1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/NoFolder.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/PseudoProbe.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/IR/ValueHandle.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 #include "llvm/Transforms/Utils/SSAUpdater.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <set>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 #define DEBUG_TYPE "simplifycfg"
95 
96 cl::opt<bool> llvm::RequireAndPreserveDomTree(
97     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
98     cl::init(false),
99     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
100              "into preserving DomTree,"));
101 
102 // Chosen as 2 so as to be cheap, but still to have enough power to fold
103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
104 // To catch this, we need to fold a compare and a select, hence '2' being the
105 // minimum reasonable default.
106 static cl::opt<unsigned> PHINodeFoldingThreshold(
107     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
108     cl::desc(
109         "Control the amount of phi node folding to perform (default = 2)"));
110 
111 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
112     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
113     cl::desc("Control the maximal total instruction cost that we are willing "
114              "to speculatively execute to fold a 2-entry PHI node into a "
115              "select (default = 4)"));
116 
117 static cl::opt<bool>
118     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
119                 cl::desc("Hoist common instructions up to the parent block"));
120 
121 static cl::opt<bool>
122     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
123                cl::desc("Sink common instructions down to the end block"));
124 
125 static cl::opt<bool> HoistCondStores(
126     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
127     cl::desc("Hoist conditional stores if an unconditional store precedes"));
128 
129 static cl::opt<bool> MergeCondStores(
130     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
131     cl::desc("Hoist conditional stores even if an unconditional store does not "
132              "precede - hoist multiple conditional stores into a single "
133              "predicated store"));
134 
135 static cl::opt<bool> MergeCondStoresAggressively(
136     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
137     cl::desc("When merging conditional stores, do so even if the resultant "
138              "basic blocks are unlikely to be if-converted as a result"));
139 
140 static cl::opt<bool> SpeculateOneExpensiveInst(
141     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
142     cl::desc("Allow exactly one expensive instruction to be speculatively "
143              "executed"));
144 
145 static cl::opt<unsigned> MaxSpeculationDepth(
146     "max-speculation-depth", cl::Hidden, cl::init(10),
147     cl::desc("Limit maximum recursion depth when calculating costs of "
148              "speculatively executed instructions"));
149 
150 static cl::opt<int>
151     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
152                       cl::init(10),
153                       cl::desc("Max size of a block which is still considered "
154                                "small enough to thread through"));
155 
156 // Two is chosen to allow one negation and a logical combine.
157 static cl::opt<unsigned>
158     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
159                         cl::init(2),
160                         cl::desc("Maximum cost of combining conditions when "
161                                  "folding branches"));
162 
163 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
164 STATISTIC(NumLinearMaps,
165           "Number of switch instructions turned into linear mapping");
166 STATISTIC(NumLookupTables,
167           "Number of switch instructions turned into lookup tables");
168 STATISTIC(
169     NumLookupTablesHoles,
170     "Number of switch instructions turned into lookup tables (holes checked)");
171 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
172 STATISTIC(NumFoldValueComparisonIntoPredecessors,
173           "Number of value comparisons folded into predecessor basic blocks");
174 STATISTIC(NumFoldBranchToCommonDest,
175           "Number of branches folded into predecessor basic block");
176 STATISTIC(
177     NumHoistCommonCode,
178     "Number of common instruction 'blocks' hoisted up to the begin block");
179 STATISTIC(NumHoistCommonInstrs,
180           "Number of common instructions hoisted up to the begin block");
181 STATISTIC(NumSinkCommonCode,
182           "Number of common instruction 'blocks' sunk down to the end block");
183 STATISTIC(NumSinkCommonInstrs,
184           "Number of common instructions sunk down to the end block");
185 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
186 STATISTIC(NumInvokes,
187           "Number of invokes with empty resume blocks simplified into calls");
188 
189 namespace {
190 
191 // The first field contains the value that the switch produces when a certain
192 // case group is selected, and the second field is a vector containing the
193 // cases composing the case group.
194 using SwitchCaseResultVectorTy =
195     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
196 
197 // The first field contains the phi node that generates a result of the switch
198 // and the second field contains the value generated for a certain case in the
199 // switch for that PHI.
200 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
201 
202 /// ValueEqualityComparisonCase - Represents a case of a switch.
203 struct ValueEqualityComparisonCase {
204   ConstantInt *Value;
205   BasicBlock *Dest;
206 
207   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
208       : Value(Value), Dest(Dest) {}
209 
210   bool operator<(ValueEqualityComparisonCase RHS) const {
211     // Comparing pointers is ok as we only rely on the order for uniquing.
212     return Value < RHS.Value;
213   }
214 
215   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
216 };
217 
218 class SimplifyCFGOpt {
219   const TargetTransformInfo &TTI;
220   DomTreeUpdater *DTU;
221   const DataLayout &DL;
222   ArrayRef<WeakVH> LoopHeaders;
223   const SimplifyCFGOptions &Options;
224   bool Resimplify;
225 
226   Value *isValueEqualityComparison(Instruction *TI);
227   BasicBlock *GetValueEqualityComparisonCases(
228       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
229   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
230                                                      BasicBlock *Pred,
231                                                      IRBuilder<> &Builder);
232   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
233                                                     Instruction *PTI,
234                                                     IRBuilder<> &Builder);
235   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
236                                            IRBuilder<> &Builder);
237 
238   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
239   bool simplifySingleResume(ResumeInst *RI);
240   bool simplifyCommonResume(ResumeInst *RI);
241   bool simplifyCleanupReturn(CleanupReturnInst *RI);
242   bool simplifyUnreachable(UnreachableInst *UI);
243   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
244   bool simplifyIndirectBr(IndirectBrInst *IBI);
245   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
246   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
247   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
248 
249   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
250                                              IRBuilder<> &Builder);
251 
252   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
253                              bool EqTermsOnly);
254   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
255                               const TargetTransformInfo &TTI);
256   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
257                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
258                                   uint32_t TrueWeight, uint32_t FalseWeight);
259   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
260                                  const DataLayout &DL);
261   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
262   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
263   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
264 
265 public:
266   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
267                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
268                  const SimplifyCFGOptions &Opts)
269       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
270     assert((!DTU || !DTU->hasPostDomTree()) &&
271            "SimplifyCFG is not yet capable of maintaining validity of a "
272            "PostDomTree, so don't ask for it.");
273   }
274 
275   bool simplifyOnce(BasicBlock *BB);
276   bool simplifyOnceImpl(BasicBlock *BB);
277   bool run(BasicBlock *BB);
278 
279   // Helper to set Resimplify and return change indication.
280   bool requestResimplify() {
281     Resimplify = true;
282     return true;
283   }
284 };
285 
286 } // end anonymous namespace
287 
288 /// Return true if it is safe to merge these two
289 /// terminator instructions together.
290 static bool
291 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
292                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
293   if (SI1 == SI2)
294     return false; // Can't merge with self!
295 
296   // It is not safe to merge these two switch instructions if they have a common
297   // successor, and if that successor has a PHI node, and if *that* PHI node has
298   // conflicting incoming values from the two switch blocks.
299   BasicBlock *SI1BB = SI1->getParent();
300   BasicBlock *SI2BB = SI2->getParent();
301 
302   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
303   bool Fail = false;
304   for (BasicBlock *Succ : successors(SI2BB))
305     if (SI1Succs.count(Succ))
306       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
307         PHINode *PN = cast<PHINode>(BBI);
308         if (PN->getIncomingValueForBlock(SI1BB) !=
309             PN->getIncomingValueForBlock(SI2BB)) {
310           if (FailBlocks)
311             FailBlocks->insert(Succ);
312           Fail = true;
313         }
314       }
315 
316   return !Fail;
317 }
318 
319 /// Update PHI nodes in Succ to indicate that there will now be entries in it
320 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
321 /// will be the same as those coming in from ExistPred, an existing predecessor
322 /// of Succ.
323 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
324                                   BasicBlock *ExistPred,
325                                   MemorySSAUpdater *MSSAU = nullptr) {
326   for (PHINode &PN : Succ->phis())
327     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
328   if (MSSAU)
329     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
330       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
331 }
332 
333 /// Compute an abstract "cost" of speculating the given instruction,
334 /// which is assumed to be safe to speculate. TCC_Free means cheap,
335 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
336 /// expensive.
337 static InstructionCost computeSpeculationCost(const User *I,
338                                               const TargetTransformInfo &TTI) {
339   assert(isSafeToSpeculativelyExecute(I) &&
340          "Instruction is not safe to speculatively execute!");
341   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
342 }
343 
344 /// If we have a merge point of an "if condition" as accepted above,
345 /// return true if the specified value dominates the block.  We
346 /// don't handle the true generality of domination here, just a special case
347 /// which works well enough for us.
348 ///
349 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
350 /// see if V (which must be an instruction) and its recursive operands
351 /// that do not dominate BB have a combined cost lower than Budget and
352 /// are non-trapping.  If both are true, the instruction is inserted into the
353 /// set and true is returned.
354 ///
355 /// The cost for most non-trapping instructions is defined as 1 except for
356 /// Select whose cost is 2.
357 ///
358 /// After this function returns, Cost is increased by the cost of
359 /// V plus its non-dominating operands.  If that cost is greater than
360 /// Budget, false is returned and Cost is undefined.
361 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
362                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
363                                 InstructionCost &Cost,
364                                 InstructionCost Budget,
365                                 const TargetTransformInfo &TTI,
366                                 unsigned Depth = 0) {
367   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
368   // so limit the recursion depth.
369   // TODO: While this recursion limit does prevent pathological behavior, it
370   // would be better to track visited instructions to avoid cycles.
371   if (Depth == MaxSpeculationDepth)
372     return false;
373 
374   Instruction *I = dyn_cast<Instruction>(V);
375   if (!I) {
376     // Non-instructions all dominate instructions, but not all constantexprs
377     // can be executed unconditionally.
378     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
379       if (C->canTrap())
380         return false;
381     return true;
382   }
383   BasicBlock *PBB = I->getParent();
384 
385   // We don't want to allow weird loops that might have the "if condition" in
386   // the bottom of this block.
387   if (PBB == BB)
388     return false;
389 
390   // If this instruction is defined in a block that contains an unconditional
391   // branch to BB, then it must be in the 'conditional' part of the "if
392   // statement".  If not, it definitely dominates the region.
393   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
394   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
395     return true;
396 
397   // If we have seen this instruction before, don't count it again.
398   if (AggressiveInsts.count(I))
399     return true;
400 
401   // Okay, it looks like the instruction IS in the "condition".  Check to
402   // see if it's a cheap instruction to unconditionally compute, and if it
403   // only uses stuff defined outside of the condition.  If so, hoist it out.
404   if (!isSafeToSpeculativelyExecute(I))
405     return false;
406 
407   Cost += computeSpeculationCost(I, TTI);
408 
409   // Allow exactly one instruction to be speculated regardless of its cost
410   // (as long as it is safe to do so).
411   // This is intended to flatten the CFG even if the instruction is a division
412   // or other expensive operation. The speculation of an expensive instruction
413   // is expected to be undone in CodeGenPrepare if the speculation has not
414   // enabled further IR optimizations.
415   if (Cost > Budget &&
416       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
417        !Cost.isValid()))
418     return false;
419 
420   // Okay, we can only really hoist these out if their operands do
421   // not take us over the cost threshold.
422   for (Use &Op : I->operands())
423     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
424                              Depth + 1))
425       return false;
426   // Okay, it's safe to do this!  Remember this instruction.
427   AggressiveInsts.insert(I);
428   return true;
429 }
430 
431 /// Extract ConstantInt from value, looking through IntToPtr
432 /// and PointerNullValue. Return NULL if value is not a constant int.
433 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
434   // Normal constant int.
435   ConstantInt *CI = dyn_cast<ConstantInt>(V);
436   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
437     return CI;
438 
439   // This is some kind of pointer constant. Turn it into a pointer-sized
440   // ConstantInt if possible.
441   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
442 
443   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
444   if (isa<ConstantPointerNull>(V))
445     return ConstantInt::get(PtrTy, 0);
446 
447   // IntToPtr const int.
448   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
449     if (CE->getOpcode() == Instruction::IntToPtr)
450       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
451         // The constant is very likely to have the right type already.
452         if (CI->getType() == PtrTy)
453           return CI;
454         else
455           return cast<ConstantInt>(
456               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
457       }
458   return nullptr;
459 }
460 
461 namespace {
462 
463 /// Given a chain of or (||) or and (&&) comparison of a value against a
464 /// constant, this will try to recover the information required for a switch
465 /// structure.
466 /// It will depth-first traverse the chain of comparison, seeking for patterns
467 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
468 /// representing the different cases for the switch.
469 /// Note that if the chain is composed of '||' it will build the set of elements
470 /// that matches the comparisons (i.e. any of this value validate the chain)
471 /// while for a chain of '&&' it will build the set elements that make the test
472 /// fail.
473 struct ConstantComparesGatherer {
474   const DataLayout &DL;
475 
476   /// Value found for the switch comparison
477   Value *CompValue = nullptr;
478 
479   /// Extra clause to be checked before the switch
480   Value *Extra = nullptr;
481 
482   /// Set of integers to match in switch
483   SmallVector<ConstantInt *, 8> Vals;
484 
485   /// Number of comparisons matched in the and/or chain
486   unsigned UsedICmps = 0;
487 
488   /// Construct and compute the result for the comparison instruction Cond
489   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
490     gather(Cond);
491   }
492 
493   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
494   ConstantComparesGatherer &
495   operator=(const ConstantComparesGatherer &) = delete;
496 
497 private:
498   /// Try to set the current value used for the comparison, it succeeds only if
499   /// it wasn't set before or if the new value is the same as the old one
500   bool setValueOnce(Value *NewVal) {
501     if (CompValue && CompValue != NewVal)
502       return false;
503     CompValue = NewVal;
504     return (CompValue != nullptr);
505   }
506 
507   /// Try to match Instruction "I" as a comparison against a constant and
508   /// populates the array Vals with the set of values that match (or do not
509   /// match depending on isEQ).
510   /// Return false on failure. On success, the Value the comparison matched
511   /// against is placed in CompValue.
512   /// If CompValue is already set, the function is expected to fail if a match
513   /// is found but the value compared to is different.
514   bool matchInstruction(Instruction *I, bool isEQ) {
515     // If this is an icmp against a constant, handle this as one of the cases.
516     ICmpInst *ICI;
517     ConstantInt *C;
518     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
519           (C = GetConstantInt(I->getOperand(1), DL)))) {
520       return false;
521     }
522 
523     Value *RHSVal;
524     const APInt *RHSC;
525 
526     // Pattern match a special case
527     // (x & ~2^z) == y --> x == y || x == y|2^z
528     // This undoes a transformation done by instcombine to fuse 2 compares.
529     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
530       // It's a little bit hard to see why the following transformations are
531       // correct. Here is a CVC3 program to verify them for 64-bit values:
532 
533       /*
534          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
535          x    : BITVECTOR(64);
536          y    : BITVECTOR(64);
537          z    : BITVECTOR(64);
538          mask : BITVECTOR(64) = BVSHL(ONE, z);
539          QUERY( (y & ~mask = y) =>
540                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
541          );
542          QUERY( (y |  mask = y) =>
543                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
544          );
545       */
546 
547       // Please note that each pattern must be a dual implication (<--> or
548       // iff). One directional implication can create spurious matches. If the
549       // implication is only one-way, an unsatisfiable condition on the left
550       // side can imply a satisfiable condition on the right side. Dual
551       // implication ensures that satisfiable conditions are transformed to
552       // other satisfiable conditions and unsatisfiable conditions are
553       // transformed to other unsatisfiable conditions.
554 
555       // Here is a concrete example of a unsatisfiable condition on the left
556       // implying a satisfiable condition on the right:
557       //
558       // mask = (1 << z)
559       // (x & ~mask) == y  --> (x == y || x == (y | mask))
560       //
561       // Substituting y = 3, z = 0 yields:
562       // (x & -2) == 3 --> (x == 3 || x == 2)
563 
564       // Pattern match a special case:
565       /*
566         QUERY( (y & ~mask = y) =>
567                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
568         );
569       */
570       if (match(ICI->getOperand(0),
571                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
572         APInt Mask = ~*RHSC;
573         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
574           // If we already have a value for the switch, it has to match!
575           if (!setValueOnce(RHSVal))
576             return false;
577 
578           Vals.push_back(C);
579           Vals.push_back(
580               ConstantInt::get(C->getContext(),
581                                C->getValue() | Mask));
582           UsedICmps++;
583           return true;
584         }
585       }
586 
587       // Pattern match a special case:
588       /*
589         QUERY( (y |  mask = y) =>
590                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
591         );
592       */
593       if (match(ICI->getOperand(0),
594                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
595         APInt Mask = *RHSC;
596         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
597           // If we already have a value for the switch, it has to match!
598           if (!setValueOnce(RHSVal))
599             return false;
600 
601           Vals.push_back(C);
602           Vals.push_back(ConstantInt::get(C->getContext(),
603                                           C->getValue() & ~Mask));
604           UsedICmps++;
605           return true;
606         }
607       }
608 
609       // If we already have a value for the switch, it has to match!
610       if (!setValueOnce(ICI->getOperand(0)))
611         return false;
612 
613       UsedICmps++;
614       Vals.push_back(C);
615       return ICI->getOperand(0);
616     }
617 
618     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
619     ConstantRange Span =
620         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
621 
622     // Shift the range if the compare is fed by an add. This is the range
623     // compare idiom as emitted by instcombine.
624     Value *CandidateVal = I->getOperand(0);
625     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
626       Span = Span.subtract(*RHSC);
627       CandidateVal = RHSVal;
628     }
629 
630     // If this is an and/!= check, then we are looking to build the set of
631     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
632     // x != 0 && x != 1.
633     if (!isEQ)
634       Span = Span.inverse();
635 
636     // If there are a ton of values, we don't want to make a ginormous switch.
637     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
638       return false;
639     }
640 
641     // If we already have a value for the switch, it has to match!
642     if (!setValueOnce(CandidateVal))
643       return false;
644 
645     // Add all values from the range to the set
646     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
647       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
648 
649     UsedICmps++;
650     return true;
651   }
652 
653   /// Given a potentially 'or'd or 'and'd together collection of icmp
654   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
655   /// the value being compared, and stick the list constants into the Vals
656   /// vector.
657   /// One "Extra" case is allowed to differ from the other.
658   void gather(Value *V) {
659     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
660 
661     // Keep a stack (SmallVector for efficiency) for depth-first traversal
662     SmallVector<Value *, 8> DFT;
663     SmallPtrSet<Value *, 8> Visited;
664 
665     // Initialize
666     Visited.insert(V);
667     DFT.push_back(V);
668 
669     while (!DFT.empty()) {
670       V = DFT.pop_back_val();
671 
672       if (Instruction *I = dyn_cast<Instruction>(V)) {
673         // If it is a || (or && depending on isEQ), process the operands.
674         Value *Op0, *Op1;
675         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
676                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
677           if (Visited.insert(Op1).second)
678             DFT.push_back(Op1);
679           if (Visited.insert(Op0).second)
680             DFT.push_back(Op0);
681 
682           continue;
683         }
684 
685         // Try to match the current instruction
686         if (matchInstruction(I, isEQ))
687           // Match succeed, continue the loop
688           continue;
689       }
690 
691       // One element of the sequence of || (or &&) could not be match as a
692       // comparison against the same value as the others.
693       // We allow only one "Extra" case to be checked before the switch
694       if (!Extra) {
695         Extra = V;
696         continue;
697       }
698       // Failed to parse a proper sequence, abort now
699       CompValue = nullptr;
700       break;
701     }
702   }
703 };
704 
705 } // end anonymous namespace
706 
707 static void EraseTerminatorAndDCECond(Instruction *TI,
708                                       MemorySSAUpdater *MSSAU = nullptr) {
709   Instruction *Cond = nullptr;
710   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
711     Cond = dyn_cast<Instruction>(SI->getCondition());
712   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
713     if (BI->isConditional())
714       Cond = dyn_cast<Instruction>(BI->getCondition());
715   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
716     Cond = dyn_cast<Instruction>(IBI->getAddress());
717   }
718 
719   TI->eraseFromParent();
720   if (Cond)
721     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
722 }
723 
724 /// Return true if the specified terminator checks
725 /// to see if a value is equal to constant integer value.
726 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
727   Value *CV = nullptr;
728   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
729     // Do not permit merging of large switch instructions into their
730     // predecessors unless there is only one predecessor.
731     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
732       CV = SI->getCondition();
733   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
734     if (BI->isConditional() && BI->getCondition()->hasOneUse())
735       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
736         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
737           CV = ICI->getOperand(0);
738       }
739 
740   // Unwrap any lossless ptrtoint cast.
741   if (CV) {
742     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
743       Value *Ptr = PTII->getPointerOperand();
744       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
745         CV = Ptr;
746     }
747   }
748   return CV;
749 }
750 
751 /// Given a value comparison instruction,
752 /// decode all of the 'cases' that it represents and return the 'default' block.
753 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
754     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
755   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
756     Cases.reserve(SI->getNumCases());
757     for (auto Case : SI->cases())
758       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
759                                                   Case.getCaseSuccessor()));
760     return SI->getDefaultDest();
761   }
762 
763   BranchInst *BI = cast<BranchInst>(TI);
764   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
765   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
766   Cases.push_back(ValueEqualityComparisonCase(
767       GetConstantInt(ICI->getOperand(1), DL), Succ));
768   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
769 }
770 
771 /// Given a vector of bb/value pairs, remove any entries
772 /// in the list that match the specified block.
773 static void
774 EliminateBlockCases(BasicBlock *BB,
775                     std::vector<ValueEqualityComparisonCase> &Cases) {
776   llvm::erase_value(Cases, BB);
777 }
778 
779 /// Return true if there are any keys in C1 that exist in C2 as well.
780 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
781                           std::vector<ValueEqualityComparisonCase> &C2) {
782   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
783 
784   // Make V1 be smaller than V2.
785   if (V1->size() > V2->size())
786     std::swap(V1, V2);
787 
788   if (V1->empty())
789     return false;
790   if (V1->size() == 1) {
791     // Just scan V2.
792     ConstantInt *TheVal = (*V1)[0].Value;
793     for (unsigned i = 0, e = V2->size(); i != e; ++i)
794       if (TheVal == (*V2)[i].Value)
795         return true;
796   }
797 
798   // Otherwise, just sort both lists and compare element by element.
799   array_pod_sort(V1->begin(), V1->end());
800   array_pod_sort(V2->begin(), V2->end());
801   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
802   while (i1 != e1 && i2 != e2) {
803     if ((*V1)[i1].Value == (*V2)[i2].Value)
804       return true;
805     if ((*V1)[i1].Value < (*V2)[i2].Value)
806       ++i1;
807     else
808       ++i2;
809   }
810   return false;
811 }
812 
813 // Set branch weights on SwitchInst. This sets the metadata if there is at
814 // least one non-zero weight.
815 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
816   // Check that there is at least one non-zero weight. Otherwise, pass
817   // nullptr to setMetadata which will erase the existing metadata.
818   MDNode *N = nullptr;
819   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
820     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
821   SI->setMetadata(LLVMContext::MD_prof, N);
822 }
823 
824 // Similar to the above, but for branch and select instructions that take
825 // exactly 2 weights.
826 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
827                              uint32_t FalseWeight) {
828   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
829   // Check that there is at least one non-zero weight. Otherwise, pass
830   // nullptr to setMetadata which will erase the existing metadata.
831   MDNode *N = nullptr;
832   if (TrueWeight || FalseWeight)
833     N = MDBuilder(I->getParent()->getContext())
834             .createBranchWeights(TrueWeight, FalseWeight);
835   I->setMetadata(LLVMContext::MD_prof, N);
836 }
837 
838 /// If TI is known to be a terminator instruction and its block is known to
839 /// only have a single predecessor block, check to see if that predecessor is
840 /// also a value comparison with the same value, and if that comparison
841 /// determines the outcome of this comparison. If so, simplify TI. This does a
842 /// very limited form of jump threading.
843 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
844     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
845   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
846   if (!PredVal)
847     return false; // Not a value comparison in predecessor.
848 
849   Value *ThisVal = isValueEqualityComparison(TI);
850   assert(ThisVal && "This isn't a value comparison!!");
851   if (ThisVal != PredVal)
852     return false; // Different predicates.
853 
854   // TODO: Preserve branch weight metadata, similarly to how
855   // FoldValueComparisonIntoPredecessors preserves it.
856 
857   // Find out information about when control will move from Pred to TI's block.
858   std::vector<ValueEqualityComparisonCase> PredCases;
859   BasicBlock *PredDef =
860       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
861   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
862 
863   // Find information about how control leaves this block.
864   std::vector<ValueEqualityComparisonCase> ThisCases;
865   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
866   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
867 
868   // If TI's block is the default block from Pred's comparison, potentially
869   // simplify TI based on this knowledge.
870   if (PredDef == TI->getParent()) {
871     // If we are here, we know that the value is none of those cases listed in
872     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
873     // can simplify TI.
874     if (!ValuesOverlap(PredCases, ThisCases))
875       return false;
876 
877     if (isa<BranchInst>(TI)) {
878       // Okay, one of the successors of this condbr is dead.  Convert it to a
879       // uncond br.
880       assert(ThisCases.size() == 1 && "Branch can only have one case!");
881       // Insert the new branch.
882       Instruction *NI = Builder.CreateBr(ThisDef);
883       (void)NI;
884 
885       // Remove PHI node entries for the dead edge.
886       ThisCases[0].Dest->removePredecessor(PredDef);
887 
888       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
889                         << "Through successor TI: " << *TI << "Leaving: " << *NI
890                         << "\n");
891 
892       EraseTerminatorAndDCECond(TI);
893 
894       if (DTU)
895         DTU->applyUpdates(
896             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
897 
898       return true;
899     }
900 
901     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
902     // Okay, TI has cases that are statically dead, prune them away.
903     SmallPtrSet<Constant *, 16> DeadCases;
904     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
905       DeadCases.insert(PredCases[i].Value);
906 
907     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
908                       << "Through successor TI: " << *TI);
909 
910     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
911     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
912       --i;
913       auto *Successor = i->getCaseSuccessor();
914       if (DTU)
915         ++NumPerSuccessorCases[Successor];
916       if (DeadCases.count(i->getCaseValue())) {
917         Successor->removePredecessor(PredDef);
918         SI.removeCase(i);
919         if (DTU)
920           --NumPerSuccessorCases[Successor];
921       }
922     }
923 
924     if (DTU) {
925       std::vector<DominatorTree::UpdateType> Updates;
926       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
927         if (I.second == 0)
928           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
929       DTU->applyUpdates(Updates);
930     }
931 
932     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
933     return true;
934   }
935 
936   // Otherwise, TI's block must correspond to some matched value.  Find out
937   // which value (or set of values) this is.
938   ConstantInt *TIV = nullptr;
939   BasicBlock *TIBB = TI->getParent();
940   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
941     if (PredCases[i].Dest == TIBB) {
942       if (TIV)
943         return false; // Cannot handle multiple values coming to this block.
944       TIV = PredCases[i].Value;
945     }
946   assert(TIV && "No edge from pred to succ?");
947 
948   // Okay, we found the one constant that our value can be if we get into TI's
949   // BB.  Find out which successor will unconditionally be branched to.
950   BasicBlock *TheRealDest = nullptr;
951   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
952     if (ThisCases[i].Value == TIV) {
953       TheRealDest = ThisCases[i].Dest;
954       break;
955     }
956 
957   // If not handled by any explicit cases, it is handled by the default case.
958   if (!TheRealDest)
959     TheRealDest = ThisDef;
960 
961   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
962 
963   // Remove PHI node entries for dead edges.
964   BasicBlock *CheckEdge = TheRealDest;
965   for (BasicBlock *Succ : successors(TIBB))
966     if (Succ != CheckEdge) {
967       if (Succ != TheRealDest)
968         RemovedSuccs.insert(Succ);
969       Succ->removePredecessor(TIBB);
970     } else
971       CheckEdge = nullptr;
972 
973   // Insert the new branch.
974   Instruction *NI = Builder.CreateBr(TheRealDest);
975   (void)NI;
976 
977   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
978                     << "Through successor TI: " << *TI << "Leaving: " << *NI
979                     << "\n");
980 
981   EraseTerminatorAndDCECond(TI);
982   if (DTU) {
983     SmallVector<DominatorTree::UpdateType, 2> Updates;
984     Updates.reserve(RemovedSuccs.size());
985     for (auto *RemovedSucc : RemovedSuccs)
986       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
987     DTU->applyUpdates(Updates);
988   }
989   return true;
990 }
991 
992 namespace {
993 
994 /// This class implements a stable ordering of constant
995 /// integers that does not depend on their address.  This is important for
996 /// applications that sort ConstantInt's to ensure uniqueness.
997 struct ConstantIntOrdering {
998   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
999     return LHS->getValue().ult(RHS->getValue());
1000   }
1001 };
1002 
1003 } // end anonymous namespace
1004 
1005 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1006                                     ConstantInt *const *P2) {
1007   const ConstantInt *LHS = *P1;
1008   const ConstantInt *RHS = *P2;
1009   if (LHS == RHS)
1010     return 0;
1011   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1012 }
1013 
1014 static inline bool HasBranchWeights(const Instruction *I) {
1015   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1016   if (ProfMD && ProfMD->getOperand(0))
1017     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1018       return MDS->getString().equals("branch_weights");
1019 
1020   return false;
1021 }
1022 
1023 /// Get Weights of a given terminator, the default weight is at the front
1024 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1025 /// metadata.
1026 static void GetBranchWeights(Instruction *TI,
1027                              SmallVectorImpl<uint64_t> &Weights) {
1028   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1029   assert(MD);
1030   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1031     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1032     Weights.push_back(CI->getValue().getZExtValue());
1033   }
1034 
1035   // If TI is a conditional eq, the default case is the false case,
1036   // and the corresponding branch-weight data is at index 2. We swap the
1037   // default weight to be the first entry.
1038   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1039     assert(Weights.size() == 2);
1040     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1041     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1042       std::swap(Weights.front(), Weights.back());
1043   }
1044 }
1045 
1046 /// Keep halving the weights until all can fit in uint32_t.
1047 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1048   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1049   if (Max > UINT_MAX) {
1050     unsigned Offset = 32 - countLeadingZeros(Max);
1051     for (uint64_t &I : Weights)
1052       I >>= Offset;
1053   }
1054 }
1055 
1056 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1057     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1058   Instruction *PTI = PredBlock->getTerminator();
1059 
1060   // If we have bonus instructions, clone them into the predecessor block.
1061   // Note that there may be multiple predecessor blocks, so we cannot move
1062   // bonus instructions to a predecessor block.
1063   for (Instruction &BonusInst : *BB) {
1064     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1065       continue;
1066 
1067     Instruction *NewBonusInst = BonusInst.clone();
1068 
1069     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1070       // Unless the instruction has the same !dbg location as the original
1071       // branch, drop it. When we fold the bonus instructions we want to make
1072       // sure we reset their debug locations in order to avoid stepping on
1073       // dead code caused by folding dead branches.
1074       NewBonusInst->setDebugLoc(DebugLoc());
1075     }
1076 
1077     RemapInstruction(NewBonusInst, VMap,
1078                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1079     VMap[&BonusInst] = NewBonusInst;
1080 
1081     // If we moved a load, we cannot any longer claim any knowledge about
1082     // its potential value. The previous information might have been valid
1083     // only given the branch precondition.
1084     // For an analogous reason, we must also drop all the metadata whose
1085     // semantics we don't understand. We *can* preserve !annotation, because
1086     // it is tied to the instruction itself, not the value or position.
1087     // Similarly strip attributes on call parameters that may cause UB in
1088     // location the call is moved to.
1089     NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1090         LLVMContext::MD_annotation);
1091 
1092     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1093     NewBonusInst->takeName(&BonusInst);
1094     BonusInst.setName(NewBonusInst->getName() + ".old");
1095 
1096     // Update (liveout) uses of bonus instructions,
1097     // now that the bonus instruction has been cloned into predecessor.
1098     SSAUpdater SSAUpdate;
1099     SSAUpdate.Initialize(BonusInst.getType(),
1100                          (NewBonusInst->getName() + ".merge").str());
1101     SSAUpdate.AddAvailableValue(BB, &BonusInst);
1102     SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst);
1103     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1104       auto *UI = cast<Instruction>(U.getUser());
1105       if (UI->getParent() != PredBlock)
1106         SSAUpdate.RewriteUseAfterInsertions(U);
1107       else // Use is in the same block as, and comes before, NewBonusInst.
1108         SSAUpdate.RewriteUse(U);
1109     }
1110   }
1111 }
1112 
1113 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1114     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1115   BasicBlock *BB = TI->getParent();
1116   BasicBlock *Pred = PTI->getParent();
1117 
1118   SmallVector<DominatorTree::UpdateType, 32> Updates;
1119 
1120   // Figure out which 'cases' to copy from SI to PSI.
1121   std::vector<ValueEqualityComparisonCase> BBCases;
1122   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1123 
1124   std::vector<ValueEqualityComparisonCase> PredCases;
1125   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1126 
1127   // Based on whether the default edge from PTI goes to BB or not, fill in
1128   // PredCases and PredDefault with the new switch cases we would like to
1129   // build.
1130   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1131 
1132   // Update the branch weight metadata along the way
1133   SmallVector<uint64_t, 8> Weights;
1134   bool PredHasWeights = HasBranchWeights(PTI);
1135   bool SuccHasWeights = HasBranchWeights(TI);
1136 
1137   if (PredHasWeights) {
1138     GetBranchWeights(PTI, Weights);
1139     // branch-weight metadata is inconsistent here.
1140     if (Weights.size() != 1 + PredCases.size())
1141       PredHasWeights = SuccHasWeights = false;
1142   } else if (SuccHasWeights)
1143     // If there are no predecessor weights but there are successor weights,
1144     // populate Weights with 1, which will later be scaled to the sum of
1145     // successor's weights
1146     Weights.assign(1 + PredCases.size(), 1);
1147 
1148   SmallVector<uint64_t, 8> SuccWeights;
1149   if (SuccHasWeights) {
1150     GetBranchWeights(TI, SuccWeights);
1151     // branch-weight metadata is inconsistent here.
1152     if (SuccWeights.size() != 1 + BBCases.size())
1153       PredHasWeights = SuccHasWeights = false;
1154   } else if (PredHasWeights)
1155     SuccWeights.assign(1 + BBCases.size(), 1);
1156 
1157   if (PredDefault == BB) {
1158     // If this is the default destination from PTI, only the edges in TI
1159     // that don't occur in PTI, or that branch to BB will be activated.
1160     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1161     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1162       if (PredCases[i].Dest != BB)
1163         PTIHandled.insert(PredCases[i].Value);
1164       else {
1165         // The default destination is BB, we don't need explicit targets.
1166         std::swap(PredCases[i], PredCases.back());
1167 
1168         if (PredHasWeights || SuccHasWeights) {
1169           // Increase weight for the default case.
1170           Weights[0] += Weights[i + 1];
1171           std::swap(Weights[i + 1], Weights.back());
1172           Weights.pop_back();
1173         }
1174 
1175         PredCases.pop_back();
1176         --i;
1177         --e;
1178       }
1179 
1180     // Reconstruct the new switch statement we will be building.
1181     if (PredDefault != BBDefault) {
1182       PredDefault->removePredecessor(Pred);
1183       if (DTU && PredDefault != BB)
1184         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1185       PredDefault = BBDefault;
1186       ++NewSuccessors[BBDefault];
1187     }
1188 
1189     unsigned CasesFromPred = Weights.size();
1190     uint64_t ValidTotalSuccWeight = 0;
1191     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1192       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1193         PredCases.push_back(BBCases[i]);
1194         ++NewSuccessors[BBCases[i].Dest];
1195         if (SuccHasWeights || PredHasWeights) {
1196           // The default weight is at index 0, so weight for the ith case
1197           // should be at index i+1. Scale the cases from successor by
1198           // PredDefaultWeight (Weights[0]).
1199           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1200           ValidTotalSuccWeight += SuccWeights[i + 1];
1201         }
1202       }
1203 
1204     if (SuccHasWeights || PredHasWeights) {
1205       ValidTotalSuccWeight += SuccWeights[0];
1206       // Scale the cases from predecessor by ValidTotalSuccWeight.
1207       for (unsigned i = 1; i < CasesFromPred; ++i)
1208         Weights[i] *= ValidTotalSuccWeight;
1209       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1210       Weights[0] *= SuccWeights[0];
1211     }
1212   } else {
1213     // If this is not the default destination from PSI, only the edges
1214     // in SI that occur in PSI with a destination of BB will be
1215     // activated.
1216     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1217     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1218     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1219       if (PredCases[i].Dest == BB) {
1220         PTIHandled.insert(PredCases[i].Value);
1221 
1222         if (PredHasWeights || SuccHasWeights) {
1223           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1224           std::swap(Weights[i + 1], Weights.back());
1225           Weights.pop_back();
1226         }
1227 
1228         std::swap(PredCases[i], PredCases.back());
1229         PredCases.pop_back();
1230         --i;
1231         --e;
1232       }
1233 
1234     // Okay, now we know which constants were sent to BB from the
1235     // predecessor.  Figure out where they will all go now.
1236     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1237       if (PTIHandled.count(BBCases[i].Value)) {
1238         // If this is one we are capable of getting...
1239         if (PredHasWeights || SuccHasWeights)
1240           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1241         PredCases.push_back(BBCases[i]);
1242         ++NewSuccessors[BBCases[i].Dest];
1243         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1244       }
1245 
1246     // If there are any constants vectored to BB that TI doesn't handle,
1247     // they must go to the default destination of TI.
1248     for (ConstantInt *I : PTIHandled) {
1249       if (PredHasWeights || SuccHasWeights)
1250         Weights.push_back(WeightsForHandled[I]);
1251       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1252       ++NewSuccessors[BBDefault];
1253     }
1254   }
1255 
1256   // Okay, at this point, we know which new successor Pred will get.  Make
1257   // sure we update the number of entries in the PHI nodes for these
1258   // successors.
1259   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1260   if (DTU) {
1261     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1262     Updates.reserve(Updates.size() + NewSuccessors.size());
1263   }
1264   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1265        NewSuccessors) {
1266     for (auto I : seq(0, NewSuccessor.second)) {
1267       (void)I;
1268       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1269     }
1270     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1271       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1272   }
1273 
1274   Builder.SetInsertPoint(PTI);
1275   // Convert pointer to int before we switch.
1276   if (CV->getType()->isPointerTy()) {
1277     CV =
1278         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1279   }
1280 
1281   // Now that the successors are updated, create the new Switch instruction.
1282   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1283   NewSI->setDebugLoc(PTI->getDebugLoc());
1284   for (ValueEqualityComparisonCase &V : PredCases)
1285     NewSI->addCase(V.Value, V.Dest);
1286 
1287   if (PredHasWeights || SuccHasWeights) {
1288     // Halve the weights if any of them cannot fit in an uint32_t
1289     FitWeights(Weights);
1290 
1291     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1292 
1293     setBranchWeights(NewSI, MDWeights);
1294   }
1295 
1296   EraseTerminatorAndDCECond(PTI);
1297 
1298   // Okay, last check.  If BB is still a successor of PSI, then we must
1299   // have an infinite loop case.  If so, add an infinitely looping block
1300   // to handle the case to preserve the behavior of the code.
1301   BasicBlock *InfLoopBlock = nullptr;
1302   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1303     if (NewSI->getSuccessor(i) == BB) {
1304       if (!InfLoopBlock) {
1305         // Insert it at the end of the function, because it's either code,
1306         // or it won't matter if it's hot. :)
1307         InfLoopBlock =
1308             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1309         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1310         if (DTU)
1311           Updates.push_back(
1312               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1313       }
1314       NewSI->setSuccessor(i, InfLoopBlock);
1315     }
1316 
1317   if (DTU) {
1318     if (InfLoopBlock)
1319       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1320 
1321     Updates.push_back({DominatorTree::Delete, Pred, BB});
1322 
1323     DTU->applyUpdates(Updates);
1324   }
1325 
1326   ++NumFoldValueComparisonIntoPredecessors;
1327   return true;
1328 }
1329 
1330 /// The specified terminator is a value equality comparison instruction
1331 /// (either a switch or a branch on "X == c").
1332 /// See if any of the predecessors of the terminator block are value comparisons
1333 /// on the same value.  If so, and if safe to do so, fold them together.
1334 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1335                                                          IRBuilder<> &Builder) {
1336   BasicBlock *BB = TI->getParent();
1337   Value *CV = isValueEqualityComparison(TI); // CondVal
1338   assert(CV && "Not a comparison?");
1339 
1340   bool Changed = false;
1341 
1342   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1343   while (!Preds.empty()) {
1344     BasicBlock *Pred = Preds.pop_back_val();
1345     Instruction *PTI = Pred->getTerminator();
1346 
1347     // Don't try to fold into itself.
1348     if (Pred == BB)
1349       continue;
1350 
1351     // See if the predecessor is a comparison with the same value.
1352     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1353     if (PCV != CV)
1354       continue;
1355 
1356     SmallSetVector<BasicBlock *, 4> FailBlocks;
1357     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1358       for (auto *Succ : FailBlocks) {
1359         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1360           return false;
1361       }
1362     }
1363 
1364     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1365     Changed = true;
1366   }
1367   return Changed;
1368 }
1369 
1370 // If we would need to insert a select that uses the value of this invoke
1371 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1372 // can't hoist the invoke, as there is nowhere to put the select in this case.
1373 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1374                                 Instruction *I1, Instruction *I2) {
1375   for (BasicBlock *Succ : successors(BB1)) {
1376     for (const PHINode &PN : Succ->phis()) {
1377       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1378       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1379       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1380         return false;
1381       }
1382     }
1383   }
1384   return true;
1385 }
1386 
1387 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1388 
1389 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1390 /// in the two blocks up into the branch block. The caller of this function
1391 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1392 /// only perform hoisting in case both blocks only contain a terminator. In that
1393 /// case, only the original BI will be replaced and selects for PHIs are added.
1394 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1395                                            const TargetTransformInfo &TTI,
1396                                            bool EqTermsOnly) {
1397   // This does very trivial matching, with limited scanning, to find identical
1398   // instructions in the two blocks.  In particular, we don't want to get into
1399   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1400   // such, we currently just scan for obviously identical instructions in an
1401   // identical order.
1402   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1403   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1404 
1405   // If either of the blocks has it's address taken, then we can't do this fold,
1406   // because the code we'd hoist would no longer run when we jump into the block
1407   // by it's address.
1408   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1409     return false;
1410 
1411   BasicBlock::iterator BB1_Itr = BB1->begin();
1412   BasicBlock::iterator BB2_Itr = BB2->begin();
1413 
1414   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1415   // Skip debug info if it is not identical.
1416   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1417   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1418   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1419     while (isa<DbgInfoIntrinsic>(I1))
1420       I1 = &*BB1_Itr++;
1421     while (isa<DbgInfoIntrinsic>(I2))
1422       I2 = &*BB2_Itr++;
1423   }
1424   // FIXME: Can we define a safety predicate for CallBr?
1425   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1426       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1427       isa<CallBrInst>(I1))
1428     return false;
1429 
1430   BasicBlock *BIParent = BI->getParent();
1431 
1432   bool Changed = false;
1433 
1434   auto _ = make_scope_exit([&]() {
1435     if (Changed)
1436       ++NumHoistCommonCode;
1437   });
1438 
1439   // Check if only hoisting terminators is allowed. This does not add new
1440   // instructions to the hoist location.
1441   if (EqTermsOnly) {
1442     // Skip any debug intrinsics, as they are free to hoist.
1443     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1444     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1445     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1446       return false;
1447     if (!I1NonDbg->isTerminator())
1448       return false;
1449     // Now we know that we only need to hoist debug instrinsics and the
1450     // terminator. Let the loop below handle those 2 cases.
1451   }
1452 
1453   do {
1454     // If we are hoisting the terminator instruction, don't move one (making a
1455     // broken BB), instead clone it, and remove BI.
1456     if (I1->isTerminator())
1457       goto HoistTerminator;
1458 
1459     // If we're going to hoist a call, make sure that the two instructions we're
1460     // commoning/hoisting are both marked with musttail, or neither of them is
1461     // marked as such. Otherwise, we might end up in a situation where we hoist
1462     // from a block where the terminator is a `ret` to a block where the terminator
1463     // is a `br`, and `musttail` calls expect to be followed by a return.
1464     auto *C1 = dyn_cast<CallInst>(I1);
1465     auto *C2 = dyn_cast<CallInst>(I2);
1466     if (C1 && C2)
1467       if (C1->isMustTailCall() != C2->isMustTailCall())
1468         return Changed;
1469 
1470     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1471       return Changed;
1472 
1473     // If any of the two call sites has nomerge attribute, stop hoisting.
1474     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1475       if (CB1->cannotMerge())
1476         return Changed;
1477     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1478       if (CB2->cannotMerge())
1479         return Changed;
1480 
1481     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1482       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1483       // The debug location is an integral part of a debug info intrinsic
1484       // and can't be separated from it or replaced.  Instead of attempting
1485       // to merge locations, simply hoist both copies of the intrinsic.
1486       BIParent->getInstList().splice(BI->getIterator(),
1487                                      BB1->getInstList(), I1);
1488       BIParent->getInstList().splice(BI->getIterator(),
1489                                      BB2->getInstList(), I2);
1490       Changed = true;
1491     } else {
1492       // For a normal instruction, we just move one to right before the branch,
1493       // then replace all uses of the other with the first.  Finally, we remove
1494       // the now redundant second instruction.
1495       BIParent->getInstList().splice(BI->getIterator(),
1496                                      BB1->getInstList(), I1);
1497       if (!I2->use_empty())
1498         I2->replaceAllUsesWith(I1);
1499       I1->andIRFlags(I2);
1500       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1501                              LLVMContext::MD_range,
1502                              LLVMContext::MD_fpmath,
1503                              LLVMContext::MD_invariant_load,
1504                              LLVMContext::MD_nonnull,
1505                              LLVMContext::MD_invariant_group,
1506                              LLVMContext::MD_align,
1507                              LLVMContext::MD_dereferenceable,
1508                              LLVMContext::MD_dereferenceable_or_null,
1509                              LLVMContext::MD_mem_parallel_loop_access,
1510                              LLVMContext::MD_access_group,
1511                              LLVMContext::MD_preserve_access_index};
1512       combineMetadata(I1, I2, KnownIDs, true);
1513 
1514       // I1 and I2 are being combined into a single instruction.  Its debug
1515       // location is the merged locations of the original instructions.
1516       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1517 
1518       I2->eraseFromParent();
1519       Changed = true;
1520     }
1521     ++NumHoistCommonInstrs;
1522 
1523     I1 = &*BB1_Itr++;
1524     I2 = &*BB2_Itr++;
1525     // Skip debug info if it is not identical.
1526     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1527     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1528     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1529       while (isa<DbgInfoIntrinsic>(I1))
1530         I1 = &*BB1_Itr++;
1531       while (isa<DbgInfoIntrinsic>(I2))
1532         I2 = &*BB2_Itr++;
1533     }
1534   } while (I1->isIdenticalToWhenDefined(I2));
1535 
1536   return true;
1537 
1538 HoistTerminator:
1539   // It may not be possible to hoist an invoke.
1540   // FIXME: Can we define a safety predicate for CallBr?
1541   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1542     return Changed;
1543 
1544   // TODO: callbr hoisting currently disabled pending further study.
1545   if (isa<CallBrInst>(I1))
1546     return Changed;
1547 
1548   for (BasicBlock *Succ : successors(BB1)) {
1549     for (PHINode &PN : Succ->phis()) {
1550       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1551       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1552       if (BB1V == BB2V)
1553         continue;
1554 
1555       // Check for passingValueIsAlwaysUndefined here because we would rather
1556       // eliminate undefined control flow then converting it to a select.
1557       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1558           passingValueIsAlwaysUndefined(BB2V, &PN))
1559         return Changed;
1560 
1561       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1562         return Changed;
1563       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1564         return Changed;
1565     }
1566   }
1567 
1568   // Okay, it is safe to hoist the terminator.
1569   Instruction *NT = I1->clone();
1570   BIParent->getInstList().insert(BI->getIterator(), NT);
1571   if (!NT->getType()->isVoidTy()) {
1572     I1->replaceAllUsesWith(NT);
1573     I2->replaceAllUsesWith(NT);
1574     NT->takeName(I1);
1575   }
1576   Changed = true;
1577   ++NumHoistCommonInstrs;
1578 
1579   // Ensure terminator gets a debug location, even an unknown one, in case
1580   // it involves inlinable calls.
1581   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1582 
1583   // PHIs created below will adopt NT's merged DebugLoc.
1584   IRBuilder<NoFolder> Builder(NT);
1585 
1586   // Hoisting one of the terminators from our successor is a great thing.
1587   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1588   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1589   // nodes, so we insert select instruction to compute the final result.
1590   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1591   for (BasicBlock *Succ : successors(BB1)) {
1592     for (PHINode &PN : Succ->phis()) {
1593       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1594       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1595       if (BB1V == BB2V)
1596         continue;
1597 
1598       // These values do not agree.  Insert a select instruction before NT
1599       // that determines the right value.
1600       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1601       if (!SI) {
1602         // Propagate fast-math-flags from phi node to its replacement select.
1603         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1604         if (isa<FPMathOperator>(PN))
1605           Builder.setFastMathFlags(PN.getFastMathFlags());
1606 
1607         SI = cast<SelectInst>(
1608             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1609                                  BB1V->getName() + "." + BB2V->getName(), BI));
1610       }
1611 
1612       // Make the PHI node use the select for all incoming values for BB1/BB2
1613       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1614         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1615           PN.setIncomingValue(i, SI);
1616     }
1617   }
1618 
1619   SmallVector<DominatorTree::UpdateType, 4> Updates;
1620 
1621   // Update any PHI nodes in our new successors.
1622   for (BasicBlock *Succ : successors(BB1)) {
1623     AddPredecessorToBlock(Succ, BIParent, BB1);
1624     if (DTU)
1625       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1626   }
1627 
1628   if (DTU)
1629     for (BasicBlock *Succ : successors(BI))
1630       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1631 
1632   EraseTerminatorAndDCECond(BI);
1633   if (DTU)
1634     DTU->applyUpdates(Updates);
1635   return Changed;
1636 }
1637 
1638 // Check lifetime markers.
1639 static bool isLifeTimeMarker(const Instruction *I) {
1640   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1641     switch (II->getIntrinsicID()) {
1642     default:
1643       break;
1644     case Intrinsic::lifetime_start:
1645     case Intrinsic::lifetime_end:
1646       return true;
1647     }
1648   }
1649   return false;
1650 }
1651 
1652 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1653 // into variables.
1654 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1655                                                 int OpIdx) {
1656   return !isa<IntrinsicInst>(I);
1657 }
1658 
1659 // All instructions in Insts belong to different blocks that all unconditionally
1660 // branch to a common successor. Analyze each instruction and return true if it
1661 // would be possible to sink them into their successor, creating one common
1662 // instruction instead. For every value that would be required to be provided by
1663 // PHI node (because an operand varies in each input block), add to PHIOperands.
1664 static bool canSinkInstructions(
1665     ArrayRef<Instruction *> Insts,
1666     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1667   // Prune out obviously bad instructions to move. Each instruction must have
1668   // exactly zero or one use, and we check later that use is by a single, common
1669   // PHI instruction in the successor.
1670   bool HasUse = !Insts.front()->user_empty();
1671   for (auto *I : Insts) {
1672     // These instructions may change or break semantics if moved.
1673     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1674         I->getType()->isTokenTy())
1675       return false;
1676 
1677     // Do not try to sink an instruction in an infinite loop - it can cause
1678     // this algorithm to infinite loop.
1679     if (I->getParent()->getSingleSuccessor() == I->getParent())
1680       return false;
1681 
1682     // Conservatively return false if I is an inline-asm instruction. Sinking
1683     // and merging inline-asm instructions can potentially create arguments
1684     // that cannot satisfy the inline-asm constraints.
1685     // If the instruction has nomerge attribute, return false.
1686     if (const auto *C = dyn_cast<CallBase>(I))
1687       if (C->isInlineAsm() || C->cannotMerge())
1688         return false;
1689 
1690     // Each instruction must have zero or one use.
1691     if (HasUse && !I->hasOneUse())
1692       return false;
1693     if (!HasUse && !I->user_empty())
1694       return false;
1695   }
1696 
1697   const Instruction *I0 = Insts.front();
1698   for (auto *I : Insts)
1699     if (!I->isSameOperationAs(I0))
1700       return false;
1701 
1702   // All instructions in Insts are known to be the same opcode. If they have a
1703   // use, check that the only user is a PHI or in the same block as the
1704   // instruction, because if a user is in the same block as an instruction we're
1705   // contemplating sinking, it must already be determined to be sinkable.
1706   if (HasUse) {
1707     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1708     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1709     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1710           auto *U = cast<Instruction>(*I->user_begin());
1711           return (PNUse &&
1712                   PNUse->getParent() == Succ &&
1713                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1714                  U->getParent() == I->getParent();
1715         }))
1716       return false;
1717   }
1718 
1719   // Because SROA can't handle speculating stores of selects, try not to sink
1720   // loads, stores or lifetime markers of allocas when we'd have to create a
1721   // PHI for the address operand. Also, because it is likely that loads or
1722   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1723   // them.
1724   // This can cause code churn which can have unintended consequences down
1725   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1726   // FIXME: This is a workaround for a deficiency in SROA - see
1727   // https://llvm.org/bugs/show_bug.cgi?id=30188
1728   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1729         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1730       }))
1731     return false;
1732   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1733         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1734       }))
1735     return false;
1736   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1737         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1738       }))
1739     return false;
1740 
1741   // For calls to be sinkable, they must all be indirect, or have same callee.
1742   // I.e. if we have two direct calls to different callees, we don't want to
1743   // turn that into an indirect call. Likewise, if we have an indirect call,
1744   // and a direct call, we don't actually want to have a single indirect call.
1745   if (isa<CallBase>(I0)) {
1746     auto IsIndirectCall = [](const Instruction *I) {
1747       return cast<CallBase>(I)->isIndirectCall();
1748     };
1749     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1750     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1751     if (HaveIndirectCalls) {
1752       if (!AllCallsAreIndirect)
1753         return false;
1754     } else {
1755       // All callees must be identical.
1756       Value *Callee = nullptr;
1757       for (const Instruction *I : Insts) {
1758         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1759         if (!Callee)
1760           Callee = CurrCallee;
1761         else if (Callee != CurrCallee)
1762           return false;
1763       }
1764     }
1765   }
1766 
1767   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1768     Value *Op = I0->getOperand(OI);
1769     if (Op->getType()->isTokenTy())
1770       // Don't touch any operand of token type.
1771       return false;
1772 
1773     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1774       assert(I->getNumOperands() == I0->getNumOperands());
1775       return I->getOperand(OI) == I0->getOperand(OI);
1776     };
1777     if (!all_of(Insts, SameAsI0)) {
1778       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1779           !canReplaceOperandWithVariable(I0, OI))
1780         // We can't create a PHI from this GEP.
1781         return false;
1782       for (auto *I : Insts)
1783         PHIOperands[I].push_back(I->getOperand(OI));
1784     }
1785   }
1786   return true;
1787 }
1788 
1789 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1790 // instruction of every block in Blocks to their common successor, commoning
1791 // into one instruction.
1792 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1793   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1794 
1795   // canSinkInstructions returning true guarantees that every block has at
1796   // least one non-terminator instruction.
1797   SmallVector<Instruction*,4> Insts;
1798   for (auto *BB : Blocks) {
1799     Instruction *I = BB->getTerminator();
1800     do {
1801       I = I->getPrevNode();
1802     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1803     if (!isa<DbgInfoIntrinsic>(I))
1804       Insts.push_back(I);
1805   }
1806 
1807   // The only checking we need to do now is that all users of all instructions
1808   // are the same PHI node. canSinkInstructions should have checked this but
1809   // it is slightly over-aggressive - it gets confused by commutative
1810   // instructions so double-check it here.
1811   Instruction *I0 = Insts.front();
1812   if (!I0->user_empty()) {
1813     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1814     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1815           auto *U = cast<Instruction>(*I->user_begin());
1816           return U == PNUse;
1817         }))
1818       return false;
1819   }
1820 
1821   // We don't need to do any more checking here; canSinkInstructions should
1822   // have done it all for us.
1823   SmallVector<Value*, 4> NewOperands;
1824   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1825     // This check is different to that in canSinkInstructions. There, we
1826     // cared about the global view once simplifycfg (and instcombine) have
1827     // completed - it takes into account PHIs that become trivially
1828     // simplifiable.  However here we need a more local view; if an operand
1829     // differs we create a PHI and rely on instcombine to clean up the very
1830     // small mess we may make.
1831     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1832       return I->getOperand(O) != I0->getOperand(O);
1833     });
1834     if (!NeedPHI) {
1835       NewOperands.push_back(I0->getOperand(O));
1836       continue;
1837     }
1838 
1839     // Create a new PHI in the successor block and populate it.
1840     auto *Op = I0->getOperand(O);
1841     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1842     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1843                                Op->getName() + ".sink", &BBEnd->front());
1844     for (auto *I : Insts)
1845       PN->addIncoming(I->getOperand(O), I->getParent());
1846     NewOperands.push_back(PN);
1847   }
1848 
1849   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1850   // and move it to the start of the successor block.
1851   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1852     I0->getOperandUse(O).set(NewOperands[O]);
1853   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1854 
1855   // Update metadata and IR flags, and merge debug locations.
1856   for (auto *I : Insts)
1857     if (I != I0) {
1858       // The debug location for the "common" instruction is the merged locations
1859       // of all the commoned instructions.  We start with the original location
1860       // of the "common" instruction and iteratively merge each location in the
1861       // loop below.
1862       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1863       // However, as N-way merge for CallInst is rare, so we use simplified API
1864       // instead of using complex API for N-way merge.
1865       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1866       combineMetadataForCSE(I0, I, true);
1867       I0->andIRFlags(I);
1868     }
1869 
1870   if (!I0->user_empty()) {
1871     // canSinkLastInstruction checked that all instructions were used by
1872     // one and only one PHI node. Find that now, RAUW it to our common
1873     // instruction and nuke it.
1874     auto *PN = cast<PHINode>(*I0->user_begin());
1875     PN->replaceAllUsesWith(I0);
1876     PN->eraseFromParent();
1877   }
1878 
1879   // Finally nuke all instructions apart from the common instruction.
1880   for (auto *I : Insts)
1881     if (I != I0)
1882       I->eraseFromParent();
1883 
1884   return true;
1885 }
1886 
1887 namespace {
1888 
1889   // LockstepReverseIterator - Iterates through instructions
1890   // in a set of blocks in reverse order from the first non-terminator.
1891   // For example (assume all blocks have size n):
1892   //   LockstepReverseIterator I([B1, B2, B3]);
1893   //   *I-- = [B1[n], B2[n], B3[n]];
1894   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1895   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1896   //   ...
1897   class LockstepReverseIterator {
1898     ArrayRef<BasicBlock*> Blocks;
1899     SmallVector<Instruction*,4> Insts;
1900     bool Fail;
1901 
1902   public:
1903     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1904       reset();
1905     }
1906 
1907     void reset() {
1908       Fail = false;
1909       Insts.clear();
1910       for (auto *BB : Blocks) {
1911         Instruction *Inst = BB->getTerminator();
1912         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1913           Inst = Inst->getPrevNode();
1914         if (!Inst) {
1915           // Block wasn't big enough.
1916           Fail = true;
1917           return;
1918         }
1919         Insts.push_back(Inst);
1920       }
1921     }
1922 
1923     bool isValid() const {
1924       return !Fail;
1925     }
1926 
1927     void operator--() {
1928       if (Fail)
1929         return;
1930       for (auto *&Inst : Insts) {
1931         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1932           Inst = Inst->getPrevNode();
1933         // Already at beginning of block.
1934         if (!Inst) {
1935           Fail = true;
1936           return;
1937         }
1938       }
1939     }
1940 
1941     void operator++() {
1942       if (Fail)
1943         return;
1944       for (auto *&Inst : Insts) {
1945         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1946           Inst = Inst->getNextNode();
1947         // Already at end of block.
1948         if (!Inst) {
1949           Fail = true;
1950           return;
1951         }
1952       }
1953     }
1954 
1955     ArrayRef<Instruction*> operator * () const {
1956       return Insts;
1957     }
1958   };
1959 
1960 } // end anonymous namespace
1961 
1962 /// Check whether BB's predecessors end with unconditional branches. If it is
1963 /// true, sink any common code from the predecessors to BB.
1964 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1965                                            DomTreeUpdater *DTU) {
1966   // We support two situations:
1967   //   (1) all incoming arcs are unconditional
1968   //   (2) there are non-unconditional incoming arcs
1969   //
1970   // (2) is very common in switch defaults and
1971   // else-if patterns;
1972   //
1973   //   if (a) f(1);
1974   //   else if (b) f(2);
1975   //
1976   // produces:
1977   //
1978   //       [if]
1979   //      /    \
1980   //    [f(1)] [if]
1981   //      |     | \
1982   //      |     |  |
1983   //      |  [f(2)]|
1984   //       \    | /
1985   //        [ end ]
1986   //
1987   // [end] has two unconditional predecessor arcs and one conditional. The
1988   // conditional refers to the implicit empty 'else' arc. This conditional
1989   // arc can also be caused by an empty default block in a switch.
1990   //
1991   // In this case, we attempt to sink code from all *unconditional* arcs.
1992   // If we can sink instructions from these arcs (determined during the scan
1993   // phase below) we insert a common successor for all unconditional arcs and
1994   // connect that to [end], to enable sinking:
1995   //
1996   //       [if]
1997   //      /    \
1998   //    [x(1)] [if]
1999   //      |     | \
2000   //      |     |  \
2001   //      |  [x(2)] |
2002   //       \   /    |
2003   //   [sink.split] |
2004   //         \     /
2005   //         [ end ]
2006   //
2007   SmallVector<BasicBlock*,4> UnconditionalPreds;
2008   bool HaveNonUnconditionalPredecessors = false;
2009   for (auto *PredBB : predecessors(BB)) {
2010     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2011     if (PredBr && PredBr->isUnconditional())
2012       UnconditionalPreds.push_back(PredBB);
2013     else
2014       HaveNonUnconditionalPredecessors = true;
2015   }
2016   if (UnconditionalPreds.size() < 2)
2017     return false;
2018 
2019   // We take a two-step approach to tail sinking. First we scan from the end of
2020   // each block upwards in lockstep. If the n'th instruction from the end of each
2021   // block can be sunk, those instructions are added to ValuesToSink and we
2022   // carry on. If we can sink an instruction but need to PHI-merge some operands
2023   // (because they're not identical in each instruction) we add these to
2024   // PHIOperands.
2025   int ScanIdx = 0;
2026   SmallPtrSet<Value*,4> InstructionsToSink;
2027   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2028   LockstepReverseIterator LRI(UnconditionalPreds);
2029   while (LRI.isValid() &&
2030          canSinkInstructions(*LRI, PHIOperands)) {
2031     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2032                       << "\n");
2033     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2034     ++ScanIdx;
2035     --LRI;
2036   }
2037 
2038   // If no instructions can be sunk, early-return.
2039   if (ScanIdx == 0)
2040     return false;
2041 
2042   // Okay, we *could* sink last ScanIdx instructions. But how many can we
2043   // actually sink before encountering instruction that is unprofitable to sink?
2044   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2045     unsigned NumPHIdValues = 0;
2046     for (auto *I : *LRI)
2047       for (auto *V : PHIOperands[I]) {
2048         if (InstructionsToSink.count(V) == 0)
2049           ++NumPHIdValues;
2050         // FIXME: this check is overly optimistic. We may end up not sinking
2051         // said instruction, due to the very same profitability check.
2052         // See @creating_too_many_phis in sink-common-code.ll.
2053       }
2054     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2055     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2056     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2057         NumPHIInsts++;
2058 
2059     return NumPHIInsts <= 1;
2060   };
2061 
2062   // We've determined that we are going to sink last ScanIdx instructions,
2063   // and recorded them in InstructionsToSink. Now, some instructions may be
2064   // unprofitable to sink. But that determination depends on the instructions
2065   // that we are going to sink.
2066 
2067   // First, forward scan: find the first instruction unprofitable to sink,
2068   // recording all the ones that are profitable to sink.
2069   // FIXME: would it be better, after we detect that not all are profitable.
2070   // to either record the profitable ones, or erase the unprofitable ones?
2071   // Maybe we need to choose (at runtime) the one that will touch least instrs?
2072   LRI.reset();
2073   int Idx = 0;
2074   SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2075   while (Idx < ScanIdx) {
2076     if (!ProfitableToSinkInstruction(LRI)) {
2077       // Too many PHIs would be created.
2078       LLVM_DEBUG(
2079           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2080       break;
2081     }
2082     InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2083     --LRI;
2084     ++Idx;
2085   }
2086 
2087   // If no instructions can be sunk, early-return.
2088   if (Idx == 0)
2089     return false;
2090 
2091   // Did we determine that (only) some instructions are unprofitable to sink?
2092   if (Idx < ScanIdx) {
2093     // Okay, some instructions are unprofitable.
2094     ScanIdx = Idx;
2095     InstructionsToSink = InstructionsProfitableToSink;
2096 
2097     // But, that may make other instructions unprofitable, too.
2098     // So, do a backward scan, do any earlier instructions become unprofitable?
2099     assert(!ProfitableToSinkInstruction(LRI) &&
2100            "We already know that the last instruction is unprofitable to sink");
2101     ++LRI;
2102     --Idx;
2103     while (Idx >= 0) {
2104       // If we detect that an instruction becomes unprofitable to sink,
2105       // all earlier instructions won't be sunk either,
2106       // so preemptively keep InstructionsProfitableToSink in sync.
2107       // FIXME: is this the most performant approach?
2108       for (auto *I : *LRI)
2109         InstructionsProfitableToSink.erase(I);
2110       if (!ProfitableToSinkInstruction(LRI)) {
2111         // Everything starting with this instruction won't be sunk.
2112         ScanIdx = Idx;
2113         InstructionsToSink = InstructionsProfitableToSink;
2114       }
2115       ++LRI;
2116       --Idx;
2117     }
2118   }
2119 
2120   // If no instructions can be sunk, early-return.
2121   if (ScanIdx == 0)
2122     return false;
2123 
2124   bool Changed = false;
2125 
2126   if (HaveNonUnconditionalPredecessors) {
2127     // It is always legal to sink common instructions from unconditional
2128     // predecessors. However, if not all predecessors are unconditional,
2129     // this transformation might be pessimizing. So as a rule of thumb,
2130     // don't do it unless we'd sink at least one non-speculatable instruction.
2131     // See https://bugs.llvm.org/show_bug.cgi?id=30244
2132     LRI.reset();
2133     int Idx = 0;
2134     bool Profitable = false;
2135     while (Idx < ScanIdx) {
2136       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2137         Profitable = true;
2138         break;
2139       }
2140       --LRI;
2141       ++Idx;
2142     }
2143     if (!Profitable)
2144       return false;
2145 
2146     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2147     // We have a conditional edge and we're going to sink some instructions.
2148     // Insert a new block postdominating all blocks we're going to sink from.
2149     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2150       // Edges couldn't be split.
2151       return false;
2152     Changed = true;
2153   }
2154 
2155   // Now that we've analyzed all potential sinking candidates, perform the
2156   // actual sink. We iteratively sink the last non-terminator of the source
2157   // blocks into their common successor unless doing so would require too
2158   // many PHI instructions to be generated (currently only one PHI is allowed
2159   // per sunk instruction).
2160   //
2161   // We can use InstructionsToSink to discount values needing PHI-merging that will
2162   // actually be sunk in a later iteration. This allows us to be more
2163   // aggressive in what we sink. This does allow a false positive where we
2164   // sink presuming a later value will also be sunk, but stop half way through
2165   // and never actually sink it which means we produce more PHIs than intended.
2166   // This is unlikely in practice though.
2167   int SinkIdx = 0;
2168   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2169     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2170                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2171                       << "\n");
2172 
2173     // Because we've sunk every instruction in turn, the current instruction to
2174     // sink is always at index 0.
2175     LRI.reset();
2176 
2177     if (!sinkLastInstruction(UnconditionalPreds)) {
2178       LLVM_DEBUG(
2179           dbgs()
2180           << "SINK: stopping here, failed to actually sink instruction!\n");
2181       break;
2182     }
2183 
2184     NumSinkCommonInstrs++;
2185     Changed = true;
2186   }
2187   if (SinkIdx != 0)
2188     ++NumSinkCommonCode;
2189   return Changed;
2190 }
2191 
2192 /// Determine if we can hoist sink a sole store instruction out of a
2193 /// conditional block.
2194 ///
2195 /// We are looking for code like the following:
2196 ///   BrBB:
2197 ///     store i32 %add, i32* %arrayidx2
2198 ///     ... // No other stores or function calls (we could be calling a memory
2199 ///     ... // function).
2200 ///     %cmp = icmp ult %x, %y
2201 ///     br i1 %cmp, label %EndBB, label %ThenBB
2202 ///   ThenBB:
2203 ///     store i32 %add5, i32* %arrayidx2
2204 ///     br label EndBB
2205 ///   EndBB:
2206 ///     ...
2207 ///   We are going to transform this into:
2208 ///   BrBB:
2209 ///     store i32 %add, i32* %arrayidx2
2210 ///     ... //
2211 ///     %cmp = icmp ult %x, %y
2212 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2213 ///     store i32 %add.add5, i32* %arrayidx2
2214 ///     ...
2215 ///
2216 /// \return The pointer to the value of the previous store if the store can be
2217 ///         hoisted into the predecessor block. 0 otherwise.
2218 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2219                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2220   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2221   if (!StoreToHoist)
2222     return nullptr;
2223 
2224   // Volatile or atomic.
2225   if (!StoreToHoist->isSimple())
2226     return nullptr;
2227 
2228   Value *StorePtr = StoreToHoist->getPointerOperand();
2229   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2230 
2231   // Look for a store to the same pointer in BrBB.
2232   unsigned MaxNumInstToLookAt = 9;
2233   // Skip pseudo probe intrinsic calls which are not really killing any memory
2234   // accesses.
2235   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2236     if (!MaxNumInstToLookAt)
2237       break;
2238     --MaxNumInstToLookAt;
2239 
2240     // Could be calling an instruction that affects memory like free().
2241     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2242       return nullptr;
2243 
2244     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2245       // Found the previous store to same location and type. Make sure it is
2246       // simple, to avoid introducing a spurious non-atomic write after an
2247       // atomic write.
2248       if (SI->getPointerOperand() == StorePtr &&
2249           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2250         // Found the previous store, return its value operand.
2251         return SI->getValueOperand();
2252       return nullptr; // Unknown store.
2253     }
2254 
2255     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2256       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2257           LI->isSimple()) {
2258         // Local objects (created by an `alloca` instruction) are always
2259         // writable, so once we are past a read from a location it is valid to
2260         // also write to that same location.
2261         // If the address of the local object never escapes the function, that
2262         // means it's never concurrently read or written, hence moving the store
2263         // from under the condition will not introduce a data race.
2264         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2265         if (AI && !PointerMayBeCaptured(AI, false, true))
2266           // Found a previous load, return it.
2267           return LI;
2268       }
2269       // The load didn't work out, but we may still find a store.
2270     }
2271   }
2272 
2273   return nullptr;
2274 }
2275 
2276 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2277 /// converted to selects.
2278 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2279                                            BasicBlock *EndBB,
2280                                            unsigned &SpeculatedInstructions,
2281                                            InstructionCost &Cost,
2282                                            const TargetTransformInfo &TTI) {
2283   TargetTransformInfo::TargetCostKind CostKind =
2284     BB->getParent()->hasMinSize()
2285     ? TargetTransformInfo::TCK_CodeSize
2286     : TargetTransformInfo::TCK_SizeAndLatency;
2287 
2288   bool HaveRewritablePHIs = false;
2289   for (PHINode &PN : EndBB->phis()) {
2290     Value *OrigV = PN.getIncomingValueForBlock(BB);
2291     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2292 
2293     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2294     // Skip PHIs which are trivial.
2295     if (ThenV == OrigV)
2296       continue;
2297 
2298     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2299                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2300 
2301     // Don't convert to selects if we could remove undefined behavior instead.
2302     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2303         passingValueIsAlwaysUndefined(ThenV, &PN))
2304       return false;
2305 
2306     HaveRewritablePHIs = true;
2307     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2308     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2309     if (!OrigCE && !ThenCE)
2310       continue; // Known safe and cheap.
2311 
2312     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2313         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2314       return false;
2315     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2316     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2317     InstructionCost MaxCost =
2318         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2319     if (OrigCost + ThenCost > MaxCost)
2320       return false;
2321 
2322     // Account for the cost of an unfolded ConstantExpr which could end up
2323     // getting expanded into Instructions.
2324     // FIXME: This doesn't account for how many operations are combined in the
2325     // constant expression.
2326     ++SpeculatedInstructions;
2327     if (SpeculatedInstructions > 1)
2328       return false;
2329   }
2330 
2331   return HaveRewritablePHIs;
2332 }
2333 
2334 /// Speculate a conditional basic block flattening the CFG.
2335 ///
2336 /// Note that this is a very risky transform currently. Speculating
2337 /// instructions like this is most often not desirable. Instead, there is an MI
2338 /// pass which can do it with full awareness of the resource constraints.
2339 /// However, some cases are "obvious" and we should do directly. An example of
2340 /// this is speculating a single, reasonably cheap instruction.
2341 ///
2342 /// There is only one distinct advantage to flattening the CFG at the IR level:
2343 /// it makes very common but simplistic optimizations such as are common in
2344 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2345 /// modeling their effects with easier to reason about SSA value graphs.
2346 ///
2347 ///
2348 /// An illustration of this transform is turning this IR:
2349 /// \code
2350 ///   BB:
2351 ///     %cmp = icmp ult %x, %y
2352 ///     br i1 %cmp, label %EndBB, label %ThenBB
2353 ///   ThenBB:
2354 ///     %sub = sub %x, %y
2355 ///     br label BB2
2356 ///   EndBB:
2357 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2358 ///     ...
2359 /// \endcode
2360 ///
2361 /// Into this IR:
2362 /// \code
2363 ///   BB:
2364 ///     %cmp = icmp ult %x, %y
2365 ///     %sub = sub %x, %y
2366 ///     %cond = select i1 %cmp, 0, %sub
2367 ///     ...
2368 /// \endcode
2369 ///
2370 /// \returns true if the conditional block is removed.
2371 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2372                                             const TargetTransformInfo &TTI) {
2373   // Be conservative for now. FP select instruction can often be expensive.
2374   Value *BrCond = BI->getCondition();
2375   if (isa<FCmpInst>(BrCond))
2376     return false;
2377 
2378   BasicBlock *BB = BI->getParent();
2379   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2380   InstructionCost Budget =
2381       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2382 
2383   // If ThenBB is actually on the false edge of the conditional branch, remember
2384   // to swap the select operands later.
2385   bool Invert = false;
2386   if (ThenBB != BI->getSuccessor(0)) {
2387     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2388     Invert = true;
2389   }
2390   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2391 
2392   // If the branch is non-unpredictable, and is predicted to *not* branch to
2393   // the `then` block, then avoid speculating it.
2394   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2395     uint64_t TWeight, FWeight;
2396     if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
2397       uint64_t EndWeight = Invert ? TWeight : FWeight;
2398       BranchProbability BIEndProb =
2399           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2400       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2401       if (BIEndProb >= Likely)
2402         return false;
2403     }
2404   }
2405 
2406   // Keep a count of how many times instructions are used within ThenBB when
2407   // they are candidates for sinking into ThenBB. Specifically:
2408   // - They are defined in BB, and
2409   // - They have no side effects, and
2410   // - All of their uses are in ThenBB.
2411   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2412 
2413   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2414 
2415   unsigned SpeculatedInstructions = 0;
2416   Value *SpeculatedStoreValue = nullptr;
2417   StoreInst *SpeculatedStore = nullptr;
2418   for (BasicBlock::iterator BBI = ThenBB->begin(),
2419                             BBE = std::prev(ThenBB->end());
2420        BBI != BBE; ++BBI) {
2421     Instruction *I = &*BBI;
2422     // Skip debug info.
2423     if (isa<DbgInfoIntrinsic>(I)) {
2424       SpeculatedDbgIntrinsics.push_back(I);
2425       continue;
2426     }
2427 
2428     // Skip pseudo probes. The consequence is we lose track of the branch
2429     // probability for ThenBB, which is fine since the optimization here takes
2430     // place regardless of the branch probability.
2431     if (isa<PseudoProbeInst>(I)) {
2432       // The probe should be deleted so that it will not be over-counted when
2433       // the samples collected on the non-conditional path are counted towards
2434       // the conditional path. We leave it for the counts inference algorithm to
2435       // figure out a proper count for an unknown probe.
2436       SpeculatedDbgIntrinsics.push_back(I);
2437       continue;
2438     }
2439 
2440     // Only speculatively execute a single instruction (not counting the
2441     // terminator) for now.
2442     ++SpeculatedInstructions;
2443     if (SpeculatedInstructions > 1)
2444       return false;
2445 
2446     // Don't hoist the instruction if it's unsafe or expensive.
2447     if (!isSafeToSpeculativelyExecute(I) &&
2448         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2449                                   I, BB, ThenBB, EndBB))))
2450       return false;
2451     if (!SpeculatedStoreValue &&
2452         computeSpeculationCost(I, TTI) >
2453             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2454       return false;
2455 
2456     // Store the store speculation candidate.
2457     if (SpeculatedStoreValue)
2458       SpeculatedStore = cast<StoreInst>(I);
2459 
2460     // Do not hoist the instruction if any of its operands are defined but not
2461     // used in BB. The transformation will prevent the operand from
2462     // being sunk into the use block.
2463     for (Use &Op : I->operands()) {
2464       Instruction *OpI = dyn_cast<Instruction>(Op);
2465       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2466         continue; // Not a candidate for sinking.
2467 
2468       ++SinkCandidateUseCounts[OpI];
2469     }
2470   }
2471 
2472   // Consider any sink candidates which are only used in ThenBB as costs for
2473   // speculation. Note, while we iterate over a DenseMap here, we are summing
2474   // and so iteration order isn't significant.
2475   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2476            I = SinkCandidateUseCounts.begin(),
2477            E = SinkCandidateUseCounts.end();
2478        I != E; ++I)
2479     if (I->first->hasNUses(I->second)) {
2480       ++SpeculatedInstructions;
2481       if (SpeculatedInstructions > 1)
2482         return false;
2483     }
2484 
2485   // Check that we can insert the selects and that it's not too expensive to do
2486   // so.
2487   bool Convert = SpeculatedStore != nullptr;
2488   InstructionCost Cost = 0;
2489   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2490                                             SpeculatedInstructions,
2491                                             Cost, TTI);
2492   if (!Convert || Cost > Budget)
2493     return false;
2494 
2495   // If we get here, we can hoist the instruction and if-convert.
2496   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2497 
2498   // Insert a select of the value of the speculated store.
2499   if (SpeculatedStoreValue) {
2500     IRBuilder<NoFolder> Builder(BI);
2501     Value *TrueV = SpeculatedStore->getValueOperand();
2502     Value *FalseV = SpeculatedStoreValue;
2503     if (Invert)
2504       std::swap(TrueV, FalseV);
2505     Value *S = Builder.CreateSelect(
2506         BrCond, TrueV, FalseV, "spec.store.select", BI);
2507     SpeculatedStore->setOperand(0, S);
2508     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2509                                          SpeculatedStore->getDebugLoc());
2510   }
2511 
2512   // Metadata can be dependent on the condition we are hoisting above.
2513   // Conservatively strip all metadata on the instruction. Drop the debug loc
2514   // to avoid making it appear as if the condition is a constant, which would
2515   // be misleading while debugging.
2516   // Similarly strip attributes that maybe dependent on condition we are
2517   // hoisting above.
2518   for (auto &I : *ThenBB) {
2519     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2520       I.setDebugLoc(DebugLoc());
2521     I.dropUndefImplyingAttrsAndUnknownMetadata();
2522   }
2523 
2524   // Hoist the instructions.
2525   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2526                            ThenBB->begin(), std::prev(ThenBB->end()));
2527 
2528   // Insert selects and rewrite the PHI operands.
2529   IRBuilder<NoFolder> Builder(BI);
2530   for (PHINode &PN : EndBB->phis()) {
2531     unsigned OrigI = PN.getBasicBlockIndex(BB);
2532     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2533     Value *OrigV = PN.getIncomingValue(OrigI);
2534     Value *ThenV = PN.getIncomingValue(ThenI);
2535 
2536     // Skip PHIs which are trivial.
2537     if (OrigV == ThenV)
2538       continue;
2539 
2540     // Create a select whose true value is the speculatively executed value and
2541     // false value is the pre-existing value. Swap them if the branch
2542     // destinations were inverted.
2543     Value *TrueV = ThenV, *FalseV = OrigV;
2544     if (Invert)
2545       std::swap(TrueV, FalseV);
2546     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2547     PN.setIncomingValue(OrigI, V);
2548     PN.setIncomingValue(ThenI, V);
2549   }
2550 
2551   // Remove speculated dbg intrinsics.
2552   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2553   // dbg value for the different flows and inserting it after the select.
2554   for (Instruction *I : SpeculatedDbgIntrinsics)
2555     I->eraseFromParent();
2556 
2557   ++NumSpeculations;
2558   return true;
2559 }
2560 
2561 /// Return true if we can thread a branch across this block.
2562 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2563   int Size = 0;
2564 
2565   SmallPtrSet<const Value *, 32> EphValues;
2566   auto IsEphemeral = [&](const Value *V) {
2567     if (isa<AssumeInst>(V))
2568       return true;
2569     return isSafeToSpeculativelyExecute(V) &&
2570            all_of(V->users(),
2571                   [&](const User *U) { return EphValues.count(U); });
2572   };
2573 
2574   // Walk the loop in reverse so that we can identify ephemeral values properly
2575   // (values only feeding assumes).
2576   for (Instruction &I : reverse(BB->instructionsWithoutDebug())) {
2577     // Can't fold blocks that contain noduplicate or convergent calls.
2578     if (CallInst *CI = dyn_cast<CallInst>(&I))
2579       if (CI->cannotDuplicate() || CI->isConvergent())
2580         return false;
2581 
2582     // Ignore ephemeral values which are deleted during codegen.
2583     if (IsEphemeral(&I))
2584       EphValues.insert(&I);
2585     // We will delete Phis while threading, so Phis should not be accounted in
2586     // block's size.
2587     else if (!isa<PHINode>(I)) {
2588       if (Size++ > MaxSmallBlockSize)
2589         return false; // Don't clone large BB's.
2590     }
2591 
2592     // We can only support instructions that do not define values that are
2593     // live outside of the current basic block.
2594     for (User *U : I.users()) {
2595       Instruction *UI = cast<Instruction>(U);
2596       if (UI->getParent() != BB || isa<PHINode>(UI))
2597         return false;
2598     }
2599 
2600     // Looks ok, continue checking.
2601   }
2602 
2603   return true;
2604 }
2605 
2606 /// If we have a conditional branch on a PHI node value that is defined in the
2607 /// same block as the branch and if any PHI entries are constants, thread edges
2608 /// corresponding to that entry to be branches to their ultimate destination.
2609 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2610                                 const DataLayout &DL, AssumptionCache *AC) {
2611   BasicBlock *BB = BI->getParent();
2612   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2613   // NOTE: we currently cannot transform this case if the PHI node is used
2614   // outside of the block.
2615   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2616     return false;
2617 
2618   // Degenerate case of a single entry PHI.
2619   if (PN->getNumIncomingValues() == 1) {
2620     FoldSingleEntryPHINodes(PN->getParent());
2621     return true;
2622   }
2623 
2624   // Now we know that this block has multiple preds and two succs.
2625   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2626     return false;
2627 
2628   // Okay, this is a simple enough basic block.  See if any phi values are
2629   // constants.
2630   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2631     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2632     if (!CB || !CB->getType()->isIntegerTy(1))
2633       continue;
2634 
2635     // Okay, we now know that all edges from PredBB should be revectored to
2636     // branch to RealDest.
2637     BasicBlock *PredBB = PN->getIncomingBlock(i);
2638     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2639 
2640     if (RealDest == BB)
2641       continue; // Skip self loops.
2642     // Skip if the predecessor's terminator is an indirect branch.
2643     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2644       continue;
2645 
2646     SmallVector<DominatorTree::UpdateType, 3> Updates;
2647 
2648     // The dest block might have PHI nodes, other predecessors and other
2649     // difficult cases.  Instead of being smart about this, just insert a new
2650     // block that jumps to the destination block, effectively splitting
2651     // the edge we are about to create.
2652     BasicBlock *EdgeBB =
2653         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2654                            RealDest->getParent(), RealDest);
2655     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2656     if (DTU)
2657       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2658     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2659 
2660     // Update PHI nodes.
2661     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2662 
2663     // BB may have instructions that are being threaded over.  Clone these
2664     // instructions into EdgeBB.  We know that there will be no uses of the
2665     // cloned instructions outside of EdgeBB.
2666     BasicBlock::iterator InsertPt = EdgeBB->begin();
2667     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2668     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2669       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2670         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2671         continue;
2672       }
2673       // Clone the instruction.
2674       Instruction *N = BBI->clone();
2675       if (BBI->hasName())
2676         N->setName(BBI->getName() + ".c");
2677 
2678       // Update operands due to translation.
2679       for (Use &Op : N->operands()) {
2680         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2681         if (PI != TranslateMap.end())
2682           Op = PI->second;
2683       }
2684 
2685       // Check for trivial simplification.
2686       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2687         if (!BBI->use_empty())
2688           TranslateMap[&*BBI] = V;
2689         if (!N->mayHaveSideEffects()) {
2690           N->deleteValue(); // Instruction folded away, don't need actual inst
2691           N = nullptr;
2692         }
2693       } else {
2694         if (!BBI->use_empty())
2695           TranslateMap[&*BBI] = N;
2696       }
2697       if (N) {
2698         // Insert the new instruction into its new home.
2699         EdgeBB->getInstList().insert(InsertPt, N);
2700 
2701         // Register the new instruction with the assumption cache if necessary.
2702         if (auto *Assume = dyn_cast<AssumeInst>(N))
2703           if (AC)
2704             AC->registerAssumption(Assume);
2705       }
2706     }
2707 
2708     // Loop over all of the edges from PredBB to BB, changing them to branch
2709     // to EdgeBB instead.
2710     Instruction *PredBBTI = PredBB->getTerminator();
2711     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2712       if (PredBBTI->getSuccessor(i) == BB) {
2713         BB->removePredecessor(PredBB);
2714         PredBBTI->setSuccessor(i, EdgeBB);
2715       }
2716 
2717     if (DTU) {
2718       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2719       Updates.push_back({DominatorTree::Delete, PredBB, BB});
2720 
2721       DTU->applyUpdates(Updates);
2722     }
2723 
2724     // Recurse, simplifying any other constants.
2725     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2726   }
2727 
2728   return false;
2729 }
2730 
2731 /// Given a BB that starts with the specified two-entry PHI node,
2732 /// see if we can eliminate it.
2733 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2734                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2735   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2736   // statement", which has a very simple dominance structure.  Basically, we
2737   // are trying to find the condition that is being branched on, which
2738   // subsequently causes this merge to happen.  We really want control
2739   // dependence information for this check, but simplifycfg can't keep it up
2740   // to date, and this catches most of the cases we care about anyway.
2741   BasicBlock *BB = PN->getParent();
2742 
2743   BasicBlock *IfTrue, *IfFalse;
2744   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
2745   if (!DomBI)
2746     return false;
2747   Value *IfCond = DomBI->getCondition();
2748   // Don't bother if the branch will be constant folded trivially.
2749   if (isa<ConstantInt>(IfCond))
2750     return false;
2751 
2752   BasicBlock *DomBlock = DomBI->getParent();
2753   SmallVector<BasicBlock *, 2> IfBlocks;
2754   llvm::copy_if(
2755       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
2756         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
2757       });
2758   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
2759          "Will have either one or two blocks to speculate.");
2760 
2761   // If the branch is non-unpredictable, see if we either predictably jump to
2762   // the merge bb (if we have only a single 'then' block), or if we predictably
2763   // jump to one specific 'then' block (if we have two of them).
2764   // It isn't beneficial to speculatively execute the code
2765   // from the block that we know is predictably not entered.
2766   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
2767     uint64_t TWeight, FWeight;
2768     if (DomBI->extractProfMetadata(TWeight, FWeight) &&
2769         (TWeight + FWeight) != 0) {
2770       BranchProbability BITrueProb =
2771           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
2772       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2773       BranchProbability BIFalseProb = BITrueProb.getCompl();
2774       if (IfBlocks.size() == 1) {
2775         BranchProbability BIBBProb =
2776             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
2777         if (BIBBProb >= Likely)
2778           return false;
2779       } else {
2780         if (BITrueProb >= Likely || BIFalseProb >= Likely)
2781           return false;
2782       }
2783     }
2784   }
2785 
2786   // Don't try to fold an unreachable block. For example, the phi node itself
2787   // can't be the candidate if-condition for a select that we want to form.
2788   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
2789     if (IfCondPhiInst->getParent() == BB)
2790       return false;
2791 
2792   // Okay, we found that we can merge this two-entry phi node into a select.
2793   // Doing so would require us to fold *all* two entry phi nodes in this block.
2794   // At some point this becomes non-profitable (particularly if the target
2795   // doesn't support cmov's).  Only do this transformation if there are two or
2796   // fewer PHI nodes in this block.
2797   unsigned NumPhis = 0;
2798   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2799     if (NumPhis > 2)
2800       return false;
2801 
2802   // Loop over the PHI's seeing if we can promote them all to select
2803   // instructions.  While we are at it, keep track of the instructions
2804   // that need to be moved to the dominating block.
2805   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2806   InstructionCost Cost = 0;
2807   InstructionCost Budget =
2808       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2809 
2810   bool Changed = false;
2811   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2812     PHINode *PN = cast<PHINode>(II++);
2813     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2814       PN->replaceAllUsesWith(V);
2815       PN->eraseFromParent();
2816       Changed = true;
2817       continue;
2818     }
2819 
2820     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2821                              Cost, Budget, TTI) ||
2822         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2823                              Cost, Budget, TTI))
2824       return Changed;
2825   }
2826 
2827   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2828   // we ran out of PHIs then we simplified them all.
2829   PN = dyn_cast<PHINode>(BB->begin());
2830   if (!PN)
2831     return true;
2832 
2833   // Return true if at least one of these is a 'not', and another is either
2834   // a 'not' too, or a constant.
2835   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2836     if (!match(V0, m_Not(m_Value())))
2837       std::swap(V0, V1);
2838     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2839     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2840   };
2841 
2842   // Don't fold i1 branches on PHIs which contain binary operators or
2843   // (possibly inverted) select form of or/ands,  unless one of
2844   // the incoming values is an 'not' and another one is freely invertible.
2845   // These can often be turned into switches and other things.
2846   auto IsBinOpOrAnd = [](Value *V) {
2847     return match(
2848         V, m_CombineOr(
2849                m_BinOp(),
2850                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
2851                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
2852   };
2853   if (PN->getType()->isIntegerTy(1) &&
2854       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2855        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2856       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2857                                  PN->getIncomingValue(1)))
2858     return Changed;
2859 
2860   // If all PHI nodes are promotable, check to make sure that all instructions
2861   // in the predecessor blocks can be promoted as well. If not, we won't be able
2862   // to get rid of the control flow, so it's not worth promoting to select
2863   // instructions.
2864   for (BasicBlock *IfBlock : IfBlocks)
2865     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
2866       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2867           !isa<PseudoProbeInst>(I)) {
2868         // This is not an aggressive instruction that we can promote.
2869         // Because of this, we won't be able to get rid of the control flow, so
2870         // the xform is not worth it.
2871         return Changed;
2872       }
2873 
2874   // If either of the blocks has it's address taken, we can't do this fold.
2875   if (any_of(IfBlocks,
2876              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
2877     return Changed;
2878 
2879   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2880                     << "  T: " << IfTrue->getName()
2881                     << "  F: " << IfFalse->getName() << "\n");
2882 
2883   // If we can still promote the PHI nodes after this gauntlet of tests,
2884   // do all of the PHI's now.
2885 
2886   // Move all 'aggressive' instructions, which are defined in the
2887   // conditional parts of the if's up to the dominating block.
2888   for (BasicBlock *IfBlock : IfBlocks)
2889       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
2890 
2891   IRBuilder<NoFolder> Builder(DomBI);
2892   // Propagate fast-math-flags from phi nodes to replacement selects.
2893   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2894   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2895     if (isa<FPMathOperator>(PN))
2896       Builder.setFastMathFlags(PN->getFastMathFlags());
2897 
2898     // Change the PHI node into a select instruction.
2899     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
2900     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
2901 
2902     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
2903     PN->replaceAllUsesWith(Sel);
2904     Sel->takeName(PN);
2905     PN->eraseFromParent();
2906   }
2907 
2908   // At this point, all IfBlocks are empty, so our if statement
2909   // has been flattened.  Change DomBlock to jump directly to our new block to
2910   // avoid other simplifycfg's kicking in on the diamond.
2911   Builder.CreateBr(BB);
2912 
2913   SmallVector<DominatorTree::UpdateType, 3> Updates;
2914   if (DTU) {
2915     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2916     for (auto *Successor : successors(DomBlock))
2917       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2918   }
2919 
2920   DomBI->eraseFromParent();
2921   if (DTU)
2922     DTU->applyUpdates(Updates);
2923 
2924   return true;
2925 }
2926 
2927 static Value *createLogicalOp(IRBuilderBase &Builder,
2928                               Instruction::BinaryOps Opc, Value *LHS,
2929                               Value *RHS, const Twine &Name = "") {
2930   // Try to relax logical op to binary op.
2931   if (impliesPoison(RHS, LHS))
2932     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
2933   if (Opc == Instruction::And)
2934     return Builder.CreateLogicalAnd(LHS, RHS, Name);
2935   if (Opc == Instruction::Or)
2936     return Builder.CreateLogicalOr(LHS, RHS, Name);
2937   llvm_unreachable("Invalid logical opcode");
2938 }
2939 
2940 /// Return true if either PBI or BI has branch weight available, and store
2941 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2942 /// not have branch weight, use 1:1 as its weight.
2943 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2944                                    uint64_t &PredTrueWeight,
2945                                    uint64_t &PredFalseWeight,
2946                                    uint64_t &SuccTrueWeight,
2947                                    uint64_t &SuccFalseWeight) {
2948   bool PredHasWeights =
2949       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2950   bool SuccHasWeights =
2951       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2952   if (PredHasWeights || SuccHasWeights) {
2953     if (!PredHasWeights)
2954       PredTrueWeight = PredFalseWeight = 1;
2955     if (!SuccHasWeights)
2956       SuccTrueWeight = SuccFalseWeight = 1;
2957     return true;
2958   } else {
2959     return false;
2960   }
2961 }
2962 
2963 /// Determine if the two branches share a common destination and deduce a glue
2964 /// that joins the branches' conditions to arrive at the common destination if
2965 /// that would be profitable.
2966 static Optional<std::pair<Instruction::BinaryOps, bool>>
2967 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
2968                                           const TargetTransformInfo *TTI) {
2969   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
2970          "Both blocks must end with a conditional branches.");
2971   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
2972          "PredBB must be a predecessor of BB.");
2973 
2974   // We have the potential to fold the conditions together, but if the
2975   // predecessor branch is predictable, we may not want to merge them.
2976   uint64_t PTWeight, PFWeight;
2977   BranchProbability PBITrueProb, Likely;
2978   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
2979       PBI->extractProfMetadata(PTWeight, PFWeight) &&
2980       (PTWeight + PFWeight) != 0) {
2981     PBITrueProb =
2982         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
2983     Likely = TTI->getPredictableBranchThreshold();
2984   }
2985 
2986   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
2987     // Speculate the 2nd condition unless the 1st is probably true.
2988     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
2989       return {{Instruction::Or, false}};
2990   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
2991     // Speculate the 2nd condition unless the 1st is probably false.
2992     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
2993       return {{Instruction::And, false}};
2994   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
2995     // Speculate the 2nd condition unless the 1st is probably true.
2996     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
2997       return {{Instruction::And, true}};
2998   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
2999     // Speculate the 2nd condition unless the 1st is probably false.
3000     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3001       return {{Instruction::Or, true}};
3002   }
3003   return None;
3004 }
3005 
3006 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3007                                              DomTreeUpdater *DTU,
3008                                              MemorySSAUpdater *MSSAU,
3009                                              const TargetTransformInfo *TTI) {
3010   BasicBlock *BB = BI->getParent();
3011   BasicBlock *PredBlock = PBI->getParent();
3012 
3013   // Determine if the two branches share a common destination.
3014   Instruction::BinaryOps Opc;
3015   bool InvertPredCond;
3016   std::tie(Opc, InvertPredCond) =
3017       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3018 
3019   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3020 
3021   IRBuilder<> Builder(PBI);
3022   // The builder is used to create instructions to eliminate the branch in BB.
3023   // If BB's terminator has !annotation metadata, add it to the new
3024   // instructions.
3025   Builder.CollectMetadataToCopy(BB->getTerminator(),
3026                                 {LLVMContext::MD_annotation});
3027 
3028   // If we need to invert the condition in the pred block to match, do so now.
3029   if (InvertPredCond) {
3030     Value *NewCond = PBI->getCondition();
3031     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3032       CmpInst *CI = cast<CmpInst>(NewCond);
3033       CI->setPredicate(CI->getInversePredicate());
3034     } else {
3035       NewCond =
3036           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3037     }
3038 
3039     PBI->setCondition(NewCond);
3040     PBI->swapSuccessors();
3041   }
3042 
3043   BasicBlock *UniqueSucc =
3044       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3045 
3046   // Before cloning instructions, notify the successor basic block that it
3047   // is about to have a new predecessor. This will update PHI nodes,
3048   // which will allow us to update live-out uses of bonus instructions.
3049   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3050 
3051   // Try to update branch weights.
3052   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3053   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3054                              SuccTrueWeight, SuccFalseWeight)) {
3055     SmallVector<uint64_t, 8> NewWeights;
3056 
3057     if (PBI->getSuccessor(0) == BB) {
3058       // PBI: br i1 %x, BB, FalseDest
3059       // BI:  br i1 %y, UniqueSucc, FalseDest
3060       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3061       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3062       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3063       //               TrueWeight for PBI * FalseWeight for BI.
3064       // We assume that total weights of a BranchInst can fit into 32 bits.
3065       // Therefore, we will not have overflow using 64-bit arithmetic.
3066       NewWeights.push_back(PredFalseWeight *
3067                                (SuccFalseWeight + SuccTrueWeight) +
3068                            PredTrueWeight * SuccFalseWeight);
3069     } else {
3070       // PBI: br i1 %x, TrueDest, BB
3071       // BI:  br i1 %y, TrueDest, UniqueSucc
3072       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3073       //              FalseWeight for PBI * TrueWeight for BI.
3074       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3075                            PredFalseWeight * SuccTrueWeight);
3076       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3077       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3078     }
3079 
3080     // Halve the weights if any of them cannot fit in an uint32_t
3081     FitWeights(NewWeights);
3082 
3083     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3084     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3085 
3086     // TODO: If BB is reachable from all paths through PredBlock, then we
3087     // could replace PBI's branch probabilities with BI's.
3088   } else
3089     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3090 
3091   // Now, update the CFG.
3092   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3093 
3094   if (DTU)
3095     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3096                        {DominatorTree::Delete, PredBlock, BB}});
3097 
3098   // If BI was a loop latch, it may have had associated loop metadata.
3099   // We need to copy it to the new latch, that is, PBI.
3100   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3101     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3102 
3103   ValueToValueMapTy VMap; // maps original values to cloned values
3104   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3105 
3106   // Now that the Cond was cloned into the predecessor basic block,
3107   // or/and the two conditions together.
3108   Value *BICond = VMap[BI->getCondition()];
3109   PBI->setCondition(
3110       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3111 
3112   // Copy any debug value intrinsics into the end of PredBlock.
3113   for (Instruction &I : *BB) {
3114     if (isa<DbgInfoIntrinsic>(I)) {
3115       Instruction *NewI = I.clone();
3116       RemapInstruction(NewI, VMap,
3117                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3118       NewI->insertBefore(PBI);
3119     }
3120   }
3121 
3122   ++NumFoldBranchToCommonDest;
3123   return true;
3124 }
3125 
3126 /// If this basic block is simple enough, and if a predecessor branches to us
3127 /// and one of our successors, fold the block into the predecessor and use
3128 /// logical operations to pick the right destination.
3129 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3130                                   MemorySSAUpdater *MSSAU,
3131                                   const TargetTransformInfo *TTI,
3132                                   unsigned BonusInstThreshold) {
3133   // If this block ends with an unconditional branch,
3134   // let SpeculativelyExecuteBB() deal with it.
3135   if (!BI->isConditional())
3136     return false;
3137 
3138   BasicBlock *BB = BI->getParent();
3139   TargetTransformInfo::TargetCostKind CostKind =
3140     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3141                                   : TargetTransformInfo::TCK_SizeAndLatency;
3142 
3143   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3144 
3145   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3146       Cond->getParent() != BB || !Cond->hasOneUse())
3147     return false;
3148 
3149   // Cond is known to be a compare or binary operator.  Check to make sure that
3150   // neither operand is a potentially-trapping constant expression.
3151   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3152     if (CE->canTrap())
3153       return false;
3154   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3155     if (CE->canTrap())
3156       return false;
3157 
3158   // Finally, don't infinitely unroll conditional loops.
3159   if (is_contained(successors(BB), BB))
3160     return false;
3161 
3162   // With which predecessors will we want to deal with?
3163   SmallVector<BasicBlock *, 8> Preds;
3164   for (BasicBlock *PredBlock : predecessors(BB)) {
3165     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3166 
3167     // Check that we have two conditional branches.  If there is a PHI node in
3168     // the common successor, verify that the same value flows in from both
3169     // blocks.
3170     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3171       continue;
3172 
3173     // Determine if the two branches share a common destination.
3174     Instruction::BinaryOps Opc;
3175     bool InvertPredCond;
3176     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3177       std::tie(Opc, InvertPredCond) = *Recipe;
3178     else
3179       continue;
3180 
3181     // Check the cost of inserting the necessary logic before performing the
3182     // transformation.
3183     if (TTI) {
3184       Type *Ty = BI->getCondition()->getType();
3185       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3186       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3187           !isa<CmpInst>(PBI->getCondition())))
3188         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3189 
3190       if (Cost > BranchFoldThreshold)
3191         continue;
3192     }
3193 
3194     // Ok, we do want to deal with this predecessor. Record it.
3195     Preds.emplace_back(PredBlock);
3196   }
3197 
3198   // If there aren't any predecessors into which we can fold,
3199   // don't bother checking the cost.
3200   if (Preds.empty())
3201     return false;
3202 
3203   // Only allow this transformation if computing the condition doesn't involve
3204   // too many instructions and these involved instructions can be executed
3205   // unconditionally. We denote all involved instructions except the condition
3206   // as "bonus instructions", and only allow this transformation when the
3207   // number of the bonus instructions we'll need to create when cloning into
3208   // each predecessor does not exceed a certain threshold.
3209   unsigned NumBonusInsts = 0;
3210   const unsigned PredCount = Preds.size();
3211   for (Instruction &I : *BB) {
3212     // Don't check the branch condition comparison itself.
3213     if (&I == Cond)
3214       continue;
3215     // Ignore dbg intrinsics, and the terminator.
3216     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3217       continue;
3218     // I must be safe to execute unconditionally.
3219     if (!isSafeToSpeculativelyExecute(&I))
3220       return false;
3221 
3222     // Account for the cost of duplicating this instruction into each
3223     // predecessor.
3224     NumBonusInsts += PredCount;
3225     // Early exits once we reach the limit.
3226     if (NumBonusInsts > BonusInstThreshold)
3227       return false;
3228   }
3229 
3230   // Ok, we have the budget. Perform the transformation.
3231   for (BasicBlock *PredBlock : Preds) {
3232     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3233     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3234   }
3235   return false;
3236 }
3237 
3238 // If there is only one store in BB1 and BB2, return it, otherwise return
3239 // nullptr.
3240 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3241   StoreInst *S = nullptr;
3242   for (auto *BB : {BB1, BB2}) {
3243     if (!BB)
3244       continue;
3245     for (auto &I : *BB)
3246       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3247         if (S)
3248           // Multiple stores seen.
3249           return nullptr;
3250         else
3251           S = SI;
3252       }
3253   }
3254   return S;
3255 }
3256 
3257 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3258                                               Value *AlternativeV = nullptr) {
3259   // PHI is going to be a PHI node that allows the value V that is defined in
3260   // BB to be referenced in BB's only successor.
3261   //
3262   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3263   // doesn't matter to us what the other operand is (it'll never get used). We
3264   // could just create a new PHI with an undef incoming value, but that could
3265   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3266   // other PHI. So here we directly look for some PHI in BB's successor with V
3267   // as an incoming operand. If we find one, we use it, else we create a new
3268   // one.
3269   //
3270   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3271   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3272   // where OtherBB is the single other predecessor of BB's only successor.
3273   PHINode *PHI = nullptr;
3274   BasicBlock *Succ = BB->getSingleSuccessor();
3275 
3276   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3277     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3278       PHI = cast<PHINode>(I);
3279       if (!AlternativeV)
3280         break;
3281 
3282       assert(Succ->hasNPredecessors(2));
3283       auto PredI = pred_begin(Succ);
3284       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3285       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3286         break;
3287       PHI = nullptr;
3288     }
3289   if (PHI)
3290     return PHI;
3291 
3292   // If V is not an instruction defined in BB, just return it.
3293   if (!AlternativeV &&
3294       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3295     return V;
3296 
3297   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3298   PHI->addIncoming(V, BB);
3299   for (BasicBlock *PredBB : predecessors(Succ))
3300     if (PredBB != BB)
3301       PHI->addIncoming(
3302           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3303   return PHI;
3304 }
3305 
3306 static bool mergeConditionalStoreToAddress(
3307     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3308     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3309     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3310   // For every pointer, there must be exactly two stores, one coming from
3311   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3312   // store (to any address) in PTB,PFB or QTB,QFB.
3313   // FIXME: We could relax this restriction with a bit more work and performance
3314   // testing.
3315   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3316   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3317   if (!PStore || !QStore)
3318     return false;
3319 
3320   // Now check the stores are compatible.
3321   if (!QStore->isUnordered() || !PStore->isUnordered())
3322     return false;
3323 
3324   // Check that sinking the store won't cause program behavior changes. Sinking
3325   // the store out of the Q blocks won't change any behavior as we're sinking
3326   // from a block to its unconditional successor. But we're moving a store from
3327   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3328   // So we need to check that there are no aliasing loads or stores in
3329   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3330   // operations between PStore and the end of its parent block.
3331   //
3332   // The ideal way to do this is to query AliasAnalysis, but we don't
3333   // preserve AA currently so that is dangerous. Be super safe and just
3334   // check there are no other memory operations at all.
3335   for (auto &I : *QFB->getSinglePredecessor())
3336     if (I.mayReadOrWriteMemory())
3337       return false;
3338   for (auto &I : *QFB)
3339     if (&I != QStore && I.mayReadOrWriteMemory())
3340       return false;
3341   if (QTB)
3342     for (auto &I : *QTB)
3343       if (&I != QStore && I.mayReadOrWriteMemory())
3344         return false;
3345   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3346        I != E; ++I)
3347     if (&*I != PStore && I->mayReadOrWriteMemory())
3348       return false;
3349 
3350   // If we're not in aggressive mode, we only optimize if we have some
3351   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3352   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3353     if (!BB)
3354       return true;
3355     // Heuristic: if the block can be if-converted/phi-folded and the
3356     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3357     // thread this store.
3358     InstructionCost Cost = 0;
3359     InstructionCost Budget =
3360         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3361     for (auto &I : BB->instructionsWithoutDebug()) {
3362       // Consider terminator instruction to be free.
3363       if (I.isTerminator())
3364         continue;
3365       // If this is one the stores that we want to speculate out of this BB,
3366       // then don't count it's cost, consider it to be free.
3367       if (auto *S = dyn_cast<StoreInst>(&I))
3368         if (llvm::find(FreeStores, S))
3369           continue;
3370       // Else, we have a white-list of instructions that we are ak speculating.
3371       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3372         return false; // Not in white-list - not worthwhile folding.
3373       // And finally, if this is a non-free instruction that we are okay
3374       // speculating, ensure that we consider the speculation budget.
3375       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3376       if (Cost > Budget)
3377         return false; // Eagerly refuse to fold as soon as we're out of budget.
3378     }
3379     assert(Cost <= Budget &&
3380            "When we run out of budget we will eagerly return from within the "
3381            "per-instruction loop.");
3382     return true;
3383   };
3384 
3385   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3386   if (!MergeCondStoresAggressively &&
3387       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3388        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3389     return false;
3390 
3391   // If PostBB has more than two predecessors, we need to split it so we can
3392   // sink the store.
3393   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3394     // We know that QFB's only successor is PostBB. And QFB has a single
3395     // predecessor. If QTB exists, then its only successor is also PostBB.
3396     // If QTB does not exist, then QFB's only predecessor has a conditional
3397     // branch to QFB and PostBB.
3398     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3399     BasicBlock *NewBB =
3400         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3401     if (!NewBB)
3402       return false;
3403     PostBB = NewBB;
3404   }
3405 
3406   // OK, we're going to sink the stores to PostBB. The store has to be
3407   // conditional though, so first create the predicate.
3408   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3409                      ->getCondition();
3410   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3411                      ->getCondition();
3412 
3413   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3414                                                 PStore->getParent());
3415   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3416                                                 QStore->getParent(), PPHI);
3417 
3418   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3419 
3420   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3421   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3422 
3423   if (InvertPCond)
3424     PPred = QB.CreateNot(PPred);
3425   if (InvertQCond)
3426     QPred = QB.CreateNot(QPred);
3427   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3428 
3429   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3430                                       /*Unreachable=*/false,
3431                                       /*BranchWeights=*/nullptr, DTU);
3432   QB.SetInsertPoint(T);
3433   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3434   AAMDNodes AAMD;
3435   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3436   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3437   SI->setAAMetadata(AAMD);
3438   // Choose the minimum alignment. If we could prove both stores execute, we
3439   // could use biggest one.  In this case, though, we only know that one of the
3440   // stores executes.  And we don't know it's safe to take the alignment from a
3441   // store that doesn't execute.
3442   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3443 
3444   QStore->eraseFromParent();
3445   PStore->eraseFromParent();
3446 
3447   return true;
3448 }
3449 
3450 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3451                                    DomTreeUpdater *DTU, const DataLayout &DL,
3452                                    const TargetTransformInfo &TTI) {
3453   // The intention here is to find diamonds or triangles (see below) where each
3454   // conditional block contains a store to the same address. Both of these
3455   // stores are conditional, so they can't be unconditionally sunk. But it may
3456   // be profitable to speculatively sink the stores into one merged store at the
3457   // end, and predicate the merged store on the union of the two conditions of
3458   // PBI and QBI.
3459   //
3460   // This can reduce the number of stores executed if both of the conditions are
3461   // true, and can allow the blocks to become small enough to be if-converted.
3462   // This optimization will also chain, so that ladders of test-and-set
3463   // sequences can be if-converted away.
3464   //
3465   // We only deal with simple diamonds or triangles:
3466   //
3467   //     PBI       or      PBI        or a combination of the two
3468   //    /   \               | \
3469   //   PTB  PFB             |  PFB
3470   //    \   /               | /
3471   //     QBI                QBI
3472   //    /  \                | \
3473   //   QTB  QFB             |  QFB
3474   //    \  /                | /
3475   //    PostBB            PostBB
3476   //
3477   // We model triangles as a type of diamond with a nullptr "true" block.
3478   // Triangles are canonicalized so that the fallthrough edge is represented by
3479   // a true condition, as in the diagram above.
3480   BasicBlock *PTB = PBI->getSuccessor(0);
3481   BasicBlock *PFB = PBI->getSuccessor(1);
3482   BasicBlock *QTB = QBI->getSuccessor(0);
3483   BasicBlock *QFB = QBI->getSuccessor(1);
3484   BasicBlock *PostBB = QFB->getSingleSuccessor();
3485 
3486   // Make sure we have a good guess for PostBB. If QTB's only successor is
3487   // QFB, then QFB is a better PostBB.
3488   if (QTB->getSingleSuccessor() == QFB)
3489     PostBB = QFB;
3490 
3491   // If we couldn't find a good PostBB, stop.
3492   if (!PostBB)
3493     return false;
3494 
3495   bool InvertPCond = false, InvertQCond = false;
3496   // Canonicalize fallthroughs to the true branches.
3497   if (PFB == QBI->getParent()) {
3498     std::swap(PFB, PTB);
3499     InvertPCond = true;
3500   }
3501   if (QFB == PostBB) {
3502     std::swap(QFB, QTB);
3503     InvertQCond = true;
3504   }
3505 
3506   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3507   // and QFB may not. Model fallthroughs as a nullptr block.
3508   if (PTB == QBI->getParent())
3509     PTB = nullptr;
3510   if (QTB == PostBB)
3511     QTB = nullptr;
3512 
3513   // Legality bailouts. We must have at least the non-fallthrough blocks and
3514   // the post-dominating block, and the non-fallthroughs must only have one
3515   // predecessor.
3516   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3517     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3518   };
3519   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3520       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3521     return false;
3522   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3523       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3524     return false;
3525   if (!QBI->getParent()->hasNUses(2))
3526     return false;
3527 
3528   // OK, this is a sequence of two diamonds or triangles.
3529   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3530   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3531   for (auto *BB : {PTB, PFB}) {
3532     if (!BB)
3533       continue;
3534     for (auto &I : *BB)
3535       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3536         PStoreAddresses.insert(SI->getPointerOperand());
3537   }
3538   for (auto *BB : {QTB, QFB}) {
3539     if (!BB)
3540       continue;
3541     for (auto &I : *BB)
3542       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3543         QStoreAddresses.insert(SI->getPointerOperand());
3544   }
3545 
3546   set_intersect(PStoreAddresses, QStoreAddresses);
3547   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3548   // clear what it contains.
3549   auto &CommonAddresses = PStoreAddresses;
3550 
3551   bool Changed = false;
3552   for (auto *Address : CommonAddresses)
3553     Changed |=
3554         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3555                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3556   return Changed;
3557 }
3558 
3559 /// If the previous block ended with a widenable branch, determine if reusing
3560 /// the target block is profitable and legal.  This will have the effect of
3561 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3562 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3563                                            DomTreeUpdater *DTU) {
3564   // TODO: This can be generalized in two important ways:
3565   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3566   //    values from the PBI edge.
3567   // 2) We can sink side effecting instructions into BI's fallthrough
3568   //    successor provided they doesn't contribute to computation of
3569   //    BI's condition.
3570   Value *CondWB, *WC;
3571   BasicBlock *IfTrueBB, *IfFalseBB;
3572   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3573       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3574     return false;
3575   if (!IfFalseBB->phis().empty())
3576     return false; // TODO
3577   // Use lambda to lazily compute expensive condition after cheap ones.
3578   auto NoSideEffects = [](BasicBlock &BB) {
3579     return !llvm::any_of(BB, [](const Instruction &I) {
3580         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3581       });
3582   };
3583   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3584       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3585       NoSideEffects(*BI->getParent())) {
3586     auto *OldSuccessor = BI->getSuccessor(1);
3587     OldSuccessor->removePredecessor(BI->getParent());
3588     BI->setSuccessor(1, IfFalseBB);
3589     if (DTU)
3590       DTU->applyUpdates(
3591           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3592            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3593     return true;
3594   }
3595   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3596       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3597       NoSideEffects(*BI->getParent())) {
3598     auto *OldSuccessor = BI->getSuccessor(0);
3599     OldSuccessor->removePredecessor(BI->getParent());
3600     BI->setSuccessor(0, IfFalseBB);
3601     if (DTU)
3602       DTU->applyUpdates(
3603           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3604            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3605     return true;
3606   }
3607   return false;
3608 }
3609 
3610 /// If we have a conditional branch as a predecessor of another block,
3611 /// this function tries to simplify it.  We know
3612 /// that PBI and BI are both conditional branches, and BI is in one of the
3613 /// successor blocks of PBI - PBI branches to BI.
3614 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3615                                            DomTreeUpdater *DTU,
3616                                            const DataLayout &DL,
3617                                            const TargetTransformInfo &TTI) {
3618   assert(PBI->isConditional() && BI->isConditional());
3619   BasicBlock *BB = BI->getParent();
3620 
3621   // If this block ends with a branch instruction, and if there is a
3622   // predecessor that ends on a branch of the same condition, make
3623   // this conditional branch redundant.
3624   if (PBI->getCondition() == BI->getCondition() &&
3625       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3626     // Okay, the outcome of this conditional branch is statically
3627     // knowable.  If this block had a single pred, handle specially.
3628     if (BB->getSinglePredecessor()) {
3629       // Turn this into a branch on constant.
3630       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3631       BI->setCondition(
3632           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3633       return true; // Nuke the branch on constant.
3634     }
3635 
3636     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3637     // in the constant and simplify the block result.  Subsequent passes of
3638     // simplifycfg will thread the block.
3639     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3640       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3641       PHINode *NewPN = PHINode::Create(
3642           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3643           BI->getCondition()->getName() + ".pr", &BB->front());
3644       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3645       // predecessor, compute the PHI'd conditional value for all of the preds.
3646       // Any predecessor where the condition is not computable we keep symbolic.
3647       for (pred_iterator PI = PB; PI != PE; ++PI) {
3648         BasicBlock *P = *PI;
3649         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3650             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3651             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3652           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3653           NewPN->addIncoming(
3654               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3655               P);
3656         } else {
3657           NewPN->addIncoming(BI->getCondition(), P);
3658         }
3659       }
3660 
3661       BI->setCondition(NewPN);
3662       return true;
3663     }
3664   }
3665 
3666   // If the previous block ended with a widenable branch, determine if reusing
3667   // the target block is profitable and legal.  This will have the effect of
3668   // "widening" PBI, but doesn't require us to reason about hosting safety.
3669   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3670     return true;
3671 
3672   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3673     if (CE->canTrap())
3674       return false;
3675 
3676   // If both branches are conditional and both contain stores to the same
3677   // address, remove the stores from the conditionals and create a conditional
3678   // merged store at the end.
3679   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3680     return true;
3681 
3682   // If this is a conditional branch in an empty block, and if any
3683   // predecessors are a conditional branch to one of our destinations,
3684   // fold the conditions into logical ops and one cond br.
3685 
3686   // Ignore dbg intrinsics.
3687   if (&*BB->instructionsWithoutDebug().begin() != BI)
3688     return false;
3689 
3690   int PBIOp, BIOp;
3691   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3692     PBIOp = 0;
3693     BIOp = 0;
3694   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3695     PBIOp = 0;
3696     BIOp = 1;
3697   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3698     PBIOp = 1;
3699     BIOp = 0;
3700   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3701     PBIOp = 1;
3702     BIOp = 1;
3703   } else {
3704     return false;
3705   }
3706 
3707   // Check to make sure that the other destination of this branch
3708   // isn't BB itself.  If so, this is an infinite loop that will
3709   // keep getting unwound.
3710   if (PBI->getSuccessor(PBIOp) == BB)
3711     return false;
3712 
3713   // Do not perform this transformation if it would require
3714   // insertion of a large number of select instructions. For targets
3715   // without predication/cmovs, this is a big pessimization.
3716 
3717   // Also do not perform this transformation if any phi node in the common
3718   // destination block can trap when reached by BB or PBB (PR17073). In that
3719   // case, it would be unsafe to hoist the operation into a select instruction.
3720 
3721   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3722   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3723   unsigned NumPhis = 0;
3724   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3725        ++II, ++NumPhis) {
3726     if (NumPhis > 2) // Disable this xform.
3727       return false;
3728 
3729     PHINode *PN = cast<PHINode>(II);
3730     Value *BIV = PN->getIncomingValueForBlock(BB);
3731     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3732       if (CE->canTrap())
3733         return false;
3734 
3735     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3736     Value *PBIV = PN->getIncomingValue(PBBIdx);
3737     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3738       if (CE->canTrap())
3739         return false;
3740   }
3741 
3742   // Finally, if everything is ok, fold the branches to logical ops.
3743   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3744 
3745   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3746                     << "AND: " << *BI->getParent());
3747 
3748   SmallVector<DominatorTree::UpdateType, 5> Updates;
3749 
3750   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3751   // branch in it, where one edge (OtherDest) goes back to itself but the other
3752   // exits.  We don't *know* that the program avoids the infinite loop
3753   // (even though that seems likely).  If we do this xform naively, we'll end up
3754   // recursively unpeeling the loop.  Since we know that (after the xform is
3755   // done) that the block *is* infinite if reached, we just make it an obviously
3756   // infinite loop with no cond branch.
3757   if (OtherDest == BB) {
3758     // Insert it at the end of the function, because it's either code,
3759     // or it won't matter if it's hot. :)
3760     BasicBlock *InfLoopBlock =
3761         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3762     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3763     if (DTU)
3764       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3765     OtherDest = InfLoopBlock;
3766   }
3767 
3768   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3769 
3770   // BI may have other predecessors.  Because of this, we leave
3771   // it alone, but modify PBI.
3772 
3773   // Make sure we get to CommonDest on True&True directions.
3774   Value *PBICond = PBI->getCondition();
3775   IRBuilder<NoFolder> Builder(PBI);
3776   if (PBIOp)
3777     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3778 
3779   Value *BICond = BI->getCondition();
3780   if (BIOp)
3781     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3782 
3783   // Merge the conditions.
3784   Value *Cond =
3785       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
3786 
3787   // Modify PBI to branch on the new condition to the new dests.
3788   PBI->setCondition(Cond);
3789   PBI->setSuccessor(0, CommonDest);
3790   PBI->setSuccessor(1, OtherDest);
3791 
3792   if (DTU) {
3793     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3794     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3795 
3796     DTU->applyUpdates(Updates);
3797   }
3798 
3799   // Update branch weight for PBI.
3800   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3801   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3802   bool HasWeights =
3803       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3804                              SuccTrueWeight, SuccFalseWeight);
3805   if (HasWeights) {
3806     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3807     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3808     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3809     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3810     // The weight to CommonDest should be PredCommon * SuccTotal +
3811     //                                    PredOther * SuccCommon.
3812     // The weight to OtherDest should be PredOther * SuccOther.
3813     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3814                                   PredOther * SuccCommon,
3815                               PredOther * SuccOther};
3816     // Halve the weights if any of them cannot fit in an uint32_t
3817     FitWeights(NewWeights);
3818 
3819     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3820   }
3821 
3822   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3823   // block that are identical to the entries for BI's block.
3824   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3825 
3826   // We know that the CommonDest already had an edge from PBI to
3827   // it.  If it has PHIs though, the PHIs may have different
3828   // entries for BB and PBI's BB.  If so, insert a select to make
3829   // them agree.
3830   for (PHINode &PN : CommonDest->phis()) {
3831     Value *BIV = PN.getIncomingValueForBlock(BB);
3832     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3833     Value *PBIV = PN.getIncomingValue(PBBIdx);
3834     if (BIV != PBIV) {
3835       // Insert a select in PBI to pick the right value.
3836       SelectInst *NV = cast<SelectInst>(
3837           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3838       PN.setIncomingValue(PBBIdx, NV);
3839       // Although the select has the same condition as PBI, the original branch
3840       // weights for PBI do not apply to the new select because the select's
3841       // 'logical' edges are incoming edges of the phi that is eliminated, not
3842       // the outgoing edges of PBI.
3843       if (HasWeights) {
3844         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3845         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3846         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3847         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3848         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3849         // The weight to PredOtherDest should be PredOther * SuccCommon.
3850         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3851                                   PredOther * SuccCommon};
3852 
3853         FitWeights(NewWeights);
3854 
3855         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3856       }
3857     }
3858   }
3859 
3860   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3861   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3862 
3863   // This basic block is probably dead.  We know it has at least
3864   // one fewer predecessor.
3865   return true;
3866 }
3867 
3868 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3869 // true or to FalseBB if Cond is false.
3870 // Takes care of updating the successors and removing the old terminator.
3871 // Also makes sure not to introduce new successors by assuming that edges to
3872 // non-successor TrueBBs and FalseBBs aren't reachable.
3873 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3874                                                 Value *Cond, BasicBlock *TrueBB,
3875                                                 BasicBlock *FalseBB,
3876                                                 uint32_t TrueWeight,
3877                                                 uint32_t FalseWeight) {
3878   auto *BB = OldTerm->getParent();
3879   // Remove any superfluous successor edges from the CFG.
3880   // First, figure out which successors to preserve.
3881   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3882   // successor.
3883   BasicBlock *KeepEdge1 = TrueBB;
3884   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3885 
3886   SmallPtrSet<BasicBlock *, 2> RemovedSuccessors;
3887 
3888   // Then remove the rest.
3889   for (BasicBlock *Succ : successors(OldTerm)) {
3890     // Make sure only to keep exactly one copy of each edge.
3891     if (Succ == KeepEdge1)
3892       KeepEdge1 = nullptr;
3893     else if (Succ == KeepEdge2)
3894       KeepEdge2 = nullptr;
3895     else {
3896       Succ->removePredecessor(BB,
3897                               /*KeepOneInputPHIs=*/true);
3898 
3899       if (Succ != TrueBB && Succ != FalseBB)
3900         RemovedSuccessors.insert(Succ);
3901     }
3902   }
3903 
3904   IRBuilder<> Builder(OldTerm);
3905   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3906 
3907   // Insert an appropriate new terminator.
3908   if (!KeepEdge1 && !KeepEdge2) {
3909     if (TrueBB == FalseBB) {
3910       // We were only looking for one successor, and it was present.
3911       // Create an unconditional branch to it.
3912       Builder.CreateBr(TrueBB);
3913     } else {
3914       // We found both of the successors we were looking for.
3915       // Create a conditional branch sharing the condition of the select.
3916       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3917       if (TrueWeight != FalseWeight)
3918         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3919     }
3920   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3921     // Neither of the selected blocks were successors, so this
3922     // terminator must be unreachable.
3923     new UnreachableInst(OldTerm->getContext(), OldTerm);
3924   } else {
3925     // One of the selected values was a successor, but the other wasn't.
3926     // Insert an unconditional branch to the one that was found;
3927     // the edge to the one that wasn't must be unreachable.
3928     if (!KeepEdge1) {
3929       // Only TrueBB was found.
3930       Builder.CreateBr(TrueBB);
3931     } else {
3932       // Only FalseBB was found.
3933       Builder.CreateBr(FalseBB);
3934     }
3935   }
3936 
3937   EraseTerminatorAndDCECond(OldTerm);
3938 
3939   if (DTU) {
3940     SmallVector<DominatorTree::UpdateType, 2> Updates;
3941     Updates.reserve(RemovedSuccessors.size());
3942     for (auto *RemovedSuccessor : RemovedSuccessors)
3943       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3944     DTU->applyUpdates(Updates);
3945   }
3946 
3947   return true;
3948 }
3949 
3950 // Replaces
3951 //   (switch (select cond, X, Y)) on constant X, Y
3952 // with a branch - conditional if X and Y lead to distinct BBs,
3953 // unconditional otherwise.
3954 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3955                                             SelectInst *Select) {
3956   // Check for constant integer values in the select.
3957   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3958   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3959   if (!TrueVal || !FalseVal)
3960     return false;
3961 
3962   // Find the relevant condition and destinations.
3963   Value *Condition = Select->getCondition();
3964   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3965   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3966 
3967   // Get weight for TrueBB and FalseBB.
3968   uint32_t TrueWeight = 0, FalseWeight = 0;
3969   SmallVector<uint64_t, 8> Weights;
3970   bool HasWeights = HasBranchWeights(SI);
3971   if (HasWeights) {
3972     GetBranchWeights(SI, Weights);
3973     if (Weights.size() == 1 + SI->getNumCases()) {
3974       TrueWeight =
3975           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3976       FalseWeight =
3977           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3978     }
3979   }
3980 
3981   // Perform the actual simplification.
3982   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3983                                     FalseWeight);
3984 }
3985 
3986 // Replaces
3987 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3988 //                             blockaddress(@fn, BlockB)))
3989 // with
3990 //   (br cond, BlockA, BlockB).
3991 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3992                                                 SelectInst *SI) {
3993   // Check that both operands of the select are block addresses.
3994   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3995   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3996   if (!TBA || !FBA)
3997     return false;
3998 
3999   // Extract the actual blocks.
4000   BasicBlock *TrueBB = TBA->getBasicBlock();
4001   BasicBlock *FalseBB = FBA->getBasicBlock();
4002 
4003   // Perform the actual simplification.
4004   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4005                                     0);
4006 }
4007 
4008 /// This is called when we find an icmp instruction
4009 /// (a seteq/setne with a constant) as the only instruction in a
4010 /// block that ends with an uncond branch.  We are looking for a very specific
4011 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4012 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4013 /// default value goes to an uncond block with a seteq in it, we get something
4014 /// like:
4015 ///
4016 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4017 /// DEFAULT:
4018 ///   %tmp = icmp eq i8 %A, 92
4019 ///   br label %end
4020 /// end:
4021 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4022 ///
4023 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4024 /// the PHI, merging the third icmp into the switch.
4025 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4026     ICmpInst *ICI, IRBuilder<> &Builder) {
4027   BasicBlock *BB = ICI->getParent();
4028 
4029   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4030   // complex.
4031   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4032     return false;
4033 
4034   Value *V = ICI->getOperand(0);
4035   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4036 
4037   // The pattern we're looking for is where our only predecessor is a switch on
4038   // 'V' and this block is the default case for the switch.  In this case we can
4039   // fold the compared value into the switch to simplify things.
4040   BasicBlock *Pred = BB->getSinglePredecessor();
4041   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4042     return false;
4043 
4044   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4045   if (SI->getCondition() != V)
4046     return false;
4047 
4048   // If BB is reachable on a non-default case, then we simply know the value of
4049   // V in this block.  Substitute it and constant fold the icmp instruction
4050   // away.
4051   if (SI->getDefaultDest() != BB) {
4052     ConstantInt *VVal = SI->findCaseDest(BB);
4053     assert(VVal && "Should have a unique destination value");
4054     ICI->setOperand(0, VVal);
4055 
4056     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4057       ICI->replaceAllUsesWith(V);
4058       ICI->eraseFromParent();
4059     }
4060     // BB is now empty, so it is likely to simplify away.
4061     return requestResimplify();
4062   }
4063 
4064   // Ok, the block is reachable from the default dest.  If the constant we're
4065   // comparing exists in one of the other edges, then we can constant fold ICI
4066   // and zap it.
4067   if (SI->findCaseValue(Cst) != SI->case_default()) {
4068     Value *V;
4069     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4070       V = ConstantInt::getFalse(BB->getContext());
4071     else
4072       V = ConstantInt::getTrue(BB->getContext());
4073 
4074     ICI->replaceAllUsesWith(V);
4075     ICI->eraseFromParent();
4076     // BB is now empty, so it is likely to simplify away.
4077     return requestResimplify();
4078   }
4079 
4080   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4081   // the block.
4082   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4083   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4084   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4085       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4086     return false;
4087 
4088   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4089   // true in the PHI.
4090   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4091   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4092 
4093   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4094     std::swap(DefaultCst, NewCst);
4095 
4096   // Replace ICI (which is used by the PHI for the default value) with true or
4097   // false depending on if it is EQ or NE.
4098   ICI->replaceAllUsesWith(DefaultCst);
4099   ICI->eraseFromParent();
4100 
4101   SmallVector<DominatorTree::UpdateType, 2> Updates;
4102 
4103   // Okay, the switch goes to this block on a default value.  Add an edge from
4104   // the switch to the merge point on the compared value.
4105   BasicBlock *NewBB =
4106       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4107   {
4108     SwitchInstProfUpdateWrapper SIW(*SI);
4109     auto W0 = SIW.getSuccessorWeight(0);
4110     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4111     if (W0) {
4112       NewW = ((uint64_t(*W0) + 1) >> 1);
4113       SIW.setSuccessorWeight(0, *NewW);
4114     }
4115     SIW.addCase(Cst, NewBB, NewW);
4116     if (DTU)
4117       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4118   }
4119 
4120   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4121   Builder.SetInsertPoint(NewBB);
4122   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4123   Builder.CreateBr(SuccBlock);
4124   PHIUse->addIncoming(NewCst, NewBB);
4125   if (DTU) {
4126     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4127     DTU->applyUpdates(Updates);
4128   }
4129   return true;
4130 }
4131 
4132 /// The specified branch is a conditional branch.
4133 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4134 /// fold it into a switch instruction if so.
4135 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4136                                                IRBuilder<> &Builder,
4137                                                const DataLayout &DL) {
4138   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4139   if (!Cond)
4140     return false;
4141 
4142   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4143   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4144   // 'setne's and'ed together, collect them.
4145 
4146   // Try to gather values from a chain of and/or to be turned into a switch
4147   ConstantComparesGatherer ConstantCompare(Cond, DL);
4148   // Unpack the result
4149   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4150   Value *CompVal = ConstantCompare.CompValue;
4151   unsigned UsedICmps = ConstantCompare.UsedICmps;
4152   Value *ExtraCase = ConstantCompare.Extra;
4153 
4154   // If we didn't have a multiply compared value, fail.
4155   if (!CompVal)
4156     return false;
4157 
4158   // Avoid turning single icmps into a switch.
4159   if (UsedICmps <= 1)
4160     return false;
4161 
4162   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4163 
4164   // There might be duplicate constants in the list, which the switch
4165   // instruction can't handle, remove them now.
4166   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4167   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4168 
4169   // If Extra was used, we require at least two switch values to do the
4170   // transformation.  A switch with one value is just a conditional branch.
4171   if (ExtraCase && Values.size() < 2)
4172     return false;
4173 
4174   // TODO: Preserve branch weight metadata, similarly to how
4175   // FoldValueComparisonIntoPredecessors preserves it.
4176 
4177   // Figure out which block is which destination.
4178   BasicBlock *DefaultBB = BI->getSuccessor(1);
4179   BasicBlock *EdgeBB = BI->getSuccessor(0);
4180   if (!TrueWhenEqual)
4181     std::swap(DefaultBB, EdgeBB);
4182 
4183   BasicBlock *BB = BI->getParent();
4184 
4185   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4186                     << " cases into SWITCH.  BB is:\n"
4187                     << *BB);
4188 
4189   SmallVector<DominatorTree::UpdateType, 2> Updates;
4190 
4191   // If there are any extra values that couldn't be folded into the switch
4192   // then we evaluate them with an explicit branch first. Split the block
4193   // right before the condbr to handle it.
4194   if (ExtraCase) {
4195     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4196                                    /*MSSAU=*/nullptr, "switch.early.test");
4197 
4198     // Remove the uncond branch added to the old block.
4199     Instruction *OldTI = BB->getTerminator();
4200     Builder.SetInsertPoint(OldTI);
4201 
4202     // There can be an unintended UB if extra values are Poison. Before the
4203     // transformation, extra values may not be evaluated according to the
4204     // condition, and it will not raise UB. But after transformation, we are
4205     // evaluating extra values before checking the condition, and it will raise
4206     // UB. It can be solved by adding freeze instruction to extra values.
4207     AssumptionCache *AC = Options.AC;
4208 
4209     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4210       ExtraCase = Builder.CreateFreeze(ExtraCase);
4211 
4212     if (TrueWhenEqual)
4213       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4214     else
4215       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4216 
4217     OldTI->eraseFromParent();
4218 
4219     if (DTU)
4220       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4221 
4222     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4223     // for the edge we just added.
4224     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4225 
4226     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4227                       << "\nEXTRABB = " << *BB);
4228     BB = NewBB;
4229   }
4230 
4231   Builder.SetInsertPoint(BI);
4232   // Convert pointer to int before we switch.
4233   if (CompVal->getType()->isPointerTy()) {
4234     CompVal = Builder.CreatePtrToInt(
4235         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4236   }
4237 
4238   // Create the new switch instruction now.
4239   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4240 
4241   // Add all of the 'cases' to the switch instruction.
4242   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4243     New->addCase(Values[i], EdgeBB);
4244 
4245   // We added edges from PI to the EdgeBB.  As such, if there were any
4246   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4247   // the number of edges added.
4248   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4249     PHINode *PN = cast<PHINode>(BBI);
4250     Value *InVal = PN->getIncomingValueForBlock(BB);
4251     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4252       PN->addIncoming(InVal, BB);
4253   }
4254 
4255   // Erase the old branch instruction.
4256   EraseTerminatorAndDCECond(BI);
4257   if (DTU)
4258     DTU->applyUpdates(Updates);
4259 
4260   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4261   return true;
4262 }
4263 
4264 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4265   if (isa<PHINode>(RI->getValue()))
4266     return simplifyCommonResume(RI);
4267   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4268            RI->getValue() == RI->getParent()->getFirstNonPHI())
4269     // The resume must unwind the exception that caused control to branch here.
4270     return simplifySingleResume(RI);
4271 
4272   return false;
4273 }
4274 
4275 // Check if cleanup block is empty
4276 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4277   for (Instruction &I : R) {
4278     auto *II = dyn_cast<IntrinsicInst>(&I);
4279     if (!II)
4280       return false;
4281 
4282     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4283     switch (IntrinsicID) {
4284     case Intrinsic::dbg_declare:
4285     case Intrinsic::dbg_value:
4286     case Intrinsic::dbg_label:
4287     case Intrinsic::lifetime_end:
4288       break;
4289     default:
4290       return false;
4291     }
4292   }
4293   return true;
4294 }
4295 
4296 // Simplify resume that is shared by several landing pads (phi of landing pad).
4297 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4298   BasicBlock *BB = RI->getParent();
4299 
4300   // Check that there are no other instructions except for debug and lifetime
4301   // intrinsics between the phi's and resume instruction.
4302   if (!isCleanupBlockEmpty(
4303           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4304     return false;
4305 
4306   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4307   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4308 
4309   // Check incoming blocks to see if any of them are trivial.
4310   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4311        Idx++) {
4312     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4313     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4314 
4315     // If the block has other successors, we can not delete it because
4316     // it has other dependents.
4317     if (IncomingBB->getUniqueSuccessor() != BB)
4318       continue;
4319 
4320     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4321     // Not the landing pad that caused the control to branch here.
4322     if (IncomingValue != LandingPad)
4323       continue;
4324 
4325     if (isCleanupBlockEmpty(
4326             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4327       TrivialUnwindBlocks.insert(IncomingBB);
4328   }
4329 
4330   // If no trivial unwind blocks, don't do any simplifications.
4331   if (TrivialUnwindBlocks.empty())
4332     return false;
4333 
4334   // Turn all invokes that unwind here into calls.
4335   for (auto *TrivialBB : TrivialUnwindBlocks) {
4336     // Blocks that will be simplified should be removed from the phi node.
4337     // Note there could be multiple edges to the resume block, and we need
4338     // to remove them all.
4339     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4340       BB->removePredecessor(TrivialBB, true);
4341 
4342     for (BasicBlock *Pred :
4343          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4344       removeUnwindEdge(Pred, DTU);
4345       ++NumInvokes;
4346     }
4347 
4348     // In each SimplifyCFG run, only the current processed block can be erased.
4349     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4350     // of erasing TrivialBB, we only remove the branch to the common resume
4351     // block so that we can later erase the resume block since it has no
4352     // predecessors.
4353     TrivialBB->getTerminator()->eraseFromParent();
4354     new UnreachableInst(RI->getContext(), TrivialBB);
4355     if (DTU)
4356       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4357   }
4358 
4359   // Delete the resume block if all its predecessors have been removed.
4360   if (pred_empty(BB))
4361     DeleteDeadBlock(BB, DTU);
4362 
4363   return !TrivialUnwindBlocks.empty();
4364 }
4365 
4366 // Simplify resume that is only used by a single (non-phi) landing pad.
4367 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4368   BasicBlock *BB = RI->getParent();
4369   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4370   assert(RI->getValue() == LPInst &&
4371          "Resume must unwind the exception that caused control to here");
4372 
4373   // Check that there are no other instructions except for debug intrinsics.
4374   if (!isCleanupBlockEmpty(
4375           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4376     return false;
4377 
4378   // Turn all invokes that unwind here into calls and delete the basic block.
4379   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4380     removeUnwindEdge(Pred, DTU);
4381     ++NumInvokes;
4382   }
4383 
4384   // The landingpad is now unreachable.  Zap it.
4385   DeleteDeadBlock(BB, DTU);
4386   return true;
4387 }
4388 
4389 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4390   // If this is a trivial cleanup pad that executes no instructions, it can be
4391   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4392   // that is an EH pad will be updated to continue to the caller and any
4393   // predecessor that terminates with an invoke instruction will have its invoke
4394   // instruction converted to a call instruction.  If the cleanup pad being
4395   // simplified does not continue to the caller, each predecessor will be
4396   // updated to continue to the unwind destination of the cleanup pad being
4397   // simplified.
4398   BasicBlock *BB = RI->getParent();
4399   CleanupPadInst *CPInst = RI->getCleanupPad();
4400   if (CPInst->getParent() != BB)
4401     // This isn't an empty cleanup.
4402     return false;
4403 
4404   // We cannot kill the pad if it has multiple uses.  This typically arises
4405   // from unreachable basic blocks.
4406   if (!CPInst->hasOneUse())
4407     return false;
4408 
4409   // Check that there are no other instructions except for benign intrinsics.
4410   if (!isCleanupBlockEmpty(
4411           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4412     return false;
4413 
4414   // If the cleanup return we are simplifying unwinds to the caller, this will
4415   // set UnwindDest to nullptr.
4416   BasicBlock *UnwindDest = RI->getUnwindDest();
4417   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4418 
4419   // We're about to remove BB from the control flow.  Before we do, sink any
4420   // PHINodes into the unwind destination.  Doing this before changing the
4421   // control flow avoids some potentially slow checks, since we can currently
4422   // be certain that UnwindDest and BB have no common predecessors (since they
4423   // are both EH pads).
4424   if (UnwindDest) {
4425     // First, go through the PHI nodes in UnwindDest and update any nodes that
4426     // reference the block we are removing
4427     for (PHINode &DestPN : UnwindDest->phis()) {
4428       int Idx = DestPN.getBasicBlockIndex(BB);
4429       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4430       assert(Idx != -1);
4431       // This PHI node has an incoming value that corresponds to a control
4432       // path through the cleanup pad we are removing.  If the incoming
4433       // value is in the cleanup pad, it must be a PHINode (because we
4434       // verified above that the block is otherwise empty).  Otherwise, the
4435       // value is either a constant or a value that dominates the cleanup
4436       // pad being removed.
4437       //
4438       // Because BB and UnwindDest are both EH pads, all of their
4439       // predecessors must unwind to these blocks, and since no instruction
4440       // can have multiple unwind destinations, there will be no overlap in
4441       // incoming blocks between SrcPN and DestPN.
4442       Value *SrcVal = DestPN.getIncomingValue(Idx);
4443       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4444 
4445       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4446       for (auto *Pred : predecessors(BB)) {
4447         Value *Incoming =
4448             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4449         DestPN.addIncoming(Incoming, Pred);
4450       }
4451     }
4452 
4453     // Sink any remaining PHI nodes directly into UnwindDest.
4454     Instruction *InsertPt = DestEHPad;
4455     for (PHINode &PN : make_early_inc_range(BB->phis())) {
4456       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4457         // If the PHI node has no uses or all of its uses are in this basic
4458         // block (meaning they are debug or lifetime intrinsics), just leave
4459         // it.  It will be erased when we erase BB below.
4460         continue;
4461 
4462       // Otherwise, sink this PHI node into UnwindDest.
4463       // Any predecessors to UnwindDest which are not already represented
4464       // must be back edges which inherit the value from the path through
4465       // BB.  In this case, the PHI value must reference itself.
4466       for (auto *pred : predecessors(UnwindDest))
4467         if (pred != BB)
4468           PN.addIncoming(&PN, pred);
4469       PN.moveBefore(InsertPt);
4470       // Also, add a dummy incoming value for the original BB itself,
4471       // so that the PHI is well-formed until we drop said predecessor.
4472       PN.addIncoming(UndefValue::get(PN.getType()), BB);
4473     }
4474   }
4475 
4476   std::vector<DominatorTree::UpdateType> Updates;
4477 
4478   // We use make_early_inc_range here because we will remove all predecessors.
4479   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4480     if (UnwindDest == nullptr) {
4481       if (DTU) {
4482         DTU->applyUpdates(Updates);
4483         Updates.clear();
4484       }
4485       removeUnwindEdge(PredBB, DTU);
4486       ++NumInvokes;
4487     } else {
4488       BB->removePredecessor(PredBB);
4489       Instruction *TI = PredBB->getTerminator();
4490       TI->replaceUsesOfWith(BB, UnwindDest);
4491       if (DTU) {
4492         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4493         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4494       }
4495     }
4496   }
4497 
4498   if (DTU)
4499     DTU->applyUpdates(Updates);
4500 
4501   DeleteDeadBlock(BB, DTU);
4502 
4503   return true;
4504 }
4505 
4506 // Try to merge two cleanuppads together.
4507 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4508   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4509   // with.
4510   BasicBlock *UnwindDest = RI->getUnwindDest();
4511   if (!UnwindDest)
4512     return false;
4513 
4514   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4515   // be safe to merge without code duplication.
4516   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4517     return false;
4518 
4519   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4520   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4521   if (!SuccessorCleanupPad)
4522     return false;
4523 
4524   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4525   // Replace any uses of the successor cleanupad with the predecessor pad
4526   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4527   // funclet bundle operands.
4528   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4529   // Remove the old cleanuppad.
4530   SuccessorCleanupPad->eraseFromParent();
4531   // Now, we simply replace the cleanupret with a branch to the unwind
4532   // destination.
4533   BranchInst::Create(UnwindDest, RI->getParent());
4534   RI->eraseFromParent();
4535 
4536   return true;
4537 }
4538 
4539 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4540   // It is possible to transiantly have an undef cleanuppad operand because we
4541   // have deleted some, but not all, dead blocks.
4542   // Eventually, this block will be deleted.
4543   if (isa<UndefValue>(RI->getOperand(0)))
4544     return false;
4545 
4546   if (mergeCleanupPad(RI))
4547     return true;
4548 
4549   if (removeEmptyCleanup(RI, DTU))
4550     return true;
4551 
4552   return false;
4553 }
4554 
4555 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4556 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4557   BasicBlock *BB = UI->getParent();
4558 
4559   bool Changed = false;
4560 
4561   // If there are any instructions immediately before the unreachable that can
4562   // be removed, do so.
4563   while (UI->getIterator() != BB->begin()) {
4564     BasicBlock::iterator BBI = UI->getIterator();
4565     --BBI;
4566 
4567     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
4568       break; // Can not drop any more instructions. We're done here.
4569     // Otherwise, this instruction can be freely erased,
4570     // even if it is not side-effect free.
4571 
4572     // Note that deleting EH's here is in fact okay, although it involves a bit
4573     // of subtle reasoning. If this inst is an EH, all the predecessors of this
4574     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4575     // and we can therefore guarantee this block will be erased.
4576 
4577     // Delete this instruction (any uses are guaranteed to be dead)
4578     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
4579     BBI->eraseFromParent();
4580     Changed = true;
4581   }
4582 
4583   // If the unreachable instruction is the first in the block, take a gander
4584   // at all of the predecessors of this instruction, and simplify them.
4585   if (&BB->front() != UI)
4586     return Changed;
4587 
4588   std::vector<DominatorTree::UpdateType> Updates;
4589 
4590   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4591   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4592     auto *Predecessor = Preds[i];
4593     Instruction *TI = Predecessor->getTerminator();
4594     IRBuilder<> Builder(TI);
4595     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4596       // We could either have a proper unconditional branch,
4597       // or a degenerate conditional branch with matching destinations.
4598       if (all_of(BI->successors(),
4599                  [BB](auto *Successor) { return Successor == BB; })) {
4600         new UnreachableInst(TI->getContext(), TI);
4601         TI->eraseFromParent();
4602         Changed = true;
4603       } else {
4604         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4605         Value* Cond = BI->getCondition();
4606         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4607                "The destinations are guaranteed to be different here.");
4608         if (BI->getSuccessor(0) == BB) {
4609           Builder.CreateAssumption(Builder.CreateNot(Cond));
4610           Builder.CreateBr(BI->getSuccessor(1));
4611         } else {
4612           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4613           Builder.CreateAssumption(Cond);
4614           Builder.CreateBr(BI->getSuccessor(0));
4615         }
4616         EraseTerminatorAndDCECond(BI);
4617         Changed = true;
4618       }
4619       if (DTU)
4620         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4621     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4622       SwitchInstProfUpdateWrapper SU(*SI);
4623       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4624         if (i->getCaseSuccessor() != BB) {
4625           ++i;
4626           continue;
4627         }
4628         BB->removePredecessor(SU->getParent());
4629         i = SU.removeCase(i);
4630         e = SU->case_end();
4631         Changed = true;
4632       }
4633       // Note that the default destination can't be removed!
4634       if (DTU && SI->getDefaultDest() != BB)
4635         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4636     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4637       if (II->getUnwindDest() == BB) {
4638         if (DTU) {
4639           DTU->applyUpdates(Updates);
4640           Updates.clear();
4641         }
4642         removeUnwindEdge(TI->getParent(), DTU);
4643         Changed = true;
4644       }
4645     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4646       if (CSI->getUnwindDest() == BB) {
4647         if (DTU) {
4648           DTU->applyUpdates(Updates);
4649           Updates.clear();
4650         }
4651         removeUnwindEdge(TI->getParent(), DTU);
4652         Changed = true;
4653         continue;
4654       }
4655 
4656       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4657                                              E = CSI->handler_end();
4658            I != E; ++I) {
4659         if (*I == BB) {
4660           CSI->removeHandler(I);
4661           --I;
4662           --E;
4663           Changed = true;
4664         }
4665       }
4666       if (DTU)
4667         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4668       if (CSI->getNumHandlers() == 0) {
4669         if (CSI->hasUnwindDest()) {
4670           // Redirect all predecessors of the block containing CatchSwitchInst
4671           // to instead branch to the CatchSwitchInst's unwind destination.
4672           if (DTU) {
4673             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4674               Updates.push_back({DominatorTree::Insert,
4675                                  PredecessorOfPredecessor,
4676                                  CSI->getUnwindDest()});
4677               Updates.push_back({DominatorTree::Delete,
4678                                  PredecessorOfPredecessor, Predecessor});
4679             }
4680           }
4681           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4682         } else {
4683           // Rewrite all preds to unwind to caller (or from invoke to call).
4684           if (DTU) {
4685             DTU->applyUpdates(Updates);
4686             Updates.clear();
4687           }
4688           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4689           for (BasicBlock *EHPred : EHPreds)
4690             removeUnwindEdge(EHPred, DTU);
4691         }
4692         // The catchswitch is no longer reachable.
4693         new UnreachableInst(CSI->getContext(), CSI);
4694         CSI->eraseFromParent();
4695         Changed = true;
4696       }
4697     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4698       (void)CRI;
4699       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4700              "Expected to always have an unwind to BB.");
4701       if (DTU)
4702         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4703       new UnreachableInst(TI->getContext(), TI);
4704       TI->eraseFromParent();
4705       Changed = true;
4706     }
4707   }
4708 
4709   if (DTU)
4710     DTU->applyUpdates(Updates);
4711 
4712   // If this block is now dead, remove it.
4713   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4714     DeleteDeadBlock(BB, DTU);
4715     return true;
4716   }
4717 
4718   return Changed;
4719 }
4720 
4721 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4722   assert(Cases.size() >= 1);
4723 
4724   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4725   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4726     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4727       return false;
4728   }
4729   return true;
4730 }
4731 
4732 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4733                                            DomTreeUpdater *DTU) {
4734   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4735   auto *BB = Switch->getParent();
4736   BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
4737       Switch->getDefaultDest(), Switch->getParent(), "", DTU);
4738   auto *OrigDefaultBlock = Switch->getDefaultDest();
4739   Switch->setDefaultDest(&*NewDefaultBlock);
4740   if (DTU)
4741     DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
4742                        {DominatorTree::Delete, BB, OrigDefaultBlock}});
4743   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
4744   SmallVector<DominatorTree::UpdateType, 2> Updates;
4745   if (DTU)
4746     for (auto *Successor : successors(NewDefaultBlock))
4747       Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4748   auto *NewTerminator = NewDefaultBlock->getTerminator();
4749   new UnreachableInst(Switch->getContext(), NewTerminator);
4750   EraseTerminatorAndDCECond(NewTerminator);
4751   if (DTU)
4752     DTU->applyUpdates(Updates);
4753 }
4754 
4755 /// Turn a switch with two reachable destinations into an integer range
4756 /// comparison and branch.
4757 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4758                                              IRBuilder<> &Builder) {
4759   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4760 
4761   bool HasDefault =
4762       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4763 
4764   auto *BB = SI->getParent();
4765 
4766   // Partition the cases into two sets with different destinations.
4767   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4768   BasicBlock *DestB = nullptr;
4769   SmallVector<ConstantInt *, 16> CasesA;
4770   SmallVector<ConstantInt *, 16> CasesB;
4771 
4772   for (auto Case : SI->cases()) {
4773     BasicBlock *Dest = Case.getCaseSuccessor();
4774     if (!DestA)
4775       DestA = Dest;
4776     if (Dest == DestA) {
4777       CasesA.push_back(Case.getCaseValue());
4778       continue;
4779     }
4780     if (!DestB)
4781       DestB = Dest;
4782     if (Dest == DestB) {
4783       CasesB.push_back(Case.getCaseValue());
4784       continue;
4785     }
4786     return false; // More than two destinations.
4787   }
4788 
4789   assert(DestA && DestB &&
4790          "Single-destination switch should have been folded.");
4791   assert(DestA != DestB);
4792   assert(DestB != SI->getDefaultDest());
4793   assert(!CasesB.empty() && "There must be non-default cases.");
4794   assert(!CasesA.empty() || HasDefault);
4795 
4796   // Figure out if one of the sets of cases form a contiguous range.
4797   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4798   BasicBlock *ContiguousDest = nullptr;
4799   BasicBlock *OtherDest = nullptr;
4800   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4801     ContiguousCases = &CasesA;
4802     ContiguousDest = DestA;
4803     OtherDest = DestB;
4804   } else if (CasesAreContiguous(CasesB)) {
4805     ContiguousCases = &CasesB;
4806     ContiguousDest = DestB;
4807     OtherDest = DestA;
4808   } else
4809     return false;
4810 
4811   // Start building the compare and branch.
4812 
4813   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4814   Constant *NumCases =
4815       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4816 
4817   Value *Sub = SI->getCondition();
4818   if (!Offset->isNullValue())
4819     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4820 
4821   Value *Cmp;
4822   // If NumCases overflowed, then all possible values jump to the successor.
4823   if (NumCases->isNullValue() && !ContiguousCases->empty())
4824     Cmp = ConstantInt::getTrue(SI->getContext());
4825   else
4826     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4827   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4828 
4829   // Update weight for the newly-created conditional branch.
4830   if (HasBranchWeights(SI)) {
4831     SmallVector<uint64_t, 8> Weights;
4832     GetBranchWeights(SI, Weights);
4833     if (Weights.size() == 1 + SI->getNumCases()) {
4834       uint64_t TrueWeight = 0;
4835       uint64_t FalseWeight = 0;
4836       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4837         if (SI->getSuccessor(I) == ContiguousDest)
4838           TrueWeight += Weights[I];
4839         else
4840           FalseWeight += Weights[I];
4841       }
4842       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4843         TrueWeight /= 2;
4844         FalseWeight /= 2;
4845       }
4846       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4847     }
4848   }
4849 
4850   // Prune obsolete incoming values off the successors' PHI nodes.
4851   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4852     unsigned PreviousEdges = ContiguousCases->size();
4853     if (ContiguousDest == SI->getDefaultDest())
4854       ++PreviousEdges;
4855     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4856       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4857   }
4858   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4859     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4860     if (OtherDest == SI->getDefaultDest())
4861       ++PreviousEdges;
4862     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4863       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4864   }
4865 
4866   // Clean up the default block - it may have phis or other instructions before
4867   // the unreachable terminator.
4868   if (!HasDefault)
4869     createUnreachableSwitchDefault(SI, DTU);
4870 
4871   auto *UnreachableDefault = SI->getDefaultDest();
4872 
4873   // Drop the switch.
4874   SI->eraseFromParent();
4875 
4876   if (!HasDefault && DTU)
4877     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4878 
4879   return true;
4880 }
4881 
4882 /// Compute masked bits for the condition of a switch
4883 /// and use it to remove dead cases.
4884 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4885                                      AssumptionCache *AC,
4886                                      const DataLayout &DL) {
4887   Value *Cond = SI->getCondition();
4888   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4889   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4890 
4891   // We can also eliminate cases by determining that their values are outside of
4892   // the limited range of the condition based on how many significant (non-sign)
4893   // bits are in the condition value.
4894   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4895   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4896 
4897   // Gather dead cases.
4898   SmallVector<ConstantInt *, 8> DeadCases;
4899   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
4900   for (auto &Case : SI->cases()) {
4901     auto *Successor = Case.getCaseSuccessor();
4902     if (DTU)
4903       ++NumPerSuccessorCases[Successor];
4904     const APInt &CaseVal = Case.getCaseValue()->getValue();
4905     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4906         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4907       DeadCases.push_back(Case.getCaseValue());
4908       if (DTU)
4909         --NumPerSuccessorCases[Successor];
4910       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4911                         << " is dead.\n");
4912     }
4913   }
4914 
4915   // If we can prove that the cases must cover all possible values, the
4916   // default destination becomes dead and we can remove it.  If we know some
4917   // of the bits in the value, we can use that to more precisely compute the
4918   // number of possible unique case values.
4919   bool HasDefault =
4920       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4921   const unsigned NumUnknownBits =
4922       Bits - (Known.Zero | Known.One).countPopulation();
4923   assert(NumUnknownBits <= Bits);
4924   if (HasDefault && DeadCases.empty() &&
4925       NumUnknownBits < 64 /* avoid overflow */ &&
4926       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4927     createUnreachableSwitchDefault(SI, DTU);
4928     return true;
4929   }
4930 
4931   if (DeadCases.empty())
4932     return false;
4933 
4934   SwitchInstProfUpdateWrapper SIW(*SI);
4935   for (ConstantInt *DeadCase : DeadCases) {
4936     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4937     assert(CaseI != SI->case_default() &&
4938            "Case was not found. Probably mistake in DeadCases forming.");
4939     // Prune unused values from PHI nodes.
4940     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4941     SIW.removeCase(CaseI);
4942   }
4943 
4944   if (DTU) {
4945     std::vector<DominatorTree::UpdateType> Updates;
4946     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
4947       if (I.second == 0)
4948         Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
4949     DTU->applyUpdates(Updates);
4950   }
4951 
4952   return true;
4953 }
4954 
4955 /// If BB would be eligible for simplification by
4956 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4957 /// by an unconditional branch), look at the phi node for BB in the successor
4958 /// block and see if the incoming value is equal to CaseValue. If so, return
4959 /// the phi node, and set PhiIndex to BB's index in the phi node.
4960 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4961                                               BasicBlock *BB, int *PhiIndex) {
4962   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4963     return nullptr; // BB must be empty to be a candidate for simplification.
4964   if (!BB->getSinglePredecessor())
4965     return nullptr; // BB must be dominated by the switch.
4966 
4967   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4968   if (!Branch || !Branch->isUnconditional())
4969     return nullptr; // Terminator must be unconditional branch.
4970 
4971   BasicBlock *Succ = Branch->getSuccessor(0);
4972 
4973   for (PHINode &PHI : Succ->phis()) {
4974     int Idx = PHI.getBasicBlockIndex(BB);
4975     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4976 
4977     Value *InValue = PHI.getIncomingValue(Idx);
4978     if (InValue != CaseValue)
4979       continue;
4980 
4981     *PhiIndex = Idx;
4982     return &PHI;
4983   }
4984 
4985   return nullptr;
4986 }
4987 
4988 /// Try to forward the condition of a switch instruction to a phi node
4989 /// dominated by the switch, if that would mean that some of the destination
4990 /// blocks of the switch can be folded away. Return true if a change is made.
4991 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4992   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4993 
4994   ForwardingNodesMap ForwardingNodes;
4995   BasicBlock *SwitchBlock = SI->getParent();
4996   bool Changed = false;
4997   for (auto &Case : SI->cases()) {
4998     ConstantInt *CaseValue = Case.getCaseValue();
4999     BasicBlock *CaseDest = Case.getCaseSuccessor();
5000 
5001     // Replace phi operands in successor blocks that are using the constant case
5002     // value rather than the switch condition variable:
5003     //   switchbb:
5004     //   switch i32 %x, label %default [
5005     //     i32 17, label %succ
5006     //   ...
5007     //   succ:
5008     //     %r = phi i32 ... [ 17, %switchbb ] ...
5009     // -->
5010     //     %r = phi i32 ... [ %x, %switchbb ] ...
5011 
5012     for (PHINode &Phi : CaseDest->phis()) {
5013       // This only works if there is exactly 1 incoming edge from the switch to
5014       // a phi. If there is >1, that means multiple cases of the switch map to 1
5015       // value in the phi, and that phi value is not the switch condition. Thus,
5016       // this transform would not make sense (the phi would be invalid because
5017       // a phi can't have different incoming values from the same block).
5018       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5019       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5020           count(Phi.blocks(), SwitchBlock) == 1) {
5021         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5022         Changed = true;
5023       }
5024     }
5025 
5026     // Collect phi nodes that are indirectly using this switch's case constants.
5027     int PhiIdx;
5028     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5029       ForwardingNodes[Phi].push_back(PhiIdx);
5030   }
5031 
5032   for (auto &ForwardingNode : ForwardingNodes) {
5033     PHINode *Phi = ForwardingNode.first;
5034     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5035     if (Indexes.size() < 2)
5036       continue;
5037 
5038     for (int Index : Indexes)
5039       Phi->setIncomingValue(Index, SI->getCondition());
5040     Changed = true;
5041   }
5042 
5043   return Changed;
5044 }
5045 
5046 /// Return true if the backend will be able to handle
5047 /// initializing an array of constants like C.
5048 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5049   if (C->isThreadDependent())
5050     return false;
5051   if (C->isDLLImportDependent())
5052     return false;
5053 
5054   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5055       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5056       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5057     return false;
5058 
5059   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5060     if (!CE->isGEPWithNoNotionalOverIndexing())
5061       return false;
5062     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5063       return false;
5064   }
5065 
5066   if (!TTI.shouldBuildLookupTablesForConstant(C))
5067     return false;
5068 
5069   return true;
5070 }
5071 
5072 /// If V is a Constant, return it. Otherwise, try to look up
5073 /// its constant value in ConstantPool, returning 0 if it's not there.
5074 static Constant *
5075 LookupConstant(Value *V,
5076                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5077   if (Constant *C = dyn_cast<Constant>(V))
5078     return C;
5079   return ConstantPool.lookup(V);
5080 }
5081 
5082 /// Try to fold instruction I into a constant. This works for
5083 /// simple instructions such as binary operations where both operands are
5084 /// constant or can be replaced by constants from the ConstantPool. Returns the
5085 /// resulting constant on success, 0 otherwise.
5086 static Constant *
5087 ConstantFold(Instruction *I, const DataLayout &DL,
5088              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5089   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5090     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5091     if (!A)
5092       return nullptr;
5093     if (A->isAllOnesValue())
5094       return LookupConstant(Select->getTrueValue(), ConstantPool);
5095     if (A->isNullValue())
5096       return LookupConstant(Select->getFalseValue(), ConstantPool);
5097     return nullptr;
5098   }
5099 
5100   SmallVector<Constant *, 4> COps;
5101   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5102     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5103       COps.push_back(A);
5104     else
5105       return nullptr;
5106   }
5107 
5108   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5109     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5110                                            COps[1], DL);
5111   }
5112 
5113   return ConstantFoldInstOperands(I, COps, DL);
5114 }
5115 
5116 /// Try to determine the resulting constant values in phi nodes
5117 /// at the common destination basic block, *CommonDest, for one of the case
5118 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5119 /// case), of a switch instruction SI.
5120 static bool
5121 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5122                BasicBlock **CommonDest,
5123                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5124                const DataLayout &DL, const TargetTransformInfo &TTI) {
5125   // The block from which we enter the common destination.
5126   BasicBlock *Pred = SI->getParent();
5127 
5128   // If CaseDest is empty except for some side-effect free instructions through
5129   // which we can constant-propagate the CaseVal, continue to its successor.
5130   SmallDenseMap<Value *, Constant *> ConstantPool;
5131   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5132   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5133     if (I.isTerminator()) {
5134       // If the terminator is a simple branch, continue to the next block.
5135       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5136         return false;
5137       Pred = CaseDest;
5138       CaseDest = I.getSuccessor(0);
5139     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5140       // Instruction is side-effect free and constant.
5141 
5142       // If the instruction has uses outside this block or a phi node slot for
5143       // the block, it is not safe to bypass the instruction since it would then
5144       // no longer dominate all its uses.
5145       for (auto &Use : I.uses()) {
5146         User *User = Use.getUser();
5147         if (Instruction *I = dyn_cast<Instruction>(User))
5148           if (I->getParent() == CaseDest)
5149             continue;
5150         if (PHINode *Phi = dyn_cast<PHINode>(User))
5151           if (Phi->getIncomingBlock(Use) == CaseDest)
5152             continue;
5153         return false;
5154       }
5155 
5156       ConstantPool.insert(std::make_pair(&I, C));
5157     } else {
5158       break;
5159     }
5160   }
5161 
5162   // If we did not have a CommonDest before, use the current one.
5163   if (!*CommonDest)
5164     *CommonDest = CaseDest;
5165   // If the destination isn't the common one, abort.
5166   if (CaseDest != *CommonDest)
5167     return false;
5168 
5169   // Get the values for this case from phi nodes in the destination block.
5170   for (PHINode &PHI : (*CommonDest)->phis()) {
5171     int Idx = PHI.getBasicBlockIndex(Pred);
5172     if (Idx == -1)
5173       continue;
5174 
5175     Constant *ConstVal =
5176         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5177     if (!ConstVal)
5178       return false;
5179 
5180     // Be conservative about which kinds of constants we support.
5181     if (!ValidLookupTableConstant(ConstVal, TTI))
5182       return false;
5183 
5184     Res.push_back(std::make_pair(&PHI, ConstVal));
5185   }
5186 
5187   return Res.size() > 0;
5188 }
5189 
5190 // Helper function used to add CaseVal to the list of cases that generate
5191 // Result. Returns the updated number of cases that generate this result.
5192 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5193                                  SwitchCaseResultVectorTy &UniqueResults,
5194                                  Constant *Result) {
5195   for (auto &I : UniqueResults) {
5196     if (I.first == Result) {
5197       I.second.push_back(CaseVal);
5198       return I.second.size();
5199     }
5200   }
5201   UniqueResults.push_back(
5202       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5203   return 1;
5204 }
5205 
5206 // Helper function that initializes a map containing
5207 // results for the PHI node of the common destination block for a switch
5208 // instruction. Returns false if multiple PHI nodes have been found or if
5209 // there is not a common destination block for the switch.
5210 static bool
5211 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5212                       SwitchCaseResultVectorTy &UniqueResults,
5213                       Constant *&DefaultResult, const DataLayout &DL,
5214                       const TargetTransformInfo &TTI,
5215                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5216   for (auto &I : SI->cases()) {
5217     ConstantInt *CaseVal = I.getCaseValue();
5218 
5219     // Resulting value at phi nodes for this case value.
5220     SwitchCaseResultsTy Results;
5221     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5222                         DL, TTI))
5223       return false;
5224 
5225     // Only one value per case is permitted.
5226     if (Results.size() > 1)
5227       return false;
5228 
5229     // Add the case->result mapping to UniqueResults.
5230     const uintptr_t NumCasesForResult =
5231         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5232 
5233     // Early out if there are too many cases for this result.
5234     if (NumCasesForResult > MaxCasesPerResult)
5235       return false;
5236 
5237     // Early out if there are too many unique results.
5238     if (UniqueResults.size() > MaxUniqueResults)
5239       return false;
5240 
5241     // Check the PHI consistency.
5242     if (!PHI)
5243       PHI = Results[0].first;
5244     else if (PHI != Results[0].first)
5245       return false;
5246   }
5247   // Find the default result value.
5248   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5249   BasicBlock *DefaultDest = SI->getDefaultDest();
5250   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5251                  DL, TTI);
5252   // If the default value is not found abort unless the default destination
5253   // is unreachable.
5254   DefaultResult =
5255       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5256   if ((!DefaultResult &&
5257        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5258     return false;
5259 
5260   return true;
5261 }
5262 
5263 // Helper function that checks if it is possible to transform a switch with only
5264 // two cases (or two cases + default) that produces a result into a select.
5265 // Example:
5266 // switch (a) {
5267 //   case 10:                %0 = icmp eq i32 %a, 10
5268 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5269 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5270 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5271 //   default:
5272 //     return 4;
5273 // }
5274 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5275                                    Constant *DefaultResult, Value *Condition,
5276                                    IRBuilder<> &Builder) {
5277   // If we are selecting between only two cases transform into a simple
5278   // select or a two-way select if default is possible.
5279   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5280       ResultVector[1].second.size() == 1) {
5281     ConstantInt *const FirstCase = ResultVector[0].second[0];
5282     ConstantInt *const SecondCase = ResultVector[1].second[0];
5283 
5284     bool DefaultCanTrigger = DefaultResult;
5285     Value *SelectValue = ResultVector[1].first;
5286     if (DefaultCanTrigger) {
5287       Value *const ValueCompare =
5288           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5289       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5290                                          DefaultResult, "switch.select");
5291     }
5292     Value *const ValueCompare =
5293         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5294     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5295                                 SelectValue, "switch.select");
5296   }
5297 
5298   // Handle the degenerate case where two cases have the same value.
5299   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5300       DefaultResult) {
5301     Value *Cmp1 = Builder.CreateICmpEQ(
5302         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5303     Value *Cmp2 = Builder.CreateICmpEQ(
5304         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5305     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5306     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5307   }
5308 
5309   return nullptr;
5310 }
5311 
5312 // Helper function to cleanup a switch instruction that has been converted into
5313 // a select, fixing up PHI nodes and basic blocks.
5314 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5315                                               Value *SelectValue,
5316                                               IRBuilder<> &Builder,
5317                                               DomTreeUpdater *DTU) {
5318   std::vector<DominatorTree::UpdateType> Updates;
5319 
5320   BasicBlock *SelectBB = SI->getParent();
5321   BasicBlock *DestBB = PHI->getParent();
5322 
5323   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5324     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5325   Builder.CreateBr(DestBB);
5326 
5327   // Remove the switch.
5328 
5329   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5330     PHI->removeIncomingValue(SelectBB);
5331   PHI->addIncoming(SelectValue, SelectBB);
5332 
5333   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5334   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5335     BasicBlock *Succ = SI->getSuccessor(i);
5336 
5337     if (Succ == DestBB)
5338       continue;
5339     Succ->removePredecessor(SelectBB);
5340     if (DTU && RemovedSuccessors.insert(Succ).second)
5341       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5342   }
5343   SI->eraseFromParent();
5344   if (DTU)
5345     DTU->applyUpdates(Updates);
5346 }
5347 
5348 /// If the switch is only used to initialize one or more
5349 /// phi nodes in a common successor block with only two different
5350 /// constant values, replace the switch with select.
5351 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5352                            DomTreeUpdater *DTU, const DataLayout &DL,
5353                            const TargetTransformInfo &TTI) {
5354   Value *const Cond = SI->getCondition();
5355   PHINode *PHI = nullptr;
5356   BasicBlock *CommonDest = nullptr;
5357   Constant *DefaultResult;
5358   SwitchCaseResultVectorTy UniqueResults;
5359   // Collect all the cases that will deliver the same value from the switch.
5360   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5361                              DL, TTI, /*MaxUniqueResults*/2,
5362                              /*MaxCasesPerResult*/2))
5363     return false;
5364   assert(PHI != nullptr && "PHI for value select not found");
5365 
5366   Builder.SetInsertPoint(SI);
5367   Value *SelectValue =
5368       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5369   if (SelectValue) {
5370     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5371     return true;
5372   }
5373   // The switch couldn't be converted into a select.
5374   return false;
5375 }
5376 
5377 namespace {
5378 
5379 /// This class represents a lookup table that can be used to replace a switch.
5380 class SwitchLookupTable {
5381 public:
5382   /// Create a lookup table to use as a switch replacement with the contents
5383   /// of Values, using DefaultValue to fill any holes in the table.
5384   SwitchLookupTable(
5385       Module &M, uint64_t TableSize, ConstantInt *Offset,
5386       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5387       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5388 
5389   /// Build instructions with Builder to retrieve the value at
5390   /// the position given by Index in the lookup table.
5391   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5392 
5393   /// Return true if a table with TableSize elements of
5394   /// type ElementType would fit in a target-legal register.
5395   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5396                                  Type *ElementType);
5397 
5398 private:
5399   // Depending on the contents of the table, it can be represented in
5400   // different ways.
5401   enum {
5402     // For tables where each element contains the same value, we just have to
5403     // store that single value and return it for each lookup.
5404     SingleValueKind,
5405 
5406     // For tables where there is a linear relationship between table index
5407     // and values. We calculate the result with a simple multiplication
5408     // and addition instead of a table lookup.
5409     LinearMapKind,
5410 
5411     // For small tables with integer elements, we can pack them into a bitmap
5412     // that fits into a target-legal register. Values are retrieved by
5413     // shift and mask operations.
5414     BitMapKind,
5415 
5416     // The table is stored as an array of values. Values are retrieved by load
5417     // instructions from the table.
5418     ArrayKind
5419   } Kind;
5420 
5421   // For SingleValueKind, this is the single value.
5422   Constant *SingleValue = nullptr;
5423 
5424   // For BitMapKind, this is the bitmap.
5425   ConstantInt *BitMap = nullptr;
5426   IntegerType *BitMapElementTy = nullptr;
5427 
5428   // For LinearMapKind, these are the constants used to derive the value.
5429   ConstantInt *LinearOffset = nullptr;
5430   ConstantInt *LinearMultiplier = nullptr;
5431 
5432   // For ArrayKind, this is the array.
5433   GlobalVariable *Array = nullptr;
5434 };
5435 
5436 } // end anonymous namespace
5437 
5438 SwitchLookupTable::SwitchLookupTable(
5439     Module &M, uint64_t TableSize, ConstantInt *Offset,
5440     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5441     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5442   assert(Values.size() && "Can't build lookup table without values!");
5443   assert(TableSize >= Values.size() && "Can't fit values in table!");
5444 
5445   // If all values in the table are equal, this is that value.
5446   SingleValue = Values.begin()->second;
5447 
5448   Type *ValueType = Values.begin()->second->getType();
5449 
5450   // Build up the table contents.
5451   SmallVector<Constant *, 64> TableContents(TableSize);
5452   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5453     ConstantInt *CaseVal = Values[I].first;
5454     Constant *CaseRes = Values[I].second;
5455     assert(CaseRes->getType() == ValueType);
5456 
5457     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5458     TableContents[Idx] = CaseRes;
5459 
5460     if (CaseRes != SingleValue)
5461       SingleValue = nullptr;
5462   }
5463 
5464   // Fill in any holes in the table with the default result.
5465   if (Values.size() < TableSize) {
5466     assert(DefaultValue &&
5467            "Need a default value to fill the lookup table holes.");
5468     assert(DefaultValue->getType() == ValueType);
5469     for (uint64_t I = 0; I < TableSize; ++I) {
5470       if (!TableContents[I])
5471         TableContents[I] = DefaultValue;
5472     }
5473 
5474     if (DefaultValue != SingleValue)
5475       SingleValue = nullptr;
5476   }
5477 
5478   // If each element in the table contains the same value, we only need to store
5479   // that single value.
5480   if (SingleValue) {
5481     Kind = SingleValueKind;
5482     return;
5483   }
5484 
5485   // Check if we can derive the value with a linear transformation from the
5486   // table index.
5487   if (isa<IntegerType>(ValueType)) {
5488     bool LinearMappingPossible = true;
5489     APInt PrevVal;
5490     APInt DistToPrev;
5491     assert(TableSize >= 2 && "Should be a SingleValue table.");
5492     // Check if there is the same distance between two consecutive values.
5493     for (uint64_t I = 0; I < TableSize; ++I) {
5494       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5495       if (!ConstVal) {
5496         // This is an undef. We could deal with it, but undefs in lookup tables
5497         // are very seldom. It's probably not worth the additional complexity.
5498         LinearMappingPossible = false;
5499         break;
5500       }
5501       const APInt &Val = ConstVal->getValue();
5502       if (I != 0) {
5503         APInt Dist = Val - PrevVal;
5504         if (I == 1) {
5505           DistToPrev = Dist;
5506         } else if (Dist != DistToPrev) {
5507           LinearMappingPossible = false;
5508           break;
5509         }
5510       }
5511       PrevVal = Val;
5512     }
5513     if (LinearMappingPossible) {
5514       LinearOffset = cast<ConstantInt>(TableContents[0]);
5515       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5516       Kind = LinearMapKind;
5517       ++NumLinearMaps;
5518       return;
5519     }
5520   }
5521 
5522   // If the type is integer and the table fits in a register, build a bitmap.
5523   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5524     IntegerType *IT = cast<IntegerType>(ValueType);
5525     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5526     for (uint64_t I = TableSize; I > 0; --I) {
5527       TableInt <<= IT->getBitWidth();
5528       // Insert values into the bitmap. Undef values are set to zero.
5529       if (!isa<UndefValue>(TableContents[I - 1])) {
5530         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5531         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5532       }
5533     }
5534     BitMap = ConstantInt::get(M.getContext(), TableInt);
5535     BitMapElementTy = IT;
5536     Kind = BitMapKind;
5537     ++NumBitMaps;
5538     return;
5539   }
5540 
5541   // Store the table in an array.
5542   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5543   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5544 
5545   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5546                              GlobalVariable::PrivateLinkage, Initializer,
5547                              "switch.table." + FuncName);
5548   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5549   // Set the alignment to that of an array items. We will be only loading one
5550   // value out of it.
5551   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5552   Kind = ArrayKind;
5553 }
5554 
5555 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5556   switch (Kind) {
5557   case SingleValueKind:
5558     return SingleValue;
5559   case LinearMapKind: {
5560     // Derive the result value from the input value.
5561     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5562                                           false, "switch.idx.cast");
5563     if (!LinearMultiplier->isOne())
5564       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5565     if (!LinearOffset->isZero())
5566       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5567     return Result;
5568   }
5569   case BitMapKind: {
5570     // Type of the bitmap (e.g. i59).
5571     IntegerType *MapTy = BitMap->getType();
5572 
5573     // Cast Index to the same type as the bitmap.
5574     // Note: The Index is <= the number of elements in the table, so
5575     // truncating it to the width of the bitmask is safe.
5576     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5577 
5578     // Multiply the shift amount by the element width.
5579     ShiftAmt = Builder.CreateMul(
5580         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5581         "switch.shiftamt");
5582 
5583     // Shift down.
5584     Value *DownShifted =
5585         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5586     // Mask off.
5587     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5588   }
5589   case ArrayKind: {
5590     // Make sure the table index will not overflow when treated as signed.
5591     IntegerType *IT = cast<IntegerType>(Index->getType());
5592     uint64_t TableSize =
5593         Array->getInitializer()->getType()->getArrayNumElements();
5594     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5595       Index = Builder.CreateZExt(
5596           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5597           "switch.tableidx.zext");
5598 
5599     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5600     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5601                                            GEPIndices, "switch.gep");
5602     return Builder.CreateLoad(
5603         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5604         "switch.load");
5605   }
5606   }
5607   llvm_unreachable("Unknown lookup table kind!");
5608 }
5609 
5610 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5611                                            uint64_t TableSize,
5612                                            Type *ElementType) {
5613   auto *IT = dyn_cast<IntegerType>(ElementType);
5614   if (!IT)
5615     return false;
5616   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5617   // are <= 15, we could try to narrow the type.
5618 
5619   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5620   if (TableSize >= UINT_MAX / IT->getBitWidth())
5621     return false;
5622   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5623 }
5624 
5625 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
5626                                       const DataLayout &DL) {
5627   // Allow any legal type.
5628   if (TTI.isTypeLegal(Ty))
5629     return true;
5630 
5631   auto *IT = dyn_cast<IntegerType>(Ty);
5632   if (!IT)
5633     return false;
5634 
5635   // Also allow power of 2 integer types that have at least 8 bits and fit in
5636   // a register. These types are common in frontend languages and targets
5637   // usually support loads of these types.
5638   // TODO: We could relax this to any integer that fits in a register and rely
5639   // on ABI alignment and padding in the table to allow the load to be widened.
5640   // Or we could widen the constants and truncate the load.
5641   unsigned BitWidth = IT->getBitWidth();
5642   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
5643          DL.fitsInLegalInteger(IT->getBitWidth());
5644 }
5645 
5646 /// Determine whether a lookup table should be built for this switch, based on
5647 /// the number of cases, size of the table, and the types of the results.
5648 // TODO: We could support larger than legal types by limiting based on the
5649 // number of loads required and/or table size. If the constants are small we
5650 // could use smaller table entries and extend after the load.
5651 static bool
5652 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5653                        const TargetTransformInfo &TTI, const DataLayout &DL,
5654                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5655   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5656     return false; // TableSize overflowed, or mul below might overflow.
5657 
5658   bool AllTablesFitInRegister = true;
5659   bool HasIllegalType = false;
5660   for (const auto &I : ResultTypes) {
5661     Type *Ty = I.second;
5662 
5663     // Saturate this flag to true.
5664     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
5665 
5666     // Saturate this flag to false.
5667     AllTablesFitInRegister =
5668         AllTablesFitInRegister &&
5669         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5670 
5671     // If both flags saturate, we're done. NOTE: This *only* works with
5672     // saturating flags, and all flags have to saturate first due to the
5673     // non-deterministic behavior of iterating over a dense map.
5674     if (HasIllegalType && !AllTablesFitInRegister)
5675       break;
5676   }
5677 
5678   // If each table would fit in a register, we should build it anyway.
5679   if (AllTablesFitInRegister)
5680     return true;
5681 
5682   // Don't build a table that doesn't fit in-register if it has illegal types.
5683   if (HasIllegalType)
5684     return false;
5685 
5686   // The table density should be at least 40%. This is the same criterion as for
5687   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5688   // FIXME: Find the best cut-off.
5689   return SI->getNumCases() * 10 >= TableSize * 4;
5690 }
5691 
5692 /// Try to reuse the switch table index compare. Following pattern:
5693 /// \code
5694 ///     if (idx < tablesize)
5695 ///        r = table[idx]; // table does not contain default_value
5696 ///     else
5697 ///        r = default_value;
5698 ///     if (r != default_value)
5699 ///        ...
5700 /// \endcode
5701 /// Is optimized to:
5702 /// \code
5703 ///     cond = idx < tablesize;
5704 ///     if (cond)
5705 ///        r = table[idx];
5706 ///     else
5707 ///        r = default_value;
5708 ///     if (cond)
5709 ///        ...
5710 /// \endcode
5711 /// Jump threading will then eliminate the second if(cond).
5712 static void reuseTableCompare(
5713     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5714     Constant *DefaultValue,
5715     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5716   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5717   if (!CmpInst)
5718     return;
5719 
5720   // We require that the compare is in the same block as the phi so that jump
5721   // threading can do its work afterwards.
5722   if (CmpInst->getParent() != PhiBlock)
5723     return;
5724 
5725   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5726   if (!CmpOp1)
5727     return;
5728 
5729   Value *RangeCmp = RangeCheckBranch->getCondition();
5730   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5731   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5732 
5733   // Check if the compare with the default value is constant true or false.
5734   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5735                                                  DefaultValue, CmpOp1, true);
5736   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5737     return;
5738 
5739   // Check if the compare with the case values is distinct from the default
5740   // compare result.
5741   for (auto ValuePair : Values) {
5742     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5743                                                 ValuePair.second, CmpOp1, true);
5744     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5745       return;
5746     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5747            "Expect true or false as compare result.");
5748   }
5749 
5750   // Check if the branch instruction dominates the phi node. It's a simple
5751   // dominance check, but sufficient for our needs.
5752   // Although this check is invariant in the calling loops, it's better to do it
5753   // at this late stage. Practically we do it at most once for a switch.
5754   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5755   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5756     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5757       return;
5758   }
5759 
5760   if (DefaultConst == FalseConst) {
5761     // The compare yields the same result. We can replace it.
5762     CmpInst->replaceAllUsesWith(RangeCmp);
5763     ++NumTableCmpReuses;
5764   } else {
5765     // The compare yields the same result, just inverted. We can replace it.
5766     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5767         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5768         RangeCheckBranch);
5769     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5770     ++NumTableCmpReuses;
5771   }
5772 }
5773 
5774 /// If the switch is only used to initialize one or more phi nodes in a common
5775 /// successor block with different constant values, replace the switch with
5776 /// lookup tables.
5777 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5778                                 DomTreeUpdater *DTU, const DataLayout &DL,
5779                                 const TargetTransformInfo &TTI) {
5780   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5781 
5782   BasicBlock *BB = SI->getParent();
5783   Function *Fn = BB->getParent();
5784   // Only build lookup table when we have a target that supports it or the
5785   // attribute is not set.
5786   if (!TTI.shouldBuildLookupTables() ||
5787       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
5788     return false;
5789 
5790   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5791   // split off a dense part and build a lookup table for that.
5792 
5793   // FIXME: This creates arrays of GEPs to constant strings, which means each
5794   // GEP needs a runtime relocation in PIC code. We should just build one big
5795   // string and lookup indices into that.
5796 
5797   // Ignore switches with less than three cases. Lookup tables will not make
5798   // them faster, so we don't analyze them.
5799   if (SI->getNumCases() < 3)
5800     return false;
5801 
5802   // Figure out the corresponding result for each case value and phi node in the
5803   // common destination, as well as the min and max case values.
5804   assert(!SI->cases().empty());
5805   SwitchInst::CaseIt CI = SI->case_begin();
5806   ConstantInt *MinCaseVal = CI->getCaseValue();
5807   ConstantInt *MaxCaseVal = CI->getCaseValue();
5808 
5809   BasicBlock *CommonDest = nullptr;
5810 
5811   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5812   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5813 
5814   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5815   SmallDenseMap<PHINode *, Type *> ResultTypes;
5816   SmallVector<PHINode *, 4> PHIs;
5817 
5818   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5819     ConstantInt *CaseVal = CI->getCaseValue();
5820     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5821       MinCaseVal = CaseVal;
5822     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5823       MaxCaseVal = CaseVal;
5824 
5825     // Resulting value at phi nodes for this case value.
5826     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5827     ResultsTy Results;
5828     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5829                         Results, DL, TTI))
5830       return false;
5831 
5832     // Append the result from this case to the list for each phi.
5833     for (const auto &I : Results) {
5834       PHINode *PHI = I.first;
5835       Constant *Value = I.second;
5836       if (!ResultLists.count(PHI))
5837         PHIs.push_back(PHI);
5838       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5839     }
5840   }
5841 
5842   // Keep track of the result types.
5843   for (PHINode *PHI : PHIs) {
5844     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5845   }
5846 
5847   uint64_t NumResults = ResultLists[PHIs[0]].size();
5848   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5849   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5850   bool TableHasHoles = (NumResults < TableSize);
5851 
5852   // If the table has holes, we need a constant result for the default case
5853   // or a bitmask that fits in a register.
5854   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5855   bool HasDefaultResults =
5856       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5857                      DefaultResultsList, DL, TTI);
5858 
5859   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5860   if (NeedMask) {
5861     // As an extra penalty for the validity test we require more cases.
5862     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5863       return false;
5864     if (!DL.fitsInLegalInteger(TableSize))
5865       return false;
5866   }
5867 
5868   for (const auto &I : DefaultResultsList) {
5869     PHINode *PHI = I.first;
5870     Constant *Result = I.second;
5871     DefaultResults[PHI] = Result;
5872   }
5873 
5874   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5875     return false;
5876 
5877   std::vector<DominatorTree::UpdateType> Updates;
5878 
5879   // Create the BB that does the lookups.
5880   Module &Mod = *CommonDest->getParent()->getParent();
5881   BasicBlock *LookupBB = BasicBlock::Create(
5882       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5883 
5884   // Compute the table index value.
5885   Builder.SetInsertPoint(SI);
5886   Value *TableIndex;
5887   if (MinCaseVal->isNullValue())
5888     TableIndex = SI->getCondition();
5889   else
5890     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5891                                    "switch.tableidx");
5892 
5893   // Compute the maximum table size representable by the integer type we are
5894   // switching upon.
5895   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5896   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5897   assert(MaxTableSize >= TableSize &&
5898          "It is impossible for a switch to have more entries than the max "
5899          "representable value of its input integer type's size.");
5900 
5901   // If the default destination is unreachable, or if the lookup table covers
5902   // all values of the conditional variable, branch directly to the lookup table
5903   // BB. Otherwise, check that the condition is within the case range.
5904   const bool DefaultIsReachable =
5905       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5906   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5907   BranchInst *RangeCheckBranch = nullptr;
5908 
5909   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5910     Builder.CreateBr(LookupBB);
5911     if (DTU)
5912       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5913     // Note: We call removeProdecessor later since we need to be able to get the
5914     // PHI value for the default case in case we're using a bit mask.
5915   } else {
5916     Value *Cmp = Builder.CreateICmpULT(
5917         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5918     RangeCheckBranch =
5919         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5920     if (DTU)
5921       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5922   }
5923 
5924   // Populate the BB that does the lookups.
5925   Builder.SetInsertPoint(LookupBB);
5926 
5927   if (NeedMask) {
5928     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5929     // re-purposed to do the hole check, and we create a new LookupBB.
5930     BasicBlock *MaskBB = LookupBB;
5931     MaskBB->setName("switch.hole_check");
5932     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5933                                   CommonDest->getParent(), CommonDest);
5934 
5935     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5936     // unnecessary illegal types.
5937     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5938     APInt MaskInt(TableSizePowOf2, 0);
5939     APInt One(TableSizePowOf2, 1);
5940     // Build bitmask; fill in a 1 bit for every case.
5941     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5942     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5943       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5944                          .getLimitedValue();
5945       MaskInt |= One << Idx;
5946     }
5947     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5948 
5949     // Get the TableIndex'th bit of the bitmask.
5950     // If this bit is 0 (meaning hole) jump to the default destination,
5951     // else continue with table lookup.
5952     IntegerType *MapTy = TableMask->getType();
5953     Value *MaskIndex =
5954         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5955     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5956     Value *LoBit = Builder.CreateTrunc(
5957         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5958     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5959     if (DTU) {
5960       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
5961       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
5962     }
5963     Builder.SetInsertPoint(LookupBB);
5964     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
5965   }
5966 
5967   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5968     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5969     // do not delete PHINodes here.
5970     SI->getDefaultDest()->removePredecessor(BB,
5971                                             /*KeepOneInputPHIs=*/true);
5972     if (DTU)
5973       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
5974   }
5975 
5976   for (PHINode *PHI : PHIs) {
5977     const ResultListTy &ResultList = ResultLists[PHI];
5978 
5979     // If using a bitmask, use any value to fill the lookup table holes.
5980     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5981     StringRef FuncName = Fn->getName();
5982     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5983                             FuncName);
5984 
5985     Value *Result = Table.BuildLookup(TableIndex, Builder);
5986 
5987     // Do a small peephole optimization: re-use the switch table compare if
5988     // possible.
5989     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5990       BasicBlock *PhiBlock = PHI->getParent();
5991       // Search for compare instructions which use the phi.
5992       for (auto *User : PHI->users()) {
5993         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5994       }
5995     }
5996 
5997     PHI->addIncoming(Result, LookupBB);
5998   }
5999 
6000   Builder.CreateBr(CommonDest);
6001   if (DTU)
6002     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6003 
6004   // Remove the switch.
6005   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6006   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6007     BasicBlock *Succ = SI->getSuccessor(i);
6008 
6009     if (Succ == SI->getDefaultDest())
6010       continue;
6011     Succ->removePredecessor(BB);
6012     RemovedSuccessors.insert(Succ);
6013   }
6014   SI->eraseFromParent();
6015 
6016   if (DTU) {
6017     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
6018       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
6019     DTU->applyUpdates(Updates);
6020   }
6021 
6022   ++NumLookupTables;
6023   if (NeedMask)
6024     ++NumLookupTablesHoles;
6025   return true;
6026 }
6027 
6028 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6029   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6030   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6031   uint64_t Range = Diff + 1;
6032   uint64_t NumCases = Values.size();
6033   // 40% is the default density for building a jump table in optsize/minsize mode.
6034   uint64_t MinDensity = 40;
6035 
6036   return NumCases * 100 >= Range * MinDensity;
6037 }
6038 
6039 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6040 /// of cases.
6041 ///
6042 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6043 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6044 ///
6045 /// This converts a sparse switch into a dense switch which allows better
6046 /// lowering and could also allow transforming into a lookup table.
6047 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6048                               const DataLayout &DL,
6049                               const TargetTransformInfo &TTI) {
6050   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6051   if (CondTy->getIntegerBitWidth() > 64 ||
6052       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6053     return false;
6054   // Only bother with this optimization if there are more than 3 switch cases;
6055   // SDAG will only bother creating jump tables for 4 or more cases.
6056   if (SI->getNumCases() < 4)
6057     return false;
6058 
6059   // This transform is agnostic to the signedness of the input or case values. We
6060   // can treat the case values as signed or unsigned. We can optimize more common
6061   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6062   // as signed.
6063   SmallVector<int64_t,4> Values;
6064   for (auto &C : SI->cases())
6065     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6066   llvm::sort(Values);
6067 
6068   // If the switch is already dense, there's nothing useful to do here.
6069   if (isSwitchDense(Values))
6070     return false;
6071 
6072   // First, transform the values such that they start at zero and ascend.
6073   int64_t Base = Values[0];
6074   for (auto &V : Values)
6075     V -= (uint64_t)(Base);
6076 
6077   // Now we have signed numbers that have been shifted so that, given enough
6078   // precision, there are no negative values. Since the rest of the transform
6079   // is bitwise only, we switch now to an unsigned representation.
6080 
6081   // This transform can be done speculatively because it is so cheap - it
6082   // results in a single rotate operation being inserted.
6083   // FIXME: It's possible that optimizing a switch on powers of two might also
6084   // be beneficial - flag values are often powers of two and we could use a CLZ
6085   // as the key function.
6086 
6087   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6088   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6089   // less than 64.
6090   unsigned Shift = 64;
6091   for (auto &V : Values)
6092     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6093   assert(Shift < 64);
6094   if (Shift > 0)
6095     for (auto &V : Values)
6096       V = (int64_t)((uint64_t)V >> Shift);
6097 
6098   if (!isSwitchDense(Values))
6099     // Transform didn't create a dense switch.
6100     return false;
6101 
6102   // The obvious transform is to shift the switch condition right and emit a
6103   // check that the condition actually cleanly divided by GCD, i.e.
6104   //   C & (1 << Shift - 1) == 0
6105   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6106   //
6107   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6108   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6109   // are nonzero then the switch condition will be very large and will hit the
6110   // default case.
6111 
6112   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6113   Builder.SetInsertPoint(SI);
6114   auto *ShiftC = ConstantInt::get(Ty, Shift);
6115   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6116   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6117   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6118   auto *Rot = Builder.CreateOr(LShr, Shl);
6119   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6120 
6121   for (auto Case : SI->cases()) {
6122     auto *Orig = Case.getCaseValue();
6123     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6124     Case.setValue(
6125         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6126   }
6127   return true;
6128 }
6129 
6130 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6131   BasicBlock *BB = SI->getParent();
6132 
6133   if (isValueEqualityComparison(SI)) {
6134     // If we only have one predecessor, and if it is a branch on this value,
6135     // see if that predecessor totally determines the outcome of this switch.
6136     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6137       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6138         return requestResimplify();
6139 
6140     Value *Cond = SI->getCondition();
6141     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6142       if (SimplifySwitchOnSelect(SI, Select))
6143         return requestResimplify();
6144 
6145     // If the block only contains the switch, see if we can fold the block
6146     // away into any preds.
6147     if (SI == &*BB->instructionsWithoutDebug().begin())
6148       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6149         return requestResimplify();
6150   }
6151 
6152   // Try to transform the switch into an icmp and a branch.
6153   if (TurnSwitchRangeIntoICmp(SI, Builder))
6154     return requestResimplify();
6155 
6156   // Remove unreachable cases.
6157   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6158     return requestResimplify();
6159 
6160   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6161     return requestResimplify();
6162 
6163   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6164     return requestResimplify();
6165 
6166   // The conversion from switch to lookup tables results in difficult-to-analyze
6167   // code and makes pruning branches much harder. This is a problem if the
6168   // switch expression itself can still be restricted as a result of inlining or
6169   // CVP. Therefore, only apply this transformation during late stages of the
6170   // optimisation pipeline.
6171   if (Options.ConvertSwitchToLookupTable &&
6172       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6173     return requestResimplify();
6174 
6175   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6176     return requestResimplify();
6177 
6178   return false;
6179 }
6180 
6181 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6182   BasicBlock *BB = IBI->getParent();
6183   bool Changed = false;
6184 
6185   // Eliminate redundant destinations.
6186   SmallPtrSet<Value *, 8> Succs;
6187   SmallPtrSet<BasicBlock *, 8> RemovedSuccs;
6188   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6189     BasicBlock *Dest = IBI->getDestination(i);
6190     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6191       if (!Dest->hasAddressTaken())
6192         RemovedSuccs.insert(Dest);
6193       Dest->removePredecessor(BB);
6194       IBI->removeDestination(i);
6195       --i;
6196       --e;
6197       Changed = true;
6198     }
6199   }
6200 
6201   if (DTU) {
6202     std::vector<DominatorTree::UpdateType> Updates;
6203     Updates.reserve(RemovedSuccs.size());
6204     for (auto *RemovedSucc : RemovedSuccs)
6205       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6206     DTU->applyUpdates(Updates);
6207   }
6208 
6209   if (IBI->getNumDestinations() == 0) {
6210     // If the indirectbr has no successors, change it to unreachable.
6211     new UnreachableInst(IBI->getContext(), IBI);
6212     EraseTerminatorAndDCECond(IBI);
6213     return true;
6214   }
6215 
6216   if (IBI->getNumDestinations() == 1) {
6217     // If the indirectbr has one successor, change it to a direct branch.
6218     BranchInst::Create(IBI->getDestination(0), IBI);
6219     EraseTerminatorAndDCECond(IBI);
6220     return true;
6221   }
6222 
6223   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6224     if (SimplifyIndirectBrOnSelect(IBI, SI))
6225       return requestResimplify();
6226   }
6227   return Changed;
6228 }
6229 
6230 /// Given an block with only a single landing pad and a unconditional branch
6231 /// try to find another basic block which this one can be merged with.  This
6232 /// handles cases where we have multiple invokes with unique landing pads, but
6233 /// a shared handler.
6234 ///
6235 /// We specifically choose to not worry about merging non-empty blocks
6236 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6237 /// practice, the optimizer produces empty landing pad blocks quite frequently
6238 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6239 /// sinking in this file)
6240 ///
6241 /// This is primarily a code size optimization.  We need to avoid performing
6242 /// any transform which might inhibit optimization (such as our ability to
6243 /// specialize a particular handler via tail commoning).  We do this by not
6244 /// merging any blocks which require us to introduce a phi.  Since the same
6245 /// values are flowing through both blocks, we don't lose any ability to
6246 /// specialize.  If anything, we make such specialization more likely.
6247 ///
6248 /// TODO - This transformation could remove entries from a phi in the target
6249 /// block when the inputs in the phi are the same for the two blocks being
6250 /// merged.  In some cases, this could result in removal of the PHI entirely.
6251 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6252                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6253   auto Succ = BB->getUniqueSuccessor();
6254   assert(Succ);
6255   // If there's a phi in the successor block, we'd likely have to introduce
6256   // a phi into the merged landing pad block.
6257   if (isa<PHINode>(*Succ->begin()))
6258     return false;
6259 
6260   for (BasicBlock *OtherPred : predecessors(Succ)) {
6261     if (BB == OtherPred)
6262       continue;
6263     BasicBlock::iterator I = OtherPred->begin();
6264     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6265     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6266       continue;
6267     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6268       ;
6269     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6270     if (!BI2 || !BI2->isIdenticalTo(BI))
6271       continue;
6272 
6273     std::vector<DominatorTree::UpdateType> Updates;
6274 
6275     // We've found an identical block.  Update our predecessors to take that
6276     // path instead and make ourselves dead.
6277     SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
6278     for (BasicBlock *Pred : Preds) {
6279       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6280       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6281              "unexpected successor");
6282       II->setUnwindDest(OtherPred);
6283       if (DTU) {
6284         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6285         Updates.push_back({DominatorTree::Delete, Pred, BB});
6286       }
6287     }
6288 
6289     // The debug info in OtherPred doesn't cover the merged control flow that
6290     // used to go through BB.  We need to delete it or update it.
6291     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6292       Instruction &Inst = *I;
6293       I++;
6294       if (isa<DbgInfoIntrinsic>(Inst))
6295         Inst.eraseFromParent();
6296     }
6297 
6298     SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB));
6299     for (BasicBlock *Succ : Succs) {
6300       Succ->removePredecessor(BB);
6301       if (DTU)
6302         Updates.push_back({DominatorTree::Delete, BB, Succ});
6303     }
6304 
6305     IRBuilder<> Builder(BI);
6306     Builder.CreateUnreachable();
6307     BI->eraseFromParent();
6308     if (DTU)
6309       DTU->applyUpdates(Updates);
6310     return true;
6311   }
6312   return false;
6313 }
6314 
6315 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6316   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6317                                    : simplifyCondBranch(Branch, Builder);
6318 }
6319 
6320 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6321                                           IRBuilder<> &Builder) {
6322   BasicBlock *BB = BI->getParent();
6323   BasicBlock *Succ = BI->getSuccessor(0);
6324 
6325   // If the Terminator is the only non-phi instruction, simplify the block.
6326   // If LoopHeader is provided, check if the block or its successor is a loop
6327   // header. (This is for early invocations before loop simplify and
6328   // vectorization to keep canonical loop forms for nested loops. These blocks
6329   // can be eliminated when the pass is invoked later in the back-end.)
6330   // Note that if BB has only one predecessor then we do not introduce new
6331   // backedge, so we can eliminate BB.
6332   bool NeedCanonicalLoop =
6333       Options.NeedCanonicalLoop &&
6334       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6335        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6336   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6337   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6338       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6339     return true;
6340 
6341   // If the only instruction in the block is a seteq/setne comparison against a
6342   // constant, try to simplify the block.
6343   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6344     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6345       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6346         ;
6347       if (I->isTerminator() &&
6348           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6349         return true;
6350     }
6351 
6352   // See if we can merge an empty landing pad block with another which is
6353   // equivalent.
6354   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6355     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6356       ;
6357     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6358       return true;
6359   }
6360 
6361   // If this basic block is ONLY a compare and a branch, and if a predecessor
6362   // branches to us and our successor, fold the comparison into the
6363   // predecessor and use logical operations to update the incoming value
6364   // for PHI nodes in common successor.
6365   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6366                              Options.BonusInstThreshold))
6367     return requestResimplify();
6368   return false;
6369 }
6370 
6371 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6372   BasicBlock *PredPred = nullptr;
6373   for (auto *P : predecessors(BB)) {
6374     BasicBlock *PPred = P->getSinglePredecessor();
6375     if (!PPred || (PredPred && PredPred != PPred))
6376       return nullptr;
6377     PredPred = PPred;
6378   }
6379   return PredPred;
6380 }
6381 
6382 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6383   BasicBlock *BB = BI->getParent();
6384   if (!Options.SimplifyCondBranch)
6385     return false;
6386 
6387   // Conditional branch
6388   if (isValueEqualityComparison(BI)) {
6389     // If we only have one predecessor, and if it is a branch on this value,
6390     // see if that predecessor totally determines the outcome of this
6391     // switch.
6392     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6393       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6394         return requestResimplify();
6395 
6396     // This block must be empty, except for the setcond inst, if it exists.
6397     // Ignore dbg and pseudo intrinsics.
6398     auto I = BB->instructionsWithoutDebug(true).begin();
6399     if (&*I == BI) {
6400       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6401         return requestResimplify();
6402     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6403       ++I;
6404       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6405         return requestResimplify();
6406     }
6407   }
6408 
6409   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6410   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6411     return true;
6412 
6413   // If this basic block has dominating predecessor blocks and the dominating
6414   // blocks' conditions imply BI's condition, we know the direction of BI.
6415   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6416   if (Imp) {
6417     // Turn this into a branch on constant.
6418     auto *OldCond = BI->getCondition();
6419     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6420                              : ConstantInt::getFalse(BB->getContext());
6421     BI->setCondition(TorF);
6422     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6423     return requestResimplify();
6424   }
6425 
6426   // If this basic block is ONLY a compare and a branch, and if a predecessor
6427   // branches to us and one of our successors, fold the comparison into the
6428   // predecessor and use logical operations to pick the right destination.
6429   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6430                              Options.BonusInstThreshold))
6431     return requestResimplify();
6432 
6433   // We have a conditional branch to two blocks that are only reachable
6434   // from BI.  We know that the condbr dominates the two blocks, so see if
6435   // there is any identical code in the "then" and "else" blocks.  If so, we
6436   // can hoist it up to the branching block.
6437   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6438     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6439       if (HoistCommon &&
6440           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6441         return requestResimplify();
6442     } else {
6443       // If Successor #1 has multiple preds, we may be able to conditionally
6444       // execute Successor #0 if it branches to Successor #1.
6445       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6446       if (Succ0TI->getNumSuccessors() == 1 &&
6447           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6448         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6449           return requestResimplify();
6450     }
6451   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6452     // If Successor #0 has multiple preds, we may be able to conditionally
6453     // execute Successor #1 if it branches to Successor #0.
6454     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6455     if (Succ1TI->getNumSuccessors() == 1 &&
6456         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6457       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6458         return requestResimplify();
6459   }
6460 
6461   // If this is a branch on a phi node in the current block, thread control
6462   // through this block if any PHI node entries are constants.
6463   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6464     if (PN->getParent() == BI->getParent())
6465       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6466         return requestResimplify();
6467 
6468   // Scan predecessor blocks for conditional branches.
6469   for (BasicBlock *Pred : predecessors(BB))
6470     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6471       if (PBI != BI && PBI->isConditional())
6472         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6473           return requestResimplify();
6474 
6475   // Look for diamond patterns.
6476   if (MergeCondStores)
6477     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6478       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6479         if (PBI != BI && PBI->isConditional())
6480           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6481             return requestResimplify();
6482 
6483   return false;
6484 }
6485 
6486 /// Check if passing a value to an instruction will cause undefined behavior.
6487 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6488   Constant *C = dyn_cast<Constant>(V);
6489   if (!C)
6490     return false;
6491 
6492   if (I->use_empty())
6493     return false;
6494 
6495   if (C->isNullValue() || isa<UndefValue>(C)) {
6496     // Only look at the first use, avoid hurting compile time with long uselists
6497     User *Use = *I->user_begin();
6498 
6499     // Now make sure that there are no instructions in between that can alter
6500     // control flow (eg. calls)
6501     for (BasicBlock::iterator
6502              i = ++BasicBlock::iterator(I),
6503              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6504          i != UI; ++i) {
6505       if (i == I->getParent()->end())
6506         return false;
6507       if (!isGuaranteedToTransferExecutionToSuccessor(&*i))
6508         return false;
6509     }
6510 
6511     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6512     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6513       if (GEP->getPointerOperand() == I) {
6514         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6515           PtrValueMayBeModified = true;
6516         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6517       }
6518 
6519     // Look through bitcasts.
6520     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6521       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6522 
6523     // Load from null is undefined.
6524     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6525       if (!LI->isVolatile())
6526         return !NullPointerIsDefined(LI->getFunction(),
6527                                      LI->getPointerAddressSpace());
6528 
6529     // Store to null is undefined.
6530     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6531       if (!SI->isVolatile())
6532         return (!NullPointerIsDefined(SI->getFunction(),
6533                                       SI->getPointerAddressSpace())) &&
6534                SI->getPointerOperand() == I;
6535 
6536     if (auto *CB = dyn_cast<CallBase>(Use)) {
6537       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6538         return false;
6539       // A call to null is undefined.
6540       if (CB->getCalledOperand() == I)
6541         return true;
6542 
6543       if (C->isNullValue()) {
6544         for (const llvm::Use &Arg : CB->args())
6545           if (Arg == I) {
6546             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6547             if (CB->isPassingUndefUB(ArgIdx) &&
6548                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6549               // Passing null to a nonnnull+noundef argument is undefined.
6550               return !PtrValueMayBeModified;
6551             }
6552           }
6553       } else if (isa<UndefValue>(C)) {
6554         // Passing undef to a noundef argument is undefined.
6555         for (const llvm::Use &Arg : CB->args())
6556           if (Arg == I) {
6557             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6558             if (CB->isPassingUndefUB(ArgIdx)) {
6559               // Passing undef to a noundef argument is undefined.
6560               return true;
6561             }
6562           }
6563       }
6564     }
6565   }
6566   return false;
6567 }
6568 
6569 /// If BB has an incoming value that will always trigger undefined behavior
6570 /// (eg. null pointer dereference), remove the branch leading here.
6571 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6572                                               DomTreeUpdater *DTU) {
6573   for (PHINode &PHI : BB->phis())
6574     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6575       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6576         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6577         Instruction *T = Predecessor->getTerminator();
6578         IRBuilder<> Builder(T);
6579         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6580           BB->removePredecessor(Predecessor);
6581           // Turn uncoditional branches into unreachables and remove the dead
6582           // destination from conditional branches.
6583           if (BI->isUnconditional())
6584             Builder.CreateUnreachable();
6585           else
6586             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6587                                                        : BI->getSuccessor(0));
6588           BI->eraseFromParent();
6589           if (DTU)
6590             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6591           return true;
6592         }
6593         // TODO: SwitchInst.
6594       }
6595 
6596   return false;
6597 }
6598 
6599 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6600   bool Changed = false;
6601 
6602   assert(BB && BB->getParent() && "Block not embedded in function!");
6603   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6604 
6605   // Remove basic blocks that have no predecessors (except the entry block)...
6606   // or that just have themself as a predecessor.  These are unreachable.
6607   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6608       BB->getSinglePredecessor() == BB) {
6609     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6610     DeleteDeadBlock(BB, DTU);
6611     return true;
6612   }
6613 
6614   // Check to see if we can constant propagate this terminator instruction
6615   // away...
6616   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6617                                     /*TLI=*/nullptr, DTU);
6618 
6619   // Check for and eliminate duplicate PHI nodes in this block.
6620   Changed |= EliminateDuplicatePHINodes(BB);
6621 
6622   // Check for and remove branches that will always cause undefined behavior.
6623   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6624 
6625   // Merge basic blocks into their predecessor if there is only one distinct
6626   // pred, and if there is only one distinct successor of the predecessor, and
6627   // if there are no PHI nodes.
6628   if (MergeBlockIntoPredecessor(BB, DTU))
6629     return true;
6630 
6631   if (SinkCommon && Options.SinkCommonInsts)
6632     if (SinkCommonCodeFromPredecessors(BB, DTU)) {
6633       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
6634       // so we may now how duplicate PHI's.
6635       // Let's rerun EliminateDuplicatePHINodes() first,
6636       // before FoldTwoEntryPHINode() potentially converts them into select's,
6637       // after which we'd need a whole EarlyCSE pass run to cleanup them.
6638       return true;
6639     }
6640 
6641   IRBuilder<> Builder(BB);
6642 
6643   if (Options.FoldTwoEntryPHINode) {
6644     // If there is a trivial two-entry PHI node in this basic block, and we can
6645     // eliminate it, do so now.
6646     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6647       if (PN->getNumIncomingValues() == 2)
6648         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6649   }
6650 
6651   Instruction *Terminator = BB->getTerminator();
6652   Builder.SetInsertPoint(Terminator);
6653   switch (Terminator->getOpcode()) {
6654   case Instruction::Br:
6655     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6656     break;
6657   case Instruction::Resume:
6658     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6659     break;
6660   case Instruction::CleanupRet:
6661     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6662     break;
6663   case Instruction::Switch:
6664     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6665     break;
6666   case Instruction::Unreachable:
6667     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6668     break;
6669   case Instruction::IndirectBr:
6670     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6671     break;
6672   }
6673 
6674   return Changed;
6675 }
6676 
6677 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6678   bool Changed = simplifyOnceImpl(BB);
6679 
6680   return Changed;
6681 }
6682 
6683 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6684   bool Changed = false;
6685 
6686   // Repeated simplify BB as long as resimplification is requested.
6687   do {
6688     Resimplify = false;
6689 
6690     // Perform one round of simplifcation. Resimplify flag will be set if
6691     // another iteration is requested.
6692     Changed |= simplifyOnce(BB);
6693   } while (Resimplify);
6694 
6695   return Changed;
6696 }
6697 
6698 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6699                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6700                        ArrayRef<WeakVH> LoopHeaders) {
6701   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6702                         Options)
6703       .run(BB);
6704 }
6705