1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/ConstantRange.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/NoFolder.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> 62 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc("Control the amount of phi node folding to perform (default = 2)")); 64 65 static cl::opt<bool> 66 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 67 cl::desc("Duplicate return instructions into unconditional branches")); 68 69 static cl::opt<bool> 70 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 71 cl::desc("Sink common instructions down to the end block")); 72 73 static cl::opt<bool> HoistCondStores( 74 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 75 cl::desc("Hoist conditional stores if an unconditional store precedes")); 76 77 static cl::opt<bool> MergeCondStores( 78 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 79 cl::desc("Hoist conditional stores even if an unconditional store does not " 80 "precede - hoist multiple conditional stores into a single " 81 "predicated store")); 82 83 static cl::opt<bool> MergeCondStoresAggressively( 84 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 85 cl::desc("When merging conditional stores, do so even if the resultant " 86 "basic blocks are unlikely to be if-converted as a result")); 87 88 static cl::opt<bool> SpeculateOneExpensiveInst( 89 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 90 cl::desc("Allow exactly one expensive instruction to be speculatively " 91 "executed")); 92 93 static cl::opt<unsigned> MaxSpeculationDepth( 94 "max-speculation-depth", cl::Hidden, cl::init(10), 95 cl::desc("Limit maximum recursion depth when calculating costs of " 96 "speculatively executed instructions")); 97 98 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 99 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping"); 100 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 101 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 102 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 103 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 104 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 105 106 namespace { 107 // The first field contains the value that the switch produces when a certain 108 // case group is selected, and the second field is a vector containing the 109 // cases composing the case group. 110 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 111 SwitchCaseResultVectorTy; 112 // The first field contains the phi node that generates a result of the switch 113 // and the second field contains the value generated for a certain case in the 114 // switch for that PHI. 115 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 116 117 /// ValueEqualityComparisonCase - Represents a case of a switch. 118 struct ValueEqualityComparisonCase { 119 ConstantInt *Value; 120 BasicBlock *Dest; 121 122 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 123 : Value(Value), Dest(Dest) {} 124 125 bool operator<(ValueEqualityComparisonCase RHS) const { 126 // Comparing pointers is ok as we only rely on the order for uniquing. 127 return Value < RHS.Value; 128 } 129 130 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 131 }; 132 133 class SimplifyCFGOpt { 134 const TargetTransformInfo &TTI; 135 const DataLayout &DL; 136 unsigned BonusInstThreshold; 137 AssumptionCache *AC; 138 Value *isValueEqualityComparison(TerminatorInst *TI); 139 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 140 std::vector<ValueEqualityComparisonCase> &Cases); 141 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 142 BasicBlock *Pred, 143 IRBuilder<> &Builder); 144 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 145 IRBuilder<> &Builder); 146 147 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 148 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 149 bool SimplifySingleResume(ResumeInst *RI); 150 bool SimplifyCommonResume(ResumeInst *RI); 151 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 152 bool SimplifyUnreachable(UnreachableInst *UI); 153 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 154 bool SimplifyIndirectBr(IndirectBrInst *IBI); 155 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 156 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 157 158 public: 159 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 160 unsigned BonusInstThreshold, AssumptionCache *AC) 161 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {} 162 bool run(BasicBlock *BB); 163 }; 164 } 165 166 /// Return true if it is safe to merge these two 167 /// terminator instructions together. 168 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 169 if (SI1 == SI2) return false; // Can't merge with self! 170 171 // It is not safe to merge these two switch instructions if they have a common 172 // successor, and if that successor has a PHI node, and if *that* PHI node has 173 // conflicting incoming values from the two switch blocks. 174 BasicBlock *SI1BB = SI1->getParent(); 175 BasicBlock *SI2BB = SI2->getParent(); 176 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 177 178 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 179 if (SI1Succs.count(*I)) 180 for (BasicBlock::iterator BBI = (*I)->begin(); 181 isa<PHINode>(BBI); ++BBI) { 182 PHINode *PN = cast<PHINode>(BBI); 183 if (PN->getIncomingValueForBlock(SI1BB) != 184 PN->getIncomingValueForBlock(SI2BB)) 185 return false; 186 } 187 188 return true; 189 } 190 191 /// Return true if it is safe and profitable to merge these two terminator 192 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 193 /// store all PHI nodes in common successors. 194 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 195 BranchInst *SI2, 196 Instruction *Cond, 197 SmallVectorImpl<PHINode*> &PhiNodes) { 198 if (SI1 == SI2) return false; // Can't merge with self! 199 assert(SI1->isUnconditional() && SI2->isConditional()); 200 201 // We fold the unconditional branch if we can easily update all PHI nodes in 202 // common successors: 203 // 1> We have a constant incoming value for the conditional branch; 204 // 2> We have "Cond" as the incoming value for the unconditional branch; 205 // 3> SI2->getCondition() and Cond have same operands. 206 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 207 if (!Ci2) return false; 208 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 209 Cond->getOperand(1) == Ci2->getOperand(1)) && 210 !(Cond->getOperand(0) == Ci2->getOperand(1) && 211 Cond->getOperand(1) == Ci2->getOperand(0))) 212 return false; 213 214 BasicBlock *SI1BB = SI1->getParent(); 215 BasicBlock *SI2BB = SI2->getParent(); 216 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 217 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 218 if (SI1Succs.count(*I)) 219 for (BasicBlock::iterator BBI = (*I)->begin(); 220 isa<PHINode>(BBI); ++BBI) { 221 PHINode *PN = cast<PHINode>(BBI); 222 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 223 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 224 return false; 225 PhiNodes.push_back(PN); 226 } 227 return true; 228 } 229 230 /// Update PHI nodes in Succ to indicate that there will now be entries in it 231 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 232 /// will be the same as those coming in from ExistPred, an existing predecessor 233 /// of Succ. 234 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 235 BasicBlock *ExistPred) { 236 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 237 238 PHINode *PN; 239 for (BasicBlock::iterator I = Succ->begin(); 240 (PN = dyn_cast<PHINode>(I)); ++I) 241 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 242 } 243 244 /// Compute an abstract "cost" of speculating the given instruction, 245 /// which is assumed to be safe to speculate. TCC_Free means cheap, 246 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 247 /// expensive. 248 static unsigned ComputeSpeculationCost(const User *I, 249 const TargetTransformInfo &TTI) { 250 assert(isSafeToSpeculativelyExecute(I) && 251 "Instruction is not safe to speculatively execute!"); 252 return TTI.getUserCost(I); 253 } 254 255 /// If we have a merge point of an "if condition" as accepted above, 256 /// return true if the specified value dominates the block. We 257 /// don't handle the true generality of domination here, just a special case 258 /// which works well enough for us. 259 /// 260 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 261 /// see if V (which must be an instruction) and its recursive operands 262 /// that do not dominate BB have a combined cost lower than CostRemaining and 263 /// are non-trapping. If both are true, the instruction is inserted into the 264 /// set and true is returned. 265 /// 266 /// The cost for most non-trapping instructions is defined as 1 except for 267 /// Select whose cost is 2. 268 /// 269 /// After this function returns, CostRemaining is decreased by the cost of 270 /// V plus its non-dominating operands. If that cost is greater than 271 /// CostRemaining, false is returned and CostRemaining is undefined. 272 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 273 SmallPtrSetImpl<Instruction*> *AggressiveInsts, 274 unsigned &CostRemaining, 275 const TargetTransformInfo &TTI, 276 unsigned Depth = 0) { 277 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 278 // so limit the recursion depth. 279 // TODO: While this recursion limit does prevent pathological behavior, it 280 // would be better to track visited instructions to avoid cycles. 281 if (Depth == MaxSpeculationDepth) 282 return false; 283 284 Instruction *I = dyn_cast<Instruction>(V); 285 if (!I) { 286 // Non-instructions all dominate instructions, but not all constantexprs 287 // can be executed unconditionally. 288 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 289 if (C->canTrap()) 290 return false; 291 return true; 292 } 293 BasicBlock *PBB = I->getParent(); 294 295 // We don't want to allow weird loops that might have the "if condition" in 296 // the bottom of this block. 297 if (PBB == BB) return false; 298 299 // If this instruction is defined in a block that contains an unconditional 300 // branch to BB, then it must be in the 'conditional' part of the "if 301 // statement". If not, it definitely dominates the region. 302 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 303 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 304 return true; 305 306 // If we aren't allowing aggressive promotion anymore, then don't consider 307 // instructions in the 'if region'. 308 if (!AggressiveInsts) return false; 309 310 // If we have seen this instruction before, don't count it again. 311 if (AggressiveInsts->count(I)) return true; 312 313 // Okay, it looks like the instruction IS in the "condition". Check to 314 // see if it's a cheap instruction to unconditionally compute, and if it 315 // only uses stuff defined outside of the condition. If so, hoist it out. 316 if (!isSafeToSpeculativelyExecute(I)) 317 return false; 318 319 unsigned Cost = ComputeSpeculationCost(I, TTI); 320 321 // Allow exactly one instruction to be speculated regardless of its cost 322 // (as long as it is safe to do so). 323 // This is intended to flatten the CFG even if the instruction is a division 324 // or other expensive operation. The speculation of an expensive instruction 325 // is expected to be undone in CodeGenPrepare if the speculation has not 326 // enabled further IR optimizations. 327 if (Cost > CostRemaining && 328 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 329 return false; 330 331 // Avoid unsigned wrap. 332 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 333 334 // Okay, we can only really hoist these out if their operands do 335 // not take us over the cost threshold. 336 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 337 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 338 Depth + 1)) 339 return false; 340 // Okay, it's safe to do this! Remember this instruction. 341 AggressiveInsts->insert(I); 342 return true; 343 } 344 345 /// Extract ConstantInt from value, looking through IntToPtr 346 /// and PointerNullValue. Return NULL if value is not a constant int. 347 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 348 // Normal constant int. 349 ConstantInt *CI = dyn_cast<ConstantInt>(V); 350 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 351 return CI; 352 353 // This is some kind of pointer constant. Turn it into a pointer-sized 354 // ConstantInt if possible. 355 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 356 357 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 358 if (isa<ConstantPointerNull>(V)) 359 return ConstantInt::get(PtrTy, 0); 360 361 // IntToPtr const int. 362 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 363 if (CE->getOpcode() == Instruction::IntToPtr) 364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 365 // The constant is very likely to have the right type already. 366 if (CI->getType() == PtrTy) 367 return CI; 368 else 369 return cast<ConstantInt> 370 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 371 } 372 return nullptr; 373 } 374 375 namespace { 376 377 /// Given a chain of or (||) or and (&&) comparison of a value against a 378 /// constant, this will try to recover the information required for a switch 379 /// structure. 380 /// It will depth-first traverse the chain of comparison, seeking for patterns 381 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 382 /// representing the different cases for the switch. 383 /// Note that if the chain is composed of '||' it will build the set of elements 384 /// that matches the comparisons (i.e. any of this value validate the chain) 385 /// while for a chain of '&&' it will build the set elements that make the test 386 /// fail. 387 struct ConstantComparesGatherer { 388 const DataLayout &DL; 389 Value *CompValue; /// Value found for the switch comparison 390 Value *Extra; /// Extra clause to be checked before the switch 391 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 392 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 393 394 /// Construct and compute the result for the comparison instruction Cond 395 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 396 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 397 gather(Cond); 398 } 399 400 /// Prevent copy 401 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 402 ConstantComparesGatherer & 403 operator=(const ConstantComparesGatherer &) = delete; 404 405 private: 406 407 /// Try to set the current value used for the comparison, it succeeds only if 408 /// it wasn't set before or if the new value is the same as the old one 409 bool setValueOnce(Value *NewVal) { 410 if(CompValue && CompValue != NewVal) return false; 411 CompValue = NewVal; 412 return (CompValue != nullptr); 413 } 414 415 /// Try to match Instruction "I" as a comparison against a constant and 416 /// populates the array Vals with the set of values that match (or do not 417 /// match depending on isEQ). 418 /// Return false on failure. On success, the Value the comparison matched 419 /// against is placed in CompValue. 420 /// If CompValue is already set, the function is expected to fail if a match 421 /// is found but the value compared to is different. 422 bool matchInstruction(Instruction *I, bool isEQ) { 423 // If this is an icmp against a constant, handle this as one of the cases. 424 ICmpInst *ICI; 425 ConstantInt *C; 426 if (!((ICI = dyn_cast<ICmpInst>(I)) && 427 (C = GetConstantInt(I->getOperand(1), DL)))) { 428 return false; 429 } 430 431 Value *RHSVal; 432 ConstantInt *RHSC; 433 434 // Pattern match a special case 435 // (x & ~2^z) == y --> x == y || x == y|2^z 436 // This undoes a transformation done by instcombine to fuse 2 compares. 437 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 438 if (match(ICI->getOperand(0), 439 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 440 APInt Not = ~RHSC->getValue(); 441 if (Not.isPowerOf2() && C->getValue().isPowerOf2() && 442 Not != C->getValue()) { 443 // If we already have a value for the switch, it has to match! 444 if(!setValueOnce(RHSVal)) 445 return false; 446 447 Vals.push_back(C); 448 Vals.push_back(ConstantInt::get(C->getContext(), 449 C->getValue() | Not)); 450 UsedICmps++; 451 return true; 452 } 453 } 454 455 // If we already have a value for the switch, it has to match! 456 if(!setValueOnce(ICI->getOperand(0))) 457 return false; 458 459 UsedICmps++; 460 Vals.push_back(C); 461 return ICI->getOperand(0); 462 } 463 464 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 465 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 466 ICI->getPredicate(), C->getValue()); 467 468 // Shift the range if the compare is fed by an add. This is the range 469 // compare idiom as emitted by instcombine. 470 Value *CandidateVal = I->getOperand(0); 471 if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 472 Span = Span.subtract(RHSC->getValue()); 473 CandidateVal = RHSVal; 474 } 475 476 // If this is an and/!= check, then we are looking to build the set of 477 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 478 // x != 0 && x != 1. 479 if (!isEQ) 480 Span = Span.inverse(); 481 482 // If there are a ton of values, we don't want to make a ginormous switch. 483 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 484 return false; 485 } 486 487 // If we already have a value for the switch, it has to match! 488 if(!setValueOnce(CandidateVal)) 489 return false; 490 491 // Add all values from the range to the set 492 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 493 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 494 495 UsedICmps++; 496 return true; 497 498 } 499 500 /// Given a potentially 'or'd or 'and'd together collection of icmp 501 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 502 /// the value being compared, and stick the list constants into the Vals 503 /// vector. 504 /// One "Extra" case is allowed to differ from the other. 505 void gather(Value *V) { 506 Instruction *I = dyn_cast<Instruction>(V); 507 bool isEQ = (I->getOpcode() == Instruction::Or); 508 509 // Keep a stack (SmallVector for efficiency) for depth-first traversal 510 SmallVector<Value *, 8> DFT; 511 SmallPtrSet<Value *, 8> Visited; 512 513 // Initialize 514 Visited.insert(V); 515 DFT.push_back(V); 516 517 while(!DFT.empty()) { 518 V = DFT.pop_back_val(); 519 520 if (Instruction *I = dyn_cast<Instruction>(V)) { 521 // If it is a || (or && depending on isEQ), process the operands. 522 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 523 if (Visited.insert(I->getOperand(1)).second) 524 DFT.push_back(I->getOperand(1)); 525 if (Visited.insert(I->getOperand(0)).second) 526 DFT.push_back(I->getOperand(0)); 527 continue; 528 } 529 530 // Try to match the current instruction 531 if (matchInstruction(I, isEQ)) 532 // Match succeed, continue the loop 533 continue; 534 } 535 536 // One element of the sequence of || (or &&) could not be match as a 537 // comparison against the same value as the others. 538 // We allow only one "Extra" case to be checked before the switch 539 if (!Extra) { 540 Extra = V; 541 continue; 542 } 543 // Failed to parse a proper sequence, abort now 544 CompValue = nullptr; 545 break; 546 } 547 } 548 }; 549 550 } 551 552 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 553 Instruction *Cond = nullptr; 554 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 555 Cond = dyn_cast<Instruction>(SI->getCondition()); 556 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 557 if (BI->isConditional()) 558 Cond = dyn_cast<Instruction>(BI->getCondition()); 559 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 560 Cond = dyn_cast<Instruction>(IBI->getAddress()); 561 } 562 563 TI->eraseFromParent(); 564 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 565 } 566 567 /// Return true if the specified terminator checks 568 /// to see if a value is equal to constant integer value. 569 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 570 Value *CV = nullptr; 571 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 572 // Do not permit merging of large switch instructions into their 573 // predecessors unless there is only one predecessor. 574 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 575 pred_end(SI->getParent())) <= 128) 576 CV = SI->getCondition(); 577 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 578 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 579 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 580 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 581 CV = ICI->getOperand(0); 582 } 583 584 // Unwrap any lossless ptrtoint cast. 585 if (CV) { 586 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 587 Value *Ptr = PTII->getPointerOperand(); 588 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 589 CV = Ptr; 590 } 591 } 592 return CV; 593 } 594 595 /// Given a value comparison instruction, 596 /// decode all of the 'cases' that it represents and return the 'default' block. 597 BasicBlock *SimplifyCFGOpt:: 598 GetValueEqualityComparisonCases(TerminatorInst *TI, 599 std::vector<ValueEqualityComparisonCase> 600 &Cases) { 601 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 602 Cases.reserve(SI->getNumCases()); 603 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 604 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 605 i.getCaseSuccessor())); 606 return SI->getDefaultDest(); 607 } 608 609 BranchInst *BI = cast<BranchInst>(TI); 610 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 611 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 612 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 613 DL), 614 Succ)); 615 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 616 } 617 618 619 /// Given a vector of bb/value pairs, remove any entries 620 /// in the list that match the specified block. 621 static void EliminateBlockCases(BasicBlock *BB, 622 std::vector<ValueEqualityComparisonCase> &Cases) { 623 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 624 } 625 626 /// Return true if there are any keys in C1 that exist in C2 as well. 627 static bool 628 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 629 std::vector<ValueEqualityComparisonCase > &C2) { 630 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 631 632 // Make V1 be smaller than V2. 633 if (V1->size() > V2->size()) 634 std::swap(V1, V2); 635 636 if (V1->size() == 0) return false; 637 if (V1->size() == 1) { 638 // Just scan V2. 639 ConstantInt *TheVal = (*V1)[0].Value; 640 for (unsigned i = 0, e = V2->size(); i != e; ++i) 641 if (TheVal == (*V2)[i].Value) 642 return true; 643 } 644 645 // Otherwise, just sort both lists and compare element by element. 646 array_pod_sort(V1->begin(), V1->end()); 647 array_pod_sort(V2->begin(), V2->end()); 648 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 649 while (i1 != e1 && i2 != e2) { 650 if ((*V1)[i1].Value == (*V2)[i2].Value) 651 return true; 652 if ((*V1)[i1].Value < (*V2)[i2].Value) 653 ++i1; 654 else 655 ++i2; 656 } 657 return false; 658 } 659 660 /// If TI is known to be a terminator instruction and its block is known to 661 /// only have a single predecessor block, check to see if that predecessor is 662 /// also a value comparison with the same value, and if that comparison 663 /// determines the outcome of this comparison. If so, simplify TI. This does a 664 /// very limited form of jump threading. 665 bool SimplifyCFGOpt:: 666 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 667 BasicBlock *Pred, 668 IRBuilder<> &Builder) { 669 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 670 if (!PredVal) return false; // Not a value comparison in predecessor. 671 672 Value *ThisVal = isValueEqualityComparison(TI); 673 assert(ThisVal && "This isn't a value comparison!!"); 674 if (ThisVal != PredVal) return false; // Different predicates. 675 676 // TODO: Preserve branch weight metadata, similarly to how 677 // FoldValueComparisonIntoPredecessors preserves it. 678 679 // Find out information about when control will move from Pred to TI's block. 680 std::vector<ValueEqualityComparisonCase> PredCases; 681 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 682 PredCases); 683 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 684 685 // Find information about how control leaves this block. 686 std::vector<ValueEqualityComparisonCase> ThisCases; 687 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 688 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 689 690 // If TI's block is the default block from Pred's comparison, potentially 691 // simplify TI based on this knowledge. 692 if (PredDef == TI->getParent()) { 693 // If we are here, we know that the value is none of those cases listed in 694 // PredCases. If there are any cases in ThisCases that are in PredCases, we 695 // can simplify TI. 696 if (!ValuesOverlap(PredCases, ThisCases)) 697 return false; 698 699 if (isa<BranchInst>(TI)) { 700 // Okay, one of the successors of this condbr is dead. Convert it to a 701 // uncond br. 702 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 703 // Insert the new branch. 704 Instruction *NI = Builder.CreateBr(ThisDef); 705 (void) NI; 706 707 // Remove PHI node entries for the dead edge. 708 ThisCases[0].Dest->removePredecessor(TI->getParent()); 709 710 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 711 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 712 713 EraseTerminatorInstAndDCECond(TI); 714 return true; 715 } 716 717 SwitchInst *SI = cast<SwitchInst>(TI); 718 // Okay, TI has cases that are statically dead, prune them away. 719 SmallPtrSet<Constant*, 16> DeadCases; 720 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 721 DeadCases.insert(PredCases[i].Value); 722 723 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 724 << "Through successor TI: " << *TI); 725 726 // Collect branch weights into a vector. 727 SmallVector<uint32_t, 8> Weights; 728 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 729 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 730 if (HasWeight) 731 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 732 ++MD_i) { 733 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 734 Weights.push_back(CI->getValue().getZExtValue()); 735 } 736 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 737 --i; 738 if (DeadCases.count(i.getCaseValue())) { 739 if (HasWeight) { 740 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 741 Weights.pop_back(); 742 } 743 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 744 SI->removeCase(i); 745 } 746 } 747 if (HasWeight && Weights.size() >= 2) 748 SI->setMetadata(LLVMContext::MD_prof, 749 MDBuilder(SI->getParent()->getContext()). 750 createBranchWeights(Weights)); 751 752 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 753 return true; 754 } 755 756 // Otherwise, TI's block must correspond to some matched value. Find out 757 // which value (or set of values) this is. 758 ConstantInt *TIV = nullptr; 759 BasicBlock *TIBB = TI->getParent(); 760 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 761 if (PredCases[i].Dest == TIBB) { 762 if (TIV) 763 return false; // Cannot handle multiple values coming to this block. 764 TIV = PredCases[i].Value; 765 } 766 assert(TIV && "No edge from pred to succ?"); 767 768 // Okay, we found the one constant that our value can be if we get into TI's 769 // BB. Find out which successor will unconditionally be branched to. 770 BasicBlock *TheRealDest = nullptr; 771 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 772 if (ThisCases[i].Value == TIV) { 773 TheRealDest = ThisCases[i].Dest; 774 break; 775 } 776 777 // If not handled by any explicit cases, it is handled by the default case. 778 if (!TheRealDest) TheRealDest = ThisDef; 779 780 // Remove PHI node entries for dead edges. 781 BasicBlock *CheckEdge = TheRealDest; 782 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 783 if (*SI != CheckEdge) 784 (*SI)->removePredecessor(TIBB); 785 else 786 CheckEdge = nullptr; 787 788 // Insert the new branch. 789 Instruction *NI = Builder.CreateBr(TheRealDest); 790 (void) NI; 791 792 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 793 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 794 795 EraseTerminatorInstAndDCECond(TI); 796 return true; 797 } 798 799 namespace { 800 /// This class implements a stable ordering of constant 801 /// integers that does not depend on their address. This is important for 802 /// applications that sort ConstantInt's to ensure uniqueness. 803 struct ConstantIntOrdering { 804 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 805 return LHS->getValue().ult(RHS->getValue()); 806 } 807 }; 808 } 809 810 static int ConstantIntSortPredicate(ConstantInt *const *P1, 811 ConstantInt *const *P2) { 812 const ConstantInt *LHS = *P1; 813 const ConstantInt *RHS = *P2; 814 if (LHS->getValue().ult(RHS->getValue())) 815 return 1; 816 if (LHS->getValue() == RHS->getValue()) 817 return 0; 818 return -1; 819 } 820 821 static inline bool HasBranchWeights(const Instruction* I) { 822 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 823 if (ProfMD && ProfMD->getOperand(0)) 824 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 825 return MDS->getString().equals("branch_weights"); 826 827 return false; 828 } 829 830 /// Get Weights of a given TerminatorInst, the default weight is at the front 831 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 832 /// metadata. 833 static void GetBranchWeights(TerminatorInst *TI, 834 SmallVectorImpl<uint64_t> &Weights) { 835 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 836 assert(MD); 837 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 838 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 839 Weights.push_back(CI->getValue().getZExtValue()); 840 } 841 842 // If TI is a conditional eq, the default case is the false case, 843 // and the corresponding branch-weight data is at index 2. We swap the 844 // default weight to be the first entry. 845 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 846 assert(Weights.size() == 2); 847 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 848 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 849 std::swap(Weights.front(), Weights.back()); 850 } 851 } 852 853 /// Keep halving the weights until all can fit in uint32_t. 854 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 855 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 856 if (Max > UINT_MAX) { 857 unsigned Offset = 32 - countLeadingZeros(Max); 858 for (uint64_t &I : Weights) 859 I >>= Offset; 860 } 861 } 862 863 /// The specified terminator is a value equality comparison instruction 864 /// (either a switch or a branch on "X == c"). 865 /// See if any of the predecessors of the terminator block are value comparisons 866 /// on the same value. If so, and if safe to do so, fold them together. 867 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 868 IRBuilder<> &Builder) { 869 BasicBlock *BB = TI->getParent(); 870 Value *CV = isValueEqualityComparison(TI); // CondVal 871 assert(CV && "Not a comparison?"); 872 bool Changed = false; 873 874 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 875 while (!Preds.empty()) { 876 BasicBlock *Pred = Preds.pop_back_val(); 877 878 // See if the predecessor is a comparison with the same value. 879 TerminatorInst *PTI = Pred->getTerminator(); 880 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 881 882 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 883 // Figure out which 'cases' to copy from SI to PSI. 884 std::vector<ValueEqualityComparisonCase> BBCases; 885 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 886 887 std::vector<ValueEqualityComparisonCase> PredCases; 888 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 889 890 // Based on whether the default edge from PTI goes to BB or not, fill in 891 // PredCases and PredDefault with the new switch cases we would like to 892 // build. 893 SmallVector<BasicBlock*, 8> NewSuccessors; 894 895 // Update the branch weight metadata along the way 896 SmallVector<uint64_t, 8> Weights; 897 bool PredHasWeights = HasBranchWeights(PTI); 898 bool SuccHasWeights = HasBranchWeights(TI); 899 900 if (PredHasWeights) { 901 GetBranchWeights(PTI, Weights); 902 // branch-weight metadata is inconsistent here. 903 if (Weights.size() != 1 + PredCases.size()) 904 PredHasWeights = SuccHasWeights = false; 905 } else if (SuccHasWeights) 906 // If there are no predecessor weights but there are successor weights, 907 // populate Weights with 1, which will later be scaled to the sum of 908 // successor's weights 909 Weights.assign(1 + PredCases.size(), 1); 910 911 SmallVector<uint64_t, 8> SuccWeights; 912 if (SuccHasWeights) { 913 GetBranchWeights(TI, SuccWeights); 914 // branch-weight metadata is inconsistent here. 915 if (SuccWeights.size() != 1 + BBCases.size()) 916 PredHasWeights = SuccHasWeights = false; 917 } else if (PredHasWeights) 918 SuccWeights.assign(1 + BBCases.size(), 1); 919 920 if (PredDefault == BB) { 921 // If this is the default destination from PTI, only the edges in TI 922 // that don't occur in PTI, or that branch to BB will be activated. 923 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 924 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 925 if (PredCases[i].Dest != BB) 926 PTIHandled.insert(PredCases[i].Value); 927 else { 928 // The default destination is BB, we don't need explicit targets. 929 std::swap(PredCases[i], PredCases.back()); 930 931 if (PredHasWeights || SuccHasWeights) { 932 // Increase weight for the default case. 933 Weights[0] += Weights[i+1]; 934 std::swap(Weights[i+1], Weights.back()); 935 Weights.pop_back(); 936 } 937 938 PredCases.pop_back(); 939 --i; --e; 940 } 941 942 // Reconstruct the new switch statement we will be building. 943 if (PredDefault != BBDefault) { 944 PredDefault->removePredecessor(Pred); 945 PredDefault = BBDefault; 946 NewSuccessors.push_back(BBDefault); 947 } 948 949 unsigned CasesFromPred = Weights.size(); 950 uint64_t ValidTotalSuccWeight = 0; 951 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 952 if (!PTIHandled.count(BBCases[i].Value) && 953 BBCases[i].Dest != BBDefault) { 954 PredCases.push_back(BBCases[i]); 955 NewSuccessors.push_back(BBCases[i].Dest); 956 if (SuccHasWeights || PredHasWeights) { 957 // The default weight is at index 0, so weight for the ith case 958 // should be at index i+1. Scale the cases from successor by 959 // PredDefaultWeight (Weights[0]). 960 Weights.push_back(Weights[0] * SuccWeights[i+1]); 961 ValidTotalSuccWeight += SuccWeights[i+1]; 962 } 963 } 964 965 if (SuccHasWeights || PredHasWeights) { 966 ValidTotalSuccWeight += SuccWeights[0]; 967 // Scale the cases from predecessor by ValidTotalSuccWeight. 968 for (unsigned i = 1; i < CasesFromPred; ++i) 969 Weights[i] *= ValidTotalSuccWeight; 970 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 971 Weights[0] *= SuccWeights[0]; 972 } 973 } else { 974 // If this is not the default destination from PSI, only the edges 975 // in SI that occur in PSI with a destination of BB will be 976 // activated. 977 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 978 std::map<ConstantInt*, uint64_t> WeightsForHandled; 979 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 980 if (PredCases[i].Dest == BB) { 981 PTIHandled.insert(PredCases[i].Value); 982 983 if (PredHasWeights || SuccHasWeights) { 984 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 985 std::swap(Weights[i+1], Weights.back()); 986 Weights.pop_back(); 987 } 988 989 std::swap(PredCases[i], PredCases.back()); 990 PredCases.pop_back(); 991 --i; --e; 992 } 993 994 // Okay, now we know which constants were sent to BB from the 995 // predecessor. Figure out where they will all go now. 996 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 997 if (PTIHandled.count(BBCases[i].Value)) { 998 // If this is one we are capable of getting... 999 if (PredHasWeights || SuccHasWeights) 1000 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1001 PredCases.push_back(BBCases[i]); 1002 NewSuccessors.push_back(BBCases[i].Dest); 1003 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 1004 } 1005 1006 // If there are any constants vectored to BB that TI doesn't handle, 1007 // they must go to the default destination of TI. 1008 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 1009 PTIHandled.begin(), 1010 E = PTIHandled.end(); I != E; ++I) { 1011 if (PredHasWeights || SuccHasWeights) 1012 Weights.push_back(WeightsForHandled[*I]); 1013 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 1014 NewSuccessors.push_back(BBDefault); 1015 } 1016 } 1017 1018 // Okay, at this point, we know which new successor Pred will get. Make 1019 // sure we update the number of entries in the PHI nodes for these 1020 // successors. 1021 for (BasicBlock *NewSuccessor : NewSuccessors) 1022 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1023 1024 Builder.SetInsertPoint(PTI); 1025 // Convert pointer to int before we switch. 1026 if (CV->getType()->isPointerTy()) { 1027 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1028 "magicptr"); 1029 } 1030 1031 // Now that the successors are updated, create the new Switch instruction. 1032 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 1033 PredCases.size()); 1034 NewSI->setDebugLoc(PTI->getDebugLoc()); 1035 for (ValueEqualityComparisonCase &V : PredCases) 1036 NewSI->addCase(V.Value, V.Dest); 1037 1038 if (PredHasWeights || SuccHasWeights) { 1039 // Halve the weights if any of them cannot fit in an uint32_t 1040 FitWeights(Weights); 1041 1042 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1043 1044 NewSI->setMetadata(LLVMContext::MD_prof, 1045 MDBuilder(BB->getContext()). 1046 createBranchWeights(MDWeights)); 1047 } 1048 1049 EraseTerminatorInstAndDCECond(PTI); 1050 1051 // Okay, last check. If BB is still a successor of PSI, then we must 1052 // have an infinite loop case. If so, add an infinitely looping block 1053 // to handle the case to preserve the behavior of the code. 1054 BasicBlock *InfLoopBlock = nullptr; 1055 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1056 if (NewSI->getSuccessor(i) == BB) { 1057 if (!InfLoopBlock) { 1058 // Insert it at the end of the function, because it's either code, 1059 // or it won't matter if it's hot. :) 1060 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1061 "infloop", BB->getParent()); 1062 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1063 } 1064 NewSI->setSuccessor(i, InfLoopBlock); 1065 } 1066 1067 Changed = true; 1068 } 1069 } 1070 return Changed; 1071 } 1072 1073 // If we would need to insert a select that uses the value of this invoke 1074 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1075 // can't hoist the invoke, as there is nowhere to put the select in this case. 1076 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1077 Instruction *I1, Instruction *I2) { 1078 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1079 PHINode *PN; 1080 for (BasicBlock::iterator BBI = SI->begin(); 1081 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1082 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1083 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1084 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1085 return false; 1086 } 1087 } 1088 } 1089 return true; 1090 } 1091 1092 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1093 1094 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1095 /// in the two blocks up into the branch block. The caller of this function 1096 /// guarantees that BI's block dominates BB1 and BB2. 1097 static bool HoistThenElseCodeToIf(BranchInst *BI, 1098 const TargetTransformInfo &TTI) { 1099 // This does very trivial matching, with limited scanning, to find identical 1100 // instructions in the two blocks. In particular, we don't want to get into 1101 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1102 // such, we currently just scan for obviously identical instructions in an 1103 // identical order. 1104 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1105 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1106 1107 BasicBlock::iterator BB1_Itr = BB1->begin(); 1108 BasicBlock::iterator BB2_Itr = BB2->begin(); 1109 1110 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1111 // Skip debug info if it is not identical. 1112 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1113 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1114 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1115 while (isa<DbgInfoIntrinsic>(I1)) 1116 I1 = &*BB1_Itr++; 1117 while (isa<DbgInfoIntrinsic>(I2)) 1118 I2 = &*BB2_Itr++; 1119 } 1120 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1121 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1122 return false; 1123 1124 BasicBlock *BIParent = BI->getParent(); 1125 1126 bool Changed = false; 1127 do { 1128 // If we are hoisting the terminator instruction, don't move one (making a 1129 // broken BB), instead clone it, and remove BI. 1130 if (isa<TerminatorInst>(I1)) 1131 goto HoistTerminator; 1132 1133 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1134 return Changed; 1135 1136 // For a normal instruction, we just move one to right before the branch, 1137 // then replace all uses of the other with the first. Finally, we remove 1138 // the now redundant second instruction. 1139 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1140 if (!I2->use_empty()) 1141 I2->replaceAllUsesWith(I1); 1142 I1->intersectOptionalDataWith(I2); 1143 unsigned KnownIDs[] = { 1144 LLVMContext::MD_tbaa, LLVMContext::MD_range, 1145 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 1146 LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group, 1147 LLVMContext::MD_align, LLVMContext::MD_dereferenceable, 1148 LLVMContext::MD_dereferenceable_or_null}; 1149 combineMetadata(I1, I2, KnownIDs); 1150 I2->eraseFromParent(); 1151 Changed = true; 1152 1153 I1 = &*BB1_Itr++; 1154 I2 = &*BB2_Itr++; 1155 // Skip debug info if it is not identical. 1156 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1157 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1158 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1159 while (isa<DbgInfoIntrinsic>(I1)) 1160 I1 = &*BB1_Itr++; 1161 while (isa<DbgInfoIntrinsic>(I2)) 1162 I2 = &*BB2_Itr++; 1163 } 1164 } while (I1->isIdenticalToWhenDefined(I2)); 1165 1166 return true; 1167 1168 HoistTerminator: 1169 // It may not be possible to hoist an invoke. 1170 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1171 return Changed; 1172 1173 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1174 PHINode *PN; 1175 for (BasicBlock::iterator BBI = SI->begin(); 1176 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1177 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1178 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1179 if (BB1V == BB2V) 1180 continue; 1181 1182 // Check for passingValueIsAlwaysUndefined here because we would rather 1183 // eliminate undefined control flow then converting it to a select. 1184 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1185 passingValueIsAlwaysUndefined(BB2V, PN)) 1186 return Changed; 1187 1188 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1189 return Changed; 1190 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1191 return Changed; 1192 } 1193 } 1194 1195 // Okay, it is safe to hoist the terminator. 1196 Instruction *NT = I1->clone(); 1197 BIParent->getInstList().insert(BI->getIterator(), NT); 1198 if (!NT->getType()->isVoidTy()) { 1199 I1->replaceAllUsesWith(NT); 1200 I2->replaceAllUsesWith(NT); 1201 NT->takeName(I1); 1202 } 1203 1204 IRBuilder<true, NoFolder> Builder(NT); 1205 // Hoisting one of the terminators from our successor is a great thing. 1206 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1207 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1208 // nodes, so we insert select instruction to compute the final result. 1209 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1210 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1211 PHINode *PN; 1212 for (BasicBlock::iterator BBI = SI->begin(); 1213 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1214 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1215 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1216 if (BB1V == BB2V) continue; 1217 1218 // These values do not agree. Insert a select instruction before NT 1219 // that determines the right value. 1220 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1221 if (!SI) 1222 SI = cast<SelectInst> 1223 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1224 BB1V->getName()+"."+BB2V->getName())); 1225 1226 // Make the PHI node use the select for all incoming values for BB1/BB2 1227 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1228 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1229 PN->setIncomingValue(i, SI); 1230 } 1231 } 1232 1233 // Update any PHI nodes in our new successors. 1234 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1235 AddPredecessorToBlock(*SI, BIParent, BB1); 1236 1237 EraseTerminatorInstAndDCECond(BI); 1238 return true; 1239 } 1240 1241 /// Given an unconditional branch that goes to BBEnd, 1242 /// check whether BBEnd has only two predecessors and the other predecessor 1243 /// ends with an unconditional branch. If it is true, sink any common code 1244 /// in the two predecessors to BBEnd. 1245 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1246 assert(BI1->isUnconditional()); 1247 BasicBlock *BB1 = BI1->getParent(); 1248 BasicBlock *BBEnd = BI1->getSuccessor(0); 1249 1250 // Check that BBEnd has two predecessors and the other predecessor ends with 1251 // an unconditional branch. 1252 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1253 BasicBlock *Pred0 = *PI++; 1254 if (PI == PE) // Only one predecessor. 1255 return false; 1256 BasicBlock *Pred1 = *PI++; 1257 if (PI != PE) // More than two predecessors. 1258 return false; 1259 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1260 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1261 if (!BI2 || !BI2->isUnconditional()) 1262 return false; 1263 1264 // Gather the PHI nodes in BBEnd. 1265 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap; 1266 Instruction *FirstNonPhiInBBEnd = nullptr; 1267 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) { 1268 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1269 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1270 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1271 JointValueMap[std::make_pair(BB1V, BB2V)] = PN; 1272 } else { 1273 FirstNonPhiInBBEnd = &*I; 1274 break; 1275 } 1276 } 1277 if (!FirstNonPhiInBBEnd) 1278 return false; 1279 1280 // This does very trivial matching, with limited scanning, to find identical 1281 // instructions in the two blocks. We scan backward for obviously identical 1282 // instructions in an identical order. 1283 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1284 RE1 = BB1->getInstList().rend(), 1285 RI2 = BB2->getInstList().rbegin(), 1286 RE2 = BB2->getInstList().rend(); 1287 // Skip debug info. 1288 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1289 if (RI1 == RE1) 1290 return false; 1291 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1292 if (RI2 == RE2) 1293 return false; 1294 // Skip the unconditional branches. 1295 ++RI1; 1296 ++RI2; 1297 1298 bool Changed = false; 1299 while (RI1 != RE1 && RI2 != RE2) { 1300 // Skip debug info. 1301 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1302 if (RI1 == RE1) 1303 return Changed; 1304 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1305 if (RI2 == RE2) 1306 return Changed; 1307 1308 Instruction *I1 = &*RI1, *I2 = &*RI2; 1309 auto InstPair = std::make_pair(I1, I2); 1310 // I1 and I2 should have a single use in the same PHI node, and they 1311 // perform the same operation. 1312 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1313 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1314 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1315 I1->isEHPad() || I2->isEHPad() || 1316 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1317 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1318 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1319 !I1->hasOneUse() || !I2->hasOneUse() || 1320 !JointValueMap.count(InstPair)) 1321 return Changed; 1322 1323 // Check whether we should swap the operands of ICmpInst. 1324 // TODO: Add support of communativity. 1325 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1326 bool SwapOpnds = false; 1327 if (ICmp1 && ICmp2 && 1328 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1329 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1330 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1331 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1332 ICmp2->swapOperands(); 1333 SwapOpnds = true; 1334 } 1335 if (!I1->isSameOperationAs(I2)) { 1336 if (SwapOpnds) 1337 ICmp2->swapOperands(); 1338 return Changed; 1339 } 1340 1341 // The operands should be either the same or they need to be generated 1342 // with a PHI node after sinking. We only handle the case where there is 1343 // a single pair of different operands. 1344 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1345 unsigned Op1Idx = ~0U; 1346 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1347 if (I1->getOperand(I) == I2->getOperand(I)) 1348 continue; 1349 // Early exit if we have more-than one pair of different operands or if 1350 // we need a PHI node to replace a constant. 1351 if (Op1Idx != ~0U || 1352 isa<Constant>(I1->getOperand(I)) || 1353 isa<Constant>(I2->getOperand(I))) { 1354 // If we can't sink the instructions, undo the swapping. 1355 if (SwapOpnds) 1356 ICmp2->swapOperands(); 1357 return Changed; 1358 } 1359 DifferentOp1 = I1->getOperand(I); 1360 Op1Idx = I; 1361 DifferentOp2 = I2->getOperand(I); 1362 } 1363 1364 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n"); 1365 DEBUG(dbgs() << " " << *I2 << "\n"); 1366 1367 // We insert the pair of different operands to JointValueMap and 1368 // remove (I1, I2) from JointValueMap. 1369 if (Op1Idx != ~0U) { 1370 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)]; 1371 if (!NewPN) { 1372 NewPN = 1373 PHINode::Create(DifferentOp1->getType(), 2, 1374 DifferentOp1->getName() + ".sink", &BBEnd->front()); 1375 NewPN->addIncoming(DifferentOp1, BB1); 1376 NewPN->addIncoming(DifferentOp2, BB2); 1377 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1378 } 1379 // I1 should use NewPN instead of DifferentOp1. 1380 I1->setOperand(Op1Idx, NewPN); 1381 } 1382 PHINode *OldPN = JointValueMap[InstPair]; 1383 JointValueMap.erase(InstPair); 1384 1385 // We need to update RE1 and RE2 if we are going to sink the first 1386 // instruction in the basic block down. 1387 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1388 // Sink the instruction. 1389 BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(), 1390 BB1->getInstList(), I1); 1391 if (!OldPN->use_empty()) 1392 OldPN->replaceAllUsesWith(I1); 1393 OldPN->eraseFromParent(); 1394 1395 if (!I2->use_empty()) 1396 I2->replaceAllUsesWith(I1); 1397 I1->intersectOptionalDataWith(I2); 1398 // TODO: Use combineMetadata here to preserve what metadata we can 1399 // (analogous to the hoisting case above). 1400 I2->eraseFromParent(); 1401 1402 if (UpdateRE1) 1403 RE1 = BB1->getInstList().rend(); 1404 if (UpdateRE2) 1405 RE2 = BB2->getInstList().rend(); 1406 FirstNonPhiInBBEnd = &*I1; 1407 NumSinkCommons++; 1408 Changed = true; 1409 } 1410 return Changed; 1411 } 1412 1413 /// \brief Determine if we can hoist sink a sole store instruction out of a 1414 /// conditional block. 1415 /// 1416 /// We are looking for code like the following: 1417 /// BrBB: 1418 /// store i32 %add, i32* %arrayidx2 1419 /// ... // No other stores or function calls (we could be calling a memory 1420 /// ... // function). 1421 /// %cmp = icmp ult %x, %y 1422 /// br i1 %cmp, label %EndBB, label %ThenBB 1423 /// ThenBB: 1424 /// store i32 %add5, i32* %arrayidx2 1425 /// br label EndBB 1426 /// EndBB: 1427 /// ... 1428 /// We are going to transform this into: 1429 /// BrBB: 1430 /// store i32 %add, i32* %arrayidx2 1431 /// ... // 1432 /// %cmp = icmp ult %x, %y 1433 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1434 /// store i32 %add.add5, i32* %arrayidx2 1435 /// ... 1436 /// 1437 /// \return The pointer to the value of the previous store if the store can be 1438 /// hoisted into the predecessor block. 0 otherwise. 1439 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1440 BasicBlock *StoreBB, BasicBlock *EndBB) { 1441 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1442 if (!StoreToHoist) 1443 return nullptr; 1444 1445 // Volatile or atomic. 1446 if (!StoreToHoist->isSimple()) 1447 return nullptr; 1448 1449 Value *StorePtr = StoreToHoist->getPointerOperand(); 1450 1451 // Look for a store to the same pointer in BrBB. 1452 unsigned MaxNumInstToLookAt = 10; 1453 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1454 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1455 Instruction *CurI = &*RI; 1456 1457 // Could be calling an instruction that effects memory like free(). 1458 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1459 return nullptr; 1460 1461 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1462 // Found the previous store make sure it stores to the same location. 1463 if (SI && SI->getPointerOperand() == StorePtr) 1464 // Found the previous store, return its value operand. 1465 return SI->getValueOperand(); 1466 else if (SI) 1467 return nullptr; // Unknown store. 1468 } 1469 1470 return nullptr; 1471 } 1472 1473 /// \brief Speculate a conditional basic block flattening the CFG. 1474 /// 1475 /// Note that this is a very risky transform currently. Speculating 1476 /// instructions like this is most often not desirable. Instead, there is an MI 1477 /// pass which can do it with full awareness of the resource constraints. 1478 /// However, some cases are "obvious" and we should do directly. An example of 1479 /// this is speculating a single, reasonably cheap instruction. 1480 /// 1481 /// There is only one distinct advantage to flattening the CFG at the IR level: 1482 /// it makes very common but simplistic optimizations such as are common in 1483 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1484 /// modeling their effects with easier to reason about SSA value graphs. 1485 /// 1486 /// 1487 /// An illustration of this transform is turning this IR: 1488 /// \code 1489 /// BB: 1490 /// %cmp = icmp ult %x, %y 1491 /// br i1 %cmp, label %EndBB, label %ThenBB 1492 /// ThenBB: 1493 /// %sub = sub %x, %y 1494 /// br label BB2 1495 /// EndBB: 1496 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1497 /// ... 1498 /// \endcode 1499 /// 1500 /// Into this IR: 1501 /// \code 1502 /// BB: 1503 /// %cmp = icmp ult %x, %y 1504 /// %sub = sub %x, %y 1505 /// %cond = select i1 %cmp, 0, %sub 1506 /// ... 1507 /// \endcode 1508 /// 1509 /// \returns true if the conditional block is removed. 1510 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1511 const TargetTransformInfo &TTI) { 1512 // Be conservative for now. FP select instruction can often be expensive. 1513 Value *BrCond = BI->getCondition(); 1514 if (isa<FCmpInst>(BrCond)) 1515 return false; 1516 1517 BasicBlock *BB = BI->getParent(); 1518 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1519 1520 // If ThenBB is actually on the false edge of the conditional branch, remember 1521 // to swap the select operands later. 1522 bool Invert = false; 1523 if (ThenBB != BI->getSuccessor(0)) { 1524 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1525 Invert = true; 1526 } 1527 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1528 1529 // Keep a count of how many times instructions are used within CondBB when 1530 // they are candidates for sinking into CondBB. Specifically: 1531 // - They are defined in BB, and 1532 // - They have no side effects, and 1533 // - All of their uses are in CondBB. 1534 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1535 1536 unsigned SpeculationCost = 0; 1537 Value *SpeculatedStoreValue = nullptr; 1538 StoreInst *SpeculatedStore = nullptr; 1539 for (BasicBlock::iterator BBI = ThenBB->begin(), 1540 BBE = std::prev(ThenBB->end()); 1541 BBI != BBE; ++BBI) { 1542 Instruction *I = &*BBI; 1543 // Skip debug info. 1544 if (isa<DbgInfoIntrinsic>(I)) 1545 continue; 1546 1547 // Only speculatively execute a single instruction (not counting the 1548 // terminator) for now. 1549 ++SpeculationCost; 1550 if (SpeculationCost > 1) 1551 return false; 1552 1553 // Don't hoist the instruction if it's unsafe or expensive. 1554 if (!isSafeToSpeculativelyExecute(I) && 1555 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1556 I, BB, ThenBB, EndBB)))) 1557 return false; 1558 if (!SpeculatedStoreValue && 1559 ComputeSpeculationCost(I, TTI) > 1560 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1561 return false; 1562 1563 // Store the store speculation candidate. 1564 if (SpeculatedStoreValue) 1565 SpeculatedStore = cast<StoreInst>(I); 1566 1567 // Do not hoist the instruction if any of its operands are defined but not 1568 // used in BB. The transformation will prevent the operand from 1569 // being sunk into the use block. 1570 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1571 i != e; ++i) { 1572 Instruction *OpI = dyn_cast<Instruction>(*i); 1573 if (!OpI || OpI->getParent() != BB || 1574 OpI->mayHaveSideEffects()) 1575 continue; // Not a candidate for sinking. 1576 1577 ++SinkCandidateUseCounts[OpI]; 1578 } 1579 } 1580 1581 // Consider any sink candidates which are only used in CondBB as costs for 1582 // speculation. Note, while we iterate over a DenseMap here, we are summing 1583 // and so iteration order isn't significant. 1584 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1585 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1586 I != E; ++I) 1587 if (I->first->getNumUses() == I->second) { 1588 ++SpeculationCost; 1589 if (SpeculationCost > 1) 1590 return false; 1591 } 1592 1593 // Check that the PHI nodes can be converted to selects. 1594 bool HaveRewritablePHIs = false; 1595 for (BasicBlock::iterator I = EndBB->begin(); 1596 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1597 Value *OrigV = PN->getIncomingValueForBlock(BB); 1598 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1599 1600 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1601 // Skip PHIs which are trivial. 1602 if (ThenV == OrigV) 1603 continue; 1604 1605 // Don't convert to selects if we could remove undefined behavior instead. 1606 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1607 passingValueIsAlwaysUndefined(ThenV, PN)) 1608 return false; 1609 1610 HaveRewritablePHIs = true; 1611 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1612 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1613 if (!OrigCE && !ThenCE) 1614 continue; // Known safe and cheap. 1615 1616 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1617 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1618 return false; 1619 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1620 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1621 unsigned MaxCost = 2 * PHINodeFoldingThreshold * 1622 TargetTransformInfo::TCC_Basic; 1623 if (OrigCost + ThenCost > MaxCost) 1624 return false; 1625 1626 // Account for the cost of an unfolded ConstantExpr which could end up 1627 // getting expanded into Instructions. 1628 // FIXME: This doesn't account for how many operations are combined in the 1629 // constant expression. 1630 ++SpeculationCost; 1631 if (SpeculationCost > 1) 1632 return false; 1633 } 1634 1635 // If there are no PHIs to process, bail early. This helps ensure idempotence 1636 // as well. 1637 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1638 return false; 1639 1640 // If we get here, we can hoist the instruction and if-convert. 1641 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1642 1643 // Insert a select of the value of the speculated store. 1644 if (SpeculatedStoreValue) { 1645 IRBuilder<true, NoFolder> Builder(BI); 1646 Value *TrueV = SpeculatedStore->getValueOperand(); 1647 Value *FalseV = SpeculatedStoreValue; 1648 if (Invert) 1649 std::swap(TrueV, FalseV); 1650 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1651 "." + FalseV->getName()); 1652 SpeculatedStore->setOperand(0, S); 1653 } 1654 1655 // Metadata can be dependent on the condition we are hoisting above. 1656 // Conservatively strip all metadata on the instruction. 1657 for (auto &I: *ThenBB) 1658 I.dropUnknownNonDebugMetadata(); 1659 1660 // Hoist the instructions. 1661 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 1662 ThenBB->begin(), std::prev(ThenBB->end())); 1663 1664 // Insert selects and rewrite the PHI operands. 1665 IRBuilder<true, NoFolder> Builder(BI); 1666 for (BasicBlock::iterator I = EndBB->begin(); 1667 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1668 unsigned OrigI = PN->getBasicBlockIndex(BB); 1669 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1670 Value *OrigV = PN->getIncomingValue(OrigI); 1671 Value *ThenV = PN->getIncomingValue(ThenI); 1672 1673 // Skip PHIs which are trivial. 1674 if (OrigV == ThenV) 1675 continue; 1676 1677 // Create a select whose true value is the speculatively executed value and 1678 // false value is the preexisting value. Swap them if the branch 1679 // destinations were inverted. 1680 Value *TrueV = ThenV, *FalseV = OrigV; 1681 if (Invert) 1682 std::swap(TrueV, FalseV); 1683 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1684 TrueV->getName() + "." + FalseV->getName()); 1685 PN->setIncomingValue(OrigI, V); 1686 PN->setIncomingValue(ThenI, V); 1687 } 1688 1689 ++NumSpeculations; 1690 return true; 1691 } 1692 1693 /// Return true if we can thread a branch across this block. 1694 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1695 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1696 unsigned Size = 0; 1697 1698 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1699 if (isa<DbgInfoIntrinsic>(BBI)) 1700 continue; 1701 if (Size > 10) return false; // Don't clone large BB's. 1702 ++Size; 1703 1704 // We can only support instructions that do not define values that are 1705 // live outside of the current basic block. 1706 for (User *U : BBI->users()) { 1707 Instruction *UI = cast<Instruction>(U); 1708 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1709 } 1710 1711 // Looks ok, continue checking. 1712 } 1713 1714 return true; 1715 } 1716 1717 /// If we have a conditional branch on a PHI node value that is defined in the 1718 /// same block as the branch and if any PHI entries are constants, thread edges 1719 /// corresponding to that entry to be branches to their ultimate destination. 1720 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 1721 BasicBlock *BB = BI->getParent(); 1722 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1723 // NOTE: we currently cannot transform this case if the PHI node is used 1724 // outside of the block. 1725 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1726 return false; 1727 1728 // Degenerate case of a single entry PHI. 1729 if (PN->getNumIncomingValues() == 1) { 1730 FoldSingleEntryPHINodes(PN->getParent()); 1731 return true; 1732 } 1733 1734 // Now we know that this block has multiple preds and two succs. 1735 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1736 1737 // Can't fold blocks that contain noduplicate or convergent calls. 1738 if (llvm::any_of(*BB, [](const Instruction &I) { 1739 const CallInst *CI = dyn_cast<CallInst>(&I); 1740 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 1741 })) 1742 return false; 1743 1744 // Okay, this is a simple enough basic block. See if any phi values are 1745 // constants. 1746 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1747 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1748 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1749 1750 // Okay, we now know that all edges from PredBB should be revectored to 1751 // branch to RealDest. 1752 BasicBlock *PredBB = PN->getIncomingBlock(i); 1753 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1754 1755 if (RealDest == BB) continue; // Skip self loops. 1756 // Skip if the predecessor's terminator is an indirect branch. 1757 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1758 1759 // The dest block might have PHI nodes, other predecessors and other 1760 // difficult cases. Instead of being smart about this, just insert a new 1761 // block that jumps to the destination block, effectively splitting 1762 // the edge we are about to create. 1763 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1764 RealDest->getName()+".critedge", 1765 RealDest->getParent(), RealDest); 1766 BranchInst::Create(RealDest, EdgeBB); 1767 1768 // Update PHI nodes. 1769 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1770 1771 // BB may have instructions that are being threaded over. Clone these 1772 // instructions into EdgeBB. We know that there will be no uses of the 1773 // cloned instructions outside of EdgeBB. 1774 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1775 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1776 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1777 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1778 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1779 continue; 1780 } 1781 // Clone the instruction. 1782 Instruction *N = BBI->clone(); 1783 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1784 1785 // Update operands due to translation. 1786 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1787 i != e; ++i) { 1788 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1789 if (PI != TranslateMap.end()) 1790 *i = PI->second; 1791 } 1792 1793 // Check for trivial simplification. 1794 if (Value *V = SimplifyInstruction(N, DL)) { 1795 TranslateMap[&*BBI] = V; 1796 delete N; // Instruction folded away, don't need actual inst 1797 } else { 1798 // Insert the new instruction into its new home. 1799 EdgeBB->getInstList().insert(InsertPt, N); 1800 if (!BBI->use_empty()) 1801 TranslateMap[&*BBI] = N; 1802 } 1803 } 1804 1805 // Loop over all of the edges from PredBB to BB, changing them to branch 1806 // to EdgeBB instead. 1807 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1808 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1809 if (PredBBTI->getSuccessor(i) == BB) { 1810 BB->removePredecessor(PredBB); 1811 PredBBTI->setSuccessor(i, EdgeBB); 1812 } 1813 1814 // Recurse, simplifying any other constants. 1815 return FoldCondBranchOnPHI(BI, DL) | true; 1816 } 1817 1818 return false; 1819 } 1820 1821 /// Given a BB that starts with the specified two-entry PHI node, 1822 /// see if we can eliminate it. 1823 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 1824 const DataLayout &DL) { 1825 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1826 // statement", which has a very simple dominance structure. Basically, we 1827 // are trying to find the condition that is being branched on, which 1828 // subsequently causes this merge to happen. We really want control 1829 // dependence information for this check, but simplifycfg can't keep it up 1830 // to date, and this catches most of the cases we care about anyway. 1831 BasicBlock *BB = PN->getParent(); 1832 BasicBlock *IfTrue, *IfFalse; 1833 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1834 if (!IfCond || 1835 // Don't bother if the branch will be constant folded trivially. 1836 isa<ConstantInt>(IfCond)) 1837 return false; 1838 1839 // Okay, we found that we can merge this two-entry phi node into a select. 1840 // Doing so would require us to fold *all* two entry phi nodes in this block. 1841 // At some point this becomes non-profitable (particularly if the target 1842 // doesn't support cmov's). Only do this transformation if there are two or 1843 // fewer PHI nodes in this block. 1844 unsigned NumPhis = 0; 1845 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1846 if (NumPhis > 2) 1847 return false; 1848 1849 // Loop over the PHI's seeing if we can promote them all to select 1850 // instructions. While we are at it, keep track of the instructions 1851 // that need to be moved to the dominating block. 1852 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1853 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1854 MaxCostVal1 = PHINodeFoldingThreshold; 1855 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 1856 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 1857 1858 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1859 PHINode *PN = cast<PHINode>(II++); 1860 if (Value *V = SimplifyInstruction(PN, DL)) { 1861 PN->replaceAllUsesWith(V); 1862 PN->eraseFromParent(); 1863 continue; 1864 } 1865 1866 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1867 MaxCostVal0, TTI) || 1868 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1869 MaxCostVal1, TTI)) 1870 return false; 1871 } 1872 1873 // If we folded the first phi, PN dangles at this point. Refresh it. If 1874 // we ran out of PHIs then we simplified them all. 1875 PN = dyn_cast<PHINode>(BB->begin()); 1876 if (!PN) return true; 1877 1878 // Don't fold i1 branches on PHIs which contain binary operators. These can 1879 // often be turned into switches and other things. 1880 if (PN->getType()->isIntegerTy(1) && 1881 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1882 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1883 isa<BinaryOperator>(IfCond))) 1884 return false; 1885 1886 // If we all PHI nodes are promotable, check to make sure that all 1887 // instructions in the predecessor blocks can be promoted as well. If 1888 // not, we won't be able to get rid of the control flow, so it's not 1889 // worth promoting to select instructions. 1890 BasicBlock *DomBlock = nullptr; 1891 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1892 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1893 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1894 IfBlock1 = nullptr; 1895 } else { 1896 DomBlock = *pred_begin(IfBlock1); 1897 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1898 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1899 // This is not an aggressive instruction that we can promote. 1900 // Because of this, we won't be able to get rid of the control 1901 // flow, so the xform is not worth it. 1902 return false; 1903 } 1904 } 1905 1906 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1907 IfBlock2 = nullptr; 1908 } else { 1909 DomBlock = *pred_begin(IfBlock2); 1910 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1911 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1912 // This is not an aggressive instruction that we can promote. 1913 // Because of this, we won't be able to get rid of the control 1914 // flow, so the xform is not worth it. 1915 return false; 1916 } 1917 } 1918 1919 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1920 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1921 1922 // If we can still promote the PHI nodes after this gauntlet of tests, 1923 // do all of the PHI's now. 1924 Instruction *InsertPt = DomBlock->getTerminator(); 1925 IRBuilder<true, NoFolder> Builder(InsertPt); 1926 1927 // Move all 'aggressive' instructions, which are defined in the 1928 // conditional parts of the if's up to the dominating block. 1929 if (IfBlock1) 1930 DomBlock->getInstList().splice(InsertPt->getIterator(), 1931 IfBlock1->getInstList(), IfBlock1->begin(), 1932 IfBlock1->getTerminator()->getIterator()); 1933 if (IfBlock2) 1934 DomBlock->getInstList().splice(InsertPt->getIterator(), 1935 IfBlock2->getInstList(), IfBlock2->begin(), 1936 IfBlock2->getTerminator()->getIterator()); 1937 1938 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1939 // Change the PHI node into a select instruction. 1940 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1941 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1942 1943 SelectInst *NV = 1944 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1945 PN->replaceAllUsesWith(NV); 1946 NV->takeName(PN); 1947 PN->eraseFromParent(); 1948 } 1949 1950 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1951 // has been flattened. Change DomBlock to jump directly to our new block to 1952 // avoid other simplifycfg's kicking in on the diamond. 1953 TerminatorInst *OldTI = DomBlock->getTerminator(); 1954 Builder.SetInsertPoint(OldTI); 1955 Builder.CreateBr(BB); 1956 OldTI->eraseFromParent(); 1957 return true; 1958 } 1959 1960 /// If we found a conditional branch that goes to two returning blocks, 1961 /// try to merge them together into one return, 1962 /// introducing a select if the return values disagree. 1963 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1964 IRBuilder<> &Builder) { 1965 assert(BI->isConditional() && "Must be a conditional branch"); 1966 BasicBlock *TrueSucc = BI->getSuccessor(0); 1967 BasicBlock *FalseSucc = BI->getSuccessor(1); 1968 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1969 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1970 1971 // Check to ensure both blocks are empty (just a return) or optionally empty 1972 // with PHI nodes. If there are other instructions, merging would cause extra 1973 // computation on one path or the other. 1974 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1975 return false; 1976 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1977 return false; 1978 1979 Builder.SetInsertPoint(BI); 1980 // Okay, we found a branch that is going to two return nodes. If 1981 // there is no return value for this function, just change the 1982 // branch into a return. 1983 if (FalseRet->getNumOperands() == 0) { 1984 TrueSucc->removePredecessor(BI->getParent()); 1985 FalseSucc->removePredecessor(BI->getParent()); 1986 Builder.CreateRetVoid(); 1987 EraseTerminatorInstAndDCECond(BI); 1988 return true; 1989 } 1990 1991 // Otherwise, figure out what the true and false return values are 1992 // so we can insert a new select instruction. 1993 Value *TrueValue = TrueRet->getReturnValue(); 1994 Value *FalseValue = FalseRet->getReturnValue(); 1995 1996 // Unwrap any PHI nodes in the return blocks. 1997 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1998 if (TVPN->getParent() == TrueSucc) 1999 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2000 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2001 if (FVPN->getParent() == FalseSucc) 2002 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2003 2004 // In order for this transformation to be safe, we must be able to 2005 // unconditionally execute both operands to the return. This is 2006 // normally the case, but we could have a potentially-trapping 2007 // constant expression that prevents this transformation from being 2008 // safe. 2009 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2010 if (TCV->canTrap()) 2011 return false; 2012 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2013 if (FCV->canTrap()) 2014 return false; 2015 2016 // Okay, we collected all the mapped values and checked them for sanity, and 2017 // defined to really do this transformation. First, update the CFG. 2018 TrueSucc->removePredecessor(BI->getParent()); 2019 FalseSucc->removePredecessor(BI->getParent()); 2020 2021 // Insert select instructions where needed. 2022 Value *BrCond = BI->getCondition(); 2023 if (TrueValue) { 2024 // Insert a select if the results differ. 2025 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2026 } else if (isa<UndefValue>(TrueValue)) { 2027 TrueValue = FalseValue; 2028 } else { 2029 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 2030 FalseValue, "retval"); 2031 } 2032 } 2033 2034 Value *RI = !TrueValue ? 2035 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2036 2037 (void) RI; 2038 2039 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2040 << "\n " << *BI << "NewRet = " << *RI 2041 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 2042 2043 EraseTerminatorInstAndDCECond(BI); 2044 2045 return true; 2046 } 2047 2048 /// Given a conditional BranchInstruction, retrieve the probabilities of the 2049 /// branch taking each edge. Fills in the two APInt parameters and returns true, 2050 /// or returns false if no or invalid metadata was found. 2051 static bool ExtractBranchMetadata(BranchInst *BI, 2052 uint64_t &ProbTrue, uint64_t &ProbFalse) { 2053 assert(BI->isConditional() && 2054 "Looking for probabilities on unconditional branch?"); 2055 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 2056 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 2057 ConstantInt *CITrue = 2058 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 2059 ConstantInt *CIFalse = 2060 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 2061 if (!CITrue || !CIFalse) return false; 2062 ProbTrue = CITrue->getValue().getZExtValue(); 2063 ProbFalse = CIFalse->getValue().getZExtValue(); 2064 return true; 2065 } 2066 2067 /// Return true if the given instruction is available 2068 /// in its predecessor block. If yes, the instruction will be removed. 2069 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2070 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2071 return false; 2072 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 2073 Instruction *PBI = &*I; 2074 // Check whether Inst and PBI generate the same value. 2075 if (Inst->isIdenticalTo(PBI)) { 2076 Inst->replaceAllUsesWith(PBI); 2077 Inst->eraseFromParent(); 2078 return true; 2079 } 2080 } 2081 return false; 2082 } 2083 2084 /// If this basic block is simple enough, and if a predecessor branches to us 2085 /// and one of our successors, fold the block into the predecessor and use 2086 /// logical operations to pick the right destination. 2087 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2088 BasicBlock *BB = BI->getParent(); 2089 2090 Instruction *Cond = nullptr; 2091 if (BI->isConditional()) 2092 Cond = dyn_cast<Instruction>(BI->getCondition()); 2093 else { 2094 // For unconditional branch, check for a simple CFG pattern, where 2095 // BB has a single predecessor and BB's successor is also its predecessor's 2096 // successor. If such pattern exisits, check for CSE between BB and its 2097 // predecessor. 2098 if (BasicBlock *PB = BB->getSinglePredecessor()) 2099 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2100 if (PBI->isConditional() && 2101 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2102 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2103 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 2104 I != E; ) { 2105 Instruction *Curr = &*I++; 2106 if (isa<CmpInst>(Curr)) { 2107 Cond = Curr; 2108 break; 2109 } 2110 // Quit if we can't remove this instruction. 2111 if (!checkCSEInPredecessor(Curr, PB)) 2112 return false; 2113 } 2114 } 2115 2116 if (!Cond) 2117 return false; 2118 } 2119 2120 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2121 Cond->getParent() != BB || !Cond->hasOneUse()) 2122 return false; 2123 2124 // Make sure the instruction after the condition is the cond branch. 2125 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2126 2127 // Ignore dbg intrinsics. 2128 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2129 2130 if (&*CondIt != BI) 2131 return false; 2132 2133 // Only allow this transformation if computing the condition doesn't involve 2134 // too many instructions and these involved instructions can be executed 2135 // unconditionally. We denote all involved instructions except the condition 2136 // as "bonus instructions", and only allow this transformation when the 2137 // number of the bonus instructions does not exceed a certain threshold. 2138 unsigned NumBonusInsts = 0; 2139 for (auto I = BB->begin(); Cond != I; ++I) { 2140 // Ignore dbg intrinsics. 2141 if (isa<DbgInfoIntrinsic>(I)) 2142 continue; 2143 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2144 return false; 2145 // I has only one use and can be executed unconditionally. 2146 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2147 if (User == nullptr || User->getParent() != BB) 2148 return false; 2149 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2150 // to use any other instruction, User must be an instruction between next(I) 2151 // and Cond. 2152 ++NumBonusInsts; 2153 // Early exits once we reach the limit. 2154 if (NumBonusInsts > BonusInstThreshold) 2155 return false; 2156 } 2157 2158 // Cond is known to be a compare or binary operator. Check to make sure that 2159 // neither operand is a potentially-trapping constant expression. 2160 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2161 if (CE->canTrap()) 2162 return false; 2163 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2164 if (CE->canTrap()) 2165 return false; 2166 2167 // Finally, don't infinitely unroll conditional loops. 2168 BasicBlock *TrueDest = BI->getSuccessor(0); 2169 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2170 if (TrueDest == BB || FalseDest == BB) 2171 return false; 2172 2173 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2174 BasicBlock *PredBlock = *PI; 2175 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2176 2177 // Check that we have two conditional branches. If there is a PHI node in 2178 // the common successor, verify that the same value flows in from both 2179 // blocks. 2180 SmallVector<PHINode*, 4> PHIs; 2181 if (!PBI || PBI->isUnconditional() || 2182 (BI->isConditional() && 2183 !SafeToMergeTerminators(BI, PBI)) || 2184 (!BI->isConditional() && 2185 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2186 continue; 2187 2188 // Determine if the two branches share a common destination. 2189 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2190 bool InvertPredCond = false; 2191 2192 if (BI->isConditional()) { 2193 if (PBI->getSuccessor(0) == TrueDest) 2194 Opc = Instruction::Or; 2195 else if (PBI->getSuccessor(1) == FalseDest) 2196 Opc = Instruction::And; 2197 else if (PBI->getSuccessor(0) == FalseDest) 2198 Opc = Instruction::And, InvertPredCond = true; 2199 else if (PBI->getSuccessor(1) == TrueDest) 2200 Opc = Instruction::Or, InvertPredCond = true; 2201 else 2202 continue; 2203 } else { 2204 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2205 continue; 2206 } 2207 2208 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2209 IRBuilder<> Builder(PBI); 2210 2211 // If we need to invert the condition in the pred block to match, do so now. 2212 if (InvertPredCond) { 2213 Value *NewCond = PBI->getCondition(); 2214 2215 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2216 CmpInst *CI = cast<CmpInst>(NewCond); 2217 CI->setPredicate(CI->getInversePredicate()); 2218 } else { 2219 NewCond = Builder.CreateNot(NewCond, 2220 PBI->getCondition()->getName()+".not"); 2221 } 2222 2223 PBI->setCondition(NewCond); 2224 PBI->swapSuccessors(); 2225 } 2226 2227 // If we have bonus instructions, clone them into the predecessor block. 2228 // Note that there may be multiple predecessor blocks, so we cannot move 2229 // bonus instructions to a predecessor block. 2230 ValueToValueMapTy VMap; // maps original values to cloned values 2231 // We already make sure Cond is the last instruction before BI. Therefore, 2232 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2233 // instructions. 2234 for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) { 2235 if (isa<DbgInfoIntrinsic>(BonusInst)) 2236 continue; 2237 Instruction *NewBonusInst = BonusInst->clone(); 2238 RemapInstruction(NewBonusInst, VMap, 2239 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2240 VMap[&*BonusInst] = NewBonusInst; 2241 2242 // If we moved a load, we cannot any longer claim any knowledge about 2243 // its potential value. The previous information might have been valid 2244 // only given the branch precondition. 2245 // For an analogous reason, we must also drop all the metadata whose 2246 // semantics we don't understand. 2247 NewBonusInst->dropUnknownNonDebugMetadata(); 2248 2249 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2250 NewBonusInst->takeName(&*BonusInst); 2251 BonusInst->setName(BonusInst->getName() + ".old"); 2252 } 2253 2254 // Clone Cond into the predecessor basic block, and or/and the 2255 // two conditions together. 2256 Instruction *New = Cond->clone(); 2257 RemapInstruction(New, VMap, 2258 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2259 PredBlock->getInstList().insert(PBI->getIterator(), New); 2260 New->takeName(Cond); 2261 Cond->setName(New->getName() + ".old"); 2262 2263 if (BI->isConditional()) { 2264 Instruction *NewCond = 2265 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2266 New, "or.cond")); 2267 PBI->setCondition(NewCond); 2268 2269 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2270 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2271 PredFalseWeight); 2272 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2273 SuccFalseWeight); 2274 SmallVector<uint64_t, 8> NewWeights; 2275 2276 if (PBI->getSuccessor(0) == BB) { 2277 if (PredHasWeights && SuccHasWeights) { 2278 // PBI: br i1 %x, BB, FalseDest 2279 // BI: br i1 %y, TrueDest, FalseDest 2280 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2281 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2282 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2283 // TrueWeight for PBI * FalseWeight for BI. 2284 // We assume that total weights of a BranchInst can fit into 32 bits. 2285 // Therefore, we will not have overflow using 64-bit arithmetic. 2286 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2287 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2288 } 2289 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2290 PBI->setSuccessor(0, TrueDest); 2291 } 2292 if (PBI->getSuccessor(1) == BB) { 2293 if (PredHasWeights && SuccHasWeights) { 2294 // PBI: br i1 %x, TrueDest, BB 2295 // BI: br i1 %y, TrueDest, FalseDest 2296 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2297 // FalseWeight for PBI * TrueWeight for BI. 2298 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2299 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2300 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2301 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2302 } 2303 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2304 PBI->setSuccessor(1, FalseDest); 2305 } 2306 if (NewWeights.size() == 2) { 2307 // Halve the weights if any of them cannot fit in an uint32_t 2308 FitWeights(NewWeights); 2309 2310 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2311 PBI->setMetadata(LLVMContext::MD_prof, 2312 MDBuilder(BI->getContext()). 2313 createBranchWeights(MDWeights)); 2314 } else 2315 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2316 } else { 2317 // Update PHI nodes in the common successors. 2318 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2319 ConstantInt *PBI_C = cast<ConstantInt>( 2320 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2321 assert(PBI_C->getType()->isIntegerTy(1)); 2322 Instruction *MergedCond = nullptr; 2323 if (PBI->getSuccessor(0) == TrueDest) { 2324 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2325 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2326 // is false: !PBI_Cond and BI_Value 2327 Instruction *NotCond = 2328 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2329 "not.cond")); 2330 MergedCond = 2331 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2332 NotCond, New, 2333 "and.cond")); 2334 if (PBI_C->isOne()) 2335 MergedCond = 2336 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2337 PBI->getCondition(), MergedCond, 2338 "or.cond")); 2339 } else { 2340 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2341 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2342 // is false: PBI_Cond and BI_Value 2343 MergedCond = 2344 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2345 PBI->getCondition(), New, 2346 "and.cond")); 2347 if (PBI_C->isOne()) { 2348 Instruction *NotCond = 2349 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2350 "not.cond")); 2351 MergedCond = 2352 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2353 NotCond, MergedCond, 2354 "or.cond")); 2355 } 2356 } 2357 // Update PHI Node. 2358 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2359 MergedCond); 2360 } 2361 // Change PBI from Conditional to Unconditional. 2362 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2363 EraseTerminatorInstAndDCECond(PBI); 2364 PBI = New_PBI; 2365 } 2366 2367 // TODO: If BB is reachable from all paths through PredBlock, then we 2368 // could replace PBI's branch probabilities with BI's. 2369 2370 // Copy any debug value intrinsics into the end of PredBlock. 2371 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2372 if (isa<DbgInfoIntrinsic>(*I)) 2373 I->clone()->insertBefore(PBI); 2374 2375 return true; 2376 } 2377 return false; 2378 } 2379 2380 // If there is only one store in BB1 and BB2, return it, otherwise return 2381 // nullptr. 2382 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2383 StoreInst *S = nullptr; 2384 for (auto *BB : {BB1, BB2}) { 2385 if (!BB) 2386 continue; 2387 for (auto &I : *BB) 2388 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2389 if (S) 2390 // Multiple stores seen. 2391 return nullptr; 2392 else 2393 S = SI; 2394 } 2395 } 2396 return S; 2397 } 2398 2399 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2400 Value *AlternativeV = nullptr) { 2401 // PHI is going to be a PHI node that allows the value V that is defined in 2402 // BB to be referenced in BB's only successor. 2403 // 2404 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2405 // doesn't matter to us what the other operand is (it'll never get used). We 2406 // could just create a new PHI with an undef incoming value, but that could 2407 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2408 // other PHI. So here we directly look for some PHI in BB's successor with V 2409 // as an incoming operand. If we find one, we use it, else we create a new 2410 // one. 2411 // 2412 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2413 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2414 // where OtherBB is the single other predecessor of BB's only successor. 2415 PHINode *PHI = nullptr; 2416 BasicBlock *Succ = BB->getSingleSuccessor(); 2417 2418 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2419 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2420 PHI = cast<PHINode>(I); 2421 if (!AlternativeV) 2422 break; 2423 2424 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2425 auto PredI = pred_begin(Succ); 2426 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2427 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2428 break; 2429 PHI = nullptr; 2430 } 2431 if (PHI) 2432 return PHI; 2433 2434 // If V is not an instruction defined in BB, just return it. 2435 if (!AlternativeV && 2436 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2437 return V; 2438 2439 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2440 PHI->addIncoming(V, BB); 2441 for (BasicBlock *PredBB : predecessors(Succ)) 2442 if (PredBB != BB) 2443 PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()), 2444 PredBB); 2445 return PHI; 2446 } 2447 2448 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2449 BasicBlock *QTB, BasicBlock *QFB, 2450 BasicBlock *PostBB, Value *Address, 2451 bool InvertPCond, bool InvertQCond) { 2452 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2453 return Operator::getOpcode(&I) == Instruction::BitCast && 2454 I.getType()->isPointerTy(); 2455 }; 2456 2457 // If we're not in aggressive mode, we only optimize if we have some 2458 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2459 auto IsWorthwhile = [&](BasicBlock *BB) { 2460 if (!BB) 2461 return true; 2462 // Heuristic: if the block can be if-converted/phi-folded and the 2463 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2464 // thread this store. 2465 unsigned N = 0; 2466 for (auto &I : *BB) { 2467 // Cheap instructions viable for folding. 2468 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2469 isa<StoreInst>(I)) 2470 ++N; 2471 // Free instructions. 2472 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2473 IsaBitcastOfPointerType(I)) 2474 continue; 2475 else 2476 return false; 2477 } 2478 return N <= PHINodeFoldingThreshold; 2479 }; 2480 2481 if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) || 2482 !IsWorthwhile(PFB) || 2483 !IsWorthwhile(QTB) || 2484 !IsWorthwhile(QFB))) 2485 return false; 2486 2487 // For every pointer, there must be exactly two stores, one coming from 2488 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2489 // store (to any address) in PTB,PFB or QTB,QFB. 2490 // FIXME: We could relax this restriction with a bit more work and performance 2491 // testing. 2492 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2493 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2494 if (!PStore || !QStore) 2495 return false; 2496 2497 // Now check the stores are compatible. 2498 if (!QStore->isUnordered() || !PStore->isUnordered()) 2499 return false; 2500 2501 // Check that sinking the store won't cause program behavior changes. Sinking 2502 // the store out of the Q blocks won't change any behavior as we're sinking 2503 // from a block to its unconditional successor. But we're moving a store from 2504 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2505 // So we need to check that there are no aliasing loads or stores in 2506 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2507 // operations between PStore and the end of its parent block. 2508 // 2509 // The ideal way to do this is to query AliasAnalysis, but we don't 2510 // preserve AA currently so that is dangerous. Be super safe and just 2511 // check there are no other memory operations at all. 2512 for (auto &I : *QFB->getSinglePredecessor()) 2513 if (I.mayReadOrWriteMemory()) 2514 return false; 2515 for (auto &I : *QFB) 2516 if (&I != QStore && I.mayReadOrWriteMemory()) 2517 return false; 2518 if (QTB) 2519 for (auto &I : *QTB) 2520 if (&I != QStore && I.mayReadOrWriteMemory()) 2521 return false; 2522 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2523 I != E; ++I) 2524 if (&*I != PStore && I->mayReadOrWriteMemory()) 2525 return false; 2526 2527 // OK, we're going to sink the stores to PostBB. The store has to be 2528 // conditional though, so first create the predicate. 2529 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2530 ->getCondition(); 2531 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2532 ->getCondition(); 2533 2534 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2535 PStore->getParent()); 2536 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2537 QStore->getParent(), PPHI); 2538 2539 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2540 2541 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2542 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2543 2544 if (InvertPCond) 2545 PPred = QB.CreateNot(PPred); 2546 if (InvertQCond) 2547 QPred = QB.CreateNot(QPred); 2548 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2549 2550 auto *T = 2551 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2552 QB.SetInsertPoint(T); 2553 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2554 AAMDNodes AAMD; 2555 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2556 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2557 SI->setAAMetadata(AAMD); 2558 2559 QStore->eraseFromParent(); 2560 PStore->eraseFromParent(); 2561 2562 return true; 2563 } 2564 2565 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2566 // The intention here is to find diamonds or triangles (see below) where each 2567 // conditional block contains a store to the same address. Both of these 2568 // stores are conditional, so they can't be unconditionally sunk. But it may 2569 // be profitable to speculatively sink the stores into one merged store at the 2570 // end, and predicate the merged store on the union of the two conditions of 2571 // PBI and QBI. 2572 // 2573 // This can reduce the number of stores executed if both of the conditions are 2574 // true, and can allow the blocks to become small enough to be if-converted. 2575 // This optimization will also chain, so that ladders of test-and-set 2576 // sequences can be if-converted away. 2577 // 2578 // We only deal with simple diamonds or triangles: 2579 // 2580 // PBI or PBI or a combination of the two 2581 // / \ | \ 2582 // PTB PFB | PFB 2583 // \ / | / 2584 // QBI QBI 2585 // / \ | \ 2586 // QTB QFB | QFB 2587 // \ / | / 2588 // PostBB PostBB 2589 // 2590 // We model triangles as a type of diamond with a nullptr "true" block. 2591 // Triangles are canonicalized so that the fallthrough edge is represented by 2592 // a true condition, as in the diagram above. 2593 // 2594 BasicBlock *PTB = PBI->getSuccessor(0); 2595 BasicBlock *PFB = PBI->getSuccessor(1); 2596 BasicBlock *QTB = QBI->getSuccessor(0); 2597 BasicBlock *QFB = QBI->getSuccessor(1); 2598 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2599 2600 bool InvertPCond = false, InvertQCond = false; 2601 // Canonicalize fallthroughs to the true branches. 2602 if (PFB == QBI->getParent()) { 2603 std::swap(PFB, PTB); 2604 InvertPCond = true; 2605 } 2606 if (QFB == PostBB) { 2607 std::swap(QFB, QTB); 2608 InvertQCond = true; 2609 } 2610 2611 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2612 // and QFB may not. Model fallthroughs as a nullptr block. 2613 if (PTB == QBI->getParent()) 2614 PTB = nullptr; 2615 if (QTB == PostBB) 2616 QTB = nullptr; 2617 2618 // Legality bailouts. We must have at least the non-fallthrough blocks and 2619 // the post-dominating block, and the non-fallthroughs must only have one 2620 // predecessor. 2621 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 2622 return BB->getSinglePredecessor() == P && 2623 BB->getSingleSuccessor() == S; 2624 }; 2625 if (!PostBB || 2626 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 2627 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 2628 return false; 2629 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 2630 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 2631 return false; 2632 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 2633 return false; 2634 2635 // OK, this is a sequence of two diamonds or triangles. 2636 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 2637 SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses; 2638 for (auto *BB : {PTB, PFB}) { 2639 if (!BB) 2640 continue; 2641 for (auto &I : *BB) 2642 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2643 PStoreAddresses.insert(SI->getPointerOperand()); 2644 } 2645 for (auto *BB : {QTB, QFB}) { 2646 if (!BB) 2647 continue; 2648 for (auto &I : *BB) 2649 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2650 QStoreAddresses.insert(SI->getPointerOperand()); 2651 } 2652 2653 set_intersect(PStoreAddresses, QStoreAddresses); 2654 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 2655 // clear what it contains. 2656 auto &CommonAddresses = PStoreAddresses; 2657 2658 bool Changed = false; 2659 for (auto *Address : CommonAddresses) 2660 Changed |= mergeConditionalStoreToAddress( 2661 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 2662 return Changed; 2663 } 2664 2665 /// If we have a conditional branch as a predecessor of another block, 2666 /// this function tries to simplify it. We know 2667 /// that PBI and BI are both conditional branches, and BI is in one of the 2668 /// successor blocks of PBI - PBI branches to BI. 2669 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 2670 const DataLayout &DL) { 2671 assert(PBI->isConditional() && BI->isConditional()); 2672 BasicBlock *BB = BI->getParent(); 2673 2674 // If this block ends with a branch instruction, and if there is a 2675 // predecessor that ends on a branch of the same condition, make 2676 // this conditional branch redundant. 2677 if (PBI->getCondition() == BI->getCondition() && 2678 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2679 // Okay, the outcome of this conditional branch is statically 2680 // knowable. If this block had a single pred, handle specially. 2681 if (BB->getSinglePredecessor()) { 2682 // Turn this into a branch on constant. 2683 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2684 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2685 CondIsTrue)); 2686 return true; // Nuke the branch on constant. 2687 } 2688 2689 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2690 // in the constant and simplify the block result. Subsequent passes of 2691 // simplifycfg will thread the block. 2692 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2693 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2694 PHINode *NewPN = PHINode::Create( 2695 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 2696 BI->getCondition()->getName() + ".pr", &BB->front()); 2697 // Okay, we're going to insert the PHI node. Since PBI is not the only 2698 // predecessor, compute the PHI'd conditional value for all of the preds. 2699 // Any predecessor where the condition is not computable we keep symbolic. 2700 for (pred_iterator PI = PB; PI != PE; ++PI) { 2701 BasicBlock *P = *PI; 2702 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2703 PBI != BI && PBI->isConditional() && 2704 PBI->getCondition() == BI->getCondition() && 2705 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2706 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2707 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2708 CondIsTrue), P); 2709 } else { 2710 NewPN->addIncoming(BI->getCondition(), P); 2711 } 2712 } 2713 2714 BI->setCondition(NewPN); 2715 return true; 2716 } 2717 } 2718 2719 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2720 if (CE->canTrap()) 2721 return false; 2722 2723 // If BI is reached from the true path of PBI and PBI's condition implies 2724 // BI's condition, we know the direction of the BI branch. 2725 if (PBI->getSuccessor(0) == BI->getParent() && 2726 isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL) && 2727 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 2728 BB->getSinglePredecessor()) { 2729 // Turn this into a branch on constant. 2730 auto *OldCond = BI->getCondition(); 2731 BI->setCondition(ConstantInt::getTrue(BB->getContext())); 2732 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 2733 return true; // Nuke the branch on constant. 2734 } 2735 2736 // If both branches are conditional and both contain stores to the same 2737 // address, remove the stores from the conditionals and create a conditional 2738 // merged store at the end. 2739 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 2740 return true; 2741 2742 // If this is a conditional branch in an empty block, and if any 2743 // predecessors are a conditional branch to one of our destinations, 2744 // fold the conditions into logical ops and one cond br. 2745 BasicBlock::iterator BBI = BB->begin(); 2746 // Ignore dbg intrinsics. 2747 while (isa<DbgInfoIntrinsic>(BBI)) 2748 ++BBI; 2749 if (&*BBI != BI) 2750 return false; 2751 2752 int PBIOp, BIOp; 2753 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2754 PBIOp = BIOp = 0; 2755 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2756 PBIOp = 0, BIOp = 1; 2757 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2758 PBIOp = 1, BIOp = 0; 2759 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2760 PBIOp = BIOp = 1; 2761 else 2762 return false; 2763 2764 // Check to make sure that the other destination of this branch 2765 // isn't BB itself. If so, this is an infinite loop that will 2766 // keep getting unwound. 2767 if (PBI->getSuccessor(PBIOp) == BB) 2768 return false; 2769 2770 // Do not perform this transformation if it would require 2771 // insertion of a large number of select instructions. For targets 2772 // without predication/cmovs, this is a big pessimization. 2773 2774 // Also do not perform this transformation if any phi node in the common 2775 // destination block can trap when reached by BB or PBB (PR17073). In that 2776 // case, it would be unsafe to hoist the operation into a select instruction. 2777 2778 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2779 unsigned NumPhis = 0; 2780 for (BasicBlock::iterator II = CommonDest->begin(); 2781 isa<PHINode>(II); ++II, ++NumPhis) { 2782 if (NumPhis > 2) // Disable this xform. 2783 return false; 2784 2785 PHINode *PN = cast<PHINode>(II); 2786 Value *BIV = PN->getIncomingValueForBlock(BB); 2787 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2788 if (CE->canTrap()) 2789 return false; 2790 2791 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2792 Value *PBIV = PN->getIncomingValue(PBBIdx); 2793 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2794 if (CE->canTrap()) 2795 return false; 2796 } 2797 2798 // Finally, if everything is ok, fold the branches to logical ops. 2799 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2800 2801 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2802 << "AND: " << *BI->getParent()); 2803 2804 2805 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2806 // branch in it, where one edge (OtherDest) goes back to itself but the other 2807 // exits. We don't *know* that the program avoids the infinite loop 2808 // (even though that seems likely). If we do this xform naively, we'll end up 2809 // recursively unpeeling the loop. Since we know that (after the xform is 2810 // done) that the block *is* infinite if reached, we just make it an obviously 2811 // infinite loop with no cond branch. 2812 if (OtherDest == BB) { 2813 // Insert it at the end of the function, because it's either code, 2814 // or it won't matter if it's hot. :) 2815 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2816 "infloop", BB->getParent()); 2817 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2818 OtherDest = InfLoopBlock; 2819 } 2820 2821 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2822 2823 // BI may have other predecessors. Because of this, we leave 2824 // it alone, but modify PBI. 2825 2826 // Make sure we get to CommonDest on True&True directions. 2827 Value *PBICond = PBI->getCondition(); 2828 IRBuilder<true, NoFolder> Builder(PBI); 2829 if (PBIOp) 2830 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2831 2832 Value *BICond = BI->getCondition(); 2833 if (BIOp) 2834 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2835 2836 // Merge the conditions. 2837 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2838 2839 // Modify PBI to branch on the new condition to the new dests. 2840 PBI->setCondition(Cond); 2841 PBI->setSuccessor(0, CommonDest); 2842 PBI->setSuccessor(1, OtherDest); 2843 2844 // Update branch weight for PBI. 2845 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2846 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2847 PredFalseWeight); 2848 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2849 SuccFalseWeight); 2850 if (PredHasWeights && SuccHasWeights) { 2851 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2852 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2853 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2854 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2855 // The weight to CommonDest should be PredCommon * SuccTotal + 2856 // PredOther * SuccCommon. 2857 // The weight to OtherDest should be PredOther * SuccOther. 2858 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 2859 PredOther * SuccCommon, 2860 PredOther * SuccOther}; 2861 // Halve the weights if any of them cannot fit in an uint32_t 2862 FitWeights(NewWeights); 2863 2864 PBI->setMetadata(LLVMContext::MD_prof, 2865 MDBuilder(BI->getContext()) 2866 .createBranchWeights(NewWeights[0], NewWeights[1])); 2867 } 2868 2869 // OtherDest may have phi nodes. If so, add an entry from PBI's 2870 // block that are identical to the entries for BI's block. 2871 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2872 2873 // We know that the CommonDest already had an edge from PBI to 2874 // it. If it has PHIs though, the PHIs may have different 2875 // entries for BB and PBI's BB. If so, insert a select to make 2876 // them agree. 2877 PHINode *PN; 2878 for (BasicBlock::iterator II = CommonDest->begin(); 2879 (PN = dyn_cast<PHINode>(II)); ++II) { 2880 Value *BIV = PN->getIncomingValueForBlock(BB); 2881 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2882 Value *PBIV = PN->getIncomingValue(PBBIdx); 2883 if (BIV != PBIV) { 2884 // Insert a select in PBI to pick the right value. 2885 Value *NV = cast<SelectInst> 2886 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2887 PN->setIncomingValue(PBBIdx, NV); 2888 } 2889 } 2890 2891 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2892 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2893 2894 // This basic block is probably dead. We know it has at least 2895 // one fewer predecessor. 2896 return true; 2897 } 2898 2899 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 2900 // true or to FalseBB if Cond is false. 2901 // Takes care of updating the successors and removing the old terminator. 2902 // Also makes sure not to introduce new successors by assuming that edges to 2903 // non-successor TrueBBs and FalseBBs aren't reachable. 2904 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2905 BasicBlock *TrueBB, BasicBlock *FalseBB, 2906 uint32_t TrueWeight, 2907 uint32_t FalseWeight){ 2908 // Remove any superfluous successor edges from the CFG. 2909 // First, figure out which successors to preserve. 2910 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2911 // successor. 2912 BasicBlock *KeepEdge1 = TrueBB; 2913 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2914 2915 // Then remove the rest. 2916 for (BasicBlock *Succ : OldTerm->successors()) { 2917 // Make sure only to keep exactly one copy of each edge. 2918 if (Succ == KeepEdge1) 2919 KeepEdge1 = nullptr; 2920 else if (Succ == KeepEdge2) 2921 KeepEdge2 = nullptr; 2922 else 2923 Succ->removePredecessor(OldTerm->getParent(), 2924 /*DontDeleteUselessPHIs=*/true); 2925 } 2926 2927 IRBuilder<> Builder(OldTerm); 2928 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2929 2930 // Insert an appropriate new terminator. 2931 if (!KeepEdge1 && !KeepEdge2) { 2932 if (TrueBB == FalseBB) 2933 // We were only looking for one successor, and it was present. 2934 // Create an unconditional branch to it. 2935 Builder.CreateBr(TrueBB); 2936 else { 2937 // We found both of the successors we were looking for. 2938 // Create a conditional branch sharing the condition of the select. 2939 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2940 if (TrueWeight != FalseWeight) 2941 NewBI->setMetadata(LLVMContext::MD_prof, 2942 MDBuilder(OldTerm->getContext()). 2943 createBranchWeights(TrueWeight, FalseWeight)); 2944 } 2945 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2946 // Neither of the selected blocks were successors, so this 2947 // terminator must be unreachable. 2948 new UnreachableInst(OldTerm->getContext(), OldTerm); 2949 } else { 2950 // One of the selected values was a successor, but the other wasn't. 2951 // Insert an unconditional branch to the one that was found; 2952 // the edge to the one that wasn't must be unreachable. 2953 if (!KeepEdge1) 2954 // Only TrueBB was found. 2955 Builder.CreateBr(TrueBB); 2956 else 2957 // Only FalseBB was found. 2958 Builder.CreateBr(FalseBB); 2959 } 2960 2961 EraseTerminatorInstAndDCECond(OldTerm); 2962 return true; 2963 } 2964 2965 // Replaces 2966 // (switch (select cond, X, Y)) on constant X, Y 2967 // with a branch - conditional if X and Y lead to distinct BBs, 2968 // unconditional otherwise. 2969 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2970 // Check for constant integer values in the select. 2971 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2972 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2973 if (!TrueVal || !FalseVal) 2974 return false; 2975 2976 // Find the relevant condition and destinations. 2977 Value *Condition = Select->getCondition(); 2978 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2979 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2980 2981 // Get weight for TrueBB and FalseBB. 2982 uint32_t TrueWeight = 0, FalseWeight = 0; 2983 SmallVector<uint64_t, 8> Weights; 2984 bool HasWeights = HasBranchWeights(SI); 2985 if (HasWeights) { 2986 GetBranchWeights(SI, Weights); 2987 if (Weights.size() == 1 + SI->getNumCases()) { 2988 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2989 getSuccessorIndex()]; 2990 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2991 getSuccessorIndex()]; 2992 } 2993 } 2994 2995 // Perform the actual simplification. 2996 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2997 TrueWeight, FalseWeight); 2998 } 2999 3000 // Replaces 3001 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3002 // blockaddress(@fn, BlockB))) 3003 // with 3004 // (br cond, BlockA, BlockB). 3005 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3006 // Check that both operands of the select are block addresses. 3007 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3008 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3009 if (!TBA || !FBA) 3010 return false; 3011 3012 // Extract the actual blocks. 3013 BasicBlock *TrueBB = TBA->getBasicBlock(); 3014 BasicBlock *FalseBB = FBA->getBasicBlock(); 3015 3016 // Perform the actual simplification. 3017 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 3018 0, 0); 3019 } 3020 3021 /// This is called when we find an icmp instruction 3022 /// (a seteq/setne with a constant) as the only instruction in a 3023 /// block that ends with an uncond branch. We are looking for a very specific 3024 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3025 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3026 /// default value goes to an uncond block with a seteq in it, we get something 3027 /// like: 3028 /// 3029 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3030 /// DEFAULT: 3031 /// %tmp = icmp eq i8 %A, 92 3032 /// br label %end 3033 /// end: 3034 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3035 /// 3036 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3037 /// the PHI, merging the third icmp into the switch. 3038 static bool TryToSimplifyUncondBranchWithICmpInIt( 3039 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3040 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3041 AssumptionCache *AC) { 3042 BasicBlock *BB = ICI->getParent(); 3043 3044 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3045 // complex. 3046 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 3047 3048 Value *V = ICI->getOperand(0); 3049 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3050 3051 // The pattern we're looking for is where our only predecessor is a switch on 3052 // 'V' and this block is the default case for the switch. In this case we can 3053 // fold the compared value into the switch to simplify things. 3054 BasicBlock *Pred = BB->getSinglePredecessor(); 3055 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 3056 3057 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3058 if (SI->getCondition() != V) 3059 return false; 3060 3061 // If BB is reachable on a non-default case, then we simply know the value of 3062 // V in this block. Substitute it and constant fold the icmp instruction 3063 // away. 3064 if (SI->getDefaultDest() != BB) { 3065 ConstantInt *VVal = SI->findCaseDest(BB); 3066 assert(VVal && "Should have a unique destination value"); 3067 ICI->setOperand(0, VVal); 3068 3069 if (Value *V = SimplifyInstruction(ICI, DL)) { 3070 ICI->replaceAllUsesWith(V); 3071 ICI->eraseFromParent(); 3072 } 3073 // BB is now empty, so it is likely to simplify away. 3074 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3075 } 3076 3077 // Ok, the block is reachable from the default dest. If the constant we're 3078 // comparing exists in one of the other edges, then we can constant fold ICI 3079 // and zap it. 3080 if (SI->findCaseValue(Cst) != SI->case_default()) { 3081 Value *V; 3082 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3083 V = ConstantInt::getFalse(BB->getContext()); 3084 else 3085 V = ConstantInt::getTrue(BB->getContext()); 3086 3087 ICI->replaceAllUsesWith(V); 3088 ICI->eraseFromParent(); 3089 // BB is now empty, so it is likely to simplify away. 3090 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3091 } 3092 3093 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3094 // the block. 3095 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3096 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3097 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3098 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3099 return false; 3100 3101 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3102 // true in the PHI. 3103 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3104 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3105 3106 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3107 std::swap(DefaultCst, NewCst); 3108 3109 // Replace ICI (which is used by the PHI for the default value) with true or 3110 // false depending on if it is EQ or NE. 3111 ICI->replaceAllUsesWith(DefaultCst); 3112 ICI->eraseFromParent(); 3113 3114 // Okay, the switch goes to this block on a default value. Add an edge from 3115 // the switch to the merge point on the compared value. 3116 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 3117 BB->getParent(), BB); 3118 SmallVector<uint64_t, 8> Weights; 3119 bool HasWeights = HasBranchWeights(SI); 3120 if (HasWeights) { 3121 GetBranchWeights(SI, Weights); 3122 if (Weights.size() == 1 + SI->getNumCases()) { 3123 // Split weight for default case to case for "Cst". 3124 Weights[0] = (Weights[0]+1) >> 1; 3125 Weights.push_back(Weights[0]); 3126 3127 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3128 SI->setMetadata(LLVMContext::MD_prof, 3129 MDBuilder(SI->getContext()). 3130 createBranchWeights(MDWeights)); 3131 } 3132 } 3133 SI->addCase(Cst, NewBB); 3134 3135 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3136 Builder.SetInsertPoint(NewBB); 3137 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3138 Builder.CreateBr(SuccBlock); 3139 PHIUse->addIncoming(NewCst, NewBB); 3140 return true; 3141 } 3142 3143 /// The specified branch is a conditional branch. 3144 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3145 /// fold it into a switch instruction if so. 3146 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3147 const DataLayout &DL) { 3148 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3149 if (!Cond) return false; 3150 3151 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3152 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3153 // 'setne's and'ed together, collect them. 3154 3155 // Try to gather values from a chain of and/or to be turned into a switch 3156 ConstantComparesGatherer ConstantCompare(Cond, DL); 3157 // Unpack the result 3158 SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals; 3159 Value *CompVal = ConstantCompare.CompValue; 3160 unsigned UsedICmps = ConstantCompare.UsedICmps; 3161 Value *ExtraCase = ConstantCompare.Extra; 3162 3163 // If we didn't have a multiply compared value, fail. 3164 if (!CompVal) return false; 3165 3166 // Avoid turning single icmps into a switch. 3167 if (UsedICmps <= 1) 3168 return false; 3169 3170 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3171 3172 // There might be duplicate constants in the list, which the switch 3173 // instruction can't handle, remove them now. 3174 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3175 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3176 3177 // If Extra was used, we require at least two switch values to do the 3178 // transformation. A switch with one value is just a conditional branch. 3179 if (ExtraCase && Values.size() < 2) return false; 3180 3181 // TODO: Preserve branch weight metadata, similarly to how 3182 // FoldValueComparisonIntoPredecessors preserves it. 3183 3184 // Figure out which block is which destination. 3185 BasicBlock *DefaultBB = BI->getSuccessor(1); 3186 BasicBlock *EdgeBB = BI->getSuccessor(0); 3187 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 3188 3189 BasicBlock *BB = BI->getParent(); 3190 3191 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3192 << " cases into SWITCH. BB is:\n" << *BB); 3193 3194 // If there are any extra values that couldn't be folded into the switch 3195 // then we evaluate them with an explicit branch first. Split the block 3196 // right before the condbr to handle it. 3197 if (ExtraCase) { 3198 BasicBlock *NewBB = 3199 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3200 // Remove the uncond branch added to the old block. 3201 TerminatorInst *OldTI = BB->getTerminator(); 3202 Builder.SetInsertPoint(OldTI); 3203 3204 if (TrueWhenEqual) 3205 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3206 else 3207 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3208 3209 OldTI->eraseFromParent(); 3210 3211 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3212 // for the edge we just added. 3213 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3214 3215 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3216 << "\nEXTRABB = " << *BB); 3217 BB = NewBB; 3218 } 3219 3220 Builder.SetInsertPoint(BI); 3221 // Convert pointer to int before we switch. 3222 if (CompVal->getType()->isPointerTy()) { 3223 CompVal = Builder.CreatePtrToInt( 3224 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3225 } 3226 3227 // Create the new switch instruction now. 3228 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3229 3230 // Add all of the 'cases' to the switch instruction. 3231 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3232 New->addCase(Values[i], EdgeBB); 3233 3234 // We added edges from PI to the EdgeBB. As such, if there were any 3235 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3236 // the number of edges added. 3237 for (BasicBlock::iterator BBI = EdgeBB->begin(); 3238 isa<PHINode>(BBI); ++BBI) { 3239 PHINode *PN = cast<PHINode>(BBI); 3240 Value *InVal = PN->getIncomingValueForBlock(BB); 3241 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 3242 PN->addIncoming(InVal, BB); 3243 } 3244 3245 // Erase the old branch instruction. 3246 EraseTerminatorInstAndDCECond(BI); 3247 3248 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3249 return true; 3250 } 3251 3252 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3253 if (isa<PHINode>(RI->getValue())) 3254 return SimplifyCommonResume(RI); 3255 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3256 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3257 // The resume must unwind the exception that caused control to branch here. 3258 return SimplifySingleResume(RI); 3259 3260 return false; 3261 } 3262 3263 // Simplify resume that is shared by several landing pads (phi of landing pad). 3264 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3265 BasicBlock *BB = RI->getParent(); 3266 3267 // Check that there are no other instructions except for debug intrinsics 3268 // between the phi of landing pads (RI->getValue()) and resume instruction. 3269 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3270 E = RI->getIterator(); 3271 while (++I != E) 3272 if (!isa<DbgInfoIntrinsic>(I)) 3273 return false; 3274 3275 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3276 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3277 3278 // Check incoming blocks to see if any of them are trivial. 3279 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); 3280 Idx != End; Idx++) { 3281 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3282 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3283 3284 // If the block has other successors, we can not delete it because 3285 // it has other dependents. 3286 if (IncomingBB->getUniqueSuccessor() != BB) 3287 continue; 3288 3289 auto *LandingPad = 3290 dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3291 // Not the landing pad that caused the control to branch here. 3292 if (IncomingValue != LandingPad) 3293 continue; 3294 3295 bool isTrivial = true; 3296 3297 I = IncomingBB->getFirstNonPHI()->getIterator(); 3298 E = IncomingBB->getTerminator()->getIterator(); 3299 while (++I != E) 3300 if (!isa<DbgInfoIntrinsic>(I)) { 3301 isTrivial = false; 3302 break; 3303 } 3304 3305 if (isTrivial) 3306 TrivialUnwindBlocks.insert(IncomingBB); 3307 } 3308 3309 // If no trivial unwind blocks, don't do any simplifications. 3310 if (TrivialUnwindBlocks.empty()) return false; 3311 3312 // Turn all invokes that unwind here into calls. 3313 for (auto *TrivialBB : TrivialUnwindBlocks) { 3314 // Blocks that will be simplified should be removed from the phi node. 3315 // Note there could be multiple edges to the resume block, and we need 3316 // to remove them all. 3317 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3318 BB->removePredecessor(TrivialBB, true); 3319 3320 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3321 PI != PE;) { 3322 BasicBlock *Pred = *PI++; 3323 removeUnwindEdge(Pred); 3324 } 3325 3326 // In each SimplifyCFG run, only the current processed block can be erased. 3327 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3328 // of erasing TrivialBB, we only remove the branch to the common resume 3329 // block so that we can later erase the resume block since it has no 3330 // predecessors. 3331 TrivialBB->getTerminator()->eraseFromParent(); 3332 new UnreachableInst(RI->getContext(), TrivialBB); 3333 } 3334 3335 // Delete the resume block if all its predecessors have been removed. 3336 if (pred_empty(BB)) 3337 BB->eraseFromParent(); 3338 3339 return !TrivialUnwindBlocks.empty(); 3340 } 3341 3342 // Simplify resume that is only used by a single (non-phi) landing pad. 3343 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3344 BasicBlock *BB = RI->getParent(); 3345 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3346 assert (RI->getValue() == LPInst && 3347 "Resume must unwind the exception that caused control to here"); 3348 3349 // Check that there are no other instructions except for debug intrinsics. 3350 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3351 while (++I != E) 3352 if (!isa<DbgInfoIntrinsic>(I)) 3353 return false; 3354 3355 // Turn all invokes that unwind here into calls and delete the basic block. 3356 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3357 BasicBlock *Pred = *PI++; 3358 removeUnwindEdge(Pred); 3359 } 3360 3361 // The landingpad is now unreachable. Zap it. 3362 BB->eraseFromParent(); 3363 return true; 3364 } 3365 3366 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3367 // If this is a trivial cleanup pad that executes no instructions, it can be 3368 // eliminated. If the cleanup pad continues to the caller, any predecessor 3369 // that is an EH pad will be updated to continue to the caller and any 3370 // predecessor that terminates with an invoke instruction will have its invoke 3371 // instruction converted to a call instruction. If the cleanup pad being 3372 // simplified does not continue to the caller, each predecessor will be 3373 // updated to continue to the unwind destination of the cleanup pad being 3374 // simplified. 3375 BasicBlock *BB = RI->getParent(); 3376 CleanupPadInst *CPInst = RI->getCleanupPad(); 3377 if (CPInst->getParent() != BB) 3378 // This isn't an empty cleanup. 3379 return false; 3380 3381 // Check that there are no other instructions except for debug intrinsics. 3382 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3383 while (++I != E) 3384 if (!isa<DbgInfoIntrinsic>(I)) 3385 return false; 3386 3387 // If the cleanup return we are simplifying unwinds to the caller, this will 3388 // set UnwindDest to nullptr. 3389 BasicBlock *UnwindDest = RI->getUnwindDest(); 3390 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3391 3392 // We're about to remove BB from the control flow. Before we do, sink any 3393 // PHINodes into the unwind destination. Doing this before changing the 3394 // control flow avoids some potentially slow checks, since we can currently 3395 // be certain that UnwindDest and BB have no common predecessors (since they 3396 // are both EH pads). 3397 if (UnwindDest) { 3398 // First, go through the PHI nodes in UnwindDest and update any nodes that 3399 // reference the block we are removing 3400 for (BasicBlock::iterator I = UnwindDest->begin(), 3401 IE = DestEHPad->getIterator(); 3402 I != IE; ++I) { 3403 PHINode *DestPN = cast<PHINode>(I); 3404 3405 int Idx = DestPN->getBasicBlockIndex(BB); 3406 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3407 assert(Idx != -1); 3408 // This PHI node has an incoming value that corresponds to a control 3409 // path through the cleanup pad we are removing. If the incoming 3410 // value is in the cleanup pad, it must be a PHINode (because we 3411 // verified above that the block is otherwise empty). Otherwise, the 3412 // value is either a constant or a value that dominates the cleanup 3413 // pad being removed. 3414 // 3415 // Because BB and UnwindDest are both EH pads, all of their 3416 // predecessors must unwind to these blocks, and since no instruction 3417 // can have multiple unwind destinations, there will be no overlap in 3418 // incoming blocks between SrcPN and DestPN. 3419 Value *SrcVal = DestPN->getIncomingValue(Idx); 3420 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3421 3422 // Remove the entry for the block we are deleting. 3423 DestPN->removeIncomingValue(Idx, false); 3424 3425 if (SrcPN && SrcPN->getParent() == BB) { 3426 // If the incoming value was a PHI node in the cleanup pad we are 3427 // removing, we need to merge that PHI node's incoming values into 3428 // DestPN. 3429 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3430 SrcIdx != SrcE; ++SrcIdx) { 3431 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3432 SrcPN->getIncomingBlock(SrcIdx)); 3433 } 3434 } else { 3435 // Otherwise, the incoming value came from above BB and 3436 // so we can just reuse it. We must associate all of BB's 3437 // predecessors with this value. 3438 for (auto *pred : predecessors(BB)) { 3439 DestPN->addIncoming(SrcVal, pred); 3440 } 3441 } 3442 } 3443 3444 // Sink any remaining PHI nodes directly into UnwindDest. 3445 Instruction *InsertPt = DestEHPad; 3446 for (BasicBlock::iterator I = BB->begin(), 3447 IE = BB->getFirstNonPHI()->getIterator(); 3448 I != IE;) { 3449 // The iterator must be incremented here because the instructions are 3450 // being moved to another block. 3451 PHINode *PN = cast<PHINode>(I++); 3452 if (PN->use_empty()) 3453 // If the PHI node has no uses, just leave it. It will be erased 3454 // when we erase BB below. 3455 continue; 3456 3457 // Otherwise, sink this PHI node into UnwindDest. 3458 // Any predecessors to UnwindDest which are not already represented 3459 // must be back edges which inherit the value from the path through 3460 // BB. In this case, the PHI value must reference itself. 3461 for (auto *pred : predecessors(UnwindDest)) 3462 if (pred != BB) 3463 PN->addIncoming(PN, pred); 3464 PN->moveBefore(InsertPt); 3465 } 3466 } 3467 3468 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3469 // The iterator must be updated here because we are removing this pred. 3470 BasicBlock *PredBB = *PI++; 3471 if (UnwindDest == nullptr) { 3472 removeUnwindEdge(PredBB); 3473 } else { 3474 TerminatorInst *TI = PredBB->getTerminator(); 3475 TI->replaceUsesOfWith(BB, UnwindDest); 3476 } 3477 } 3478 3479 // The cleanup pad is now unreachable. Zap it. 3480 BB->eraseFromParent(); 3481 return true; 3482 } 3483 3484 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3485 BasicBlock *BB = RI->getParent(); 3486 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 3487 3488 // Find predecessors that end with branches. 3489 SmallVector<BasicBlock*, 8> UncondBranchPreds; 3490 SmallVector<BranchInst*, 8> CondBranchPreds; 3491 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3492 BasicBlock *P = *PI; 3493 TerminatorInst *PTI = P->getTerminator(); 3494 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3495 if (BI->isUnconditional()) 3496 UncondBranchPreds.push_back(P); 3497 else 3498 CondBranchPreds.push_back(BI); 3499 } 3500 } 3501 3502 // If we found some, do the transformation! 3503 if (!UncondBranchPreds.empty() && DupRet) { 3504 while (!UncondBranchPreds.empty()) { 3505 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3506 DEBUG(dbgs() << "FOLDING: " << *BB 3507 << "INTO UNCOND BRANCH PRED: " << *Pred); 3508 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3509 } 3510 3511 // If we eliminated all predecessors of the block, delete the block now. 3512 if (pred_empty(BB)) 3513 // We know there are no successors, so just nuke the block. 3514 BB->eraseFromParent(); 3515 3516 return true; 3517 } 3518 3519 // Check out all of the conditional branches going to this return 3520 // instruction. If any of them just select between returns, change the 3521 // branch itself into a select/return pair. 3522 while (!CondBranchPreds.empty()) { 3523 BranchInst *BI = CondBranchPreds.pop_back_val(); 3524 3525 // Check to see if the non-BB successor is also a return block. 3526 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3527 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3528 SimplifyCondBranchToTwoReturns(BI, Builder)) 3529 return true; 3530 } 3531 return false; 3532 } 3533 3534 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3535 BasicBlock *BB = UI->getParent(); 3536 3537 bool Changed = false; 3538 3539 // If there are any instructions immediately before the unreachable that can 3540 // be removed, do so. 3541 while (UI->getIterator() != BB->begin()) { 3542 BasicBlock::iterator BBI = UI->getIterator(); 3543 --BBI; 3544 // Do not delete instructions that can have side effects which might cause 3545 // the unreachable to not be reachable; specifically, calls and volatile 3546 // operations may have this effect. 3547 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 3548 3549 if (BBI->mayHaveSideEffects()) { 3550 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 3551 if (SI->isVolatile()) 3552 break; 3553 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 3554 if (LI->isVolatile()) 3555 break; 3556 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3557 if (RMWI->isVolatile()) 3558 break; 3559 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3560 if (CXI->isVolatile()) 3561 break; 3562 } else if (isa<CatchPadInst>(BBI)) { 3563 // A catchpad may invoke exception object constructors and such, which 3564 // in some languages can be arbitrary code, so be conservative by 3565 // default. 3566 // For CoreCLR, it just involves a type test, so can be removed. 3567 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 3568 EHPersonality::CoreCLR) 3569 break; 3570 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3571 !isa<LandingPadInst>(BBI)) { 3572 break; 3573 } 3574 // Note that deleting LandingPad's here is in fact okay, although it 3575 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3576 // all the predecessors of this block will be the unwind edges of Invokes, 3577 // and we can therefore guarantee this block will be erased. 3578 } 3579 3580 // Delete this instruction (any uses are guaranteed to be dead) 3581 if (!BBI->use_empty()) 3582 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3583 BBI->eraseFromParent(); 3584 Changed = true; 3585 } 3586 3587 // If the unreachable instruction is the first in the block, take a gander 3588 // at all of the predecessors of this instruction, and simplify them. 3589 if (&BB->front() != UI) return Changed; 3590 3591 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3592 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3593 TerminatorInst *TI = Preds[i]->getTerminator(); 3594 IRBuilder<> Builder(TI); 3595 if (auto *BI = dyn_cast<BranchInst>(TI)) { 3596 if (BI->isUnconditional()) { 3597 if (BI->getSuccessor(0) == BB) { 3598 new UnreachableInst(TI->getContext(), TI); 3599 TI->eraseFromParent(); 3600 Changed = true; 3601 } 3602 } else { 3603 if (BI->getSuccessor(0) == BB) { 3604 Builder.CreateBr(BI->getSuccessor(1)); 3605 EraseTerminatorInstAndDCECond(BI); 3606 } else if (BI->getSuccessor(1) == BB) { 3607 Builder.CreateBr(BI->getSuccessor(0)); 3608 EraseTerminatorInstAndDCECond(BI); 3609 Changed = true; 3610 } 3611 } 3612 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 3613 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3614 i != e; ++i) 3615 if (i.getCaseSuccessor() == BB) { 3616 BB->removePredecessor(SI->getParent()); 3617 SI->removeCase(i); 3618 --i; --e; 3619 Changed = true; 3620 } 3621 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 3622 if (II->getUnwindDest() == BB) { 3623 removeUnwindEdge(TI->getParent()); 3624 Changed = true; 3625 } 3626 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3627 if (CSI->getUnwindDest() == BB) { 3628 removeUnwindEdge(TI->getParent()); 3629 Changed = true; 3630 continue; 3631 } 3632 3633 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 3634 E = CSI->handler_end(); 3635 I != E; ++I) { 3636 if (*I == BB) { 3637 CSI->removeHandler(I); 3638 --I; 3639 --E; 3640 Changed = true; 3641 } 3642 } 3643 if (CSI->getNumHandlers() == 0) { 3644 BasicBlock *CatchSwitchBB = CSI->getParent(); 3645 if (CSI->hasUnwindDest()) { 3646 // Redirect preds to the unwind dest 3647 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 3648 } else { 3649 // Rewrite all preds to unwind to caller (or from invoke to call). 3650 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 3651 for (BasicBlock *EHPred : EHPreds) 3652 removeUnwindEdge(EHPred); 3653 } 3654 // The catchswitch is no longer reachable. 3655 new UnreachableInst(CSI->getContext(), CSI); 3656 CSI->eraseFromParent(); 3657 Changed = true; 3658 } 3659 } else if (isa<CleanupReturnInst>(TI)) { 3660 new UnreachableInst(TI->getContext(), TI); 3661 TI->eraseFromParent(); 3662 Changed = true; 3663 } 3664 } 3665 3666 // If this block is now dead, remove it. 3667 if (pred_empty(BB) && 3668 BB != &BB->getParent()->getEntryBlock()) { 3669 // We know there are no successors, so just nuke the block. 3670 BB->eraseFromParent(); 3671 return true; 3672 } 3673 3674 return Changed; 3675 } 3676 3677 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3678 assert(Cases.size() >= 1); 3679 3680 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3681 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3682 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3683 return false; 3684 } 3685 return true; 3686 } 3687 3688 /// Turn a switch with two reachable destinations into an integer range 3689 /// comparison and branch. 3690 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3691 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3692 3693 bool HasDefault = 3694 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3695 3696 // Partition the cases into two sets with different destinations. 3697 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3698 BasicBlock *DestB = nullptr; 3699 SmallVector <ConstantInt *, 16> CasesA; 3700 SmallVector <ConstantInt *, 16> CasesB; 3701 3702 for (SwitchInst::CaseIt I : SI->cases()) { 3703 BasicBlock *Dest = I.getCaseSuccessor(); 3704 if (!DestA) DestA = Dest; 3705 if (Dest == DestA) { 3706 CasesA.push_back(I.getCaseValue()); 3707 continue; 3708 } 3709 if (!DestB) DestB = Dest; 3710 if (Dest == DestB) { 3711 CasesB.push_back(I.getCaseValue()); 3712 continue; 3713 } 3714 return false; // More than two destinations. 3715 } 3716 3717 assert(DestA && DestB && "Single-destination switch should have been folded."); 3718 assert(DestA != DestB); 3719 assert(DestB != SI->getDefaultDest()); 3720 assert(!CasesB.empty() && "There must be non-default cases."); 3721 assert(!CasesA.empty() || HasDefault); 3722 3723 // Figure out if one of the sets of cases form a contiguous range. 3724 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3725 BasicBlock *ContiguousDest = nullptr; 3726 BasicBlock *OtherDest = nullptr; 3727 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 3728 ContiguousCases = &CasesA; 3729 ContiguousDest = DestA; 3730 OtherDest = DestB; 3731 } else if (CasesAreContiguous(CasesB)) { 3732 ContiguousCases = &CasesB; 3733 ContiguousDest = DestB; 3734 OtherDest = DestA; 3735 } else 3736 return false; 3737 3738 // Start building the compare and branch. 3739 3740 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 3741 Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size()); 3742 3743 Value *Sub = SI->getCondition(); 3744 if (!Offset->isNullValue()) 3745 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 3746 3747 Value *Cmp; 3748 // If NumCases overflowed, then all possible values jump to the successor. 3749 if (NumCases->isNullValue() && !ContiguousCases->empty()) 3750 Cmp = ConstantInt::getTrue(SI->getContext()); 3751 else 3752 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3753 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 3754 3755 // Update weight for the newly-created conditional branch. 3756 if (HasBranchWeights(SI)) { 3757 SmallVector<uint64_t, 8> Weights; 3758 GetBranchWeights(SI, Weights); 3759 if (Weights.size() == 1 + SI->getNumCases()) { 3760 uint64_t TrueWeight = 0; 3761 uint64_t FalseWeight = 0; 3762 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 3763 if (SI->getSuccessor(I) == ContiguousDest) 3764 TrueWeight += Weights[I]; 3765 else 3766 FalseWeight += Weights[I]; 3767 } 3768 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 3769 TrueWeight /= 2; 3770 FalseWeight /= 2; 3771 } 3772 NewBI->setMetadata(LLVMContext::MD_prof, 3773 MDBuilder(SI->getContext()).createBranchWeights( 3774 (uint32_t)TrueWeight, (uint32_t)FalseWeight)); 3775 } 3776 } 3777 3778 // Prune obsolete incoming values off the successors' PHI nodes. 3779 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 3780 unsigned PreviousEdges = ContiguousCases->size(); 3781 if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges; 3782 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3783 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3784 } 3785 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 3786 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 3787 if (OtherDest == SI->getDefaultDest()) ++PreviousEdges; 3788 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3789 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3790 } 3791 3792 // Drop the switch. 3793 SI->eraseFromParent(); 3794 3795 return true; 3796 } 3797 3798 /// Compute masked bits for the condition of a switch 3799 /// and use it to remove dead cases. 3800 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 3801 const DataLayout &DL) { 3802 Value *Cond = SI->getCondition(); 3803 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3804 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3805 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 3806 3807 // Gather dead cases. 3808 SmallVector<ConstantInt*, 8> DeadCases; 3809 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3810 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3811 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3812 DeadCases.push_back(I.getCaseValue()); 3813 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3814 << I.getCaseValue() << "' is dead.\n"); 3815 } 3816 } 3817 3818 // If we can prove that the cases must cover all possible values, the 3819 // default destination becomes dead and we can remove it. If we know some 3820 // of the bits in the value, we can use that to more precisely compute the 3821 // number of possible unique case values. 3822 bool HasDefault = 3823 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3824 const unsigned NumUnknownBits = Bits - 3825 (KnownZero.Or(KnownOne)).countPopulation(); 3826 assert(NumUnknownBits <= Bits); 3827 if (HasDefault && DeadCases.empty() && 3828 NumUnknownBits < 64 /* avoid overflow */ && 3829 SI->getNumCases() == (1ULL << NumUnknownBits)) { 3830 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 3831 BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(), 3832 SI->getParent(), ""); 3833 SI->setDefaultDest(&*NewDefault); 3834 SplitBlock(&*NewDefault, &NewDefault->front()); 3835 auto *OldTI = NewDefault->getTerminator(); 3836 new UnreachableInst(SI->getContext(), OldTI); 3837 EraseTerminatorInstAndDCECond(OldTI); 3838 return true; 3839 } 3840 3841 SmallVector<uint64_t, 8> Weights; 3842 bool HasWeight = HasBranchWeights(SI); 3843 if (HasWeight) { 3844 GetBranchWeights(SI, Weights); 3845 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3846 } 3847 3848 // Remove dead cases from the switch. 3849 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3850 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3851 assert(Case != SI->case_default() && 3852 "Case was not found. Probably mistake in DeadCases forming."); 3853 if (HasWeight) { 3854 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3855 Weights.pop_back(); 3856 } 3857 3858 // Prune unused values from PHI nodes. 3859 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3860 SI->removeCase(Case); 3861 } 3862 if (HasWeight && Weights.size() >= 2) { 3863 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3864 SI->setMetadata(LLVMContext::MD_prof, 3865 MDBuilder(SI->getParent()->getContext()). 3866 createBranchWeights(MDWeights)); 3867 } 3868 3869 return !DeadCases.empty(); 3870 } 3871 3872 /// If BB would be eligible for simplification by 3873 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3874 /// by an unconditional branch), look at the phi node for BB in the successor 3875 /// block and see if the incoming value is equal to CaseValue. If so, return 3876 /// the phi node, and set PhiIndex to BB's index in the phi node. 3877 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3878 BasicBlock *BB, 3879 int *PhiIndex) { 3880 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3881 return nullptr; // BB must be empty to be a candidate for simplification. 3882 if (!BB->getSinglePredecessor()) 3883 return nullptr; // BB must be dominated by the switch. 3884 3885 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3886 if (!Branch || !Branch->isUnconditional()) 3887 return nullptr; // Terminator must be unconditional branch. 3888 3889 BasicBlock *Succ = Branch->getSuccessor(0); 3890 3891 BasicBlock::iterator I = Succ->begin(); 3892 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3893 int Idx = PHI->getBasicBlockIndex(BB); 3894 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3895 3896 Value *InValue = PHI->getIncomingValue(Idx); 3897 if (InValue != CaseValue) continue; 3898 3899 *PhiIndex = Idx; 3900 return PHI; 3901 } 3902 3903 return nullptr; 3904 } 3905 3906 /// Try to forward the condition of a switch instruction to a phi node 3907 /// dominated by the switch, if that would mean that some of the destination 3908 /// blocks of the switch can be folded away. 3909 /// Returns true if a change is made. 3910 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3911 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3912 ForwardingNodesMap ForwardingNodes; 3913 3914 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3915 ConstantInt *CaseValue = I.getCaseValue(); 3916 BasicBlock *CaseDest = I.getCaseSuccessor(); 3917 3918 int PhiIndex; 3919 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3920 &PhiIndex); 3921 if (!PHI) continue; 3922 3923 ForwardingNodes[PHI].push_back(PhiIndex); 3924 } 3925 3926 bool Changed = false; 3927 3928 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3929 E = ForwardingNodes.end(); I != E; ++I) { 3930 PHINode *Phi = I->first; 3931 SmallVectorImpl<int> &Indexes = I->second; 3932 3933 if (Indexes.size() < 2) continue; 3934 3935 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3936 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3937 Changed = true; 3938 } 3939 3940 return Changed; 3941 } 3942 3943 /// Return true if the backend will be able to handle 3944 /// initializing an array of constants like C. 3945 static bool ValidLookupTableConstant(Constant *C) { 3946 if (C->isThreadDependent()) 3947 return false; 3948 if (C->isDLLImportDependent()) 3949 return false; 3950 3951 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3952 return CE->isGEPWithNoNotionalOverIndexing(); 3953 3954 return isa<ConstantFP>(C) || 3955 isa<ConstantInt>(C) || 3956 isa<ConstantPointerNull>(C) || 3957 isa<GlobalValue>(C) || 3958 isa<UndefValue>(C); 3959 } 3960 3961 /// If V is a Constant, return it. Otherwise, try to look up 3962 /// its constant value in ConstantPool, returning 0 if it's not there. 3963 static Constant *LookupConstant(Value *V, 3964 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3965 if (Constant *C = dyn_cast<Constant>(V)) 3966 return C; 3967 return ConstantPool.lookup(V); 3968 } 3969 3970 /// Try to fold instruction I into a constant. This works for 3971 /// simple instructions such as binary operations where both operands are 3972 /// constant or can be replaced by constants from the ConstantPool. Returns the 3973 /// resulting constant on success, 0 otherwise. 3974 static Constant * 3975 ConstantFold(Instruction *I, const DataLayout &DL, 3976 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 3977 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3978 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3979 if (!A) 3980 return nullptr; 3981 if (A->isAllOnesValue()) 3982 return LookupConstant(Select->getTrueValue(), ConstantPool); 3983 if (A->isNullValue()) 3984 return LookupConstant(Select->getFalseValue(), ConstantPool); 3985 return nullptr; 3986 } 3987 3988 SmallVector<Constant *, 4> COps; 3989 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3990 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3991 COps.push_back(A); 3992 else 3993 return nullptr; 3994 } 3995 3996 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 3997 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 3998 COps[1], DL); 3999 } 4000 4001 return ConstantFoldInstOperands(I, COps, DL); 4002 } 4003 4004 /// Try to determine the resulting constant values in phi nodes 4005 /// at the common destination basic block, *CommonDest, for one of the case 4006 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4007 /// case), of a switch instruction SI. 4008 static bool 4009 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4010 BasicBlock **CommonDest, 4011 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4012 const DataLayout &DL) { 4013 // The block from which we enter the common destination. 4014 BasicBlock *Pred = SI->getParent(); 4015 4016 // If CaseDest is empty except for some side-effect free instructions through 4017 // which we can constant-propagate the CaseVal, continue to its successor. 4018 SmallDenseMap<Value*, Constant*> ConstantPool; 4019 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4020 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4021 ++I) { 4022 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4023 // If the terminator is a simple branch, continue to the next block. 4024 if (T->getNumSuccessors() != 1) 4025 return false; 4026 Pred = CaseDest; 4027 CaseDest = T->getSuccessor(0); 4028 } else if (isa<DbgInfoIntrinsic>(I)) { 4029 // Skip debug intrinsic. 4030 continue; 4031 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4032 // Instruction is side-effect free and constant. 4033 4034 // If the instruction has uses outside this block or a phi node slot for 4035 // the block, it is not safe to bypass the instruction since it would then 4036 // no longer dominate all its uses. 4037 for (auto &Use : I->uses()) { 4038 User *User = Use.getUser(); 4039 if (Instruction *I = dyn_cast<Instruction>(User)) 4040 if (I->getParent() == CaseDest) 4041 continue; 4042 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4043 if (Phi->getIncomingBlock(Use) == CaseDest) 4044 continue; 4045 return false; 4046 } 4047 4048 ConstantPool.insert(std::make_pair(&*I, C)); 4049 } else { 4050 break; 4051 } 4052 } 4053 4054 // If we did not have a CommonDest before, use the current one. 4055 if (!*CommonDest) 4056 *CommonDest = CaseDest; 4057 // If the destination isn't the common one, abort. 4058 if (CaseDest != *CommonDest) 4059 return false; 4060 4061 // Get the values for this case from phi nodes in the destination block. 4062 BasicBlock::iterator I = (*CommonDest)->begin(); 4063 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4064 int Idx = PHI->getBasicBlockIndex(Pred); 4065 if (Idx == -1) 4066 continue; 4067 4068 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 4069 ConstantPool); 4070 if (!ConstVal) 4071 return false; 4072 4073 // Be conservative about which kinds of constants we support. 4074 if (!ValidLookupTableConstant(ConstVal)) 4075 return false; 4076 4077 Res.push_back(std::make_pair(PHI, ConstVal)); 4078 } 4079 4080 return Res.size() > 0; 4081 } 4082 4083 // Helper function used to add CaseVal to the list of cases that generate 4084 // Result. 4085 static void MapCaseToResult(ConstantInt *CaseVal, 4086 SwitchCaseResultVectorTy &UniqueResults, 4087 Constant *Result) { 4088 for (auto &I : UniqueResults) { 4089 if (I.first == Result) { 4090 I.second.push_back(CaseVal); 4091 return; 4092 } 4093 } 4094 UniqueResults.push_back(std::make_pair(Result, 4095 SmallVector<ConstantInt*, 4>(1, CaseVal))); 4096 } 4097 4098 // Helper function that initializes a map containing 4099 // results for the PHI node of the common destination block for a switch 4100 // instruction. Returns false if multiple PHI nodes have been found or if 4101 // there is not a common destination block for the switch. 4102 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4103 BasicBlock *&CommonDest, 4104 SwitchCaseResultVectorTy &UniqueResults, 4105 Constant *&DefaultResult, 4106 const DataLayout &DL) { 4107 for (auto &I : SI->cases()) { 4108 ConstantInt *CaseVal = I.getCaseValue(); 4109 4110 // Resulting value at phi nodes for this case value. 4111 SwitchCaseResultsTy Results; 4112 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4113 DL)) 4114 return false; 4115 4116 // Only one value per case is permitted 4117 if (Results.size() > 1) 4118 return false; 4119 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4120 4121 // Check the PHI consistency. 4122 if (!PHI) 4123 PHI = Results[0].first; 4124 else if (PHI != Results[0].first) 4125 return false; 4126 } 4127 // Find the default result value. 4128 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4129 BasicBlock *DefaultDest = SI->getDefaultDest(); 4130 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4131 DL); 4132 // If the default value is not found abort unless the default destination 4133 // is unreachable. 4134 DefaultResult = 4135 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4136 if ((!DefaultResult && 4137 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4138 return false; 4139 4140 return true; 4141 } 4142 4143 // Helper function that checks if it is possible to transform a switch with only 4144 // two cases (or two cases + default) that produces a result into a select. 4145 // Example: 4146 // switch (a) { 4147 // case 10: %0 = icmp eq i32 %a, 10 4148 // return 10; %1 = select i1 %0, i32 10, i32 4 4149 // case 20: ----> %2 = icmp eq i32 %a, 20 4150 // return 2; %3 = select i1 %2, i32 2, i32 %1 4151 // default: 4152 // return 4; 4153 // } 4154 static Value * 4155 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4156 Constant *DefaultResult, Value *Condition, 4157 IRBuilder<> &Builder) { 4158 assert(ResultVector.size() == 2 && 4159 "We should have exactly two unique results at this point"); 4160 // If we are selecting between only two cases transform into a simple 4161 // select or a two-way select if default is possible. 4162 if (ResultVector[0].second.size() == 1 && 4163 ResultVector[1].second.size() == 1) { 4164 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4165 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4166 4167 bool DefaultCanTrigger = DefaultResult; 4168 Value *SelectValue = ResultVector[1].first; 4169 if (DefaultCanTrigger) { 4170 Value *const ValueCompare = 4171 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4172 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4173 DefaultResult, "switch.select"); 4174 } 4175 Value *const ValueCompare = 4176 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4177 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue, 4178 "switch.select"); 4179 } 4180 4181 return nullptr; 4182 } 4183 4184 // Helper function to cleanup a switch instruction that has been converted into 4185 // a select, fixing up PHI nodes and basic blocks. 4186 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4187 Value *SelectValue, 4188 IRBuilder<> &Builder) { 4189 BasicBlock *SelectBB = SI->getParent(); 4190 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4191 PHI->removeIncomingValue(SelectBB); 4192 PHI->addIncoming(SelectValue, SelectBB); 4193 4194 Builder.CreateBr(PHI->getParent()); 4195 4196 // Remove the switch. 4197 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4198 BasicBlock *Succ = SI->getSuccessor(i); 4199 4200 if (Succ == PHI->getParent()) 4201 continue; 4202 Succ->removePredecessor(SelectBB); 4203 } 4204 SI->eraseFromParent(); 4205 } 4206 4207 /// If the switch is only used to initialize one or more 4208 /// phi nodes in a common successor block with only two different 4209 /// constant values, replace the switch with select. 4210 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4211 AssumptionCache *AC, const DataLayout &DL) { 4212 Value *const Cond = SI->getCondition(); 4213 PHINode *PHI = nullptr; 4214 BasicBlock *CommonDest = nullptr; 4215 Constant *DefaultResult; 4216 SwitchCaseResultVectorTy UniqueResults; 4217 // Collect all the cases that will deliver the same value from the switch. 4218 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4219 DL)) 4220 return false; 4221 // Selects choose between maximum two values. 4222 if (UniqueResults.size() != 2) 4223 return false; 4224 assert(PHI != nullptr && "PHI for value select not found"); 4225 4226 Builder.SetInsertPoint(SI); 4227 Value *SelectValue = ConvertTwoCaseSwitch( 4228 UniqueResults, 4229 DefaultResult, Cond, Builder); 4230 if (SelectValue) { 4231 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4232 return true; 4233 } 4234 // The switch couldn't be converted into a select. 4235 return false; 4236 } 4237 4238 namespace { 4239 /// This class represents a lookup table that can be used to replace a switch. 4240 class SwitchLookupTable { 4241 public: 4242 /// Create a lookup table to use as a switch replacement with the contents 4243 /// of Values, using DefaultValue to fill any holes in the table. 4244 SwitchLookupTable( 4245 Module &M, uint64_t TableSize, ConstantInt *Offset, 4246 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4247 Constant *DefaultValue, const DataLayout &DL); 4248 4249 /// Build instructions with Builder to retrieve the value at 4250 /// the position given by Index in the lookup table. 4251 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4252 4253 /// Return true if a table with TableSize elements of 4254 /// type ElementType would fit in a target-legal register. 4255 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4256 Type *ElementType); 4257 4258 private: 4259 // Depending on the contents of the table, it can be represented in 4260 // different ways. 4261 enum { 4262 // For tables where each element contains the same value, we just have to 4263 // store that single value and return it for each lookup. 4264 SingleValueKind, 4265 4266 // For tables where there is a linear relationship between table index 4267 // and values. We calculate the result with a simple multiplication 4268 // and addition instead of a table lookup. 4269 LinearMapKind, 4270 4271 // For small tables with integer elements, we can pack them into a bitmap 4272 // that fits into a target-legal register. Values are retrieved by 4273 // shift and mask operations. 4274 BitMapKind, 4275 4276 // The table is stored as an array of values. Values are retrieved by load 4277 // instructions from the table. 4278 ArrayKind 4279 } Kind; 4280 4281 // For SingleValueKind, this is the single value. 4282 Constant *SingleValue; 4283 4284 // For BitMapKind, this is the bitmap. 4285 ConstantInt *BitMap; 4286 IntegerType *BitMapElementTy; 4287 4288 // For LinearMapKind, these are the constants used to derive the value. 4289 ConstantInt *LinearOffset; 4290 ConstantInt *LinearMultiplier; 4291 4292 // For ArrayKind, this is the array. 4293 GlobalVariable *Array; 4294 }; 4295 } 4296 4297 SwitchLookupTable::SwitchLookupTable( 4298 Module &M, uint64_t TableSize, ConstantInt *Offset, 4299 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4300 Constant *DefaultValue, const DataLayout &DL) 4301 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4302 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4303 assert(Values.size() && "Can't build lookup table without values!"); 4304 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4305 4306 // If all values in the table are equal, this is that value. 4307 SingleValue = Values.begin()->second; 4308 4309 Type *ValueType = Values.begin()->second->getType(); 4310 4311 // Build up the table contents. 4312 SmallVector<Constant*, 64> TableContents(TableSize); 4313 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4314 ConstantInt *CaseVal = Values[I].first; 4315 Constant *CaseRes = Values[I].second; 4316 assert(CaseRes->getType() == ValueType); 4317 4318 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 4319 .getLimitedValue(); 4320 TableContents[Idx] = CaseRes; 4321 4322 if (CaseRes != SingleValue) 4323 SingleValue = nullptr; 4324 } 4325 4326 // Fill in any holes in the table with the default result. 4327 if (Values.size() < TableSize) { 4328 assert(DefaultValue && 4329 "Need a default value to fill the lookup table holes."); 4330 assert(DefaultValue->getType() == ValueType); 4331 for (uint64_t I = 0; I < TableSize; ++I) { 4332 if (!TableContents[I]) 4333 TableContents[I] = DefaultValue; 4334 } 4335 4336 if (DefaultValue != SingleValue) 4337 SingleValue = nullptr; 4338 } 4339 4340 // If each element in the table contains the same value, we only need to store 4341 // that single value. 4342 if (SingleValue) { 4343 Kind = SingleValueKind; 4344 return; 4345 } 4346 4347 // Check if we can derive the value with a linear transformation from the 4348 // table index. 4349 if (isa<IntegerType>(ValueType)) { 4350 bool LinearMappingPossible = true; 4351 APInt PrevVal; 4352 APInt DistToPrev; 4353 assert(TableSize >= 2 && "Should be a SingleValue table."); 4354 // Check if there is the same distance between two consecutive values. 4355 for (uint64_t I = 0; I < TableSize; ++I) { 4356 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4357 if (!ConstVal) { 4358 // This is an undef. We could deal with it, but undefs in lookup tables 4359 // are very seldom. It's probably not worth the additional complexity. 4360 LinearMappingPossible = false; 4361 break; 4362 } 4363 APInt Val = ConstVal->getValue(); 4364 if (I != 0) { 4365 APInt Dist = Val - PrevVal; 4366 if (I == 1) { 4367 DistToPrev = Dist; 4368 } else if (Dist != DistToPrev) { 4369 LinearMappingPossible = false; 4370 break; 4371 } 4372 } 4373 PrevVal = Val; 4374 } 4375 if (LinearMappingPossible) { 4376 LinearOffset = cast<ConstantInt>(TableContents[0]); 4377 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4378 Kind = LinearMapKind; 4379 ++NumLinearMaps; 4380 return; 4381 } 4382 } 4383 4384 // If the type is integer and the table fits in a register, build a bitmap. 4385 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4386 IntegerType *IT = cast<IntegerType>(ValueType); 4387 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4388 for (uint64_t I = TableSize; I > 0; --I) { 4389 TableInt <<= IT->getBitWidth(); 4390 // Insert values into the bitmap. Undef values are set to zero. 4391 if (!isa<UndefValue>(TableContents[I - 1])) { 4392 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4393 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4394 } 4395 } 4396 BitMap = ConstantInt::get(M.getContext(), TableInt); 4397 BitMapElementTy = IT; 4398 Kind = BitMapKind; 4399 ++NumBitMaps; 4400 return; 4401 } 4402 4403 // Store the table in an array. 4404 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4405 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4406 4407 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 4408 GlobalVariable::PrivateLinkage, 4409 Initializer, 4410 "switch.table"); 4411 Array->setUnnamedAddr(true); 4412 Kind = ArrayKind; 4413 } 4414 4415 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4416 switch (Kind) { 4417 case SingleValueKind: 4418 return SingleValue; 4419 case LinearMapKind: { 4420 // Derive the result value from the input value. 4421 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4422 false, "switch.idx.cast"); 4423 if (!LinearMultiplier->isOne()) 4424 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4425 if (!LinearOffset->isZero()) 4426 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4427 return Result; 4428 } 4429 case BitMapKind: { 4430 // Type of the bitmap (e.g. i59). 4431 IntegerType *MapTy = BitMap->getType(); 4432 4433 // Cast Index to the same type as the bitmap. 4434 // Note: The Index is <= the number of elements in the table, so 4435 // truncating it to the width of the bitmask is safe. 4436 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4437 4438 // Multiply the shift amount by the element width. 4439 ShiftAmt = Builder.CreateMul(ShiftAmt, 4440 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4441 "switch.shiftamt"); 4442 4443 // Shift down. 4444 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 4445 "switch.downshift"); 4446 // Mask off. 4447 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 4448 "switch.masked"); 4449 } 4450 case ArrayKind: { 4451 // Make sure the table index will not overflow when treated as signed. 4452 IntegerType *IT = cast<IntegerType>(Index->getType()); 4453 uint64_t TableSize = Array->getInitializer()->getType() 4454 ->getArrayNumElements(); 4455 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4456 Index = Builder.CreateZExt(Index, 4457 IntegerType::get(IT->getContext(), 4458 IT->getBitWidth() + 1), 4459 "switch.tableidx.zext"); 4460 4461 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 4462 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4463 GEPIndices, "switch.gep"); 4464 return Builder.CreateLoad(GEP, "switch.load"); 4465 } 4466 } 4467 llvm_unreachable("Unknown lookup table kind!"); 4468 } 4469 4470 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4471 uint64_t TableSize, 4472 Type *ElementType) { 4473 auto *IT = dyn_cast<IntegerType>(ElementType); 4474 if (!IT) 4475 return false; 4476 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4477 // are <= 15, we could try to narrow the type. 4478 4479 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4480 if (TableSize >= UINT_MAX/IT->getBitWidth()) 4481 return false; 4482 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4483 } 4484 4485 /// Determine whether a lookup table should be built for this switch, based on 4486 /// the number of cases, size of the table, and the types of the results. 4487 static bool 4488 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4489 const TargetTransformInfo &TTI, const DataLayout &DL, 4490 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4491 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4492 return false; // TableSize overflowed, or mul below might overflow. 4493 4494 bool AllTablesFitInRegister = true; 4495 bool HasIllegalType = false; 4496 for (const auto &I : ResultTypes) { 4497 Type *Ty = I.second; 4498 4499 // Saturate this flag to true. 4500 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4501 4502 // Saturate this flag to false. 4503 AllTablesFitInRegister = AllTablesFitInRegister && 4504 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4505 4506 // If both flags saturate, we're done. NOTE: This *only* works with 4507 // saturating flags, and all flags have to saturate first due to the 4508 // non-deterministic behavior of iterating over a dense map. 4509 if (HasIllegalType && !AllTablesFitInRegister) 4510 break; 4511 } 4512 4513 // If each table would fit in a register, we should build it anyway. 4514 if (AllTablesFitInRegister) 4515 return true; 4516 4517 // Don't build a table that doesn't fit in-register if it has illegal types. 4518 if (HasIllegalType) 4519 return false; 4520 4521 // The table density should be at least 40%. This is the same criterion as for 4522 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4523 // FIXME: Find the best cut-off. 4524 return SI->getNumCases() * 10 >= TableSize * 4; 4525 } 4526 4527 /// Try to reuse the switch table index compare. Following pattern: 4528 /// \code 4529 /// if (idx < tablesize) 4530 /// r = table[idx]; // table does not contain default_value 4531 /// else 4532 /// r = default_value; 4533 /// if (r != default_value) 4534 /// ... 4535 /// \endcode 4536 /// Is optimized to: 4537 /// \code 4538 /// cond = idx < tablesize; 4539 /// if (cond) 4540 /// r = table[idx]; 4541 /// else 4542 /// r = default_value; 4543 /// if (cond) 4544 /// ... 4545 /// \endcode 4546 /// Jump threading will then eliminate the second if(cond). 4547 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock, 4548 BranchInst *RangeCheckBranch, Constant *DefaultValue, 4549 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) { 4550 4551 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4552 if (!CmpInst) 4553 return; 4554 4555 // We require that the compare is in the same block as the phi so that jump 4556 // threading can do its work afterwards. 4557 if (CmpInst->getParent() != PhiBlock) 4558 return; 4559 4560 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4561 if (!CmpOp1) 4562 return; 4563 4564 Value *RangeCmp = RangeCheckBranch->getCondition(); 4565 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4566 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4567 4568 // Check if the compare with the default value is constant true or false. 4569 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4570 DefaultValue, CmpOp1, true); 4571 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4572 return; 4573 4574 // Check if the compare with the case values is distinct from the default 4575 // compare result. 4576 for (auto ValuePair : Values) { 4577 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4578 ValuePair.second, CmpOp1, true); 4579 if (!CaseConst || CaseConst == DefaultConst) 4580 return; 4581 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4582 "Expect true or false as compare result."); 4583 } 4584 4585 // Check if the branch instruction dominates the phi node. It's a simple 4586 // dominance check, but sufficient for our needs. 4587 // Although this check is invariant in the calling loops, it's better to do it 4588 // at this late stage. Practically we do it at most once for a switch. 4589 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4590 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4591 BasicBlock *Pred = *PI; 4592 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4593 return; 4594 } 4595 4596 if (DefaultConst == FalseConst) { 4597 // The compare yields the same result. We can replace it. 4598 CmpInst->replaceAllUsesWith(RangeCmp); 4599 ++NumTableCmpReuses; 4600 } else { 4601 // The compare yields the same result, just inverted. We can replace it. 4602 Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp, 4603 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4604 RangeCheckBranch); 4605 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4606 ++NumTableCmpReuses; 4607 } 4608 } 4609 4610 /// If the switch is only used to initialize one or more phi nodes in a common 4611 /// successor block with different constant values, replace the switch with 4612 /// lookup tables. 4613 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 4614 const DataLayout &DL, 4615 const TargetTransformInfo &TTI) { 4616 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4617 4618 // Only build lookup table when we have a target that supports it. 4619 if (!TTI.shouldBuildLookupTables()) 4620 return false; 4621 4622 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4623 // split off a dense part and build a lookup table for that. 4624 4625 // FIXME: This creates arrays of GEPs to constant strings, which means each 4626 // GEP needs a runtime relocation in PIC code. We should just build one big 4627 // string and lookup indices into that. 4628 4629 // Ignore switches with less than three cases. Lookup tables will not make them 4630 // faster, so we don't analyze them. 4631 if (SI->getNumCases() < 3) 4632 return false; 4633 4634 // Figure out the corresponding result for each case value and phi node in the 4635 // common destination, as well as the min and max case values. 4636 assert(SI->case_begin() != SI->case_end()); 4637 SwitchInst::CaseIt CI = SI->case_begin(); 4638 ConstantInt *MinCaseVal = CI.getCaseValue(); 4639 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4640 4641 BasicBlock *CommonDest = nullptr; 4642 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 4643 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 4644 SmallDenseMap<PHINode*, Constant*> DefaultResults; 4645 SmallDenseMap<PHINode*, Type*> ResultTypes; 4646 SmallVector<PHINode*, 4> PHIs; 4647 4648 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4649 ConstantInt *CaseVal = CI.getCaseValue(); 4650 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4651 MinCaseVal = CaseVal; 4652 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4653 MaxCaseVal = CaseVal; 4654 4655 // Resulting value at phi nodes for this case value. 4656 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 4657 ResultsTy Results; 4658 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4659 Results, DL)) 4660 return false; 4661 4662 // Append the result from this case to the list for each phi. 4663 for (const auto &I : Results) { 4664 PHINode *PHI = I.first; 4665 Constant *Value = I.second; 4666 if (!ResultLists.count(PHI)) 4667 PHIs.push_back(PHI); 4668 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4669 } 4670 } 4671 4672 // Keep track of the result types. 4673 for (PHINode *PHI : PHIs) { 4674 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4675 } 4676 4677 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4678 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4679 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4680 bool TableHasHoles = (NumResults < TableSize); 4681 4682 // If the table has holes, we need a constant result for the default case 4683 // or a bitmask that fits in a register. 4684 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 4685 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4686 &CommonDest, DefaultResultsList, DL); 4687 4688 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4689 if (NeedMask) { 4690 // As an extra penalty for the validity test we require more cases. 4691 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4692 return false; 4693 if (!DL.fitsInLegalInteger(TableSize)) 4694 return false; 4695 } 4696 4697 for (const auto &I : DefaultResultsList) { 4698 PHINode *PHI = I.first; 4699 Constant *Result = I.second; 4700 DefaultResults[PHI] = Result; 4701 } 4702 4703 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4704 return false; 4705 4706 // Create the BB that does the lookups. 4707 Module &Mod = *CommonDest->getParent()->getParent(); 4708 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 4709 "switch.lookup", 4710 CommonDest->getParent(), 4711 CommonDest); 4712 4713 // Compute the table index value. 4714 Builder.SetInsertPoint(SI); 4715 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 4716 "switch.tableidx"); 4717 4718 // Compute the maximum table size representable by the integer type we are 4719 // switching upon. 4720 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 4721 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 4722 assert(MaxTableSize >= TableSize && 4723 "It is impossible for a switch to have more entries than the max " 4724 "representable value of its input integer type's size."); 4725 4726 // If the default destination is unreachable, or if the lookup table covers 4727 // all values of the conditional variable, branch directly to the lookup table 4728 // BB. Otherwise, check that the condition is within the case range. 4729 const bool DefaultIsReachable = 4730 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4731 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 4732 BranchInst *RangeCheckBranch = nullptr; 4733 4734 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4735 Builder.CreateBr(LookupBB); 4736 // Note: We call removeProdecessor later since we need to be able to get the 4737 // PHI value for the default case in case we're using a bit mask. 4738 } else { 4739 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 4740 MinCaseVal->getType(), TableSize)); 4741 RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4742 } 4743 4744 // Populate the BB that does the lookups. 4745 Builder.SetInsertPoint(LookupBB); 4746 4747 if (NeedMask) { 4748 // Before doing the lookup we do the hole check. 4749 // The LookupBB is therefore re-purposed to do the hole check 4750 // and we create a new LookupBB. 4751 BasicBlock *MaskBB = LookupBB; 4752 MaskBB->setName("switch.hole_check"); 4753 LookupBB = BasicBlock::Create(Mod.getContext(), 4754 "switch.lookup", 4755 CommonDest->getParent(), 4756 CommonDest); 4757 4758 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 4759 // unnecessary illegal types. 4760 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 4761 APInt MaskInt(TableSizePowOf2, 0); 4762 APInt One(TableSizePowOf2, 1); 4763 // Build bitmask; fill in a 1 bit for every case. 4764 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4765 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4766 uint64_t Idx = (ResultList[I].first->getValue() - 4767 MinCaseVal->getValue()).getLimitedValue(); 4768 MaskInt |= One << Idx; 4769 } 4770 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4771 4772 // Get the TableIndex'th bit of the bitmask. 4773 // If this bit is 0 (meaning hole) jump to the default destination, 4774 // else continue with table lookup. 4775 IntegerType *MapTy = TableMask->getType(); 4776 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 4777 "switch.maskindex"); 4778 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 4779 "switch.shifted"); 4780 Value *LoBit = Builder.CreateTrunc(Shifted, 4781 Type::getInt1Ty(Mod.getContext()), 4782 "switch.lobit"); 4783 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4784 4785 Builder.SetInsertPoint(LookupBB); 4786 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4787 } 4788 4789 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4790 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 4791 // do not delete PHINodes here. 4792 SI->getDefaultDest()->removePredecessor(SI->getParent(), 4793 /*DontDeleteUselessPHIs=*/true); 4794 } 4795 4796 bool ReturnedEarly = false; 4797 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4798 PHINode *PHI = PHIs[I]; 4799 const ResultListTy &ResultList = ResultLists[PHI]; 4800 4801 // If using a bitmask, use any value to fill the lookup table holes. 4802 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 4803 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 4804 4805 Value *Result = Table.BuildLookup(TableIndex, Builder); 4806 4807 // If the result is used to return immediately from the function, we want to 4808 // do that right here. 4809 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 4810 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 4811 Builder.CreateRet(Result); 4812 ReturnedEarly = true; 4813 break; 4814 } 4815 4816 // Do a small peephole optimization: re-use the switch table compare if 4817 // possible. 4818 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 4819 BasicBlock *PhiBlock = PHI->getParent(); 4820 // Search for compare instructions which use the phi. 4821 for (auto *User : PHI->users()) { 4822 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 4823 } 4824 } 4825 4826 PHI->addIncoming(Result, LookupBB); 4827 } 4828 4829 if (!ReturnedEarly) 4830 Builder.CreateBr(CommonDest); 4831 4832 // Remove the switch. 4833 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4834 BasicBlock *Succ = SI->getSuccessor(i); 4835 4836 if (Succ == SI->getDefaultDest()) 4837 continue; 4838 Succ->removePredecessor(SI->getParent()); 4839 } 4840 SI->eraseFromParent(); 4841 4842 ++NumLookupTables; 4843 if (NeedMask) 4844 ++NumLookupTablesHoles; 4845 return true; 4846 } 4847 4848 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 4849 BasicBlock *BB = SI->getParent(); 4850 4851 if (isValueEqualityComparison(SI)) { 4852 // If we only have one predecessor, and if it is a branch on this value, 4853 // see if that predecessor totally determines the outcome of this switch. 4854 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4855 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 4856 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4857 4858 Value *Cond = SI->getCondition(); 4859 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 4860 if (SimplifySwitchOnSelect(SI, Select)) 4861 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4862 4863 // If the block only contains the switch, see if we can fold the block 4864 // away into any preds. 4865 BasicBlock::iterator BBI = BB->begin(); 4866 // Ignore dbg intrinsics. 4867 while (isa<DbgInfoIntrinsic>(BBI)) 4868 ++BBI; 4869 if (SI == &*BBI) 4870 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 4871 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4872 } 4873 4874 // Try to transform the switch into an icmp and a branch. 4875 if (TurnSwitchRangeIntoICmp(SI, Builder)) 4876 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4877 4878 // Remove unreachable cases. 4879 if (EliminateDeadSwitchCases(SI, AC, DL)) 4880 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4881 4882 if (SwitchToSelect(SI, Builder, AC, DL)) 4883 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4884 4885 if (ForwardSwitchConditionToPHI(SI)) 4886 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4887 4888 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 4889 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4890 4891 return false; 4892 } 4893 4894 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 4895 BasicBlock *BB = IBI->getParent(); 4896 bool Changed = false; 4897 4898 // Eliminate redundant destinations. 4899 SmallPtrSet<Value *, 8> Succs; 4900 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 4901 BasicBlock *Dest = IBI->getDestination(i); 4902 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 4903 Dest->removePredecessor(BB); 4904 IBI->removeDestination(i); 4905 --i; --e; 4906 Changed = true; 4907 } 4908 } 4909 4910 if (IBI->getNumDestinations() == 0) { 4911 // If the indirectbr has no successors, change it to unreachable. 4912 new UnreachableInst(IBI->getContext(), IBI); 4913 EraseTerminatorInstAndDCECond(IBI); 4914 return true; 4915 } 4916 4917 if (IBI->getNumDestinations() == 1) { 4918 // If the indirectbr has one successor, change it to a direct branch. 4919 BranchInst::Create(IBI->getDestination(0), IBI); 4920 EraseTerminatorInstAndDCECond(IBI); 4921 return true; 4922 } 4923 4924 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 4925 if (SimplifyIndirectBrOnSelect(IBI, SI)) 4926 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4927 } 4928 return Changed; 4929 } 4930 4931 /// Given an block with only a single landing pad and a unconditional branch 4932 /// try to find another basic block which this one can be merged with. This 4933 /// handles cases where we have multiple invokes with unique landing pads, but 4934 /// a shared handler. 4935 /// 4936 /// We specifically choose to not worry about merging non-empty blocks 4937 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 4938 /// practice, the optimizer produces empty landing pad blocks quite frequently 4939 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 4940 /// sinking in this file) 4941 /// 4942 /// This is primarily a code size optimization. We need to avoid performing 4943 /// any transform which might inhibit optimization (such as our ability to 4944 /// specialize a particular handler via tail commoning). We do this by not 4945 /// merging any blocks which require us to introduce a phi. Since the same 4946 /// values are flowing through both blocks, we don't loose any ability to 4947 /// specialize. If anything, we make such specialization more likely. 4948 /// 4949 /// TODO - This transformation could remove entries from a phi in the target 4950 /// block when the inputs in the phi are the same for the two blocks being 4951 /// merged. In some cases, this could result in removal of the PHI entirely. 4952 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 4953 BasicBlock *BB) { 4954 auto Succ = BB->getUniqueSuccessor(); 4955 assert(Succ); 4956 // If there's a phi in the successor block, we'd likely have to introduce 4957 // a phi into the merged landing pad block. 4958 if (isa<PHINode>(*Succ->begin())) 4959 return false; 4960 4961 for (BasicBlock *OtherPred : predecessors(Succ)) { 4962 if (BB == OtherPred) 4963 continue; 4964 BasicBlock::iterator I = OtherPred->begin(); 4965 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 4966 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 4967 continue; 4968 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 4969 BranchInst *BI2 = dyn_cast<BranchInst>(I); 4970 if (!BI2 || !BI2->isIdenticalTo(BI)) 4971 continue; 4972 4973 // We've found an identical block. Update our predeccessors to take that 4974 // path instead and make ourselves dead. 4975 SmallSet<BasicBlock *, 16> Preds; 4976 Preds.insert(pred_begin(BB), pred_end(BB)); 4977 for (BasicBlock *Pred : Preds) { 4978 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 4979 assert(II->getNormalDest() != BB && 4980 II->getUnwindDest() == BB && "unexpected successor"); 4981 II->setUnwindDest(OtherPred); 4982 } 4983 4984 // The debug info in OtherPred doesn't cover the merged control flow that 4985 // used to go through BB. We need to delete it or update it. 4986 for (auto I = OtherPred->begin(), E = OtherPred->end(); 4987 I != E;) { 4988 Instruction &Inst = *I; I++; 4989 if (isa<DbgInfoIntrinsic>(Inst)) 4990 Inst.eraseFromParent(); 4991 } 4992 4993 SmallSet<BasicBlock *, 16> Succs; 4994 Succs.insert(succ_begin(BB), succ_end(BB)); 4995 for (BasicBlock *Succ : Succs) { 4996 Succ->removePredecessor(BB); 4997 } 4998 4999 IRBuilder<> Builder(BI); 5000 Builder.CreateUnreachable(); 5001 BI->eraseFromParent(); 5002 return true; 5003 } 5004 return false; 5005 } 5006 5007 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 5008 BasicBlock *BB = BI->getParent(); 5009 5010 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5011 return true; 5012 5013 // If the Terminator is the only non-phi instruction, simplify the block. 5014 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5015 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5016 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5017 return true; 5018 5019 // If the only instruction in the block is a seteq/setne comparison 5020 // against a constant, try to simplify the block. 5021 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5022 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5023 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5024 ; 5025 if (I->isTerminator() && 5026 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5027 BonusInstThreshold, AC)) 5028 return true; 5029 } 5030 5031 // See if we can merge an empty landing pad block with another which is 5032 // equivalent. 5033 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5034 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 5035 if (I->isTerminator() && 5036 TryToMergeLandingPad(LPad, BI, BB)) 5037 return true; 5038 } 5039 5040 // If this basic block is ONLY a compare and a branch, and if a predecessor 5041 // branches to us and our successor, fold the comparison into the 5042 // predecessor and use logical operations to update the incoming value 5043 // for PHI nodes in common successor. 5044 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5045 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5046 return false; 5047 } 5048 5049 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5050 BasicBlock *PredPred = nullptr; 5051 for (auto *P : predecessors(BB)) { 5052 BasicBlock *PPred = P->getSinglePredecessor(); 5053 if (!PPred || (PredPred && PredPred != PPred)) 5054 return nullptr; 5055 PredPred = PPred; 5056 } 5057 return PredPred; 5058 } 5059 5060 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5061 BasicBlock *BB = BI->getParent(); 5062 5063 // Conditional branch 5064 if (isValueEqualityComparison(BI)) { 5065 // If we only have one predecessor, and if it is a branch on this value, 5066 // see if that predecessor totally determines the outcome of this 5067 // switch. 5068 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5069 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5070 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5071 5072 // This block must be empty, except for the setcond inst, if it exists. 5073 // Ignore dbg intrinsics. 5074 BasicBlock::iterator I = BB->begin(); 5075 // Ignore dbg intrinsics. 5076 while (isa<DbgInfoIntrinsic>(I)) 5077 ++I; 5078 if (&*I == BI) { 5079 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5080 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5081 } else if (&*I == cast<Instruction>(BI->getCondition())){ 5082 ++I; 5083 // Ignore dbg intrinsics. 5084 while (isa<DbgInfoIntrinsic>(I)) 5085 ++I; 5086 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5087 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5088 } 5089 } 5090 5091 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5092 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5093 return true; 5094 5095 // If this basic block is ONLY a compare and a branch, and if a predecessor 5096 // branches to us and one of our successors, fold the comparison into the 5097 // predecessor and use logical operations to pick the right destination. 5098 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5099 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5100 5101 // We have a conditional branch to two blocks that are only reachable 5102 // from BI. We know that the condbr dominates the two blocks, so see if 5103 // there is any identical code in the "then" and "else" blocks. If so, we 5104 // can hoist it up to the branching block. 5105 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5106 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5107 if (HoistThenElseCodeToIf(BI, TTI)) 5108 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5109 } else { 5110 // If Successor #1 has multiple preds, we may be able to conditionally 5111 // execute Successor #0 if it branches to Successor #1. 5112 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5113 if (Succ0TI->getNumSuccessors() == 1 && 5114 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5115 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5116 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5117 } 5118 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5119 // If Successor #0 has multiple preds, we may be able to conditionally 5120 // execute Successor #1 if it branches to Successor #0. 5121 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5122 if (Succ1TI->getNumSuccessors() == 1 && 5123 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5124 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5125 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5126 } 5127 5128 // If this is a branch on a phi node in the current block, thread control 5129 // through this block if any PHI node entries are constants. 5130 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5131 if (PN->getParent() == BI->getParent()) 5132 if (FoldCondBranchOnPHI(BI, DL)) 5133 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5134 5135 // Scan predecessor blocks for conditional branches. 5136 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5137 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5138 if (PBI != BI && PBI->isConditional()) 5139 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5140 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5141 5142 // Look for diamond patterns. 5143 if (MergeCondStores) 5144 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5145 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5146 if (PBI != BI && PBI->isConditional()) 5147 if (mergeConditionalStores(PBI, BI)) 5148 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5149 5150 return false; 5151 } 5152 5153 /// Check if passing a value to an instruction will cause undefined behavior. 5154 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5155 Constant *C = dyn_cast<Constant>(V); 5156 if (!C) 5157 return false; 5158 5159 if (I->use_empty()) 5160 return false; 5161 5162 if (C->isNullValue()) { 5163 // Only look at the first use, avoid hurting compile time with long uselists 5164 User *Use = *I->user_begin(); 5165 5166 // Now make sure that there are no instructions in between that can alter 5167 // control flow (eg. calls) 5168 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 5169 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5170 return false; 5171 5172 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5173 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5174 if (GEP->getPointerOperand() == I) 5175 return passingValueIsAlwaysUndefined(V, GEP); 5176 5177 // Look through bitcasts. 5178 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5179 return passingValueIsAlwaysUndefined(V, BC); 5180 5181 // Load from null is undefined. 5182 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5183 if (!LI->isVolatile()) 5184 return LI->getPointerAddressSpace() == 0; 5185 5186 // Store to null is undefined. 5187 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5188 if (!SI->isVolatile()) 5189 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 5190 } 5191 return false; 5192 } 5193 5194 /// If BB has an incoming value that will always trigger undefined behavior 5195 /// (eg. null pointer dereference), remove the branch leading here. 5196 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5197 for (BasicBlock::iterator i = BB->begin(); 5198 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5199 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5200 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5201 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5202 IRBuilder<> Builder(T); 5203 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5204 BB->removePredecessor(PHI->getIncomingBlock(i)); 5205 // Turn uncoditional branches into unreachables and remove the dead 5206 // destination from conditional branches. 5207 if (BI->isUnconditional()) 5208 Builder.CreateUnreachable(); 5209 else 5210 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 5211 BI->getSuccessor(0)); 5212 BI->eraseFromParent(); 5213 return true; 5214 } 5215 // TODO: SwitchInst. 5216 } 5217 5218 return false; 5219 } 5220 5221 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5222 bool Changed = false; 5223 5224 assert(BB && BB->getParent() && "Block not embedded in function!"); 5225 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5226 5227 // Remove basic blocks that have no predecessors (except the entry block)... 5228 // or that just have themself as a predecessor. These are unreachable. 5229 if ((pred_empty(BB) && 5230 BB != &BB->getParent()->getEntryBlock()) || 5231 BB->getSinglePredecessor() == BB) { 5232 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5233 DeleteDeadBlock(BB); 5234 return true; 5235 } 5236 5237 // Check to see if we can constant propagate this terminator instruction 5238 // away... 5239 Changed |= ConstantFoldTerminator(BB, true); 5240 5241 // Check for and eliminate duplicate PHI nodes in this block. 5242 Changed |= EliminateDuplicatePHINodes(BB); 5243 5244 // Check for and remove branches that will always cause undefined behavior. 5245 Changed |= removeUndefIntroducingPredecessor(BB); 5246 5247 // Merge basic blocks into their predecessor if there is only one distinct 5248 // pred, and if there is only one distinct successor of the predecessor, and 5249 // if there are no PHI nodes. 5250 // 5251 if (MergeBlockIntoPredecessor(BB)) 5252 return true; 5253 5254 IRBuilder<> Builder(BB); 5255 5256 // If there is a trivial two-entry PHI node in this basic block, and we can 5257 // eliminate it, do so now. 5258 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5259 if (PN->getNumIncomingValues() == 2) 5260 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5261 5262 Builder.SetInsertPoint(BB->getTerminator()); 5263 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5264 if (BI->isUnconditional()) { 5265 if (SimplifyUncondBranch(BI, Builder)) return true; 5266 } else { 5267 if (SimplifyCondBranch(BI, Builder)) return true; 5268 } 5269 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5270 if (SimplifyReturn(RI, Builder)) return true; 5271 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5272 if (SimplifyResume(RI, Builder)) return true; 5273 } else if (CleanupReturnInst *RI = 5274 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5275 if (SimplifyCleanupReturn(RI)) return true; 5276 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5277 if (SimplifySwitch(SI, Builder)) return true; 5278 } else if (UnreachableInst *UI = 5279 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5280 if (SimplifyUnreachable(UI)) return true; 5281 } else if (IndirectBrInst *IBI = 5282 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5283 if (SimplifyIndirectBr(IBI)) return true; 5284 } 5285 5286 return Changed; 5287 } 5288 5289 /// This function is used to do simplification of a CFG. 5290 /// For example, it adjusts branches to branches to eliminate the extra hop, 5291 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5292 /// of the CFG. It returns true if a modification was made. 5293 /// 5294 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5295 unsigned BonusInstThreshold, AssumptionCache *AC) { 5296 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5297 BonusInstThreshold, AC).run(BB); 5298 } 5299