1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/ConstantRange.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DebugInfo.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/GlobalValue.h" 40 #include "llvm/IR/GlobalVariable.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/NoFolder.h" 52 #include "llvm/IR/Operator.h" 53 #include "llvm/IR/PatternMatch.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/DebugInfo.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include "llvm/Transforms/Utils/ValueMapper.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <climits> 70 #include <cstddef> 71 #include <cstdint> 72 #include <iterator> 73 #include <map> 74 #include <set> 75 #include <utility> 76 #include <vector> 77 78 using namespace llvm; 79 using namespace PatternMatch; 80 81 #define DEBUG_TYPE "simplifycfg" 82 83 // Chosen as 2 so as to be cheap, but still to have enough power to fold 84 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 85 // To catch this, we need to fold a compare and a select, hence '2' being the 86 // minimum reasonable default. 87 static cl::opt<unsigned> PHINodeFoldingThreshold( 88 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 89 cl::desc( 90 "Control the amount of phi node folding to perform (default = 2)")); 91 92 static cl::opt<bool> DupRet( 93 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 94 cl::desc("Duplicate return instructions into unconditional branches")); 95 96 static cl::opt<bool> 97 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 98 cl::desc("Sink common instructions down to the end block")); 99 100 static cl::opt<bool> HoistCondStores( 101 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 102 cl::desc("Hoist conditional stores if an unconditional store precedes")); 103 104 static cl::opt<bool> MergeCondStores( 105 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 106 cl::desc("Hoist conditional stores even if an unconditional store does not " 107 "precede - hoist multiple conditional stores into a single " 108 "predicated store")); 109 110 static cl::opt<bool> MergeCondStoresAggressively( 111 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 112 cl::desc("When merging conditional stores, do so even if the resultant " 113 "basic blocks are unlikely to be if-converted as a result")); 114 115 static cl::opt<bool> SpeculateOneExpensiveInst( 116 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 117 cl::desc("Allow exactly one expensive instruction to be speculatively " 118 "executed")); 119 120 static cl::opt<unsigned> MaxSpeculationDepth( 121 "max-speculation-depth", cl::Hidden, cl::init(10), 122 cl::desc("Limit maximum recursion depth when calculating costs of " 123 "speculatively executed instructions")); 124 125 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 126 STATISTIC(NumLinearMaps, 127 "Number of switch instructions turned into linear mapping"); 128 STATISTIC(NumLookupTables, 129 "Number of switch instructions turned into lookup tables"); 130 STATISTIC( 131 NumLookupTablesHoles, 132 "Number of switch instructions turned into lookup tables (holes checked)"); 133 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 134 STATISTIC(NumSinkCommons, 135 "Number of common instructions sunk down to the end block"); 136 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 137 138 namespace { 139 140 // The first field contains the value that the switch produces when a certain 141 // case group is selected, and the second field is a vector containing the 142 // cases composing the case group. 143 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 144 SwitchCaseResultVectorTy; 145 // The first field contains the phi node that generates a result of the switch 146 // and the second field contains the value generated for a certain case in the 147 // switch for that PHI. 148 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 149 150 /// ValueEqualityComparisonCase - Represents a case of a switch. 151 struct ValueEqualityComparisonCase { 152 ConstantInt *Value; 153 BasicBlock *Dest; 154 155 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 156 : Value(Value), Dest(Dest) {} 157 158 bool operator<(ValueEqualityComparisonCase RHS) const { 159 // Comparing pointers is ok as we only rely on the order for uniquing. 160 return Value < RHS.Value; 161 } 162 163 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 164 }; 165 166 class SimplifyCFGOpt { 167 const TargetTransformInfo &TTI; 168 const DataLayout &DL; 169 unsigned BonusInstThreshold; 170 AssumptionCache *AC; 171 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 172 Value *isValueEqualityComparison(TerminatorInst *TI); 173 BasicBlock *GetValueEqualityComparisonCases( 174 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 175 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 176 BasicBlock *Pred, 177 IRBuilder<> &Builder); 178 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 179 IRBuilder<> &Builder); 180 181 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 182 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 183 bool SimplifySingleResume(ResumeInst *RI); 184 bool SimplifyCommonResume(ResumeInst *RI); 185 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 186 bool SimplifyUnreachable(UnreachableInst *UI); 187 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 188 bool SimplifyIndirectBr(IndirectBrInst *IBI); 189 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 190 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 191 192 public: 193 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 194 unsigned BonusInstThreshold, AssumptionCache *AC, 195 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) 196 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC), 197 LoopHeaders(LoopHeaders) {} 198 199 bool run(BasicBlock *BB); 200 }; 201 202 } // end anonymous namespace 203 204 /// Return true if it is safe to merge these two 205 /// terminator instructions together. 206 static bool 207 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 208 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 209 if (SI1 == SI2) 210 return false; // Can't merge with self! 211 212 // It is not safe to merge these two switch instructions if they have a common 213 // successor, and if that successor has a PHI node, and if *that* PHI node has 214 // conflicting incoming values from the two switch blocks. 215 BasicBlock *SI1BB = SI1->getParent(); 216 BasicBlock *SI2BB = SI2->getParent(); 217 218 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 219 bool Fail = false; 220 for (BasicBlock *Succ : successors(SI2BB)) 221 if (SI1Succs.count(Succ)) 222 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 223 PHINode *PN = cast<PHINode>(BBI); 224 if (PN->getIncomingValueForBlock(SI1BB) != 225 PN->getIncomingValueForBlock(SI2BB)) { 226 if (FailBlocks) 227 FailBlocks->insert(Succ); 228 Fail = true; 229 } 230 } 231 232 return !Fail; 233 } 234 235 /// Return true if it is safe and profitable to merge these two terminator 236 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 237 /// store all PHI nodes in common successors. 238 static bool 239 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 240 Instruction *Cond, 241 SmallVectorImpl<PHINode *> &PhiNodes) { 242 if (SI1 == SI2) 243 return false; // Can't merge with self! 244 assert(SI1->isUnconditional() && SI2->isConditional()); 245 246 // We fold the unconditional branch if we can easily update all PHI nodes in 247 // common successors: 248 // 1> We have a constant incoming value for the conditional branch; 249 // 2> We have "Cond" as the incoming value for the unconditional branch; 250 // 3> SI2->getCondition() and Cond have same operands. 251 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 252 if (!Ci2) 253 return false; 254 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 255 Cond->getOperand(1) == Ci2->getOperand(1)) && 256 !(Cond->getOperand(0) == Ci2->getOperand(1) && 257 Cond->getOperand(1) == Ci2->getOperand(0))) 258 return false; 259 260 BasicBlock *SI1BB = SI1->getParent(); 261 BasicBlock *SI2BB = SI2->getParent(); 262 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 263 for (BasicBlock *Succ : successors(SI2BB)) 264 if (SI1Succs.count(Succ)) 265 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 266 PHINode *PN = cast<PHINode>(BBI); 267 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 268 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 269 return false; 270 PhiNodes.push_back(PN); 271 } 272 return true; 273 } 274 275 /// Update PHI nodes in Succ to indicate that there will now be entries in it 276 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 277 /// will be the same as those coming in from ExistPred, an existing predecessor 278 /// of Succ. 279 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 280 BasicBlock *ExistPred) { 281 if (!isa<PHINode>(Succ->begin())) 282 return; // Quick exit if nothing to do 283 284 PHINode *PN; 285 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 286 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 287 } 288 289 /// Compute an abstract "cost" of speculating the given instruction, 290 /// which is assumed to be safe to speculate. TCC_Free means cheap, 291 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 292 /// expensive. 293 static unsigned ComputeSpeculationCost(const User *I, 294 const TargetTransformInfo &TTI) { 295 assert(isSafeToSpeculativelyExecute(I) && 296 "Instruction is not safe to speculatively execute!"); 297 return TTI.getUserCost(I); 298 } 299 300 /// If we have a merge point of an "if condition" as accepted above, 301 /// return true if the specified value dominates the block. We 302 /// don't handle the true generality of domination here, just a special case 303 /// which works well enough for us. 304 /// 305 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 306 /// see if V (which must be an instruction) and its recursive operands 307 /// that do not dominate BB have a combined cost lower than CostRemaining and 308 /// are non-trapping. If both are true, the instruction is inserted into the 309 /// set and true is returned. 310 /// 311 /// The cost for most non-trapping instructions is defined as 1 except for 312 /// Select whose cost is 2. 313 /// 314 /// After this function returns, CostRemaining is decreased by the cost of 315 /// V plus its non-dominating operands. If that cost is greater than 316 /// CostRemaining, false is returned and CostRemaining is undefined. 317 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 318 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 319 unsigned &CostRemaining, 320 const TargetTransformInfo &TTI, 321 unsigned Depth = 0) { 322 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 323 // so limit the recursion depth. 324 // TODO: While this recursion limit does prevent pathological behavior, it 325 // would be better to track visited instructions to avoid cycles. 326 if (Depth == MaxSpeculationDepth) 327 return false; 328 329 Instruction *I = dyn_cast<Instruction>(V); 330 if (!I) { 331 // Non-instructions all dominate instructions, but not all constantexprs 332 // can be executed unconditionally. 333 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 334 if (C->canTrap()) 335 return false; 336 return true; 337 } 338 BasicBlock *PBB = I->getParent(); 339 340 // We don't want to allow weird loops that might have the "if condition" in 341 // the bottom of this block. 342 if (PBB == BB) 343 return false; 344 345 // If this instruction is defined in a block that contains an unconditional 346 // branch to BB, then it must be in the 'conditional' part of the "if 347 // statement". If not, it definitely dominates the region. 348 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 349 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 350 return true; 351 352 // If we aren't allowing aggressive promotion anymore, then don't consider 353 // instructions in the 'if region'. 354 if (!AggressiveInsts) 355 return false; 356 357 // If we have seen this instruction before, don't count it again. 358 if (AggressiveInsts->count(I)) 359 return true; 360 361 // Okay, it looks like the instruction IS in the "condition". Check to 362 // see if it's a cheap instruction to unconditionally compute, and if it 363 // only uses stuff defined outside of the condition. If so, hoist it out. 364 if (!isSafeToSpeculativelyExecute(I)) 365 return false; 366 367 unsigned Cost = ComputeSpeculationCost(I, TTI); 368 369 // Allow exactly one instruction to be speculated regardless of its cost 370 // (as long as it is safe to do so). 371 // This is intended to flatten the CFG even if the instruction is a division 372 // or other expensive operation. The speculation of an expensive instruction 373 // is expected to be undone in CodeGenPrepare if the speculation has not 374 // enabled further IR optimizations. 375 if (Cost > CostRemaining && 376 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 377 return false; 378 379 // Avoid unsigned wrap. 380 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 381 382 // Okay, we can only really hoist these out if their operands do 383 // not take us over the cost threshold. 384 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 385 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 386 Depth + 1)) 387 return false; 388 // Okay, it's safe to do this! Remember this instruction. 389 AggressiveInsts->insert(I); 390 return true; 391 } 392 393 /// Extract ConstantInt from value, looking through IntToPtr 394 /// and PointerNullValue. Return NULL if value is not a constant int. 395 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 396 // Normal constant int. 397 ConstantInt *CI = dyn_cast<ConstantInt>(V); 398 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 399 return CI; 400 401 // This is some kind of pointer constant. Turn it into a pointer-sized 402 // ConstantInt if possible. 403 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 404 405 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 406 if (isa<ConstantPointerNull>(V)) 407 return ConstantInt::get(PtrTy, 0); 408 409 // IntToPtr const int. 410 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 411 if (CE->getOpcode() == Instruction::IntToPtr) 412 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 413 // The constant is very likely to have the right type already. 414 if (CI->getType() == PtrTy) 415 return CI; 416 else 417 return cast<ConstantInt>( 418 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 419 } 420 return nullptr; 421 } 422 423 namespace { 424 425 /// Given a chain of or (||) or and (&&) comparison of a value against a 426 /// constant, this will try to recover the information required for a switch 427 /// structure. 428 /// It will depth-first traverse the chain of comparison, seeking for patterns 429 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 430 /// representing the different cases for the switch. 431 /// Note that if the chain is composed of '||' it will build the set of elements 432 /// that matches the comparisons (i.e. any of this value validate the chain) 433 /// while for a chain of '&&' it will build the set elements that make the test 434 /// fail. 435 struct ConstantComparesGatherer { 436 const DataLayout &DL; 437 Value *CompValue; /// Value found for the switch comparison 438 Value *Extra; /// Extra clause to be checked before the switch 439 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 440 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 441 442 /// Construct and compute the result for the comparison instruction Cond 443 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 444 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 445 gather(Cond); 446 } 447 448 /// Prevent copy 449 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 450 ConstantComparesGatherer & 451 operator=(const ConstantComparesGatherer &) = delete; 452 453 private: 454 /// Try to set the current value used for the comparison, it succeeds only if 455 /// it wasn't set before or if the new value is the same as the old one 456 bool setValueOnce(Value *NewVal) { 457 if (CompValue && CompValue != NewVal) 458 return false; 459 CompValue = NewVal; 460 return (CompValue != nullptr); 461 } 462 463 /// Try to match Instruction "I" as a comparison against a constant and 464 /// populates the array Vals with the set of values that match (or do not 465 /// match depending on isEQ). 466 /// Return false on failure. On success, the Value the comparison matched 467 /// against is placed in CompValue. 468 /// If CompValue is already set, the function is expected to fail if a match 469 /// is found but the value compared to is different. 470 bool matchInstruction(Instruction *I, bool isEQ) { 471 // If this is an icmp against a constant, handle this as one of the cases. 472 ICmpInst *ICI; 473 ConstantInt *C; 474 if (!((ICI = dyn_cast<ICmpInst>(I)) && 475 (C = GetConstantInt(I->getOperand(1), DL)))) { 476 return false; 477 } 478 479 Value *RHSVal; 480 const APInt *RHSC; 481 482 // Pattern match a special case 483 // (x & ~2^z) == y --> x == y || x == y|2^z 484 // This undoes a transformation done by instcombine to fuse 2 compares. 485 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 486 487 // It's a little bit hard to see why the following transformations are 488 // correct. Here is a CVC3 program to verify them for 64-bit values: 489 490 /* 491 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 492 x : BITVECTOR(64); 493 y : BITVECTOR(64); 494 z : BITVECTOR(64); 495 mask : BITVECTOR(64) = BVSHL(ONE, z); 496 QUERY( (y & ~mask = y) => 497 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 498 ); 499 QUERY( (y | mask = y) => 500 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 501 ); 502 */ 503 504 // Please note that each pattern must be a dual implication (<--> or 505 // iff). One directional implication can create spurious matches. If the 506 // implication is only one-way, an unsatisfiable condition on the left 507 // side can imply a satisfiable condition on the right side. Dual 508 // implication ensures that satisfiable conditions are transformed to 509 // other satisfiable conditions and unsatisfiable conditions are 510 // transformed to other unsatisfiable conditions. 511 512 // Here is a concrete example of a unsatisfiable condition on the left 513 // implying a satisfiable condition on the right: 514 // 515 // mask = (1 << z) 516 // (x & ~mask) == y --> (x == y || x == (y | mask)) 517 // 518 // Substituting y = 3, z = 0 yields: 519 // (x & -2) == 3 --> (x == 3 || x == 2) 520 521 // Pattern match a special case: 522 /* 523 QUERY( (y & ~mask = y) => 524 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 525 ); 526 */ 527 if (match(ICI->getOperand(0), 528 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 529 APInt Mask = ~*RHSC; 530 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 531 // If we already have a value for the switch, it has to match! 532 if (!setValueOnce(RHSVal)) 533 return false; 534 535 Vals.push_back(C); 536 Vals.push_back( 537 ConstantInt::get(C->getContext(), 538 C->getValue() | Mask)); 539 UsedICmps++; 540 return true; 541 } 542 } 543 544 // Pattern match a special case: 545 /* 546 QUERY( (y | mask = y) => 547 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 548 ); 549 */ 550 if (match(ICI->getOperand(0), 551 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 552 APInt Mask = *RHSC; 553 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 554 // If we already have a value for the switch, it has to match! 555 if (!setValueOnce(RHSVal)) 556 return false; 557 558 Vals.push_back(C); 559 Vals.push_back(ConstantInt::get(C->getContext(), 560 C->getValue() & ~Mask)); 561 UsedICmps++; 562 return true; 563 } 564 } 565 566 // If we already have a value for the switch, it has to match! 567 if (!setValueOnce(ICI->getOperand(0))) 568 return false; 569 570 UsedICmps++; 571 Vals.push_back(C); 572 return ICI->getOperand(0); 573 } 574 575 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 576 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 577 ICI->getPredicate(), C->getValue()); 578 579 // Shift the range if the compare is fed by an add. This is the range 580 // compare idiom as emitted by instcombine. 581 Value *CandidateVal = I->getOperand(0); 582 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 583 Span = Span.subtract(*RHSC); 584 CandidateVal = RHSVal; 585 } 586 587 // If this is an and/!= check, then we are looking to build the set of 588 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 589 // x != 0 && x != 1. 590 if (!isEQ) 591 Span = Span.inverse(); 592 593 // If there are a ton of values, we don't want to make a ginormous switch. 594 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 595 return false; 596 } 597 598 // If we already have a value for the switch, it has to match! 599 if (!setValueOnce(CandidateVal)) 600 return false; 601 602 // Add all values from the range to the set 603 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 604 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 605 606 UsedICmps++; 607 return true; 608 } 609 610 /// Given a potentially 'or'd or 'and'd together collection of icmp 611 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 612 /// the value being compared, and stick the list constants into the Vals 613 /// vector. 614 /// One "Extra" case is allowed to differ from the other. 615 void gather(Value *V) { 616 Instruction *I = dyn_cast<Instruction>(V); 617 bool isEQ = (I->getOpcode() == Instruction::Or); 618 619 // Keep a stack (SmallVector for efficiency) for depth-first traversal 620 SmallVector<Value *, 8> DFT; 621 SmallPtrSet<Value *, 8> Visited; 622 623 // Initialize 624 Visited.insert(V); 625 DFT.push_back(V); 626 627 while (!DFT.empty()) { 628 V = DFT.pop_back_val(); 629 630 if (Instruction *I = dyn_cast<Instruction>(V)) { 631 // If it is a || (or && depending on isEQ), process the operands. 632 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 633 if (Visited.insert(I->getOperand(1)).second) 634 DFT.push_back(I->getOperand(1)); 635 if (Visited.insert(I->getOperand(0)).second) 636 DFT.push_back(I->getOperand(0)); 637 continue; 638 } 639 640 // Try to match the current instruction 641 if (matchInstruction(I, isEQ)) 642 // Match succeed, continue the loop 643 continue; 644 } 645 646 // One element of the sequence of || (or &&) could not be match as a 647 // comparison against the same value as the others. 648 // We allow only one "Extra" case to be checked before the switch 649 if (!Extra) { 650 Extra = V; 651 continue; 652 } 653 // Failed to parse a proper sequence, abort now 654 CompValue = nullptr; 655 break; 656 } 657 } 658 }; 659 660 } // end anonymous namespace 661 662 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 663 Instruction *Cond = nullptr; 664 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 665 Cond = dyn_cast<Instruction>(SI->getCondition()); 666 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 667 if (BI->isConditional()) 668 Cond = dyn_cast<Instruction>(BI->getCondition()); 669 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 670 Cond = dyn_cast<Instruction>(IBI->getAddress()); 671 } 672 673 TI->eraseFromParent(); 674 if (Cond) 675 RecursivelyDeleteTriviallyDeadInstructions(Cond); 676 } 677 678 /// Return true if the specified terminator checks 679 /// to see if a value is equal to constant integer value. 680 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 681 Value *CV = nullptr; 682 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 683 // Do not permit merging of large switch instructions into their 684 // predecessors unless there is only one predecessor. 685 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 686 pred_end(SI->getParent())) <= 687 128) 688 CV = SI->getCondition(); 689 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 690 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 691 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 692 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 693 CV = ICI->getOperand(0); 694 } 695 696 // Unwrap any lossless ptrtoint cast. 697 if (CV) { 698 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 699 Value *Ptr = PTII->getPointerOperand(); 700 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 701 CV = Ptr; 702 } 703 } 704 return CV; 705 } 706 707 /// Given a value comparison instruction, 708 /// decode all of the 'cases' that it represents and return the 'default' block. 709 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 710 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 711 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 712 Cases.reserve(SI->getNumCases()); 713 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 714 ++i) 715 Cases.push_back( 716 ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor())); 717 return SI->getDefaultDest(); 718 } 719 720 BranchInst *BI = cast<BranchInst>(TI); 721 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 722 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 723 Cases.push_back(ValueEqualityComparisonCase( 724 GetConstantInt(ICI->getOperand(1), DL), Succ)); 725 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 726 } 727 728 /// Given a vector of bb/value pairs, remove any entries 729 /// in the list that match the specified block. 730 static void 731 EliminateBlockCases(BasicBlock *BB, 732 std::vector<ValueEqualityComparisonCase> &Cases) { 733 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 734 } 735 736 /// Return true if there are any keys in C1 that exist in C2 as well. 737 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 738 std::vector<ValueEqualityComparisonCase> &C2) { 739 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 740 741 // Make V1 be smaller than V2. 742 if (V1->size() > V2->size()) 743 std::swap(V1, V2); 744 745 if (V1->empty()) 746 return false; 747 if (V1->size() == 1) { 748 // Just scan V2. 749 ConstantInt *TheVal = (*V1)[0].Value; 750 for (unsigned i = 0, e = V2->size(); i != e; ++i) 751 if (TheVal == (*V2)[i].Value) 752 return true; 753 } 754 755 // Otherwise, just sort both lists and compare element by element. 756 array_pod_sort(V1->begin(), V1->end()); 757 array_pod_sort(V2->begin(), V2->end()); 758 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 759 while (i1 != e1 && i2 != e2) { 760 if ((*V1)[i1].Value == (*V2)[i2].Value) 761 return true; 762 if ((*V1)[i1].Value < (*V2)[i2].Value) 763 ++i1; 764 else 765 ++i2; 766 } 767 return false; 768 } 769 770 /// If TI is known to be a terminator instruction and its block is known to 771 /// only have a single predecessor block, check to see if that predecessor is 772 /// also a value comparison with the same value, and if that comparison 773 /// determines the outcome of this comparison. If so, simplify TI. This does a 774 /// very limited form of jump threading. 775 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 776 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 777 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 778 if (!PredVal) 779 return false; // Not a value comparison in predecessor. 780 781 Value *ThisVal = isValueEqualityComparison(TI); 782 assert(ThisVal && "This isn't a value comparison!!"); 783 if (ThisVal != PredVal) 784 return false; // Different predicates. 785 786 // TODO: Preserve branch weight metadata, similarly to how 787 // FoldValueComparisonIntoPredecessors preserves it. 788 789 // Find out information about when control will move from Pred to TI's block. 790 std::vector<ValueEqualityComparisonCase> PredCases; 791 BasicBlock *PredDef = 792 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 793 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 794 795 // Find information about how control leaves this block. 796 std::vector<ValueEqualityComparisonCase> ThisCases; 797 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 798 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 799 800 // If TI's block is the default block from Pred's comparison, potentially 801 // simplify TI based on this knowledge. 802 if (PredDef == TI->getParent()) { 803 // If we are here, we know that the value is none of those cases listed in 804 // PredCases. If there are any cases in ThisCases that are in PredCases, we 805 // can simplify TI. 806 if (!ValuesOverlap(PredCases, ThisCases)) 807 return false; 808 809 if (isa<BranchInst>(TI)) { 810 // Okay, one of the successors of this condbr is dead. Convert it to a 811 // uncond br. 812 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 813 // Insert the new branch. 814 Instruction *NI = Builder.CreateBr(ThisDef); 815 (void)NI; 816 817 // Remove PHI node entries for the dead edge. 818 ThisCases[0].Dest->removePredecessor(TI->getParent()); 819 820 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 821 << "Through successor TI: " << *TI << "Leaving: " << *NI 822 << "\n"); 823 824 EraseTerminatorInstAndDCECond(TI); 825 return true; 826 } 827 828 SwitchInst *SI = cast<SwitchInst>(TI); 829 // Okay, TI has cases that are statically dead, prune them away. 830 SmallPtrSet<Constant *, 16> DeadCases; 831 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 832 DeadCases.insert(PredCases[i].Value); 833 834 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 835 << "Through successor TI: " << *TI); 836 837 // Collect branch weights into a vector. 838 SmallVector<uint32_t, 8> Weights; 839 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 840 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 841 if (HasWeight) 842 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 843 ++MD_i) { 844 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 845 Weights.push_back(CI->getValue().getZExtValue()); 846 } 847 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 848 --i; 849 if (DeadCases.count(i.getCaseValue())) { 850 if (HasWeight) { 851 std::swap(Weights[i.getCaseIndex() + 1], Weights.back()); 852 Weights.pop_back(); 853 } 854 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 855 SI->removeCase(i); 856 } 857 } 858 if (HasWeight && Weights.size() >= 2) 859 SI->setMetadata(LLVMContext::MD_prof, 860 MDBuilder(SI->getParent()->getContext()) 861 .createBranchWeights(Weights)); 862 863 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 864 return true; 865 } 866 867 // Otherwise, TI's block must correspond to some matched value. Find out 868 // which value (or set of values) this is. 869 ConstantInt *TIV = nullptr; 870 BasicBlock *TIBB = TI->getParent(); 871 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 872 if (PredCases[i].Dest == TIBB) { 873 if (TIV) 874 return false; // Cannot handle multiple values coming to this block. 875 TIV = PredCases[i].Value; 876 } 877 assert(TIV && "No edge from pred to succ?"); 878 879 // Okay, we found the one constant that our value can be if we get into TI's 880 // BB. Find out which successor will unconditionally be branched to. 881 BasicBlock *TheRealDest = nullptr; 882 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 883 if (ThisCases[i].Value == TIV) { 884 TheRealDest = ThisCases[i].Dest; 885 break; 886 } 887 888 // If not handled by any explicit cases, it is handled by the default case. 889 if (!TheRealDest) 890 TheRealDest = ThisDef; 891 892 // Remove PHI node entries for dead edges. 893 BasicBlock *CheckEdge = TheRealDest; 894 for (BasicBlock *Succ : successors(TIBB)) 895 if (Succ != CheckEdge) 896 Succ->removePredecessor(TIBB); 897 else 898 CheckEdge = nullptr; 899 900 // Insert the new branch. 901 Instruction *NI = Builder.CreateBr(TheRealDest); 902 (void)NI; 903 904 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 905 << "Through successor TI: " << *TI << "Leaving: " << *NI 906 << "\n"); 907 908 EraseTerminatorInstAndDCECond(TI); 909 return true; 910 } 911 912 namespace { 913 914 /// This class implements a stable ordering of constant 915 /// integers that does not depend on their address. This is important for 916 /// applications that sort ConstantInt's to ensure uniqueness. 917 struct ConstantIntOrdering { 918 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 919 return LHS->getValue().ult(RHS->getValue()); 920 } 921 }; 922 923 } // end anonymous namespace 924 925 static int ConstantIntSortPredicate(ConstantInt *const *P1, 926 ConstantInt *const *P2) { 927 const ConstantInt *LHS = *P1; 928 const ConstantInt *RHS = *P2; 929 if (LHS == RHS) 930 return 0; 931 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 932 } 933 934 static inline bool HasBranchWeights(const Instruction *I) { 935 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 936 if (ProfMD && ProfMD->getOperand(0)) 937 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 938 return MDS->getString().equals("branch_weights"); 939 940 return false; 941 } 942 943 /// Get Weights of a given TerminatorInst, the default weight is at the front 944 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 945 /// metadata. 946 static void GetBranchWeights(TerminatorInst *TI, 947 SmallVectorImpl<uint64_t> &Weights) { 948 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 949 assert(MD); 950 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 951 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 952 Weights.push_back(CI->getValue().getZExtValue()); 953 } 954 955 // If TI is a conditional eq, the default case is the false case, 956 // and the corresponding branch-weight data is at index 2. We swap the 957 // default weight to be the first entry. 958 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 959 assert(Weights.size() == 2); 960 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 961 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 962 std::swap(Weights.front(), Weights.back()); 963 } 964 } 965 966 /// Keep halving the weights until all can fit in uint32_t. 967 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 968 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 969 if (Max > UINT_MAX) { 970 unsigned Offset = 32 - countLeadingZeros(Max); 971 for (uint64_t &I : Weights) 972 I >>= Offset; 973 } 974 } 975 976 /// The specified terminator is a value equality comparison instruction 977 /// (either a switch or a branch on "X == c"). 978 /// See if any of the predecessors of the terminator block are value comparisons 979 /// on the same value. If so, and if safe to do so, fold them together. 980 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 981 IRBuilder<> &Builder) { 982 BasicBlock *BB = TI->getParent(); 983 Value *CV = isValueEqualityComparison(TI); // CondVal 984 assert(CV && "Not a comparison?"); 985 bool Changed = false; 986 987 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 988 while (!Preds.empty()) { 989 BasicBlock *Pred = Preds.pop_back_val(); 990 991 // See if the predecessor is a comparison with the same value. 992 TerminatorInst *PTI = Pred->getTerminator(); 993 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 994 995 if (PCV == CV && TI != PTI) { 996 SmallSetVector<BasicBlock*, 4> FailBlocks; 997 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 998 for (auto *Succ : FailBlocks) { 999 std::vector<BasicBlock*> Blocks = { TI->getParent() }; 1000 if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split")) 1001 return false; 1002 } 1003 } 1004 1005 // Figure out which 'cases' to copy from SI to PSI. 1006 std::vector<ValueEqualityComparisonCase> BBCases; 1007 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1008 1009 std::vector<ValueEqualityComparisonCase> PredCases; 1010 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1011 1012 // Based on whether the default edge from PTI goes to BB or not, fill in 1013 // PredCases and PredDefault with the new switch cases we would like to 1014 // build. 1015 SmallVector<BasicBlock *, 8> NewSuccessors; 1016 1017 // Update the branch weight metadata along the way 1018 SmallVector<uint64_t, 8> Weights; 1019 bool PredHasWeights = HasBranchWeights(PTI); 1020 bool SuccHasWeights = HasBranchWeights(TI); 1021 1022 if (PredHasWeights) { 1023 GetBranchWeights(PTI, Weights); 1024 // branch-weight metadata is inconsistent here. 1025 if (Weights.size() != 1 + PredCases.size()) 1026 PredHasWeights = SuccHasWeights = false; 1027 } else if (SuccHasWeights) 1028 // If there are no predecessor weights but there are successor weights, 1029 // populate Weights with 1, which will later be scaled to the sum of 1030 // successor's weights 1031 Weights.assign(1 + PredCases.size(), 1); 1032 1033 SmallVector<uint64_t, 8> SuccWeights; 1034 if (SuccHasWeights) { 1035 GetBranchWeights(TI, SuccWeights); 1036 // branch-weight metadata is inconsistent here. 1037 if (SuccWeights.size() != 1 + BBCases.size()) 1038 PredHasWeights = SuccHasWeights = false; 1039 } else if (PredHasWeights) 1040 SuccWeights.assign(1 + BBCases.size(), 1); 1041 1042 if (PredDefault == BB) { 1043 // If this is the default destination from PTI, only the edges in TI 1044 // that don't occur in PTI, or that branch to BB will be activated. 1045 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1046 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1047 if (PredCases[i].Dest != BB) 1048 PTIHandled.insert(PredCases[i].Value); 1049 else { 1050 // The default destination is BB, we don't need explicit targets. 1051 std::swap(PredCases[i], PredCases.back()); 1052 1053 if (PredHasWeights || SuccHasWeights) { 1054 // Increase weight for the default case. 1055 Weights[0] += Weights[i + 1]; 1056 std::swap(Weights[i + 1], Weights.back()); 1057 Weights.pop_back(); 1058 } 1059 1060 PredCases.pop_back(); 1061 --i; 1062 --e; 1063 } 1064 1065 // Reconstruct the new switch statement we will be building. 1066 if (PredDefault != BBDefault) { 1067 PredDefault->removePredecessor(Pred); 1068 PredDefault = BBDefault; 1069 NewSuccessors.push_back(BBDefault); 1070 } 1071 1072 unsigned CasesFromPred = Weights.size(); 1073 uint64_t ValidTotalSuccWeight = 0; 1074 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1075 if (!PTIHandled.count(BBCases[i].Value) && 1076 BBCases[i].Dest != BBDefault) { 1077 PredCases.push_back(BBCases[i]); 1078 NewSuccessors.push_back(BBCases[i].Dest); 1079 if (SuccHasWeights || PredHasWeights) { 1080 // The default weight is at index 0, so weight for the ith case 1081 // should be at index i+1. Scale the cases from successor by 1082 // PredDefaultWeight (Weights[0]). 1083 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1084 ValidTotalSuccWeight += SuccWeights[i + 1]; 1085 } 1086 } 1087 1088 if (SuccHasWeights || PredHasWeights) { 1089 ValidTotalSuccWeight += SuccWeights[0]; 1090 // Scale the cases from predecessor by ValidTotalSuccWeight. 1091 for (unsigned i = 1; i < CasesFromPred; ++i) 1092 Weights[i] *= ValidTotalSuccWeight; 1093 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1094 Weights[0] *= SuccWeights[0]; 1095 } 1096 } else { 1097 // If this is not the default destination from PSI, only the edges 1098 // in SI that occur in PSI with a destination of BB will be 1099 // activated. 1100 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1101 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1102 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1103 if (PredCases[i].Dest == BB) { 1104 PTIHandled.insert(PredCases[i].Value); 1105 1106 if (PredHasWeights || SuccHasWeights) { 1107 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1108 std::swap(Weights[i + 1], Weights.back()); 1109 Weights.pop_back(); 1110 } 1111 1112 std::swap(PredCases[i], PredCases.back()); 1113 PredCases.pop_back(); 1114 --i; 1115 --e; 1116 } 1117 1118 // Okay, now we know which constants were sent to BB from the 1119 // predecessor. Figure out where they will all go now. 1120 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1121 if (PTIHandled.count(BBCases[i].Value)) { 1122 // If this is one we are capable of getting... 1123 if (PredHasWeights || SuccHasWeights) 1124 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1125 PredCases.push_back(BBCases[i]); 1126 NewSuccessors.push_back(BBCases[i].Dest); 1127 PTIHandled.erase( 1128 BBCases[i].Value); // This constant is taken care of 1129 } 1130 1131 // If there are any constants vectored to BB that TI doesn't handle, 1132 // they must go to the default destination of TI. 1133 for (ConstantInt *I : PTIHandled) { 1134 if (PredHasWeights || SuccHasWeights) 1135 Weights.push_back(WeightsForHandled[I]); 1136 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1137 NewSuccessors.push_back(BBDefault); 1138 } 1139 } 1140 1141 // Okay, at this point, we know which new successor Pred will get. Make 1142 // sure we update the number of entries in the PHI nodes for these 1143 // successors. 1144 for (BasicBlock *NewSuccessor : NewSuccessors) 1145 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1146 1147 Builder.SetInsertPoint(PTI); 1148 // Convert pointer to int before we switch. 1149 if (CV->getType()->isPointerTy()) { 1150 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1151 "magicptr"); 1152 } 1153 1154 // Now that the successors are updated, create the new Switch instruction. 1155 SwitchInst *NewSI = 1156 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1157 NewSI->setDebugLoc(PTI->getDebugLoc()); 1158 for (ValueEqualityComparisonCase &V : PredCases) 1159 NewSI->addCase(V.Value, V.Dest); 1160 1161 if (PredHasWeights || SuccHasWeights) { 1162 // Halve the weights if any of them cannot fit in an uint32_t 1163 FitWeights(Weights); 1164 1165 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1166 1167 NewSI->setMetadata( 1168 LLVMContext::MD_prof, 1169 MDBuilder(BB->getContext()).createBranchWeights(MDWeights)); 1170 } 1171 1172 EraseTerminatorInstAndDCECond(PTI); 1173 1174 // Okay, last check. If BB is still a successor of PSI, then we must 1175 // have an infinite loop case. If so, add an infinitely looping block 1176 // to handle the case to preserve the behavior of the code. 1177 BasicBlock *InfLoopBlock = nullptr; 1178 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1179 if (NewSI->getSuccessor(i) == BB) { 1180 if (!InfLoopBlock) { 1181 // Insert it at the end of the function, because it's either code, 1182 // or it won't matter if it's hot. :) 1183 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1184 BB->getParent()); 1185 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1186 } 1187 NewSI->setSuccessor(i, InfLoopBlock); 1188 } 1189 1190 Changed = true; 1191 } 1192 } 1193 return Changed; 1194 } 1195 1196 // If we would need to insert a select that uses the value of this invoke 1197 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1198 // can't hoist the invoke, as there is nowhere to put the select in this case. 1199 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1200 Instruction *I1, Instruction *I2) { 1201 for (BasicBlock *Succ : successors(BB1)) { 1202 PHINode *PN; 1203 for (BasicBlock::iterator BBI = Succ->begin(); 1204 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1205 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1206 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1207 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1208 return false; 1209 } 1210 } 1211 } 1212 return true; 1213 } 1214 1215 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1216 1217 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1218 /// in the two blocks up into the branch block. The caller of this function 1219 /// guarantees that BI's block dominates BB1 and BB2. 1220 static bool HoistThenElseCodeToIf(BranchInst *BI, 1221 const TargetTransformInfo &TTI) { 1222 // This does very trivial matching, with limited scanning, to find identical 1223 // instructions in the two blocks. In particular, we don't want to get into 1224 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1225 // such, we currently just scan for obviously identical instructions in an 1226 // identical order. 1227 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1228 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1229 1230 BasicBlock::iterator BB1_Itr = BB1->begin(); 1231 BasicBlock::iterator BB2_Itr = BB2->begin(); 1232 1233 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1234 // Skip debug info if it is not identical. 1235 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1236 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1237 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1238 while (isa<DbgInfoIntrinsic>(I1)) 1239 I1 = &*BB1_Itr++; 1240 while (isa<DbgInfoIntrinsic>(I2)) 1241 I2 = &*BB2_Itr++; 1242 } 1243 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1244 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1245 return false; 1246 1247 BasicBlock *BIParent = BI->getParent(); 1248 1249 bool Changed = false; 1250 do { 1251 // If we are hoisting the terminator instruction, don't move one (making a 1252 // broken BB), instead clone it, and remove BI. 1253 if (isa<TerminatorInst>(I1)) 1254 goto HoistTerminator; 1255 1256 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1257 return Changed; 1258 1259 // For a normal instruction, we just move one to right before the branch, 1260 // then replace all uses of the other with the first. Finally, we remove 1261 // the now redundant second instruction. 1262 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1263 if (!I2->use_empty()) 1264 I2->replaceAllUsesWith(I1); 1265 I1->andIRFlags(I2); 1266 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1267 LLVMContext::MD_range, 1268 LLVMContext::MD_fpmath, 1269 LLVMContext::MD_invariant_load, 1270 LLVMContext::MD_nonnull, 1271 LLVMContext::MD_invariant_group, 1272 LLVMContext::MD_align, 1273 LLVMContext::MD_dereferenceable, 1274 LLVMContext::MD_dereferenceable_or_null, 1275 LLVMContext::MD_mem_parallel_loop_access}; 1276 combineMetadata(I1, I2, KnownIDs); 1277 1278 // I1 and I2 are being combined into a single instruction. Its debug 1279 // location is the merged locations of the original instructions. 1280 if (!isa<CallInst>(I1)) 1281 I1->setDebugLoc( 1282 DILocation::getMergedLocation(I1->getDebugLoc(), I2->getDebugLoc())); 1283 1284 I2->eraseFromParent(); 1285 Changed = true; 1286 1287 I1 = &*BB1_Itr++; 1288 I2 = &*BB2_Itr++; 1289 // Skip debug info if it is not identical. 1290 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1291 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1292 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1293 while (isa<DbgInfoIntrinsic>(I1)) 1294 I1 = &*BB1_Itr++; 1295 while (isa<DbgInfoIntrinsic>(I2)) 1296 I2 = &*BB2_Itr++; 1297 } 1298 } while (I1->isIdenticalToWhenDefined(I2)); 1299 1300 return true; 1301 1302 HoistTerminator: 1303 // It may not be possible to hoist an invoke. 1304 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1305 return Changed; 1306 1307 for (BasicBlock *Succ : successors(BB1)) { 1308 PHINode *PN; 1309 for (BasicBlock::iterator BBI = Succ->begin(); 1310 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1311 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1312 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1313 if (BB1V == BB2V) 1314 continue; 1315 1316 // Check for passingValueIsAlwaysUndefined here because we would rather 1317 // eliminate undefined control flow then converting it to a select. 1318 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1319 passingValueIsAlwaysUndefined(BB2V, PN)) 1320 return Changed; 1321 1322 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1323 return Changed; 1324 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1325 return Changed; 1326 } 1327 } 1328 1329 // Okay, it is safe to hoist the terminator. 1330 Instruction *NT = I1->clone(); 1331 BIParent->getInstList().insert(BI->getIterator(), NT); 1332 if (!NT->getType()->isVoidTy()) { 1333 I1->replaceAllUsesWith(NT); 1334 I2->replaceAllUsesWith(NT); 1335 NT->takeName(I1); 1336 } 1337 1338 IRBuilder<NoFolder> Builder(NT); 1339 // Hoisting one of the terminators from our successor is a great thing. 1340 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1341 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1342 // nodes, so we insert select instruction to compute the final result. 1343 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1344 for (BasicBlock *Succ : successors(BB1)) { 1345 PHINode *PN; 1346 for (BasicBlock::iterator BBI = Succ->begin(); 1347 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1348 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1349 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1350 if (BB1V == BB2V) 1351 continue; 1352 1353 // These values do not agree. Insert a select instruction before NT 1354 // that determines the right value. 1355 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1356 if (!SI) 1357 SI = cast<SelectInst>( 1358 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1359 BB1V->getName() + "." + BB2V->getName(), BI)); 1360 1361 // Make the PHI node use the select for all incoming values for BB1/BB2 1362 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1363 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1364 PN->setIncomingValue(i, SI); 1365 } 1366 } 1367 1368 // Update any PHI nodes in our new successors. 1369 for (BasicBlock *Succ : successors(BB1)) 1370 AddPredecessorToBlock(Succ, BIParent, BB1); 1371 1372 EraseTerminatorInstAndDCECond(BI); 1373 return true; 1374 } 1375 1376 // Is it legal to place a variable in operand \c OpIdx of \c I? 1377 // FIXME: This should be promoted to Instruction. 1378 static bool canReplaceOperandWithVariable(const Instruction *I, 1379 unsigned OpIdx) { 1380 // We can't have a PHI with a metadata type. 1381 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 1382 return false; 1383 1384 // Early exit. 1385 if (!isa<Constant>(I->getOperand(OpIdx))) 1386 return true; 1387 1388 switch (I->getOpcode()) { 1389 default: 1390 return true; 1391 case Instruction::Call: 1392 case Instruction::Invoke: 1393 // FIXME: many arithmetic intrinsics have no issue taking a 1394 // variable, however it's hard to distingish these from 1395 // specials such as @llvm.frameaddress that require a constant. 1396 if (isa<IntrinsicInst>(I)) 1397 return false; 1398 1399 // Constant bundle operands may need to retain their constant-ness for 1400 // correctness. 1401 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 1402 return false; 1403 1404 return true; 1405 1406 case Instruction::ShuffleVector: 1407 // Shufflevector masks are constant. 1408 return OpIdx != 2; 1409 case Instruction::ExtractValue: 1410 case Instruction::InsertValue: 1411 // All operands apart from the first are constant. 1412 return OpIdx == 0; 1413 case Instruction::Alloca: 1414 return false; 1415 case Instruction::GetElementPtr: 1416 if (OpIdx == 0) 1417 return true; 1418 gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1); 1419 return It.isSequential(); 1420 } 1421 } 1422 1423 // All instructions in Insts belong to different blocks that all unconditionally 1424 // branch to a common successor. Analyze each instruction and return true if it 1425 // would be possible to sink them into their successor, creating one common 1426 // instruction instead. For every value that would be required to be provided by 1427 // PHI node (because an operand varies in each input block), add to PHIOperands. 1428 static bool canSinkInstructions( 1429 ArrayRef<Instruction *> Insts, 1430 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1431 // Prune out obviously bad instructions to move. Any non-store instruction 1432 // must have exactly one use, and we check later that use is by a single, 1433 // common PHI instruction in the successor. 1434 for (auto *I : Insts) { 1435 // These instructions may change or break semantics if moved. 1436 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1437 I->getType()->isTokenTy()) 1438 return false; 1439 // Everything must have only one use too, apart from stores which 1440 // have no uses. 1441 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1442 return false; 1443 } 1444 1445 const Instruction *I0 = Insts.front(); 1446 for (auto *I : Insts) 1447 if (!I->isSameOperationAs(I0)) 1448 return false; 1449 1450 // All instructions in Insts are known to be the same opcode. If they aren't 1451 // stores, check the only user of each is a PHI or in the same block as the 1452 // instruction, because if a user is in the same block as an instruction 1453 // we're contemplating sinking, it must already be determined to be sinkable. 1454 if (!isa<StoreInst>(I0)) { 1455 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1456 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1457 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1458 auto *U = cast<Instruction>(*I->user_begin()); 1459 return (PNUse && 1460 PNUse->getParent() == Succ && 1461 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1462 U->getParent() == I->getParent(); 1463 })) 1464 return false; 1465 } 1466 1467 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1468 if (I0->getOperand(OI)->getType()->isTokenTy()) 1469 // Don't touch any operand of token type. 1470 return false; 1471 1472 // Because SROA can't handle speculating stores of selects, try not 1473 // to sink loads or stores of allocas when we'd have to create a PHI for 1474 // the address operand. Also, because it is likely that loads or stores 1475 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1476 // This can cause code churn which can have unintended consequences down 1477 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1478 // FIXME: This is a workaround for a deficiency in SROA - see 1479 // https://llvm.org/bugs/show_bug.cgi?id=30188 1480 if (OI == 1 && isa<StoreInst>(I0) && 1481 any_of(Insts, [](const Instruction *I) { 1482 return isa<AllocaInst>(I->getOperand(1)); 1483 })) 1484 return false; 1485 if (OI == 0 && isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1486 return isa<AllocaInst>(I->getOperand(0)); 1487 })) 1488 return false; 1489 1490 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1491 assert(I->getNumOperands() == I0->getNumOperands()); 1492 return I->getOperand(OI) == I0->getOperand(OI); 1493 }; 1494 if (!all_of(Insts, SameAsI0)) { 1495 if (!canReplaceOperandWithVariable(I0, OI)) 1496 // We can't create a PHI from this GEP. 1497 return false; 1498 // Don't create indirect calls! The called value is the final operand. 1499 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1500 // FIXME: if the call was *already* indirect, we should do this. 1501 return false; 1502 } 1503 for (auto *I : Insts) 1504 PHIOperands[I].push_back(I->getOperand(OI)); 1505 } 1506 } 1507 return true; 1508 } 1509 1510 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1511 // instruction of every block in Blocks to their common successor, commoning 1512 // into one instruction. 1513 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1514 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1515 1516 // canSinkLastInstruction returning true guarantees that every block has at 1517 // least one non-terminator instruction. 1518 SmallVector<Instruction*,4> Insts; 1519 for (auto *BB : Blocks) { 1520 Instruction *I = BB->getTerminator(); 1521 do { 1522 I = I->getPrevNode(); 1523 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1524 if (!isa<DbgInfoIntrinsic>(I)) 1525 Insts.push_back(I); 1526 } 1527 1528 // The only checking we need to do now is that all users of all instructions 1529 // are the same PHI node. canSinkLastInstruction should have checked this but 1530 // it is slightly over-aggressive - it gets confused by commutative instructions 1531 // so double-check it here. 1532 Instruction *I0 = Insts.front(); 1533 if (!isa<StoreInst>(I0)) { 1534 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1535 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1536 auto *U = cast<Instruction>(*I->user_begin()); 1537 return U == PNUse; 1538 })) 1539 return false; 1540 } 1541 1542 // We don't need to do any more checking here; canSinkLastInstruction should 1543 // have done it all for us. 1544 SmallVector<Value*, 4> NewOperands; 1545 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1546 // This check is different to that in canSinkLastInstruction. There, we 1547 // cared about the global view once simplifycfg (and instcombine) have 1548 // completed - it takes into account PHIs that become trivially 1549 // simplifiable. However here we need a more local view; if an operand 1550 // differs we create a PHI and rely on instcombine to clean up the very 1551 // small mess we may make. 1552 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1553 return I->getOperand(O) != I0->getOperand(O); 1554 }); 1555 if (!NeedPHI) { 1556 NewOperands.push_back(I0->getOperand(O)); 1557 continue; 1558 } 1559 1560 // Create a new PHI in the successor block and populate it. 1561 auto *Op = I0->getOperand(O); 1562 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1563 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1564 Op->getName() + ".sink", &BBEnd->front()); 1565 for (auto *I : Insts) 1566 PN->addIncoming(I->getOperand(O), I->getParent()); 1567 NewOperands.push_back(PN); 1568 } 1569 1570 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1571 // and move it to the start of the successor block. 1572 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1573 I0->getOperandUse(O).set(NewOperands[O]); 1574 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1575 1576 // The debug location for the "common" instruction is the merged locations of 1577 // all the commoned instructions. We start with the original location of the 1578 // "common" instruction and iteratively merge each location in the loop below. 1579 const DILocation *Loc = I0->getDebugLoc(); 1580 1581 // Update metadata and IR flags, and merge debug locations. 1582 for (auto *I : Insts) 1583 if (I != I0) { 1584 Loc = DILocation::getMergedLocation(Loc, I->getDebugLoc()); 1585 combineMetadataForCSE(I0, I); 1586 I0->andIRFlags(I); 1587 } 1588 if (!isa<CallInst>(I0)) 1589 I0->setDebugLoc(Loc); 1590 1591 if (!isa<StoreInst>(I0)) { 1592 // canSinkLastInstruction checked that all instructions were used by 1593 // one and only one PHI node. Find that now, RAUW it to our common 1594 // instruction and nuke it. 1595 assert(I0->hasOneUse()); 1596 auto *PN = cast<PHINode>(*I0->user_begin()); 1597 PN->replaceAllUsesWith(I0); 1598 PN->eraseFromParent(); 1599 } 1600 1601 // Finally nuke all instructions apart from the common instruction. 1602 for (auto *I : Insts) 1603 if (I != I0) 1604 I->eraseFromParent(); 1605 1606 return true; 1607 } 1608 1609 namespace { 1610 1611 // LockstepReverseIterator - Iterates through instructions 1612 // in a set of blocks in reverse order from the first non-terminator. 1613 // For example (assume all blocks have size n): 1614 // LockstepReverseIterator I([B1, B2, B3]); 1615 // *I-- = [B1[n], B2[n], B3[n]]; 1616 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1617 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1618 // ... 1619 class LockstepReverseIterator { 1620 ArrayRef<BasicBlock*> Blocks; 1621 SmallVector<Instruction*,4> Insts; 1622 bool Fail; 1623 public: 1624 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : 1625 Blocks(Blocks) { 1626 reset(); 1627 } 1628 1629 void reset() { 1630 Fail = false; 1631 Insts.clear(); 1632 for (auto *BB : Blocks) { 1633 Instruction *Inst = BB->getTerminator(); 1634 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1635 Inst = Inst->getPrevNode(); 1636 if (!Inst) { 1637 // Block wasn't big enough. 1638 Fail = true; 1639 return; 1640 } 1641 Insts.push_back(Inst); 1642 } 1643 } 1644 1645 bool isValid() const { 1646 return !Fail; 1647 } 1648 1649 void operator -- () { 1650 if (Fail) 1651 return; 1652 for (auto *&Inst : Insts) { 1653 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1654 Inst = Inst->getPrevNode(); 1655 // Already at beginning of block. 1656 if (!Inst) { 1657 Fail = true; 1658 return; 1659 } 1660 } 1661 } 1662 1663 ArrayRef<Instruction*> operator * () const { 1664 return Insts; 1665 } 1666 }; 1667 1668 } // end anonymous namespace 1669 1670 /// Given an unconditional branch that goes to BBEnd, 1671 /// check whether BBEnd has only two predecessors and the other predecessor 1672 /// ends with an unconditional branch. If it is true, sink any common code 1673 /// in the two predecessors to BBEnd. 1674 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1675 assert(BI1->isUnconditional()); 1676 BasicBlock *BBEnd = BI1->getSuccessor(0); 1677 1678 // We support two situations: 1679 // (1) all incoming arcs are unconditional 1680 // (2) one incoming arc is conditional 1681 // 1682 // (2) is very common in switch defaults and 1683 // else-if patterns; 1684 // 1685 // if (a) f(1); 1686 // else if (b) f(2); 1687 // 1688 // produces: 1689 // 1690 // [if] 1691 // / \ 1692 // [f(1)] [if] 1693 // | | \ 1694 // | | \ 1695 // | [f(2)]| 1696 // \ | / 1697 // [ end ] 1698 // 1699 // [end] has two unconditional predecessor arcs and one conditional. The 1700 // conditional refers to the implicit empty 'else' arc. This conditional 1701 // arc can also be caused by an empty default block in a switch. 1702 // 1703 // In this case, we attempt to sink code from all *unconditional* arcs. 1704 // If we can sink instructions from these arcs (determined during the scan 1705 // phase below) we insert a common successor for all unconditional arcs and 1706 // connect that to [end], to enable sinking: 1707 // 1708 // [if] 1709 // / \ 1710 // [x(1)] [if] 1711 // | | \ 1712 // | | \ 1713 // | [x(2)] | 1714 // \ / | 1715 // [sink.split] | 1716 // \ / 1717 // [ end ] 1718 // 1719 SmallVector<BasicBlock*,4> UnconditionalPreds; 1720 Instruction *Cond = nullptr; 1721 for (auto *B : predecessors(BBEnd)) { 1722 auto *T = B->getTerminator(); 1723 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1724 UnconditionalPreds.push_back(B); 1725 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1726 Cond = T; 1727 else 1728 return false; 1729 } 1730 if (UnconditionalPreds.size() < 2) 1731 return false; 1732 1733 bool Changed = false; 1734 // We take a two-step approach to tail sinking. First we scan from the end of 1735 // each block upwards in lockstep. If the n'th instruction from the end of each 1736 // block can be sunk, those instructions are added to ValuesToSink and we 1737 // carry on. If we can sink an instruction but need to PHI-merge some operands 1738 // (because they're not identical in each instruction) we add these to 1739 // PHIOperands. 1740 unsigned ScanIdx = 0; 1741 SmallPtrSet<Value*,4> InstructionsToSink; 1742 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1743 LockstepReverseIterator LRI(UnconditionalPreds); 1744 while (LRI.isValid() && 1745 canSinkInstructions(*LRI, PHIOperands)) { 1746 DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n"); 1747 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1748 ++ScanIdx; 1749 --LRI; 1750 } 1751 1752 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1753 unsigned NumPHIdValues = 0; 1754 for (auto *I : *LRI) 1755 for (auto *V : PHIOperands[I]) 1756 if (InstructionsToSink.count(V) == 0) 1757 ++NumPHIdValues; 1758 DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1759 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1760 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1761 NumPHIInsts++; 1762 1763 return NumPHIInsts <= 1; 1764 }; 1765 1766 if (ScanIdx > 0 && Cond) { 1767 // Check if we would actually sink anything first! This mutates the CFG and 1768 // adds an extra block. The goal in doing this is to allow instructions that 1769 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1770 // (such as trunc, add) can be sunk and predicated already. So we check that 1771 // we're going to sink at least one non-speculatable instruction. 1772 LRI.reset(); 1773 unsigned Idx = 0; 1774 bool Profitable = false; 1775 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1776 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1777 Profitable = true; 1778 break; 1779 } 1780 --LRI; 1781 ++Idx; 1782 } 1783 if (!Profitable) 1784 return false; 1785 1786 DEBUG(dbgs() << "SINK: Splitting edge\n"); 1787 // We have a conditional edge and we're going to sink some instructions. 1788 // Insert a new block postdominating all blocks we're going to sink from. 1789 if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds, 1790 ".sink.split")) 1791 // Edges couldn't be split. 1792 return false; 1793 Changed = true; 1794 } 1795 1796 // Now that we've analyzed all potential sinking candidates, perform the 1797 // actual sink. We iteratively sink the last non-terminator of the source 1798 // blocks into their common successor unless doing so would require too 1799 // many PHI instructions to be generated (currently only one PHI is allowed 1800 // per sunk instruction). 1801 // 1802 // We can use InstructionsToSink to discount values needing PHI-merging that will 1803 // actually be sunk in a later iteration. This allows us to be more 1804 // aggressive in what we sink. This does allow a false positive where we 1805 // sink presuming a later value will also be sunk, but stop half way through 1806 // and never actually sink it which means we produce more PHIs than intended. 1807 // This is unlikely in practice though. 1808 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1809 DEBUG(dbgs() << "SINK: Sink: " 1810 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1811 << "\n"); 1812 1813 // Because we've sunk every instruction in turn, the current instruction to 1814 // sink is always at index 0. 1815 LRI.reset(); 1816 if (!ProfitableToSinkInstruction(LRI)) { 1817 // Too many PHIs would be created. 1818 DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1819 break; 1820 } 1821 1822 if (!sinkLastInstruction(UnconditionalPreds)) 1823 return Changed; 1824 NumSinkCommons++; 1825 Changed = true; 1826 } 1827 return Changed; 1828 } 1829 1830 /// \brief Determine if we can hoist sink a sole store instruction out of a 1831 /// conditional block. 1832 /// 1833 /// We are looking for code like the following: 1834 /// BrBB: 1835 /// store i32 %add, i32* %arrayidx2 1836 /// ... // No other stores or function calls (we could be calling a memory 1837 /// ... // function). 1838 /// %cmp = icmp ult %x, %y 1839 /// br i1 %cmp, label %EndBB, label %ThenBB 1840 /// ThenBB: 1841 /// store i32 %add5, i32* %arrayidx2 1842 /// br label EndBB 1843 /// EndBB: 1844 /// ... 1845 /// We are going to transform this into: 1846 /// BrBB: 1847 /// store i32 %add, i32* %arrayidx2 1848 /// ... // 1849 /// %cmp = icmp ult %x, %y 1850 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1851 /// store i32 %add.add5, i32* %arrayidx2 1852 /// ... 1853 /// 1854 /// \return The pointer to the value of the previous store if the store can be 1855 /// hoisted into the predecessor block. 0 otherwise. 1856 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1857 BasicBlock *StoreBB, BasicBlock *EndBB) { 1858 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1859 if (!StoreToHoist) 1860 return nullptr; 1861 1862 // Volatile or atomic. 1863 if (!StoreToHoist->isSimple()) 1864 return nullptr; 1865 1866 Value *StorePtr = StoreToHoist->getPointerOperand(); 1867 1868 // Look for a store to the same pointer in BrBB. 1869 unsigned MaxNumInstToLookAt = 9; 1870 for (Instruction &CurI : reverse(*BrBB)) { 1871 if (!MaxNumInstToLookAt) 1872 break; 1873 // Skip debug info. 1874 if (isa<DbgInfoIntrinsic>(CurI)) 1875 continue; 1876 --MaxNumInstToLookAt; 1877 1878 // Could be calling an instruction that affects memory like free(). 1879 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1880 return nullptr; 1881 1882 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1883 // Found the previous store make sure it stores to the same location. 1884 if (SI->getPointerOperand() == StorePtr) 1885 // Found the previous store, return its value operand. 1886 return SI->getValueOperand(); 1887 return nullptr; // Unknown store. 1888 } 1889 } 1890 1891 return nullptr; 1892 } 1893 1894 /// \brief Speculate a conditional basic block flattening the CFG. 1895 /// 1896 /// Note that this is a very risky transform currently. Speculating 1897 /// instructions like this is most often not desirable. Instead, there is an MI 1898 /// pass which can do it with full awareness of the resource constraints. 1899 /// However, some cases are "obvious" and we should do directly. An example of 1900 /// this is speculating a single, reasonably cheap instruction. 1901 /// 1902 /// There is only one distinct advantage to flattening the CFG at the IR level: 1903 /// it makes very common but simplistic optimizations such as are common in 1904 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1905 /// modeling their effects with easier to reason about SSA value graphs. 1906 /// 1907 /// 1908 /// An illustration of this transform is turning this IR: 1909 /// \code 1910 /// BB: 1911 /// %cmp = icmp ult %x, %y 1912 /// br i1 %cmp, label %EndBB, label %ThenBB 1913 /// ThenBB: 1914 /// %sub = sub %x, %y 1915 /// br label BB2 1916 /// EndBB: 1917 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1918 /// ... 1919 /// \endcode 1920 /// 1921 /// Into this IR: 1922 /// \code 1923 /// BB: 1924 /// %cmp = icmp ult %x, %y 1925 /// %sub = sub %x, %y 1926 /// %cond = select i1 %cmp, 0, %sub 1927 /// ... 1928 /// \endcode 1929 /// 1930 /// \returns true if the conditional block is removed. 1931 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1932 const TargetTransformInfo &TTI) { 1933 // Be conservative for now. FP select instruction can often be expensive. 1934 Value *BrCond = BI->getCondition(); 1935 if (isa<FCmpInst>(BrCond)) 1936 return false; 1937 1938 BasicBlock *BB = BI->getParent(); 1939 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1940 1941 // If ThenBB is actually on the false edge of the conditional branch, remember 1942 // to swap the select operands later. 1943 bool Invert = false; 1944 if (ThenBB != BI->getSuccessor(0)) { 1945 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1946 Invert = true; 1947 } 1948 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1949 1950 // Keep a count of how many times instructions are used within CondBB when 1951 // they are candidates for sinking into CondBB. Specifically: 1952 // - They are defined in BB, and 1953 // - They have no side effects, and 1954 // - All of their uses are in CondBB. 1955 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1956 1957 unsigned SpeculationCost = 0; 1958 Value *SpeculatedStoreValue = nullptr; 1959 StoreInst *SpeculatedStore = nullptr; 1960 for (BasicBlock::iterator BBI = ThenBB->begin(), 1961 BBE = std::prev(ThenBB->end()); 1962 BBI != BBE; ++BBI) { 1963 Instruction *I = &*BBI; 1964 // Skip debug info. 1965 if (isa<DbgInfoIntrinsic>(I)) 1966 continue; 1967 1968 // Only speculatively execute a single instruction (not counting the 1969 // terminator) for now. 1970 ++SpeculationCost; 1971 if (SpeculationCost > 1) 1972 return false; 1973 1974 // Don't hoist the instruction if it's unsafe or expensive. 1975 if (!isSafeToSpeculativelyExecute(I) && 1976 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1977 I, BB, ThenBB, EndBB)))) 1978 return false; 1979 if (!SpeculatedStoreValue && 1980 ComputeSpeculationCost(I, TTI) > 1981 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1982 return false; 1983 1984 // Store the store speculation candidate. 1985 if (SpeculatedStoreValue) 1986 SpeculatedStore = cast<StoreInst>(I); 1987 1988 // Do not hoist the instruction if any of its operands are defined but not 1989 // used in BB. The transformation will prevent the operand from 1990 // being sunk into the use block. 1991 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1992 Instruction *OpI = dyn_cast<Instruction>(*i); 1993 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1994 continue; // Not a candidate for sinking. 1995 1996 ++SinkCandidateUseCounts[OpI]; 1997 } 1998 } 1999 2000 // Consider any sink candidates which are only used in CondBB as costs for 2001 // speculation. Note, while we iterate over a DenseMap here, we are summing 2002 // and so iteration order isn't significant. 2003 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2004 I = SinkCandidateUseCounts.begin(), 2005 E = SinkCandidateUseCounts.end(); 2006 I != E; ++I) 2007 if (I->first->getNumUses() == I->second) { 2008 ++SpeculationCost; 2009 if (SpeculationCost > 1) 2010 return false; 2011 } 2012 2013 // Check that the PHI nodes can be converted to selects. 2014 bool HaveRewritablePHIs = false; 2015 for (BasicBlock::iterator I = EndBB->begin(); 2016 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2017 Value *OrigV = PN->getIncomingValueForBlock(BB); 2018 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 2019 2020 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2021 // Skip PHIs which are trivial. 2022 if (ThenV == OrigV) 2023 continue; 2024 2025 // Don't convert to selects if we could remove undefined behavior instead. 2026 if (passingValueIsAlwaysUndefined(OrigV, PN) || 2027 passingValueIsAlwaysUndefined(ThenV, PN)) 2028 return false; 2029 2030 HaveRewritablePHIs = true; 2031 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2032 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2033 if (!OrigCE && !ThenCE) 2034 continue; // Known safe and cheap. 2035 2036 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2037 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2038 return false; 2039 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2040 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2041 unsigned MaxCost = 2042 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2043 if (OrigCost + ThenCost > MaxCost) 2044 return false; 2045 2046 // Account for the cost of an unfolded ConstantExpr which could end up 2047 // getting expanded into Instructions. 2048 // FIXME: This doesn't account for how many operations are combined in the 2049 // constant expression. 2050 ++SpeculationCost; 2051 if (SpeculationCost > 1) 2052 return false; 2053 } 2054 2055 // If there are no PHIs to process, bail early. This helps ensure idempotence 2056 // as well. 2057 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2058 return false; 2059 2060 // If we get here, we can hoist the instruction and if-convert. 2061 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2062 2063 // Insert a select of the value of the speculated store. 2064 if (SpeculatedStoreValue) { 2065 IRBuilder<NoFolder> Builder(BI); 2066 Value *TrueV = SpeculatedStore->getValueOperand(); 2067 Value *FalseV = SpeculatedStoreValue; 2068 if (Invert) 2069 std::swap(TrueV, FalseV); 2070 Value *S = Builder.CreateSelect( 2071 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2072 SpeculatedStore->setOperand(0, S); 2073 } 2074 2075 // Metadata can be dependent on the condition we are hoisting above. 2076 // Conservatively strip all metadata on the instruction. 2077 for (auto &I : *ThenBB) 2078 I.dropUnknownNonDebugMetadata(); 2079 2080 // Hoist the instructions. 2081 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2082 ThenBB->begin(), std::prev(ThenBB->end())); 2083 2084 // Insert selects and rewrite the PHI operands. 2085 IRBuilder<NoFolder> Builder(BI); 2086 for (BasicBlock::iterator I = EndBB->begin(); 2087 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2088 unsigned OrigI = PN->getBasicBlockIndex(BB); 2089 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 2090 Value *OrigV = PN->getIncomingValue(OrigI); 2091 Value *ThenV = PN->getIncomingValue(ThenI); 2092 2093 // Skip PHIs which are trivial. 2094 if (OrigV == ThenV) 2095 continue; 2096 2097 // Create a select whose true value is the speculatively executed value and 2098 // false value is the preexisting value. Swap them if the branch 2099 // destinations were inverted. 2100 Value *TrueV = ThenV, *FalseV = OrigV; 2101 if (Invert) 2102 std::swap(TrueV, FalseV); 2103 Value *V = Builder.CreateSelect( 2104 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2105 PN->setIncomingValue(OrigI, V); 2106 PN->setIncomingValue(ThenI, V); 2107 } 2108 2109 ++NumSpeculations; 2110 return true; 2111 } 2112 2113 /// Return true if we can thread a branch across this block. 2114 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2115 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 2116 unsigned Size = 0; 2117 2118 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2119 if (isa<DbgInfoIntrinsic>(BBI)) 2120 continue; 2121 if (Size > 10) 2122 return false; // Don't clone large BB's. 2123 ++Size; 2124 2125 // We can only support instructions that do not define values that are 2126 // live outside of the current basic block. 2127 for (User *U : BBI->users()) { 2128 Instruction *UI = cast<Instruction>(U); 2129 if (UI->getParent() != BB || isa<PHINode>(UI)) 2130 return false; 2131 } 2132 2133 // Looks ok, continue checking. 2134 } 2135 2136 return true; 2137 } 2138 2139 /// If we have a conditional branch on a PHI node value that is defined in the 2140 /// same block as the branch and if any PHI entries are constants, thread edges 2141 /// corresponding to that entry to be branches to their ultimate destination. 2142 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 2143 BasicBlock *BB = BI->getParent(); 2144 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2145 // NOTE: we currently cannot transform this case if the PHI node is used 2146 // outside of the block. 2147 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2148 return false; 2149 2150 // Degenerate case of a single entry PHI. 2151 if (PN->getNumIncomingValues() == 1) { 2152 FoldSingleEntryPHINodes(PN->getParent()); 2153 return true; 2154 } 2155 2156 // Now we know that this block has multiple preds and two succs. 2157 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2158 return false; 2159 2160 // Can't fold blocks that contain noduplicate or convergent calls. 2161 if (any_of(*BB, [](const Instruction &I) { 2162 const CallInst *CI = dyn_cast<CallInst>(&I); 2163 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2164 })) 2165 return false; 2166 2167 // Okay, this is a simple enough basic block. See if any phi values are 2168 // constants. 2169 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2170 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2171 if (!CB || !CB->getType()->isIntegerTy(1)) 2172 continue; 2173 2174 // Okay, we now know that all edges from PredBB should be revectored to 2175 // branch to RealDest. 2176 BasicBlock *PredBB = PN->getIncomingBlock(i); 2177 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2178 2179 if (RealDest == BB) 2180 continue; // Skip self loops. 2181 // Skip if the predecessor's terminator is an indirect branch. 2182 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2183 continue; 2184 2185 // The dest block might have PHI nodes, other predecessors and other 2186 // difficult cases. Instead of being smart about this, just insert a new 2187 // block that jumps to the destination block, effectively splitting 2188 // the edge we are about to create. 2189 BasicBlock *EdgeBB = 2190 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2191 RealDest->getParent(), RealDest); 2192 BranchInst::Create(RealDest, EdgeBB); 2193 2194 // Update PHI nodes. 2195 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2196 2197 // BB may have instructions that are being threaded over. Clone these 2198 // instructions into EdgeBB. We know that there will be no uses of the 2199 // cloned instructions outside of EdgeBB. 2200 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2201 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2202 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2203 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2204 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2205 continue; 2206 } 2207 // Clone the instruction. 2208 Instruction *N = BBI->clone(); 2209 if (BBI->hasName()) 2210 N->setName(BBI->getName() + ".c"); 2211 2212 // Update operands due to translation. 2213 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2214 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2215 if (PI != TranslateMap.end()) 2216 *i = PI->second; 2217 } 2218 2219 // Check for trivial simplification. 2220 if (Value *V = SimplifyInstruction(N, DL)) { 2221 if (!BBI->use_empty()) 2222 TranslateMap[&*BBI] = V; 2223 if (!N->mayHaveSideEffects()) { 2224 delete N; // Instruction folded away, don't need actual inst 2225 N = nullptr; 2226 } 2227 } else { 2228 if (!BBI->use_empty()) 2229 TranslateMap[&*BBI] = N; 2230 } 2231 // Insert the new instruction into its new home. 2232 if (N) 2233 EdgeBB->getInstList().insert(InsertPt, N); 2234 } 2235 2236 // Loop over all of the edges from PredBB to BB, changing them to branch 2237 // to EdgeBB instead. 2238 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2239 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2240 if (PredBBTI->getSuccessor(i) == BB) { 2241 BB->removePredecessor(PredBB); 2242 PredBBTI->setSuccessor(i, EdgeBB); 2243 } 2244 2245 // Recurse, simplifying any other constants. 2246 return FoldCondBranchOnPHI(BI, DL) | true; 2247 } 2248 2249 return false; 2250 } 2251 2252 /// Given a BB that starts with the specified two-entry PHI node, 2253 /// see if we can eliminate it. 2254 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2255 const DataLayout &DL) { 2256 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2257 // statement", which has a very simple dominance structure. Basically, we 2258 // are trying to find the condition that is being branched on, which 2259 // subsequently causes this merge to happen. We really want control 2260 // dependence information for this check, but simplifycfg can't keep it up 2261 // to date, and this catches most of the cases we care about anyway. 2262 BasicBlock *BB = PN->getParent(); 2263 BasicBlock *IfTrue, *IfFalse; 2264 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2265 if (!IfCond || 2266 // Don't bother if the branch will be constant folded trivially. 2267 isa<ConstantInt>(IfCond)) 2268 return false; 2269 2270 // Okay, we found that we can merge this two-entry phi node into a select. 2271 // Doing so would require us to fold *all* two entry phi nodes in this block. 2272 // At some point this becomes non-profitable (particularly if the target 2273 // doesn't support cmov's). Only do this transformation if there are two or 2274 // fewer PHI nodes in this block. 2275 unsigned NumPhis = 0; 2276 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2277 if (NumPhis > 2) 2278 return false; 2279 2280 // Loop over the PHI's seeing if we can promote them all to select 2281 // instructions. While we are at it, keep track of the instructions 2282 // that need to be moved to the dominating block. 2283 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2284 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2285 MaxCostVal1 = PHINodeFoldingThreshold; 2286 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2287 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2288 2289 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2290 PHINode *PN = cast<PHINode>(II++); 2291 if (Value *V = SimplifyInstruction(PN, DL)) { 2292 PN->replaceAllUsesWith(V); 2293 PN->eraseFromParent(); 2294 continue; 2295 } 2296 2297 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2298 MaxCostVal0, TTI) || 2299 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2300 MaxCostVal1, TTI)) 2301 return false; 2302 } 2303 2304 // If we folded the first phi, PN dangles at this point. Refresh it. If 2305 // we ran out of PHIs then we simplified them all. 2306 PN = dyn_cast<PHINode>(BB->begin()); 2307 if (!PN) 2308 return true; 2309 2310 // Don't fold i1 branches on PHIs which contain binary operators. These can 2311 // often be turned into switches and other things. 2312 if (PN->getType()->isIntegerTy(1) && 2313 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2314 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2315 isa<BinaryOperator>(IfCond))) 2316 return false; 2317 2318 // If all PHI nodes are promotable, check to make sure that all instructions 2319 // in the predecessor blocks can be promoted as well. If not, we won't be able 2320 // to get rid of the control flow, so it's not worth promoting to select 2321 // instructions. 2322 BasicBlock *DomBlock = nullptr; 2323 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2324 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2325 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2326 IfBlock1 = nullptr; 2327 } else { 2328 DomBlock = *pred_begin(IfBlock1); 2329 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2330 ++I) 2331 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2332 // This is not an aggressive instruction that we can promote. 2333 // Because of this, we won't be able to get rid of the control flow, so 2334 // the xform is not worth it. 2335 return false; 2336 } 2337 } 2338 2339 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2340 IfBlock2 = nullptr; 2341 } else { 2342 DomBlock = *pred_begin(IfBlock2); 2343 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2344 ++I) 2345 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2346 // This is not an aggressive instruction that we can promote. 2347 // Because of this, we won't be able to get rid of the control flow, so 2348 // the xform is not worth it. 2349 return false; 2350 } 2351 } 2352 2353 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2354 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2355 2356 // If we can still promote the PHI nodes after this gauntlet of tests, 2357 // do all of the PHI's now. 2358 Instruction *InsertPt = DomBlock->getTerminator(); 2359 IRBuilder<NoFolder> Builder(InsertPt); 2360 2361 // Move all 'aggressive' instructions, which are defined in the 2362 // conditional parts of the if's up to the dominating block. 2363 if (IfBlock1) { 2364 for (auto &I : *IfBlock1) 2365 I.dropUnknownNonDebugMetadata(); 2366 DomBlock->getInstList().splice(InsertPt->getIterator(), 2367 IfBlock1->getInstList(), IfBlock1->begin(), 2368 IfBlock1->getTerminator()->getIterator()); 2369 } 2370 if (IfBlock2) { 2371 for (auto &I : *IfBlock2) 2372 I.dropUnknownNonDebugMetadata(); 2373 DomBlock->getInstList().splice(InsertPt->getIterator(), 2374 IfBlock2->getInstList(), IfBlock2->begin(), 2375 IfBlock2->getTerminator()->getIterator()); 2376 } 2377 2378 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2379 // Change the PHI node into a select instruction. 2380 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2381 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2382 2383 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2384 PN->replaceAllUsesWith(Sel); 2385 Sel->takeName(PN); 2386 PN->eraseFromParent(); 2387 } 2388 2389 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2390 // has been flattened. Change DomBlock to jump directly to our new block to 2391 // avoid other simplifycfg's kicking in on the diamond. 2392 TerminatorInst *OldTI = DomBlock->getTerminator(); 2393 Builder.SetInsertPoint(OldTI); 2394 Builder.CreateBr(BB); 2395 OldTI->eraseFromParent(); 2396 return true; 2397 } 2398 2399 /// If we found a conditional branch that goes to two returning blocks, 2400 /// try to merge them together into one return, 2401 /// introducing a select if the return values disagree. 2402 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2403 IRBuilder<> &Builder) { 2404 assert(BI->isConditional() && "Must be a conditional branch"); 2405 BasicBlock *TrueSucc = BI->getSuccessor(0); 2406 BasicBlock *FalseSucc = BI->getSuccessor(1); 2407 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2408 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2409 2410 // Check to ensure both blocks are empty (just a return) or optionally empty 2411 // with PHI nodes. If there are other instructions, merging would cause extra 2412 // computation on one path or the other. 2413 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2414 return false; 2415 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2416 return false; 2417 2418 Builder.SetInsertPoint(BI); 2419 // Okay, we found a branch that is going to two return nodes. If 2420 // there is no return value for this function, just change the 2421 // branch into a return. 2422 if (FalseRet->getNumOperands() == 0) { 2423 TrueSucc->removePredecessor(BI->getParent()); 2424 FalseSucc->removePredecessor(BI->getParent()); 2425 Builder.CreateRetVoid(); 2426 EraseTerminatorInstAndDCECond(BI); 2427 return true; 2428 } 2429 2430 // Otherwise, figure out what the true and false return values are 2431 // so we can insert a new select instruction. 2432 Value *TrueValue = TrueRet->getReturnValue(); 2433 Value *FalseValue = FalseRet->getReturnValue(); 2434 2435 // Unwrap any PHI nodes in the return blocks. 2436 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2437 if (TVPN->getParent() == TrueSucc) 2438 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2439 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2440 if (FVPN->getParent() == FalseSucc) 2441 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2442 2443 // In order for this transformation to be safe, we must be able to 2444 // unconditionally execute both operands to the return. This is 2445 // normally the case, but we could have a potentially-trapping 2446 // constant expression that prevents this transformation from being 2447 // safe. 2448 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2449 if (TCV->canTrap()) 2450 return false; 2451 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2452 if (FCV->canTrap()) 2453 return false; 2454 2455 // Okay, we collected all the mapped values and checked them for sanity, and 2456 // defined to really do this transformation. First, update the CFG. 2457 TrueSucc->removePredecessor(BI->getParent()); 2458 FalseSucc->removePredecessor(BI->getParent()); 2459 2460 // Insert select instructions where needed. 2461 Value *BrCond = BI->getCondition(); 2462 if (TrueValue) { 2463 // Insert a select if the results differ. 2464 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2465 } else if (isa<UndefValue>(TrueValue)) { 2466 TrueValue = FalseValue; 2467 } else { 2468 TrueValue = 2469 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2470 } 2471 } 2472 2473 Value *RI = 2474 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2475 2476 (void)RI; 2477 2478 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2479 << "\n " << *BI << "NewRet = " << *RI 2480 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2481 2482 EraseTerminatorInstAndDCECond(BI); 2483 2484 return true; 2485 } 2486 2487 /// Return true if the given instruction is available 2488 /// in its predecessor block. If yes, the instruction will be removed. 2489 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2490 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2491 return false; 2492 for (Instruction &I : *PB) { 2493 Instruction *PBI = &I; 2494 // Check whether Inst and PBI generate the same value. 2495 if (Inst->isIdenticalTo(PBI)) { 2496 Inst->replaceAllUsesWith(PBI); 2497 Inst->eraseFromParent(); 2498 return true; 2499 } 2500 } 2501 return false; 2502 } 2503 2504 /// Return true if either PBI or BI has branch weight available, and store 2505 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2506 /// not have branch weight, use 1:1 as its weight. 2507 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2508 uint64_t &PredTrueWeight, 2509 uint64_t &PredFalseWeight, 2510 uint64_t &SuccTrueWeight, 2511 uint64_t &SuccFalseWeight) { 2512 bool PredHasWeights = 2513 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2514 bool SuccHasWeights = 2515 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2516 if (PredHasWeights || SuccHasWeights) { 2517 if (!PredHasWeights) 2518 PredTrueWeight = PredFalseWeight = 1; 2519 if (!SuccHasWeights) 2520 SuccTrueWeight = SuccFalseWeight = 1; 2521 return true; 2522 } else { 2523 return false; 2524 } 2525 } 2526 2527 /// If this basic block is simple enough, and if a predecessor branches to us 2528 /// and one of our successors, fold the block into the predecessor and use 2529 /// logical operations to pick the right destination. 2530 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2531 BasicBlock *BB = BI->getParent(); 2532 2533 Instruction *Cond = nullptr; 2534 if (BI->isConditional()) 2535 Cond = dyn_cast<Instruction>(BI->getCondition()); 2536 else { 2537 // For unconditional branch, check for a simple CFG pattern, where 2538 // BB has a single predecessor and BB's successor is also its predecessor's 2539 // successor. If such pattern exisits, check for CSE between BB and its 2540 // predecessor. 2541 if (BasicBlock *PB = BB->getSinglePredecessor()) 2542 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2543 if (PBI->isConditional() && 2544 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2545 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2546 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2547 Instruction *Curr = &*I++; 2548 if (isa<CmpInst>(Curr)) { 2549 Cond = Curr; 2550 break; 2551 } 2552 // Quit if we can't remove this instruction. 2553 if (!checkCSEInPredecessor(Curr, PB)) 2554 return false; 2555 } 2556 } 2557 2558 if (!Cond) 2559 return false; 2560 } 2561 2562 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2563 Cond->getParent() != BB || !Cond->hasOneUse()) 2564 return false; 2565 2566 // Make sure the instruction after the condition is the cond branch. 2567 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2568 2569 // Ignore dbg intrinsics. 2570 while (isa<DbgInfoIntrinsic>(CondIt)) 2571 ++CondIt; 2572 2573 if (&*CondIt != BI) 2574 return false; 2575 2576 // Only allow this transformation if computing the condition doesn't involve 2577 // too many instructions and these involved instructions can be executed 2578 // unconditionally. We denote all involved instructions except the condition 2579 // as "bonus instructions", and only allow this transformation when the 2580 // number of the bonus instructions does not exceed a certain threshold. 2581 unsigned NumBonusInsts = 0; 2582 for (auto I = BB->begin(); Cond != &*I; ++I) { 2583 // Ignore dbg intrinsics. 2584 if (isa<DbgInfoIntrinsic>(I)) 2585 continue; 2586 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2587 return false; 2588 // I has only one use and can be executed unconditionally. 2589 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2590 if (User == nullptr || User->getParent() != BB) 2591 return false; 2592 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2593 // to use any other instruction, User must be an instruction between next(I) 2594 // and Cond. 2595 ++NumBonusInsts; 2596 // Early exits once we reach the limit. 2597 if (NumBonusInsts > BonusInstThreshold) 2598 return false; 2599 } 2600 2601 // Cond is known to be a compare or binary operator. Check to make sure that 2602 // neither operand is a potentially-trapping constant expression. 2603 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2604 if (CE->canTrap()) 2605 return false; 2606 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2607 if (CE->canTrap()) 2608 return false; 2609 2610 // Finally, don't infinitely unroll conditional loops. 2611 BasicBlock *TrueDest = BI->getSuccessor(0); 2612 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2613 if (TrueDest == BB || FalseDest == BB) 2614 return false; 2615 2616 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2617 BasicBlock *PredBlock = *PI; 2618 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2619 2620 // Check that we have two conditional branches. If there is a PHI node in 2621 // the common successor, verify that the same value flows in from both 2622 // blocks. 2623 SmallVector<PHINode *, 4> PHIs; 2624 if (!PBI || PBI->isUnconditional() || 2625 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2626 (!BI->isConditional() && 2627 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2628 continue; 2629 2630 // Determine if the two branches share a common destination. 2631 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2632 bool InvertPredCond = false; 2633 2634 if (BI->isConditional()) { 2635 if (PBI->getSuccessor(0) == TrueDest) { 2636 Opc = Instruction::Or; 2637 } else if (PBI->getSuccessor(1) == FalseDest) { 2638 Opc = Instruction::And; 2639 } else if (PBI->getSuccessor(0) == FalseDest) { 2640 Opc = Instruction::And; 2641 InvertPredCond = true; 2642 } else if (PBI->getSuccessor(1) == TrueDest) { 2643 Opc = Instruction::Or; 2644 InvertPredCond = true; 2645 } else { 2646 continue; 2647 } 2648 } else { 2649 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2650 continue; 2651 } 2652 2653 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2654 IRBuilder<> Builder(PBI); 2655 2656 // If we need to invert the condition in the pred block to match, do so now. 2657 if (InvertPredCond) { 2658 Value *NewCond = PBI->getCondition(); 2659 2660 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2661 CmpInst *CI = cast<CmpInst>(NewCond); 2662 CI->setPredicate(CI->getInversePredicate()); 2663 } else { 2664 NewCond = 2665 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2666 } 2667 2668 PBI->setCondition(NewCond); 2669 PBI->swapSuccessors(); 2670 } 2671 2672 // If we have bonus instructions, clone them into the predecessor block. 2673 // Note that there may be multiple predecessor blocks, so we cannot move 2674 // bonus instructions to a predecessor block. 2675 ValueToValueMapTy VMap; // maps original values to cloned values 2676 // We already make sure Cond is the last instruction before BI. Therefore, 2677 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2678 // instructions. 2679 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2680 if (isa<DbgInfoIntrinsic>(BonusInst)) 2681 continue; 2682 Instruction *NewBonusInst = BonusInst->clone(); 2683 RemapInstruction(NewBonusInst, VMap, 2684 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2685 VMap[&*BonusInst] = NewBonusInst; 2686 2687 // If we moved a load, we cannot any longer claim any knowledge about 2688 // its potential value. The previous information might have been valid 2689 // only given the branch precondition. 2690 // For an analogous reason, we must also drop all the metadata whose 2691 // semantics we don't understand. 2692 NewBonusInst->dropUnknownNonDebugMetadata(); 2693 2694 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2695 NewBonusInst->takeName(&*BonusInst); 2696 BonusInst->setName(BonusInst->getName() + ".old"); 2697 } 2698 2699 // Clone Cond into the predecessor basic block, and or/and the 2700 // two conditions together. 2701 Instruction *New = Cond->clone(); 2702 RemapInstruction(New, VMap, 2703 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2704 PredBlock->getInstList().insert(PBI->getIterator(), New); 2705 New->takeName(Cond); 2706 Cond->setName(New->getName() + ".old"); 2707 2708 if (BI->isConditional()) { 2709 Instruction *NewCond = cast<Instruction>( 2710 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2711 PBI->setCondition(NewCond); 2712 2713 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2714 bool HasWeights = 2715 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2716 SuccTrueWeight, SuccFalseWeight); 2717 SmallVector<uint64_t, 8> NewWeights; 2718 2719 if (PBI->getSuccessor(0) == BB) { 2720 if (HasWeights) { 2721 // PBI: br i1 %x, BB, FalseDest 2722 // BI: br i1 %y, TrueDest, FalseDest 2723 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2724 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2725 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2726 // TrueWeight for PBI * FalseWeight for BI. 2727 // We assume that total weights of a BranchInst can fit into 32 bits. 2728 // Therefore, we will not have overflow using 64-bit arithmetic. 2729 NewWeights.push_back(PredFalseWeight * 2730 (SuccFalseWeight + SuccTrueWeight) + 2731 PredTrueWeight * SuccFalseWeight); 2732 } 2733 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2734 PBI->setSuccessor(0, TrueDest); 2735 } 2736 if (PBI->getSuccessor(1) == BB) { 2737 if (HasWeights) { 2738 // PBI: br i1 %x, TrueDest, BB 2739 // BI: br i1 %y, TrueDest, FalseDest 2740 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2741 // FalseWeight for PBI * TrueWeight for BI. 2742 NewWeights.push_back(PredTrueWeight * 2743 (SuccFalseWeight + SuccTrueWeight) + 2744 PredFalseWeight * SuccTrueWeight); 2745 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2746 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2747 } 2748 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2749 PBI->setSuccessor(1, FalseDest); 2750 } 2751 if (NewWeights.size() == 2) { 2752 // Halve the weights if any of them cannot fit in an uint32_t 2753 FitWeights(NewWeights); 2754 2755 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2756 NewWeights.end()); 2757 PBI->setMetadata( 2758 LLVMContext::MD_prof, 2759 MDBuilder(BI->getContext()).createBranchWeights(MDWeights)); 2760 } else 2761 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2762 } else { 2763 // Update PHI nodes in the common successors. 2764 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2765 ConstantInt *PBI_C = cast<ConstantInt>( 2766 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2767 assert(PBI_C->getType()->isIntegerTy(1)); 2768 Instruction *MergedCond = nullptr; 2769 if (PBI->getSuccessor(0) == TrueDest) { 2770 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2771 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2772 // is false: !PBI_Cond and BI_Value 2773 Instruction *NotCond = cast<Instruction>( 2774 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2775 MergedCond = cast<Instruction>( 2776 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2777 if (PBI_C->isOne()) 2778 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2779 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2780 } else { 2781 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2782 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2783 // is false: PBI_Cond and BI_Value 2784 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2785 Instruction::And, PBI->getCondition(), New, "and.cond")); 2786 if (PBI_C->isOne()) { 2787 Instruction *NotCond = cast<Instruction>( 2788 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2789 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2790 Instruction::Or, NotCond, MergedCond, "or.cond")); 2791 } 2792 } 2793 // Update PHI Node. 2794 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2795 MergedCond); 2796 } 2797 // Change PBI from Conditional to Unconditional. 2798 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2799 EraseTerminatorInstAndDCECond(PBI); 2800 PBI = New_PBI; 2801 } 2802 2803 // If BI was a loop latch, it may have had associated loop metadata. 2804 // We need to copy it to the new latch, that is, PBI. 2805 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2806 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2807 2808 // TODO: If BB is reachable from all paths through PredBlock, then we 2809 // could replace PBI's branch probabilities with BI's. 2810 2811 // Copy any debug value intrinsics into the end of PredBlock. 2812 for (Instruction &I : *BB) 2813 if (isa<DbgInfoIntrinsic>(I)) 2814 I.clone()->insertBefore(PBI); 2815 2816 return true; 2817 } 2818 return false; 2819 } 2820 2821 // If there is only one store in BB1 and BB2, return it, otherwise return 2822 // nullptr. 2823 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2824 StoreInst *S = nullptr; 2825 for (auto *BB : {BB1, BB2}) { 2826 if (!BB) 2827 continue; 2828 for (auto &I : *BB) 2829 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2830 if (S) 2831 // Multiple stores seen. 2832 return nullptr; 2833 else 2834 S = SI; 2835 } 2836 } 2837 return S; 2838 } 2839 2840 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2841 Value *AlternativeV = nullptr) { 2842 // PHI is going to be a PHI node that allows the value V that is defined in 2843 // BB to be referenced in BB's only successor. 2844 // 2845 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2846 // doesn't matter to us what the other operand is (it'll never get used). We 2847 // could just create a new PHI with an undef incoming value, but that could 2848 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2849 // other PHI. So here we directly look for some PHI in BB's successor with V 2850 // as an incoming operand. If we find one, we use it, else we create a new 2851 // one. 2852 // 2853 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2854 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2855 // where OtherBB is the single other predecessor of BB's only successor. 2856 PHINode *PHI = nullptr; 2857 BasicBlock *Succ = BB->getSingleSuccessor(); 2858 2859 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2860 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2861 PHI = cast<PHINode>(I); 2862 if (!AlternativeV) 2863 break; 2864 2865 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2866 auto PredI = pred_begin(Succ); 2867 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2868 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2869 break; 2870 PHI = nullptr; 2871 } 2872 if (PHI) 2873 return PHI; 2874 2875 // If V is not an instruction defined in BB, just return it. 2876 if (!AlternativeV && 2877 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2878 return V; 2879 2880 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2881 PHI->addIncoming(V, BB); 2882 for (BasicBlock *PredBB : predecessors(Succ)) 2883 if (PredBB != BB) 2884 PHI->addIncoming( 2885 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2886 return PHI; 2887 } 2888 2889 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2890 BasicBlock *QTB, BasicBlock *QFB, 2891 BasicBlock *PostBB, Value *Address, 2892 bool InvertPCond, bool InvertQCond) { 2893 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2894 return Operator::getOpcode(&I) == Instruction::BitCast && 2895 I.getType()->isPointerTy(); 2896 }; 2897 2898 // If we're not in aggressive mode, we only optimize if we have some 2899 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2900 auto IsWorthwhile = [&](BasicBlock *BB) { 2901 if (!BB) 2902 return true; 2903 // Heuristic: if the block can be if-converted/phi-folded and the 2904 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2905 // thread this store. 2906 unsigned N = 0; 2907 for (auto &I : *BB) { 2908 // Cheap instructions viable for folding. 2909 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2910 isa<StoreInst>(I)) 2911 ++N; 2912 // Free instructions. 2913 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2914 IsaBitcastOfPointerType(I)) 2915 continue; 2916 else 2917 return false; 2918 } 2919 return N <= PHINodeFoldingThreshold; 2920 }; 2921 2922 if (!MergeCondStoresAggressively && 2923 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2924 !IsWorthwhile(QFB))) 2925 return false; 2926 2927 // For every pointer, there must be exactly two stores, one coming from 2928 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2929 // store (to any address) in PTB,PFB or QTB,QFB. 2930 // FIXME: We could relax this restriction with a bit more work and performance 2931 // testing. 2932 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2933 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2934 if (!PStore || !QStore) 2935 return false; 2936 2937 // Now check the stores are compatible. 2938 if (!QStore->isUnordered() || !PStore->isUnordered()) 2939 return false; 2940 2941 // Check that sinking the store won't cause program behavior changes. Sinking 2942 // the store out of the Q blocks won't change any behavior as we're sinking 2943 // from a block to its unconditional successor. But we're moving a store from 2944 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2945 // So we need to check that there are no aliasing loads or stores in 2946 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2947 // operations between PStore and the end of its parent block. 2948 // 2949 // The ideal way to do this is to query AliasAnalysis, but we don't 2950 // preserve AA currently so that is dangerous. Be super safe and just 2951 // check there are no other memory operations at all. 2952 for (auto &I : *QFB->getSinglePredecessor()) 2953 if (I.mayReadOrWriteMemory()) 2954 return false; 2955 for (auto &I : *QFB) 2956 if (&I != QStore && I.mayReadOrWriteMemory()) 2957 return false; 2958 if (QTB) 2959 for (auto &I : *QTB) 2960 if (&I != QStore && I.mayReadOrWriteMemory()) 2961 return false; 2962 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2963 I != E; ++I) 2964 if (&*I != PStore && I->mayReadOrWriteMemory()) 2965 return false; 2966 2967 // OK, we're going to sink the stores to PostBB. The store has to be 2968 // conditional though, so first create the predicate. 2969 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2970 ->getCondition(); 2971 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2972 ->getCondition(); 2973 2974 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2975 PStore->getParent()); 2976 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2977 QStore->getParent(), PPHI); 2978 2979 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2980 2981 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2982 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2983 2984 if (InvertPCond) 2985 PPred = QB.CreateNot(PPred); 2986 if (InvertQCond) 2987 QPred = QB.CreateNot(QPred); 2988 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2989 2990 auto *T = 2991 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2992 QB.SetInsertPoint(T); 2993 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2994 AAMDNodes AAMD; 2995 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2996 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2997 SI->setAAMetadata(AAMD); 2998 2999 QStore->eraseFromParent(); 3000 PStore->eraseFromParent(); 3001 3002 return true; 3003 } 3004 3005 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 3006 // The intention here is to find diamonds or triangles (see below) where each 3007 // conditional block contains a store to the same address. Both of these 3008 // stores are conditional, so they can't be unconditionally sunk. But it may 3009 // be profitable to speculatively sink the stores into one merged store at the 3010 // end, and predicate the merged store on the union of the two conditions of 3011 // PBI and QBI. 3012 // 3013 // This can reduce the number of stores executed if both of the conditions are 3014 // true, and can allow the blocks to become small enough to be if-converted. 3015 // This optimization will also chain, so that ladders of test-and-set 3016 // sequences can be if-converted away. 3017 // 3018 // We only deal with simple diamonds or triangles: 3019 // 3020 // PBI or PBI or a combination of the two 3021 // / \ | \ 3022 // PTB PFB | PFB 3023 // \ / | / 3024 // QBI QBI 3025 // / \ | \ 3026 // QTB QFB | QFB 3027 // \ / | / 3028 // PostBB PostBB 3029 // 3030 // We model triangles as a type of diamond with a nullptr "true" block. 3031 // Triangles are canonicalized so that the fallthrough edge is represented by 3032 // a true condition, as in the diagram above. 3033 // 3034 BasicBlock *PTB = PBI->getSuccessor(0); 3035 BasicBlock *PFB = PBI->getSuccessor(1); 3036 BasicBlock *QTB = QBI->getSuccessor(0); 3037 BasicBlock *QFB = QBI->getSuccessor(1); 3038 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3039 3040 bool InvertPCond = false, InvertQCond = false; 3041 // Canonicalize fallthroughs to the true branches. 3042 if (PFB == QBI->getParent()) { 3043 std::swap(PFB, PTB); 3044 InvertPCond = true; 3045 } 3046 if (QFB == PostBB) { 3047 std::swap(QFB, QTB); 3048 InvertQCond = true; 3049 } 3050 3051 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3052 // and QFB may not. Model fallthroughs as a nullptr block. 3053 if (PTB == QBI->getParent()) 3054 PTB = nullptr; 3055 if (QTB == PostBB) 3056 QTB = nullptr; 3057 3058 // Legality bailouts. We must have at least the non-fallthrough blocks and 3059 // the post-dominating block, and the non-fallthroughs must only have one 3060 // predecessor. 3061 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3062 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3063 }; 3064 if (!PostBB || 3065 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3066 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3067 return false; 3068 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3069 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3070 return false; 3071 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 3072 return false; 3073 3074 // OK, this is a sequence of two diamonds or triangles. 3075 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3076 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3077 for (auto *BB : {PTB, PFB}) { 3078 if (!BB) 3079 continue; 3080 for (auto &I : *BB) 3081 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3082 PStoreAddresses.insert(SI->getPointerOperand()); 3083 } 3084 for (auto *BB : {QTB, QFB}) { 3085 if (!BB) 3086 continue; 3087 for (auto &I : *BB) 3088 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3089 QStoreAddresses.insert(SI->getPointerOperand()); 3090 } 3091 3092 set_intersect(PStoreAddresses, QStoreAddresses); 3093 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3094 // clear what it contains. 3095 auto &CommonAddresses = PStoreAddresses; 3096 3097 bool Changed = false; 3098 for (auto *Address : CommonAddresses) 3099 Changed |= mergeConditionalStoreToAddress( 3100 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 3101 return Changed; 3102 } 3103 3104 /// If we have a conditional branch as a predecessor of another block, 3105 /// this function tries to simplify it. We know 3106 /// that PBI and BI are both conditional branches, and BI is in one of the 3107 /// successor blocks of PBI - PBI branches to BI. 3108 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3109 const DataLayout &DL) { 3110 assert(PBI->isConditional() && BI->isConditional()); 3111 BasicBlock *BB = BI->getParent(); 3112 3113 // If this block ends with a branch instruction, and if there is a 3114 // predecessor that ends on a branch of the same condition, make 3115 // this conditional branch redundant. 3116 if (PBI->getCondition() == BI->getCondition() && 3117 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3118 // Okay, the outcome of this conditional branch is statically 3119 // knowable. If this block had a single pred, handle specially. 3120 if (BB->getSinglePredecessor()) { 3121 // Turn this into a branch on constant. 3122 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3123 BI->setCondition( 3124 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3125 return true; // Nuke the branch on constant. 3126 } 3127 3128 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3129 // in the constant and simplify the block result. Subsequent passes of 3130 // simplifycfg will thread the block. 3131 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3132 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3133 PHINode *NewPN = PHINode::Create( 3134 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3135 BI->getCondition()->getName() + ".pr", &BB->front()); 3136 // Okay, we're going to insert the PHI node. Since PBI is not the only 3137 // predecessor, compute the PHI'd conditional value for all of the preds. 3138 // Any predecessor where the condition is not computable we keep symbolic. 3139 for (pred_iterator PI = PB; PI != PE; ++PI) { 3140 BasicBlock *P = *PI; 3141 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3142 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3143 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3144 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3145 NewPN->addIncoming( 3146 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3147 P); 3148 } else { 3149 NewPN->addIncoming(BI->getCondition(), P); 3150 } 3151 } 3152 3153 BI->setCondition(NewPN); 3154 return true; 3155 } 3156 } 3157 3158 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3159 if (CE->canTrap()) 3160 return false; 3161 3162 // If both branches are conditional and both contain stores to the same 3163 // address, remove the stores from the conditionals and create a conditional 3164 // merged store at the end. 3165 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 3166 return true; 3167 3168 // If this is a conditional branch in an empty block, and if any 3169 // predecessors are a conditional branch to one of our destinations, 3170 // fold the conditions into logical ops and one cond br. 3171 BasicBlock::iterator BBI = BB->begin(); 3172 // Ignore dbg intrinsics. 3173 while (isa<DbgInfoIntrinsic>(BBI)) 3174 ++BBI; 3175 if (&*BBI != BI) 3176 return false; 3177 3178 int PBIOp, BIOp; 3179 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3180 PBIOp = 0; 3181 BIOp = 0; 3182 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3183 PBIOp = 0; 3184 BIOp = 1; 3185 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3186 PBIOp = 1; 3187 BIOp = 0; 3188 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3189 PBIOp = 1; 3190 BIOp = 1; 3191 } else { 3192 return false; 3193 } 3194 3195 // Check to make sure that the other destination of this branch 3196 // isn't BB itself. If so, this is an infinite loop that will 3197 // keep getting unwound. 3198 if (PBI->getSuccessor(PBIOp) == BB) 3199 return false; 3200 3201 // Do not perform this transformation if it would require 3202 // insertion of a large number of select instructions. For targets 3203 // without predication/cmovs, this is a big pessimization. 3204 3205 // Also do not perform this transformation if any phi node in the common 3206 // destination block can trap when reached by BB or PBB (PR17073). In that 3207 // case, it would be unsafe to hoist the operation into a select instruction. 3208 3209 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3210 unsigned NumPhis = 0; 3211 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3212 ++II, ++NumPhis) { 3213 if (NumPhis > 2) // Disable this xform. 3214 return false; 3215 3216 PHINode *PN = cast<PHINode>(II); 3217 Value *BIV = PN->getIncomingValueForBlock(BB); 3218 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3219 if (CE->canTrap()) 3220 return false; 3221 3222 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3223 Value *PBIV = PN->getIncomingValue(PBBIdx); 3224 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3225 if (CE->canTrap()) 3226 return false; 3227 } 3228 3229 // Finally, if everything is ok, fold the branches to logical ops. 3230 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3231 3232 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3233 << "AND: " << *BI->getParent()); 3234 3235 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3236 // branch in it, where one edge (OtherDest) goes back to itself but the other 3237 // exits. We don't *know* that the program avoids the infinite loop 3238 // (even though that seems likely). If we do this xform naively, we'll end up 3239 // recursively unpeeling the loop. Since we know that (after the xform is 3240 // done) that the block *is* infinite if reached, we just make it an obviously 3241 // infinite loop with no cond branch. 3242 if (OtherDest == BB) { 3243 // Insert it at the end of the function, because it's either code, 3244 // or it won't matter if it's hot. :) 3245 BasicBlock *InfLoopBlock = 3246 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3247 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3248 OtherDest = InfLoopBlock; 3249 } 3250 3251 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3252 3253 // BI may have other predecessors. Because of this, we leave 3254 // it alone, but modify PBI. 3255 3256 // Make sure we get to CommonDest on True&True directions. 3257 Value *PBICond = PBI->getCondition(); 3258 IRBuilder<NoFolder> Builder(PBI); 3259 if (PBIOp) 3260 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3261 3262 Value *BICond = BI->getCondition(); 3263 if (BIOp) 3264 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3265 3266 // Merge the conditions. 3267 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3268 3269 // Modify PBI to branch on the new condition to the new dests. 3270 PBI->setCondition(Cond); 3271 PBI->setSuccessor(0, CommonDest); 3272 PBI->setSuccessor(1, OtherDest); 3273 3274 // Update branch weight for PBI. 3275 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3276 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3277 bool HasWeights = 3278 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3279 SuccTrueWeight, SuccFalseWeight); 3280 if (HasWeights) { 3281 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3282 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3283 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3284 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3285 // The weight to CommonDest should be PredCommon * SuccTotal + 3286 // PredOther * SuccCommon. 3287 // The weight to OtherDest should be PredOther * SuccOther. 3288 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3289 PredOther * SuccCommon, 3290 PredOther * SuccOther}; 3291 // Halve the weights if any of them cannot fit in an uint32_t 3292 FitWeights(NewWeights); 3293 3294 PBI->setMetadata(LLVMContext::MD_prof, 3295 MDBuilder(BI->getContext()) 3296 .createBranchWeights(NewWeights[0], NewWeights[1])); 3297 } 3298 3299 // OtherDest may have phi nodes. If so, add an entry from PBI's 3300 // block that are identical to the entries for BI's block. 3301 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3302 3303 // We know that the CommonDest already had an edge from PBI to 3304 // it. If it has PHIs though, the PHIs may have different 3305 // entries for BB and PBI's BB. If so, insert a select to make 3306 // them agree. 3307 PHINode *PN; 3308 for (BasicBlock::iterator II = CommonDest->begin(); 3309 (PN = dyn_cast<PHINode>(II)); ++II) { 3310 Value *BIV = PN->getIncomingValueForBlock(BB); 3311 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3312 Value *PBIV = PN->getIncomingValue(PBBIdx); 3313 if (BIV != PBIV) { 3314 // Insert a select in PBI to pick the right value. 3315 SelectInst *NV = cast<SelectInst>( 3316 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3317 PN->setIncomingValue(PBBIdx, NV); 3318 // Although the select has the same condition as PBI, the original branch 3319 // weights for PBI do not apply to the new select because the select's 3320 // 'logical' edges are incoming edges of the phi that is eliminated, not 3321 // the outgoing edges of PBI. 3322 if (HasWeights) { 3323 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3324 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3325 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3326 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3327 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3328 // The weight to PredOtherDest should be PredOther * SuccCommon. 3329 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3330 PredOther * SuccCommon}; 3331 3332 FitWeights(NewWeights); 3333 3334 NV->setMetadata(LLVMContext::MD_prof, 3335 MDBuilder(BI->getContext()) 3336 .createBranchWeights(NewWeights[0], NewWeights[1])); 3337 } 3338 } 3339 } 3340 3341 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3342 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3343 3344 // This basic block is probably dead. We know it has at least 3345 // one fewer predecessor. 3346 return true; 3347 } 3348 3349 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3350 // true or to FalseBB if Cond is false. 3351 // Takes care of updating the successors and removing the old terminator. 3352 // Also makes sure not to introduce new successors by assuming that edges to 3353 // non-successor TrueBBs and FalseBBs aren't reachable. 3354 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3355 BasicBlock *TrueBB, BasicBlock *FalseBB, 3356 uint32_t TrueWeight, 3357 uint32_t FalseWeight) { 3358 // Remove any superfluous successor edges from the CFG. 3359 // First, figure out which successors to preserve. 3360 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3361 // successor. 3362 BasicBlock *KeepEdge1 = TrueBB; 3363 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3364 3365 // Then remove the rest. 3366 for (BasicBlock *Succ : OldTerm->successors()) { 3367 // Make sure only to keep exactly one copy of each edge. 3368 if (Succ == KeepEdge1) 3369 KeepEdge1 = nullptr; 3370 else if (Succ == KeepEdge2) 3371 KeepEdge2 = nullptr; 3372 else 3373 Succ->removePredecessor(OldTerm->getParent(), 3374 /*DontDeleteUselessPHIs=*/true); 3375 } 3376 3377 IRBuilder<> Builder(OldTerm); 3378 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3379 3380 // Insert an appropriate new terminator. 3381 if (!KeepEdge1 && !KeepEdge2) { 3382 if (TrueBB == FalseBB) 3383 // We were only looking for one successor, and it was present. 3384 // Create an unconditional branch to it. 3385 Builder.CreateBr(TrueBB); 3386 else { 3387 // We found both of the successors we were looking for. 3388 // Create a conditional branch sharing the condition of the select. 3389 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3390 if (TrueWeight != FalseWeight) 3391 NewBI->setMetadata(LLVMContext::MD_prof, 3392 MDBuilder(OldTerm->getContext()) 3393 .createBranchWeights(TrueWeight, FalseWeight)); 3394 } 3395 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3396 // Neither of the selected blocks were successors, so this 3397 // terminator must be unreachable. 3398 new UnreachableInst(OldTerm->getContext(), OldTerm); 3399 } else { 3400 // One of the selected values was a successor, but the other wasn't. 3401 // Insert an unconditional branch to the one that was found; 3402 // the edge to the one that wasn't must be unreachable. 3403 if (!KeepEdge1) 3404 // Only TrueBB was found. 3405 Builder.CreateBr(TrueBB); 3406 else 3407 // Only FalseBB was found. 3408 Builder.CreateBr(FalseBB); 3409 } 3410 3411 EraseTerminatorInstAndDCECond(OldTerm); 3412 return true; 3413 } 3414 3415 // Replaces 3416 // (switch (select cond, X, Y)) on constant X, Y 3417 // with a branch - conditional if X and Y lead to distinct BBs, 3418 // unconditional otherwise. 3419 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3420 // Check for constant integer values in the select. 3421 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3422 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3423 if (!TrueVal || !FalseVal) 3424 return false; 3425 3426 // Find the relevant condition and destinations. 3427 Value *Condition = Select->getCondition(); 3428 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 3429 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 3430 3431 // Get weight for TrueBB and FalseBB. 3432 uint32_t TrueWeight = 0, FalseWeight = 0; 3433 SmallVector<uint64_t, 8> Weights; 3434 bool HasWeights = HasBranchWeights(SI); 3435 if (HasWeights) { 3436 GetBranchWeights(SI, Weights); 3437 if (Weights.size() == 1 + SI->getNumCases()) { 3438 TrueWeight = 3439 (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()]; 3440 FalseWeight = 3441 (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()]; 3442 } 3443 } 3444 3445 // Perform the actual simplification. 3446 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3447 FalseWeight); 3448 } 3449 3450 // Replaces 3451 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3452 // blockaddress(@fn, BlockB))) 3453 // with 3454 // (br cond, BlockA, BlockB). 3455 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3456 // Check that both operands of the select are block addresses. 3457 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3458 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3459 if (!TBA || !FBA) 3460 return false; 3461 3462 // Extract the actual blocks. 3463 BasicBlock *TrueBB = TBA->getBasicBlock(); 3464 BasicBlock *FalseBB = FBA->getBasicBlock(); 3465 3466 // Perform the actual simplification. 3467 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3468 0); 3469 } 3470 3471 /// This is called when we find an icmp instruction 3472 /// (a seteq/setne with a constant) as the only instruction in a 3473 /// block that ends with an uncond branch. We are looking for a very specific 3474 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3475 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3476 /// default value goes to an uncond block with a seteq in it, we get something 3477 /// like: 3478 /// 3479 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3480 /// DEFAULT: 3481 /// %tmp = icmp eq i8 %A, 92 3482 /// br label %end 3483 /// end: 3484 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3485 /// 3486 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3487 /// the PHI, merging the third icmp into the switch. 3488 static bool TryToSimplifyUncondBranchWithICmpInIt( 3489 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3490 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3491 AssumptionCache *AC) { 3492 BasicBlock *BB = ICI->getParent(); 3493 3494 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3495 // complex. 3496 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3497 return false; 3498 3499 Value *V = ICI->getOperand(0); 3500 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3501 3502 // The pattern we're looking for is where our only predecessor is a switch on 3503 // 'V' and this block is the default case for the switch. In this case we can 3504 // fold the compared value into the switch to simplify things. 3505 BasicBlock *Pred = BB->getSinglePredecessor(); 3506 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3507 return false; 3508 3509 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3510 if (SI->getCondition() != V) 3511 return false; 3512 3513 // If BB is reachable on a non-default case, then we simply know the value of 3514 // V in this block. Substitute it and constant fold the icmp instruction 3515 // away. 3516 if (SI->getDefaultDest() != BB) { 3517 ConstantInt *VVal = SI->findCaseDest(BB); 3518 assert(VVal && "Should have a unique destination value"); 3519 ICI->setOperand(0, VVal); 3520 3521 if (Value *V = SimplifyInstruction(ICI, DL)) { 3522 ICI->replaceAllUsesWith(V); 3523 ICI->eraseFromParent(); 3524 } 3525 // BB is now empty, so it is likely to simplify away. 3526 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3527 } 3528 3529 // Ok, the block is reachable from the default dest. If the constant we're 3530 // comparing exists in one of the other edges, then we can constant fold ICI 3531 // and zap it. 3532 if (SI->findCaseValue(Cst) != SI->case_default()) { 3533 Value *V; 3534 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3535 V = ConstantInt::getFalse(BB->getContext()); 3536 else 3537 V = ConstantInt::getTrue(BB->getContext()); 3538 3539 ICI->replaceAllUsesWith(V); 3540 ICI->eraseFromParent(); 3541 // BB is now empty, so it is likely to simplify away. 3542 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3543 } 3544 3545 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3546 // the block. 3547 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3548 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3549 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3550 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3551 return false; 3552 3553 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3554 // true in the PHI. 3555 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3556 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3557 3558 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3559 std::swap(DefaultCst, NewCst); 3560 3561 // Replace ICI (which is used by the PHI for the default value) with true or 3562 // false depending on if it is EQ or NE. 3563 ICI->replaceAllUsesWith(DefaultCst); 3564 ICI->eraseFromParent(); 3565 3566 // Okay, the switch goes to this block on a default value. Add an edge from 3567 // the switch to the merge point on the compared value. 3568 BasicBlock *NewBB = 3569 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3570 SmallVector<uint64_t, 8> Weights; 3571 bool HasWeights = HasBranchWeights(SI); 3572 if (HasWeights) { 3573 GetBranchWeights(SI, Weights); 3574 if (Weights.size() == 1 + SI->getNumCases()) { 3575 // Split weight for default case to case for "Cst". 3576 Weights[0] = (Weights[0] + 1) >> 1; 3577 Weights.push_back(Weights[0]); 3578 3579 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3580 SI->setMetadata( 3581 LLVMContext::MD_prof, 3582 MDBuilder(SI->getContext()).createBranchWeights(MDWeights)); 3583 } 3584 } 3585 SI->addCase(Cst, NewBB); 3586 3587 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3588 Builder.SetInsertPoint(NewBB); 3589 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3590 Builder.CreateBr(SuccBlock); 3591 PHIUse->addIncoming(NewCst, NewBB); 3592 return true; 3593 } 3594 3595 /// The specified branch is a conditional branch. 3596 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3597 /// fold it into a switch instruction if so. 3598 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3599 const DataLayout &DL) { 3600 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3601 if (!Cond) 3602 return false; 3603 3604 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3605 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3606 // 'setne's and'ed together, collect them. 3607 3608 // Try to gather values from a chain of and/or to be turned into a switch 3609 ConstantComparesGatherer ConstantCompare(Cond, DL); 3610 // Unpack the result 3611 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3612 Value *CompVal = ConstantCompare.CompValue; 3613 unsigned UsedICmps = ConstantCompare.UsedICmps; 3614 Value *ExtraCase = ConstantCompare.Extra; 3615 3616 // If we didn't have a multiply compared value, fail. 3617 if (!CompVal) 3618 return false; 3619 3620 // Avoid turning single icmps into a switch. 3621 if (UsedICmps <= 1) 3622 return false; 3623 3624 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3625 3626 // There might be duplicate constants in the list, which the switch 3627 // instruction can't handle, remove them now. 3628 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3629 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3630 3631 // If Extra was used, we require at least two switch values to do the 3632 // transformation. A switch with one value is just a conditional branch. 3633 if (ExtraCase && Values.size() < 2) 3634 return false; 3635 3636 // TODO: Preserve branch weight metadata, similarly to how 3637 // FoldValueComparisonIntoPredecessors preserves it. 3638 3639 // Figure out which block is which destination. 3640 BasicBlock *DefaultBB = BI->getSuccessor(1); 3641 BasicBlock *EdgeBB = BI->getSuccessor(0); 3642 if (!TrueWhenEqual) 3643 std::swap(DefaultBB, EdgeBB); 3644 3645 BasicBlock *BB = BI->getParent(); 3646 3647 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3648 << " cases into SWITCH. BB is:\n" 3649 << *BB); 3650 3651 // If there are any extra values that couldn't be folded into the switch 3652 // then we evaluate them with an explicit branch first. Split the block 3653 // right before the condbr to handle it. 3654 if (ExtraCase) { 3655 BasicBlock *NewBB = 3656 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3657 // Remove the uncond branch added to the old block. 3658 TerminatorInst *OldTI = BB->getTerminator(); 3659 Builder.SetInsertPoint(OldTI); 3660 3661 if (TrueWhenEqual) 3662 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3663 else 3664 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3665 3666 OldTI->eraseFromParent(); 3667 3668 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3669 // for the edge we just added. 3670 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3671 3672 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3673 << "\nEXTRABB = " << *BB); 3674 BB = NewBB; 3675 } 3676 3677 Builder.SetInsertPoint(BI); 3678 // Convert pointer to int before we switch. 3679 if (CompVal->getType()->isPointerTy()) { 3680 CompVal = Builder.CreatePtrToInt( 3681 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3682 } 3683 3684 // Create the new switch instruction now. 3685 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3686 3687 // Add all of the 'cases' to the switch instruction. 3688 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3689 New->addCase(Values[i], EdgeBB); 3690 3691 // We added edges from PI to the EdgeBB. As such, if there were any 3692 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3693 // the number of edges added. 3694 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3695 PHINode *PN = cast<PHINode>(BBI); 3696 Value *InVal = PN->getIncomingValueForBlock(BB); 3697 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3698 PN->addIncoming(InVal, BB); 3699 } 3700 3701 // Erase the old branch instruction. 3702 EraseTerminatorInstAndDCECond(BI); 3703 3704 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3705 return true; 3706 } 3707 3708 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3709 if (isa<PHINode>(RI->getValue())) 3710 return SimplifyCommonResume(RI); 3711 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3712 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3713 // The resume must unwind the exception that caused control to branch here. 3714 return SimplifySingleResume(RI); 3715 3716 return false; 3717 } 3718 3719 // Simplify resume that is shared by several landing pads (phi of landing pad). 3720 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3721 BasicBlock *BB = RI->getParent(); 3722 3723 // Check that there are no other instructions except for debug intrinsics 3724 // between the phi of landing pads (RI->getValue()) and resume instruction. 3725 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3726 E = RI->getIterator(); 3727 while (++I != E) 3728 if (!isa<DbgInfoIntrinsic>(I)) 3729 return false; 3730 3731 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3732 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3733 3734 // Check incoming blocks to see if any of them are trivial. 3735 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3736 Idx++) { 3737 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3738 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3739 3740 // If the block has other successors, we can not delete it because 3741 // it has other dependents. 3742 if (IncomingBB->getUniqueSuccessor() != BB) 3743 continue; 3744 3745 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3746 // Not the landing pad that caused the control to branch here. 3747 if (IncomingValue != LandingPad) 3748 continue; 3749 3750 bool isTrivial = true; 3751 3752 I = IncomingBB->getFirstNonPHI()->getIterator(); 3753 E = IncomingBB->getTerminator()->getIterator(); 3754 while (++I != E) 3755 if (!isa<DbgInfoIntrinsic>(I)) { 3756 isTrivial = false; 3757 break; 3758 } 3759 3760 if (isTrivial) 3761 TrivialUnwindBlocks.insert(IncomingBB); 3762 } 3763 3764 // If no trivial unwind blocks, don't do any simplifications. 3765 if (TrivialUnwindBlocks.empty()) 3766 return false; 3767 3768 // Turn all invokes that unwind here into calls. 3769 for (auto *TrivialBB : TrivialUnwindBlocks) { 3770 // Blocks that will be simplified should be removed from the phi node. 3771 // Note there could be multiple edges to the resume block, and we need 3772 // to remove them all. 3773 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3774 BB->removePredecessor(TrivialBB, true); 3775 3776 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3777 PI != PE;) { 3778 BasicBlock *Pred = *PI++; 3779 removeUnwindEdge(Pred); 3780 } 3781 3782 // In each SimplifyCFG run, only the current processed block can be erased. 3783 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3784 // of erasing TrivialBB, we only remove the branch to the common resume 3785 // block so that we can later erase the resume block since it has no 3786 // predecessors. 3787 TrivialBB->getTerminator()->eraseFromParent(); 3788 new UnreachableInst(RI->getContext(), TrivialBB); 3789 } 3790 3791 // Delete the resume block if all its predecessors have been removed. 3792 if (pred_empty(BB)) 3793 BB->eraseFromParent(); 3794 3795 return !TrivialUnwindBlocks.empty(); 3796 } 3797 3798 // Simplify resume that is only used by a single (non-phi) landing pad. 3799 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3800 BasicBlock *BB = RI->getParent(); 3801 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3802 assert(RI->getValue() == LPInst && 3803 "Resume must unwind the exception that caused control to here"); 3804 3805 // Check that there are no other instructions except for debug intrinsics. 3806 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3807 while (++I != E) 3808 if (!isa<DbgInfoIntrinsic>(I)) 3809 return false; 3810 3811 // Turn all invokes that unwind here into calls and delete the basic block. 3812 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3813 BasicBlock *Pred = *PI++; 3814 removeUnwindEdge(Pred); 3815 } 3816 3817 // The landingpad is now unreachable. Zap it. 3818 BB->eraseFromParent(); 3819 if (LoopHeaders) 3820 LoopHeaders->erase(BB); 3821 return true; 3822 } 3823 3824 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3825 // If this is a trivial cleanup pad that executes no instructions, it can be 3826 // eliminated. If the cleanup pad continues to the caller, any predecessor 3827 // that is an EH pad will be updated to continue to the caller and any 3828 // predecessor that terminates with an invoke instruction will have its invoke 3829 // instruction converted to a call instruction. If the cleanup pad being 3830 // simplified does not continue to the caller, each predecessor will be 3831 // updated to continue to the unwind destination of the cleanup pad being 3832 // simplified. 3833 BasicBlock *BB = RI->getParent(); 3834 CleanupPadInst *CPInst = RI->getCleanupPad(); 3835 if (CPInst->getParent() != BB) 3836 // This isn't an empty cleanup. 3837 return false; 3838 3839 // We cannot kill the pad if it has multiple uses. This typically arises 3840 // from unreachable basic blocks. 3841 if (!CPInst->hasOneUse()) 3842 return false; 3843 3844 // Check that there are no other instructions except for benign intrinsics. 3845 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3846 while (++I != E) { 3847 auto *II = dyn_cast<IntrinsicInst>(I); 3848 if (!II) 3849 return false; 3850 3851 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3852 switch (IntrinsicID) { 3853 case Intrinsic::dbg_declare: 3854 case Intrinsic::dbg_value: 3855 case Intrinsic::lifetime_end: 3856 break; 3857 default: 3858 return false; 3859 } 3860 } 3861 3862 // If the cleanup return we are simplifying unwinds to the caller, this will 3863 // set UnwindDest to nullptr. 3864 BasicBlock *UnwindDest = RI->getUnwindDest(); 3865 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3866 3867 // We're about to remove BB from the control flow. Before we do, sink any 3868 // PHINodes into the unwind destination. Doing this before changing the 3869 // control flow avoids some potentially slow checks, since we can currently 3870 // be certain that UnwindDest and BB have no common predecessors (since they 3871 // are both EH pads). 3872 if (UnwindDest) { 3873 // First, go through the PHI nodes in UnwindDest and update any nodes that 3874 // reference the block we are removing 3875 for (BasicBlock::iterator I = UnwindDest->begin(), 3876 IE = DestEHPad->getIterator(); 3877 I != IE; ++I) { 3878 PHINode *DestPN = cast<PHINode>(I); 3879 3880 int Idx = DestPN->getBasicBlockIndex(BB); 3881 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3882 assert(Idx != -1); 3883 // This PHI node has an incoming value that corresponds to a control 3884 // path through the cleanup pad we are removing. If the incoming 3885 // value is in the cleanup pad, it must be a PHINode (because we 3886 // verified above that the block is otherwise empty). Otherwise, the 3887 // value is either a constant or a value that dominates the cleanup 3888 // pad being removed. 3889 // 3890 // Because BB and UnwindDest are both EH pads, all of their 3891 // predecessors must unwind to these blocks, and since no instruction 3892 // can have multiple unwind destinations, there will be no overlap in 3893 // incoming blocks between SrcPN and DestPN. 3894 Value *SrcVal = DestPN->getIncomingValue(Idx); 3895 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3896 3897 // Remove the entry for the block we are deleting. 3898 DestPN->removeIncomingValue(Idx, false); 3899 3900 if (SrcPN && SrcPN->getParent() == BB) { 3901 // If the incoming value was a PHI node in the cleanup pad we are 3902 // removing, we need to merge that PHI node's incoming values into 3903 // DestPN. 3904 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3905 SrcIdx != SrcE; ++SrcIdx) { 3906 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3907 SrcPN->getIncomingBlock(SrcIdx)); 3908 } 3909 } else { 3910 // Otherwise, the incoming value came from above BB and 3911 // so we can just reuse it. We must associate all of BB's 3912 // predecessors with this value. 3913 for (auto *pred : predecessors(BB)) { 3914 DestPN->addIncoming(SrcVal, pred); 3915 } 3916 } 3917 } 3918 3919 // Sink any remaining PHI nodes directly into UnwindDest. 3920 Instruction *InsertPt = DestEHPad; 3921 for (BasicBlock::iterator I = BB->begin(), 3922 IE = BB->getFirstNonPHI()->getIterator(); 3923 I != IE;) { 3924 // The iterator must be incremented here because the instructions are 3925 // being moved to another block. 3926 PHINode *PN = cast<PHINode>(I++); 3927 if (PN->use_empty()) 3928 // If the PHI node has no uses, just leave it. It will be erased 3929 // when we erase BB below. 3930 continue; 3931 3932 // Otherwise, sink this PHI node into UnwindDest. 3933 // Any predecessors to UnwindDest which are not already represented 3934 // must be back edges which inherit the value from the path through 3935 // BB. In this case, the PHI value must reference itself. 3936 for (auto *pred : predecessors(UnwindDest)) 3937 if (pred != BB) 3938 PN->addIncoming(PN, pred); 3939 PN->moveBefore(InsertPt); 3940 } 3941 } 3942 3943 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3944 // The iterator must be updated here because we are removing this pred. 3945 BasicBlock *PredBB = *PI++; 3946 if (UnwindDest == nullptr) { 3947 removeUnwindEdge(PredBB); 3948 } else { 3949 TerminatorInst *TI = PredBB->getTerminator(); 3950 TI->replaceUsesOfWith(BB, UnwindDest); 3951 } 3952 } 3953 3954 // The cleanup pad is now unreachable. Zap it. 3955 BB->eraseFromParent(); 3956 return true; 3957 } 3958 3959 // Try to merge two cleanuppads together. 3960 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3961 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3962 // with. 3963 BasicBlock *UnwindDest = RI->getUnwindDest(); 3964 if (!UnwindDest) 3965 return false; 3966 3967 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3968 // be safe to merge without code duplication. 3969 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3970 return false; 3971 3972 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3973 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3974 if (!SuccessorCleanupPad) 3975 return false; 3976 3977 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3978 // Replace any uses of the successor cleanupad with the predecessor pad 3979 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3980 // funclet bundle operands. 3981 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 3982 // Remove the old cleanuppad. 3983 SuccessorCleanupPad->eraseFromParent(); 3984 // Now, we simply replace the cleanupret with a branch to the unwind 3985 // destination. 3986 BranchInst::Create(UnwindDest, RI->getParent()); 3987 RI->eraseFromParent(); 3988 3989 return true; 3990 } 3991 3992 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3993 // It is possible to transiantly have an undef cleanuppad operand because we 3994 // have deleted some, but not all, dead blocks. 3995 // Eventually, this block will be deleted. 3996 if (isa<UndefValue>(RI->getOperand(0))) 3997 return false; 3998 3999 if (mergeCleanupPad(RI)) 4000 return true; 4001 4002 if (removeEmptyCleanup(RI)) 4003 return true; 4004 4005 return false; 4006 } 4007 4008 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4009 BasicBlock *BB = RI->getParent(); 4010 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4011 return false; 4012 4013 // Find predecessors that end with branches. 4014 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4015 SmallVector<BranchInst *, 8> CondBranchPreds; 4016 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4017 BasicBlock *P = *PI; 4018 TerminatorInst *PTI = P->getTerminator(); 4019 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4020 if (BI->isUnconditional()) 4021 UncondBranchPreds.push_back(P); 4022 else 4023 CondBranchPreds.push_back(BI); 4024 } 4025 } 4026 4027 // If we found some, do the transformation! 4028 if (!UncondBranchPreds.empty() && DupRet) { 4029 while (!UncondBranchPreds.empty()) { 4030 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4031 DEBUG(dbgs() << "FOLDING: " << *BB 4032 << "INTO UNCOND BRANCH PRED: " << *Pred); 4033 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4034 } 4035 4036 // If we eliminated all predecessors of the block, delete the block now. 4037 if (pred_empty(BB)) { 4038 // We know there are no successors, so just nuke the block. 4039 BB->eraseFromParent(); 4040 if (LoopHeaders) 4041 LoopHeaders->erase(BB); 4042 } 4043 4044 return true; 4045 } 4046 4047 // Check out all of the conditional branches going to this return 4048 // instruction. If any of them just select between returns, change the 4049 // branch itself into a select/return pair. 4050 while (!CondBranchPreds.empty()) { 4051 BranchInst *BI = CondBranchPreds.pop_back_val(); 4052 4053 // Check to see if the non-BB successor is also a return block. 4054 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4055 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4056 SimplifyCondBranchToTwoReturns(BI, Builder)) 4057 return true; 4058 } 4059 return false; 4060 } 4061 4062 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4063 BasicBlock *BB = UI->getParent(); 4064 4065 bool Changed = false; 4066 4067 // If there are any instructions immediately before the unreachable that can 4068 // be removed, do so. 4069 while (UI->getIterator() != BB->begin()) { 4070 BasicBlock::iterator BBI = UI->getIterator(); 4071 --BBI; 4072 // Do not delete instructions that can have side effects which might cause 4073 // the unreachable to not be reachable; specifically, calls and volatile 4074 // operations may have this effect. 4075 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4076 break; 4077 4078 if (BBI->mayHaveSideEffects()) { 4079 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4080 if (SI->isVolatile()) 4081 break; 4082 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4083 if (LI->isVolatile()) 4084 break; 4085 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4086 if (RMWI->isVolatile()) 4087 break; 4088 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4089 if (CXI->isVolatile()) 4090 break; 4091 } else if (isa<CatchPadInst>(BBI)) { 4092 // A catchpad may invoke exception object constructors and such, which 4093 // in some languages can be arbitrary code, so be conservative by 4094 // default. 4095 // For CoreCLR, it just involves a type test, so can be removed. 4096 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4097 EHPersonality::CoreCLR) 4098 break; 4099 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4100 !isa<LandingPadInst>(BBI)) { 4101 break; 4102 } 4103 // Note that deleting LandingPad's here is in fact okay, although it 4104 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4105 // all the predecessors of this block will be the unwind edges of Invokes, 4106 // and we can therefore guarantee this block will be erased. 4107 } 4108 4109 // Delete this instruction (any uses are guaranteed to be dead) 4110 if (!BBI->use_empty()) 4111 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4112 BBI->eraseFromParent(); 4113 Changed = true; 4114 } 4115 4116 // If the unreachable instruction is the first in the block, take a gander 4117 // at all of the predecessors of this instruction, and simplify them. 4118 if (&BB->front() != UI) 4119 return Changed; 4120 4121 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4122 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4123 TerminatorInst *TI = Preds[i]->getTerminator(); 4124 IRBuilder<> Builder(TI); 4125 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4126 if (BI->isUnconditional()) { 4127 if (BI->getSuccessor(0) == BB) { 4128 new UnreachableInst(TI->getContext(), TI); 4129 TI->eraseFromParent(); 4130 Changed = true; 4131 } 4132 } else { 4133 if (BI->getSuccessor(0) == BB) { 4134 Builder.CreateBr(BI->getSuccessor(1)); 4135 EraseTerminatorInstAndDCECond(BI); 4136 } else if (BI->getSuccessor(1) == BB) { 4137 Builder.CreateBr(BI->getSuccessor(0)); 4138 EraseTerminatorInstAndDCECond(BI); 4139 Changed = true; 4140 } 4141 } 4142 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4143 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 4144 ++i) 4145 if (i.getCaseSuccessor() == BB) { 4146 BB->removePredecessor(SI->getParent()); 4147 SI->removeCase(i); 4148 --i; 4149 --e; 4150 Changed = true; 4151 } 4152 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4153 if (II->getUnwindDest() == BB) { 4154 removeUnwindEdge(TI->getParent()); 4155 Changed = true; 4156 } 4157 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4158 if (CSI->getUnwindDest() == BB) { 4159 removeUnwindEdge(TI->getParent()); 4160 Changed = true; 4161 continue; 4162 } 4163 4164 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4165 E = CSI->handler_end(); 4166 I != E; ++I) { 4167 if (*I == BB) { 4168 CSI->removeHandler(I); 4169 --I; 4170 --E; 4171 Changed = true; 4172 } 4173 } 4174 if (CSI->getNumHandlers() == 0) { 4175 BasicBlock *CatchSwitchBB = CSI->getParent(); 4176 if (CSI->hasUnwindDest()) { 4177 // Redirect preds to the unwind dest 4178 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4179 } else { 4180 // Rewrite all preds to unwind to caller (or from invoke to call). 4181 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4182 for (BasicBlock *EHPred : EHPreds) 4183 removeUnwindEdge(EHPred); 4184 } 4185 // The catchswitch is no longer reachable. 4186 new UnreachableInst(CSI->getContext(), CSI); 4187 CSI->eraseFromParent(); 4188 Changed = true; 4189 } 4190 } else if (isa<CleanupReturnInst>(TI)) { 4191 new UnreachableInst(TI->getContext(), TI); 4192 TI->eraseFromParent(); 4193 Changed = true; 4194 } 4195 } 4196 4197 // If this block is now dead, remove it. 4198 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4199 // We know there are no successors, so just nuke the block. 4200 BB->eraseFromParent(); 4201 if (LoopHeaders) 4202 LoopHeaders->erase(BB); 4203 return true; 4204 } 4205 4206 return Changed; 4207 } 4208 4209 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4210 assert(Cases.size() >= 1); 4211 4212 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4213 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4214 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4215 return false; 4216 } 4217 return true; 4218 } 4219 4220 /// Turn a switch with two reachable destinations into an integer range 4221 /// comparison and branch. 4222 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4223 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4224 4225 bool HasDefault = 4226 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4227 4228 // Partition the cases into two sets with different destinations. 4229 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4230 BasicBlock *DestB = nullptr; 4231 SmallVector<ConstantInt *, 16> CasesA; 4232 SmallVector<ConstantInt *, 16> CasesB; 4233 4234 for (SwitchInst::CaseIt I : SI->cases()) { 4235 BasicBlock *Dest = I.getCaseSuccessor(); 4236 if (!DestA) 4237 DestA = Dest; 4238 if (Dest == DestA) { 4239 CasesA.push_back(I.getCaseValue()); 4240 continue; 4241 } 4242 if (!DestB) 4243 DestB = Dest; 4244 if (Dest == DestB) { 4245 CasesB.push_back(I.getCaseValue()); 4246 continue; 4247 } 4248 return false; // More than two destinations. 4249 } 4250 4251 assert(DestA && DestB && 4252 "Single-destination switch should have been folded."); 4253 assert(DestA != DestB); 4254 assert(DestB != SI->getDefaultDest()); 4255 assert(!CasesB.empty() && "There must be non-default cases."); 4256 assert(!CasesA.empty() || HasDefault); 4257 4258 // Figure out if one of the sets of cases form a contiguous range. 4259 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4260 BasicBlock *ContiguousDest = nullptr; 4261 BasicBlock *OtherDest = nullptr; 4262 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4263 ContiguousCases = &CasesA; 4264 ContiguousDest = DestA; 4265 OtherDest = DestB; 4266 } else if (CasesAreContiguous(CasesB)) { 4267 ContiguousCases = &CasesB; 4268 ContiguousDest = DestB; 4269 OtherDest = DestA; 4270 } else 4271 return false; 4272 4273 // Start building the compare and branch. 4274 4275 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4276 Constant *NumCases = 4277 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4278 4279 Value *Sub = SI->getCondition(); 4280 if (!Offset->isNullValue()) 4281 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4282 4283 Value *Cmp; 4284 // If NumCases overflowed, then all possible values jump to the successor. 4285 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4286 Cmp = ConstantInt::getTrue(SI->getContext()); 4287 else 4288 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4289 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4290 4291 // Update weight for the newly-created conditional branch. 4292 if (HasBranchWeights(SI)) { 4293 SmallVector<uint64_t, 8> Weights; 4294 GetBranchWeights(SI, Weights); 4295 if (Weights.size() == 1 + SI->getNumCases()) { 4296 uint64_t TrueWeight = 0; 4297 uint64_t FalseWeight = 0; 4298 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4299 if (SI->getSuccessor(I) == ContiguousDest) 4300 TrueWeight += Weights[I]; 4301 else 4302 FalseWeight += Weights[I]; 4303 } 4304 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4305 TrueWeight /= 2; 4306 FalseWeight /= 2; 4307 } 4308 NewBI->setMetadata(LLVMContext::MD_prof, 4309 MDBuilder(SI->getContext()) 4310 .createBranchWeights((uint32_t)TrueWeight, 4311 (uint32_t)FalseWeight)); 4312 } 4313 } 4314 4315 // Prune obsolete incoming values off the successors' PHI nodes. 4316 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4317 unsigned PreviousEdges = ContiguousCases->size(); 4318 if (ContiguousDest == SI->getDefaultDest()) 4319 ++PreviousEdges; 4320 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4321 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4322 } 4323 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4324 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4325 if (OtherDest == SI->getDefaultDest()) 4326 ++PreviousEdges; 4327 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4328 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4329 } 4330 4331 // Drop the switch. 4332 SI->eraseFromParent(); 4333 4334 return true; 4335 } 4336 4337 /// Compute masked bits for the condition of a switch 4338 /// and use it to remove dead cases. 4339 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4340 const DataLayout &DL) { 4341 Value *Cond = SI->getCondition(); 4342 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4343 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 4344 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 4345 4346 // We can also eliminate cases by determining that their values are outside of 4347 // the limited range of the condition based on how many significant (non-sign) 4348 // bits are in the condition value. 4349 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4350 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4351 4352 // Gather dead cases. 4353 SmallVector<ConstantInt *, 8> DeadCases; 4354 for (auto &Case : SI->cases()) { 4355 APInt CaseVal = Case.getCaseValue()->getValue(); 4356 if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne || 4357 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4358 DeadCases.push_back(Case.getCaseValue()); 4359 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4360 } 4361 } 4362 4363 // If we can prove that the cases must cover all possible values, the 4364 // default destination becomes dead and we can remove it. If we know some 4365 // of the bits in the value, we can use that to more precisely compute the 4366 // number of possible unique case values. 4367 bool HasDefault = 4368 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4369 const unsigned NumUnknownBits = 4370 Bits - (KnownZero.Or(KnownOne)).countPopulation(); 4371 assert(NumUnknownBits <= Bits); 4372 if (HasDefault && DeadCases.empty() && 4373 NumUnknownBits < 64 /* avoid overflow */ && 4374 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4375 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4376 BasicBlock *NewDefault = 4377 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4378 SI->setDefaultDest(&*NewDefault); 4379 SplitBlock(&*NewDefault, &NewDefault->front()); 4380 auto *OldTI = NewDefault->getTerminator(); 4381 new UnreachableInst(SI->getContext(), OldTI); 4382 EraseTerminatorInstAndDCECond(OldTI); 4383 return true; 4384 } 4385 4386 SmallVector<uint64_t, 8> Weights; 4387 bool HasWeight = HasBranchWeights(SI); 4388 if (HasWeight) { 4389 GetBranchWeights(SI, Weights); 4390 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4391 } 4392 4393 // Remove dead cases from the switch. 4394 for (ConstantInt *DeadCase : DeadCases) { 4395 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase); 4396 assert(Case != SI->case_default() && 4397 "Case was not found. Probably mistake in DeadCases forming."); 4398 if (HasWeight) { 4399 std::swap(Weights[Case.getCaseIndex() + 1], Weights.back()); 4400 Weights.pop_back(); 4401 } 4402 4403 // Prune unused values from PHI nodes. 4404 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 4405 SI->removeCase(Case); 4406 } 4407 if (HasWeight && Weights.size() >= 2) { 4408 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4409 SI->setMetadata(LLVMContext::MD_prof, 4410 MDBuilder(SI->getParent()->getContext()) 4411 .createBranchWeights(MDWeights)); 4412 } 4413 4414 return !DeadCases.empty(); 4415 } 4416 4417 /// If BB would be eligible for simplification by 4418 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4419 /// by an unconditional branch), look at the phi node for BB in the successor 4420 /// block and see if the incoming value is equal to CaseValue. If so, return 4421 /// the phi node, and set PhiIndex to BB's index in the phi node. 4422 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4423 BasicBlock *BB, int *PhiIndex) { 4424 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4425 return nullptr; // BB must be empty to be a candidate for simplification. 4426 if (!BB->getSinglePredecessor()) 4427 return nullptr; // BB must be dominated by the switch. 4428 4429 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4430 if (!Branch || !Branch->isUnconditional()) 4431 return nullptr; // Terminator must be unconditional branch. 4432 4433 BasicBlock *Succ = Branch->getSuccessor(0); 4434 4435 BasicBlock::iterator I = Succ->begin(); 4436 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4437 int Idx = PHI->getBasicBlockIndex(BB); 4438 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4439 4440 Value *InValue = PHI->getIncomingValue(Idx); 4441 if (InValue != CaseValue) 4442 continue; 4443 4444 *PhiIndex = Idx; 4445 return PHI; 4446 } 4447 4448 return nullptr; 4449 } 4450 4451 /// Try to forward the condition of a switch instruction to a phi node 4452 /// dominated by the switch, if that would mean that some of the destination 4453 /// blocks of the switch can be folded away. 4454 /// Returns true if a change is made. 4455 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4456 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap; 4457 ForwardingNodesMap ForwardingNodes; 4458 4459 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; 4460 ++I) { 4461 ConstantInt *CaseValue = I.getCaseValue(); 4462 BasicBlock *CaseDest = I.getCaseSuccessor(); 4463 4464 int PhiIndex; 4465 PHINode *PHI = 4466 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex); 4467 if (!PHI) 4468 continue; 4469 4470 ForwardingNodes[PHI].push_back(PhiIndex); 4471 } 4472 4473 bool Changed = false; 4474 4475 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 4476 E = ForwardingNodes.end(); 4477 I != E; ++I) { 4478 PHINode *Phi = I->first; 4479 SmallVectorImpl<int> &Indexes = I->second; 4480 4481 if (Indexes.size() < 2) 4482 continue; 4483 4484 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 4485 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 4486 Changed = true; 4487 } 4488 4489 return Changed; 4490 } 4491 4492 /// Return true if the backend will be able to handle 4493 /// initializing an array of constants like C. 4494 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4495 if (C->isThreadDependent()) 4496 return false; 4497 if (C->isDLLImportDependent()) 4498 return false; 4499 4500 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4501 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4502 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4503 return false; 4504 4505 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4506 if (!CE->isGEPWithNoNotionalOverIndexing()) 4507 return false; 4508 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4509 return false; 4510 } 4511 4512 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4513 return false; 4514 4515 return true; 4516 } 4517 4518 /// If V is a Constant, return it. Otherwise, try to look up 4519 /// its constant value in ConstantPool, returning 0 if it's not there. 4520 static Constant * 4521 LookupConstant(Value *V, 4522 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4523 if (Constant *C = dyn_cast<Constant>(V)) 4524 return C; 4525 return ConstantPool.lookup(V); 4526 } 4527 4528 /// Try to fold instruction I into a constant. This works for 4529 /// simple instructions such as binary operations where both operands are 4530 /// constant or can be replaced by constants from the ConstantPool. Returns the 4531 /// resulting constant on success, 0 otherwise. 4532 static Constant * 4533 ConstantFold(Instruction *I, const DataLayout &DL, 4534 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4535 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4536 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4537 if (!A) 4538 return nullptr; 4539 if (A->isAllOnesValue()) 4540 return LookupConstant(Select->getTrueValue(), ConstantPool); 4541 if (A->isNullValue()) 4542 return LookupConstant(Select->getFalseValue(), ConstantPool); 4543 return nullptr; 4544 } 4545 4546 SmallVector<Constant *, 4> COps; 4547 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4548 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4549 COps.push_back(A); 4550 else 4551 return nullptr; 4552 } 4553 4554 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4555 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4556 COps[1], DL); 4557 } 4558 4559 return ConstantFoldInstOperands(I, COps, DL); 4560 } 4561 4562 /// Try to determine the resulting constant values in phi nodes 4563 /// at the common destination basic block, *CommonDest, for one of the case 4564 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4565 /// case), of a switch instruction SI. 4566 static bool 4567 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4568 BasicBlock **CommonDest, 4569 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4570 const DataLayout &DL, const TargetTransformInfo &TTI) { 4571 // The block from which we enter the common destination. 4572 BasicBlock *Pred = SI->getParent(); 4573 4574 // If CaseDest is empty except for some side-effect free instructions through 4575 // which we can constant-propagate the CaseVal, continue to its successor. 4576 SmallDenseMap<Value *, Constant *> ConstantPool; 4577 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4578 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4579 ++I) { 4580 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4581 // If the terminator is a simple branch, continue to the next block. 4582 if (T->getNumSuccessors() != 1 || T->isExceptional()) 4583 return false; 4584 Pred = CaseDest; 4585 CaseDest = T->getSuccessor(0); 4586 } else if (isa<DbgInfoIntrinsic>(I)) { 4587 // Skip debug intrinsic. 4588 continue; 4589 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4590 // Instruction is side-effect free and constant. 4591 4592 // If the instruction has uses outside this block or a phi node slot for 4593 // the block, it is not safe to bypass the instruction since it would then 4594 // no longer dominate all its uses. 4595 for (auto &Use : I->uses()) { 4596 User *User = Use.getUser(); 4597 if (Instruction *I = dyn_cast<Instruction>(User)) 4598 if (I->getParent() == CaseDest) 4599 continue; 4600 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4601 if (Phi->getIncomingBlock(Use) == CaseDest) 4602 continue; 4603 return false; 4604 } 4605 4606 ConstantPool.insert(std::make_pair(&*I, C)); 4607 } else { 4608 break; 4609 } 4610 } 4611 4612 // If we did not have a CommonDest before, use the current one. 4613 if (!*CommonDest) 4614 *CommonDest = CaseDest; 4615 // If the destination isn't the common one, abort. 4616 if (CaseDest != *CommonDest) 4617 return false; 4618 4619 // Get the values for this case from phi nodes in the destination block. 4620 BasicBlock::iterator I = (*CommonDest)->begin(); 4621 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4622 int Idx = PHI->getBasicBlockIndex(Pred); 4623 if (Idx == -1) 4624 continue; 4625 4626 Constant *ConstVal = 4627 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4628 if (!ConstVal) 4629 return false; 4630 4631 // Be conservative about which kinds of constants we support. 4632 if (!ValidLookupTableConstant(ConstVal, TTI)) 4633 return false; 4634 4635 Res.push_back(std::make_pair(PHI, ConstVal)); 4636 } 4637 4638 return Res.size() > 0; 4639 } 4640 4641 // Helper function used to add CaseVal to the list of cases that generate 4642 // Result. 4643 static void MapCaseToResult(ConstantInt *CaseVal, 4644 SwitchCaseResultVectorTy &UniqueResults, 4645 Constant *Result) { 4646 for (auto &I : UniqueResults) { 4647 if (I.first == Result) { 4648 I.second.push_back(CaseVal); 4649 return; 4650 } 4651 } 4652 UniqueResults.push_back( 4653 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4654 } 4655 4656 // Helper function that initializes a map containing 4657 // results for the PHI node of the common destination block for a switch 4658 // instruction. Returns false if multiple PHI nodes have been found or if 4659 // there is not a common destination block for the switch. 4660 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4661 BasicBlock *&CommonDest, 4662 SwitchCaseResultVectorTy &UniqueResults, 4663 Constant *&DefaultResult, 4664 const DataLayout &DL, 4665 const TargetTransformInfo &TTI) { 4666 for (auto &I : SI->cases()) { 4667 ConstantInt *CaseVal = I.getCaseValue(); 4668 4669 // Resulting value at phi nodes for this case value. 4670 SwitchCaseResultsTy Results; 4671 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4672 DL, TTI)) 4673 return false; 4674 4675 // Only one value per case is permitted 4676 if (Results.size() > 1) 4677 return false; 4678 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4679 4680 // Check the PHI consistency. 4681 if (!PHI) 4682 PHI = Results[0].first; 4683 else if (PHI != Results[0].first) 4684 return false; 4685 } 4686 // Find the default result value. 4687 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4688 BasicBlock *DefaultDest = SI->getDefaultDest(); 4689 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4690 DL, TTI); 4691 // If the default value is not found abort unless the default destination 4692 // is unreachable. 4693 DefaultResult = 4694 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4695 if ((!DefaultResult && 4696 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4697 return false; 4698 4699 return true; 4700 } 4701 4702 // Helper function that checks if it is possible to transform a switch with only 4703 // two cases (or two cases + default) that produces a result into a select. 4704 // Example: 4705 // switch (a) { 4706 // case 10: %0 = icmp eq i32 %a, 10 4707 // return 10; %1 = select i1 %0, i32 10, i32 4 4708 // case 20: ----> %2 = icmp eq i32 %a, 20 4709 // return 2; %3 = select i1 %2, i32 2, i32 %1 4710 // default: 4711 // return 4; 4712 // } 4713 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4714 Constant *DefaultResult, Value *Condition, 4715 IRBuilder<> &Builder) { 4716 assert(ResultVector.size() == 2 && 4717 "We should have exactly two unique results at this point"); 4718 // If we are selecting between only two cases transform into a simple 4719 // select or a two-way select if default is possible. 4720 if (ResultVector[0].second.size() == 1 && 4721 ResultVector[1].second.size() == 1) { 4722 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4723 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4724 4725 bool DefaultCanTrigger = DefaultResult; 4726 Value *SelectValue = ResultVector[1].first; 4727 if (DefaultCanTrigger) { 4728 Value *const ValueCompare = 4729 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4730 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4731 DefaultResult, "switch.select"); 4732 } 4733 Value *const ValueCompare = 4734 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4735 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4736 SelectValue, "switch.select"); 4737 } 4738 4739 return nullptr; 4740 } 4741 4742 // Helper function to cleanup a switch instruction that has been converted into 4743 // a select, fixing up PHI nodes and basic blocks. 4744 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4745 Value *SelectValue, 4746 IRBuilder<> &Builder) { 4747 BasicBlock *SelectBB = SI->getParent(); 4748 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4749 PHI->removeIncomingValue(SelectBB); 4750 PHI->addIncoming(SelectValue, SelectBB); 4751 4752 Builder.CreateBr(PHI->getParent()); 4753 4754 // Remove the switch. 4755 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4756 BasicBlock *Succ = SI->getSuccessor(i); 4757 4758 if (Succ == PHI->getParent()) 4759 continue; 4760 Succ->removePredecessor(SelectBB); 4761 } 4762 SI->eraseFromParent(); 4763 } 4764 4765 /// If the switch is only used to initialize one or more 4766 /// phi nodes in a common successor block with only two different 4767 /// constant values, replace the switch with select. 4768 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4769 AssumptionCache *AC, const DataLayout &DL, 4770 const TargetTransformInfo &TTI) { 4771 Value *const Cond = SI->getCondition(); 4772 PHINode *PHI = nullptr; 4773 BasicBlock *CommonDest = nullptr; 4774 Constant *DefaultResult; 4775 SwitchCaseResultVectorTy UniqueResults; 4776 // Collect all the cases that will deliver the same value from the switch. 4777 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4778 DL, TTI)) 4779 return false; 4780 // Selects choose between maximum two values. 4781 if (UniqueResults.size() != 2) 4782 return false; 4783 assert(PHI != nullptr && "PHI for value select not found"); 4784 4785 Builder.SetInsertPoint(SI); 4786 Value *SelectValue = 4787 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4788 if (SelectValue) { 4789 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4790 return true; 4791 } 4792 // The switch couldn't be converted into a select. 4793 return false; 4794 } 4795 4796 namespace { 4797 4798 /// This class represents a lookup table that can be used to replace a switch. 4799 class SwitchLookupTable { 4800 public: 4801 /// Create a lookup table to use as a switch replacement with the contents 4802 /// of Values, using DefaultValue to fill any holes in the table. 4803 SwitchLookupTable( 4804 Module &M, uint64_t TableSize, ConstantInt *Offset, 4805 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4806 Constant *DefaultValue, const DataLayout &DL); 4807 4808 /// Build instructions with Builder to retrieve the value at 4809 /// the position given by Index in the lookup table. 4810 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4811 4812 /// Return true if a table with TableSize elements of 4813 /// type ElementType would fit in a target-legal register. 4814 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4815 Type *ElementType); 4816 4817 private: 4818 // Depending on the contents of the table, it can be represented in 4819 // different ways. 4820 enum { 4821 // For tables where each element contains the same value, we just have to 4822 // store that single value and return it for each lookup. 4823 SingleValueKind, 4824 4825 // For tables where there is a linear relationship between table index 4826 // and values. We calculate the result with a simple multiplication 4827 // and addition instead of a table lookup. 4828 LinearMapKind, 4829 4830 // For small tables with integer elements, we can pack them into a bitmap 4831 // that fits into a target-legal register. Values are retrieved by 4832 // shift and mask operations. 4833 BitMapKind, 4834 4835 // The table is stored as an array of values. Values are retrieved by load 4836 // instructions from the table. 4837 ArrayKind 4838 } Kind; 4839 4840 // For SingleValueKind, this is the single value. 4841 Constant *SingleValue; 4842 4843 // For BitMapKind, this is the bitmap. 4844 ConstantInt *BitMap; 4845 IntegerType *BitMapElementTy; 4846 4847 // For LinearMapKind, these are the constants used to derive the value. 4848 ConstantInt *LinearOffset; 4849 ConstantInt *LinearMultiplier; 4850 4851 // For ArrayKind, this is the array. 4852 GlobalVariable *Array; 4853 }; 4854 4855 } // end anonymous namespace 4856 4857 SwitchLookupTable::SwitchLookupTable( 4858 Module &M, uint64_t TableSize, ConstantInt *Offset, 4859 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4860 Constant *DefaultValue, const DataLayout &DL) 4861 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4862 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4863 assert(Values.size() && "Can't build lookup table without values!"); 4864 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4865 4866 // If all values in the table are equal, this is that value. 4867 SingleValue = Values.begin()->second; 4868 4869 Type *ValueType = Values.begin()->second->getType(); 4870 4871 // Build up the table contents. 4872 SmallVector<Constant *, 64> TableContents(TableSize); 4873 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4874 ConstantInt *CaseVal = Values[I].first; 4875 Constant *CaseRes = Values[I].second; 4876 assert(CaseRes->getType() == ValueType); 4877 4878 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4879 TableContents[Idx] = CaseRes; 4880 4881 if (CaseRes != SingleValue) 4882 SingleValue = nullptr; 4883 } 4884 4885 // Fill in any holes in the table with the default result. 4886 if (Values.size() < TableSize) { 4887 assert(DefaultValue && 4888 "Need a default value to fill the lookup table holes."); 4889 assert(DefaultValue->getType() == ValueType); 4890 for (uint64_t I = 0; I < TableSize; ++I) { 4891 if (!TableContents[I]) 4892 TableContents[I] = DefaultValue; 4893 } 4894 4895 if (DefaultValue != SingleValue) 4896 SingleValue = nullptr; 4897 } 4898 4899 // If each element in the table contains the same value, we only need to store 4900 // that single value. 4901 if (SingleValue) { 4902 Kind = SingleValueKind; 4903 return; 4904 } 4905 4906 // Check if we can derive the value with a linear transformation from the 4907 // table index. 4908 if (isa<IntegerType>(ValueType)) { 4909 bool LinearMappingPossible = true; 4910 APInt PrevVal; 4911 APInt DistToPrev; 4912 assert(TableSize >= 2 && "Should be a SingleValue table."); 4913 // Check if there is the same distance between two consecutive values. 4914 for (uint64_t I = 0; I < TableSize; ++I) { 4915 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4916 if (!ConstVal) { 4917 // This is an undef. We could deal with it, but undefs in lookup tables 4918 // are very seldom. It's probably not worth the additional complexity. 4919 LinearMappingPossible = false; 4920 break; 4921 } 4922 APInt Val = ConstVal->getValue(); 4923 if (I != 0) { 4924 APInt Dist = Val - PrevVal; 4925 if (I == 1) { 4926 DistToPrev = Dist; 4927 } else if (Dist != DistToPrev) { 4928 LinearMappingPossible = false; 4929 break; 4930 } 4931 } 4932 PrevVal = Val; 4933 } 4934 if (LinearMappingPossible) { 4935 LinearOffset = cast<ConstantInt>(TableContents[0]); 4936 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4937 Kind = LinearMapKind; 4938 ++NumLinearMaps; 4939 return; 4940 } 4941 } 4942 4943 // If the type is integer and the table fits in a register, build a bitmap. 4944 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4945 IntegerType *IT = cast<IntegerType>(ValueType); 4946 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4947 for (uint64_t I = TableSize; I > 0; --I) { 4948 TableInt <<= IT->getBitWidth(); 4949 // Insert values into the bitmap. Undef values are set to zero. 4950 if (!isa<UndefValue>(TableContents[I - 1])) { 4951 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4952 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4953 } 4954 } 4955 BitMap = ConstantInt::get(M.getContext(), TableInt); 4956 BitMapElementTy = IT; 4957 Kind = BitMapKind; 4958 ++NumBitMaps; 4959 return; 4960 } 4961 4962 // Store the table in an array. 4963 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4964 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4965 4966 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 4967 GlobalVariable::PrivateLinkage, Initializer, 4968 "switch.table"); 4969 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 4970 Kind = ArrayKind; 4971 } 4972 4973 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4974 switch (Kind) { 4975 case SingleValueKind: 4976 return SingleValue; 4977 case LinearMapKind: { 4978 // Derive the result value from the input value. 4979 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4980 false, "switch.idx.cast"); 4981 if (!LinearMultiplier->isOne()) 4982 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4983 if (!LinearOffset->isZero()) 4984 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4985 return Result; 4986 } 4987 case BitMapKind: { 4988 // Type of the bitmap (e.g. i59). 4989 IntegerType *MapTy = BitMap->getType(); 4990 4991 // Cast Index to the same type as the bitmap. 4992 // Note: The Index is <= the number of elements in the table, so 4993 // truncating it to the width of the bitmask is safe. 4994 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4995 4996 // Multiply the shift amount by the element width. 4997 ShiftAmt = Builder.CreateMul( 4998 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4999 "switch.shiftamt"); 5000 5001 // Shift down. 5002 Value *DownShifted = 5003 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5004 // Mask off. 5005 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5006 } 5007 case ArrayKind: { 5008 // Make sure the table index will not overflow when treated as signed. 5009 IntegerType *IT = cast<IntegerType>(Index->getType()); 5010 uint64_t TableSize = 5011 Array->getInitializer()->getType()->getArrayNumElements(); 5012 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5013 Index = Builder.CreateZExt( 5014 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5015 "switch.tableidx.zext"); 5016 5017 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5018 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5019 GEPIndices, "switch.gep"); 5020 return Builder.CreateLoad(GEP, "switch.load"); 5021 } 5022 } 5023 llvm_unreachable("Unknown lookup table kind!"); 5024 } 5025 5026 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5027 uint64_t TableSize, 5028 Type *ElementType) { 5029 auto *IT = dyn_cast<IntegerType>(ElementType); 5030 if (!IT) 5031 return false; 5032 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5033 // are <= 15, we could try to narrow the type. 5034 5035 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5036 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5037 return false; 5038 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5039 } 5040 5041 /// Determine whether a lookup table should be built for this switch, based on 5042 /// the number of cases, size of the table, and the types of the results. 5043 static bool 5044 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5045 const TargetTransformInfo &TTI, const DataLayout &DL, 5046 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5047 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5048 return false; // TableSize overflowed, or mul below might overflow. 5049 5050 bool AllTablesFitInRegister = true; 5051 bool HasIllegalType = false; 5052 for (const auto &I : ResultTypes) { 5053 Type *Ty = I.second; 5054 5055 // Saturate this flag to true. 5056 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5057 5058 // Saturate this flag to false. 5059 AllTablesFitInRegister = 5060 AllTablesFitInRegister && 5061 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5062 5063 // If both flags saturate, we're done. NOTE: This *only* works with 5064 // saturating flags, and all flags have to saturate first due to the 5065 // non-deterministic behavior of iterating over a dense map. 5066 if (HasIllegalType && !AllTablesFitInRegister) 5067 break; 5068 } 5069 5070 // If each table would fit in a register, we should build it anyway. 5071 if (AllTablesFitInRegister) 5072 return true; 5073 5074 // Don't build a table that doesn't fit in-register if it has illegal types. 5075 if (HasIllegalType) 5076 return false; 5077 5078 // The table density should be at least 40%. This is the same criterion as for 5079 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5080 // FIXME: Find the best cut-off. 5081 return SI->getNumCases() * 10 >= TableSize * 4; 5082 } 5083 5084 /// Try to reuse the switch table index compare. Following pattern: 5085 /// \code 5086 /// if (idx < tablesize) 5087 /// r = table[idx]; // table does not contain default_value 5088 /// else 5089 /// r = default_value; 5090 /// if (r != default_value) 5091 /// ... 5092 /// \endcode 5093 /// Is optimized to: 5094 /// \code 5095 /// cond = idx < tablesize; 5096 /// if (cond) 5097 /// r = table[idx]; 5098 /// else 5099 /// r = default_value; 5100 /// if (cond) 5101 /// ... 5102 /// \endcode 5103 /// Jump threading will then eliminate the second if(cond). 5104 static void reuseTableCompare( 5105 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5106 Constant *DefaultValue, 5107 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5108 5109 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5110 if (!CmpInst) 5111 return; 5112 5113 // We require that the compare is in the same block as the phi so that jump 5114 // threading can do its work afterwards. 5115 if (CmpInst->getParent() != PhiBlock) 5116 return; 5117 5118 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5119 if (!CmpOp1) 5120 return; 5121 5122 Value *RangeCmp = RangeCheckBranch->getCondition(); 5123 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5124 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5125 5126 // Check if the compare with the default value is constant true or false. 5127 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5128 DefaultValue, CmpOp1, true); 5129 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5130 return; 5131 5132 // Check if the compare with the case values is distinct from the default 5133 // compare result. 5134 for (auto ValuePair : Values) { 5135 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5136 ValuePair.second, CmpOp1, true); 5137 if (!CaseConst || CaseConst == DefaultConst) 5138 return; 5139 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5140 "Expect true or false as compare result."); 5141 } 5142 5143 // Check if the branch instruction dominates the phi node. It's a simple 5144 // dominance check, but sufficient for our needs. 5145 // Although this check is invariant in the calling loops, it's better to do it 5146 // at this late stage. Practically we do it at most once for a switch. 5147 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5148 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5149 BasicBlock *Pred = *PI; 5150 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5151 return; 5152 } 5153 5154 if (DefaultConst == FalseConst) { 5155 // The compare yields the same result. We can replace it. 5156 CmpInst->replaceAllUsesWith(RangeCmp); 5157 ++NumTableCmpReuses; 5158 } else { 5159 // The compare yields the same result, just inverted. We can replace it. 5160 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5161 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5162 RangeCheckBranch); 5163 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5164 ++NumTableCmpReuses; 5165 } 5166 } 5167 5168 /// If the switch is only used to initialize one or more phi nodes in a common 5169 /// successor block with different constant values, replace the switch with 5170 /// lookup tables. 5171 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5172 const DataLayout &DL, 5173 const TargetTransformInfo &TTI) { 5174 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5175 5176 // Only build lookup table when we have a target that supports it. 5177 if (!TTI.shouldBuildLookupTables()) 5178 return false; 5179 5180 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5181 // split off a dense part and build a lookup table for that. 5182 5183 // FIXME: This creates arrays of GEPs to constant strings, which means each 5184 // GEP needs a runtime relocation in PIC code. We should just build one big 5185 // string and lookup indices into that. 5186 5187 // Ignore switches with less than three cases. Lookup tables will not make 5188 // them 5189 // faster, so we don't analyze them. 5190 if (SI->getNumCases() < 3) 5191 return false; 5192 5193 // Figure out the corresponding result for each case value and phi node in the 5194 // common destination, as well as the min and max case values. 5195 assert(SI->case_begin() != SI->case_end()); 5196 SwitchInst::CaseIt CI = SI->case_begin(); 5197 ConstantInt *MinCaseVal = CI.getCaseValue(); 5198 ConstantInt *MaxCaseVal = CI.getCaseValue(); 5199 5200 BasicBlock *CommonDest = nullptr; 5201 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy; 5202 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5203 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5204 SmallDenseMap<PHINode *, Type *> ResultTypes; 5205 SmallVector<PHINode *, 4> PHIs; 5206 5207 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5208 ConstantInt *CaseVal = CI.getCaseValue(); 5209 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5210 MinCaseVal = CaseVal; 5211 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5212 MaxCaseVal = CaseVal; 5213 5214 // Resulting value at phi nodes for this case value. 5215 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy; 5216 ResultsTy Results; 5217 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 5218 Results, DL, TTI)) 5219 return false; 5220 5221 // Append the result from this case to the list for each phi. 5222 for (const auto &I : Results) { 5223 PHINode *PHI = I.first; 5224 Constant *Value = I.second; 5225 if (!ResultLists.count(PHI)) 5226 PHIs.push_back(PHI); 5227 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5228 } 5229 } 5230 5231 // Keep track of the result types. 5232 for (PHINode *PHI : PHIs) { 5233 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5234 } 5235 5236 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5237 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5238 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5239 bool TableHasHoles = (NumResults < TableSize); 5240 5241 // If the table has holes, we need a constant result for the default case 5242 // or a bitmask that fits in a register. 5243 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5244 bool HasDefaultResults = 5245 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5246 DefaultResultsList, DL, TTI); 5247 5248 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5249 if (NeedMask) { 5250 // As an extra penalty for the validity test we require more cases. 5251 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5252 return false; 5253 if (!DL.fitsInLegalInteger(TableSize)) 5254 return false; 5255 } 5256 5257 for (const auto &I : DefaultResultsList) { 5258 PHINode *PHI = I.first; 5259 Constant *Result = I.second; 5260 DefaultResults[PHI] = Result; 5261 } 5262 5263 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5264 return false; 5265 5266 // Create the BB that does the lookups. 5267 Module &Mod = *CommonDest->getParent()->getParent(); 5268 BasicBlock *LookupBB = BasicBlock::Create( 5269 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5270 5271 // Compute the table index value. 5272 Builder.SetInsertPoint(SI); 5273 Value *TableIndex = 5274 Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx"); 5275 5276 // Compute the maximum table size representable by the integer type we are 5277 // switching upon. 5278 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5279 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5280 assert(MaxTableSize >= TableSize && 5281 "It is impossible for a switch to have more entries than the max " 5282 "representable value of its input integer type's size."); 5283 5284 // If the default destination is unreachable, or if the lookup table covers 5285 // all values of the conditional variable, branch directly to the lookup table 5286 // BB. Otherwise, check that the condition is within the case range. 5287 const bool DefaultIsReachable = 5288 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5289 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5290 BranchInst *RangeCheckBranch = nullptr; 5291 5292 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5293 Builder.CreateBr(LookupBB); 5294 // Note: We call removeProdecessor later since we need to be able to get the 5295 // PHI value for the default case in case we're using a bit mask. 5296 } else { 5297 Value *Cmp = Builder.CreateICmpULT( 5298 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5299 RangeCheckBranch = 5300 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5301 } 5302 5303 // Populate the BB that does the lookups. 5304 Builder.SetInsertPoint(LookupBB); 5305 5306 if (NeedMask) { 5307 // Before doing the lookup we do the hole check. 5308 // The LookupBB is therefore re-purposed to do the hole check 5309 // and we create a new LookupBB. 5310 BasicBlock *MaskBB = LookupBB; 5311 MaskBB->setName("switch.hole_check"); 5312 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5313 CommonDest->getParent(), CommonDest); 5314 5315 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 5316 // unnecessary illegal types. 5317 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5318 APInt MaskInt(TableSizePowOf2, 0); 5319 APInt One(TableSizePowOf2, 1); 5320 // Build bitmask; fill in a 1 bit for every case. 5321 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5322 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5323 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5324 .getLimitedValue(); 5325 MaskInt |= One << Idx; 5326 } 5327 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5328 5329 // Get the TableIndex'th bit of the bitmask. 5330 // If this bit is 0 (meaning hole) jump to the default destination, 5331 // else continue with table lookup. 5332 IntegerType *MapTy = TableMask->getType(); 5333 Value *MaskIndex = 5334 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5335 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5336 Value *LoBit = Builder.CreateTrunc( 5337 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5338 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5339 5340 Builder.SetInsertPoint(LookupBB); 5341 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5342 } 5343 5344 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5345 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 5346 // do not delete PHINodes here. 5347 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5348 /*DontDeleteUselessPHIs=*/true); 5349 } 5350 5351 bool ReturnedEarly = false; 5352 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 5353 PHINode *PHI = PHIs[I]; 5354 const ResultListTy &ResultList = ResultLists[PHI]; 5355 5356 // If using a bitmask, use any value to fill the lookup table holes. 5357 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5358 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 5359 5360 Value *Result = Table.BuildLookup(TableIndex, Builder); 5361 5362 // If the result is used to return immediately from the function, we want to 5363 // do that right here. 5364 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5365 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5366 Builder.CreateRet(Result); 5367 ReturnedEarly = true; 5368 break; 5369 } 5370 5371 // Do a small peephole optimization: re-use the switch table compare if 5372 // possible. 5373 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5374 BasicBlock *PhiBlock = PHI->getParent(); 5375 // Search for compare instructions which use the phi. 5376 for (auto *User : PHI->users()) { 5377 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5378 } 5379 } 5380 5381 PHI->addIncoming(Result, LookupBB); 5382 } 5383 5384 if (!ReturnedEarly) 5385 Builder.CreateBr(CommonDest); 5386 5387 // Remove the switch. 5388 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5389 BasicBlock *Succ = SI->getSuccessor(i); 5390 5391 if (Succ == SI->getDefaultDest()) 5392 continue; 5393 Succ->removePredecessor(SI->getParent()); 5394 } 5395 SI->eraseFromParent(); 5396 5397 ++NumLookupTables; 5398 if (NeedMask) 5399 ++NumLookupTablesHoles; 5400 return true; 5401 } 5402 5403 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5404 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5405 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5406 uint64_t Range = Diff + 1; 5407 uint64_t NumCases = Values.size(); 5408 // 40% is the default density for building a jump table in optsize/minsize mode. 5409 uint64_t MinDensity = 40; 5410 5411 return NumCases * 100 >= Range * MinDensity; 5412 } 5413 5414 // Try and transform a switch that has "holes" in it to a contiguous sequence 5415 // of cases. 5416 // 5417 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5418 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5419 // 5420 // This converts a sparse switch into a dense switch which allows better 5421 // lowering and could also allow transforming into a lookup table. 5422 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5423 const DataLayout &DL, 5424 const TargetTransformInfo &TTI) { 5425 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5426 if (CondTy->getIntegerBitWidth() > 64 || 5427 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5428 return false; 5429 // Only bother with this optimization if there are more than 3 switch cases; 5430 // SDAG will only bother creating jump tables for 4 or more cases. 5431 if (SI->getNumCases() < 4) 5432 return false; 5433 5434 // This transform is agnostic to the signedness of the input or case values. We 5435 // can treat the case values as signed or unsigned. We can optimize more common 5436 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5437 // as signed. 5438 SmallVector<int64_t,4> Values; 5439 for (auto &C : SI->cases()) 5440 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5441 std::sort(Values.begin(), Values.end()); 5442 5443 // If the switch is already dense, there's nothing useful to do here. 5444 if (isSwitchDense(Values)) 5445 return false; 5446 5447 // First, transform the values such that they start at zero and ascend. 5448 int64_t Base = Values[0]; 5449 for (auto &V : Values) 5450 V -= Base; 5451 5452 // Now we have signed numbers that have been shifted so that, given enough 5453 // precision, there are no negative values. Since the rest of the transform 5454 // is bitwise only, we switch now to an unsigned representation. 5455 uint64_t GCD = 0; 5456 for (auto &V : Values) 5457 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5458 5459 // This transform can be done speculatively because it is so cheap - it results 5460 // in a single rotate operation being inserted. This can only happen if the 5461 // factor extracted is a power of 2. 5462 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5463 // inverse of GCD and then perform this transform. 5464 // FIXME: It's possible that optimizing a switch on powers of two might also 5465 // be beneficial - flag values are often powers of two and we could use a CLZ 5466 // as the key function. 5467 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5468 // No common divisor found or too expensive to compute key function. 5469 return false; 5470 5471 unsigned Shift = Log2_64(GCD); 5472 for (auto &V : Values) 5473 V = (int64_t)((uint64_t)V >> Shift); 5474 5475 if (!isSwitchDense(Values)) 5476 // Transform didn't create a dense switch. 5477 return false; 5478 5479 // The obvious transform is to shift the switch condition right and emit a 5480 // check that the condition actually cleanly divided by GCD, i.e. 5481 // C & (1 << Shift - 1) == 0 5482 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5483 // 5484 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5485 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5486 // are nonzero then the switch condition will be very large and will hit the 5487 // default case. 5488 5489 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5490 Builder.SetInsertPoint(SI); 5491 auto *ShiftC = ConstantInt::get(Ty, Shift); 5492 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5493 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5494 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5495 auto *Rot = Builder.CreateOr(LShr, Shl); 5496 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5497 5498 for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E; 5499 ++C) { 5500 auto *Orig = C.getCaseValue(); 5501 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5502 C.setValue( 5503 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5504 } 5505 return true; 5506 } 5507 5508 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5509 BasicBlock *BB = SI->getParent(); 5510 5511 if (isValueEqualityComparison(SI)) { 5512 // If we only have one predecessor, and if it is a branch on this value, 5513 // see if that predecessor totally determines the outcome of this switch. 5514 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5515 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5516 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5517 5518 Value *Cond = SI->getCondition(); 5519 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5520 if (SimplifySwitchOnSelect(SI, Select)) 5521 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5522 5523 // If the block only contains the switch, see if we can fold the block 5524 // away into any preds. 5525 BasicBlock::iterator BBI = BB->begin(); 5526 // Ignore dbg intrinsics. 5527 while (isa<DbgInfoIntrinsic>(BBI)) 5528 ++BBI; 5529 if (SI == &*BBI) 5530 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5531 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5532 } 5533 5534 // Try to transform the switch into an icmp and a branch. 5535 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5536 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5537 5538 // Remove unreachable cases. 5539 if (EliminateDeadSwitchCases(SI, AC, DL)) 5540 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5541 5542 if (SwitchToSelect(SI, Builder, AC, DL, TTI)) 5543 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5544 5545 if (ForwardSwitchConditionToPHI(SI)) 5546 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5547 5548 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 5549 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5550 5551 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5552 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5553 5554 return false; 5555 } 5556 5557 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5558 BasicBlock *BB = IBI->getParent(); 5559 bool Changed = false; 5560 5561 // Eliminate redundant destinations. 5562 SmallPtrSet<Value *, 8> Succs; 5563 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5564 BasicBlock *Dest = IBI->getDestination(i); 5565 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5566 Dest->removePredecessor(BB); 5567 IBI->removeDestination(i); 5568 --i; 5569 --e; 5570 Changed = true; 5571 } 5572 } 5573 5574 if (IBI->getNumDestinations() == 0) { 5575 // If the indirectbr has no successors, change it to unreachable. 5576 new UnreachableInst(IBI->getContext(), IBI); 5577 EraseTerminatorInstAndDCECond(IBI); 5578 return true; 5579 } 5580 5581 if (IBI->getNumDestinations() == 1) { 5582 // If the indirectbr has one successor, change it to a direct branch. 5583 BranchInst::Create(IBI->getDestination(0), IBI); 5584 EraseTerminatorInstAndDCECond(IBI); 5585 return true; 5586 } 5587 5588 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5589 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5590 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5591 } 5592 return Changed; 5593 } 5594 5595 /// Given an block with only a single landing pad and a unconditional branch 5596 /// try to find another basic block which this one can be merged with. This 5597 /// handles cases where we have multiple invokes with unique landing pads, but 5598 /// a shared handler. 5599 /// 5600 /// We specifically choose to not worry about merging non-empty blocks 5601 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5602 /// practice, the optimizer produces empty landing pad blocks quite frequently 5603 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5604 /// sinking in this file) 5605 /// 5606 /// This is primarily a code size optimization. We need to avoid performing 5607 /// any transform which might inhibit optimization (such as our ability to 5608 /// specialize a particular handler via tail commoning). We do this by not 5609 /// merging any blocks which require us to introduce a phi. Since the same 5610 /// values are flowing through both blocks, we don't loose any ability to 5611 /// specialize. If anything, we make such specialization more likely. 5612 /// 5613 /// TODO - This transformation could remove entries from a phi in the target 5614 /// block when the inputs in the phi are the same for the two blocks being 5615 /// merged. In some cases, this could result in removal of the PHI entirely. 5616 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5617 BasicBlock *BB) { 5618 auto Succ = BB->getUniqueSuccessor(); 5619 assert(Succ); 5620 // If there's a phi in the successor block, we'd likely have to introduce 5621 // a phi into the merged landing pad block. 5622 if (isa<PHINode>(*Succ->begin())) 5623 return false; 5624 5625 for (BasicBlock *OtherPred : predecessors(Succ)) { 5626 if (BB == OtherPred) 5627 continue; 5628 BasicBlock::iterator I = OtherPred->begin(); 5629 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5630 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5631 continue; 5632 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5633 } 5634 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5635 if (!BI2 || !BI2->isIdenticalTo(BI)) 5636 continue; 5637 5638 // We've found an identical block. Update our predecessors to take that 5639 // path instead and make ourselves dead. 5640 SmallSet<BasicBlock *, 16> Preds; 5641 Preds.insert(pred_begin(BB), pred_end(BB)); 5642 for (BasicBlock *Pred : Preds) { 5643 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5644 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5645 "unexpected successor"); 5646 II->setUnwindDest(OtherPred); 5647 } 5648 5649 // The debug info in OtherPred doesn't cover the merged control flow that 5650 // used to go through BB. We need to delete it or update it. 5651 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5652 Instruction &Inst = *I; 5653 I++; 5654 if (isa<DbgInfoIntrinsic>(Inst)) 5655 Inst.eraseFromParent(); 5656 } 5657 5658 SmallSet<BasicBlock *, 16> Succs; 5659 Succs.insert(succ_begin(BB), succ_end(BB)); 5660 for (BasicBlock *Succ : Succs) { 5661 Succ->removePredecessor(BB); 5662 } 5663 5664 IRBuilder<> Builder(BI); 5665 Builder.CreateUnreachable(); 5666 BI->eraseFromParent(); 5667 return true; 5668 } 5669 return false; 5670 } 5671 5672 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5673 IRBuilder<> &Builder) { 5674 BasicBlock *BB = BI->getParent(); 5675 5676 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5677 return true; 5678 5679 // If the Terminator is the only non-phi instruction, simplify the block. 5680 // if LoopHeader is provided, check if the block is a loop header 5681 // (This is for early invocations before loop simplify and vectorization 5682 // to keep canonical loop forms for nested loops. 5683 // These blocks can be eliminated when the pass is invoked later 5684 // in the back-end.) 5685 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5686 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5687 (!LoopHeaders || !LoopHeaders->count(BB)) && 5688 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5689 return true; 5690 5691 // If the only instruction in the block is a seteq/setne comparison 5692 // against a constant, try to simplify the block. 5693 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5694 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5695 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5696 ; 5697 if (I->isTerminator() && 5698 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5699 BonusInstThreshold, AC)) 5700 return true; 5701 } 5702 5703 // See if we can merge an empty landing pad block with another which is 5704 // equivalent. 5705 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5706 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5707 } 5708 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5709 return true; 5710 } 5711 5712 // If this basic block is ONLY a compare and a branch, and if a predecessor 5713 // branches to us and our successor, fold the comparison into the 5714 // predecessor and use logical operations to update the incoming value 5715 // for PHI nodes in common successor. 5716 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5717 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5718 return false; 5719 } 5720 5721 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5722 BasicBlock *PredPred = nullptr; 5723 for (auto *P : predecessors(BB)) { 5724 BasicBlock *PPred = P->getSinglePredecessor(); 5725 if (!PPred || (PredPred && PredPred != PPred)) 5726 return nullptr; 5727 PredPred = PPred; 5728 } 5729 return PredPred; 5730 } 5731 5732 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5733 BasicBlock *BB = BI->getParent(); 5734 5735 // Conditional branch 5736 if (isValueEqualityComparison(BI)) { 5737 // If we only have one predecessor, and if it is a branch on this value, 5738 // see if that predecessor totally determines the outcome of this 5739 // switch. 5740 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5741 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5742 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5743 5744 // This block must be empty, except for the setcond inst, if it exists. 5745 // Ignore dbg intrinsics. 5746 BasicBlock::iterator I = BB->begin(); 5747 // Ignore dbg intrinsics. 5748 while (isa<DbgInfoIntrinsic>(I)) 5749 ++I; 5750 if (&*I == BI) { 5751 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5752 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5753 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5754 ++I; 5755 // Ignore dbg intrinsics. 5756 while (isa<DbgInfoIntrinsic>(I)) 5757 ++I; 5758 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5759 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5760 } 5761 } 5762 5763 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5764 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5765 return true; 5766 5767 // If this basic block has a single dominating predecessor block and the 5768 // dominating block's condition implies BI's condition, we know the direction 5769 // of the BI branch. 5770 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5771 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5772 if (PBI && PBI->isConditional() && 5773 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 5774 (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) { 5775 bool CondIsFalse = PBI->getSuccessor(1) == BB; 5776 Optional<bool> Implication = isImpliedCondition( 5777 PBI->getCondition(), BI->getCondition(), DL, CondIsFalse); 5778 if (Implication) { 5779 // Turn this into a branch on constant. 5780 auto *OldCond = BI->getCondition(); 5781 ConstantInt *CI = *Implication 5782 ? ConstantInt::getTrue(BB->getContext()) 5783 : ConstantInt::getFalse(BB->getContext()); 5784 BI->setCondition(CI); 5785 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5786 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5787 } 5788 } 5789 } 5790 5791 // If this basic block is ONLY a compare and a branch, and if a predecessor 5792 // branches to us and one of our successors, fold the comparison into the 5793 // predecessor and use logical operations to pick the right destination. 5794 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5795 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5796 5797 // We have a conditional branch to two blocks that are only reachable 5798 // from BI. We know that the condbr dominates the two blocks, so see if 5799 // there is any identical code in the "then" and "else" blocks. If so, we 5800 // can hoist it up to the branching block. 5801 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5802 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5803 if (HoistThenElseCodeToIf(BI, TTI)) 5804 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5805 } else { 5806 // If Successor #1 has multiple preds, we may be able to conditionally 5807 // execute Successor #0 if it branches to Successor #1. 5808 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5809 if (Succ0TI->getNumSuccessors() == 1 && 5810 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5811 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5812 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5813 } 5814 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5815 // If Successor #0 has multiple preds, we may be able to conditionally 5816 // execute Successor #1 if it branches to Successor #0. 5817 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5818 if (Succ1TI->getNumSuccessors() == 1 && 5819 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5820 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5821 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5822 } 5823 5824 // If this is a branch on a phi node in the current block, thread control 5825 // through this block if any PHI node entries are constants. 5826 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5827 if (PN->getParent() == BI->getParent()) 5828 if (FoldCondBranchOnPHI(BI, DL)) 5829 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5830 5831 // Scan predecessor blocks for conditional branches. 5832 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5833 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5834 if (PBI != BI && PBI->isConditional()) 5835 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5836 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5837 5838 // Look for diamond patterns. 5839 if (MergeCondStores) 5840 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5841 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5842 if (PBI != BI && PBI->isConditional()) 5843 if (mergeConditionalStores(PBI, BI)) 5844 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5845 5846 return false; 5847 } 5848 5849 /// Check if passing a value to an instruction will cause undefined behavior. 5850 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5851 Constant *C = dyn_cast<Constant>(V); 5852 if (!C) 5853 return false; 5854 5855 if (I->use_empty()) 5856 return false; 5857 5858 if (C->isNullValue() || isa<UndefValue>(C)) { 5859 // Only look at the first use, avoid hurting compile time with long uselists 5860 User *Use = *I->user_begin(); 5861 5862 // Now make sure that there are no instructions in between that can alter 5863 // control flow (eg. calls) 5864 for (BasicBlock::iterator 5865 i = ++BasicBlock::iterator(I), 5866 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5867 i != UI; ++i) 5868 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5869 return false; 5870 5871 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5872 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5873 if (GEP->getPointerOperand() == I) 5874 return passingValueIsAlwaysUndefined(V, GEP); 5875 5876 // Look through bitcasts. 5877 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5878 return passingValueIsAlwaysUndefined(V, BC); 5879 5880 // Load from null is undefined. 5881 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5882 if (!LI->isVolatile()) 5883 return LI->getPointerAddressSpace() == 0; 5884 5885 // Store to null is undefined. 5886 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5887 if (!SI->isVolatile()) 5888 return SI->getPointerAddressSpace() == 0 && 5889 SI->getPointerOperand() == I; 5890 5891 // A call to null is undefined. 5892 if (auto CS = CallSite(Use)) 5893 return CS.getCalledValue() == I; 5894 } 5895 return false; 5896 } 5897 5898 /// If BB has an incoming value that will always trigger undefined behavior 5899 /// (eg. null pointer dereference), remove the branch leading here. 5900 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5901 for (BasicBlock::iterator i = BB->begin(); 5902 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5903 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5904 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5905 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5906 IRBuilder<> Builder(T); 5907 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5908 BB->removePredecessor(PHI->getIncomingBlock(i)); 5909 // Turn uncoditional branches into unreachables and remove the dead 5910 // destination from conditional branches. 5911 if (BI->isUnconditional()) 5912 Builder.CreateUnreachable(); 5913 else 5914 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5915 : BI->getSuccessor(0)); 5916 BI->eraseFromParent(); 5917 return true; 5918 } 5919 // TODO: SwitchInst. 5920 } 5921 5922 return false; 5923 } 5924 5925 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5926 bool Changed = false; 5927 5928 assert(BB && BB->getParent() && "Block not embedded in function!"); 5929 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5930 5931 // Remove basic blocks that have no predecessors (except the entry block)... 5932 // or that just have themself as a predecessor. These are unreachable. 5933 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5934 BB->getSinglePredecessor() == BB) { 5935 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5936 DeleteDeadBlock(BB); 5937 return true; 5938 } 5939 5940 // Check to see if we can constant propagate this terminator instruction 5941 // away... 5942 Changed |= ConstantFoldTerminator(BB, true); 5943 5944 // Check for and eliminate duplicate PHI nodes in this block. 5945 Changed |= EliminateDuplicatePHINodes(BB); 5946 5947 // Check for and remove branches that will always cause undefined behavior. 5948 Changed |= removeUndefIntroducingPredecessor(BB); 5949 5950 // Merge basic blocks into their predecessor if there is only one distinct 5951 // pred, and if there is only one distinct successor of the predecessor, and 5952 // if there are no PHI nodes. 5953 // 5954 if (MergeBlockIntoPredecessor(BB)) 5955 return true; 5956 5957 IRBuilder<> Builder(BB); 5958 5959 // If there is a trivial two-entry PHI node in this basic block, and we can 5960 // eliminate it, do so now. 5961 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5962 if (PN->getNumIncomingValues() == 2) 5963 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5964 5965 Builder.SetInsertPoint(BB->getTerminator()); 5966 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5967 if (BI->isUnconditional()) { 5968 if (SimplifyUncondBranch(BI, Builder)) 5969 return true; 5970 } else { 5971 if (SimplifyCondBranch(BI, Builder)) 5972 return true; 5973 } 5974 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5975 if (SimplifyReturn(RI, Builder)) 5976 return true; 5977 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5978 if (SimplifyResume(RI, Builder)) 5979 return true; 5980 } else if (CleanupReturnInst *RI = 5981 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5982 if (SimplifyCleanupReturn(RI)) 5983 return true; 5984 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5985 if (SimplifySwitch(SI, Builder)) 5986 return true; 5987 } else if (UnreachableInst *UI = 5988 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5989 if (SimplifyUnreachable(UI)) 5990 return true; 5991 } else if (IndirectBrInst *IBI = 5992 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5993 if (SimplifyIndirectBr(IBI)) 5994 return true; 5995 } 5996 5997 return Changed; 5998 } 5999 6000 /// This function is used to do simplification of a CFG. 6001 /// For example, it adjusts branches to branches to eliminate the extra hop, 6002 /// eliminates unreachable basic blocks, and does other "peephole" optimization 6003 /// of the CFG. It returns true if a modification was made. 6004 /// 6005 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6006 unsigned BonusInstThreshold, AssumptionCache *AC, 6007 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6008 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 6009 BonusInstThreshold, AC, LoopHeaders) 6010 .run(BB); 6011 } 6012