTree::Delete, TIBB, Succ});
981     } else
982       CheckEdge = nullptr;
983 
984   // Insert the new branch.
985   Instruction *NI = Builder.CreateBr(TheRealDest);
986   (void)NI;
987 
988   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
989                     << "Through successor TI: " << *TI << "Leaving: " << *NI
990                     << "\n");
991 
992   EraseTerminatorAndDCECond(TI);
993   if (DTU)
994     DTU->applyUpdatesPermissive(Updates);
995   return true;
996 }
997 
998 namespace {
999 
1000 /// This class implements a stable ordering of constant
1001 /// integers that does not depend on their address.  This is important for
1002 /// applications that sort ConstantInt's to ensure uniqueness.
1003 struct ConstantIntOrdering {
1004   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1005     return LHS->getValue().ult(RHS->getValue());
1006   }
1007 };
1008 
1009 } // end anonymous namespace
1010 
1011 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1012                                     ConstantInt *const *P2) {
1013   const ConstantInt *LHS = *P1;
1014   const ConstantInt *RHS = *P2;
1015   if (LHS == RHS)
1016     return 0;
1017   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1018 }
1019 
1020 static inline bool HasBranchWeights(const Instruction *I) {
1021   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1022   if (ProfMD && ProfMD->getOperand(0))
1023     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1024       return MDS->getString().equals("branch_weights");
1025 
1026   return false;
1027 }
1028 
1029 /// Get Weights of a given terminator, the default weight is at the front
1030 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1031 /// metadata.
1032 static void GetBranchWeights(Instruction *TI,
1033                              SmallVectorImpl<uint64_t> &Weights) {
1034   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1035   assert(MD);
1036   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1037     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1038     Weights.push_back(CI->getValue().getZExtValue());
1039   }
1040 
1041   // If TI is a conditional eq, the default case is the false case,
1042   // and the corresponding branch-weight data is at index 2. We swap the
1043   // default weight to be the first entry.
1044   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1045     assert(Weights.size() == 2);
1046     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1047     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1048       std::swap(Weights.front(), Weights.back());
1049   }
1050 }
1051 
1052 /// Keep halving the weights until all can fit in uint32_t.
1053 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1054   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1055   if (Max > UINT_MAX) {
1056     unsigned Offset = 32 - countLeadingZeros(Max);
1057     for (uint64_t &I : Weights)
1058       I >>= Offset;
1059   }
1060 }
1061 
1062 /// The specified terminator is a value equality comparison instruction
1063 /// (either a switch or a branch on "X == c").
1064 /// See if any of the predecessors of the terminator block are value comparisons
1065 /// on the same value.  If so, and if safe to do so, fold them together.
1066 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1067                                                          IRBuilder<> &Builder) {
1068   BasicBlock *BB = TI->getParent();
1069   Value *CV = isValueEqualityComparison(TI); // CondVal
1070   assert(CV && "Not a comparison?");
1071 
1072   bool Changed = false;
1073 
1074   auto _ = make_scope_exit([&]() {
1075     if (Changed)
1076       ++NumFoldValueComparisonIntoPredecessors;
1077   });
1078 
1079   SmallVector<BasicBlock *, 16> Preds(predecessors(BB));
1080   while (!Preds.empty()) {
1081     BasicBlock *Pred = Preds.pop_back_val();
1082 
1083     // See if the predecessor is a comparison with the same value.
1084     Instruction *PTI = Pred->getTerminator();
1085     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1086 
1087     if (PCV == CV && TI != PTI) {
1088       SmallSetVector<BasicBlock*, 4> FailBlocks;
1089       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1090         for (auto *Succ : FailBlocks) {
1091           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1092             return false;
1093         }
1094       }
1095 
1096       // Figure out which 'cases' to copy from SI to PSI.
1097       std::vector<ValueEqualityComparisonCase> BBCases;
1098       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1099 
1100       std::vector<ValueEqualityComparisonCase> PredCases;
1101       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1102 
1103       // Based on whether the default edge from PTI goes to BB or not, fill in
1104       // PredCases and PredDefault with the new switch cases we would like to
1105       // build.
1106       SmallVector<BasicBlock *, 8> NewSuccessors;
1107 
1108       // Update the branch weight metadata along the way
1109       SmallVector<uint64_t, 8> Weights;
1110       bool PredHasWeights = HasBranchWeights(PTI);
1111       bool SuccHasWeights = HasBranchWeights(TI);
1112 
1113       if (PredHasWeights) {
1114         GetBranchWeights(PTI, Weights);
1115         // branch-weight metadata is inconsistent here.
1116         if (Weights.size() != 1 + PredCases.size())
1117           PredHasWeights = SuccHasWeights = false;
1118       } else if (SuccHasWeights)
1119         // If there are no predecessor weights but there are successor weights,
1120         // populate Weights with 1, which will later be scaled to the sum of
1121         // successor's weights
1122         Weights.assign(1 + PredCases.size(), 1);
1123 
1124       SmallVector<uint64_t, 8> SuccWeights;
1125       if (SuccHasWeights) {
1126         GetBranchWeights(TI, SuccWeights);
1127         // branch-weight metadata is inconsistent here.
1128         if (SuccWeights.size() != 1 + BBCases.size())
1129           PredHasWeights = SuccHasWeights = false;
1130       } else if (PredHasWeights)
1131         SuccWeights.assign(1 + BBCases.size(), 1);
1132 
1133       if (PredDefault == BB) {
1134         // If this is the default destination from PTI, only the edges in TI
1135         // that don't occur in PTI, or that branch to BB will be activated.
1136         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1137         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1138           if (PredCases[i].Dest != BB)
1139             PTIHandled.insert(PredCases[i].Value);
1140           else {
1141             // The default destination is BB, we don't need explicit targets.
1142             std::swap(PredCases[i], PredCases.back());
1143 
1144             if (PredHasWeights || SuccHasWeights) {
1145               // Increase weight for the default case.
1146               Weights[0] += Weights[i + 1];
1147               std::swap(Weights[i + 1], Weights.back());
1148               Weights.pop_back();
1149             }
1150 
1151             PredCases.pop_back();
1152             --i;
1153             --e;
1154           }
1155 
1156         // Reconstruct the new switch statement we will be building.
1157         if (PredDefault != BBDefault) {
1158           PredDefault->removePredecessor(Pred);
1159           PredDefault = BBDefault;
1160           NewSuccessors.push_back(BBDefault);
1161         }
1162 
1163         unsigned CasesFromPred = Weights.size();
1164         uint64_t ValidTotalSuccWeight = 0;
1165         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1166           if (!PTIHandled.count(BBCases[i].Value) &&
1167               BBCases[i].Dest != BBDefault) {
1168             PredCases.push_back(BBCases[i]);
1169             NewSuccessors.push_back(BBCases[i].Dest);
1170             if (SuccHasWeights || PredHasWeights) {
1171               // The default weight is at index 0, so weight for the ith case
1172               // should be at index i+1. Scale the cases from successor by
1173               // PredDefaultWeight (Weights[0]).
1174               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1175               ValidTotalSuccWeight += SuccWeights[i + 1];
1176             }
1177           }
1178 
1179         if (SuccHasWeights || PredHasWeights) {
1180           ValidTotalSuccWeight += SuccWeights[0];
1181           // Scale the cases from predecessor by ValidTotalSuccWeight.
1182           for (unsigned i = 1; i < CasesFromPred; ++i)
1183             Weights[i] *= ValidTotalSuccWeight;
1184           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1185           Weights[0] *= SuccWeights[0];
1186         }
1187       } else {
1188         // If this is not the default destination from PSI, only the edges
1189         // in SI that occur in PSI with a destination of BB will be
1190         // activated.
1191         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1192         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1193         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1194           if (PredCases[i].Dest == BB) {
1195             PTIHandled.insert(PredCases[i].Value);
1196 
1197             if (PredHasWeights || SuccHasWeights) {
1198               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1199               std::swap(Weights[i + 1], Weights.back());
1200               Weights.pop_back();
1201             }
1202 
1203             std::swap(PredCases[i], PredCases.back());
1204             PredCases.pop_back();
1205             --i;
1206             --e;
1207           }
1208 
1209         // Okay, now we know which constants were sent to BB from the
1210         // predecessor.  Figure out where they will all go now.
1211         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1212           if (PTIHandled.count(BBCases[i].Value)) {
1213             // If this is one we are capable of getting...
1214             if (PredHasWeights || SuccHasWeights)
1215               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1216             PredCases.push_back(BBCases[i]);
1217             NewSuccessors.push_back(BBCases[i].Dest);
1218             PTIHandled.erase(
1219                 BBCases[i].Value); // This constant is taken care of
1220           }
1221 
1222         // If there are any constants vectored to BB that TI doesn't handle,
1223         // they must go to the default destination of TI.
1224         for (ConstantInt *I : PTIHandled) {
1225           if (PredHasWeights || SuccHasWeights)
1226             Weights.push_back(WeightsForHandled[I]);
1227           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1228           NewSuccessors.push_back(BBDefault);
1229         }
1230       }
1231 
1232       // Okay, at this point, we know which new successor Pred will get.  Make
1233       // sure we update the number of entries in the PHI nodes for these
1234       // successors.
1235       for (BasicBlock *NewSuccessor : NewSuccessors)
1236         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1237 
1238       Builder.SetInsertPoint(PTI);
1239       // Convert pointer to int before we switch.
1240       if (CV->getType()->isPointerTy()) {
1241         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1242                                     "magicptr");
1243       }
1244 
1245       // Now that the successors are updated, create the new Switch instruction.
1246       SwitchInst *NewSI =
1247           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1248       NewSI->setDebugLoc(PTI->getDebugLoc());
1249       for (ValueEqualityComparisonCase &V : PredCases)
1250         NewSI->addCase(V.Value, V.Dest);
1251 
1252       if (PredHasWeights || SuccHasWeights) {
1253         // Halve the weights if any of them cannot fit in an uint32_t
1254         FitWeights(Weights);
1255 
1256         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1257 
1258         setBranchWeights(NewSI, MDWeights);
1259       }
1260 
1261       EraseTerminatorAndDCECond(PTI);
1262 
1263       // Okay, last check.  If BB is still a successor of PSI, then we must
1264       // have an infinite loop case.  If so, add an infinitely looping block
1265       // to handle the case to preserve the behavior of the code.
1266       BasicBlock *InfLoopBlock = nullptr;
1267       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1268         if (NewSI->getSuccessor(i) == BB) {
1269           if (!InfLoopBlock) {
1270             // Insert it at the end of the function, because it's either code,
1271             // or it won't matter if it's hot. :)
1272             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1273                                               BB->getParent());
1274             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1275           }
1276           NewSI->setSuccessor(i, InfLoopBlock);
1277         }
1278 
1279       Changed = true;
1280     }
1281   }
1282   return Changed;
1283 }
1284 
1285 // If we would need to insert a select that uses the value of this invoke
1286 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1287 // can't hoist the invoke, as there is nowhere to put the select in this case.
1288 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1289                                 Instruction *I1, Instruction *I2) {
1290   for (BasicBlock *Succ : successors(BB1)) {
1291     for (const PHINode &PN : Succ->phis()) {
1292       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1293       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1294       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1295         return false;
1296       }
1297     }
1298   }
1299   return true;
1300 }
1301 
1302 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1303 
1304 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1305 /// in the two blocks up into the branch block. The caller of this function
1306 /// guarantees that BI's block dominates BB1 and BB2.
1307 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1308                                            const TargetTransformInfo &TTI) {
1309   // This does very trivial matching, with limited scanning, to find identical
1310   // instructions in the two blocks.  In particular, we don't want to get into
1311   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1312   // such, we currently just scan for obviously identical instructions in an
1313   // identical order.
1314   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1315   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1316 
1317   BasicBlock::iterator BB1_Itr = BB1->begin();
1318   BasicBlock::iterator BB2_Itr = BB2->begin();
1319 
1320   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1321   // Skip debug info if it is not identical.
1322   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1323   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1324   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1325     while (isa<DbgInfoIntrinsic>(I1))
1326       I1 = &*BB1_Itr++;
1327     while (isa<DbgInfoIntrinsic>(I2))
1328       I2 = &*BB2_Itr++;
1329   }
1330   // FIXME: Can we define a safety predicate for CallBr?
1331   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1332       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1333       isa<CallBrInst>(I1))
1334     return false;
1335 
1336   BasicBlock *BIParent = BI->getParent();
1337 
1338   bool Changed = false;
1339 
1340   auto _ = make_scope_exit([&]() {
1341     if (Changed)
1342       ++NumHoistCommonCode;
1343   });
1344 
1345   do {
1346     // If we are hoisting the terminator instruction, don't move one (making a
1347     // broken BB), instead clone it, and remove BI.
1348     if (I1->isTerminator())
1349       goto HoistTerminator;
1350 
1351     // If we're going to hoist a call, make sure that the two instructions we're
1352     // commoning/hoisting are both marked with musttail, or neither of them is
1353     // marked as such. Otherwise, we might end up in a situation where we hoist
1354     // from a block where the terminator is a `ret` to a block where the terminator
1355     // is a `br`, and `musttail` calls expect to be followed by a return.
1356     auto *C1 = dyn_cast<CallInst>(I1);
1357     auto *C2 = dyn_cast<CallInst>(I2);
1358     if (C1 && C2)
1359       if (C1->isMustTailCall() != C2->isMustTailCall())
1360         return Changed;
1361 
1362     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1363       return Changed;
1364 
1365     // If any of the two call sites has nomerge attribute, stop hoisting.
1366     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1367       if (CB1->cannotMerge())
1368         return Changed;
1369     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1370       if (CB2->cannotMerge())
1371         return Changed;
1372 
1373     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1374       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1375       // The debug location is an integral part of a debug info intrinsic
1376       // and can't be separated from it or replaced.  Instead of attempting
1377       // to merge locations, simply hoist both copies of the intrinsic.
1378       BIParent->getInstList().splice(BI->getIterator(),
1379                                      BB1->getInstList(), I1);
1380       BIParent->getInstList().splice(BI->getIterator(),
1381                                      BB2->getInstList(), I2);
1382       Changed = true;
1383     } else {
1384       // For a normal instruction, we just move one to right before the branch,
1385       // then replace all uses of the other with the first.  Finally, we remove
1386       // the now redundant second instruction.
1387       BIParent->getInstList().splice(BI->getIterator(),
1388                                      BB1->getInstList(), I1);
1389       if (!I2->use_empty())
1390         I2->replaceAllUsesWith(I1);
1391       I1->andIRFlags(I2);
1392       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1393                              LLVMContext::MD_range,
1394                              LLVMContext::MD_fpmath,
1395                              LLVMContext::MD_invariant_load,
1396                              LLVMContext::MD_nonnull,
1397                              LLVMContext::MD_invariant_group,
1398                              LLVMContext::MD_align,
1399                              LLVMContext::MD_dereferenceable,
1400                              LLVMContext::MD_dereferenceable_or_null,
1401                              LLVMContext::MD_mem_parallel_loop_access,
1402                              LLVMContext::MD_access_group,
1403                              LLVMContext::MD_preserve_access_index};
1404       combineMetadata(I1, I2, KnownIDs, true);
1405 
1406       // I1 and I2 are being combined into a single instruction.  Its debug
1407       // location is the merged locations of the original instructions.
1408       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1409 
1410       I2->eraseFromParent();
1411       Changed = true;
1412     }
1413     ++NumHoistCommonInstrs;
1414 
1415     I1 = &*BB1_Itr++;
1416     I2 = &*BB2_Itr++;
1417     // Skip debug info if it is not identical.
1418     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1419     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1420     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1421       while (isa<DbgInfoIntrinsic>(I1))
1422         I1 = &*BB1_Itr++;
1423       while (isa<DbgInfoIntrinsic>(I2))
1424         I2 = &*BB2_Itr++;
1425     }
1426   } while (I1->isIdenticalToWhenDefined(I2));
1427 
1428   return true;
1429 
1430 HoistTerminator:
1431   // It may not be possible to hoist an invoke.
1432   // FIXME: Can we define a safety predicate for CallBr?
1433   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1434     return Changed;
1435 
1436   // TODO: callbr hoisting currently disabled pending further study.
1437   if (isa<CallBrInst>(I1))
1438     return Changed;
1439 
1440   for (BasicBlock *Succ : successors(BB1)) {
1441     for (PHINode &PN : Succ->phis()) {
1442       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1443       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1444       if (BB1V == BB2V)
1445         continue;
1446 
1447       // Check for passingValueIsAlwaysUndefined here because we would rather
1448       // eliminate undefined control flow then converting it to a select.
1449       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1450           passingValueIsAlwaysUndefined(BB2V, &PN))
1451         return Changed;
1452 
1453       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1454         return Changed;
1455       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1456         return Changed;
1457     }
1458   }
1459 
1460   // Okay, it is safe to hoist the terminator.
1461   Instruction *NT = I1->clone();
1462   BIParent->getInstList().insert(BI->getIterator(), NT);
1463   if (!NT->getType()->isVoidTy()) {
1464     I1->replaceAllUsesWith(NT);
1465     I2->replaceAllUsesWith(NT);
1466     NT->takeName(I1);
1467   }
1468   Changed = true;
1469   ++NumHoistCommonInstrs;
1470 
1471   // Ensure terminator gets a debug location, even an unknown one, in case
1472   // it involves inlinable calls.
1473   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1474 
1475   // PHIs created below will adopt NT's merged DebugLoc.
1476   IRBuilder<NoFolder> Builder(NT);
1477 
1478   // Hoisting one of the terminators from our successor is a great thing.
1479   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1480   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1481   // nodes, so we insert select instruction to compute the final result.
1482   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1483   for (BasicBlock *Succ : successors(BB1)) {
1484     for (PHINode &PN : Succ->phis()) {
1485       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1486       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1487       if (BB1V == BB2V)
1488         continue;
1489 
1490       // These values do not agree.  Insert a select instruction before NT
1491       // that determines the right value.
1492       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1493       if (!SI) {
1494         // Propagate fast-math-flags from phi node to its replacement select.
1495         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1496         if (isa<FPMathOperator>(PN))
1497           Builder.setFastMathFlags(PN.getFastMathFlags());
1498 
1499         SI = cast<SelectInst>(
1500             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1501                                  BB1V->getName() + "." + BB2V->getName(), BI));
1502       }
1503 
1504       // Make the PHI node use the select for all incoming values for BB1/BB2
1505       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1506         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1507           PN.setIncomingValue(i, SI);
1508     }
1509   }
1510 
1511   SmallVector<DominatorTree::UpdateType, 4> Updates;
1512 
1513   // Update any PHI nodes in our new successors.
1514   for (BasicBlock *Succ : successors(BB1)) {
1515     AddPredecessorToBlock(Succ, BIParent, BB1);
1516     Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1517   }
1518   for (BasicBlock *Succ : successors(BI))
1519     Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1520 
1521   EraseTerminatorAndDCECond(BI);
1522   if (DTU)
1523     DTU->applyUpdatesPermissive(Updates);
1524   return Changed;
1525 }
1526 
1527 // Check lifetime markers.
1528 static bool isLifeTimeMarker(const Instruction *I) {
1529   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1530     switch (II->getIntrinsicID()) {
1531     default:
1532       break;
1533     case Intrinsic::lifetime_start:
1534     case Intrinsic::lifetime_end:
1535       return true;
1536     }
1537   }
1538   return false;
1539 }
1540 
1541 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1542 // into variables.
1543 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1544                                                 int OpIdx) {
1545   return !isa<IntrinsicInst>(I);
1546 }
1547 
1548 // All instructions in Insts belong to different blocks that all unconditionally
1549 // branch to a common successor. Analyze each instruction and return true if it
1550 // would be possible to sink them into their successor, creating one common
1551 // instruction instead. For every value that would be required to be provided by
1552 // PHI node (because an operand varies in each input block), add to PHIOperands.
1553 static bool canSinkInstructions(
1554     ArrayRef<Instruction *> Insts,
1555     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1556   // Prune out obviously bad instructions to move. Each instruction must have
1557   // exactly zero or one use, and we check later that use is by a single, common
1558   // PHI instruction in the successor.
1559   bool HasUse = !Insts.front()->user_empty();
1560   for (auto *I : Insts) {
1561     // These instructions may change or break semantics if moved.
1562     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1563         I->getType()->isTokenTy())
1564       return false;
1565 
1566     // Conservatively return false if I is an inline-asm instruction. Sinking
1567     // and merging inline-asm instructions can potentially create arguments
1568     // that cannot satisfy the inline-asm constraints.
1569     // If the instruction has nomerge attribute, return false.
1570     if (const auto *C = dyn_cast<CallBase>(I))
1571       if (C->isInlineAsm() || C->cannotMerge())
1572         return false;
1573 
1574     // Each instruction must have zero or one use.
1575     if (HasUse && !I->hasOneUse())
1576       return false;
1577     if (!HasUse && !I->user_empty())
1578       return false;
1579   }
1580 
1581   const Instruction *I0 = Insts.front();
1582   for (auto *I : Insts)
1583     if (!I->isSameOperationAs(I0))
1584       return false;
1585 
1586   // All instructions in Insts are known to be the same opcode. If they have a
1587   // use, check that the only user is a PHI or in the same block as the
1588   // instruction, because if a user is in the same block as an instruction we're
1589   // contemplating sinking, it must already be determined to be sinkable.
1590   if (HasUse) {
1591     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1592     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1593     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1594           auto *U = cast<Instruction>(*I->user_begin());
1595           return (PNUse &&
1596                   PNUse->getParent() == Succ &&
1597                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1598                  U->getParent() == I->getParent();
1599         }))
1600       return false;
1601   }
1602 
1603   // Because SROA can't handle speculating stores of selects, try not to sink
1604   // loads, stores or lifetime markers of allocas when we'd have to create a
1605   // PHI for the address operand. Also, because it is likely that loads or
1606   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1607   // them.
1608   // This can cause code churn which can have unintended consequences down
1609   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1610   // FIXME: This is a workaround for a deficiency in SROA - see
1611   // https://llvm.org/bugs/show_bug.cgi?id=30188
1612   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1613         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1614       }))
1615     return false;
1616   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1617         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1618       }))
1619     return false;
1620   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1621         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1622       }))
1623     return false;
1624 
1625   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1626     Value *Op = I0->getOperand(OI);
1627     if (Op->getType()->isTokenTy())
1628       // Don't touch any operand of token type.
1629       return false;
1630 
1631     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1632       assert(I->getNumOperands() == I0->getNumOperands());
1633       return I->getOperand(OI) == I0->getOperand(OI);
1634     };
1635     if (!all_of(Insts, SameAsI0)) {
1636       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1637           !canReplaceOperandWithVariable(I0, OI))
1638         // We can't create a PHI from this GEP.
1639         return false;
1640       // Don't create indirect calls! The called value is the final operand.
1641       if (isa<CallBase>(I0) && OI == OE - 1) {
1642         // FIXME: if the call was *already* indirect, we should do this.
1643         return false;
1644       }
1645       for (auto *I : Insts)
1646         PHIOperands[I].push_back(I->getOperand(OI));
1647     }
1648   }
1649   return true;
1650 }
1651 
1652 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1653 // instruction of every block in Blocks to their common successor, commoning
1654 // into one instruction.
1655 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1656   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1657 
1658   // canSinkLastInstruction returning true guarantees that every block has at
1659   // least one non-terminator instruction.
1660   SmallVector<Instruction*,4> Insts;
1661   for (auto *BB : Blocks) {
1662     Instruction *I = BB->getTerminator();
1663     do {
1664       I = I->getPrevNode();
1665     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1666     if (!isa<DbgInfoIntrinsic>(I))
1667       Insts.push_back(I);
1668   }
1669 
1670   // The only checking we need to do now is that all users of all instructions
1671   // are the same PHI node. canSinkLastInstruction should have checked this but
1672   // it is slightly over-aggressive - it gets confused by commutative instructions
1673   // so double-check it here.
1674   Instruction *I0 = Insts.front();
1675   if (!I0->user_empty()) {
1676     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1677     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1678           auto *U = cast<Instruction>(*I->user_begin());
1679           return U == PNUse;
1680         }))
1681       return false;
1682   }
1683 
1684   // We don't need to do any more checking here; canSinkLastInstruction should
1685   // have done it all for us.
1686   SmallVector<Value*, 4> NewOperands;
1687   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1688     // This check is different to that in canSinkLastInstruction. There, we
1689     // cared about the global view once simplifycfg (and instcombine) have
1690     // completed - it takes into account PHIs that become trivially
1691     // simplifiable.  However here we need a more local view; if an operand
1692     // differs we create a PHI and rely on instcombine to clean up the very
1693     // small mess we may make.
1694     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1695       return I->getOperand(O) != I0->getOperand(O);
1696     });
1697     if (!NeedPHI) {
1698       NewOperands.push_back(I0->getOperand(O));
1699       continue;
1700     }
1701 
1702     // Create a new PHI in the successor block and populate it.
1703     auto *Op = I0->getOperand(O);
1704     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1705     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1706                                Op->getName() + ".sink", &BBEnd->front());
1707     for (auto *I : Insts)
1708       PN->addIncoming(I->getOperand(O), I->getParent());
1709     NewOperands.push_back(PN);
1710   }
1711 
1712   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1713   // and move it to the start of the successor block.
1714   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1715     I0->getOperandUse(O).set(NewOperands[O]);
1716   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1717 
1718   // Update metadata and IR flags, and merge debug locations.
1719   for (auto *I : Insts)
1720     if (I != I0) {
1721       // The debug location for the "common" instruction is the merged locations
1722       // of all the commoned instructions.  We start with the original location
1723       // of the "common" instruction and iteratively merge each location in the
1724       // loop below.
1725       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1726       // However, as N-way merge for CallInst is rare, so we use simplified API
1727       // instead of using complex API for N-way merge.
1728       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1729       combineMetadataForCSE(I0, I, true);
1730       I0->andIRFlags(I);
1731     }
1732 
1733   if (!I0->user_empty()) {
1734     // canSinkLastInstruction checked that all instructions were used by
1735     // one and only one PHI node. Find that now, RAUW it to our common
1736     // instruction and nuke it.
1737     auto *PN = cast<PHINode>(*I0->user_begin());
1738     PN->replaceAllUsesWith(I0);
1739     PN->eraseFromParent();
1740   }
1741 
1742   // Finally nuke all instructions apart from the common instruction.
1743   for (auto *I : Insts)
1744     if (I != I0)
1745       I->eraseFromParent();
1746 
1747   return true;
1748 }
1749 
1750 namespace {
1751 
1752   // LockstepReverseIterator - Iterates through instructions
1753   // in a set of blocks in reverse order from the first non-terminator.
1754   // For example (assume all blocks have size n):
1755   //   LockstepReverseIterator I([B1, B2, B3]);
1756   //   *I-- = [B1[n], B2[n], B3[n]];
1757   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1758   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1759   //   ...
1760   class LockstepReverseIterator {
1761     ArrayRef<BasicBlock*> Blocks;
1762     SmallVector<Instruction*,4> Insts;
1763     bool Fail;
1764 
1765   public:
1766     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1767       reset();
1768     }
1769 
1770     void reset() {
1771       Fail = false;
1772       Insts.clear();
1773       for (auto *BB : Blocks) {
1774         Instruction *Inst = BB->getTerminator();
1775         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1776           Inst = Inst->getPrevNode();
1777         if (!Inst) {
1778           // Block wasn't big enough.
1779           Fail = true;
1780           return;
1781         }
1782         Insts.push_back(Inst);
1783       }
1784     }
1785 
1786     bool isValid() const {
1787       return !Fail;
1788     }
1789 
1790     void operator--() {
1791       if (Fail)
1792         return;
1793       for (auto *&Inst : Insts) {
1794         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1795           Inst = Inst->getPrevNode();
1796         // Already at beginning of block.
1797         if (!Inst) {
1798           Fail = true;
1799           return;
1800         }
1801       }
1802     }
1803 
1804     ArrayRef<Instruction*> operator * () const {
1805       return Insts;
1806     }
1807   };
1808 
1809 } // end anonymous namespace
1810 
1811 /// Check whether BB's predecessors end with unconditional branches. If it is
1812 /// true, sink any common code from the predecessors to BB.
1813 /// We also allow one predecessor to end with conditional branch (but no more
1814 /// than one).
1815 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1816                                            DomTreeUpdater *DTU) {
1817   // We support two situations:
1818   //   (1) all incoming arcs are unconditional
1819   //   (2) one incoming arc is conditional
1820   //
1821   // (2) is very common in switch defaults and
1822   // else-if patterns;
1823   //
1824   //   if (a) f(1);
1825   //   else if (b) f(2);
1826   //
1827   // produces:
1828   //
1829   //       [if]
1830   //      /    \
1831   //    [f(1)] [if]
1832   //      |     | \
1833   //      |     |  |
1834   //      |  [f(2)]|
1835   //       \    | /
1836   //        [ end ]
1837   //
1838   // [end] has two unconditional predecessor arcs and one conditional. The
1839   // conditional refers to the implicit empty 'else' arc. This conditional
1840   // arc can also be caused by an empty default block in a switch.
1841   //
1842   // In this case, we attempt to sink code from all *unconditional* arcs.
1843   // If we can sink instructions from these arcs (determined during the scan
1844   // phase below) we insert a common successor for all unconditional arcs and
1845   // connect that to [end], to enable sinking:
1846   //
1847   //       [if]
1848   //      /    \
1849   //    [x(1)] [if]
1850   //      |     | \
1851   //      |     |  \
1852   //      |  [x(2)] |
1853   //       \   /    |
1854   //   [sink.split] |
1855   //         \     /
1856   //         [ end ]
1857   //
1858   SmallVector<BasicBlock*,4> UnconditionalPreds;
1859   Instruction *Cond = nullptr;
1860   for (auto *B : predecessors(BB)) {
1861     auto *T = B->getTerminator();
1862     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1863       UnconditionalPreds.push_back(B);
1864     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1865       Cond = T;
1866     else
1867       return false;
1868   }
1869   if (UnconditionalPreds.size() < 2)
1870     return false;
1871 
1872   // We take a two-step approach to tail sinking. First we scan from the end of
1873   // each block upwards in lockstep. If the n'th instruction from the end of each
1874   // block can be sunk, those instructions are added to ValuesToSink and we
1875   // carry on. If we can sink an instruction but need to PHI-merge some operands
1876   // (because they're not identical in each instruction) we add these to
1877   // PHIOperands.
1878   unsigned ScanIdx = 0;
1879   SmallPtrSet<Value*,4> InstructionsToSink;
1880   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1881   LockstepReverseIterator LRI(UnconditionalPreds);
1882   while (LRI.isValid() &&
1883          canSinkInstructions(*LRI, PHIOperands)) {
1884     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1885                       << "\n");
1886     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1887     ++ScanIdx;
1888     --LRI;
1889   }
1890 
1891   // If no instructions can be sunk, early-return.
1892   if (ScanIdx == 0)
1893     return false;
1894 
1895   bool Changed = false;
1896 
1897   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1898     unsigned NumPHIdValues = 0;
1899     for (auto *I : *LRI)
1900       for (auto *V : PHIOperands[I])
1901         if (InstructionsToSink.count(V) == 0)
1902           ++NumPHIdValues;
1903     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1904     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1905     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1906         NumPHIInsts++;
1907 
1908     return NumPHIInsts <= 1;
1909   };
1910 
1911   if (Cond) {
1912     // Check if we would actually sink anything first! This mutates the CFG and
1913     // adds an extra block. The goal in doing this is to allow instructions that
1914     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1915     // (such as trunc, add) can be sunk and predicated already. So we check that
1916     // we're going to sink at least one non-speculatable instruction.
1917     LRI.reset();
1918     unsigned Idx = 0;
1919     bool Profitable = false;
1920     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1921       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1922         Profitable = true;
1923         break;
1924       }
1925       --LRI;
1926       ++Idx;
1927     }
1928     if (!Profitable)
1929       return false;
1930 
1931     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1932     // We have a conditional edge and we're going to sink some instructions.
1933     // Insert a new block postdominating all blocks we're going to sink from.
1934     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split",
1935                                 DTU ? &DTU->getDomTree() : nullptr))
1936       // Edges couldn't be split.
1937       return false;
1938     Changed = true;
1939   }
1940 
1941   // Now that we've analyzed all potential sinking candidates, perform the
1942   // actual sink. We iteratively sink the last non-terminator of the source
1943   // blocks into their common successor unless doing so would require too
1944   // many PHI instructions to be generated (currently only one PHI is allowed
1945   // per sunk instruction).
1946   //
1947   // We can use InstructionsToSink to discount values needing PHI-merging that will
1948   // actually be sunk in a later iteration. This allows us to be more
1949   // aggressive in what we sink. This does allow a false positive where we
1950   // sink presuming a later value will also be sunk, but stop half way through
1951   // and never actually sink it which means we produce more PHIs than intended.
1952   // This is unlikely in practice though.
1953   unsigned SinkIdx = 0;
1954   for (; SinkIdx != ScanIdx; ++SinkIdx) {
1955     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1956                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1957                       << "\n");
1958 
1959     // Because we've sunk every instruction in turn, the current instruction to
1960     // sink is always at index 0.
1961     LRI.reset();
1962     if (!ProfitableToSinkInstruction(LRI)) {
1963       // Too many PHIs would be created.
1964       LLVM_DEBUG(
1965           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1966       break;
1967     }
1968 
1969     if (!sinkLastInstruction(UnconditionalPreds)) {
1970       LLVM_DEBUG(
1971           dbgs()
1972           << "SINK: stopping here, failed to actually sink instruction!\n");
1973       break;
1974     }
1975 
1976     NumSinkCommonInstrs++;
1977     Changed = true;
1978   }
1979   if (SinkIdx != 0)
1980     ++NumSinkCommonCode;
1981   return Changed;
1982 }
1983 
1984 /// Determine if we can hoist sink a sole store instruction out of a
1985 /// conditional block.
1986 ///
1987 /// We are looking for code like the following:
1988 ///   BrBB:
1989 ///     store i32 %add, i32* %arrayidx2
1990 ///     ... // No other stores or function calls (we could be calling a memory
1991 ///     ... // function).
1992 ///     %cmp = icmp ult %x, %y
1993 ///     br i1 %cmp, label %EndBB, label %ThenBB
1994 ///   ThenBB:
1995 ///     store i32 %add5, i32* %arrayidx2
1996 ///     br label EndBB
1997 ///   EndBB:
1998 ///     ...
1999 ///   We are going to transform this into:
2000 ///   BrBB:
2001 ///     store i32 %add, i32* %arrayidx2
2002 ///     ... //
2003 ///     %cmp = icmp ult %x, %y
2004 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2005 ///     store i32 %add.add5, i32* %arrayidx2
2006 ///     ...
2007 ///
2008 /// \return The pointer to the value of the previous store if the store can be
2009 ///         hoisted into the predecessor block. 0 otherwise.
2010 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2011                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2012   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2013   if (!StoreToHoist)
2014     return nullptr;
2015 
2016   // Volatile or atomic.
2017   if (!StoreToHoist->isSimple())
2018     return nullptr;
2019 
2020   Value *StorePtr = StoreToHoist->getPointerOperand();
2021 
2022   // Look for a store to the same pointer in BrBB.
2023   unsigned MaxNumInstToLookAt = 9;
2024   // Skip pseudo probe intrinsic calls which are not really killing any memory
2025   // accesses.
2026   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2027     if (!MaxNumInstToLookAt)
2028       break;
2029     --MaxNumInstToLookAt;
2030 
2031     // Could be calling an instruction that affects memory like free().
2032     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2033       return nullptr;
2034 
2035     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2036       // Found the previous store make sure it stores to the same location.
2037       if (SI->getPointerOperand() == StorePtr)
2038         // Found the previous store, return its value operand.
2039         return SI->getValueOperand();
2040       return nullptr; // Unknown store.
2041     }
2042   }
2043 
2044   return nullptr;
2045 }
2046 
2047 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2048 /// converted to selects.
2049 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2050                                            BasicBlock *EndBB,
2051                                            unsigned &SpeculatedInstructions,
2052                                            int &BudgetRemaining,
2053                                            const TargetTransformInfo &TTI) {
2054   TargetTransformInfo::TargetCostKind CostKind =
2055     BB->getParent()->hasMinSize()
2056     ? TargetTransformInfo::TCK_CodeSize
2057     : TargetTransformInfo::TCK_SizeAndLatency;
2058 
2059   bool HaveRewritablePHIs = false;
2060   for (PHINode &PN : EndBB->phis()) {
2061     Value *OrigV = PN.getIncomingValueForBlock(BB);
2062     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2063 
2064     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2065     // Skip PHIs which are trivial.
2066     if (ThenV == OrigV)
2067       continue;
2068 
2069     BudgetRemaining -=
2070         TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2071                                CmpInst::BAD_ICMP_PREDICATE, CostKind);
2072 
2073     // Don't convert to selects if we could remove undefined behavior instead.
2074     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2075         passingValueIsAlwaysUndefined(ThenV, &PN))
2076       return false;
2077 
2078     HaveRewritablePHIs = true;
2079     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2080     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2081     if (!OrigCE && !ThenCE)
2082       continue; // Known safe and cheap.
2083 
2084     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2085         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2086       return false;
2087     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2088     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2089     unsigned MaxCost =
2090         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2091     if (OrigCost + ThenCost > MaxCost)
2092       return false;
2093 
2094     // Account for the cost of an unfolded ConstantExpr which could end up
2095     // getting expanded into Instructions.
2096     // FIXME: This doesn't account for how many operations are combined in the
2097     // constant expression.
2098     ++SpeculatedInstructions;
2099     if (SpeculatedInstructions > 1)
2100       return false;
2101   }
2102 
2103   return HaveRewritablePHIs;
2104 }
2105 
2106 /// Speculate a conditional basic block flattening the CFG.
2107 ///
2108 /// Note that this is a very risky transform currently. Speculating
2109 /// instructions like this is most often not desirable. Instead, there is an MI
2110 /// pass which can do it with full awareness of the resource constraints.
2111 /// However, some cases are "obvious" and we should do directly. An example of
2112 /// this is speculating a single, reasonably cheap instruction.
2113 ///
2114 /// There is only one distinct advantage to flattening the CFG at the IR level:
2115 /// it makes very common but simplistic optimizations such as are common in
2116 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2117 /// modeling their effects with easier to reason about SSA value graphs.
2118 ///
2119 ///
2120 /// An illustration of this transform is turning this IR:
2121 /// \code
2122 ///   BB:
2123 ///     %cmp = icmp ult %x, %y
2124 ///     br i1 %cmp, label %EndBB, label %ThenBB
2125 ///   ThenBB:
2126 ///     %sub = sub %x, %y
2127 ///     br label BB2
2128 ///   EndBB:
2129 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2130 ///     ...
2131 /// \endcode
2132 ///
2133 /// Into this IR:
2134 /// \code
2135 ///   BB:
2136 ///     %cmp = icmp ult %x, %y
2137 ///     %sub = sub %x, %y
2138 ///     %cond = select i1 %cmp, 0, %sub
2139 ///     ...
2140 /// \endcode
2141 ///
2142 /// \returns true if the conditional block is removed.
2143 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2144                                             const TargetTransformInfo &TTI) {
2145   // Be conservative for now. FP select instruction can often be expensive.
2146   Value *BrCond = BI->getCondition();
2147   if (isa<FCmpInst>(BrCond))
2148     return false;
2149 
2150   BasicBlock *BB = BI->getParent();
2151   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2152   int BudgetRemaining =
2153     PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2154 
2155   // If ThenBB is actually on the false edge of the conditional branch, remember
2156   // to swap the select operands later.
2157   bool Invert = false;
2158   if (ThenBB != BI->getSuccessor(0)) {
2159     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2160     Invert = true;
2161   }
2162   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2163 
2164   // Keep a count of how many times instructions are used within ThenBB when
2165   // they are candidates for sinking into ThenBB. Specifically:
2166   // - They are defined in BB, and
2167   // - They have no side effects, and
2168   // - All of their uses are in ThenBB.
2169   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2170 
2171   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2172 
2173   unsigned SpeculatedInstructions = 0;
2174   Value *SpeculatedStoreValue = nullptr;
2175   StoreInst *SpeculatedStore = nullptr;
2176   for (BasicBlock::iterator BBI = ThenBB->begin(),
2177                             BBE = std::prev(ThenBB->end());
2178        BBI != BBE; ++BBI) {
2179     Instruction *I = &*BBI;
2180     // Skip debug info.
2181     if (isa<DbgInfoIntrinsic>(I)) {
2182       SpeculatedDbgIntrinsics.push_back(I);
2183       continue;
2184     }
2185 
2186     // Skip pseudo probes. The consequence is we lose track of the branch
2187     // probability for ThenBB, which is fine since the optimization here takes
2188     // place regardless of the branch probability.
2189     if (isa<PseudoProbeInst>(I)) {
2190       SpeculatedDbgIntrinsics.push_back(I);
2191       continue;
2192     }
2193 
2194     // Only speculatively execute a single instruction (not counting the
2195     // terminator) for now.
2196     ++SpeculatedInstructions;
2197     if (SpeculatedInstructions > 1)
2198       return false;
2199 
2200     // Don't hoist the instruction if it's unsafe or expensive.
2201     if (!isSafeToSpeculativelyExecute(I) &&
2202         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2203                                   I, BB, ThenBB, EndBB))))
2204       return false;
2205     if (!SpeculatedStoreValue &&
2206         ComputeSpeculationCost(I, TTI) >
2207             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2208       return false;
2209 
2210     // Store the store speculation candidate.
2211     if (SpeculatedStoreValue)
2212       SpeculatedStore = cast<StoreInst>(I);
2213 
2214     // Do not hoist the instruction if any of its operands are defined but not
2215     // used in BB. The transformation will prevent the operand from
2216     // being sunk into the use block.
2217     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2218       Instruction *OpI = dyn_cast<Instruction>(*i);
2219       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2220         continue; // Not a candidate for sinking.
2221 
2222       ++SinkCandidateUseCounts[OpI];
2223     }
2224   }
2225 
2226   // Consider any sink candidates which are only used in ThenBB as costs for
2227   // speculation. Note, while we iterate over a DenseMap here, we are summing
2228   // and so iteration order isn't significant.
2229   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2230            I = SinkCandidateUseCounts.begin(),
2231            E = SinkCandidateUseCounts.end();
2232        I != E; ++I)
2233     if (I->first->hasNUses(I->second)) {
2234       ++SpeculatedInstructions;
2235       if (SpeculatedInstructions > 1)
2236         return false;
2237     }
2238 
2239   // Check that we can insert the selects and that it's not too expensive to do
2240   // so.
2241   bool Convert = SpeculatedStore != nullptr;
2242   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2243                                             SpeculatedInstructions,
2244                                             BudgetRemaining, TTI);
2245   if (!Convert || BudgetRemaining < 0)
2246     return false;
2247 
2248   // If we get here, we can hoist the instruction and if-convert.
2249   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2250 
2251   // Insert a select of the value of the speculated store.
2252   if (SpeculatedStoreValue) {
2253     IRBuilder<NoFolder> Builder(BI);
2254     Value *TrueV = SpeculatedStore->getValueOperand();
2255     Value *FalseV = SpeculatedStoreValue;
2256     if (Invert)
2257       std::swap(TrueV, FalseV);
2258     Value *S = Builder.CreateSelect(
2259         BrCond, TrueV, FalseV, "spec.store.select", BI);
2260     SpeculatedStore->setOperand(0, S);
2261     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2262                                          SpeculatedStore->getDebugLoc());
2263   }
2264 
2265   // Metadata can be dependent on the condition we are hoisting above.
2266   // Conservatively strip all metadata on the instruction. Drop the debug loc
2267   // to avoid making it appear as if the condition is a constant, which would
2268   // be misleading while debugging.
2269   for (auto &I : *ThenBB) {
2270     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2271       I.setDebugLoc(DebugLoc());
2272     I.dropUnknownNonDebugMetadata();
2273   }
2274 
2275   // Hoist the instructions.
2276   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2277                            ThenBB->begin(), std::prev(ThenBB->end()));
2278 
2279   // Insert selects and rewrite the PHI operands.
2280   IRBuilder<NoFolder> Builder(BI);
2281   for (PHINode &PN : EndBB->phis()) {
2282     unsigned OrigI = PN.getBasicBlockIndex(BB);
2283     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2284     Value *OrigV = PN.getIncomingValue(OrigI);
2285     Value *ThenV = PN.getIncomingValue(ThenI);
2286 
2287     // Skip PHIs which are trivial.
2288     if (OrigV == ThenV)
2289       continue;
2290 
2291     // Create a select whose true value is the speculatively executed value and
2292     // false value is the pre-existing value. Swap them if the branch
2293     // destinations were inverted.
2294     Value *TrueV = ThenV, *FalseV = OrigV;
2295     if (Invert)
2296       std::swap(TrueV, FalseV);
2297     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2298     PN.setIncomingValue(OrigI, V);
2299     PN.setIncomingValue(ThenI, V);
2300   }
2301 
2302   // Remove speculated dbg intrinsics.
2303   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2304   // dbg value for the different flows and inserting it after the select.
2305   for (Instruction *I : SpeculatedDbgIntrinsics)
2306     I->eraseFromParent();
2307 
2308   ++NumSpeculations;
2309   return true;
2310 }
2311 
2312 /// Return true if we can thread a branch across this block.
2313 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2314   int Size = 0;
2315 
2316   for (Instruction &I : BB->instructionsWithoutDebug()) {
2317     if (Size > MaxSmallBlockSize)
2318       return false; // Don't clone large BB's.
2319 
2320     // Can't fold blocks that contain noduplicate or convergent calls.
2321     if (CallInst *CI = dyn_cast<CallInst>(&I))
2322       if (CI->cannotDuplicate() || CI->isConvergent())
2323         return false;
2324 
2325     // We will delete Phis while threading, so Phis should not be accounted in
2326     // block's size
2327     if (!isa<PHINode>(I))
2328       ++Size;
2329 
2330     // We can only support instructions that do not define values that are
2331     // live outside of the current basic block.
2332     for (User *U : I.users()) {
2333       Instruction *UI = cast<Instruction>(U);
2334       if (UI->getParent() != BB || isa<PHINode>(UI))
2335         return false;
2336     }
2337 
2338     // Looks ok, continue checking.
2339   }
2340 
2341   return true;
2342 }
2343 
2344 /// If we have a conditional branch on a PHI node value that is defined in the
2345 /// same block as the branch and if any PHI entries are constants, thread edges
2346 /// corresponding to that entry to be branches to their ultimate destination.
2347 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2348                                 const DataLayout &DL, AssumptionCache *AC) {
2349   BasicBlock *BB = BI->getParent();
2350   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2351   // NOTE: we currently cannot transform this case if the PHI node is used
2352   // outside of the block.
2353   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2354     return false;
2355 
2356   // Degenerate case of a single entry PHI.
2357   if (PN->getNumIncomingValues() == 1) {
2358     FoldSingleEntryPHINodes(PN->getParent());
2359     return true;
2360   }
2361 
2362   // Now we know that this block has multiple preds and two succs.
2363   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2364     return false;
2365 
2366   // Okay, this is a simple enough basic block.  See if any phi values are
2367   // constants.
2368   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2369     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2370     if (!CB || !CB->getType()->isIntegerTy(1))
2371       continue;
2372 
2373     // Okay, we now know that all edges from PredBB should be revectored to
2374     // branch to RealDest.
2375     BasicBlock *PredBB = PN->getIncomingBlock(i);
2376     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2377 
2378     if (RealDest == BB)
2379       continue; // Skip self loops.
2380     // Skip if the predecessor's terminator is an indirect branch.
2381     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2382       continue;
2383 
2384     SmallVector<DominatorTree::UpdateType, 3> Updates;
2385 
2386     // The dest block might have PHI nodes, other predecessors and other
2387     // difficult cases.  Instead of being smart about this, just insert a new
2388     // block that jumps to the destination block, effectively splitting
2389     // the edge we are about to create.
2390     BasicBlock *EdgeBB =
2391         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2392                            RealDest->getParent(), RealDest);
2393     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2394     Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2395     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2396 
2397     // Update PHI nodes.
2398     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2399 
2400     // BB may have instructions that are being threaded over.  Clone these
2401     // instructions into EdgeBB.  We know that there will be no uses of the
2402     // cloned instructions outside of EdgeBB.
2403     BasicBlock::iterator InsertPt = EdgeBB->begin();
2404     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2405     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2406       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2407         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2408         continue;
2409       }
2410       // Clone the instruction.
2411       Instruction *N = BBI->clone();
2412       if (BBI->hasName())
2413         N->setName(BBI->getName() + ".c");
2414 
2415       // Update operands due to translation.
2416       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2417         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2418         if (PI != TranslateMap.end())
2419           *i = PI->second;
2420       }
2421 
2422       // Check for trivial simplification.
2423       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2424         if (!BBI->use_empty())
2425           TranslateMap[&*BBI] = V;
2426         if (!N->mayHaveSideEffects()) {
2427           N->deleteValue(); // Instruction folded away, don't need actual inst
2428           N = nullptr;
2429         }
2430       } else {
2431         if (!BBI->use_empty())
2432           TranslateMap[&*BBI] = N;
2433       }
2434       if (N) {
2435         // Insert the new instruction into its new home.
2436         EdgeBB->getInstList().insert(InsertPt, N);
2437 
2438         // Register the new instruction with the assumption cache if necessary.
2439         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2440           AC->registerAssumption(cast<IntrinsicInst>(N));
2441       }
2442     }
2443 
2444     // Loop over all of the edges from PredBB to BB, changing them to branch
2445     // to EdgeBB instead.
2446     Instruction *PredBBTI = PredBB->getTerminator();
2447     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2448       if (PredBBTI->getSuccessor(i) == BB) {
2449         BB->removePredecessor(PredBB);
2450         PredBBTI->setSuccessor(i, EdgeBB);
2451       }
2452 
2453     Updates.push_back({DominatorTree::Delete, PredBB, BB});
2454     Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2455 
2456     if (DTU)
2457       DTU->applyUpdatesPermissive(Updates);
2458 
2459     // Recurse, simplifying any other constants.
2460     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2461   }
2462 
2463   return false;
2464 }
2465 
2466 /// Given a BB that starts with the specified two-entry PHI node,
2467 /// see if we can eliminate it.
2468 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2469                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2470   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2471   // statement", which has a very simple dominance structure.  Basically, we
2472   // are trying to find the condition that is being branched on, which
2473   // subsequently causes this merge to happen.  We really want control
2474   // dependence information for this check, but simplifycfg can't keep it up
2475   // to date, and this catches most of the cases we care about anyway.
2476   BasicBlock *BB = PN->getParent();
2477 
2478   BasicBlock *IfTrue, *IfFalse;
2479   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2480   if (!IfCond ||
2481       // Don't bother if the branch will be constant folded trivially.
2482       isa<ConstantInt>(IfCond))
2483     return false;
2484 
2485   // Okay, we found that we can merge this two-entry phi node into a select.
2486   // Doing so would require us to fold *all* two entry phi nodes in this block.
2487   // At some point this becomes non-profitable (particularly if the target
2488   // doesn't support cmov's).  Only do this transformation if there are two or
2489   // fewer PHI nodes in this block.
2490   unsigned NumPhis = 0;
2491   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2492     if (NumPhis > 2)
2493       return false;
2494 
2495   // Loop over the PHI's seeing if we can promote them all to select
2496   // instructions.  While we are at it, keep track of the instructions
2497   // that need to be moved to the dominating block.
2498   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2499   int BudgetRemaining =
2500       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2501 
2502   bool Changed = false;
2503   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2504     PHINode *PN = cast<PHINode>(II++);
2505     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2506       PN->replaceAllUsesWith(V);
2507       PN->eraseFromParent();
2508       Changed = true;
2509       continue;
2510     }
2511 
2512     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2513                              BudgetRemaining, TTI) ||
2514         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2515                              BudgetRemaining, TTI))
2516       return Changed;
2517   }
2518 
2519   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2520   // we ran out of PHIs then we simplified them all.
2521   PN = dyn_cast<PHINode>(BB->begin());
2522   if (!PN)
2523     return true;
2524 
2525   // Return true if at least one of these is a 'not', and another is either
2526   // a 'not' too, or a constant.
2527   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2528     if (!match(V0, m_Not(m_Value())))
2529       std::swap(V0, V1);
2530     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2531     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2532   };
2533 
2534   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2535   // of the incoming values is an 'not' and another one is freely invertible.
2536   // These can often be turned into switches and other things.
2537   if (PN->getType()->isIntegerTy(1) &&
2538       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2539        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2540        isa<BinaryOperator>(IfCond)) &&
2541       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2542                                  PN->getIncomingValue(1)))
2543     return Changed;
2544 
2545   // If all PHI nodes are promotable, check to make sure that all instructions
2546   // in the predecessor blocks can be promoted as well. If not, we won't be able
2547   // to get rid of the control flow, so it's not worth promoting to select
2548   // instructions.
2549   BasicBlock *DomBlock = nullptr;
2550   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2551   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2552   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2553     IfBlock1 = nullptr;
2554   } else {
2555     DomBlock = *pred_begin(IfBlock1);
2556     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2557       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2558           !isa<PseudoProbeInst>(I)) {
2559         // This is not an aggressive instruction that we can promote.
2560         // Because of this, we won't be able to get rid of the control flow, so
2561         // the xform is not worth it.
2562         return Changed;
2563       }
2564   }
2565 
2566   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2567     IfBlock2 = nullptr;
2568   } else {
2569     DomBlock = *pred_begin(IfBlock2);
2570     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2571       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2572           !isa<PseudoProbeInst>(I)) {
2573         // This is not an aggressive instruction that we can promote.
2574         // Because of this, we won't be able to get rid of the control flow, so
2575         // the xform is not worth it.
2576         return Changed;
2577       }
2578   }
2579   assert(DomBlock && "Failed to find root DomBlock");
2580 
2581   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2582                     << "  T: " << IfTrue->getName()
2583                     << "  F: " << IfFalse->getName() << "\n");
2584 
2585   // If we can still promote the PHI nodes after this gauntlet of tests,
2586   // do all of the PHI's now.
2587   Instruction *InsertPt = DomBlock->getTerminator();
2588   IRBuilder<NoFolder> Builder(InsertPt);
2589 
2590   // Move all 'aggressive' instructions, which are defined in the
2591   // conditional parts of the if's up to the dominating block.
2592   if (IfBlock1)
2593     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2594   if (IfBlock2)
2595     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2596 
2597   // Propagate fast-math-flags from phi nodes to replacement selects.
2598   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2599   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2600     if (isa<FPMathOperator>(PN))
2601       Builder.setFastMathFlags(PN->getFastMathFlags());
2602 
2603     // Change the PHI node into a select instruction.
2604     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2605     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2606 
2607     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2608     PN->replaceAllUsesWith(Sel);
2609     Sel->takeName(PN);
2610     PN->eraseFromParent();
2611   }
2612 
2613   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2614   // has been flattened.  Change DomBlock to jump directly to our new block to
2615   // avoid other simplifycfg's kicking in on the diamond.
2616   Instruction *OldTI = DomBlock->getTerminator();
2617   Builder.SetInsertPoint(OldTI);
2618   Builder.CreateBr(BB);
2619 
2620   SmallVector<DominatorTree::UpdateType, 3> Updates;
2621   if (DTU) {
2622     for (auto *Successor : successors(DomBlock))
2623       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2624     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2625   }
2626 
2627   OldTI->eraseFromParent();
2628   if (DTU)
2629     DTU->applyUpdatesPermissive(Updates);
2630 
2631   return true;
2632 }
2633 
2634 /// If we found a conditional branch that goes to two returning blocks,
2635 /// try to merge them together into one return,
2636 /// introducing a select if the return values disagree.
2637 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2638                                                     IRBuilder<> &Builder) {
2639   auto *BB = BI->getParent();
2640   assert(BI->isConditional() && "Must be a conditional branch");
2641   BasicBlock *TrueSucc = BI->getSuccessor(0);
2642   BasicBlock *FalseSucc = BI->getSuccessor(1);
2643   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2644   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2645 
2646   // Check to ensure both blocks are empty (just a return) or optionally empty
2647   // with PHI nodes.  If there are other instructions, merging would cause extra
2648   // computation on one path or the other.
2649   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2650     return false;
2651   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2652     return false;
2653 
2654   Builder.SetInsertPoint(BI);
2655   // Okay, we found a branch that is going to two return nodes.  If
2656   // there is no return value for this function, just change the
2657   // branch into a return.
2658   if (FalseRet->getNumOperands() == 0) {
2659     TrueSucc->removePredecessor(BB);
2660     FalseSucc->removePredecessor(BB);
2661     Builder.CreateRetVoid();
2662     EraseTerminatorAndDCECond(BI);
2663     if (DTU) {
2664       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, TrueSucc},
2665                                    {DominatorTree::Delete, BB, FalseSucc}});
2666     }
2667     return true;
2668   }
2669 
2670   // Otherwise, figure out what the true and false return values are
2671   // so we can insert a new select instruction.
2672   Value *TrueValue = TrueRet->getReturnValue();
2673   Value *FalseValue = FalseRet->getReturnValue();
2674 
2675   // Unwrap any PHI nodes in the return blocks.
2676   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2677     if (TVPN->getParent() == TrueSucc)
2678       TrueValue = TVPN->getIncomingValueForBlock(BB);
2679   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2680     if (FVPN->getParent() == FalseSucc)
2681       FalseValue = FVPN->getIncomingValueForBlock(BB);
2682 
2683   // In order for this transformation to be safe, we must be able to
2684   // unconditionally execute both operands to the return.  This is
2685   // normally the case, but we could have a potentially-trapping
2686   // constant expression that prevents this transformation from being
2687   // safe.
2688   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2689     if (TCV->canTrap())
2690       return false;
2691   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2692     if (FCV->canTrap())
2693       return false;
2694 
2695   // Okay, we collected all the mapped values and checked them for sanity, and
2696   // defined to really do this transformation.  First, update the CFG.
2697   TrueSucc->removePredecessor(BB);
2698   FalseSucc->removePredecessor(BB);
2699 
2700   // Insert select instructions where needed.
2701   Value *BrCond = BI->getCondition();
2702   if (TrueValue) {
2703     // Insert a select if the results differ.
2704     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2705     } else if (isa<UndefValue>(TrueValue)) {
2706       TrueValue = FalseValue;
2707     } else {
2708       TrueValue =
2709           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2710     }
2711   }
2712 
2713   Value *RI =
2714       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2715 
2716   (void)RI;
2717 
2718   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2719                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2720                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2721 
2722   EraseTerminatorAndDCECond(BI);
2723 
2724   if (DTU) {
2725     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, TrueSucc},
2726                                  {DominatorTree::Delete, BB, FalseSucc}});
2727   }
2728 
2729   return true;
2730 }
2731 
2732 /// Return true if the given instruction is available
2733 /// in its predecessor block. If yes, the instruction will be removed.
2734 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2735   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2736     return false;
2737   for (Instruction &I : *PB) {
2738     Instruction *PBI = &I;
2739     // Check whether Inst and PBI generate the same value.
2740     if (Inst->isIdenticalTo(PBI)) {
2741       Inst->replaceAllUsesWith(PBI);
2742       Inst->eraseFromParent();
2743       return true;
2744     }
2745   }
2746   return false;
2747 }
2748 
2749 /// Return true if either PBI or BI has branch weight available, and store
2750 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2751 /// not have branch weight, use 1:1 as its weight.
2752 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2753                                    uint64_t &PredTrueWeight,
2754                                    uint64_t &PredFalseWeight,
2755                                    uint64_t &SuccTrueWeight,
2756                                    uint64_t &SuccFalseWeight) {
2757   bool PredHasWeights =
2758       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2759   bool SuccHasWeights =
2760       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2761   if (PredHasWeights || SuccHasWeights) {
2762     if (!PredHasWeights)
2763       PredTrueWeight = PredFalseWeight = 1;
2764     if (!SuccHasWeights)
2765       SuccTrueWeight = SuccFalseWeight = 1;
2766     return true;
2767   } else {
2768     return false;
2769   }
2770 }
2771 
2772 /// If this basic block is simple enough, and if a predecessor branches to us
2773 /// and one of our successors, fold the block into the predecessor and use
2774 /// logical operations to pick the right destination.
2775 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
2776                                   MemorySSAUpdater *MSSAU,
2777                                   const TargetTransformInfo *TTI,
2778                                   unsigned BonusInstThreshold) {
2779   BasicBlock *BB = BI->getParent();
2780 
2781   const unsigned PredCount = pred_size(BB);
2782 
2783   bool Changed = false;
2784 
2785   auto _ = make_scope_exit([&]() {
2786     if (Changed)
2787       ++NumFoldBranchToCommonDest;
2788   });
2789 
2790   TargetTransformInfo::TargetCostKind CostKind =
2791     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
2792                                   : TargetTransformInfo::TCK_SizeAndLatency;
2793 
2794   Instruction *Cond = nullptr;
2795   if (BI->isConditional())
2796     Cond = dyn_cast<Instruction>(BI->getCondition());
2797   else {
2798     // For unconditional branch, check for a simple CFG pattern, where
2799     // BB has a single predecessor and BB's successor is also its predecessor's
2800     // successor. If such pattern exists, check for CSE between BB and its
2801     // predecessor.
2802     if (BasicBlock *PB = BB->getSinglePredecessor())
2803       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2804         if (PBI->isConditional() &&
2805             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2806              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2807           for (auto I = BB->instructionsWithoutDebug().begin(),
2808                     E = BB->instructionsWithoutDebug().end();
2809                I != E;) {
2810             Instruction *Curr = &*I++;
2811             if (isa<CmpInst>(Curr)) {
2812               Cond = Curr;
2813               break;
2814             }
2815             // Quit if we can't remove this instruction.
2816             if (!tryCSEWithPredecessor(Curr, PB))
2817               return Changed;
2818             Changed = true;
2819           }
2820         }
2821 
2822     if (!Cond)
2823       return Changed;
2824   }
2825 
2826   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2827       Cond->getParent() != BB || !Cond->hasOneUse())
2828     return Changed;
2829 
2830   // Only allow this transformation if computing the condition doesn't involve
2831   // too many instructions and these involved instructions can be executed
2832   // unconditionally. We denote all involved instructions except the condition
2833   // as "bonus instructions", and only allow this transformation when the
2834   // number of the bonus instructions we'll need to create when cloning into
2835   // each predecessor does not exceed a certain threshold.
2836   unsigned NumBonusInsts = 0;
2837   for (Instruction &I : *BB) {
2838     // Don't check the branch condition comparison itself.
2839     if (&I == Cond)
2840       continue;
2841     // Ignore dbg intrinsics, and the terminator.
2842     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
2843       continue;
2844     // I must be safe to execute unconditionally.
2845     if (!isSafeToSpeculativelyExecute(&I))
2846       return Changed;
2847 
2848     // Account for the cost of duplicating this instruction into each
2849     // predecessor.
2850     NumBonusInsts += PredCount;
2851     // Early exits once we reach the limit.
2852     if (NumBonusInsts > BonusInstThreshold)
2853       return Changed;
2854   }
2855 
2856   // Also, for now, all liveout uses of bonus instructions must be in PHI nodes
2857   // in successor blocks as incoming values from the bonus instructions's block,
2858   // otherwise we'll fail to update them.
2859   // FIXME: We could lift this restriction, but we need to form PHI nodes and
2860   // rewrite offending uses, but we can't do that without having a domtree.
2861   if (any_of(*BB, [BB](Instruction &I) {
2862         return any_of(I.uses(), [BB](Use &U) {
2863           auto *User = cast<Instruction>(U.getUser());
2864           if (User->getParent() == BB)
2865             return false; // Not an external use.
2866           auto *PN = dyn_cast<PHINode>(User);
2867           return !PN || PN->getIncomingBlock(U) != BB;
2868         });
2869       }))
2870     return Changed;
2871 
2872   // Cond is known to be a compare or binary operator.  Check to make sure that
2873   // neither operand is a potentially-trapping constant expression.
2874   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2875     if (CE->canTrap())
2876       return Changed;
2877   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2878     if (CE->canTrap())
2879       return Changed;
2880 
2881   // Finally, don't infinitely unroll conditional loops.
2882   BasicBlock *TrueDest = BI->getSuccessor(0);
2883   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2884   if (TrueDest == BB || FalseDest == BB)
2885     return Changed;
2886 
2887   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2888     BasicBlock *PredBlock = *PI;
2889     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2890 
2891     // Check that we have two conditional branches.  If there is a PHI node in
2892     // the common successor, verify that the same value flows in from both
2893     // blocks.
2894     SmallVector<PHINode *, 4> PHIs;
2895     if (!PBI || PBI->isUnconditional() ||
2896         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2897         (!BI->isConditional() &&
2898          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2899       continue;
2900 
2901     // Determine if the two branches share a common destination.
2902     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2903     bool InvertPredCond = false;
2904 
2905     if (BI->isConditional()) {
2906       if (PBI->getSuccessor(0) == TrueDest) {
2907         Opc = Instruction::Or;
2908       } else if (PBI->getSuccessor(1) == FalseDest) {
2909         Opc = Instruction::And;
2910       } else if (PBI->getSuccessor(0) == FalseDest) {
2911         Opc = Instruction::And;
2912         InvertPredCond = true;
2913       } else if (PBI->getSuccessor(1) == TrueDest) {
2914         Opc = Instruction::Or;
2915         InvertPredCond = true;
2916       } else {
2917         continue;
2918       }
2919     } else {
2920       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2921         continue;
2922     }
2923 
2924     // Check the cost of inserting the necessary logic before performing the
2925     // transformation.
2926     if (TTI && Opc != Instruction::BinaryOpsEnd) {
2927       Type *Ty = BI->getCondition()->getType();
2928       unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
2929       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
2930           !isa<CmpInst>(PBI->getCondition())))
2931         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
2932 
2933       if (Cost > BranchFoldThreshold)
2934         continue;
2935     }
2936 
2937     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2938     Changed = true;
2939 
2940     SmallVector<DominatorTree::UpdateType, 3> Updates;
2941 
2942     IRBuilder<> Builder(PBI);
2943     // The builder is used to create instructions to eliminate the branch in BB.
2944     // If BB's terminator has !annotation metadata, add it to the new
2945     // instructions.
2946     Builder.CollectMetadataToCopy(BB->getTerminator(),
2947                                   {LLVMContext::MD_annotation});
2948 
2949     // If we need to invert the condition in the pred block to match, do so now.
2950     if (InvertPredCond) {
2951       Value *NewCond = PBI->getCondition();
2952       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2953         CmpInst *CI = cast<CmpInst>(NewCond);
2954         CI->setPredicate(CI->getInversePredicate());
2955       } else {
2956         NewCond =
2957             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2958       }
2959 
2960       PBI->setCondition(NewCond);
2961       PBI->swapSuccessors();
2962     }
2963 
2964     BasicBlock *UniqueSucc =
2965         BI->isConditional()
2966             ? (PBI->getSuccessor(0) == BB ? TrueDest : FalseDest)
2967             : TrueDest;
2968 
2969     // Before cloning instructions, notify the successor basic block that it
2970     // is about to have a new predecessor. This will update PHI nodes,
2971     // which will allow us to update live-out uses of bonus instructions.
2972     if (BI->isConditional())
2973       AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
2974 
2975     // If we have bonus instructions, clone them into the predecessor block.
2976     // Note that there may be multiple predecessor blocks, so we cannot move
2977     // bonus instructions to a predecessor block.
2978     ValueToValueMapTy VMap; // maps original values to cloned values
2979     Instruction *CondInPred;
2980     for (Instruction &BonusInst : *BB) {
2981       if (isa<DbgInfoIntrinsic>(BonusInst) || isa<BranchInst>(BonusInst))
2982         continue;
2983 
2984       Instruction *NewBonusInst = BonusInst.clone();
2985 
2986       if (&BonusInst == Cond)
2987         CondInPred = NewBonusInst;
2988 
2989       // When we fold the bonus instructions we want to make sure we
2990       // reset their debug locations in order to avoid stepping on dead
2991       // code caused by folding dead branches.
2992       NewBonusInst->setDebugLoc(DebugLoc());
2993 
2994       RemapInstruction(NewBonusInst, VMap,
2995                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2996       VMap[&BonusInst] = NewBonusInst;
2997 
2998       // If we moved a load, we cannot any longer claim any knowledge about
2999       // its potential value. The previous information might have been valid
3000       // only given the branch precondition.
3001       // For an analogous reason, we must also drop all the metadata whose
3002       // semantics we don't understand. We *can* preserve !annotation, because
3003       // it is tied to the instruction itself, not the value or position.
3004       NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
3005 
3006       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
3007       NewBonusInst->takeName(&BonusInst);
3008       BonusInst.setName(BonusInst.getName() + ".old");
3009       BonusInst.replaceUsesWithIf(
3010           NewBonusInst, [BB, BI, UniqueSucc, PredBlock](Use &U) {
3011             auto *User = cast<Instruction>(U.getUser());
3012             // Ignore non-external uses of bonus instructions.
3013             if (User->getParent() == BB) {
3014               assert(!isa<PHINode>(User) &&
3015                      "Non-external users are never PHI instructions.");
3016               return false;
3017             }
3018             if (User->getParent() == PredBlock) {
3019               // The "exteral" use is in the block into which we just cloned the
3020               // bonus instruction. This means two things: 1. we are in an
3021               // unreachable block 2. the instruction is self-referencing.
3022               // So let's just rewrite it...
3023               return true;
3024             }
3025             (void)BI;
3026             assert(isa<PHINode>(User) && "All external users must be PHI's.");
3027             auto *PN = cast<PHINode>(User);
3028             assert(is_contained(successors(BB), User->getParent()) &&
3029                    "All external users must be in successors of BB.");
3030             assert((PN->getIncomingBlock(U) == BB ||
3031                     PN->getIncomingBlock(U) == PredBlock) &&
3032                    "The incoming block for that incoming value external use "
3033                    "must be either the original block with bonus instructions, "
3034                    "or the new predecessor block.");
3035             // UniqueSucc is the block for which we change it's predecessors,
3036             // so it is the only block in which we'll need to update PHI nodes.
3037             if (User->getParent() != UniqueSucc)
3038               return false;
3039             // Update the incoming value for the new predecessor.
3040             return PN->getIncomingBlock(U) ==
3041                    (BI->isConditional() ? PredBlock : BB);
3042           });
3043     }
3044 
3045     // Now that the Cond was cloned into the predecessor basic block,
3046     // or/and the two conditions together.
3047     if (BI->isConditional()) {
3048       Instruction *NewCond = cast<Instruction>(
3049           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
3050       PBI->setCondition(NewCond);
3051 
3052       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3053       bool HasWeights =
3054           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3055                                  SuccTrueWeight, SuccFalseWeight);
3056       SmallVector<uint64_t, 8> NewWeights;
3057 
3058       if (PBI->getSuccessor(0) == BB) {
3059         if (HasWeights) {
3060           // PBI: br i1 %x, BB, FalseDest
3061           // BI:  br i1 %y, UniqueSucc, FalseDest
3062           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3063           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3064           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3065           //               TrueWeight for PBI * FalseWeight for BI.
3066           // We assume that total weights of a BranchInst can fit into 32 bits.
3067           // Therefore, we will not have overflow using 64-bit arithmetic.
3068           NewWeights.push_back(PredFalseWeight *
3069                                    (SuccFalseWeight + SuccTrueWeight) +
3070                                PredTrueWeight * SuccFalseWeight);
3071         }
3072         PBI->setSuccessor(0, UniqueSucc);
3073       }
3074       if (PBI->getSuccessor(1) == BB) {
3075         if (HasWeights) {
3076           // PBI: br i1 %x, TrueDest, BB
3077           // BI:  br i1 %y, TrueDest, UniqueSucc
3078           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3079           //              FalseWeight for PBI * TrueWeight for BI.
3080           NewWeights.push_back(PredTrueWeight *
3081                                    (SuccFalseWeight + SuccTrueWeight) +
3082                                PredFalseWeight * SuccTrueWeight);
3083           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3084           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3085         }
3086         PBI->setSuccessor(1, UniqueSucc);
3087       }
3088       if (NewWeights.size() == 2) {
3089         // Halve the weights if any of them cannot fit in an uint32_t
3090         FitWeights(NewWeights);
3091 
3092         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
3093                                            NewWeights.end());
3094         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3095       } else
3096         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3097 
3098       Updates.push_back({DominatorTree::Delete, PredBlock, BB});
3099       Updates.push_back({DominatorTree::Insert, PredBlock, UniqueSucc});
3100     } else {
3101       // Update PHI nodes in the common successors.
3102       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
3103         ConstantInt *PBI_C = cast<ConstantInt>(
3104             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
3105         assert(PBI_C->getType()->isIntegerTy(1));
3106         Instruction *MergedCond = nullptr;
3107         if (PBI->getSuccessor(0) == UniqueSucc) {
3108           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
3109           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
3110           //       is false: !PBI_Cond and BI_Value
3111           Instruction *NotCond = cast<Instruction>(
3112               Builder.CreateNot(PBI->getCondition(), "not.cond"));
3113           MergedCond = cast<Instruction>(
3114                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
3115                                    "and.cond"));
3116           if (PBI_C->isOne())
3117             MergedCond = cast<Instruction>(Builder.CreateBinOp(
3118                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
3119         } else {
3120           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
3121           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
3122           //       is false: PBI_Cond and BI_Value
3123           MergedCond = cast<Instruction>(Builder.CreateBinOp(
3124               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
3125           if (PBI_C->isOne()) {
3126             Instruction *NotCond = cast<Instruction>(
3127                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
3128             MergedCond = cast<Instruction>(Builder.CreateBinOp(
3129                 Instruction::Or, NotCond, MergedCond, "or.cond"));
3130           }
3131         }
3132         // Update PHI Node.
3133 	PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
3134       }
3135 
3136       // PBI is changed to branch to UniqueSucc below. Remove itself from
3137       // potential phis from all other successors.
3138       if (MSSAU)
3139         MSSAU->changeCondBranchToUnconditionalTo(PBI, UniqueSucc);
3140 
3141       // Change PBI from Conditional to Unconditional.
3142       BranchInst *New_PBI = BranchInst::Create(UniqueSucc, PBI);
3143       EraseTerminatorAndDCECond(PBI, MSSAU);
3144       PBI = New_PBI;
3145     }
3146 
3147     if (DTU)
3148       DTU->applyUpdatesPermissive(Updates);
3149 
3150     // If BI was a loop latch, it may have had associated loop metadata.
3151     // We need to copy it to the new latch, that is, PBI.
3152     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3153       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3154 
3155     // TODO: If BB is reachable from all paths through PredBlock, then we
3156     // could replace PBI's branch probabilities with BI's.
3157 
3158     // Copy any debug value intrinsics into the end of PredBlock.
3159     for (Instruction &I : *BB) {
3160       if (isa<DbgInfoIntrinsic>(I)) {
3161         Instruction *NewI = I.clone();
3162         RemapInstruction(NewI, VMap,
3163                          RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3164         NewI->insertBefore(PBI);
3165       }
3166     }
3167 
3168     return Changed;
3169   }
3170   return Changed;
3171 }
3172 
3173 // If there is only one store in BB1 and BB2, return it, otherwise return
3174 // nullptr.
3175 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3176   StoreInst *S = nullptr;
3177   for (auto *BB : {BB1, BB2}) {
3178     if (!BB)
3179       continue;
3180     for (auto &I : *BB)
3181       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3182         if (S)
3183           // Multiple stores seen.
3184           return nullptr;
3185         else
3186           S = SI;
3187       }
3188   }
3189   return S;
3190 }
3191 
3192 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3193                                               Value *AlternativeV = nullptr) {
3194   // PHI is going to be a PHI node that allows the value V that is defined in
3195   // BB to be referenced in BB's only successor.
3196   //
3197   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3198   // doesn't matter to us what the other operand is (it'll never get used). We
3199   // could just create a new PHI with an undef incoming value, but that could
3200   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3201   // other PHI. So here we directly look for some PHI in BB's successor with V
3202   // as an incoming operand. If we find one, we use it, else we create a new
3203   // one.
3204   //
3205   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3206   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3207   // where OtherBB is the single other predecessor of BB's only successor.
3208   PHINode *PHI = nullptr;
3209   BasicBlock *Succ = BB->getSingleSuccessor();
3210 
3211   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3212     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3213       PHI = cast<PHINode>(I);
3214       if (!AlternativeV)
3215         break;
3216 
3217       assert(Succ->hasNPredecessors(2));
3218       auto PredI = pred_begin(Succ);
3219       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3220       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3221         break;
3222       PHI = nullptr;
3223     }
3224   if (PHI)
3225     return PHI;
3226 
3227   // If V is not an instruction defined in BB, just return it.
3228   if (!AlternativeV &&
3229       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3230     return V;
3231 
3232   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3233   PHI->addIncoming(V, BB);
3234   for (BasicBlock *PredBB : predecessors(Succ))
3235     if (PredBB != BB)
3236       PHI->addIncoming(
3237           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3238   return PHI;
3239 }
3240 
3241 static bool mergeConditionalStoreToAddress(
3242     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3243     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3244     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3245   // For every pointer, there must be exactly two stores, one coming from
3246   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3247   // store (to any address) in PTB,PFB or QTB,QFB.
3248   // FIXME: We could relax this restriction with a bit more work and performance
3249   // testing.
3250   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3251   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3252   if (!PStore || !QStore)
3253     return false;
3254 
3255   // Now check the stores are compatible.
3256   if (!QStore->isUnordered() || !PStore->isUnordered())
3257     return false;
3258 
3259   // Check that sinking the store won't cause program behavior changes. Sinking
3260   // the store out of the Q blocks won't change any behavior as we're sinking
3261   // from a block to its unconditional successor. But we're moving a store from
3262   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3263   // So we need to check that there are no aliasing loads or stores in
3264   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3265   // operations between PStore and the end of its parent block.
3266   //
3267   // The ideal way to do this is to query AliasAnalysis, but we don't
3268   // preserve AA currently so that is dangerous. Be super safe and just
3269   // check there are no other memory operations at all.
3270   for (auto &I : *QFB->getSinglePredecessor())
3271     if (I.mayReadOrWriteMemory())
3272       return false;
3273   for (auto &I : *QFB)
3274     if (&I != QStore && I.mayReadOrWriteMemory())
3275       return false;
3276   if (QTB)
3277     for (auto &I : *QTB)
3278       if (&I != QStore && I.mayReadOrWriteMemory())
3279         return false;
3280   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3281        I != E; ++I)
3282     if (&*I != PStore && I->mayReadOrWriteMemory())
3283       return false;
3284 
3285   // If we're not in aggressive mode, we only optimize if we have some
3286   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3287   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3288     if (!BB)
3289       return true;
3290     // Heuristic: if the block can be if-converted/phi-folded and the
3291     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3292     // thread this store.
3293     int BudgetRemaining =
3294         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3295     for (auto &I : BB->instructionsWithoutDebug()) {
3296       // Consider terminator instruction to be free.
3297       if (I.isTerminator())
3298         continue;
3299       // If this is one the stores that we want to speculate out of this BB,
3300       // then don't count it's cost, consider it to be free.
3301       if (auto *S = dyn_cast<StoreInst>(&I))
3302         if (llvm::find(FreeStores, S))
3303           continue;
3304       // Else, we have a white-list of instructions that we are ak speculating.
3305       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3306         return false; // Not in white-list - not worthwhile folding.
3307       // And finally, if this is a non-free instruction that we are okay
3308       // speculating, ensure that we consider the speculation budget.
3309       BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3310       if (BudgetRemaining < 0)
3311         return false; // Eagerly refuse to fold as soon as we're out of budget.
3312     }
3313     assert(BudgetRemaining >= 0 &&
3314            "When we run out of budget we will eagerly return from within the "
3315            "per-instruction loop.");
3316     return true;
3317   };
3318 
3319   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3320   if (!MergeCondStoresAggressively &&
3321       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3322        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3323     return false;
3324 
3325   // If PostBB has more than two predecessors, we need to split it so we can
3326   // sink the store.
3327   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3328     // We know that QFB's only successor is PostBB. And QFB has a single
3329     // predecessor. If QTB exists, then its only successor is also PostBB.
3330     // If QTB does not exist, then QFB's only predecessor has a conditional
3331     // branch to QFB and PostBB.
3332     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3333     BasicBlock *NewBB =
3334         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split",
3335                                DTU ? &DTU->getDomTree() : nullptr);
3336     if (!NewBB)
3337       return false;
3338     PostBB = NewBB;
3339   }
3340 
3341   // OK, we're going to sink the stores to PostBB. The store has to be
3342   // conditional though, so first create the predicate.
3343   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3344                      ->getCondition();
3345   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3346                      ->getCondition();
3347 
3348   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3349                                                 PStore->getParent());
3350   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3351                                                 QStore->getParent(), PPHI);
3352 
3353   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3354 
3355   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3356   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3357 
3358   if (InvertPCond)
3359     PPred = QB.CreateNot(PPred);
3360   if (InvertQCond)
3361     QPred = QB.CreateNot(QPred);
3362   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3363 
3364   auto *T = SplitBlockAndInsertIfThen(
3365       CombinedPred, &*QB.GetInsertPoint(), /*Unreachable=*/false,
3366       /*BranchWeights=*/nullptr, DTU ? &DTU->getDomTree() : nullptr);
3367   QB.SetInsertPoint(T);
3368   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3369   AAMDNodes AAMD;
3370   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3371   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3372   SI->setAAMetadata(AAMD);
3373   // Choose the minimum alignment. If we could prove both stores execute, we
3374   // could use biggest one.  In this case, though, we only know that one of the
3375   // stores executes.  And we don't know it's safe to take the alignment from a
3376   // store that doesn't execute.
3377   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3378 
3379   QStore->eraseFromParent();
3380   PStore->eraseFromParent();
3381 
3382   return true;
3383 }
3384 
3385 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3386                                    DomTreeUpdater *DTU, const DataLayout &DL,
3387                                    const TargetTransformInfo &TTI) {
3388   // The intention here is to find diamonds or triangles (see below) where each
3389   // conditional block contains a store to the same address. Both of these
3390   // stores are conditional, so they can't be unconditionally sunk. But it may
3391   // be profitable to speculatively sink the stores into one merged store at the
3392   // end, and predicate the merged store on the union of the two conditions of
3393   // PBI and QBI.
3394   //
3395   // This can reduce the number of stores executed if both of the conditions are
3396   // true, and can allow the blocks to become small enough to be if-converted.
3397   // This optimization will also chain, so that ladders of test-and-set
3398   // sequences can be if-converted away.
3399   //
3400   // We only deal with simple diamonds or triangles:
3401   //
3402   //     PBI       or      PBI        or a combination of the two
3403   //    /   \               | \
3404   //   PTB  PFB             |  PFB
3405   //    \   /               | /
3406   //     QBI                QBI
3407   //    /  \                | \
3408   //   QTB  QFB             |  QFB
3409   //    \  /                | /
3410   //    PostBB            PostBB
3411   //
3412   // We model triangles as a type of diamond with a nullptr "true" block.
3413   // Triangles are canonicalized so that the fallthrough edge is represented by
3414   // a true condition, as in the diagram above.
3415   BasicBlock *PTB = PBI->getSuccessor(0);
3416   BasicBlock *PFB = PBI->getSuccessor(1);
3417   BasicBlock *QTB = QBI->getSuccessor(0);
3418   BasicBlock *QFB = QBI->getSuccessor(1);
3419   BasicBlock *PostBB = QFB->getSingleSuccessor();
3420 
3421   // Make sure we have a good guess for PostBB. If QTB's only successor is
3422   // QFB, then QFB is a better PostBB.
3423   if (QTB->getSingleSuccessor() == QFB)
3424     PostBB = QFB;
3425 
3426   // If we couldn't find a good PostBB, stop.
3427   if (!PostBB)
3428     return false;
3429 
3430   bool InvertPCond = false, InvertQCond = false;
3431   // Canonicalize fallthroughs to the true branches.
3432   if (PFB == QBI->getParent()) {
3433     std::swap(PFB, PTB);
3434     InvertPCond = true;
3435   }
3436   if (QFB == PostBB) {
3437     std::swap(QFB, QTB);
3438     InvertQCond = true;
3439   }
3440 
3441   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3442   // and QFB may not. Model fallthroughs as a nullptr block.
3443   if (PTB == QBI->getParent())
3444     PTB = nullptr;
3445   if (QTB == PostBB)
3446     QTB = nullptr;
3447 
3448   // Legality bailouts. We must have at least the non-fallthrough blocks and
3449   // the post-dominating block, and the non-fallthroughs must only have one
3450   // predecessor.
3451   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3452     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3453   };
3454   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3455       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3456     return false;
3457   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3458       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3459     return false;
3460   if (!QBI->getParent()->hasNUses(2))
3461     return false;
3462 
3463   // OK, this is a sequence of two diamonds or triangles.
3464   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3465   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3466   for (auto *BB : {PTB, PFB}) {
3467     if (!BB)
3468       continue;
3469     for (auto &I : *BB)
3470       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3471         PStoreAddresses.insert(SI->getPointerOperand());
3472   }
3473   for (auto *BB : {QTB, QFB}) {
3474     if (!BB)
3475       continue;
3476     for (auto &I : *BB)
3477       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3478         QStoreAddresses.insert(SI->getPointerOperand());
3479   }
3480 
3481   set_intersect(PStoreAddresses, QStoreAddresses);
3482   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3483   // clear what it contains.
3484   auto &CommonAddresses = PStoreAddresses;
3485 
3486   bool Changed = false;
3487   for (auto *Address : CommonAddresses)
3488     Changed |=
3489         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3490                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3491   return Changed;
3492 }
3493 
3494 /// If the previous block ended with a widenable branch, determine if reusing
3495 /// the target block is profitable and legal.  This will have the effect of
3496 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3497 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
3498   // TODO: This can be generalized in two important ways:
3499   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3500   //    values from the PBI edge.
3501   // 2) We can sink side effecting instructions into BI's fallthrough
3502   //    successor provided they doesn't contribute to computation of
3503   //    BI's condition.
3504   Value *CondWB, *WC;
3505   BasicBlock *IfTrueBB, *IfFalseBB;
3506   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3507       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3508     return false;
3509   if (!IfFalseBB->phis().empty())
3510     return false; // TODO
3511   // Use lambda to lazily compute expensive condition after cheap ones.
3512   auto NoSideEffects = [](BasicBlock &BB) {
3513     return !llvm::any_of(BB, [](const Instruction &I) {
3514         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3515       });
3516   };
3517   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3518       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3519       NoSideEffects(*BI->getParent())) {
3520     BI->getSuccessor(1)->removePredecessor(BI->getParent());
3521     BI->setSuccessor(1, IfFalseBB);
3522     return true;
3523   }
3524   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3525       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3526       NoSideEffects(*BI->getParent())) {
3527     BI->getSuccessor(0)->removePredecessor(BI->getParent());
3528     BI->setSuccessor(0, IfFalseBB);
3529     return true;
3530   }
3531   return false;
3532 }
3533 
3534 /// If we have a conditional branch as a predecessor of another block,
3535 /// this function tries to simplify it.  We know
3536 /// that PBI and BI are both conditional branches, and BI is in one of the
3537 /// successor blocks of PBI - PBI branches to BI.
3538 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3539                                            DomTreeUpdater *DTU,
3540                                            const DataLayout &DL,
3541                                            const TargetTransformInfo &TTI) {
3542   assert(PBI->isConditional() && BI->isConditional());
3543   BasicBlock *BB = BI->getParent();
3544 
3545   // If this block ends with a branch instruction, and if there is a
3546   // predecessor that ends on a branch of the same condition, make
3547   // this conditional branch redundant.
3548   if (PBI->getCondition() == BI->getCondition() &&
3549       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3550     // Okay, the outcome of this conditional branch is statically
3551     // knowable.  If this block had a single pred, handle specially.
3552     if (BB->getSinglePredecessor()) {
3553       // Turn this into a branch on constant.
3554       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3555       BI->setCondition(
3556           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3557       return true; // Nuke the branch on constant.
3558     }
3559 
3560     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3561     // in the constant and simplify the block result.  Subsequent passes of
3562     // simplifycfg will thread the block.
3563     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3564       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3565       PHINode *NewPN = PHINode::Create(
3566           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3567           BI->getCondition()->getName() + ".pr", &BB->front());
3568       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3569       // predecessor, compute the PHI'd conditional value for all of the preds.
3570       // Any predecessor where the condition is not computable we keep symbolic.
3571       for (pred_iterator PI = PB; PI != PE; ++PI) {
3572         BasicBlock *P = *PI;
3573         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3574             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3575             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3576           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3577           NewPN->addIncoming(
3578               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3579               P);
3580         } else {
3581           NewPN->addIncoming(BI->getCondition(), P);
3582         }
3583       }
3584 
3585       BI->setCondition(NewPN);
3586       return true;
3587     }
3588   }
3589 
3590   // If the previous block ended with a widenable branch, determine if reusing
3591   // the target block is profitable and legal.  This will have the effect of
3592   // "widening" PBI, but doesn't require us to reason about hosting safety.
3593   if (tryWidenCondBranchToCondBranch(PBI, BI))
3594     return true;
3595 
3596   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3597     if (CE->canTrap())
3598       return false;
3599 
3600   // If both branches are conditional and both contain stores to the same
3601   // address, remove the stores from the conditionals and create a conditional
3602   // merged store at the end.
3603   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3604     return true;
3605 
3606   // If this is a conditional branch in an empty block, and if any
3607   // predecessors are a conditional branch to one of our destinations,
3608   // fold the conditions into logical ops and one cond br.
3609 
3610   // Ignore dbg intrinsics.
3611   if (&*BB->instructionsWithoutDebug().begin() != BI)
3612     return false;
3613 
3614   int PBIOp, BIOp;
3615   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3616     PBIOp = 0;
3617     BIOp = 0;
3618   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3619     PBIOp = 0;
3620     BIOp = 1;
3621   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3622     PBIOp = 1;
3623     BIOp = 0;
3624   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3625     PBIOp = 1;
3626     BIOp = 1;
3627   } else {
3628     return false;
3629   }
3630 
3631   // Check to make sure that the other destination of this branch
3632   // isn't BB itself.  If so, this is an infinite loop that will
3633   // keep getting unwound.
3634   if (PBI->getSuccessor(PBIOp) == BB)
3635     return false;
3636 
3637   // Do not perform this transformation if it would require
3638   // insertion of a large number of select instructions. For targets
3639   // without predication/cmovs, this is a big pessimization.
3640 
3641   // Also do not perform this transformation if any phi node in the common
3642   // destination block can trap when reached by BB or PBB (PR17073). In that
3643   // case, it would be unsafe to hoist the operation into a select instruction.
3644 
3645   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3646   unsigned NumPhis = 0;
3647   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3648        ++II, ++NumPhis) {
3649     if (NumPhis > 2) // Disable this xform.
3650       return false;
3651 
3652     PHINode *PN = cast<PHINode>(II);
3653     Value *BIV = PN->getIncomingValueForBlock(BB);
3654     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3655       if (CE->canTrap())
3656         return false;
3657 
3658     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3659     Value *PBIV = PN->getIncomingValue(PBBIdx);
3660     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3661       if (CE->canTrap())
3662         return false;
3663   }
3664 
3665   // Finally, if everything is ok, fold the branches to logical ops.
3666   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3667 
3668   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3669                     << "AND: " << *BI->getParent());
3670 
3671   SmallVector<DominatorTree::UpdateType, 5> Updates;
3672 
3673   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3674   // branch in it, where one edge (OtherDest) goes back to itself but the other
3675   // exits.  We don't *know* that the program avoids the infinite loop
3676   // (even though that seems likely).  If we do this xform naively, we'll end up
3677   // recursively unpeeling the loop.  Since we know that (after the xform is
3678   // done) that the block *is* infinite if reached, we just make it an obviously
3679   // infinite loop with no cond branch.
3680   if (OtherDest == BB) {
3681     // Insert it at the end of the function, because it's either code,
3682     // or it won't matter if it's hot. :)
3683     BasicBlock *InfLoopBlock =
3684         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3685     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3686     Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3687     OtherDest = InfLoopBlock;
3688   }
3689 
3690   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3691 
3692   // BI may have other predecessors.  Because of this, we leave
3693   // it alone, but modify PBI.
3694 
3695   // Make sure we get to CommonDest on True&True directions.
3696   Value *PBICond = PBI->getCondition();
3697   IRBuilder<NoFolder> Builder(PBI);
3698   if (PBIOp)
3699     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3700 
3701   Value *BICond = BI->getCondition();
3702   if (BIOp)
3703     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3704 
3705   // Merge the conditions.
3706   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3707 
3708   for (auto *Successor : successors(PBI->getParent()))
3709     Updates.push_back({DominatorTree::Delete, PBI->getParent(), Successor});
3710 
3711   // Modify PBI to branch on the new condition to the new dests.
3712   PBI->setCondition(Cond);
3713   PBI->setSuccessor(0, CommonDest);
3714   PBI->setSuccessor(1, OtherDest);
3715 
3716   for (auto *Successor : successors(PBI->getParent()))
3717     Updates.push_back({DominatorTree::Insert, PBI->getParent(), Successor});
3718 
3719   if (DTU)
3720     DTU->applyUpdatesPermissive(Updates);
3721 
3722   // Update branch weight for PBI.
3723   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3724   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3725   bool HasWeights =
3726       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3727                              SuccTrueWeight, SuccFalseWeight);
3728   if (HasWeights) {
3729     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3730     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3731     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3732     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3733     // The weight to CommonDest should be PredCommon * SuccTotal +
3734     //                                    PredOther * SuccCommon.
3735     // The weight to OtherDest should be PredOther * SuccOther.
3736     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3737                                   PredOther * SuccCommon,
3738                               PredOther * SuccOther};
3739     // Halve the weights if any of them cannot fit in an uint32_t
3740     FitWeights(NewWeights);
3741 
3742     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3743   }
3744 
3745   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3746   // block that are identical to the entries for BI's block.
3747   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3748 
3749   // We know that the CommonDest already had an edge from PBI to
3750   // it.  If it has PHIs though, the PHIs may have different
3751   // entries for BB and PBI's BB.  If so, insert a select to make
3752   // them agree.
3753   for (PHINode &PN : CommonDest->phis()) {
3754     Value *BIV = PN.getIncomingValueForBlock(BB);
3755     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3756     Value *PBIV = PN.getIncomingValue(PBBIdx);
3757     if (BIV != PBIV) {
3758       // Insert a select in PBI to pick the right value.
3759       SelectInst *NV = cast<SelectInst>(
3760           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3761       PN.setIncomingValue(PBBIdx, NV);
3762       // Although the select has the same condition as PBI, the original branch
3763       // weights for PBI do not apply to the new select because the select's
3764       // 'logical' edges are incoming edges of the phi that is eliminated, not
3765       // the outgoing edges of PBI.
3766       if (HasWeights) {
3767         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3768         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3769         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3770         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3771         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3772         // The weight to PredOtherDest should be PredOther * SuccCommon.
3773         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3774                                   PredOther * SuccCommon};
3775 
3776         FitWeights(NewWeights);
3777 
3778         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3779       }
3780     }
3781   }
3782 
3783   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3784   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3785 
3786   // This basic block is probably dead.  We know it has at least
3787   // one fewer predecessor.
3788   return true;
3789 }
3790 
3791 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3792 // true or to FalseBB if Cond is false.
3793 // Takes care of updating the successors and removing the old terminator.
3794 // Also makes sure not to introduce new successors by assuming that edges to
3795 // non-successor TrueBBs and FalseBBs aren't reachable.
3796 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3797                                                 Value *Cond, BasicBlock *TrueBB,
3798                                                 BasicBlock *FalseBB,
3799                                                 uint32_t TrueWeight,
3800                                                 uint32_t FalseWeight) {
3801   // Remove any superfluous successor edges from the CFG.
3802   // First, figure out which successors to preserve.
3803   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3804   // successor.
3805   BasicBlock *KeepEdge1 = TrueBB;
3806   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3807 
3808   SmallVector<DominatorTree::UpdateType, 4> Updates;
3809 
3810   // Then remove the rest.
3811   for (BasicBlock *Succ : successors(OldTerm)) {
3812     // Make sure only to keep exactly one copy of each edge.
3813     if (Succ == KeepEdge1)
3814       KeepEdge1 = nullptr;
3815     else if (Succ == KeepEdge2)
3816       KeepEdge2 = nullptr;
3817     else {
3818       Succ->removePredecessor(OldTerm->getParent(),
3819                               /*KeepOneInputPHIs=*/true);
3820       Updates.push_back({DominatorTree::Delete, OldTerm->getParent(), Succ});
3821     }
3822   }
3823 
3824   IRBuilder<> Builder(OldTerm);
3825   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3826 
3827   // Insert an appropriate new terminator.
3828   if (!KeepEdge1 && !KeepEdge2) {
3829     if (TrueBB == FalseBB) {
3830       // We were only looking for one successor, and it was present.
3831       // Create an unconditional branch to it.
3832       Builder.CreateBr(TrueBB);
3833       Updates.push_back({DominatorTree::Insert, OldTerm->getParent(), TrueBB});
3834     } else {
3835       // We found both of the successors we were looking for.
3836       // Create a conditional branch sharing the condition of the select.
3837       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3838       Updates.push_back({DominatorTree::Insert, OldTerm->getParent(), TrueBB});
3839       Updates.push_back({DominatorTree::Insert, OldTerm->getParent(), FalseBB});
3840       if (TrueWeight != FalseWeight)
3841         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3842     }
3843   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3844     // Neither of the selected blocks were successors, so this
3845     // terminator must be unreachable.
3846     new UnreachableInst(OldTerm->getContext(), OldTerm);
3847   } else {
3848     // One of the selected values was a successor, but the other wasn't.
3849     // Insert an unconditional branch to the one that was found;
3850     // the edge to the one that wasn't must be unreachable.
3851     if (!KeepEdge1) {
3852       // Only TrueBB was found.
3853       Builder.CreateBr(TrueBB);
3854       Updates.push_back({DominatorTree::Insert, OldTerm->getParent(), TrueBB});
3855     } else {
3856       // Only FalseBB was found.
3857       Builder.CreateBr(FalseBB);
3858       Updates.push_back({DominatorTree::Insert, OldTerm->getParent(), FalseBB});
3859     }
3860   }
3861 
3862   EraseTerminatorAndDCECond(OldTerm);
3863   if (DTU)
3864     DTU->applyUpdatesPermissive(Updates);
3865   return true;
3866 }
3867 
3868 // Replaces
3869 //   (switch (select cond, X, Y)) on constant X, Y
3870 // with a branch - conditional if X and Y lead to distinct BBs,
3871 // unconditional otherwise.
3872 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3873                                             SelectInst *Select) {
3874   // Check for constant integer values in the select.
3875   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3876   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3877   if (!TrueVal || !FalseVal)
3878     return false;
3879 
3880   // Find the relevant condition and destinations.
3881   Value *Condition = Select->getCondition();
3882   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3883   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3884 
3885   // Get weight for TrueBB and FalseBB.
3886   uint32_t TrueWeight = 0, FalseWeight = 0;
3887   SmallVector<uint64_t, 8> Weights;
3888   bool HasWeights = HasBranchWeights(SI);
3889   if (HasWeights) {
3890     GetBranchWeights(SI, Weights);
3891     if (Weights.size() == 1 + SI->getNumCases()) {
3892       TrueWeight =
3893           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3894       FalseWeight =
3895           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3896     }
3897   }
3898 
3899   // Perform the actual simplification.
3900   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3901                                     FalseWeight);
3902 }
3903 
3904 // Replaces
3905 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3906 //                             blockaddress(@fn, BlockB)))
3907 // with
3908 //   (br cond, BlockA, BlockB).
3909 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3910                                                 SelectInst *SI) {
3911   // Check that both operands of the select are block addresses.
3912   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3913   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3914   if (!TBA || !FBA)
3915     return false;
3916 
3917   // Extract the actual blocks.
3918   BasicBlock *TrueBB = TBA->getBasicBlock();
3919   BasicBlock *FalseBB = FBA->getBasicBlock();
3920 
3921   // Perform the actual simplification.
3922   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3923                                     0);
3924 }
3925 
3926 /// This is called when we find an icmp instruction
3927 /// (a seteq/setne with a constant) as the only instruction in a
3928 /// block that ends with an uncond branch.  We are looking for a very specific
3929 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3930 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3931 /// default value goes to an uncond block with a seteq in it, we get something
3932 /// like:
3933 ///
3934 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3935 /// DEFAULT:
3936 ///   %tmp = icmp eq i8 %A, 92
3937 ///   br label %end
3938 /// end:
3939 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3940 ///
3941 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3942 /// the PHI, merging the third icmp into the switch.
3943 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3944     ICmpInst *ICI, IRBuilder<> &Builder) {
3945   BasicBlock *BB = ICI->getParent();
3946 
3947   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3948   // complex.
3949   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3950     return false;
3951 
3952   Value *V = ICI->getOperand(0);
3953   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3954 
3955   // The pattern we're looking for is where our only predecessor is a switch on
3956   // 'V' and this block is the default case for the switch.  In this case we can
3957   // fold the compared value into the switch to simplify things.
3958   BasicBlock *Pred = BB->getSinglePredecessor();
3959   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3960     return false;
3961 
3962   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3963   if (SI->getCondition() != V)
3964     return false;
3965 
3966   // If BB is reachable on a non-default case, then we simply know the value of
3967   // V in this block.  Substitute it and constant fold the icmp instruction
3968   // away.
3969   if (SI->getDefaultDest() != BB) {
3970     ConstantInt *VVal = SI->findCaseDest(BB);
3971     assert(VVal && "Should have a unique destination value");
3972     ICI->setOperand(0, VVal);
3973 
3974     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3975       ICI->replaceAllUsesWith(V);
3976       ICI->eraseFromParent();
3977     }
3978     // BB is now empty, so it is likely to simplify away.
3979     return requestResimplify();
3980   }
3981 
3982   // Ok, the block is reachable from the default dest.  If the constant we're
3983   // comparing exists in one of the other edges, then we can constant fold ICI
3984   // and zap it.
3985   if (SI->findCaseValue(Cst) != SI->case_default()) {
3986     Value *V;
3987     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3988       V = ConstantInt::getFalse(BB->getContext());
3989     else
3990       V = ConstantInt::getTrue(BB->getContext());
3991 
3992     ICI->replaceAllUsesWith(V);
3993     ICI->eraseFromParent();
3994     // BB is now empty, so it is likely to simplify away.
3995     return requestResimplify();
3996   }
3997 
3998   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3999   // the block.
4000   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4001   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4002   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4003       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4004     return false;
4005 
4006   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4007   // true in the PHI.
4008   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4009   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4010 
4011   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4012     std::swap(DefaultCst, NewCst);
4013 
4014   // Replace ICI (which is used by the PHI for the default value) with true or
4015   // false depending on if it is EQ or NE.
4016   ICI->replaceAllUsesWith(DefaultCst);
4017   ICI->eraseFromParent();
4018 
4019   // Okay, the switch goes to this block on a default value.  Add an edge from
4020   // the switch to the merge point on the compared value.
4021   BasicBlock *NewBB =
4022       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4023   {
4024     SwitchInstProfUpdateWrapper SIW(*SI);
4025     auto W0 = SIW.getSuccessorWeight(0);
4026     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4027     if (W0) {
4028       NewW = ((uint64_t(*W0) + 1) >> 1);
4029       SIW.setSuccessorWeight(0, *NewW);
4030     }
4031     SIW.addCase(Cst, NewBB, NewW);
4032   }
4033 
4034   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4035   Builder.SetInsertPoint(NewBB);
4036   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4037   Builder.CreateBr(SuccBlock);
4038   PHIUse->addIncoming(NewCst, NewBB);
4039   return true;
4040 }
4041 
4042 /// The specified branch is a conditional branch.
4043 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4044 /// fold it into a switch instruction if so.
4045 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4046                                                IRBuilder<> &Builder,
4047                                                const DataLayout &DL) {
4048   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4049   if (!Cond)
4050     return false;
4051 
4052   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4053   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4054   // 'setne's and'ed together, collect them.
4055 
4056   // Try to gather values from a chain of and/or to be turned into a switch
4057   ConstantComparesGatherer ConstantCompare(Cond, DL);
4058   // Unpack the result
4059   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4060   Value *CompVal = ConstantCompare.CompValue;
4061   unsigned UsedICmps = ConstantCompare.UsedICmps;
4062   Value *ExtraCase = ConstantCompare.Extra;
4063 
4064   // If we didn't have a multiply compared value, fail.
4065   if (!CompVal)
4066     return false;
4067 
4068   // Avoid turning single icmps into a switch.
4069   if (UsedICmps <= 1)
4070     return false;
4071 
4072   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
4073 
4074   // There might be duplicate constants in the list, which the switch
4075   // instruction can't handle, remove them now.
4076   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4077   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4078 
4079   // If Extra was used, we require at least two switch values to do the
4080   // transformation.  A switch with one value is just a conditional branch.
4081   if (ExtraCase && Values.size() < 2)
4082     return false;
4083 
4084   // TODO: Preserve branch weight metadata, similarly to how
4085   // FoldValueComparisonIntoPredecessors preserves it.
4086 
4087   // Figure out which block is which destination.
4088   BasicBlock *DefaultBB = BI->getSuccessor(1);
4089   BasicBlock *EdgeBB = BI->getSuccessor(0);
4090   if (!TrueWhenEqual)
4091     std::swap(DefaultBB, EdgeBB);
4092 
4093   BasicBlock *BB = BI->getParent();
4094 
4095   // MSAN does not like undefs as branch condition which can be introduced
4096   // with "explicit branch".
4097   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4098     return false;
4099 
4100   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4101                     << " cases into SWITCH.  BB is:\n"
4102                     << *BB);
4103 
4104   // If there are any extra values that couldn't be folded into the switch
4105   // then we evaluate them with an explicit branch first. Split the block
4106   // right before the condbr to handle it.
4107   if (ExtraCase) {
4108     BasicBlock *NewBB =
4109         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
4110     // Remove the uncond branch added to the old block.
4111     Instruction *OldTI = BB->getTerminator();
4112     Builder.SetInsertPoint(OldTI);
4113 
4114     if (TrueWhenEqual)
4115       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4116     else
4117       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4118 
4119     OldTI->eraseFromParent();
4120 
4121     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4122     // for the edge we just added.
4123     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4124 
4125     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4126                       << "\nEXTRABB = " << *BB);
4127     BB = NewBB;
4128   }
4129 
4130   Builder.SetInsertPoint(BI);
4131   // Convert pointer to int before we switch.
4132   if (CompVal->getType()->isPointerTy()) {
4133     CompVal = Builder.CreatePtrToInt(
4134         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4135   }
4136 
4137   // Create the new switch instruction now.
4138   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4139 
4140   // Add all of the 'cases' to the switch instruction.
4141   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4142     New->addCase(Values[i], EdgeBB);
4143 
4144   // We added edges from PI to the EdgeBB.  As such, if there were any
4145   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4146   // the number of edges added.
4147   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4148     PHINode *PN = cast<PHINode>(BBI);
4149     Value *InVal = PN->getIncomingValueForBlock(BB);
4150     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4151       PN->addIncoming(InVal, BB);
4152   }
4153 
4154   // Erase the old branch instruction.
4155   EraseTerminatorAndDCECond(BI);
4156 
4157   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4158   return true;
4159 }
4160 
4161 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4162   if (isa<PHINode>(RI->getValue()))
4163     return simplifyCommonResume(RI);
4164   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4165            RI->getValue() == RI->getParent()->getFirstNonPHI())
4166     // The resume must unwind the exception that caused control to branch here.
4167     return simplifySingleResume(RI);
4168 
4169   return false;
4170 }
4171 
4172 // Check if cleanup block is empty
4173 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4174   for (Instruction &I : R) {
4175     auto *II = dyn_cast<IntrinsicInst>(&I);
4176     if (!II)
4177       return false;
4178 
4179     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4180     switch (IntrinsicID) {
4181     case Intrinsic::dbg_declare:
4182     case Intrinsic::dbg_value:
4183     case Intrinsic::dbg_label:
4184     case Intrinsic::lifetime_end:
4185       break;
4186     default:
4187       return false;
4188     }
4189   }
4190   return true;
4191 }
4192 
4193 // Simplify resume that is shared by several landing pads (phi of landing pad).
4194 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4195   BasicBlock *BB = RI->getParent();
4196 
4197   // Check that there are no other instructions except for debug and lifetime
4198   // intrinsics between the phi's and resume instruction.
4199   if (!isCleanupBlockEmpty(
4200           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4201     return false;
4202 
4203   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4204   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4205 
4206   // Check incoming blocks to see if any of them are trivial.
4207   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4208        Idx++) {
4209     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4210     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4211 
4212     // If the block has other successors, we can not delete it because
4213     // it has other dependents.
4214     if (IncomingBB->getUniqueSuccessor() != BB)
4215       continue;
4216 
4217     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4218     // Not the landing pad that caused the control to branch here.
4219     if (IncomingValue != LandingPad)
4220       continue;
4221 
4222     if (isCleanupBlockEmpty(
4223             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4224       TrivialUnwindBlocks.insert(IncomingBB);
4225   }
4226 
4227   // If no trivial unwind blocks, don't do any simplifications.
4228   if (TrivialUnwindBlocks.empty())
4229     return false;
4230 
4231   // Turn all invokes that unwind here into calls.
4232   for (auto *TrivialBB : TrivialUnwindBlocks) {
4233     // Blocks that will be simplified should be removed from the phi node.
4234     // Note there could be multiple edges to the resume block, and we need
4235     // to remove them all.
4236     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4237       BB->removePredecessor(TrivialBB, true);
4238 
4239     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
4240          PI != PE;) {
4241       BasicBlock *Pred = *PI++;
4242       removeUnwindEdge(Pred, DTU);
4243       ++NumInvokes;
4244     }
4245 
4246     // In each SimplifyCFG run, only the current processed block can be erased.
4247     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4248     // of erasing TrivialBB, we only remove the branch to the common resume
4249     // block so that we can later erase the resume block since it has no
4250     // predecessors.
4251     TrivialBB->getTerminator()->eraseFromParent();
4252     new UnreachableInst(RI->getContext(), TrivialBB);
4253     if (DTU)
4254       DTU->applyUpdatesPermissive({{DominatorTree::Delete, TrivialBB, BB}});
4255   }
4256 
4257   // Delete the resume block if all its predecessors have been removed.
4258   if (pred_empty(BB)) {
4259     if (DTU)
4260       DTU->deleteBB(BB);
4261     else
4262       BB->eraseFromParent();
4263   }
4264 
4265   return !TrivialUnwindBlocks.empty();
4266 }
4267 
4268 // Simplify resume that is only used by a single (non-phi) landing pad.
4269 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4270   BasicBlock *BB = RI->getParent();
4271   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4272   assert(RI->getValue() == LPInst &&
4273          "Resume must unwind the exception that caused control to here");
4274 
4275   // Check that there are no other instructions except for debug intrinsics.
4276   if (!isCleanupBlockEmpty(
4277           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4278     return false;
4279 
4280   // Turn all invokes that unwind here into calls and delete the basic block.
4281   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4282     BasicBlock *Pred = *PI++;
4283     removeUnwindEdge(Pred, DTU);
4284     ++NumInvokes;
4285   }
4286 
4287   // The landingpad is now unreachable.  Zap it.
4288   if (LoopHeaders)
4289     LoopHeaders->erase(BB);
4290   if (DTU)
4291     DTU->deleteBB(BB);
4292   else
4293     BB->eraseFromParent();
4294   return true;
4295 }
4296 
4297 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4298   // If this is a trivial cleanup pad that executes no instructions, it can be
4299   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4300   // that is an EH pad will be updated to continue to the caller and any
4301   // predecessor that terminates with an invoke instruction will have its invoke
4302   // instruction converted to a call instruction.  If the cleanup pad being
4303   // simplified does not continue to the caller, each predecessor will be
4304   // updated to continue to the unwind destination of the cleanup pad being
4305   // simplified.
4306   BasicBlock *BB = RI->getParent();
4307   CleanupPadInst *CPInst = RI->getCleanupPad();
4308   if (CPInst->getParent() != BB)
4309     // This isn't an empty cleanup.
4310     return false;
4311 
4312   // We cannot kill the pad if it has multiple uses.  This typically arises
4313   // from unreachable basic blocks.
4314   if (!CPInst->hasOneUse())
4315     return false;
4316 
4317   // Check that there are no other instructions except for benign intrinsics.
4318   if (!isCleanupBlockEmpty(
4319           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4320     return false;
4321 
4322   // If the cleanup return we are simplifying unwinds to the caller, this will
4323   // set UnwindDest to nullptr.
4324   BasicBlock *UnwindDest = RI->getUnwindDest();
4325   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4326 
4327   // We're about to remove BB from the control flow.  Before we do, sink any
4328   // PHINodes into the unwind destination.  Doing this before changing the
4329   // control flow avoids some potentially slow checks, since we can currently
4330   // be certain that UnwindDest and BB have no common predecessors (since they
4331   // are both EH pads).
4332   if (UnwindDest) {
4333     // First, go through the PHI nodes in UnwindDest and update any nodes that
4334     // reference the block we are removing
4335     for (BasicBlock::iterator I = UnwindDest->begin(),
4336                               IE = DestEHPad->getIterator();
4337          I != IE; ++I) {
4338       PHINode *DestPN = cast<PHINode>(I);
4339 
4340       int Idx = DestPN->getBasicBlockIndex(BB);
4341       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4342       assert(Idx != -1);
4343       // This PHI node has an incoming value that corresponds to a control
4344       // path through the cleanup pad we are removing.  If the incoming
4345       // value is in the cleanup pad, it must be a PHINode (because we
4346       // verified above that the block is otherwise empty).  Otherwise, the
4347       // value is either a constant or a value that dominates the cleanup
4348       // pad being removed.
4349       //
4350       // Because BB and UnwindDest are both EH pads, all of their
4351       // predecessors must unwind to these blocks, and since no instruction
4352       // can have multiple unwind destinations, there will be no overlap in
4353       // incoming blocks between SrcPN and DestPN.
4354       Value *SrcVal = DestPN->getIncomingValue(Idx);
4355       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4356 
4357       // Remove the entry for the block we are deleting.
4358       DestPN->removeIncomingValue(Idx, false);
4359 
4360       if (SrcPN && SrcPN->getParent() == BB) {
4361         // If the incoming value was a PHI node in the cleanup pad we are
4362         // removing, we need to merge that PHI node's incoming values into
4363         // DestPN.
4364         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4365              SrcIdx != SrcE; ++SrcIdx) {
4366           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4367                               SrcPN->getIncomingBlock(SrcIdx));
4368         }
4369       } else {
4370         // Otherwise, the incoming value came from above BB and
4371         // so we can just reuse it.  We must associate all of BB's
4372         // predecessors with this value.
4373         for (auto *pred : predecessors(BB)) {
4374           DestPN->addIncoming(SrcVal, pred);
4375         }
4376       }
4377     }
4378 
4379     // Sink any remaining PHI nodes directly into UnwindDest.
4380     Instruction *InsertPt = DestEHPad;
4381     for (BasicBlock::iterator I = BB->begin(),
4382                               IE = BB->getFirstNonPHI()->getIterator();
4383          I != IE;) {
4384       // The iterator must be incremented here because the instructions are
4385       // being moved to another block.
4386       PHINode *PN = cast<PHINode>(I++);
4387       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4388         // If the PHI node has no uses or all of its uses are in this basic
4389         // block (meaning they are debug or lifetime intrinsics), just leave
4390         // it.  It will be erased when we erase BB below.
4391         continue;
4392 
4393       // Otherwise, sink this PHI node into UnwindDest.
4394       // Any predecessors to UnwindDest which are not already represented
4395       // must be back edges which inherit the value from the path through
4396       // BB.  In this case, the PHI value must reference itself.
4397       for (auto *pred : predecessors(UnwindDest))
4398         if (pred != BB)
4399           PN->addIncoming(PN, pred);
4400       PN->moveBefore(InsertPt);
4401     }
4402   }
4403 
4404   std::vector<DominatorTree::UpdateType> Updates;
4405 
4406   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4407     // The iterator must be updated here because we are removing this pred.
4408     BasicBlock *PredBB = *PI++;
4409     if (UnwindDest == nullptr) {
4410       if (DTU)
4411         DTU->applyUpdatesPermissive(Updates);
4412       Updates.clear();
4413       removeUnwindEdge(PredBB, DTU);
4414       ++NumInvokes;
4415     } else {
4416       Instruction *TI = PredBB->getTerminator();
4417       TI->replaceUsesOfWith(BB, UnwindDest);
4418       Updates.push_back({DominatorTree::Delete, PredBB, BB});
4419       Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4420     }
4421   }
4422 
4423   if (DTU) {
4424     DTU->applyUpdatesPermissive(Updates);
4425     DTU->deleteBB(BB);
4426   } else
4427     // The cleanup pad is now unreachable.  Zap it.
4428     BB->eraseFromParent();
4429 
4430   return true;
4431 }
4432 
4433 // Try to merge two cleanuppads together.
4434 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4435   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4436   // with.
4437   BasicBlock *UnwindDest = RI->getUnwindDest();
4438   if (!UnwindDest)
4439     return false;
4440 
4441   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4442   // be safe to merge without code duplication.
4443   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4444     return false;
4445 
4446   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4447   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4448   if (!SuccessorCleanupPad)
4449     return false;
4450 
4451   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4452   // Replace any uses of the successor cleanupad with the predecessor pad
4453   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4454   // funclet bundle operands.
4455   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4456   // Remove the old cleanuppad.
4457   SuccessorCleanupPad->eraseFromParent();
4458   // Now, we simply replace the cleanupret with a branch to the unwind
4459   // destination.
4460   BranchInst::Create(UnwindDest, RI->getParent());
4461   RI->eraseFromParent();
4462 
4463   return true;
4464 }
4465 
4466 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4467   // It is possible to transiantly have an undef cleanuppad operand because we
4468   // have deleted some, but not all, dead blocks.
4469   // Eventually, this block will be deleted.
4470   if (isa<UndefValue>(RI->getOperand(0)))
4471     return false;
4472 
4473   if (mergeCleanupPad(RI))
4474     return true;
4475 
4476   if (removeEmptyCleanup(RI, DTU))
4477     return true;
4478 
4479   return false;
4480 }
4481 
4482 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4483   BasicBlock *BB = RI->getParent();
4484   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4485     return false;
4486 
4487   // Find predecessors that end with branches.
4488   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4489   SmallVector<BranchInst *, 8> CondBranchPreds;
4490   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4491     BasicBlock *P = *PI;
4492     Instruction *PTI = P->getTerminator();
4493     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4494       if (BI->isUnconditional())
4495         UncondBranchPreds.push_back(P);
4496       else
4497         CondBranchPreds.push_back(BI);
4498     }
4499   }
4500 
4501   // If we found some, do the transformation!
4502   if (!UncondBranchPreds.empty() && DupRet) {
4503     while (!UncondBranchPreds.empty()) {
4504       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4505       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4506                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4507       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4508     }
4509 
4510     // If we eliminated all predecessors of the block, delete the block now.
4511     if (pred_empty(BB)) {
4512       // We know there are no successors, so just nuke the block.
4513       if (LoopHeaders)
4514         LoopHeaders->erase(BB);
4515       if (DTU)
4516         DTU->deleteBB(BB);
4517       else
4518         BB->eraseFromParent();
4519     }
4520 
4521     return true;
4522   }
4523 
4524   // Check out all of the conditional branches going to this return
4525   // instruction.  If any of them just select between returns, change the
4526   // branch itself into a select/return pair.
4527   while (!CondBranchPreds.empty()) {
4528     BranchInst *BI = CondBranchPreds.pop_back_val();
4529 
4530     // Check to see if the non-BB successor is also a return block.
4531     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4532         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4533         SimplifyCondBranchToTwoReturns(BI, Builder))
4534       return true;
4535   }
4536   return false;
4537 }
4538 
4539 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4540   BasicBlock *BB = UI->getParent();
4541 
4542   bool Changed = false;
4543 
4544   // If there are any instructions immediately before the unreachable that can
4545   // be removed, do so.
4546   while (UI->getIterator() != BB->begin()) {
4547     BasicBlock::iterator BBI = UI->getIterator();
4548     --BBI;
4549     // Do not delete instructions that can have side effects which might cause
4550     // the unreachable to not be reachable; specifically, calls and volatile
4551     // operations may have this effect.
4552     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4553       break;
4554 
4555     if (BBI->mayHaveSideEffects()) {
4556       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4557         if (SI->isVolatile())
4558           break;
4559       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4560         if (LI->isVolatile())
4561           break;
4562       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4563         if (RMWI->isVolatile())
4564           break;
4565       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4566         if (CXI->isVolatile())
4567           break;
4568       } else if (isa<CatchPadInst>(BBI)) {
4569         // A catchpad may invoke exception object constructors and such, which
4570         // in some languages can be arbitrary code, so be conservative by
4571         // default.
4572         // For CoreCLR, it just involves a type test, so can be removed.
4573         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4574             EHPersonality::CoreCLR)
4575           break;
4576       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4577                  !isa<LandingPadInst>(BBI)) {
4578         break;
4579       }
4580       // Note that deleting LandingPad's here is in fact okay, although it
4581       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4582       // all the predecessors of this block will be the unwind edges of Invokes,
4583       // and we can therefore guarantee this block will be erased.
4584     }
4585 
4586     // Delete this instruction (any uses are guaranteed to be dead)
4587     if (!BBI->use_empty())
4588       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4589     BBI->eraseFromParent();
4590     Changed = true;
4591   }
4592 
4593   // If the unreachable instruction is the first in the block, take a gander
4594   // at all of the predecessors of this instruction, and simplify them.
4595   if (&BB->front() != UI)
4596     return Changed;
4597 
4598   std::vector<DominatorTree::UpdateType> Updates;
4599 
4600   SmallVector<BasicBlock *, 8> Preds(predecessors(BB));
4601   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4602     auto *Predecessor = Preds[i];
4603     Instruction *TI = Predecessor->getTerminator();
4604     IRBuilder<> Builder(TI);
4605     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4606       if (BI->isUnconditional()) {
4607         assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4608         new UnreachableInst(TI->getContext(), TI);
4609         TI->eraseFromParent();
4610         Changed = true;
4611       } else {
4612         Value* Cond = BI->getCondition();
4613         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4614                "Same-destination conditional branch instruction was "
4615                "already canonicalized into an unconditional branch.");
4616         if (BI->getSuccessor(0) == BB) {
4617           Builder.CreateAssumption(Builder.CreateNot(Cond));
4618           Builder.CreateBr(BI->getSuccessor(1));
4619         } else {
4620           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4621           Builder.CreateAssumption(Cond);
4622           Builder.CreateBr(BI->getSuccessor(0));
4623         }
4624         EraseTerminatorAndDCECond(BI);
4625         Changed = true;
4626       }
4627       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4628     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4629       SwitchInstProfUpdateWrapper SU(*SI);
4630       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4631         if (i->getCaseSuccessor() != BB) {
4632           ++i;
4633           continue;
4634         }
4635         BB->removePredecessor(SU->getParent());
4636         i = SU.removeCase(i);
4637         e = SU->case_end();
4638         Changed = true;
4639       }
4640       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4641     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4642       if (II->getUnwindDest() == BB) {
4643         if (DTU)
4644           DTU->applyUpdatesPermissive(Updates);
4645         Updates.clear();
4646         removeUnwindEdge(TI->getParent(), DTU);
4647         Changed = true;
4648       }
4649     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4650       if (CSI->getUnwindDest() == BB) {
4651         if (DTU)
4652           DTU->applyUpdatesPermissive(Updates);
4653         Updates.clear();
4654         removeUnwindEdge(TI->getParent(), DTU);
4655         Changed = true;
4656         continue;
4657       }
4658 
4659       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4660                                              E = CSI->handler_end();
4661            I != E; ++I) {
4662         if (*I == BB) {
4663           CSI->removeHandler(I);
4664           --I;
4665           --E;
4666           Changed = true;
4667         }
4668       }
4669       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4670       if (CSI->getNumHandlers() == 0) {
4671         if (CSI->hasUnwindDest()) {
4672           // Redirect all predecessors of the block containing CatchSwitchInst
4673           // to instead branch to the CatchSwitchInst's unwind destination.
4674           for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4675             Updates.push_back(
4676                 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor});
4677             Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor,
4678                                CSI->getUnwindDest()});
4679           }
4680           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4681         } else {
4682           // Rewrite all preds to unwind to caller (or from invoke to call).
4683           if (DTU)
4684             DTU->applyUpdatesPermissive(Updates);
4685           Updates.clear();
4686           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4687           for (BasicBlock *EHPred : EHPreds)
4688             removeUnwindEdge(EHPred, DTU);
4689         }
4690         // The catchswitch is no longer reachable.
4691         new UnreachableInst(CSI->getContext(), CSI);
4692         CSI->eraseFromParent();
4693         Changed = true;
4694       }
4695     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4696       (void)CRI;
4697       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4698              "Expected to always have an unwind to BB.");
4699       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4700       new UnreachableInst(TI->getContext(), TI);
4701       TI->eraseFromParent();
4702       Changed = true;
4703     }
4704   }
4705 
4706   if (DTU)
4707     DTU->applyUpdatesPermissive(Updates);
4708 
4709   // If this block is now dead, remove it.
4710   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4711     // We know there are no successors, so just nuke the block.
4712     if (LoopHeaders)
4713       LoopHeaders->erase(BB);
4714     if (DTU)
4715       DTU->deleteBB(BB);
4716     else
4717       BB->eraseFromParent();
4718     return true;
4719   }
4720 
4721   return Changed;
4722 }
4723 
4724 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4725   assert(Cases.size() >= 1);
4726 
4727   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4728   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4729     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4730       return false;
4731   }
4732   return true;
4733 }
4734 
4735 static void createUnreachableSwitchDefault(SwitchInst *Switch) {
4736   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4737   BasicBlock *NewDefaultBlock =
4738      SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
4739   Switch->setDefaultDest(&*NewDefaultBlock);
4740   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
4741   auto *NewTerminator = NewDefaultBlock->getTerminator();
4742   new UnreachableInst(Switch->getContext(), NewTerminator);
4743   EraseTerminatorAndDCECond(NewTerminator);
4744 }
4745 
4746 /// Turn a switch with two reachable destinations into an integer range
4747 /// comparison and branch.
4748 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4749                                              IRBuilder<> &Builder) {
4750   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4751 
4752   bool HasDefault =
4753       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4754 
4755   // Partition the cases into two sets with different destinations.
4756   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4757   BasicBlock *DestB = nullptr;
4758   SmallVector<ConstantInt *, 16> CasesA;
4759   SmallVector<ConstantInt *, 16> CasesB;
4760 
4761   for (auto Case : SI->cases()) {
4762     BasicBlock *Dest = Case.getCaseSuccessor();
4763     if (!DestA)
4764       DestA = Dest;
4765     if (Dest == DestA) {
4766       CasesA.push_back(Case.getCaseValue());
4767       continue;
4768     }
4769     if (!DestB)
4770       DestB = Dest;
4771     if (Dest == DestB) {
4772       CasesB.push_back(Case.getCaseValue());
4773       continue;
4774     }
4775     return false; // More than two destinations.
4776   }
4777 
4778   assert(DestA && DestB &&
4779          "Single-destination switch should have been folded.");
4780   assert(DestA != DestB);
4781   assert(DestB != SI->getDefaultDest());
4782   assert(!CasesB.empty() && "There must be non-default cases.");
4783   assert(!CasesA.empty() || HasDefault);
4784 
4785   // Figure out if one of the sets of cases form a contiguous range.
4786   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4787   BasicBlock *ContiguousDest = nullptr;
4788   BasicBlock *OtherDest = nullptr;
4789   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4790     ContiguousCases = &CasesA;
4791     ContiguousDest = DestA;
4792     OtherDest = DestB;
4793   } else if (CasesAreContiguous(CasesB)) {
4794     ContiguousCases = &CasesB;
4795     ContiguousDest = DestB;
4796     OtherDest = DestA;
4797   } else
4798     return false;
4799 
4800   // Start building the compare and branch.
4801 
4802   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4803   Constant *NumCases =
4804       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4805 
4806   Value *Sub = SI->getCondition();
4807   if (!Offset->isNullValue())
4808     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4809 
4810   Value *Cmp;
4811   // If NumCases overflowed, then all possible values jump to the successor.
4812   if (NumCases->isNullValue() && !ContiguousCases->empty())
4813     Cmp = ConstantInt::getTrue(SI->getContext());
4814   else
4815     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4816   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4817 
4818   // Update weight for the newly-created conditional branch.
4819   if (HasBranchWeights(SI)) {
4820     SmallVector<uint64_t, 8> Weights;
4821     GetBranchWeights(SI, Weights);
4822     if (Weights.size() == 1 + SI->getNumCases()) {
4823       uint64_t TrueWeight = 0;
4824       uint64_t FalseWeight = 0;
4825       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4826         if (SI->getSuccessor(I) == ContiguousDest)
4827           TrueWeight += Weights[I];
4828         else
4829           FalseWeight += Weights[I];
4830       }
4831       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4832         TrueWeight /= 2;
4833         FalseWeight /= 2;
4834       }
4835       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4836     }
4837   }
4838 
4839   // Prune obsolete incoming values off the successors' PHI nodes.
4840   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4841     unsigned PreviousEdges = ContiguousCases->size();
4842     if (ContiguousDest == SI->getDefaultDest())
4843       ++PreviousEdges;
4844     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4845       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4846   }
4847   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4848     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4849     if (OtherDest == SI->getDefaultDest())
4850       ++PreviousEdges;
4851     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4852       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4853   }
4854 
4855   // Clean up the default block - it may have phis or other instructions before
4856   // the unreachable terminator.
4857   if (!HasDefault)
4858     createUnreachableSwitchDefault(SI);
4859 
4860   // Drop the switch.
4861   SI->eraseFromParent();
4862 
4863   return true;
4864 }
4865 
4866 /// Compute masked bits for the condition of a switch
4867 /// and use it to remove dead cases.
4868 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4869                                      const DataLayout &DL) {
4870   Value *Cond = SI->getCondition();
4871   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4872   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4873 
4874   // We can also eliminate cases by determining that their values are outside of
4875   // the limited range of the condition based on how many significant (non-sign)
4876   // bits are in the condition value.
4877   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4878   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4879 
4880   // Gather dead cases.
4881   SmallVector<ConstantInt *, 8> DeadCases;
4882   for (auto &Case : SI->cases()) {
4883     const APInt &CaseVal = Case.getCaseValue()->getValue();
4884     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4885         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4886       DeadCases.push_back(Case.getCaseValue());
4887       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4888                         << " is dead.\n");
4889     }
4890   }
4891 
4892   // If we can prove that the cases must cover all possible values, the
4893   // default destination becomes dead and we can remove it.  If we know some
4894   // of the bits in the value, we can use that to more precisely compute the
4895   // number of possible unique case values.
4896   bool HasDefault =
4897       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4898   const unsigned NumUnknownBits =
4899       Bits - (Known.Zero | Known.One).countPopulation();
4900   assert(NumUnknownBits <= Bits);
4901   if (HasDefault && DeadCases.empty() &&
4902       NumUnknownBits < 64 /* avoid overflow */ &&
4903       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4904     createUnreachableSwitchDefault(SI);
4905     return true;
4906   }
4907 
4908   if (DeadCases.empty())
4909     return false;
4910 
4911   SwitchInstProfUpdateWrapper SIW(*SI);
4912   for (ConstantInt *DeadCase : DeadCases) {
4913     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4914     assert(CaseI != SI->case_default() &&
4915            "Case was not found. Probably mistake in DeadCases forming.");
4916     // Prune unused values from PHI nodes.
4917     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4918     SIW.removeCase(CaseI);
4919   }
4920 
4921   return true;
4922 }
4923 
4924 /// If BB would be eligible for simplification by
4925 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4926 /// by an unconditional branch), look at the phi node for BB in the successor
4927 /// block and see if the incoming value is equal to CaseValue. If so, return
4928 /// the phi node, and set PhiIndex to BB's index in the phi node.
4929 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4930                                               BasicBlock *BB, int *PhiIndex) {
4931   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4932     return nullptr; // BB must be empty to be a candidate for simplification.
4933   if (!BB->getSinglePredecessor())
4934     return nullptr; // BB must be dominated by the switch.
4935 
4936   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4937   if (!Branch || !Branch->isUnconditional())
4938     return nullptr; // Terminator must be unconditional branch.
4939 
4940   BasicBlock *Succ = Branch->getSuccessor(0);
4941 
4942   for (PHINode &PHI : Succ->phis()) {
4943     int Idx = PHI.getBasicBlockIndex(BB);
4944     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4945 
4946     Value *InValue = PHI.getIncomingValue(Idx);
4947     if (InValue != CaseValue)
4948       continue;
4949 
4950     *PhiIndex = Idx;
4951     return &PHI;
4952   }
4953 
4954   return nullptr;
4955 }
4956 
4957 /// Try to forward the condition of a switch instruction to a phi node
4958 /// dominated by the switch, if that would mean that some of the destination
4959 /// blocks of the switch can be folded away. Return true if a change is made.
4960 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4961   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4962 
4963   ForwardingNodesMap ForwardingNodes;
4964   BasicBlock *SwitchBlock = SI->getParent();
4965   bool Changed = false;
4966   for (auto &Case : SI->cases()) {
4967     ConstantInt *CaseValue = Case.getCaseValue();
4968     BasicBlock *CaseDest = Case.getCaseSuccessor();
4969 
4970     // Replace phi operands in successor blocks that are using the constant case
4971     // value rather than the switch condition variable:
4972     //   switchbb:
4973     //   switch i32 %x, label %default [
4974     //     i32 17, label %succ
4975     //   ...
4976     //   succ:
4977     //     %r = phi i32 ... [ 17, %switchbb ] ...
4978     // -->
4979     //     %r = phi i32 ... [ %x, %switchbb ] ...
4980 
4981     for (PHINode &Phi : CaseDest->phis()) {
4982       // This only works if there is exactly 1 incoming edge from the switch to
4983       // a phi. If there is >1, that means multiple cases of the switch map to 1
4984       // value in the phi, and that phi value is not the switch condition. Thus,
4985       // this transform would not make sense (the phi would be invalid because
4986       // a phi can't have different incoming values from the same block).
4987       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4988       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4989           count(Phi.blocks(), SwitchBlock) == 1) {
4990         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4991         Changed = true;
4992       }
4993     }
4994 
4995     // Collect phi nodes that are indirectly using this switch's case constants.
4996     int PhiIdx;
4997     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4998       ForwardingNodes[Phi].push_back(PhiIdx);
4999   }
5000 
5001   for (auto &ForwardingNode : ForwardingNodes) {
5002     PHINode *Phi = ForwardingNode.first;
5003     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5004     if (Indexes.size() < 2)
5005       continue;
5006 
5007     for (int Index : Indexes)
5008       Phi->setIncomingValue(Index, SI->getCondition());
5009     Changed = true;
5010   }
5011 
5012   return Changed;
5013 }
5014 
5015 /// Return true if the backend will be able to handle
5016 /// initializing an array of constants like C.
5017 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5018   if (C->isThreadDependent())
5019     return false;
5020   if (C->isDLLImportDependent())
5021     return false;
5022 
5023   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5024       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5025       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5026     return false;
5027 
5028   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5029     if (!CE->isGEPWithNoNotionalOverIndexing())
5030       return false;
5031     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5032       return false;
5033   }
5034 
5035   if (!TTI.shouldBuildLookupTablesForConstant(C))
5036     return false;
5037 
5038   return true;
5039 }
5040 
5041 /// If V is a Constant, return it. Otherwise, try to look up
5042 /// its constant value in ConstantPool, returning 0 if it's not there.
5043 static Constant *
5044 LookupConstant(Value *V,
5045                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5046   if (Constant *C = dyn_cast<Constant>(V))
5047     return C;
5048   return ConstantPool.lookup(V);
5049 }
5050 
5051 /// Try to fold instruction I into a constant. This works for
5052 /// simple instructions such as binary operations where both operands are
5053 /// constant or can be replaced by constants from the ConstantPool. Returns the
5054 /// resulting constant on success, 0 otherwise.
5055 static Constant *
5056 ConstantFold(Instruction *I, const DataLayout &DL,
5057              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5058   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5059     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5060     if (!A)
5061       return nullptr;
5062     if (A->isAllOnesValue())
5063       return LookupConstant(Select->getTrueValue(), ConstantPool);
5064     if (A->isNullValue())
5065       return LookupConstant(Select->getFalseValue(), ConstantPool);
5066     return nullptr;
5067   }
5068 
5069   SmallVector<Constant *, 4> COps;
5070   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5071     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5072       COps.push_back(A);
5073     else
5074       return nullptr;
5075   }
5076 
5077   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5078     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5079                                            COps[1], DL);
5080   }
5081 
5082   return ConstantFoldInstOperands(I, COps, DL);
5083 }
5084 
5085 /// Try to determine the resulting constant values in phi nodes
5086 /// at the common destination basic block, *CommonDest, for one of the case
5087 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5088 /// case), of a switch instruction SI.
5089 static bool
5090 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5091                BasicBlock **CommonDest,
5092                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5093                const DataLayout &DL, const TargetTransformInfo &TTI) {
5094   // The block from which we enter the common destination.
5095   BasicBlock *Pred = SI->getParent();
5096 
5097   // If CaseDest is empty except for some side-effect free instructions through
5098   // which we can constant-propagate the CaseVal, continue to its successor.
5099   SmallDenseMap<Value *, Constant *> ConstantPool;
5100   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5101   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5102     if (I.isTerminator()) {
5103       // If the terminator is a simple branch, continue to the next block.
5104       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5105         return false;
5106       Pred = CaseDest;
5107       CaseDest = I.getSuccessor(0);
5108     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5109       // Instruction is side-effect free and constant.
5110 
5111       // If the instruction has uses outside this block or a phi node slot for
5112       // the block, it is not safe to bypass the instruction since it would then
5113       // no longer dominate all its uses.
5114       for (auto &Use : I.uses()) {
5115         User *User = Use.getUser();
5116         if (Instruction *I = dyn_cast<Instruction>(User))
5117           if (I->getParent() == CaseDest)
5118             continue;
5119         if (PHINode *Phi = dyn_cast<PHINode>(User))
5120           if (Phi->getIncomingBlock(Use) == CaseDest)
5121             continue;
5122         return false;
5123       }
5124 
5125       ConstantPool.insert(std::make_pair(&I, C));
5126     } else {
5127       break;
5128     }
5129   }
5130 
5131   // If we did not have a CommonDest before, use the current one.
5132   if (!*CommonDest)
5133     *CommonDest = CaseDest;
5134   // If the destination isn't the common one, abort.
5135   if (CaseDest != *CommonDest)
5136     return false;
5137 
5138   // Get the values for this case from phi nodes in the destination block.
5139   for (PHINode &PHI : (*CommonDest)->phis()) {
5140     int Idx = PHI.getBasicBlockIndex(Pred);
5141     if (Idx == -1)
5142       continue;
5143 
5144     Constant *ConstVal =
5145         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5146     if (!ConstVal)
5147       return false;
5148 
5149     // Be conservative about which kinds of constants we support.
5150     if (!ValidLookupTableConstant(ConstVal, TTI))
5151       return false;
5152 
5153     Res.push_back(std::make_pair(&PHI, ConstVal));
5154   }
5155 
5156   return Res.size() > 0;
5157 }
5158 
5159 // Helper function used to add CaseVal to the list of cases that generate
5160 // Result. Returns the updated number of cases that generate this result.
5161 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5162                                  SwitchCaseResultVectorTy &UniqueResults,
5163                                  Constant *Result) {
5164   for (auto &I : UniqueResults) {
5165     if (I.first == Result) {
5166       I.second.push_back(CaseVal);
5167       return I.second.size();
5168     }
5169   }
5170   UniqueResults.push_back(
5171       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5172   return 1;
5173 }
5174 
5175 // Helper function that initializes a map containing
5176 // results for the PHI node of the common destination block for a switch
5177 // instruction. Returns false if multiple PHI nodes have been found or if
5178 // there is not a common destination block for the switch.
5179 static bool
5180 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5181                       SwitchCaseResultVectorTy &UniqueResults,
5182                       Constant *&DefaultResult, const DataLayout &DL,
5183                       const TargetTransformInfo &TTI,
5184                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5185   for (auto &I : SI->cases()) {
5186     ConstantInt *CaseVal = I.getCaseValue();
5187 
5188     // Resulting value at phi nodes for this case value.
5189     SwitchCaseResultsTy Results;
5190     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5191                         DL, TTI))
5192       return false;
5193 
5194     // Only one value per case is permitted.
5195     if (Results.size() > 1)
5196       return false;
5197 
5198     // Add the case->result mapping to UniqueResults.
5199     const uintptr_t NumCasesForResult =
5200         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5201 
5202     // Early out if there are too many cases for this result.
5203     if (NumCasesForResult > MaxCasesPerResult)
5204       return false;
5205 
5206     // Early out if there are too many unique results.
5207     if (UniqueResults.size() > MaxUniqueResults)
5208       return false;
5209 
5210     // Check the PHI consistency.
5211     if (!PHI)
5212       PHI = Results[0].first;
5213     else if (PHI != Results[0].first)
5214       return false;
5215   }
5216   // Find the default result value.
5217   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5218   BasicBlock *DefaultDest = SI->getDefaultDest();
5219   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5220                  DL, TTI);
5221   // If the default value is not found abort unless the default destination
5222   // is unreachable.
5223   DefaultResult =
5224       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5225   if ((!DefaultResult &&
5226        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5227     return false;
5228 
5229   return true;
5230 }
5231 
5232 // Helper function that checks if it is possible to transform a switch with only
5233 // two cases (or two cases + default) that produces a result into a select.
5234 // Example:
5235 // switch (a) {
5236 //   case 10:                %0 = icmp eq i32 %a, 10
5237 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5238 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5239 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5240 //   default:
5241 //     return 4;
5242 // }
5243 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5244                                    Constant *DefaultResult, Value *Condition,
5245                                    IRBuilder<> &Builder) {
5246   assert(ResultVector.size() == 2 &&
5247          "We should have exactly two unique results at this point");
5248   // If we are selecting between only two cases transform into a simple
5249   // select or a two-way select if default is possible.
5250   if (ResultVector[0].second.size() == 1 &&
5251       ResultVector[1].second.size() == 1) {
5252     ConstantInt *const FirstCase = ResultVector[0].second[0];
5253     ConstantInt *const SecondCase = ResultVector[1].second[0];
5254 
5255     bool DefaultCanTrigger = DefaultResult;
5256     Value *SelectValue = ResultVector[1].first;
5257     if (DefaultCanTrigger) {
5258       Value *const ValueCompare =
5259           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5260       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5261                                          DefaultResult, "switch.select");
5262     }
5263     Value *const ValueCompare =
5264         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5265     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5266                                 SelectValue, "switch.select");
5267   }
5268 
5269   return nullptr;
5270 }
5271 
5272 // Helper function to cleanup a switch instruction that has been converted into
5273 // a select, fixing up PHI nodes and basic blocks.
5274 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5275                                               Value *SelectValue,
5276                                               IRBuilder<> &Builder) {
5277   BasicBlock *SelectBB = SI->getParent();
5278   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5279     PHI->removeIncomingValue(SelectBB);
5280   PHI->addIncoming(SelectValue, SelectBB);
5281 
5282   Builder.CreateBr(PHI->getParent());
5283 
5284   // Remove the switch.
5285   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5286     BasicBlock *Succ = SI->getSuccessor(i);
5287 
5288     if (Succ == PHI->getParent())
5289       continue;
5290     Succ->removePredecessor(SelectBB);
5291   }
5292   SI->eraseFromParent();
5293 }
5294 
5295 /// If the switch is only used to initialize one or more
5296 /// phi nodes in a common successor block with only two different
5297 /// constant values, replace the switch with select.
5298 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5299                            const DataLayout &DL,
5300                            const TargetTransformInfo &TTI) {
5301   Value *const Cond = SI->getCondition();
5302   PHINode *PHI = nullptr;
5303   BasicBlock *CommonDest = nullptr;
5304   Constant *DefaultResult;
5305   SwitchCaseResultVectorTy UniqueResults;
5306   // Collect all the cases that will deliver the same value from the switch.
5307   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5308                              DL, TTI, 2, 1))
5309     return false;
5310   // Selects choose between maximum two values.
5311   if (UniqueResults.size() != 2)
5312     return false;
5313   assert(PHI != nullptr && "PHI for value select not found");
5314 
5315   Builder.SetInsertPoint(SI);
5316   Value *SelectValue =
5317       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5318   if (SelectValue) {
5319     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
5320     return true;
5321   }
5322   // The switch couldn't be converted into a select.
5323   return false;
5324 }
5325 
5326 namespace {
5327 
5328 /// This class represents a lookup table that can be used to replace a switch.
5329 class SwitchLookupTable {
5330 public:
5331   /// Create a lookup table to use as a switch replacement with the contents
5332   /// of Values, using DefaultValue to fill any holes in the table.
5333   SwitchLookupTable(
5334       Module &M, uint64_t TableSize, ConstantInt *Offset,
5335       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5336       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5337 
5338   /// Build instructions with Builder to retrieve the value at
5339   /// the position given by Index in the lookup table.
5340   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5341 
5342   /// Return true if a table with TableSize elements of
5343   /// type ElementType would fit in a target-legal register.
5344   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5345                                  Type *ElementType);
5346 
5347 private:
5348   // Depending on the contents of the table, it can be represented in
5349   // different ways.
5350   enum {
5351     // For tables where each element contains the same value, we just have to
5352     // store that single value and return it for each lookup.
5353     SingleValueKind,
5354 
5355     // For tables where there is a linear relationship between table index
5356     // and values. We calculate the result with a simple multiplication
5357     // and addition instead of a table lookup.
5358     LinearMapKind,
5359 
5360     // For small tables with integer elements, we can pack them into a bitmap
5361     // that fits into a target-legal register. Values are retrieved by
5362     // shift and mask operations.
5363     BitMapKind,
5364 
5365     // The table is stored as an array of values. Values are retrieved by load
5366     // instructions from the table.
5367     ArrayKind
5368   } Kind;
5369 
5370   // For SingleValueKind, this is the single value.
5371   Constant *SingleValue = nullptr;
5372 
5373   // For BitMapKind, this is the bitmap.
5374   ConstantInt *BitMap = nullptr;
5375   IntegerType *BitMapElementTy = nullptr;
5376 
5377   // For LinearMapKind, these are the constants used to derive the value.
5378   ConstantInt *LinearOffset = nullptr;
5379   ConstantInt *LinearMultiplier = nullptr;
5380 
5381   // For ArrayKind, this is the array.
5382   GlobalVariable *Array = nullptr;
5383 };
5384 
5385 } // end anonymous namespace
5386 
5387 SwitchLookupTable::SwitchLookupTable(
5388     Module &M, uint64_t TableSize, ConstantInt *Offset,
5389     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5390     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5391   assert(Values.size() && "Can't build lookup table without values!");
5392   assert(TableSize >= Values.size() && "Can't fit values in table!");
5393 
5394   // If all values in the table are equal, this is that value.
5395   SingleValue = Values.begin()->second;
5396 
5397   Type *ValueType = Values.begin()->second->getType();
5398 
5399   // Build up the table contents.
5400   SmallVector<Constant *, 64> TableContents(TableSize);
5401   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5402     ConstantInt *CaseVal = Values[I].first;
5403     Constant *CaseRes = Values[I].second;
5404     assert(CaseRes->getType() == ValueType);
5405 
5406     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5407     TableContents[Idx] = CaseRes;
5408 
5409     if (CaseRes != SingleValue)
5410       SingleValue = nullptr;
5411   }
5412 
5413   // Fill in any holes in the table with the default result.
5414   if (Values.size() < TableSize) {
5415     assert(DefaultValue &&
5416            "Need a default value to fill the lookup table holes.");
5417     assert(DefaultValue->getType() == ValueType);
5418     for (uint64_t I = 0; I < TableSize; ++I) {
5419       if (!TableContents[I])
5420         TableContents[I] = DefaultValue;
5421     }
5422 
5423     if (DefaultValue != SingleValue)
5424       SingleValue = nullptr;
5425   }
5426 
5427   // If each element in the table contains the same value, we only need to store
5428   // that single value.
5429   if (SingleValue) {
5430     Kind = SingleValueKind;
5431     return;
5432   }
5433 
5434   // Check if we can derive the value with a linear transformation from the
5435   // table index.
5436   if (isa<IntegerType>(ValueType)) {
5437     bool LinearMappingPossible = true;
5438     APInt PrevVal;
5439     APInt DistToPrev;
5440     assert(TableSize >= 2 && "Should be a SingleValue table.");
5441     // Check if there is the same distance between two consecutive values.
5442     for (uint64_t I = 0; I < TableSize; ++I) {
5443       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5444       if (!ConstVal) {
5445         // This is an undef. We could deal with it, but undefs in lookup tables
5446         // are very seldom. It's probably not worth the additional complexity.
5447         LinearMappingPossible = false;
5448         break;
5449       }
5450       const APInt &Val = ConstVal->getValue();
5451       if (I != 0) {
5452         APInt Dist = Val - PrevVal;
5453         if (I == 1) {
5454           DistToPrev = Dist;
5455         } else if (Dist != DistToPrev) {
5456           LinearMappingPossible = false;
5457           break;
5458         }
5459       }
5460       PrevVal = Val;
5461     }
5462     if (LinearMappingPossible) {
5463       LinearOffset = cast<ConstantInt>(TableContents[0]);
5464       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5465       Kind = LinearMapKind;
5466       ++NumLinearMaps;
5467       return;
5468     }
5469   }
5470 
5471   // If the type is integer and the table fits in a register, build a bitmap.
5472   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5473     IntegerType *IT = cast<IntegerType>(ValueType);
5474     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5475     for (uint64_t I = TableSize; I > 0; --I) {
5476       TableInt <<= IT->getBitWidth();
5477       // Insert values into the bitmap. Undef values are set to zero.
5478       if (!isa<UndefValue>(TableContents[I - 1])) {
5479         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5480         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5481       }
5482     }
5483     BitMap = ConstantInt::get(M.getContext(), TableInt);
5484     BitMapElementTy = IT;
5485     Kind = BitMapKind;
5486     ++NumBitMaps;
5487     return;
5488   }
5489 
5490   // Store the table in an array.
5491   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5492   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5493 
5494   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5495                              GlobalVariable::PrivateLinkage, Initializer,
5496                              "switch.table." + FuncName);
5497   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5498   // Set the alignment to that of an array items. We will be only loading one
5499   // value out of it.
5500   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5501   Kind = ArrayKind;
5502 }
5503 
5504 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5505   switch (Kind) {
5506   case SingleValueKind:
5507     return SingleValue;
5508   case LinearMapKind: {
5509     // Derive the result value from the input value.
5510     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5511                                           false, "switch.idx.cast");
5512     if (!LinearMultiplier->isOne())
5513       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5514     if (!LinearOffset->isZero())
5515       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5516     return Result;
5517   }
5518   case BitMapKind: {
5519     // Type of the bitmap (e.g. i59).
5520     IntegerType *MapTy = BitMap->getType();
5521 
5522     // Cast Index to the same type as the bitmap.
5523     // Note: The Index is <= the number of elements in the table, so
5524     // truncating it to the width of the bitmask is safe.
5525     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5526 
5527     // Multiply the shift amount by the element width.
5528     ShiftAmt = Builder.CreateMul(
5529         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5530         "switch.shiftamt");
5531 
5532     // Shift down.
5533     Value *DownShifted =
5534         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5535     // Mask off.
5536     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5537   }
5538   case ArrayKind: {
5539     // Make sure the table index will not overflow when treated as signed.
5540     IntegerType *IT = cast<IntegerType>(Index->getType());
5541     uint64_t TableSize =
5542         Array->getInitializer()->getType()->getArrayNumElements();
5543     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5544       Index = Builder.CreateZExt(
5545           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5546           "switch.tableidx.zext");
5547 
5548     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5549     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5550                                            GEPIndices, "switch.gep");
5551     return Builder.CreateLoad(
5552         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5553         "switch.load");
5554   }
5555   }
5556   llvm_unreachable("Unknown lookup table kind!");
5557 }
5558 
5559 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5560                                            uint64_t TableSize,
5561                                            Type *ElementType) {
5562   auto *IT = dyn_cast<IntegerType>(ElementType);
5563   if (!IT)
5564     return false;
5565   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5566   // are <= 15, we could try to narrow the type.
5567 
5568   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5569   if (TableSize >= UINT_MAX / IT->getBitWidth())
5570     return false;
5571   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5572 }
5573 
5574 /// Determine whether a lookup table should be built for this switch, based on
5575 /// the number of cases, size of the table, and the types of the results.
5576 static bool
5577 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5578                        const TargetTransformInfo &TTI, const DataLayout &DL,
5579                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5580   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5581     return false; // TableSize overflowed, or mul below might overflow.
5582 
5583   bool AllTablesFitInRegister = true;
5584   bool HasIllegalType = false;
5585   for (const auto &I : ResultTypes) {
5586     Type *Ty = I.second;
5587 
5588     // Saturate this flag to true.
5589     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5590 
5591     // Saturate this flag to false.
5592     AllTablesFitInRegister =
5593         AllTablesFitInRegister &&
5594         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5595 
5596     // If both flags saturate, we're done. NOTE: This *only* works with
5597     // saturating flags, and all flags have to saturate first due to the
5598     // non-deterministic behavior of iterating over a dense map.
5599     if (HasIllegalType && !AllTablesFitInRegister)
5600       break;
5601   }
5602 
5603   // If each table would fit in a register, we should build it anyway.
5604   if (AllTablesFitInRegister)
5605     return true;
5606 
5607   // Don't build a table that doesn't fit in-register if it has illegal types.
5608   if (HasIllegalType)
5609     return false;
5610 
5611   // The table density should be at least 40%. This is the same criterion as for
5612   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5613   // FIXME: Find the best cut-off.
5614   return SI->getNumCases() * 10 >= TableSize * 4;
5615 }
5616 
5617 /// Try to reuse the switch table index compare. Following pattern:
5618 /// \code
5619 ///     if (idx < tablesize)
5620 ///        r = table[idx]; // table does not contain default_value
5621 ///     else
5622 ///        r = default_value;
5623 ///     if (r != default_value)
5624 ///        ...
5625 /// \endcode
5626 /// Is optimized to:
5627 /// \code
5628 ///     cond = idx < tablesize;
5629 ///     if (cond)
5630 ///        r = table[idx];
5631 ///     else
5632 ///        r = default_value;
5633 ///     if (cond)
5634 ///        ...
5635 /// \endcode
5636 /// Jump threading will then eliminate the second if(cond).
5637 static void reuseTableCompare(
5638     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5639     Constant *DefaultValue,
5640     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5641   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5642   if (!CmpInst)
5643     return;
5644 
5645   // We require that the compare is in the same block as the phi so that jump
5646   // threading can do its work afterwards.
5647   if (CmpInst->getParent() != PhiBlock)
5648     return;
5649 
5650   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5651   if (!CmpOp1)
5652     return;
5653 
5654   Value *RangeCmp = RangeCheckBranch->getCondition();
5655   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5656   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5657 
5658   // Check if the compare with the default value is constant true or false.
5659   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5660                                                  DefaultValue, CmpOp1, true);
5661   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5662     return;
5663 
5664   // Check if the compare with the case values is distinct from the default
5665   // compare result.
5666   for (auto ValuePair : Values) {
5667     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5668                                                 ValuePair.second, CmpOp1, true);
5669     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5670       return;
5671     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5672            "Expect true or false as compare result.");
5673   }
5674 
5675   // Check if the branch instruction dominates the phi node. It's a simple
5676   // dominance check, but sufficient for our needs.
5677   // Although this check is invariant in the calling loops, it's better to do it
5678   // at this late stage. Practically we do it at most once for a switch.
5679   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5680   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5681     BasicBlock *Pred = *PI;
5682     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5683       return;
5684   }
5685 
5686   if (DefaultConst == FalseConst) {
5687     // The compare yields the same result. We can replace it.
5688     CmpInst->replaceAllUsesWith(RangeCmp);
5689     ++NumTableCmpReuses;
5690   } else {
5691     // The compare yields the same result, just inverted. We can replace it.
5692     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5693         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5694         RangeCheckBranch);
5695     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5696     ++NumTableCmpReuses;
5697   }
5698 }
5699 
5700 /// If the switch is only used to initialize one or more phi nodes in a common
5701 /// successor block with different constant values, replace the switch with
5702 /// lookup tables.
5703 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5704                                 const DataLayout &DL,
5705                                 const TargetTransformInfo &TTI) {
5706   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5707 
5708   Function *Fn = SI->getParent()->getParent();
5709   // Only build lookup table when we have a target that supports it or the
5710   // attribute is not set.
5711   if (!TTI.shouldBuildLookupTables() ||
5712       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5713     return false;
5714 
5715   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5716   // split off a dense part and build a lookup table for that.
5717 
5718   // FIXME: This creates arrays of GEPs to constant strings, which means each
5719   // GEP needs a runtime relocation in PIC code. We should just build one big
5720   // string and lookup indices into that.
5721 
5722   // Ignore switches with less than three cases. Lookup tables will not make
5723   // them faster, so we don't analyze them.
5724   if (SI->getNumCases() < 3)
5725     return false;
5726 
5727   // Figure out the corresponding result for each case value and phi node in the
5728   // common destination, as well as the min and max case values.
5729   assert(!SI->cases().empty());
5730   SwitchInst::CaseIt CI = SI->case_begin();
5731   ConstantInt *MinCaseVal = CI->getCaseValue();
5732   ConstantInt *MaxCaseVal = CI->getCaseValue();
5733 
5734   BasicBlock *CommonDest = nullptr;
5735 
5736   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5737   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5738 
5739   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5740   SmallDenseMap<PHINode *, Type *> ResultTypes;
5741   SmallVector<PHINode *, 4> PHIs;
5742 
5743   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5744     ConstantInt *CaseVal = CI->getCaseValue();
5745     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5746       MinCaseVal = CaseVal;
5747     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5748       MaxCaseVal = CaseVal;
5749 
5750     // Resulting value at phi nodes for this case value.
5751     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5752     ResultsTy Results;
5753     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5754                         Results, DL, TTI))
5755       return false;
5756 
5757     // Append the result from this case to the list for each phi.
5758     for (const auto &I : Results) {
5759       PHINode *PHI = I.first;
5760       Constant *Value = I.second;
5761       if (!ResultLists.count(PHI))
5762         PHIs.push_back(PHI);
5763       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5764     }
5765   }
5766 
5767   // Keep track of the result types.
5768   for (PHINode *PHI : PHIs) {
5769     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5770   }
5771 
5772   uint64_t NumResults = ResultLists[PHIs[0]].size();
5773   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5774   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5775   bool TableHasHoles = (NumResults < TableSize);
5776 
5777   // If the table has holes, we need a constant result for the default case
5778   // or a bitmask that fits in a register.
5779   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5780   bool HasDefaultResults =
5781       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5782                      DefaultResultsList, DL, TTI);
5783 
5784   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5785   if (NeedMask) {
5786     // As an extra penalty for the validity test we require more cases.
5787     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5788       return false;
5789     if (!DL.fitsInLegalInteger(TableSize))
5790       return false;
5791   }
5792 
5793   for (const auto &I : DefaultResultsList) {
5794     PHINode *PHI = I.first;
5795     Constant *Result = I.second;
5796     DefaultResults[PHI] = Result;
5797   }
5798 
5799   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5800     return false;
5801 
5802   // Create the BB that does the lookups.
5803   Module &Mod = *CommonDest->getParent()->getParent();
5804   BasicBlock *LookupBB = BasicBlock::Create(
5805       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5806 
5807   // Compute the table index value.
5808   Builder.SetInsertPoint(SI);
5809   Value *TableIndex;
5810   if (MinCaseVal->isNullValue())
5811     TableIndex = SI->getCondition();
5812   else
5813     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5814                                    "switch.tableidx");
5815 
5816   // Compute the maximum table size representable by the integer type we are
5817   // switching upon.
5818   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5819   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5820   assert(MaxTableSize >= TableSize &&
5821          "It is impossible for a switch to have more entries than the max "
5822          "representable value of its input integer type's size.");
5823 
5824   // If the default destination is unreachable, or if the lookup table covers
5825   // all values of the conditional variable, branch directly to the lookup table
5826   // BB. Otherwise, check that the condition is within the case range.
5827   const bool DefaultIsReachable =
5828       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5829   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5830   BranchInst *RangeCheckBranch = nullptr;
5831 
5832   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5833     Builder.CreateBr(LookupBB);
5834     // Note: We call removeProdecessor later since we need to be able to get the
5835     // PHI value for the default case in case we're using a bit mask.
5836   } else {
5837     Value *Cmp = Builder.CreateICmpULT(
5838         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5839     RangeCheckBranch =
5840         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5841   }
5842 
5843   // Populate the BB that does the lookups.
5844   Builder.SetInsertPoint(LookupBB);
5845 
5846   if (NeedMask) {
5847     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5848     // re-purposed to do the hole check, and we create a new LookupBB.
5849     BasicBlock *MaskBB = LookupBB;
5850     MaskBB->setName("switch.hole_check");
5851     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5852                                   CommonDest->getParent(), CommonDest);
5853 
5854     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5855     // unnecessary illegal types.
5856     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5857     APInt MaskInt(TableSizePowOf2, 0);
5858     APInt One(TableSizePowOf2, 1);
5859     // Build bitmask; fill in a 1 bit for every case.
5860     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5861     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5862       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5863                          .getLimitedValue();
5864       MaskInt |= One << Idx;
5865     }
5866     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5867 
5868     // Get the TableIndex'th bit of the bitmask.
5869     // If this bit is 0 (meaning hole) jump to the default destination,
5870     // else continue with table lookup.
5871     IntegerType *MapTy = TableMask->getType();
5872     Value *MaskIndex =
5873         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5874     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5875     Value *LoBit = Builder.CreateTrunc(
5876         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5877     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5878 
5879     Builder.SetInsertPoint(LookupBB);
5880     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5881   }
5882 
5883   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5884     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5885     // do not delete PHINodes here.
5886     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5887                                             /*KeepOneInputPHIs=*/true);
5888   }
5889 
5890   bool ReturnedEarly = false;
5891   for (PHINode *PHI : PHIs) {
5892     const ResultListTy &ResultList = ResultLists[PHI];
5893 
5894     // If using a bitmask, use any value to fill the lookup table holes.
5895     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5896     StringRef FuncName = Fn->getName();
5897     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5898                             FuncName);
5899 
5900     Value *Result = Table.BuildLookup(TableIndex, Builder);
5901 
5902     // If the result is used to return immediately from the function, we want to
5903     // do that right here.
5904     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5905         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5906       Builder.CreateRet(Result);
5907       ReturnedEarly = true;
5908       break;
5909     }
5910 
5911     // Do a small peephole optimization: re-use the switch table compare if
5912     // possible.
5913     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5914       BasicBlock *PhiBlock = PHI->getParent();
5915       // Search for compare instructions which use the phi.
5916       for (auto *User : PHI->users()) {
5917         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5918       }
5919     }
5920 
5921     PHI->addIncoming(Result, LookupBB);
5922   }
5923 
5924   if (!ReturnedEarly)
5925     Builder.CreateBr(CommonDest);
5926 
5927   // Remove the switch.
5928   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5929     BasicBlock *Succ = SI->getSuccessor(i);
5930 
5931     if (Succ == SI->getDefaultDest())
5932       continue;
5933     Succ->removePredecessor(SI->getParent());
5934   }
5935   SI->eraseFromParent();
5936 
5937   ++NumLookupTables;
5938   if (NeedMask)
5939     ++NumLookupTablesHoles;
5940   return true;
5941 }
5942 
5943 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5944   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5945   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5946   uint64_t Range = Diff + 1;
5947   uint64_t NumCases = Values.size();
5948   // 40% is the default density for building a jump table in optsize/minsize mode.
5949   uint64_t MinDensity = 40;
5950 
5951   return NumCases * 100 >= Range * MinDensity;
5952 }
5953 
5954 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5955 /// of cases.
5956 ///
5957 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5958 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5959 ///
5960 /// This converts a sparse switch into a dense switch which allows better
5961 /// lowering and could also allow transforming into a lookup table.
5962 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5963                               const DataLayout &DL,
5964                               const TargetTransformInfo &TTI) {
5965   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5966   if (CondTy->getIntegerBitWidth() > 64 ||
5967       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5968     return false;
5969   // Only bother with this optimization if there are more than 3 switch cases;
5970   // SDAG will only bother creating jump tables for 4 or more cases.
5971   if (SI->getNumCases() < 4)
5972     return false;
5973 
5974   // This transform is agnostic to the signedness of the input or case values. We
5975   // can treat the case values as signed or unsigned. We can optimize more common
5976   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5977   // as signed.
5978   SmallVector<int64_t,4> Values;
5979   for (auto &C : SI->cases())
5980     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5981   llvm::sort(Values);
5982 
5983   // If the switch is already dense, there's nothing useful to do here.
5984   if (isSwitchDense(Values))
5985     return false;
5986 
5987   // First, transform the values such that they start at zero and ascend.
5988   int64_t Base = Values[0];
5989   for (auto &V : Values)
5990     V -= (uint64_t)(Base);
5991 
5992   // Now we have signed numbers that have been shifted so that, given enough
5993   // precision, there are no negative values. Since the rest of the transform
5994   // is bitwise only, we switch now to an unsigned representation.
5995 
5996   // This transform can be done speculatively because it is so cheap - it
5997   // results in a single rotate operation being inserted.
5998   // FIXME: It's possible that optimizing a switch on powers of two might also
5999   // be beneficial - flag values are often powers of two and we could use a CLZ
6000   // as the key function.
6001 
6002   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6003   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6004   // less than 64.
6005   unsigned Shift = 64;
6006   for (auto &V : Values)
6007     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6008   assert(Shift < 64);
6009   if (Shift > 0)
6010     for (auto &V : Values)
6011       V = (int64_t)((uint64_t)V >> Shift);
6012 
6013   if (!isSwitchDense(Values))
6014     // Transform didn't create a dense switch.
6015     return false;
6016 
6017   // The obvious transform is to shift the switch condition right and emit a
6018   // check that the condition actually cleanly divided by GCD, i.e.
6019   //   C & (1 << Shift - 1) == 0
6020   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6021   //
6022   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6023   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6024   // are nonzero then the switch condition will be very large and will hit the
6025   // default case.
6026 
6027   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6028   Builder.SetInsertPoint(SI);
6029   auto *ShiftC = ConstantInt::get(Ty, Shift);
6030   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6031   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6032   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6033   auto *Rot = Builder.CreateOr(LShr, Shl);
6034   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6035 
6036   for (auto Case : SI->cases()) {
6037     auto *Orig = Case.getCaseValue();
6038     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6039     Case.setValue(
6040         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6041   }
6042   return true;
6043 }
6044 
6045 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6046   BasicBlock *BB = SI->getParent();
6047 
6048   if (isValueEqualityComparison(SI)) {
6049     // If we only have one predecessor, and if it is a branch on this value,
6050     // see if that predecessor totally determines the outcome of this switch.
6051     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6052       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6053         return requestResimplify();
6054 
6055     Value *Cond = SI->getCondition();
6056     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6057       if (SimplifySwitchOnSelect(SI, Select))
6058         return requestResimplify();
6059 
6060     // If the block only contains the switch, see if we can fold the block
6061     // away into any preds.
6062     if (SI == &*BB->instructionsWithoutDebug().begin())
6063       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6064         return requestResimplify();
6065   }
6066 
6067   // Try to transform the switch into an icmp and a branch.
6068   if (TurnSwitchRangeIntoICmp(SI, Builder))
6069     return requestResimplify();
6070 
6071   // Remove unreachable cases.
6072   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
6073     return requestResimplify();
6074 
6075   if (switchToSelect(SI, Builder, DL, TTI))
6076     return requestResimplify();
6077 
6078   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6079     return requestResimplify();
6080 
6081   // The conversion from switch to lookup tables results in difficult-to-analyze
6082   // code and makes pruning branches much harder. This is a problem if the
6083   // switch expression itself can still be restricted as a result of inlining or
6084   // CVP. Therefore, only apply this transformation during late stages of the
6085   // optimisation pipeline.
6086   if (Options.ConvertSwitchToLookupTable &&
6087       SwitchToLookupTable(SI, Builder, DL, TTI))
6088     return requestResimplify();
6089 
6090   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6091     return requestResimplify();
6092 
6093   return false;
6094 }
6095 
6096 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6097   BasicBlock *BB = IBI->getParent();
6098   bool Changed = false;
6099 
6100   // Eliminate redundant destinations.
6101   SmallPtrSet<Value *, 8> Succs;
6102   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6103     BasicBlock *Dest = IBI->getDestination(i);
6104     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6105       Dest->removePredecessor(BB);
6106       IBI->removeDestination(i);
6107       --i;
6108       --e;
6109       Changed = true;
6110     }
6111   }
6112 
6113   if (IBI->getNumDestinations() == 0) {
6114     // If the indirectbr has no successors, change it to unreachable.
6115     new UnreachableInst(IBI->getContext(), IBI);
6116     EraseTerminatorAndDCECond(IBI);
6117     return true;
6118   }
6119 
6120   if (IBI->getNumDestinations() == 1) {
6121     // If the indirectbr has one successor, change it to a direct branch.
6122     BranchInst::Create(IBI->getDestination(0), IBI);
6123     EraseTerminatorAndDCECond(IBI);
6124     return true;
6125   }
6126 
6127   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6128     if (SimplifyIndirectBrOnSelect(IBI, SI))
6129       return requestResimplify();
6130   }
6131   return Changed;
6132 }
6133 
6134 /// Given an block with only a single landing pad and a unconditional branch
6135 /// try to find another basic block which this one can be merged with.  This
6136 /// handles cases where we have multiple invokes with unique landing pads, but
6137 /// a shared handler.
6138 ///
6139 /// We specifically choose to not worry about merging non-empty blocks
6140 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6141 /// practice, the optimizer produces empty landing pad blocks quite frequently
6142 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6143 /// sinking in this file)
6144 ///
6145 /// This is primarily a code size optimization.  We need to avoid performing
6146 /// any transform which might inhibit optimization (such as our ability to
6147 /// specialize a particular handler via tail commoning).  We do this by not
6148 /// merging any blocks which require us to introduce a phi.  Since the same
6149 /// values are flowing through both blocks, we don't lose any ability to
6150 /// specialize.  If anything, we make such specialization more likely.
6151 ///
6152 /// TODO - This transformation could remove entries from a phi in the target
6153 /// block when the inputs in the phi are the same for the two blocks being
6154 /// merged.  In some cases, this could result in removal of the PHI entirely.
6155 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6156                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6157   auto Succ = BB->getUniqueSuccessor();
6158   assert(Succ);
6159   // If there's a phi in the successor block, we'd likely have to introduce
6160   // a phi into the merged landing pad block.
6161   if (isa<PHINode>(*Succ->begin()))
6162     return false;
6163 
6164   for (BasicBlock *OtherPred : predecessors(Succ)) {
6165     if (BB == OtherPred)
6166       continue;
6167     BasicBlock::iterator I = OtherPred->begin();
6168     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6169     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6170       continue;
6171     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6172       ;
6173     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6174     if (!BI2 || !BI2->isIdenticalTo(BI))
6175       continue;
6176 
6177     std::vector<DominatorTree::UpdateType> Updates;
6178 
6179     // We've found an identical block.  Update our predecessors to take that
6180     // path instead and make ourselves dead.
6181     SmallPtrSet<BasicBlock *, 16> Preds;
6182     Preds.insert(pred_begin(BB), pred_end(BB));
6183     for (BasicBlock *Pred : Preds) {
6184       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6185       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6186              "unexpected successor");
6187       II->setUnwindDest(OtherPred);
6188       Updates.push_back({DominatorTree::Delete, Pred, BB});
6189       Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6190     }
6191 
6192     // The debug info in OtherPred doesn't cover the merged control flow that
6193     // used to go through BB.  We need to delete it or update it.
6194     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6195       Instruction &Inst = *I;
6196       I++;
6197       if (isa<DbgInfoIntrinsic>(Inst))
6198         Inst.eraseFromParent();
6199     }
6200 
6201     SmallPtrSet<BasicBlock *, 16> Succs;
6202     Succs.insert(succ_begin(BB), succ_end(BB));
6203     for (BasicBlock *Succ : Succs) {
6204       Succ->removePredecessor(BB);
6205       Updates.push_back({DominatorTree::Delete, BB, Succ});
6206     }
6207 
6208     IRBuilder<> Builder(BI);
6209     Builder.CreateUnreachable();
6210     BI->eraseFromParent();
6211     if (DTU)
6212       DTU->applyUpdatesPermissive(Updates);
6213     return true;
6214   }
6215   return false;
6216 }
6217 
6218 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6219   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6220                                    : simplifyCondBranch(Branch, Builder);
6221 }
6222 
6223 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6224                                           IRBuilder<> &Builder) {
6225   BasicBlock *BB = BI->getParent();
6226   BasicBlock *Succ = BI->getSuccessor(0);
6227 
6228   // If the Terminator is the only non-phi instruction, simplify the block.
6229   // If LoopHeader is provided, check if the block or its successor is a loop
6230   // header. (This is for early invocations before loop simplify and
6231   // vectorization to keep canonical loop forms for nested loops. These blocks
6232   // can be eliminated when the pass is invoked later in the back-end.)
6233   // Note that if BB has only one predecessor then we do not introduce new
6234   // backedge, so we can eliminate BB.
6235   bool NeedCanonicalLoop =
6236       Options.NeedCanonicalLoop &&
6237       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
6238        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
6239   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
6240   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6241       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6242     return true;
6243 
6244   // If the only instruction in the block is a seteq/setne comparison against a
6245   // constant, try to simplify the block.
6246   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6247     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6248       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6249         ;
6250       if (I->isTerminator() &&
6251           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6252         return true;
6253     }
6254 
6255   // See if we can merge an empty landing pad block with another which is
6256   // equivalent.
6257   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6258     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6259       ;
6260     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6261       return true;
6262   }
6263 
6264   // If this basic block is ONLY a compare and a branch, and if a predecessor
6265   // branches to us and our successor, fold the comparison into the
6266   // predecessor and use logical operations to update the incoming value
6267   // for PHI nodes in common successor.
6268   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6269                              Options.BonusInstThreshold))
6270     return requestResimplify();
6271   return false;
6272 }
6273 
6274 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6275   BasicBlock *PredPred = nullptr;
6276   for (auto *P : predecessors(BB)) {
6277     BasicBlock *PPred = P->getSinglePredecessor();
6278     if (!PPred || (PredPred && PredPred != PPred))
6279       return nullptr;
6280     PredPred = PPred;
6281   }
6282   return PredPred;
6283 }
6284 
6285 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6286   BasicBlock *BB = BI->getParent();
6287   if (!Options.SimplifyCondBranch)
6288     return false;
6289 
6290   // Conditional branch
6291   if (isValueEqualityComparison(BI)) {
6292     // If we only have one predecessor, and if it is a branch on this value,
6293     // see if that predecessor totally determines the outcome of this
6294     // switch.
6295     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6296       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6297         return requestResimplify();
6298 
6299     // This block must be empty, except for the setcond inst, if it exists.
6300     // Ignore dbg intrinsics.
6301     auto I = BB->instructionsWithoutDebug().begin();
6302     if (&*I == BI) {
6303       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6304         return requestResimplify();
6305     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6306       ++I;
6307       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6308         return requestResimplify();
6309     }
6310   }
6311 
6312   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6313   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6314     return true;
6315 
6316   // If this basic block has dominating predecessor blocks and the dominating
6317   // blocks' conditions imply BI's condition, we know the direction of BI.
6318   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6319   if (Imp) {
6320     // Turn this into a branch on constant.
6321     auto *OldCond = BI->getCondition();
6322     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6323                              : ConstantInt::getFalse(BB->getContext());
6324     BI->setCondition(TorF);
6325     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6326     return requestResimplify();
6327   }
6328 
6329   // If this basic block is ONLY a compare and a branch, and if a predecessor
6330   // branches to us and one of our successors, fold the comparison into the
6331   // predecessor and use logical operations to pick the right destination.
6332   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6333                              Options.BonusInstThreshold))
6334     return requestResimplify();
6335 
6336   // We have a conditional branch to two blocks that are only reachable
6337   // from BI.  We know that the condbr dominates the two blocks, so see if
6338   // there is any identical code in the "then" and "else" blocks.  If so, we
6339   // can hoist it up to the branching block.
6340   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6341     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6342       if (HoistCommon && Options.HoistCommonInsts)
6343         if (HoistThenElseCodeToIf(BI, TTI))
6344           return requestResimplify();
6345     } else {
6346       // If Successor #1 has multiple preds, we may be able to conditionally
6347       // execute Successor #0 if it branches to Successor #1.
6348       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6349       if (Succ0TI->getNumSuccessors() == 1 &&
6350           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6351         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6352           return requestResimplify();
6353     }
6354   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6355     // If Successor #0 has multiple preds, we may be able to conditionally
6356     // execute Successor #1 if it branches to Successor #0.
6357     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6358     if (Succ1TI->getNumSuccessors() == 1 &&
6359         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6360       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6361         return requestResimplify();
6362   }
6363 
6364   // If this is a branch on a phi node in the current block, thread control
6365   // through this block if any PHI node entries are constants.
6366   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6367     if (PN->getParent() == BI->getParent())
6368       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6369         return requestResimplify();
6370 
6371   // Scan predecessor blocks for conditional branches.
6372   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6373     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6374       if (PBI != BI && PBI->isConditional())
6375         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6376           return requestResimplify();
6377 
6378   // Look for diamond patterns.
6379   if (MergeCondStores)
6380     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6381       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6382         if (PBI != BI && PBI->isConditional())
6383           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6384             return requestResimplify();
6385 
6386   return false;
6387 }
6388 
6389 /// Check if passing a value to an instruction will cause undefined behavior.
6390 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
6391   Constant *C = dyn_cast<Constant>(V);
6392   if (!C)
6393     return false;
6394 
6395   if (I->use_empty())
6396     return false;
6397 
6398   if (C->isNullValue() || isa<UndefValue>(C)) {
6399     // Only look at the first use, avoid hurting compile time with long uselists
6400     User *Use = *I->user_begin();
6401 
6402     // Now make sure that there are no instructions in between that can alter
6403     // control flow (eg. calls)
6404     for (BasicBlock::iterator
6405              i = ++BasicBlock::iterator(I),
6406              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6407          i != UI; ++i)
6408       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6409         return false;
6410 
6411     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6412     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6413       if (GEP->getPointerOperand() == I)
6414         return passingValueIsAlwaysUndefined(V, GEP);
6415 
6416     // Look through bitcasts.
6417     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6418       return passingValueIsAlwaysUndefined(V, BC);
6419 
6420     // Load from null is undefined.
6421     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6422       if (!LI->isVolatile())
6423         return !NullPointerIsDefined(LI->getFunction(),
6424                                      LI->getPointerAddressSpace());
6425 
6426     // Store to null is undefined.
6427     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6428       if (!SI->isVolatile())
6429         return (!NullPointerIsDefined(SI->getFunction(),
6430                                       SI->getPointerAddressSpace())) &&
6431                SI->getPointerOperand() == I;
6432 
6433     // A call to null is undefined.
6434     if (auto *CB = dyn_cast<CallBase>(Use))
6435       return !NullPointerIsDefined(CB->getFunction()) &&
6436              CB->getCalledOperand() == I;
6437   }
6438   return false;
6439 }
6440 
6441 /// If BB has an incoming value that will always trigger undefined behavior
6442 /// (eg. null pointer dereference), remove the branch leading here.
6443 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
6444   for (PHINode &PHI : BB->phis())
6445     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6446       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6447         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
6448         IRBuilder<> Builder(T);
6449         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6450           BB->removePredecessor(PHI.getIncomingBlock(i));
6451           // Turn uncoditional branches into unreachables and remove the dead
6452           // destination from conditional branches.
6453           if (BI->isUnconditional())
6454             Builder.CreateUnreachable();
6455           else
6456             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6457                                                        : BI->getSuccessor(0));
6458           BI->eraseFromParent();
6459           return true;
6460         }
6461         // TODO: SwitchInst.
6462       }
6463 
6464   return false;
6465 }
6466 
6467 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6468   bool Changed = false;
6469 
6470   assert(BB && BB->getParent() && "Block not embedded in function!");
6471   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6472 
6473   // Remove basic blocks that have no predecessors (except the entry block)...
6474   // or that just have themself as a predecessor.  These are unreachable.
6475   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6476       BB->getSinglePredecessor() == BB) {
6477     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6478     DeleteDeadBlock(BB, DTU);
6479     return true;
6480   }
6481 
6482   // Check to see if we can constant propagate this terminator instruction
6483   // away...
6484   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6485                                     /*TLI=*/nullptr, DTU);
6486 
6487   // Check for and eliminate duplicate PHI nodes in this block.
6488   Changed |= EliminateDuplicatePHINodes(BB);
6489 
6490   // Check for and remove branches that will always cause undefined behavior.
6491   Changed |= removeUndefIntroducingPredecessor(BB);
6492 
6493   // Merge basic blocks into their predecessor if there is only one distinct
6494   // pred, and if there is only one distinct successor of the predecessor, and
6495   // if there are no PHI nodes.
6496   if (MergeBlockIntoPredecessor(BB, DTU))
6497     return true;
6498 
6499   if (SinkCommon && Options.SinkCommonInsts)
6500     Changed |= SinkCommonCodeFromPredecessors(BB, DTU);
6501 
6502   IRBuilder<> Builder(BB);
6503 
6504   if (Options.FoldTwoEntryPHINode) {
6505     // If there is a trivial two-entry PHI node in this basic block, and we can
6506     // eliminate it, do so now.
6507     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6508       if (PN->getNumIncomingValues() == 2)
6509         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6510   }
6511 
6512   Instruction *Terminator = BB->getTerminator();
6513   Builder.SetInsertPoint(Terminator);
6514   switch (Terminator->getOpcode()) {
6515   case Instruction::Br:
6516     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6517     break;
6518   case Instruction::Ret:
6519     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6520     break;
6521   case Instruction::Resume:
6522     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6523     break;
6524   case Instruction::CleanupRet:
6525     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6526     break;
6527   case Instruction::Switch:
6528     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6529     break;
6530   case Instruction::Unreachable:
6531     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6532     break;
6533   case Instruction::IndirectBr:
6534     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6535     break;
6536   }
6537 
6538   return Changed;
6539 }
6540 
6541 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6542   assert((!RequireAndPreserveDomTree ||
6543           (DTU &&
6544            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6545          "Original domtree is invalid?");
6546 
6547   bool Changed = simplifyOnceImpl(BB);
6548 
6549   assert((!RequireAndPreserveDomTree ||
6550           (DTU &&
6551            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6552          "Failed to maintain validity of domtree!");
6553 
6554   return Changed;
6555 }
6556 
6557 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6558   bool Changed = false;
6559 
6560   // Repeated simplify BB as long as resimplification is requested.
6561   do {
6562     Resimplify = false;
6563 
6564     // Perform one round of simplifcation. Resimplify flag will be set if
6565     // another iteration is requested.
6566     Changed |= simplifyOnce(BB);
6567   } while (Resimplify);
6568 
6569   return Changed;
6570 }
6571 
6572 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6573                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6574                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6575   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6576                         Options)
6577       .run(BB);
6578 }
6579