1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/NoFolder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include <algorithm> 47 #include <map> 48 #include <set> 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 #define DEBUG_TYPE "simplifycfg" 53 54 static cl::opt<unsigned> 55 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 56 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 57 58 static cl::opt<bool> 59 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 60 cl::desc("Duplicate return instructions into unconditional branches")); 61 62 static cl::opt<bool> 63 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 64 cl::desc("Sink common instructions down to the end block")); 65 66 static cl::opt<bool> HoistCondStores( 67 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 68 cl::desc("Hoist conditional stores if an unconditional store precedes")); 69 70 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 71 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 72 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 73 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 74 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 75 76 namespace { 77 /// ValueEqualityComparisonCase - Represents a case of a switch. 78 struct ValueEqualityComparisonCase { 79 ConstantInt *Value; 80 BasicBlock *Dest; 81 82 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 83 : Value(Value), Dest(Dest) {} 84 85 bool operator<(ValueEqualityComparisonCase RHS) const { 86 // Comparing pointers is ok as we only rely on the order for uniquing. 87 return Value < RHS.Value; 88 } 89 90 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 91 }; 92 93 class SimplifyCFGOpt { 94 const TargetTransformInfo &TTI; 95 const DataLayout *const DL; 96 Value *isValueEqualityComparison(TerminatorInst *TI); 97 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 98 std::vector<ValueEqualityComparisonCase> &Cases); 99 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 100 BasicBlock *Pred, 101 IRBuilder<> &Builder); 102 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 103 IRBuilder<> &Builder); 104 105 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 106 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 107 bool SimplifyUnreachable(UnreachableInst *UI); 108 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 109 bool SimplifyIndirectBr(IndirectBrInst *IBI); 110 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 111 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 112 113 public: 114 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *DL) 115 : TTI(TTI), DL(DL) {} 116 bool run(BasicBlock *BB); 117 }; 118 } 119 120 /// SafeToMergeTerminators - Return true if it is safe to merge these two 121 /// terminator instructions together. 122 /// 123 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 124 if (SI1 == SI2) return false; // Can't merge with self! 125 126 // It is not safe to merge these two switch instructions if they have a common 127 // successor, and if that successor has a PHI node, and if *that* PHI node has 128 // conflicting incoming values from the two switch blocks. 129 BasicBlock *SI1BB = SI1->getParent(); 130 BasicBlock *SI2BB = SI2->getParent(); 131 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 132 133 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 134 if (SI1Succs.count(*I)) 135 for (BasicBlock::iterator BBI = (*I)->begin(); 136 isa<PHINode>(BBI); ++BBI) { 137 PHINode *PN = cast<PHINode>(BBI); 138 if (PN->getIncomingValueForBlock(SI1BB) != 139 PN->getIncomingValueForBlock(SI2BB)) 140 return false; 141 } 142 143 return true; 144 } 145 146 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 147 /// to merge these two terminator instructions together, where SI1 is an 148 /// unconditional branch. PhiNodes will store all PHI nodes in common 149 /// successors. 150 /// 151 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 152 BranchInst *SI2, 153 Instruction *Cond, 154 SmallVectorImpl<PHINode*> &PhiNodes) { 155 if (SI1 == SI2) return false; // Can't merge with self! 156 assert(SI1->isUnconditional() && SI2->isConditional()); 157 158 // We fold the unconditional branch if we can easily update all PHI nodes in 159 // common successors: 160 // 1> We have a constant incoming value for the conditional branch; 161 // 2> We have "Cond" as the incoming value for the unconditional branch; 162 // 3> SI2->getCondition() and Cond have same operands. 163 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 164 if (!Ci2) return false; 165 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 166 Cond->getOperand(1) == Ci2->getOperand(1)) && 167 !(Cond->getOperand(0) == Ci2->getOperand(1) && 168 Cond->getOperand(1) == Ci2->getOperand(0))) 169 return false; 170 171 BasicBlock *SI1BB = SI1->getParent(); 172 BasicBlock *SI2BB = SI2->getParent(); 173 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 174 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 175 if (SI1Succs.count(*I)) 176 for (BasicBlock::iterator BBI = (*I)->begin(); 177 isa<PHINode>(BBI); ++BBI) { 178 PHINode *PN = cast<PHINode>(BBI); 179 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 180 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 181 return false; 182 PhiNodes.push_back(PN); 183 } 184 return true; 185 } 186 187 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 188 /// now be entries in it from the 'NewPred' block. The values that will be 189 /// flowing into the PHI nodes will be the same as those coming in from 190 /// ExistPred, an existing predecessor of Succ. 191 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 192 BasicBlock *ExistPred) { 193 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 194 195 PHINode *PN; 196 for (BasicBlock::iterator I = Succ->begin(); 197 (PN = dyn_cast<PHINode>(I)); ++I) 198 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 199 } 200 201 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the 202 /// given instruction, which is assumed to be safe to speculate. 1 means 203 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 204 static unsigned ComputeSpeculationCost(const User *I) { 205 assert(isSafeToSpeculativelyExecute(I) && 206 "Instruction is not safe to speculatively execute!"); 207 switch (Operator::getOpcode(I)) { 208 default: 209 // In doubt, be conservative. 210 return UINT_MAX; 211 case Instruction::GetElementPtr: 212 // GEPs are cheap if all indices are constant. 213 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 214 return UINT_MAX; 215 return 1; 216 case Instruction::ExtractValue: 217 case Instruction::Load: 218 case Instruction::Add: 219 case Instruction::Sub: 220 case Instruction::And: 221 case Instruction::Or: 222 case Instruction::Xor: 223 case Instruction::Shl: 224 case Instruction::LShr: 225 case Instruction::AShr: 226 case Instruction::ICmp: 227 case Instruction::Trunc: 228 case Instruction::ZExt: 229 case Instruction::SExt: 230 return 1; // These are all cheap. 231 232 case Instruction::Call: 233 case Instruction::Select: 234 return 2; 235 } 236 } 237 238 /// DominatesMergePoint - If we have a merge point of an "if condition" as 239 /// accepted above, return true if the specified value dominates the block. We 240 /// don't handle the true generality of domination here, just a special case 241 /// which works well enough for us. 242 /// 243 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 244 /// see if V (which must be an instruction) and its recursive operands 245 /// that do not dominate BB have a combined cost lower than CostRemaining and 246 /// are non-trapping. If both are true, the instruction is inserted into the 247 /// set and true is returned. 248 /// 249 /// The cost for most non-trapping instructions is defined as 1 except for 250 /// Select whose cost is 2. 251 /// 252 /// After this function returns, CostRemaining is decreased by the cost of 253 /// V plus its non-dominating operands. If that cost is greater than 254 /// CostRemaining, false is returned and CostRemaining is undefined. 255 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 256 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 257 unsigned &CostRemaining) { 258 Instruction *I = dyn_cast<Instruction>(V); 259 if (!I) { 260 // Non-instructions all dominate instructions, but not all constantexprs 261 // can be executed unconditionally. 262 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 263 if (C->canTrap()) 264 return false; 265 return true; 266 } 267 BasicBlock *PBB = I->getParent(); 268 269 // We don't want to allow weird loops that might have the "if condition" in 270 // the bottom of this block. 271 if (PBB == BB) return false; 272 273 // If this instruction is defined in a block that contains an unconditional 274 // branch to BB, then it must be in the 'conditional' part of the "if 275 // statement". If not, it definitely dominates the region. 276 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 277 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 278 return true; 279 280 // If we aren't allowing aggressive promotion anymore, then don't consider 281 // instructions in the 'if region'. 282 if (!AggressiveInsts) return false; 283 284 // If we have seen this instruction before, don't count it again. 285 if (AggressiveInsts->count(I)) return true; 286 287 // Okay, it looks like the instruction IS in the "condition". Check to 288 // see if it's a cheap instruction to unconditionally compute, and if it 289 // only uses stuff defined outside of the condition. If so, hoist it out. 290 if (!isSafeToSpeculativelyExecute(I)) 291 return false; 292 293 unsigned Cost = ComputeSpeculationCost(I); 294 295 if (Cost > CostRemaining) 296 return false; 297 298 CostRemaining -= Cost; 299 300 // Okay, we can only really hoist these out if their operands do 301 // not take us over the cost threshold. 302 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 303 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 304 return false; 305 // Okay, it's safe to do this! Remember this instruction. 306 AggressiveInsts->insert(I); 307 return true; 308 } 309 310 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 311 /// and PointerNullValue. Return NULL if value is not a constant int. 312 static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) { 313 // Normal constant int. 314 ConstantInt *CI = dyn_cast<ConstantInt>(V); 315 if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy()) 316 return CI; 317 318 // This is some kind of pointer constant. Turn it into a pointer-sized 319 // ConstantInt if possible. 320 IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType())); 321 322 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 323 if (isa<ConstantPointerNull>(V)) 324 return ConstantInt::get(PtrTy, 0); 325 326 // IntToPtr const int. 327 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 328 if (CE->getOpcode() == Instruction::IntToPtr) 329 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 330 // The constant is very likely to have the right type already. 331 if (CI->getType() == PtrTy) 332 return CI; 333 else 334 return cast<ConstantInt> 335 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 336 } 337 return nullptr; 338 } 339 340 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 341 /// collection of icmp eq/ne instructions that compare a value against a 342 /// constant, return the value being compared, and stick the constant into the 343 /// Values vector. 344 static Value * 345 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 346 const DataLayout *DL, bool isEQ, unsigned &UsedICmps) { 347 Instruction *I = dyn_cast<Instruction>(V); 348 if (!I) return nullptr; 349 350 // If this is an icmp against a constant, handle this as one of the cases. 351 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 352 if (ConstantInt *C = GetConstantInt(I->getOperand(1), DL)) { 353 Value *RHSVal; 354 ConstantInt *RHSC; 355 356 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 357 // (x & ~2^x) == y --> x == y || x == y|2^x 358 // This undoes a transformation done by instcombine to fuse 2 compares. 359 if (match(ICI->getOperand(0), 360 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 361 APInt Not = ~RHSC->getValue(); 362 if (Not.isPowerOf2()) { 363 Vals.push_back(C); 364 Vals.push_back( 365 ConstantInt::get(C->getContext(), C->getValue() | Not)); 366 UsedICmps++; 367 return RHSVal; 368 } 369 } 370 371 UsedICmps++; 372 Vals.push_back(C); 373 return I->getOperand(0); 374 } 375 376 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 377 // the set. 378 ConstantRange Span = 379 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 380 381 // Shift the range if the compare is fed by an add. This is the range 382 // compare idiom as emitted by instcombine. 383 bool hasAdd = 384 match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC))); 385 if (hasAdd) 386 Span = Span.subtract(RHSC->getValue()); 387 388 // If this is an and/!= check then we want to optimize "x ugt 2" into 389 // x != 0 && x != 1. 390 if (!isEQ) 391 Span = Span.inverse(); 392 393 // If there are a ton of values, we don't want to make a ginormous switch. 394 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) 395 return nullptr; 396 397 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 398 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 399 UsedICmps++; 400 return hasAdd ? RHSVal : I->getOperand(0); 401 } 402 return nullptr; 403 } 404 405 // Otherwise, we can only handle an | or &, depending on isEQ. 406 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 407 return nullptr; 408 409 unsigned NumValsBeforeLHS = Vals.size(); 410 unsigned UsedICmpsBeforeLHS = UsedICmps; 411 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, DL, 412 isEQ, UsedICmps)) { 413 unsigned NumVals = Vals.size(); 414 unsigned UsedICmpsBeforeRHS = UsedICmps; 415 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL, 416 isEQ, UsedICmps)) { 417 if (LHS == RHS) 418 return LHS; 419 Vals.resize(NumVals); 420 UsedICmps = UsedICmpsBeforeRHS; 421 } 422 423 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 424 // set it and return success. 425 if (Extra == nullptr || Extra == I->getOperand(1)) { 426 Extra = I->getOperand(1); 427 return LHS; 428 } 429 430 Vals.resize(NumValsBeforeLHS); 431 UsedICmps = UsedICmpsBeforeLHS; 432 return nullptr; 433 } 434 435 // If the LHS can't be folded in, but Extra is available and RHS can, try to 436 // use LHS as Extra. 437 if (Extra == nullptr || Extra == I->getOperand(0)) { 438 Value *OldExtra = Extra; 439 Extra = I->getOperand(0); 440 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL, 441 isEQ, UsedICmps)) 442 return RHS; 443 assert(Vals.size() == NumValsBeforeLHS); 444 Extra = OldExtra; 445 } 446 447 return nullptr; 448 } 449 450 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 451 Instruction *Cond = nullptr; 452 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 453 Cond = dyn_cast<Instruction>(SI->getCondition()); 454 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 455 if (BI->isConditional()) 456 Cond = dyn_cast<Instruction>(BI->getCondition()); 457 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 458 Cond = dyn_cast<Instruction>(IBI->getAddress()); 459 } 460 461 TI->eraseFromParent(); 462 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 463 } 464 465 /// isValueEqualityComparison - Return true if the specified terminator checks 466 /// to see if a value is equal to constant integer value. 467 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 468 Value *CV = nullptr; 469 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 470 // Do not permit merging of large switch instructions into their 471 // predecessors unless there is only one predecessor. 472 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 473 pred_end(SI->getParent())) <= 128) 474 CV = SI->getCondition(); 475 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 476 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 477 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 478 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 479 CV = ICI->getOperand(0); 480 481 // Unwrap any lossless ptrtoint cast. 482 if (DL && CV) { 483 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 484 Value *Ptr = PTII->getPointerOperand(); 485 if (PTII->getType() == DL->getIntPtrType(Ptr->getType())) 486 CV = Ptr; 487 } 488 } 489 return CV; 490 } 491 492 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 493 /// decode all of the 'cases' that it represents and return the 'default' block. 494 BasicBlock *SimplifyCFGOpt:: 495 GetValueEqualityComparisonCases(TerminatorInst *TI, 496 std::vector<ValueEqualityComparisonCase> 497 &Cases) { 498 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 499 Cases.reserve(SI->getNumCases()); 500 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 501 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 502 i.getCaseSuccessor())); 503 return SI->getDefaultDest(); 504 } 505 506 BranchInst *BI = cast<BranchInst>(TI); 507 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 508 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 509 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 510 DL), 511 Succ)); 512 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 513 } 514 515 516 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 517 /// in the list that match the specified block. 518 static void EliminateBlockCases(BasicBlock *BB, 519 std::vector<ValueEqualityComparisonCase> &Cases) { 520 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 521 } 522 523 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 524 /// well. 525 static bool 526 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 527 std::vector<ValueEqualityComparisonCase > &C2) { 528 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 529 530 // Make V1 be smaller than V2. 531 if (V1->size() > V2->size()) 532 std::swap(V1, V2); 533 534 if (V1->size() == 0) return false; 535 if (V1->size() == 1) { 536 // Just scan V2. 537 ConstantInt *TheVal = (*V1)[0].Value; 538 for (unsigned i = 0, e = V2->size(); i != e; ++i) 539 if (TheVal == (*V2)[i].Value) 540 return true; 541 } 542 543 // Otherwise, just sort both lists and compare element by element. 544 array_pod_sort(V1->begin(), V1->end()); 545 array_pod_sort(V2->begin(), V2->end()); 546 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 547 while (i1 != e1 && i2 != e2) { 548 if ((*V1)[i1].Value == (*V2)[i2].Value) 549 return true; 550 if ((*V1)[i1].Value < (*V2)[i2].Value) 551 ++i1; 552 else 553 ++i2; 554 } 555 return false; 556 } 557 558 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 559 /// terminator instruction and its block is known to only have a single 560 /// predecessor block, check to see if that predecessor is also a value 561 /// comparison with the same value, and if that comparison determines the 562 /// outcome of this comparison. If so, simplify TI. This does a very limited 563 /// form of jump threading. 564 bool SimplifyCFGOpt:: 565 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 566 BasicBlock *Pred, 567 IRBuilder<> &Builder) { 568 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 569 if (!PredVal) return false; // Not a value comparison in predecessor. 570 571 Value *ThisVal = isValueEqualityComparison(TI); 572 assert(ThisVal && "This isn't a value comparison!!"); 573 if (ThisVal != PredVal) return false; // Different predicates. 574 575 // TODO: Preserve branch weight metadata, similarly to how 576 // FoldValueComparisonIntoPredecessors preserves it. 577 578 // Find out information about when control will move from Pred to TI's block. 579 std::vector<ValueEqualityComparisonCase> PredCases; 580 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 581 PredCases); 582 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 583 584 // Find information about how control leaves this block. 585 std::vector<ValueEqualityComparisonCase> ThisCases; 586 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 587 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 588 589 // If TI's block is the default block from Pred's comparison, potentially 590 // simplify TI based on this knowledge. 591 if (PredDef == TI->getParent()) { 592 // If we are here, we know that the value is none of those cases listed in 593 // PredCases. If there are any cases in ThisCases that are in PredCases, we 594 // can simplify TI. 595 if (!ValuesOverlap(PredCases, ThisCases)) 596 return false; 597 598 if (isa<BranchInst>(TI)) { 599 // Okay, one of the successors of this condbr is dead. Convert it to a 600 // uncond br. 601 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 602 // Insert the new branch. 603 Instruction *NI = Builder.CreateBr(ThisDef); 604 (void) NI; 605 606 // Remove PHI node entries for the dead edge. 607 ThisCases[0].Dest->removePredecessor(TI->getParent()); 608 609 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 610 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 611 612 EraseTerminatorInstAndDCECond(TI); 613 return true; 614 } 615 616 SwitchInst *SI = cast<SwitchInst>(TI); 617 // Okay, TI has cases that are statically dead, prune them away. 618 SmallPtrSet<Constant*, 16> DeadCases; 619 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 620 DeadCases.insert(PredCases[i].Value); 621 622 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 623 << "Through successor TI: " << *TI); 624 625 // Collect branch weights into a vector. 626 SmallVector<uint32_t, 8> Weights; 627 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 628 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 629 if (HasWeight) 630 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 631 ++MD_i) { 632 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 633 assert(CI); 634 Weights.push_back(CI->getValue().getZExtValue()); 635 } 636 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 637 --i; 638 if (DeadCases.count(i.getCaseValue())) { 639 if (HasWeight) { 640 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 641 Weights.pop_back(); 642 } 643 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 644 SI->removeCase(i); 645 } 646 } 647 if (HasWeight && Weights.size() >= 2) 648 SI->setMetadata(LLVMContext::MD_prof, 649 MDBuilder(SI->getParent()->getContext()). 650 createBranchWeights(Weights)); 651 652 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 653 return true; 654 } 655 656 // Otherwise, TI's block must correspond to some matched value. Find out 657 // which value (or set of values) this is. 658 ConstantInt *TIV = nullptr; 659 BasicBlock *TIBB = TI->getParent(); 660 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 661 if (PredCases[i].Dest == TIBB) { 662 if (TIV) 663 return false; // Cannot handle multiple values coming to this block. 664 TIV = PredCases[i].Value; 665 } 666 assert(TIV && "No edge from pred to succ?"); 667 668 // Okay, we found the one constant that our value can be if we get into TI's 669 // BB. Find out which successor will unconditionally be branched to. 670 BasicBlock *TheRealDest = nullptr; 671 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 672 if (ThisCases[i].Value == TIV) { 673 TheRealDest = ThisCases[i].Dest; 674 break; 675 } 676 677 // If not handled by any explicit cases, it is handled by the default case. 678 if (!TheRealDest) TheRealDest = ThisDef; 679 680 // Remove PHI node entries for dead edges. 681 BasicBlock *CheckEdge = TheRealDest; 682 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 683 if (*SI != CheckEdge) 684 (*SI)->removePredecessor(TIBB); 685 else 686 CheckEdge = nullptr; 687 688 // Insert the new branch. 689 Instruction *NI = Builder.CreateBr(TheRealDest); 690 (void) NI; 691 692 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 693 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 694 695 EraseTerminatorInstAndDCECond(TI); 696 return true; 697 } 698 699 namespace { 700 /// ConstantIntOrdering - This class implements a stable ordering of constant 701 /// integers that does not depend on their address. This is important for 702 /// applications that sort ConstantInt's to ensure uniqueness. 703 struct ConstantIntOrdering { 704 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 705 return LHS->getValue().ult(RHS->getValue()); 706 } 707 }; 708 } 709 710 static int ConstantIntSortPredicate(ConstantInt *const *P1, 711 ConstantInt *const *P2) { 712 const ConstantInt *LHS = *P1; 713 const ConstantInt *RHS = *P2; 714 if (LHS->getValue().ult(RHS->getValue())) 715 return 1; 716 if (LHS->getValue() == RHS->getValue()) 717 return 0; 718 return -1; 719 } 720 721 static inline bool HasBranchWeights(const Instruction* I) { 722 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof); 723 if (ProfMD && ProfMD->getOperand(0)) 724 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 725 return MDS->getString().equals("branch_weights"); 726 727 return false; 728 } 729 730 /// Get Weights of a given TerminatorInst, the default weight is at the front 731 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 732 /// metadata. 733 static void GetBranchWeights(TerminatorInst *TI, 734 SmallVectorImpl<uint64_t> &Weights) { 735 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof); 736 assert(MD); 737 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 738 ConstantInt *CI = cast<ConstantInt>(MD->getOperand(i)); 739 Weights.push_back(CI->getValue().getZExtValue()); 740 } 741 742 // If TI is a conditional eq, the default case is the false case, 743 // and the corresponding branch-weight data is at index 2. We swap the 744 // default weight to be the first entry. 745 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 746 assert(Weights.size() == 2); 747 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 748 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 749 std::swap(Weights.front(), Weights.back()); 750 } 751 } 752 753 /// Keep halving the weights until all can fit in uint32_t. 754 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 755 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 756 if (Max > UINT_MAX) { 757 unsigned Offset = 32 - countLeadingZeros(Max); 758 for (uint64_t &I : Weights) 759 I >>= Offset; 760 } 761 } 762 763 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 764 /// equality comparison instruction (either a switch or a branch on "X == c"). 765 /// See if any of the predecessors of the terminator block are value comparisons 766 /// on the same value. If so, and if safe to do so, fold them together. 767 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 768 IRBuilder<> &Builder) { 769 BasicBlock *BB = TI->getParent(); 770 Value *CV = isValueEqualityComparison(TI); // CondVal 771 assert(CV && "Not a comparison?"); 772 bool Changed = false; 773 774 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 775 while (!Preds.empty()) { 776 BasicBlock *Pred = Preds.pop_back_val(); 777 778 // See if the predecessor is a comparison with the same value. 779 TerminatorInst *PTI = Pred->getTerminator(); 780 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 781 782 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 783 // Figure out which 'cases' to copy from SI to PSI. 784 std::vector<ValueEqualityComparisonCase> BBCases; 785 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 786 787 std::vector<ValueEqualityComparisonCase> PredCases; 788 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 789 790 // Based on whether the default edge from PTI goes to BB or not, fill in 791 // PredCases and PredDefault with the new switch cases we would like to 792 // build. 793 SmallVector<BasicBlock*, 8> NewSuccessors; 794 795 // Update the branch weight metadata along the way 796 SmallVector<uint64_t, 8> Weights; 797 bool PredHasWeights = HasBranchWeights(PTI); 798 bool SuccHasWeights = HasBranchWeights(TI); 799 800 if (PredHasWeights) { 801 GetBranchWeights(PTI, Weights); 802 // branch-weight metadata is inconsistent here. 803 if (Weights.size() != 1 + PredCases.size()) 804 PredHasWeights = SuccHasWeights = false; 805 } else if (SuccHasWeights) 806 // If there are no predecessor weights but there are successor weights, 807 // populate Weights with 1, which will later be scaled to the sum of 808 // successor's weights 809 Weights.assign(1 + PredCases.size(), 1); 810 811 SmallVector<uint64_t, 8> SuccWeights; 812 if (SuccHasWeights) { 813 GetBranchWeights(TI, SuccWeights); 814 // branch-weight metadata is inconsistent here. 815 if (SuccWeights.size() != 1 + BBCases.size()) 816 PredHasWeights = SuccHasWeights = false; 817 } else if (PredHasWeights) 818 SuccWeights.assign(1 + BBCases.size(), 1); 819 820 if (PredDefault == BB) { 821 // If this is the default destination from PTI, only the edges in TI 822 // that don't occur in PTI, or that branch to BB will be activated. 823 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 824 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 825 if (PredCases[i].Dest != BB) 826 PTIHandled.insert(PredCases[i].Value); 827 else { 828 // The default destination is BB, we don't need explicit targets. 829 std::swap(PredCases[i], PredCases.back()); 830 831 if (PredHasWeights || SuccHasWeights) { 832 // Increase weight for the default case. 833 Weights[0] += Weights[i+1]; 834 std::swap(Weights[i+1], Weights.back()); 835 Weights.pop_back(); 836 } 837 838 PredCases.pop_back(); 839 --i; --e; 840 } 841 842 // Reconstruct the new switch statement we will be building. 843 if (PredDefault != BBDefault) { 844 PredDefault->removePredecessor(Pred); 845 PredDefault = BBDefault; 846 NewSuccessors.push_back(BBDefault); 847 } 848 849 unsigned CasesFromPred = Weights.size(); 850 uint64_t ValidTotalSuccWeight = 0; 851 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 852 if (!PTIHandled.count(BBCases[i].Value) && 853 BBCases[i].Dest != BBDefault) { 854 PredCases.push_back(BBCases[i]); 855 NewSuccessors.push_back(BBCases[i].Dest); 856 if (SuccHasWeights || PredHasWeights) { 857 // The default weight is at index 0, so weight for the ith case 858 // should be at index i+1. Scale the cases from successor by 859 // PredDefaultWeight (Weights[0]). 860 Weights.push_back(Weights[0] * SuccWeights[i+1]); 861 ValidTotalSuccWeight += SuccWeights[i+1]; 862 } 863 } 864 865 if (SuccHasWeights || PredHasWeights) { 866 ValidTotalSuccWeight += SuccWeights[0]; 867 // Scale the cases from predecessor by ValidTotalSuccWeight. 868 for (unsigned i = 1; i < CasesFromPred; ++i) 869 Weights[i] *= ValidTotalSuccWeight; 870 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 871 Weights[0] *= SuccWeights[0]; 872 } 873 } else { 874 // If this is not the default destination from PSI, only the edges 875 // in SI that occur in PSI with a destination of BB will be 876 // activated. 877 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 878 std::map<ConstantInt*, uint64_t> WeightsForHandled; 879 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 880 if (PredCases[i].Dest == BB) { 881 PTIHandled.insert(PredCases[i].Value); 882 883 if (PredHasWeights || SuccHasWeights) { 884 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 885 std::swap(Weights[i+1], Weights.back()); 886 Weights.pop_back(); 887 } 888 889 std::swap(PredCases[i], PredCases.back()); 890 PredCases.pop_back(); 891 --i; --e; 892 } 893 894 // Okay, now we know which constants were sent to BB from the 895 // predecessor. Figure out where they will all go now. 896 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 897 if (PTIHandled.count(BBCases[i].Value)) { 898 // If this is one we are capable of getting... 899 if (PredHasWeights || SuccHasWeights) 900 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 901 PredCases.push_back(BBCases[i]); 902 NewSuccessors.push_back(BBCases[i].Dest); 903 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 904 } 905 906 // If there are any constants vectored to BB that TI doesn't handle, 907 // they must go to the default destination of TI. 908 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 909 PTIHandled.begin(), 910 E = PTIHandled.end(); I != E; ++I) { 911 if (PredHasWeights || SuccHasWeights) 912 Weights.push_back(WeightsForHandled[*I]); 913 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 914 NewSuccessors.push_back(BBDefault); 915 } 916 } 917 918 // Okay, at this point, we know which new successor Pred will get. Make 919 // sure we update the number of entries in the PHI nodes for these 920 // successors. 921 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 922 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 923 924 Builder.SetInsertPoint(PTI); 925 // Convert pointer to int before we switch. 926 if (CV->getType()->isPointerTy()) { 927 assert(DL && "Cannot switch on pointer without DataLayout"); 928 CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()), 929 "magicptr"); 930 } 931 932 // Now that the successors are updated, create the new Switch instruction. 933 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 934 PredCases.size()); 935 NewSI->setDebugLoc(PTI->getDebugLoc()); 936 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 937 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 938 939 if (PredHasWeights || SuccHasWeights) { 940 // Halve the weights if any of them cannot fit in an uint32_t 941 FitWeights(Weights); 942 943 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 944 945 NewSI->setMetadata(LLVMContext::MD_prof, 946 MDBuilder(BB->getContext()). 947 createBranchWeights(MDWeights)); 948 } 949 950 EraseTerminatorInstAndDCECond(PTI); 951 952 // Okay, last check. If BB is still a successor of PSI, then we must 953 // have an infinite loop case. If so, add an infinitely looping block 954 // to handle the case to preserve the behavior of the code. 955 BasicBlock *InfLoopBlock = nullptr; 956 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 957 if (NewSI->getSuccessor(i) == BB) { 958 if (!InfLoopBlock) { 959 // Insert it at the end of the function, because it's either code, 960 // or it won't matter if it's hot. :) 961 InfLoopBlock = BasicBlock::Create(BB->getContext(), 962 "infloop", BB->getParent()); 963 BranchInst::Create(InfLoopBlock, InfLoopBlock); 964 } 965 NewSI->setSuccessor(i, InfLoopBlock); 966 } 967 968 Changed = true; 969 } 970 } 971 return Changed; 972 } 973 974 // isSafeToHoistInvoke - If we would need to insert a select that uses the 975 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 976 // would need to do this), we can't hoist the invoke, as there is nowhere 977 // to put the select in this case. 978 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 979 Instruction *I1, Instruction *I2) { 980 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 981 PHINode *PN; 982 for (BasicBlock::iterator BBI = SI->begin(); 983 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 984 Value *BB1V = PN->getIncomingValueForBlock(BB1); 985 Value *BB2V = PN->getIncomingValueForBlock(BB2); 986 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 987 return false; 988 } 989 } 990 } 991 return true; 992 } 993 994 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 995 /// BB2, hoist any common code in the two blocks up into the branch block. The 996 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 997 static bool HoistThenElseCodeToIf(BranchInst *BI) { 998 // This does very trivial matching, with limited scanning, to find identical 999 // instructions in the two blocks. In particular, we don't want to get into 1000 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1001 // such, we currently just scan for obviously identical instructions in an 1002 // identical order. 1003 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1004 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1005 1006 BasicBlock::iterator BB1_Itr = BB1->begin(); 1007 BasicBlock::iterator BB2_Itr = BB2->begin(); 1008 1009 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1010 // Skip debug info if it is not identical. 1011 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1012 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1013 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1014 while (isa<DbgInfoIntrinsic>(I1)) 1015 I1 = BB1_Itr++; 1016 while (isa<DbgInfoIntrinsic>(I2)) 1017 I2 = BB2_Itr++; 1018 } 1019 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1020 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1021 return false; 1022 1023 BasicBlock *BIParent = BI->getParent(); 1024 1025 bool Changed = false; 1026 do { 1027 // If we are hoisting the terminator instruction, don't move one (making a 1028 // broken BB), instead clone it, and remove BI. 1029 if (isa<TerminatorInst>(I1)) 1030 goto HoistTerminator; 1031 1032 // For a normal instruction, we just move one to right before the branch, 1033 // then replace all uses of the other with the first. Finally, we remove 1034 // the now redundant second instruction. 1035 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1036 if (!I2->use_empty()) 1037 I2->replaceAllUsesWith(I1); 1038 I1->intersectOptionalDataWith(I2); 1039 I2->eraseFromParent(); 1040 Changed = true; 1041 1042 I1 = BB1_Itr++; 1043 I2 = BB2_Itr++; 1044 // Skip debug info if it is not identical. 1045 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1046 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1047 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1048 while (isa<DbgInfoIntrinsic>(I1)) 1049 I1 = BB1_Itr++; 1050 while (isa<DbgInfoIntrinsic>(I2)) 1051 I2 = BB2_Itr++; 1052 } 1053 } while (I1->isIdenticalToWhenDefined(I2)); 1054 1055 return true; 1056 1057 HoistTerminator: 1058 // It may not be possible to hoist an invoke. 1059 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1060 return Changed; 1061 1062 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1063 PHINode *PN; 1064 for (BasicBlock::iterator BBI = SI->begin(); 1065 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1066 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1067 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1068 if (BB1V == BB2V) 1069 continue; 1070 1071 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1072 return Changed; 1073 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1074 return Changed; 1075 } 1076 } 1077 1078 // Okay, it is safe to hoist the terminator. 1079 Instruction *NT = I1->clone(); 1080 BIParent->getInstList().insert(BI, NT); 1081 if (!NT->getType()->isVoidTy()) { 1082 I1->replaceAllUsesWith(NT); 1083 I2->replaceAllUsesWith(NT); 1084 NT->takeName(I1); 1085 } 1086 1087 IRBuilder<true, NoFolder> Builder(NT); 1088 // Hoisting one of the terminators from our successor is a great thing. 1089 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1090 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1091 // nodes, so we insert select instruction to compute the final result. 1092 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1093 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1094 PHINode *PN; 1095 for (BasicBlock::iterator BBI = SI->begin(); 1096 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1097 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1098 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1099 if (BB1V == BB2V) continue; 1100 1101 // These values do not agree. Insert a select instruction before NT 1102 // that determines the right value. 1103 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1104 if (!SI) 1105 SI = cast<SelectInst> 1106 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1107 BB1V->getName()+"."+BB2V->getName())); 1108 1109 // Make the PHI node use the select for all incoming values for BB1/BB2 1110 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1111 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1112 PN->setIncomingValue(i, SI); 1113 } 1114 } 1115 1116 // Update any PHI nodes in our new successors. 1117 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1118 AddPredecessorToBlock(*SI, BIParent, BB1); 1119 1120 EraseTerminatorInstAndDCECond(BI); 1121 return true; 1122 } 1123 1124 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1125 /// check whether BBEnd has only two predecessors and the other predecessor 1126 /// ends with an unconditional branch. If it is true, sink any common code 1127 /// in the two predecessors to BBEnd. 1128 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1129 assert(BI1->isUnconditional()); 1130 BasicBlock *BB1 = BI1->getParent(); 1131 BasicBlock *BBEnd = BI1->getSuccessor(0); 1132 1133 // Check that BBEnd has two predecessors and the other predecessor ends with 1134 // an unconditional branch. 1135 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1136 BasicBlock *Pred0 = *PI++; 1137 if (PI == PE) // Only one predecessor. 1138 return false; 1139 BasicBlock *Pred1 = *PI++; 1140 if (PI != PE) // More than two predecessors. 1141 return false; 1142 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1143 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1144 if (!BI2 || !BI2->isUnconditional()) 1145 return false; 1146 1147 // Gather the PHI nodes in BBEnd. 1148 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2; 1149 Instruction *FirstNonPhiInBBEnd = nullptr; 1150 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); 1151 I != E; ++I) { 1152 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1153 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1154 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1155 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN); 1156 } else { 1157 FirstNonPhiInBBEnd = &*I; 1158 break; 1159 } 1160 } 1161 if (!FirstNonPhiInBBEnd) 1162 return false; 1163 1164 1165 // This does very trivial matching, with limited scanning, to find identical 1166 // instructions in the two blocks. We scan backward for obviously identical 1167 // instructions in an identical order. 1168 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1169 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(), 1170 RE2 = BB2->getInstList().rend(); 1171 // Skip debug info. 1172 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1173 if (RI1 == RE1) 1174 return false; 1175 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1176 if (RI2 == RE2) 1177 return false; 1178 // Skip the unconditional branches. 1179 ++RI1; 1180 ++RI2; 1181 1182 bool Changed = false; 1183 while (RI1 != RE1 && RI2 != RE2) { 1184 // Skip debug info. 1185 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1186 if (RI1 == RE1) 1187 return Changed; 1188 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1189 if (RI2 == RE2) 1190 return Changed; 1191 1192 Instruction *I1 = &*RI1, *I2 = &*RI2; 1193 // I1 and I2 should have a single use in the same PHI node, and they 1194 // perform the same operation. 1195 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1196 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1197 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1198 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1199 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1200 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1201 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1202 !I1->hasOneUse() || !I2->hasOneUse() || 1203 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() || 1204 MapValueFromBB1ToBB2[I1].first != I2) 1205 return Changed; 1206 1207 // Check whether we should swap the operands of ICmpInst. 1208 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1209 bool SwapOpnds = false; 1210 if (ICmp1 && ICmp2 && 1211 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1212 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1213 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1214 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1215 ICmp2->swapOperands(); 1216 SwapOpnds = true; 1217 } 1218 if (!I1->isSameOperationAs(I2)) { 1219 if (SwapOpnds) 1220 ICmp2->swapOperands(); 1221 return Changed; 1222 } 1223 1224 // The operands should be either the same or they need to be generated 1225 // with a PHI node after sinking. We only handle the case where there is 1226 // a single pair of different operands. 1227 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1228 unsigned Op1Idx = 0; 1229 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1230 if (I1->getOperand(I) == I2->getOperand(I)) 1231 continue; 1232 // Early exit if we have more-than one pair of different operands or 1233 // the different operand is already in MapValueFromBB1ToBB2. 1234 // Early exit if we need a PHI node to replace a constant. 1235 if (DifferentOp1 || 1236 MapValueFromBB1ToBB2.find(I1->getOperand(I)) != 1237 MapValueFromBB1ToBB2.end() || 1238 isa<Constant>(I1->getOperand(I)) || 1239 isa<Constant>(I2->getOperand(I))) { 1240 // If we can't sink the instructions, undo the swapping. 1241 if (SwapOpnds) 1242 ICmp2->swapOperands(); 1243 return Changed; 1244 } 1245 DifferentOp1 = I1->getOperand(I); 1246 Op1Idx = I; 1247 DifferentOp2 = I2->getOperand(I); 1248 } 1249 1250 // We insert the pair of different operands to MapValueFromBB1ToBB2 and 1251 // remove (I1, I2) from MapValueFromBB1ToBB2. 1252 if (DifferentOp1) { 1253 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2, 1254 DifferentOp1->getName() + ".sink", 1255 BBEnd->begin()); 1256 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN); 1257 // I1 should use NewPN instead of DifferentOp1. 1258 I1->setOperand(Op1Idx, NewPN); 1259 NewPN->addIncoming(DifferentOp1, BB1); 1260 NewPN->addIncoming(DifferentOp2, BB2); 1261 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1262 } 1263 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second; 1264 MapValueFromBB1ToBB2.erase(I1); 1265 1266 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";); 1267 DEBUG(dbgs() << " " << *I2 << "\n";); 1268 // We need to update RE1 and RE2 if we are going to sink the first 1269 // instruction in the basic block down. 1270 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1271 // Sink the instruction. 1272 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1273 if (!OldPN->use_empty()) 1274 OldPN->replaceAllUsesWith(I1); 1275 OldPN->eraseFromParent(); 1276 1277 if (!I2->use_empty()) 1278 I2->replaceAllUsesWith(I1); 1279 I1->intersectOptionalDataWith(I2); 1280 I2->eraseFromParent(); 1281 1282 if (UpdateRE1) 1283 RE1 = BB1->getInstList().rend(); 1284 if (UpdateRE2) 1285 RE2 = BB2->getInstList().rend(); 1286 FirstNonPhiInBBEnd = I1; 1287 NumSinkCommons++; 1288 Changed = true; 1289 } 1290 return Changed; 1291 } 1292 1293 /// \brief Determine if we can hoist sink a sole store instruction out of a 1294 /// conditional block. 1295 /// 1296 /// We are looking for code like the following: 1297 /// BrBB: 1298 /// store i32 %add, i32* %arrayidx2 1299 /// ... // No other stores or function calls (we could be calling a memory 1300 /// ... // function). 1301 /// %cmp = icmp ult %x, %y 1302 /// br i1 %cmp, label %EndBB, label %ThenBB 1303 /// ThenBB: 1304 /// store i32 %add5, i32* %arrayidx2 1305 /// br label EndBB 1306 /// EndBB: 1307 /// ... 1308 /// We are going to transform this into: 1309 /// BrBB: 1310 /// store i32 %add, i32* %arrayidx2 1311 /// ... // 1312 /// %cmp = icmp ult %x, %y 1313 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1314 /// store i32 %add.add5, i32* %arrayidx2 1315 /// ... 1316 /// 1317 /// \return The pointer to the value of the previous store if the store can be 1318 /// hoisted into the predecessor block. 0 otherwise. 1319 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1320 BasicBlock *StoreBB, BasicBlock *EndBB) { 1321 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1322 if (!StoreToHoist) 1323 return nullptr; 1324 1325 // Volatile or atomic. 1326 if (!StoreToHoist->isSimple()) 1327 return nullptr; 1328 1329 Value *StorePtr = StoreToHoist->getPointerOperand(); 1330 1331 // Look for a store to the same pointer in BrBB. 1332 unsigned MaxNumInstToLookAt = 10; 1333 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1334 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1335 Instruction *CurI = &*RI; 1336 1337 // Could be calling an instruction that effects memory like free(). 1338 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1339 return nullptr; 1340 1341 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1342 // Found the previous store make sure it stores to the same location. 1343 if (SI && SI->getPointerOperand() == StorePtr) 1344 // Found the previous store, return its value operand. 1345 return SI->getValueOperand(); 1346 else if (SI) 1347 return nullptr; // Unknown store. 1348 } 1349 1350 return nullptr; 1351 } 1352 1353 /// \brief Speculate a conditional basic block flattening the CFG. 1354 /// 1355 /// Note that this is a very risky transform currently. Speculating 1356 /// instructions like this is most often not desirable. Instead, there is an MI 1357 /// pass which can do it with full awareness of the resource constraints. 1358 /// However, some cases are "obvious" and we should do directly. An example of 1359 /// this is speculating a single, reasonably cheap instruction. 1360 /// 1361 /// There is only one distinct advantage to flattening the CFG at the IR level: 1362 /// it makes very common but simplistic optimizations such as are common in 1363 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1364 /// modeling their effects with easier to reason about SSA value graphs. 1365 /// 1366 /// 1367 /// An illustration of this transform is turning this IR: 1368 /// \code 1369 /// BB: 1370 /// %cmp = icmp ult %x, %y 1371 /// br i1 %cmp, label %EndBB, label %ThenBB 1372 /// ThenBB: 1373 /// %sub = sub %x, %y 1374 /// br label BB2 1375 /// EndBB: 1376 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1377 /// ... 1378 /// \endcode 1379 /// 1380 /// Into this IR: 1381 /// \code 1382 /// BB: 1383 /// %cmp = icmp ult %x, %y 1384 /// %sub = sub %x, %y 1385 /// %cond = select i1 %cmp, 0, %sub 1386 /// ... 1387 /// \endcode 1388 /// 1389 /// \returns true if the conditional block is removed. 1390 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) { 1391 // Be conservative for now. FP select instruction can often be expensive. 1392 Value *BrCond = BI->getCondition(); 1393 if (isa<FCmpInst>(BrCond)) 1394 return false; 1395 1396 BasicBlock *BB = BI->getParent(); 1397 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1398 1399 // If ThenBB is actually on the false edge of the conditional branch, remember 1400 // to swap the select operands later. 1401 bool Invert = false; 1402 if (ThenBB != BI->getSuccessor(0)) { 1403 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1404 Invert = true; 1405 } 1406 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1407 1408 // Keep a count of how many times instructions are used within CondBB when 1409 // they are candidates for sinking into CondBB. Specifically: 1410 // - They are defined in BB, and 1411 // - They have no side effects, and 1412 // - All of their uses are in CondBB. 1413 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1414 1415 unsigned SpeculationCost = 0; 1416 Value *SpeculatedStoreValue = nullptr; 1417 StoreInst *SpeculatedStore = nullptr; 1418 for (BasicBlock::iterator BBI = ThenBB->begin(), 1419 BBE = std::prev(ThenBB->end()); 1420 BBI != BBE; ++BBI) { 1421 Instruction *I = BBI; 1422 // Skip debug info. 1423 if (isa<DbgInfoIntrinsic>(I)) 1424 continue; 1425 1426 // Only speculatively execution a single instruction (not counting the 1427 // terminator) for now. 1428 ++SpeculationCost; 1429 if (SpeculationCost > 1) 1430 return false; 1431 1432 // Don't hoist the instruction if it's unsafe or expensive. 1433 if (!isSafeToSpeculativelyExecute(I) && 1434 !(HoistCondStores && 1435 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB, 1436 EndBB)))) 1437 return false; 1438 if (!SpeculatedStoreValue && 1439 ComputeSpeculationCost(I) > PHINodeFoldingThreshold) 1440 return false; 1441 1442 // Store the store speculation candidate. 1443 if (SpeculatedStoreValue) 1444 SpeculatedStore = cast<StoreInst>(I); 1445 1446 // Do not hoist the instruction if any of its operands are defined but not 1447 // used in BB. The transformation will prevent the operand from 1448 // being sunk into the use block. 1449 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1450 i != e; ++i) { 1451 Instruction *OpI = dyn_cast<Instruction>(*i); 1452 if (!OpI || OpI->getParent() != BB || 1453 OpI->mayHaveSideEffects()) 1454 continue; // Not a candidate for sinking. 1455 1456 ++SinkCandidateUseCounts[OpI]; 1457 } 1458 } 1459 1460 // Consider any sink candidates which are only used in CondBB as costs for 1461 // speculation. Note, while we iterate over a DenseMap here, we are summing 1462 // and so iteration order isn't significant. 1463 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1464 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1465 I != E; ++I) 1466 if (I->first->getNumUses() == I->second) { 1467 ++SpeculationCost; 1468 if (SpeculationCost > 1) 1469 return false; 1470 } 1471 1472 // Check that the PHI nodes can be converted to selects. 1473 bool HaveRewritablePHIs = false; 1474 for (BasicBlock::iterator I = EndBB->begin(); 1475 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1476 Value *OrigV = PN->getIncomingValueForBlock(BB); 1477 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1478 1479 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1480 // Skip PHIs which are trivial. 1481 if (ThenV == OrigV) 1482 continue; 1483 1484 HaveRewritablePHIs = true; 1485 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1486 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1487 if (!OrigCE && !ThenCE) 1488 continue; // Known safe and cheap. 1489 1490 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1491 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1492 return false; 1493 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE) : 0; 1494 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE) : 0; 1495 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold) 1496 return false; 1497 1498 // Account for the cost of an unfolded ConstantExpr which could end up 1499 // getting expanded into Instructions. 1500 // FIXME: This doesn't account for how many operations are combined in the 1501 // constant expression. 1502 ++SpeculationCost; 1503 if (SpeculationCost > 1) 1504 return false; 1505 } 1506 1507 // If there are no PHIs to process, bail early. This helps ensure idempotence 1508 // as well. 1509 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1510 return false; 1511 1512 // If we get here, we can hoist the instruction and if-convert. 1513 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1514 1515 // Insert a select of the value of the speculated store. 1516 if (SpeculatedStoreValue) { 1517 IRBuilder<true, NoFolder> Builder(BI); 1518 Value *TrueV = SpeculatedStore->getValueOperand(); 1519 Value *FalseV = SpeculatedStoreValue; 1520 if (Invert) 1521 std::swap(TrueV, FalseV); 1522 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1523 "." + FalseV->getName()); 1524 SpeculatedStore->setOperand(0, S); 1525 } 1526 1527 // Hoist the instructions. 1528 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(), 1529 std::prev(ThenBB->end())); 1530 1531 // Insert selects and rewrite the PHI operands. 1532 IRBuilder<true, NoFolder> Builder(BI); 1533 for (BasicBlock::iterator I = EndBB->begin(); 1534 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1535 unsigned OrigI = PN->getBasicBlockIndex(BB); 1536 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1537 Value *OrigV = PN->getIncomingValue(OrigI); 1538 Value *ThenV = PN->getIncomingValue(ThenI); 1539 1540 // Skip PHIs which are trivial. 1541 if (OrigV == ThenV) 1542 continue; 1543 1544 // Create a select whose true value is the speculatively executed value and 1545 // false value is the preexisting value. Swap them if the branch 1546 // destinations were inverted. 1547 Value *TrueV = ThenV, *FalseV = OrigV; 1548 if (Invert) 1549 std::swap(TrueV, FalseV); 1550 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1551 TrueV->getName() + "." + FalseV->getName()); 1552 PN->setIncomingValue(OrigI, V); 1553 PN->setIncomingValue(ThenI, V); 1554 } 1555 1556 ++NumSpeculations; 1557 return true; 1558 } 1559 1560 /// \returns True if this block contains a CallInst with the NoDuplicate 1561 /// attribute. 1562 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1563 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1564 const CallInst *CI = dyn_cast<CallInst>(I); 1565 if (!CI) 1566 continue; 1567 if (CI->cannotDuplicate()) 1568 return true; 1569 } 1570 return false; 1571 } 1572 1573 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1574 /// across this block. 1575 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1576 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1577 unsigned Size = 0; 1578 1579 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1580 if (isa<DbgInfoIntrinsic>(BBI)) 1581 continue; 1582 if (Size > 10) return false; // Don't clone large BB's. 1583 ++Size; 1584 1585 // We can only support instructions that do not define values that are 1586 // live outside of the current basic block. 1587 for (User *U : BBI->users()) { 1588 Instruction *UI = cast<Instruction>(U); 1589 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1590 } 1591 1592 // Looks ok, continue checking. 1593 } 1594 1595 return true; 1596 } 1597 1598 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1599 /// that is defined in the same block as the branch and if any PHI entries are 1600 /// constants, thread edges corresponding to that entry to be branches to their 1601 /// ultimate destination. 1602 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) { 1603 BasicBlock *BB = BI->getParent(); 1604 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1605 // NOTE: we currently cannot transform this case if the PHI node is used 1606 // outside of the block. 1607 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1608 return false; 1609 1610 // Degenerate case of a single entry PHI. 1611 if (PN->getNumIncomingValues() == 1) { 1612 FoldSingleEntryPHINodes(PN->getParent()); 1613 return true; 1614 } 1615 1616 // Now we know that this block has multiple preds and two succs. 1617 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1618 1619 if (HasNoDuplicateCall(BB)) return false; 1620 1621 // Okay, this is a simple enough basic block. See if any phi values are 1622 // constants. 1623 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1624 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1625 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1626 1627 // Okay, we now know that all edges from PredBB should be revectored to 1628 // branch to RealDest. 1629 BasicBlock *PredBB = PN->getIncomingBlock(i); 1630 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1631 1632 if (RealDest == BB) continue; // Skip self loops. 1633 // Skip if the predecessor's terminator is an indirect branch. 1634 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1635 1636 // The dest block might have PHI nodes, other predecessors and other 1637 // difficult cases. Instead of being smart about this, just insert a new 1638 // block that jumps to the destination block, effectively splitting 1639 // the edge we are about to create. 1640 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1641 RealDest->getName()+".critedge", 1642 RealDest->getParent(), RealDest); 1643 BranchInst::Create(RealDest, EdgeBB); 1644 1645 // Update PHI nodes. 1646 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1647 1648 // BB may have instructions that are being threaded over. Clone these 1649 // instructions into EdgeBB. We know that there will be no uses of the 1650 // cloned instructions outside of EdgeBB. 1651 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1652 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1653 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1654 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1655 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1656 continue; 1657 } 1658 // Clone the instruction. 1659 Instruction *N = BBI->clone(); 1660 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1661 1662 // Update operands due to translation. 1663 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1664 i != e; ++i) { 1665 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1666 if (PI != TranslateMap.end()) 1667 *i = PI->second; 1668 } 1669 1670 // Check for trivial simplification. 1671 if (Value *V = SimplifyInstruction(N, DL)) { 1672 TranslateMap[BBI] = V; 1673 delete N; // Instruction folded away, don't need actual inst 1674 } else { 1675 // Insert the new instruction into its new home. 1676 EdgeBB->getInstList().insert(InsertPt, N); 1677 if (!BBI->use_empty()) 1678 TranslateMap[BBI] = N; 1679 } 1680 } 1681 1682 // Loop over all of the edges from PredBB to BB, changing them to branch 1683 // to EdgeBB instead. 1684 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1685 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1686 if (PredBBTI->getSuccessor(i) == BB) { 1687 BB->removePredecessor(PredBB); 1688 PredBBTI->setSuccessor(i, EdgeBB); 1689 } 1690 1691 // Recurse, simplifying any other constants. 1692 return FoldCondBranchOnPHI(BI, DL) | true; 1693 } 1694 1695 return false; 1696 } 1697 1698 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1699 /// PHI node, see if we can eliminate it. 1700 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) { 1701 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1702 // statement", which has a very simple dominance structure. Basically, we 1703 // are trying to find the condition that is being branched on, which 1704 // subsequently causes this merge to happen. We really want control 1705 // dependence information for this check, but simplifycfg can't keep it up 1706 // to date, and this catches most of the cases we care about anyway. 1707 BasicBlock *BB = PN->getParent(); 1708 BasicBlock *IfTrue, *IfFalse; 1709 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1710 if (!IfCond || 1711 // Don't bother if the branch will be constant folded trivially. 1712 isa<ConstantInt>(IfCond)) 1713 return false; 1714 1715 // Okay, we found that we can merge this two-entry phi node into a select. 1716 // Doing so would require us to fold *all* two entry phi nodes in this block. 1717 // At some point this becomes non-profitable (particularly if the target 1718 // doesn't support cmov's). Only do this transformation if there are two or 1719 // fewer PHI nodes in this block. 1720 unsigned NumPhis = 0; 1721 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1722 if (NumPhis > 2) 1723 return false; 1724 1725 // Loop over the PHI's seeing if we can promote them all to select 1726 // instructions. While we are at it, keep track of the instructions 1727 // that need to be moved to the dominating block. 1728 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1729 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1730 MaxCostVal1 = PHINodeFoldingThreshold; 1731 1732 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1733 PHINode *PN = cast<PHINode>(II++); 1734 if (Value *V = SimplifyInstruction(PN, DL)) { 1735 PN->replaceAllUsesWith(V); 1736 PN->eraseFromParent(); 1737 continue; 1738 } 1739 1740 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1741 MaxCostVal0) || 1742 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1743 MaxCostVal1)) 1744 return false; 1745 } 1746 1747 // If we folded the first phi, PN dangles at this point. Refresh it. If 1748 // we ran out of PHIs then we simplified them all. 1749 PN = dyn_cast<PHINode>(BB->begin()); 1750 if (!PN) return true; 1751 1752 // Don't fold i1 branches on PHIs which contain binary operators. These can 1753 // often be turned into switches and other things. 1754 if (PN->getType()->isIntegerTy(1) && 1755 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1756 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1757 isa<BinaryOperator>(IfCond))) 1758 return false; 1759 1760 // If we all PHI nodes are promotable, check to make sure that all 1761 // instructions in the predecessor blocks can be promoted as well. If 1762 // not, we won't be able to get rid of the control flow, so it's not 1763 // worth promoting to select instructions. 1764 BasicBlock *DomBlock = nullptr; 1765 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1766 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1767 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1768 IfBlock1 = nullptr; 1769 } else { 1770 DomBlock = *pred_begin(IfBlock1); 1771 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1772 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1773 // This is not an aggressive instruction that we can promote. 1774 // Because of this, we won't be able to get rid of the control 1775 // flow, so the xform is not worth it. 1776 return false; 1777 } 1778 } 1779 1780 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1781 IfBlock2 = nullptr; 1782 } else { 1783 DomBlock = *pred_begin(IfBlock2); 1784 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1785 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1786 // This is not an aggressive instruction that we can promote. 1787 // Because of this, we won't be able to get rid of the control 1788 // flow, so the xform is not worth it. 1789 return false; 1790 } 1791 } 1792 1793 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1794 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1795 1796 // If we can still promote the PHI nodes after this gauntlet of tests, 1797 // do all of the PHI's now. 1798 Instruction *InsertPt = DomBlock->getTerminator(); 1799 IRBuilder<true, NoFolder> Builder(InsertPt); 1800 1801 // Move all 'aggressive' instructions, which are defined in the 1802 // conditional parts of the if's up to the dominating block. 1803 if (IfBlock1) 1804 DomBlock->getInstList().splice(InsertPt, 1805 IfBlock1->getInstList(), IfBlock1->begin(), 1806 IfBlock1->getTerminator()); 1807 if (IfBlock2) 1808 DomBlock->getInstList().splice(InsertPt, 1809 IfBlock2->getInstList(), IfBlock2->begin(), 1810 IfBlock2->getTerminator()); 1811 1812 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1813 // Change the PHI node into a select instruction. 1814 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1815 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1816 1817 SelectInst *NV = 1818 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1819 PN->replaceAllUsesWith(NV); 1820 NV->takeName(PN); 1821 PN->eraseFromParent(); 1822 } 1823 1824 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1825 // has been flattened. Change DomBlock to jump directly to our new block to 1826 // avoid other simplifycfg's kicking in on the diamond. 1827 TerminatorInst *OldTI = DomBlock->getTerminator(); 1828 Builder.SetInsertPoint(OldTI); 1829 Builder.CreateBr(BB); 1830 OldTI->eraseFromParent(); 1831 return true; 1832 } 1833 1834 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1835 /// to two returning blocks, try to merge them together into one return, 1836 /// introducing a select if the return values disagree. 1837 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1838 IRBuilder<> &Builder) { 1839 assert(BI->isConditional() && "Must be a conditional branch"); 1840 BasicBlock *TrueSucc = BI->getSuccessor(0); 1841 BasicBlock *FalseSucc = BI->getSuccessor(1); 1842 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1843 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1844 1845 // Check to ensure both blocks are empty (just a return) or optionally empty 1846 // with PHI nodes. If there are other instructions, merging would cause extra 1847 // computation on one path or the other. 1848 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1849 return false; 1850 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1851 return false; 1852 1853 Builder.SetInsertPoint(BI); 1854 // Okay, we found a branch that is going to two return nodes. If 1855 // there is no return value for this function, just change the 1856 // branch into a return. 1857 if (FalseRet->getNumOperands() == 0) { 1858 TrueSucc->removePredecessor(BI->getParent()); 1859 FalseSucc->removePredecessor(BI->getParent()); 1860 Builder.CreateRetVoid(); 1861 EraseTerminatorInstAndDCECond(BI); 1862 return true; 1863 } 1864 1865 // Otherwise, figure out what the true and false return values are 1866 // so we can insert a new select instruction. 1867 Value *TrueValue = TrueRet->getReturnValue(); 1868 Value *FalseValue = FalseRet->getReturnValue(); 1869 1870 // Unwrap any PHI nodes in the return blocks. 1871 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1872 if (TVPN->getParent() == TrueSucc) 1873 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1874 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1875 if (FVPN->getParent() == FalseSucc) 1876 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1877 1878 // In order for this transformation to be safe, we must be able to 1879 // unconditionally execute both operands to the return. This is 1880 // normally the case, but we could have a potentially-trapping 1881 // constant expression that prevents this transformation from being 1882 // safe. 1883 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1884 if (TCV->canTrap()) 1885 return false; 1886 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1887 if (FCV->canTrap()) 1888 return false; 1889 1890 // Okay, we collected all the mapped values and checked them for sanity, and 1891 // defined to really do this transformation. First, update the CFG. 1892 TrueSucc->removePredecessor(BI->getParent()); 1893 FalseSucc->removePredecessor(BI->getParent()); 1894 1895 // Insert select instructions where needed. 1896 Value *BrCond = BI->getCondition(); 1897 if (TrueValue) { 1898 // Insert a select if the results differ. 1899 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1900 } else if (isa<UndefValue>(TrueValue)) { 1901 TrueValue = FalseValue; 1902 } else { 1903 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1904 FalseValue, "retval"); 1905 } 1906 } 1907 1908 Value *RI = !TrueValue ? 1909 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1910 1911 (void) RI; 1912 1913 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1914 << "\n " << *BI << "NewRet = " << *RI 1915 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1916 1917 EraseTerminatorInstAndDCECond(BI); 1918 1919 return true; 1920 } 1921 1922 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 1923 /// probabilities of the branch taking each edge. Fills in the two APInt 1924 /// parameters and return true, or returns false if no or invalid metadata was 1925 /// found. 1926 static bool ExtractBranchMetadata(BranchInst *BI, 1927 uint64_t &ProbTrue, uint64_t &ProbFalse) { 1928 assert(BI->isConditional() && 1929 "Looking for probabilities on unconditional branch?"); 1930 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 1931 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 1932 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1)); 1933 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2)); 1934 if (!CITrue || !CIFalse) return false; 1935 ProbTrue = CITrue->getValue().getZExtValue(); 1936 ProbFalse = CIFalse->getValue().getZExtValue(); 1937 return true; 1938 } 1939 1940 /// checkCSEInPredecessor - Return true if the given instruction is available 1941 /// in its predecessor block. If yes, the instruction will be removed. 1942 /// 1943 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 1944 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 1945 return false; 1946 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 1947 Instruction *PBI = &*I; 1948 // Check whether Inst and PBI generate the same value. 1949 if (Inst->isIdenticalTo(PBI)) { 1950 Inst->replaceAllUsesWith(PBI); 1951 Inst->eraseFromParent(); 1952 return true; 1953 } 1954 } 1955 return false; 1956 } 1957 1958 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1959 /// predecessor branches to us and one of our successors, fold the block into 1960 /// the predecessor and use logical operations to pick the right destination. 1961 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 1962 BasicBlock *BB = BI->getParent(); 1963 1964 Instruction *Cond = nullptr; 1965 if (BI->isConditional()) 1966 Cond = dyn_cast<Instruction>(BI->getCondition()); 1967 else { 1968 // For unconditional branch, check for a simple CFG pattern, where 1969 // BB has a single predecessor and BB's successor is also its predecessor's 1970 // successor. If such pattern exisits, check for CSE between BB and its 1971 // predecessor. 1972 if (BasicBlock *PB = BB->getSinglePredecessor()) 1973 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 1974 if (PBI->isConditional() && 1975 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 1976 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 1977 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 1978 I != E; ) { 1979 Instruction *Curr = I++; 1980 if (isa<CmpInst>(Curr)) { 1981 Cond = Curr; 1982 break; 1983 } 1984 // Quit if we can't remove this instruction. 1985 if (!checkCSEInPredecessor(Curr, PB)) 1986 return false; 1987 } 1988 } 1989 1990 if (!Cond) 1991 return false; 1992 } 1993 1994 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 1995 Cond->getParent() != BB || !Cond->hasOneUse()) 1996 return false; 1997 1998 // Only allow this if the condition is a simple instruction that can be 1999 // executed unconditionally. It must be in the same block as the branch, and 2000 // must be at the front of the block. 2001 BasicBlock::iterator FrontIt = BB->front(); 2002 2003 // Ignore dbg intrinsics. 2004 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2005 2006 // Allow a single instruction to be hoisted in addition to the compare 2007 // that feeds the branch. We later ensure that any values that _it_ uses 2008 // were also live in the predecessor, so that we don't unnecessarily create 2009 // register pressure or inhibit out-of-order execution. 2010 Instruction *BonusInst = nullptr; 2011 if (&*FrontIt != Cond && 2012 FrontIt->hasOneUse() && FrontIt->user_back() == Cond && 2013 isSafeToSpeculativelyExecute(FrontIt)) { 2014 BonusInst = &*FrontIt; 2015 ++FrontIt; 2016 2017 // Ignore dbg intrinsics. 2018 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2019 } 2020 2021 // Only a single bonus inst is allowed. 2022 if (&*FrontIt != Cond) 2023 return false; 2024 2025 // Make sure the instruction after the condition is the cond branch. 2026 BasicBlock::iterator CondIt = Cond; ++CondIt; 2027 2028 // Ingore dbg intrinsics. 2029 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2030 2031 if (&*CondIt != BI) 2032 return false; 2033 2034 // Cond is known to be a compare or binary operator. Check to make sure that 2035 // neither operand is a potentially-trapping constant expression. 2036 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2037 if (CE->canTrap()) 2038 return false; 2039 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2040 if (CE->canTrap()) 2041 return false; 2042 2043 // Finally, don't infinitely unroll conditional loops. 2044 BasicBlock *TrueDest = BI->getSuccessor(0); 2045 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2046 if (TrueDest == BB || FalseDest == BB) 2047 return false; 2048 2049 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2050 BasicBlock *PredBlock = *PI; 2051 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2052 2053 // Check that we have two conditional branches. If there is a PHI node in 2054 // the common successor, verify that the same value flows in from both 2055 // blocks. 2056 SmallVector<PHINode*, 4> PHIs; 2057 if (!PBI || PBI->isUnconditional() || 2058 (BI->isConditional() && 2059 !SafeToMergeTerminators(BI, PBI)) || 2060 (!BI->isConditional() && 2061 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2062 continue; 2063 2064 // Determine if the two branches share a common destination. 2065 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2066 bool InvertPredCond = false; 2067 2068 if (BI->isConditional()) { 2069 if (PBI->getSuccessor(0) == TrueDest) 2070 Opc = Instruction::Or; 2071 else if (PBI->getSuccessor(1) == FalseDest) 2072 Opc = Instruction::And; 2073 else if (PBI->getSuccessor(0) == FalseDest) 2074 Opc = Instruction::And, InvertPredCond = true; 2075 else if (PBI->getSuccessor(1) == TrueDest) 2076 Opc = Instruction::Or, InvertPredCond = true; 2077 else 2078 continue; 2079 } else { 2080 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2081 continue; 2082 } 2083 2084 // Ensure that any values used in the bonus instruction are also used 2085 // by the terminator of the predecessor. This means that those values 2086 // must already have been resolved, so we won't be inhibiting the 2087 // out-of-order core by speculating them earlier. We also allow 2088 // instructions that are used by the terminator's condition because it 2089 // exposes more merging opportunities. 2090 bool UsedByBranch = (BonusInst && BonusInst->hasOneUse() && 2091 BonusInst->user_back() == Cond); 2092 2093 if (BonusInst && !UsedByBranch) { 2094 // Collect the values used by the bonus inst 2095 SmallPtrSet<Value*, 4> UsedValues; 2096 for (Instruction::op_iterator OI = BonusInst->op_begin(), 2097 OE = BonusInst->op_end(); OI != OE; ++OI) { 2098 Value *V = *OI; 2099 if (!isa<Constant>(V) && !isa<Argument>(V)) 2100 UsedValues.insert(V); 2101 } 2102 2103 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 2104 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 2105 2106 // Walk up to four levels back up the use-def chain of the predecessor's 2107 // terminator to see if all those values were used. The choice of four 2108 // levels is arbitrary, to provide a compile-time-cost bound. 2109 while (!Worklist.empty()) { 2110 std::pair<Value*, unsigned> Pair = Worklist.back(); 2111 Worklist.pop_back(); 2112 2113 if (Pair.second >= 4) continue; 2114 UsedValues.erase(Pair.first); 2115 if (UsedValues.empty()) break; 2116 2117 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 2118 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 2119 OI != OE; ++OI) 2120 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 2121 } 2122 } 2123 2124 if (!UsedValues.empty()) return false; 2125 } 2126 2127 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2128 IRBuilder<> Builder(PBI); 2129 2130 // If we need to invert the condition in the pred block to match, do so now. 2131 if (InvertPredCond) { 2132 Value *NewCond = PBI->getCondition(); 2133 2134 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2135 CmpInst *CI = cast<CmpInst>(NewCond); 2136 CI->setPredicate(CI->getInversePredicate()); 2137 } else { 2138 NewCond = Builder.CreateNot(NewCond, 2139 PBI->getCondition()->getName()+".not"); 2140 } 2141 2142 PBI->setCondition(NewCond); 2143 PBI->swapSuccessors(); 2144 } 2145 2146 // If we have a bonus inst, clone it into the predecessor block. 2147 Instruction *NewBonus = nullptr; 2148 if (BonusInst) { 2149 NewBonus = BonusInst->clone(); 2150 2151 // If we moved a load, we cannot any longer claim any knowledge about 2152 // its potential value. The previous information might have been valid 2153 // only given the branch precondition. 2154 // For an analogous reason, we must also drop all the metadata whose 2155 // semantics we don't understand. 2156 NewBonus->dropUnknownMetadata(LLVMContext::MD_dbg); 2157 2158 PredBlock->getInstList().insert(PBI, NewBonus); 2159 NewBonus->takeName(BonusInst); 2160 BonusInst->setName(BonusInst->getName()+".old"); 2161 } 2162 2163 // Clone Cond into the predecessor basic block, and or/and the 2164 // two conditions together. 2165 Instruction *New = Cond->clone(); 2166 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 2167 PredBlock->getInstList().insert(PBI, New); 2168 New->takeName(Cond); 2169 Cond->setName(New->getName()+".old"); 2170 2171 if (BI->isConditional()) { 2172 Instruction *NewCond = 2173 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2174 New, "or.cond")); 2175 PBI->setCondition(NewCond); 2176 2177 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2178 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2179 PredFalseWeight); 2180 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2181 SuccFalseWeight); 2182 SmallVector<uint64_t, 8> NewWeights; 2183 2184 if (PBI->getSuccessor(0) == BB) { 2185 if (PredHasWeights && SuccHasWeights) { 2186 // PBI: br i1 %x, BB, FalseDest 2187 // BI: br i1 %y, TrueDest, FalseDest 2188 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2189 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2190 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2191 // TrueWeight for PBI * FalseWeight for BI. 2192 // We assume that total weights of a BranchInst can fit into 32 bits. 2193 // Therefore, we will not have overflow using 64-bit arithmetic. 2194 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2195 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2196 } 2197 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2198 PBI->setSuccessor(0, TrueDest); 2199 } 2200 if (PBI->getSuccessor(1) == BB) { 2201 if (PredHasWeights && SuccHasWeights) { 2202 // PBI: br i1 %x, TrueDest, BB 2203 // BI: br i1 %y, TrueDest, FalseDest 2204 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2205 // FalseWeight for PBI * TrueWeight for BI. 2206 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2207 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2208 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2209 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2210 } 2211 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2212 PBI->setSuccessor(1, FalseDest); 2213 } 2214 if (NewWeights.size() == 2) { 2215 // Halve the weights if any of them cannot fit in an uint32_t 2216 FitWeights(NewWeights); 2217 2218 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2219 PBI->setMetadata(LLVMContext::MD_prof, 2220 MDBuilder(BI->getContext()). 2221 createBranchWeights(MDWeights)); 2222 } else 2223 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2224 } else { 2225 // Update PHI nodes in the common successors. 2226 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2227 ConstantInt *PBI_C = cast<ConstantInt>( 2228 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2229 assert(PBI_C->getType()->isIntegerTy(1)); 2230 Instruction *MergedCond = nullptr; 2231 if (PBI->getSuccessor(0) == TrueDest) { 2232 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2233 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2234 // is false: !PBI_Cond and BI_Value 2235 Instruction *NotCond = 2236 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2237 "not.cond")); 2238 MergedCond = 2239 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2240 NotCond, New, 2241 "and.cond")); 2242 if (PBI_C->isOne()) 2243 MergedCond = 2244 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2245 PBI->getCondition(), MergedCond, 2246 "or.cond")); 2247 } else { 2248 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2249 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2250 // is false: PBI_Cond and BI_Value 2251 MergedCond = 2252 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2253 PBI->getCondition(), New, 2254 "and.cond")); 2255 if (PBI_C->isOne()) { 2256 Instruction *NotCond = 2257 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2258 "not.cond")); 2259 MergedCond = 2260 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2261 NotCond, MergedCond, 2262 "or.cond")); 2263 } 2264 } 2265 // Update PHI Node. 2266 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2267 MergedCond); 2268 } 2269 // Change PBI from Conditional to Unconditional. 2270 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2271 EraseTerminatorInstAndDCECond(PBI); 2272 PBI = New_PBI; 2273 } 2274 2275 // TODO: If BB is reachable from all paths through PredBlock, then we 2276 // could replace PBI's branch probabilities with BI's. 2277 2278 // Copy any debug value intrinsics into the end of PredBlock. 2279 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2280 if (isa<DbgInfoIntrinsic>(*I)) 2281 I->clone()->insertBefore(PBI); 2282 2283 return true; 2284 } 2285 return false; 2286 } 2287 2288 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2289 /// predecessor of another block, this function tries to simplify it. We know 2290 /// that PBI and BI are both conditional branches, and BI is in one of the 2291 /// successor blocks of PBI - PBI branches to BI. 2292 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2293 assert(PBI->isConditional() && BI->isConditional()); 2294 BasicBlock *BB = BI->getParent(); 2295 2296 // If this block ends with a branch instruction, and if there is a 2297 // predecessor that ends on a branch of the same condition, make 2298 // this conditional branch redundant. 2299 if (PBI->getCondition() == BI->getCondition() && 2300 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2301 // Okay, the outcome of this conditional branch is statically 2302 // knowable. If this block had a single pred, handle specially. 2303 if (BB->getSinglePredecessor()) { 2304 // Turn this into a branch on constant. 2305 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2306 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2307 CondIsTrue)); 2308 return true; // Nuke the branch on constant. 2309 } 2310 2311 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2312 // in the constant and simplify the block result. Subsequent passes of 2313 // simplifycfg will thread the block. 2314 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2315 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2316 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2317 std::distance(PB, PE), 2318 BI->getCondition()->getName() + ".pr", 2319 BB->begin()); 2320 // Okay, we're going to insert the PHI node. Since PBI is not the only 2321 // predecessor, compute the PHI'd conditional value for all of the preds. 2322 // Any predecessor where the condition is not computable we keep symbolic. 2323 for (pred_iterator PI = PB; PI != PE; ++PI) { 2324 BasicBlock *P = *PI; 2325 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2326 PBI != BI && PBI->isConditional() && 2327 PBI->getCondition() == BI->getCondition() && 2328 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2329 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2330 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2331 CondIsTrue), P); 2332 } else { 2333 NewPN->addIncoming(BI->getCondition(), P); 2334 } 2335 } 2336 2337 BI->setCondition(NewPN); 2338 return true; 2339 } 2340 } 2341 2342 // If this is a conditional branch in an empty block, and if any 2343 // predecessors is a conditional branch to one of our destinations, 2344 // fold the conditions into logical ops and one cond br. 2345 BasicBlock::iterator BBI = BB->begin(); 2346 // Ignore dbg intrinsics. 2347 while (isa<DbgInfoIntrinsic>(BBI)) 2348 ++BBI; 2349 if (&*BBI != BI) 2350 return false; 2351 2352 2353 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2354 if (CE->canTrap()) 2355 return false; 2356 2357 int PBIOp, BIOp; 2358 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2359 PBIOp = BIOp = 0; 2360 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2361 PBIOp = 0, BIOp = 1; 2362 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2363 PBIOp = 1, BIOp = 0; 2364 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2365 PBIOp = BIOp = 1; 2366 else 2367 return false; 2368 2369 // Check to make sure that the other destination of this branch 2370 // isn't BB itself. If so, this is an infinite loop that will 2371 // keep getting unwound. 2372 if (PBI->getSuccessor(PBIOp) == BB) 2373 return false; 2374 2375 // Do not perform this transformation if it would require 2376 // insertion of a large number of select instructions. For targets 2377 // without predication/cmovs, this is a big pessimization. 2378 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2379 2380 unsigned NumPhis = 0; 2381 for (BasicBlock::iterator II = CommonDest->begin(); 2382 isa<PHINode>(II); ++II, ++NumPhis) 2383 if (NumPhis > 2) // Disable this xform. 2384 return false; 2385 2386 // Finally, if everything is ok, fold the branches to logical ops. 2387 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2388 2389 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2390 << "AND: " << *BI->getParent()); 2391 2392 2393 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2394 // branch in it, where one edge (OtherDest) goes back to itself but the other 2395 // exits. We don't *know* that the program avoids the infinite loop 2396 // (even though that seems likely). If we do this xform naively, we'll end up 2397 // recursively unpeeling the loop. Since we know that (after the xform is 2398 // done) that the block *is* infinite if reached, we just make it an obviously 2399 // infinite loop with no cond branch. 2400 if (OtherDest == BB) { 2401 // Insert it at the end of the function, because it's either code, 2402 // or it won't matter if it's hot. :) 2403 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2404 "infloop", BB->getParent()); 2405 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2406 OtherDest = InfLoopBlock; 2407 } 2408 2409 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2410 2411 // BI may have other predecessors. Because of this, we leave 2412 // it alone, but modify PBI. 2413 2414 // Make sure we get to CommonDest on True&True directions. 2415 Value *PBICond = PBI->getCondition(); 2416 IRBuilder<true, NoFolder> Builder(PBI); 2417 if (PBIOp) 2418 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2419 2420 Value *BICond = BI->getCondition(); 2421 if (BIOp) 2422 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2423 2424 // Merge the conditions. 2425 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2426 2427 // Modify PBI to branch on the new condition to the new dests. 2428 PBI->setCondition(Cond); 2429 PBI->setSuccessor(0, CommonDest); 2430 PBI->setSuccessor(1, OtherDest); 2431 2432 // Update branch weight for PBI. 2433 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2434 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2435 PredFalseWeight); 2436 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2437 SuccFalseWeight); 2438 if (PredHasWeights && SuccHasWeights) { 2439 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2440 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2441 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2442 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2443 // The weight to CommonDest should be PredCommon * SuccTotal + 2444 // PredOther * SuccCommon. 2445 // The weight to OtherDest should be PredOther * SuccOther. 2446 SmallVector<uint64_t, 2> NewWeights; 2447 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2448 PredOther * SuccCommon); 2449 NewWeights.push_back(PredOther * SuccOther); 2450 // Halve the weights if any of them cannot fit in an uint32_t 2451 FitWeights(NewWeights); 2452 2453 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2454 PBI->setMetadata(LLVMContext::MD_prof, 2455 MDBuilder(BI->getContext()). 2456 createBranchWeights(MDWeights)); 2457 } 2458 2459 // OtherDest may have phi nodes. If so, add an entry from PBI's 2460 // block that are identical to the entries for BI's block. 2461 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2462 2463 // We know that the CommonDest already had an edge from PBI to 2464 // it. If it has PHIs though, the PHIs may have different 2465 // entries for BB and PBI's BB. If so, insert a select to make 2466 // them agree. 2467 PHINode *PN; 2468 for (BasicBlock::iterator II = CommonDest->begin(); 2469 (PN = dyn_cast<PHINode>(II)); ++II) { 2470 Value *BIV = PN->getIncomingValueForBlock(BB); 2471 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2472 Value *PBIV = PN->getIncomingValue(PBBIdx); 2473 if (BIV != PBIV) { 2474 // Insert a select in PBI to pick the right value. 2475 Value *NV = cast<SelectInst> 2476 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2477 PN->setIncomingValue(PBBIdx, NV); 2478 } 2479 } 2480 2481 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2482 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2483 2484 // This basic block is probably dead. We know it has at least 2485 // one fewer predecessor. 2486 return true; 2487 } 2488 2489 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2490 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2491 // Takes care of updating the successors and removing the old terminator. 2492 // Also makes sure not to introduce new successors by assuming that edges to 2493 // non-successor TrueBBs and FalseBBs aren't reachable. 2494 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2495 BasicBlock *TrueBB, BasicBlock *FalseBB, 2496 uint32_t TrueWeight, 2497 uint32_t FalseWeight){ 2498 // Remove any superfluous successor edges from the CFG. 2499 // First, figure out which successors to preserve. 2500 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2501 // successor. 2502 BasicBlock *KeepEdge1 = TrueBB; 2503 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2504 2505 // Then remove the rest. 2506 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2507 BasicBlock *Succ = OldTerm->getSuccessor(I); 2508 // Make sure only to keep exactly one copy of each edge. 2509 if (Succ == KeepEdge1) 2510 KeepEdge1 = nullptr; 2511 else if (Succ == KeepEdge2) 2512 KeepEdge2 = nullptr; 2513 else 2514 Succ->removePredecessor(OldTerm->getParent()); 2515 } 2516 2517 IRBuilder<> Builder(OldTerm); 2518 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2519 2520 // Insert an appropriate new terminator. 2521 if (!KeepEdge1 && !KeepEdge2) { 2522 if (TrueBB == FalseBB) 2523 // We were only looking for one successor, and it was present. 2524 // Create an unconditional branch to it. 2525 Builder.CreateBr(TrueBB); 2526 else { 2527 // We found both of the successors we were looking for. 2528 // Create a conditional branch sharing the condition of the select. 2529 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2530 if (TrueWeight != FalseWeight) 2531 NewBI->setMetadata(LLVMContext::MD_prof, 2532 MDBuilder(OldTerm->getContext()). 2533 createBranchWeights(TrueWeight, FalseWeight)); 2534 } 2535 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2536 // Neither of the selected blocks were successors, so this 2537 // terminator must be unreachable. 2538 new UnreachableInst(OldTerm->getContext(), OldTerm); 2539 } else { 2540 // One of the selected values was a successor, but the other wasn't. 2541 // Insert an unconditional branch to the one that was found; 2542 // the edge to the one that wasn't must be unreachable. 2543 if (!KeepEdge1) 2544 // Only TrueBB was found. 2545 Builder.CreateBr(TrueBB); 2546 else 2547 // Only FalseBB was found. 2548 Builder.CreateBr(FalseBB); 2549 } 2550 2551 EraseTerminatorInstAndDCECond(OldTerm); 2552 return true; 2553 } 2554 2555 // SimplifySwitchOnSelect - Replaces 2556 // (switch (select cond, X, Y)) on constant X, Y 2557 // with a branch - conditional if X and Y lead to distinct BBs, 2558 // unconditional otherwise. 2559 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2560 // Check for constant integer values in the select. 2561 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2562 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2563 if (!TrueVal || !FalseVal) 2564 return false; 2565 2566 // Find the relevant condition and destinations. 2567 Value *Condition = Select->getCondition(); 2568 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2569 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2570 2571 // Get weight for TrueBB and FalseBB. 2572 uint32_t TrueWeight = 0, FalseWeight = 0; 2573 SmallVector<uint64_t, 8> Weights; 2574 bool HasWeights = HasBranchWeights(SI); 2575 if (HasWeights) { 2576 GetBranchWeights(SI, Weights); 2577 if (Weights.size() == 1 + SI->getNumCases()) { 2578 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2579 getSuccessorIndex()]; 2580 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2581 getSuccessorIndex()]; 2582 } 2583 } 2584 2585 // Perform the actual simplification. 2586 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2587 TrueWeight, FalseWeight); 2588 } 2589 2590 // SimplifyIndirectBrOnSelect - Replaces 2591 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2592 // blockaddress(@fn, BlockB))) 2593 // with 2594 // (br cond, BlockA, BlockB). 2595 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2596 // Check that both operands of the select are block addresses. 2597 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2598 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2599 if (!TBA || !FBA) 2600 return false; 2601 2602 // Extract the actual blocks. 2603 BasicBlock *TrueBB = TBA->getBasicBlock(); 2604 BasicBlock *FalseBB = FBA->getBasicBlock(); 2605 2606 // Perform the actual simplification. 2607 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2608 0, 0); 2609 } 2610 2611 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2612 /// instruction (a seteq/setne with a constant) as the only instruction in a 2613 /// block that ends with an uncond branch. We are looking for a very specific 2614 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2615 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2616 /// default value goes to an uncond block with a seteq in it, we get something 2617 /// like: 2618 /// 2619 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2620 /// DEFAULT: 2621 /// %tmp = icmp eq i8 %A, 92 2622 /// br label %end 2623 /// end: 2624 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2625 /// 2626 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2627 /// the PHI, merging the third icmp into the switch. 2628 static bool TryToSimplifyUncondBranchWithICmpInIt( 2629 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, 2630 const DataLayout *DL) { 2631 BasicBlock *BB = ICI->getParent(); 2632 2633 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2634 // complex. 2635 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2636 2637 Value *V = ICI->getOperand(0); 2638 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2639 2640 // The pattern we're looking for is where our only predecessor is a switch on 2641 // 'V' and this block is the default case for the switch. In this case we can 2642 // fold the compared value into the switch to simplify things. 2643 BasicBlock *Pred = BB->getSinglePredecessor(); 2644 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 2645 2646 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2647 if (SI->getCondition() != V) 2648 return false; 2649 2650 // If BB is reachable on a non-default case, then we simply know the value of 2651 // V in this block. Substitute it and constant fold the icmp instruction 2652 // away. 2653 if (SI->getDefaultDest() != BB) { 2654 ConstantInt *VVal = SI->findCaseDest(BB); 2655 assert(VVal && "Should have a unique destination value"); 2656 ICI->setOperand(0, VVal); 2657 2658 if (Value *V = SimplifyInstruction(ICI, DL)) { 2659 ICI->replaceAllUsesWith(V); 2660 ICI->eraseFromParent(); 2661 } 2662 // BB is now empty, so it is likely to simplify away. 2663 return SimplifyCFG(BB, TTI, DL) | true; 2664 } 2665 2666 // Ok, the block is reachable from the default dest. If the constant we're 2667 // comparing exists in one of the other edges, then we can constant fold ICI 2668 // and zap it. 2669 if (SI->findCaseValue(Cst) != SI->case_default()) { 2670 Value *V; 2671 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2672 V = ConstantInt::getFalse(BB->getContext()); 2673 else 2674 V = ConstantInt::getTrue(BB->getContext()); 2675 2676 ICI->replaceAllUsesWith(V); 2677 ICI->eraseFromParent(); 2678 // BB is now empty, so it is likely to simplify away. 2679 return SimplifyCFG(BB, TTI, DL) | true; 2680 } 2681 2682 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2683 // the block. 2684 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2685 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 2686 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 2687 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2688 return false; 2689 2690 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2691 // true in the PHI. 2692 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2693 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2694 2695 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2696 std::swap(DefaultCst, NewCst); 2697 2698 // Replace ICI (which is used by the PHI for the default value) with true or 2699 // false depending on if it is EQ or NE. 2700 ICI->replaceAllUsesWith(DefaultCst); 2701 ICI->eraseFromParent(); 2702 2703 // Okay, the switch goes to this block on a default value. Add an edge from 2704 // the switch to the merge point on the compared value. 2705 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2706 BB->getParent(), BB); 2707 SmallVector<uint64_t, 8> Weights; 2708 bool HasWeights = HasBranchWeights(SI); 2709 if (HasWeights) { 2710 GetBranchWeights(SI, Weights); 2711 if (Weights.size() == 1 + SI->getNumCases()) { 2712 // Split weight for default case to case for "Cst". 2713 Weights[0] = (Weights[0]+1) >> 1; 2714 Weights.push_back(Weights[0]); 2715 2716 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2717 SI->setMetadata(LLVMContext::MD_prof, 2718 MDBuilder(SI->getContext()). 2719 createBranchWeights(MDWeights)); 2720 } 2721 } 2722 SI->addCase(Cst, NewBB); 2723 2724 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2725 Builder.SetInsertPoint(NewBB); 2726 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2727 Builder.CreateBr(SuccBlock); 2728 PHIUse->addIncoming(NewCst, NewBB); 2729 return true; 2730 } 2731 2732 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2733 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2734 /// fold it into a switch instruction if so. 2735 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL, 2736 IRBuilder<> &Builder) { 2737 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2738 if (!Cond) return false; 2739 2740 2741 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2742 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2743 // 'setne's and'ed together, collect them. 2744 Value *CompVal = nullptr; 2745 std::vector<ConstantInt*> Values; 2746 bool TrueWhenEqual = true; 2747 Value *ExtraCase = nullptr; 2748 unsigned UsedICmps = 0; 2749 2750 if (Cond->getOpcode() == Instruction::Or) { 2751 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, true, 2752 UsedICmps); 2753 } else if (Cond->getOpcode() == Instruction::And) { 2754 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, false, 2755 UsedICmps); 2756 TrueWhenEqual = false; 2757 } 2758 2759 // If we didn't have a multiply compared value, fail. 2760 if (!CompVal) return false; 2761 2762 // Avoid turning single icmps into a switch. 2763 if (UsedICmps <= 1) 2764 return false; 2765 2766 // There might be duplicate constants in the list, which the switch 2767 // instruction can't handle, remove them now. 2768 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2769 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2770 2771 // If Extra was used, we require at least two switch values to do the 2772 // transformation. A switch with one value is just an cond branch. 2773 if (ExtraCase && Values.size() < 2) return false; 2774 2775 // TODO: Preserve branch weight metadata, similarly to how 2776 // FoldValueComparisonIntoPredecessors preserves it. 2777 2778 // Figure out which block is which destination. 2779 BasicBlock *DefaultBB = BI->getSuccessor(1); 2780 BasicBlock *EdgeBB = BI->getSuccessor(0); 2781 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2782 2783 BasicBlock *BB = BI->getParent(); 2784 2785 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2786 << " cases into SWITCH. BB is:\n" << *BB); 2787 2788 // If there are any extra values that couldn't be folded into the switch 2789 // then we evaluate them with an explicit branch first. Split the block 2790 // right before the condbr to handle it. 2791 if (ExtraCase) { 2792 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2793 // Remove the uncond branch added to the old block. 2794 TerminatorInst *OldTI = BB->getTerminator(); 2795 Builder.SetInsertPoint(OldTI); 2796 2797 if (TrueWhenEqual) 2798 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2799 else 2800 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2801 2802 OldTI->eraseFromParent(); 2803 2804 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2805 // for the edge we just added. 2806 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2807 2808 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2809 << "\nEXTRABB = " << *BB); 2810 BB = NewBB; 2811 } 2812 2813 Builder.SetInsertPoint(BI); 2814 // Convert pointer to int before we switch. 2815 if (CompVal->getType()->isPointerTy()) { 2816 assert(DL && "Cannot switch on pointer without DataLayout"); 2817 CompVal = Builder.CreatePtrToInt(CompVal, 2818 DL->getIntPtrType(CompVal->getType()), 2819 "magicptr"); 2820 } 2821 2822 // Create the new switch instruction now. 2823 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2824 2825 // Add all of the 'cases' to the switch instruction. 2826 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2827 New->addCase(Values[i], EdgeBB); 2828 2829 // We added edges from PI to the EdgeBB. As such, if there were any 2830 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2831 // the number of edges added. 2832 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2833 isa<PHINode>(BBI); ++BBI) { 2834 PHINode *PN = cast<PHINode>(BBI); 2835 Value *InVal = PN->getIncomingValueForBlock(BB); 2836 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2837 PN->addIncoming(InVal, BB); 2838 } 2839 2840 // Erase the old branch instruction. 2841 EraseTerminatorInstAndDCECond(BI); 2842 2843 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2844 return true; 2845 } 2846 2847 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2848 // If this is a trivial landing pad that just continues unwinding the caught 2849 // exception then zap the landing pad, turning its invokes into calls. 2850 BasicBlock *BB = RI->getParent(); 2851 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2852 if (RI->getValue() != LPInst) 2853 // Not a landing pad, or the resume is not unwinding the exception that 2854 // caused control to branch here. 2855 return false; 2856 2857 // Check that there are no other instructions except for debug intrinsics. 2858 BasicBlock::iterator I = LPInst, E = RI; 2859 while (++I != E) 2860 if (!isa<DbgInfoIntrinsic>(I)) 2861 return false; 2862 2863 // Turn all invokes that unwind here into calls and delete the basic block. 2864 bool InvokeRequiresTableEntry = false; 2865 bool Changed = false; 2866 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2867 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2868 2869 if (II->hasFnAttr(Attribute::UWTable)) { 2870 // Don't remove an `invoke' instruction if the ABI requires an entry into 2871 // the table. 2872 InvokeRequiresTableEntry = true; 2873 continue; 2874 } 2875 2876 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2877 2878 // Insert a call instruction before the invoke. 2879 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2880 Call->takeName(II); 2881 Call->setCallingConv(II->getCallingConv()); 2882 Call->setAttributes(II->getAttributes()); 2883 Call->setDebugLoc(II->getDebugLoc()); 2884 2885 // Anything that used the value produced by the invoke instruction now uses 2886 // the value produced by the call instruction. Note that we do this even 2887 // for void functions and calls with no uses so that the callgraph edge is 2888 // updated. 2889 II->replaceAllUsesWith(Call); 2890 BB->removePredecessor(II->getParent()); 2891 2892 // Insert a branch to the normal destination right before the invoke. 2893 BranchInst::Create(II->getNormalDest(), II); 2894 2895 // Finally, delete the invoke instruction! 2896 II->eraseFromParent(); 2897 Changed = true; 2898 } 2899 2900 if (!InvokeRequiresTableEntry) 2901 // The landingpad is now unreachable. Zap it. 2902 BB->eraseFromParent(); 2903 2904 return Changed; 2905 } 2906 2907 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2908 BasicBlock *BB = RI->getParent(); 2909 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2910 2911 // Find predecessors that end with branches. 2912 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2913 SmallVector<BranchInst*, 8> CondBranchPreds; 2914 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2915 BasicBlock *P = *PI; 2916 TerminatorInst *PTI = P->getTerminator(); 2917 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2918 if (BI->isUnconditional()) 2919 UncondBranchPreds.push_back(P); 2920 else 2921 CondBranchPreds.push_back(BI); 2922 } 2923 } 2924 2925 // If we found some, do the transformation! 2926 if (!UncondBranchPreds.empty() && DupRet) { 2927 while (!UncondBranchPreds.empty()) { 2928 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2929 DEBUG(dbgs() << "FOLDING: " << *BB 2930 << "INTO UNCOND BRANCH PRED: " << *Pred); 2931 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2932 } 2933 2934 // If we eliminated all predecessors of the block, delete the block now. 2935 if (pred_begin(BB) == pred_end(BB)) 2936 // We know there are no successors, so just nuke the block. 2937 BB->eraseFromParent(); 2938 2939 return true; 2940 } 2941 2942 // Check out all of the conditional branches going to this return 2943 // instruction. If any of them just select between returns, change the 2944 // branch itself into a select/return pair. 2945 while (!CondBranchPreds.empty()) { 2946 BranchInst *BI = CondBranchPreds.pop_back_val(); 2947 2948 // Check to see if the non-BB successor is also a return block. 2949 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2950 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2951 SimplifyCondBranchToTwoReturns(BI, Builder)) 2952 return true; 2953 } 2954 return false; 2955 } 2956 2957 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2958 BasicBlock *BB = UI->getParent(); 2959 2960 bool Changed = false; 2961 2962 // If there are any instructions immediately before the unreachable that can 2963 // be removed, do so. 2964 while (UI != BB->begin()) { 2965 BasicBlock::iterator BBI = UI; 2966 --BBI; 2967 // Do not delete instructions that can have side effects which might cause 2968 // the unreachable to not be reachable; specifically, calls and volatile 2969 // operations may have this effect. 2970 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2971 2972 if (BBI->mayHaveSideEffects()) { 2973 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 2974 if (SI->isVolatile()) 2975 break; 2976 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 2977 if (LI->isVolatile()) 2978 break; 2979 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 2980 if (RMWI->isVolatile()) 2981 break; 2982 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 2983 if (CXI->isVolatile()) 2984 break; 2985 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 2986 !isa<LandingPadInst>(BBI)) { 2987 break; 2988 } 2989 // Note that deleting LandingPad's here is in fact okay, although it 2990 // involves a bit of subtle reasoning. If this inst is a LandingPad, 2991 // all the predecessors of this block will be the unwind edges of Invokes, 2992 // and we can therefore guarantee this block will be erased. 2993 } 2994 2995 // Delete this instruction (any uses are guaranteed to be dead) 2996 if (!BBI->use_empty()) 2997 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2998 BBI->eraseFromParent(); 2999 Changed = true; 3000 } 3001 3002 // If the unreachable instruction is the first in the block, take a gander 3003 // at all of the predecessors of this instruction, and simplify them. 3004 if (&BB->front() != UI) return Changed; 3005 3006 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3007 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3008 TerminatorInst *TI = Preds[i]->getTerminator(); 3009 IRBuilder<> Builder(TI); 3010 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3011 if (BI->isUnconditional()) { 3012 if (BI->getSuccessor(0) == BB) { 3013 new UnreachableInst(TI->getContext(), TI); 3014 TI->eraseFromParent(); 3015 Changed = true; 3016 } 3017 } else { 3018 if (BI->getSuccessor(0) == BB) { 3019 Builder.CreateBr(BI->getSuccessor(1)); 3020 EraseTerminatorInstAndDCECond(BI); 3021 } else if (BI->getSuccessor(1) == BB) { 3022 Builder.CreateBr(BI->getSuccessor(0)); 3023 EraseTerminatorInstAndDCECond(BI); 3024 Changed = true; 3025 } 3026 } 3027 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3028 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3029 i != e; ++i) 3030 if (i.getCaseSuccessor() == BB) { 3031 BB->removePredecessor(SI->getParent()); 3032 SI->removeCase(i); 3033 --i; --e; 3034 Changed = true; 3035 } 3036 // If the default value is unreachable, figure out the most popular 3037 // destination and make it the default. 3038 if (SI->getDefaultDest() == BB) { 3039 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 3040 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3041 i != e; ++i) { 3042 std::pair<unsigned, unsigned> &entry = 3043 Popularity[i.getCaseSuccessor()]; 3044 if (entry.first == 0) { 3045 entry.first = 1; 3046 entry.second = i.getCaseIndex(); 3047 } else { 3048 entry.first++; 3049 } 3050 } 3051 3052 // Find the most popular block. 3053 unsigned MaxPop = 0; 3054 unsigned MaxIndex = 0; 3055 BasicBlock *MaxBlock = nullptr; 3056 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 3057 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 3058 if (I->second.first > MaxPop || 3059 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 3060 MaxPop = I->second.first; 3061 MaxIndex = I->second.second; 3062 MaxBlock = I->first; 3063 } 3064 } 3065 if (MaxBlock) { 3066 // Make this the new default, allowing us to delete any explicit 3067 // edges to it. 3068 SI->setDefaultDest(MaxBlock); 3069 Changed = true; 3070 3071 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 3072 // it. 3073 if (isa<PHINode>(MaxBlock->begin())) 3074 for (unsigned i = 0; i != MaxPop-1; ++i) 3075 MaxBlock->removePredecessor(SI->getParent()); 3076 3077 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3078 i != e; ++i) 3079 if (i.getCaseSuccessor() == MaxBlock) { 3080 SI->removeCase(i); 3081 --i; --e; 3082 } 3083 } 3084 } 3085 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 3086 if (II->getUnwindDest() == BB) { 3087 // Convert the invoke to a call instruction. This would be a good 3088 // place to note that the call does not throw though. 3089 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 3090 II->removeFromParent(); // Take out of symbol table 3091 3092 // Insert the call now... 3093 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 3094 Builder.SetInsertPoint(BI); 3095 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 3096 Args, II->getName()); 3097 CI->setCallingConv(II->getCallingConv()); 3098 CI->setAttributes(II->getAttributes()); 3099 // If the invoke produced a value, the call does now instead. 3100 II->replaceAllUsesWith(CI); 3101 delete II; 3102 Changed = true; 3103 } 3104 } 3105 } 3106 3107 // If this block is now dead, remove it. 3108 if (pred_begin(BB) == pred_end(BB) && 3109 BB != &BB->getParent()->getEntryBlock()) { 3110 // We know there are no successors, so just nuke the block. 3111 BB->eraseFromParent(); 3112 return true; 3113 } 3114 3115 return Changed; 3116 } 3117 3118 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 3119 /// integer range comparison into a sub, an icmp and a branch. 3120 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3121 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3122 3123 // Make sure all cases point to the same destination and gather the values. 3124 SmallVector<ConstantInt *, 16> Cases; 3125 SwitchInst::CaseIt I = SI->case_begin(); 3126 Cases.push_back(I.getCaseValue()); 3127 SwitchInst::CaseIt PrevI = I++; 3128 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) { 3129 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor()) 3130 return false; 3131 Cases.push_back(I.getCaseValue()); 3132 } 3133 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered"); 3134 3135 // Sort the case values, then check if they form a range we can transform. 3136 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3137 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 3138 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 3139 return false; 3140 } 3141 3142 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 3143 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()); 3144 3145 Value *Sub = SI->getCondition(); 3146 if (!Offset->isNullValue()) 3147 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 3148 Value *Cmp; 3149 // If NumCases overflowed, then all possible values jump to the successor. 3150 if (NumCases->isNullValue() && SI->getNumCases() != 0) 3151 Cmp = ConstantInt::getTrue(SI->getContext()); 3152 else 3153 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3154 BranchInst *NewBI = Builder.CreateCondBr( 3155 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest()); 3156 3157 // Update weight for the newly-created conditional branch. 3158 SmallVector<uint64_t, 8> Weights; 3159 bool HasWeights = HasBranchWeights(SI); 3160 if (HasWeights) { 3161 GetBranchWeights(SI, Weights); 3162 if (Weights.size() == 1 + SI->getNumCases()) { 3163 // Combine all weights for the cases to be the true weight of NewBI. 3164 // We assume that the sum of all weights for a Terminator can fit into 32 3165 // bits. 3166 uint32_t NewTrueWeight = 0; 3167 for (unsigned I = 1, E = Weights.size(); I != E; ++I) 3168 NewTrueWeight += (uint32_t)Weights[I]; 3169 NewBI->setMetadata(LLVMContext::MD_prof, 3170 MDBuilder(SI->getContext()). 3171 createBranchWeights(NewTrueWeight, 3172 (uint32_t)Weights[0])); 3173 } 3174 } 3175 3176 // Prune obsolete incoming values off the successor's PHI nodes. 3177 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin(); 3178 isa<PHINode>(BBI); ++BBI) { 3179 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I) 3180 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3181 } 3182 SI->eraseFromParent(); 3183 3184 return true; 3185 } 3186 3187 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3188 /// and use it to remove dead cases. 3189 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 3190 Value *Cond = SI->getCondition(); 3191 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3192 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3193 computeKnownBits(Cond, KnownZero, KnownOne); 3194 3195 // Gather dead cases. 3196 SmallVector<ConstantInt*, 8> DeadCases; 3197 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3198 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3199 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3200 DeadCases.push_back(I.getCaseValue()); 3201 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3202 << I.getCaseValue() << "' is dead.\n"); 3203 } 3204 } 3205 3206 SmallVector<uint64_t, 8> Weights; 3207 bool HasWeight = HasBranchWeights(SI); 3208 if (HasWeight) { 3209 GetBranchWeights(SI, Weights); 3210 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3211 } 3212 3213 // Remove dead cases from the switch. 3214 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3215 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3216 assert(Case != SI->case_default() && 3217 "Case was not found. Probably mistake in DeadCases forming."); 3218 if (HasWeight) { 3219 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3220 Weights.pop_back(); 3221 } 3222 3223 // Prune unused values from PHI nodes. 3224 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3225 SI->removeCase(Case); 3226 } 3227 if (HasWeight && Weights.size() >= 2) { 3228 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3229 SI->setMetadata(LLVMContext::MD_prof, 3230 MDBuilder(SI->getParent()->getContext()). 3231 createBranchWeights(MDWeights)); 3232 } 3233 3234 return !DeadCases.empty(); 3235 } 3236 3237 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3238 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3239 /// by an unconditional branch), look at the phi node for BB in the successor 3240 /// block and see if the incoming value is equal to CaseValue. If so, return 3241 /// the phi node, and set PhiIndex to BB's index in the phi node. 3242 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3243 BasicBlock *BB, 3244 int *PhiIndex) { 3245 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3246 return nullptr; // BB must be empty to be a candidate for simplification. 3247 if (!BB->getSinglePredecessor()) 3248 return nullptr; // BB must be dominated by the switch. 3249 3250 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3251 if (!Branch || !Branch->isUnconditional()) 3252 return nullptr; // Terminator must be unconditional branch. 3253 3254 BasicBlock *Succ = Branch->getSuccessor(0); 3255 3256 BasicBlock::iterator I = Succ->begin(); 3257 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3258 int Idx = PHI->getBasicBlockIndex(BB); 3259 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3260 3261 Value *InValue = PHI->getIncomingValue(Idx); 3262 if (InValue != CaseValue) continue; 3263 3264 *PhiIndex = Idx; 3265 return PHI; 3266 } 3267 3268 return nullptr; 3269 } 3270 3271 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3272 /// instruction to a phi node dominated by the switch, if that would mean that 3273 /// some of the destination blocks of the switch can be folded away. 3274 /// Returns true if a change is made. 3275 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3276 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3277 ForwardingNodesMap ForwardingNodes; 3278 3279 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3280 ConstantInt *CaseValue = I.getCaseValue(); 3281 BasicBlock *CaseDest = I.getCaseSuccessor(); 3282 3283 int PhiIndex; 3284 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3285 &PhiIndex); 3286 if (!PHI) continue; 3287 3288 ForwardingNodes[PHI].push_back(PhiIndex); 3289 } 3290 3291 bool Changed = false; 3292 3293 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3294 E = ForwardingNodes.end(); I != E; ++I) { 3295 PHINode *Phi = I->first; 3296 SmallVectorImpl<int> &Indexes = I->second; 3297 3298 if (Indexes.size() < 2) continue; 3299 3300 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3301 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3302 Changed = true; 3303 } 3304 3305 return Changed; 3306 } 3307 3308 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3309 /// initializing an array of constants like C. 3310 static bool ValidLookupTableConstant(Constant *C) { 3311 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3312 return CE->isGEPWithNoNotionalOverIndexing(); 3313 3314 return isa<ConstantFP>(C) || 3315 isa<ConstantInt>(C) || 3316 isa<ConstantPointerNull>(C) || 3317 isa<GlobalValue>(C) || 3318 isa<UndefValue>(C); 3319 } 3320 3321 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up 3322 /// its constant value in ConstantPool, returning 0 if it's not there. 3323 static Constant *LookupConstant(Value *V, 3324 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3325 if (Constant *C = dyn_cast<Constant>(V)) 3326 return C; 3327 return ConstantPool.lookup(V); 3328 } 3329 3330 /// ConstantFold - Try to fold instruction I into a constant. This works for 3331 /// simple instructions such as binary operations where both operands are 3332 /// constant or can be replaced by constants from the ConstantPool. Returns the 3333 /// resulting constant on success, 0 otherwise. 3334 static Constant * 3335 ConstantFold(Instruction *I, 3336 const SmallDenseMap<Value *, Constant *> &ConstantPool, 3337 const DataLayout *DL) { 3338 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3339 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3340 if (!A) 3341 return nullptr; 3342 if (A->isAllOnesValue()) 3343 return LookupConstant(Select->getTrueValue(), ConstantPool); 3344 if (A->isNullValue()) 3345 return LookupConstant(Select->getFalseValue(), ConstantPool); 3346 return nullptr; 3347 } 3348 3349 SmallVector<Constant *, 4> COps; 3350 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3351 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3352 COps.push_back(A); 3353 else 3354 return nullptr; 3355 } 3356 3357 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) 3358 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 3359 COps[1], DL); 3360 3361 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL); 3362 } 3363 3364 /// GetCaseResults - Try to determine the resulting constant values in phi nodes 3365 /// at the common destination basic block, *CommonDest, for one of the case 3366 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3367 /// case), of a switch instruction SI. 3368 static bool 3369 GetCaseResults(SwitchInst *SI, 3370 ConstantInt *CaseVal, 3371 BasicBlock *CaseDest, 3372 BasicBlock **CommonDest, 3373 SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res, 3374 const DataLayout *DL) { 3375 // The block from which we enter the common destination. 3376 BasicBlock *Pred = SI->getParent(); 3377 3378 // If CaseDest is empty except for some side-effect free instructions through 3379 // which we can constant-propagate the CaseVal, continue to its successor. 3380 SmallDenseMap<Value*, Constant*> ConstantPool; 3381 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3382 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3383 ++I) { 3384 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3385 // If the terminator is a simple branch, continue to the next block. 3386 if (T->getNumSuccessors() != 1) 3387 return false; 3388 Pred = CaseDest; 3389 CaseDest = T->getSuccessor(0); 3390 } else if (isa<DbgInfoIntrinsic>(I)) { 3391 // Skip debug intrinsic. 3392 continue; 3393 } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) { 3394 // Instruction is side-effect free and constant. 3395 ConstantPool.insert(std::make_pair(I, C)); 3396 } else { 3397 break; 3398 } 3399 } 3400 3401 // If we did not have a CommonDest before, use the current one. 3402 if (!*CommonDest) 3403 *CommonDest = CaseDest; 3404 // If the destination isn't the common one, abort. 3405 if (CaseDest != *CommonDest) 3406 return false; 3407 3408 // Get the values for this case from phi nodes in the destination block. 3409 BasicBlock::iterator I = (*CommonDest)->begin(); 3410 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3411 int Idx = PHI->getBasicBlockIndex(Pred); 3412 if (Idx == -1) 3413 continue; 3414 3415 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3416 ConstantPool); 3417 if (!ConstVal) 3418 return false; 3419 3420 // Note: If the constant comes from constant-propagating the case value 3421 // through the CaseDest basic block, it will be safe to remove the 3422 // instructions in that block. They cannot be used (except in the phi nodes 3423 // we visit) outside CaseDest, because that block does not dominate its 3424 // successor. If it did, we would not be in this phi node. 3425 3426 // Be conservative about which kinds of constants we support. 3427 if (!ValidLookupTableConstant(ConstVal)) 3428 return false; 3429 3430 Res.push_back(std::make_pair(PHI, ConstVal)); 3431 } 3432 3433 return Res.size() > 0; 3434 } 3435 3436 namespace { 3437 /// SwitchLookupTable - This class represents a lookup table that can be used 3438 /// to replace a switch. 3439 class SwitchLookupTable { 3440 public: 3441 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3442 /// with the contents of Values, using DefaultValue to fill any holes in the 3443 /// table. 3444 SwitchLookupTable(Module &M, 3445 uint64_t TableSize, 3446 ConstantInt *Offset, 3447 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3448 Constant *DefaultValue, 3449 const DataLayout *DL); 3450 3451 /// BuildLookup - Build instructions with Builder to retrieve the value at 3452 /// the position given by Index in the lookup table. 3453 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3454 3455 /// WouldFitInRegister - Return true if a table with TableSize elements of 3456 /// type ElementType would fit in a target-legal register. 3457 static bool WouldFitInRegister(const DataLayout *DL, 3458 uint64_t TableSize, 3459 const Type *ElementType); 3460 3461 private: 3462 // Depending on the contents of the table, it can be represented in 3463 // different ways. 3464 enum { 3465 // For tables where each element contains the same value, we just have to 3466 // store that single value and return it for each lookup. 3467 SingleValueKind, 3468 3469 // For small tables with integer elements, we can pack them into a bitmap 3470 // that fits into a target-legal register. Values are retrieved by 3471 // shift and mask operations. 3472 BitMapKind, 3473 3474 // The table is stored as an array of values. Values are retrieved by load 3475 // instructions from the table. 3476 ArrayKind 3477 } Kind; 3478 3479 // For SingleValueKind, this is the single value. 3480 Constant *SingleValue; 3481 3482 // For BitMapKind, this is the bitmap. 3483 ConstantInt *BitMap; 3484 IntegerType *BitMapElementTy; 3485 3486 // For ArrayKind, this is the array. 3487 GlobalVariable *Array; 3488 }; 3489 } 3490 3491 SwitchLookupTable::SwitchLookupTable(Module &M, 3492 uint64_t TableSize, 3493 ConstantInt *Offset, 3494 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3495 Constant *DefaultValue, 3496 const DataLayout *DL) 3497 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 3498 Array(nullptr) { 3499 assert(Values.size() && "Can't build lookup table without values!"); 3500 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3501 3502 // If all values in the table are equal, this is that value. 3503 SingleValue = Values.begin()->second; 3504 3505 Type *ValueType = Values.begin()->second->getType(); 3506 3507 // Build up the table contents. 3508 SmallVector<Constant*, 64> TableContents(TableSize); 3509 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3510 ConstantInt *CaseVal = Values[I].first; 3511 Constant *CaseRes = Values[I].second; 3512 assert(CaseRes->getType() == ValueType); 3513 3514 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3515 .getLimitedValue(); 3516 TableContents[Idx] = CaseRes; 3517 3518 if (CaseRes != SingleValue) 3519 SingleValue = nullptr; 3520 } 3521 3522 // Fill in any holes in the table with the default result. 3523 if (Values.size() < TableSize) { 3524 assert(DefaultValue && "Need a default value to fill the lookup table holes."); 3525 assert(DefaultValue->getType() == ValueType); 3526 for (uint64_t I = 0; I < TableSize; ++I) { 3527 if (!TableContents[I]) 3528 TableContents[I] = DefaultValue; 3529 } 3530 3531 if (DefaultValue != SingleValue) 3532 SingleValue = nullptr; 3533 } 3534 3535 // If each element in the table contains the same value, we only need to store 3536 // that single value. 3537 if (SingleValue) { 3538 Kind = SingleValueKind; 3539 return; 3540 } 3541 3542 // If the type is integer and the table fits in a register, build a bitmap. 3543 if (WouldFitInRegister(DL, TableSize, ValueType)) { 3544 IntegerType *IT = cast<IntegerType>(ValueType); 3545 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3546 for (uint64_t I = TableSize; I > 0; --I) { 3547 TableInt <<= IT->getBitWidth(); 3548 // Insert values into the bitmap. Undef values are set to zero. 3549 if (!isa<UndefValue>(TableContents[I - 1])) { 3550 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3551 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3552 } 3553 } 3554 BitMap = ConstantInt::get(M.getContext(), TableInt); 3555 BitMapElementTy = IT; 3556 Kind = BitMapKind; 3557 ++NumBitMaps; 3558 return; 3559 } 3560 3561 // Store the table in an array. 3562 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 3563 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3564 3565 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3566 GlobalVariable::PrivateLinkage, 3567 Initializer, 3568 "switch.table"); 3569 Array->setUnnamedAddr(true); 3570 Kind = ArrayKind; 3571 } 3572 3573 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3574 switch (Kind) { 3575 case SingleValueKind: 3576 return SingleValue; 3577 case BitMapKind: { 3578 // Type of the bitmap (e.g. i59). 3579 IntegerType *MapTy = BitMap->getType(); 3580 3581 // Cast Index to the same type as the bitmap. 3582 // Note: The Index is <= the number of elements in the table, so 3583 // truncating it to the width of the bitmask is safe. 3584 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3585 3586 // Multiply the shift amount by the element width. 3587 ShiftAmt = Builder.CreateMul(ShiftAmt, 3588 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3589 "switch.shiftamt"); 3590 3591 // Shift down. 3592 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3593 "switch.downshift"); 3594 // Mask off. 3595 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3596 "switch.masked"); 3597 } 3598 case ArrayKind: { 3599 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3600 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3601 "switch.gep"); 3602 return Builder.CreateLoad(GEP, "switch.load"); 3603 } 3604 } 3605 llvm_unreachable("Unknown lookup table kind!"); 3606 } 3607 3608 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL, 3609 uint64_t TableSize, 3610 const Type *ElementType) { 3611 if (!DL) 3612 return false; 3613 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3614 if (!IT) 3615 return false; 3616 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3617 // are <= 15, we could try to narrow the type. 3618 3619 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3620 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3621 return false; 3622 return DL->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3623 } 3624 3625 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3626 /// for this switch, based on the number of cases, size of the table and the 3627 /// types of the results. 3628 static bool ShouldBuildLookupTable(SwitchInst *SI, 3629 uint64_t TableSize, 3630 const TargetTransformInfo &TTI, 3631 const DataLayout *DL, 3632 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3633 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3634 return false; // TableSize overflowed, or mul below might overflow. 3635 3636 bool AllTablesFitInRegister = true; 3637 bool HasIllegalType = false; 3638 for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(), 3639 E = ResultTypes.end(); I != E; ++I) { 3640 Type *Ty = I->second; 3641 3642 // Saturate this flag to true. 3643 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 3644 3645 // Saturate this flag to false. 3646 AllTablesFitInRegister = AllTablesFitInRegister && 3647 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 3648 3649 // If both flags saturate, we're done. NOTE: This *only* works with 3650 // saturating flags, and all flags have to saturate first due to the 3651 // non-deterministic behavior of iterating over a dense map. 3652 if (HasIllegalType && !AllTablesFitInRegister) 3653 break; 3654 } 3655 3656 // If each table would fit in a register, we should build it anyway. 3657 if (AllTablesFitInRegister) 3658 return true; 3659 3660 // Don't build a table that doesn't fit in-register if it has illegal types. 3661 if (HasIllegalType) 3662 return false; 3663 3664 // The table density should be at least 40%. This is the same criterion as for 3665 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3666 // FIXME: Find the best cut-off. 3667 return SI->getNumCases() * 10 >= TableSize * 4; 3668 } 3669 3670 /// SwitchToLookupTable - If the switch is only used to initialize one or more 3671 /// phi nodes in a common successor block with different constant values, 3672 /// replace the switch with lookup tables. 3673 static bool SwitchToLookupTable(SwitchInst *SI, 3674 IRBuilder<> &Builder, 3675 const TargetTransformInfo &TTI, 3676 const DataLayout* DL) { 3677 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3678 3679 // Only build lookup table when we have a target that supports it. 3680 if (!TTI.shouldBuildLookupTables()) 3681 return false; 3682 3683 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 3684 // split off a dense part and build a lookup table for that. 3685 3686 // FIXME: This creates arrays of GEPs to constant strings, which means each 3687 // GEP needs a runtime relocation in PIC code. We should just build one big 3688 // string and lookup indices into that. 3689 3690 // Ignore switches with less than three cases. Lookup tables will not make them 3691 // faster, so we don't analyze them. 3692 if (SI->getNumCases() < 3) 3693 return false; 3694 3695 // Figure out the corresponding result for each case value and phi node in the 3696 // common destination, as well as the the min and max case values. 3697 assert(SI->case_begin() != SI->case_end()); 3698 SwitchInst::CaseIt CI = SI->case_begin(); 3699 ConstantInt *MinCaseVal = CI.getCaseValue(); 3700 ConstantInt *MaxCaseVal = CI.getCaseValue(); 3701 3702 BasicBlock *CommonDest = nullptr; 3703 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 3704 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 3705 SmallDenseMap<PHINode*, Constant*> DefaultResults; 3706 SmallDenseMap<PHINode*, Type*> ResultTypes; 3707 SmallVector<PHINode*, 4> PHIs; 3708 3709 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 3710 ConstantInt *CaseVal = CI.getCaseValue(); 3711 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 3712 MinCaseVal = CaseVal; 3713 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 3714 MaxCaseVal = CaseVal; 3715 3716 // Resulting value at phi nodes for this case value. 3717 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 3718 ResultsTy Results; 3719 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 3720 Results, DL)) 3721 return false; 3722 3723 // Append the result from this case to the list for each phi. 3724 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) { 3725 if (!ResultLists.count(I->first)) 3726 PHIs.push_back(I->first); 3727 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second)); 3728 } 3729 } 3730 3731 // Keep track of the result types. 3732 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3733 PHINode *PHI = PHIs[I]; 3734 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 3735 } 3736 3737 uint64_t NumResults = ResultLists[PHIs[0]].size(); 3738 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 3739 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 3740 bool TableHasHoles = (NumResults < TableSize); 3741 3742 // If the table has holes, we need a constant result for the default case 3743 // or a bitmask that fits in a register. 3744 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 3745 bool HasDefaultResults = false; 3746 if (TableHasHoles) { 3747 HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 3748 &CommonDest, DefaultResultsList, DL); 3749 } 3750 bool NeedMask = (TableHasHoles && !HasDefaultResults); 3751 if (NeedMask) { 3752 // As an extra penalty for the validity test we require more cases. 3753 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 3754 return false; 3755 if (!(DL && DL->fitsInLegalInteger(TableSize))) 3756 return false; 3757 } 3758 3759 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) { 3760 PHINode *PHI = DefaultResultsList[I].first; 3761 Constant *Result = DefaultResultsList[I].second; 3762 DefaultResults[PHI] = Result; 3763 } 3764 3765 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 3766 return false; 3767 3768 // Create the BB that does the lookups. 3769 Module &Mod = *CommonDest->getParent()->getParent(); 3770 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 3771 "switch.lookup", 3772 CommonDest->getParent(), 3773 CommonDest); 3774 3775 // Compute the table index value. 3776 Builder.SetInsertPoint(SI); 3777 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 3778 "switch.tableidx"); 3779 3780 // Compute the maximum table size representable by the integer type we are 3781 // switching upon. 3782 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 3783 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 3784 assert(MaxTableSize >= TableSize && 3785 "It is impossible for a switch to have more entries than the max " 3786 "representable value of its input integer type's size."); 3787 3788 // If we have a fully covered lookup table, unconditionally branch to the 3789 // lookup table BB. Otherwise, check if the condition value is within the case 3790 // range. If it is so, branch to the new BB. Otherwise branch to SI's default 3791 // destination. 3792 const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize; 3793 if (GeneratingCoveredLookupTable) { 3794 Builder.CreateBr(LookupBB); 3795 SI->getDefaultDest()->removePredecessor(SI->getParent()); 3796 } else { 3797 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 3798 MinCaseVal->getType(), TableSize)); 3799 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 3800 } 3801 3802 // Populate the BB that does the lookups. 3803 Builder.SetInsertPoint(LookupBB); 3804 3805 if (NeedMask) { 3806 // Before doing the lookup we do the hole check. 3807 // The LookupBB is therefore re-purposed to do the hole check 3808 // and we create a new LookupBB. 3809 BasicBlock *MaskBB = LookupBB; 3810 MaskBB->setName("switch.hole_check"); 3811 LookupBB = BasicBlock::Create(Mod.getContext(), 3812 "switch.lookup", 3813 CommonDest->getParent(), 3814 CommonDest); 3815 3816 // Build bitmask; fill in a 1 bit for every case. 3817 APInt MaskInt(TableSize, 0); 3818 APInt One(TableSize, 1); 3819 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 3820 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 3821 uint64_t Idx = (ResultList[I].first->getValue() - 3822 MinCaseVal->getValue()).getLimitedValue(); 3823 MaskInt |= One << Idx; 3824 } 3825 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 3826 3827 // Get the TableIndex'th bit of the bitmask. 3828 // If this bit is 0 (meaning hole) jump to the default destination, 3829 // else continue with table lookup. 3830 IntegerType *MapTy = TableMask->getType(); 3831 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 3832 "switch.maskindex"); 3833 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 3834 "switch.shifted"); 3835 Value *LoBit = Builder.CreateTrunc(Shifted, 3836 Type::getInt1Ty(Mod.getContext()), 3837 "switch.lobit"); 3838 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 3839 3840 Builder.SetInsertPoint(LookupBB); 3841 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 3842 } 3843 3844 bool ReturnedEarly = false; 3845 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3846 PHINode *PHI = PHIs[I]; 3847 3848 // If using a bitmask, use any value to fill the lookup table holes. 3849 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 3850 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI], 3851 DV, DL); 3852 3853 Value *Result = Table.BuildLookup(TableIndex, Builder); 3854 3855 // If the result is used to return immediately from the function, we want to 3856 // do that right here. 3857 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 3858 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 3859 Builder.CreateRet(Result); 3860 ReturnedEarly = true; 3861 break; 3862 } 3863 3864 PHI->addIncoming(Result, LookupBB); 3865 } 3866 3867 if (!ReturnedEarly) 3868 Builder.CreateBr(CommonDest); 3869 3870 // Remove the switch. 3871 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 3872 BasicBlock *Succ = SI->getSuccessor(i); 3873 3874 if (Succ == SI->getDefaultDest()) 3875 continue; 3876 Succ->removePredecessor(SI->getParent()); 3877 } 3878 SI->eraseFromParent(); 3879 3880 ++NumLookupTables; 3881 if (NeedMask) 3882 ++NumLookupTablesHoles; 3883 return true; 3884 } 3885 3886 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 3887 BasicBlock *BB = SI->getParent(); 3888 3889 if (isValueEqualityComparison(SI)) { 3890 // If we only have one predecessor, and if it is a branch on this value, 3891 // see if that predecessor totally determines the outcome of this switch. 3892 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3893 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 3894 return SimplifyCFG(BB, TTI, DL) | true; 3895 3896 Value *Cond = SI->getCondition(); 3897 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 3898 if (SimplifySwitchOnSelect(SI, Select)) 3899 return SimplifyCFG(BB, TTI, DL) | true; 3900 3901 // If the block only contains the switch, see if we can fold the block 3902 // away into any preds. 3903 BasicBlock::iterator BBI = BB->begin(); 3904 // Ignore dbg intrinsics. 3905 while (isa<DbgInfoIntrinsic>(BBI)) 3906 ++BBI; 3907 if (SI == &*BBI) 3908 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 3909 return SimplifyCFG(BB, TTI, DL) | true; 3910 } 3911 3912 // Try to transform the switch into an icmp and a branch. 3913 if (TurnSwitchRangeIntoICmp(SI, Builder)) 3914 return SimplifyCFG(BB, TTI, DL) | true; 3915 3916 // Remove unreachable cases. 3917 if (EliminateDeadSwitchCases(SI)) 3918 return SimplifyCFG(BB, TTI, DL) | true; 3919 3920 if (ForwardSwitchConditionToPHI(SI)) 3921 return SimplifyCFG(BB, TTI, DL) | true; 3922 3923 if (SwitchToLookupTable(SI, Builder, TTI, DL)) 3924 return SimplifyCFG(BB, TTI, DL) | true; 3925 3926 return false; 3927 } 3928 3929 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 3930 BasicBlock *BB = IBI->getParent(); 3931 bool Changed = false; 3932 3933 // Eliminate redundant destinations. 3934 SmallPtrSet<Value *, 8> Succs; 3935 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 3936 BasicBlock *Dest = IBI->getDestination(i); 3937 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 3938 Dest->removePredecessor(BB); 3939 IBI->removeDestination(i); 3940 --i; --e; 3941 Changed = true; 3942 } 3943 } 3944 3945 if (IBI->getNumDestinations() == 0) { 3946 // If the indirectbr has no successors, change it to unreachable. 3947 new UnreachableInst(IBI->getContext(), IBI); 3948 EraseTerminatorInstAndDCECond(IBI); 3949 return true; 3950 } 3951 3952 if (IBI->getNumDestinations() == 1) { 3953 // If the indirectbr has one successor, change it to a direct branch. 3954 BranchInst::Create(IBI->getDestination(0), IBI); 3955 EraseTerminatorInstAndDCECond(IBI); 3956 return true; 3957 } 3958 3959 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 3960 if (SimplifyIndirectBrOnSelect(IBI, SI)) 3961 return SimplifyCFG(BB, TTI, DL) | true; 3962 } 3963 return Changed; 3964 } 3965 3966 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 3967 BasicBlock *BB = BI->getParent(); 3968 3969 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 3970 return true; 3971 3972 // If the Terminator is the only non-phi instruction, simplify the block. 3973 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 3974 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 3975 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 3976 return true; 3977 3978 // If the only instruction in the block is a seteq/setne comparison 3979 // against a constant, try to simplify the block. 3980 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 3981 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 3982 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 3983 ; 3984 if (I->isTerminator() && 3985 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, DL)) 3986 return true; 3987 } 3988 3989 // If this basic block is ONLY a compare and a branch, and if a predecessor 3990 // branches to us and our successor, fold the comparison into the 3991 // predecessor and use logical operations to update the incoming value 3992 // for PHI nodes in common successor. 3993 if (FoldBranchToCommonDest(BI)) 3994 return SimplifyCFG(BB, TTI, DL) | true; 3995 return false; 3996 } 3997 3998 3999 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 4000 BasicBlock *BB = BI->getParent(); 4001 4002 // Conditional branch 4003 if (isValueEqualityComparison(BI)) { 4004 // If we only have one predecessor, and if it is a branch on this value, 4005 // see if that predecessor totally determines the outcome of this 4006 // switch. 4007 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4008 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 4009 return SimplifyCFG(BB, TTI, DL) | true; 4010 4011 // This block must be empty, except for the setcond inst, if it exists. 4012 // Ignore dbg intrinsics. 4013 BasicBlock::iterator I = BB->begin(); 4014 // Ignore dbg intrinsics. 4015 while (isa<DbgInfoIntrinsic>(I)) 4016 ++I; 4017 if (&*I == BI) { 4018 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 4019 return SimplifyCFG(BB, TTI, DL) | true; 4020 } else if (&*I == cast<Instruction>(BI->getCondition())){ 4021 ++I; 4022 // Ignore dbg intrinsics. 4023 while (isa<DbgInfoIntrinsic>(I)) 4024 ++I; 4025 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 4026 return SimplifyCFG(BB, TTI, DL) | true; 4027 } 4028 } 4029 4030 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 4031 if (SimplifyBranchOnICmpChain(BI, DL, Builder)) 4032 return true; 4033 4034 // If this basic block is ONLY a compare and a branch, and if a predecessor 4035 // branches to us and one of our successors, fold the comparison into the 4036 // predecessor and use logical operations to pick the right destination. 4037 if (FoldBranchToCommonDest(BI)) 4038 return SimplifyCFG(BB, TTI, DL) | true; 4039 4040 // We have a conditional branch to two blocks that are only reachable 4041 // from BI. We know that the condbr dominates the two blocks, so see if 4042 // there is any identical code in the "then" and "else" blocks. If so, we 4043 // can hoist it up to the branching block. 4044 if (BI->getSuccessor(0)->getSinglePredecessor()) { 4045 if (BI->getSuccessor(1)->getSinglePredecessor()) { 4046 if (HoistThenElseCodeToIf(BI)) 4047 return SimplifyCFG(BB, TTI, DL) | true; 4048 } else { 4049 // If Successor #1 has multiple preds, we may be able to conditionally 4050 // execute Successor #0 if it branches to successor #1. 4051 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 4052 if (Succ0TI->getNumSuccessors() == 1 && 4053 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 4054 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 4055 return SimplifyCFG(BB, TTI, DL) | true; 4056 } 4057 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 4058 // If Successor #0 has multiple preds, we may be able to conditionally 4059 // execute Successor #1 if it branches to successor #0. 4060 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 4061 if (Succ1TI->getNumSuccessors() == 1 && 4062 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 4063 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 4064 return SimplifyCFG(BB, TTI, DL) | true; 4065 } 4066 4067 // If this is a branch on a phi node in the current block, thread control 4068 // through this block if any PHI node entries are constants. 4069 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 4070 if (PN->getParent() == BI->getParent()) 4071 if (FoldCondBranchOnPHI(BI, DL)) 4072 return SimplifyCFG(BB, TTI, DL) | true; 4073 4074 // Scan predecessor blocks for conditional branches. 4075 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 4076 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 4077 if (PBI != BI && PBI->isConditional()) 4078 if (SimplifyCondBranchToCondBranch(PBI, BI)) 4079 return SimplifyCFG(BB, TTI, DL) | true; 4080 4081 return false; 4082 } 4083 4084 /// Check if passing a value to an instruction will cause undefined behavior. 4085 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 4086 Constant *C = dyn_cast<Constant>(V); 4087 if (!C) 4088 return false; 4089 4090 if (I->use_empty()) 4091 return false; 4092 4093 if (C->isNullValue()) { 4094 // Only look at the first use, avoid hurting compile time with long uselists 4095 User *Use = *I->user_begin(); 4096 4097 // Now make sure that there are no instructions in between that can alter 4098 // control flow (eg. calls) 4099 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 4100 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 4101 return false; 4102 4103 // Look through GEPs. A load from a GEP derived from NULL is still undefined 4104 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 4105 if (GEP->getPointerOperand() == I) 4106 return passingValueIsAlwaysUndefined(V, GEP); 4107 4108 // Look through bitcasts. 4109 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 4110 return passingValueIsAlwaysUndefined(V, BC); 4111 4112 // Load from null is undefined. 4113 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 4114 if (!LI->isVolatile()) 4115 return LI->getPointerAddressSpace() == 0; 4116 4117 // Store to null is undefined. 4118 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 4119 if (!SI->isVolatile()) 4120 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 4121 } 4122 return false; 4123 } 4124 4125 /// If BB has an incoming value that will always trigger undefined behavior 4126 /// (eg. null pointer dereference), remove the branch leading here. 4127 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 4128 for (BasicBlock::iterator i = BB->begin(); 4129 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 4130 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 4131 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 4132 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 4133 IRBuilder<> Builder(T); 4134 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 4135 BB->removePredecessor(PHI->getIncomingBlock(i)); 4136 // Turn uncoditional branches into unreachables and remove the dead 4137 // destination from conditional branches. 4138 if (BI->isUnconditional()) 4139 Builder.CreateUnreachable(); 4140 else 4141 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 4142 BI->getSuccessor(0)); 4143 BI->eraseFromParent(); 4144 return true; 4145 } 4146 // TODO: SwitchInst. 4147 } 4148 4149 return false; 4150 } 4151 4152 bool SimplifyCFGOpt::run(BasicBlock *BB) { 4153 bool Changed = false; 4154 4155 assert(BB && BB->getParent() && "Block not embedded in function!"); 4156 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 4157 4158 // Remove basic blocks that have no predecessors (except the entry block)... 4159 // or that just have themself as a predecessor. These are unreachable. 4160 if ((pred_begin(BB) == pred_end(BB) && 4161 BB != &BB->getParent()->getEntryBlock()) || 4162 BB->getSinglePredecessor() == BB) { 4163 DEBUG(dbgs() << "Removing BB: \n" << *BB); 4164 DeleteDeadBlock(BB); 4165 return true; 4166 } 4167 4168 // Check to see if we can constant propagate this terminator instruction 4169 // away... 4170 Changed |= ConstantFoldTerminator(BB, true); 4171 4172 // Check for and eliminate duplicate PHI nodes in this block. 4173 Changed |= EliminateDuplicatePHINodes(BB); 4174 4175 // Check for and remove branches that will always cause undefined behavior. 4176 Changed |= removeUndefIntroducingPredecessor(BB); 4177 4178 // Merge basic blocks into their predecessor if there is only one distinct 4179 // pred, and if there is only one distinct successor of the predecessor, and 4180 // if there are no PHI nodes. 4181 // 4182 if (MergeBlockIntoPredecessor(BB)) 4183 return true; 4184 4185 IRBuilder<> Builder(BB); 4186 4187 // If there is a trivial two-entry PHI node in this basic block, and we can 4188 // eliminate it, do so now. 4189 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 4190 if (PN->getNumIncomingValues() == 2) 4191 Changed |= FoldTwoEntryPHINode(PN, DL); 4192 4193 Builder.SetInsertPoint(BB->getTerminator()); 4194 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 4195 if (BI->isUnconditional()) { 4196 if (SimplifyUncondBranch(BI, Builder)) return true; 4197 } else { 4198 if (SimplifyCondBranch(BI, Builder)) return true; 4199 } 4200 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 4201 if (SimplifyReturn(RI, Builder)) return true; 4202 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 4203 if (SimplifyResume(RI, Builder)) return true; 4204 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 4205 if (SimplifySwitch(SI, Builder)) return true; 4206 } else if (UnreachableInst *UI = 4207 dyn_cast<UnreachableInst>(BB->getTerminator())) { 4208 if (SimplifyUnreachable(UI)) return true; 4209 } else if (IndirectBrInst *IBI = 4210 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 4211 if (SimplifyIndirectBr(IBI)) return true; 4212 } 4213 4214 return Changed; 4215 } 4216 4217 /// SimplifyCFG - This function is used to do simplification of a CFG. For 4218 /// example, it adjusts branches to branches to eliminate the extra hop, it 4219 /// eliminates unreachable basic blocks, and does other "peephole" optimization 4220 /// of the CFG. It returns true if a modification was made. 4221 /// 4222 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 4223 const DataLayout *DL) { 4224 return SimplifyCFGOpt(TTI, DL).run(BB); 4225 } 4226